WorldWideScience

Sample records for yttria-stabilized zirconium dioxide

  1. Quantum Mechanical Calculations Of Elastic Properties Of Doped Tetragonal Yttria-Stabilized Zirconium Dioxide

    Directory of Open Access Journals (Sweden)

    Yuriy Natanzon

    2008-01-01

    Full Text Available We report first principles calculations of the electronic and elastic properties of yttriastabilized tetragonal zirconium dioxide doped with metal oxides like: GeO2, TiO2, SiO2,MgO and Al2O3. It is shown that addition of such dopants affects selected elastic propertiesof ZrO2, which is driven by the attraction of electron density by dopant atom and creationof stronger dopant–oxygen bonds. This effect contributes to the increase of superplasticityof doped material.

  2. Application of zirconium dioxide nanoparticle sorbent for the clean-up step in post-harvest pesticide residue analysis.

    Science.gov (United States)

    Uclés, Ana; Herrera López, Sonia; Dolores Hernando, Maria; Rosal, Roberto; Ferrer, Carmen; Fernández-Alba, Amadeo R

    2015-11-01

    The use of yttria-stabilized zirconium dioxide nanoparticles as d-SPE clean-up sorbent for a rapid and sensitive liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) method for the determination of post-harvest fungicides (carbaryl, carbendazim, chlorpropham, diphenylamine, ethoxyquin, flutriafol, imazalil, iprodione, methomyl, myclobutanil, pirimiphos-methyl, prochloraz, pyrimethanil, thiabendazole, thiophanate-methyl and tolclofos-methyl) in orange and pear samples has been evaluated and validated. The sample preparation was a modification of the QuEChERS extraction method using yttria-stabilized zirconium dioxide and multi-walled carbon nanotubes (MWCNTs) nanoparticles as the solid phase extraction (d-SPE) clean-up sorbents prior to injecting the ten-fold diluted extracts into the LC system. By using the yttria-stabilized zirconium dioxide extraction method, more recoveries in the 70-120% range were obtained - thus this method was used for the validation. Quantification was carried out using a matrix-matched calibration curve which was linear in the 1-500 µg kg(-1) range for almost all the pesticides studied. The validated limit of quantification was 10 µg kg(-1) for most of the studied compounds, except chlorpropham, ethoxyquin and thiophanate-methyl. Pesticide recoveries at the 10 and 100 µg kg(-1) concentration levels were satisfactory, with values between 77% and 120% and relative standard deviations (RSD) lower than 10% (n=5). The developed method was applied for the determination of selected fungicides in 20 real orange and pear samples. Four different pesticide residues were detected in 10 of these commodities; 20% of the samples contained pesticide residues at a quantifiable level (equal to or above the LOQs) for at least one pesticide residue. The most frequently-detected pesticide residues were: carbendazim, thiabendazole and imazalil-all were below the MRL. The highest concentration found was imazalil at 1175 µg kg

  3. Dielectric properties of zirconium dioxide-based ceramics

    International Nuclear Information System (INIS)

    Vladimirova, O.S.; Gruzdev, A.I.; Koposova, Z.L.; Lyutsareva, L.A.

    1985-01-01

    This paper studies the dielectric properties of materials based on stabilized zirconium dioxide with Co 3 O 4 additions possessing a high temperature-coefficient of resistance. These materials are promising for manufacturing resistance temperature gages that work under an oxidizing atmosphere at 370-1270 degrees K. The obtained results indicate the possibility of developing temperature gases possessing highsensitivity from stabilized zirconium dioxide with Co 3 O 4 additions

  4. Characterization of cubic yttria-stabilized zirconia obtained by spray pyrolysis

    International Nuclear Information System (INIS)

    Halmenschlager, Cibele M.; Nunes, Marilia; Vieira, Ramaugusto; Bergmann, Carlos Perez; Falcade, Tiago; Malfatti, Celia de Fraga

    2009-01-01

    Yttria-stabilized-zirconia (YSZ) has been the object of many studies as a SOFC electrolyte. The aim of this work is to produce, by spray pyrolysis process, thin and dense films of YSZ. A disk of steel 316L, previously heated, was used as substrate. The film was obtained with zirconium acetylacetonate (Zr(C 6 H 7 O 2 ) 4 ) and yttrium chloride (YCl 3.6 H 2 O), dissolved in a mixture of ethanol + butyl carbitol with volume ratio (1:1). ZrO 2 amorphous films were deposited in the substrate heated at many temperatures. After thermal treatment at 700 deg C the films were changed into cubic yttria-stabilized-zirconia structure. The thin films obtained were characterized by thermal analysis, scanning electron microscopy, transmission electron microscopy, X-ray diffraction and micro-Raman spectroscopy. (author)

  5. Biomechanical testing of zirconium dioxide osteosynthesis system for Le Fort I advancement osteotomy fixation.

    Science.gov (United States)

    Hingsammer, Lukas; Grillenberger, Markus; Schagerl, Martin; Malek, Michael; Hunger, Stefan

    2018-01-01

    The following work is the first evaluating the applicability of 3D printed zirconium dioxide ceramic miniplates and screws to stabilize maxillary segments following a Le-Fort I advancement surgery. Conventionally used titanium and individual fabricated zirconium dioxide miniplates were biomechanically tested and compared under an occlusal load of 120N and 500N using 3D finite element analysis. The overall model consisted of 295,477 elements. Under an occlusal load of 500N a safety factor before plastic deformation respectively crack of 2.13 for zirconium dioxide and 4.51 for titanium miniplates has been calculated. From a biomechanical point of view 3D printed ZrO 2 mini-plates and screws are suggested to constitute an appropriate patient specific and metal-free solution for maxillary stabilization after Le Fort I osteotomy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Fracture properties and heat resistance of ceramics consisting of microspheres of stabilized zirconium dioxide

    International Nuclear Information System (INIS)

    Krasulin, Yu.L.; Barinov, S.M.; Ivanov, A.B.; Timofeev, V.N.; Grevtsev, S.N.; Ivanov, D.A.

    1980-01-01

    Determined were effective specific fracture work, critical coefficient of stress intensity in the upper point of the fracture, strength and heat resistance during heat changes (20-1300 deg C) of the material produced by sintering stabilized zirconium dioxide microspheres. Dependence of these characteristics on granulometric composition of microspheres was determined. It was ascertained that the additional introduction of large microspheres into the bulk of small microspheres increased the metal fracture work. Specific work of material fracture progress exceeded specific work of fracture motion initiation. High value of fracture work together with high strength permits to use the material formed of microspheres as structural ceramics

  7. Synthesis and characterization of Yttria-stabilized-zirconia by spray pyrolysis

    International Nuclear Information System (INIS)

    Melo Halmenschlager, Cibele; Vieira, Ramaugusto; Shigueaki Takimi, Antonio; Lima da Silva, Aline; De Fraga Malfatti, Celia; Perez Bergmann, Carlos

    2003-01-01

    Yttria-stabilized-zirconia (YSZ) has been object of many studies due to its great chemical stability and excellent ionic conduction in high temperature. One of the applications of YSZ films is the use as electrolyte in solid oxide fuel cells (SOFC). The great challenge of the SOFC is the development of a intermediary temperature solid oxide fuel cell (ITSOFC) to work in a temperature around 700 o C with the same efficiency of high temperature SOFC, with this aim fuel cells utilizing thin electrolyte films ha been developed. Traditional techniques of thin films deposition as Combustion Vapour Deposition (CVD) and Sputtering are very expensive, the reagents must be very pure and it is necessary to use a system of vacuum. Spray pyrolysis is a good alternative to deposit dense films with thickness between 0,1 and 10 . This technique has a lot of advantages front to classic methods of deposition because of the simplicity of the process and the equipment, low cost, and minimal waste production. In this process, when the parameters are very well controlled, it is possible to obtain oxide films with high quality. In the present work, amorphous films consisted of a layer of 8 mol% Yttria-stabilized zirconia were produced by spray pyrolysis and heat treated to obtain crystalline films. The film was prepared with zirconium acetylacetonate (Zr(C 6 H 7 O 2 ) 4 ) and yttrium chloride (YCl 3 .6H 2 O), dissolved in ethanol (C 2 H 6 O) and diethylene glycol butyl ether (C 8 H 18 O 3 ) mixed in the volume ratio of 1:1, and a disk of steel 316L was used as substrate. The amorphous film was deposited in the substrate heat until 280 o C ± 50 o C and after deposition from thermal treatment at 700 o C, the amorphous film was changed into Yttria-stabilized-zirconia crystalline film. The precursor solution was characterized for the Differential Thermal Analysis (DTA). The morphology and crystallinity of the films was investigated by scanning electron microscopy (SEM) and X-ray diffraction

  8. [Advantages and disadvantages of applying yttrium stabilized zirconium-dioxide post and core restorations].

    Science.gov (United States)

    Pétercsák, Anita; Radics, Tünde; Hegedus, Csaba

    2014-03-01

    Full ceramic restorations are associated with metal free post and core prosthodontics for teeth with seriously destroyed clinical crowns. Using custom made zirconium-dioxide post and cores can be flattering not only to give a good aesthetic result, but also to provide excellent retention. As none of the post systems stands all demands, prudent planning is mandatory. Our paper deals with favourable and unfavourable conditions as well as common causes of failures of post and core restorations. We took morphological, esthetical and functional considerations that can help to achieve the best results. Amongst them individual anatomic constitution, shape, width and length of the root and root canal, shape of the clinical crown, direction and magnitude of chewing forces are the most important factors. To give examples we present two cases of zirconium-dioxide post and core restorations. In our first case the missing clinical crown and a too wide root canal entrance created a questionable prognosis. To minimize adverse effect of the missing ferrule effect we applied custom-made zirconium-dioxide post and core and an additional abutment. After 7 years the restoration is still functioning. The second case represented a much favourable situation with 1,5 mm clinical crown height. The restoration was a custom-made zirconia post and core and a full-ceramic crown as a single tooth restoration. Although in this case we expected a better prognosis, 15 months later the patient showed up with a post fracture for applying extreme forces on the crown.

  9. [The clinical application of zirconium-dioxide-ceramics. Case report].

    Science.gov (United States)

    Somfai, Dóra; Zsigmond, Ágnes; Károlyházy, Katalin; Kispély, Barbara; Hermann, Péter

    2015-12-01

    Due to its outstanding physical, mechanical and esthetic properties, zirconium-dioxide is one of the most popular non-metal denture, capable of surpassing PFM in most cases. The recent advances of CAD/CAM technology makes it a good alternitve. Here we show the usefulness of zirconium-dioxide in everyday dental practice through three case reports.

  10. Phase stability in yttria-stabilized zirconia from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Carbogno, Christian; Scheffler, Matthias [Materials Department, University of California, Santa Barbara, CA (United States); Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin (Germany); Levi, Carlos G.; Van de Walle, Chris G. [Materials Department, University of California, Santa Barbara, CA (United States)

    2012-07-01

    Zirconia based ceramics are of pivotal importance for a variety of industrial technologies, e.g., for thermal barrier coatings in gas and airplane turbines. Naturally, the stability of such coatings at elevated temperatures plays a critical role in these applications. It is well known that an aliovalent doping of tetragonal ZrO{sub 2} with yttria, which induces oxygen vacancies due to charge conservation, increases its thermodynamic stability. However, the atomistic mechanisms that determine the phase stability of such yttria-stabilized Zirconia (YSZ) coatings are not yet fully understood. In this work, we use density functional theory calculations to assess the electronic structure of the different YSZ polymorphs at various levels of doping. With the help of population analysis schemes, we are able to unravel the intrinsic mechanisms that govern the interaction in YSZ and that can so explain the relative stabilities of the various polymorphs. We critically compare our results to experimental measurements and discuss the implications of our findings with respect to other oxides.

  11. Strontium zirconate as silicon and aluminum scavenger in yttria stabilized zirconia

    DEFF Research Database (Denmark)

    Andersen, Thomas; Hansen, Karin Vels; Chorkendorff, Ib

    2011-01-01

    Here we report on strontium zirconate as a getter for silicon dioxide and aluminum oxide in yttria stabilized zirconia (YSZ) single crystals for cleaning purposes. YSZ single crystals were covered with strontium zirconate powder and heat treated at 1450°C in water vapor. After treatment the YSZ...... by transmission electron microscopy (TEM) the interface region between bump and YSZ single crystal bulk was examined. EDS showed a homogeneous distribution of silicon and aluminum through the cross section of a bump. The results suggest strontium zirconate as a good getter for silicon and aluminum from bulk...

  12. Study on application of zirconium dioxide for upgrading quality of pouring cups used in continuous steel casting technology

    International Nuclear Information System (INIS)

    Pham Ba Kien; Vu Thanh Quang and Ngo Van Tuyen

    2004-01-01

    This theme studies on technology of zirconium oxide powder stabilized by calcium and testing production of steel pouring cup made of the stabilized dioxide zirconium ceramic. As a product of the theme, the steel pouring cup has had the following main characteristics: heat resistance > 1700 o C, density of 4.7 g/cm 3 , apparent sponge degree of 1.63%, compressibility of 3300 kg/cm 2 . The quality of the cup has been tested and highly evaluated during the actual production. (author)

  13. Stability of yttria-stabilized zirconia during pyroprocessing tests

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Eun-Young, E-mail: eychoi@kaeri.re.kr; Lee, Jeong; Lee, Sung-Jai; Kim, Sung-Wook; Jeon, Sang-Chae; Cho, Soo Haeng; Oh, Seung Chul; Jeon, Min Ku; Lee, Sang Kwon; Kang, Hyun Woo; Hur, Jin-Mok

    2016-07-15

    In this study, the feasibility of yttria-stabilized zirconia (YSZ) was investigated for use as a ceramic material, which can be commonly used for both electrolytic reduction and electrorefining. First, the stability of YSZ in salts for electrolytic reduction and electrorefining was examined. Then, its stability was demonstrated by a series of pyroprocessing tests, such as electrolytic reduction, LiCl distillation, electrorefining, and LiCl−KCl distillation, using a single stainless steel wire mesh basket containing fuel and YSZ. A single basket was used by its transportation from one test to subsequent tests without the requirements for unloading.

  14. Characterization of plasma sprayed NiCrAlY-Yttria stabilized zirconia coatings

    International Nuclear Information System (INIS)

    Bhave, V.S.; Rakhasia, R.H.; Tripathy, P.K.; Hubli, R.C.; Sengupta, P.; Bhanumurthy; Satpute, R.U.; Sreekumar, K.P.; Thiyagarajan, T.K.; Padmanabhan, P.V.A.

