Sample records for yttrium scandium gallium

  1. Application of reflectance confocal microscopy to evaluate skin damage after irradiation with an yttrium-scandium-gallium-garnet (YSGG) laser.

    Yue, Xueping; Wang, Hongwei; Li, Qing; Li, Linfeng


    The objective of this study was to observe the characteristics of the skin after irradiation with a 2790-nm yttrium-scandium-gallium-garnet (YSGG) laser using reflectance confocal microscopy (RCM). A 2790-nm YSGG laser was used to irradiate fresh foreskin (four doses, at spot density 3) in vitro. The characteristics of microscopic ablative columns (MAC), thermal coagulation zone (TCZ), and microscopic treatment zones (MTZ) were observed immediately after irradiation using digital microscope and RCM. The characteristics of MAC, TCZ, and MTZ with variations in pulse energy were comparatively analyzed. After irradiation, MAC, TCZ, and MTZ characteristics and undamaged skin between MTZs can be observed by RCM. The depth and width of MTZ obviously increased with the increase in pulse energy. At 80, 120, and 160 mJ/microbeam (MB), the MTZ actual area and proportion were about two times that of the theoretical value and three times at 200 mJ/MB. With increases in depth, the single MAC gradually decreased in a fingertip-shaped model, with TCZ slowly increasing, and MTZ slightly decreasing in a columnar shape. RCM was able to determine the characteristics of thermal injury on the skin after the 2790-nm YSGG laser irradiation with different pulse energies. Pulse energy higher than 200 mJ/MB may have much larger thermal injury and side effect. RCM could be used in the clinic in future.

  2. Thermal effects from modified endodontic laser tips used in the apical third of root canals with erbium-doped yttrium aluminium garnet and erbium, chromium-doped yttrium scandium gallium garnet lasers.

    George, Roy; Walsh, Laurence J


    To evaluate the temperature changes occurring on the apical third of root surfaces when erbium-doped yttrium aluminium garnet (Er:YAG) and erbium, chromium-doped yttrium scandium gallium garnet (Er,Cr:YSGG) laser energy was delivered with a tube etched, laterally emitting conical tip and a conventional bare design optical fiber tip. Thermal effects of root canal laser treatments on periodontal ligament cells and alveolar bone are of concern in terms of safety. A total of 64 single-rooted extracted teeth were prepared 1 mm short of the working length using rotary nickel-titanium Pro-Taper files to an apical size corresponding to a F5 Pro-Taper instrument. A thermocouple located 2 mm from the apex was used to record temperature changes arising from delivery of laser energy through laterally emitting conical tips or plain tips, using an Er:YAG or Er,Cr:YSGG laser. For the Er:YAG and Er,Cr:YSGG systems, conical fibers showed greater lateral emissions (452 + 69% and 443 + 64%) and corresponding lower forward emissions (48 + 5% and 49 + 5%) than conventional plain-fiber tips. All four combinations of laser system and fiber design elicited temperature increases less than 2.5 degrees C during lasing. The use of water irrigation attenuated completely the thermal effects of individual lasing cycles. Laterally emitting conical fiber tips can be used safely under defined conditions for intracanal irradiation without harmful thermal effects on the periodontal apparatus.

  3. Erbium, chromium:yttrium scandium gallium garnet laser for caries removal: influence on bonding of a self-etching adhesive system.

    Tachibana, Arlene; Marques, Márcia Martins; Soler, Julia Maria Pavan; Matos, Adriana Bona


    This study evaluated the influence of the dental substrates obtained after the use of different caries removal techniques on bonding of a self-etching system. Forty, extracted, carious, human molars were ground to expose flat surfaces containing caries-infected dentine surrounded by sound dentine. The caries lesions of the specimens were removed or not (control--G1) either by round steel burs and water-cooled, low speed, handpiece (G2), or by irradiation with an erbium, chromium:yttrium scandium gallium garnet (Er,Cr:YSGG) laser (2W, 20 Hz, 35.38 J/cm(2), fiber G4 handpiece with 0.2826 mm(2), non-contact mode at a 2 mm distance, 70% air/20% water--G3) or using a chemo-mechanical method (Carisolv--G4). Caries-infected, caries-affected and sound dentines were submitted to a bonding system followed by construction of a resin-based composite crown. Hour-glass shaped samples were obtained and submitted to a micro-tensile bond test. The bond strength data were compared by analysis of variance (ANOVA), complemented by Tukey's test (P bond strengths than did samples of caries-affected dentine, except for the groups treated with the Er,Cr:YSGG laser. The highest bond strengths were observed with the sound dentine treated with burs and Carisolv. The bond strengths to caries-affected dentine were similar in all groups. Additionally, bonding to caries-affected dentine of the Er,Cr:YSGG laser and Carisolv groups was similar to bonding to caries-infected dentine. Thus, caries-affected dentine is not an adequate substrate for adhesion. Moreover, amongst the caries removal methods tested, the Er,Cr:YSGG laser irradiation was the poorest in providing a substrate for bonding with the tested self-etching system.

  4. Removal of Dental Implants Using the Erbium,Chromium:Yttrium-Scandium-Gallium-Garnet Laser and the Conventional Trephine Bur: An in Vitro Comparative Study.

    Hajji, Mohammad; Franzen, Rene; Grümer, Stefan; Modabber, Ali; Nasher, Riman; Prescher, Andreas; Gutknecht, Norbert


    The purpose of this study was to compare the conventional trephine bur and the Erbium,chromium: yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser in removing implants in terms of the volume of removed bone, duration of the procedure, and morphological changes on the bone surface. Three human mandibles were utilized, and four implants were inserted in each mandible using a drilling handpiece and burs. The implants were divided into two groups (n = 6) in which two implants from each mandible were removed using a trephine bur running at 1200 rounds per minute (rpm) with water irrigation. The remaining implants (n = 6) were removed with Er,Cr:YSGG laser (power 6 W, frequency 20 Hz, pulse duration 50 μs, water 60, air 30). The volume of bone loss was calculated by filling the holes with mercury and measuring its volume. The preparation time was measured with a digital stopwatch and the postoperative bone surfaces were examined under a scanning electron microscope (SEM). The laser group exhibited a smaller amount of bone loss than the trephine bur group, whereas the latter required a shorter time of preparation. SEM revealed empty trabecular spaces with no signs of carbonization and well-defined edges in the laser group, whereas the trephine group displayed a surface covered with a smear layer and microcracks. The Er,Cr:YSGG laser provides superior results over the trephine bur in terms of bone preservation, thermal damage, and cutting efficiency.

  5. Effects of erbium-and chromium-doped yttrium scandium gallium garnet and diode lasers on the surfaces of restorative dental materials: a scanning electron microscope study.

    Hatipoglu, M; Barutcigil, C


    The aim of this study is to evaluate the potential effects of laser irradiation, which is commonly performed in periodontal surgery, on the surfaces of restorative materials. Five different restorative dental materials were used in this study, as follows: (1) Resin composite, (2) poly acid-modified resin composite (compomer), (3) conventional glass ionomer cement (GIC), (4) resin-modified glass ionomer cement (RMGIC), and (5) amalgam. Four cylindrical samples (8 mm diameter, 2 mm height) were prepared for each restorative material. In addition, four freshly extracted, sound human incisors teeth were selected. Two different laser systems commonly used in periodontal surgery were examined in this study: A 810 nm diode laser at a setting of 1 W with continuous-phase laser irradiation for 10 s, and an erbium-and chromium-doped yttrium scandium gallium garnet (Er, Cr: YSGG) laser at settings of 2.5 W, 3.25 W, and 4 W with 25 Hz laser irradiation for 10 s. Scanning electron microscopy (SEM) analysis was performed to evaluate the morphology and surface deformation of the restorative materials and tooth surfaces. According to the SEM images, the Er, Cr: YSGG laser causes irradiation markings that appear as demineralized surfaces on tooth samples. The Er, Cr: YSGG laser also caused deep defects on composite, compomer, and RMGIC surfaces because of its high power, and the ablation was deeper for these samples. High-magnification SEM images of GIC samples showed the melting and combustion effects of the Er, Cr: YSGG laser, which increased as the laser power was increased. In amalgam samples, neither laser left significant harmful effects at the lowest power setting. The diode laser did cause irradiation markings, but they were insignificant compared with those left by the Er, Cr: YSGG laser on the surfaces of the different materials and teeth. Within the limitations of this study, it can be concluded that Er, Cr: YSGG laser irradiation could cause distortions of the surfaces

  6. Synthesis of aluminum-based scandium-yttrium master alloys

    Bazhin, V. Yu.; Kosov, Ya. I.; Lobacheva, O. L.; Dzhevaga, N. V.


    The preparation technology for an Al-2% Sc-0.5% Y master alloy using aluminum-manganese alloys has been developed and tested. The microstructure of the prepared master alloy is studied and the compositions of intermetallics is determined. The efficient technological parameters of the synthesis are determined. It is shown that varying the compositions of starting reagents and alloying additions and optimizing the process conditions (temperature, mixing, etc.) allow us to forecast the manufacturing and operating characteristics of aluminum-based master alloys. Joint additions of scandium and yttrium oxides to a charge favor a substantial decrease in the grain size of the formed intermetallics; this effect appears to the utmost in the case of microallying with yttrium up to 0.5 wt %.

  7. Spin-phonon coupling in scandium doped gallium ferrite

    Chakraborty, Keka R., E-mail:, E-mail:; Mukadam, M. D.; Basu, S.; Yusuf, S. M., E-mail:, E-mail: [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India); Paul, Barnita; Roy, Anushree [Department of Physics, Indian Institute of Technology, Kharagpur 721302 (India); Grover, Vinita; Tyagi, A. K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)


    We embarked on a study of Scandium (Sc) doped (onto Ga site) gallium ferrite (GaFeO{sub 3}) and found remarkable magnetic properties. In both doped as well as parent compounds, there were three types of Fe{sup 3+} ions (depending on the symmetry) with the structure conforming to space group Pna2{sub 1} (Sp. Grp. No. 33) below room temperature down to 5 K. We also found that all Fe{sup 3+} ions occupy octahedral sites, and carry high spin moment. For the higher Sc substituted sample (Ga{sub 1−x}Sc{sub x}FeO{sub 3}: x = 0.3), a canted magnetic ordered state is found. Spin-phonon coupling below Néel temperature was observed in doped compounds. Our results indicated that Sc doping in octahedral site modifies spin-phonon interactions of the parent compound. The spin-phonon coupling strength was estimated for the first time in these Sc substituted compounds.

  8. [Spectrophotometric determination of scandium,gallium and vanadium in white cabbage leaves].

    Buhl, F; Połedniok, J


    Scandium, gallium and vanadium contents in plants is on the ppm level, although plants from industrial areas can show higher concentrations of these elements. In Department of Analytical Chemistry of Silesian University there have been elaborated new, sensitive, spectrophotometric methods of determination of scandium, gallium and vanadium using Chrome Azurol S (CAS) and Sterinol (ST). The aim of this study was the application of these methods in analysis of cultivated plants from polluted regions. White cabbage from Upper Silesia was chosen. Because the spectrophotometric methods are not selective, scandium, gallium and vanadium should be preliminary separated from interfering elements. The solvent reaction was applied for the isolation from main and trace components of investigated material. Tienoiltrifluoracetone solution in xylene was used for the extraction of scandium, mesithyloxide for vanadium and n-butyl acetate--for gallium. Interfering and not separated Fe(III) was isolated using the extraction with acetylacetone solution in CHCl3 in the case of scandium and the reduction to Fe(II) by ascorbic acid in the case of gallium and vanadium. Due to influence of Fe(II) on the vanadium determination, KCN was used as a masking agent directly after the reduction. Scandium, gallium and vanadium were determined in 6 independent samples of white cabbage after dry or wet mineralization and contents of these leemnets were found from calibration graphs. Obtain results were checked by the internal standard addition method and Atomic Emission Spectrometry Method (ICP AES). The amounts of gallium and vanadium in white cabbage from Upper Silesia District determined by elaborated methods are in good correlation with a literature data, although the contents of vanadium are on the toxic level. The scandium concentration is higher than in plants from not industrial areas. The standard recovery is satisfactory. The Atomic Emission Spectrometry Method gave comparable results. The

  9. Scandium

    Iain, Samson,; Chassé, Mathieu


    International audience; Atomic symbol: Sc Atomic number: 21 Atomic weight: 44.95591 Isotopes and abundances: 45 Sc 100 % 1 Atm melting point: 1541 C 1 Atm boiling point: 2836 C Common valences: 3+ Ionic radii: 6-fold, 74.5 pm, 8-fold, 87 pm Pauling electronegativity: 1.36 First ionization energy: 633.1 kJ/mol Chondritic (CI) abundance: 5.81 ppm Silicate Earth abundance: 16.4 ppm Crustal abundance: 21.9 Seawater abundance: 2–20 pmol/L Core abundance: $0 Properties Scandium is the lightest grou...

  10. Thermally stable yttrium-scandium oxide high-k dielectrics deposited by a solution process

    Hu, Wenbing; Frost, Bradley; Peterson, Rebecca L.


    We investigated the thermal stability of electrical properties in ternary alloy (Y x Sc1-x )2O3 high-k oxides as a function of yttrium fraction, x. The yttrium-scandium oxide dielectric films are deposited using a facile ink-based process. The oxides have a stoichiometry-dependent relative dielectric constant of 26.0 to 7.7 at 100 kHz, low leakage current density of 10-8 A·cm-2, high breakdown field of 4 MVṡcm-1, and interface trap density of 1012 cm-2·eV-1 with silicon. Compared with binary oxides, ternary alloys exhibit less frequency dispersion of the dielectric constant and a higher crystallization temperature. After crystallization is induced through a 900 °C anneal, ternary (Y0.6Sc0.4)2O3 films maintain their low leakage current and high breakdown field. In contrast, the electrical performance of the binary oxides significantly degrades following the same treatment. The solution-processed ternary oxide dielectrics demonstrated here may be used as high-k gate insulators in complementary metal-oxide semiconductor (CMOS) technologies, in novel electronic material systems and devices, and in printed, flexible thin film electronics, and as passivation layers for high power devices. These oxides may also be used as insulators in fabrication process flows that require a high thermal budget.

  11. Scandium versus yttrium{amino-alkoxy-bis(phenolate)} complexes for the stereoselective ring-opening polymerization of racemic lactide and β-butyrolactone.

    Chapurina, Yulia; Klitzke, Joice; Casagrande, Osvaldo de L; Awada, Mouhamad; Dorcet, Vincent; Kirillov, Evgueni; Carpentier, Jean-François


    Scandium and yttrium amide complexes Ln{ONXO(R1,R2)}(N(SiHMe2)2)(THF)n (Ln = Sc, n = 0 or Y, n = 1; X = NMe2 or OMe; R(1) = Cumyl or p-Cl-Cumyl; R(2) = Me or Cumyl) were prepared by aminolysis of Ln[N(SiHMe2)2]3(THF) with the corresponding tetradentate diamino- or alkoxy-amino-bis(phenol) pro-ligands {ONXO(R1,R2)}H2. In the solid state and in toluene solution, the scandium complexes are monomeric and 5-coordinated, while the analogous yttrium complexes all bear an extra THF-coordinated molecule and are 6-coordinated. Sc{ONXO(R1,R2)}(N(SiHMe2)2) complexes are single-site initiators for the ring-opening polymerization (ROP) of racemic lactide but are less active than their yttrium analogues Y{ONXO(R1,R2)}(N(SiHMe2)2)(THF); also, in contrast to the latter ones, they are inactive in the ROP of the more demanding racemic β-butyrolactone. On the other hand, the scandium amide complexes feature a significantly improved control over the ROP of lactide, yielding PLAs with much narrower molecular weight distributions (Đ(M) < 1.1 for Sc vs. 1.5-2.0 for Y). The yttrium complex with the very bulky o,p-dicumyl-substituted ligand is more heteroselective than its scandium analogue (P(r) = 0.88 vs. 0.83), while the opposite is observed with complexes based on p-methyl-substituted ligands (P(r) = 0.50 in toluene or 0.72-0.75 in THF for Y vs. P(r) = 0.75-0.83 for Sc in toluene). These reactivity and selectivity trends are rationalized by a much more sterically crowded coordination sphere in scandium than in yttrium complexes.

  12. Reversed phase extraction chromatographic separation of scandium with amberlite LA-1 from malonate solutions

    Narayanan, P.; Khopkar, S.M.


    Scandium was extracted at pH 5.0 from 0.01 M malonic acid on silica gel column impregnated with Amberlite LA-1. Nickel, zinc, cadmium, mercury, lead, tin, aluminium, and lanthanum in binary mixtures passed through the cadmium because they could not form malonato complexes. It was separated by the process of selective elution from elements such as zirconium, thorium, uranium, iron(III), gallium, indium, cerium(III), and titanium by exploiting difference in stability of malonato complexes. Scandium was separated from multicomponent mixture containing yttrium, titanium, zirconium, thorium, uranium and aluminium by a process of selective sorbtion and selective elution.

  13. Effects of erbium‑and chromium‑doped yttrium scandium gallium ...


    Aug 21, 2014 ... tissues and might cause crater‑like defects on dental hard tissues during ... were polished with aluminum‑oxide‑coated disks (Sof‑Lex;. 3M ESPE ..... Er: YAG laser irradiation on the scanning electron microscopic structure and.

  14. Investigation of concentration-dependence of thermodynamic properties of lanthanum, yttrium, scandium and terbium in eutectic LiCl-KCl molten salt

    Wang, Yafei; Zhou, Wentao; Zhang, Jinsuo


    Thermodynamic properties of rare earth metals in LiCl-KCl molten salt electrolyte are crucial to the development of electrochemical separation for the treatment of used nuclear fuels. In the present study, activity coefficient, apparent potential, and diffusion coefficient of lanthanum, yttrium, scandium, and terbium in the molten salt (58 at% LiCl and 42 at% KCl) were calculated by the method of molecular dynamics simulation up to a concentration around 3 at% at temperatures of 723 K and 773 K. It was found that the activity coefficient and the apparent potential increase with the species concentration while diffusion coefficient shows a trend of increase followed by decrease. The calculated results were validated by available measurement data of dilution cases. This research extends the range of data to a wide component and would provide further insight to the pyroprocessing design and safeguards.

  15. Influence of growth temperature on the magnetic and optical properties of liquid-phase-epitaxial(LPE)-grown lanthanum- and gallium-substituted yttrium iron garnet ((La, Ga):YIG) films and their application to waveguides

    Sugimoto, Naoto; Tate, Akiyuki; Mino, Shinji; Shibukawa, Atsushi


    The growth temperature dependence is measured of the magnetic and optical properties of lanthanum- and gallium-substituted yttrium iron garnet films deposited on gadolinium gallium garnet substrates by the liquid-phase-epitaxial-growth method for use as integrated optical waveguides. The magnetization of the film can be saturated in the film plane by a weak external-magnetic field. The refractive index is controlled in a range of 2.192 to 2.204 by the growth temperature, which ranges from 893 to 835 C. Rib waveguides with low propagation loss are also fabricated.

  16. Comparative evaluation of surface topography of tooth prepared using erbium, chromium: Yttrium, scandium, gallium, garnet laser and bur and its clinical implications

    Mahesh Verma


    Conclusions: Er, Cr: YSGG laser can be used for preparing tooth and bond strength value achieved by laser preparation alone without surface treatment procedure lies in the range of clinical acceptability.

  17. Effect of Gallium and Indium Co-Substituting on Upconversion Properties of Er/Yb:Yttrium Aluminum Garnet Powders Prepared by the Co-Precipitation Method.

    Zhang, Wei; Liang, Yun-Ling; Hu, Zheng-Fa; Feng, Zu-Yong; Lun, Ma; Zhang, Xiu-ping; Sheng, Xia; Liu, Qian; Luo, Jie


    Gallium and Indium co-substituted Yb, Er:YAG was fabricated through the chemical co-precipitation method. The formation process and structure of the Ga3+ and In3+ substituted phosphor powders were characterized by the X-ray diffraction, thermo-gravimetry analyzer, infrared spectra, and X-ray photoelectron spectroscopy, and the effects of Ga3+ and In3+ concentration on the luminescence properties were investigated by spectrum. The results showed that the blue shift occurred after the substitution of Ga3+ and In3+ for Al3+ in matrix, and the intensity of emission spectrum was affected by the concentration of Ga3+ and In3+.

  18. Trisodium scandium bis(orthoborate

    Kunpeng Wang


    Full Text Available Single crystals of trisodium scandium bis(orthoborate, Na3Sc(BO32, have been obtained by spontaneous crystallization from an Na2O–Sc2O3–B2O3 melt. The crystal structure features a three-dimensional framework composed of planar [BO3]3− groups and distorted ScO6 octahedra with Na atoms in the cavities. The Sc atom occupies a special position (Wyckoff position 2b, site symmetry -1 and of the two Na atoms, one occupies a special position (Wyckoff position 2c, site symmetry -1.

  19. Scandium oxide antireflection coatings for superluminescent LEDs

    Ladany, I.; Zanzucchi, P. J.; Andrews, J. T.; Kane, J.; Depiano, E.


    For an employment of laser diodes as superluminescent LEDs (SLDs) or amplifiers, the facets of the diodes must be coated with antireflection films. In the work reported, scandium oxide was evaporated from an e-beam source onto Supersil II fused silica substrates. The obtained samples were used for measurements of absorption and reflectivity. Results of index measurements on e-beam evaporated films are presented. It is shown that excellent coatings with reflectivities of 0.00025 can be obtained using these films. Attention is given to the refractive indices for scandium oxide films as a function of wavelength, the power output vs current for laser before coating and after coating with Sc2O3.

  20. Optical constants of yttrium-iron garnet single-crystal film structures

    Sobol, V. R.; Volchik, T. V.; Arabei, S. M.; Korzun, B. V.; Kalanda, N. A.


    Light-attenuation spectra of yttrium-iron garnet single-crystal film structures grown on a gallium-gadolinium garnet substrate by liquid-phase epitaxy from the undercooled solution in the melt have been studied and compared with those of bulk yttrium-iron garnet samples. The calculated optical constants are discussed taking into account the influence of crystal field on the splitting of the energy states of iron ions in the film samples.

  1. Lung gallium scan

    Gallium 67 lung scan; Lung scan; Gallium scan - lung; Scan - lung ... Gallium is injected into a vein. The scan will be taken 6 to 24 hours after the gallium is injected. (Test time depends on whether your condition is acute or chronic .) ...

  2. Smelting of Scandium by Microwave Irradiation

    Satoshi Fujii


    Full Text Available Scandium is being explored as an alloying element for aluminum alloys, which are gaining importance as high-performance lightweight structural alloys in the transportation industry. A few years ago, Sc was also found to be suitable for use in electrical devices. High-Sc-content ScAlN thin films have attracted significant attention because of their strong piezoelectricity. The piezoelectric response of ScAlN suggests that ScAlN thin films formed on a hard substrate would be suitable surface acoustic wave wideband filters for next-generation wireless communication systems. However, it is often difficult to use ScAlN thin films in MEMS devices—including acoustic ones—because of the extremely high price of metallic Sc, given the difficulty associated with smelting it. Here, we propose a novel process for smelting Sc metal by microwave irradiation. Sc metal was able to be obtained successfully from ScF3 through a microwave-irradiation-based carbon reduction reaction. The reaction temperature for this reduction process was approximately 880°C, which is half of that for the conventional smelting process involving reduction with Ca. Thus, the proposed microwave irradiation process has significant potential for use in the smelting of Sc metal.

  3. Temperature Dependent Ultrasonic Study in Scandium Antimonide Semiconductor

    A. K. Gupta


    Full Text Available In this paper analysis of wave propagation of elastic wave in scandium antimonide semiconductor was investigated. In scandium antimonide semiconductor, NaCl structure was found. Ultrasonic properties like ultrasonic attenuation, sound velocities, acoustic coupling constants, and thermal relaxation time have been investigated in cubic scandium antimonide semiconductor. Second and third order elastic constant have been computed for the evaluation of above said ultrasonic properties. Second and third elastic constant was studied at the various temperatures. Longitudinal and shear velocity was calculated by using the elastic constant. Longitudinal and shear velocity increase with increase the temperature. Ultrasonic attenuation either from longitudinal or shear wave propagation in cubic materials increase with increase the temperature.

  4. Scandium Geochemistry of Phosphorites,Guizhou,Southwest China

    张玉学; 何其光; 等


    Geochemical characteristics of scandium are described with respect to its source,evolution and correlation with REE as observed in Late Sinian and Early Cambrian phosphorites and tuffs in Guizhou.Gomparison of chondrite-nomalized REE patterns and some other parameters between the phosphorite and tuff shows that scandium and REE are most likely to have been derived from earlier or contemporaneous marine volcanics or tuffs,with no indication of genetic link to the purple shales,silstones and dolomites in the area.The conditions under which the Sc-bearin phosphorites were formed are discussed in the light of sulfur isotopes and Eh-Ph constrains.

  5. Optical properties of neodymium doped lanthanum scandium borate

    Jang, Won Kweon [Hanseo University, Seosan (Korea, Republic of); Kim, Tae Hoon; Yu, Young Moon [Korea Photonics Technology Institute, Kwangju (Korea, Republic of)


    Optical characteristics of neodymium doped lanthanium scandium borate, newly developed crystal, was investigated. Technical description of crystal growth and its dependence on optical property were investigated with comparison to other laser crystals. Its potential as commercial laser crystal for microchip laser fabrication was observed with fundamental lasing experiments. It was possible for lanthanium scandium borate to be highly doped with neodymium ion without crystal defect, and it is an advantage for microchip laser host material. The laser operation was investigated in the fundamental with microchip system.

  6. Thermoelectric material comprising scandium doped zinc cadmium oxide


    There is presented a composition of scandium doped Zinc Cadmium Oxide with the general formula ZnzCdxScyO which the inventors have prepared, and for which material the inventors have made the insight that it is particularly advantageous as an n-type oxide material, such as particularly advantageous...

  7. Investigations in gallium removal

    Philip, C.V.; Pitt, W.W. [Texas A and M Univ., College Station, TX (United States); Beard, C.A. [Amarillo National Resource Center for Plutonium, TX (United States)


    Gallium present in weapons plutonium must be removed before it can be used for the production of mixed-oxide (MOX) nuclear reactor fuel. The main goal of the preliminary studies conducted at Texas A and M University was to assist in the development of a thermal process to remove gallium from a gallium oxide/plutonium oxide matrix. This effort is being conducted in close consultation with the Los Alamos National Laboratory (LANL) personnel involved in the development of this process for the US Department of Energy (DOE). Simple experiments were performed on gallium oxide, and cerium-oxide/gallium-oxide mixtures, heated to temperatures ranging from 700--900 C in a reducing environment, and a method for collecting the gallium vapors under these conditions was demonstrated.

  8. Gallium nitride optoelectronic devices

    Chu, T. L.; Chu, S. S.


    The growth of bulk gallium nitride crystals was achieved by the ammonolysis of gallium monochloride. Gallium nitride single crystals up to 2.5 x 0.5 cm in size were produced. The crystals are suitable as substrates for the epitaxial growth of gallium nitride. The epitaxial growth of gallium nitride on sapphire substrates with main faces of (0001) and (1T02) orientations was achieved by the ammonolysis of gallium monochloride in a gas flow system. The grown layers had electron concentrations in the range of 1 to 3 x 10 to the 19th power/cu cm and Hall mobilities in the range of 50 to 100 sq cm/v/sec at room temperature.

  9. Extraction of scandium from red mud by modified activated carbon and kinetics study

    ZHOU Hualei; LI Dongyan; TIAN Yajun; CHEN Yunfa


    Activated carbon (AC) was modified by tri-butyl phosphate (TBP) for selectively extracting scandium from red mud and characterized by BET (Brunauer-Emmett-Teller) surface area. The modified AC had a preferential adsorption to scandium. The influences of adsorbent dosage, adsorption temperature, and time on adsorption capacity and selectivity to scandium were examined. An optimum adsorbent dosage (~6.25g/L), adsorption temperature (308K), and adsorption time (40min) were figured out. A pseudo-second-order kinetics model was employed for describing the adsorption process of scandium.

  10. Photocatalytic benzylic C–H bond oxidation with a flavin scandium complex

    Mühldorf, Bernd; Wolf, Robert


    The enhanced reduction potential of riboflavin tetraacetate coordinating to scandium triflate enables the challenging photocatalytic C–H oxidation of electron-deficient alkylbenzenes and benzyl alcohols.

  11. Gallium Arsenide Photocathode Development


    r ~\\ 1 1 AD-A018 619 ■ i I 1 GALLIUM ARSENIDE PHOTOCATHODE DEVELOPMENT I Terry Roach, et al 1 1 ■f EPSCO ...aiwiiwnHWlffl’Wip m, «swwerf^MW^S’ GALLIUM ARSENIDE PHOTOCATHODE DEVELOPMENT T. J. Roach Bianca Contractor: EPSCO Laboratories Contract Number: F08606...PHOTOCATHODE DEVELOPMENT 7. AUTHORfaJ T. Roach J. Bianca t. PERFORMING ORGANIZATION NAME AND AOORESS EPSCO Laboratories 227 High Ridge Road Stauford CT

  12. Electrodeposition of gallium for photovoltaics

    Bhattacharya, Raghu N.


    An electroplating solution and method for producing an electroplating solution containing a gallium salt, an ionic compound and a solvent that results in a gallium thin film that can be deposited on a substrate.

  13. Carbochlorination of yttrium oxide

    Gaviria, J.P., E-mail: [Division Cinetica Quimica - Complejo Tecnologico Pilcaniyeu, Centro Atomico Bariloche - Comision Nacional de Energia Atomica, Av. Bustillo km 9500 (8400), S.C. de Bariloche, Rio Negro (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina); Bohe, A.E. [Division Cinetica Quimica - Complejo Tecnologico Pilcaniyeu, Centro Atomico Bariloche - Comision Nacional de Energia Atomica, Av. Bustillo km 9500 (8400), S.C. de Bariloche, Rio Negro (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (Argentina); Centro Regional Universitario Bariloche, Universidad Nacional del Comahue (Argentina)


    The reaction of chlorination of a mixture composed by Y{sub 2}O{sub 3} and sucrose carbon was studied by thermogravimetry over a temperature range of 550-950 {sup o}C. The reaction proceeds through several successive stages. The first of them is the formation of solid yttrium oxychloride (YOCl) and subsequently the YOCl is carbochlorinated to produce YCl{sub 3} (solid or liquid, depending on the temperature) in two stages. The stoichiometries of the first stage and the global reaction were estimated by mass balances, taking into account the chlorine adsorbed by the remainder carbon. The results showed that the reactions involved progress with the formation of CO{sub 2} and CO in the temperature range of 600-775 {sup o}C. The interaction between sucrose carbon and chlorine was analyzed by thermogravimetry in order to quantify the amount of chlorine which is adsorbed on its surface. It was studied the effect of the temperature and initial mass of carbon. The morphological analysis performed by SEM of partially reacted samples showed that the formation of YOCl proceeds through a mechanism of nucleation and growth. For temperatures above 715 {sup o}C the final product of the carbochlorination is liquid YCl{sub 3}, whose evaporation is observed in the thermogravimetry. The evaporation kinetics was analyzed in argon atmosphere and from the thermogravimetric curves was determined a value of 250 kJ/mol for the heat of evaporation of YCl{sub 3}. This value is consistent with a partial dimerization of the gaseous chloride.

  14. Preparation of nanometer yttrium oxide

    HUO; Cheng-zhang; LIU; Zhi-qiang; LIANG; Zhen-feng; LI; Xing-ying


    The nanometer yttrium oxides were obtained through precipitation in aqueous solution by reaction with ammonium bicarbonate. The reaction between yttrium chloride and ammonium bicarbonate, the effect of surfactants on particle size and the methods of controlling agglomeration were studied. Compared to other methods, the method of controlling the agglomeration by adding surfactant is one of the best methods for controlling the agglomeration of nanometer particles in wetchemical process. Increasing surfactants in process of precipitation deduced particle size, obtained narrow size distribution of primary particles. As for the concentration range studied, excess surfactants increased the particle size on the contrary. Characteristics of the thermal decomposition of yttrium carbonate were studied. It indicated that the approximate chemical composition of the precipi tate was Y(OH)Clx (CO3)(1-x/2) · 3H2O,the cubic Y2O3 was obtained above 600℃ , the specific surface and the remain chloride of nanometer Y2O3 was decreased with calcinating temperature rising. The spherical nanometer yttrium oxide was gained with primary particles<50 nm,agglomerate distribution D50 < 150 nm, BET> 35 m2/g, agglomerate constant (D50/DBET ) <6.

  15. Structure of concentrated aqueous solutions of scandium chloride

    Smirnov, P. R.; Grechin, O. V.


    It is shown via X-ray diffraction that aqueous solutions of scandium chloride form ionic associates in a wide range of concentrations. It is established that the Sc3+ ion coordination number increases upon dilution to 8.2 at an unchanged Sc3+-OH2 distance of 0.215 nm. The second coordination sphere of the cation forms at an average distance of 0.420 nm. The number of solvent molecules in the sphere logically increases during dilution. It is concluded that the anion does not form its own sphere in highly concentrated solutions. This coordination sphere begins to form only in solutions with moderate concentrations at a distance of 0.315 nm, and it contains six water molecules in diluted solutions.

  16. Gallium-containing anticancer compounds

    Chitambar, Christopher R.


    There is an ever pressing need to develop new drugs for the treatment of cancer. Gallium nitrate, a group IIIa metal salt, inhibits the proliferation of tumor cells in vitro and in vivo and has shown activity against non-Hodgkin’s lymphoma and bladder cancer in clinical trials. Gallium can function as an iron mimetic and perturb iron-dependent proliferation and other iron-related processes in tumor cells. Gallium nitrate lacks cross resistance with conventional chemotherapeutic drugs and is n...

  17. Gallium--A smart metal

    Foley, Nora; Jaskula, Brian W.


    Gallium is a soft, silvery metallic element with an atomic number of 31 and the chemical symbol Ga. The French chemist Paul-Emile Lecoq de Boisbaudran discovered gallium in sphalerite (a zinc-sulfide mineral) in 1875 using spectroscopy. He named the element "gallia" after his native land of France (formerly Gaul; in Latin, Gallia). The existence of gallium had been predicted in 1871 by Dmitri Mendeleev, the Russian chemist who published the first periodic table of the elements. Mendeleev noted a gap in his table and named the missing element "eka-aluminum" because he determined that its location was one place away from aluminum in the table. Mendeleev thought that the missing element (gallium) would be very much like aluminum in its chemical properties, and he was right. Solid gallium has a low melting temperature (~29 degrees Celsius, or °C) and an unusually high boiling point (~2,204 °C). Because of these properties, the earliest uses of gallium were in high-temperature thermometers and in designing metal alloys that melt easily. The development of a gallium-based direct band-gap semiconductor in the 1960s led to what is now one of the most well-known applications for gallium-based products--the manufacture of smartphones and data-centric networks.

  18. Solvent extraction of scandium from lateritic nickel- cobalt ores using different organic reagents

    Ferizoğlu Ece


    Full Text Available Scandium is the most important and strategic metal that can be recovered as a by-product from lateritic nickel-cobalt ores. In this research, different extractants were investigated in order to extract scandium from a sulfate medium by a using a solvent extraction method. Generally, the organic extractants are classified as acidic, neutral and basic organophosphorus compounds. However, in solvent extraction of scandium, the acidic and neutral organophosphorus compounds are preferred due to their higher extraction efficiencies. Thus, the aim of the present study was to compare the scandium extraction efficiencies of some acidic and neutral organic reagents. For this reason, Ionquest 290 (Bis(2,4,4-trimethylpenthyl phosphonic acid, DEHPA (Di(2-ethylhexyl phosphoric acid, Cyanex 272 ((Bis(2,4,4-trimethylpentyl phosphinic acid which are acidic organophosphorus compounds, and Cyanex 923 (Trialkylphosphine oxide, which is a neutral organophosphorus compound, were used. The extraction capacities of these organics were studied with respect to the extractant concentration at same pH and phase ratio. As a result of the study, DEHPA was found to have higher scandium extraction efficiency with lower iron extraction at pH = 0.55 at a phase ratio of 10:1 = A:O.

  19. Association between toenail scandium levels and risk of acute myocardial infarction in European men: The EURAMIC and Heavy Metals Study

    Gómez-Aracena, J.; Martin-Moreno, J.M.; Riemersma, R.A.; Bode, P.; Gutiérrez-Bedmar, M.; Gorgojo, L.; Kark, J.D.; Garcia-Rodríguez, A.; Gomez-Gracia, E.; Kardinaal, A.F.M.; Aro, A.; Veer, P. van 't; Wedel, H.; Kok, F.J.; Fernández-Crehuet, J.


    The association between scandium status and risk of acute myocardial infarction (MI) was examined in a multicentre case control study in 10 centres from Europe and Israel. Scandium in toenails was assessed in 684 cases and 724 controls less than 70 years of age. Mean concentrations of toenail scandi

  20. Aluminum-Scandium: A Material for Semiconductor Packaging

    Geissler, Ute; Thomas, Sven; Schneider-Ramelow, Martin; Mukhopadhyay, Biswajit; Lang, Klaus-Dieter


    A well-known aluminum-scandium (Al-Sc) alloy, already used in lightweight sports equipment, is about to be established for use in electronic packaging. One application for Al-Sc alloy is manufacture of bonding wires. The special feature of the alloy is its ability to harden by precipitation. The new bonding wires with electrical conductivity similar to pure Al wires can be processed on common wire bonders for aluminum wedge/wedge (w/w) bonding. The wires exhibit very fine-grained microstructure. Small Al3Sc particles are the main reason for its high strength and prevent recrystallization and grain growth at higher temperatures (>150°C). After the wire-bonding process, the interface is well closed. Reliability investigations by active power cycling demonstrated considerably improved lifetime compared with pure Al heavy wires. Furthermore, the Al-Sc alloy was sputter-deposited onto silicon wafer to test it as chip metallization in copper (Cu) ball/wedge bonding technology. After deposition, the layers exhibited fine-grained columnar structure and small coherent Al3Sc particles with dimensions of a few nanometers. These particles inhibit softening processes such as Al splashing in fine wire bonding processes and increase the thickness of remnant Al under the copper balls to 85% of the initial thickness.

  1. Benchmark study of structural and vibrational properties of scandium clusters

    Sajjad, Saira; Maria; Mahmood, Tariq; Ayub, Khurshid


    Geometries and most stable spin states of Sc2 and Sc3 are studied through coupled cluster CCSD(T) calculations. The CCSD(T) calculations at dunning series basis sets (aug-cc-pVDZ, aug-cc-pVTZ and aug-cc-pVQZ) have been performed in order to analyze the stable structure and spin state of the Sc2 and Sc3. Then, a series of diverse DFT methods at different basis sets (6-31G (d), LANL2DZ and LANL2MB) are assessed for structural and vibrational properties in order to propose low cost accurate alternative to CCSD(T). Among all the employed DFT methods, BPV86/LANL2MB delivered better results for structural and frequency analysis. On the basis of better agreement, BPV86/LANL2MB is taken for the structural and vibrational analysis of the higher cluster n = 4-14. The vibrational analysis for higher clusters of scandium is reported for the first time.

  2. Gallium Arsenide Domino Circuit

    Yang, Long; Long, Stephen I.


    Advantages include reduced power and high speed. Experimental gallium arsenide field-effect-transistor (FET) domino circuit replicated in large numbers for use in dynamic-logic systems. Name of circuit denotes mode of operation, which logic signals propagate from each stage to next when successive stages operated at slightly staggered clock cycles, in manner reminiscent of dominoes falling in a row. Building block of domino circuit includes input, inverter, and level-shifting substages. Combinational logic executed in input substage. During low half of clock cycle, result of logic operation transmitted to following stage.

  3. Mechanical Properties, Purifying Techniques and Processing Methods of Metal Yttrium


    The mechanical properties of metal yttrium such as strength, plasticity, hardness and elasticity were introduced. The purifying techniques of yttrium were discussed in detail. The processing methods for metal yttrium including extruding, forging, rolling, wiredrawing and welding were also introduced. Finally, the potential use of yttrium and its alloys were prospected.

  4. Mechanism of scandium influence on strength and heat resistance increase in Al-Mg alloys

    Drits, M.E.; Pavlenko, S.G.; Toropova, L.S.; Bykov' , Yu.G.; Ber, L.B. (AN SSSR, Moscow. Inst. Metallurgii)


    An attempt is made to study the strengthening nature in the Al-Mg-Sc alloy system. The problems of the temperature stability of the non-crystallized structure of the Al-6.5% Ng alloy and the nature of secondary extractions in these alloys caused by scandium presence, are studied. The alteration of the fluidity limit of the Al-6.5% Mg-Se alloys depending on the annealing temperature for various types of intermediate products is shown. Doping of the Al-6.5% Mg alloy with scandium brings about a considerable increase of strength properties, as a result of formation of the ScAl/sub 3/ phase.

  5. Carbon Dioxide Activation by Scandium Atoms and Scandium Monoxide Molecules: Formation and Spectroscopic Characterization of ScCO3 and OCScCO3 in Solid Neon.

    Zhang, Qingnan; Qu, Hui; Chen, Mohua; Zhou, Mingfei


    The reactions of carbon dioxide with scandium monoxide molecules and scandium atoms are investigated using matrix isolation infrared spectroscopy in solid neon. The species formed are identified by the effects of isotopic substitution on their infrared spectra as well as density functional calculations. The results show that the ground state ScO molecule reacts with carbon dioxide to form the carbonate complex ScCO3 spontaneously on annealing. The ground state Sc atom reacts with two carbon dioxide molecules to give the carbonate carbonyl complex OCScCO3 via the previously reported OScCO insertion intermediate on annealing. The observation of these spontaneous reactions is consistent with theoretical predictions that both the Sc + 2CO2 → OCScCO3 and ScO + CO2 → ScCO3 reactions are thermodynamically exothermic and are kinetically facile, requiring little or no activation energy.

  6. Gallium Safety in the Laboratory

    Lee C. Cadwallader


    A university laboratory experiment for the US Department of Energy magnetic fusion research program required a simulant for liquid lithium. The simulant choices were narrowed to liquid gallium and galinstan (Ga-In-Sn) alloy. Safety information on liquid gallium and galinstan were compiled, and the choice was made to use galinstan. A laboratory safety walkthrough was performed in the fall of 2002 to support the galinstan experiment. The experiment has been operating successfully since early 2002.

  7. Gallium Safety in the Laboratory

    Cadwallader, L.C.


    A university laboratory experiment for the US Department of Energy magnetic fusion research program required a simulant for liquid lithium. The simulant choices were narrowed to liquid gallium and galinstan (Ga-In-Sn) alloy. Safety information on liquid gallium and galinstan were compiled, and the choice was made to use galinstan. A laboratory safety walkthrough was performed in the fall of 2002 to support the galinstan experiment. The experiment has been operating successfully since early 2002.

  8. Gallium-67 myocardial scintigraphy in dilated cardiomyopathy

    Aoki, Toshikazu; Konishi, Tokuji; Koyama, Takao; Morita, Yuriko; Futagami, Yasuo; Hayashi, Takamaro; Hamada, Masayuki; Nakano, Takeshi


    Gallium-67 imaging has been employed clinically in the detection of malignant tumor or chronic inflammatory disease. In this study, we evaluated the usefulness of Gallium-67 myocardial imaging as an adjunct to endomyocardial biopsy in the diagnosis of myocarditis. Nine patients who had been diagnosed clinically as dilated cardiomyopathy underwent Gallium-67 myocardial imaging. Left ventricular endomyocardial biopsy was performed on all patients. Two had positive Gallium-67 imaging, but myocarditis was not proven in their tissue specimen. Two others with proven myocarditis had negative Gallium-67 imaging. These results suggest that Gallium-67 imaging is not always a useful tool to detect latent myocarditis in patients with dilated cardiomyopathy.

  9. Scandium-doped zinc cadmium oxide as a new stable n-type oxide thermoelectric material

    Han, Li; Christensen, Dennis Valbjørn; Bhowmik, Arghya


    Scandium-doped zinc cadmium oxide (Sc-doped ZnCdO) is proposed as a new n-type oxide thermoelectric material. The material is sintered in air to maintain the oxygen stoichiometry and avoid instability issues. The successful alloying of CdO with ZnO at a molar ratio of 1 : 9 significantly reduced...

  10. Studying Scandium Thin Films: Trying to Optimize Its Performance in EUV Multilayer Mirrors

    Acosta, Guillermo; Allred, David; Marcos, Doug; Martinez, Yenny; Webb, Nick


    Predictions of a tremendously reflective multilayer, scandium-silicon mirror in the exteme ultraviolet (72% at 42 nanometers, Uspenskii et al, Optics Letters v. 23, n. 10) caught our attention, and did more in arousing our curiousity. The work, however, alluded to the interfacial diffusion to be detrimental to the true reflectance, and neglected to account for the presence of any oxide. Our work has been focused on understanding the thin film oxidation of scandium, as well as searching for an immiscible partner with low absorbtion for multilayer use (vanadium is our leading candidate) that would sidestep the issue of diffusion at the interface. We have thermally evaporated scandium of several thicknesses, ranging from 7-50 nm, have monitored them closely throughout extended annealing periods to learn of its oxide, and will report the extent of oxidation among scandium-vanadium bilayers. Characterization includes roughness and thickness measurements via atomic force microscopy; composition profiling through use of x-ray photoelectron spectroscopy; multiple wavelength and multiple angle ellipsometric analysis; and reflectivity tests made using a scanning monochromator.

  11. In situ observation of the reaction of scandium and carbon by neutron diffraction

    Juarez-Arellano, Erick A., E-mail: [Institut fuer Geowissenschaften, Universitaet Frankfurt, Altenhoeferallee 1, 60438 Frankfurt a.M. (Germany); Universidad del Papaloapan, Circuito Central 200, Parque Industrial, Tuxtepec 68301 (Mexico); Winkler, Bjorn [Institut fuer Geowissenschaften, Universitaet Frankfurt, Altenhoeferallee 1, 60438 Frankfurt a.M. (Germany); Vogel, Sven C. [Los Alamos National Laboratory, Lujan Center. Mail Stop H805, Los Alamos, NM 87545 (United States); Senyshyn, Anatoliy [Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), Technische Universitaet Muenchen, Lichtenbergstr. 1, D-85747 Garching (Germany); Materialwissenschaft, TU Darmstadt, Petersensstr. 23, D-64287 Darmstadt (Germany); Kammler, Daniel R. [Sandia National Laboratories, Albuquerque, NM 87185 (United States); Avalos-Borja, Miguel [CNyN, UNAM, A. Postal 2681, Ensenada, B.C. (Mexico)


    Research highlights: {yields} Exist two ScC cubic phases with B1-structure type differing in site occupancy of C. {yields} A new orthorhombic scandium carbide phase is formed at 1473(50) K. {yields} The recrystallization of alpha-Sc occurs between 1000 and 1223 K. - Abstract: The formation of scandium carbides by reaction of the elements has been investigated by in situ neutron diffraction up to 1823 K. On heating, the recrystallization of {alpha}-Sc occurs between 1000 and 1223 K. The formation of Sc{sub 2}C and ScC (NaCl-B1 type structure) phases has been detected at 1323 and 1373 K, respectively. The formation of a new orthorhombic scandium carbide phase was observed at 1473(50) K. Once the scandium carbides are formed they are stable upon heating or cooling. No other phases were detected in the present study, in which the system was always carbon saturated. The thermal expansion coefficients of all phases have been determined, they are constant throughout the temperature interval studied.

  12. High-Performance p-Type Black Phosphorus Transistor with Scandium Contact.

    Li, Ling; Engel, Michael; Farmer, Damon B; Han, Shu-Jen; Wong, H-S Philip


    A record high current density of 580 μA/μm is achieved for long-channel, few-layer black phosphorus transistors with scandium contacts after 400 K vacuum annealing. The annealing effectively improves the on-state current and Ion/Ioff ratio by 1 order of magnitude and the subthreshold swing by ∼2.5×, whereas Al2O3 capping significantly degrades transistor performances, resulting in 5× lower on-state current and 3× lower Ion/Ioff ratio. The influences of moisture on black phosphorus metal contacts are elucidated by analyzing the hysteresis of 3-20 nm thick black phosphorus transistors with scandium and gold contacts under different conditions: as-fabricated, after vacuum annealing, and after Al2O3 capping. The optimal black phosphorus film thickness for transistors with scandium contacts is found to be ∼10 nm. Moreover, p-type performance is shown in all transistors with scandium contacts, suggesting that the Fermi level is pinned closer to the valence band regardless of the flake thickness.

  13. Gallium localization in peritonitis. Two case reports

    LaManna, M.M.; Saluk, P.H.; Zekavat, P.P.; Mobini, J.; Parker, J.A.


    Diffuse abdominal localization of gallium was found in two patients with peritonitis, one due to M. tuberculosis and the other presumably pyogenic. Gallium scanning may be useful in the diagnosis of peritonitis and perhaps of other serosal infections.

  14. Gallium phosphide energy converters

    Sims, P.E.; Dinetta, L.C.; Goetz, M.A.


    Gallium phosphide (GaP) energy converters may be successfully deployed to provide new mission capabilities for spacecraft. Betavoltaic power supplies based on the conversion of tritium beta decay to electricity using GaP energy converters can supply long term low-level power with high reliability. High temperature solar cells, also based on GaP, can be used in inward-bound missions greatly reducing the need for thermal dissipation. Results are presented for GaP direct conversion devices powered by Ni-63 and compared to the conversion of light emitted by tritiarated phosphors. Leakage currents as low as 1.2 x 10(exp {minus}17) A/sq cm have been measured and the temperature dependence of the reverse saturation current is found to have ideal behavior. Temperature dependent IV, QE, R(sub sh), and V(sub oc) results are also presented. These data are used to predict the high-temperature solar cell and betacell performance of GaP devices and suggest appropriate applications for the deployment of this technology.

  15. Medical Applications and Toxicities of Gallium Compounds

    Christopher R. Chitambar


    Full Text Available Over the past two to three decades, gallium compounds have gained importance in the fields of medicine and electronics. In clinical medicine, radioactive gallium and stable gallium nitrate are used as diagnostic and therapeutic agents in cancer and disorders of calcium and bone metabolism. In addition, gallium compounds have displayed anti-inflammatory and immunosuppressive activity in animal models of human disease while more recent studies have shown that gallium compounds may function as antimicrobial agents against certain pathogens. In a totally different realm, the chemical properties of gallium arsenide have led to its use in the semiconductor industry. Gallium compounds, whether used medically or in the electronics field, have toxicities. Patients receiving gallium nitrate for the treatment of various diseases may benefit from such therapy, but knowledge of the therapeutic index of this drug is necessary to avoid clinical toxicities. Animals exposed to gallium arsenide display toxicities in certain organ systems suggesting that environmental risks may exist for individuals exposed to this compound in the workplace. Although the arsenic moiety of gallium arsenide appears to be mainly responsible for its pulmonary toxicity, gallium may contribute to some of the detrimental effects in other organs. The use of older and newer gallium compounds in clinical medicine may be advanced by a better understanding of their mechanisms of action, drug resistance, pharmacology, and side-effects. This review will discuss the medical applications of gallium and its mechanisms of action, the newer gallium compounds and future directions for development, and the toxicities of gallium compounds in current use.

  16. Bismuth Substituted Yttrium Iron Garnet Single Crystal Films Prepared by Sol-gel Method


    Magneto-optic Faraday rotation effect and the amount of bismuth substituted in yttrium iron garnet single crystal films prepared by gel-coating on modified gadolinium-gallium garnet substrates are investigated, where the gel is synthesized by a sol-gel reaction of nitrates and ethylene glycol. The coated gel is annealed in air at temperatures up to 660℃ for 4h, which is about 300℃ lower than that of liquid-phase epitaxy. The maximum amount of Bi substitution is x=2.7 and the crystallization temperature of garnet phase decreases with the increase of x down to 520℃ for x=2.7. In this film, a huge Faraday rotation of -8.1×104 (°)/cm at λ=0.633μm is obtained.

  17. Interaction of oxygen vacancies in yttrium germanates

    Wang, Hao


    Forming a good Ge/dielectric interface is important to improve the electron mobility of a Ge metal oxide semiconductor field-effect transistor. A thin yttrium germanate capping layer can improve the properties of the Ge/GeO 2 system. We employ electronic structure calculations to investigate the effect of oxygen vacancies in yttrium-doped GeO 2 and the yttrium germanates Y 2Ge 2O 7 and Y 2GeO 5. The calculated densities of states indicate that dangling bonds from oxygen vacancies introduce in-gap states, but the system remains insulating. However, yttrium-doped GeO 2 becomes metallic under oxygen deficiency. Y-doped GeO 2, Y 2Ge 2O 7 and Y 2GeO 5 are calculated to be oxygen substoichiometric under low Fermi energy conditions. The use of yttrium germanates is proposed as a way to effectively passivate the Ge/dielectric interface. This journal is © 2012 the Owner Societies.

  18. Oligonuclear gallium nitrogen cage compounds: molecular intermediates on the way from gallium hydrazides to gallium nitride.

    Uhl, Werner; Abel, Thomas; Hagemeier, Elke; Hepp, Alexander; Layh, Marcus; Rezaeirad, Babak; Luftmann, Heinrich


    Gallium hydrazides are potentially applicable as facile starting compounds for the generation of GaN by thermolysis. The decomposition pathways are, however, complicated and depend strongly on the substituents attached to the gallium atoms and the hydrazido groups. This paper describes some systematic investigations into the thermolysis of the gallium hydrazine adduct Bu(t)(3)Ga←NH(2)-NHMe (1a) and the dimeric gallium hydrazides [R(2)Ga(N(2)H(2)R')](2) (2b, R = Bu(t), R' = Bu(t); 2c, R = Pr(i), R' = Ph; 2d, R = Me, R' = Bu(t)) which have four- or five-membered heterocycles in their molecular cores. Heating of the adduct 1a to 170 °C gave the heterocyclic compound Bu(t)(2)Ga(μ-NH(2))[μ-N(Me)-N(=CH(2))]GaBu(t)(2) (3) by cleavage of N-N bonds and rearrangement. 3 was further converted at 400 °C into the tetrameric gallium cyanide (Bu(t)(2)GaCN)(4) (4). The thermolysis of the hydrazide (Bu(t)(2)Ga)(2)(NH-NHBu(t))(2) (2b) at temperatures between 270 and 420 °C resulted in cleavage of all N-N bonds and the formation of an octanuclear gallium imide, (Bu(t)GaNH)(8) (6). The trimeric dialkylgallium amide (Bu(t)(2)GaNH(2))(3) (5) was isolated as an intermediate. Thermolysis of the hydrazides (Pr(i)(2)Ga)(2)(NH-NHPh)(NH(2)-NPh) (2c) and (Me(2)Ga)(2)(NH-NHBu(t))(2) (2d) proceeded in contrast with retention of the N-N bonds and afforded a variety of novel gallium hydrazido cage compounds with four gallium atoms and up to four hydrazido groups in a single molecule: (Pr(i)Ga)(4)(NH-NPh)(3)NH (7), (MeGa)(4)(NH-NBu(t))(4) (8), (MeGa)(4)(NH-NBu(t))(3)NBu(t) (9), and (MeGa)(4)(NHNBu(t))(3)NH (10). Partial hydrolysis gave reproducibly the unique octanuclear mixed hydrazido oxo compound (MeGa)(8)(NHNBu(t))(4)O(4) (11).

  19. Preparation of Scandium-Bearing Master Alloys by Aluminum-Magnesium Thermoreduction

    姜锋; 白兰; 尹志民


    The new preparation method of scandium-bearing master alloys, in which scandium oxide was fluorinated by reaction with NH4HF2 and then reduced by aluminum-magnesium in fused salt containing alkali and alkaline fluoride under atmosphere, was studied. The effect of sorts of metallic reductive and technique conditions such as reducing temperature and time on the recovery of Sc was discussed. When the liquid aluminum-magnesium was used as the reductive agent, the all-recovery exceeds 80% and the concentration of Sc in master alloy prepared exceeds 1.9%. The best reducing reaction temperature and time are 1100 K and 40 min respectively. The newly produced Sc from reduction combines with Al to produce the stable compound Al3Sc, so the reduction progress is sustained and the recovery of Sc is increased.

  20. Effects of scandium doping concentration on the properties of strontium cobalt oxide membranes

    Pingying Zeng


    Full Text Available Perovskite-type mixed conducting oxides of SrCo1-ySc yO3-δ (y=0.02-0.7 were synthesized by a combined EDTA-citrate complexing method. Different scandium doping concentrations in SrCo1-ySc yO3-δ have significant effects on the phase structure, electrical conductivity, surface properties and oxygen permeation behaviour of the resultant membranes. SrCoO3-δ without scandium incorporation displayed a 2H BaNiO3-type structure with almost zero oxygen flux at high temperatures. Small amounts of Sc2O3 doping (y0.1 were found to lower the membrane oxygen fluxes, with y³≥0.4 doped SrCo1-ySc yO3-δ ceramics no longer showing any oxygen permeation.

  1. Lattice contraction in photochromic yttrium hydride

    Maehlen, Jan Petter, E-mail:; Mongstad, Trygve T.; You, Chang Chuan; Karazhanov, Smagul


    Highlights: •Photochromic yttrium hydride films (YH:O) were prepared by reactive sputtering. •Black and transparent YH:O films were studied by time-resolved synchrotron XRD. •Both YH:O samples showed a lattice contraction upon illumination. •Also exposure to the X-ray beam itself results in a lattice contraction. -- Abstract: A strong photochromic effect was recently discovered in thin films of oxygen-containing yttrium hydride taking place at room temperature and reacting to ultraviolet and visible light. In this paper, we report on a lattice contraction upon illumination observed for thin-film samples of photochromic yttrium hydride, recorded by time-resolved X-ray diffraction using synchrotron radiation. The time dependence of the lattice contraction is consistent with the observed photochromic response of the samples.

  2. Common features of gallium perovskites

    Aleksiyko, R; Berkowski, M; Byszewski, P; Dabrowski, B; Diduszko, R; Fink-Finowicki, J; Vasylechko, LO


    The Czochralski and floating zone methods have been used to grow single crystals of gallium perovskites solid solutions with rare earth elements La, Pr, Nd, Sm and with Sr. The structure of the crystals has been investigated by powder X-ray, synchrotron radiation and neutron diffraction methods over

  3. Precipitation behaviour and recrystallisation resistance in aluminum alloys with additions of hafnium, scandium and zirconium

    Hallem, Håkon


    The overall objective of this work has been to develop aluminium alloys, which after hot and cold deformation are able to withstand high temperatures without recrystallising. This has been done by investigating aluminium alloys with various additions of hafnium, scandium and zirconium, with a main focus on Hf and to which extent it may partly substitute or replace Zr and/or Sc as a dispersoid forming elements in these alloys. What is the effect of hafnium, alone and in combination with Zr...

  4. Yttrium doped BSCF membranes for oxygen separation

    Haworth, P.; Smart, S.; Glasscock, Julie


    (x = 0.2) for iron resulted in a non-cubic crystal structure that did not exhibit oxygen permeation. The yttrium partial substitution in BSCFY discs (1.2 mm thick) delivered best results for x = 0.025, as oxygen fluxes reached 2.05 ml cm−2 min−1 at 900 °C, an increase of 160% as compared to a blank...... BSCF (x = 0) membrane. This was attributed to the combined effect of the formation of a greater number of oxygen vacancies, together with improved ion mobility, associated with the beneficial yttrium substitution into the BSCF perovskite structure which stemmed from the crystal lattice expansion....

  5. An Overview on the Possibility of Scandium and REE Occurrence in Sulawesi, Indonesia

    Adi Maulana


    Full Text Available The development in modern-high technology application is growing rapidly, resulting in the constant supply of critical metal and rare earth elements (REE. Currently, resources of these elements are restricted and new source of these elements need to be discovered accordingly. Scandium (Sc as one of critical metals is an important metal for electrolyte of solid oxide fuel cells and other advance technology. In addition, REE are the important elements in the use of permanent magnets and rechargeable batteries. This manuscript reports an overview on the possibility of scandium and rare earth element occurrences in Sulawesi. Sc is concentrated in limonite layers in Soroako ultramafic rocks as a result of Fe3+ site substitution of mafic minerals (pyroxene, amphibole, etc. during a laterization process. REE are enriched in association with clay minerals in B horizon from heavily weathered granitic rocks in Palu and Masamba, suggesting the possibility of ion-adsorption style mineralization. The lateritic soil of the ultramafic rocks and the weathered crusts of the granitic rocks in Sulawesi could be the potential sources of scandium and rare earth elements, respectively.

  6. Pilot-scale recovery of rare earths and scandium from phosphogypsum and uranium leachates

    Mashkovtsev Maxim


    Full Text Available Ural Federal University (UrFU and VTT have performed joint research on development of industrial technologies for the extraction of REM and Scandium compounds from phosphogypsum and Uranium ISL leachate solutions. Leaching-absorption experiments at UrFU have been supported with multicomponent solution modelling by VTT. The simulations have been performed with VTT’s ChemSheet/Balas program and can be used for speciation calculations in the lixiviant solution. The experimental work combines solvent extraction with advanced ion exchange methodology in a pilot facility capable of treating 5 m3 solution per hour. Currently, the plant produces cerium carbonate, lanthanum oxide, neodymium oxide and concentrate of heavy rare earth metals. A batch of 45 t solids has been processed with the gain of 100 kg’s of REM concentrate. A mini-pilot plant with productivity above 50 liters per hour has been applied to recover scandium oxide and REE concentrates from the uranium ISL solution. As the preliminary product contains radioactivity (mainly strontium, an additional decontamination and cleaning of both concentrates by extraction has rendered a necessity. Finally a purified 99% concentrate of scandium oxide as well as 99% rare earth concentrate are received.

  7. Gallium nitride electronics

    Rajan, Siddharth; Jena, Debdeep


    In the past two decades, there has been increasing research and industrial activity in the area of gallium nitride (GaN) electronics, stimulated first by the successful demonstration of GaN LEDs. While the promise of wide band gap semiconductors for power electronics was recognized many years before this by one of the contributors to this issue (J Baliga), the success in the area of LEDs acted as a catalyst. It set the field of GaN electronics in motion, and today the technology is improving the performance of several applications including RF cell phone base stations and military radar. GaN could also play a very important role in reducing worldwide energy consumption by enabling high efficiency compact power converters operating at high voltages and lower frequencies. While GaN electronics is a rapidly evolving area with active research worldwide, this special issue provides an opportunity to capture some of the great advances that have been made in the last 15 years. The issue begins with a section on epitaxy and processing, followed by an overview of high-frequency HEMTs, which have been the most commercially successful application of III-nitride electronics to date. This is followed by review and research articles on power-switching transistors, which are currently of great interest to the III-nitride community. A section of this issue is devoted to the reliability of III-nitride devices, an area that is of increasing significance as the research focus has moved from not just high performance but also production-worthiness and long-term usage of these devices. Finally, a group of papers on new and relatively less studied ideas for III-nitride electronics, such as interband tunneling, heterojunction bipolar transistors, and high-temperature electronics is included. These areas point to new areas of research and technological innovation going beyond the state of the art into the future. We hope that the breadth and quality of articles in this issue will make it

  8. Construction of Gallium Point at NMIJ

    Widiatmo, J. V.; Saito, I.; Yamazawa, K.