    2004-01-01

    Plasma sprayed coatings of yttria stabilized zirconia are used in many advanced technologies for thermal and chemical barrier applications. Development and characterization of NiCrAlY-yttria stabilized zirconia duplex coatings on Inconel substrates is reported in this paper. Plasma spraying was carried out using the 40 kW atmospheric plasma spray facility at the Laser and Plasma Technology Division, BARC. A bond coat of NiCrAlY was deposited on Inconel substrates and yttria stabilized zirconia (YSZ) was deposited over the bond coat. The coatings have been characterized by x-ray diffraction and EPMA. It is observed that the coating characteristics are affected by the input power to the torch. (author)

  15. Preparation of high-purity zirconium dioxide from baddeleyite

    International Nuclear Information System (INIS)

    Voskobojnikov, N.B.; Skiba, G.S.

    1996-01-01

    Interaction of baddeleyite concentrate with calcium oxide and calcium chloride in the process of caking is studied. The influence of grain size on calcium zirconate formation is tested. Conditions for cake leaching by hydrochloric acid and zirconium(4) oxychloride purification from calcium and silicon compounds by recrystallization are reported. Zirconium dioxide corresponding to specifications (6-2 special purity) is obtained with a high (more than 90%) chemical yield. 9 refs., 1 tab

  16. Kinetics of hydrothermally induced transformation of yttria partially stabilized zirconia

    International Nuclear Information System (INIS)

    Payyapilly, J.J.; Butt, D.P.

    2007-01-01

    Yttria-stabilized zirconia undergoes tetragonal to monoclinic phase transformation under hydrothermal conditions in the temperature range of 150-350 deg. C. Phase transformation accompanied by volume change in bulk yttria partially stabilized zirconia (YPSZ) leads to micro-cracking, loss of mechanical integrity and ultimately disintegration. The mechanical properties of the bulk YPSZ material deteriorate with the amount of the phase transformation and in some cases catastrophic failure are observed. The phase transformation is analyzed using macroscopic and microscopic techniques. X-ray diffraction data is used to quantify the phase transformation in bulk material. Kinetics of the phase transformation is studied at various temperatures

  17. Three-dimensional ordered titanium dioxide-zirconium dioxide film-based microfluidic device for efficient on-chip phosphopeptide enrichment.

    Science.gov (United States)

    Zhao, De; He, Zhongyuan; Wang, Gang; Wang, Hongzhi; Zhang, Qinghong; Li, Yaogang

    2016-09-15

    Microfluidic technology plays a significant role in separating biomolecules, because of its miniaturization, integration, and automation. Introducing micro/nanostructured functional materials can improve the properties of microfluidic devices, and extend their application. Inverse opal has a three-dimensional ordered net-like structure. It possesses a large surface area and exhibits good mass transport, making it a good candidate for bio-separation. This study exploits inverse opal titanium dioxide-zirconium dioxide films for on-chip phosphopeptide enrichment. Titanium dioxide-zirconium dioxide inverse opal film-based microfluidic devices were constructed from templates of 270-, 340-, and 370-nm-diameter poly(methylmethacrylate) spheres. The phosphopeptide enrichments of these devices were determined by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The device constructed from the 270-nm-diameter sphere template exhibited good comprehensive phosphopeptide enrichment, and was the best among these three devices. Because the size of opal template used in construction was the smallest, the inverse opal film therefore had the smallest pore sizes and the largest surface area. Enrichment by this device was also better than those of similar devices based on nanoparticle films and single component films. The titanium dioxide-zirconium dioxide inverse opal film-based device provides a promising approach for the efficient separation of various biomolecules. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Adsorption of zirconium from nitric acid solutions on hydrated tin dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Tret' yakov, S Ya; Sharygin, L M; Egorov, Yu V

    1977-01-01

    Adsorption of zirconium from nitric acid solutions has been studied with the use of the labeled atom method on hydrated tin dioxide depending on the sorbate concentration, pH and prehistory of the solution. It has been found that adsorption behavior of zirconium essentially depends on its state in the solution.

  19. Electrochemical stripping determination of traces of copper, lead, cadmium and zinc in zirconium metal and zirconium dioxide

    International Nuclear Information System (INIS)

    Stulik, K.; Beran, P.; Dolezal, J.; Opekar, F.

    1978-01-01

    Procedures have been developed for the determination of copper, lead, cadmium and zinc in zirconium metal and zirconium dioxide, at concentrations of 1ppm or less. Zirconium metal was dissolved in sulphuric acid, and zirconium dioxide decomposed under pressure with hydrofluoric acid. Sample solutions were prepared in dilute sulphuric acid. For the stripping determination, the sample solution was either mixed with a complexing tartrate base electrolyte or the pre-electrolysis was carried out in acid solution, with the acid solution being exchanged for a pure base electrolyte (e.g. an acetate buffer) for the stripping step. The stripping step was monitored by d.c., differential pulse and Kalousek commutator voltammetry and the three methods were compared. A stationary mercury-drop electrode can generally be used for all the methods, whereas a mercury-film electrode is suitable only for the d.c. voltammetric determination of copper, lead and cadmium, as pulse measurements with films are poorly reproducible and the electrodes are easily damaged. The relative standard deviation does not exceed 20%. Some samples contained relatively large amounts of copper, which is best separated by electrodeposition on a platinum electrode. (author)

  20. Phase transformations during machining and properties of surface layers in zirconium dioxide ceramics

    International Nuclear Information System (INIS)

    Grigor'ev, O.N.; Krivoshej, G.S.; Stel'mashenko, N.A.; Trefilov, V.I.; Shevchenko, A.V.

    1991-01-01

    The methods of X-ray allow studying phase composition and inner stresses in the surface layers of partially stabilized zirconium dioxide after mashining. It is shown that under conditions of abrasive treatment transitions from tetragonal into rhomboedric and monoclinic phases initiate. As a result of phase transitions fields of compressible stresses achieving 900 MPa under grinding with ACM abrasive are created on the surface. An essential increase of hardness due to growth of the brittle fauilure resistance and deformation hardening is revealed

  1. The fictional transition of the preferential orientation of yttria-stabilized zirconia thin films

    International Nuclear Information System (INIS)

    Lamas, J.S.; Leroy, W.P.; Depla, D.

    2012-01-01

    The fundamental study of the microstructural and textural evolution of yttria-stabilized zirconia (YSZ) thin films is of great importance given that the crystallographic properties are intimately related to their extrinsic or functional properties. In order to study these properties, YSZ thin films were obtained using dual magnetron sputtering. The results of a polar plot graph, based on X-ray diffraction (XRD) data, seem to indicate a transition from [200] out-of-plane preferential orientation to [111], indicating a dependence on composition and yttrium target–substrate (Y T–S) distance at low pressure. However, no transition is identified at high pressure, showing only [111] out-of-plane orientation, independent of composition and Y T–S distance. Scanning electron microscopy (SEM) indicates a tilt in the columnar structure of the film but no other microstructural change is in evidence, possibly related to the growth transition from [200] to [111]. Pole figures were used to clarify the texture transition in the YSZ thin films. These results indicate that there is indeed no transition in the preferential orientation of the films from [200] to [111] but a tilt of the [200] orientation towards the zirconium source. Detailed study using pole figures and SEM, clearly indicated that no growth zone transition was present and the effect is caused by geometrical configuration, contradicting expectations from standard θ/2θ XRD measurements. - Highlights: ► Study of the preferential orientation of Yttria-stabilized zirconia thin films ► Comparison of the preferential orientation at two different chamber pressures ► Correlation with the energy per adparticle and the extended structure zone model ► Use of pole figures analyses to clarify the change in the preferential orientation

  2. The fictional transition of the preferential orientation of yttria-stabilized zirconia thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lamas, J.S., E-mail: Jerika.Lamas@UGent.be; Leroy, W.P.; Depla, D.

    2012-12-15

    The fundamental study of the microstructural and textural evolution of yttria-stabilized zirconia (YSZ) thin films is of great importance given that the crystallographic properties are intimately related to their extrinsic or functional properties. In order to study these properties, YSZ thin films were obtained using dual magnetron sputtering. The results of a polar plot graph, based on X-ray diffraction (XRD) data, seem to indicate a transition from [200] out-of-plane preferential orientation to [111], indicating a dependence on composition and yttrium target-substrate (Y T-S) distance at low pressure. However, no transition is identified at high pressure, showing only [111] out-of-plane orientation, independent of composition and Y T-S distance. Scanning electron microscopy (SEM) indicates a tilt in the columnar structure of the film but no other microstructural change is in evidence, possibly related to the growth transition from [200] to [111]. Pole figures were used to clarify the texture transition in the YSZ thin films. These results indicate that there is indeed no transition in the preferential orientation of the films from [200] to [111] but a tilt of the [200] orientation towards the zirconium source. Detailed study using pole figures and SEM, clearly indicated that no growth zone transition was present and the effect is caused by geometrical configuration, contradicting expectations from standard {theta}/2{theta} XRD measurements. - Highlights: Black-Right-Pointing-Pointer Study of the preferential orientation of Yttria-stabilized zirconia thin films Black-Right-Pointing-Pointer Comparison of the preferential orientation at two different chamber pressures Black-Right-Pointing-Pointer Correlation with the energy per adparticle and the extended structure zone model Black-Right-Pointing-Pointer Use of pole figures analyses to clarify the change in the preferential orientation.

  3. In vitro assessment of artifacts induced by titanium, titanium-zirconium and zirconium dioxide implants in cone-beam computed tomography.

    Science.gov (United States)

    Sancho-Puchades, Manuel; Hämmerle, Christoph H F; Benic, Goran I

    2015-10-01

    The aim of this study was to test whether or not the intensity of artifacts around implants in cone-beam computed tomography (CBCT) differs between titanium, titanium-zirconium and zirconium dioxide implants. Twenty models of a human mandible, each containing one implant in the single-tooth gap position 45, were cast in dental stone. Five test models were produced for each of the following implant types: titanium 4.1 mm diameter (Ti4.1 ), titanium 3.3 mm diameter (Ti3.3 ), titanium-zirconium 3.3 mm diameter (TiZr3.3 ) and zirconium dioxide 3.5-4.5 mm diameter (ZrO3.5-4.5 ) implants. For control purposes, three models without implants were produced. Each model was scanned using a CBCT device. Gray values (GV) were recorded at eight circumferential positions around the implants at 0.5 mm, 1 mm and 2 mm from the implant surface (GVT est ). GV were assessed in the corresponding volumes of interest (VOI) in the control models without implants (GVC ontrol ). Differences of gray values (ΔGV) between GVT est and GVC ontrol were calculated as percentages. One-way ANOVA and post hoc tests were applied to detect differences between implant types. Mean ΔGV for ZrO3.5-4.5 presented the highest absolute values, generally followed by TiZr3.3 , Ti4.1 and Ti3.3 implants. The differences of ΔGV between ZrO3.5-4.5 and the remaining groups were statistically significant in the majority of the VOI (P ≤ 0.0167). ΔGV for TiZr3.3 , Ti4.1 and Ti3.3 implants did not differ significantly in the most VOI. For all implant types, ΔGV showed positive values buccally, mesio-buccally, lingually and disto-lingually, whereas negative values were detected mesially and distally. Zirconium dioxide implants generate significantly more artifacts as compared to titanium and titanium-zirconium implants. The intensity of artifacts around zirconium dioxide implants exhibited in average the threefold in comparison with titanium implants. © 2014 John Wiley & Sons A/S. Published by John Wiley

  4. Structure of zirconium dioxide based porous glasses

    Czech Academy of Sciences Publication Activity Database

    Gubanova, N. N.; Kopitsa, G. P.; Ezdakova, K. V.; Baranchikov, A. Y.; Angelov, Borislav; Feoktystov, A.; Pipich, V.; Ryukhtin, Vasyl; Ivanov, V. K.

    2014-01-01

    Roč. 8, č. 5 (2014), s. 967-975 ISSN 1027-4510 R&D Projects: GA ČR GAP208/10/1600; GA MŠk(XE) LM2011019; GA ČR GB14-36566G Institutional support: RVO:61389013 ; RVO:61389005 Keywords : zirconium dioxide * porous glasse * nanoparticles Subject RIV: CF - Physical ; Theoretical Chemistry; BG - Nuclear, Atomic and Molecular Physics, Colliders (UJF-V) Impact factor: 0.359, year: 2012

  5. Atomic structure and composition of the yttria-stabilized zirconia (111) surface.

    Science.gov (United States)

    Vonk, Vedran; Khorshidi, Navid; Stierle, Andreas; Dosch, Helmut

    2013-06-01

    Anomalous and nonanomalous surface X-ray diffraction is used to investigate the atomic structure and composition of the yttria-stabilized zirconia (YSZ)(111) surface. By simulation it is shown that the method is sensitive to Y surface segregation, but that the data must contain high enough Fourier components in order to distinguish between different models describing Y/Zr disorder. Data were collected at room temperature after two different annealing procedures. First by applying oxidative conditions at 10 - 5  mbar O 2 and 700 K to the as-received samples, where we find that about 30% of the surface is covered by oxide islands, which are depleted in Y as compared with the bulk. After annealing in ultrahigh vacuum at 1270 K the island morphology of the surface remains unchanged but the islands and the first near surface layer get significantly enriched in Y. Furthermore, the observation of Zr and oxygen vacancies implies the formation of a porous surface region. Our findings have important implications for the use of YSZ as solid oxide fuel cell electrode material where yttrium atoms and zirconium vacancies can act as reactive centers, as well as for the use of YSZ as substrate material for thin film and nanoparticle growth where defects control the nucleation process.

  6. Chemical vapor deposition of yttria stabilized zirconia in porous substrates

    International Nuclear Information System (INIS)

    Carolan, M.F.; Michaels, J.N.

    1987-01-01

    Electrochemical vapor deposition (EVD) of yttria stabilized zirconia (YSZ) is the preferred route to the production of thin films of YSZ on porous substrates. This process has been used in the construction of both fuel cells and steam electrolyzers. A critical aspect of the EVD process is an initial chemical vapor deposition phase in which the pores of a porous substrate are plugged by YSZ. In this process, water vapor and a mixture of gaseous zirconium chloride and yttrium chloride diffuse into the porous substrate from opposite sides and react to form YSZ and HCl ga. During the second stage of the process a continuous dense film of electrolyte is formed by a tarnishing-type process. Experimentally it is observed that the pores plug within a few pore diameters of the metal chloride face of the substrate. A kinetic rate expression that is first order in metal chloride but zero order in water is best able to explain this phenomenon. With this rate expression, the pores always plug near the metal chloride face. The model predicts less pore narrowing to occur as the ratio of the reaction rate to the diffusion rate of the metal chloride is increased. A kinetic rate expression that is first order in both water and metal chloride predicts that the pores plug much deeper in the substrate

  7. Microscopic mechanism of stability in yttria-doped zirconia

    CERN Document Server

    Ostanin, S A

    2001-01-01

    The relaxed configurations of yttria-stabilized zirconia (YSZ) between 3 and 10 mol. % Y sub 2 O sub 3 were modeled within the pseudopotential technique. The vibration mode corresponding to the soft phonon in pure c-ZrO sub 2 has been calculated for each Y sub 2 O sub 3 composition. These anharmonic vibrations, associated with stabilization of YSZ, have been investigated within the self-consistent phonon approximation that makes obtainable the fine structure in spectral density. In studying the phonon dynamics, it is proposed to use the displacement probability density which can quantify very accurately the transition temperature needed to stabilize the YSZ cubic phase

  8. The effect of environmental factors on selected mechanical properties of zirconium dioxide

    Science.gov (United States)

    Wirwicki, W.; Andrzejewska, A.; Andryszczyk, M.; Siemianowski, P.

    2018-04-01

    In many centers around the world, research studies are carried out on the mechanical strength of dental materials and glued joints. A literature review shows the variety of testing techniques related to analyzing the strength and durability of the material itself and the glued joints. In dental ceramics, zirconium dioxide is most often used as a base material, and chemically it consists of 97% ZrO2 and 3% Y2O3. This study was to determine the mechanical properties of zirconium dioxide under different environmental conditions. The material is used for the production of dental crowns and tooth bridges in the CAD/CAM technology. This medium is currently one of the most advanced-generation materials used for prosthetic and implant restorations. They were then subjected to a three-point bending test on the Instron ElektroPlus E3000 durability machine. Storage conditions and time have a positive influence on reducing variation in zirconium resistance for active forces and destructive stresses.

  9. Initial Bacterial Adhesion on Different Yttria-Stabilized Tetragonal Zirconia Implant Surfaces in Vitro

    Directory of Open Access Journals (Sweden)

    Lamprini Karygianni

    2013-12-01

    Full Text Available Bacterial adhesion to implant biomaterials constitutes a virulence factor leading to biofilm formation, infection and treatment failure. The aim of this study was to examine the initial bacterial adhesion on different implant materials in vitro. Four implant biomaterials were incubated with Enterococcus faecalis, Staphylococcus aureus and Candida albicans for 2 h: 3 mol % yttria-stabilized tetragonal zirconia polycrystal surface (B1a, B1a with zirconium oxide (ZrO2 coating (B2a, B1a with zirconia-based composite coating (B1b and B1a with zirconia-based composite and ZrO2 coatings (B2b. Bovine enamel slabs (BES served as control. The adherent microorganisms were quantified and visualized using scanning electron microscopy (SEM; DAPI and live/dead staining. The lowest bacterial count of E. faecalis was detected on BES and the highest on B1a. The fewest vital C. albicans strains (42.22% were detected on B2a surfaces, while most E. faecalis and S. aureus strains (approximately 80% were vital overall. Compared to BES; coated and uncoated zirconia substrata exhibited no anti-adhesive properties. Further improvement of the material surface characteristics is essential.

  10. Primary Stability of Zirconium vs Titanium Implants: An In Vitro Comparison

    Science.gov (United States)

    2015-06-05

    of any copyrighted material in the thesis manuscript entitled: Primary Stability of Zirconium vs Titanium Implants: An In Vitro Comparison Is...Uniformed Services University Date: 02/20/2015 Primary Stability of Zirconium vs Titanium Implants: An In Vitro Comparison By...the thesis manuscript entitled: Primary Stability of Zirconium vs Titanium Implants: An In Vitro Comparison Is appropriately acknowledged

  11. Kinetics of aging of metastable solid electrolytes based on zirconium dioxide

    International Nuclear Information System (INIS)

    Vlasov, A.N.; Inozemtsev, M.V.

    1985-01-01

    Kinetics of aging of metastable solid electrolytes on the base of zirconium dioxide stabilized with 8-10 mol.%of yttrium, holmium, and scandium oxides has been studied within the 1200-1373 K temperature range. Kinetic equations describibg behaviour of electric conductivity of two-phase solid electrolytes within a wide temperature interval have been suggested. It has been established that at the initial stage of ageing in cubic solid solution two processes proceed independently of one another: growth of a number of new phase centres and of a volume of new phase centres. At large times growth of a number of new phase centres stops, and kinetics of electrolyte aging is defined only by the growth kinetics of a volume of new phase inclusions

  12. Kinetics of aging of metastable, zirconium-dioxide-based solid electrolytes

    International Nuclear Information System (INIS)

    Vlasov, A.N.; Inozemtsev, M.V.

    1985-01-01

    The kinetics of aging of zirconium-dioxide-based metastable solid oxide electrolytes stabilized with 8 to 10 mole % of yttrium, holmium, or scandium oxide were studied over the temperature range from 1200 to 1373 0 K. Kinetic equations were proposed which describe the conduction behavior of two-phase solid electrolytes in a wide time range. The processes were found to occur independently at the initial stage of aging in the cubic solution, viz., an increase in the number of nuclei of the new phase, and a growth in volume of nuclei of the new phase. After a long time the former process ceases, and the kinetics of aging of the electrolyte only are determined by the kinetics of volume growth of the inclusions of new phase. The time-dependent behavior of two-phase solid solutions is discussed theoretically and examined experimentally

  13. Microstructure and thermal stability of Fe, Ti and Ag implanted Yttria-stabilized zirconia

    NARCIS (Netherlands)

    van Hassel, B.A.; van Hassel, B.A.; Burggraaf, Anthonie; Burggraaf, A.J.

    1991-01-01

    Yttria-stabilized zirconia (YSZ) was implanted with 15 keV Fe or Ti ions up to a dose of 8×1016 at cm−2. The resulting “dopant” concentrations exceeded the concentrations corresponding to the equilibrium solid solubility of Fe2O3 or TiO2 in YSZ. During oxidation in air at 400° C, the Fe and Ti

  14. Effect of yttria addition on the stability of porous chromium oxide ceramics in supercritical water

    International Nuclear Information System (INIS)

    Dong Ziqiang; Chen Weixing; Zheng Wenyue; Guzonas, Dave

    2013-01-01

    Porous chromium oxide (Cr 2 O 3 ) ceramics were prepared by oxidizing highly porous chromium carbides that were obtained by a reactive sintering method, and were evaluated at temperatures ranging from 375 °C to 625 °C in supercritical water (SCW) environments with a fixed pressure of 25–30 MPa. Reactive element yttrium was introduced to the porous oxide ceramic by adding various amounts of yttria of 5, 10 and 20 wt.%, respectively, prior to reactive sintering. The exposure in SCW shows that the porous chromium oxide is quite stable in SCW at 375 °C. However, the stability decreased with increasing temperature. It is well known that chromium oxide can be oxidized to soluble chromium (VI) species in SCW when oxygen is present. Adding yttria increases the stability of chromium oxide in SCW environments. However, adding yttria higher than 5 wt.% increased the weight loss of porous chromium oxide samples because of the direct dissociation of Y 2 O 3 in SCW.

  15. Study on the influences of reduction temperature on nickel-yttria-stabilized zirconia solid oxide fuel cell anode using nickel oxide-film electrode

    Science.gov (United States)

    Jiao, Zhenjun; Ueno, Ai; Suzuki, Yuji; Shikazono, Naoki

    2016-10-01

    In this study, the reduction processes of nickel oxide at different temperatures were investigated using nickel-film anode to study the influences of reduction temperature on the initial performances and stability of nickel-yttria-stabilized zirconia anode. Compared to conventional nickel-yttria-stabilized zirconia composite cermet anode, nickel-film anode has the advantage of direct observation at nickel-yttria-stabilized zirconia interface. The microstructural changes were characterized by scanning electron microscopy. The reduction process of nickel oxide is considered to be determined by the competition between the mechanisms of volume reduction in nickel oxide-nickel reaction and nickel sintering. Electrochemical impedance spectroscopy was applied to analyze the time variation of the nickel-film anode electrochemical characteristics. The anode performances and microstructural changes before and after 100 hours discharging and open circuit operations were analyzed. The degradation of nickel-film anode is considered to be determined by the co-effect between the nickel sintering and the change of nickel-yttria-stabilized zirconia interface bonding condition.

  16. MULTILAYER COMPOSITE PLASMA COATINGS ON SCREEN PROTECTION ELEMENTS BASED ON ZIRCONIUM DIOXIDE

    Directory of Open Access Journals (Sweden)

    V. A. Okovity

    2017-01-01

    Full Text Available The paper contains results of investigations pertaining to an influence of plasma jet parameters (current, spraying distance, consumption of plasma formation gas (nitrogen, fractional composition of initial powder and degree of cooling with compressed air on anti-meteoric coating characteristics. Optimum modes (arc current 600 A; spray distance of 110 mm; consumption of plasma formation gas (nitrogen – 50 l/min; fractional composition of zirconium dioxide powder <50 μm; compressed air consumption for cooling – 1 m3/min; p = 4 bar make it possible to obtain anti-meteoric coatings based on zirconium dioxide with material utilization rate of 62 %, total ceramic layer porosity of 6 %. After exposure of compression plasma flows on a coating in the nitrogen atmosphere a cubic modification of zirconium oxide is considered as the main phase being present in the coating. The lattice parameter of cubic zirconium oxide modification is equal to 0.5174 nm. Taking into consideration usage of nitrogen as plasma formation substance its interaction with zirconium coating atoms occurs and zirconium nitride (ZrN is formed with a cubic crystal lattice (lattice parameter 0.4580 nm. Melting of pre-surface layer takes place and a depth of the melted layer is about 8 μm according to the results of a scanning electron microscopy. Pre-surface layer being crystallized after exposure to compression plasma flows is characterized by a homogeneous distribution of ele-ments and absence of pores formed in the process of coating formation. The coating structure is represented by a set of lar- ge (5–7 μm and small (1–2 μm zirconium oxide particles sintered against each other. Melting of coating surface layer and speed crystallization occur after the impact of compression plasma flows on the formed coating. Cracking of the surface layer arises due to origination of internal mechanical stresses in the crystallized part. While using a scanning electron microscopy a

  17. CHARACTERIZATION OF YTTRIA AND MAGNESIA PARTIALLY STABILIZED ZIRCONIA BIOCOMPATIBLE COATINGS DEPOSITED BY PLASMA SPRAYING

    Directory of Open Access Journals (Sweden)

    Roşu R. A.

    2013-09-01

    Full Text Available Zirconia (ZrO2 is a biocompatible ceramic material which is successfully used in medicine to cover the metallic implants by various methods. In order to avoid the inconvenients related to structural changes which may appear because of the temperature treatment while depositing the zirconia layer over the metallic implant, certain oxides are added, the most used being Y2O3, MgO and CaO. This paper presents the experimental results regarding the deposition of yttria (Y2O3 and magnesia (MgO partially stabilized zirconia layers onto titanium alloy substrate by plasma spraying method. X ray diffraction investigations carried out both on the initial powders and the coatings evidenced the fact that during the thermal spraying process the structure has not been significantly modified, consisting primarily of zirconium oxide with tetragonal structure. Electronic microscopy analyses show that the coatings are dense, uniform and cracks-free. Adherence tests performed on samples whose thickness ranges between 160 and 220 μm showed that the highest value (23.5 MPa was obtained for the coating of ZrO2 - 8 wt. % Y2O3 with 160 μm thickness. The roughness values present an increasing tendency with increasing the coatings thickness.

  18. Metallurgy of zirconium and hafnium

    International Nuclear Information System (INIS)

    Baryshnikov, N.V.; Geger, V.Eh.; Denisova, N.D.; Kazajn, A.A.; Kozhemyakin, V.A.; Nekhamkin, L.G.; Rodyakin, V.V.; Tsylov, Yu.A.

    1979-01-01

    Considered are those properties of zirconium and of hafnium, which are of practical interest for the manufacture of these elements. Systematized are the theoretical and the practical data on the procedures for thermal decomposition of zirconia and for obtaining zirconium dioxide and hafnium dioxide by a thermal decomposition of compounds and on the hydrometallurgical methods for extracting zirconium and hafnium. Zirconium and hafnium fluorides and chlorides production procedures are described. Considered are the iodide and the electrolytic methods of refining zirconium and hafnium

  19. Mesoporous yttria-zirconia and metal-yttria-zirconia solid solutions for fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Mamak, M.; Coombs, N.; Ozin, G. [Toronto Univ., ON (Canada). Dept. of Chemistry

    2000-02-03

    A new class of binary mesoporous yttria-zirconia (YZ) and ternary mesoporous metal-YZ materials (M = electroactive Ni/Pt) is presented here that displays the highest surface area of any known form of yttria-stabilized zirconia. These mesoporous materials form as solid solutions and retain their structural integrity to 800 C, which bodes well for their possible utilization in fuel cells. (orig.)

  20. Properties of zirconium ceramics and film stabilized by yttrium

    International Nuclear Information System (INIS)

    Korobova, N.

    2004-01-01

    Full text: Unstable zirconium dioxide phase transformation can be eliminated by stabilization of the cubic phase with an addition of a selected alkaline earth or rare-earth oxide. Stabilized ZrO 2 has been widely utilized in various high-temperature refractory applications. These stabilized ZrO 2 -base solid solutions also possess rather unique electrical properties, and as a result have considerable potential as solid electrolytes in galvanic and fuel cells and, possibly, as heating elements in high-temperature furnaces. The complex study of synthesis processes, structure and properties of metal alkoxide organic sols have been developed. These have allowed to create main principles of their formation and to show the practical realization of obtained theoretical and experimental results. The correlation between hydrolysis conditions of (Zr+Y) metal alkoxide sols and synthesis of stable colloid multi-component systems has been established. Systematic research of zirconium and yttrium bi-alkoxide electrophoretic deposition was conducted for the first time. The formation mechanism of electrophoretic deposits has been offered and general scientific principles of the electrophoretic process have been formulated. The model of gel deposits structure was proposed. It has enabled to analyze the main (for example, cluster) effects, which have been exhibited in technological procedure for thin film preparation. The structure investigation of stabilized zirconium dioxide thin films and ceramics has been studied. The researches were based on the comparative analysis of the initial gel microstructure and dried gel by the various drying methods. The new approach for drying of gel electrophoretic deposits was formulated theoretically and experimentally has been proved. The modeling of the aggregate kinetics as a type of 'cluster-cluster' has been proposed like a qualitative description of the process. The data of fractal dimensions of aggregates which have been formed at the

  1. Low-Temperature Superionic Conductivity in Strained Yttria-Stabilized Zirconia

    DEFF Research Database (Denmark)

    Sillassen, Michael; Eklund, Per; Pryds, Nini

    2010-01-01

    Very high lateral ionic conductivities in epitaxial cubic yttria-stabilized zirconia (YSZ) synthesized on single-crystal SrTiO3 and MgO substrates by reactive direct current magnetron sputtering are reported. Superionic conductivities (i.e., ionic conductivities of the order 1 -1cm-1) are observed...... at 500 °C for 58-nm-thick films on MgO. The results indicate a superposition of two parallel contributions - one due to bulk conductivity and one attributable to conduction along the film-substrate interface. Interfacial effects dominate the conductivity at low temperatures (...