    Two open-type gallium point cells were fabricated using ingots whose nominal purities are 7N. Measurement systems for the realization of the melting point of gallium using these cells were built. The melting point of gallium is repeatedly realized by means of the measurement systems for evaluating the repeatability. Measurements for evaluating the effect of hydrostatic pressure coming from the molten gallium existing during the melting process and the effect of gas pressure that fills the cell were also performed. Direct cell comparisons between those cells were conducted. This comparison was aimed to evaluate the consistency of each cell, especially related to the nominal purity. Direct cell comparison between the open-type and the sealed-type gallium point cell was also conducted. Chemical analysis was conducted using samples extracted from ingots used in both the newly built open-type gallium point cells, from which the effect of impurities in the ingot was evaluated.

  9. The comparison of calculated transition probabilities with luminescence characteristics of erbium(III) in fluoride glasses and in the mixed yttrium-zirconium oxide crystal

    Reisfeld, R.; Katz, G.; Jacoboni, C.; De Pape, R.; Drexhage, M. G.; Brown, R. N.; Jørgensen, C. K.


    Fluorozirconate glasses containing 2 mole% ErF 3 were prepared by melting the binary fluorides with ammonium bifluoride under an atmosphere of carbon tetrachloride and argon at 850°C. Absorption spectra of these glasses were obtained and the Judd-Ofelt parameters were calculated. Emission spectra and lifetimes of erbium in fluorozirconate glass, in lead-gallium-zinc fluoride glass, and in yttrium-zirconium oxide crystal were measured and compared with the theoretical calculations. Laser emission lines in these materials are deduced from these measurements. It is suggested that materials doped with erbium may serve as light sources for fiber optic waveguides made from the undoped materials.

  10. Polymerization of ethylene oxide using yttrium isopropoxide

    Choi, Young K.; Stevels, W.M.; Ankone, Martinus J.K.; Dijkstra, Pieter J.; Kim, Sung W.; Feijen, Jan


    Well defined poly(ethylene oxide)s were prepared using yttrium isopropoxide as an initiator. End group analysis using 1H- and 13C NMR spectroscopy revealed that only polymers with isopropyl ether and hydroxyl end groups were produced. The molecular weight is controlled by the initial amount of

  11. Recovery of Scandium from Leachate of Sulfation-Roasted Bayer Red Mud by Liquid-Liquid Extraction

    Liu, Zhaobo; Li, Hongxu; Jing, Qiankun; Zhang, Mingming


    The leachate obtained from sulfation-roasted Bayer red mud is suitable for extraction of scandium by liquid-liquid solvent extraction because it contains trace amounts of Fe3+ and Si4+. In this study, a completely new metallurgical process for selective recovery of scandium from Bayer red mud was proposed. The extraction performances of Sc3+, Fe3+, Al3+, Si4+, Ca2+, and Na+ from synthetic leachate of sulfation-roasted red mud were first investigated using organophosphorus extractants (di-2-ethylhexyl phosphoric acid P204 and 2-ethylhexyl phosphoric acid mono-2-ethylhexyl ester P507) and carboxylic acid extractant (Versatic acid 10). It shows that P204 has an excellent extraction ability and that it can be applied to the scandium recovery. P507 and Versatic acid 10 are much poorer in performance for selective extraction of scandium. In the leachate of sulfation-roasted red mud, approximately 97% scandium can be recovered using a P204/sulfonated kerosene (1% v/v) extraction system under the condition of an organic-to-aqueous phase ratio of 10:1 and with an extraction temperature of 15°C.

  12. Microstructural characterization and grain refinement of AA6082 gas tungsten arc welds by scandium modified fillers

    Babu, N. Kishore, E-mail: [Joining Technology Group, Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); Talari, Mahesh Kumar [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam (Malaysia); Pan, D.; Sun, Z.; Wei, J. [Joining Technology Group, Singapore Institute of Manufacturing Technology, 71 Nanyang Drive, Singapore 638075 (Singapore); Sivaprasad, K. [Advanced Materials Processing Laboratory, Department of Metallurgical and Materials Engineering, National Institute of Technology, Tiruchirapalli 620015, Tamil Nadu (India)


    The refinement in weld metal grain size and shape results in both improved mechanical properties (ductility and toughness) as well as a significant improvement in weldability. In the present study, the influence of scandium (Sc) additions to the fillers on the structure and mechanical properties of AA6082 gas tungsten arc (GTA) weldments were investigated. Controlled amounts of scandium as grain refiner were introduced into the molten pool of AA6082 by pre-deposited cast inserts (AA4043 and AA5356) by GTA welding. Full penetration GTA welds were prepared using alternating current (AC). It was observed that grain size decreased with increasing amounts of scandium. The grain refinement is mainly caused by the Al{sub 3}Sc particles, which act as heterogeneous nucleation of {alpha}-Al grains. It has been shown that welds prepared with AA5356 cast insert exhibited high strength and ductility when compared with other welds. The observed grain refinement was shown to result in an appreciable increase in fusion zone hardness, strength and ductility. Post-weld aging treatment resulted in improved tensile strength and hardness of the weldments and this aging response could be attributed to the weld dilution from the base metal. The slow diffusion of Sc in Al matrix and stability of Al{sub 3}Sc precipitates at elevated temperatures were suggested to be responsible for the improved high temperature yield strength of welds made from Sc modified fillers. -- Highlights: Black-Right-Pointing-Pointer Primary Al{sub 3}Sc particles resulted in grain refinement by heterogeneous nucleation. Black-Right-Pointing-Pointer Weld metal strength and hardness improved due to grain refinement caused by Sc. Black-Right-Pointing-Pointer Weld metal responded to post-weld aging treatment due to dilution from base metal. Black-Right-Pointing-Pointer Sc addition improved the high temperature mechanical properties of welds.

  13. Optical control of gallium nanoparticle growth

    MacDonald, K. F.; Fedotov, V. A.; Pochon, S.; Ross, K. J.; Stevens, G. C.; Zheludev, N. I.; Brocklesby, W. S.; Emel'yanov, V. I.


    We report that low-intensity light can dramatically influence and regulate the nanoparticle self-assembly process: Illumination of a substrate exposed to a beam of gallium atoms results in the formation of gallium nanoparticles with a relatively narrow size distribution. Very low light intensities, below the threshold for thermally induced evaporation, exert considerable control over nanoparticle formation.

  14. Gallium-67 citrate scan in extrapulmonary tuberculosis

    Lin Wanyu [Taichung Veterans General Hospital (Taiwan). Dept. of Nuclear Medicine; Hsieh Jihfang [Chi-Mei Foundation Hospital, Tainan (Taiwan)


    Aim: Whole-body gallium scan was performed to evaluate the usefulness of gallium scan for detecting extrapulmonary tuberculosis (TB) lesions. Methods: Thirty-seven patients with extrapulmonary TB were included in this study. Four patients were found to have two lesions. Totally, 41 lesions were identified, including 19 TB arthritis, 8 spinal TB, 5 TB meningitis, 3 TB lymphadenopathy, 2 TB pericarditis, 1 TB peritonitis, 1 intestinal TB, 1 skin TB and 1 renal TB. Results: Of the 41 extrapulmonary TB lesions, gallium scan detected 32 lesions with a sensitivity of 78%. All the patients with TB meningitis showed negative gallium scan. When the five cases of TB meningitis were excluded, the detection sensitivity of gallium scan increased to 88.9% (32/36). Conclusion: Our data revealed that gallium scan is a convenient and useful method for evaluating extrapulmonary TB lesions other than TB-meningitis. We suggest that gallium scan be included in the clinical routine for patients with suspected extrapulmonary TB. (orig.) [German] Ziel: Es wurden Ganzkoerper-Gallium-Szintigramme angefertigt, um den Nutzen der Gallium-Szintigraphie zur Erfassung von extrapulmonalen Tuberkuloseherden (TB) zu erfassen. Methoden: 37 Patienten mit extrapulmonaler TB wurden eingeschlossen. 4 Patienten hatten 2 Laesionen. Insgesamt wurden 41 Laesionen identifiziert, hierunter 19 TB-Arthritis, 8 spinale TB, 5 TB-Meningitis, 3 TB-Lymphadenopathie, 2 TB-Perikarditis, 1 TB-Peritonitis, 1 intestinale TB, 1 Haut-TB und eine Nieren-TB. Ergebnisse: Von den 41 extrapulmonalen TB-Herden erfasste die Gallium-Szintigraphie 32 Herde mit einer Sensitivitaet von 78%. Alle Patienten mit TB-Meningitis zeigten einen negativen Gallium-Scan. Wenn die 5 Faelle mit TB-Meningitis ausgeschlossen wurden, stieg die Sensitivititaet der Gallium-Szintigraphie auf 88,9% (32/36). Schlussfolgerung: Die Daten zeigen, dass die Gallium-Szintigraphie eine einfache und nuetzliche Methode zur Erfassung extrapulmonaler TB-Herde ist

  15. Magnetic structure of holmium-yttrium superlattices

    Jehan, D.A.; McMorrow, D.F.; Cowley, R.A.;


    that the superlattices have high crystallographic integrity: the structural coherence length parallel to the growth direction is typically almost-equal-to 2000 angstrom, while the interfaces between the two elements are well defined and extend over approximately four lattice planes. The magnetic structures were......We present the results of a study of the chemical and magnetic structures of a series of holmium-yttrium superlattices and a 5000 angstrom film of holmium, all grown by molecular-beam epitaxy. By combining the results of high-resolution x-ray diffraction with detailed modeling, we show...... determined using neutron-scattering techniques. The moments on the Ho3+ ions in the superlattices form a basal-plane helix. From an analysis of the superlattice structure factors of the primary magnetic satellites, we are able to determine separately the contributions made by the holmium and yttrium...

  16. Indium gallium nitride multijunction solar cell simulation using silvaco atlas

    Garcia, Baldomero


    This thesis investigates the potential use of wurtzite Indium Gallium Nitride as photovoltaic material. Silvaco Atlas was used to simulate a quad-junction solar cell. Each of the junctions was made up of Indium Gallium Nitride. The band gap of each junction was dependent on the composition percentage of Indium Nitride and Gallium Nitride within Indium Gallium Nitride. The findings of this research show that Indium Gallium Nitride is a promising semiconductor for solar cell use. United...

  17. Bismuth incorporation into gallium phosphide

    Jena, Puru [Virginia Commonwealth Univ. (United States); Kandalam, Anil K. [West Chester Univ. of Pennsylvania (United States); Christian, Theresa M. [National Renewable Energy Lab. (United States); Beaton, Daniel A. [National Renewable Energy Lab. (United States); Mascarenhas, Angelo [National Renewable Energy Lab. (United States); Alberi, Kirstin [National Renewable Energy Lab. (United States)


    Gallium phosphide bismide (GaP1-xBix) epilayers with bismuth fractions from 0.9% to 3.2%, as calculated from lattice parameter measurements, were studied with Rutherford backscattering spectrometry (RBS) to directly measure bismuth incorporation. The total bismuth fractions found by RBS were higher than expected from the lattice parameter calculations. Furthermore, in one analyzed sample grown by molecular beam epitaxy at 300 degrees C, 55% of incorporated bismuth was found to occupy interstitial sites. We discuss implications of this high interstitial incorporation fraction and its possible relationship to x-ray diffraction and photoluminescence measurements of GaP0.99Bi0.01.

  18. Synchrotron X-Ray Fluorescence Microscopy of Gallium in Bladder Tissue following Gallium Maltolate Administration during Urinary Tract Infection

    Ball, Katherine R.; Sampieri, Francesca; Chirino, Manuel; Hamilton, Don L.; Blyth, Robert I. R.; Sham, Tsun-Kong; Dowling, Patricia M.; Thompson, Julie


    A mouse model of cystitis caused by uropathogenic Escherichia coli was used to study the distribution of gallium in bladder tissue following oral administration of gallium maltolate during urinary tract infection. The median concentration of gallium in homogenized bladder tissue from infected mice was 1.93 μg/g after daily administration of gallium maltolate for 5 days. Synchrotron X-ray fluorescence imaging and X-ray absorption spectroscopy of bladder sections confirmed that gallium arrived ...

  19. 粗氧化钪的提纯研究%Study on Purification of Crude Scandium Oxide

    韦世强; 侬健桃; 谭海翔


    以从钛白废酸中提取的粗钪(Sc2O399%~99.95%)为原料,采用酸溶解、T204和D305多级萃取、反萃以及草酸沉淀等提纯工序,得到的草酸钪经煅烧后可以获得回收率93.49%、纯度99.999%的高纯氧化钪.%With crude scandium (Sc2O3 99% ~99. 95%) extracted from titanium white waste acid as raw material, scandium oxalate was prepared with the following purification processes including acid dissolution, T204 and D305 multistage extraction and back extraction, oxalic acid precipitation. The results show that scandium oxide with a high purity of 99. 999% is obtained with the recovery of 93. 49% after scandium oxalate calcining.

  20. The surface tension of liquid gallium

    Hardy, S. C.


    The surface tension of liquid gallium has been measured using the sessile drop technique in an Auger spectrometer. The experimental method is described. The surface tension in mJ/sq m is found to decrease linearly with increasing temperature and may be represented as 708-0.66(T-29.8), where T is the temperature in centigrade. This result is of interest because gallium has been suggested as a model fluid for Marangoni flow experiments. In addition, the surface tension is of technological significance in the processing of compound semiconductors involving gallium.

  1. Ferroelectricity in yttrium-doped hafnium oxide

    Müller, J.; Schröder, U; Böscke, T. S.; Müller, I.; U. Böttger; De Wilde, L; Sundqvist, J.; Lemberger, M.; Kücher, P.; Mikolajick, T; Frey, Lothar


    Structural and electrical evidence for a ferroelectric phase in yttrium doped hafnium oxide thin films is presented. A doping series ranging from 2.3 to 12.3 mol% YO1.5 in HfO2 was deposited by a thermal atomic layer deposition process. Grazing incidence X-ray diffraction of the 10 nm thick films revealed an orthorhombic phase close to the stability region of the cubic phase. The potential ferroelectricity of this orthorhombic phase was confirmed by polarization hysteresis measurements on tit...

  2. Nonlinear FMR spectra in yttrium iron garnet

    Yu.M. Bunkov, P.M. Vetoshko, I.G. Motygullin, T.R. Safin, M.S. Tagirov, N.A. Tukmakova


    Full Text Available Results of demagnetizing effect studies in yttrium iron garnet Y3Fe5O12 thin films are reported. Experiments were performed on X-Band of electron paramagnetic resonance spectrometer at room temperature. The ferromagnetic resonance (FMR spectra were obtained for one-layer single crystal YIG films for different values of the applied microwave power. Nonlinear FMR spectra transformation by the microwave power increasing in various directions of magnetic field sweep was observed. It is explained by the influence of the demagnetization action of nonequilibrium magnons.

  3. Unconventional Superfluidity in Yttrium Iron Garnet Films

    Sun, Chen; Nattermann, Thomas; Pokrovsky, Valery L.


    We argue that the magnon condensate in yttrium iron garnet may display experimentally observable superfluidity at room temperature despite the 100 times dominance of the normal density over superfluid ones. The superfluidity has a more complicated nature than in known superfluids since the U(1) symmetry of the global phase shift is violated by the dipolar interaction leading to the exchange of spin moment between the condensate and the crystal lattice. It produces periodic inhomogeneity in the stationary superfluid flow. We discuss the manner of observation and possible applications of magnon superfluidity. It may strongly enhance the spin-torque effects and reduce the energy consumption of the magnonic devices.

  4. Thermal Spin Dynamics of Yttrium Iron Garnet

    Barker, Joseph; Bauer, Gerrit E. W.


    The magnetic insulator yttrium iron garnet can be grown with near perfection and is therefore and ideal conduit for spin currents. It is a complex material with 20 magnetic moments in the unit cell. In spite of being a ferrimagnet, YIG is almost always modeled as a simple ferromagnet with a single spin wave mode. We use the method of atomistic spin dynamics to study the temperature evolution of the full spin wave spectrum, in quantitative agreement with neutron scattering experiments. The antiferromagnetic or optical mode is found to suppress the spin Seebeck effect at room temperature and beyond due to thermally pumped spin currents with opposite polarization to the ferromagnetic mode.

  5. Radiochemical separation of gallium by amalgam exchange

    Ruch, R.R.


    An amalgam-exchange separation of radioactive gallium from a number of interfering radioisotopes has been developed. A dilute (ca. 0.3%) gallium amalgam is agitated with a slightly acidic solution of 72Ga3+ containing concentrations of sodium thiocyanate and either perchlorate or chloride. The amalgam is then removed and the radioactive gallium stripped by agitation with dilute nitric acid. The combined exchange yield of the perchlorate-thiocyanate system is 90??4% and that of the chloride-thiocyanate system is 75??4%. Decontamination yields of most of the 11 interfering isotopes studied were less than 0.02%. The technique is applicable for use with activation analysis for the determination of trace amounts of gallium. ?? 1969.

  6. Materials synthesis: Two-dimensional gallium nitride

    Koratkar, Nikhil A.


    Graphene is used as a capping sheet to synthesize 2D gallium nitride by means of migration-enhanced encapsulation growth. This technique may allow the stabilization of 2D materials that are not amenable to synthesis by traditional methods.

  7. Nanoscale photonics of structural transformations in gallium

    Zheludev, Nikolay I.; Fedotov, V. A.; MacDonald, K. F.; Stevens, G. C.; Pochon, Sebastien C.; Woodford, M.


    We have found recently that Gallium, confined at an interface with silica, responds dramatically to low power optical excitation when held at temperatures close to its melting point (29.8oC). Intensities of just a few kW/cm2 can reversibly modulate the intensity (by up to 40%) and phase (by as much as several degrees) of reflected light as the result of a light-induced structural transition occurring in a layer of gallium of only a few nm thick. Here, we report that this concept - of achieving a nonlinearity via a light-induced transformation in a confined solid at a temperature close to a phase transition temperature - can also be applied to gallium nanoparticles. We present the transient all-optical switching characteristics of gallium nanoparticle films comprising particles, typically 80 nm in diameter, which were formed directly on the ends of optical fibers using a new light-assisted self-assembly technique. We also report, for the first time, that this light-induced structural transition in gallium confined at an interface with silica underlies a new mechanism for photoconductivity. In our opinion, the exploitation of the light-induced phase transition in gallium may be a means of enabling the development of nanoscale photonic devices.

  8. Molecular Line Lists for Scandium and Titanium Hydride Using the DUO Program

    Lodi, Lorenzo; Yurchenko, Sergei N.; Tennyson, Jonathan


    Transition-metal-containing (TMC) molecules often have very complex electronic spectra because of their large number of low-lying, interacting electronic states, of the large multi-reference character of the electronic states and of the large magnitude of spin-orbit and relativistic effects. As a result, fully ab initio calculations of line positions and intensities of TMC molecules have an accuracy which is considerably worse than the one usually achievable for molecules made up by main-group atoms only. In this presentation we report on new theoretical line lists for scandium hydride ScH and titanium hydride TiH. Scandium and titanium are the lightest transition metal atoms and by virtue of their small number of valence electrons are amenable to high-level electronic-structure treatments and serve as ideal benchmark systems. We report for both systems energy curves, dipole curves and various coupling curves (including spin-orbit) characterising their electronic spectra up to about 20 000 cm-1. Curves were obtained using Internally-Contracted Multi Reference Configuration Interaction (IC-MRCI) as implemented in the quantum chemistry package MOLPRO. The curves where used for the solution of the coupled-surface ro-vibronic problem using the in-house program DUO. DUO is a newly-developed, general program for the spectroscopy of diatomic molecules and its main functionality will be described. The resulting line lists for ScH and TiH are made available as part of the Exomol project. L. Lodi, S. N. Yurchenko and J. Tennyson, Mol. Phys. (Handy special issue) in press. S. N. Yurchenko, L. Lodi, J. Tennyson and A. V. Stolyarov, Computer Phys. Comms., to be submitted.

  9. Annual reports in inorganic and general syntheses 1974

    Niedenzu, Kurt


    Annual Reports in Inorganic and General Syntheses-1974 presents an organized annual summary of synthetic developments in inorganic chemistry and its related areas. The book discusses the chemistry of simple and complex metal hydrides of main groups I, II, and III, boron, aluminium, gallium, indium, thallium, silicon, germanium, tin, lead, phosphorus, arsenic, antimony, bismuth, chalcogens, halogens, and pseudohalogens. The text also describes the chemistry of scandium, yttrium, lanthanides, actinides, titanium, zirconium, hafnium, vanadium, niobium, tantalum, chromium, molybdenum, tungsten, ma

  10. Annual reports in inorganic and general syntheses 1972

    Niedenzu, Kurt


    Annual Reports in Inorganic and General Syntheses-1972 presents an organized annual summary of synthetic developments in inorganic chemistry and its related areas. The book discusses alkali and alkaline earth elements, alloys, silver, gold, zinc, cadmium, mercury, boron, aluminum, gallium, indium, thallium, yttrium, scandium, lanthanides, actinides, titanium, zirconium, hafnium, Group V and VI transition elements, manganese, technetium, rhenium, iron, cobalt, nickel, ruthenium, osmium, rhodium, and iridium. The text also describes the chemistry of palladium, platinum, silicon, germanium, tin,

  11. Preface to WIPR 2010

    Chatal, Jean-Francois [ARRONAX, Nantes (France); Barbet, Jacques [CRCNA, Nantes (France)


    During the workshop on innovative positron emitting radionuclides (''WIPR) in nantes, France in July 2010 advanced and preclinical studies were presented to help selecting radionuclides more likely to be approved in the future. The following radionuclides are in the focus: gallium-68, copper-64, iodine-124, yttrium-86, zirconium-89 and scandium-44. Other topics of the workshop were the production of PET radionuclides, the purification of radionuclides, the automation of the radiopharmaceutical production and the market approval.

  12. Thermally induced transparency for short spin wave pulses in yttrium iron garnet (YIG) films

    Ordonez Romero, Cesar Leonardo; Kolokoltsev, Oleg; Gomez Arista, Ivan; Qureshi, Naser; Monsiváis Galindo, Guillermo; Vargas Hernández, Hesiquio


    The compensation of spin wave propagation losses plays a very important role in the development of novel magnonic devices. Up to now, however, most of the known amplification methods present relative narrow frequency bandwidths due to their resonant nature. In this work, we present compensation of the propagation losses or pseudo-amplification of travelling spin waves by tailoring the bias magnetic field profile. The thermally-induced non-uniform profile of the magnetization introduced on an Yttrium Iron Garnet (YIG) thin film by a localized spot of a cw argon-ion laser creates the conditions to observe the complete compensation of the spin wave propagation losses. The spin wave evolution was mapped with a time and spaced resolved inductive magneto-dynamic prove system. The experiment was carried out using a uniform sample of single-crystal YIG film grown on a gallium-gadolinium garnet (GGG) substrate. The 2mm-wide, 20mm-long and 6microns-thick YIG strip was saturated with an external magnetic field enabling the set up for the propagation of magneto-static surface waves. This work was supported by the UNAM-DGAPA-PAPIIT IA100413.

  13. Giant Zeeman shifts in the optical transitions of yttrium iron garnet thin films

    Vidyasagar, R.; Alves Santos, O.; Holanda, J.; Cunha, R. O.; Machado, F. L. A.; Ribeiro, P. R. T.; Rodrigues, A. R.; Mendes, J. B. S.; Azevedo, A.; Rezende, S. M.


    We report the observation of giant Zeeman shifts in the optical transitions of high-quality very thin films of yttrium iron garnet (YIG) grown by rf sputtering on gadolinium gallium garnet substrates. The optical absorption profile measured with magneto-optical absorption spectroscopy shows dual optical transition in the UV-visible frequency region attributed to transitions from the O-2p valence band to the Fe-3d conduction band and from the O-2p valence band to Fe-2p53d6 excitonic states at the Γ-symmetry point of the YIG band structure. The application of a static magnetic field of only 0.6 kOe produces giant Zeeman shifts of ˜100 meV in the YIG band structure and ˜60 meV in the excitonic states corresponding to effective g-factors on the order of 104. The giant Zeeman effects are attributed to changes in energy levels by the large exchange fields of the Fe-3d orbitals during the magnetization process.

  14. Induced magnetism in exfoliated graphene via proximity effect with yttrium iron garnet thin films

    Amado, Mario; Li, Yang; di Bernardo, Angelo; Lombardo, Antonio; Ferrari, Andrea C.; Robinson, Jason

    The recent discovery of the quantum anomalous Hall effect (QAHE) in magnetically doped topological insulators cooled below in the milikelvin regime represents breakthrough in the field of spintronics. Theoretically, the QAHE should occur in graphene proximity coupled to a ferromagnetic insulato but with the promise of much higher operating temperatures for practical applications. Hints of proximity-induced magnetism in graphene coupled to yttrium iron garnet (YIG) films have been reported although the QAHE remains unobserved; the lack of a fully developed plateau in graphene/YIG devices can be attributed to poor interfacial coupling and therefore a dramatically reduced magnetic proximity effect. Here we report the deposition and characterisation of epitaxial thin-films of YIG on lattice-matched gadolinium gallium garnet substrates by pulsed laser deposition. Pristine exfoliated graphene flakes transferred mechanically onto the YIG are reported alongside results that correlate the effects of YIG morphology on the electronic and crystal properties of graphene by electrical (low temperature magnetoresistance measurements in Hall-bar-like configuration) and optical (Raman) means.

  15. Morphology controllable synthesis of yttrium oxide-based phosphors from yttrium citrate precursors

    HUANG Manlian; GUO Kai; MAN Zhenyong; CHEN Haohong; YANG Xinxin; XU Fangfang; ZHAO Jingtai


    A novel yttrium citrate-templated conversion method for morphology controlled synthesis ofY2O3 microspheres,microflowers and microsheets was reported for the first time.The precursors with controllable morphologies were synthesized with a homogenous precipitation method in aqueous solution without any surfactant.Y2O3 samples with well-preserved morphological architectures were obtained by a subsequent thermal transformation strategy.The chemical formula of the precursor was identified and a two-stage growth mechanism was proposed.The effects of the aging time,reaction temperature,reactant concentration and molar ratio of yttrium nitrate to sodium citrate were discussed.The photoluminescence properties of the Y2O3∶Eu3+ microspheres,microflowers and microsheets prepared were also studied.

  16. Gallium-67 uptake in cutaneous lesions of mycosis fungoides

    Nishimi, L.; Chen, D.C.; Ansari, A.N.; Siegel, M.E.


    The literature on gallium imaging in mycosis fungoides is limited and conflicting. A case of mycosis fungoides with increased uptake of Ga-67 in clinically noninfected skin lesions is reported. The literature regarding mycosis fungoides and gallium imaging is reviewed.

  17. Role of gallium and bone scintigraphy in disseminated coccidioidomycosis

    Cohen, A.J.; Braunstein, P.; Pais, M.J.


    The osseous lesions of disseminated coccidioidomycosis may be detected by bone but not by gallium scintigraphy or vice versa. This case emphasizes the need for performing both bone and gallium scans to avoid missing potentially serious bone lesions.

  18. Treatment of amalgam tattoo with an Er,Cr:YSGG laser.

    Yilmaz, Hasan Guney; Bayindir, Hakan; Kusakci-Seker, Basak; Tasar, Simge; Kurtulmus-Yilmaz, Sevcan


    Amalgam tattoos are common, asymptomatic, pigmented oral lesions that clinically exist as isolated, blue, gray, or black macules on the gingival, buccal, and alveolar mucosae, the palate, and/or the tongue. In this case report, the successful use of an erbium, chromium-doped:yttrium, scandium, gallium, and garnet laser for the removal of an amalgam tattoo is explained. A 46-year-old man is presented with a half decade history of an amalgam tattoo on his left maxillary premolar-molar gingiva. Depigmentation procedure was performed under topical anesthesia with the use of an erbium, chromium-doped:yttrium, scandium, gallium, and garnet laser at 2 W in the soft tissue pulsed mode for 10 min. The pigmented tissue was completely removed. The de-epithelialization area healed completely on the 10th day after treatment. The period of healing was uneventful. The amalgam tattoo was completely removed with erbium, chromium-doped:yttrium, scandium, gallium, and garnet laser, and the treated area healed without any adverse effect.

  19. Neutron and Charged-Particle Induced Cross Sections for Radiochemistry for Isotopes of Scandium, Titanium, Vanadium, Chromium, Manganese, and Iron

    Kelley, K; Hoffman, R D; Dietrich, F S; Bauer, R; Mustafa, M


    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Local systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron and proton induced nuclear reaction cross sections in the mass region of scandium, titanium, vanadium, chromium, manganese, and iron (21 {le} Z {le} 26, 20 {le} N {le} 32).

  20. Ferroelectricity in yttrium-doped hafnium oxide

    Müller, J.; Schröder, U.; Böscke, T. S.; Müller, I.; Böttger, U.; Wilde, L.; Sundqvist, J.; Lemberger, M.; Kücher, P.; Mikolajick, T.; Frey, L.


    Structural and electrical evidence for a ferroelectric phase in yttrium doped hafnium oxide thin films is presented. A doping series ranging from 2.3 to 12.3 mol% YO1.5 in HfO2 was deposited by a thermal atomic layer deposition process. Grazing incidence X-ray diffraction of the 10 nm thick films revealed an orthorhombic phase close to the stability region of the cubic phase. The potential ferroelectricity of this orthorhombic phase was confirmed by polarization hysteresis measurements on titanium nitride based metal-insulator-metal capacitors. For 5.2 mol% YO1.5 admixture the remanent polarization peaked at 24 μC/cm2 with a coercive field of about 1.2 MV/cm. Considering the availability of conformal deposition processes and CMOS-compatibility, ferroelectric Y:HfO2 implies high scaling potential for future, ferroelectric memories.

  1. Development of a Multi-layer Anti-reflective Coating for Gallium Arsenide/Aluminum Gallium Arsenide Solar Cells


    Aluminum Gallium Arsenide Solar Cells by Kimberley A Olver Approved for public release; distribution unlimited...Development of a Multi-layer Anti-reflective Coating for Gallium Arsenide/Aluminum Gallium Arsenide Solar Cells by Kimberley A Olver...Aluminum Gallium Arsenide (AlGaAs) Solar Cells 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Kimberley A Olver

  2. Effects of scandium composition on the structural, electronic, and thermodynamic properties of SCxY1-x metallic alloys

    López-Pérez, W.; Castro-Diago, P.; Ramírez-Montes, L.; González-García, A.; González-Hernández, R.


    The aim of this work is to analyse the compositional dependence of the structural, electronic and thermodynamic properties of ? alloys. Density functional calculations have been carried out to reveal compositional dependence of the structural, electronic and thermodynamic properties of ? alloys. The lattice constants of the binary compounds are in fairly good agreement with the available experimental data. The variation of calculated lattice constant with scandium concentration is almost linear, and shows a slight deviation from Vegard's law. The effect of scandium composition on bulk modulus gives nonlinear dependence on concentration x. A small deviation of the bulk modulus from linear concentration dependence was observed. The metallic nature of binary precursor compounds ScP and YP was confirmed. Our findings indicate that the ? alloys are metallic for ? 0.25, 0.5, 0.75. The calculated excess mixing enthalpy is positive over the entire scandium composition range. The positive mixing enthalpies indicate meta-stability of the ? alloys at high temperatures. The effect of temperature on the volume, bulk modulus, Debye temperature and the heat capacity for ? alloys were analysed using the quasi-harmonic Debye model. Results show that the heat capacity is slightly sensitive to composition as temperature increases.

  3. Single gallium nitride nanowire lasers.

    Johnson, Justin C; Choi, Heon-Jin; Knutsen, Kelly P; Schaller, Richard D; Yang, Peidong; Saykally, Richard J


    There is much current interest in the optical properties of semiconductor nanowires, because the cylindrical geometry and strong two-dimensional confinement of electrons, holes and photons make them particularly attractive as potential building blocks for nanoscale electronics and optoelectronic devices, including lasersand nonlinear optical frequency converters. Gallium nitride (GaN) is a wide-bandgap semiconductor of much practical interest, because it is widely used in electrically pumped ultraviolet-blue light-emitting diodes, lasers and photodetectors. Recent progress in microfabrication techniques has allowed stimulated emission to be observed from a variety of GaN microstructures and films. Here we report the observation of ultraviolet-blue laser action in single monocrystalline GaN nanowires, using both near-field and far-field optical microscopy to characterize the waveguide mode structure and spectral properties of the radiation at room temperature. The optical microscope images reveal radiation patterns that correlate with axial Fabry-Perot modes (Q approximately 10(3)) observed in the laser spectrum, which result from the cylindrical cavity geometry of the monocrystalline nanowires. A redshift that is strongly dependent on pump power (45 meV microJ x cm(-2)) supports the idea that the electron-hole plasma mechanism is primarily responsible for the gain at room temperature. This study is a considerable advance towards the realization of electron-injected, nanowire-based ultraviolet-blue coherent light sources.

  4. Influences of Yttrium on Cyclic Oxidation Behavior of Fe-Cr-Al Alloy

    辛丽; 李美栓; 钱余海; 李铁藩


    The 1100 ℃ cyclic oxidation behavior of Fe-23Cr-5Al alloy modified by yttrium was studied. Yttrium was added to this alloy in the form of (1) metallic addition, (2) yttrium oxide dispersion and (3) ion implantation. Cracking and spalling occurred on the convoluted scale formed on Y-free alloy and the substrate was exposed. A flat dense scale without spallation was formed on the yttrium alloying addition or yttrium oxide dispersion alloy. Spallation mainly occurred between two layers of the scale on the 1×1017Y ions/cm2-implanted alloy. The results indicate the main reason that the adhesion of alumina scale was improved by yttrium addition lies in that yttrium is liable to form a stable yttrium sulfide with sulfur in the alloy and prevent sulfur interface segregation. Another reason is that the growth mechanism of alumina scale was changed by yttrium addition.

  5. Ambient temperature deposition of gallium nitride/gallium oxynitride from a deep eutectic electrolyte, under potential control.

    Sarkar, Sujoy; Sampath, S


    A ternary, ionically conducting, deep eutectic solvent based on acetamide, urea and gallium nitrate is reported for the electrodeposition of gallium nitride/gallium indium nitride under ambient conditions; blue and white light emitting photoluminescent deposits are obtained under potential control.

  6. Neurobehavioral Assessment of Rats Exposed to Yttrium Nitrate during Development

    LI Chen Xi; MA Chuan; FANG Hai Qin; ZHI Yuan; YU Zhou; XU Hai Bin; JIA Xu Dong


    Objective The aim of this study was to assess the effects of yttrium nitrate on neurobehavioral development in Sprague-Dawley rats. Methods Dams were orally exposed to 0, 5, 15, or 45 mg/kg daily of yttrium nitrate from gestation day (GD) 6 to postnatal day (PND) 21. Body weight and food consumption were monitored weekly. Neurobehavior was assessed by developmental landmarks and reflexes, motor activity, hot plate, Rota-rod and cognitive tests. Additionally, brain weights were measured on PND 21 and 70. Results No significant difference was noted among all groups for maternal body weight and food consumption. All yttrium-exposed offspring showed an increase in body weight on PND 21;however, no significant difference in body weight for exposed pups versus controls was observed 2 weeks or more after the yttrium solution was discontinued. The groups given 5 mg/kg daily decreased significantly in the duration of female forelime grip strength and ambulation on PND 13. There was no significant difference between yttrium-exposed offspring and controls with respect to other behavioral ontogeny parameters and postnatal behavioral test results. Conclusion Exposure of rats to yttrium nitrate in concentrations up to 45 mg/kg daily had no adverse effects on their neurobehavioral development.

  7. Gallium-67 scintigraphy in patients with hemochromatosis treated by deferoxamine

    Nagamachi, Shigeki; Hoshi, Hiroaki; Jinnouchi, Seishi; Ono, Seiji; Watanabe, Katsushi


    Gallium scintigraphy was performed as an aid for determining the presence or absence of malignant neoplasm in two patients with hemochromatosis treated by deferoxamine. However, gallium scan images could not be obtained. So gallium scintigraphy was performed once more to investigate the cause of low activity. Both patients had heavy urinary excretion of gallium in the first 24 hrs after the injection, and activity was very low on the day of examination. This phenomenon may be attributed to the effect of deferoxamine which is highly bound to the gallium.

  8. Optical pressure and temperature sensor based on the luminescence properties of Nd3+ ion in a gadolinium scandium gallium garnet crystal.

    León-Luis, S F; Muñoz-Santiuste, J E; Lavín, V; Rodríguez-Mendoza, U R


    Hypersensitivity to pressure and temperature is observed in the near-infrared emission lines of the Nd(3+) ion in a Cr(3+),Nd(3+):Gd(3)Sc(2)Ga(3)O(12) crystal, associated to the R(1,2)((4)F(3/2))→Z(5)((4)I(9/2)) and R(1,2)((4)F(3/2))→Z(1)((4)I(9/2)) transitions. The former emissions show large linear pressure coefficients of -11.3 cm(-1)/GPa and -8.8 cm(-1)/GPa, while the latter show high thermal sensitivity in the low temperature range. Thus this garnet crystal can be considered a potential optical pressure and/or temperature sensor in high pressure and temperature experiments up to 12 GPa and below room temperature, used in diamond anvil cells and excited with different UV and visible commercial laser due to the multiple Cr(3+) and Nd(3+) absorption bands.

  9. Chlorine and gallium solar neutrino experiments

    Bahcall, J. N.; Cleveland, B. T.; Davis, R., Jr.; Rowley, J. K.


    The authors reevaluate the expected capture rates and their uncertainties for the chlorine and gallium solar neutrino experiments using improved laboratory data and new theoretical calculations. They also derive a minimum value for the flux of solar neutrinos that is expected provided only (1) that the sun is currently producing energy by fusing light nuclei at the rate that it is emitting energy in the form of photons from its surface and (2) that nothing happens to solar neutrinos on their way to earth. These results are used - together with Monte Carlo simulations - to determine how much gallium is required for a solar neutrino experiment.

  10. Synchrotron X-ray fluorescence microscopy of gallium in bladder tissue following gallium maltolate administration during urinary tract infection.

    Ball, Katherine R; Sampieri, Francesca; Chirino, Manuel; Hamilton, Don L; Blyth, Robert I R; Sham, Tsun-Kong; Dowling, Patricia M; Thompson, Julie


    A mouse model of cystitis caused by uropathogenic Escherichia coli was used to study the distribution of gallium in bladder tissue following oral administration of gallium maltolate during urinary tract infection. The median concentration of gallium in homogenized bladder tissue from infected mice was 1.93 μg/g after daily administration of gallium maltolate for 5 days. Synchrotron X-ray fluorescence imaging and X-ray absorption spectroscopy of bladder sections confirmed that gallium arrived at the transitional epithelium, a potential site of uropathogenic E. coli infection. Gallium and iron were similarly but not identically distributed in the tissues, suggesting that at least some distribution mechanisms are not common between the two elements. The results of this study indicate that gallium maltolate may be a suitable candidate for further development as a novel antimicrobial therapy for urinary tract infections caused by uropathogenic E. coli.

  11. Synchrotron X-Ray Fluorescence Microscopy of Gallium in Bladder Tissue following Gallium Maltolate Administration during Urinary Tract Infection

    Sampieri, Francesca; Chirino, Manuel; Hamilton, Don L.; Blyth, Robert I. R.; Sham, Tsun-Kong; Dowling, Patricia M.; Thompson, Julie


    A mouse model of cystitis caused by uropathogenic Escherichia coli was used to study the distribution of gallium in bladder tissue following oral administration of gallium maltolate during urinary tract infection. The median concentration of gallium in homogenized bladder tissue from infected mice was 1.93 μg/g after daily administration of gallium maltolate for 5 days. Synchrotron X-ray fluorescence imaging and X-ray absorption spectroscopy of bladder sections confirmed that gallium arrived at the transitional epithelium, a potential site of uropathogenic E. coli infection. Gallium and iron were similarly but not identically distributed in the tissues, suggesting that at least some distribution mechanisms are not common between the two elements. The results of this study indicate that gallium maltolate may be a suitable candidate for further development as a novel antimicrobial therapy for urinary tract infections caused by uropathogenic E. coli. PMID:23877680

  12. Adsorption of hydrogen in Scandium/Titanium decorated nitrogen doped carbon nanotube

    Mananghaya, Michael, E-mail: [De La Salle University, 2401 Taft Ave, 0922, Manila (Philippines); DLSU STC Laguna Boulevard, LTI Spine Road Barangays Biñan and Malamig, Biñan City, Laguna (Philippines); DOST-ASTHRDP, PCIEERD, Gen. Santos Ave., Bicutan, Taguig City 1631 (Philippines); Belo, Lawrence Phoa; Beltran, Arnel [De La Salle University, 2401 Taft Ave, 0922, Manila (Philippines); DLSU STC Laguna Boulevard, LTI Spine Road Barangays Biñan and Malamig, Biñan City, Laguna (Philippines)


    Nitrogen doped Carbon Nanotube with divacancy (4ND-CN{sub x}NT) that is decorated with Scandium and Titanium as potential hydrogen storage medium using the pseudo potential density functional method was investigated. Highly localized states near the Fermi level, which are derived from the nitrogen defects, contribute to strong Sc and Ti bindings, which prevent metal aggregation and improve the material stability. A detailed Comparison of the Hydrogen adsorption capability with promising system-weight efficiency of Sc over Ti was elucidated when functionalized with 4ND-CN{sub x}NT. Finally, the (Sc/4ND){sub 10}-CN{sub x}CNT composite material has a thermodynamically favorable adsorption and consecutive adsorption energy for ideal reversible adsorption and desorption of hydrogen at room temperature such that it can hold at least 5.8 wt% hydrogen molecules at the LDA and GGA level. - Highlights: • Carbon Nanotube with divacancy (4ND-CN{sub x}NT) decorated with Sc and Ti. • Nitrogen defects, contribute to strong Sc and Ti bindings. • H{sub 2} and (Sc/4ND){sub 10}-CN{sub x}CNT has a favorable adsorption. • 5.8 wt% adsorption at the LDA and GGA level.

  13. Partitioning of Iron and Scandium in Soils Having Water Drainage Limitations

    Michael Aide


    Full Text Available Soil chemistry of Fe includes weathering reactions, adsorption, hydrolysis, complexation, and oxidation-reduction reactions. Soil chemistry for scandium (Sc is similar, but Sc does not include oxidation-reduction reactions. To determine if geochemical analysis may be used to identify Sc partitioning with respect to Fe among the particle size fractions, two Alfisol and two Ultisol soils were assessed using an aqua-regia digestion to estimate Sc and Fe concentrations for whole soil and particle size separates. Aqua-regia digestion data showed Sc depletion relative to Fe in sand separate. Sand separate is largely composed on quartz sand and Fe-Mn-bearing nodules, which are redoximorphic features produced by alternating oxic and suboxic/anoxic conditions associated with seasonally fluctuating water tables. Relative partitioning of Fe and Sc in these soils warrants further study to assess if selective extractions could quantify the extent of modern or ancestral oxidation-reduction processes responsible in some soil features involved in soil genesis.

  14. Mutual solubility of scandium oxide-hematite magnetic nanocomposites: Mössbauer spectroscopy investigation

    Allwes, Mark; Mekaoui, Mehdi; Sorescu, Monica


    xSc2O3-(1-x)α-Fe2O3 (x = 0.1, 0.3 and 0.5) nanocomposite systems were successfully synthesized by mechanochemical activation of Sc2O3 and α-Fe2O3 mixtures for 0-12 h of ball milling time. Mössbauer investigations were performed to study the structural and magnetic properties of xSc2O3-(1-x)α-Fe2O3 nanoparticle systems during the mechanochemical activation treatment. The Mössbauer studies showed that the spectrum of the mechanochemically activated composites evolved from a sextet for hematite to sextets and a doublet upon duration of the milling process with scandium oxide. Mutual solubility was achieved at the nanoscopic level only. A comprehensive Mössbauer study was performed by recording the recoilless fraction f as function of the ball milling time using our dual absorber method. The results obtained indicate that prolonged ball milling times favor formation of the Fe:Sc2O3 non-magnetic phase and decrease of the grain sizes for both magnetic and non-magnetic components, leading to a maximum in the recoilless fraction followed by its decay.

  15. Synergistic Extraction of Gallium for Sulfate Solution

    DENGTong; HUANGLijuan; 等


    A novel extractant mixture, di-2-ethylhexyl phosphate (DEHPA) plus HX, was propose and tested for recovering gallium from sulfate solution.It was found that the extraction capacity of DEPHA for gallium from sulfate solution could be enhanced significantly due to the synergistic effect of acidix extractant HX. Gallium extraction is negligible below pH 0 and highly sensitive to pH of aqueous phase in the range from 0 to 1, and satisfactory extraction can be gained at pH>1. More than 96% Ga extraction was obtained using 15% DEHPA plus 2% HX. Although Fe(Ⅲ) was found to be extracted preferentially to Ga (Ⅲ), effective extraction of Ga (Ⅲ) was possible by reducing ferric to the ferrous state prior to extraction. A loaded organic phase containing 0.48g·L-1 Ga could be produced from solution of 0.12g·L-1 Ga at A/O ratio of 4:1 via three mixer-settler operation stages. Gallium was stripped quantitatively from the loaded organic phase with 1.5mol·L-1 of sulfuric acid.

  16. Anisotropy of the magnetic susceptibility of gallium

    Pankey, T.


    The bulk magnetic susceptibilities of single gallium crystals and polycrystalline gallium spheres were measured at 25??C. The following anisotropic diamagnetic susceptibilities were found: a axis (-0.119??0. 001)??10-6 emu/g, b axis (-0.416??0.002)??10 -6 emu/g, and c axis (-0.229??0.001) emu/g. The susceptibility of the polycrystalline spheres, assumed to be the average value for the bulk susceptibility of gallium, was (-0.257??0.003)??10-6 emu/g at 25??C, and (-0.299??0.003)??10-6 emu/g at -196??C. The susceptibility of liquid gallium was (0.0031??0.001) ??10-6 emu/g at 30??C and 100??C. Rotational diagrams of the susceptibilities in the three orthogonal planes of the unit cell were not sinusoidal. The anisotropy in the single crystals was presumably caused by the partial overlap of Brillouin zone boundaries by the Fermi-energy surface. The large change in susceptibility associated with the change in state was attributed to the absence of effective mass influence in the liquid state. ?? 1960 The American Institute of Physics.

  17. Gallium Nitride Crystals: Novel Supercapacitor Electrode Materials.

    Wang, Shouzhi; Zhang, Lei; Sun, Changlong; Shao, Yongliang; Wu, Yongzhong; Lv, Jiaxin; Hao, Xiaopeng


    A type of single-crystal gallium nitride mesoporous membrane is fabricated and its supercapacitor properties are demonstrated for the first time. The supercapacitors exhibit high-rate capability, stable cycling life at high rates, and ultrahigh power density. This study may expand the range of crystals as high-performance electrode materials in the field of energy storage.

  18. Yttrium-90 microsphere induced gastrointestinal tract ulceration

    Rikabi Ali A


    Full Text Available Abstract Background Radiomicrosphere therapy (RT utilizing yttrium-90 (90Y microspheres has been shown to be an effective regional treatment for primary and secondary hepatic malignancies. We sought to determine a large academic institution's experience regarding the extent and frequency of gastrointestinal complications. Methods Between 2004 and 2007, 27 patients underwent RT for primary or secondary hepatic malignancies. Charts were subsequently reviewed to determine the incidence and severity of GI ulceration. Results Three patients presented with gastrointestinal bleeding and underwent upper endoscopy. Review of the pretreatment angiograms showed normal vascular anatomy in one patient, sclerosed hepatic vasculature in a patient who had undergone prior chemoembolization in a second, and an aberrant left hepatic artery in a third. None had undergone prophylactic gastroduodenal artery embolization. Endoscopic findings included erythema, mucosal erosions, and large gastric ulcers. Microspheres were visible on endoscopic biopsy. In two patients, gastric ulcers were persistent at the time of repeat endoscopy 1–4 months later despite proton pump inhibitor therapy. One elderly patient who refused surgical intervention died from recurrent hemorrhage. Conclusion Gastrointestinal ulceration is a known yet rarely reported complication of 90Y microsphere embolization with potentially life-threatening consequences. Once diagnosed, refractory ulcers should be considered for aggressive surgical management.

  19. Studies on yttrium-containing smart alloys

    Klein, Felix; Wegener, Tobias; Litnovsky, Andrey; Rasinski, Marcin; Linsmeier, Christian [Forschungszentrum Juelich GmbH, Institut fuer Energie- und Klimaforschung - Plasmaphysik (Germany); Mayer, Joachim [Ernst Ruska-Centrum, 52425 Juelich (Germany)


    Tungsten is the main candidate as plasma-facing armour material for future fusion reactors, like DEMO. Advantages of tungsten include high melting point, high thermal conductivity, low tritium retention, and low erosion yield. A problem is oxide volatilisation under accidental conditions where the temperature of the first wall can reach 1200 K to 1450 K and air ingress occurs. Therefore smart tungsten alloys are developed. Smart alloys are supposed to preserve properties of tungsten during plasma operation coupled with suppressed tungsten oxide formation in case of an accident. Lab-scale tungsten-chromium-yttrium (W-Cr-Y) samples prepared by magnetron sputtering are used as model system. The mechanisms of oxidation and its dynamics are studied using a thermogravimetric system, focussed ion beam, and electron microscopy. A composition scan was conducted: The new material composition featuring W, ∝ 12 wt.% Cr, ∝ 0.3 wt.% Y showed strongest suppression of oxidation, no pores, and least internal oxidation. At 1273 K in argon-oxygen atmosphere an oxidation rate of 3 . 10{sup -6} mg{sup 2}cm{sup -4}s{sup -1} was measured. At 1473 K ternary W-Cr-Y alloys suppressed evaporation up to 20 min while for W-Cr evaporation was already evident after 5 min. Comparison of passivation in dry and humid atmosphere, at temperatures of 1073 K to 1473 K is performed.

  20. Mechanical properties of lanthanum and yttrium chromites

    Paulik, S.W.; Armstrong, T.R. [Pacific Northwest National Lab., Richland, WA (United States)


    In an operating high-temperature (1000{degrees}C) solid oxide fuel cell (SOFC), the interconnect separates the fuel (P(O{sub 2}){approx}10{sup -16} atm) and the oxidant (P(O2){approx}10{sup 0.2} atm), while being electrically conductive and connecting the cells in series. Such severe atmospheric and thermal demands greatly reduce the number of viable candidate materials. Only two materials, acceptor substituted lanthanum chromite and yttrium chromite, meet these severe requirements. In acceptor substituted chromites (Sr{sup 2+} or Ca{sup 2+} for La{sup 3+}), charge compensation is primarily electronic in oxidizing conditions (through the formation of Cr{sup 4+}). Under reducing conditions, ionic charge compensation becomes significant as the lattice becomes oxygen deficient. The formation of oxygen vacancies is accompanied by the reduction of Cr{sup 4+} ions to Cr{sup 3+} and a resultant lattice expansion. The lattice expansion observed in large chemical potential gradients is not desirable and has been found to result in greatly reduced mechanical strength.

  1. Influence of Yttrium and Ytterbium on Reaction Performance of Platinum-Rhenium Reforming Catalyst


    The influence of yttrium and ytterbium on the catalytic performance of Pt-Re reforming cata-lysts was studied in a continuous flow pressurized microreactor-chromatograph system and pilot unit. Theresults of micro-reactor test showed that both yttrium and ytterbium could improve the selectivity of Pt-Recatalysts for the conversion ofn-heptane as well as MCP into aromatics, but also suppressed their activityas well. Pilot test results showed that yttrium and ytterbium enhanced both the selectivity and activity ofPt-Re catalysts for naphtha reforming. Yttrium showed more improvement than ytterbium. The perfor-mance difference between microreactor test and pilot test might be due to the difference in improvement ofcatalytic stability of yttrium or ytterbium modified Pt-Re catalysts. Yttrium and ytterbium improved thecoking resistance of yttrium or ytterbium modified Pt-Re catalysts. TEM determination results indicatedthat both yttrium and ytterbium had improved the thermal stability of Pt-Re catalysts.

  2. Gallium 67 scintigraphy in glomerular disease

    Bakir, A.A.; Lopez-Majano, V.; Levy, P.S.; Rhee, H.L.; Dunea, G.


    To evaluate the diagnostic usefulness of gallium 67 scintigraphy in glomerular disease, 45 patients with various glomerulopathies, excluding lupus nephritis and renal vasculitis, were studied. Persistent renal visualization 48 hours after the gallium injection, a positive scintigram, was graded as + (less than), ++ (equal to), and +++ (greater than) the hepatic uptake. Positive scintigrams were seen in ten of 16 cases of focal segmental glomerulosclerosis, six of 11 cases of proliferative glomerulonephritis, and one case of minimal change, and one of two cases of membranous nephropathy; also in three of six cases of sickle glomerulopathy, two cases of diabetic neuropathy, one of two cases of amyloidosis, and one case of mild chronic allograft rejection. The 25 patients with positive scans were younger than the 20 with negative scans (31 +/- 12 v 42 +/- 17 years; P less than 0.01), and exhibited greater proteinuria (8.19 +/- 7.96 v 2.9 +/- 2.3 S/d; P less than 0.01) and lower serum creatinine values (2 +/- 2 v 4.1 +/- 2.8 mg/dL; P less than 0.01). The amount of proteinuria correlated directly with the intensity grade of the gallium image (P less than 0.02), but there was no correlation between the biopsy diagnosis and the outcome of the gallium scan. It was concluded that gallium scintigraphy is not useful in the differential diagnosis of the glomerular diseases under discussion. Younger patients with good renal function and heavy proteinuria are likely to have a positive renal scintigram regardless of the underlying glomerulopathy.

  3. Evidence of yttrium silicate inclusions in YSZ-porcelain veneers.

    Stoner, Brian R; Griggs, Jason A; Neidigh, John; Piascik, Jeffrey R


    This report introduces the discovery of crystalline defects that can form in the porcelain veneering layer when in contact with yttria-stabilized zirconia (YSZ). The focus was on dental prostheses and understanding the defects that form in the YSZ/porcelain system; however the data reported herein may have broader implications toward the use and stability of YSZ-based ceramics in general. Specimens were cut from fully sintered YSZ plates and veneering porcelain was applied (porcelain veneer. Local EDAX (SEM) was performed in the regions of visible inclusions and showed significant increases in yttrium concentration. TEM specimens also showed apparent inclusions in the porcelain and selected area electron diffraction was performed on these regions and found the inclusions to be crystalline and identified as either yttrium-silicate (Y2 SiO5 ) or yttrium-disilicate (Y2 Si2 O7 ). Micro-CT data showed that yttrium-silicate precipitates were distributed throughout the thickness of the porcelain veneer. Future studies are needed to determine whether many of the premature failures associated with this materials system may be the result of crystalline flaws that form as a result of high temperature yttrium diffusion near the surfaces of YSZ.

  4. 40 CFR 721.10013 - Manganese yttrium oxide (Mn2YO5).


    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Manganese yttrium oxide (Mn2YO5). 721... Substances § 721.10013 Manganese yttrium oxide (Mn2YO5). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (Mn2YO5) (PMN...

  5. 40 CFR 721.10009 - Manganese yttrium oxide (MnYO3).


    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Manganese yttrium oxide (MnYO3). 721... Substances § 721.10009 Manganese yttrium oxide (MnYO3). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as manganese yttrium oxide (MnYO3) (PMN...

  6. Summarization of Progress on the Extraction of Scandium From Red Mud%赤泥提钪技术研究进展

    王爱平; 汪胜东; 靳冉公


    对赤泥的成分及钪在赤泥中的赋存状态进行了叙述;着重综述了赤泥提钪技术在国内外的研究进展,并进行了技术评价和方案选择。%This paper describes the compositions of red mud and the occurrence state of scandium in red mud, summarizes the technology progress on the extraction of scandium from red mud at home and abroad, carries out the technological assessment and scheme selection.

  7. Investigation on Exfoliation Corrosion and Neutral Salt Spray Corrosion Resistanceof Al-6Mg Alloy with Addition of Scandium

    WANG Yue


    Al-6Mg-Sc alloy was prepared by means of melting-casting. Corrosionresistance of Al-6Mg-Sc alloy was studied in exfoliation corrosion and Neutral Salt Spray Test. Microstructure of the Al-6Mg-Sc alloy was investigated by using optical microscope and transmission electron micrograph( TEM ). It was found that additionof scandium served as a potent grain refiner, resulting a homogeneous, dispersed distribution of β-phrase in microstructure of the alloys. The discontinuous precipitation of β-phrase in grain boundaries therefore highly improved corrosion resistance of the alloys.

  8. Enhancement of Superconductivity of Lanthanum and Yttrium Sesquicarbide

    Krupka, M. C.; Giorgi, A. L.; Krikorian, N. H.; Szklarz, E. G.


    A method of enhancing the superconductivity of body-centered cubic lanthanum and yttrium sesquicarbide through formation of the sesquicarbides from ternary alloys of novel composition (N/sub x/M/sub 1-x/)C/sub z/, where N is yttrium or lanthanum, M is thorium, any of the Group IV and VI transition metals, or gold, germanium or silicon, and z is approximately 1.2 to 1.6. These ternary sesquicarbides have superconducting transition temperatures as high as 17.0/sup 0/K.

  9. Swift heavy ion-beam induced amorphization and recrystallization of yttrium iron garnet.

    Costantini, Jean-Marc; Miro, Sandrine; Beuneu, François; Toulemonde, Marcel


    Pure and (Ca and Si)-substituted yttrium iron garnet (Y3Fe5O12 or YIG) epitaxial layers and amorphous films on gadolinium gallium garnet (Gd3Ga5O12, or GGG) single crystal substrates were irradiated by 50 MeV (32)Si and 50 MeV (or 60 MeV) (63)Cu ions for electronic stopping powers larger than the threshold value (~4 MeV μm(-1)) for amorphous track formation in YIG crystals. Conductivity data of crystalline samples in a broad ion fluence range (10(11)-10(16) cm(-2)) are modeled with a set of rate equations corresponding to the amorphization and recrystallization induced in ion tracks by electronic excitations. The data for amorphous layers confirm that a recrystallization process takes place above ~10(14) cm(-2). Cross sections for both processes deduced from this analysis are discussed in comparison to previous determinations with reference to the inelastic thermal-spike model of track formation. Micro-Raman spectroscopy was also used to follow the related structural modifications. Raman spectra show the progressive vanishing and randomization of crystal phonon modes in relation to the ion-induced damage. For crystalline samples irradiated at high fluences (⩾10(14) cm(-2)), only two prominent broad bands remain like for amorphous films, thereby reflecting the phonon density of states of the disordered solid, regardless of samples and irradiation conditions. The main band peaked at ~660 cm(-1) is assigned to vibration modes of randomized bonds in tetrahedral (FeO4) units.

  10. Interfacial Behavior of Sulfur and Yttrium in Yttrium Modified Ni3Al-Based Alloy IC6 during High Temperature Oxidation Process


    The interfacial behavior of sulfur and yttrium in the yttrium-modified Ni3Al-based alloy IC6 during oxidation at 1100 ℃ was analyzed by X-ray line scan of electron probe microstructural analysis(EPMA). The results show that the migration and segregation of sulfur to the interface between oxide scale and the substrate at high temperature is retarded owing to the presence of yttrium. This is attributed to the desulfurization by yttrium in the melt and the trapping of sulfur by yttrium rich phases during oxidation, which leads to improving the coherence between oxide scale and substrate. Another reason of increasing the high temperature oxidation resistance of alloy IC6 by the addition of yttrium is that yttrium migrates to the grain boundaries of oxides during oxidation and hence improve their strength. This results in the transformation of the oxide scale spallation cracks from intergranular cracks for alloy without yttrium to transgranular ones for yttrium-modified alloy.

  11. Radiation resistance and parameters of activation of aluminium-magnesium-scandium and aluminium-magnesium-vanadium alloys under neutron irradiation

    Ivanov, L.I.; Ivanov, V.V.; Lazorenko, V.M.; Platov, Yu.M.; Tovtin, V.I.; Toropova, L.S. (A.A. Baikov Inst. of Metallurgy, Academy of Sciences, Moscow (Russia))


    Alloys Al-2.24Mg-0.223Sc-0.04Zr, Al-2.24Mg-0.12Sc-0.04Zr, and Al-2.24Mg-0.05V (at.%) annealed at 150deg C and 400deg C were irradiated at [approx equal] 70 and [approx equal] 150deg C in the SM-2 reactor. The maximum neutron fluence was 4.7x10[sup 24] m[sup -2] (E > 0.1 MeV). The tensile tests were carried out in the temperature range 20 to 350deg C. Alloy Al-2.24 Mg-0.23Sc-0.04Zr annealed at 400deg C and alloy Al-2.24Mg-0.12Sc-0.04Zr annealed at 150deg C at all test temperatures retained good mechanical properties after irradiation. The mechanisms for the radiation resistance of aluminium-scandium and aluminium-magnesium-scandium alloys are discussed. Calculations of induced radioactivity and its decay behaviour after shutdown in aluminium and Al-2.24Mg-(0.12-0.23)Sc alloys were carried out. Composition of the radionuclides in these materials after irradiation in the SM-2 reactor were also determined using a gamma-spectroscopy technique. (orig.).

  12. Radiation resistance and parameters of activation of aluminium-magnesium-scandium and aluminium-magnesium-vanadium alloys under neutron irradiation

    Ivanov, L. I.; Ivanov, V. V.; Lazorenko, V. M.; Platov, Yu. M.; Tovtin, V. I.; Toropova, L. S.


    Alloys Al2.24Mg0.23Sc0.04Zr, Al2.24Mg0.12Sc0.04Zr, and Al2.24Mg0.05V (at.)) annealed at 150°C and 400°C were irradiated ≈70 and ≈150°C in the SM-2 reactor. The maximum neutron fluence was 4.7×1024 m-2 (E > 0.1 MeV). The tensile tests were carried out in the temperature range 20 to 350°C. Alloy Al2.24Mg0.23Sc0.04Zr annealed at 400°C and alloy Al2.24Mg0.12Sc0.04Zr annealed at 150°C at all test temperature, retained good mechanical properties after irradiation. The mechanisms for the radiation resistance of aluminiumscandium and aluminiummagnesiumscandium alloys are discussed. Calculations of induced radioactivity and its decay behaviour after shutdown in aluminium and Al2.24Mg(0.12-0.23)Sc alloys were carried out. Composition of the radionuclides in these materials after irradiation in the SM-2 reactor were also determined using a gamma-spectroscopy technique.