  2. In-situ stabilization of radioactive zirconium swarf

    Science.gov (United States)

    Hess, Clay C.

    1999-01-01

    The method for treating ignitable cutting swarf in accordance with the present invention involves collecting cutting swarf in a casting mold underwater and injecting a binder mixture comprising vinyl ester styrene into the vessel to fill void volume; and form a mixture comprising swarf and vinyl ester styrene; and curing the mixture. The method is especially useful for stabilizing the ignitable characteristics of radioactive zirconium cutting swarf, and can be used to solidify zirconium swarf, or other ignitable finely divided material, underwater. The process could also be performed out of water with other particulate wastes.

  3. Synthesis of zirconium dioxide by ultrasound assisted precipitation: effect of calcination temperature.

    Science.gov (United States)

    Prasad, Krishnamurthy; Pinjari, D V; Pandit, A B; Mhaske, S T

    2011-09-01

    Nanostructured zirconium dioxide was synthesized from zirconyl nitrate using both conventional and ultrasound assisted precipitation in alkaline medium. The synthesized samples were calcinated at temperatures ranging from 400°C to 900°C in steps of 100°C. The ZrO(2) specimens were characterized using X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The thermal characteristics of the samples were studied via Differential Scanning Calorimetry-Thermo-Gravimetry Analysis (DSC-TGA). The influence of the calcination temperature on the phase transformation process from monoclinic to tetragonal to cubic zirconia and its consequent effect on the crystallite size and % crystallinity of the synthesized ZrO(2) was studied and interpreted. It was observed that the ultrasound assisted technique helped to hasten to the phase transformation and also at some point resulted in phase stabilization of the synthesized zirconia. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Yttria-Ceria stabilized tetragonal zirconia polycrystals: Sintering, grain growth and grain boundary segregation

    NARCIS (Netherlands)

    Boutz, M.M.R.; Boutz, M.M.R.; Winnubst, Aloysius J.A.; Burggraaf, Anthonie; Burggraaf, A.J.

    1994-01-01

    An analysis is presented of grain growth and densification of yttria-ceria stabilized tetragonal zirconia polycrystals (Y, Ce-TZPs) using both isothermal and non-isothermal techniques. The characteristics of Y, Ce-TZPs are compared to those of Y-TZP and Ce-TZP and the effect of increasing ceria

  5. Reaction of yttria-stabilized zirconia with zirconium, silicon and Zircaloy-4 at high temperature: a compatibility study for cermet fuels

    International Nuclear Information System (INIS)

    Arima, T.; Tateyama, T.; Idemitsu, K.; Inagaki, Y.

    2003-01-01

    Compatibility studies for cermet (ceramic and metal) fuels have been completed for a temperature range of 1073-1423 K. A reaction between yttria-stabilized zirconia (YSZ), as a simulated fuel, and Zr, as a candidate for a metallic matrix, has been observed at temperatures ≥1273 K, which means the formation of a metallic reaction layer at the interface between YSZ and Zr and the occurrence of metallic phases inside the YSZ. Similar results were observed for the YSZ-Zry4 (cladding) system. On the other hand, the degree of reaction was relatively large for the YSZ-Si (metallic matrix) system, and Si diffused into the YSZ. However, the maximum fuel center-line temperature can be predicted to be less than ∼1273 K for cermet fuels. Therefore, compatibility between the ceramic fuel and the metallic matrix should be good under normal reactor operational conditions. Furthermore, since the temperature of the fuel-cladding gap is lower, the cermet fuel and the cladding material are compatible

  6. The influence of adding modified zirconium oxide-titanium dioxide nano-particles on mechanical properties of orthodontic adhesive: an in vitro study

    OpenAIRE

    Felemban, Nayef H.; Ebrahim, Mohamed I.

    2017-01-01

    Background The purpose of this in-vitro study was to examine the effect of incorporating different concentrations of Zirconium oxide-Titanium dioxide (ZrO2-TiO2) nanoparticles, which can have antibacterial properties, on the mechanical properties of an orthodontic adhesive. Methods ZrO2-TiO2 (Zirconium oxide, HWNANO, Hongwu International Group Ltd, China) -Titanium dioxide, Nanoshell, USA) nanopowder were incorporated into orthodontic adhesive (Transbond XT, 3?M Unitek, Monrovia, USA) with di...

  7. Zirconium phosphate waste forms for low-temperature stabilization of cesium-137-containing waste streams

    International Nuclear Information System (INIS)

    Singh, D.; Wagh, A.S.; Tlustochowicz.

    1996-04-01

    Novel chemically bonded phosphate ceramics are being developed and fabricated for low-temperature stabilization and solidification of waste streams that are not amenable to conventional high-temperature stabilization processes because volatiles are present in the wastes. A composite of zirconium-magnesium phosphate has been developed and shown to stabilize ash waste contaminated with a radioactive surrogate of 137 Cs. Excellent retainment of cesium in the phosphate matrix system was observed in Toxicity Characteristic Leaching Procedure tests. This was attributed to the capture of cesium in the layered zirconium phosphate structure by intercalation ion-exchange reaction. But because zirconium phosphate has low strength, a novel zirconium/magnesium phosphate composite waste form system was developed. The performance of these final waste forms, as indicated by compression strength and durability in aqueous environments, satisfy the regulatory criteria. Test results indicate that zirconium-magnesium-phosphate-based final waste forms present a viable technology for treatment and solidification of cesium-contaminated wastes

  8. Sintering nanodisperse zirconium powders with various stabilizing additives

    Directory of Open Access Journals (Sweden)

    Antsiferov V.N.

    2011-01-01

    Full Text Available Effect of various stabilizing additives on sintering kinetics of nanodisperse powders was studied by thermomechanical analysis. Temperature ranges of the most intense shrinking, characteristic points of shrinking rate changes were established. Peaks characterizing the most intense shrinking of nanodisperse zirconium powder samples were shown to allow to arrange the stabilizing additives as follows: Y2O3→CeO2→TiO2.

  9. Mixed conductivity, structural and microstructural characterization of titania-doped yttria tetragonal zirconia polycrystalline/titania-doped yttria stabilized zirconia composite anode matrices

    International Nuclear Information System (INIS)

    Colomer, M.T.; Maczka, M.

    2011-01-01

    Taking advantage of the fact that TiO 2 additions to 8YSZ cause not only the formation of a titania-doped YSZ solid solution but also a titania-doped YTZP solid solution, composite materials based on both solutions were prepared by solid state reaction. In particular, additions of 15 mol% of TiO 2 give rise to composite materials constituted by 0.51 mol fraction titania-doped yttria tetragonal zirconia polycrystalline and 0.49 mol fraction titania-doped yttria stabilized zirconia (0.51TiYTZP/0.49TiYSZ). Furthermore, Y 2 (Ti 1-y Zr y ) 2 O 7 pyrochlore is present as an impurity phase with y close to 1, according to FT-Raman results. Lower and higher additions of titania than that of 15 mol%, i.e., x=0, 5, 10, 20, 25 and 30 mol% were considered to study the evolution of 8YSZ phase as a function of the TiO 2 content. Furthermore, zirconium titanate phase (ZrTiO 4 ) is detected when the titania content is equal or higher than 20 mol% and this phase admits Y 2 O 3 in solid solution according to FE-SEM-EDX. The 0.51TiYTZP/0.49TiYSZ duplex material was selected in this study to establish the mechanism of its electronic conduction under low oxygen partial pressures. In the pO 2 range from 0.21 to 10 -7.5 atm. the conductivity is predominantly ionic and constant over the range and its value is 0.01 S/cm. The ionic plus electronic conductivity is 0.02 S/cm at 1000 o C and 10 -12.3 atm. Furthermore, the onset of electronic conductivity under reducing conditions exhibits a -1/4 pO 2 dependence. Therefore, it is concluded that the n-type electronic conduction in the duplex material can be due to a small polaron-hopping between Ti 3+ and Ti 4+ . -- Graphical abstract: FE-SEM micrograph of a polished and thermal etched surface of a Ti-doped YTZP/Ti-doped YSZ composite material. Display Omitted Research highlights: → Ti-doped YTZP/Ti-doped YSZ composite materials are mixed conductors under low partial pressures. → From 5 mol% of TiO 2 , Y 2 (Ti 1-y ,Zr y ) 2 O 7 pyrochlore is

  10. Alumina-zirconium ceramics synthesis by selective laser sintering/melting

    International Nuclear Information System (INIS)

    Shishkovsky, I.; Yadroitsev, I.; Bertrand, Ph.; Smurov, I.

    2007-01-01

    In the present paper, porous refractory ceramics synthesized by selective laser sintering/melting from a mixture of zirconium dioxide, aluminum and/or alumina powders are subjected to optical metallography and X-ray analysis to study their microstructure and phase composition depending on the laser processing parameters. It is shown that high-speed laser sintering in air yields ceramics with dense structure and a uniform distribution of the stabilizing phases. The obtained ceramic-matrix composites may be used as thermal and electrical insulators and wear resistant coating in solid oxide fuel cells, crucibles, heating elements, medical tools. The possibility to reinforce refractory ceramics by laser synthesis is shown on the example of tetragonal dioxide of zirconium with hardened micro-inclusion of Al 2 O 3 . By applying finely dispersed Y 2 O 3 powder inclusions, the type of the ceramic structure is significantly changed

  11. Mass spectroscopy of recoiled ions, secondary ion mass spectroscopy, and Auger electron spectroscopy investigation of Y2O3-stabilized ZrO2(100) and (110)

    International Nuclear Information System (INIS)

    Herman, G.S.; Henderson, M.A.; Starkweather, K.A.; McDaniel, E.P.

    1999-01-01

    We have studied the (100) and (110) surfaces of yttria-stabilized cubic ZrO 2 using Auger electron spectroscopy, low energy electron diffraction (LEED), direct recoil spectroscopy, mass spectroscopy of recoiled ions (MSRI), and secondary ion mass spectroscopy (SIMS). The concentration of yttrium at the surface was weakly influenced by the surface structure under the experimental conditions investigated. Both MSRI and SIMS indicated a more enhanced yttrium signal than zirconium signal at the surface compared to the respective bulk concentrations. The surfaces were not very well ordered as indicated by LEED. The yttria-stabilized cubic ZrO 2 single crystal surfaces may not be a suitable model material for pure phase ZrO 2 surfaces due to significant yttria concentrations at the surface. copyright 1999 American Vacuum Society

  12. Oxygen diffusion in nanocrystalline yttria-stabilized zirconia: the effect of grain boundaries.

    Science.gov (United States)

    De Souza, Roger A; Pietrowski, Martha J; Anselmi-Tamburini, Umberto; Kim, Sangtae; Munir, Zuhair A; Martin, Manfred

    2008-04-21

    The transport of oxygen in dense samples of yttria-stabilized zirconia (YSZ), of average grain size d approximately 50 nm, has been studied by means of 18O/16O exchange annealing and secondary ion mass spectrometry (SIMS). Oxygen diffusion coefficients (D*) and oxygen surface exchange coefficients (k*) were measured for temperatures 673

  13. Ionic conductivity and thermal stability of magnetron-sputtered nanocrystalline yttria-stabilized zirconia

    DEFF Research Database (Denmark)

    Sillassen, M.; Eklund, P.; Sridharan, M.

    2009-01-01

    Thermally stable, stoichiometric, cubic yttria-stabilized zirconia (YSZ) thin-film electrolytes have been synthesized by reactive pulsed dc magnetron sputtering from a Zr–Y (80/20 at. %) alloy target. Films deposited at floating potential had a texture. Single-line profile analysis of the 111 x.......5% at bias voltages of −175 and −200 V with additional incorporation of argon. The films were thermally stable; very limited grain coarsening was observed up to an annealing temperature of 800 °C. Temperature-dependent impedance spectroscopy analysis of the YSZ films with Ag electrodes showed that the in......-plane ionic conductivity was within one order of magnitude higher in films deposited with substrate bias corresponding to a decrease in grain size compared to films deposited at floating potential. This suggests that there is a significant contribution to the ionic conductivity from grain boundaries...

  14. Low Friction in CuO-Doped Yttria-Stabilized Tetragonal Zirconia Ceramics: A Complementary Macro- and Nanotribology Study

    NARCIS (Netherlands)

    Tocha, E.; Pasaribu, H.R.; Schipper, Dirk J.; Schönherr, Holger; Vancso, Gyula J.

    2008-01-01

    The tribological behavior of CuO-doped yttria-stabilized tetragonal zirconia (3Y-TZP) ceramics in the absence of additional lubricants was characterized by macroscale pin-on-disk measurements and nanoscale atomic force microscopy (AFM) for a broad range of velocities. The previously observed low

  15. Rapid, cool sintering of wet processed yttria-stabilized zirconia ceramic electrolyte thin films

    OpenAIRE

    Park, Jun-Sik; Kim, Dug-Joong; Chung, Wan-Ho; Lim, Yonghyun; Kim, Hak-Sung; Kim, Young-Beom

    2017-01-01

    Here we report a photonic annealing process for yttria-stabilized zirconia films, which are one of the most well-known solid-state electrolytes for solid oxide fuel cells (SOFCs). Precursor films were coated using a wet-chemical method with a simple metal-organic precursor solution and directly annealed at standard pressure and temperature by two cycles of xenon flash lamp irradiation. The residual organics were almost completely decomposed in the first pre-annealing step, and the fluorite cr...