  13. High performance yttrium-doped BSCF hollow fibre membranes

    Haworth, P.; Smart, S.; Glasscock, Julie;


    Oxygen production from BSCF (Ba0.5Sr0.5Co0.8Fe0.2O3−δ) and yttrium-doped BSCF (Ba0.5Sr0.5Co0.8Fe0.175Y0.025O3−δ) hollow fibres was investigated, and the role of yttrium in the crystal structure was further explored using high-temperature X-ray diffraction. Yttrium substitution acted to increase...... the oxygen flux significantly, from 4.9 to 7.0mlcm−2min−1 at 900°C for the BSCF and the BSCFY membranes, respectively. Permeation was particularly enhanced at lower temperatures, between 66% and 92% over the range 650–800°C. The lattice expansion determined from high temperature X-ray diffraction.......3mm) hollow fibres operating below the critical length (i.e. limited surface kinetics regime) indicates that yttrium has enhanced the surface exchange rates. XRD patterns showed split peaks around 2θ 31° and 56° above 200°C, likely corresponding to a coexisting hexagonal perovskite phase. This peak...

  14. Thermal decomposition of Yttrium(III) isovalerate in argon

    Grivel, Jean-Claude; Yue, Zhao; Tang, Xiao;


    The thermal behaviour of yttrium(III) isovalerate (Y(C4H9CO2)3) was studied in argon by means of thermogravimetry, differential thermal analysis, FTIR-spectroscopy, hot-stage optical microscopy and X-ray diffraction with a laboratory Cu-tube source as well as with a synchrotron radiation source...

  15. Thermal decomposition of yttrium(III) valerate in argon

    Grivel, Jean-Claude; Yue, Zhao; Tang, Xiao;


    The thermal decomposition of yttrium(III) valerate (Y(C4H9CO2)3) was studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction, in-situ synchrotron diffraction and hot-stage microscopy as well as room temperature optical microscopy. Melting...

  16. Applying bacterial metallophores to mobilize gallium

    Schwabe, Ringo; Obst, Britta; Mehnert, Marika; Tischler, Dirk; Wiche, Oliver


    Metallophores are produced by many organisms such as bacteria, fungi and plants in order to mobilize metals, especially iron (Greek: "siderophore" = iron carrier), to overcome limitations or stress. Respectively, it is well known these compounds loaded with relevant metal ions are used not only by the producing organism but also by others. Thus metallophores as metal carriers are relevant for many processes at various habitats (e.g. metal acquisition, pathogenic factors, antimicrobial activity, sensing). However, metallophores do also mobilize metals of industrial interest which have no critical role in the living world. Here we focused on gallium as industrial relevant metal and compared it to iron which is important for all organisms. The herein described mobilization of valuable metals such as gallium from soils provides first hints towards alternative strategies, such as phytomining, sensor development, or solvent extraction based on metallophores. Two produced metallophore preparations of soil bacteria (Gordonia rubripertincta CWB2 and Paracoccus denitrificans PD1222) and the commercially available metallophore desferrioxamine B were analyzed for iron binding activity by means of a standard chromazurol S assay and equal iron binding activities were employed to treat a soil sample. The pH was set constant to 6 in order to avoid pH related effects. Therefore, the metallophore was prepared in a special medium and control of water and medium were also applied onto the soil. The soil was washed and incubated with the mentioned preparations. The mobilization of iron and gallium was determined prior and after the treatment by means of ICP-MS. Water showed no effect and medium only a little on metal mobilization which is related to its ionic strength. All metallophores mobilized iron at a similar strength but showed significant differences in case of gallium. Here the metallophore mix produced by strain CWB2 showed best results and allowed to mobilize gallium 3-times

  17. Thin yttrium iron garnet films grown by pulsed laser deposition: Crystal structure, static, and dynamic magnetic properties

    Sokolov, N. S., E-mail:; Fedorov, V. V.; Korovin, A. M.; Suturin, S. M.; Baranov, D. A.; Gastev, S. V.; Krichevtsov, B. B.; Bursian, V. E.; Lutsev, L. V. [Ioffe Physical-Technical Institute of Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Maksimova, K. Yu.; Grunin, A. I. [Immanuel Kant Baltic Federal University, Kaliningrad 236041 (Russian Federation); Tabuchi, M. [Synchrotron Radiation Research Center, Nagoya University, Nagoya 464-8603 (Japan)


    Pulsed laser deposition has been used to grow thin (10–84 nm) epitaxial layers of Yttrium Iron Garnet Y{sub 3}Fe{sub 5}O{sub 12} (YIG) on (111)–oriented Gadolinium Gallium Garnet substrates at different growth conditions. Atomic force microscopy showed flat surface morphology both on micrometer and nanometer scales. X-ray diffraction measurements revealed that the films are coherent with the substrate in the interface plane. The interplane distance in the [111] direction was found to be by 1.2% larger than expected for YIG stoichiometric pseudomorphic film indicating presence of rhombohedral distortion in this direction. Polar Kerr effect and ferromagnetic resonance measurements showed existence of additional magnetic anisotropy, which adds to the demagnetizing field to keep magnetization vector in the film plane. The origin of the magnetic anisotropy is related to the strain in YIG films observed by XRD. Magneto-optical Kerr effect measurements revealed important role of magnetization rotation during magnetization reversal. An unusual fine structure of microwave magnetic resonance spectra has been observed in the film grown at reduced (0.5 mTorr) oxygen pressure. Surface spin wave propagation has been demonstrated in the in-plane magnetized films.

  18. Temperature dependence of the magnon spin diffusion length and magnon spin conductivity in the magnetic insulator yttrium iron garnet

    Cornelissen, L. J.; Shan, J.; van Wees, B. J.


    We present a systematic study of the temperature dependence of diffusive magnon spin transport using nonlocal devices fabricated on a 210-nm yttrium iron garnet film on a gadolinium gallium garnet substrate. In our measurements, we detect spin signals arising from electrical and thermal magnon generation, and we directly extract the magnon spin diffusion length λm for temperatures from 2 to 293 K. Values of λm obtained from electrical and thermal generation agree within the experimental error with λm=9.6 ±0.9 μ m at room temperature to a minimum of λm=5.5 ±0.7 μ m at 30 K. Using a two-dimensional finite element model to fit the data obtained for electrical magnon generation we extract the magnon spin conductivity σm as a function of temperature, which is reduced from σm=3.7 ±0.3 ×105S /m at room temperature to σm=0.9 ±0.6 ×104S /m at 5 K. Finally, we observe an enhancement of the signal originating from thermally generated magnons for low temperatures where a maximum is observed around T =7 K . An explanation for this low-temperature enhancement is however still missing and requires additional investigation.

  19. Erbium-doped yttrium aluminum garnet as a magnetic refrigerant for low temperature x-ray detectors

    Kushino, Akihiro; Aoki, Yuji; Yamasaki, Noriko Y.; Namiki, Takahiro; Ishisaki, Yoshitaka; Matsuda, Tatsuma D.; Ohashi, Takaya; Mitsuda, Kazuhisa; Yazawa, Takashi


    Garnets doped with rare-earth elements can be used in adiabatic demagnetization refrigerators. We have measured the specific heat and magnetization of a single crystal yttrium aluminum garnet (YAG) doped with 30% Er3+ ion at temperatures between 93 mK and 8 K under magnetic fields up to 8.0 T along the crystal axis. From the specific heat and magnetization, we derived consistent temperature and magnetic-field dependence of the magnetic entropy. Under zero magnetic field, the magnetic entropy begins to decrease below 2 K and becomes half of R ln 2 at ˜160 mK. This decrease is considered to be due to an antiferromagnetic short-range ordering among Er3+ ions. This behavior of the specific heat in the measured temperature range can be explained by a model in which both the crystalline-electric-field ground state and the first excited state are included. The operating temperature of the Er3+-doped YAG as a magnetic coolant is estimated to extend down to ˜100 mK, which is lower than those with nonsubstituted garnets such as gallium-gadolinium-garnet used in the range ˜4.2-15 K. With a doping level of 30%, we estimate that ˜6 kg of Er3+-doped YAG exhibits the same cooling performance at 60 mK as the 916 g of ferric-ammonium-alum salt used for the x-ray spectrometer (microcalorimeter detectors) on the Astro-E satellite.

  20. Myopericarditis in acquired immunodeficiency syndrome diagnosed by gallium scintigraphy

    Cregler, L.L.; Sosa, I.; Ducey, S.; Abbey, L. (Bronx VA Medical Center, NY (USA))


    Myocarditis is among the cardiac complications of acquired immunodeficiency syndrome and, yet, is often not discovered until autopsy. Gallium scintigraphy has been employed in diagnosing this entity, but few data are available about its diagnostic accuracy and value. Here, the authors report two cases of myopericarditis as diagnosed by gallium scan.

  1. Two octanuclear gallium metallamacrocycles of topologically different connectivities.

    Park, Mira; John, Rohith P; Moon, Dohyun; Lee, Kyungjin; Kim, Ghyung Hwa; Lah, Myoung Soo


    Two topologically different metallamacrocycles--S8 symmetric octanuclear gallium(III) metalladiazamacrocycle and pseudo-D4 symmetric octanuclear gallium(III) metalladiazamacrocycle--could be prepared using two similar heteroditopic bridging ligands having asymmetrical tridentate-bidentate binding residues.

  2. Benchmarking of Evaluated Neutron Data for Gallium Sample

    HAN; Rui; NIE; Yang-bo; RUAN; Xi-chao; BAO; Jie; REN; Jie; HUANG; Han-xiong; LI; Xia; ZHANG; Kai; ZHOU; Zu-ying


    Gallium(Ga)is a kind of target material and an important fission product.It has the characteristics of low melting point and high boiling point.The integral experimental study on Gallium data is an important issue.It has an important application for design of reactors and ADS(Accelerator Driven System)

  3. Nuclear microprobe imaging of gallium nitrate in cancer cells

    Ortega, Richard; Suda, Asami; Devès, Guillaume


    Gallium nitrate is used in clinical oncology as treatment for hypercalcemia and for cancer that has spread to the bone. Its mechanism of antitumor action has not been fully elucidated yet. The knowledge of the intracellular distribution of anticancer drugs is of particular interest in oncology to better understand their cellular pharmacology. In addition, most metal-based anticancer compounds interact with endogenous trace elements in cells, altering their metabolism. The purpose of this experiment was to examine, by use of nuclear microprobe analysis, the cellular distribution of gallium and endogenous trace elements within cancer cells exposed to gallium nitrate. In a majority of cellular analyses, gallium was found homogeneously distributed in cells following the distribution of carbon. In a smaller number of cells, however, gallium appeared concentrated together with P, Ca and Fe within round structures of about 2-5 μm diameter located in the perinuclear region. These intracellular structures are typical of lysosomial material.

  4. Gallium-containing hydroxyapatite for potential use in orthopedics

    Melnikov, P., E-mail: [Department of Clinical Surgery, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul (Brazil); Teixeira, A.R.; Malzac, A. [Department of Clinical Surgery, Faculty of Medicine, Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul (Brazil); Coelho, M. de B. [Brazilian Agricultural Research Corporation - EMBRAPA (Brazil)


    A novel material that may be recommended for grafts and implants stimulating bone growth has been obtained by introducing gallium ions (up to 11.0 mass%) into crystalline lattice of hydroxyapatite. The doping was carried out using gallium nitrate and sodium gallate solutions. In both cases, lattice parameters of gallium-doped hydroxyapatite are identical to those of pure synthetic hydroxyapatite. Gallium does not replace calcium as a result of heterovalent substitution and consequently produces no distortions in the framework of hydroxyapatite matrix. It remains strongly fixed in the form of solid solution of intercalation. According to scanning electron microscopy images gallium insertion does not cause any morphological alterations in hydroxyapatite structure and the product developed meets physico-chemical criteria for biomaterial to be employed in orthopedic practice and local handling of traumatic injuries. Its future usage opens the opportunity to enhance osteosynthesis and calcium retention in loco.

  5. Thermal Plasma Synthesis of Crystalline Gallium Nitride Nanopowder from Gallium Nitrate Hydrate and Melamine

    Tae-Hee Kim


    Full Text Available Gallium nitride (GaN nanopowder used as a blue fluorescent material was synthesized by using a direct current (DC non-transferred arc plasma. Gallium nitrate hydrate (Ga(NO33∙xH2O was used as a raw material and NH3 gas was used as a nitridation source. Additionally, melamine (C3H6N6 powder was injected into the plasma flame to prevent the oxidation of gallium to gallium oxide (Ga2O3. Argon thermal plasma was applied to synthesize GaN nanopowder. The synthesized GaN nanopowder by thermal plasma has low crystallinity and purity. It was improved to relatively high crystallinity and purity by annealing. The crystallinity is enhanced by the thermal treatment and the purity was increased by the elimination of residual C3H6N6. The combined process of thermal plasma and annealing was appropriate for synthesizing crystalline GaN nanopowder. The annealing process after the plasma synthesis of GaN nanopowder eliminated residual contamination and enhanced the crystallinity of GaN nanopowder. As a result, crystalline GaN nanopowder which has an average particle size of 30 nm was synthesized by the combination of thermal plasma treatment and annealing.

  6. Yttrium-90 DOTATOC: first clinical results

    Otte, A. [Basel Univ. (Switzerland). Nuklearmedizinische Abt.; Herrmann, R. [University Hospital, School of Medicine, Basel (Switzerland). Dept. of Oncology; Heppeler, A.; Behe, M.; Jermann, E.; Powell, P.; Maecke, H.R.; Muller, J. [University Hospital, School of Medicine, Basel (Switzerland). Inst. of Radiochemistry


    In a pilot study, DOTA-d-Phe{sup 1}-Tyr{sup 3}-octreotide (DOTATOC), which can be labelled with the {beta}-emitting radioisotope yttrium-90, has recently been used for the treatment of patients with advanced somatostatin receptor-positive tumours who had no other treatment option. The aim of the present study was to elucidate the therapeutic potential of {sup 90}Y-DOTATOC in a larger number of patients employing a standardized treatment protocol. Careful attention was paid to any side-effects (renal and/or haematological toxicity). Of 44 patients with advanced somatostatin receptor-positive tumours of different histology, 29 could be included in the study. The 15 patients who were excluded from the study protocol were assigned to our institution for purely compassionate reasons. The 29 patients who were included received four or more single doses of {sup 90}Y-DOTATOC with ascending activity at intervals of approximately 6 weeks (cumulative dose 6120{+-}1347 MBq/m{sup 2}) with the aim of performing an intra-patient dose escalation study. In total, 127 single treatments were given. In eight of these 127 single treatments, total doses of {>=}3700 MBq were administered. In an effort to prevent renal toxicity, two patients received Hartmann-Hepa 8% solution during all therapy cycles, while 13 patients did so during some but not all therapy cycles; in 14 patients no solution was administered during the therapy cycles. The treatment was monitored by computed tomography and indium-111 DOTATOC scintigraphy. Blood parameters were controlled weekly, while tumour markers and liver enzymes were controlled 6-weekly. Of the 29 patients, 24 patients showed no severe renal or haematological toxicity (toxicity {<=} grade 2 according to the National Cancer Institute grading criteria). These 24 patients received a cumulative dose of {<=}7400 MBq/m{sup 2}. Five patients developed renal and/or haematological toxicity. All of these five patients received a cumulative dose of >7400 MBq

  7. Contribution the scintigraphy with gallium 67 in the sarcoidosis; Apport de la scintigraphie au gallium 67 dans la sarcoidose

    Elbez, I.; Sellem, A.; Rejeb, O.; Elkadri, N.; Hammami, H. [Service de medecine nucleaire, hopital militaire, Tunis, (Tunisia)


    The objective is to show the interest of the scintigraphy with citrates of gallium 67 in the diagnosis and follow up of sarcoidosis injuries. The conclusions are that the scintigraphy with gallium 67 constitutes an imaging technique of good performance, non invasive in the diagnosis, le injuries evaluation and the sarcoidosis follow-up. (N.C.)

  8. Design and fabrication of anti-reflection coating on Gallium Phosphide, Zinc Selenide and Zinc Sulfide substrates for visible and infrared application

    Mokrý P.


    Full Text Available Results of design and fabrication of a dual-band anti-reflection coating on a gallium phosphide (GaP, zinc selenide (ZnSe and zinc sulfide (ZnS substrates are presented. A multilayer stack structure of antireflection coatings made of zinc sulfide and yttrium fluoride (YF3 was theoretically designed for optical bands between 0.8 and 0.9 μm and between 9.5 and 10.5 μm. This stack was designed as efficient for these materials (GaP, ZnS, ZnSe together. Multilayer stack structure was deposited using thermal evaporation method. Theoretically predicted transmittance spectra were compared with transmitted spectra measured on coated substrates. Efficiency of anti-reflection coating is estimated and discrepancies are analyzed and discussed.

  9. Synthesis and characterization of yttrium-aluminum-iron and yttrium-cerium-iron citric complexes

    N. Petrova; D. Todorovsky; I. Mitov; Tyuliev


    Fe-, Y-Fe-Al- and Y-Ce-Fe- citrates were synthesized in ethylene glycol (EG) medium under conditions similar to those used in the polymerized complex method. Their elemental composition, IR, 13C and 1H NMR, X-ray photoelectron and Mossbauer spectra were studied, and formulae describing their composition were proposed. The complexes contained EG bonded as adduct and ester with citric acid ligand and did not contain ligands with deprotonated alcoholic groups. The complexes consisted of agglomerated spheres, 0.7-3μm in diameter. The local composition of the products was established by energy dispersive X-ray microanalysis. The comparison of the number of the ligands, their average electrical charge and the esterification degree of mono-, di- and trimetallic complexes proved the mixed-metal nature of the species studied. The thermal decomposition of the complexes was studied and a general scheme of the processes taking place was proposed. Highly crystalline, phase homogeneous Y3Fe4AlO12 was produced after heating the respective complex at 1000℃. Ce-doped yttrium-iron garnet, similarly prepared, contained traces of CeO2.

  10. Patterned gallium surfaces as molecular mirrors.

    Bossi, Alessandra; Rivetti, Claudio; Mangiarotti, Laura; Whitcombe, Michael J; Turner, Anthony P F; Piletsky, Sergey A


    An entirely new means of printing molecular information on a planar film, involving casting nanoscale impressions of the template protein molecules in molten gallium, is presented here for the first time. The metallic imprints not only replicate the shape and size of the proteins used as template. They also show specific binding for the template species. Such a simple approach to the creation of antibody-like properties in metallic mirrors can lead to applications in separations, microfluidic devices, and the development of new optical and electronic sensors, and will be of interest to chemists, materials scientists, analytical specialists, and electronic engineers.

  11. Self-Assembled Nanocomposite Organic Polymers with Aluminum and Scandium as Heterogeneous Water-Compatible Lewis Acid Catalysts.

    Miyamura, Hiroyuki; Sonoyama, Arisa; Hayrapetyan, Davit; Kobayashi, Shū


    While water-compatible Lewis acids have great potential as accessible and environmentally benign catalysts for various organic transformations, efficient immobilization of such Lewis acids while keeping high activity and without leaching of metals even under aqueous conditions is a challenging task. Self-assembled nanocomposite catalysts of organic polymers, carbon black, aluminum reductants, and scandium salts as heterogeneous water-compatible Lewis acid catalysts are described. These catalysts could be successfully applied to various C-C bond-forming reactions without leaching of metals. Scanning transmission electron microscopy analyses revealed that the nanocomposite structure of Al and Sc was fabricated in these heterogeneous catalysts. It is noted that Al species, which are usually decomposed rapidly in the presence of water, are stabilized under aqueous conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Random-field Potts model for the polar domains of lead magnesium niobate and lead scandium tantalate

    Qian, H.; Bursill, L.A


    A random filed Potts model is used to establish the spatial relationship between the nanoscale distribution of charges chemical defects and nanoscale polar domains for the perovskite-based relaxor materials lead magnesium niobate (PMN) and lead scandium tantalate (PST). The random fields are not set stochastically but are determined initially by the distribution of B-site cations (Mg, Nb) or (Sc, Ta) generated by Monte Carlo NNNI-model simulations for the chemical defects. An appropriate random field Potts model is derived and algorithms developed for a 2D lattice. It is shown that the local fields are strongly correlated with the chemical domain walls and that polar domains as a function of decreasing temperature is simulated for the two cases of PMN and PST. The dynamics of the polar clusters is also discussed. 33 refs., 9 figs.

  13. Compatibility of ITER candidate structural materials with static gallium

    Luebbers, P.R.; Michaud, W.F.; Chopra, O.K.


    Tests were conducted on the compatibility of gallium with candidate structural materials for the International Thermonuclear Experimental Reactor, e.g., Type 316 SS, Inconel 625, and Nb-5 Mo-1 Zr alloy, as well as Armco iron, Nickel 270, and pure chromium. Type 316 stainless steel is least resistant to corrosion in static gallium and Nb-5 Mo-1 Zr alloy is most resistant. At 400{degrees}C, corrosion rates are {approx}4.0, 0.5, and 0.03 mm/yr for type 316 SS, Inconel 625, and Nb-5 Mo- 1 Zr alloy, respectively. The pure metals react rapidly with gallium. In contrast to findings in earlier studies, pure iron shows greater corrosion than nickel. The corrosion rates at 400{degrees}C are {ge}88 and 18 mm/yr, respectively, for Armco iron and Nickel 270. The results indicate that at temperatures up to 400{degrees}C, corrosion occurs primarily by dissolution and is accompanied by formation of metal/gallium intermetallic compounds. The solubility data for pure metals and oxygen in gallium are reviewed. The physical, chemical, and radioactive properties of gallium are also presented. The supply and availability of gallium, as well as price predictions through the year 2020, are summarized.

  14. The effect of gallium nitrate on synoviocyte MMP activity.

    Panagakos, F S; Kumar, E; Venescar, C; Guidon, P


    Gallium, a group IIIa metal salt, has been demonstrated to be an effective immunosuppressive agent. Gallium has also been shown to inhibit the production of inflammatory cytokines, such as IL-1beta, produced by macrophage-like cells in vitro. To further characterize the effects of gallium on the inflammatory process, we examined the effects of gallium nitrate on matrix metalloproteinase (MMP) activity utilizing the rabbit synoviocyte cell line HIG-82. HIG-82 cells were incubated with IL-1beta and TPA, with and without increasing concentrations of gallium nitrate. Conditioned medium was collected and assayed for MMP activity using a synthetic substrate and substrate gel zymography. IL-1beta and TPA alone induced MMP activity in HIG-82 cells. A dose-dependent inhibition of IL-1beta and TPA stimulated MMP activity by gallium nitrate at increasing concentrations was observed. This study demonstrates that gallium nitrate can inhibit the activity of MMPs and may be useful as a modulator of inflammation in arthritis.

  15. Gallium vacancies in β-Ga2O3 crystals

    Kananen, B. E.; Halliburton, L. E.; Stevens, K. T.; Foundos, G. K.; Giles, N. C.


    The gallium vacancy, an intrinsic acceptor, is identified in β-Ga2O3 using electron paramagnetic resonance (EPR). Spectra from doubly ionized ( VG a 2 - ) and singly ionized ( VG a - ) gallium vacancies are observed at room temperature, without photoexcitation, after an irradiation with high-energy neutrons. The VG a 2 - centers (with S = 1/2) have a slight angular variation due to a small anisotropy in the g matrix (principal values are 2.0034, 2.0097, and 2.0322). The VG a 2 - centers also exhibit a resolved hyperfine structure due to equal and nearly isotropic interactions with the 69,71Ga nuclei at two Ga sites (the hyperfine parameters are 1.28 and 1.63 mT for the 69Ga and 71Ga nuclei, respectively, when the field is along the a direction). Based on these g-matrix and hyperfine results, the model for the ground state of the doubly ionized vacancy ( VG a 2 - ) has a hole localized on one threefold-coordinated oxygen ion. The vacancy is located at one of the three neighboring gallium sites, and the remaining two gallium neighbors are responsible for the equal hyperfine interactions. The singly ionized ( VG a - ) gallium vacancies are also paramagnetic. In this latter acceptor, the two holes are localized on separate oxygen ions adjacent to one gallium vacancy. Their spins align parallel to give a triplet S = 1 EPR spectrum with resolved hyperfine structure from interactions with gallium neighbors.

  16. Thermal decomposition of yttrium(III) propionate and butyrate

    Grivel, Jean-Claude


    The thermal decompositions of yttrium(III) propionate monohydrate (Y(C2H5CO2)3·H2O) and yttrium(III) butyrate dihydrate (Y(C3H7CO2)3·2H2O) were studied in argon by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction and hot-stage microscopy. These two...... of CO2 and a symmetrical ketone consisting of 3-pentanone and 4-heptanone respectively. Final conversion to Y2O3 takes pace with release of CO2. Elemental carbon that is left as a by-product is finally slowly burned by the residual oxygen present in the Ar atmosphere. Fusion is observed at ≈110°C...

  17. Hydrocarbon cracking with yttrium exchanged zeolite y catalyst

    Lochow, C.F.; Kovacs, D.B.


    A process is described for cracking a gas oil boiling range hydrocarbon feedstock comprising the step of contacting the feedstock in a catalytic cracking zone under catalytic cracking conditions to produce convulsion products comprising gasoline with a catalyst composition. The process comprises: a Y crystalline aluminosilicate zeolite, having the structure of faujasite and having uniform pore diameters and a silica to alumina mole ratio of at least about 5; an inorganic oxide matrix; and the zeolite having been ion exchanged with a mixture of rare earths prior to compositing with the matrix; and the zeolite having been subsequently further ion exchanged with yttrium following compositing with the matrix, whereby the catalyst composition contains 0.30 to 3.0 wt% yttrium.

  18. Determination of Trace Amount of Yttrium with Bromopyrogallol Red by Solid-phase Spectrophotometry


    A simple and sensitive method for the determination of trace amount of yttrium by solid-phase spectrophotometry has been studied. Yttrium can form a 1∶1 complex with bromopyrogallol red (BPR) on resin, which was determined directly at 605 nm, pH=6.5. It has a highly sensitivity ( = 6.3€?06) which is 300-fold higher than the corresponding spectrophotometry in solution. The method was applied to the determination of yttrium in churchite.

  19. Upconversion luminescence in Yb 3+-doped yttrium aluminum garnets

    Xu, Xiaodong; Zhao, Zhiwei; Song, Pingxin; Jiang, Benxue; Zhou, Guoqing; Xu, Jun; Deng, Peizhen; Bourdet, Gilbert; Christophe Chanteloup, Jean; Zou, Ji-Ping; Fulop, Annabelle


    In this paper, we present results on upconversion luminescence performed on Yb 3+-doped yttrium aluminum garnets under 940 nm excitation. The upconversion luminescence was ascribed to Yb 3+ cooperative luminescence and the presence of rare earth impurity ions. The cooperative luminescence spectra as a function of Yb concentration were measured and the emission intensity variation with Yb concentration was discussed. Yb 3+ energy migration quenched the cooperative luminescence of Yb:YAG crystals with doping level over 15 at%.

  20. Collectivity of the neutron-deficient odd yttrium isotopes

    Bucurescu, D.; Cata, G.; Ivascu, M.; Zamfir, N.V.; Liang, C.F.; Paris, P.


    Multishell IBFM-1 calculations are reported for the neutron-deficient odd yttrium isotopes (79-85), which give a good description of both the positive and negative parity levels known experimentally. An exchange force whose intensity varies with the mass number is required. This phenomenological variation reflects qualitatively the microscopic origin of the exchange term, and also points to possible systematics of the model parameters in the ALPHA approx. = 80 region of the Nsub(p)Nsub(n) type.

  1. Acromegaly with sleep disturbances relieved by yttrium-90 pituitary implantation

    Rosenstock, J.; Doyle, F.H.; Joplin, G.F.; Jung, R.T.; Mashiter, K. (Hammersmith Hospital, London (UK). Postgraduate Medical School)


    A brief case history is presented of a patient, who, after yttrium-90 implantation, showed a complete clinical and hormonal remission of her acromegaly, maintaining normal pituitary function. The remarkable feature was the rapid disappearance of her attacks of somnolence within 96 hours of pituitary implantation, despite persistence of nocturnal snoring and well before any remodelling of soft tissues could have occurred. This response suggests that her daytime somnolence had a narcoleptic component.

  2. Kinetic characteristics of the luminescence decay for industrial yttrium-gadolinium-aluminium garnet based phosphors

    Lisitsyn, Viktor Mikhailovich; Stepanov, Sergey Aleksandrovich; Valiev, Damir Talgatovich; Vishnyakova, E. A.; Abdullin, H. A.; Marhabaeva, A. A.; Tulegenova, A. T.


    The spectral and decay kinetic characteristics of pulse cathodoluminescence and photoluminescence of phosphors based on yttrium-gadolinium-aluminum garnet were investigated using pulsed optical time resolved spectroscopy.

  3. Influences of Yttrium on Adhesion of Oxide Scale of Fe-Cr-Al Alloy

    辛丽; 李美栓; 周龙江; 王福会; 李铁藩


    The 1100 ℃ isothermal oxidation behavior of Fe-23Cr-5Al alloy modified by yttrium addition was studied by means of thermogravimetric analysis, scanning electron microscopy and energy dispersive X-ray analysis. Yttrium was added to this alloy in the forms of metallic addition, yttrium oxide and ion implant. Cracking and spalling occurred on the convoluted scale formed on Y-free alloy and exposed the substrate. A flat dense scale without spallation was formed on the yttrium alloying addition or yttrium oxide dispersion alloy. The scale adhesion was also improved by 1×1017Y+/cm2-implantation. The results indicate the convoluted morphology of the scale on Fe-23Cr-5Al-0.21Ti alloy is related to the growth mechanism of the alumina scale, and the spallation of the scale is related to sulfur segregation at the scale/alloy interface. The main reason that the adhesion of alumina scale is improved by yttrium addition lies in the following. Yttrium is liable to form a stable yttrium sulfide with sulfur in the alloy and prevent sulfur interface from segregation. Another reason is that the growth mechanism of alumina scale is changed by yttrium addition.

  4. Growth and characterization of indium antimonide and gallium antimonide crystals

    N K Udayashankar; H L Bhat


    Indium antimonide and gallium antimonide were synthesized from the respective component elements using an indigenously fabricated synthesis unit. Bulk crystals of indium antimonide and gallium antimonide were grown using both the vertical and horizontal Bridgman techniques. Effect of ampoule shapes and diameters on the crystallinity and homogeneity was studied. The grown crystals were characterized using X-ray analysis, EDAX, chemical etching, Hall effect and conductivity measurements. In the case of gallium antimonide, effect of dopants (Te and In) on transport and photoluminescence properties was investigated.

  5. Effect of oxidation on the Mechanical Properties of Liquid Gallium and Eutectic Gallium-Indium

    Xu, Qin; Guo, Qiti; Jaeger, Heinrich; Brown, Eric


    Liquid metals exhibit remarkable mechanical properties, in particular large surface tension and low viscosity. However, these properties are greatly affected by oxidation when exposed to air. We measure the viscosity, surface tension, and contact angle of gallium (Ga) and a eutectic gallium-indium alloy (eGaIn) while controlling such oxidation by surrounding the metal with an acid bath of variable concentration. Rheometry measurements reveal a yield stress directly attributable to an oxide skin that obscures the intrinsic behavior of the liquid metals. We demonstrate how the intrinsic viscosity can be obtained with precision through a scaling technique that collapses low- and high-Reynolds number data. Measuring surface tension with a pendant drop method, we show that the oxide skin generates a surface stress that mimics surface tension and develop a simple model to relate this to the yield stress obtained from rheometry. We find that yield stress, surface tension, and contact angle all transition from solid-...

  6. Ultrafast X-Ray Diffraction Studies of the Phase Transitions and Equation of State of Scandium Shock Compressed to 82 GPa.

    Briggs, R; Gorman, M G; Coleman, A L; McWilliams, R S; McBride, E E; McGonegle, D; Wark, J S; Peacock, L; Rothman, S; Macleod, S G; Bolme, C A; Gleason, A E; Collins, G W; Eggert, J H; Fratanduono, D E; Smith, R F; Galtier, E; Granados, E; Lee, H J; Nagler, B; Nam, I; Xing, Z; McMahon, M I


    Using x-ray diffraction at the Linac Coherent Light Source x-ray free-electron laser, we have determined simultaneously and self-consistently the phase transitions and equation of state (EOS) of the lightest transition metal, scandium, under shock compression. On compression scandium undergoes a structural phase transition between 32 and 35 GPa to the same bcc structure seen at high temperatures at ambient pressures, and then a further transition at 46 GPa to the incommensurate host-guest polymorph found above 21 GPa in static compression at room temperature. Shock melting of the host-guest phase is observed between 53 and 72 GPa with the disappearance of Bragg scattering and the growth of a broad asymmetric diffraction peak from the high-density liquid.

  7. Ellipsometric study of silicon nitride on gallium arsenide

    Alterovitz, S. A.; Bu-Abbud, G. H.; Woollam, J. A.; Liu, D.; Chung, Y.; Langer, D.


    A method for optimizing the sensitivity of ellipsometric measurements for thin dielectric films on semiconductors is described in simple physical terms. The technique is demonstrated for the case of sputtered silicon nitride films on gallium arsenide.

  8. Superlattice Intermediate Band Solar Cell on Gallium Arsenide


    AFRL-RV-PS- AFRL-RV-PS- TR-2015-0048 TR-2015-0048 SUPERLATTICE INTERMEDIATE BAND SOLAR CELL ON GALLIUM ARSENIDE Alexandre Freundlich...SUBTITLE 5a. CONTRACT NUMBER FA9453-13-1-0232 Superlattice Intermediate Band Solar Cell on Gallium Arsenide 5b. GRANT NUMBER 5c. PROGRAM ELEMENT solar cell incorporating low dimensional structures made with dilute nitrogen alloys of III-V semiconductors is investigated theoretically and

  9. Recovery of gallium from coal fly ash by a dual reactive extraction process

    Gutierrez, B.; Pazos, C.; Coca, J. [University of Oviedo, Oviedo (Spain). Dept. of Chemical Engineering and Environmental Technology


    This paper describes the extraction of gallium from coal fly ash by leaching and extraction with commercial extractants Amerlite LA-2 and LIX-54N dissolved in kerosene. Leaching of gallium and other metals from the fly ash was carried out with 6 M hydrochloric acid. The leaching liquor is first contacted with Amerlite LA-2 which extracts the gallium and iron. The iron is then precipitated with sodium hydroxide, while gallium remains in solution. Gallium is extracted selectively from the base solution with LIX 54; the resulting stripped solution contains 83% of the gallium present in the leaching liquor.

  10. Development of methods for the selective separation of scandium, zirconium and tin for radiopharmaceutical applications; Entwicklung von Methoden zur selektiven Trennung von Scandium, Zirkonium und Zinn fuer radiopharmazeutische Anwendungen

    Dirks-Fandrei, Carina


    The subject of the present work is the development of fast and highly selective methods for the separation and purification of scandium, zirconium and tin radionuclides from potential target materials for use in nuclear medicine. A number of selected resins (TrisKem International) were first characterized with respect to their extraction behaviour towards a large number of cations. Characterization studies were performed in batch experiments by determination of weight distribution ratios D{sub w} and further the influence of interferences on the uptake of these elements was evaluated. Weight distribution ratios were determined in different acids and acid concentrations with main focus on scandium, tin or zirconium. The interference of macro amounts of Calcium and Ti on the Sc extraction was evaluated as well as the interference of macro amounts of Y on the Zr extraction. Best suited uptake conditions were found for Scandium on DGA were determined to be 2.5 M HNO{sub 3} for Ti-Targets and 0.1 M HNO{sub 3} for Calcium-Targets. Otherwise it is also possible to extract Sc with TRU Resin. High uptakes were obtained at 2.5 M HNO{sub 3} for simulated Ti- and Calcium-targets. Separation methods were developed using elution studies; employed conditions were chosen according to parameters evaluated in the batch-experiment. The developed methods allowed separating Sc very rapidly in high purity very rapidly from Ti- or Calcium-targets. For Zr a separation method based on UTEVA Resin has been developed. Following results of batch experiments simulated Y-target solution were loaded onto a UTEVA resin column from 6 M HNO{sub 3}; the elution of Zr could be performed in 0.01 M oxalic acid. Decontamination factors in the order of 10{sup 4}-10{sup 5} could be obtained applying the developed method; the method thus allowed separating Zr in a high purity. Initial testing of a method for the separation of Sn from Cd targets based on the use of TBP Resin showed that the TBP resin seems

  11. Cathodoluminescence spectra of gallium nitride nanorods.

    Tsai, Chia-Chang; Li, Guan-Hua; Lin, Yuan-Ting; Chang, Ching-Wen; Wadekar, Paritosh; Chen, Quark Yung-Sung; Rigutti, Lorenzo; Tchernycheva, Maria; Julien, François Henri; Tu, Li-Wei


    Gallium nitride [GaN] nanorods grown on a Si(111) substrate at 720°C via plasma-assisted molecular beam epitaxy were studied by field-emission electron microscopy and cathodoluminescence [CL]. The surface topography and optical properties of the GaN nanorod cluster and single GaN nanorod were measured and discussed. The defect-related CL spectra of GaN nanorods and their dependence on temperature were investigated. The CL spectra along the length of the individual GaN nanorod were also studied. The results reveal that the 3.2-eV peak comes from the structural defect at the interface between the GaN nanorod and Si substrate. The surface state emission of the single GaN nanorod is stronger as the diameter of the GaN nanorod becomes smaller due to an increased surface-to-volume ratio.

  12. Thickness dependent thermal conductivity of gallium nitride

    Ziade, Elbara; Yang, Jia; Brummer, Gordie; Nothern, Denis; Moustakas, Theodore; Schmidt, Aaron J.


    As the size of gallium nitride (GaN) transistors is reduced in order to reach higher operating frequencies, heat dissipation becomes the critical bottleneck in device performance and longevity. Despite the importance of characterizing the physics governing the thermal transport in thin GaN films, the literature is far from conclusive. In this letter, we report measurements of thermal conductivity in a GaN film with thickness ranging from 15-1000 nm grown on 4H-SiC without a transition layer. Additionally, we measure the thermal conductivity in the GaN film when it is 1 μm-thick in the temperature range of 300 < T < 600 K and use a phonon transport model to explain the thermal conductivity in this film.

  13. Inhalation developmental toxicology studies: Gallium arsenide in mice and rats

    Mast, T.J.; Greenspan, B.J.; Dill, J.A.; Stoney, K.H.; Evanoff, J.J.; Rommereim, R.L.


    Gallium arsenide is a crystalline compound used extensively in the semiconductor industry. Workers preparing solar cells and gallium arsenide ingots and wafers are potentially at risk from the inhalation of gallium arsenide dust. The potential for gallium arsenide to cause developmental toxicity was assessed in Sprague- Dawley rats and CD-1 (Swiss) mice exposed to 0, 10, 37, or 75 mg/m{sup 3} gallium arsenide, 6 h/day, 7 days/week. Each of the four treatment groups consisted of 10 virgin females (for comparison), and {approx}30 positively mated rats or {approx}24 positively mated mice. Mice were exposed on 4--17 days of gestation (dg), and rats on 4--19 dg. The day of plug or sperm detection was designated as 0 dg. Body weights were obtained throughout the study period, and uterine and fetal body weights were obtained at sacrifice (rats, 20 dg; mice, 18 dg). Implants were enumerated and their status recorded. Live fetuses were sexed and examined for gross, visceral, skeletal, and soft-tissue craniofacial defects. Gallium and arsenic concentrations were determined in the maternal blood and uterine contents of the rats (3/group) at 7, 14, and 20 dg. 37 refs., 11 figs., 30 tabs.

  14. Handling characteristics of gallium alloy for dental restoration.

    Mash, L K; Miller, B H; Nakajima, H; Collard, S M; Guo, I Y; Okabe, T


    The handling characteristics of a gallium alloy (Gallium Alloy GF) were compared to those of a spherical high-copper amalgam (Tytin). Ten dentists each restored four identical MO preparations in acrylic typodont teeth (no. 30), two with amalgam and two with gallium alloy. Each restoration was evaluated immediately following completion by the operator for six clinically relevant criteria. Each criterion was scored between 1 and 5, where 1 = very poor, 2 = poor, 3 = fair, 4 = good, and 5 = very good. Three two-sided Mann-Whitney tests were used to compare the median scores for significant differences (P < 0.05). The first test indicated no significant difference between scores for the first- and second-placed restorations, within criteria and within alloy type (n = 10). The second test indicated a significant difference between amalgam and gallium alloy, within criteria and within restoration sequence (n = 10), for each criterion except resistance to fracture during removal of the matrix band. The third test indicated a significant difference between amalgam and gallium alloy, within each criteria, combining scores for first- and second-placed restorations (n = 20). During simulated clinical placement, amalgam was rated significantly higher than gallium alloy in each handling characteristic evaluated.

  15. Gallium Nitride Schottky betavoltaic nuclear batteries

    Lu Min, E-mail: [Su zhou Institute of Nano-technology and Nano-bionics, CAS, Su zhou 215125 (China); Zhang Guoguang [China Institute of Atomic Energy, Beijing 102413 (China); Fu Kai; Yu Guohao [Su zhou Institute of Nano-technology and Nano-bionics, CAS, Su zhou 215125 (China); Su Dan; Hu Jifeng [China Institute of Atomic Energy, Beijing 102413 (China)


    Research highlights: {yields} Gallium Nitride nuclear batteries with Ni-63 are demonstrated for the first time. {yields} Open circuit voltage of 0.1 V and conversion efficiency of 0.32% have been obtained. {yields} The limited performance is due to thin effective energy deposition layer. {yields} The output power is expected to greatly increase with growing thick GaN films. -- Abstract: Gallium Nitride (GaN) Schottky betavoltaic nuclear batteries (GNBB) are demonstrated in our work for the first time. GaN films are grown on sapphire substrates by metalorganic chemical vapor deposition (MOCVD), and then GaN Schottky diodes are fabricated by normal micro-fabrication process. Nickel with mass number of 63 ({sup 63}Ni), which emits {beta} particles, is loaded on the GaN Schottky diodes to achieve GNBB. X-ray diffraction (XRD) and photoluminescence (PL) are carried out to investigate the crystal quality for the GaN films as grown. Current-voltage (I-V) characteristics shows that the GaN Schottky diodes are not jet broken down at -200 V due to consummate fabrication processes, and the open circuit voltage of the GNBB is 0.1 V and the short circuit current density is 1.2 nA cm{sup -2}. The limited performance of the GNBB is due to thin effective energy deposition layer, which is only 206 nm to absorb very small partial energy of the {beta} particles because of the relatively high dislocation density and carrier concentration. However, the conversion efficiency of 0.32% and charge collection efficiency (CCE) of 29% for the GNBB have been obtained. Therefore, the output power of the GNBB are expected to greatly increase with growing high quality thick GaN films.

  16. Infrared spectra of oxygen-rich yttrium and lanthanum dioxygen/ozonide complexes in solid argon.

    Gong, Yu; Ding, Chuanfan; Zhou, Mingfei


    The reactions of yttrium and lanthanum atoms with O(2) have been reinvestigated using matrix isolation infrared spectroscopy and theoretical calculations. The ground-state yttrium and lanthanum atoms react with O(2) to produce the inserted yttrium and lanthanum dioxide molecules as the initial products. The yttrium dioxide molecule interacts spontaneously with additional O(2) molecules to form the oxygen-rich OY(eta(2)-O(3)) complex and possibly the (eta(2)-O(2))Y(eta(2)-O(3))(2) complexes upon sample annealing, which can be regarded as the side-on bonded yttrium monoxide ozonide complex and the superoxo yttrium bisozonide complex, respectively. Visible irradiation induces the isomerization of the OY(eta(2)-O(3)) complex to the superoxo yttrium peroxide Y(eta(2)-O(2))(2) isomer, in which both the superoxo and peroxo ligands are side-on bonded to the yttrium center. The lanthanum dioxide molecule reacts with additional O(2) molecules to form the lanthanum dioxide-dioxygen complex with planar C(2v) symmetry, which rearranges to the lanthanum monoxide ozonide complex, OLa(eta(2)-O(3)), under near-infrared excitation.

  17. Effect of Yttrium on High Temperature Oxidation Resistance of a Directionally Solidified Superalloy

    宋立国; 李树索; 郑运荣; 韩雅芳


    The effect of rare earth element yttrium on the high temperature oxidation resistance of a directionally solidified Ni-base superalloy was studied with scanning electron microscopy(SEM), energy dispersive spectrum(EDS)and X-ray diffraction(XRD)techniques. The results show that the oxidation resistance of the alloy is substantially improved by adding proper amount of yttrium.

  18. 40 CFR 721.10177 - Phosphoric acid, yttrium(3+) salt (1:1).


    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Phosphoric acid, yttrium(3+) salt (1:1... Specific Chemical Substances § 721.10177 Phosphoric acid, yttrium(3+) salt (1:1). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as...

  19. Childhood acromegaly successfully treated with interstitial irradiation using Yttrium-90

    Rosenstock, J.; Doyle, F.H.; Mashiter, K.; Joplin, G.F. (Royal Postgraduate Medical School, Hammersmith Hospital, London (UK). Dept. of Medicine and Radiology); Hall, R. (Royal Victoria Infirmary, Newcastle upon Tyne (UK))


    A child with a growth hormone producing tumour presented at the age of 4 1/2 years. The onset of the disease was at 18 months of age. Treatment was given with three doses of interstitial irradiation using Yttrium-90 implants. There were no local complications from the procedures. Now, 11 years after diagnosis, she is asymptomatic, of normal appearance, and her height and the size of the pituitary fossa are normal. Growth hormone levels are almost normal, thyroid function is intact, and she is maintained on prednisone and sex hormones.

  20. Phase composition of yttrium-doped zirconia ceramics

    Hennig, Christoph; Scheinost, Andreas C. [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Molecular Structures; Weiss, Stephan [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Surface Processes; Ikeda-Ohno, Atsushi [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Chemistry of the F-Elements; Gumeniuk, R. [Technische Univ. Bergakademie Freiberg (Germany). Inst. fuer Experimentelle Physik


    Ceramic material might be an alternative to borosilicate glass for the immobilization of nuclear waste. The crystallinity of ceramic material increases the corrosion resistance over several magnitudes in relation to amorphous glasses. The stability of such ceramics depend on several parameters, among them the crystal phase composition. A reliable quantitative phase analysis is necessary to correlate the macroscopic material properties with structure parameters. We performed a feasibility study based on yttrium-doped zirconia ceramics as analogue for trivalent actinides to ascertain that the nanosized crystal phases in zirconia ceramics can be reliably determined.

  1. Spectroscopic properties of trivalent praseodymium in barium yttrium fluoride

    Di Bartolo, B. E-mail:; Bowlby, B.E


    We have conducted a spectroscopic investigation of Pr{sup 3+} in barium yttrium fluoride (BaY{sub 2}O{sub 8}). Two doping concentrations were used: BaY{sub 2}F{sub 8}:Pr{sup 3+} (0.3%) and BaY{sub 2}F{sub 8}:Pr{sup 3+} (1%). The measurements included absorption, luminescence under continuous and pulsed excitations, and thermal effects on some sharp lines. The experimental results were used to characterize this system.

  2. Structure of molten yttrium aluminates: a neutron diffraction study

    Cristiglio, V [Centre de Recherche sur les Materiaux a Haute Temperature, CNRS-CRMHT, 1d avenue de la Recherche Scientifique, 45071 Orleans cedex 2 (France); Hennet, L [Centre de Recherche sur les Materiaux a Haute Temperature, CNRS-CRMHT, 1d avenue de la Recherche Scientifique, 45071 Orleans cedex 2 (France); Cuello, G J [Institut Laue-Langevin, 6 rue Jules Horowitz, BP48 Grenoble cedex 9 (France); Pozdnyakova, I [Centre de Recherche sur les Materiaux a Haute Temperature, CNRS-CRMHT, 1d avenue de la Recherche Scientifique, 45071 Orleans cedex 2 (France); Johnson, M R [Institut Laue-Langevin, 6 rue Jules Horowitz, BP48 Grenoble cedex 9 (France); Fischer, H E [Institut Laue-Langevin, 6 rue Jules Horowitz, BP48 Grenoble cedex 9 (France); Zanghi, D [Centre de Recherche sur les Materiaux a Haute Temperature, CNRS-CRMHT, 1d avenue de la Recherche Scientifique, 45071 Orleans cedex 2 (France); Van, Q Vu [Institute of Mathematical and Physical Sciences, University of Wales, Aberystwyth SY23 3BZ (United Kingdom); Wilding, M C [Institute of Mathematical and Physical Sciences, University of Wales, Aberystwyth SY23 3BZ (United Kingdom); Greaves, G N [Institute of Mathematical and Physical Sciences, University of Wales, Aberystwyth SY23 3BZ (United Kingdom); Price, D L [Centre de Recherche sur les Materiaux a Haute Temperature, CNRS-CRMHT, 1d avenue de la Recherche Scientifique, 45071 Orleans cedex 2 (France)


    We used the aerodynamic levitation technique combined with CO{sub 2} laser heating to study the structure of liquid yttrium aluminates above their melting point with neutron diffraction. For various yttria contents, we determined the structure factors and corresponding pair correlation functions describing the short-range order in the liquids. In particular, we derived Al-O and Y-O bond distances and coordination numbers. Experimental data are compared with ab initio molecular dynamics, carried out using the VASP code where the interatomic forces are obtained from density functional theory. In particular, partial pair correlation functions have been calculated and are in relatively good agreement with the experimental observations.

  3. Treatment of exhaust fluorescent lamps to recover yttrium: experimental and process analyses.

    De Michelis, Ida; Ferella, Francesco; Varelli, Ennio Fioravante; Vegliò, Francesco


    The paper deals with recovery of yttrium from fluorescent powder coming from dismantling of spent fluorescent tubes. Metals are leached by using different acids (nitric, hydrochloric and sulphuric) and ammonia in different leaching tests. These tests show that ammonia is not suitable to recover yttrium, whereas HNO(3) produces toxic vapours. A full factorial design is carried out with HCl and H(2)SO(4) to evaluate the influence of operating factors. HCl and H(2)SO(4) leaching systems give similar results in terms of yttrium extraction yield, but the last one allows to reduce calcium extraction with subsequent advantage during recovery of yttrium compounds in the downstream. The greatest extraction of yttrium is obtained by 20% w/v S/L ratio, 4N H(2)SO(4) concentration and 90°C. Yttrium and calcium yields are nearly 85% and 5%, respectively. The analysis of variance shows that acid concentration alone and interaction between acid and pulp density have a significant positive effect on yttrium solubilization for both HCl and H(2)SO(4) medium. Two models are empirically developed to estimate yttrium and calcium concentration during leaching. Precipitation tests demonstrate that at least the stoichiometric amount of oxalic acid is necessary to recover yttrium efficiently and a pure yttrium oxalate n-hydrate can be produced (99% grade). The process is economically feasible if other components of the fluorescent lamps (glass, ferrous and non-ferrous scraps) are recovered after the equipment dismantling and valorized, besides the cost that is usually paid to recycling companies for collection, treatment or final disposal of such fluorescent powders.

  4. Role of Gallium and labeled leukocyte scintigraphy in AIDS patient

    Palestro, C.J. [Division of nuclear medicine, Long Island Jewish Medical Center, New Hyde Park, New York (United States); Goldsmith, S.J. [Division of nuclear medicine, New York Hospital, Cornell Medical Center, New York (United States)


    Because AIDS patients frequently present with minimal symptomatology, radionuclide imaging with its ability to survey the entire body, is especially valuable. Gallium-67 citrate, the most commonly performed radionuclide study for localizing infection in these patients, is most useful for detecting opportunistic infections, especially in the thorax. A negative gallium scan, particularly when the chest X-ray is unremarkable, rules strongly against pulmonary disease. A negative gallium scan in a patient with an abnormal chest X-ray and Kaposi`s sarcoma, suggests that the patient`s respiratory distress is related to the neoplasm. Diffuse pulmonary parenchymal uptake of gallium in the HIV (+) patient is most often associated with PCP. While there are other causes of diffuse pulmonary uptake, the more intense or heterogeneous the uptake, the more likely the patient is to have PCP. Focal pulmonary uptake is usually associated with bacterial pneumonia although PCP may occasionally present in this fashion. Lymph node uptake of gallium is usually associated with Mycob acterium avium complex, tuberculosis, or Iymphoma. When corresponding abnormalities are present on thallium scintigraphy lymphoma is likely. Gallium positive, thallium negative, studies suggest mycobacterial disease. Labeled leukocyte imaging is not useful for detecting opportunistic infections probably because of the inflammatory response incited by these organisms. Leukocyte imaging is, however, more sensitive for detecting bacterial pneumonia. In the abdomen, gallium imaging is most useful for identifying lymphadenopathy, while labeled leukocyte imaging is superior for detecting AlDS-associated colitides. In summary, radionuclide studies are valuable diagnostic modalities in AIDS. Their success can be maximized by tailoring the study to the individual`s needs.

  5. Application of ultrasound in solvent extraction of nickel and gallium

    Pesic, B.


    The effects of ultrasound on the rate of solvent extraction of nickel with Lix 65N and Lix 70, and gallium with Kelex 100 were investigated. These solvent extraction systems are noted by their sluggish nature. Low frequency (20 kHz) ultrasound increased the rates of extraction of nickel by factors of four to seven. The ultrasound had no effect on the final chemical equilibrium. Gallium extraction rates were enhanced with the use of ultrasound by as much as a factor of 15. Again, the ultrasound had no effect on extraction equilibrium. For both nickel and gallium, the enhanced rates were attributed to increased interfacial surface area associated with ultrasonically induced cavitation and microdroplet formation. The stability of the microdroplets permitted intermittent application of ultrasound with corresponding decreases in ultrasonic energy requirements. The lowest energy consumption was observed with short (0.25 to 5 s) bursts of high power (41 to 61 W) ultrasonic inputs. The study also provided insight into the factors that affect the complex extraction of gallium from sodium aluminate solutions. The rate controlling step was found to be the dehydration of the gallate ion, Ga(OH)4, and the first complex formation between gallium and Kelex 100. Sodium was found to enhance the extraction rate up to a point, beyond which increased concentration was detrimental. Increasing aluminum concentration was found to slow extraction rates. Modifiers and diluents were shown to markedly affect extraction rates even without ultrasound. Ketone modifiers, particularly 2-undecanone, when used with Kermac 470B or Escaid 200 diluents enhanced extraction rates of gallium to the point that the use of ultrasound provided no additional benefits. The positive effects of ketone modifiers for the solvent extraction of gallium had not been previously reported.

  6. Gallium a unique anti-resorptive agent in bone: Preclinical studies on its mechanisms of action

    Bockman, R.; Adelman, R.; Donnelly, R.; Brody, L.; Warrell, R. (Hospital for Special Surgery, New York, NY (USA)); Jones, K.W. (Brookhaven National Lab., Upton, NY (USA))


    The discovery of gallium as a new and unique agent for the treatment of metabolic bone disorders was in part fortuitous. Gallium is an exciting new therapeutic agent for the treatment of pathologic states characterized by accelerated bone resorption. Compared to other therapeutic metal compounds containing platinum or germanium, gallium affects its antiresorptive action without any evidence of a cytotoxic effect on bone cells. Gallium is unique amongst all therapeutically available antiresorptive agents in that it favors bone formation. 18 refs., 1 fig.

  7. Yttrium oxide based three dimensional metamaterials for visible light cloaking

    Rai, Pratyush; Kumar, Prashanth S.; Varadan, Vijay K.; Ruffin, Paul; Brantley, Christina; Edwards, Eugene


    Metamaterial with negative refractive index is the key phenomenon behind the concept of a cloaking device to hide an object from light in visible spectrum. Metamaterials made of two and three dimensional lattices of periodically placed electromagnetic resonant cells can achieve absorption and propagation of incident electromagnetic radiation as confined electromagnetic fields confined to a waveguide as surface plasmon polaritons, which can be used for shielding an object from in-tune electromagnetic radiation. The periodicity and dimensions of resonant cavity determine the frequency, which are very small as compared to the wavelength of incident light. Till now the phenomena have been demonstrated only for lights in near infrared spectrum. Recent advancements in fabrication techniques have made it possible to fabricate array of three dimensional nanostructures with cross-sections as small as 25 nm that are required for negative refractive index for wavelengths in visible light spectrum of 400-700 nm and for wider view angle. Two types of metamaterial designs, three dimensional concentric split ring and fishnet, are considered. Three dimensional structures consisted of metal-dielectric-metal stacks. The metal is silver and dielectric is yttrium oxide, other than conventional materials such as FR4 and Duroid. High κ dielectric and high refractive index as well as large crystal symmetry of Yttrium oxide has been investigated as encapsulating medium. Dependence of refractive index on wavelength and bandwidth of negative refractive index region are analyzed for application towards cloaking from light in visible spectrum.

  8. Theoretical investigation on homoleptic Yttrium tri-guanidinates

    Salima Lakehal


    Full Text Available The electronic and molecular structures of the homoleptic Yttrium tris-guanidinates complexes Y[(NiPr2CNR1R2]3, [R1 = R2 = Me, Et and iPr] have been investigated employing DFT calculations in order to understand the structures, bonding and energies of the interactions between Yttrium metal and guanidinate ligands. The effect of the substitution on nitrogen position of guanidinate in these complexes has been also investigated employing DFT and TDDFT calculations for six kinds of models obtained by alternative substitution of alkyl on nitrogen of the guanidinate ligands. The results reveal that the substitution position plays a crucial role in the geometric structure by affecting the torsion angle and the HOMO–LUMO transitions. The energy decomposition analysis indicates a majority of ionic bonding in all systems; the exception is in the M4 (Y[(NYR2CNCR1R2]3; R = Et and R1 = R2 = H which present a significant degree of covalency.

  9. Gallium based low-interaction anions

    King, Wayne A.; Kubas, Gregory J.


    The present invention provides: a composition of the formula M.sup.+x (Ga(Y).sub.4.sup.-).sub.x where M is a metal selected from the group consisting of lithium, sodium, potassium, cesium, calcium, strontium, thallium, and silver, x is an integer selected from the group consisting of 1 or 2, each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide; a composition of the formula (R).sub.x Q.sup.+ Ga(Y).sub.4.sup.- where Q is selected from the group consisting of carbon, nitrogen, sulfur, phosphorus and oxygen, each R is a ligand selected from the group consisting of alkyl, aryl, and hydrogen, x is an integer selected from the group consisting of 3 and 4 depending upon Q, and each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide; an ionic polymerization catalyst composition including an active cationic portion and a gallium based weakly coordinating anion; and bridged anion species of the formula M.sup.+x.sub.y [X(Ga(Y.sub.3).sub.z ].sup.-y.sub.x where M is a metal selected from the group consisting of lithium, sodium, potassium, magnesium, cesium, calcium, strontium, thallium, and silver, x is an integer selected from the group consisting of 1 or 2, X is a bridging group between two gallium atoms, y is an integer selected from the group consisting 1 and 2, z is an integer of at least 2, each Y is a ligand selected from the group consisting of aryl, alkyl, hydride and halide with the proviso that at least one Y is a ligand selected from the group consisting of aryl, alkyl and halide.

  10. Effect of scandium addition on the microstructure, mechanical and wear properties of the spray formed hypereutectic aluminum–silicon alloys

    Raghukiran, Nadimpalli; Kumar, Ravi, E-mail:


    Hypereutectic Al–x%Si–0.8Sc alloys (x=13, 16, 19 and 22 wt%) were produced by spray forming. The microstructures of all the alloys exhibited very fine silicon phase with average size of about 5–10 µm irrespective of the silicon content of the alloy. Transmission electron microscopy revealed the presence of a nano-scale scandium rich phase, identified as AlSi{sub 2}Sc{sub 2} (V-phase) uniformly distributed in the alloy. The presence of V-phase resulted in higher matrix hardness (1.34 GPa) in contrast to 1.04 GPa observed in the case of binary Al–Si alloys by nanoindentation. Isothermal heat treatment at 375 °C revealed insignificant coarsening of silicon phase in both binary and ternary alloys. The Al–x%Si–0.8Sc alloys exhibited higher flow stress and tensile strength in contrast to their binary alloy counterparts which was attributed to the bi-modal size distribution of the strengthening phases in the form of nano-scale V-phase and sub-micron to 10 µm size silicon particles. The pin-on-disk wear tests exhibited appreciable improvement in the wear performance of the relatively low-silicon content ternary alloys over their binary counterparts while the high-silicon content binary and ternary alloys exhibited no much difference in the wear performance.

  11. Gallium nitrate inhibits alkaline phosphatase activity in a differentiating mesenchymal cell culture.

    Boskey, A L; Ziecheck, W; Guidon, P; Doty, S B


    The effect of gallium nitrate on alkaline phosphatase activity in a differentiating chick limb-bud mesenchymal cell culture was monitored in order to gain insight into the observation that rachitic rats treated with gallium nitrate failed to show the expected increase in serum alkaline phosphatase activity. Cultures maintained in media containing 15 microM gallium nitrate showed drastically decreased alkaline phosphatase activities in the absence of significant alterations in total protein synthesis and DNA content. However, addition of 15 microM gallium nitrate to cultures 18 h before assay for alkaline phosphatase activity had little effect. At the light microscopic and electron microscopic level, gallium-treated cultures differed morphologically from gallium-free cultures: with gallium present, there were fewer hypertrophic chondrocytes and cartilage nodules were flatter and further apart. Because of altered morphology, staining with an antibody against chick cartilage alkaline phosphatase appeared less extensive; however, all nodules stained equivalently relative to gallium-free controls. Histochemical staining for alkaline phosphatase activity was negative in gallium-treated cultures, demonstrating that the alkaline phosphatase protein present was not active. The defective alkaline phosphatase activity in cultures maintained in the presence of gallium was also evidenced when cultures were supplemented with the alkaline phosphatase substrate, beta-glycerophosphate (beta GP). The data presented suggest that gallium inhibits alkaline phosphatase activity in this culture system and that gallium causes alterations in the differentiation of mesenchymal cells into hypertrophic chondrocytes.

  12. Imaging Gallium Nitride High Electron Mobility Transistors to Identify Point Defects


    REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE IMAGING GALLIUM NITRIDE HIGH ELECTRON MOBILITY TRANSISTORS TO IDENTIFY...Identification of these trends will assist in the improvement of gallium nitride HEMT fabrication processes leading to the development of more...reliable devices. 14. SUBJECT TERMS Electron microscopy, Gallium Nitride (GaN), high electron mobility transistor (HEMT

  13. Gallium scintigraphy in a case of septic cavernous sinus thrombosis

    Palestro, C.J.; Malat, J.; Gladstone, A.G.; Richman, A.H.


    Septic cavernous sinus thrombosis, a relatively uncommon disease entity, frequently can be fatal. Early diagnosis is imperative in order that appropriate treatment be instituted. A 59-year-old woman who was admitted to our institution with complaints of diplopia, blurred vision and fevers that developed following a tooth extraction is presented. Initial CT and lumbar puncture on the day of admission were totally normal. A repeat CT performed 48 hours after admission, on the same day as gallium imaging, demonstrated findings consistent with cavernous sinus thrombosis. Gallium imaging demonstrated intense uptake in the left cavernous sinus and left orbit as well as moderately increased activity in the right cavernous sinus and orbit, confirming infection. The patient was treated with antibiotics, and repeat CT and gallium imaging were performed ten days later, both of which demonstrated near total resolution of the disease process. Conceivably, if gallium imaging had been initiated on the day of admission it may have been the first study to demonstrate an infectious process in the cavernous sinus. Gallium imaging should be considered as a diagnostic tool in the noninvasive workup of this entity.

  14. Recovery of yttrium from cathode ray tubes and lamps' fluorescent powders: experimental results and economic simulation.

    Innocenzi, V; De Michelis, I; Ferella, F; Vegliò, F


    In this paper, yttrium recovery from fluorescent powder of lamps and cathode ray tubes (CRTs) is described. The process for treating these materials includes the following: (a) acid leaching, (b) purification of the leach liquors using sodium hydroxide and sodium sulfide, (c) precipitation of yttrium using oxalic acid, and (d) calcinations of oxalates for production of yttrium oxides. Experimental results have shown that process conditions necessary to purify the solutions and recover yttrium strongly depend on composition of the leach liquor, in other words, whether the powder comes from treatment of CRTs or lamp. In the optimal experimental conditions, the recoveries of yttrium oxide are about 95%, 55%, and 65% for CRT, lamps, and CRT/lamp mixture (called MIX) powders, respectively. The lower yields obtained during treatments of MIX and lamp powders are probably due to the co-precipitation of yttrium together with other metals contained in the lamps powder only. Yttrium loss can be reduced to minimum changing the experimental conditions with respect to the case of the CRT process. In any case, the purity of final products from CRT, lamps, and MIX is greater than 95%. Moreover, the possibility to treat simultaneously both CRT and lamp powders is very important and interesting from an industrial point of view since it could be possible to run a single plant treating fluorescent powder coming from two different electronic wastes.

  15. Native gallium adatoms discovered on atomically-smooth gallium nitride surfaces at low temperature.

    Alam, Khan; Foley, Andrew; Smith, Arthur R


    In advanced compound semiconductor devices, such as in quantum dot and quantum well systems, detailed atomic configurations at the growth surfaces are vital in determining the structural and electronic properties. Therefore, it is important to investigate the surface reconstructions in order to make further technological advancements. Usually, conventional semiconductor surfaces (e.g., arsenides, phosphides, and antimonides) are highly reactive due to the existence of a high density of group V (anion) surface dangling bonds. However, in the case of nitrides, group III rich growth conditions in molecular beam epitaxy are usually preferred leading to group III (Ga)-rich surfaces. Here, we use low-temperature scanning tunneling microscopy to reveal a uniform distribution of native gallium adatoms with a density of 0.3%-0.5% of a monolayer on the clean, as-grown surface of nitrogen polar GaN(0001̅) having the centered 6 × 12 reconstruction. Unseen at room temperature, these Ga adatoms are strongly bound to the surface but move with an extremely low surface diffusion barrier and a high density saturation coverage in thermodynamic equilibrium with Ga droplets. Furthermore, the Ga adatoms reveal an intrinsic surface chirality and an asymmetric site occupation. These observations can have important impacts in the understanding of gallium nitride surfaces.

  16. Recovery of yttrium from fluorescent powder of cathode ray tube, CRT: Zn removal by sulphide precipitation.

    Innocenzi, Valentina; De Michelis, Ida; Ferella, Francesco; Beolchini, Francesca; Kopacek, Bernd; Vegliò, Francesco


    This work is focused on the recovery of yttrium and zinc from fluorescent powder of cathode ray tube (CRT). Metals are extracted by sulphuric acid in the presence of hydrogen peroxide. Leaching tests are carried out according to a 2(2) full factorial plan and the highest extraction yields for yttrium and zinc equal to 100% are observed under the following conditions: 3M of sulphuric acid, 10% v/v of H2O2 concentrated solution at 30% v/v, 10% w/w pulp density, 70°C and 3h of reaction. Two series of precipitation tests for zinc are carried out: a 2(2) full factorial design and a completely randomized factorial design. In these series the factors investigated are pH of solution during the precipitation and the amount of sodium sulphide added to precipitate zinc sulphide. The data of these tests are used to describe two empirical mathematical models for zinc and yttrium precipitation yields by regression analysis. The highest precipitation yields for zinc are obtained under the following conditions: pH equal to 2-2.5% and 10-12%v/v of Na2S concentrated solution at 10%w/v. In these conditions the coprecipitation of yttrium is of 15-20%. Finally further yttrium precipitation experiments by oxalic acid on the residual solutions, after removing of zinc, show that yttrium could be recovered and calcined to obtain the final product as yttrium oxide. The achieved results allow to propose a CRT recycling process based on leaching of fluorescent powder from cathode ray tube and recovery of yttrium oxide after removing of zinc by precipitation. The final recovery of yttrium is 75-80%.

  17. Gallium nitride based logpile photonic crystals.

    Subramania, Ganapathi; Li, Qiming; Lee, Yun-Ju; Figiel, Jeffrey J; Wang, George T; Fischer, Arthur J


    We demonstrate a nine-layer logpile three-dimensional photonic crystal (3DPC) composed of single crystalline gallium nitride (GaN) nanorods, ∼100 nm in size with lattice constants of 260, 280, and 300 nm with photonic band gap in the visible region. This unique GaN structure is created through a combined approach of a layer-by-layer template fabrication technique and selective metal organic chemical vapor deposition (MOCVD). These GaN 3DPC exhibit a stacking direction band gap characterized by strong optical reflectance between 380 and 500 nm. By introducing a "line-defect" cavity in the fifth (middle) layer of the 3DPC, a localized transmission mode with a quality factor of 25-30 is also observed within the photonic band gap. The realization of a group III nitride 3DPC with uniform features and a band gap at wavelengths in the visible region is an important step toward realizing complete control of the electromagnetic environment for group III nitride based optoelectronic devices.

  18. Investigation on gallium ions impacting monolayer graphene

    Xin Wu


    Full Text Available In this paper, the physical phenomena of gallium (Ga+ ion impacting monolayer graphene in the nanosculpting process are investigated experimentally, and the mechanisms are explained by using Monte Carlo (MC and molecular dynamics (MD simulations. Firstly, the MC method is employed to clarify the phenomena happened to the monolayer graphene target under Ga+ ion irradiation. It is found that substrate has strong influence on the damage mode of graphene. The mean sputtering yield of graphene under 30 keV Ga+ ion irradiation is 1.77 and the least ion dose to completely remove carbon atoms in graphene is 21.6 ion/nm2. Afterwards, the focused ion beam over 21.6 ion/nm2 is used for the irradiation on a monolayer graphene supported by SiO2 experimentally, resulting in the nanostructures, i.e., nanodot and nanowire array on the graphene. The performances of the nanostructures are characterized by atomic force microscopy and Raman spectrum. A plasma plume shielding model is put forward to explain the nanosculpting results of graphene under different irradiation parameters. In addition, two damage mechanisms are found existing in the fabrication process of the nanostructures by using empirical MD simulations. The results can help us open the possibilities for better control of nanocarbon devices.

  19. Investigation on gallium ions impacting monolayer graphene

    Wu, Xin; Zhao, Haiyan, E-mail:; Yan, Dong; Pei, Jiayun [State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, P. R. Chinaand Department of Mechanical Engineering, Tsinghua University, Beijing 100084 (China)


    In this paper, the physical phenomena of gallium (Ga{sup +}) ion impacting monolayer graphene in the nanosculpting process are investigated experimentally, and the mechanisms are explained by using Monte Carlo (MC) and molecular dynamics (MD) simulations. Firstly, the MC method is employed to clarify the phenomena happened to the monolayer graphene target under Ga{sup +} ion irradiation. It is found that substrate has strong influence on the damage mode of graphene. The mean sputtering yield of graphene under 30 keV Ga{sup +} ion irradiation is 1.77 and the least ion dose to completely remove carbon atoms in graphene is 21.6 ion/nm{sup 2}. Afterwards, the focused ion beam over 21.6 ion/nm{sup 2} is used for the irradiation on a monolayer graphene supported by SiO2 experimentally, resulting in the nanostructures, i.e., nanodot and nanowire array on the graphene. The performances of the nanostructures are characterized by atomic force microscopy and Raman spectrum. A plasma plume shielding model is put forward to explain the nanosculpting results of graphene under different irradiation parameters. In addition, two damage mechanisms are found existing in the fabrication process of the nanostructures by using empirical MD simulations. The results can help us open the possibilities for better control of nanocarbon devices.

  20. Potential for photocatalytic degradation of the potassic diclofenac using scandium and silver modified titanium dioxide thin films; Potencial de degradacao fotocatalitica do diclofenaco potassico utilizando filmes finos de dioxido de titanio modificado com escandio e prata

    Ciola, R.A.; Oliveira, C.T.; Lopes, S.A.; Cavalheiro, A.A., E-mail: [Universidade Estadual de Mato Grosso do Sul (UFMS), Navirai, MS (Brazil). Centro de Pesquisas Tecnologicas em Recursos Naturais


    The potential for photocatalytic degradation of the potassic diclofenac drug was investigated using titanium dioxide thin films modified with two modifier types, scandium and silver, both prepared by Sol-Gel method. It was demonstrated by UVVis spectroscopy analysis of the solutions containing the drug, under UV-A light irradiation that the degradation efficiency of the titanium dioxide photocatalyst is dependent of the semiconductor nature and that the scandium accelerates the first step of the degradation when compared to the silver. This result seems to be related to the redox potential of the electron-hole pair, once the scandium modifying sample generates a p type semiconductor that reduces the band gap. The extra holes attract more strongly the chorine ion present in diclofenac and leading to the releasing more easily. However, after the first byproducts degradation the following steps are not facilitated, making the silver modifying more advantageous. (author)

  1. Development of yttrium alloy ion source and its application in nanofabrication

    Kukharchyk, Nadezhda [Angewandte Festkoerperphysik, Ruhr-Universitaet Bochum, Bochum (Germany); Experimentalphysik, Universitaet des Saarlandes, Saarbruecken (Germany); Neumann, Ronna; Mazarov, Swetlana; Wieck, Andreas D. [Angewandte Festkoerperphysik, Ruhr-Universitaet Bochum, Bochum (Germany); Bushev, Pavel [Experimentalphysik, Universitaet des Saarlandes, Saarbruecken (Germany); Mazarov, Paul [Raith GmbH, Dortmund (Germany)


    We present a new YAuSi Liquid Metal Alloy Ion Source (LMAIS) generating focused ion beams of yttrium ions, and its prospective applications for nanofabrication, sample preparation, lithographic and implantation processes. Working parameters of the AuSiY LMAIS are similar to other gold-silicon based LMAIS. We found anomalously high emission current of triple charged yttrium ions. Influence of yttrium implantation on optical qualities of the implanted ion-ensembles is shown in luminescence of co-implanted Erbium ions. (orig.)

  2. Development of yttrium alloy ion source and its application in nanofabrication

    Kukharchyk, Nadezhda; Neumann, Ronna; Mazarov, Swetlana; Bushev, Pavel; Wieck, Andreas D.; Mazarov, Paul


    We present a new YAuSi Liquid Metal Alloy Ion Source (LMAIS) generating focused ion beams of yttrium ions, and its prospective applications for nanofabrication, sample preparation, lithographic and implantation processes. Working parameters of the AuSiY LMAIS are similar to other gold-silicon based LMAIS. We found anomalously high emission current of triple charged yttrium ions. Influence of yttrium implantation on optical qualities of the implanted ion-ensembles is shown in luminescence of co-implanted Erbium ions.

  3. Development of Yttrium alloy ion source and its application in nanofabrication

    Kukharchyk, Nadezhda; Mazarov, Swetlana; Bushev, Pavel; Wieck, Andreas; Mazarov, Paul


    We present a new YAuSi Liquid Metal Alloy Ion Source (LMAIS), generating focused ion beams of yttrium ions, and its prospective applications for nanofabrication, sample preparation, lithographic and implantation processes. Working parameters of the AuSiY LMAIS are similar to other gold-silicon based LMAIS. We found anomalously high emission current of triple charged Yttrium ions. Influence of Yttrium implantation on optical qualities of the implanted ion-ensembles is shown in luminescence of co-implanted Erbium ions.

  4. Hot Corrosion Behavior of Sputtered Nanocrystalline Coating with Yttrium Addition at 900 °C

    Wei Jiang


    Full Text Available The high temperature corrosion behavior of sputtered nanocrystalline K38 coating with and without yttrium addition under mixed molten salt film in air was investigated. Accelerated corrosion occurred on the coating without yttrium (Y addition locally after 60 h exposure at 900 °C, which resulted in negative weight gain in kinetics. A uniform and protective alumina scale formed on surface of the coating containing yttrium in comparison. Y enriched particle as corrosion product was observed on the top of alumina scale. The results indicated the beneficial influence of Y on the chemical stability of the protective scale in the presence of chloride. The mechanism was discussed.

  5. Transport of yttrium metal ions through fibers supported liquid membrane solvent extraction

    A.G.Gaikwad; A.M.Rajput


    A novel idea of transport of yttrium(Ⅲ) metal ions through fibers supported liquid membrane in two stage processes namely source to membrane and membrane to receiving phase has been proposed.The fibers supported liquid membrane was impregnated with different concentrations carrier.The experimental variables explored were concentration of yttrium(Ⅲ) ions,pH of source phase,PC-88A concentration in membrane phase,acid concentration in receiving phase and stirring speed.The pre-concentration of yttrium(Ⅲ) ions ...

  6. Synthesis and Characterization of Yttrium Doped Nano-zirconia by a Cationic Surfactant-assisted Route

    YU Jian-Chang; HU Shen-Wei


    Recently, more and more interest has been focused on zirconia for its unique characteristics. In this paper, via the preceding preparation technique, yttrium can be successfully incorporated into nano-zirconia by a cationic surfactant-assisted route. The methods of XRD, TEM, EDS, Uv-vis and N2 adsorption-desorption are adopted to characterize the synthesized samples. The results show that the yttrium has been successfully incorporated into the zirconia lattice, and the thermal stability of yttrium doped zirconia has been enhanced remarkably.

  7. Sol-Gel Synthesis and Antioxidant Properties of Yttrium Oxide Nanocrystallites Incorporating P-123

    Rebeca Mellado-Vázquez; Margarita García-Hernández; Arturo López-Marure; Perla Yolanda López-Camacho; Ángel de Jesús Morales-Ramírez; Hiram Isaac Beltrán-Conde


    Yttrium oxide (Y2O3) nanocrystallites were synthesized by mean of a sol-gel method using two different precursors. Raw materials used were yttrium nitrate and yttrium chloride, in methanol. In order to promote oxygen vacancies, P-123 poloxamer was incorporated. Synthesized systems were heat-treated at temperatures from 700 °C to 900 °C. Systems at 900 °C were prepared in the presence and absence of P-123 using different molar ratios (P-123:Y = 1:1 and 2:1). Fourier transform infrared spectros...

  8. Antibacterial effect of gallium and silver on Pseudomonas aeruginosa treated with gallium-silver-phosphate-based glasses.

    Valappil, Sabeel P; Higham, Susan M


    Gallium and silver incorporated phosphate-based glasses were evaluated for antibacterial effect on the growth of Pseudomonas aeruginosa, which is a leading cause of opportunistic infections. The glasses were produced by conventional melt quenching methods at 1100°C for 1 h. Glass degradation studies were conducted by weight loss method. Disc diffusion assay and cell viability assay displayed statistically significant (p ≤ 0.0005) effect on P. aeruginosa growth which increased with decreasing calcium content in the glasses. The gallium ion release rates (1.83, 0.69 and 0.48 ppm·h(-1)) and silver ion release rates (2.97, 2.84 and 2.47 ppm·h(-1)) were found to account for this variation. Constant depth film fermentor was used to evaluate the anti-biofilm properties of the glasses. Both gallium and silver in the glass contributed to biofilm growth inhibitory effect on P. aeruginosa (up to 2.68 reduction in log 10 values of the viable counts compared with controls). The glasses were found to deliver gallium and silver in a controlled way and exerted cumulative antibacterial action on planktonic and biofilm growth of P. aeruginosa. The antibacterial, especially anti-biofilm, properties of the gallium and silver incorporated phosphate-based glasses make them a potential candidate to combat infections caused by P. aeruginosa.

  9. Spectrofluorimetric determination of gallium with calon-carboxylic acid


    A simple and sensitive spectrofluorimetric procedure for the analysis of microquantities of gallium in alloy wasdescribed. The method is based on the formation of Ga(Ⅲ)-CCA (calon-carboxylic acid) complex. The emission of thefluorescent complex was measured at λ = 620 nm with excitation at λ = 584 nm. A good linearity was found in the galliumrange of 0.7-280 ng/mL. The precision of the method is good and the relative standard deviation is 1.9% for a gallium stan-dard solution of 70 ng/mL. The procedure was proved to be suitable in terms of accuracy and selectivity for the mi-croamount of gallium in alloy.

  10. Photoconductive Properties of Brush Plated Copper Indium Gallium Selenide Films

    N. P. Subiramaniyam


    Full Text Available Copper indium gallium selenide (CIGS films were deposited for the first time by the brush electrodeposition technique. X-ray diffraction studies indicated the formation of single phase chalcopyrite CIGS. Lattice parameters, dislocation density, and strain were calculated. Band gap of the films increased from 1.12 eV to 1.63 eV as the gallium concentration increased. Room temperature transport parameters of the films, namely, resistivity increased from 0.10 ohm cm to 12 ohm cm, mobility decreased from 125 cm2V−1s−1 to 20.9 cm2V−1s−1, and carrier concentration decreased from 4.99 × 1017 cm−3 to 2.49 × 1016 cm−3 as the gallium concentration increased. Photosensitivity of the films increased linearly with intensity of illumination and with increase of applied voltage.

  11. Gallium scintigraphy in Hansen's disease

    Braga, F.J.H.N. (Hopital Henri-Mondor, 75 - Paris (France). Service de Biophysique de Medecine Nucleaire Sao Paulo Univ., SP (Brazil). Centro de Medicina Nuclear); Araejo, E.B.; Camargo, E.E. (Sao Paulo Univ., SP (Brazil). Centro de Medicina Nuclear); Tedesco-Marchesi, L.C.M.; Rivitti, M.C.M. (Sao Paulo Univ., SP (Brazil). Servicio de Dermatologia); Bouladour, H.; Galle, P. (Hopital Henri-Mondor, 75 - Paris (France). Service de Biophysique de Medecine Nucleaire)


    Gallium 67 imaging was used in 12 patients with documented Hansen's disease undergoing treatment or not in an attempt to determine the pattern of the disease. Diagnosis was confirmed by histopathology in all patients. The Mitsuda reaction was seen in all patients. Specific nuclear studies were performed when needed to evaluate particular organs better. Gallium 67 images show homogeneous, diffuse and moderate accumulation over the entire skin surface (except for the face) of untreated patients with multibacillary disease. The face skin in these cases presented homogeneous, diffuse but very marked uptake of gallium. Internal organ involvement was variable. There was a very good correlation among clinical, scintigraphical, immunological and histopathological data. The pattern of the body skin ('skin outlining') and face skin ('beard distribution') may be distinct for untreated patients with multibacillary leprosy. (orig.).

  12. Extremely-efficient, miniaturized, long-lived alpha-voltaic power source using liquid gallium

    Snyder, G. Jeffrey (Inventor); Patel, Jagdishbhai (Inventor); Fleurial, Jean-Pierre (Inventor)


    A power source converts .alpha.-particle energy to electricity for use in electrical systems. Liquid gallium or other liquid medium is subjected to .alpha.-particle emissions. Electrons are freed by collision from neutral gallium atoms to provide gallium ions. The electrons migrate to a cathode while the gallium ions migrate to an anode. A current and/or voltage difference then arises between the cathode and anode because of the work function difference of the cathode and anode. Gallium atoms are regenerated by the receiving of electrons from the anode enabling the generation of additional electrons from additional .alpha.-particle collisions.

  13. Antibacterial and antibiofilm properties of yttrium fluoride nanoparticles

    Lellouche J


    Full Text Available Jonathan Lellouche,1,2 Alexandra Friedman,2 Aharon Gedanken,2 Ehud Banin11Biofilm Research Laboratory, The Mina and Everard Goodman Faculty of Life Sciences, 2Kanbar Laboratory for Nanomaterials, Department of Chemistry, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, IsraelAbstract: Antibiotic resistance has prompted the search for new agents that can inhibit bacterial growth. Moreover, colonization of abiotic surfaces by microorganisms and the formation of biofilms is a major cause of infections associated with medical implants, resulting in prolonged hospitalization periods and patient mortality. In this study we describe a water-based synthesis of yttrium fluoride (YF3 nanoparticles (NPs using sonochemistry. The sonochemical irradiation of an aqueous solution of yttrium (III acetate tetrahydrate [Y(Ac3 • (H2O4], containing acidic HF as the fluorine ion source, yielded nanocrystalline needle-shaped YF3 particles. The obtained NPs were characterized by scanning electron microscopy and X-ray elemental analysis. NP crystallinity was confirmed by electron and powder X-ray diffractions. YF3 NPs showed antibacterial properties against two common bacterial pathogens (Escherichia coli and Staphylococcus aureus at a µg/mL range. We were also able to demonstrate that antimicrobial activity was dependent on NP size. In addition, catheters were surface modified with YF3 NPs using a one-step synthesis and coating process. The coating procedure yielded a homogeneous YF3 NP layer on the catheter, as analyzed by scanning electron microscopy and energy dispersive spectroscopy. These YF3 NP-modified catheters were investigated for their ability to restrict bacterial biofilm formation. The YF3 NP-coated catheters were able to significantly reduce bacterial colonization compared to the uncoated surface. Taken together, our results highlight the potential to further develop the concept of utilizing these metal fluoride NPs

  14. Photoconductive Properties of Brush Plated Copper Indium Gallium Selenide Films

    Subiramaniyam, N. P.; P. Thirunavukkarasu; Murali, K. R.


    Copper indium gallium selenide (CIGS) films were deposited for the first time by the brush electrodeposition technique. X-ray diffraction studies indicated the formation of single phase chalcopyrite CIGS. Lattice parameters, dislocation density, and strain were calculated. Band gap of the films increased from 1.12 eV to 1.63 eV as the gallium concentration increased. Room temperature transport parameters of the films, namely, resistivity increased from 0.10 ohm cm to 12 ohm cm, mobility decre...

  15. Neutron detection using boron gallium nitride semiconductor material

    Katsuhiro Atsumi; Yoku Inoue; Hidenori Mimura; Toru Aoki; Takayuki Nakano


    In this study, we developed a new neutron-detection device using a boron gallium nitride (BGaN) semiconductor in which the B atom acts as a neutron converter. BGaN and gallium nitride (GaN) samples were grown by metal organic vapor phase epitaxy, and their radiation detection properties were evaluated. GaN exhibited good sensitivity to α-rays but poor sensitivity to γ-rays. Moreover, we confirmed that electrons were generated in the depletion layer under neutron irradiation. This resulted in ...

  16. Magnetostriction and magnetic heterogeneities in iron-gallium.

    Laver, M; Mudivarthi, C; Cullen, J R; Flatau, A B; Chen, W-C; Watson, S M; Wuttig, M


    Iron-gallium alloys Fe(1-x)Ga(x) exhibit an exceptional increase in magnetostriction with gallium content. We present small-angle neutron scattering investigations on a Fe(0.81)Ga(0.19) single crystal. We uncover heterogeneities with an average spacing of 15 nm and with magnetizations distinct from the matrix. The moments in and around the heterogeneities are observed to reorient with an applied magnetic field or mechanical strain. We discuss the possible roles played by nanoscale magnetic heterogeneities in the mechanism for magnetostriction in this material.

  17. Magnetostriction and Magnetic Heterogeneities in Iron-Gallium

    Laver, Mark; Mudivarthi, C.; Cullen, J.R.;


    Iron-gallium alloys Fe1-xGax exhibit an exceptional increase in magnetostriction with gallium content. We present small-angle neutron scattering investigations on a Fe0.81Ga0.19 single crystal. We uncover heterogeneities with an average spacing of 15 nm and with magnetizations distinct from...... the matrix. The moments in and around the heterogeneities are observed to reorient with an applied magnetic field or mechanical strain. We discuss the possible roles played by nanoscale magnetic heterogeneities in the mechanism for magnetostriction in this material. © 2010 The American Physical Society...

  18. Laser spectroscopy of gallium isotopes using the ISCOOL RFQ cooler

    Blaum, K; Kowalska, M; Ware, T; Procter, T J


    We propose to study the radioisotopes of gallium (Z=31) by collinear laser spectroscopy using the ISCOOL RFQ ion cooler. The proposed measurements on $^{62-83}$Ga will span both neutron-deficient and neutron-rich isotopes. Of key interest is the suggested development of a proton-skin in the neutron-deficient isotopes. The isotope shifts measured by laser spectroscopy will be uniquely sensitive to this feature. The measurements will also provide a wealth of new information on the gallium nuclear spins, static moments and nuclear charge radii.

  19. Pseudomembranous colitis: a possible role for Gallium scanning

    Kramer, E.L.; Charap, M.; Sanger, J.J.; Tiu, S.S.


    A case of antibiotic-associated pseudomembranous colitis is presented in which the Gallium scan was the first diagnostic modality to alert the clinicians to the existence of an inflammatory bowel process. The mechanism of localization of the radiopharmaceutical in inflammatory bowel disease is discussed. Although colonoscopy is far more specific and should be the first-line diagnostic tool used in assessing the presence of pseudomembranous colitis, Gallium scanning may have a role in the follow-up of treatment and in cases of relapse.

  20. Spectroscopy of titanium-doped gallium lanthanum sulfide glass


    Titanium-doped gallium lanthanum sulfide (Ti:GLS) and gallium lanthanum oxysulfide (Ti:GLSO) glasses have an absorption band at similar to 500-600 nm that cannot be fully resolved because of its proximity to the band edge of the glass. At concentrations >0.5% a shoulder at 980 nm is observed in Ti:GLS but not in Ti :GLSO. The emission spectra of Ti:GLS and T :GLSO both peak at 900 nm with lifetimes of 67 and 97)us, respectively. We propose that the absorption at similar to 600 nm is due to th...

  1. Unintentional gallium incorporation in InGaN layers during epitaxial growth

    Zhou, Kun; Ren, Huaijin; Ikeda, Masao; Liu, Jianping; Ma, Yi; Gao, Songxin; Tang, Chun; Li, Deyao; Zhang, Liquan; Yang, Hui


    Unintentional gallium incorporation was observed and investigated in the epitaxial growth of InGaN by metalorganic vapor phase epitaxy. InGaN was grown without intentional gallium precursor and the gallium incorporation rate was found not dependent on TEGa source but was significantly influenced by temperature and TMIn source flow. The source of the unintentional gallium incorporation is confirmed to be from the flow distributor of the reactor. The incorporation mechanism was analyzed to be the diffusion of resultant of transmetalation reaction between TMIn or its decomposed products (for example DMIn) and residual gallium. Due to the unintentional gallium incorporation, the growth rate and indium content of InGaN layer are determined by indium source, gallium source and the growth temperature.

  2. Yttrium-90 Radioembolization of Hepatic Metastases from Colorectal Cancer

    Raval eMihir


    Full Text Available Liver metastases from colorectal cancer (CRC result in substantial morbidity and mortality. The primary treatment is systemic chemotherapy, and in selected patients, surgical resection; however, for patients who are not surgical candidates and/or fail systemic chemotherapy, liver-directed therapies are increasingly being utilized. Yttrium-90 (Y-90 microsphere therapy, also known as selective internal radiation therapy (SIRT or radioembolization, has proven to be effective in terms of extending time to progression of disease and also providing survival benefit. This review focuses on the use of Y-90 microsphere therapy in the treatment of liver metastases from CRC, including a comprehensive review of published clinical trials and prospective studies conducted thus far. We review the methodology, outcomes and side effects of Y-90 microsphere therapy for metastatic CRC

  3. Synthesis and characterization of yttrium aluminium garnet (YAG powders

    Magdalena Zarzecka-Napierala


    Full Text Available In this paper synthesis and characterization of YAG powders, prepared by a process based on complexing properties of citric acid, was reported. Influence of citric acid estrification induced by 2-propanol or ethylene glycol on the system homogeneity was investigated. These reagents were introduced to aqueous solution of yttrium and aluminium nitrates. A variety of powders from Al2O3-Y2O3 system with different phase composition were obtained by altering the citrate to nitrate ratio. Evolution of the powders phase composition vs. temperature was investigated using DTA/TG, XRD, and FT-IR methods. The most interesting results were observed in case of the citric acid–propanol–relative nitrates system. The mole ratio of these reagents equal to 1:2.5:2.5 (nitrates (Al,Y:citric acid:2-propanol allowed to synthesize pure YAG phase powders at temperature as low as 950°C.

  4. Thermal decomposition of yttrium(III) hexanoate in argon

    Grivel, Jean-Claude; Suarez Guevara, Maria Josefina; Attique, Fahmida;


    The thermal decomposition of yttrium(III) hexanoate (Y(C5H11CO2)3)·xH2O in argon was studied by means of thermogravimetry, differential thermal analysis, IR-spectroscopy, X-ray diffraction at a laboratory Cu-tube source and in-situ experiments at a synchrotron radiation source as well as hot...... into Y2O2CO3 with release of CO2 and 6-undecanone between 280°C and 490°C. A side reaction appears to yield elemental carbon and volatile decane (C10H22). Y2O2CO3 is converted to Y2O3 with release of CO2 between 500°C and 975°C....

  5. Local structure of oxygen-deficient Yttrium oxide

    CHENG Xue-Rui; DAI Hai-Yang; QI Ze-Ming; WANG Yu-Yin; ZHANG Guo-Bin


    Yttrium oxide thin films have been deposited on Si (100) substrate by using pulsed laser deposition (PLD) method.X-ray diffraction (XRD),hard and soft X-ray absorption spectroscopy (XAFS) are employed to investigate the origin of oxygen vacancies and their influence on the structure and atomic distributions.The XRD results indicate that the Y2O3 thin films strongly orient the (111) axis of the cubic structure.Analyses on the Y K-edge extended X-ray absorption fine structures reveal that the coordination number of Y atoms decreases and the bond length of Y-O contracts due to the loss of oxygen atoms.The X-ray absorption near edge structure analysis together with a theoretical approach further confirms the oxygen vacancies formation and their possible location.

  6. Effect of aluminum and yttrium doping on zinc sulphide nanoparticles

    Sharma, Swati, E-mail:; Kashyap, Jyoti; Kapoor, A. [Department of Electronic Science, University of Delhi South Campus, Benito Juarez Road, New Delhi-110021 (India); Gupta, Shubhra [Sri Venkateswara College, University of Delhi, New Delhi-110021 (India); Natasha [Maharaja Agrasen College, University of Delhi-110053 (India)


    In this work, pristine and doped Zinc Sulphide (ZnS) nanoparticles have been synthesized via chemical co-precipitation method. ZnS nanoparticles have been doped with Aluminium (Al) and Yttrium (Y) with doping concentration of 5wt% each. The structural and optical properties of the as prepared nanoparticles have been studied using X-Ray diffraction (XRD) technique and Photoluminescence spectroscopy. Average grain size of 2-3nm is observed through the XRD analysis. Effect of doping on stress, strain and lattice constant of the nanoparticles has also been analyzed. Photoluminescence spectra of the as prepared nanoparticles is enhanced due to Al doping and quenched due to Y doping. EDAX studies confirm the relative doping percentage to be 3.47 % and 3.94% by wt. for Al and Y doped nanoparticles respectively. Morphology of the nanoparticles studied using TEM and SEM indicates uniform distribution of spherical nanoparticles.

  7. Biosynthesis of Yttrium oxide nanoparticles using Acalypha indica leaf extract

    S K Kannan; M Sundrarajan


    In this study, the synthesis of Yttrium oxide (Y2O3) nanoparticles was carried out from Acalypha indica leaf extract. The synthesized nanoparticles were characterized by using X-ray diffraction, scanning electron microscope, energy-dispersive X-ray spectrometer and transmission electron microscope for structural confirmation. The studies clearly indicate that the synthesized Y2O3 nanoparticle is a crystalline material with a particle size from 23 to 66 nm. Further analysis was carried out by Fourier transform infrared spectroscopy, to provide the evidence for the presence of Y–O–Y and O–Y–O stretchings in the synthesized Y2O3 nanoparticles. Thermogravimetric and differential scanning calorimetry analyses gave the thermal stability of Y2O3 nanoparticles. The results of the antibacterial studies conducted by using the synthesized Y2O3 revealed an increasing rate of antibacterial behaviour with pathogens.

  8. Dissociation behavior of protons incorporated in yttrium doped barium zirconate

    Ishiyama, T.; Kishimoto, H.; Develos-Bagarinao, K.; Yamaji, K.; Yamaguchi, T.; Fujishiro, Y.


    The dissociation behavior of protons incorporated in yttrium-doped barium zirconate (BZY20) was investigated via combination of in-situ diffuse reflectance Fourier transform infrared spectroscopy (FT-IR) and evolved gas analysis. The vicinities of dopant or host ions were considered as sites of proton dissolution. The temperature dependence of the dissociation of protons from each site was evaluated. Protons which were considered to have dissolved in the vicinity of dopant ions were easily removed and dissociated as water. On the other hand, those which dissolved in the vicinity of host ions were dissociated as hydrogen at high temperatures. Such dissociation behavior was also detected after using D2O saturated gas for pre-treatment. These results suggest that some protons which dissolved in the perovskite oxide could dissociate as hydrogen without forming oxygen vacancies. (131words)

  9. Exchange of iron by gallium in siderophores.

    Emery, T


    Siderophores are iron transport compounds produced by numerous microorganisms and which strongly chelate Fe(III), but not Fe(II). Other trivalent metals, such as Al(III), Cr(III), or Ga(III), are not capable of significantly displacing iron from siderophores. However, I demonstrate here that Ga(III) can effectively displace iron under reducing conditions. With ascorbate as reductant and ferrozine as Fe(II) trapping agent, the kinetics of reductive displacement of iron by Ga(III) were followed spectroscopically by the increase of absorbance at 562 nm due to formation of the Fe(II)-ferrozine complex. No significant reduction of siderophore occurred in the absence of Ga(III). With excess Ga(III), the displacement was quantitative and very rapid. The rate of metal exchange was pseudo first order with respect to Ga(III) concentration and highly pH dependent, suggesting that siderophore ligands are displaced from the iron in a concerted mechanism by Ga(III) and protonation to expose the Fe(III) to reduction by ascorbate. Reaction rates were dependent upon the structure of the siderophore, being greatest for ferric rhodotorulic acid and slowest for ferrichrome A at pH 5.4. The pH profile for ferric rhodotorulic acid was unusual in that it showed a maximum at pH 6.5, while all other siderophores examined showed an increase in rate as pH was lowered from 7.0. The physiological significance of this reaction to the clinical use of gallium is discussed.

  10. Polymer Derived Yttrium Silicate Ablative TPS Materials for Next-Generation Exploration Missions Project

    National Aeronautics and Space Administration — Through the proposed NASA SBIR program, NanoSonic will optimize its HybridSil® derived yttrium silicates to serve as next-generation reinforcement for carbon...

  11. Structural study of nanosized yttrium-doped CaMnO3 perovskites

    J Zagorac; A Zarubica; A Radosavljevic-Mihajlovic; D Zagorac; B Matovic


    Nanostructured compounds with general formula Ca1-YMnO3 (0 ≤ ≤ 1) were synthesized by modified glycine nitrate procedure. In the next step, we have investigated crystal structure and microstructure of the synthesized samples using X-ray methods and Rietveld analysis. Focus of this research was the structural stability of the yttrium-doped CaMnO3 perovskite phases, which crystallize in orthorhombic space group Pnma. We observed that the unit cell volumes of the investigated compounds increase proportionally with yttrium amount. Furthermore, we investigated the influence of yttrium amount on Mn–O bond angles and distances, tilting of MnO6 octahedra and deformation due to the presence of Jahn–Teller distortion around Mn3+ cation. In order to estimate effective coordination of and sites, bond valence calculations (BVC) were performed for and site cations. Finally, the photoelectron spectroscopy (XPS) method was applied in order to follow yttrium concentration in the perovskite phases.

  12. Sorptive separation of yttrium and cerium on a weakly basic anionite

    Cheremisina, O. V.; Ponomareva, M. A.; Chirkst, D. E.; Lobacheva, O. L.; Shul'gin, I. A.


    The sorption of complex yttrium ions with Trilon B onto the weakly basic anionite D-403 in nitrate form from an acidic medium at pH 3 with constant ionic strength (NaNO3, 1 mol/kg) is investigated. A thermodynamic evaluation of the sorption isotherm of anionic yttrium complexes is performed using a method based on the linearization of the equation of the law of active mass, modified for ionic exchange reactions. The ionic exchange constant, the Gibbs free energy of ionic exchange, the capacity of the anionite, and the sorption limit of ethylenediaminetetraacetatoyttrate ions (EDTA yttrate ions) are calculated. Using a frontal version of ion exchange chromatography, cerium and yttrium are separated on D-403 anionite with a fraction of pure yttrium at the column outlet of no less than 30%.

  13. Photocatalysis of Yttrium Doped BaTiO3 Nanofibres Synthesized by Electrospinning

    Zhenjiang Shen


    Full Text Available Yttrium doped barium titanate (BT nanofibres (NFs with significant photocatalytic effect were successfully synthesized by electrospinning. Considering the necessary factors for semiconductor photocatalysts, a well-designed procedure was carried out to produce yttrium doped BT (BYT NFs. In contrast to BYT ceramics powders and BT NFs, BYT NFs with pure perovskite phase showed much enhanced performance of photocatalysis. The surface modification in electrospinning and subsequent annealing, the surface spreading of transition metal yttrium, and the narrowed band gap energy in yttrium doping were all contributed to the final novel photocatalytic effect. This work provides a direct and efficient route to obtain doped NFs, which has a wide range of potential applications in areas based on complex compounds with specific surface and special doping effect.

  14. Synthesis,structure and catalytic behavior of yttrium complexes bearing a diaminobis(phenolate) ligand

    SONG FengKui; YAN ChunHui; SUN HongMei; YAO YingMing; SHEN Qi; ZHANG Yong


    Yttrium complexes stabilized by a diaminobis(phenolate) ligand were synthesized and their catalytic behavior was explored. Reaction of YCI3 with 1 equiv of LNa2 [L=Me2NCH2CH2N{CH2-(2-O-C6H2-tBu2-3,5)}2]gave the yttrium chloride LYCI(THF) (1) in 92% yield. Complex 1 can be used as starting material to prepare the yttrium amido derivative. Complex 1 reacted with 1 equiv of LiNPh2 in THF to afford the expected yttrium amido complex LYNPh2 (2) in high yield. Both of complexes 1 and 2 have been well detected by elemental analysis,NMR spectra and single-crystal X-ray analysis. It was found that complex 2 can efficiently initiate the ring-opening polymerization of L-lactide and ε-caprolactone,and a controlled manner is observed in the former case.

  15. Recovery of yttrium from fluorescent powder of cathode ray tube, CRT: Zn removal by sulphide precipitation

    Innocenzi, Valentina, E-mail: [Department of Industrial Engineering and Information and Economy, University of L’Aquila, Via Giovanni Gronchi n.18, Nucleo Ind.le di Pile, 67100 L’Aquila (Italy); De Michelis, Ida; Ferella, Francesco [Department of Industrial Engineering and Information and Economy, University of L’Aquila, Via Giovanni Gronchi n.18, Nucleo Ind.le di Pile, 67100 L’Aquila (Italy); Beolchini, Francesca [Department of Marine Sciences, Polytechnic Institute of Marche, Via Brecce Bianche, 60131 Ancona (Italy); Kopacek, Bernd [SAT, Austrian Society for Systems Engineering and Automation, Gurkasse 43/2, A-1140 Vienna (Austria); Vegliò, Francesco [Department of Industrial Engineering and Information and Economy, University of L’Aquila, Via Giovanni Gronchi n.18, Nucleo Ind.le di Pile, 67100 L’Aquila (Italy)


    Highlights: • Treatment of fluorescent powder of CRT waste. • Factorial experimental designs to study acid leaching of fluorescent powder and the purification of leach liquors. • Recover of yttrium by precipitation using oxalic acid. • Suitable flowsheet to recover yttrium from fluorescent powder. - Abstract: This work is focused on the recovery of yttrium and zinc from fluorescent powder of cathode ray tube (CRT). Metals are extracted by sulphuric acid in the presence of hydrogen peroxide. Leaching tests are carried out according to a 2{sup 2} full factorial plan and the highest extraction yields for yttrium and zinc equal to 100% are observed under the following conditions: 3 M of sulphuric acid, 10% v/v of H{sub 2}O{sub 2} concentrated solution at 30% v/v, 10% w/w pulp density, 70 °C and 3 h of reaction. Two series of precipitation tests for zinc are carried out: a 2{sup 2} full factorial design and a completely randomized factorial design. In these series the factors investigated are pH of solution during the precipitation and the amount of sodium sulphide added to precipitate zinc sulphide. The data of these tests are used to describe two empirical mathematical models for zinc and yttrium precipitation yields by regression analysis. The highest precipitation yields for zinc are obtained under the following conditions: pH equal to 2–2.5% and 10–12% v/v of Na{sub 2}S concentrated solution at 10% w/v. In these conditions the coprecipitation of yttrium is of 15–20%. Finally further yttrium precipitation experiments by oxalic acid on the residual solutions, after removing of zinc, show that yttrium could be recovered and calcined to obtain the final product as yttrium oxide. The achieved results allow to propose a CRT recycling process based on leaching of fluorescent powder from cathode ray tube and recovery of yttrium oxide after removing of zinc by precipitation. The final recovery of yttrium is 75–80%.

  16. Morpho-structural and luminescent investigations of niobium activated yttrium tantalate powders

    Hristea, Amalia [' Raluca Ripan' Institute for Research in Chemistry, Fantanele 30, R-400294 Cluj-Napoca (Romania); Faculty of Chemistry and Chemical Engineering, ' Babes-Bolyai' University, 11 Arany Janos, 400028 Cluj-Napoca (Romania)], E-mail:; Popovici, Elisabeth-Jeanne; Muresan, Laura [' Raluca Ripan' Institute for Research in Chemistry, Fantanele 30, R-400294 Cluj-Napoca (Romania); Stefan, Maria [' Raluca Ripan' Institute for Research in Chemistry, Fantanele 30, R-400294 Cluj-Napoca (Romania); Faculty of Chemistry and Chemical Engineering, ' Babes-Bolyai' University, 11 Arany Janos, 400028 Cluj-Napoca (Romania); Grecu, Rodica [' Raluca Ripan' Institute for Research in Chemistry, Fantanele 30, R-400294 Cluj-Napoca (Romania); Johansson, Anders [Angstrom Laboratory, Department of Materials Chemistry, Uppsala University, Box 538, 751 21 Uppsala (Sweden); Boman, Mats [Angstrom Laboratory, Department of Materials Chemistry, Uppsala University, Box 538, 751 21 Uppsala (Sweden)], E-mail:


    Yttrium tantalate-based phosphors are a class of efficient luminescent materials used in medical imaging applications. The paper presents the influence of activator concentration, firing regime and flux nature on the crystalline structure, morphology and luminescent characteristics of niobium activated yttrium tantalate powders. Phosphors samples were prepared by solid-state reaction route and their properties were investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), photoluminescence (PL) measurements and scanning electron microscopy (SEM)

  17. Pulsed Laser Deposition of YBCO With Yttrium Oxide Buffer Layers (Postprint)


    AFRL-RZ-WP-TP-2012-0092 PULSED LASER DEPOSITION OF YBCO WITH YTTRIUM OXIDE BUFFER LAYERS (POSTPRINT) Paul N. Barnes, Timothy J. Haugan...Paper Postprint 01 January 2002 – 01 January 2004 4. TITLE AND SUBTITLE PULSED LASER DEPOSITION OF YBCO WITH YTTRIUM OXIDE BUFFER LAYERS (POSTPRINT...Textured metallic substrate based HTS coated conductors with the YBCO /CeO2/YSZ/CeO2/Ni architecture have already been shown to exhibit high current

  18. Synthesis of gallium nitride nanostructures by nitridation of electrochemically deposited gallium oxide on silicon substrate

    Ghazali, Norizzawati Mohd; Yasui, Kanji; Hashim, Abdul Manaf


    Gallium nitride (GaN) nanostructures were successfully synthesized by the nitridation of the electrochemically deposited gallium oxide (Ga2O3) through the utilization of a so-called ammoniating process. Ga2O3 nanostructures were firstly deposited on Si substrate by a simple two-terminal electrochemical technique at a constant current density of 0.15 A/cm2 using a mixture of Ga2O3, HCl, NH4OH and H2O for 2 h. Then, the deposited Ga2O3 sample was ammoniated in a horizontal quartz tube single zone furnace at various ammoniating times and temperatures. The complete nitridation of Ga2O3 nanostructures at temperatures of 850°C and below was not observed even the ammoniating time was kept up to 45 min. After the ammoniating process at temperature of 900°C for 15 min, several prominent diffraction peaks correspond to hexagonal GaN (h-GaN) planes were detected, while no diffraction peak of Ga2O3 structure was detected, suggesting a complete transformation of Ga2O3 to GaN. Thus, temperature seems to be a key parameter in a nitridation process where the deoxidization rate of Ga2O3 to generate gaseous Ga2O increase with temperature. The growth mechanism for the transformation of Ga2O3 to GaN was proposed and discussed. It was found that a complete transformation can not be realized without a complete deoxidization of Ga2O3. A significant change of morphological structures takes place after a complete transformation of Ga2O3 to GaN where the original nanorod structures of Ga2O3 diminish, and a new nanowire-like GaN structures appear. These results show that the presented method seems to be promising in producing high-quality h-GaN nanostructures on Si.

  19. Structural and magnetic properties of yttrium iron garnet (YIG) and yttrium aluminum iron garnet (YAIG) nanoferrites prepared by microemulsion method

    Akhtar, Majid Niaz, E-mail: [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Bakar Sulong, Abu [Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Khan, Muhammad Azhar [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Ahmad, Mukhtar [Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Murtaza, Ghulam [Centre for Advanced Studies in Physics, G.C. University, Lahore, Pakistan" f Department of Mechanical Engineering, COMSATS Institute of Information Technology Sahiwal Pakistan (Pakistan); Raza, M.R. [Department of Mechanical and Materials Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Department of Mechanical Engineering, COMSATS Institute of Information Technology Sahiwal (Pakistan); Raza, R.; Saleem, M. [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Kashif, M. [Department of Physics, Govt. College University Faisalabad (Pakistan)


    Yttrium iron garnet (YIG) and yttrium aluminum iron garnet (YAIG) nanoferrite samples were synthesized by microemulsion method. The effect of sintering was examined by heating the samples at 900, 1000, and 1100 °C. The YIG and YAIG samples were then characterized using X-ray diffraction and field-emission scanning electron microscopy. Static and dynamic magnetic properties were measured by evaluating initial permeability, Q factor, and vibrating sample magnetometry properties of YIG and YAIG samples. YIG samples sintered at 1100 °C showed higher initial permeability and Q factor compared with YAIG samples. However, hysteresis loops also showed variations in the saturation magnetization, remanence, and coercivity of YIG and YAIG samples sintered at 900, 1000, and 1100 °C. The observed magnetic parameter such as saturation magnetization, coercivity and initial permeability are strongly affected by increasing temperature. The saturation magnetization and coercivity of YIG and YAIG nanoferrites were found in the range 11.56–19.92 emu/g and 7.30–87.70 Oe respectively. Furthermore, the decreasing trends in the static and magnetic properties of YAIG samples may be due to the introduction of Al ions in the YIG crystal lattice. Thus, YIG and YAIG sintered at 1100 °C can be used for wide-ranging frequency applications. - Highlights: • Static and dynamic magnetic properties of YIG and YAIG nanoferrites were determined. • Saturation magnetization, Q and initial permeability increased in YIG nanoferites. • Possible use of these nanoferrites for sensing and switching applications.

  20. Discovery of Gallium, Germanium, Lutetium, and Hafnium Isotopes

    Gross, J L


    Currently, twenty-eight gallium, thirty-one germanium, thirty-five lutetium, and thirty-six hafnium isotopes have been observed and the discovery of these isotopes is discussed here. For each isotope a brief synopsis of the first refereed publication, including the production and identification method, is presented.

  1. [Dimensional changes of silver and gallium-based alloy].

    Ballester, R Y; Markarian, R A; Loguercio, A D


    Gallium-based dental alloys were created with the aim of solving the problem of toxicity of mercury. The material shows mechanical properties similar to those of dental amalgam, but researches point out two unfavorable characteristics: great corrosion and excessive post-setting expansion, and the latter is capable of cracking dental structures. The aim of this study was to evaluate, during 7 days, the in vitro dimensional alteration of a gallium dental alloy (Galloy, SDI, Australia), in comparison with a dental amalgam containing zinc (F400, SDI, Australia), as a function of the contact with saline solution (0.9% NaCl) during the setting period. The storage experimental conditions were: storage in dry environment, immersion in saline solution and contamination during condensation. Additionally, the effects of contamination during the trituration of dental amalgam and the effects of protecting the surface of the gallium alloy with a fluid resin were studied. Specimens were stored at 37 degrees C +/- 1 degree C, and measuring was carried out, sequentially, every 24 h during 7 days. When the gallium alloy was either contaminated or immersed, an expansion significantly greater than that observed in the other experimental conditions was noticed after 7 days. The application of a fluid resin to protect the surface of the cylinders was able to avoid the increase in expansion caused by superficial moisture. The amalgam alloy did not show significant dimensional alterations, except when it was contaminated during trituration.

  2. Gallium Nitride MMICs for mm-Wave Power Operation

    Quay, R.; Maroldt, S.; Haupt, C.; Heijningen, M. van; Tessmann, A.


    In this paper a Gallium Nitride MMIC technology for high-power amplifiers between 27 GHz and 101 GHz based on 150 nm- and 100 nm-gate technologies is presented. The GaN HEMT MMICs are designed using coplanar waveguide transmission-line-technology on 3-inch semi-insulating SiC substrates. The measure

  3. Targeting Gallium to Cancer Cells through the Folate Receptor

    Nerissa Viola-Villegas


    Full Text Available The development of gallium(III compounds as anti-cancer agents for both treatment and diagnosis is a rapidly developing field of research. Problems remain in exploring the full potential of gallium(III as a safe and successful therapeutic agent or as an imaging agent. One of the major issues is that gallium(III compounds have little tropism for cancer cells. We have combined the targeting properties of folic acid (FA with long chain liquid polymer poly(ethylene glycol (PEG ‘spacers’. This FA-PEG unit has been coupled to the gallium coordination complex of 1,4,7,10-tetraazacyclo-dodecane-N,N′,N′′,N′′′-tetraacetic acid (DOTA through amide linkages for delivery into target cells overexpressing the folate receptor (FR. In vitro cytotoxicity assays were conducted against a multi-drug resistant ovarian cell line (A2780/AD that overexpresses the FR and contrasted against a FR free Chinese hamster ovary (CHO cell line. Results are rationalized taking into account stability studies conducted in RPMI 1640 media and HEPES buffer at pH 7.4.

  4. Effects of scandium and zirconium combination alloying on as-cast microstructure and mechanical properties of Al-4Cu-1.5Mg alloy

    Xiang Qingchun


    Full Text Available The influences of minor scandium and zirconium combination alloying on the as-cast microstructure and mechanical properties of Al-4Cu-1.5Mg alloy have been experimentally investigated. The experimental results show that when the minor elements of scandium and zirconium are simultaneously added into the Al-4Cu-1.5Mg alloy, the as-cast microstructure of the alloy is effectively modified and the grains of the alloy are greatly refined. The coarse dendrites in the microstructure of the alloy without Sc and Zr additions are refined to the uniform and fine equiaxed grains. As the additions of Sc and Zr are 0.4% and 0.2%, respectively, the tensile strength, yield strength and elongation of the alloy are relatively better, which are 275.0 MPa, 176.0 MPa and 8.0% respectively. The tensile strength is increased by 55.3%, and the elongation is nearly raised three times, compared with those of the alloy without Sc and Zr additions.

  5. Separation of (44)Ti from proton irradiated scandium by using solid-phase extraction chromatography and design of (44)Ti/(44)Sc generator system.

    Radchenko, V; Meyer, C A L; Engle, J W; Naranjo, C M; Unc, G A; Mastren, T; Brugh, M; Birnbaum, E R; John, K D; Nortier, F M; Fassbender, M E


    Scandium-44g (half-life 3.97h [1]) shows promise for positron emission tomography (PET) imaging of longer biological processes than that of the current gold standard, (18)F, due to its favorable decay parameters. One source of (44g)Sc is the long-lived parent nuclide (44)Ti (half-life 60.0 a). A (44)Ti/(44g)Sc generator would have the ability to provide radionuclidically pure (44g)Sc on a daily basis. The production of (44)Ti via the (45)Sc(p,2n) reaction requires high proton beam currents and long irradiation times. Recovery and purification of no-carrier added (nca) (44)Ti from scandium metal targets involves complex separation chemistry. In this study, separation systems based on solid phase extraction chromatography were investigated, including branched diglycolamide (BDGA) resin and hydroxamate based ZR resin. Results indicate that ZR resin in HCl media represents an effective (44)Ti/(44g)Sc separation system. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. 铝厂赤泥中提钪技术的研究%The research of mention scandium from aluminum red mud technology

    王洋; 唐晓宁


    根据赤泥的基本性质和综合处理的现状,研究提高赤泥中稀有金属钪回收率。采用逆流循环浸出赤泥,通过调节浸出过程中各影响因素,最佳工艺条件为:硫酸浓度900~1000g/L,浸出温度90℃以上,液固比5:1,浸出时间4h,钪的综合回收率达到85%以上。%According to the basic nature of the red mud and comprehensive treatment of the status quo, research to improve the recovery rate of red mud in the metals scandium. This paper uses counter - current leaching of red mud circulation, by adjusting the various factors affecting the leaching process, so that the final recovery of scandium integrated more than 85%.

  7. Gallium Oxide Nanostructures for High Temperature Sensors

    Chintalapalle, Ramana V. [Univ. of Texas, El Paso, TX (United States)


    Gallium oxide (Ga2O3) thin films were produced by sputter deposition by varying the substrate temperature (Ts) in a wide range (Ts=25-800 °C). The structural characteristics and electronic properties of Ga2O3 films were evaluated using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectrometry (EDS), Rutherford backscattering spectrometry (RBS) and spectrophotometric measurements. The effect of growth temperature is significant on the chemistry, crystal structure and morphology of Ga2O3 films. XRD and SEM analyses indicate that the Ga2O3 films grown at lower temperatures were amorphous while those grown at Ts≥500 oC were nanocrystalline. RBS measurements indicate the well-maintained stoichiometry of Ga2O3 films at Ts=300-800 °C. The electronic structure determination indicated that the nanocrystalline Ga2O3films exhibit a band gap of ~5 eV. Tungsten (W) incorporated Ga2O3 films were produced by co-sputter deposition. W-concentration was varied by the applied sputtering-power. No secondary phase formation was observed in W-incorporated Ga2O3 films. W-induced effects were significant on the structure and electronic properties of Ga2O3 films. The band gap of Ga2O3 films without W-incorporation was ~5 eV. Oxygen sensor characteristics evaluated using optical and electrical methods indicate a faster response in W-doped Ga2O3 films compared to intrinsic Ga2O3 films. The results demonstrate the applicability of both intrinsic and W-doped Ga-oxide films for oxygen sensor application at temperatures ≥700 °C.

  8. Strengthening and Toughening Effect of Yttrium on Al2O3/TiCN Ceramic Tool Material


    The strengthening and toughening effect of yttrium on an advanced Al2O3/TiCN ceramic tool material was studied by means of SEM, TEM and energy spectrum analysis. Results showed that yttrium can react with the impurity elements such as W, Fe, Cr, etc. Thus, the interfaces between ceramic phases are purified and the interfacial binding strength is increased. As a result, the mechanical properties of the Al2O3/TiCN ceramic tool material reinforced with yttrium are improved significantly. In addition, the effect of yttrium on particle strengthening of the solid solution TiCN may partly contribute to the improvement of the mechanical properties.

  9. Impacts of yttrium substitution on FMR line-width and magnetic properties of nickel spinel ferrites

    Ishaque, M., E-mail: [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Khan, Muhammad Azhar, E-mail: [Department of Physics, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan); Ali, Irshad; Khan, Hasan M. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Iqbal, M. Asif [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); College of E & ME, National University of Science and Technology, Islamabad (Pakistan); Islam, M.U. [Department of Physics, Bahauddin Zakariya University, Multan 60800 (Pakistan); Warsi, Muhammad Farooq [Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100 (Pakistan)


    The influence of yttrium (Y) substitution on ferromagnetic resonance (FMR), initial permeability, and magnetic properties of NiFe{sub 2}O{sub 4} ferrites were investigated. It was observed that the FMR line-width decreases with yttrium contents for the substitution level 0≤×≤0.06. Beyond this, the FMR line-width increases with yttrium contents. The nominal composition NiY{sub 0.12}Fe{sub 1.88}O{sub 4} exhibited the smallest FMR line-width ~282 Oe. A significant change in FMR position of nickel–yttrium (Ni–Y) ferrites was observed and it found to exist between 4150 and 4600 Oe. The saturation magnetization was observed to decrease with the increase of yttrium contents and this was referred to the redistribution of cations on octahedral. The coercivity increased from 15 Oe to 59 Oe by increasing the yttrium concentration. The initial permeability decreased from 110 to 35 at 1 MHz by the incorporation of yttrium and this was attributed to the smaller grains which may obstruct the domain wall movement and impede the domain wall motion. The magnetic loss factors of substituted samples exhibit decreasing behavior in the frequency range 1 kHz to 10 MHz. The smaller FMR line-width and reduced magnetic loss factor of the investigated samples suggest the possible use of these materials in high frequency applications. - Highlights: • Influence of Y{sup 3+} substitution on the properties of nickel ferrites is investigated. • Very small FMR line-width (282 Oe) is exhibited by these substituted ferrites. • Fourfold increase in coercivity was observed for NiY{sub 0.24}Fe{sub 1.76}O{sub 4} ferrites.

  10. Synthesis of gallium nitride nanostructures by nitridation of electrochemically deposited gallium oxide on silicon substrate.

    Ghazali, Norizzawati Mohd; Yasui, Kanji; Hashim, Abdul Manaf


    Gallium nitride (GaN) nanostructures were successfully synthesized by the nitridation of the electrochemically deposited gallium oxide (Ga2O3) through the utilization of a so-called ammoniating process. Ga2O3 nanostructures were firstly deposited on Si substrate by a simple two-terminal electrochemical technique at a constant current density of 0.15 A/cm(2) using a mixture of Ga2O3, HCl, NH4OH and H2O for 2 h. Then, the deposited Ga2O3 sample was ammoniated in a horizontal quartz tube single zone furnace at various ammoniating times and temperatures. The complete nitridation of Ga2O3 nanostructures at temperatures of 850°C and below was not observed even the ammoniating time was kept up to 45 min. After the ammoniating process at temperature of 900°C for 15 min, several prominent diffraction peaks correspond to hexagonal GaN (h-GaN) planes were detected, while no diffraction peak of Ga2O3 structure was detected, suggesting a complete transformation of Ga2O3 to GaN. Thus, temperature seems to be a key parameter in a nitridation process where the deoxidization rate of Ga2O3 to generate gaseous Ga2O increase with temperature. The growth mechanism for the transformation of Ga2O3 to GaN was proposed and discussed. It was found that a complete transformation can not be realized without a complete deoxidization of Ga2O3. A significant change of morphological structures takes place after a complete transformation of Ga2O3 to GaN where the original nanorod structures of Ga2O3 diminish, and a new nanowire-like GaN structures appear. These results show that the presented method seems to be promising in producing high-quality h-GaN nanostructures on Si.

  11. Selective intraarterial radionuclide therapy with Yttrium-90 (Y-90 microspheres for unresectable primary and metastatic liver tumors

    Ozkan Elgin


    Full Text Available Abstract Background The aim of this study was to evaluate the success of selective intraarterial radionuclide therapy (SIRT with Yttrium-90 (Y-90 microspheres in liver metastases of different tumors. We also interpreted the contribution of SIRT to survival times according to responder- non responder and hepatic- extra hepatic disease. Methods The clinical and follow-up data of 124 patients who were referred to our department for SIRT between June 2006 and October 2010 were evaluated retrospectively. SIRT has been applied to 78 patients who were suitable for treatment. All the patients had primary liver tumor or unresectable liver metastasis of different malignancies. The treatment was repeated at least one more time in 5 patients to the same or other lobes. Metabolic treatment response evaluated by fluorine-18 fluorodeoxyglucose (F18-FDG positron emission tomography/computed tomography (PET/CT in the 6th week after treatment. F18-FDG PET/CT was repeated in per six weeks periods. The response criterion had been described as at least 20% decrease of SUV value. Also in patients with neuroendocrine tumor serial Gallium-68 (Ga-68 PET/CT was used for evaluation of response. Patients were divided into 2 groups according to their treatment response. Results 68 patients received treatment for the right lobe, seven patients received treatment for the left lobe and 3 patients for both lobes. The mean treatment dose was estimated at 1.62 GBq. In the evaluation of treatment response; 43(55% patients were responder (R and 35 (45% patients were non-responder (NR in the sixth week F18-FDG PET/CT. Mean pretreatment SUVmax value of R group was 11.6 and NR group was 10.7. While only 11 (31% out of 35 NR patients had H disease, 30 (69% out of 43 R patients had H disease (p Conclusions SIRT is a useful treatment method which can contribute to the lengthening of survival times in patients with primary or metastatic unresectable liver malignancies. Also F18-FDG PET

  12. Optical and structural characterization of yttrium calcium borate glasses

    Santos, Cristiane; Meneses, Domingos D. S.; Echegut, Patrick; Neuville, Daniel R.; Hernandes, Antonio C.; Ibanez, Alain


    Structural and optical properties of new stable glasses in the Y2O3 -- CaO -- B2O3 system, containing the same Y/Ca ratio as the YCa4O(BO3)3 (YCOB) crystal, were determined from Raman and reflectance infrared spectroscopy [1]. We have obtained the optical functions using a dielectric function model and their evolution with composition are associated with an increase in the number of non-bridging oxygen and to calcium/yttrium oxides content with the formation of pentaborate, metaborate, orthoborate and pyroborate groups. The orthoborate and pyroborate signatures increase with increasing the modifier cations. Refractive indexes values (from 1.597 to 1.627 at λ = 2 μm) are in good agreement with those of the YCOB crystal, an indication that these glasses are potential candidates for doping with rare-earth ions for optical applications. [4pt] [1] C. N. Santos, D.D.S. Meneses, P. Echegut, D. R. Neuville, A. C. Hernandes, A. Ibanez, Appl. Phys. Lett. 94, 151901(2009).