  16. Oblique ion texturing of yttria-stabilized zirconia: The {211} structure

    International Nuclear Information System (INIS)

    Berdahl, Paul; Reade, Ronald P.; Liu, Jinping; Russo, Richard E.; Fritzemeier, Les; Buczek, David; Schoop, Urs

    2002-01-01

    Amorphous (Zr,Y)O x films were synthesized by reactive magnetron sputtering and subsequently crystallized by oblique ion bombardment. Crystalline texture nucleated by the ion beam was replicated by solid-phase epitaxial growth throughout the formerly amorphous yttria-stabilized zirconia (YSZ) film. The resulting YSZ films have (211) orientation normal to the substrate with in-plane directions (111), parallel, and (110), transverse, to the azimuth of the ion beam. We hypothesize that the texture mechanism involves ion-induced film compression and shear. The results, taken together with prior work, show that oblique ion texturing of amorphous films is a general phenomenon that can be used to fabricate substrates with more than one type of crystallographic orientation

  17. Preparation and thermochemical stability of uranium-zirconium-carbonitrides

    International Nuclear Information System (INIS)

    Kouhsen, C.

    1975-08-01

    This investigation deals with the preparation and the thermochemical stability of uranium-zirconium-carbonitrides as well as with the mechanism of (U,Zr) (C,N)-preparation by carbothermic reduction of uranium-zirconium-oxide. Single-phase (U,Zr) (C,N)-solid solutions with U:Zr-propertions of 3:1, 1:1, and 1:3 were prepared from oxide powder. The thermochemical stability of the (U,Zr) (C,N)-solid solutions against carbon was measured for varying Zr- and N-contents and for several temperatures; the results indicate an increase of the uranium carbide stability potential by the formation of (U,Zr) (C,N)-solid solutions. The thermodynamic properties ΔG 0 , ΔH 0 , and ΔS 0 were calculated and the correlation between the M(C,N)-lattice constant and the N-content was evaluated. Through an intensive investigation of the reaction mechanism, several different reaction paths were found; for each of them the characteristical diffusion of matter was explained by means of the microsections. It was shown that the Zr-concentration of the oxide reactant and the heating rate during the carbothermic reduction influence the species of the reaction product, especially the homogeneity of the (U,Zr) (C,N)-solid solution. (orig.) [de

  18. Positron annihilation study of yttria-stabilized zirconia nanopowders containing Cr2O3 additive

    International Nuclear Information System (INIS)

    Prochazka, I; Cizek, J; Melikhova, O; Kuriplach, J; Konstantinova, T E; Danilenko, I A

    2011-01-01

    Yttria-stabilized zirconia compacted nanopowders, doped with trivalent chromium oxide, were studied by means of high-resolution positron lifetime and coincidence Doppler broadening techniques. The observed data suggest that positrons annihilate mainly in vacancylike defects at grain boundaries or in larger open volumes most likely located at triple points. The results also show that an addition of Cr 2 O 3 leads to a decrease in grain size.

  19. Tetragonal BiFeO3 on yttria-stabilized zirconia

    International Nuclear Information System (INIS)

    Liu, Heng-Jui; Du, Yu-Hao; Gao, Peng; Ikuhara, Yuichi; Huang, Yen-Chin; Chen, Yi-Chun; Chen, Hsiao-Wen; Liu, Hsiang-Lin; He, Qing; Chu, Ying-Hao

    2015-01-01

    High structural susceptibility of multiferroic BiFeO 3 (BFO) makes it a potential replacement of current Pb-based piezoelectrics. In this study, a tetragonal phase is identified based on a combination of x-ray diffraction, scanning transmission electronic microscopy, x-ray absorption spectroscopy, and Raman spectroscopy when BFO is grown on yttria-stabilized zirconia (YSZ) substrates. To distinguish the discrepancy between this tetragonal phase and common cases of monoclinic BFO, piezoelectric force microscopy images and optical property are also performed. It shows a lower electrostatic energy of ferroelectric domains and a large reduction of band gap for BFO grown on YSZ substrate comparing to the well-known one grown on LaAlO 3 substrate. Our findings in this work can provide more insights to understand the structural diversity of multiferroic BFO system for further applications

  20. Using Dark Field X-Ray Microscopy To Study In-Operando Yttria Stabilized Zirconia Electrolyte Supported Solid Oxide Cell

    DEFF Research Database (Denmark)

    Sierra, J. X.; Poulsen, H. F.; Jørgensen, P. S.

    Dark Field X-Ray Microscopy is a promising technique to study the structure of materials in nanometer length scale. In combination with x-ray diffraction technique, the microstructure evolution of Yttria Stabilized Zirconia electrolyte based solid oxide cell was studied running at extreme operating...

  1. Stability of sorbents based on hydrated TiO2 with different content of ZrO2

    International Nuclear Information System (INIS)

    Malykh, T.G.; Sharygin, L.M.

    1983-01-01

    The effect of ZrO 2 content in hydrated titanium dioxide on i s hydrothermat stabitity in the 120-350 deg C range, is investigated. It is shown that the specific surface of hydrated titanium dioxide in the process of hydrothermal treatment at different temperatures changes within a number of stages and depends on the zirconium dioxide contents in it. Sorbents are stable under hydrothermal conditions at temperatures not exceeding 300 deg C. The stabilizing effect of zirconiUm dioxide on the properties of hydrated titanium dioxide is most pronounced at 350 deg C

  2. Obtention of zirconia films stabilized with Yttria via pyrolysis spray: study of the solvent influence; Obtencao de filmes de zirconia estabilizada com itria via spray pirolise: estudo da influencia do solvente

    Energy Technology Data Exchange (ETDEWEB)

    Halmenschlager, Cibele Melo; Vieira, Ramaugusto da Porciuncula; Takimi, Antonio Shigueaki; Bergmann, Carlos Perez; Silva, Aline Lima da; Malfatti, Celia de Fraga [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia de Minas, Metalurgica e de Materiais (PPGEM). Lab. de Materiais Ceramicos (LACER)]. E-mail: cibelemh@yahoo.com.br

    2008-07-01

    Yttria-stabilized-zirconia (YSZ) has been object of many studies, due to its great chemical stability and excellent ionic conduction in high temperature. This material has been studies with an intention of to be used with electrolyte of oxide solid fuel cells, which work in high temperature. The aim of the present work was to evaluate the influence of the solvent on the elaboration of crystalline films of YSZ via spray pyrolysis. The film was prepared by spray pyrolysis with zirconium acetylacetonate (Zr(C{sub 6}H{sub 7}O{sub 2}){sub 4}) and yttrium chloride (YCl{sub 3}.6H{sub 2}O), dissolved in different solvents: ethanol (C{sub 2}H{sub 6}O), ethanol (C{sub 2}H{sub 6}O) + propyleneglycol (C{sub 3}H{sub 8}O{sub 2}) with volume ratio (1:1) and ethanol (C{sub 2}H{sub 6}O) + diethylene glycol butyl ether (C{sub 8}H{sub 18}O{sub 3}) with volume ratio of 1:1. A disk of steel 316L was used as substrate. The amorphous film was deposited in the substrate heated at 280 deg C {+-} 50 deg C. After deposition from thermal treatment at 700 deg C the amorphous film was changed into Yttria-stabilized-zirconia film. The thermal behavior of the films has been studied by both (DTA/TGA) thermogravimetric and mass spectroscopy analyses. The morphology and crystalline phase of the films was investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The YSZ film obtained after heat treatment was dense and crystalline, however, the analyses indicate a significant influence of the solvent and of the substrate temperature during the deposition process on the film morphology.(author)

  3. EPR study of electron traps in x-ray-irradiated yttria-stabilized zirconia

    International Nuclear Information System (INIS)

    Azzoni, C.B.; Paleari, A.

    1989-01-01

    Single crystals of yttria-stabilized zirconia (12 mol % of Y 2 O 3 ) have been x-ray irradiated at room temperature. The electron paramagnetic resonance spectrum of the filled electron traps is analyzed in terms of a single oxygen vacancy type of defect with its symmetry axis along the left-angle 111 right-angle direction. The angular dependence of the linewidth and the asymmetry of the line shape are attributed to the disordered rearrangements of the anion sublattice surrounding the oxygen vacancy. This affects the local crystal fields and the directions of the symmetry axis of the defects

  4. EPR study of electron traps in x-ray-irradiated yttria-stabilized zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Azzoni, C.B.; Paleari, A. (Dipartimento di Fisica, Alessandro Volta dell' Universita di Pavia, via Bassi 6, 27100 Pavia, Italy (IT))

    1989-10-01

    Single crystals of yttria-stabilized zirconia (12 mol % of Y{sub 2}O{sub 3}) have been x-ray irradiated at room temperature. The electron paramagnetic resonance spectrum of the filled electron traps is analyzed in terms of a single oxygen vacancy type of defect with its symmetry axis along the {l angle}111{r angle} direction. The angular dependence of the linewidth and the asymmetry of the line shape are attributed to the disordered rearrangements of the anion sublattice surrounding the oxygen vacancy. This affects the local crystal fields and the directions of the symmetry axis of the defects.

  5. Kinetic Monte Carlo Simulation of Oxygen and Cation Diffusion in Yttria-Stabilized Zirconia

    Science.gov (United States)

    Good, Brian

    2011-01-01

    Yttria-stabilized zirconia (YSZ) is of interest to the aerospace community, notably for its application as a thermal barrier coating for turbine engine components. In such an application, diffusion of both oxygen ions and cations is of concern. Oxygen diffusion can lead to deterioration of a coated part, and often necessitates an environmental barrier coating. Cation diffusion in YSZ is much slower than oxygen diffusion. However, such diffusion is a mechanism by which creep takes place, potentially affecting the mechanical integrity and phase stability of the coating. In other applications, the high oxygen diffusivity of YSZ is useful, and makes the material of interest for use as a solid-state electrolyte in fuel cells. The kinetic Monte Carlo (kMC) method offers a number of advantages compared with the more widely known molecular dynamics simulation method. In particular, kMC is much more efficient for the study of processes, such as diffusion, that involve infrequent events. We describe the results of kinetic Monte Carlo computer simulations of oxygen and cation diffusion in YSZ. Using diffusive energy barriers from ab initio calculations and from the literature, we present results on the temperature dependence of oxygen and cation diffusivity, and on the dependence of the diffusivities on yttria concentration and oxygen sublattice vacancy concentration. We also present results of the effect on diffusivity of oxygen vacancies in the vicinity of the barrier cations that determine the oxygen diffusion energy barriers.

  6. A Zirconium Dioxide Ammonia Microsensor Integrated with a Readout Circuit Manufactured Using the 0.18 μm CMOS Process

    Directory of Open Access Journals (Sweden)

    Ming-Zhi Yang

    2013-03-01

    Full Text Available The study presents an ammonia microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS process. The integrated sensor chip consists of a heater, an ammonia sensor and a readout circuit. The ammonia sensor is constructed by a sensitive film and the interdigitated electrodes. The sensitive film is zirconium dioxide that is coated on the interdigitated electrodes. The heater is used to provide a working temperature to the sensitive film. A post-process is employed to remove the sacrificial layer and to coat zirconium dioxide on the sensor. When the sensitive film adsorbs or desorbs ammonia gas, the sensor produces a change in resistance. The readout circuit converts the resistance variation of the sensor into the output voltage. The experiments show that the integrated ammonia sensor has a sensitivity of 4.1 mV/ppm.

  7. Joining of yttria-tetragonal zirconia polycrystal with an aluminum-zirconium alloy

    International Nuclear Information System (INIS)

    Rathner, R.C.; Green, D.J.

    1990-01-01

    Specimens of yttria-tetragonal zirconia polycrystal (Y-TZP) have been joined with an Al-5.8 wt% Zr alloy at temperatures of 900 degrees C and above. The braze alloy contained large needlelike precipitates of the intermetallic phase Al 3 Sr. It is shown that these large precipitates can aid in strengthening of the joint, especially if they are close to the interface. With decreasing layer thickness, the strengths increased with values as high as 420 MPa

  8. Size and temperature dependent stability and phase transformation in single-crystal zirconium nanowire

    International Nuclear Information System (INIS)

    Sutrakar, Vijay Kumar; Roy Mahapatra, D.

    2011-01-01

    A novel size dependent FCC (face-centered-cubic) → HCP (hexagonally-closed-pack) phase transformation and stability of an initial FCC zirconium nanowire are studied. FCC zirconium nanowires with cross-sectional dimensions 20 Å, in which surface stresses are not enough to drive the phase transformation, show meta-stability. In such a case, an external kinetic energy in the form of thermal heating is required to overcome the energy barrier and achieve FCC → HCP phase transformation. The FCC-HCP transition pathway is also studied using Nudged Elastic Band (NEB) method, to further confirm the size dependent stability/metastability of Zr nanowires. We also show size dependent critical temperature, which is required for complete phase transformation of a metastable-FCC nanowire.

  9. Carbon nanotube growth on nanozirconia under strong cathodic polarization in steam and carbon dioxide

    DEFF Research Database (Denmark)

    Tao, Youkun; Ebbesen, Sune Dalgaard; Zhang, Wei

    2014-01-01

    nanozirconia acting as a catalyst for the growth of carbon nanotubes (CNTs) during electrochemical conversion of carbon dioxide and water in a nickel-yttria- stabilized zirconia cermet under strong cathodic polarization. An electrocatalytic mechanism is proposed for the growth of the CNTs. ${{{\\rm {\\rm V......Growth of carbon nanotubes (CNTs) catalyzed by zirconia nanoparticles was observed in the Ni-yttria doped zirconia (YSZ) composite cathode of a solid oxide electrolysis cell (SOEC) at approximately 875 °C during co-electrolysis of CO2 and H2O to produce CO and H 2. CNT was observed to grow under...

  10. Yttria-stabilized zirconia as membrane material for electrolytic deoxidation of CaO-CaCl{sub 2} melts

    Energy Technology Data Exchange (ETDEWEB)

    Martin, A.; Poignet, J. C.; Fouletier, J. [Univ Grenoble, LEPMI, CNRS, INPG, UJF, F-38402 St Martin Dheres (France); Allibert, M. [LPSC, F-38026 Grenoble 1 (France); Lambertin, D. [SPDE, CEA Marcoule, F-30207 Bagnols Sur Ceze (France); Bourges, G. [SRPU, CEA Valduc, F-21120 Is Sur Tille (France)

    2010-07-01

    This article is devoted to the study of the stability of an yttria-stabilized zirconia membrane used in the electrolysis of molten CaCl{sub 2}-CaO mixtures at 850 degrees C. Intentiostatic and potentiostatic electrolysis were carried for periods ranging from 10 to 20 h. Post-mortem composition profiles across the zirconia membrane were determined using Raman spectroscopy and microprobe analysis. The membrane degradation was analyzed in terms of synergetic parameters, i. e., chemical, electrochemical, and thermomechanical effects. (authors)

  11. Green strength of zirconium sponge and uranium dioxide powder compacts

    International Nuclear Information System (INIS)

    Balakrishna, Palanki; Murty, B. Narasimha; Sahoo, P.K.; Gopalakrishna, T.