  13. Optical properties of ytterbium-doped yttrium oxide ceramics

    Solomonov, V.I.; Maksimov, R.N. [Institute of Electrophysics UrB RAS, Amundsena 106, 620016 Ekaterinburg (Russian Federation); Ural Federal University Named After the First President of Russia B.N. Yeltsin, Mira 19, 620002 Ekaterinburg (Russian Federation); Osipov, V.V.; Shitov, V.A.; Lipchak, A.I. [Institute of Electrophysics UrB RAS, Amundsena 106, 620016 Ekaterinburg (Russian Federation)


    Ytterbium-doped yttrium oxide (Yb:Y{sub 2}O{sub 3}) transparent ceramics with different sintering additives (Lu{sub 2}O{sub 3}, Sc{sub 2}O{sub 3}, CeO{sub 2}, ZrO{sub 2}, or HfO{sub 2}) were fabricated using nanopowders produced by laser ablation. Transmission and photoluminescence spectra of the obtained ceramics were investigated at room temperature. Highest in-line transmittance was over 80% at the wavelength of 1060 nm for 2 mm thick Yb:Y{sub 2}O{sub 3} ceramics with zirconium and hafnium. Divalent Yb ions with the ground state electron configuration 4f{sup 13}6s were revealed. The absorption and emission bands caused by s <-> s transitions of these ions were observed in the IR spectral range of Yb{sup 3+} ions. The superposition of both Yb{sup 3+} and Yb{sup 2+} emission bands leads to an effective broadening of the whole luminescence band. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Ab initio calculations of yttrium nitride: structural and electronic properties

    Zerroug, S.; Ali Sahraoui, F. [Universite Ferhat Abbas, Laboratoire d' Optoelectronique et Composants, Departement de Physique, Setif (Algeria); Bouarissa, N. [King Khalid University, Department of Physics, Faculty of Science, P.O. Box 9004, Abha (Saudi Arabia)


    Using first principles total energy calculations within the full-potential linearized augmented plane wave method, we have studied the structural and electronic properties of yttrium nitride (YN) in the three phases, namely wurtzite, caesium chloride and rocksalt structures. The calculations are performed at zero and under hydrostatic pressure. In agreement with previous findings, it is found that the favored phase for YN is the rocksalt-like structure. We predict that at zero pressure YN in the rocksalt structure is a semiconductor with an indirect bandgap of 0.8 eV. A phase transition from a rocksalt to a caesium chloride structure is found to occur at {proportional_to}134 GPa. Besides, a transition from an indirect ({gamma}-X) bandgap semiconductor to a direct (X-X) one is predicted at pressure of {proportional_to}84 GPa. For the electron effective mass of rocksalt YN, these are the first results, to our knowledge. The information derived from the present study may be useful for the use of YN as an active layer in electronic devices such as diodes and transistors. (orig.)

  15. A thermodynamic assessment of the iron–yttrium system

    Kardellass, S., E-mail: [Laboratoire de Thermodynamique et Energétique, LTE, Université Ibn-Zohr, B.P. 8106 Agadir (Morocco); Servant, C., E-mail: [Laboratoire de Physicochimie de l’Etat Solide, ICMMO, Université Paris-Sud, 91405 Orsay Cedex (France); Selhaoui, N.; Iddaoudi, A.; Amar, M. Ait; Bouirden, L. [Laboratoire de Thermodynamique et Energétique, LTE, Université Ibn-Zohr, B.P. 8106 Agadir (Morocco)


    Highlights: • Rare earth elements are increasingly used in advanced materials (permanent magnets, hydrogen storage alloys, luminescent materials…). • To our knowledge, this system was not previously optimized. • Two formalisms were compared for the excess terms of the solution phases. • A consistent set of thermodynamic parameters was optimized (good agreement between calculation and experiments). • This work is the start point for the study of ternary systems with RE. -- Abstract: The thermodynamic modeling of the Iron–Yttrium binary system was carried out with the help of the CALPHAD (CALculation of PHAse Diagram) method. The excess term of the Gibbs energy of the solution phases (liquid, b.c.c., f.c.c. and h.c.p.) was assessed with the recent exponential temperature dependence of the interaction energies by Kaptay [1–3] and compared with the linear temperature dependence of Redlich–Kister [4] polynomial equation results. The intermetallic compounds Fe{sub 23}Y{sub 6} and Fe{sub 2}Y in this binary system which have a homogeneity range, were treated by a two-sublattice model with convenient substitution in each sublattice [5,6]. The others were considered as stoichiometric compounds. A consistent set of thermodynamic parameters leading to a reasonable agreement between the calculated results and literature data was obtained for this system which has not been previously optimized.

  16. MCrAlY bond coat with enhanced yttrium

    Jablonski, Paul D.; Hawk, Jeffrey A.


    One or more embodiments relates to a method of producing an MCrAlY bond coat comprising an MCrAlY layer in contact with a Y--Al.sub.2O.sub.3 layer. The MCrAlY layer is comprised of a .gamma.-M solid solution, a .beta.-MAl intermetallic phase, and Y-type intermetallics. The Y--Al.sub.2O.sub.3 layer is comprised of Yttrium atoms coordinated with oxygen atoms comprising the Al.sub.2O.sub.3 lattice. The method comprises depositing an MCrAlY material on a substrate, applying an Y.sub.2O.sub.3 paste, and heating the substrate in a non-oxidizing atmosphere at a temperature between C. for a time sufficient to generate the Y--Al.sub.2O.sub.3 layer. Both the MCrAlY layer and the Y--Al.sub.2O.sub.3 layer have a substantial absence of Y.sub.2O.sub.3, YAG, and YAP phases.

  17. Nanosecond dynamics of a gallium mirror's light-induced reflectivity change

    Albanis, V; Emelyanov, V I; Fedotov, V A; MacDonald, K F; Petropoulos, P M; Richardson, D J; Zheludev, N I


    Transient pump-probe optical reflectivity measurements of the nano/microsecond dynamics of a fully reversible, light-induced, surface-assisted metallization of gallium interfaced with silica are reported. The metallization leads to a considerable increase in the interface's reflectivity when solid a-gallium is on the verge of melting. The reflectivity change was found to be a cumulative effect that grows with light intensity and pulse duration. The reflectivity relaxes back to that of alpha-gallium when the excitation is withdrawn in a time that increases critically at gallium's melting point. The effect is attributed to a non-thermal light-induced structural phase transition.

  18. Cutaneous gallium uptake in patients with AIDS with mycobacterium avium-intracellulare septicemia

    Allwright, S.J.; Chapman, P.R.; Antico, V.F.; Gruenewald, S.M.


    Gallium imaging is increasingly being used for the early detection of complications in patients with AIDS. A 26-year-old homosexual man who was HIV antibody positive underwent gallium imaging for investigation of possible Pneumocystis carinii pneumonia. Widespread cutaneous focal uptake was seen, which was subsequently shown to be due to mycobacterium avium-intracellulare (MAI) septicemia. This case demonstrates the importance of whole body imaging rather than imaging target areas only, the utility of gallium imaging in aiding the early detection of clinically unsuspected disease, and shows a new pattern of gallium uptake in disseminated MAI infection.

  19. Studies on the synthesis of europium activated yttrium oxide by wet-chemical method

    Muresan, Laura [Raluca Ripan Institute for Research in Chemistry, Fantanele 30, 400294 Cluj-Napoca (Romania)], E-mail:; Popovici, Elisabeth-Jeanne; Grecu, Rodica [Raluca Ripan Institute for Research in Chemistry, Fantanele 30, 400294 Cluj-Napoca (Romania); Tudoran, Lucian Barbu [Electronic Microscopy Center, Babes-Bolyai University, 400028 Cluj-Napoca (Romania)


    Europium activated yttrium oxide phosphor powders (Y{sub 2}O{sub 3}:Eu{sup 3+}) were prepared from yttrium-europium precursors obtained by wet-chemical method. With this purpose in view, precursors were prepared using the reagent simultaneous addition SimAdd technique from yttrium-europium nitrate and chloride as rare-earth supplier and urea, ammonium oxalate, ammonium carbonate and oxalic acid as precipitating agents. Precursors, obtained under controlled concentration, temperature and pH conditions, were fired at 1200 deg. C in order to generate Y{sub 2}O{sub 3}:Eu{sup 3+} phosphor powders. Yttrium-europium precursors and Y{sub 2}O{sub 3}:Eu{sup 3+} phosphor powders were investigated by FTIR, TGA-DTA, X-ray diffraction (XRD), scanning electronic microscopy (SEM) and photoluminescence spectroscopy (PL) in order to put in evidence the influence of the quality of yttrium-europium precursors obtained by wet-chemical method, using the SimAdd technique on the properties of Y{sub 2}O{sub 3}:Eu{sup 3+} phosphor powders.

  20. Neutron detection using boron gallium nitride semiconductor material

    Atsumi, Katsuhiro [Department of Electrical and Electronic Engineering, Graduate School of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561 (Japan); Inoue, Yoku; Nakano, Takayuki, E-mail: [Department of Electrical and Materials Science, Graduate School of Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561 (Japan); Mimura, Hidenori; Aoki, Toru [Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8011 (Japan)


    In this study, we developed a new neutron-detection device using a boron gallium nitride (BGaN) semiconductor in which the B atom acts as a neutron converter. BGaN and gallium nitride (GaN) samples were grown by metal organic vapor phase epitaxy, and their radiation detection properties were evaluated. GaN exhibited good sensitivity to α-rays but poor sensitivity to γ-rays. Moreover, we confirmed that electrons were generated in the depletion layer under neutron irradiation. This resulted in a neutron-detection signal after α-rays were generated by the capture of neutrons by the B atoms. These results prove that BGaN is useful as a neutron-detecting semiconductor material.

  1. Ultra-low threshold gallium nitride photonic crystal nanobeam laser

    Niu, Nan, E-mail:; Woolf, Alexander; Wang, Danqing; Hu, Evelyn L. [School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138 (United States); Zhu, Tongtong; Oliver, Rachel A. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Quan, Qimin [Rowland Institute at Harvard University, Cambridge, Massachusetts 02142 (United States)


    We report exceptionally low thresholds (9.1 μJ/cm{sup 2}) for room temperature lasing at ∼450 nm in optically pumped Gallium Nitride (GaN) nanobeam cavity structures. The nanobeam cavity geometry provides high theoretical Q (>100 000) with small modal volume, leading to a high spontaneous emission factor, β = 0.94. The active layer materials are Indium Gallium Nitride (InGaN) fragmented quantum wells (fQWs), a critical factor in achieving the low thresholds, which are an order-of-magnitude lower than obtainable with continuous QW active layers. We suggest that the extra confinement of photo-generated carriers for fQWs (compared to QWs) is responsible for the excellent performance.

  2. Amorphous carbon buffer layers for separating free gallium nitride films

    Altakhov, A. S.; Gorbunov, R. I.; Kasharina, L. A.; Latyshev, F. E.; Tarala, V. A.; Shreter, Yu. G.


    The possibility of using amorphous diamond-like carbon (DLC) films for self-separation of gallium nitride (GaN) layers grown by hydride vapor-phase epitaxy has been analyzed. DLC films have been synthesized by plasma-enhanced chemical vapor deposition under low pressure on sapphire (Al2O3) substrates with a (0001) crystallographic orientation. The samples have been studied by the methods of Raman scattering and X-ray diffraction analysis. It is shown that thin DLC films affect only slightly the processes of nucleation and growth of gallium nitride films. Notably, the strength of the "GaN film-Al2O3" substrate interface decreases, which facilitates separation of the GaN layers.

  3. Neutron detection using boron gallium nitride semiconductor material

    Katsuhiro Atsumi


    Full Text Available In this study, we developed a new neutron-detection device using a boron gallium nitride (BGaN semiconductor in which the B atom acts as a neutron converter. BGaN and gallium nitride (GaN samples were grown by metal organic vapor phase epitaxy, and their radiation detection properties were evaluated. GaN exhibited good sensitivity to α-rays but poor sensitivity to γ-rays. Moreover, we confirmed that electrons were generated in the depletion layer under neutron irradiation. This resulted in a neutron-detection signal after α-rays were generated by the capture of neutrons by the B atoms. These results prove that BGaN is useful as a neutron-detecting semiconductor material.

  4. Epitaxial yttrium iron garnet films grown by pulsed laser deposition

    Dorsey, P. C.; Bushnell, S. E.; Seed, R. G.; Vittoria, C.


    Epitaxial Y3Fe5O12 (YIG) films have been grown by the pulsed laser deposition (PLD) technique on (111) gadolinium gallium garnet substrates. The effect of substrate temperature and oxygen partial pressure on the structure, composition, and magnetic properties of the films was investigated and compared to liquid phase epitaxy YIG films. The results demonstrated that epitaxial YIG films could be prepared under a wide range of deposition conditions, but narrow linewidth (ΔH≂1 Oe) films were producible only at low oxygen partial pressures (O2temperatures (Ts≳800 °C). Since the linewidth of single-crystal YIG is dominated by surface and volume defects and/or impurities, the narrow linewidth indicated that PLD is a viable technique for producing high-quality ferrite films for microwave device applications. In addition, under all deposition conditions (50-1000 mTorr and 700-850 °C) there is a uniaxial axis perpendicular to the film plane. However, at low oxygen pressure the uniaxial anisotropy energy constant Ku is negative while at high oxygen pressure Ku is positive.

  5. Schottky Contact of Gallium on p-Type Silicon

    B.P. Modi


    Full Text Available The evolution of barrier at Schottky contact and its stabilization to value characterized by the barrier height and unambiguous measurement is still being curiously perused as they hold the key control and manufacture of tailor made Schottky devices for a host of existing and potential for future applications in electronics, optoelectronics and microwave devices. In this context, gallium – silicon Schottky diode has been fabricated and analyzed.

  6. CRITICAL ASSESSMENT: Gallium nitride based visible light emitting diodes

    Oliver, Rachel A.


    This is the author accepted manuscript. It is currently under an indefinite embargo pending publication by Maney Publishing. Solid state lighting based on light-emitting diodes (LEDs) is a technology with the potential to drastically reduce energy usage, made possible by the development of gallium nitride and its alloys. However, the nitride materials family exhibits high defect densities and, in the equilibrium wurtzite crystal phase, large piezo-electric and polarisation fields arising a...

  7. Error in anti-DNA antibody radioimmunoassay after gallium scanning

    Torretti, D.; Rooney, P.; Williams, G.; Decker, J.L.


    Significant interference with the accurate measurement of anti-DNA antibodies occurs after gallium-67 scanning. The observed effect is dependent on the radioimmunoassay used. False-negative results are observed with a modified Farr assay whereas false-positive results are noted in the millipore filter assay. These spurious values are the result of persistent radioactivity in the patients' sera after administration of /sup 67/Ga citrate.

  8. A Review of Liquid Phase Epitaxial Grown Gallium Arsenide

    Alexiev, D.; Prokopovich, D. A.; Thomson, S.; Mo, L.; Rosenfeld, A B; Reinhard, M


    Liquid phase epitaxy of gallium arsenide (LPE GaAs) has been investigated intensively from the late 1960's to the present and has now a special place in the manufacture of wide band, compound semiconductor radiation detectors. Although this particular process appears to have gained prominence in the last three decades, it is interesting to note that its origins reach back to 1836 when Frankenheim made his first observations. A brief review is presented from a semiconductor applications point ...

  9. Gallium Nitride (GaN) High Power Electronics (FY11)


    for HPE GaN high electron mobility transistors ( HEMTs ) compared to SiC metal-oxide-semiconductor field effect transistors (MOSFETs). Although a few...Figure 16. Asymmetric rocking curve for an HVPE film grown on an HVPE substrate. ............19 Figure 17. Schematic of a GaN /AlGaN HEMT structure grown...frequency (RF) HEMTs . These considerable investments can be leveraged for GaN HPE. Some people are concerned about the relative scarcity of gallium

  10. Single and double ionization of gallium by electron impact

    L K Jha


    Electron impact single and double ionization cross sections of gallium have been calculated in the binary encounter approximation using accurate expression for including exchange and interference as given by Vriens and Hartree–Fock velocity distributions for the target electrons throughout the calculations. It is concluded that the ionization of 3d shell contributes partly to single ionization and partly to double ionization. The results so obtained show reasonably good agreement with the experimental data.

  11. Aging and memory effect in magnetoelectric gallium ferrite single crystals

    Singh, Vijay; Mukherjee, Somdutta [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Mitra, Chiranjib [Department of Physics, Indian Institute of Science Education and Research, Kolkata 741252 (India); Garg, Ashish [Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Gupta, Rajeev, E-mail: [Department of Physics, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur 208016 (India)


    Here, we present a time and temperature dependent magnetization study to understand the spin dynamics in flux grown single crystals of gallium ferrite (GaFeO{sub 3}), a known magnetoelectric, ferroelectric and ferrimagnet. Results of the magnetic measurements conducted in the field-cooled (FC) and zero-field-cooled (ZFC) protocols in the heating and cooling cycles were reminiscent of a “memory” effect. Subsequent time dependent magnetic relaxation measurements carried out in ZFC mode at 30 K with an intermittent cooling to 20 K in the presence of a small field show that the magnetization in the final wait period tends to follow its initial state which was present before the cooling break taken at 20 K. These observations provide an unambiguous evidence of single crystal gallium ferrite having a spin glass like phase. - Highlights: • Gallium ferrite a room temperature magnetoelectric and ferrimagnetic material. • Spin‐glass like phase at low temperatures below ∼200 K. • Observation of memory and aging effects in GFO.

  12. Aqueous stability of Ga- and N-polar gallium nitride.

    Foster, Corey M; Collazo, Ramon; Sitar, Zlatko; Ivanisevic, Albena


    The stability of III-nitride semiconductors in various solutions becomes important as researchers begin to integrate them into sensing platforms. This study quantitatively compares the stability of GaN surfaces with different polarities. This type of quantification is important because it represents the first step toward designing semiconductor material interfaces compatible with solution conditions. A stability study of Ga- and N-polar GaN was conducted by immersion of the surfaces in deionized H(2)O, pH 5, pH 9, and H(2)O(2) solutions for 7 days. Inductively coupled plasma mass spectrometry of the solutions was conducted to determine the amount of gallium leached from the surface. X-ray photoelectron spectroscopy and atomic force microscopy were used to compare the treated surfaces to untreated surfaces. The results show that both gallium nitride surface types exhibit the greatest stability in acidic and neutral solutions. Gallium polar surfaces were found to exhibit superior stability to nitrogen polar surfaces in the solutions studied. Our findings highlight the need for further research on surface passivation and functionalization techniques for polar III-nitride semiconductors.

  13. Gallium-68: chemistry and radiolabeled peptides exploring different oncogenic pathways.

    Morgat, Clément; Hindié, Elif; Mishra, Anil K; Allard, Michèle; Fernandez, Philippe


    Abstract Early and specific tumor detection and also therapy selection and response evaluation are some challenges of personalized medicine. This calls for high sensitive and specific molecular imaging such as positron emission tomography (PET). The use of peptides for PET molecular imaging has undeniable advantages: possibility of targeting through peptide-receptor interaction, small size and low-molecular weight conferring good penetration in the tissue or at cellular level, low toxicity, no antigenicity, and possibility of wide choice for radiolabeling. Among β(+)-emitter radioelements, Gallium-68 is a very attractive positron-emitter compared with carbon-11 or fluorine-18 taking into account its easy production via a (68)Ge/(68)Ga generator and well established radiochemistry. Gallium-68 chemistry is based on well-defined coordination complexes with macrocycle or chelates having strong binding properties, particularly suitable for linking peptides that allow resistance to in vivo transchelation of the metal ion. Understanding specific and nonspecific molecular mechanisms involved in oncogenesis is one major key to develop new molecular imaging tools. The present review focuses on peptide signaling involved in different oncogenic pathways. This peptide signalization might be common for tumoral and non-tumoral processes or could be specific of an oncological process. This review describes gallium chemistry and different (68)Ga-radiolabeled peptides already in use or under development aiming at developing molecular PET imaging of different oncological processes.


    A process was developed for the recovery of both arsenic and gallium from gallium arsenide polishing wastes. The economics associated with the current disposal techniques utilizing ferric hydroxide precipitation dictate that sequential recovery of toxic arsenic and valuble galliu...

  15. Challenges for critical raw material recovery from WEEE - The case study of gallium.

    Ueberschaar, Maximilian; Otto, Sarah Julie; Rotter, Vera Susanne


    Gallium and gallium compounds are more frequently used in future oriented technologies such as photovoltaics, light diodes and semiconductor technology. In the long term the supply risk is estimated to be critical. Germany is one of the major primary gallium producer, recycler of gallium from new scrap and GaAs wafer producer. Therefore, new concepts for a resource saving handling of gallium and appropriate recycling strategies have to be designed. This study focus on options for a possible recycling of gallium from waste electric and electronic equipment. To identify first starting points, a substance flow analysis was carried out for gallium applied in integrated circuits applied on printed circuit boards and for LEDs used for background lighting in Germany in 2012. Moreover, integrated circuits (radio amplifier chips) were investigated in detail to deduce first approaches for a recycling of such components. An analysis of recycling barriers was carried out in order to investigate general opportunities and risks for the recycling of gallium from chips and LEDs. Results show, that significant gallium losses arose in primary production and in waste management. 93±11%, equivalent to 43,000±4700kg of the total gallium potential was lost over the whole primary production process until applied in electronic goods. The largest share of 14,000±2300kggallium was lost in the production process of primary raw materials. The subsequent refining process was related to additional 6900±3700kg and the chip and wafer production to 21,700±3200kg lost gallium. Results for the waste management revealed only low collection rates for related end-of-life devices. Not collected devices held 300 ± 200 kg gallium. Due to the fact, that current waste management processes do not recover gallium, further 80 ± 10 kg gallium were lost. A thermal pre-treatment of the chips, followed by a manual separation allowed an isolation of gallium rich fractions, with gallium mass fractions up to

  16. Effects of post-deposition annealing ambient on band alignment of RF magnetron-sputtered Y2O3 film on gallium nitride.

    Quah, Hock Jin; Cheong, Kuan Yew


    The effects of different post-deposition annealing ambients (oxygen, argon, forming gas (95% N2 + 5% H2), and nitrogen) on radio frequency magnetron-sputtered yttrium oxide (Y2O3) films on n-type gallium nitride (GaN) substrate were studied in this work. X-ray photoelectron spectroscopy was utilized to extract the bandgap of Y2O3 and interfacial layer as well as establishing the energy band alignment of Y2O3/interfacial layer/GaN structure. Three different structures of energy band alignment were obtained, and the change of band alignment influenced leakage current density-electrical breakdown field characteristics of the samples subjected to different post-deposition annealing ambients. Of these investigated samples, ability of the sample annealed in O2 ambient to withstand the highest electric breakdown field (approximately 6.6 MV/cm) at 10-6 A/cm2 was related to the largest conduction band offset of interfacial layer/GaN (3.77 eV) and barrier height (3.72 eV).

  17. Analysis on insulator–metal transition in yttrium doped LSMO from electron density distribution

    S Israel; S Saravana Kumar; R Renuretson; R A J R Sheeba; R Saravanan


    Yttrium doped LSMO (La1−SrMnO3) was prepared using sol–gel technique and analysed for the insulator–metal transition fromcharge density variation in the unit cell with respect to different stoichiometric inclusion of yttrium. X-ray powder diffraction profiles of the samples were obtained and the well known Rietveld method and a versatile tool called maximum entropy method (MEM) were used for structural and profile refinement. The charge density in the unit cell was constructed using refined structure factors and was analysed. The charge ordering taking place in the insulator–metal transition was investigated and quantified. The insulator–metal transition was found to occur when 20% of La/Sr atoms were replaced by yttrium. The changes in the charge environment have also been analysed.

  18. Influence of Yttrium Implantation on Oxidation Behavior of Pure Nickel at 1 000℃

    JIANG Shi-hang; JIN Hui-ming; YAN Kun; GONG Ze-xiang


    Isothermal and cyclic oxidation behaviors of pure and yttrium-implanted nickel were studied at 1000℃ in air. The oxide scales formed on nickel substrates were performed using SEM and TEM. It was found that Yimplantation greatly improved the anti-oxidation ability of nickel both in isothermal and cyclic oxidizing experiments. Laser Raman microscopy was also used to study the stress status of oxide scales formed on nickel with and without yttrium. The main reason for the improvement in antioxidation and adhesion of oxide scale was Y-implantation greatly reduced the grain size of NiO and lowered the compressive stress within the scale. Yttrium implantation enhanced the adhesion of protective NiO oxide scale formed on nickel substrate.

  19. Positive effect of yttrium on the reduction of pores in cast Al alloy

    Hua, Guomin [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6 (Canada); Ahmadi, Hojat [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6 (Canada); Department of Mechanics of Agricultural Machinery, College of Agriculture and , Natural Resources, University of Tehran, Karaj (Iran, Islamic Republic of); Nouri, Meisam [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6 (Canada); Li, Dongyang, E-mail: [Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2G6 (Canada)


    Mechanical and electrochemical properties of Al alloys can be improved by adding a small amount of rare-earth such as yttrium. Here we demonstrate that adding yttrium also helps suppress the porosity in cast Al alloys, thus minimizing its detrimental effect on mechanical properties of the alloys. The mechanism behind is elucidated based on the hydrogen binding energies and the diffusion activation energies of hydrogen atoms in Al and Al–Y phases, calculated using the first-principle method. - Highlights: • The porosity of commercial Al alloy can be reduced by additive yttrium. • Formed Al{sub 3}Y phase helps reduce homogeneous nucleation of hydrogen bubbles. • Formed Al{sub 3}Y and Al{sub 2}Y phases could suppress the growth of hydrogen bubbles.

  20. Preparation of nanosized yttrium doped CeO2 catalyst used for photocatalytic application

    A. Akbari-Fakhrabadi


    Full Text Available In the present work, the pure CeO2 and yttrium doped CeO2 nanopowders were synthesized by the nitrate-fuel self-sustaining combustion method and calcined at 700 °C for 2 h. X-ray diffraction (XRD and high resolution electron transmission microscopy (HRTEM results demonstrated a cubic fluorite with high purity and the crystallite sizes less than 20 nm calculated from Scherrer’s formula. The BET specific surface area of yttrium doped CeO2 samples showed high values than those of pure CeO2. The photocatalytic activity of yttrium doped CeO2 showed high degradation of Rhodamine B solution under visible light illumination.

  1. Synthesis of yttrium doped nanocrystalline ZnO and its photocatalytic activity in methylene blue degradation


    Yttrium doped zinc oxide was prepared by microwave irradiation of Y (NO3)3·6H2O and Zn(NO3)2·4H2O as precursors, in ethanol–water medium. Highly polar ethanol–water medium (30/70, v/v) with hexamine and urea assist the formation of ZnO nuclei very rapidly in a specific fashion. Furthermore, Y3+ ions infiltration into Zn(OH)2 precipitate was facilitated by microwaves (2.45 GHz, 950 W). Yttrium doped nanocrystalline ZnO (ZnO-99 and ZnO-95) was formed with 1 and 5 mol% yttrium precursor. The pow...

  2. Fractionation of yttrium and holmium during basaltic soil weathering

    Thompson, Aaron; Amistadi, Mary Kay; Chadwick, Oliver A.; Chorover, Jon


    The anomalously low affinity of yttrium (Y) for iron (Fe) (oxyhydr)oxides relative to lanthanides with similar ionic radius (e.g., Ho) has been demonstrated in experiments with isolated Fe minerals and in a variety of marine systems that contain high concentrations of solid phase Fe. However, it has not previously been demonstrated to occur during soil genesis, despite the common observation that many soils become enriched in Fe over time. We hypothesized that Y would become progressively depleted in soils relative to Ho with increased weathering. Since, trivalent Y has an anomalously low Misono softness relative to other trivalent ions included in the rare earth element and yttrium group (REY3+), we also investigated whether soil REY fractionation reflects variation in Misono softness. To test this, we measured trends in total REY concentrations for Hawaiian soils derived from basaltic parent materials aged 0.3-4100 ky, and measured REYs released from the same samples during short-time (3 h) dissolution experiments conducted as part of a previous investigation linking dissolution with surface charge properties (Chorover et al., 2004). The chondrite-normalized Y/Ho ratios in the parent Hawaiian basalt (Chond[Y/Ho] = 0.998) and continental dust (Chond[Y/Ho] = 0.994) inputs are remarkably similar, and thus we can interpret deviations from Chond[Y/Ho] ∼ 1.0 to result from soil biogeochemical processes and not source mixing. Between 0.3 and 20 ky, the Chond[Y/Ho] ratio of the subsurface soils decreased from 0.96 ± 0.07(2σ) to 0.71 ± 0.05, and then remained unchanged across the rest of the weathering sequence. In contrast, the Chond[Y/Ho] ratio of the surface soils decreased from 0.99 ± 0.07 to 0.76 ± 0.05 at 150 ky and then, most likely due to continued dust inputs, increased to 1.04 ± 0.07 in the oldest soils. Analysis of the short-time dissolution experiments revealed preferential release of Y relative to Ho (and also La relative Pr) at intermediate pH where

  3. Structural stability of scandium on nonpolar GaN (112{sup ¯}0) and (101{sup ¯}0) surfaces: A first-principles study

    González-Hernández, Rafael, E-mail: [Grupo de Investigación en Física Aplicada, Departamento de Física, Universidad del Norte, Barranquilla (Colombia); Martínez, Gustavo; López-Perez, William [Grupo de Investigación en Física Aplicada, Departamento de Física, Universidad del Norte, Barranquilla (Colombia); Rodriguez, Jairo Arbey [Grupo de Estudio de Materiales, Departamento de Física, Universidad Nacional de Colombia, Bogotá (Colombia)


    First-principles calculations based on density-functional theory have been implemented to study the scandium (Sc) adsorption and incorporation on nonpolar GaN (112{sup ¯}0) and (101{sup ¯}0) surfaces. It is found that Sc adatom prefers to reside at bridge positions, between the hollow and top sites, on both GaN nonpolar surfaces. In addition, calculating the relative surface energy of several Sc configurations, we constructed a phase diagram showing the energetically most stable surfaces as a function of the Ga chemical potentials. Based on these results, we have found that incorporation of Sc adatoms in the Ga-substitutional site is energetically more favorable compared with the adsorption on the top layers. This effect leads to the formation of ScN interlayers on nonpolar GaN (112{sup ¯}0) and (101{sup ¯}0) surfaces, which reduces the dislocation densities between GaN and ScN.

  4. A Chain Structure Based on Homodinuclear Scandium Units: [Sc(μ-OH)(2,5-pydc)(H2O)]n

    HUANG You-Gui; JIANG Fei-Long; WU Ming-Yan; GAO Qiang; WEI Wei; HONG Mao-Chun


    The reaction of pyridine-2,5-dicarboxylic acid with Sc2O3 under hydrothermal con-dition yields a new complex [Sc(μ-OH)(2,5-pydc)(H2P)]n 1 which has a chain structure based on homodinuclear scandium units. Crystal data for 1: space group P1, a = 6.7192(13), b = 7.6131(13),c= 8.9313(14) A, α = 95.976(6), β = 101.663(6),γ,= 108.151(5)°, V = 418.26(13) A3, Z = 2, Dc =1.946 g/cm3,μ = 0.889 mm-1, F(000) = 248, C7H6NO6Sc, M, = 245.09, the final R = 0.0429 and wR = 0.1086.

  5. Improvement in the Shape Memory Response of Ti50.5Ni24.5Pd25 High-Temperature Shape Memory Alloy with Scandium Microalloying

    Atli, K. C.; Karaman, I; Noebe, R. D.; Garg, A.; Chumlyakov, Y. I.; Kireeva, I. V.


    A Ti(50.5)Ni(24.5)Pd25 high-temperature shape memory alloy (HTSMA) is microalloyed with 0.5 at. pct scandium (Sc) to enhance its shape-memory characteristics, in particular, dimensional stability under repeated thermomechanical cycles. For both Ti(50.5)Ni(24.5)Pd25 and the Sc-alloyed material, differential scanning calorimetry is conducted for multiple cycles to characterize cyclic stability of the transformation temperatures. The microstructure is evaluated using electron microscopy, X-ray diffractometry, and wavelength dispersive spectroscopy. Isobaric thermal cycling experiments are used to determine transformation temperatures, dimensional stability, and work output as a function of stress. The Sc-doped alloy displays more stable shape memory response with smaller irrecoverable strain and narrower thermal hysteresis than the baseline ternary alloy. This improvement in performance is attributed to the solid solution hardening effect of Sc.

  6. Improvement in the Shape Memory Response of Ti50.5Ni24.5Pd25 High-Temperature Shape Memory Alloy with Scandium Microalloying

    Atli, K. C.; Karaman, I; Noebe, R. D.; Garg, A.; Chumlyakov, Y. I.; Kireeva, I. V.


    A Ti(50.5)Ni(24.5)Pd25 high-temperature shape memory alloy (HTSMA) is microalloyed with 0.5 at. pct scandium (Sc) to enhance its shape-memory characteristics, in particular, dimensional stability under repeated thermomechanical cycles. For both Ti(50.5)Ni(24.5)Pd25 and the Sc-alloyed material, differential scanning calorimetry is conducted for multiple cycles to characterize cyclic stability of the transformation temperatures. The microstructure is evaluated using electron microscopy, X-ray diffractometry, and wavelength dispersive spectroscopy. Isobaric thermal cycling experiments are used to determine transformation temperatures, dimensional stability, and work output as a function of stress. The Sc-doped alloy displays more stable shape memory response with smaller irrecoverable strain and narrower thermal hysteresis than the baseline ternary alloy. This improvement in performance is attributed to the solid solution hardening effect of Sc.

  7. Yttrium bismuth titanate pyrochlore mixed oxides for photocatalytic hydrogen production

    Merka, Oliver


    In this work, the sol-gel synthesis of new non-stoichiometric pyrochlore titanates and their application in photocatalytic hydrogen production is reported. Visible light response is achieved by introducing bismuth on the A site or by doping the B site by transition metal cations featuring partially filled d orbitals. This work clearly focusses on atomic scale structural changes induced by the systematical introduction of non-stoichiometry in pyrochlore mixed oxides and the resulting influence on the activity in photocatalytic hydrogen production. The materials were characterized in detail regarding their optical properties and their atomic structure. The pyrochlore structure tolerates tremendous stoichiometry variations. The non-stoichiometry in A{sub 2}O{sub 3} rich compositions is compensated by distortions in the cationic sub-lattice for the smaller Y{sup 3+} cation and by evolution of a secondary phase for the larger Bi{sup 3+} cation on the A site. For TiO{sub 2} rich compositions, the non-stoichiometry leads to a special vacancy formation in the A and optionally O' sites. It is shown that pyrochlore mixed oxides in the yttrium bismuth titanate system represent very active and promising materials for photocatalytic hydrogen production, if precisely and carefully tuned. Whereas Y{sub 2}Ti{sub 2}O{sub 7} yields stable hydrogen production rates over time, the bismuth richer compounds of YBiTi{sub 2}O{sub 7} and Bi{sub 2}Ti{sub 2}O{sub 7} are found to be not stable under irradiation. This drawback is overcome by applying a special co-catalyst system consisting of a precious metal core and a Cr{sub 2}O{sub 3} shell on the photocatalysts.

  8. Rare earth activated yttrium aluminate phosphors with modulated luminescence.

    Muresan, L E; Popovici, E J; Perhaita, I; Indrea, E; Oro, J; Casan Pastor, N


    Yttrium aluminate (Y3 A5 O12 ) was doped with different rare earth ions (i.e. Gd(3+) , Ce(3+) , Eu(3+) and/or Tb(3+) ) in order to obtain phosphors (YAG:RE) with general formula,Y3-x-a Gdx REa Al5 O12 (x = 0; 1.485; 2.97 and a = 0.03). The synthesis of the phosphor samples was done using the simultaneous addition of reagents technique. This study reveals new aspects regarding the influence of different activator ions on the morpho-structural and luminescent characteristics of garnet type phosphor. All YAG:RE phosphors are well crystallized powders containing a cubic-Y3 Al5 O12 phase as major component along with monoclinic-Y4 Al2 O9 and orthorhombic-YAlO3 phases as the impurity. The crystallites dimensions of YAG:RE phosphors vary between 38 nm and 88 nm, while the unit cell slowly increase as the ionic radius of the activator increases. Under UV excitation, YAG:Ce exhibits yellow emission due to electron transition in Ce(3+) from the 5d level to the ground state levels ((2) F5/2 , (2) F7/2 ). The emission intensity of Ce(3+) is enhanced in the presence of the Tb(3+) ions and is decreased in the presence of Eu(3+) ions due to some radiative or non-radiative processes that take place between activator ions. By varying the rare earth ions, the emission colour can be modulated from green to white and red. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Root Cause Analysis of Gastroduodenal Ulceration After Yttrium-90 Radioembolization

    Lam, Marnix G. E. H. [Stanford University School of Medicine, Division of Interventional Radiology (United States); Banerjee, Subhas [Stanford University School of Medicine, Division of Gastroenterology and Hepatology (United States); Louie, John D.; Abdelmaksoud, Mohamed H. K. [Stanford University School of Medicine, Division of Interventional Radiology (United States); Iagaru, Andrei H. [Stanford University School of Medicine, Division of Nuclear Medicine and Molecular Imaging (United States); Ennen, Rebecca E.; Sze, Daniel Y., E-mail: [Stanford University School of Medicine, Division of Interventional Radiology (United States)


    IntroductionA root cause analysis was performed on the occurrence of gastroduodenal ulceration after hepatic radioembolization (RE). We aimed to identify the risk factors in the treated population and to determine the specific mechanism of nontarget RE in individual cases. Methods: The records of 247 consecutive patients treated with yttrium-90 RE for primary (n = 90) or metastatic (n = 157) liver cancer using either resin (n = 181) or glass (n = 66) microspheres were reviewed. All patients who developed a biopsy-proven microsphere-induced gastroduodenal ulcer were identified. Univariate and multivariate analyses were performed on baseline parameters and procedural data to determine possible risk factors in the total population. Individual cases were analyzed to ascertain the specific cause, including identification of the culprit vessel(s) leading to extrahepatic deposition of the microspheres. Results: Eight patients (3.2 %) developed a gastroduodenal ulcer. Stasis during injection was the strongest independent risk factor (p = 0.004), followed by distal origin of the gastroduodenal artery (p = 0.004), young age (p = 0.040), and proximal injection of the microspheres (p = 0.043). Prolonged administrations, pain during administration, whole liver treatment, and use of resin microspheres also showed interrelated trends in multivariate analysis. Retrospective review of intraprocedural and postprocedural imaging showed a probable or possible culprit vessel, each a tiny complex collateral vessel, in seven patients. Conclusion: Proximal administrations and those resulting in stasis of flow presented increased risk for gastroduodenal ulceration. Patients who had undergone bevacizumab therapy were at high risk for developing stasis.

  10. Hanford isotope project strategic business analysis yttrium-90 (Y-90)



    The purpose of this analysis is to address the short-term direction for the Hanford yttrium-90 (Y-90) project. Hanford is the sole DOE producer of Y-90, and is the largest repository for its source in this country. The production of Y-90 is part of the DOE Isotope Production and Distribution (IP and D) mission. The Y-90 is ``milked`` from strontium-90 (Sr-90), a byproduct of the previous Hanford missions. The use of Sr-90 to produce Y-90 could help reduce the amount of waste material processed and the related costs incurred by the clean-up mission, while providing medical and economic benefits. The cost of producing Y-90 is being subsidized by DOE-IP and D due to its use for research, and resultant low production level. It is possible that the sales of Y-90 could produce full cost recovery within two to three years, at two curies per week. Preliminary projections place the demand at between 20,000 and 50,000 curies per year within the next ten years, assuming FDA approval of one or more of the current therapies now in clinical trials. This level of production would incentivize private firms to commercialize the operation, and allow the government to recover some of its sunk costs. There are a number of potential barriers to the success of the Y-90 project, outside the control of the Hanford Site. The key issues include: efficacy, Food and Drug Administration (FDA) approval and medical community acceptance. There are at least three other sources for Y-90 available to the US users, but they appear to have limited resources to produce the isotope. Several companies have communicated interest in entering into agreements with Hanford for the processing and distribution of Y-90, including some of the major pharmaceutical firms in this country.

  11. Two anionically derivatized scandium oxoselenates(IV): ScF[SeO3] and Sc2O2[SeO3

    Greiner, Stefan; Chou, Sheng-Chun; Schleid, Thomas


    Scandium fluoride oxoselenate(IV) ScF[SeO3] and scandium oxide oxoselenate(IV) Sc2O2[SeO3] could be synthesized through solid-state reactions. ScF[SeO3] was obtained phase-pure, by reacting mixtures of Sc2O3, ScF3 and SeO2 (molar ratio: 1:1:3) together with CsBr as fluxing agent in corundum crucibles embedded into evacuated glassy silica ampoules after firing at 700 °C for seven days. Sc2O2[SeO3] first emerged as by-product during the attempts to synthesize ScCl[SeO3] following aforementioned synthesis route and could later be reproduced from appropriate Sc2O3/SeO3 mixtures. ScF[SeO3] crystallizes monoclinically in space group P21/m with a=406.43(2), b =661.09(4), c=632.35(4) pm, β=93.298(3)° and Z=2. Sc2O2[SeO3] also crystallizes in the monoclinic system, but in space group P21/n with a=786.02(6), b=527.98(4), c=1086.11(8) pm, β=108.672(3)° for Z=4. The crystal structures of both compounds are strongly influenced by the stereochemically active lone pairs of the ψ1-tetrahedral [SeO3]2- anions. They also show partial structures, where the derivatizing F- or O2- anions play an important role. For ScF[SeO3] chains of the composition 2+ ∞ 1[FSc2/2] form from connected [FSc2]5+ dumbbells, while [OSc3]7+ pyramids and [OSc4]10+ tetrahedra units are condensed to layers according to 2+ ∞ 2[O2Sc2 ] in Sc2O2[SeO3].

  12. Zintl cluster chemistry in the alkali-metal-gallium systems

    Henning, Robert [Iowa State Univ., Ames, IA (United States)


    Previous research into the alkali-metal-gallium systems has revealed a large variety of networked gallium deltahedra. The clusters are analogues to borane clusters and follow the same electronic requirements of 2n+2 skeletal electrons for closo-deltahedra. This work has focused on compounds that do not follow the typical electron counting rules. The first isolated gallium cluster was found in Cs8Ga11. The geometry of the Ga117- unit is not deltahedral but can be described as a penta-capped trigonal prism. The reduction of the charge from a closo-Ga1113- to Ga117- is believed to be the driving force of the distortion. The compound is paramagnetic because of an extra electron but incorporation of a halide atom into the structure captures the unpaired electron and forms a diamagnetic compound. A second isolated cluster has been found in Na10Ga10Ni where the tetra-capped trigonal prismatic gallium is centered by nickel. Stabilization of the cluster occurs through Ni-Ga bonding. A simple two-dimensional network occurs in the binary K2Ga3 Octahedra are connected through four waist atoms to form a layered structure with the potassium atoms sitting between the layers. Na30.5Ga60-xAgx is nonstoichiometric and needs only a small amount of silver to form (x ~ 2-6). The structure is composed of three different clusters which are interconnected to form a three-dimensional structure. The RbGa3-xAux system is also nonstoichiometric with a three-dimensional structure composed of Ga8 dodecahedra and four-bonded gallium atoms. Unlike Na30.5Ga60-xAgx, the RbGa3 binary is also stable. The binary is formally a Zintl phase but the ternary is not. Some chemistry in the alkali-metal-indium system also has been explored. A new potassium-indium binary

  13. Nanostructured yttrium aluminum garnet powders synthesized by co-precipitation method using tetraethylenepentamine

    李先学; 王文菊


    Tetraethylenepentamine(C8H23N5,TEPA) has been used as a novel precipitant to synthesize yttrium aluminum garnet(Y3Al5O12,YAG) precursor from a mixed solution of aluminum and yttrium nitrates via a normal-strike co-precipitation method without controlling the pH value during precipitation process.The original precursor was analyzed by thermogravimetry/differential scanning calorimetry(TG/DSC).The evolution of phase composition and micro-structure of the as-synthesized YAG powders were characterized by X-ray ...


    H. Tong; Y.G. Wang; J.H. Lei; D.Q. Li; P. Tang


    Mass transfer and extraction kinetics of yttrium with the purified Cyanex 923 in nheptane from nitrate medium have been investigated by using a constant interfacial cell with laminar flow at 298K. The interfacial adsorption properties of purified Cyanex 923-heptane-0. 20mol/L (H, Na)NO3 were studied at 298K. The experimental results show that the mass transfer is controlled by diffusion and the chemical reactions are carried out in the interfacial zone. The extraction rates of yttrium were measured at different chemical compositions by varying ionic strength, pH values and the purified Cyanex 923 concentrations. The initial extraction rate equations were obtained.

  15. Optical bistability in erbium-doped yttrium aluminum garnet crystal combined with a laser diode.

    Maeda, Y


    Optical bistability was observed in a simple structure of an injection laser diode combined with an erbium-doped yttrium aluminum garnet crystal. Since a hysteresis characteristic exists in the relationship between the wavelength and the injection current of a laser diode, an optical memory function capable of holding the output status is confirmed. In addition, an optical signal inversion was caused by the decrease of transmission of the erbium-doped yttrium aluminum garnet crystal against the red shift (principally mode hopping) of the laser diode. It is suggested that the switching time of this phenomenon is the time necessary for a mode hopping by current injection.


    Tan H.


    Full Text Available The yttrium aluminum garnet (YAG long fibers were prepared by the sol-gel method using aluminum chloride, aluminum powder, yttrium oxide and acetic acid as raw materials. The grain growth law is given by Dn – D0n = Kt (D0 = initial grain size, D = average grain size at time t, n = grain growth exponent and K = reaction constant. The grain growth exponent and activation energy of YAG fibers are ≈ 3 and 200 kJ/mol, respectively. The grain-growth behaviors of YAG were influenced by experimental conditions such as raw materials, initial particle size, initial particle distribution, etc.

  17. Lack of rise in serum prolactin following yttrium-90 interstitial irradiation for acromegaly

    Clark, A.J.L.; Chahal, P.; Mashiter, K.; Joplin, G.F. (Royal Postgraduate Medical School, London (UK))


    The authors have investigated the possibility that the increase in serum PRL levels observed in patients with acromegaly treated with external irradiation could be due to damage to the hypothalamus or portal vessels, by comparing the effects of yttrium-90 interstitial irradiation, which is highly localised and does not normally extend to the hypothalamus, in a similar series of patients. These results are consistent with the hypothesis; a less likely explanation is that an overgrowth of radio-resistant PRL-secreting tumour cells is occurring after external irradiation, but not after yttrium-90 implantation.

  18. The nature of photoinduced changes in the magnetostriction of yttrium-iron garnet single crystals

    Vorob' eva, N. V., E-mail: [Russian Academy of Sciences, Institute of Molecular and Crystals Physics (Russian Federation)


    A model of the occurrence of photoinduced changes in linear magnetostriction is proposed based on a complex experimental study of magnetostrictive strains in yttrium-iron garnets Y{sub 3}Fe{sub 5}O{sub 12} with low contents of different impurities. Analytical expressions for calculating the magnetostriction in yttrium-iron garnet single crystals with different types of doping are presented. The correlation of the photoinduced change in the magnetostriction with the crystallographic features of the samples is demonstrated. The changes in the magnetostriction constants are analyzed quantitatively for samples prepared in different ways.

  19. Magnetophotonic crystal with cerium substituted yttrium iron garnet and enhanced Faraday rotation angle.

    Yoshimoto, Takuya; Goto, Taichi; Isogai, Ryosuke; Nakamura, Yuichi; Takagi, Hiroyuki; Ross, C A; Inoue, M


    Magnetophotonic crystals (MPCs) comprising cerium-substituted yttrium iron garnet (CeYIG) sandwiched by two Bragg mirrors were fabricated by vacuum annealing. CeYIG was deposited on Bragg mirrors at room temperature and annealed in 5 Pa of residual air. No ceria or other non-garnet phases were detected. Cerium 3 + ions substituted on the yttrium sites and no cerium 4 + ions were found. The Faraday rotation angle of the MPC was -2.92° at a wavelength of λ = 1570 nm was 30 times larger than that of the CeYIG film. These results showed good agreement with calculated values derived using a matrix approach.

  20. Bone tissue incorporates in vitro gallium with a local structure similar to gallium-doped brushite.

    Korbas, M; Rokita, E; Meyer-Klaucke, W; Ryczek, J


    During mineral growth in rat bone-marrow stromal cell cultures, gallium follows calcium pathways. The dominant phase of the cell culture mineral constitutes the poorly crystalline hydroxyapatite (HAP). This model system mimics bone mineralization in vivo. The structural characterization of the Ga environment was performed by X-ray absorption spectroscopy at the Ga K-edge. These data were compared with Ga-doped synthetic compounds (poorly crystalline hydroxyapatite, amorphous calcium phosphate and brushite) and with strontium-treated bone tissue, obtained from the same culture model. It was found that Sr(2+) substitutes for Ca(2+) in the HAP crystal lattice. In contrast, the replacement by Ga(3+) yielded a much more disordered local environment of the probe atom in all investigated cell culture samples. The coordination of Ga ions in the cell culture minerals was similar to that of Ga(3+), substituted for Ca(2+), in the Ga-doped synthetic brushite (Ga-DCPD). The Ga atoms in the Ga-DCPD were coordinated by four oxygen atoms (1.90 A) of the four phosphate groups and two oxygen atoms at 2.02 A. Interestingly, the local environment of Ga in the cell culture minerals was not dependent on the onset of Ga treatment, the Ga concentration in the medium or the age of the mineral. Thus, it was concluded that Ga ions were incorporated into the precursor phase to the HAP mineral. Substitution for Ca(2+ )with Ga(3+) distorted locally this brushite-like environment, which prevented the transformation of the initially deposited phase into the poorly crystalline HAP.

  1. Synthesis, Radiolabelling and In Vitro Characterization of the Gallium-68-, Yttrium-90- and Lutetium-177-Labelled PSMA Ligand, CHX-A''-DTPA-DUPA-Pep

    Benjamin Baur


    Full Text Available Since prostate-specific membrane antigen (PSMA has been identified as a diagnostic target for prostate cancer, many urea-based small PSMA-targeting molecules were developed. First, the clinical application of these Ga-68 labelled compounds in positron emission tomography (PET showed their diagnostic potential. Besides, the therapy of prostate cancer is a demanding field, and the use of radiometals with PSMA bearing ligands is a valid approach. In this work, we describe the synthesis of a new PSMA ligand, CHX-A''-DTPA-DUPA-Pep, the subsequent labelling with Ga-68, Lu-177 and Y-90 and the first in vitro characterization. In cell investigations with PSMA-positive LNCaP C4-2 cells, KD values of ≤14.67 ± 1.95 nM were determined, indicating high biological activities towards PSMA. Radiosyntheses with Ga-68, Lu-177 and Y-90 were developed under mild reaction conditions (room temperature, moderate pH of 5.5 and 7.4, respectively and resulted in nearly quantitative radiochemical yields within 5 min.

  2. Laser systems for ablative fractional resurfacing

    Paasch, Uwe; Haedersdal, Merete


    of a variety of skin conditions, primarily chronically photodamaged skin, but also acne and burn scars. In addition, it is anticipated that AFR can be utilized in the laser-assisted delivery of topical drugs. Clinical efficacy coupled with minimal downtime has driven the development of various fractional...... ablative laser systems. Fractionated CO(2) (10,600-nm), erbium yttrium aluminum garnet, 2940-nm and yttrium scandium gallium garnet, 2790-nm lasers are available. In this article, we present an overview of AFR technology, devices and histopathology, and we summarize the current clinical possibilities...... with AFR incorporating our personal experience. AFR is still in the exploratory era, and systematic investigations of clinical outcomes related to various system settings are needed....

  3. Technologic advances in endodontics.

    Mortman, Rory E


    This article addresses technologic advances in endodontics pertaining to new and emerging technology. Cone-beam computed tomography and optical occurrence tomography are 2 new imaging technologies that can assist the practitioner in the diagnosis of pulpal disease. The self-adjusting file and the Apexum device can be used for instrumentation and bulk debridement of an apical lesion, respectively. Neodymium:yttrium-aluminum-garnet laser, erbium:chromium:yttrium-scandium-gallium-garnet laser, EndoActivator, EndoVac, and light-activated disinfection may assist the practitioner in cleaning the root canal system. Computed tomography-guided surgery shows promise in making endodontic surgery easier, as does mineral trioxide aggregate cement for regenerative endodontic procedures.

  4. Copper scandium zirconium phosphate

    Bond, Andrew David; Warner, Terence Edwin


    The title compound, with nominal formula Cu(2)ScZr(PO(4))(3), has a beige coloration and displays fast Cu(+) cation conduction at elevated temperatures. It adopts a NASICON-type structure in the space group R3c. The examined crystal was an obverse-reverse twin with approximately equal twin compon......, but no movement into or out of the M2 site. Free refinement of the Cu site-occupancy factors suggests that the formula of the crystal is Cu(1.92(1))ScZr(PO(4))(3), which is consistent with the low-level presence of Cu(2+) exclusively in the M2 site....

  5. Gallium-containing polymer brush film as efficient supported Lewis acid catalyst in a glass microreactor

    Munirathinam, Rajesh; Ricardi, Roberto; Egberink, Richard J.M.; Huskens, Jurriaan; Holtkamp, Michael; Wormeester, Herbert; Karst, U.; Verboom, Willem


    Polystyrene sulfonate polymer brushes, grown on the interior of the microchannels in a microreactor, have been used for the anchoring of gallium as a Lewis acid catalyst. Initially, gallium-containing polymer brushes were grown on a flat silicon oxide surface and were characterized by FTIR,

  6. Gallium nitrate: effects on cartilage during limb regeneration in the axolotl, Ambystoma mexicanum.

    Tassava, Roy A; Mendenhall, Luciara; Apseloff, Glen; Gerber, Nicholas


    Gallium nitrate, a drug shown to have efficacy in Paget's disease of bone, hypercalcemia of malignancy, and a variety of experimental autoimmune diseases, also inhibits the growth of some types of cancer. We examined dose and timing of administration of gallium nitrate on limb regeneration in the Mexican axolotl, Ambystoma mexicanum. Administered by intraperitoneal injection, gallium nitrate inhibited limb regeneration in a dose-dependent manner. Gallium nitrate initially suppressed epithelial wound healing and subsequently distorted both anterior-posterior and proximo-distal chondrogenic patterns. Gallium nitrate given at three days after amputation severely inhibited regeneration at high doses (6.25 mg/axolotl) and altered the normal patterning of the regenerates at low doses (3.75 mg/axolotl). Administration of 6.25 mg of gallium nitrate at four or 14 days prior to amputation also inhibited regeneration. In amputated limbs of gallium-treated axolotls, the chondrocytes were lost from inside the radius/ulna. Limbs that regenerated after gallium treatment was terminated showed blastema formation preferentially over the ulna. New cartilage of the regenerate often attached to the sides of the existing radius/ulna proximally into the stump and less so to the distal cut ends. J. Exp. Zool. 293:384-394, 2002.

  7. Failure of Gallium-67 scintigraphy to identify reliably noninfectious interstitial nephritis: concise communication

    Graham, G.D.; Lundy, M.M.; Moreno, A.J.


    Gallium-67 scintigraphy has been reported to be useful in the diagnosis of noninfectious interstitial nephritis. We studied 12 patients with Ga-67 citrate that were diagnosed as having noninfectious interstitial nephritis on renal biopsy. Only seven of the twelve patients with interstitial nephritis on biopsy were scan-positive. Gallium-67 scintigraphy may not reliably identify noninfectious interstitial nephritis.

  8. Thermal cycling, DLTS, and PEC studies on LEC gallium arsenide. [GaAs:Si

    Santhanaraghavan, P. (Anna Univ., Madras (India). Crystal Growth Centre); Sankaranarayanan, K. (Anna Univ., Madras (India). Crystal Growth Centre); Arokiaraj, J. (Anna Univ., Madras (India). Crystal Growth Centre); Anbukumar, S. (Anna Univ., Madras (India). Crystal Growth Centre); Kumar, J. (Anna Univ., Madras (India). Crystal Growth Centre); Ramasamy, P. (Anna Univ., Madras (India). Crystal Growth Centre)


    This paper discusses the growth of gallium arsenide single crystals using the LEC technique. The Semi-insulating gallium arsenide was studied. The defect investigations were made by DLTS and etching studies. The variation of deep level concentration along the wafer was estimated using DLTS. The fabrication and efficiency of the PEC Solar cells are also reported. (orig.)

  9. Two-photon-absorption cross section of Nd3+ in yttrium aluminum garnet and yttrium lithium fluoride near 1.06 μm

    Chase, L. L.; Payne, Stephen A.


    We have measured the spectrally integrated two-photon-absorption (TPA) cross sections for the 4I9/2--> 4G7/2 transitions of Nd3+ and obtained values of 1.2×10-40 and 0.15×10-40 cm4 for Nd3+-doped yttrium aluminum garnet (YAG) and yttrium lithium fluoride (YLF), respectively. These results are in satisfactory agreement with theoretical calculations based on the properties of Nd3+ free-ion wave functions. The difference between YAG and YLF, however, is not accounted for by the free-ion theory and suggests that the intermediate-state energies and wave functions are considerably host dependent. In addition, we conclude, based on our measurements, that rare-earth TPA will not contribute significantly to either losses or the nonlinear refractive index in typical laser media employing rare-earth ions.

  10. Thermal Stability and Spectroscopic Properties of Yb3+-Doped New Gallium-Lead-Germanate Glass

    XU Shi-Qing; FENG Ai-Ming; ZHANG Li-Yan; ZHAO Shi-Long; WANG Bao-Ling; ZHANG Jue; WANG Wei; BAO Ren-Qiang


    @@ Yb3+-doped new gallium-lead-germanate glass is presented. Thermal stability, spectroscopic and laser performance parameters of the Yb3+-doped new gallium-lead-germanate glass are calculated. The results show that the Yb3+-doped new gallium-lead-germanate glass has good thermal stability (△T = 198 ℃), high stimulated emission cross section (0.79pm2), and long fluorescence lifetime (1.46ms). Compared with other Yb3+-doped glass hosts, the Yb3+-doped new gallium-lead-germanate glass has better laser performance parameters and laser properties, indicating that Yb3+-doped new gallium-lead-germanate glass is a promising laser material for short pulse generation in diode pumped lasers, short pulse generation tunable laser, high-peak power and high-average power lasers.

  11. Activity of gallium on prevention of fatal cage-layer osteoporosis.

    Chen, Xiuxia; Wang, Chao


    The prevention of fatal cage-layer osteoporosis of gallium was studied in this paper. One-day-old hens were fed up to 68 weeks on a control diet and diets containing gallium. Plasma variables were measured during lay. End-of-lay trabecular and medullary bone volumes in the proximal tarsometatarsus and free thoracic vertebra were measured by histomorphometry. Medullary and trabecular bone volumes were increased significantly by supplementation with gallium. The experiment confirmed that dietary gallium supplementation was an effective way to enhance the egg production and reduce mortality percentage. The beneficial effects of gallium supplementation over the lifetime of the hens were attributable mainly to improved cage-layer osteoporosis.

  12. Gallium nitrate regulates rat osteoblast expression of osteocalcin protein and mRNA levels.

    Guidon, P T; Salvatori, R; Bockman, R S


    Gallium nitrate, a group IIIa metal salt, has been found to be clinically effective for the treatment of accelerated bone resorption in cancer-related hypercalcemia and Paget's disease. Here we report the effects of gallium nitrate on osteocalcin mRNA and protein levels on the rat osteoblast-like cell line ROS 17/2.8. Gallium nitrate reduced both constitutive and vitamin D3-stimulated osteocalcin protein levels in culture medium by one-half and osteocalcin mRNA levels to one-third to one-tenth of control. Gallium nitrate also inhibited vitamin D3 stimulation of osteocalcin and osteopontin mRNA levels but did not affect constitutive osteopontin mRNA levels. Among several different metals examined, gallium was unique in its ability to reduce osteocalcin mRNA levels without decreasing levels of other mRNAs synthesized by ROS 17/2.8 cells. The effects of gallium nitrate on osteocalcin mRNA and protein synthesis mimic those seen when ROS 17/2.8 cells are exposed to transforming growth factor beta 1 (TGF beta 1); however, TGF-beta 1 was not detected in gallium nitrate-treated ROS 17/2.8 cell media. Use of the RNA polymerase II inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole demonstrated that gallium nitrate did not alter the stability of osteocalcin mRNA. Transient transfection assays using the rat osteocalcin promoter linked to the bacterial reporter gene chloramphenicol acetyltransferase indicated that gallium nitrate blocked reporter gene expression stimulated by the osteocalcin promoter. This is the first reported effect of gallium nitrate on isolated osteoblast cells.

  13. Effect of yttrium addition on water-gas shift reaction over CuO/CeO2 catalysts

    SHE Yusheng; LI Lei; ZHAN Yingying; LIN Xingyi; ZHENG Qi; WEI Kemei


    This paper presented a study on the role of yttrium addition to CuO/CeO2 catalyst for water-gas shift reaction. A single-step co-precipitation method was used for preparation of a series of yttrium doped CuO/CeO2 catalysts with yttrium content in the range of 0-5wt.%. Properties of the obtained samples were characterized and analyzed by X-ray diffraction (XRD), Raman spectroscopy, H2-TPR, cyclic voltammetry (CV) and the BET method. The results revealed that catalytic activity was increased with the yttrium content at first, but then decreased with the further increase of yttrium content. Herein, CuO/CeO2 catalyst doped with 2wt.% of yttrium showed the highest catalytic activity (CO conversion reaches 93.4% at 250℃) and thermal stability for WGS reaction. The catalytic activity was correlated with the surface area, the area of peak y of H2-TPR profile (I.e., the reduction of surface copper oxide (crystalline forms) interacted with surface oxygen vacancies on ceria), and the area of peak C2 and A1 (Cu0→Cu2+ in cyclic voltammetry process), respectively. Besides, Raman spectra provided evidences for a synergistic Cu-Ovacancy interaction, and it was indicated that doping yttrium may facilitate the formation of oxygen vacancies on ceria.

  14. Yttrium recovery from primary and secondary sources: A review of main hydrometallurgical processes

    Innocenzi, Valentina, E-mail: [Department of Industrial Engineering, of Information and Economy, University of L’Aquila, Via Giovanni Gronchi 18, Zona industriale di Pile, 67100 L’Aquila (Italy); De Michelis, Ida [Department of Industrial Engineering, of Information and Economy, University of L’Aquila, Via Giovanni Gronchi 18, Zona industriale di Pile, 67100 L’Aquila (Italy); Kopacek, Bernd [SAT, Austrian Society for Systems Engineering and Automation, Gurkasse 43/2, A-1140 Vienna (Austria); Vegliò, Francesco [Department of Industrial Engineering, of Information and Economy, University of L’Aquila, Via Giovanni Gronchi 18, Zona industriale di Pile, 67100 L’Aquila (Italy)


    Highlights: • Review of the main hydrometallurgical processes to recover yttrium. • Recovery of yttrium from primary sources. • Recovery of yttrium from e-waste and other types of waste. - Abstract: Yttrium is important rare earths (REs) used in numerous fields, mainly in the phosphor powders for low-energy lighting. The uses of these elements, especially for high-tech products are increased in recent years and combined with the scarcity of the resources and the environmental impact of the technologies to extract them from ores make the recycling waste, that contain Y and other RE, a priority. The present review summarized the main hydrometallurgical technologies to extract Y from ores, contaminated solutions, WEEE and generic wastes. Before to discuss the works about the treatment of wastes, the processes to retrieval Y from ores are discussed, since the processes are similar and derived from those already developed for the extraction from primary sources. Particular attention was given to the recovery of Y from WEEE because the recycle of them is important not only for economical point of view, considering its value, but also for environmental impact that this could be generated if not properly disposal.

  15. Monte carlo simulations of Yttrium reaction rates in Quinta uranium target

    Suchopár M.


    Full Text Available The international collaboration Energy and Transmutation of Radioactive Waste (E&T RAW performed intensive studies of several simple accelerator-driven system (ADS setups consisting of lead, uranium and graphite which were irradiated by relativistic proton and deuteron beams in the past years at the Joint Institute for Nuclear Research (JINR in Dubna, Russia. The most recent setup called Quinta, consisting of natural uranium target-blanket and lead shielding, was irradiated by deuteron beams in the energy range between 1 and 8 GeV in three accelerator runs at JINR Nuclotron in 2011 and 2012 with yttrium samples among others inserted inside the setup to measure the neutron flux in various places. Suitable activation detectors serve as one of possible tools for monitoring of proton and deuteron beams and for measurements of neutron field distribution in ADS studies. Yttrium is one of such suitable materials for monitoring of high energy neutrons. Various threshold reactions can be observed in yttrium samples. The yields of isotopes produced in the samples were determined using the activation method. Monte Carlo simulations of the reaction rates leading to production of different isotopes were performed in the MCNPX transport code and compared with the experimental results obtained from the yttrium samples.

  16. The effect of yttrium and thorium on the oxidation behavior of Ni-Cr-Al alloys

    Kumar, A.; Nasrallah, M.; Douglass, D. L.


    The effect of quaternary additions of 0.5% Y, 0.5 and 1.0% Th to a base alloy of Ni-10CR-5Al on the oxidation behavior and mechanism was studied during oxidation in air over the range of 1000 to 1200 C. The presence of yttrium decreased the oxidation kinetics slightly, whereas, the addition of thorium caused a slight increase. Oxide scale adherence was markedly improved by the addition of the quaternary elements. Although a number of oxides formed on yttrium containing alloys, quantitative X-ray diffraction clearly showed that the rate-controlling step was the diffusion of aluminum through short circuit paths in a thin layer of alumina that formed parabolically with time. Although the scale adherence of the yttrium containing alloy was considerably better than the base alloys, spalling did occur that was attributed to the formation of the voluminous YAG particles which grew in a mushroom-like manner, lifting the protective scale off the subrate locally. The YAG particles formed primarily at grain boundaries in the substrate in which the yttrium originally existed as YNi9.

  17. Sol-Gel Synthesis and Antioxidant Properties of Yttrium Oxide Nanocrystallites Incorporating P-123

    Rebeca Mellado-Vázquez


    Full Text Available Yttrium oxide (Y2O3 nanocrystallites were synthesized by mean of a sol-gel method using two different precursors. Raw materials used were yttrium nitrate and yttrium chloride, in methanol. In order to promote oxygen vacancies, P-123 poloxamer was incorporated. Synthesized systems were heat-treated at temperatures from 700 °C to 900 °C. Systems at 900 °C were prepared in the presence and absence of P-123 using different molar ratios (P-123:Y = 1:1 and 2:1. Fourier transform infrared spectroscopy (FTIR results revealed a characteristic absorption band of Y–O vibrations typical of Y2O3 matrix. The structural phase was analyzed by X-ray diffraction (XRD, showing the characteristic cubic phase in all systems. The diffraction peak that presented the major intensity corresponded to the sample prepared from yttrium chloride incorporating P-123 in a molar ratio of P-123:Y = 2:1 at 900 °C. Crystallites sizes were determined by Scherrer equation as between 21 nm and 32 nm. Antioxidant properties were estimated by 2,2-diphenyl-1-picrylhydrazyl (DPPH• assays; the results are discussed.

  18. Comparison of the excimer laser with the erbium yttrium aluminum garnet laser for applications in osteotomy

    Li, Zhao-zhang; Van De Merwe, Willem P.; Reinisch, Lou


    The ablative removal of bone tissue and the accompanying acoustic wave have been studied in a liquid environment using an ultraviolet excimer laser (Argon Fluoride and Krypton Fluoride) and a mid-infrared Erbium Yttrium Aluminum Garnet (Er:YAG) laser

  19. Reaction scheme of partial oxidation of methane to synthesis gas over yttrium-stabilized zirconia

    Zhu, J.J.; van Ommen, J.G.; Lefferts, Leonardus


    The partial oxidation of methane to synthesis gas over yttrium-stabilized zirconia (YSZ) was studied with in situ FTIR and both steady-state and transient experiments. The four major products, CO, H2, CO2, and H2O, are primary products of CPOM over YSZ. Besides these major products and traces of

  20. On the synthesis of monopentamethylcyclopentadienyl derivatives of yttrium, lanthanum, and cerium

    Booij, Martin; Kiers, Niklaas H.; Heeres, Hero J.; Teuben, Jan H.


    Two routes leading to monopentamethylcyclopentadienyl-yttrium, -lanthanum and -cerium complexes have been explored. Transmetallation of LnCl3(THF)x with Cp*Li (Cp* = C5Me5) proved useful only in some particular cases. Acid-base reactions of homoleptic complexes LnR3 with Cp*H generally gave Cp*2LnR

  1. Growth and hydrogenation of epitaxial yttrium switchable mirrors on CaF2

    Kooij, E.S.; Rector, J.H.; Nagengast, D.G.; Kerssemakers, J.W.J.; Dam, B.; Griessen, R.; Remhof, A.; Zabel, H.


    Rutherford backscattering (RBS) ion channeling measurements and X-ray diffraction experiments are performed to study the epitaxial nature of as-deposited yttrium on CaF2111 substrates and the effect of hydrogenation on the crystalline quality. The RBS and X-ray results clearly demonstrate the unique

  2. Controlled synthesis and formation mechanism of sodium yttrium fluoride nanotube arrays

    TIAN Li; TAN Li; SUN Qiliang; XIANG Shaobin; XIAO Qiuguo; TANG Jianting; ZHU Guangshan


    Cubic and hexagonal sodium yttrium fluoride were successfully synthesized from yttrium nitrate,sodium fluoride and polyethanediol in propanetriol solvent under a facile hydrothermal route.By regulating the molar ratio of yttrium and fluoride,hydrothermal temperature and reaction time,the phase and shape of sodium yttrium fluoride were commendably controlled.The as-prepared products were characterized by X-ray diffraction (XRD),scanning electron microscopy (SEM) and energy dispersive X-ray spectrum (EDS) techniques.It was revealed that the hollow-structured Na(Y1.5Na0.5)F6 nanotubes self-assembled and arrayed orientedly to be bamboo raft-shaped.The formation of hexagonal Na(Y1.5Na0.5)F6 nanotube arrays was attributed to solid-liquid-solid process and Oswald ripening.This study provided a simple method to prepare hexagonal bamboo raft-shaped Na(Y1.5Na0.5)F6 on a large scale,which broadened their practical applications.

  3. Preliminary results on a new method for producing yttrium phosphorous microspheres.

    Ghahramani, M R; Garibov, A A; Agayev, T N


    This paper reports on a new method to embed phosphorus particles into the matrix of yttrium aluminum silicate microspheres. Yttrium phosphorus glass microspheres about 20µm in size were obtained when an aqueous solution of YCl3 and AlCl3 were added to tetraethyl orthosilicate (TEOS) (phosphoric acid was used to catalyze the hydrolysis and condensation of TEOS) and was pumped into silicone oil under constant stirring. The shapes of the particles produced by this method are regular and nearly spheric in shape. Paper chromatography was used to determine the radiochemical impurity of radioactive microspheres. Radionuclide purity was determined using a gamma spectrometry system and an ultra-low level liquid scintillation spectrometer. The P(+) ions implantation stage was eliminated by embedding phosphorus particles in the matrix of the glass microspheres. This paper shows that a high temperature is not required to produce yttrium phosphorus aluminum silicate microspheres. The result shows that the silicone oil spheroidization method is a very suitable way to produce yttrium phosphorus glass microspheres. The topographical analysis of microspheres shows that the Y, P, Si, and Al elements are distributed in the microspheres and the distribution of elements in the samples is homogenous.

  4. Influence of neodymium-doping on structure and properties of yttrium aluminium garnet

    Zhang, X.D.; He, W.; Yue, Yuanzheng


    We study the impact of the Nd-doping on the grain formation, the crystal structure, and the fluorescence of the Yttrium Aluminum Garnet (YAG). The results show that Nd-doping leads to the YAG lattice expansion and distortion, and hence to an increase in defect concentration. This is attributed to...

  5. Anomalous tensoelectric effects in gallium arsenide tunnel diodes

    Alekseeva, Z.M.; Vyatkin, A.P.; Krivorotov, N.P.; Shchegol' , A.A.


    Anomalous tensoelectric phenomena induced in a tunnel p-n junction by a concentrated load and by hydrostatic compression were studied. The anomalous tensoelectric effects are caused by the action of concentrators of mechanical stresses in the vicinity of the p-n junction, giving rise to local microplastic strain. Under the conditions of hydrostatic compression prolate inclusions approx.100-200 A long play the role of concentrators. Analysis of irreversible changes in the current-voltage characteristics of tunnel p-n junctions made it possible to separate the energy levels of the defects produced with plastic strain of gallium arsenide.

  6. Control of Surface Attack by Gallium Alloys in Electrical Contacts.


    and atmospheric control but does not allow visual observation of the contact brushes. This machine is a small homopolar motor built from mild steel...collectors,gallium, homopolar devices,liquid metals,~- is. ABSTRACT ICNI.. .. w 41N"w Wrllt by Itabata" * Electrical contact between a copp’er...32 5 Test rig with felt metal brushes 32 6 Homopolar test apparatus 33 7 Rewetting of alloy track 33 8 Alloy track after running with finger 34 brushes

  7. Laser and electron beam processing of silicon and gallium arsenide

    Narayan, J.


    Laser (photon) and electron beams provide a controlled source of heat by which surface layers of silicon and gallium arsenide can be rapidly melted and cooled with rates exceeding 10/sup 80/C/sec. The melting process has been used to remove displacement damage in ion implanted Si and GaAs, to remove dislocations, loops and precipitates in silicon and to study impurity segregation and solubility limits. The mechanisms associated with various phenomena will be examined. The possible impact of laser and electron beam processing on device technology, particularly with respect to solar cells is discussed.

  8. Phase Coexistence in Gallium Nanoparticles Controlled by Electron Excitation

    Pochon, S.; MacDonald, K. F.; Knize, R. J.; Zheludev, N. I.


    In gallium nanoparticles 100nm in diameter grown on the tip of an optical fiber from an atomic beam we observed equilibrium coexistence of γ, β, and liquid structural phases that can be controlled by e-beam excitation in a highly reversible and reproducible fashion. With 2keV electrons only 1pJ of excitation energy per nanoparticle is needed to exercise control, with the equilibrium phase achieved in less than a few tenths of a microsecond. The transformations between coexisting phases are accompanied by a continuous change in the nanoparticle film's reflectivity.

  9. Gallium uptake in tryptophan-related pulmonary disease

    Kim, S.M.; Park, C.H.; Intenzo, C.M.; Patel, R. (Thomas Jefferson Univ. Hospital, Philadelphia, PA (USA))


    We describe a patient who developed fever, fatigue, muscle weakness, dyspnea, skin rash, and eosinophilia after taking high doses of tryptophan for insomnia for two years. A gallium-67 scan revealed diffuse increased uptake in the lung and no abnormal uptake in the muscular distribution. Bronchoscopy and biopsy confirmed inflammatory reactions with infiltration by eosinophils, mast cells, and lymphocytes. CT scan showed an interstitial alveolar pattern without fibrosis. EMG demonstrated diffuse myopathy. Muscle biopsy from the right thigh showed an inflammatory myositis with eosinophilic and lymphocytic infiltrations.

  10. Self-diffusion in liquid gallium and hard sphere model

    Blagoveshchenskii Nikolay


    Full Text Available Incoherent and coherent components of quasielastic neutron scattering have been studied in the temperature range of T = 313 K – 793 K aiming to explore the applicability limits of the hard-sphere approach for the microscopic dynamics of liquid gallium, which is usually considered as a non-hard-sphere system. It was found that the non-hard-sphere effects come into play at the distances shorter than the average interatomic distance. The longer range diffusive dynamics of liquid Ga is dominated by the repulsive forces between the atoms.

  11. Electronic transport properties of graphene doped by gallium

    Mach, J.; Procházka, P.; Bartošík, M.; Nezval, D.; Piastek, J.; Hulva, J.; Švarc, V.; Konečný, M.; Kormoš, L.; Šikola, T.


    In this work we present the effect of low dose gallium (Ga) deposition (graphene grown by chemical vapor deposition. In situ graphene transport measurements performed with a graphene field-effect transistor structure show that at low Ga coverages a graphene layer tends to be strongly n-doped with an efficiency of 0.64 electrons per one Ga atom, while the further deposition and Ga cluster formation results in removing electrons from graphene (less n-doping). The experimental results are supported by the density functional theory calculations and explained as a consequence of distinct interaction between graphene and Ga atoms in case of individual atoms, layers, or clusters.

  12. Spectroscopy of vanadium (III) doped gallium lanthanum sulphide chalcogenide glass

    Hughes, M; Rutt, H; Hewak, D


    Vanadium doped gallium lanthanum sulphide glass (V:GLS) displays three absorption bands at 580, 730 and 1155 nm identified by photoluminescence excitation measurements. Broad photoluminescence, with a full width half maximum (FWHM) of 500 nm, is observed peaking at 1500 nm when exciting at 514, 808 and 1064 nm. The fluorescence lifetime and quantum efficiency at 300 K were measured to be 33.4 us and 4 % respectively. From the available spectroscopic data we propose the vanadium ions valence to be 3+ and be in tetrahedral coordination The results indicate potential for development of a laser or optical amplifier based on V:GLS.

  13. Properties Of Gallium-doped Hydrogenated Amorphous Germanium


    The effects of adding small quantities of gallium atoms to hydrogenated amorphous germanium (a-Ge:H) on its dark-conductivity, band-gap, electronic density of states and the hydrogen bonding, were studied in detail by dark-conductivity, optical and infrared-transmission, and photothermal- deflection-spectroscopy measurements. Films of a-Ge:H having relative Ga atomic concentrations ranging between 3×10-5 and 1×10-2 were deposited by the cosputtering of solid Ge and Ga targets in a rf-plasma s...

  14. Visible light metasurfaces based on gallium nitride high contrast gratings

    Wang, Zhenhai; He, Shumin; Liu, Qifa; Wang, Wei


    We propose visible-light metasurfaces (VLMs) capable of serving as lens and beam deflecting element based on gallium nitride (GaN) high contrast gratings (HCGs). By precisely manipulating the wavefront of the transmitted light, we theoretically demonstrate an HCG focusing lens with transmissivity of 86.3%, and a VLM with beam deflection angle of 6.09° and transmissivity as high as 91.4%. The proposed all-dielectric metasurfaces are promising for GaN-based visible light-emitting diodes (LEDs), which would be robust and versatile for controlling the output light propagation and polarization, as well as enhancing the extraction efficiency of the LEDs.

  15. Fabrication of hexagonal gallium nitride films on silicon (111) substrates

    YANG Li; XUE Chengshan; WANG Cuimei; LI Huaixiang; REN Yuwen


    Hexagonal gallium nitride films were successfully fabricated through ammoniating Ga2O3 films deposited on silicon (111 ) substrates by electrophoresis. The structure, composition, and surface morphology of the formed films were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM),and transmission electron microscopy (TEM). The measurement results reveal that the polycrystalline GaN films with hexagonal wurtzite structure were successfully grown on the silicon (111) substrates. Preliminary results suggest that varying the ammoniating temperature has obvious effect on the quality of the GaN films formed with this method.

  16. Lasing action in gallium nitride quasicrystal nanorod arrays.

    Chang, Shih-Pang; Sou, Kuok-Pan; Chen, Chieh-Han; Cheng, Yuh-Jen; Huang, Ji-Kai; Lin, Chung-Hsiang; Kuo, Hao-Chung; Chang, Chun-Yen; Hsieh, Wen-Feng


    We report the observation of lasing action from an optically pumped gallium nitride quasicrystal nanorod arrays. The nanorods were fabricated from a GaN substrate by patterned etching, followed by epitaxial regrowth. The nanorods were arranged in a 12-fold symmetric quasicrystal pattern. The regrowth grew hexagonal crystalline facets and core-shell multiple quantum wells (MQWs) on nanorods. Under optical pumping, multiple lasing peaks resembling random lasing were observed. The lasing was identified to be from the emission of MQWs on the nanorod sidewalls. The resonant spectrum and mode field of the 12-fold symmetric photonic quasicrystal nanorod arrays is discussed.

  17. Gallium nitride electrodes for membrane-based electrochemical biosensors.

    Schubert, T; Steinhoff, G; von Ribbeck, H-G; Stutzmannn, M; Eickhoff, M; Tanaka, M


    We report on the deposition of planar lipid bilayers (supported membranes) on gallium nitride (GaN) electrodes for potential applications as membrane-based biosensors. The kinetics of the lipid membrane formation upon vesicle fusion were monitored by simultaneous measurements of resistance and capacitance of the membrane using AC impedance spectroscopy in the frequency range between 50 mHz and 50 kHz. We could identify a two-step process of membrane spreading and self-healing. Despite its relatively low resistance, the membrane can be modeled by a parallel combination of an ideal resistor and capacitor, indicating that the membrane efficiently blocks the diffusion of ions.

  18. A review of magnetostrictive iron-gallium alloys

    Atulasimha, Jayasimha; Flatau, Alison B.


    A unique combination of low hysteresis, moderate magnetostriction at low magnetic fields, good tensile strength, machinability and recent progress in commercially viable methods of processing iron-gallium alloys make them well poised for actuator and sensing applications. This review starts with a brief historical note on the early developments of magnetostrictive materials and moves to the recent work on FeGa alloys and their useful properties. This is followed by sections addressing the challenges specific to the characterization and processing of FeGa alloys and the state of the art in modeling their actuation and sensing behavior.

  19. Recent progress in the determination of gallium, indium, and thallium

    GAO Jinzhang


    This mini-review covers the literatures of the determination of gallium, indium, and thallium by instrumental analysis with computer-assisted searching over the period of 1994 to 2003. Some papers appearing in the early of 2004 are also included. Because the rapid progress in the instrument has been made, these new papers are prioritized in selection in the similar papers. The contents are considered to be separation and preconcentration, spectrophotometry, spectrofluorimetry, electroanalyses, atomic absorption spectrometry, inductively coupled plasma-atomic emission spectrometry, inductively coupled plasma-mass spectrometry and so forth.

  20. The effects of yttrium on the hydrogenation performance and surface properties of a ruthenium-supported catalyst



    Full Text Available The effects of yttrium on the hydrogenation performance and surface properties of a Ru/sepiolite catalyst were studied. With CO2 methanation and CS2 poisoning as the testing reactons, TPR, TPD, XRD and CO chemisorption as the characterizations, the results showed that the presence of yttrium can increase the hydrogenation activity and anti-poisoning capacity of the Ru/sepiolite catalyst, which is due to a change of surface properties of the Ru/sepiolite. In the process of the catalytic reaction, the adjusting behavior of yttrium for the Ru/sepiolite catalyst aids in increasing the catalytic activity and anti-poisoning capacity of the catalyst.

  1. Variation of Eu{sup 3+} emissions in yttrium aluminum oxides controlled by amount of La{sup 3+} dopant

    Kim, Jung Hwan, E-mail:


    The nanophosphors of europium doped yttrium aluminum oxide were synthesized by a hydrothermal method. As the amount of La{sup 3+} ions substituted in yttrium sites was increased, the crystal structure was transformed from pure garnet to perovskite phase through the mixed phase of garnet and perovskite. Red emission centered at 618 nm wavelength radiated from a {sup 5}D{sub 0} → {sup 7}F{sub 2} of Eu{sup 3+} due to the forced electric dipole transition was remarkably enhanced by a factor 45, which is attributed to the phase transition of yttrium aluminum oxide by incorporation of La{sup 3+} ions.

  2. Effects of yttrium, aluminum and chromium concentrations in bond coatings on the performance of zirconia-yttria thermal barriers

    Stecura, S.


    A cyclic furnace study was conducted on thermal barrier systems to evaluate the effects of yttrium, chromium and aluminum in nickel-base alloy bond coatings and the effect of bond coating thickness on yttria-stabilized zirconia thermal barrier coating life. Without yttrium in the bond coatings, the zirconia coatings failed very rapidly. Increasing chromium and aluminum in the Ni-Cr-Al-Y bond coatings increased total coating life. This effect was not as great as that due to yttrium. Increased bond coat thickness was also found to increase life.

  3. Gallium-67 uptake by the thyroid associated with progressive systemic sclerosis

    Sjoberg, R.J.; Blue, P.W.; Kidd, G.S.


    Although thyroidal uptake of gallium-67 has been described in several thyroid disorders, gallium-67 scanning is not commonly used in the evaluation of thyroid disease. Thyroidal gallium-67 uptake has been reported to occur frequently with subacute thyroiditis, anaplastic thyroid carcinoma, and thyroid lymphoma, and occasionally with Hashimoto's thyroiditis and follicular thyroid carcinoma. A patient is described with progressive systemic sclerosis who, while being scanned for possible active pulmonary involvement, was found incidentally to have abnormal gallium-67 uptake only in the thyroid gland. Fine needle aspiration cytology of the thyroid revealed Hashimoto's thyroiditis. Although Hashimoto's thyroiditis occurs with increased frequency in patients with progressive systemic sclerosis, thyroidal uptake of gallium-67 associated with progressive systemic sclerosis has not, to our knowledge, been previously described. Since aggressive thyroid malignancies frequently are imaged by gallium-67 scintigraphy, fine needle aspiration cytology of the thyroid often is essential in the evaluation of thyroidal gallium-67 uptake.

  4. Gallium-67 scanning in the staging of cryptogenetic fibrosing alveolitis and hypersensitivity pneumonitis

    Vanderstappen, M.; Mornex, J.F.; Lahneche, B.; Chauvot, P.; Bouvier, J.F.; Wiesendanger, T.; Pages, J.; Webert, P.; Cordier, J.F.; Brune, J.


    Gallium-67 citrate is known to localize within inflammatory sites. Gallium-67 scanning is used for the evaluation of lung inflammation (i.e. alveolitis) during interstitial lung diseases. We investigated 27 patients with cryptogenetic fibrosing alveolitis (n=17) and hypersensitivity pneumonitis (n=10) using gallium-67 lung scanning and lung function tests (forced vital capacity, diffusing capacity, resting and exercise blood gases). Investigations were performed before and after one year of methylprednisolone treatment. None of eight healthy volunteers had any abnormal gallium-67 uptake. In all patients with cryptogenetic fibrosing alveolitis and initial abnormal gallium-67 uptake was observed (mean fixation index: 163+-18). In addition, analysis of lung function tests a year after initial evaluation showed that unchanged or improving patients presented initially with a lower gallium-67 index than patients with evidence of deterioration (163.9+-23.7 vs 251.0+-23.3.; p<0.01). Similarly, among patients with hypersensitivity pneumonitis the index was lower in unchanged or improving patients than in those with deterioration (74.0+-22 vs 226.7+-4.9; p<0.05). Thus gallium-67 scanning is useful in the management of cryptogenetic fibrosing alveolitis and hypersensitivity pneumonitis.

  5. Gallium nanoparticles colloids synthesis for UV bio-optical sensors

    Nucciarelli, Flavio; Bravo, Iria; Vázquez, Luis; Lorenzo, Encarnación; Pau, Jose Luis


    A new method for the synthesis of colloidal gallium nanoparticles (Ga NPs) based on the thermal evaporation of Ga on an expendable aluminum zinc oxide (AZO) layer is presented here. The growth of AZO layers was investigated on different substrates at room temperature and 300 °C. By means of physical evaporation process, nanoparticles were deposited with a distribution ranging from 10 nm to 80 nm in diameter. A study of their endurance in acidic environment was carried out in order to assure the NPs shape and size stability during the etching process. Smaller particles start to disappear between 1h and 2h immersion time in a pH=1 solution, while bigger particles reduce their dimension. The NPs were dispersed in tetrahydrofuran (THF) organic solvent and optically characterized, showing strong UV absorption with a band centered at 280 nm. The colloids size distribution of as-evaporated samples was compared with the distribution obtained in droplets of the solution after drop-casting. By Dipole Discrete Approximation simulations, a close relationship between the UV absorption and the NPs with diameter smaller than 40 nm was found. Because of the gallium oxide (Ga1-xOx) outer shell that surrounds the Ga NPs, an enhancement of their hydrophobicity occurs. Hence, the low agglomeration state between NPs in tetrahydrofuran allows to obtain narrow absorption band in the optical spectrum.

  6. Adsorptive stripping voltammetric determination of chromium in gallium.

    Palrecha, M M; Mathur, P K


    The electroanalytical chemistry of trace metals has progressed strongly with the development of cathodic stripping voltammetry (CSV) preceded by adsorption collection of organic metal complexes. A sensitive method for the determination of trace amount of chromium in gallium is described. Gallium is dissolved in sodium hydroxide containing hydrogen peroxide. The method is based on the catalytic activity of nitrate ions on the reduction of Cr(III)TTHA (triethylene tetramine-N,N,N',N'',N''',N'''-hexaacetic acid) complex. The sensitivity of this method is further improved by adsorption preconcentration of Cr(III)TTHA complex at a hanging mercury drop electrode (HMDE). The Cr(III) formed at the electrode surface by the reduction of Cr(VI), which is present in the bulk solution, is immediately complexed by TTHA. The adsorbed complex is then reduced at a peak potential of - 1.26 V, and the peak height of Cr(III) reduction is measured. The determination limit was restricted by the amount of chromium present in the reagent blank solution. The method is suitable for the determination of chromium at level as low as 0.2 mug g(-1) (with about 50 mg of sample) and a relative standard deviation of 15%.

  7. Low temperature solid-state synthesis of nanocrystalline gallium nitride

    Wang, Liangbiao, E-mail: [Hefei National Laboratory for Physical Science at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China); Shi, Liang; Li, Qianwen; Si, Lulu; Zhu, Yongchun; Qian, Yitai [Hefei National Laboratory for Physical Science at Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026 (China)


    Graphical abstract: Display Omitted Highlights: ► GaN nanocrystalline was prepared via a solid-state reacion at relatively low temperature. ► The sizes and crystallinities of the GaN samples obtained at the different temperatures are investigated. ► The GaN sample has oxidation resistance and good thermal stability below 1000 °C. -- Abstract: Nanocrystalline gallium nitride was synthesized by a solid-state reaction of metallic magnesium powder, gallium sesquioxide and sodium amide in a stainless steel autoclave at a relatively low temperature (400–550 °C). The structures and morphologies of the obtained products were derived from X-ray powder diffraction (XRD) and transmission electron microscopy (TEM). XRD patterns indicated that the products were hexagonal GaN (JCPDS card no. 76-0703). The influence of reaction temperature on size of the products was studied by XRD and TEM. Furthermore, the thermal stability and oxidation resistance of the nanocrystalline GaN were also investigated. It had good thermal stability and oxidation resistance below 800 °C in air.

  8. Macroscopic diffusion models for precipitation in crystalline gallium arsenide

    Kimmerle, Sven-Joachim Wolfgang


    Based on a thermodynamically consistent model for precipitation in gallium arsenide crystals including surface tension and bulk stresses by Dreyer and Duderstadt, we propose two different mathematical models to describe the size evolution of liquid droplets in a crystalline solid. The first model treats the diffusion-controlled regime of interface motion, while the second model is concerned with the interface-controlled regime of interface motion. Our models take care of conservation of mass and substance. These models generalise the well-known Mullins- Sekerka model for Ostwald ripening. We concentrate on arsenic-rich liquid spherical droplets in a gallium arsenide crystal. Droplets can shrink or grow with time but the centres of droplets remain fixed. The liquid is assumed to be homogeneous in space. Due to different scales for typical distances between droplets and typical radii of liquid droplets we can derive formally so-called mean field models. For a model in the diffusion-controlled regime we prove this limit by homogenisation techniques under plausible assumptions. These mean field models generalise the Lifshitz-Slyozov-Wagner model, which can be derived from the Mullins-Sekerka model rigorously, and is well understood. Mean field models capture the main properties of our system and are well adapted for numerics and further analysis. We determine possible equilibria and discuss their stability. Numerical evidence suggests in which case which one of the two regimes might be appropriate to the experimental situation. (orig.)

  9. Manganese Atom Ordered Monolayer on Wurtzite Gallium Nitride

    Chinchore, Abhijit; Wang, Kangkang; Lin, Wenzhi; Pak, Jeongihm; Liu, Yinghao; Smith, Arthur


    While transition-metal-doped gallium nitride (GaN) thin films have been explored as potential dilute magnetic semiconductor bulk layers, the structural and magnetic effects of various transition metal adatoms on GaN surfaces are not even well understood. In this work, we investigate the sub-monolayer deposition of manganese (Mn) onto the N-polar wurtzite GaN (000-1) 1x1 surface. The growth is monitored in-situ using reflection high energy electron diffraction (RHEED). A fresh GaN(000-1) 1x1 surface is prepared by rf nitrogen plasma-assisted MBE followed by annealing to remove excess gallium adatoms. The atomically flat GaN surface, held at 200^o C, is then exposed to submonolayer doses of Mn. The deposition rate is maintained at 0.007 ML per second, and a 3x pattern develops along [10-10]; whereas, only 1x is seen along [11-20]. Analysis of the RHEED pattern and subsequent modeling indicates a 3 x3 R 30^o structure consisting of 2/3 ML Mn atoms in a row-like arrangement having spacing 3a/2 along rows and 3a/2 between rows. Scanning tunneling microscopy/spectroscopy studies are currently underway to explore this surface further. This work is supported by DOE (Grant No.DE-FG02-06ER46317) and NSF (Grant No. 0730257).

  10. Crystallographic alignment of high-density gallium nitride nanowire arrays.

    Kuykendall, Tevye; Pauzauskie, Peter J; Zhang, Yanfeng; Goldberger, Joshua; Sirbuly, Donald; Denlinger, Jonathan; Yang, Peidong


    Single-crystalline, one-dimensional semiconductor nanostructures are considered to be one of the critical building blocks for nanoscale optoelectronics. Elucidation of the vapour-liquid-solid growth mechanism has already enabled precise control over nanowire position and size, yet to date, no reports have demonstrated the ability to choose from different crystallographic growth directions of a nanowire array. Control over the nanowire growth direction is extremely desirable, in that anisotropic parameters such as thermal and electrical conductivity, index of refraction, piezoelectric polarization, and bandgap may be used to tune the physical properties of nanowires made from a given material. Here we demonstrate the use of metal-organic chemical vapour deposition (MOCVD) and appropriate substrate selection to control the crystallographic growth directions of high-density arrays of gallium nitride nanowires with distinct geometric and physical properties. Epitaxial growth of wurtzite gallium nitride on (100) gamma-LiAlO(2) and (111) MgO single-crystal substrates resulted in the selective growth of nanowires in the orthogonal [1\\[Evec]0] and [001] directions, exhibiting triangular and hexagonal cross-sections and drastically different optical emission. The MOCVD process is entirely compatible with the current GaN thin-film technology, which would lead to easy scale-up and device integration.

  11. Single step low temperature synthesis of gadolinium gallium garnet nanopowders

    Rekha Mann; Kiranmala Laishram; Neelam Malhan


    Solution combustion synthesis of single-phase gadolinium gallium oxide (Gd3Ga5O12,GGG) nanopowders,by a fuel mixture approach using urea and glycine at a low temperature of 500 ℃,was being reported for the first time.Based on the fact that urea and glycine are good fuels for gallium oxide and gadolinium oxide synthesis,the fuel mixture composition was obtained,which could lead to direct phase pure cubic Gd3Ga5O12 formation without any subsequent calcination step.Combustion was carried out in furnace pre-heated at 500 ℃.Thermogravimetric analysis (TGA) of combustion product showed negligible mass loss indicating direct formation of GGG powder.Fourier transform infrared (FTIR) spectrum of combusted product showed peak characteristic of GGG in case of mixed fuel.X-ray diffraction (XRD) confirmed formation of phase pure GGG at 500 ℃ in preheated furnace.Very fine,well dispersed nanometric particles of size range of 50-100 nm were obtained,being uniform and close to spherical morphology as observed by transmission electron microscope (TEM).

  12. Gallium-67 scintigraphy and intraabdominal sepsis. Clinical experience in 140 patients with suspected intraabdominal abscess

    Hopkins, G.B.; Kan, M.; Mende, C.W.


    In 140 patients with suspected intraabdominal abscess, studies were made using gallium-67 citrate and technetium-99m labeled radiopharmaceuticals. Gallium-67 scintigrams correctly localized 52 of 56 intraabdominal abscesses confirmed at surgical operation or necropsy. In an additional 20 patients in whom findings on scintigrams were abnormal, there were clinically established infections. Sixty-one patients in whom findings on scintigrams were normal were conservatively managed and discharged from the hospital; none proved to have an abscess. Four false-negative and three false-positive studies were recorded. Gallium-67 scintigraphy is a useful noninvasive diagnostic adjunct that should be employed early in the evaluation of patients with suspected intraabdominal sepsis.

  13. Yttrium (III chloride catalyzed Mannich reaction: An efficient procedure for the synthesis of β-amino carbonyl compounds

    Venkateswarlu Yekkirala


    Full Text Available Yttrium (III chloride catalyzed Mannich reaction of aldehydes with ketones and amines in acetonitrile at reflux temperature to give various β-amino carbonyl compounds in very good yields.

  14. Comparative microstructure and electrical property studies of lead scandium tantalate thin films as prepared by LDCVD, sol-gel and sputtering techniques

    Huang, Z.; Donohue, P. P.; Zhang, Q.; Williams, D. J.; Anthony, C. J.; Whatmore, R. W.; Todd, M. A.


    Lead scandium tantalate (PST) thin films for uncooled infrared (IR) detector applications have been deposited by liquid delivery chemical vapour deposition (LDCVD), sputtering and sol-gel techniques. The sol-gel and sputtered films were deposited at low temperature into a non-ferroelectric phase with the required perovskite structure being formed using a high temperature rapid thermal anneal (RTA). In contrast to this, the LDCVD films were deposited at high temperature directly into the perovskite phase but were found to still require a high temperature RTA step to optimize their merit for IR detection. Detailed structural and electrical characterization of the PST films deposited by these different methods have revealed that there is no simple relationship between microstructure and electrical properties. The sol-gel and LDCVD techniques produce thin films with excellent microstructures, as determined by x-ray diffraction analysis and transmission electron microscopy, but inferior electrical properties and relatively low merit figures. By contrast, the sputtered and then rapid thermal annealed films have inferior microstructures, characterized by extensive voiding, but excellent electrical properties and high merit figures.

  15. Impact of layer and substrate properties on the surface acoustic wave velocity in scandium doped aluminum nitride based SAW devices on sapphire

    Gillinger, M., E-mail:; Knobloch, T.; Schneider, M.; Schmid, U. [Institute of Sensor and Actuator Systems, TU Wien, 1040 Vienna (Austria); Shaposhnikov, K.; Kaltenbacher, M. [Institute of Mechanics and Mechatronics, TU Wien, 1040 Vienna (Austria)


    This paper investigates the performance of surface acoustic wave (SAW) devices consisting of reactively sputter deposited scandium doped aluminum nitride (Sc{sub x}Al{sub 1-x}N) thin films as piezoelectric layers on sapphire substrates for wireless sensor or for RF-MEMS applications. To investigate the influence of piezoelectric film thickness on the device properties, samples with thickness ranging from 500 nm up to 3000 nm are fabricated. S{sub 21} measurements and simulations demonstrate that the phase velocity is predominantly influenced by the mass density of the electrode material rather than by the thickness of the piezoelectric film. Additionally, the wave propagation direction is varied by rotating the interdigital transducer structures with respect to the crystal orientation of the substrate. The phase velocity is about 2.5% higher for a-direction compared to m-direction of the sapphire substrate, which is in excellent agreement with the difference in the anisotropic Young's modulus of the substrate corresponding to these directions.

  16. Characterization of structure and dynamics of an aqueous scandium(III) ion by an extended ab initio QM/MM molecular dynamics simulation.

    Vchirawongkwin, Viwat; Kritayakornupong, Chinapong; Tongraar, Anan; Rode, Bernd M


    Hydration structure and dynamics of an aqueous Sc(III) solution were characterized by means of an extended ab initio quantum mechanical/molecular dynamical (QM/MM) molecular dynamics simulation at Hartree-Fock level. A monocapped trigonal prismatic structure composed of seven water molecules surrounding scandium(III) ion was proposed by the QM/MM simulation including the quantum mechanical effects for the first and second hydration shells. The mean Sc(III)-O bond length of 2.14 Å was identified for six prism water molecules with one capping water located at around 2.26 Å, reproducing well the X-ray diffraction data. The Sc(III)-O stretching frequency of 432 cm(-1) corresponding to a force constant of 130 N m(-1), evaluated from the enlarged QM/MM simulation, is in good agreement with the experimentally determined value of 430 cm(-1) (128 N m(-1)). Various water exchange processes in the second hydration shell of the hydrated Sc(III) ion predict a mean ligand residence time of 7.3 ps.

  17. Aluminum-Scandium Alloys: Material Characterization, Friction Stir Welding, and Compatibility With Hydrogen Peroxide (MSFC Center Director's Discretionary Fund Final Report, Proj. No. 04-14)

    Lee, J. A.; Chen, P. S.


    This Technical Memorandum describes the development of several high-strength aluminum (Al) alloys that are compatible with hydrogen peroxide (H2O2) propellant for NASA Hypersonic-X (Hyper-X) vehicles fuel tanks and structures. The yield strengths for some of these Al-magnesium-based alloys are more than 3 times stronger than the conventional 5254-H112 Al alloy, while maintaining excellent H2O2 compatibility similar to class 1 5254 alloy. The alloy development strategy is to add scandium, zirconium, and other transitional metals with unique electrochemical properties, which will not act as catalysts, to decompose the highly concentrated 90 percent H2O2. Test coupons are machined from sheet metals for H2O2 long-term exposure testing and mechanical properties testing. In addition, the ability to weld the new alloys using friction stir welding has also been explored. The new high-strength alloys could represent an enabling material technology for Hyper-X vehicles, where flight weight reduction is a critical requirement.

  18. Synthesis, crystal structure and magnetic properties of new indium rhenium and scandium rhenium oxides, In 6ReO 12 and Sc 6ReO 12

    Mikhailova, D.; Ehrenberg, H.; Fuess, H.


    The new complex indium rhenium and scandium rhenium oxides, In 6ReO 12 and Sc 6ReO 12, have been synthesized as single phases in sealed silica tubes and by high-pressure high-temperature syntheses, and their crystal structures have been determined by single crystal X-ray diffraction.The compounds crystallize in a rhombohedral structure related to the distorted fluorite structure like Ln 6ReO 12 for some rare earth elements, S. G.: R-3, Z=3, aH= 9.248(2) Å, cH=8.720(2) Å for Sc 6ReO 12 and aH=9.492(1) Å, cH=8.933(1) Å for In 6ReO 12. A maximum in magnetization is observed for Sc 6ReO 12 at T( Mmax)=1.89(2) K, whereas ferromagnetic ordering is found for In 6ReO 12 by a pronounced increase in the temperature dependence of magnetization at TC=7.5(5) K. The magnetic moment per rhenium ion in In 6ReO 12 and Sc 6ReO 12 is 0.84(1) and 0.65(1) μB, respectively, derived from the paramagnetic regions.

  19. Limits on nu_e and anti-nu_e disappearance from Gallium and reactor experiments

    Acero, Mario A; Laveder, Marco


    The disappearance of electron neutrinos observed in the Gallium radioactive source experiments is analyzed in the framework of two-neutrino mixing. It is shown that there is an indication of neutrino disappearance due to neutrino oscillations with sin^2 2 theta >~ 0.04 and Delta m^2 >~ 0.1 eV^2. The compatibility of this result with the data of the Bugey and Chooz reactor short-baseline antineutrino disappearance experiments is studied. It is found that the Bugey data present a weak indication in favor of neutrino oscillations with 0.02 <~ sin^2 2 theta <~ 0.08 and Delta m^2 =~ 1.85 eV^2, which is compatible with the Gallium allowed region of the mixing parameters. This indication persists in the combined analyses of Bugey and Chooz data, of Gallium and Bugey data, and of Gallium, Bugey, and Chooz data.

  20. High-power X- and Ka-band Gallium Nitride Amplifiers with Exceptional Efficiency Project

    National Aeronautics and Space Administration — Achieving very high-power amplification with maximum efficiency at X- and Ka-band is challenging using solid-state technology. Gallium Arsenide (GaAs) has been the...

  1. Homogeneous dispersion of gallium nitride nanoparticles in a boron nitride matrix by nitridation with urea.

    Kusunose, Takafumi; Sekino, Tohru; Ando, Yoichi


    A Gallium Nitride (GaN) dispersed boron nitride (BN) nanocomposite powder was synthesized by heating a mixture of gallium nitrate, boric acid, and urea in a hydrogen atmosphere. Before heat treatment, crystalline phases of urea, boric acid, and gallium nitrate were recognized, but an amorphous material was produced by heat treatment at 400 degrees C, and then was transformed into GaN and turbostratic BN (t-BN) by further heat treatment at 800 degrees C. TEM obsevations of this composite powder revealed that single nanosized GaN particles were homogeneously dispersed in a BN matrix. Homogeneous dispersion of GaN nanoparticles was thought to be attained by simultaneously nitriding gallium nitrate and boric acid to GaN and BN with urea.

  2. Efficient bifunctional gallium-68 chelators for positron emission tomography: tris(hydroxypyridinone) ligands

    Berry, David J; Ma, Yongmin; Ballinger, James R.; Tavaré, Richard; Koers, Alexander; Sunassee, Kavitha; Zhou, Tao; Nawaz, Saima; Mullen, Gregory E. D.; Robert C. Hider; Blower, Philip J.


    A new tripodal tris(hydroxypyridinone) bifunctional chelator for gallium allows easy production of 68Ga-labelled proteins rapidly under mild conditions in high yields at exceptionally high specific activity and low concentration.

  3. A generator-produced gallium-68 radiopharmaceutical for PET imaging of myocardial perfusion

    Sharma, Vijay; Sivapackiam, Jothilingam; Harpstrite, Scott E; Prior, Julie L; Gu, Hannah; Rath, Nigam P; Piwnica-Worms, David


    ... incorporating alternative radionuclides. Recently, germanium/gallium (Ge/Ga) generators capable of producing high quality 68Ga, an isotope with excellent emission characteristics for clinical PET imaging, have emerged...

  4. Yttrium and lanthanum recovery from low cerium carbonate, yttrium carbonate and yttrium concentrate; Aproveitamento de itrio e lantanio de um carbonato de terras raras de baixo teor em cerio, de um carbonato de itrio e de um oxido de terras itricas

    Vasconcelos, Mari Estela de


    In this work, separation, enrichment and purification of lanthanum and yttrium were performed using as raw material a commercial low cerium rare earth concentrate named LCC (low cerium carbonate), an yttrium concentrate named 'yttrium carbonate', and a third concentrated known as 'yttrium earths oxide. The first two were industrially produced by the late NUCLEMON - NUCLEBRAS de Monazita e Associados Ltda, using Brazilian monazite. The 'yttrium earths oxide' come from a process for preparation of lanthanum during the course of the experimental work for the present thesis. The following techniques were used: fractional precipitation with urea; fractional leaching of the LCC using ammonium carbonate; precipitation of rare earth peroxycarbonates starting from the rare earth complex carbonates. Once prepared the enriched rare earth fractions the same were refined using the ion exchange chromatography with strong cationic resin without the use of retention ion and elution using the ammonium salt of ethylenediaminetetraacetic acid. With the association of the above mentioned techniques were obtained pure oxides of yttrium (>97,7%), lanthanum (99,9%), gadolinium (96,6%) and samarium (99,9%). The process here developed has technical and economic viability for the installation of a large scale unity. (author)

  5. Preparation and Characterization of Porous Yttrium Oxide Powders with High Specific Surface Area


    The porous cubic yttrium oxides with high specific surface area were prepared by the explosive decomposition of yttrium nitrate and its complex formed with methyl salicylate. The specific surface area and properties of powders synthesized at various temperatures were characterized using BET, X-ray diffraction (XRD), infrared spectra (IR), and scanning electron microscopy (SEM). The results indicate that the highest specific surface area is found to be 65.37 m2*g-1 at the calcination temperature of 600 ℃, and then decreases to 20.33 m2*g-1 with the calcination temperature rising from 600 to 900 ℃. The powders show strong surface activity for adsorping water and carbon dioxide in air, which also decreases with the rising calcination temperature. The drop both on the surface area and surface activity of samples at higher temperatures may be due to pore-narrowing(sintering) effects.

  6. Co-sputtering yttrium into hafnium oxide thin films to produce ferroelectric properties

    Olsen, T.; Schröder, U.; Müller, S.; Krause, A.; Martin, D.; Singh, A.; Müller, J.; Geidel, M.; Mikolajick, T.


    Thin film capacitors were fabricated by sputtering TiN-Y doped HfO2-TiN stacks on silicon substrates. Yttrium was incorporated into the HfO2 layers by simultaneously sputtering from Y2O3 and HfO2 sources. Electric polarization and relative permittivity measurements yield distinct ferroelectric properties as a result of low yttrium dopant concentrations in the range of 0.9-1.9 mol. %. Grazing incidence x-ray diffraction measurements show the formation of an orthorhombic phase in this range. Compared to atomic layer deposition films, the highest remanent polarization and the highest relative permittivity were obtained at significantly lower doping concentrations in these sputtered films.


    Olga Lobacheva


    Full Text Available Yttrium (III and ytterbium (III cations ion flotation from diluted aqueous solutions in the presence of chloride ions using sodium dodecyl sulfate as collector agent were studied. Y (III and Yb (III distribution and recovery coefficients as a function of aqueous phase рН value at different sodium chloride concentrations were received. Yttrium (III and ytterbium (III chloro and hydroxo complexes instability constants were calculated. The calculation of separation coefficient at рН specified values depending on chloride ion concentration was conducted. Maximum separation coefficient was observed when chloride concentration of 0.01 M is 50 at рН 7.8. Ksep is minimal in nitrate medium ans is 3 at рН 7.0. At sodium chloride concentration of 0.05 М Ksep is 9 at рН 7.8.

  8. High-pressure structural study of yttrium monochalcogenides from experiment and theory

    Vaitheeswaran, G.; Kanchana, V.; Svane, A.


    High-pressure powder x-ray diffraction experiments using synchrotron radiation are performed on the yttrium monochalcogenides YS, YSe, and YTe up to a maximum pressure of 23 GPa. The ambient NaCl structure is stable throughout the pressure range covered. The bulk moduli are determined to be 93, 82......, and 67 GPa for YS, YSe, and YTe, respectively. First-principles total energy calculations are carried out using the full-potential linear muffin-tin orbital method. The calculated and measured lattice constants and bulk moduli are in good agrement. Under applied pressure, the yttrium monochalcogenides...... are predicted to undergo a structural transition. Assuming that the high-pressure phase corresponds to the CsCl crystal structure, transition pressures of 53, 36, and 14 GPa are found for YS, YSe, and YTe, respectively....

  9. Effect of sintering on electrical properties of yttrium doped Li-based NASICON compounds

    Kothari, Dharmesh H.; Kanchan, D. K., E-mail:; Dave, Gargi [Solid State Ionics & Glass Research Laboratory, Department of Physics, Faculty of Science, The M. S. University of Baroda, Vadodara, Gujarat-390002 (India)


    Electrical properties of Lithium based Li{sub 1.3}Al{sub 0.3-x}Y{sub x}Ti{sub 1.7}(PO{sub 4}){sub 3} (LAYTP) system was prepared using solid state reaction route. The samples were subjected to differing duration of sintering. X-ray diffraction was used to investigate the microstructure while density measurement was performed to determine the effect of sintering on the density of the prepared samples. Electrical properties of the material were studied using impedance spectroscopy, in frequency range 20 MHz to 1 Hz and in temperature range 303 K to 423 K. It was found that sample with least amount of yttrium and which was sintered for least duration had superior conductivity over other samples. It was also found that grain boundary conductivity improved marginally for sample with higher proportion of yttrium heat treated for longer duration.

  10. Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells

    Bae, Kiho; Jang, Dong Young; Choi, Hyung Jong; Kim, Donghwan; Hong, Jongsup; Kim, Byung-Kook; Lee, Jong-Ho; Son, Ji-Won; Shim, Joon Hyung


    In reducing the high operating temperatures (>=800 °C) of solid-oxide fuel cells, use of protonic ceramics as an alternative electrolyte material is attractive due to their high conductivity and low activation energy in a low-temperature regime (fuel cells. However, poor sinterability of yttrium-doped barium zirconate discourages its fabrication as a thin-film electrolyte and integration on porous anode supports, both of which are essential to achieve high performance. Here we fabricate a protonic-ceramic fuel cell using a thin-film-deposited yttrium-doped barium zirconate electrolyte with no impeding grain boundaries owing to the columnar structure tightly integrated with nanogranular cathode and nanoporous anode supports, which to the best of our knowledge exhibits a record high-power output of up to an order of magnitude higher than those of other reported barium zirconate-based fuel cells.

  11. Electrical resistivity of yttrium single crystals in the range 4. 2--300 K

    Volkenshtein, N.V.; Dyakina, V.P.; Kumin, P.R.; Startsev, V.E.; Volkov, V.T.; Nikiforova, T.V.


    The electrical resistivity of pure yttrium single crystals (rho/sub 273.2//rho/sub 4.2/approx. =700) oriented along the <0001> and <1010> axes has been investigated in the temperature range 4.2--300 K. It was established that the scattering of electrons by phonons is described by the Bloch--Grueneisen function for both orientations over the whole temperature range, with the parameter THETA/sub R/ equal to the Debye temperature THETA/sub D/. It was found that a contribution to rho(T) quadratic in the temperature is two orders of magnitude greater than in other transition metals. It is shown that the anisotropy in the electrical resistivity of yttrium at Tapprox.THETA/sub D/ is completely determined by the anisotropy of its Fermi surface.

  12. A yttrium-containing high-temperature titanium alloy additively manufactured by selective electron beam melting

    逯圣路; 汤慧萍; 马前; 洪权; 曾立英


    A yttrium-containing high-temperature titanium alloy (Ti-6Al-2.7Sn-4Zr-0.4Mo-0.45Si-0.1Y, mass fraction, %) has been additively manufactured using selective electron beam melting (SEBM). The resulting microstructure and textures were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and electron backscattered diffraction (EBSD) and compared with the conventionally manufactured form. A notable distinct difference of microstructures is that additive manufacturing by SEBM enables homogeneous precipitation of fine Y2O3 dispersoids in the size range of 50−250 nm throughout the as-fabricated alloy, despite the presence of just trace levels of oxygen (7×10−4, mass fraction) and yttrium (10−3, mass fraction) in the alloy. In contrast, the conventionally manufactured alloy shows inhomogeneously distributed coarse Y2O3 precipitates, including cracked or debonded Y2O3 particles.

  13. First principles DFT investigation of yttrium-doped graphene: Electronic structure and hydrogen storage

    Desnavi, Sameerah, E-mail: [Department of Electronic Engineering, ZHCET, Aligarh Muslim University, Aligarh-202002 (India); Chakraborty, Brahmananda; Ramaniah, Lavanya M. [High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai-400085 (India)


    The electronic structure and hydrogen storage capability of Yttrium-doped grapheme has been theoretically investigated using first principles density functional theory (DFT). Yttrium atom prefers the hollow site of the hexagonal ring with a binding energy of 1.40 eV. Doping by Y makes the system metallic and magnetic with a magnetic moment of 2.11 μ{sub B}. Y decorated graphene can adsorb up to four hydrogen molecules with an average binding energy of 0.415 eV. All the hydrogen atoms are physisorbed with an average desorption temperature of 530.44 K. The Y atoms can be placed only in alternate hexagons, which imply a wt% of 6.17, close to the DoE criterion for hydrogen storage materials. Thus, this system is potential hydrogen storage medium with 100% recycling capability.

  14. Effect of Yttrium on Microstructure and Properties of High Temperature Alloys


    The effect of yttrium on the microstructure and properties of Ti-5.5Al-3.5Sn-3.0Zr-1Nb-0.3Mo-0.3Si (IMI 829) and Ti-14Al-21Nb high temperature alloys was studied by using optical microscope, SEM and mechanical property testing devices. The results show that the microstructure and grains of the two alloys can be fined by adding yttrium. For IMI829-0.2Y alloy, the favorable mechanical properties at room temperature and creep properties at 550℃ are obtained, and the high temperature mechanical properties of Ti-14Al-21Nb-0.1Y alloy are improved as well.

  15. Hydride vapor phase epitaxy growth of GaN, InGaN, ScN, and ScAIN

    Bohnen, T.


    Chemical vapor deposition (CVD); hydride vapor phase epitaxy (HVPE); gallium nitride (GaN); indium gallium nitride (InGaN); scandium nitride (ScN); scandium aluminum nitride (ScAlN); semiconductors; thin films; nanowires; III nitrides; crystal growth - We studied the HVPE growth of different III ni

  16. Electrical properties of boron, phosphorus and gallium co-doped silicon

    Fourmond, Erwann; Forster, Maxime; Einhaus, Roland; Lauvray, Hubert


    à paraître dans Energy Procedia; International audience; A number of ingots were grown from solar grade poly Silicon, to which Boron, Phosphorous and Gallium were added as dopants. The introduction of Gallium as a third dopant allowed for a better control of the resistivity and the doping type during ingot growth. Measured resistivity in this material is shown to be systematically higher than that calculated using Scheil's law for the dopants distribution and Klaassen's model for the majority...

  17. Heterotopic ossification (myositis ossificans) in acquired immune deficiency syndrome. Detection by gallium scintigraphy

    Drane, W.E.; Tipler, B.M.


    A case of heterotopic ossification (myositis ossificans) secondary to the central nervous system complications of acquired immune deficiency syndrome (AIDS) is reported. Because of the overwhelming suspicion of infection in this patient, this diagnosis was not considered until a gallium scan revealed the typical findings of heterotopic ossification. Because of the increasing utilization of gallium imaging in the AIDS population, every imaging specialist should be aware of this potential disorder.

  18. Heterotopic ossification (myositis ossificans) in acquired immune deficiency syndrome. Detection by gallium scintigraphy.

    Drane, W E; Tipler, B M


    A case of heterotopic ossification (myositis ossificans) secondary to the central nervous system complications of acquired immune deficiency syndrome (AIDS) is reported. Because of the overwhelming suspicion of infection in this patient, this diagnosis was not considered until a gallium scan revealed the typical findings of heterotopic ossification. Because of the increasing utilization of gallium imaging in the AIDS population, every imaging specialist should be aware of this potential disorder.

  19. The Role of Gallium scanning in the detection of bone and joint sepsis

    Gavin, Anna; Laird, J. D.; Roberts, S.D.


    The value of gallium (67Ga) scanning in the diagnosis of septic disease of bone or joint was assessed in 34 patients. The results show a sensitivity of 60 per cent and specificity of 64 per cent. The low accuracy of this method for the detection of bone and joint sepsis (62 per cent) means that gallium scanning can be used only as an adjunct to other investigative techniques.

  20. Evaluation of Magnetostrictive Shunt Damper Performance Using Iron (Fe)-Gallium (Ga) Alloy


    Evaluation of Magnetostrictive Shunt Damper Performance Using Iron (Fe)-Gallium (Ga) Alloy by Andrew James Murray and Dr. JinHyeong Yoo...Aberdeen Proving Ground, MD 21005 ARL-TN-0566 September 2013 Evaluation of Magnetostrictive Shunt Damper Performance Using Iron (Fe... Magnetostrictive Shunt Damper Performance Using Iron (Fe)- Gallium (Ga) Alloy 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6

  1. Haemophilus parainfluenzae bacteremia associated with a pacemaker wire localized by gallium scan

    Rosenbaum, G.S.; Calubiran, O.; Cunha, B.A. (Winthrop-Univ. Hospital, Mineola, NY (USA))


    A young woman with a history of sick sinus syndrome and placement of a permanent pacemaker 6 months before admission had fever and Haemophilus parainfluenzae bacteremia. A gallium scan localized the infection to the site of the pacemaker wire. Echocardiograms were negative for any vegetations. The patient responded to cefotaxime and trimethoprim-sulfamethoxazole therapy. We believe that this is the first case of H. parainfluenzae bacteremia associated with a pacemaker wire and localized by gallium scan.

  2. Nano metric particles of yttrium ferrite; Particulas nanometricas de ferritas de itrio

    Godoi, Ricardo H.M.; Jafelicci Junior, Miguel; Marques, Rodrigo F.C.; Varanda, Laudemir C. [UNESP, Araraquara, SP (Brazil). Inst. de Quimica. Dept. de Fisico-Quimica; Lima, Roberto C. [Instituto de Pesquisas da Marinha, Rio de Janeiro, RJ (Brazil)


    Nanoparticles of yttrium iron garnet (YIG) were obtained by coprecipitation. The particles were prepared by hydrolysis in acid medium with addition of ammonia or urea, for homogeneous nucleation, at 90 deg C. Different compositions and spherical morphologies were achieved by changing reactants concentrations and precipitation agent. X-ray diffractometry, transmission electron microscopy, differential thermal analysis and electrophoretic mobility were carried out on these particles to investigate the obtained phase, phase transition temperature, morphology, particle size and zeta potential, respectively. (author)

  3. Engineering of the band gap and optical properties of thin films of yttrium hydride

    You, Chang Chuan; Mongstad, Trygve; Maehlen, Jan Petter; Karazhanov, Smagul, E-mail: [Institute for Energy Technology, P.O. Box 40, NO-2027 Kjeller (Norway)


    Thin films of oxygen-containing yttrium hydride show photochromic effect at room temperature. In this work, we have studied structural and optical properties of the films deposited at different deposition pressures, discovering the possibility of engineering the optical band gap by variation of the oxygen content. In sum, the transparency of the films and the wavelength range of photons triggering the photochromic effect can be controlled by variation of the deposition pressure.

  4. Observation of spin rectification in Pt/yttrium iron garnet bilayer

    Rao, Jinwei; Fan, Xiaolong, E-mail:; Zhou, Hengan; Zhao, Xiaobing; Zhao, Jing; Zhang, Fengzhen; Xue, Desheng [The Key Lab for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Ma, Li; Zhou, Shiming [Shanghai Key Laboratory of Special Artificial Microstructure and Technology and Pohl Institute of Solid State Physics and School of Physics Science and Engineering, Tongji University, Shanghai 200092 (China)


    We used the ferromagnetic resonance (FMR) to study the dc voltage generation in Pt 20 nm layer deposited on yttrium iron garnet. Although the main contribution to the FMR voltage comes from the inverse spin Hall effect associated with spin pumping, the spin rectification would also contribute the resonance signal via the “new” magnetoresistance effect in Pt layer. Based on a symmetry consideration, we can separate those two effects through angular dependent resonance amplitude.

  5. Effects of minor yttrium addition on hot deformability of lamellar Ti-45Al-5Nb alloy

    CHEN Yu-yong; LI Bao-hui; KONG Fan-tao


    The effects of 0.3%(molar fraction, the same below) yttrium addition on hot deformability of lamellar Ti-45Al-5Nb alloy were investigated by simulated isothermal forging tests. The ingots with the nominal compositions of Ti-45Al-5Nb and Ti-45Al-5Nb-0.3Y were prepared by induction skull melting. Simulated isothermal forging tests were conducted on Gleeble 1500D thermo-simulation machine using a 6 mm in diameter and 10 mm in length compressive specimen at the deformation temperatures of 1 100, 1 150, 1 200 ℃ and strain rates of 1.0, 0.1, 0.01 s-1. The results show that yttrium addition remarkably improves hot deformability of Ti-45Al-5Nb alloy. An appropriate hot deformation processing parameter of Ti-45Al-5Nb-0.3Y alloy is determined as 1 200 ℃, 0.01 s-1. The flow stresses are decreased by yttrium addition under the same compressive conditions. The activation energies of deformation Q are calculated as 448.6 and 399.5 kJ/mol for Y-free and Y-containing alloys, respectively. The deformed microstructure observation under 1 200 ℃, 0.01 s-1 condition indicates that Ti-45Al-5Nb-0.3Y alloy shows more dynamic recrystallization. The improvement of hot deformability of Ti-45Al-5Nb-0.3Y alloy induced by yttrium addition should be attributed to that the smaller the original lamellar colonies, the lower the deformation resistance and activation energy of deformation are, and the more the dynamic recrystallization is.