    2008-01-01

    Zirconium metal sponge is compacted into rectangular or cylindrical shapes using hydraulic presses. These shapes are stacked and electron beam welded to form a long electrode suitable for vacuum arc melting and casting into solid ingots. The compact electrodes should be sufficiently strong to prevent breakage in handling as well as during vacuum arc melting. Usually, the welds are strong and the electrode strength is limited by the green strength of the compacts, which constitute the electrode. Green strength is also required in uranium dioxide (UO 2 ) powder compacts, to withstand stresses during de-tensioning after compaction as well as during ejection from the die and for subsequent handling by man and machine. The strengths of zirconium sponge and UO 2 powder compacts have been determined by bending and crushing respectively, and Weibul moduli evaluated. The green density of coarse sponge compact was found to be larger than that from finer sponge. The green density of compacts from lightly attrited UO 2 powder was higher than that from unattrited category, accompanied by an improvement in UO 2 green crushing strength. The factors governing green strength have been examined in the light of published literature and experimental evidence. The methodology and results provide a basis for quality control in metal sponge and ceramic powder compaction in the manufacture of nuclear fuel

  12. Influence of oxazolidines and zirconium oxalate crosslinkers on the hydrothermal, enzymatic, and thermo mechanical stability of type 1 collagen fiber

    International Nuclear Information System (INIS)

    Haroun, Mahdi A.; Khirstova, Palmina K.; Gasmelseed, Gurashi A.; Covington, Antony D.

    2009-01-01

    Stabilization of type I rat tail tendon (RTT) collagen by crosslink agent oxazolidine and zirconium oxalate was studied to understand the effect on the thermal, enzymatic and mechanical stability of collagen. The results show that both oxazolidine and zirconium oxalate imparts thermal stability to collagen, and oxazolidine exhibits a marked increase in the peak temperature and enthalpy changes when compared to both native and zirconium oxalate tanned RTT. There is a decrease in the peak temperature and the enthalpy changes of oxazolidine tanned RTT fibers after treatment with urea, suggesting the possibility of alterations in the secondary structure of collagen after tanning. Oxazolidine, which forms carbocationic intermediates species in solution, have better crosslinking with collagen as seen from viscometry studies and hence provides better enzymatic stability to collagen than zirconium, which largely forms monomeric species in solution. Zirconium does not seem to change the tensile strength of RTT fibers significantly in wet condition as well as oxazolidine

  13. Influence of oxazolidines and zirconium oxalate crosslinkers on the hydrothermal, enzymatic, and thermo mechanical stability of type 1 collagen fiber

    Energy Technology Data Exchange (ETDEWEB)

    Haroun, Mahdi A. [Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400 UPM, Serdang (Malaysia)], E-mail: Mahdiupm@hotmail.com; Khirstova, Palmina K. [People' s Hall 11113, P.O. Box 6272, Khartoum (Sudan); Gasmelseed, Gurashi A. [Juba University, Leather Dept. P.O. Box 12327 Khartoum (Sudan); Covington, Antony D. [Leather Centre, University College Northampton, Northampton (United Kingdom)

    2009-02-20

    Stabilization of type I rat tail tendon (RTT) collagen by crosslink agent oxazolidine and zirconium oxalate was studied to understand the effect on the thermal, enzymatic and mechanical stability of collagen. The results show that both oxazolidine and zirconium oxalate imparts thermal stability to collagen, and oxazolidine exhibits a marked increase in the peak temperature and enthalpy changes when compared to both native and zirconium oxalate tanned RTT. There is a decrease in the peak temperature and the enthalpy changes of oxazolidine tanned RTT fibers after treatment with urea, suggesting the possibility of alterations in the secondary structure of collagen after tanning. Oxazolidine, which forms carbocationic intermediates species in solution, have better crosslinking with collagen as seen from viscometry studies and hence provides better enzymatic stability to collagen than zirconium, which largely forms monomeric species in solution. Zirconium does not seem to change the tensile strength of RTT fibers significantly in wet condition as well as oxazolidine.

  14. Anisotropic ionic conductivity observed in superplastically deformed yttria-stabilized zirconia/alumina composite

    International Nuclear Information System (INIS)

    Drennan, J.; Swain, M.V.; Badwal, S.P.S.

    1989-01-01

    Ionic conductivity measurements on a yttria-stabilized tetragonal zirconia polycrystal/alumina composite subjected to superplastic deformation demonstrate anisotropic character. Parallel to the pressing direction, the grain-boundary resistance to oxygen ion mobility is 25% to 30% higher than that measured perpendicular to the pressing direction. The same directional dependency on the volume conductivity is observed but is less pronounced, showing approximately a 9% difference. Microstructural evidence reveals an agglomeration and elongation of alumina particles perpendicular to the pressing direction, and it is suggested that this phenomenon restricts the passage of ions parallel to the compression direction, giving rise to the anisotropic nature of the conductivity measurements

  15. Controlling Microstructure of Yttria-Stabilized Zirconia Prepared from Suspensions and Solutions by Plasma Spraying with High Feed Rates.

    Czech Academy of Sciences Publication Activity Database

    Mušálek, Radek; Medřický, Jan; Tesař, Tomáš; Kotlan, Jiří; Pala, Zdeněk; Lukáč, František; Illková, Ksenia; Hlína, Michal; Chráska, Tomáš; Sokołowski, P.; Curry, N.

    2017-01-01

    Roč. 26, č. 8 (2017), s. 1787-1803 ISSN 1059-9630 R&D Projects: GA ČR GA15-12145S Institutional support: RVO:61389021 Keywords : hybrid plasma torch * microstructure * solution * precursor spraying * suspension spraying * thermal barrier * coatings (TBCs) * water-stabilized plasma * yttria-stabilized zirconia (YSZ) Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 1.488, year: 2016 https://link.springer.com/ article /10.1007/s11666-017-0622-x

  16. Gel combustion synthesis of yttria stabilized zirconia

    International Nuclear Information System (INIS)

    Vijay, Soja K.; Chandramouli, V.; Anthonysamy, S.

    2013-01-01

    Nano - crystalline 8 mol% yttria stabilized zirconia (YSZ) powders were synthesized by gel combustion technique employing both microwave heating as well as conventional heating method. Three different fuels - citric acid, urea and glycine were used for the synthesis with fuel to oxidant ratio as 1:1. The effect of fuel on the crystal structure, particle size, specific surface area, morphology and sintering density was studied. X-ray powder diffraction (XRD), BET gas adsorption technique, dynamic light scattering, transmission and scanning electron microscopy (TEM and SEM) and micro-Raman spectroscopy were used to characterize the powders. The results obtained for powders obtained using both methods - microwave assisted and hotplate - were compared. The specific surface area of powders in all cases are comparable except in the case of urea as fuel where microwave assisted synthesis yielded powders with lower surface area. The particle size distribution of all samples obtained using microwave method was unimodal, whereas the particle size distribution of samples prepared using hot plate method using urea fuel showed bimodal distribution. The compacts obtained using powders with citric acid and glycine as fuel showed more than 94% theoretical density, whereas the samples obtained using urea showed density below 90% of theoretical density. (author)

  17. Tetragonal BiFeO{sub 3} on yttria-stabilized zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Heng-Jui [Department of Materials Science Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan (China); Du, Yu-Hao [Department of Materials Science Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Gao, Peng; Ikuhara, Yuichi [Institute of Engineering Innovation, The University of Tokyo, Tokyo 113-8656 (Japan); Huang, Yen-Chin; Chen, Yi-Chun [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China); Chen, Hsiao-Wen; Liu, Hsiang-Lin [Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan (China); He, Qing [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Chu, Ying-Hao, E-mail: yhc@nctu.edu.tw [Department of Materials Science Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China)

    2015-11-01

    High structural susceptibility of multiferroic BiFeO{sub 3} (BFO) makes it a potential replacement of current Pb-based piezoelectrics. In this study, a tetragonal phase is identified based on a combination of x-ray diffraction, scanning transmission electronic microscopy, x-ray absorption spectroscopy, and Raman spectroscopy when BFO is grown on yttria-stabilized zirconia (YSZ) substrates. To distinguish the discrepancy between this tetragonal phase and common cases of monoclinic BFO, piezoelectric force microscopy images and optical property are also performed. It shows a lower electrostatic energy of ferroelectric domains and a large reduction of band gap for BFO grown on YSZ substrate comparing to the well-known one grown on LaAlO{sub 3} substrate. Our findings in this work can provide more insights to understand the structural diversity of multiferroic BFO system for further applications.

  18. 5A Zirconium Dioxide Ammonia Microsensor Integrated with a Readout Circuit Manufactured Using the 0.18 μm CMOS Process

    Science.gov (United States)

    Lin, Guan-Ming; Dai, Ching-Liang; Yang, Ming-Zhi

    2013-01-01

    The study presents an ammonia microsensor integrated with a readout circuit on-a-chip fabricated using the commercial 0.18 μm complementary metal oxide semiconductor (CMOS) process. The integrated sensor chip consists of a heater, an ammonia sensor and a readout circuit. The ammonia sensor is constructed by a sensitive film and the interdigitated electrodes. The sensitive film is zirconium dioxide that is coated on the interdigitated electrodes. The heater is used to provide a working temperature to the sensitive film. A post-process is employed to remove the sacrificial layer and to coat zirconium dioxide on the sensor. When the sensitive film adsorbs or desorbs ammonia gas, the sensor produces a change in resistance. The readout circuit converts the resistance variation of the sensor into the output voltage. The experiments show that the integrated ammonia sensor has a sensitivity of 4.1 mV/ppm. PMID:23503294

  19. Investigations in the mechanism of carbothermal reduction of yttria stabilized zirconia for ultra-high temperature ceramics application and its influence on yttria contained in it

    Science.gov (United States)

    Sondhi, Anchal

    Zirconium carbide (ZrC) is a high modulus ceramic with an ultra-high melting temperature and, consequently, is capable of withstanding extreme environments. Carbon-carbon composites (CCCs) are important structural materials in current commercial and future hypersonic aircraft; however, these materials may be susceptible to degradation when exposed to elevated temperatures during extreme velocities. At speeds of exceeding Mach 5, intense heating of leading edges of the aircraft triggers rapid oxidation of carbon in CCCs resulting in degradation of the structure and probable failure. Environmental/thermal barrier coatings (EBC/TBC) are employed to protect airfoil structures from extreme conditions. Yttria stabilized zirconia (YSZ) is a well-known EBC/TBC material currently used to protect metallic turbine blades and other aerospace structures. In this work, 3 mol% YSZ has been studied as a potential EBC/TBC on CCCs. However, YSZ is an oxygen conductor and may not sufficiently slow the oxidation of the underlying CCC. Under appropriate conditions, ZrC can form at the interface between CCC and YSZ. Because ZrC is a poor oxygen ion conductor in addition to its stability at high temperatures, it can reduce the oxygen transport to the CCC and thus increase the service lifetime of the structure. This dissertation investigates the thermodynamics and kinetics of the YSZ/ZrC/CCC system and the resulting structural changes across multiple size scales. A series of experiments were conducted to understand the mechanisms and species involved in the carbothermal reduction of ZrO2 to form ZrC. 3 mol% YSZ and graphite powders were uniaxially pressed into pellets and reacted in a graphite (C) furnace. Rietveld x-ray diffraction phase quantification determined that greater fractions of ZrC were formed when carbon was the majority mobile species. These results were validated by modeling the process thermochemically and were confirmed with additional experiments. Measurements were

  20. Study on nano-structured hydroxyapatite/zirconia stabilized yttria on healing of articular cartilage defect in rabbit

    Directory of Open Access Journals (Sweden)

    Amir Sotoudeh

    2013-05-01

    Full Text Available PURPOSE: Articular Cartilage has limited potential for self-repair and tissue engineering approaches attempt to repair articular cartilage by scaffolds. We hypothesized that the combined hydroxyapatite and zirconia stabilized yttria would enhance the quality of cartilage healing. METHODS: In ten New Zealand white rabbits bilateral full-thickness osteochondral defect, 4 mm in diameter and 3 mm depth, was created on the articular cartilage of the patellar groove of the distal femur. In group I the scaffold was implanted into the right stifle and the same defect was created in the left stifle without any transplant (group II. Specimens were harvested at 12 weeks after implantation, examined histologically for morphologic features, and stained immunohistochemically for type-II collagen. RESULTS: In group I the defect was filled with a white translucent cartilage tissue In contrast, the defects in the group II remained almost empty. In the group I, the defects were mostly filled with hyaline-like cartilage evidenced but defects in group II were filled with fibrous tissue with surface irregularities. Positive immunohistochemical staining of type-II collagen was observed in group I and it was absent in the control group. CONCLUSION: The hydroxyapatite/yttria stabilized zirconia scaffold would be an effective scaffold for cartilage tissue engineering.

  1. Graphene nanosheet-induced toughening of yttria-stabilized zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jianan; Chen, Yao; Huang, Qiqi [Soochow University, School of Mechanical and Electric Engineering, Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou (China)

    2017-01-15

    Graphene nanosheet (GNS)-reinforced yttria-stabilized tetragonal zirconia polycrystals (TZP) were synthesized using spark plasma sintering (SPS), and the influences of the added GNSs on microstructure evolution and the microscopic mechanical properties of the sintered composites were investigated. Raman spectroscopy and microstructure observation corroborated that these added GNSs, which can survive the harsh SPS processing condition, homogeneously distribute in the matrix of all composites to hinder significantly the grain growth. In comparison with the monolithic TZP, the indentation fracture toughness of a GNS/TZP composite reaches maximum value and increases by up to ∝36% (from ∝4.1 to ∝5.6 MPa m{sup 0.5}) even at 0.5% weight fraction, GNS pullout, crack bridging, crack deflection, and crack branching are responsible for the increased fracture toughness. The computed energy dissipation by GNS pullout decreases with increasing the number of graphene layers due to weak bonding between them, and therefore, graphene agglomeration would impair toughening effect. Moreover, scratch studies suggest that GNS/TZP composites exhibit improved scratch resistance due to the fact that GNSs are promising reinforcing and lubricating nanofillers in ceramic composites. (orig.)