  6. Yttrium deposition on mesoporous TiO2: textural design and UV decolourization of organic dyes

    M L Ojeda; C Velasquez; V Renteria; A Campero; M A García-Sánchez; F Rojas


    This study discusses about the photochemical, topological and textural properties of yttrium-doped titanium dioxide (TiO2) photocatalysts. The mesoporous yttrium-doped TiO2 substrates prepared in this research work operate efficiently via low-cost commercial 13-W UV lamps. A quantity of 2 wt% yttrium deposition on TiO2 accelerates methyl orange UV decolourization kinetics. When Y content increases to 8 wt%, besides anatase, rutile is formed from 600°C. The Y2Ti2O7 photoinactive compound emerges at 800°C. The P-123 surfactant mesopore templating treatment of TiO2 xerogels (when concurrent with the sol–gel Y-doping of Ti alkoxides) features the following two correlated phenomena: (i) The surface area increases while the access to the inner porosity of the substrate becomes much easier, so that a larger portion of the surface is made accessible to the dye molecules as well as to the yttrium dopant; (ii) the inclusion of tubular instead of ink-bottle pores facilitates the transport of organic species in and out of the pore structure. The most active mesoporous substrate resulted to be made of 2 wt% Y; contrastingly, when Y= 8 wt%, photoinactivity arose because of Y2Ti2O7 formation. The involvement of P123 was not the sole factor influencing the efficiency of TiO2 mesoporous photocatalysts. There were additional key factors, such as the surging of co-ordination and nucleophilic species, during the dye photodegradation process, which were also induced by the presence of Y species on the surface of these substrates.

  7. High-spin europium and gadolinium centers in yttrium-aluminum garnet

    Vazhenin, V. A.; Potapov, A. P.; Asatryan, G. R.; Uspenskaya, Yu. A.; Petrosyan, A. G.; Fokin, A. V.


    Electron-spin resonance spectra of Eu2+ and Gd3+ centers substituting Y3+ ions in single-crystal yttrium-aluminum garnet have been studied and the parameters of their rhombic spin Hamiltonian have been determined. The fine-structure parameters of the above ions have been calculated in the superposition model disregarding changes in the angular coordinates of the ligand environment of the impurity defect thus demonstrating the necessity of taking these changes into account.

  8. Fabrication, characterization, and fluorine-plasma exposure behavior of dense yttrium oxyfluoride ceramics

    Tsunoura, Toru; Yoshida, Katsumi; Yano, Toyohiko; Kishi, Yukio


    Yttrium oxyfluoride (YOF) ceramics are expected to be one of the attractive plasma-resistant materials for semiconductor production equipment. In this study, dense YOF ceramics were fabricated by hot pressing using YOF powder, and their physical, mechanical, and thermal properties were characterized. Moreover, behavior against fluorine-plasma exposure was investigated. The results suggest that the YOF ceramics showed excellent mechanical and thermal properties, and superior resistance for fluorine-plasma exposure to Y2O3 ceramics.

  9. Extraction of Yttrium (Ⅲ) into [C8mim][PF6] Containing Cyanex 923

    Peng Bo; Sun Xiaoqi; Chen Ji; Ma Jiutong


    The extraction of Yttrium (Ⅲ) into [Cnmim] [PF6] (n=4,6,8) containing Cyanex 923 was studied in this paper. The mechanism of this extraction was indicated to be cation exchange. In addition, the extraction process is an endothermic reaction. The RTILs with shorter alkyl chain behave higher extraction efficiency during the extraction, however, which has also more loss to aqueous phase since the cation exchange mechanism.

  10. Yttrium-90 Radioembolization of Hepatocellular Carcinoma-Performance, Technical Advances, and Future Concepts.

    Molvar, Christopher; Lewandowski, Robert


    Hepatocellular carcinoma (HCC) is a lethal tumor, claiming over half a million lives per year. Treatment of HCC is commonly performed without curative intent, and palliative options dominate, including catheter-based therapies, namely, transarterial chemoembolization and yttrium-90 ((90)Y) radioembolization. This review will showcase the performance of (90)Y radioembolization for the treatment of HCC, focusing on recent seminal data and technical advances. In particular, novel radioembolization treatment concepts are discussed and compared with conventional HCC therapy.

  11. The effect of yttrium substitution on the magnetic properties of magnetite nanoparticles

    Mozaffari, M., E-mail:; Amighian, J.; Tavakoli, R.


    Superparamagnetic Y-substituted magnetite (Y{sub x}Fe{sub 3–x}O{sub 4},with x=0.00, 0.10, 0.15, 0.20 and 0.40) nanoparticles were synthesized via hydrothermal reduction route in the presence of citric acid. The synthesized nanoparticles were characterized by X-ray diffraction (XRD) analysis, Fourier transform infrared (FTIR) spectroscopy, field emission scanning electron microscopy (FESEM), vibrating sample magnetometry (VSM) and gradient field thermomagnetic measurement. The results showed that a minimum amount of citric acid is required to obtain single phase Y-substituted magnetite nanoparticles. Citric acid acts as a modulator and reducing agent in the formation of spinel structure and controls nanoparticle size and crystallinity. Mean crystallite sizes of the single-phase powders were estimated by Williamson–Hall method. Curie temperature measurement of the samples shows that as yttrium content increases, the Curie temperature decreases. Magnetic measurements show that the saturation magnetization of the samples decreases as x increases up to 0.15 and then increases to x=0.20 and finally decreases again for x=0.40. - Highlights: • Single phase yttrium substituted magnetite nanoparticles were synthesized by hydrothermal-reduction route. • Citric acid plays a key role in reduction of Fe{sup 3+} to Fe{sup 2+}, which is necessary for the formation of magnetite phase. • It is possible to substitute yttrium ions for iron ones as high as x=0.4 by hydrothermal reduction route. • Pure magnetite nanoparticles prepared by this route has a high saturation magnetization. • Yttrium substituted magnetite nanoparticles are superparamagnet at room temperature.

  12. Peripheral Blood Lymphocyte Depletion After Hepatic Arterial {sup 90}Yttrium Microsphere Therapy for Hepatocellular Carcinoma

    Carr, Brian I., E-mail: [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA and Department of Nutrition and Exptl Biology, Saverio De Bellis Medical Research Institute, Castellana Grotte, Bari (Italy); Metes, Diana M. [Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA and Department of Nutrition and Exptl Biology, Saverio De Bellis Medical Research Institute, Castellana Grotte, Bari (Italy)


    Purpose: The short- and long-term effects of {sup 90}Yttrium microspheres therapy for hepatocellular carcinoma (HCC) on peripheral blood lymphocytes are unknown and were therefore examined. Methods and Materials: Ninety-two HCC patients were enrolled in a {sup 90}Yttrium therapy study and routine blood counts were examined as part of standard clinical monitoring. Results: We found an early, profound, and prolonged lymphopenia. In a subsequent cohort of 25 additional HCC patients, prospective flow cytometric immune-monitoring analysis was performed to identify specific changes on distinct lymphocyte subsets (i.e., CD3, CD4, CD8 T, and CD19 B lymphocytes) and NK cells absolute numbers, in addition to the granulocytes and platelets subsets. We found that the pretreatment lymphocyte subset absolute numbers (with the exception of NK cells) had a tendency to be lower compared with healthy control values, but no significant differences were detected between groups. Posttherapy follow-up revealed that overall, all lymphocyte subsets, except for NK cells, were significantly (>50% from pretherapy values), promptly (as early as 24 h) and persistently (up to 30 months) depleted post-{sup 90}Yttrium microspheres therapy. In contrast, granulocytes increased rapidly (24 h) to compensate for lymphocyte depletion, and remained increased at 1-year after therapy. We further stratified patients into two groups, according to survival at 1 year. We found that lack of recovery of CD19, CD3, CD8, and especially CD4 T cells was linked to poor patient survival. No fungal or bacterial infections were noted during the 30-month follow-up period. Conclusions: The results show that lymphocytes (and not granulocytes, platelets, or NK cells) are sensitive to hepatic arterial {sup 90}Yttrium without associated clinical toxicity, and lack of lymphocyte recovery (possibly leading to dysregulation of adaptive cellular immunity) posttherapy indicates poor survival.

  13. Off-line studies of the laser ionization of yttrium at the IGISOL facility

    Kessler, T; Kudryavtsev, Y; Peräjärvi, K; Popov, A; Ronkanen, P; Sonoda, T; Tordoff, B; Wendt, K D A; Äystö, J


    A laser ion source is under development at the IGISOL facility, Jyvaskyla, in order to address deficiencies in the ion guide technique. The key elements of interest are those of a refractory nature, whose isotopes and isomers are widely studied using both laser spectroscopic and high precision mass measurement techniques. Yttrium has been the first element of choice for the new laser ion source. In this work we present a new coupled dye-Ti:Sapphire laser scheme and give a detailed discussion of the results obtained from laser ionization of yttrium atoms produced in an ion guide via joule heating of a filament. The importance of not only gas purity, but indeed the baseline vacuum pressure in the environment outside the ion guide is discussed in light of the fast gas phase chemistry seen in the yttrium system. A single laser shot model is introduced and is compared to the experimental data in order to extract the level of impurities within the gas cell.

  14. Demonstrating the potential of yttrium-doped barium zirconate electrolyte for high-performance fuel cells.

    Bae, Kiho; Jang, Dong Young; Choi, Hyung Jong; Kim, Donghwan; Hong, Jongsup; Kim, Byung-Kook; Lee, Jong-Ho; Son, Ji-Won; Shim, Joon Hyung


    In reducing the high operating temperatures (≥800 °C) of solid-oxide fuel cells, use of protonic ceramics as an alternative electrolyte material is attractive due to their high conductivity and low activation energy in a low-temperature regime (≤600 °C). Among many protonic ceramics, yttrium-doped barium zirconate has attracted attention due to its excellent chemical stability, which is the main issue in protonic-ceramic fuel cells. However, poor sinterability of yttrium-doped barium zirconate discourages its fabrication as a thin-film electrolyte and integration on porous anode supports, both of which are essential to achieve high performance. Here we fabricate a protonic-ceramic fuel cell using a thin-film-deposited yttrium-doped barium zirconate electrolyte with no impeding grain boundaries owing to the columnar structure tightly integrated with nanogranular cathode and nanoporous anode supports, which to the best of our knowledge exhibits a record high-power output of up to an order of magnitude higher than those of other reported barium zirconate-based fuel cells.

  15. Synthesis and characterization of branched yttrium hydroxide fluoride microcrystals with hierarchical tubular structure

    TIAN Li; JIANG Wentao; SUN Qiliang; LIU Jin


    Hexagonal yttrium hydroxide fluoride microcrystals were prepared by a two-step hydrothermal route using yttrium nitrate,sodium hydroxide and sodium fluoride as raw materials to react in propanetriol solvent.The samples were characterized by powder X-ray diffraction (XRD),energy dispersive spectrum (EDS),scanning electron microscopy (SEM),transmission electron microscopy (TEM),Fourier transform infrared spectroscopy (FT-IR),thermogravimetre and differential-thermogravimetric analysis (TG-DTA),which revealed that Y(OH)2.14F0.86 microcrystals were multi-branched and that the branches of Y(OH)2.14F0.86 microcrystals were composed of hierarchical tubes.This novel multi-branched and intriguing hierarchical tubular structure of yttrium hydroxide fluoride maybe has a potential application in photoelectric crystals.The formation of branched Y(OH)2.14F0.86 microcrystals with hierarchical tubular structure were due to the substitution reaction and Oswald ripening.

  16. Effect of yttrium on the mechanical and magnetostrictive properties of Fe83Ga17 alloy

    李纪恒; 肖锡铭; 袁超; 高学绪; 包小倩


    Polycrystalline rod samples of (Fe83Ga17)100–xYx(x=0, 0.16, 0.32, 0.48, 0.64) were prepared by induction melting under ar-gon atmosphere. Effect of yttrium on the mechanical and magnetostrictive properties of Fe83Ga17 alloy was investigated. Small amount of yttrium (0.16 at.%) increased the tensile strength of as-cast Fe83Ga17 alloys to 674 MPa and improved the ductility with elongation of 4.2% at room temperature. The Y2Fe17?xGax (6≤x≤7) phase was formed in the Y-doped Fe83Ga17 alloy since yttrium was hardly dissolved into theα-Fe lattice. Y2(FeGa)17 secondary phase dispersed along the grain boundaries and inside the grains played an important role for the enhancement of mechanical property. The 0.64 at.% Y-doped alloy had magnetostriction of 133 ppm, which was thought to be associated with the alteration of the grain shape and preferential orientation along the axial direction of rods.

  17. Crystal structure and switchable optical properties of yttrium hydride films covered by palladium layer

    张文魁; 甘永平; 杨晓光; 黄辉; 余厉阳


    The palladium/yttrium films were prepared using magnetron sputtering technique.The changes of crystal structure,morphology and optical properties of the films during the hydrogen absorption/desorption process were investigated.The results of SEM and AFM analysis show that yttrium films have columnar structure,and the Pd cover layers on the surface of the yttrium films are composed of nanometer-sized Pd particles,which contain a large amount of smaller crystalline grains.During the gas hydrogen absorption/desorption process,YH3 and YH2 hydrides form on the sites of Pd grains contacting with Y grains.Upon hydrogenation,YH3 hydride forms and the switchable optical properties can be observed.The light transparency of the films increases with the increasing of hydrogen loading time and the light wavelength,and the absorption limitation occurs at λ=400 nm.Upon dehydrogenation,YH3 hydride dissociates into YH2 hydride,and the maximum transparency occurs at λ=689 nm.

  18. Fabrication and properties of gallium phosphide variable colour displays

    Effer, D.; Macdonald, R. A.; Macgregor, G. M.; Webb, W. A.; Kennedy, D. I.


    The unique properties of single-junction gallium phosphide devices incorporating both red and green radiative recombination centers were investigated in application to the fabrication of monolithic 5 x 7 displays capable of displaying symbolic and alphanumeric information in a multicolor format. A number of potentially suitable material preparation techniques were evaluated in terms of both material properties and device performance. Optimum results were obtained for double liquid-phase-epitaxial process in which an open-tube dipping technique was used for n-layer growth and a sealed tipping procedure for subsequent p-layer growth. It was demonstrated that to prepare devices exhibiting a satisfactory range of dominant wavelengths which can be perceived as distinct emission colors extending from the red through green region of the visible spectrum involves a compromise between the material properties necessary for efficient red emission and those considered optimum for efficient green emission.

  19. Kinetically controlled growth of gallium on stepped Si (553) surface

    Kumar, Mukesh; Pasha, Syed Khalid; Govind,, E-mail:


    Kinetically controlled growth of gallium (Ga) metal has been reported on high index stepped Si (553) surface and its thermal stability with various novel superstructural phases has been analyzed. Auger electron spectroscopy studies revealed that the adsorption of Ga at room temperature (RT) follows Frank–van der Merwe (FM) growth mode while for higher substrate temperature, Ga adsorption remains within the submonolayer range. Thermal desorption and low energy electron diffraction studies investigated the formation of thermally stable Ga-islands and the various Ga induced superstructural phase on Si (553). During room temperature adsorption, (1 1 1)7 × 7 facet of Si (553) reconstructed into (1 1 1)6 × 6 facet while during desorption process, stable (1 1 1)6 × 6 and (1 1 1)√3 × √3-R30° surface reconstructions has been observed.

  20. Low-threshold indium gallium nitride quantum dot microcavity lasers

    Woolf, Alexander J.

    Gallium nitride (GaN) microcavities with embedded optical emitters have long been sought after as visible light sources as well as platforms for cavity quantum electrodynamics (cavity QED) experiments. Specifically, materials containing indium gallium nitride (InGaN) quantum dots (QDs) offer an outstanding platform to study light matter interactions and realize practical devices, such as on-chip light emitting diodes and nanolasers. Inherent advantages of nitride-based microcavities include low surface recombination velocities, enhanced room-temperature performance (due to their high exciton binding energy, as high as 67 meV for InGaN QDs), and emission wavelengths in the blue region of the visible spectrum. In spite of these advantages, several challenges must be overcome in order to capitalize on the potential of this material system. Such diffculties include the processing of GaN into high-quality devices due to the chemical inertness of the material, low material quality as a result of strain-induced defects, reduced carrier recombination effciencies due to internal fields, and a lack of characterization of the InGaN QDs themselves due to the diffculty of their growth and therefore lack of development relative to other semiconductor QDs. In this thesis we seek to understand and address such issues by investigating the interaction of light coupled to InGaN QDs via a GaN microcavity resonator. Such coupling led us to the demonstration of the first InGaN QD microcavity laser, whose performance offers insights into the properties and current limitations of the nitride materials and their emitters. This work is organized into three main sections. Part I outlines the key advantages and challenges regarding indium gallium nitride (InGaN) emitters embedded within gallium nitride (GaN) optical microcavities. Previous work is also discussed which establishes context for the work presented here. Part II includes the fundamentals related to laser operation, including the

  1. From Bidentate Gallium Lewis Acids to Supramolecular Complexes.

    Horstmann, Jan; Hyseni, Mentor; Mix, Andreas; Neumann, Beate; Stammler, Hans-Georg; Mitzel, Norbert W


    Bidentate gallium Lewis acids were prepared by the reaction of diethynyldiphenylsilane with neat trimethyl- or triethylgallium. Bis[(dimethylgallyl)ethynyl]diphenylsilane (1) and diethylgallyl derivative 2 were characterized as Et2 O or pyridine adducts by NMR spectroscopy; 2⋅2Py was isolated. Lewis acids 1 and 2 form host-guest adducts with bidentate nitrogen bases, but defined cyclic 1:1 adducts are only formed between 1 and bases with matching N⋅⋅⋅N distances: 4,4'-dimethyl-3,3'-bipyridinylacetylene (3), bis[(pyridin-3-yl)ethynyl]diphenylsilane (4), and bis[(2-methylpyridin-5-yl)ethynyl]diphenylsilane (5). The structures of adducts 1⋅3, 1⋅4, and 1⋅5 were established by X-ray diffraction experiments. 2⋅2Py reacts with DABCO to afford polymeric (DABCO-2-)n . © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Compilation of gallium resource data for bauxite deposits

    Schulte, Ruth F.; Foley, Nora K.


    Gallium (Ga) concentrations for bauxite deposits worldwide have been compiled from the literature to provide a basis for research regarding the occurrence and distribution of Ga worldwide, as well as between types of bauxite deposits. In addition, this report is an attempt to bring together reported Ga concentration data into one database to supplement ongoing U.S. Geological Survey studies of critical mineral resources. The compilation of Ga data consists of location, deposit size, bauxite type and host rock, development status, major oxide data, trace element (Ga) data and analytical method(s) used to derive the data, and tonnage values for deposits within bauxite provinces and districts worldwide. The range in Ga concentrations for bauxite deposits worldwide is

  3. Fractal characteristics of nanocrystalline indium and gallium sulfide particles

    Sastry, P.U., E-mail: [Solid State Physics Division, Mumbai 400085 (India); Dutta, Dimple P. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)


    The structure of nano-sized powders of indium sulfide (In{sub 2}S{sub 3}) and gallium sulfide (Ga{sub 2}S{sub 3}), prepared by single source precursor route has been investigated by small angle X-ray scattering technique. The particle morphology shows interesting fractal nature. For In{sub 2}S{sub 3}, the nanoparticle aggregates show a mass fractal with fractal dimension 2.0 that increases with longer time of thermal treatment. Below the length scale of about 20 nm, the particles have a rough surface with a surface fractal dimension of 2.8. Unlike In{sub 2}S{sub 3}, structure of Ga{sub 2}S{sub 3} exhibits a single surface fractal over whole q-range of study. The estimated particle sizes are in range of 5-15 nm and the results are supported by transmission electron microscope.

  4. Thermal lensing in silver gallium selenide parametric oscillator crystals.

    Marquardt, C L; Cooper, D G; Budni, P A; Knights, M G; Schepler, K L; Dedomenico, R; Catella, G C


    We performed an experimental investigation of thermal lensing in silver gallium selenide (AgGaSe(2)) optical parametric oscillator crystals pumped by a 2-µm laser at ambient temperature. We determined an empirical expression for the effective thermal focusing power in terms of the pump power, beam diameter, crystal length, and absorption coefficient. This relation may be used to estimate average power limitations in designing AgGaSe(2) optical parametric oscillators. We also demonstrated an 18% slope efficiency from a 2-µm pumped AgGaSe(2) optical parametric oscillator operated at 77 K, at which temperature thermal lensing is substantially reduced because of an increase in the thermal conductivity and a decrease in the thermal index gradient dn/dT. Cryogenic cooling may provide an additional option for scaling up the average power capability of a 2-µm pumped AgGaSe(2) optical parametric oscillator.

  5. L-Cysteine-assisted Synthesis of Copper Gallium Sulfide Microspheres

    LIANG Xiao-juan; ZHONG Jia-song; CAI Qian; HUANG Hai-yu; LIU Hai-tao; XIANG Wei-dong; SUN Jun-cai


    An effective L-cysteine-assisted synthetic route has been successfully developed to prepare copper gallium sulfide(CuGaS2) microspheres under solvothermal conditions with CuCI2-2H2O,GaCl3 and L-cysteine as source materials,in which L-cysteine was used as the sulfide source and eomplexing molecule.The experiments revealed that the synthesized sample was of a typical CuGaS2 tetragonal structure.Moreover,the prepared CuGaS2 crystals consisting of microspheres made up of nanoflakes,and the diameter of the nanoflakes was about 20 nm.Raman spectrum of the obtained CuGaS2 exhibits a high-intensity peak of the A1 mode at 306 cm-1.Meanwhile,a possible growth mechanism was proposed based on the investigations.

  6. Gallium-68 Prostate-Specific Membrane Antigen PET Imaging.

    Hofman, Michael S; Iravani, Amir


    The role of gallium-68 ((68)Ga) prostate-specific membrane antigen (PSMA) PET imaging is evolving and finding its place in the imaging armamentarium for prostate cancer (PCa). Despite the progress of conventional imaging strategies, significant limitations remain, including identification of small-volume disease and assessment of bone. Clinical studies have demonstrated that (68)Ga-PSMA is a promising tracer for detection of PCa metastases, even in patients with low prostate-specific antigen. To provide an accurate interpretation of (68)Ga-PSMA PET/computed tomography, nuclear medicine specialists and radiologists should be familiar with physiologic (68)Ga-PSMA uptake, common variants, patterns of locoregional and distant spread of PCa, and inherent pitfalls.

  7. Band structures in silicene on monolayer gallium phosphide substrate

    Ren, Miaojuan; Li, Mingming; Zhang, Changwen; Yuan, Min; Li, Ping; Li, Feng; Ji, Weixiao; Chen, Xinlian


    Opening a sizable band gap in the zero-gap silicene is a key issue for its application in nanoelectronics. We design new 2D silicene and GaP heterobilayer (Si/GaP HBL) composed of silicene and monolayer (ML) GaP. Based on first-principles calculations, we find that the interaction energies are in the range of -295.5 to -297.5 meV per unit cell, indicating a weak interaction between silicene and gallium phosphide (GaP) monolayer. The band gap changes ranging from 0.06 to 0.44 eV in hybrid HBLs. An unexpected indirect-direct band gap crossover is also observed in HBLs, dependent on the stacking pattern. These provide a possible way to design effective FETs out of silicene on GaP monolayer.

  8. Localized surface phonon polariton resonances in polar gallium nitride

    Feng, Kaijun, E-mail:; Islam, S. M.; Verma, Jai; Hoffman, Anthony J. [Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Streyer, William; Wasserman, Daniel [Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801 (United States); Jena, Debdeep [Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14850 (United States)


    We demonstrate the excitation of localized surface phonon polaritons in an array of sub-diffraction pucks fabricated in an epitaxial layer of gallium nitride (GaN) on a silicon carbide (SiC) substrate. The array is characterized via polarization- and angle-dependent reflection spectroscopy in the mid-infrared, and coupling to several localized modes is observed in the GaN Reststrahlen band (13.4–18.0 μm). The same structure is simulated using finite element methods and the charge density of the modes are studied; transverse dipole modes are identified for the transverse electric and magnetic polarizations and a quadrupole mode is identified for the transverse magnetic polarization. The measured mid-infrared spectrum agrees well with numerically simulated spectra. This work could enable optoelectronic structures and devices that support surface modes at mid- and far-infrared wavelengths.

  9. Modeling and simulation of bulk gallium nitride power semiconductor devices

    G. Sabui


    Full Text Available Bulk gallium nitride (GaN power semiconductor devices are gaining significant interest in recent years, creating the need for technology computer aided design (TCAD simulation to accurately model and optimize these devices. This paper comprehensively reviews and compares different GaN physical models and model parameters in the literature, and discusses the appropriate selection of these models and parameters for TCAD simulation. 2-D drift-diffusion semi-classical simulation is carried out for 2.6 kV and 3.7 kV bulk GaN vertical PN diodes. The simulated forward current-voltage and reverse breakdown characteristics are in good agreement with the measurement data even over a wide temperature range.

  10. Gallium Nitride Electrical Characteristics Extraction and Uniformity Sorting

    Shyr-Long Jeng


    Full Text Available This study examined the output electrical characteristics—current-voltage (I-V output, threshold voltage, and parasitic capacitance—of novel gallium nitride (GaN power transistors. Experimental measurements revealed that both enhanced- and depletion-mode GaN field-effect transistors (FETs containing different components of identical specifications yielded varied turn-off impedance; hence, the FET quality was inconsistent. Establishing standardized electrical measurements can provide necessary information for designers, and measuring transistor electrical characteristics establishes its equivalent-circuit model for circuit simulations. Moreover, high power output requires multiple parallel power transistors, and sorting the difference between similar electrical characteristics is critical in a power system. An isolated gate driver detection method is proposed for sorting the uniformity from the option of the turn-off characteristic. In addition, an equivalent-circuit model for GaN FETs is established on the basis of the measured electrical characteristics and verified experimentally.

  11. Infrared emission from holmium doped gallium lanthanum sulphide glass

    Schweizer, T.; Samson, B. N.; Hector, J. R.; Brocklesby, W. S.; Hewak, D. W.; Payne, D. N.


    Infrared emission at 1.2, 1.25, 1.67, 2.0, 2.2, 2.9, 3.9, and 4.9 μm is measured in holmium (Ho 3+) doped gallium lanthanum sulphide (GLS) glass. Branching ratios, radiative quantum efficiencies, and emission cross-sections are calculated from lifetime, absorption, and emission measurements using Judd-Ofelt analysis and the Füchtbauer-Ladenburg equation. The fluorescence band at 3.9 μm coincides with an atmospheric transmission window and the fluorescence band at 4.9 μm overlaps with the fundamental absorption of carbon monoxide, making the glass a potential fibre laser source for remote sensing and gas sensing applications. This is the first time this latter transition has been reported in any holmium doped host.

  12. Temperature dependence of carrier capture by defects in gallium arsenide

    Wampler, William R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Modine, Normand A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    This report examines the temperature dependence of the capture rate of carriers by defects in gallium arsenide and compares two previously published theoretical treatments of this based on multi phonon emission (MPE). The objective is to reduce uncertainty in atomistic simulations of gain degradation in III-V HBTs from neutron irradiation. A major source of uncertainty in those simulations is poor knowledge of carrier capture rates, whose values can differ by several orders of magnitude between various defect types. Most of this variation is due to different dependence on temperature, which is closely related to the relaxation of the defect structure that occurs as a result of the change in charge state of the defect. The uncertainty in capture rate can therefore be greatly reduced by better knowledge of the defect relaxation.

  13. Kinetically controlled growth of gallium on stepped Si (553) surface

    Kumar, Mukesh; Pasha, Syed Khalid; Govind


    Kinetically controlled growth of gallium (Ga) metal has been reported on high index stepped Si (553) surface and its thermal stability with various novel superstructural phases has been analyzed. Auger electron spectroscopy studies revealed that the adsorption of Ga at room temperature (RT) follows Frank-van der Merwe (FM) growth mode while for higher substrate temperature, Ga adsorption remains within the submonolayer range. Thermal desorption and low energy electron diffraction studies investigated the formation of thermally stable Ga-islands and the various Ga induced superstructural phase on Si (553). During room temperature adsorption, (1 1 1)7 × 7 facet of Si (553) reconstructed into (1 1 1)6 × 6 facet while during desorption process, stable (1 1 1)6 × 6 and (1 1 1)√3 × √3-R30° surface reconstructions has been observed.

  14. Trivalent gallium ion conduction in NASICON-type solid

    Shinji Tamura


    Full Text Available A new trivalent gallium (Ga3+ ion conducting solid was successfully developed by selecting the three dimensionally well-ordered NASICON-type structure. Although Ga is accepted as a species whose covalency is so high that trivalent Ga3+ ion is inappropriate ionic species in solids to migrate due to its strong bonding with surrounding ions such as oxide anion, we demonstrated the trivalent Ga3+ ion conduction in the NASICON-type (GaxTi1−x4/(4−xNb(PO43 solids by strictly selecting the constituent cations. Among the samples prepared, (Ga0.1Ti0.940/39Nb(PO43 showed the highest Ga3+ ion conductivity of 5.1 × 10−5 S cm−1 at 600 °C.

  15. Resonant magnetic properties of gadolinium-gallium garnet single crystals

    Bedyukh, A. R.; Danilov, V. V.; Nechiporuk, A. Yu.; Romanyuk, V. F.


    The results of experimental investigations of resonant magnetic properties of gadolinium-gallium garnet (GGG) single crystals at temperatures 4.2-300 K in the frequency range 1.6-9.3 GHz are considered. It is found that magnetic losses in GGG are determined by the initial splitting of energy levels for gadolinium ions in the garnet crystal lattice and by the dipole broadening. The width and shape of the electron paramagnetic resonance (EPR) line in the GGG crystal, whose asymmetry is manifested most strongly at low frequencies, can be explained by the influence of these factors. Magnetic losses in GGG increase with frequency and upon cooling. It is found that the EPR linewidth increases considerably with decreasing temperature due to the presence of rapidly relaxing impurities.

  16. High-Temperature Decomposition of Brønsted Acid Sites in Gallium-Substituted Zeolites

    K Al-majnouni; N Hould; W Lonergan; D Vlachos; R Lobo


    The dehydroxylation of Broensted acid sites (BAS) in Ga-substituted zeolites was investigated at temperatures up to 850 C using X-ray absorption spectroscopy (XAS), Fourier transform infrared spectroscopy (FTIR), and mass spectrometry-temperature programmed desorption (MS-TPD). X-ray absorption near-edge spectroscopy (XANES) revealed that the majority of gallium has tetrahedral coordination even after complete dehydroxylation. The interatomic gallium-oxygen distance and gallium coordination number determined by extended X-ray absorption fine structure (EXAFS) are consistent with gallium in tetrahedral coordination at low T (< 550 C). Upon heating Ga-Beta and Ga-ZSM5 to 850 C, analysis of the EXAFS showed that 70 and 80% of the gallium was still in tetrahedral coordination. The remainder of the gallium was found to be in octahedral coordination. No trigonal Ga atoms were observed. FTIR measurements carried out at similar temperatures show that the intensity of the OH vibration due to BAS has been eliminated. MS-TPD revealed that hydrogen in addition to water evolved from the samples during dehydroxylation. This shows that dehydrogenation in addition to dehydration is a mechanism that contributes to BAS decomposition. Dehydrogenation was further confirmed by exposing the sample to hydrogen to regenerate some of the BAS as monitored by FTIR and MS-TPD.

  17. Novel ethylenediamine-gallium phosphate containing 6-fold coordinated gallium atoms with unusual four equatorial Ga–N bonds

    Torre-Fernández, Laura [Departamentos de Química Física y Analítica y Química Orgánica e Inorgánica, Universidad de Oviedo-CINN, 33006 Oviedo (Spain); Espina, Aránzazu; Khainakov, Sergei A.; Amghouz, Zakariae [Servicios Científico Técnicos, Universidad de Oviedo, 33006 Oviedo (Spain); García, José R. [Departamentos de Química Física y Analítica y Química Orgánica e Inorgánica, Universidad de Oviedo-CINN, 33006 Oviedo (Spain); García-Granda, Santiago, E-mail: [Departamentos de Química Física y Analítica y Química Orgánica e Inorgánica, Universidad de Oviedo-CINN, 33006 Oviedo (Spain)


    A novel ethylenediamine-gallium phosphate, formulated as Ga(H{sub 2}NCH{sub 2}CH{sub 2}NH{sub 2}){sub 2}PO{sub 4}·2H{sub 2}O, was synthesized under hydrothermal conditions. The crystal structure, including hydrogen positions, was determined using single-crystal X-ray diffraction data (monoclinic, a=9.4886(3) Å, b=6.0374(2) Å, c=10.2874(3) Å, and β=104.226(3)°, space group Pc) and the bulk was characterized by chemical (Ga–P–C–H–N) and thermal analysis (TG–MS and DSC), including activation energy data of its thermo-oxidative degradation, powder X-ray diffraction (PXRD), solid-state nuclear magnetic resonance (SS-NMR) measurements, and transmission electron microscopy (TEM, SAED/NBD, and STEM BF-EDX). The crystal structure is built up of infinite zig-zag chains running along the c-axis, formed by vertex-shared (PO{sub 4}) and (GaO{sub 2}N{sub 4}) polyhedra. The new compound is characterized by unusual four equatorial Ga–N bonds coming from two nonequivalent ethylenediamine molecules and exhibits strong blue emission at 430 nm (λ{sub ex}=350 nm) in the solid state at room temperature. - Graphical abstract: Single crystals of a new ethylenediamine-gallium phosphate, Ga(H{sub 2}NCH{sub 2}CH{sub 2}NH{sub 2}){sub 2}PO{sub 4}·2H{sub 2}O, were obtained and the structural features presented. This structure is one of the scarce examples of GaPO with Ga–N bonds reported. - Highlights: • A novel ethylenediamine-gallium phosphate was hydrothermally synthesized. • The new compound is characterized by unusual four equatorial Ga–N bonds. • Void-volume analysis shows cages and channels with sizes ideally suited to accommodate small molecules. • The new compound exhibits strong blue emission.

  18. Study of Magnetohydrodynamic Surface Waves on Liquid Gallium

    Hantao Ji; William Fox; David Pace; H.L. Rappaport


    Magnetohydrodynamic (MHD) surface waves on liquid gallium are studied theoretically and experimentally in the small magnetic Reynolds number limit. A linear dispersion relation is derived when a horizontal magnetic field and a horizontal electric current is imposed. No wave damping is found in the shallow liquid limit while waves always damp in the deep liquid limit with a magnetic field parallel to the propagation direction. When the magnetic field is weak, waves are weakly damped and the real part of the dispersion is unaffected, while in the opposite limit waves are strongly damped with shortened wavelengths. In a table-top experiment, planar MHD surface waves on liquid gallium are studied in detail in the regime of weak magnetic field and deep liquid. A non-invasive diagnostic accurately measures surface waves at multiple locations by reflecting an array of lasers off the surface onto a screen, which is recorded by an Intensified-CCD camera. The measured dispersion relation is consistent with the linear theory with a reduced surface tension likely due to surface oxidation. In excellent agreement with linear theory, it is observed that surface waves are damped only when a horizontal magnetic field is imposed parallel to the propagation direction. No damping is observed under a perpendicular magnetic field. The existence of strong wave damping even without magnetic field suggests the importance of the surface oxide layer. Implications to the liquid metal wall concept in fusion reactors, especially on the wave damping and a Rayleigh-Taylor instability when the Lorentz force is used to support liquid metal layer against gravity, are discussed.

  19. Origin of optical bistability and hysteretic reflectivity on account of nonlinearity at optically induced gallium silica interface

    Sharma, Arvind; Nagar, A. K.


    The origin of optical bistability and hysterectic reflectivity on account of nonlinearity at optically induced Gallium silica interface has been investigated. Assuming the wave to be incident from the gallium nano particle layer side at gallium silica interface. The coupling between incident and reflected waves has shown nonlinear effects on Snell's law and Fresnel law. Effect of these nonlinear processes optical bistability and hysterectic reflectivity theoretically has been investigated. Theoretical results obtained are consistent with the available experimental results.

  20. Monte Carlo Evaluation of Tritium Beta Spectrum Energy Deposition in Gallium Nitride (GaN) Direct Energy Conversion Devices


    Monte Carlo Evaluation of Tritium Beta Spectrum Energy Deposition in Gallium Nitride (GaN) Direct Energy Conversion Devices by Marc Litz...MD 20783-1138 ARL-TR-7082 September 2014 Monte Carlo Evaluation of Tritium Beta Spectrum Energy Deposition in Gallium Nitride (GaN... Tritium Beta Spectrum Energy Deposition in Gallium Nitride (GaN) Direct Energy Conversion Devices 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM

  1. Epitaxially-grown Gallium Nitride on Gallium Oxide substrate for photon pair generation in visible and telecomm wavelengths

    Awan, Kashif M.


    Gallium Nitride (GaN), along with other III-Nitrides, is attractive for optoelectronic and electronic applications due to its wide direct energy bandgap, as well as high thermal stability. GaN is transparent over a wide wavelength range from infra-red to the visible band, which makes it suitable for lasers and LEDs. It is also expected to be a suitable candidate for integrated nonlinear photonic circuits for a wide range of applications from all-optical signal processing to quantum computing and on-chip wavelength conversion. Despite its abundant use in commercial devices, there is still need for suitable substrate materials to reduce high densities of threading dislocations (TDs) and other structural defects like stacking faults, and grain boundaries. All these defects degrade the optical quality of the epi-grown GaN layer as they act as non-radiative recombination centers.

  2. Mössbauer Spectral Properties of Yttrium Iron Garnet, Y3Fe5O12, and its Isovalent and Nonisovalent Yttrium-Substituted Solid Solutions

    Long, Gary J.; Grandjean, Fernande; Guo, Xiaofeng; Navrotsky, Alexandra; Kukkadapu, Ravi K.


    Several high-resolution Mössbauer spectra of yttrium iron garnet, Y3Fe5O12, have been fit as a function of temperature with a new model based on a detailed analysis of the spectral changes that result from a reduction from the cubic Ia–3d space group to the trigonal R–3 space group. These spectral fits, which are all statistically identical, indicate that the magnetic sextet arising from the 16a site in cubic symmetry is subdivided into three sextets arising from the 6f, and the 3d, 3d, and the 1a, 1b, and 2c sites in rhombohedral-axis trigonal symmetry. The 24d site in cubic symmetry is subdivided into four sextets arising from four different 6f sites in R–3 rhombohedral-axis trigonal symmetry, sites that differ only by the angles between the principal axis of the electric field gradient tensor and the magnetic hyperfine field assumed to be parallel with the magnetic easy axis. This analysis, when applied to the potential nuclear waste storage compounds, Y3-xCa0.5xTh0.5xFe5O12 and Y3- xCa0.5xCe0.5xFe5O12, indicates virtually no perturbation of the structural, electronic, and magnetic properties upon substitution of small amounts of calcium(II) and thorium(IV) or cerium(IV) onto the yttrium(III) 24c site as compared with Y3Fe5O12. The observed broadening of the four different 6f sites derived from the 24d site results from the substitution of yttrium(III) by calcium(II) and thorium(IV) or cerium(IV) cations on the next-nearest neighbor 24c site. In contrast, the same analysis, when applied to Y2.8Ce0.2Fe5O12, indicates a local perturbation of the magnetic exchange pathways as a result of the presence of cerium(IV) in the 24c next-nearest neighbor site of the iron(III) 24d site.

  3. Determination of micro yttrium in an ytterbium matrix by inductively coupled plasma atomic emission spectrometry and wavelet transform

    MA Xiaoguo


    In the determination of trace yttrium (Y) in an ytterbium (Yb) matrix by inductively coupled plasma atomic emission spectrometry (ICP-AES), the most prominent line of yttrium, Y 371.030 nm line, suffers from strong interference due to an emission line of ytterbium. In this work, a method based on wavelet transform was proposed for the spectral interference correction. Haar wavelet was selected as the mother wavelet. The discrete detail after the third decomposition, D3,was chosen for quantitative analysis based on the consideration of both separation degree and peak height. The linear correlation coefficient between the height of the left positive peak in D3 and the concentration of Y was calculated to be 0.9926.Six synthetic samples were analyzed, and the recovery for yttrium varied from 96.3% to 110.0%. The amounts of yttrium in three ytterbium metal samples were determined by the proposed approach with an average relative standard deviation (RSD)of 2.5%, and the detection limit for yttrium was 0.016%. This novel correction technique is fast and convenient, since neither complicated model assumption nor time-consuming iteration is required. Furthermore, it is not affected by the wavelength drift inherent in monochromators that will severely reduce the accuracy of results obtained by some chemometric methods.

  4. In vitro bio-functionality of gallium nitride sensors for radiation biophysics.

    Hofstetter, Markus; Howgate, John; Schmid, Martin; Schoell, Sebastian; Sachsenhauser, Matthias; Adigüzel, Denis; Stutzmann, Martin; Sharp, Ian D; Thalhammer, Stefan


    There is an increasing interest in the integration of hybrid bio-semiconductor systems for the non-invasive evaluation of physiological parameters. High quality gallium nitride and its alloys show promising characteristics to monitor cellular parameters. Nevertheless, such applications not only request appropriate sensing capabilities but also the biocompatibility and especially the biofunctionality of materials. Here we show extensive biocompatibility studies of gallium nitride and, for the first time, a biofunctionality assay using ionizing radiation. Analytical sensor devices are used in medical settings, as well as for cell- and tissue engineering. Within these fields, semiconductor devices have increasingly been applied for online biosensing on a cellular and tissue level. Integration of advanced materials such as gallium nitride into these systems has the potential to increase the range of applicability for a multitude of test devices and greatly enhance sensitivity and functionality. However, for such applications it is necessary to optimize cell-surface interactions and to verify the biocompatibility of the semiconductor. In this work, we present studies of mouse fibroblast cell activity grown on gallium nitride surfaces after applying external noxa. Cell-semiconductor hybrids were irradiated with X-rays at air kerma doses up to 250 mGy and the DNA repair dynamics, cell proliferation, and cell growth dynamics of adherent cells were compared to control samples. The impact of ionizing radiation on DNA, along with the associated cellular repair mechanisms, is well characterized and serves as a reference tool for evaluation of substrate effects. The results indicate that gallium nitride does not require specific surface treatments to ensure biocompatibility and suggest that cell signaling is not affected by micro-environmental alterations arising from gallium nitride-cell interactions. The observation that gallium nitride provides no bio-functional influence on

  5. On new ternary equiatomic scandium transition metal aluminum compounds ScTAl with T = Cr, Ru, Ag, Re, Pt, and Au

    Radzieowski, Mathis; Janka, Oliver [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Benndorf, Christopher [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; Haverkamp, Sandra [Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; Eckert, Hellmut [Muenster Univ. (Germany). Inst. fuer Physikalische Chemie; University of Sao Paulo, Sao Carlos, SP (Brazil). Inst. of Physics


    The new equiatomic scandium transition metal aluminides ScTAl for T = Cr, Ru, Ag, Re, Pt, and Au were obtained by arc-melting of the elements followed by subsequent annealing for crystal growth. The samples were studied by powder and single crystal X-ray diffraction. The structures of three compounds were refined from single crystal X-ray diffractometer data: ScCrAl, MgZn{sub 2} type, P6{sub 3}/mmc, a = 525.77(3), c = 858.68(5) pm, R{sub 1} = 0.0188, wR{sub 2} = 0.0485, 204 F{sup 2} values, 13 variables, ScPtAl, TiNiSi type, Pnma, a = 642.83(4), b = 428.96(2), c = 754.54(5) pm, R{sub 1} = 0.0326, wR{sub 2} = 0.0458, 448 F{sup 2} values, 20 variables and ScAuAl, HfRhSn type, P anti 62c, a = 722.88(4), c = 724.15(4) pm, R{sub 1} = 0.0316, wR{sub 2} = 0.0653, 512 F{sup 2} values, 18 variables. Phase pure samples of all compounds were furthermore investigated by magnetic susceptibility measurements, and Pauli-paramagnetism but no superconductivity was observed down to 2.1 K for all of them. The local structural features and disordering phenomena have been characterized by {sup 27}Al and {sup 45}Sc magic angle spinning (MAS) and static NMR spectroscopic investigations.

  6. Peculiarities of defect and impurity behaviour in gallium arsenide during surface gettering

    Gorelenok, A T; Kamanin, A V; Kokhanovskii, S I; Mezdrogina, M M; Shmidt, N M; Vasilev, V I


    Spatial redistribution of anti-site defects after surface gettering of GaAs wafers coated by an yttrium film has been found. It has been established that both one- and two-side coating of the GaAs wafer with an yttrium film followed by a heat treatment allows a high-resistivity (n = 10 sup 1 sup 2 cm sup - sup 3) material to be obtained with uniform distributions of both electrons and the effective hole lifetime in a depth of 1.6 mm. The material obtained is suitable for creating Schottky barriers and structures for use in both high-power devices and x-ray detectors.

  7. Yttrium doped TiO2 porous film photoanode for dye-sensitized solar cells with enhanced photovoltaic performance

    Qu, Xiaofei; Hou, Yuchen; Liu, Meihua; Shi, Liang; Zhang, Mingqian; Song, Hongbing; Du, Fanglin

    In this paper, TiO2 photoanodes were doped with yttrium under different doping concentrations via hydrothermal method and further employed to assemble dye-sensitized solar cells (DSSCs). XRD, XPS, SEM, TEM, UV-Vis DRS and PL measurements were carried out to investigate the yttrium doping effects on crystal structure, chemical status, optical properties and dye loading capacity of the photoanodes. The photovoltaic performance of the photoanodes with various yttrium doping concentration was measured by recording the photocurrent-photovoltaic curves, and the result indicated that TiO2:0.006 Y exhibited the best power conversion efficiency with high short circuit current density (Jsc) and open circuit voltage (Voc). This improvement may be due to the enhanced visible light harvesting, increased dye loading capacity and reduced photoelectron recombination.

  8. Cell behavior on gallium nitride surfaces: peptide affinity attachment versus covalent functionalization.

    Foster, Corey M; Collazo, Ramon; Sitar, Zlatko; Ivanisevic, Albena


    Gallium nitride is a wide band gap semiconductor that demonstrates a unique set of optical and electrical properties as well as aqueous stability and biocompatibility. This combination of properties makes gallium nitride a strong candidate for use in chemical and biological applications such as sensors and neural interfaces. Molecular modification can be used to enhance the functionality and properties of the gallium nitride surface. Here, gallium nitride surfaces were functionalized with a PC12 cell adhesion promoting peptide using covalent and affinity driven attachment methods. The covalent scheme proceeded by Grignard reaction and olefin metathesis while the affinity driven scheme utilized the recognition peptide isolated through phage display. This study shows that the method of attaching the adhesion peptide influences PC12 cell adhesion and differentiation as measured by cell density and morphological analysis. Covalent attachment promoted monolayer and dispersed cell adhesion while affinity driven attachment promoted multilayer cell agglomeration. Higher cell density was observed on surfaces modified using the recognition peptide. The results suggest that the covalent and affinity driven attachment methods are both suitable for promoting PC12 cell adhesion to the gallium nitride surface, though each method may be preferentially suited for distinct applications.

  9. Bone marrow accumulation in gallium scintigraphy in patients with adult still's disease

    Kanegae, Futoshi; Tada, Yoshifumi; Ohta, Akihide; Ushiyama, Osamu; Suzuki; Noriaki; Koarada, Syuichi; Haruta, Yoshio; Yoshikai, Tomonori; Nagasawa, Kohei [Saga Medical School (Japan)


    We investigated the features and the usefulness of gallium scintigraphy in the diagnosis and the assessment of Adult Still's disease (ASD) by retrospective case review. Gallium scintigraphy have been done for 11 cases of ASD (3 males and 8 females) and 4 females were positive. Among these, 67 Ga-citrate was accumulated to the bone marrow in all 4 cases and to the major joints in 2 cases. Positive cases were rather serious and administered more immunosuppressants than negative cases. In order to characterize gallium scintigraphy findings of ASD, i.e. bone marrow accumulation, we analyzed 130 cases of collagen vascular disease. Although 101 cases (77.7%) were positive, only 7 cases (5.4%) showed the accumulation of {sup 67}Ga-citrate to the bone marrow. These include 3 cases with ASD, and 1 case with systemic lupus erythematosus, polyarteritis nodosa, Wegener's granulomatosis and Sjogren's syndrome. We also accumulated 18 patients who exhibited bone marrow accumulation of {sup 69}Ga-citrate, and found that 7 patients had collagen vascular and their related diseases. In conclusion, bone marrow accumulation in gallium scintigraphy is a specific feature of collagen vascular diseases, especially ASD, and it is suggested that cases with positive gallium scintigraphy in ASD can be serious and resistant to treatment. (author)

  10. Gallium nitrate increases type I collagen and fibronectin mRNA and collagen protein levels in bone and fibroblast cells.

    Bockman, R S; Guidon, P T; Pan, L C; Salvatori, R; Kawaguchi, A


    Gallium is a Group IIIa transitional element with therapeutic efficacy in the treatment of metabolic bone disorders. Previously described antiresorptive effects of gallium on osteoclasts are not sufficient to account for the full range of effects of gallium on bone structure and metabolism. We have recently shown that gallium nitrate inhibits osteocalcin gene expression and the synthesis of osteocalcin protein, an osteoblast-specific bone matrix protein that is thought to serve as a signal to trigger osteoclastic resorption. Here we present evidence for an additional mechanism by which gallium may function to augment bone mass by altering matrix protein synthesis by osteoblastic and fibroblastic cells. Rat calvarial explants exposed to gallium nitrate for 48 h showed increased incorporation of 3H-proline into hydroxyproline and collagenase digestible protein. In addition, gallium treatment increased steady-state mRNA levels for fibronectin and type I procollagen chains in primary rat calvarial osteoblast-enriched cultures, the ROS 17/2.8 osteoblastic osteosarcoma line, and nontransformed human dermal fibroblasts. These findings suggest that the exposure of mesenchymally-derived cells to gallium results in an altered pattern of matrix protein synthesis that would favor increased bone formation.

  11. Corrosion Behavior of Mg-6Al-1Zn+XRE Magnesium Alloy with Minor Addition of Yttrium

    Manivannan, S.; Babu, S. P. Kumaresh; Sundarrajan, Srinivasan


    The effect of yttrium addition on the microstructure of Mg-6Al-1Zn alloy was investigated by optical microscopy, x-ray diffraction analysis, and scanning electron microscopy. The experimental alloys were prepared by melting high-purity Mg, Al, Zn, and Y, respectively. Melting was carried out in a Inconel 718 crucible under SF6 and ultra pure Ar (99.999%) gas mixture environment using electric arc furnace. The corrosion behavior of Mg-6Al-1Zn+ xYttrium ( x = 0.5, 1.0 and 1.5 wt.% Y) magnesium alloy with different levels of yttrium additions was studied in 3.5 wt.% NaCl solution. Microstructure of yttrium-added alloy shows that higher grainrefinement is obtained in Mg-6Al-1Zn+0.5wt.%Y. Increasing yttrium content reduces the size of α-grain and alters the distribution of the β-phase (Mg17Al12) from continuous network morphology to small and dispersive distribution. It forms secondary intermetallic phase Al2Y which has high melting point along the grain boundary. The corrosion resistance of Mg-6Al-1Zn magnesium alloy improved with addition of Yttrium. It was confirmed by the results of electrochemical polarization test. Based on the polarization curves, it is seen that fine precipitates of Al-Y intermetallic phase in Mg-6Al-1Zn alloy decrease the corrosion current density, thereby improving the corrosion resistance of the Mg-6Al-1Zn magnesium alloy.

  12. Structure degradation and conducting properties of the perovskite phase of yttrium ceramics

    Kalanov, M U


    It is shown, that under normal conditions the perovskite phase of the yttrium ceramics of the [(Y,Ba)CuO sub 3 sub - subDELTA sub / sub 3] sub 3 is metastable and degrades in time. The degradation results in the YBa sub 2 Cu sub 3 O sub 7 sub - subdelta orthorhombic phase with transition into the superconducting state at T sub c = 91 K. The conductivity type changes thereby from the mixed metal-semiconductor character to the metallic one within the temperature interval of 100-300 K

  13. Superconductivity in fluorine and yttrium co-doped SmFeAsO

    Lai, K. T.; Kwong, F. L.; Ng, Dickon H. L.


    Polycrystalline fluorine and yttrium co-doped SmFeAsO samples are synthesized by solid state sintering and their physical properties are studied. The lattice parameters of the Sm1-yYyFeAsO0.8F0.2 samples decrease with the increasing y due to the smaller Y ions and the stiffness of the Y-O bond. The maximum critical temperature Tc of the samples is at y = 0.05. This may be due to the fact that the strong interaction between Sm and Fe of the Fe-As bond is being re-disturbed by the doped Y ions.

  14. Erbium-doped yttrium aluminium garnet ablative laser treatment for endogenous ochronosis.

    Chaptini, Cassandra; Huilgol, Shyamala C


    Ochronosis is a rare disease characterised clinically by bluish-grey skin discolouration and histologically by yellow-brown pigment deposits in the dermis. It occurs in endogenous and exogenous forms. Endogenous ochronosis, also known as alkaptonuria, is an autosomal recessive disease of tyrosine metabolism, resulting in the accumulation and deposition of homogentisic acid in connective tissue. We report a case of facial endogenous ochronosis and coexistent photodamage, which was successfully treated with erbium-doped yttrium aluminium garnet laser resurfacing and deep focal point treatment to remove areas of residual deep pigment.

  15. The Effect of Chelating Copolymer Additive on the Yttrium Iron Garnet Nanoparticle Formation

    Wang; Cheng-chien


    1 Results Yttrium iron garnet (YIG) is a well-known ferromagnetic garnet material and has widely used in electronic devices[1].A new acrylic chelating polymer was developed to act as the additive of the preparation of YIG precursor in our previous study[2].The sintering temperature of YIG nanocrystal obtained by this YIG precursor (ACP) was magnificently descended from 1 000 to 600 ℃.In this study,we were further to study the effect of amount of chelating polymer and the compositions of chelating polyme...

  16. Synthesis and Characterization of Large Surface Area Yttrium Oxide by Precipitation Method

    崔大立; 龙志奇; 张顺利; 崔梅生; 黄小卫


    The method for preparing yttrium oxide with large specific surface area was introduced. By means of BET, SEM, TG and DTA analysis, the effects of precipitant, stirring velocity, non-RE impurity in solution, calcination temperature, on the surface area were studied respectively. The Y2O3 sample with specific surface area of more than 60 m2*g-1 and L.O.I less than 1% was prepared in the suitable precipitation condition and calcinations temperature when the ammonia used as precipitant. The SEM shows that the Y2O3 prepared with large surface area is the aggregation of about 50 nm particles.

  17. A nonreciprocal racetrack resonator based on vacuum-annealed magnetooptical cerium-substituted yttrium iron garnet.

    Goto, Taichi; Onbasli, Mehmet C; Kim, Dong Hun; Singh, Vivek; Inoue, M; Kimerling, Lionel C; Ross, C A


    Vacuum annealed polycrystalline cerium substituted yttrium iron garnet (CeYIG) films deposited by radio frequency magnetron sputtering on non-garnet substrates were used in nonreciprocal racetrack resonators. CeYIG annealed at 800°C for 30 min provided a large Faraday rotation angle, close to the single crystal value. Crystallinity, magnetic properties, refractive indices and absorption coefficients were measured. The resonant transmission peak of the racetrack resonator covered with CeYIG was non-reciprocally shifted by applying an in-plane magnetic field.

  18. PET imaging of soluble yttrium-86-labeled carbon nanotubes in mice.

    Michael R McDevitt

    Full Text Available The potential medical applications of nanomaterials are shaping the landscape of the nanobiotechnology field and driving it forward. A key factor in determining the suitability of these nanomaterials must be how they interface with biological systems. Single walled carbon nanotubes (CNT are being investigated as platforms for the delivery of biological, radiological, and chemical payloads to target tissues. CNT are mechanically robust graphene cylinders comprised of sp(2-bonded carbon atoms and possessing highly regular structures with defined periodicity. CNT exhibit unique mechanochemical properties that can be exploited for the development of novel drug delivery platforms. In order to evaluate the potential usefulness of this CNT scaffold, we undertook an imaging study to determine the tissue biodistribution and pharmacokinetics of prototypical DOTA-functionalized CNT labeled with yttrium-86 and indium-111 ((86Y-CNT and (111In-CNT, respectively in a mouse model.The (86Y-CNT construct was synthesized from amine-functionalized, water-soluble CNT by covalently attaching multiple copies of DOTA chelates and then radiolabeling with the positron-emitting metal-ion, yttrium-86. A gamma-emitting (111In-CNT construct was similarly prepared and purified. The constructs were characterized spectroscopically, microscopically, and chromatographically. The whole-body distribution and clearance of yttrium-86 was characterized at 3 and 24 hours post-injection using positron emission tomography (PET. The yttrium-86 cleared the blood within 3 hours and distributed predominantly to the kidneys, liver, spleen and bone. Although the activity that accumulated in the kidney cleared with time, the whole-body clearance was slow. Differential uptake in these target tissues was observed following intravenous or intraperitoneal injection.The whole-body PET images indicated that the major sites of accumulation of activity resulting from the administration of (86Y-CNT were

  19. 钇的光度分析进展%Advancement of Spectrophotometric Analysis for Determining Yttrium



    The advancement of spectrophotometry for determining yttrium has been reviewed.There are conventional spectrophotometry ,chemiluminescence method,flow-injection kinetic photometry and fluorophotometry.52 references are quoted.%对钇的光度分析方法,包括常规光度法、化学发光法、流动注射动力学法和荧光光度法等近些年的进展进行了综述。参考文献52篇。

  20. Highly Sensitive Fiber-Optic Faraday-Effect Magnetic Field Sensor Based on Yttrium Iron Garnet


    The principle and performance of a fiber-optic Faraday-effect magnetic-field sensor based on an yttrium iron garnet (YIG) and two flux concentrations are described. A single polarization maintaining optical fiber links the sensor head to the source and detection system, in which the technique of phase shift cancellation is used to cancel the phase shift that accumulate in the optical fiber. Flux concentrators were exploited to enhance the YIG crystal magneto optic sensitivity .The sensor system exhibited a noise-equivalent field of 8 and a 3 dB bandwidth of ~10 MHz.

  1. Scaling at the Mott-Hubbard metal-insulator transition in yttrium hydride

    Hoekstra, A F T; Rosenbaum, T F


    A single yttrium hydride thin film is conveniently driven through the T 0 metal-insulator transition by fine-tuning the charge carrier density n via persistent photoconductivity at low temperature. Simultaneously, electrical conductivity and Hall measurements are performed for temperatures T down to 350 mK and magnetic fields up to 14 T. A scaling analysis is applied and critical exponents, resolved separately on the metallic and insulating sides of the critical region, are determined consistently. We introduce corrections to scaling to invoke collapse of the data onto a single master curve over an extended region of the (n, T) phase diagram.

  2. Preparation, characterization and dielectric behaviour of some yttrium doped strontium stannates

    P K Bajpai; Kuldeep Ratre; Mukul Pastor; T P Sinha


    Samples of Sr$_{(1–3x/2)}$Y$_x$SnO3 are prepared by usual solid state reaction route. X-ray diffraction studies confirm the formation of single cubic perovskite single phase. The dielectric constant and dielectric loss at 1 kHz were measured in the temperature range from room temperature up to ≅ 150°C. The dielectric constant decreases and losses increase with increased yttrium content in the samples. The percentage porosity and unit cell parameters are also calculated for the samples.

  3. Studies on the reliability of ni-gate aluminum gallium nitride / gallium nitride high electron mobility transistors using chemical deprocessing

    Whiting, Patrick Guzek

    Aluminum Gallium Nitride / Gallium Nitride High Electron Mobility Transistors are becoming the technology of choice for applications where hundreds of volts need to be applied in a circuit at frequencies in the hundreds of gigahertz, such as microwave communications. However, because these devices are very new, their reliability in the field is not well understood, partly because of the stochastic nature of the defects which form as a result of their operation. Many analytical techniques are not well suited to the analysis of these defects because they sample regions of the device which are either too small or too large for accurate observation. The use of chemical deprocessing in addition to surface-sensitive analysis techniques such as Scanning Electron Microscopy and Scanning Probe Microscopy can be utilized in the analysis of defect formation in devices formed with nickel gates. Hydrofluoric acid is used to etch the passivation nitride which covers the semiconducting layer of the transistor. A metal etch utilizing FeCN/KI is used to etch the ohmic and gate contacts of the device and a long exposure in various solvent solutions is used to remove organic contaminants, exposing the surface of the semiconducting layer for analysis. Deprocessing was used in conjunction with a variety of metrology techniques to analyze three different defects. One of these defects is a nanoscale crack which emanates from metal inclusions formed during alloying of the ohmic contacts of the device prior to use in the field, could impact the yield of production-level manufacturing of these devices. This defect also appears to grow, in some cases, during electrostatic stressing. Another defect, a native oxide at the surface of the semiconducting layer which appears to react in the presence of an electric field, has not been observed before during post-mortem analysis of degraded devices. It could play a major part in the degredation of the gate contact during high-field, off

  4. The hyperfine properties of iron-gallium alloys

    Elzain, M., E-mail:; Gismelseed, A.; Al-Rawas, A.; Yousif, A.; Widatallah, H.; Al-Azri, Maya [Sultan Qaboos University, Department of Physics (Oman); Al-Barwani, M. [NYU Abu Dhabi (United Arab Emirates)


    The hyperfine properties at Fe site in iron-gallium alloy are calculated using the full-potential linear-augmented-plane-waves method. We have calculated the Fermi contact field (B{sub hf}) and isomer shift (δ) at the Fe site versus the number of neighbouring Ga atoms. We found that B{sub hf} decrease whereas δ increases with increasing number of neighbouring G atom. In addition we have calculated the hyperfine properties of FeGa system with DO{sub 3} structure, where various distributions of 4 the Ga atoms in the conventional unit cell are considered (including the regular DO{sub 3} structure). We found that the DO{sub 3} structure has the lowest energy as compared to the other configurations. The two distinct A and D sites of the ordered DO{sub 3} conventional unit cell have two distinct values for B{sub hf} and δ. On changing the atomic arrangement of the Ga atoms within the conventional unit cell, the configuration of the A site is maintained whereas that of the D site becomes imperfect. The contact magnetic hyperfine fields of the D-like sites in the imperfect structures are lower than that of the DO{sub 3}D site.