  2. Surface modification of yttria stabilized zirconia via polydopamine inspired coating for hydroxyapatite biomineralization

    Energy Technology Data Exchange (ETDEWEB)

    Zain, Norhidayu Muhamad [Medical Devices and Technology Group, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Hussain, Rafaqat [Ibnu Sina Institute for Fundamental Science Studies, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia); Kadir, Mohammed Rafiq Abdul, E-mail: rafiq@biomedical.utm.my [Medical Devices and Technology Group, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor (Malaysia)

    2014-12-15

    Highlights: • Synthesis of functionalized yttria stabilized zirconia using polydopamine. • Improved hydrophilicity of the grafted samples with low contact angle of 44.0 ± 2.3. • Apatite layer with Ca/P ratio of 1.78 formed on the surface of the grafted samples. • Atomic percentage of Ca 2p increased by 2-fold at coating temperature of 37 °C. - Abstract: Yttria stabilized zirconia (YSZ) has been widely used as biomedical implant due to its high strength and enhanced toughening characteristics. However, YSZ is a bioinert material which constrains the formation of chemical bonds with bone tissue following implantation. Inspired by the property of mussels, the surface of YSZ ceramics was functionalized by quinone-rich polydopamine to facilitate the biomineralization of hydroxyapatite. YSZ discs were first immersed in 2 mg/mL of stirred or unstirred dopamine solution at either 25 or 37 °C. The samples were then incubated in 1.5 simulated body fluid (SBF) for 7d. The effect of coating temperature for stirred and unstirred dopamine solutions during substrate grafting was investigated on the basis of chemical compositions, wettability and biomineralization of hydroxyapatite on the YSZ functionalized surface. The results revealed that the YSZ substrate grafted at 37 °C in stirred solution of dopamine possessed significantly improved hydrophilicity (water contact angle of 44.0 ± 2.3) and apatite-mineralization ability (apatite ratio of 1.78). In summary, the coating temperature and stirring condition during grafting procedure affected the chemical compositions of the films and thus influenced the formation of apatite layer on the substrate during the biomineralization process.

  3. Surface modification of yttria stabilized zirconia via polydopamine inspired coating for hydroxyapatite biomineralization

    International Nuclear Information System (INIS)

    Zain, Norhidayu Muhamad; Hussain, Rafaqat; Kadir, Mohammed Rafiq Abdul

    2014-01-01

    Highlights: • Synthesis of functionalized yttria stabilized zirconia using polydopamine. • Improved hydrophilicity of the grafted samples with low contact angle of 44.0 ± 2.3. • Apatite layer with Ca/P ratio of 1.78 formed on the surface of the grafted samples. • Atomic percentage of Ca 2p increased by 2-fold at coating temperature of 37 °C. - Abstract: Yttria stabilized zirconia (YSZ) has been widely used as biomedical implant due to its high strength and enhanced toughening characteristics. However, YSZ is a bioinert material which constrains the formation of chemical bonds with bone tissue following implantation. Inspired by the property of mussels, the surface of YSZ ceramics was functionalized by quinone-rich polydopamine to facilitate the biomineralization of hydroxyapatite. YSZ discs were first immersed in 2 mg/mL of stirred or unstirred dopamine solution at either 25 or 37 °C. The samples were then incubated in 1.5 simulated body fluid (SBF) for 7d. The effect of coating temperature for stirred and unstirred dopamine solutions during substrate grafting was investigated on the basis of chemical compositions, wettability and biomineralization of hydroxyapatite on the YSZ functionalized surface. The results revealed that the YSZ substrate grafted at 37 °C in stirred solution of dopamine possessed significantly improved hydrophilicity (water contact angle of 44.0 ± 2.3) and apatite-mineralization ability (apatite ratio of 1.78). In summary, the coating temperature and stirring condition during grafting procedure affected the chemical compositions of the films and thus influenced the formation of apatite layer on the substrate during the biomineralization process

  4. Dissolution of anodic zirconium dioxide films in aqueous media

    International Nuclear Information System (INIS)

    Merati, A.; Cox, B.

    1999-01-01

    Zirconium with a low thermal neutron cross section, good corrosion resistance in high-temperature water, and high thermal conductivity is an ideal material for nuclear reactors. Its good resistance to water and steam at reactor temperatures is of the greatest interest to nuclear fuel designers. Dissolution of zirconium dioxide (ZrO 2 ) films in aggressive media was investigated. The extent of uniform and localized dissolution was measured by ultraviolet-visible (UV-VIS) spectrometry and an alternating current (AC) impedance test, respectively. Scanning electron microscopy (SEM) showed the extent of dissolution of ZrO 2 was a function only of the fluoride ion content and pH of the medium. Cathodic polarization was used to identify the preferred sites for localized dissolution of the oxide film. In 0.1 M potassium bifluoride (KHF 2 ), both uniform thinning and local breakdown of the oxide were observed. Within the limits of the investigating techniques, no evidence of dissolution was observed in the other solutions tested: 0.5 M sulfuric acid (H 2 SO 4 ). 1.0 M nitric acid (HNO 3 ), 5 M hydrochloric acid (HCl), or 0.1 M potassium fluoride (KF). In areas around iron-containing particles, fine cracks in the anodic oxide at prior metal grain boundaries and arrays of cracks in the oxide associated with residual scratches from the initial specimen preparation were the preferred spots for localized dissolution of the oxide film. Iron precipitates immediately below the surface of the oxide layer increased the local electrical conductivity. Enrichment of iron in the oxide matrix around these precipitates during the anodization process appeared to cause prospective spots, acting as anodic sites for pH formation

  5. Ion scattering spectroscopy studies of zirconium dioxide thin films prepared in situ

    International Nuclear Information System (INIS)

    Martin, P.J.; Netterfield, R.P.

    1987-01-01

    Low energy Ion Scattering Spectroscopy has been used to investigate, in situ, thin films of zirconium dioxide deposited by evaporation and ion-assisted deposition. It is shown that when a film is deposited to an average thickness of 0.3 nm +- 0.03, as measured by in situ ellipsometry, complete coverage of the substrate occurs. 'Ion-assisted films have detectably higher Zr surface concentrations and reduced low-energy sputter peaks. Inelastic tailing effects in the Zr scattering peak for 2 keV 4 He + are found to come from particles scattered from approximately the first 7 nm of the oxide surface. The influence of primary ion energy on the Zr/O ratio is also examined. (author)

  6. Determination of microquantities of zirconium and thorium in uranium dioxide

    International Nuclear Information System (INIS)

    Weber de D'Alessio, Ana; Zucal, Raquel.

    1975-07-01

    A method for the determination of 10 to 50 ppm of zirconium and thorium in uranium IV oxide of nuclear purity is established. Zirconium and thorium are retained in a strong cation-exchange resin Dowex 50 WX8 in 1 M HCl. Zirconium is eluted with 0,5% oxalic acid solution and thorium with 4% ammonium oxalate. The colorimetric determination of zirconium with xilenol orange is done in perchloric acid after destructtion of oxalic acid and thorium is determined with arsenazo III in 5 M HCl. 10 μg of each element were determined with a standard deviation of 2,1% for thorium and 3,4% for zirconium. (author) [es

  7. Electrochemical behaviour of ceramic yttria stabilized zirconia on carbon steel synthesized via sol-gel process

    International Nuclear Information System (INIS)

    Crespo, M.A. Dominguez; Murillo, A. Garcia; Torres-Huerta, A.M.; Yanez-Zamora, C.; Carrillo-Romo, F. de J

    2009-01-01

    Chromate conversion coatings have been widely applied for the corrosion of different metallic substrates. However, the waste containing Cr 6+ has many limitations due to the environmental consideration and health hazards. An interesting alternative seems to be the deposition on metallic surface of thin layers of yttria or zirconia or both by the sol-gel process. In this study, Ytttria and Yttria stabilized zirconia (YSZ, 8% Y 2 O 3 ) thin films were used for coating commercial carbon steel substrates by sol-gel method and the dip-coating process. The evolution of organic compounds up to crystallization process as a function of heat treatments was study by FT-IR spectroscopy. The structure and morphology of the coatings were analysed using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The anticorrosion performance of the coatings has been evaluated by using electrochemical techniques in an aggressive media (3.5 wt.% NaCl). The corrosion behaviour of sol-gel method was compared with traditional chromate conversion coatings. Differences in the electrochemical behaviour of YSZ coatings are related to the development of microcracks during the sintering process and to the presence of organic compounds during growth film. Electrochemical results showed that sol-gel YSZ and Y 2 O 3 coatings can act as protective barriers against wet corrosion; however yttria films displayed low adhesion to substrate. The corrosion parameters provide an explanation of the role of each film and show a considerable increase in the corrosion resistance for coated samples in comparison to the bare steel samples.

  8. Electrochemical behaviour of ceramic yttria stabilized zirconia on carbon steel synthesized via sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Crespo, M.A. Dominguez, E-mail: mdominguezc@ipn.m [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Altamira (CICATA-IPN) km 14.5 Carr. Tampico-Puerto Industrial, C.P. 89600, Altamira, Tamaulipas (Mexico); Murillo, A. Garcia; Torres-Huerta, A.M. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Altamira (CICATA-IPN) km 14.5 Carr. Tampico-Puerto Industrial, C.P. 89600, Altamira, Tamaulipas (Mexico); Yanez-Zamora, C. [Estudiante del postgrado en Tecnologia Avanzada del CICATA-IPN, Unidad Altamira, km 14.5, Carr. Tampico-Puerto Industrial. C.P. 89600, Altamira, Tamaulipas (Mexico); Carrillo-Romo, F. de J [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Altamira (CICATA-IPN) km 14.5 Carr. Tampico-Puerto Industrial, C.P. 89600, Altamira, Tamaulipas (Mexico)

    2009-08-26

    Chromate conversion coatings have been widely applied for the corrosion of different metallic substrates. However, the waste containing Cr{sup 6+} has many limitations due to the environmental consideration and health hazards. An interesting alternative seems to be the deposition on metallic surface of thin layers of yttria or zirconia or both by the sol-gel process. In this study, Ytttria and Yttria stabilized zirconia (YSZ, 8% Y{sub 2}O{sub 3}) thin films were used for coating commercial carbon steel substrates by sol-gel method and the dip-coating process. The evolution of organic compounds up to crystallization process as a function of heat treatments was study by FT-IR spectroscopy. The structure and morphology of the coatings were analysed using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The anticorrosion performance of the coatings has been evaluated by using electrochemical techniques in an aggressive media (3.5 wt.% NaCl). The corrosion behaviour of sol-gel method was compared with traditional chromate conversion coatings. Differences in the electrochemical behaviour of YSZ coatings are related to the development of microcracks during the sintering process and to the presence of organic compounds during growth film. Electrochemical results showed that sol-gel YSZ and Y{sub 2}O{sub 3} coatings can act as protective barriers against wet corrosion; however yttria films displayed low adhesion to substrate. The corrosion parameters provide an explanation of the role of each film and show a considerable increase in the corrosion resistance for coated samples in comparison to the bare steel samples.

  9. Microscopic observation of laser glazed yttria-stabilized zirconia coatings

    Science.gov (United States)

    Morks, M. F.; Berndt, C. C.; Durandet, Y.; Brandt, M.; Wang, J.

    2010-08-01

    Thermal barrier coatings (TBCs) are frequently used as insulation system for hot components in gas-turbine, combustors and power plant industries. The corrosive gases which come from combustion of low grade fuels can penetrate into the TBCs and reach the metallic components and bond coat and cause hot corrosion and erosion damage. Glazing the top coat by laser beam is advanced approach to seal TBCs surface. The laser beam has the advantage of forming a dense thin layer composed of micrograins. Plasma-sprayed yttria-stabilized zirconia (YSZ) coating was glazed with Nd-YAG laser at different operating conditions. The surface morphologies, before and after laser treatment, were investigated by scanning electron microscopy. Laser beam assisted the densification of the surface by remelting a thin layer of the exposed surface. The laser glazing converted the rough surface of TBCs into smooth micron-size grains with size of 2-9 μm and narrow grain boundaries. The glazed surfaces showed higher Vickers hardness compared to as-sprayed coatings. The results revealed that the hardness increases as the grain size decreases.

  10. Experimental studies of relevance on zirconium nitrate raffinate sludge for its disposal as well as zirconium recovery

    International Nuclear Information System (INIS)

    Brahmananda Reddy, G.; Narasimha Murty, B.; Ravindra, H.R.

    2013-01-01

    One of the many routes of production of nuclear grade zirconium dioxide involve separation of zirconium and hafnium by solvent extraction of zirconium nitrate using tri-n-butyl phosphate followed by precipitation of zirconium with ammonia and finally calcination of the so obtained hydrated zirconia at elevated temperature. The zirconium feed solution as is generated from digestion of zirconium washed dried frit (produced by the caustic fusion of zircon sand which is one of the beach sand heavy minerals) in nitric acid contain considerable amount of sludge material and after solvent extraction this whole sludge material rests with raffinate. This sludge material has a scope to contain considerable amounts of zirconium along with other metal ions such as hafnium, aluminium, iron, etc. besides nitric acid and it constitutes one of the important solid wastes that needs to be disposed suitably. One of the disposal means of this sludge material is to use it as a land fill for which two important criteria are to be viz the pH of 10% solid waste solution should be near to neutral pH and the loss on ignition at 550℃ on dry basis of the sludge to be below 20%. In order to study the implications of presence of varying amounts of zirconium nitrate in the sludge on the pH of 10% solution of the sludge various synthetic zirconium nitrate solid waste were prepared using the sludge material generated at the laboratory during the analysis of zirconium washed dried frit. Presence of zirconium in the sludge is expected to decrease the overall pH of the 10% solution of the sludge because zirconium is prone to hydrolyze especially locally when zirconium ion comes into contact with water according to the chemical equation Zr 4+ H 2 O → ZrO 2+ + 2H + . From this equation, it is clear that for every one mole of zirconium ions two moles of hydrogen ions are produced. This is verified experimentally using the synthetically prepared sludge materials with varying amounts of zirconium

  11. Structural evolution of plasma-sprayed nanoscale 3 mol% and 5 mol% yttria-stabilized zirconia coatings during sintering

    Science.gov (United States)

    Zhao, Yan; Gao, Yang

    2017-12-01

    The microstructure of plasma-sprayed nanostructured yttria-stabilized zirconia (YSZ) coatings may change during high-temperature exposure, which would influence the coating performance and service lifetime. In this study, the phase structure and the microstructural evolution of 3YSZ (zirconia-3 mol% yttria) and 5YSZ (zirconia-5 mol% yttria) nanostructured coatings were investigated by means of sintering at 1400 °C for 50-100 h. The microhardness, elastic moduli, and thermal shock cycles of the 3YSZ and 5YSZ nanostructured coatings were also investigated. The results showed that the redistribution of yttrium ions at 1400 °C caused the continuous increase of monoclinic-phase zirconia, but no obvious inter-splat cracking formed at the cross-sections, even after 100 h. Large voids appeared around the nanoporous zone because of the sintering of nanoscale granules upon high-temperature exposure. The microhardness and elastic moduli of the nanostructured coatings first increased and then decreased with increasing sintering times. The growth rate of the nanograins in the 3YSZ coating was lower than that in 5YSZ, which slowed the changes in 3YSZ coating porosity during sintering. Although the 3YSZ coating was prone to monoclinic phase transition, the experimental results showed that the thermal shock resistance of the 3YSZ coating was better than that of the 5YSZ coating.