  5. Gallium arsenide pilot line for high performance components


    The Gallium Arsenide Pilot Line for High Performance Components (Pilot Line III) is to develop a facility for the fabrication of GaAs logic and memory chips. The first thirty months of this contract are now complete, and this report covers the period from March 27 through September 24, 1989. Similar to the PT-2M SRAM function for memories, the six logic circuits of PT-2L and PT-2M have served their functions as stepping stones toward the custom, standard cell, and cell array logic circuits. All but one of these circuits was right first time; the remaining circuit had a layout error due to a bug in the design rule checker that has since been fixed. The working devices all function over the full temperature range from -55 to 125 C. They all comfortably meet the 200 MHz requirement. They do not solidly conform to the required input and output voltage levels, particularly Vih. It is known that these circuits were designed with the older design models and that they came from an era where the DFET thresholds were often not on target.

  6. Thickness-induced structural phase transformation of layered gallium telluride.

    Zhao, Q; Wang, T; Miao, Y; Ma, F; Xie, Y; Ma, X; Gu, Y; Li, J; He, J; Chen, B; Xi, S; Xu, L; Zhen, H; Yin, Z; Li, J; Ren, J; Jie, W


    The thickness-dependent electronic states and physical properties of two-dimensional materials suggest great potential applications in electronic and optoelectronic devices. However, the enhanced surface effect in ultra-thin materials might significantly influence the structural stability, as well as the device reliability. Here, we report a spontaneous phase transformation of gallium telluride (GaTe) that occurred when the bulk was exfoliated to a few layers. Transmission electron microscopy (TEM) results indicate a structural variation from a monoclinic to a hexagonal structure. Raman spectra suggest a critical thickness for the structural transformation. First-principle calculations and thermodynamic analysis show that the surface energy and the interlayer interaction compete to dominate structural stability in the thinning process. A two-stage transformation process from monoclinic (m) to tetragonal (T) and then from tetragonal to hexagonal (h) is proposed to understand the phase transformation. The results demonstrate the crucial role of interlayer interactions in the structural stability, which provides a phase engineering strategy for device applications.

  7. Gallium Arsenide (GaAs) Quantum Photonic Waveguide Circuits

    Wang, Jianwei; Jiang, Pisu; Bonneau, Damien; Engin, Erman; Silverstone, Joshua W; Lermer, Matthias; Beetz, Johannes; Kamp, Martin; Hofling, Sven; Tanner, Michael G; Natarajan, Chandra M; Hadfield, Robert H; Dorenbos, Sander N; Zwiller, Val; O'Brien, Jeremy L; Thompson, Mark G


    Integrated quantum photonics is a promising approach for future practical and large-scale quantum information processing technologies, with the prospect of on-chip generation, manipulation and measurement of complex quantum states of light. The gallium arsenide (GaAs) material system is a promising technology platform, and has already successfully demonstrated key components including waveguide integrated single-photon sources and integrated single-photon detectors. However, quantum circuits capable of manipulating quantum states of light have so far not been investigated in this material system. Here, we report GaAs photonic circuits for the manipulation of single-photon and two-photon states. Two-photon quantum interference with a visibility of 94.9 +/- 1.3% was observed in GaAs directional couplers. Classical and quantum interference fringes with visibilities of 98.6 +/- 1.3% and 84.4 +/- 1.5% respectively were demonstrated in Mach-Zehnder interferometers exploiting the electro-optic Pockels effect. This w...

  8. Impurities interactions in the crytal growth of LEC gallium arsenides

    Mucchino, C. [Consiglio Nazionale delle Ricerche, Parma (Italy). Lab. MASPEC; Goeroeg, T. [Consiglio Nazionale delle Ricerche, Parma (Italy). Lab. MASPEC; Zanotti, L. [Consiglio Nazionale delle Ricerche, Parma (Italy). Lab. MASPEC; Mignoni, G. [Consiglio Nazionale delle Ricerche, Parma (Italy). Lab. MASPEC; Catellani, A. [Consiglio Nazionale delle Ricerche, Parma (Italy). Lab. MASPEC


    The control of low level impurities is still considered to play a key role in obtaining GaAs based devices with an high degree of uniformity and reproducibility. Although in the recent years the importance of appropriate post growth thermal treatments has been recognized as the most relevant step in achieving homogeneous material, the contamination reduction of the melt is a fundamental requisite for growing crystals with good electric characteristics and morphology. In this work we report on new results obtained from boron and silicon doped gallium arsenide crystals grown by LEC technique in a high pressure puller: different doping procedures for heavily Si doped crystals are described and interactions between silicon and boron in the liquid, are discussed together with the analysis of their distribution in the ingot. On the basis of our experimental data from crystals doped with either B or B and Si together, a tentative explanation of the incorporation mechanism of such elements is given and a comparison with previously reported results is made. (orig.)

  9. Two-dimensional gallium nitride realized via graphene encapsulation

    Al Balushi, Zakaria Y.; Wang, Ke; Ghosh, Ram Krishna; Vilá, Rafael A.; Eichfeld, Sarah M.; Caldwell, Joshua D.; Qin, Xiaoye; Lin, Yu-Chuan; Desario, Paul A.; Stone, Greg; Subramanian, Shruti; Paul, Dennis F.; Wallace, Robert M.; Datta, Suman; Redwing, Joan M.; Robinson, Joshua A.


    The spectrum of two-dimensional (2D) and layered materials `beyond graphene’ offers a remarkable platform to study new phenomena in condensed matter physics. Among these materials, layered hexagonal boron nitride (hBN), with its wide bandgap energy (~5.0-6.0 eV), has clearly established that 2D nitrides are key to advancing 2D devices. A gap, however, remains between the theoretical prediction of 2D nitrides `beyond hBN’ and experimental realization of such structures. Here we demonstrate the synthesis of 2D gallium nitride (GaN) via a migration-enhanced encapsulated growth (MEEG) technique utilizing epitaxial graphene. We theoretically predict and experimentally validate that the atomic structure of 2D GaN grown via MEEG is notably different from reported theory. Moreover, we establish that graphene plays a critical role in stabilizing the direct-bandgap (nearly 5.0 eV), 2D buckled structure. Our results provide a foundation for discovery and stabilization of 2D nitrides that are difficult to prepare via traditional synthesis.

  10. The hyperfine properties of iron-gallium alloys

    Elzain, M.; Gismelseed, A.; Al-Rawas, A.; Yousif, A.; Widatallah, H.; Al-Azri, Maya; Al-Barwani, M.


    The hyperfine properties at Fe site in iron-gallium alloy are calculated using the full-potential linear-augmented-plane-waves method. We have calculated the Fermi contact field (Bhf) and isomer shift ( δ) at the Fe site versus the number of neighbouring Ga atoms. We found that Bhf decrease whereas δ increases with increasing number of neighbouring G atom. In addition we have calculated the hyperfine properties of FeGa system with DO3 structure, where various distributions of 4 the Ga atoms in the conventional unit cell are considered (including the regular DO3 structure). We found that the DO3 structure has the lowest energy as compared to the other configurations. The two distinct A and D sites of the ordered DO3 conventional unit cell have two distinct values for Bhf and δ. On changing the atomic arrangement of the Ga atoms within the conventional unit cell, the configuration of the A site is maintained whereas that of the D site becomes imperfect. The contact magnetic hyperfine fields of the D-like sites in the imperfect structures are lower than that of the DO3D site.

  11. Optical Properties of Strained Wurtzite Gallium Phosphide Nanowires

    Greil, J.


    Wurtzite gallium phosphide (WZ GaP) has been predicted to exhibit a direct bandgap in the green spectral range. Optical transitions, however, are only weakly allowed by the symmetry of the bands. While efficient luminescence has been experimentally shown, the nature of the transitions is not yet clear. Here we apply tensile strain up to 6% and investigate the evolution of the photoluminescence (PL) spectrum of WZ GaP nanowires (NWs). The pressure and polarization dependence of the emission together with a theoretical analysis of strain effects is employed to establish the nature and symmetry of the transitions. We identify the emission lines to be related to localized states with significant admixture of Γ7c symmetry and not exclusively related to the Γ8c conduction band minimum (CBM). The results emphasize the importance of strongly bound state-related emission in the pseudodirect semiconductor WZ GaP and contribute significantly to the understanding of the optoelectronic properties of this novel material.

  12. The enhanced visible light photocatalytic activity of yttrium-doped BiOBr synthesized via a reactable ionic liquid

    He, Minqiang; Li, Weibing [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Xia, Jiexiang, E-mail: [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Xu, Li; Di, Jun [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Xu, Hui [School of the Environment, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Yin, Sheng [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Li, Huaming, E-mail: [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China); Li, Mengna [School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013 (China)


    Graphical abstract: Yttrium (Y)-doped BiOBr with different Y doping concentrations has been synthesized via solvothermal method in the presence of reactable ionic liquid 1-hexadecyl-3-methylimidazolium bromide ([C16mim]Br). The photocatalytic activities of the yttrium doped BiOBr samples were evaluated by the degradation of ciprofloxacin (CIP) and rhodamine B (RhB) under visible-light irradiation. The yttrium doped BiOBr exhibited enhanced photocatalytic activity for the degradation of the two types of pollutants, and the 5wt%Y-doped BiOBr showed the highest photocatalytic activity. The enhanced photocatalytic performance could be attributed to the reduced band gap and improved separation of electron–hole pairs. - Highlights: • Yttrium (Y)-doped BiOBr composites have been synthesized via solvothermal method in the presence of reactable ionic liquid [C16mim]Br. • The yttrium doped BiOBr exhibited enhanced photocatalytic activity for the degradation of ciprofloxacin (CIP) and rhodamine B (RhB). • The enhanced photocatalytic performance could be attributed to the reduced band gap and improved separation of electron–hole pairs. - Abstract: Yttrium (Y)-doped BiOBr with different Y doping concentrations has been synthesized via solvothermal method in the presence of reactable ionic liquid 1-hexadecyl-3-methylimidazolium bromide ([C{sub 16}mim]Br). Their structures, morphologies and optical properties were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and UV–vis diffuse reflectance spectroscopy (DRS). The photocatalytic activities of the yttrium doped BiOBr samples were evaluated by the degradation of ciprofloxacin (CIP) and rhodamine B (RhB) under visible-light irradiation. The yttrium doped BiOBr exhibited enhanced photocatalytic activity for the degradation of the two types of pollutants, and the 5wt%Y-doped BiOBr showed the highest

  13. Synthesis and Characterization of Cationic Low-Valent Gallium Complexes of Cryptand[2.2.2].

    Bourque, Jeremy L; Boyle, Paul D; Baines, Kim M


    The synthesis and characterization of two bimetallic, cationic low-valent gallium-cryptand[2.2.2] complexes is reported. The reaction of cryptand[2.2.2] with Ga2Cl4 gave two different cations, [Ga3Cl4 (crypt-222)](+) (1) or [Ga2Cl2 (crypt-222)](2+) (2), depending on whether or not trimethylsilyl triflate (Me3SiOTf) was added as a co-reagent. Complexes 1 and 2 are the first examples of bimetallic cryptand[2.2.2] complexes, as well as the first low-valent gallium-cryptand[2.2.2] complexes. Computational methods were used to evaluate the bonding in the gallium cores.

  14. Investigating change of properties in gallium ion irradiation patterned single-layer graphene

    Wang, Quan; Dong, Jinyao; Bai, Bing; Xie, Guoxin


    Besides its excellent physical properties, graphene promises to play a significant role in electronics with superior properties, which requires patterning of graphene for device integration. Here, we presented the changes in properties of single-layer graphene before and after patterning using gallium ion beam. Combined with Raman spectra of graphene, the scanning capacitance microscopy (SCM) image confirmed that a metal-insulator transition occurred after large doses of gallium ion irradiation. The changes in work function and Raman spectra of graphene indicated that the defect density increased as increasing the dose and a structural transition occurred during gallium ion irradiation. The patterning width of graphene presented an increasing trend due to the scattering influence of the impurities and the substrate.

  15. Surface-enhanced gallium arsenide photonic resonator with a quality factor of six million

    Guha, Biswarup; Cadiz, Fabian; Morgenroth, Laurence; Ulin, Vladimir; Berkovitz, Vladimir; Lemaître, Aristide; Gomez, Carmen; Amo, Alberto; Combrié, Sylvian; Gérard, Bruno; Leo, Giuseppe; Favero, Ivan


    Gallium Arsenide and related compound semiconductors lie at the heart of optoelectronics and integrated laser technologies. Shaped at the micro and nano-scale, they allow strong interaction with quantum dots and quantum wells, and promise to result in stunning devices. However gallium arsenide optical structures presently exhibit lower performances than their silicon-based counterparts, notably in nanophotonics where the surface plays a chief role. Here we report on advanced surface control of miniature gallium arsenide optical resonators, using two distinct techniques that produce permanent results. One leads to extend the lifetime of free-carriers and enhance luminescence, while the other strongly reduces surface absorption originating from mid-gap states and enables ultra-low optical dissipation devices. With such surface control, the quality factor of wavelength-sized optical disk resonators is observed to rise up to six million at telecom wavelength, greatly surpassing previous realizations and opening n...

  16. Gallium-assisted growth of silicon nanowires by electron cyclotron resonance plasmas

    Hernandez, M J; Cervera, M; Ruiz, E; Pau, J L; Piqueras, J [Laboratorio de Microelectronica, Departamento de Fisica Aplicada, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain); Avella, M; Jimenez, J, E-mail: [Fisica de la Materia Condensada, ETSII, Universidad de Valladolid, 47011 Valladolid (Spain)


    The use of gallium droplets for growing Si nanowires (SiNWs) by electron cyclotron resonance plasmas is investigated. First, the relationship between evaporation time and resultant size of the gallium droplets is studied. Through the use of spectroscopic ellipsometry, the dependence of the surface plasmon resonance (SPR) energy on the droplet size is determined. From these gallium droplets, SiNWs were grown at 300 and 550 deg. C in electron cyclotron resonance plasmas containing SiH{sub 4}, Ar, and H{sub 2}. Scanning electron microscopy results show that tapered NWs are obtained for a wide range of growth conditions. Besides, it is found that H{sub 2} plays an important role in the parasitic axial growth of the SiNWs. Namely, H{sub 2} inhibits the radial growth and contributes dramatically to increasing the SiNW defects.

  17. A gallium nitride single-photon source operating at 200 K.

    Kako, Satoshi; Santori, Charles; Hoshino, Katsuyuki; Götzinger, Stephan; Yamamoto, Yoshihisa; Arakawa, Yasuhiko


    Fundamentally secure quantum cryptography has still not seen widespread application owing to the difficulty of generating single photons on demand. Semiconductor quantum-dot structures have recently shown great promise as practical single-photon sources, and devices with integrated optical cavities and electrical-carrier injection have already been demonstrated. However, a significant obstacle for the application of commonly used III-V quantum dots to quantum-information-processing schemes is the requirement of liquid-helium cryogenic temperatures. Epitaxially grown gallium nitride quantum dots embedded in aluminium nitride have the potential for operation at much higher temperatures. Here, we report triggered single-photon emission from gallium nitride quantum dots at temperatures up to 200 K, a temperature easily reachable with thermo-electric cooling. Gallium nitride quantum dots also open a new wavelength region in the blue and near-ultraviolet portions of the spectrum for single-photon sources.

  18. Dielectric response of wurtzite gallium nitride in the terahertz frequency range

    Hibberd, M. T.; Frey, V.; Spencer, B. F.; Mitchell, P. W.; Dawson, P.; Kappers, M. J.; Oliver, R. A.; Humphreys, C. J.; Graham, D. M.


    We report on the characterization of the intrinsic, anisotropic, dielectric properties of wurtzite gallium nitride in the spectral range of 0.5-11 THz, using terahertz time-domain spectroscopy. The ordinary (ε˜⊥) and extraordinary (ε˜∥) components of the complex dielectric function were determined experimentally for a semi-insulating, m-plane gallium nitride single crystal, providing measurements of the refractive indices (n⊥,∥) and absorption coefficients (α⊥,∥) . These material parameters were successfully modeled by considering the contribution of the optical phonon modes, measured using Raman spectroscopy, to the dielectric function, giving values for the relative static dielectric constants of ε0⊥ = 9.22 ± 0.02 and ε0∥ = 10.32 ± 0.03 for wurtzite gallium nitride.

  19. Development of a production scale purification of Ge-68 from irradiated gallium metal

    Fitzsimmons, Jonathan M.; Mausner, Leonard [Brookhaven National Laboratory, Upton, NY (United States)


    Germanium-68 (Ge-68) is produced by proton irradiation of a gallium metal target and purified by organic extraction. The Ge-68 can be used in a medical isotope generator to produce Gallium-68 (Ga-68) which can be used to radiolabel PET imaging agents. The emerging use of Ge-68 in the Ga-68 medical isotope generator has caused us to develop a new purification method for Ge-68 that does not use toxic solvents. The purpose of this work was to develop a production scale separation of Ge-68 that utilizes a leaching step to remove a bulk of the gallium metal, followed by purification with Sephadex {sup copyright} G25. Production scale (300 mCi) purification was performed with the new method. The purified Ge-68 contained the highest radioactivity concentration of Ge-68 produced at BNL; the sample meet Department of Energy specifications and the method had an excellent recovery of Ge-68.

  20. A study of the applicability of gallium arsenide and silicon carbide as aerospace sensor materials

    Hurley, John S.


    Most of the piezoresistive sensors, to date, are made of silicon and germanium. Unfortunately, such materials are severly restricted in high temperature environments. By comparing the effects of temperature on the impurity concentrations and piezoresistive coefficients of silicon, gallium arsenide, and silicon carbide, it is being determined if gallium arsenide and silicon carbide are better suited materials for piezoresistive sensors in high temperature environments. The results show that the melting point for gallium arsenide prevents it from solely being used in high temperature situations, however, when used in the alloy Al(x)Ga(1-x)As, not only the advantage of the wider energy band gas is obtained, but also the higher desire melting temperature. Silicon carbide, with its wide energy band gap and higher melting temperature suggests promise as a high temperature piezoresistive sensor.

  1. 镓含量对纯铝的耐蚀性的影响%Studies on the Influence of Gallium Content on the Corrosion Resistance of Pure Aluminum

    LIN Jin-ping; WANG Jun; SUN Bao-de


    The effect of small amount gallium (up to 0.06%) on the corrosion behavior of pure aluminum (99.99%,4N) in chloride solution was investigated using a potentiodynamic polarization technique.It has been found that the open circuit corrosion potential and the pitting potential shifted in the active (negative) direction with increasing gallium content,while corrosion rate and pitting occurrence factor for aluminum increased.The effect of gallium on the degradation of corrosion resistance is rather small while the gallium content is below 0.03mass%.The gallium content should be kept less than 0.03mass% in the pure aluminum.

  2. The comparison between gallium arsenide and indium gallium arsenide as materials for solar cell performance using Silvaco application

    Zahari, Suhaila Mohd; Norizan, Mohd Natashah; Mohamad, Ili Salwani; Osman, Rozana Aina Maulat; Taking, Sanna [School of Microelectronic Engineering, Universiti Malaysia Perlis, Kampus Pauh Putra, 02600 Arau, Perlis (Malaysia)


    The work presented in this paper is about the development of single and multilayer solar cells using GaAs and InGaAs in AM1.5 condition. The study includes the modeling structure and simulation of the device using Silvaco applications. The performance in term of efficiency of Indium Gallium Arsenide (InGaAs) and GaAs material was studied by modification of the doping concentration and thickness of material in solar cells. The efficiency of the GaAs solar cell was higher than InGaAs solar cell for single layer solar cell. Single layer GaAs achieved an efficiency about 25% compared to InGaAs which is only 2.65% of efficiency. For multilayer which includes both GaAs and InGaAs, the output power, P{sub max} was 8.91nW/cm² with the efficiency only 8.51%. GaAs is one of the best materials to be used in solar cell as a based compared to InGaAs.

  3. Controlling the coexistence of structural phases and the optical properties of gallium nanoparticles with optical excitation

    MacDonald, K. F.; Fedotov, V. A.; Pochon, S.; Stevens, G.; Kusmartsev, F. V.; Emel'yanov, V. I.; Zheludev, N. I.


    We have observed reversible structural transformations, induced by optical excitation at 1.55 μm, between the β, γ and liquid phases of gallium in self-assembled gallium nanoparticles, with a narrow size distribution around 50 nm, on the tip of an optical fiber. Only a few tens of nanowatts of optical excitation per particle are required to control the transformations, which take the form of a dynamic phase coexistence and are accompanied by substantial changes in the optical properties of the nanoparticle film. The time needed to achieve phase equilibrium is in the microsecond range, and increases sharply near the transition temperatures.

  4. Gallium-67 scintigraphy in myocarditis. A review; Gal-67 w diagnostyce zapalenia miesnia sercowego

    Wojnicz, R. [Slaskie Centrum Chorob Serca, Zabrze (Poland); Kozielska, E.; Wodniecki, J.; Wycisk, A. [Slaska Akademia Medyczna, Katowice (Poland)


    Gallium-67 imaging is a non-invasive technique with a good sensitivity for the diagnosis of inflammatory heart disease. Due to the affinity with the mononuclear cell infiltration, {sup 67}Ga enables visualize the moderate and severe myocardial inflammation. This could be used as a screening test, with a high sensitivity and low cost, to identify the patients for endomyocardial biopsy. Furthermore, in some patients diagnosed with other non-invasive techniques such as echocardiography or MRI, the gallium-67 imaging may be useful to verify clinical diagnosis. (author) 23 refs, 2 figs, 1 tab

  5. In vitro bio-functionality of gallium nitride sensors for radiation biophysics

    Hofstetter, Markus [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg (Germany); Howgate, John [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, D-85748 Garching (Germany); Schmid, Martin [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg (Germany); Schoell, Sebastian; Sachsenhauser, Matthias [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, D-85748 Garching (Germany); Adiguezel, Denis [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg (Germany); Stutzmann, Martin; Sharp, Ian D. [Walter Schottky Institut, Technische Universitaet Muenchen, Am Coulombwall 3, D-85748 Garching (Germany); Thalhammer, Stefan, E-mail: [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Ingolstaedter Landstrasse 1, D-85764 Neuherberg (Germany)


    Highlights: Black-Right-Pointing-Pointer Gallium nitride based sensors show promising characteristics to monitor cellular parameters. Black-Right-Pointing-Pointer Cell growth experiments reveal excellent biocompatibiltiy of the host GaN material. Black-Right-Pointing-Pointer We present a biofunctionality assay using ionizing radiation. Black-Right-Pointing-Pointer DNA repair is utilized to evaluate material induced alterations in the cellular behavior. Black-Right-Pointing-Pointer GaN shows no bio-functional influence on the cellular environment. -- Abstract: There is an increasing interest in the integration of hybrid bio-semiconductor systems for the non-invasive evaluation of physiological parameters. High quality gallium nitride and its alloys show promising characteristics to monitor cellular parameters. Nevertheless, such applications not only request appropriate sensing capabilities but also the biocompatibility and especially the biofunctionality of materials. Here we show extensive biocompatibility studies of gallium nitride and, for the first time, a biofunctionality assay using ionizing radiation. Analytical sensor devices are used in medical settings, as well as for cell- and tissue engineering. Within these fields, semiconductor devices have increasingly been applied for online biosensing on a cellular and tissue level. Integration of advanced materials such as gallium nitride into these systems has the potential to increase the range of applicability for a multitude of test devices and greatly enhance sensitivity and functionality. However, for such applications it is necessary to optimize cell-surface interactions and to verify the biocompatibility of the semiconductor. In this work, we present studies of mouse fibroblast cell activity grown on gallium nitride surfaces after applying external noxa. Cell-semiconductor hybrids were irradiated with X-rays at air kerma doses up to 250 mGy and the DNA repair dynamics, cell proliferation, and cell growth

  6. Thermal Cycling and High Temperature Reverse Bias Testing of Control and Irradiated Gallium Nitride Power Transistors

    Patterson, Richard L.; Boomer, Kristen T.; Scheick, Leif; Lauenstein, Jean-Marie; Casey, Megan; Hammoud, Ahmad


    The power systems for use in NASA space missions must work reliably under harsh conditions including radiation, thermal cycling, and exposure to extreme temperatures. Gallium nitride semiconductors show great promise, but information pertaining to their performance is scarce. Gallium nitride N-channel enhancement-mode field effect transistors made by EPC Corporation in a 2nd generation of manufacturing were exposed to radiation followed by long-term thermal cycling and testing under high temperature reverse bias conditions in order to address their reliability for use in space missions. Result of the experimental work are presented and discussed.

  7. Results of the Gallium-Clad Phase 3 and Phase 4 tasks (canceled prior to completion)

    Morris, R.N.


    This report summarizes the results of the Gallium-Clad interactions Phase 3 and 4 tasks. Both tasks were to involve examining the out-of-pile stability of residual gallium in short fuel rods with an imposed thermal gradient. The thermal environment was to be created by an electrical heater in the center of the fuel rod and coolant flow on the rod outer cladding. Both tasks were canceled due to difficulties with fuel pellet fabrication, delays in the preparation of the test apparatus, and changes in the Fissile Materials Disposition program budget.

  8. Semi-quantitative evaluation of gallium-67 scintigraphy in lupus nephritis

    Lin Wanyu [Dept. of Nuclear Medicine, Taichung Veterans General Hospital, Taichung (Taiwan); Dept. of Radiological Technology, Chung-Tai College of Medical Technology, Taichung (Taiwan); Hsieh Jihfang [Section of Nuclear Medicine, Chi-Mei Foundation Hospital, Yunk Kang City, Tainan (Taiwan); Tsai Shihchuan [Dept. of Nuclear Medicine, Show Chwan Memorial Hospital, Changhua (Taiwan); Lan Joungliang [Dept. of Internal Medicine, Taichung Veterans General Hospital, Taichung (Taiwan); Cheng Kaiyuan [Dept. of Radiological Technology, Chung-Tai College of Medical Technology, Taichung (Taiwan); Wang Shyhjen [Dept. of Nuclear Medicine, Taichung Veterans General Hospital, Taichung (Taiwan)


    Within nuclear medicine there is a trend towards quantitative analysis. Gallium renal scan has been reported to be useful in monitoring the disease activity of lupus nephritis. However, only visual interpretation using a four-grade scale has been performed in previous studies, and this method is not sensitive enough for follow-up. In this study, we developed a semi-quantitative method for gallium renal scintigraphy to find a potential parameter for the evaluation of lupus nephritis. Forty-eight patients with lupus nephritis underwent renal biopsy to determine World Health Organization classification, activity index (AI) and chronicity index (CI). A delayed 48-h gallium scan was also performed and interpreted by visual and semi-quantitative methods. For semi-quantitative analysis of the gallium uptake in both kidneys, regions of interest (ROIs) were drawn over both kidneys, the right forearm and the adjacent spine. The uptake ratios between these ROIs were calculated and expressed as the ''kidney/spine ratio (K/S ratio)'' or the ''kidney/arm ratio (K/A ratio)''. Spearman's rank correlation test and Mann-Whitney U test were used for statistical analysis. Our data showed a good correlation between the semi-quantitative gallium scan and the results of visual interpretation. K/S ratios showed a better correlation with AI than did K/A ratios. Furthermore, the left K/S ratio displayed a better correlation with AI than did the right K/S ratio. In contrast, CI did not correlate well with the results of semi-quantitative gallium scan. In conclusion, semi-quantitative gallium renal scan is easy to perform and shows a good correlation with the results of visual interpretation and renal biopsy. The left K/S ratio from semi-quantitative renal gallium scintigraphy displays the best correlation with AI and is a useful parameter in evaluating the disease activity in lupus nephritis. (orig.)

  9. Increased parasellar activity on gallium SPECT is not specific for active cluster headache

    Sianard-Gainko, J.; Milet, J.; Ghuysen, V.; Schoenen, J. (Univ. Departments of Neurology and Nuclear Medicine, Liege (Belgium))


    The authors have performed gallium SPECT head scans in 30 successive cluster headache (CH) patients and in 7 migraineurs without aura. Parasellar hyperactivity was judged as present in 81% of chronic CH patients. 54% of episodic CH patients in an active period, 56% of episodic CH patients in remission and 71% of migraineurs. No significant correlations were found between the SPECT images and the duration of the disease, of cluster periods or of remissions. Increased parasellar activity on gallium SPECT is thus not specific for CH, nor for the active period of episodic CH. The method lacks reliability for investigation of putative cavernous sinus inflammation. 4 refs., 1 tab.

  10. Magnetoelectric effect in layered structures of amorphous ferromagnetic alloy and gallium arsenide

    Bichurin, M. I.; Petrov, V. M.; Leontiev, V. S.; Ivanov, S. N.; Sokolov, O. V.


    A paper devotes to theoretical and experimental studying the magnetoelectric interaction in layered structures of amorphous ferromagnetic alloy and single- crystal gallium arsenide. The authors investigated the magnetoelectric effect in the (100) plane of gallium arsenide in the electromechanical resonance range of 200-240 kHz and obtained maximal ME voltage coefficient of 120 V/A at bias field equaled 3.6 kA/m for the direction parallel to the [011] axis. Also the magnetoelectric effect in the (110) and (111) planes is discussed. The results can be used for design of new electronic devices based on the magnetostrictive-semiconductor materials.

  11. Gallium-SPECT in the detection of prosthetic valve endocarditis and aortic ring abscess

    O' Brien, K.; Barnes, D.; Martin, R.H.; Rae, J.R. (Department of Diagnostic Radiology, Victoria General Hospital Halifax, Nova Scotia (Canada))


    A 52-yr-old man who had a bioprosthetic aortic valve developed Staphylococcus aureus bacteremia. Despite antibiotic therapy he had persistent pyrexia and developed new conduction system disturbances. Echocardiography did not demonstrate vegetations on the valve or an abscess, but gallium scintigraphy using SPECT clearly identified a focus of intense activity in the region of the aortic valve. The presence of valvular vegetations and a septal abscess was confirmed at autopsy. Gallium scintigraphy, using SPECT, provided a useful noninvasive method for the demonstration of endocarditis and the associated valve ring abscess.

  12. On Fermi level pinning in the alloys based on the lead telluride doped with gallium

    Skipetrov, E P; Skipetrova, L A; Volkova, O S; Slynko, E I


    Effect of doping with gallium and fast electron irradiation on the galvanomagnetic properties of n-Pb sub 1 sub - sub x Ge sub x Te (0.04 <= x <= 0.06) alloys is investigated. The transformations the metal-type conductivity are obtained both by increasing the impurity content and under the electron irradiation. The conclusion has been drawn that Fermi level pinning by the impurity level does not take place while the doping with gallium as well as the electron irradiation may serve as effective mutually complementary tools for modifying of electrical properties of alloys

  13. Yttrium scandate thin film as alternative high-permittivity dielectric for germanium gate stack formation

    Lu, Cimang, E-mail:; Lee, Choong Hyun; Nishimura, Tomonori; Toriumi, Akira [Department of Materials Engineering, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-8656 (Japan); JST, CREST, 7-3-1 Hongo, Tokyo 113-8656 (Japan)


    We investigated yttrium scandate (YScO{sub 3}) as an alternative high-permittivity (k) dielectric thin film for Ge gate stack formation. Significant enhancement of k-value is reported in YScO{sub 3} comparing to both of its binary compounds, Y{sub 2}O{sub 3} and Sc{sub 2}O{sub 3}, without any cost of interface properties. It suggests a feasible approach to a design of promising high-k dielectrics for Ge gate stack, namely, the formation of high-k ternary oxide out of two medium-k binary oxides. Aggressive scaling of equivalent oxide thickness (EOT) with promising interface properties is presented by using YScO{sub 3} as high-k dielectric and yttrium-doped GeO{sub 2} (Y-GeO{sub 2}) as interfacial layer, for a demonstration of high-k gate stack on Ge. In addition, we demonstrate Ge n-MOSFET performance showing the peak electron mobility over 1000 cm{sup 2}/V s in sub-nm EOT region by YScO{sub 3}/Y-GeO{sub 2}/Ge gate stack.

  14. Preparation of neodymium-doped yttrium aluminum garnet powders and fibers

    R.López; J.Zárate; E.A.Aguilar; J.Mu(n)oz-Salda(n)a


    Using nitrate precursors, a novel spray-drying assisted citrate gel process for the preparation of neodymium-doped yttrium alumi-num garnet (YAG) phase was developed. Synthesis of single-phase polycrystalline YAG was achieved at temperatures as low as 800 ℃ us-ing the spray-drying methodology whilst conventional approaches currently available require 1000 ℃. Initially, a solution was prepared by mixing aluminum and yttrium nitrates, citric acid, etilenglycol and neodymium oxide. This solution was dried by pulverization (spray dryer) to obtain aggregated precursor powders of the compound. These aggregates were calcined at 800, 850 and 900 ℃ to determine the phase evolution from amorphous to crystalline by X-ray diffraction (XRD). The morphology of aggregates was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Moreover, through XRD it was determined that the crystallization of YAG phase started at about 800 ℃ without any intermediate phases. The powders were composed of spherical aggregates with an average diame-ter of 1 μm. From these powders, ceramic fibers with additions of 2at.% and 5at.% Nd, were extracted from the melt with diameters ranging from 30 μm to 50 μm.

  15. Studies on Characterization, Optical Absorption, and Photoluminescence of Yttrium Doped ZnS Nanoparticles

    Ranganaik Viswanath


    Full Text Available Pure ZnS and ZnS:Y nanoparticles were synthesized by a chemical coprecipitation route using EDTA-ethylenediamine as a stabilizing agent. X-ray diffraction (XRD, high resolution transmission electron microscopy (HRTEM, field emission scanning electron microscopy (FE-SEM, Fourier transform infrared spectrometry (FTIR, thermogravimetric-differential scanning calorimetry (TG-DSC, and UV-visible and photoluminescence (PL spectroscopy were employed to characterize the as-synthesized ZnS and ZnS:Y nanoparticles, respectively. XRD and TEM studies show the formation of cubic ZnS:Y particles with an average size of ~4.5 nm. The doping did not alter the phase of the zinc sulphide, as a result the sample showed cubic zincblende structure. The UV-visible spectra of ZnS and ZnS:Y nanoparticles showed a band gap energy value, 3.85 eV and 3.73 eV, which corresponds to a semiconductor material. A luminescence characteristics such as strong and stable visible-light emissions in the orange region alone with the blue emission peaks were observed for doped ZnS nanoparticles at room temperature. The PL intensity of orange emission peak was found to be increased with an increase in yttrium ions concentration by suppressing blue emission peaks. These results strongly propose that yttrium doped zinc sulphide nanoparticles form a new class of luminescent material.

  16. Migration mechanism for oversized solutes in cubic lattices: The case of yttrium in iron

    Bocquet, Jean-Louis; Barouh, Caroline; Fu, Chu-Chun


    Substitutional solutes in metals generally diffuse by successive exchanges with vacancies, that is, via the so called vacancy mechanism. However, recent density functional theory (DFT) calculations predicted an atypical behavior for the oversized solute atoms (OSAs) in bcc and fcc iron. These solutes exhibit a very strong attraction with a nearby vacancy (V) at a first neighbor (1nn) distance. The attraction is so large that the 1nn OSA-V pair is no longer stable and relaxes spontaneously towards a new configuration where the OSA sits in the middle of the two half-vacancies (V/2). As a consequence, the diffusion of OSAs cannot be described by the standard vacancy mechanism. A new migration mechanism with a new formulation of correlation effects is required. The present study rests on a revised expression of the diffusion coefficient of the OSAs in bcc and fcc lattices, which introduces the concept of macrojumps. The formalism is applied presently to the case of yttrium (Y: a principal alloying element of advanced steels) in iron, using DFT data. But it is directly transferable to other OSAs in cubic metal lattices. At variance with the standard substitutional solutes, the Y atom is found to diffuse more rapidly than iron at all temperatures by orders of magnitude in the two cubic-Fe structures. This finding is opposite to the recent common belief that yttrium is a slow diffusing species in Fe alloys, based on experimental evidences. Several suggestions are proposed to solve this apparent inconsistency.

  17. The oxide phase formation modelling at the deoxidization process in yttrium steels

    Петро Степанович Харлашин


    Full Text Available In recent years approaches to high-quality steel production have significantly changed. The influence of the oxide and sulfide non-metallic inclusions should be noted in particular. Modifying is followed with the change in the inclusions chemical composition, they are generally being MnS inclusions and fragile oxidic inclusions. Modification results in the formation of spherical oxides and yttrium sulfides that don’t deform at rolling. Nowadays modifying with rare-earth elements has no broad application because of the use of cheaper lime which possesses similar efficiency. That is why REM are applied generally as microparticles, and their deoxidating and desulphurizing abilities are limited because of their high cost in comparison with the expenditures on modern extra oven processing of steel. Nonmetallic inclusions hardly influence on «volume» processes of plastic deformation and hardening. The use of rare-earth metals and their combinations as nonmetallic inclusions modifiers appear to have considerable promise. Therefore the modelling and further calculation of oxygen and sulfur interaction with yttrium in metal were carried out

  18. Precision Wavelength Measurements And Identifications Of EUV Lines From Highly Charged L-Shell yttrium Ions

    Silwal, Roshani; Dreiling, Joan; Gillaspy, John; Takacs, Endre; Ralchenko, Yuri


    We present the measurements of extreme-ultraviolet spectra of the L-shell ions of highly charged yttrium (Y29+- Y36+) created and trapped in the electron beam ion trap (EBIT) of the National Institute of Standards and Technology. Few Na-like, Mg-like and Al-like yttrium lines (Y26+- Y28+) are reported as well. In order to reach the desired ionization stages, the beam energy was systematically varied from 2.3 keV to 6 keV during the experiment. A flat-field grazing-incidence spectrometer was used to record the spectra in the wavelength range of 4.022 nm to 19.957 nm. The wavelength calibration was provided by the previously measured lines of neon, xenon, oxygen and iron. A total of 63 new spectral lines (allowed and forbidden) corresponding to the Δn = 0 transitions within n = 2 and 3 have been identified using collisional-radiative simulations of the non-Maxwellian EBIT plasma. The total uncertainties assigned to the measured wavelengths vary between 0.001 nm to 0.003 nm and include contributions from calibration uncertainties, statistical uncertainties from the line fits, and estimated systematic uncertainties.

  19. Microstructure, microhardness, and biocompatibility characteristics of yttrium hydroxyapatite doped with fluoride.

    Toker, S M; Tezcaner, A; Evis, Z


    The current study focused on doping of hydroxyapatite (HA) with constant yttrium (Y(3+) ) and varying fluoride (F(-) ) compositions to investigate its microstructure, microhardness, and biocompatibility. HA was synthesized by precipitation method and sintered at 1100°C for 1 h. Y(3+) and F(-) ion dopings resulted in changes in densities. In x-ray diffraction analysis, no secondary phase formation was observed. Lattice parameters decreased upon ion substitutions. Scanning electron microscopy (SEM) results showed that ion addition resulted in smaller grains. In Fourier transform infrared spectroscopy analysis, F(-) ion substitution was confirmed. HA doped with 2.5% Y(3+) and 1% F(-) exhibited the highest microhardness. Y(3+) and F(-) ions improved Saos-2 cell proliferation on discs in Methylthiazolyldiphenyl-tetrazolium (MTT) assay. In SEM analysis, cells attached and proliferated on all disc surfaces. Alkaline phosphatase (ALP) assay showed that cell differentiation on the discs was improved by doping HA with an optimum F(-) amount. Dissolution tests revealed that structural stability of HA was improved with F(-) ion incorporation. The dissolution behavior of fluoridated samples exhibited a parallel pattern with the cell proliferation and differentiation behavior on these samples. Overall, this work shows that fluoride and yttrium cosubstitution into HA HA2.5Y1F was the most promising material for biomedical applications. Copyright © 2010 Wiley Periodicals, Inc.

  20. Eggshell- and fur-like microstructures of yttrium silicate film prepared by laser chemical vapor deposition

    Ito, Akihiko, E-mail: [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Miyagi (Japan); Endo, Jun; Kimura, Teiichi; Goto, Takashi [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Miyagi (Japan)


    Yttrium silicate (Y-Si-O) films with eggshell- and fur-like microstructures were prepared by laser chemical vapor deposition using a Nd:YAG laser, and tetraethyl orthosilicate (TEOS) and yttrium dipivaloylmethane (Y(dpm){sub 3}) precursors. Amorphous Y-Si-O films were prepared at deposition temperature below 1200 K. The crystalline Y-Si-O films with mixtures of Y{sub 4.67}(SiO{sub 4}){sub 3}O and {alpha}-Y{sub 2}Si{sub 2}O{sub 7} phases were obtained at deposition temperature above 1200 K. y-Y{sub 2}Si{sub 2}O{sub 7} and X1-Y{sub 2}SiO{sub 5} minor phases were also formed at a higher deposition temperature. At deposition temperature ranging between 1285 and 1355 K, a dome-like structure covered with fine fur-like projections was formed under a total pressure of 3.5 kPa, whereas an eggshell-like structure 200-300 {mu}m in diameter and 10-20 {mu}m in shell thickness was formed at 7.5 kPa. The deposition rate for the Y-Si-O films with fur- and eggshell-like microstructures reached 300 and 1000 {mu}m h{sup -1}, respectively.

  1. Progress to a Gallium-Arsenide Deep-Center Laser

    Janet L. Pan


    Full Text Available Although photoluminescence from gallium-arsenide (GaAs deep-centers was first observed in the 1960s, semiconductor lasers have always utilized conduction-to-valence-band transitions. Here we review recent materials studies leading to the first GaAs deep-center laser. First, we summarize well-known properties: nature of deep-center complexes, Franck-Condon effect, hotoluminescence. Second, we describe our recent work: insensitivity of photoluminescence with heating, striking differences between electroluminescence and photoluminescence, correlation between transitions to deep-states and absence of bandgap-emission. Room-temperature stimulated-emission from GaAs deep-centers was observed at low electrical injection, and could be tuned from the bandgap to half-the-bandgap (900–1,600 nm by changing the electrical injection. The first GaAs deep-center laser was demonstrated with electrical injection, and exhibited a threshold of less than 27 mA/cm2 in continuous-wave mode at room temperature at the important 1.54 μm fiber-optic wavelength. This small injection for laser action was explained by fast depopulation of the lower state of the optical transition (fast capture of free holes onto deep-centers, which maintains the population inversion. The evidence for laser action included: superlinear L-I curve, quasi-Fermi level separations satisfying Bernard-Duraffourg’s criterion, optical gains larger than known significant losses, clamping of the optical-emission from lossy modes unable to reach laser action, pinning of the population distribution during laser action.

  2. The specific gallium-67 scan uptake pattern in psoas abscesses

    Kao, P.-F.; Tzen, K.-Y.; Tsai, M.-F.; Yen, T.-C. [Dept. of Nuclear Medicine, Univ. School of Medicine, Tauyuan (Taiwan, Province of China); Tsui, K.-H. [Dept. of Urology, Chang Gung Memorial Hospital, Tauyuan (Taiwan, Province of China)


    A psoas abscess is a rare clinical entity that presents diagnostic and therapeutic challenges. In this retrospective study, we reviewed gallium-67 scan findings in cases of psoas abscess to determine the specific uptake pattern and the usefulness of {sup 67}Ga scans in diagnosis and management. Fifteen psoas abscess lesions in 13 patients who had undergone a {sup 67}Ga scan during an 8-year period were found in the hospital computer. All but two of the patients had been diagnosed as having fever of unknown origin, urinary tract infection or another irrelevant disease prior to the {sup 67}Ga scan. Of the 15 psoas abscess lesions, 12 (80%) could be clearly diagnosed on the basis of the specific {sup 67} Ga uptake pattern, in which: (1) the oblique direction of the {sup 67}Ga-avid lesion correlates with the orientation of the psoas muscle from the lumbar region to the hip joint region; (2) the lesion does not cross the abdominal midline; (3) the lesion goes through the inguinal region; and (4) the lesion involves at least two-thirds of the whole length of the psoas muscle. The specific features may help in the differentiation of psoas abscess from other intra-abdominal lesions or normal bowel distribution, especially with single-photon emission tomographic images. In 7 of 13 patients (53.8%) the {sup 67}Ga scan findings contributed to the clinical management of the patients by first detecting the focus of the infection. Multiple concomitant {sup 67}Ga-avid lesions were found in ten patients. In conclusion, the specific features as well as the whole-body survey with {sup 67}Ga scan are useful and important in the diagnosis of psoas abscesses and the detection of unexpected concomitant multiple infectious foci in clinically suspicious infectious disease patients. (orig.) With 4 figs., 2 tabs., 29 refs.

  3. Studies of Electronic Conduction in Some Small Gallium Arsenic Based.

    Whittington, Geoffrey

    Available from UMI in association with The British Library. Requires signed TDF. This thesis describes experimental investigations of the physics involved with low temperature electronic conduction in three different semiconductor systems. The research relies upon technological advances in fabrication of such semiconductor samples. The first work deals with the effects of quantum interference of electrons in some submicron size, heavily doped Gallium Arsenide wire samples. The interesting effect of aperiodic fluctuations in the magnetoresistance of these samples is studied, making use of recently formulated theory on the subject, and with experimental data taken over the magnetic field range 0 to 10 tesla. The results verify the connection between the mean amplitude of the fluctuations and the field correlation period, in terms of the correlation function introduced in the theory. The second work is on the impurity-assisted tunnelling conduction in a magnetic field of three thin rm n^{+}/n^{-}/n^ {+} GaAs sandwich layer structures. The conduction of the system is shown to be determined by impurities lying in the centre of the middle layer. This allows the connection to be made between the conductivity of the system in a magnetic field, and the field-dependent shape of the donor electron wavefunction. The relative variation in resistance with angle to an applied magnetic field was measured, and is shown to be in agreement with predictions based on calculations of the shape of a normalised hydrogenic state wavefunction in high magnetic fields. The third work concerns the tunnelling conduction of a symmetrical GaAs/(AlGa)As/GaAs hetero-barrier system. The current-voltage characteristics at low temperature are fully modelled for applied voltages up to 180mV, using conventional theory of tunnelling and a position-dependent effective mass in the barrier. Low current oscillations in the Fowler-Nordheim tunnelling regime, corresponding to quantum reflection at the

  4. Sensor of hydrostatic pressure based on gallium antimonide microcrystals

    Druzhinin A. A.


    Full Text Available Currently, silicon and germanium, the most common materials in the production of discrete semiconductor devices and integrated circuits, do not always meet all the requirements to the sensing elements of mechanical quantities sensors. Therefore, it is logical to research the properties of other semiconductor materials that could be used as sensing elements in such sensors. A3B5 semiconductor compounds seem promising for such purpose. Effect of hydrostatic pressure up to 5000 bar on the resistance of n-type antimonide gallium whiskers doped by Se or Te was studied. Coefficient of hydrostatic pressure for this crystals was determined, it equals Kh = (16,5—20,0•10–5 bar–1 at 20°N. Temperature dependence of resistance and coefficient Kh for this crystals in the temperature range ±60°N was studied. Design of the developed hydrostatic pressure sensor based on GaSb whiskers and its characteristics are presented. The possibility to decrease the temperature dependence of sensitive element resistance by mounting GaSb whiskers on the substrates fabricated from materials with different temperature coefficient of expansion was examined. It was shown that mounting of GaSb crystals on Cu substrate gives the optimal result, in this case the temperature coefficient decrease to 0,05%•°N–1, that leads to decrease of output temperature dependence. The main advantages of developed pressure sensor are: the simplified design in comparison with pressure sensors with strain gauges mounted on spring elements; the high sensitivity to pressure that is constant in the wide pressure range; the improvement of sensors metrological characteristics owing to hysteresis absence. The possible application fields of developed sensors are measuring of high and extremely high pressure, chemical and oil industries, measuring of pressure in oil bore-holes, investigation of explosive processes.

  5. Gallium-68 EDTA PET/CT for Renal Imaging.

    Hofman, Michael S; Hicks, Rodney J


    Nuclear medicine renal imaging provides important functional data to assist in the diagnosis and management of patients with a variety of renal disorders. Physiologically stable metal chelates like ethylenediaminetetraacetic acid (EDTA) and diethylenetriamine penta-acetate (DTPA) are excreted by glomerular filtration and have been radiolabelled with a variety of isotopes for imaging glomerular filtration and quantitative assessment of glomerular filtration rate. Gallium-68 ((68)Ga) EDTA PET usage predates Technetium-99m ((99m)Tc) renal imaging, but virtually disappeared with the widespread adoption of gamma camera technology that was not optimal for imaging positron decay. There is now a reemergence of interest in (68)Ga owing to the greater availability of PET technology and use of (68)Ga to label other radiotracers. (68)Ga EDTA can be used a substitute for (99m)Tc DTPA for wide variety of clinical indications. A key advantage of PET for renal imaging over conventional scintigraphy is 3-dimensional dynamic imaging, which is particularly helpful in patients with complex anatomy in whom planar imaging may be nondiagnostic or difficult to interpret owing to overlying structures containing radioactive urine that cannot be differentiated. Other advantages include accurate and absolute (rather than relative) camera-based quantification, superior spatial and temporal resolution and integrated multislice CT providing anatomical correlation. Furthermore, the (68)Ga generator enables on-demand production at low cost, with no additional patient radiation exposure compared with conventional scintigraphy. Over the past decade, we have employed (68)Ga EDTA PET/CT primarily to answer difficult clinical questions in patients in whom other modalities have failed, particularly when it was envisaged that dynamic 3D imaging would be of assistance. We have also used it as a substitute for (99m)Tc DTPA if unavailable owing to supply issues, and have additionally examined the role of

  6. Sign of inverse spin Hall voltages generated by ferromagnetic resonance and temperature gradients in yttrium iron garnet platinum bilayers

    Schreier, Michael; Bauer, Gerrit E. W.; Vasyuchka, Vitaliy I.; Flipse, Joost; Uchida, Ken-ichi; Lotze, Johannes; Lauer, Viktor; Chumak, Andrii V.; Serga, Alexander A.; Daimon, Shunsuke; Kikkawa, Takashi; Saitoh, Eiji; van Wees, Bart J.; Hillebrands, Burkard; Gross, Rudolf; Goennenwein, Sebastian T. B.


    We carried out a concerted effort to determine the absolute sign of the inverse spin Hall effect voltage generated by spin currents injected into a normal metal. We focus on yttrium iron garnet (YIG)vertical bar platinum bilayers at room temperature, generating spin currents by microwaves and temper

  7. Structure and morphological analysis of various composition of yttrium doped-zirconia prepared from local zircon sand

    Rahmawati, F.; Permadani, I.; Heraldy, E.; Syarif, D. G.; Soepriyanto, S.


    Yttrium ions, Y3+ were doped into ZrO2 that was synthesized from zircon sand. Zircon sand is a side product of tin mining plant in Bangka Island, Indonesia. Solid state reaction was chosen as the method to dope yttrium ions from Y2O3 into ZrO2 at various % mol of 4.5; 8 and 10. This research aims to understand the crystal structure, morphological analysis and particle size analysis. The X-ray diffraction analysis equipped with Le Bail refinement found that the prepared ZrO2 is in two phases of the monoclinic and tetragonal structure, and the structure changed to cubic after yttrium ions doping. However, the monoclinic and tetragonal still exist. Various yttrium concentrations provide different morphology, in which 4.5 YSZ shows a blocking phase indicated as the presence of impurities. The blocking phase seems to prevent sintering and allows a line crack on the material layer. Meanwhile, 8YSZ and 10YSZ show homogeneous morphology and without provides a line crack. The mean particle size after sintering is in between 1.1 - 1.5 μm.

  8. Effect of surface composition of yttrium-stabilized zirconia on partial oxidation of methane to synthesis gas.

    Zhu, Jianjun; Ommen, van Jan G.; Knoester, A.; Lefferts, Leon


    Catalytic partial oxidation of methane to synthesis gas (CPOM) over yttrium-stabilized zirconia (YSZ) was studied within a wide temperature window (500¿1100 °C). The catalysts were characterized by X-ray fluorescence (XRF) and low-energy ion scattering (LEIS). The influence of calcination temperatur

  9. Influence of yttrium iron garnet thickness and heater opacity on the nonlocal transport of electrically and thermally excited magnons

    Shan, Juan; Cornelissen, Ludo J.; Vlietstra, Nynke; Ben Youssef, Jamal; Kuschel, Timo; Duine, Rembert; Van Wees, Bart J.


    We studied the nonlocal transport behavior of both electrically and thermally excited magnons in yttrium iron garnet (YIG) as a function of its thickness. For electrically injected magnons, the nonlocal signals decrease monotonically as the YIG thickness increases. For the nonlocal behavior of the t

  10. Yttrium modifying influence on the shape and amount of nonmetallic inclusions in the austenitic high alloy steel

    Андрій Володимирович Патюпкін


    Full Text Available Yttrium influence on the form and amount of non-metallic inclusions in steel 06H23N18M5 was studied. It has been found that yttrium binds oxygen and other elements into heterogeneous compounds, it resulting in the transition of impurities into passive state. Oxide inclusions, sulfide inclusions and globules formed as a result of steel components reactions with oxygen, sulfur and nitrogen dissolved in metal are mostly found in the structure. It was found that by modifying and refining austenitic steels with yttrium service properties of the deposited layer can be adjusted. X-ray diffraction and X-ray spectrum analysis revealed that the modified steel 06H23N18M5 + 0.02% Y has a heterogeneous structure with uniformly distributed inclusions of σ-phase and composite carbides (Fe, Cr, Mo 23C6. It is possible that Y modification resulted in the appearance of chemically resistant intermetallic σ-phase in these steels, for nucleation was facilitated by increasing the number of crystallization centers as dispersed primary yttrium oxy-sulfide compounds

  11. Pengaruh Penambahan Yttrium Terhadap Struktur Mikro, Sifat Mekanik Dan Ketahanan Termal Pada Paduan Mg-6zn Sebagai Aplikasi Engine Block

    Indra Bagas Pramasta


    Full Text Available Penelitian ini bertujuan untuk menganalisis pengaruh variasi penambahan Yttrium (Y terhadap struktur mikro, kekerasan dan ketahanan termal pada paduan magnesium – zinc. Magnesium (Mg telah menjadi solusi untuk pengembangan material ringan. Paduan magnesium yang memiliki rasio kekuatan material berbanding massa material yang tinggi membuatnya baik digunakan pada aplikasi otomotif seperti steering wheel, gearbox house, seat frames dan cylinder block. Penelitian ini memadukan magnesium-zinc-yttrium dalam komposisi yang berbeda. Komposisi yttriumnya adalah 0,5% wt ; 2% wt dan 4% wt. Pengecoran yang dilakukan adalah pengecoan konvensional dengan temperatur melting 750°C dengan waktu penahanan 60 menit. Pengujian yang dilakukan yaitu pengujian struktur mikro, identifikasi fasa, komposisi fasa, ketahanan termal dan kekerasan. Berdasarkan pengujian yang dilakukan menunjukkan bahwa yttrium dapat menyebabkan berubahnya struktur mikro dan fasa serta meningkatkan kekerasan dan ketahanan termal pada sampel. Hasil analisa menunjukkan 4 fasa dominan yang muncul pada sampel yaitu α-Mg, MgZn, Mg3YZn6 dan Mg3Y2Zn3. Kekerasan tertinggi adalah 74 BHN pada sampel 4% wt yttrium dan rata-rata sampel dapat digunakan sampai temperatur dibawah 250 ͦC.

  12. Pemisahan Unsur Samarium dan Yttrium dari Mineral Tanah Jarang dengan Teknik Membran Cair Berpendukung (Supported Liquid Membrane

    Amri Amin


    Full Text Available he increasing use of rare earth elements in high technology industries needs to be supported by developmental work for the separation of elements. The research objective is fiercely attracting and challenging considering the similarity of bath physical and chemical properties among these elements. The rate separation of samarium and yttrium elements using supported liquid membrane has been studied. Polytetrafluoroethylene (PTFE with pore size of 0.45 µm has been used as the membrane and di(2-ethylhexyl phosphate (D2EHP in hexane has been used as a carrier and nitric acid solution has been used as receiving phase. Result of experiments showed that the best separation rate of samarium and yttrium elements could be obtained at feeding phase of pH 3.0, di(2-ethylhexyl phosphate (D2EHP concentration of 0.3 M, agitation rate of 700 rpm, agitation time of 2 hours, and nitric acid and its solution concentrations of 1.0 M and 0.1 M, respectively. At this condition, separation rates of samarium and yttrium were 64.4 and 67.6%, respectively.   Keywords: liquid membrane, rare earth elements, samarium, yttrium

  13. Solvent extraction of indium with aliquat 336S from malonate solution

    Raghunatha Rao, R.; Khopkar, S.M. (Indian Inst. of Tech., Bombay. Dept. of Chemistry)


    Indium is quantitatively extracted with 4% Aliquat 336S in xylene from 0.01 M malonic acid buffered solution of pH 4.0-5.0. It is stripped with 0.5 M hydrochloric acid and determined spectrophotometrically with 4-(2-pyridylazo) resorcinol at 520 nm. It is possible to separate indium from alkali and alkaline earths, thallium(I), iron(II), silver, arsenic, yttrium, tin and lanthanons by selective sorption whereas cadmium, nickel, copper, cobalt, chromium(III), aluminium and manganese(II) form weak malonato complexes along with indium and hence are stripped before indium. The separation from bismuth, thallium(III), antimony, mercury(II), platinum(IV) and gold is carried out from 1 M hydrochloric acid, while gallium, titanium, scandium, vanadium and zirconium are separated in 4 M nitric acid. The separation of several anions is also reported.

  14. The effect of laser irradiation on retention of full cast crowns.

    Al-Omari, W M; Palamara, J E; Almohammed, S N


    The objective of this work was to determine the effect on the retention force of full cast crowns cemented on short tooth preparations after preparation of dentine with an erbium, chromium: yttrium scandium gallium garnet (Er, Cr:YSGG) laser at different sub-ablative power settings. Thirty teeth were prepared for full cast crowns using a milling machine. The surface area for all preparations was measured. The surfaces of the preparations were irradiated with 0 (control), 0.25 and 0.75 W laser. The crowns were cemented with self-cure resin cement and tested for retention on a Hounsfield Tensometer machine. The 0.75 W power setting produced the highest failure load value (346.2 +/- 86.1 N) and was significantly higher than the other groups. There were no significant differences between the 0.25 W and 0 W control groups

  15. Long-Term Palliative Effect of Stenting in Gastric Outlet Obstruction Due to Transarterial Chemoembolization with Yttrium-90 in a Patient with Metastatic Neuroendocrine Tumor

    Caglar, Erkan; Doğusoy, Gulen; Kabasakal, Levent; Dobrucali, Ahmet


    Internal radioembolization with yttrium-90 is a promising treatment method, predominantly for liver tumors. However, the shifting of yttrium-90-loaded spherules into the arteries and veins that supply the duodenum and stomach, leading to ulceration, hemorrhage, perforation, and outlet obstruction of these organs, is one of the major undesirable consequences of this technique. We report a case of gastric outlet obstruction (GOO) due to antropyloric stenosis with ulceration, edema, and inflammation following transarterial yttrium-90 treatment for a metastatic neuroendocrine tumor in a 58-year-old man. Stenting was used for palliation in this case. GOO improved after stenting and recovery of oral intake was permanent after stent removal. PMID:27353368

  16. Effect of Yttrium Pre-Implantation on Implantation Behavior of Ti-6Al-4V Alloy in Nitrogen Plasma Immersion Ion Implantation


    In order to increase the peak depth of nitrogen atoms during the nitrogen plasma immersion ion implantation of Ti-6Al-4V alloy, the rare earth metal yttrium was applied. In the experiment, yttrium and nitrogen ions were implanted under the voltage of 20 and 30 kV, respectively. In the samples with yttrium pre-implantation for 30 min, the Auger electron spectroscopy(AES) analysis shows that the peak depth of the nitrogen atoms increases from 50 up to 100 nm. It can also be seen from the tribological tests that the wear resistance of these samples is increased remarkably.

  17. Impact of atmospheric species on copper indium gallium selenide solar cell stability: An overview

    Theelen, M.


    An overview of the measurement techniques and results of studies on the stability of copper indium gallium selenide (CIGS) solar cells and their individual layers in the presence of atmospheric species is presented: in these studies, Cu(In,Ga)Se2 solar cells, their molybdenum back contact, and their

  18. Electrical Activation Studies of Silicon Implanted Aluminum Gallium Nitride with High Aluminum Mole Fraction


    important to minimize imperfections and defects as well as the amount of unwanted impurities. The most common bulk method is the Czochralski Method , in...demonstrates a method for producing highly conductive Si- implanted n-type aluminum gallium nitride (AlxGa1-xN) alloys, and represents a comprehensive...54 IV. Experimental Method ..................................................................................... 57 Sample

  19. Properties of Erbium and Ytterbium Doped Gallium Nitride Layers Fabricated by Magnetron Sputtering

    V. Prajzler


    Full Text Available We report about some properties of erbium and erbium/ytterbium doped gallium nitride (GaN layers fabricated by magnetron sputtering onsilicon, quartz and Corning glass substrates. For fabricating GaN layers two types of targets were used - gallium in a stainless steel cup anda Ga2O3 target. Deposition was carried out in the Ar+N2 gas mixture. For erbium and ytterbium doping into GaN layers, erbium metallicpowder and ytterbium powder or Er2O3 and Yb2O3 pellets were laid on the top of the target. The samples were characterized by X-raydiffraction (XRD, photoluminescence spectra and nuclear analytical methods. While the use of a metallic gallium target ensured thedeposition of well-developed polycrystalline layers, the use of gallium oxide target provided GaN films with poorly developed crystals. Bothapproaches enabled doping with erbium and ytterbium ions during deposition, and typical emission at 1 530 nm due to the Er3+ intra-4f 4I13/2 → 4I15/2 transition was observed.

  20. An alternative approach to the growth of single crystal gallium nitride

    Jonathan, Neville


    This project has been primarily concerned with investigating a new approach to the synthesis of epitaxial layers of high purity gallium nitride. The new approach involves the use of hydrazoic acid, HN3, a previously untried precursor as the source of active nitrogen. A new, all-stainless steel apparatus which is UHV compatible, has been constructed. It has been designed to allow growth studies to be made by the chemical beam epitaxy (CBE) technique or by low pressure metal organic vapour phase deposition (LPMOCVD) at pressures up to ca. 1 mbar. During the grant period, the apparatus has been constructed, tested, and modified. Experiments have been carried out which show that gallium nitride and aluminium nitride can be made from the reaction of hydrazoic acid with trimethyl gallium and trimethyl aluminium respectively, at a hot substrate surface. In-situ RHEED patterns and ex-situ Auger spectra and x-ray diffraction data have been obtained. Systematic studies aimed at producing high quality single crystal films have been made. The results are promising and uniform, golden yellow films of gallium nitride can now be produced. RHEED data show that the films are composed of highly orientated crystals. The x-ray results support this, with crystal sizes being at least 1000 A with the crystals strongly orientated along the c-axis.