  12. Effect of boron oxide on the cubic-to-monoclinic phase transition in yttria-stabilized zirconia

    International Nuclear Information System (INIS)

    Florio, D.Z. de; Muccillo, R.

    2004-01-01

    Specimens of yttria fully stabilized zirconia with different amounts of boron oxide have been studied by X-ray diffraction at room temperature and at higher temperatures up to 1250 deg. C. A boron oxide-assisted cubic-to-monoclinic phase transformation was determined in the temperature range 800-1250 deg. C. In situ high temperature X-ray diffraction experiments gave evidences of the dependence of the phase transformation on the heating rate. The possibility of tuning the cubic-monoclinic phase ratio by suitable addition of boron oxide before pressing and sintering is proposed

  13. Rheological and technological properties of zirconium suspensions stabilized with various amounts of calcium oxide

    International Nuclear Information System (INIS)

    Shulik, I.G.; Usatikov, I.F.; Alekseenko, A.S.

    1987-01-01

    A complex research of properties of zirconium dioxide-based suspensions with various amounts of calcium oxide up to calcium zirconate is carried out. Aqueous suspensions are used when preparing a complex form of ZrO 2 -based ceramics by the method of slip casting. Phase composition effect on the nature of rheologic curves ie found. The role of organic alcohol additions in the improvement of suspension flowability and reduction of casting porosity is noted

  14. Composite cathode based on yttria stabilized bismuth oxide for low-temperature solid oxide fuel cells

    International Nuclear Information System (INIS)

    Xia Changrong; Zhang Yuelan; Liu Meilin

    2003-01-01

    Composites consisting of silver and yttria stabilized bismuth oxide (YSB) have been investigated as cathodes for low-temperature honeycomb solid oxide fuel cells with stabilized zirconia as electrolytes. At 600 deg. C, the interfacial polarization resistances of a porous YSB-Ag cathode is about 0.3 Ω cm 2 , more than one order of magnitude smaller than those of other reported cathodes on stabilized zirconia. For example, the interfacial resistances of a traditional YSZ-lanthanum maganites composite cathode is about 11.4 Ω cm 2 at 600 deg. C. Impedance analysis indicated that the performance of an YSB-Ag composite cathode fired at 850 deg. C for 2 h is severely limited by gas transport due to insufficient porosity. The high performance of the YSB-Ag cathodes is very encouraging for developing honeycomb fuel cells to be operated at temperatures below 600 deg. C

  15. Effect of nanoparticles generation method on ionic conductivity in Yttria stabilized zirconia

    International Nuclear Information System (INIS)

    Khare, J.; Joshi, M.P.; Kukreja, L.M.; Satapathy, S.

    2013-01-01

    Yttria stabilized zirconia nanoparticles were generated in pulsed and CW mode of laser operation using CO 2 laser based laser vaporization method. Impedance spectroscopic measurements were carried out in frequency range of 100 Hz - 1 MHz at various temperatures ranging from room temperature to 500 C. The deconvolution of grain and grain boundary contribution were obtained from impedance spectra by an equivalent circuit analysis. Grain and grain boundary ionic conductivity of pellet made from nanoparticles generated in pulsed mode was two orders of magnitude large in comparison to pellets made from nanoparticles generated in CW mode of laser operation. The difference in ionic conductivities of pellets made from nanoparticles generated in pulsed mode and CW mode were explained on the basis of defect associations in nanoparticles produced during nanoparticles generation. (author)

  16. Room temperature growth of biaxially aligned yttria-stabilized zirconia films on glass substrates by pulsed-laser deposition

    CERN Document Server

    Li Peng; Mazumder, J

    2003-01-01

    Room temperature deposition of biaxially textured yttria-stabilized zirconia (YSZ) films on amorphous glass substrates was successfully achieved by conventional pulsed-laser deposition. The influence of the surrounding gases, their pressure and the deposition time on the structure of the films was studied. A columnar growth process was revealed based on the experimental results. The grown biaxial texture appears as a kind of substrate independence, which makes it possible to fabricate in-plane aligned YSZ films on various substrates.

  17. Effects of the presence of heavy rare earths on the stabilization of the zirconia ceramics - Yttria; Efeito da presenca de terras raras pesadas na estabilizacao das fases de ceramicas de zirconia - itria

    Energy Technology Data Exchange (ETDEWEB)

    Lazar, D.R.R.; Fancio, E.; Menezes, C.A.B.; Ussui, V.; Bressiani, A.H.A.; Lima, N.B.; Paschoal, J.O.A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)], e-mail: drlazar@net.ipen.br

    2000-07-01

    The use of Yttria concentrates has been proposed to substitute the high purity Yttria in the zirconia stabilization. The elements terbium, dysprosium, holmium, erbium and ytterbium, classified as heavy rare earths, are the main impurities in these concentrates, due to their presence in yttrium ores. Besides that, the chemical similarities of these elements need the utilization of complex purification techniques. Considering the importance of the employed dopant on zirconia crystallization, this work shows the quantitative phases analysis of powders and ceramics of stabilized zirconia doped with 3 and 9 mol % of high purity Yttria and with a 85 wt % Yttria concentrate. This determination was performed using the Rietveld refinement of the X-ray diffraction data. The powders were synthesized by the hydroxides coprecipitation route, which includes treatments with ethanol and butanol, drying, calcination at 800 deg C for 1 hour and milling in a ball mill and in an attrition mill. The ceramics pellets were pressed uniaxially and sintered at 1550 deg C for 1 hour. The powders and sintered pellets were also characterized by X-ray fluorescence analysis, laser diffraction, gas adsorption (B.E.T.), scanning electron microscopy and determination of apparent density by the Archimedes method. The results showed the same stabilization behavior when it was employed high purity Yttria and a concentrate of this oxide. It was also observed the predominating formation of tetragonal and cubic phases when the dopant concentration is 3 and 9 mol %, respectively. (author)

  18. Room temperature synthesis of high temperature stable lanthanum phosphate–yttria nano composite

    International Nuclear Information System (INIS)

    Sankar, Sasidharan; Raj, Athira N.; Jyothi, C.K.; Warrier, K.G.K.; Padmanabhan, P.V.A.

    2012-01-01

    Graphical abstract: A facile aqueous sol–gel route involving precipitation–peptization mechanism followed by electrostatic stabilization is used for synthesizing nanocrystalline composite containing lanthanum phosphate and yttria. Highlights: ► A novel lanthanum phosphate–Y 2 O 3 nano composite is synthesized for the first time using a modified facile sol gel process. ► The composite becomes crystalline at 600 °C and X-ray diffraction pattern is indexed for monoclinic LaPO 4 and cubic yttria. ► The composite synthesized was tested up to 1300 °C and no reaction between the phases of the constituents is observed with the morphologies of the phases being retained. -- Abstract: A facile aqueous sol–gel route involving precipitation–peptization mechanism followed by electrostatic stabilization is used for synthesizing nanocrystalline composite containing lanthanum phosphate and yttria. Lanthanum phosphate (80 wt%)–yttria (20 wt%) nano composite (LaPO 4 –20%Y 2 O 3 ), has an average particle size of ∼70 nm after heat treatment of precursor at 600 °C. TG–DTA analysis reveals that stable phase of the composite is formed on heating the precursor at 600 °C. The TEM images of the composite show rod shape morphology of LaPO 4 in which yttria is acquiring near spherical shape. Phase identification of the composite as well as the phase stability up to 1300 °C was carried out using X-ray diffraction technique. With the phases being stable at higher temperatures, the composite synthesized should be a potential material for high temperature applications like thermal barrier coatings and metal melting applications.

  19. Deposition of yttria stabilized zirconia layer for solid oxide fuel cell by chemical vapor infiltration

    International Nuclear Information System (INIS)

    John, John T.; Dubey, Vivekanand; Kain, Vivekanand; Dey, Gautham Kumar; Prakash, Deep

    2011-01-01

    Free energy associated with a chemical reaction can be converted into electricity, if we can split the reaction into an anodic reaction and a cathodic reaction and carry out the reactions in an electrochemical cell using electrodes that will catalyze the reactions. We also have to use a suitable electrolyte, that serves to isolate the chemical species in the two compartments from getting mixed directly but allow an ion produced in one of the reactions to proceed to the other side and complete the reaction. For this reason cracks and porosity are not tolerated in the electrolyte. First generation solid oxide fuel cell (SOFC) uses yttria stabilized zirconia (YSZ) as the electrolyte. In spite of the fact that several solid electrolytes with higher conductivities at lower temperature are being investigated and developed, 8 mol% yttria stabilized zirconia (8YSZ) is considered to be the most favored electrolyte for the SOFC today. The electrolyte should be present as a thin, impervious layer of uniform thickness with good adherence, chemical and mechanical stability, in between the porous cathode and anode. Efforts to produce the 8YSZ coatings on porous lanthanum strontium manganite tubes by electrochemical vapor deposition (ECVD) have met with unexpected difficulties such as impurity pick up and chemical and mechanical instability of the LSM tubes in the ECVD environment. It was also difficult to keep the chemical composition of the YSZ coating at exactly 8 mol% Yttria in zirconia and to control the coating thickness in tight control. These problems were overcome by a two step deposition process where a YSZ layer of required thickness was produced by electrophoretic coating from an acetyl acetone bath at a voltage of 30-300V DC and sintered at 1300 deg C. The resulting porous YSZ layer was made impervious by chemical vapor infiltration (CVI) by the reaction between a mixture of vapors of YCl 3 and ZrCl 4 and steam at 1300 deg C as in the case of ECVD for a short

  20. Defect structure of yttria-stabilized zirconia and its influence on the ionic conductivity at elevated temperatures

    DEFF Research Database (Denmark)

    Goff, J.P.; Hayes, W.; Hull, S.

    1999-01-01

    The defect structure of cubic fluorite structured yttria-stabilized zirconia (ZrO2)(1-x)(Y2O3)(x) has been investigated over the composition range 0.100(3)less than or equal to x less than or equal to 0.241 (10) and temperatures T(K) up to 2780(10) K, using single-crystal specimens. Analysis of n......, we propose that the anomalous decrease in the ionic conductivity with increasing x is a consequence of the decreasing mobility of the isolated defects, possibly due to blockage by the increasing number of static aggregates....

  1. Normal spectral emittance of Inconel 718 aeronautical alloy coated with yttria stabilized zirconia films

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Fernandez, L. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Industria de Turbo Propulsores, S.A., Planta de Zamudio, Edificio 300, 48170 Zamudio, Bizkaia (Spain); Campo, L. del [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Perez-Saez, R.B., E-mail: raul.perez@ehu.es [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Tello, M.J. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain)

    2012-02-05

    Highlights: Black-Right-Pointing-Pointer Emittance of Inconel 718 coated with plasma sprayed yttria stabilized zirconia. Black-Right-Pointing-Pointer The coating is opaque for {lambda} > 9 {mu}m and semi-transparent for {lambda} < 9 {mu}m. Black-Right-Pointing-Pointer In the semi-transparent region the emittance decreases with coating thickness. Black-Right-Pointing-Pointer 300 {mu}m thick coatings are still semi-transparent. Black-Right-Pointing-Pointer In the opaque region the surface roughness determines the emittance level. - Abstract: Knowledge of the radiative behaviour of the yttria stabilized zirconia (YSZ) thermal barrier coatings (TBCs) is needed to perform radiative heat transfer calculations in industrial applications. In this paper, normal spectral emittance experimental data of atmospheric plasma sprayed (PS) YSZ films layered on Inconel 718 substrates are shown. The spectral emittance was measured between 2.5 and 22 {mu}m on samples with film thicknesses ranging from 20 to 280 {mu}m. The samples were heated in a controlled environment, and the emittance was measured for several temperatures between 330 and 730 Degree-Sign C. The dependence of the spectral emittance with film thickness, surface roughness and temperature has been studied and compared with the available results for YSZ TBCs obtained by electron-beam physical vapour deposition. The PS-TBC samples show a Christiansen point at {lambda} = 12.8 {mu}m. The films are semi-transparent for {lambda} < 9 {mu}m, and opaque for {lambda} > 9 {mu}m. In the semi-transparent region, the contribution of the radiation emitted by the Inconel 718 substrate to the global emittance of the samples is analysed. In addition, the influence of the roughness in the emittance values in the opaque spectral region is discussed. Finally, the total normal emittance is obtained as a function of the TBC thickness.

  2. Yttria-doped zirconia as solid electrolyte for fuel-cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Butz, Benjamin

    2009-11-27

    7.3-10 mol% yttria-doped zirconia (YDZ) was studied with emphasis on its long-term stability as solid electrolyte. The decomposition of common 8.5YDZ (950 C) was detected by analytical TEM. As second issue, the microstructural and chemical properties of nanocrystalline 7.3YDZ thin films were investigated. Metastable t''-YDZ was found to precipitate in nanoscaled regions in YDZ up to 10 mol% yttria. Furthermore, a revised boundary of the c+t phase field, in which YDZ decomposes, is presented. (orig.)

  3. Yttria-doped zirconia as solid electrolyte for fuel-cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Butz, Benjamin

    2009-11-27

    7.3-10 mol% yttria-doped zirconia (YDZ) was studied with emphasis on its long-term stability as solid electrolyte. The decomposition of common 8.5YDZ (950 C) was detected by analytical TEM. As second issue, the microstructural and chemical properties of nanocrystalline 7.3YDZ thin films were investigated. Metastable t''-YDZ was found to precipitate in nanoscaled regions in YDZ up to 10 mol% yttria. Furthermore, a revised boundary of the c+t phase field, in which YDZ decomposes, is presented. (orig.)

  4. Hardness Enhancement of STS304 Deposited with Yttria Stabilized Zirconia by Aerosol Deposition Method

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Il-Ho; Park, Chun-Kil; Kim, Hyung Sun; Jeong, Dea-Yong [Inha University, Incheon (Korea, Republic of); Lee, Yong-Seok [Sodoyeon Co., Yeoju (Korea, Republic of); Kong, Young-Min [University of Ulsan, Ulsan (Korea, Republic of); Kang, Kweon Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-03-15

    To improve the surface hardness of the STS304, Yttria stabilized zirconia (YSZ) films with nano-sized grain were deposited by an aerosol-deposition (AD) method. Coating layers showed dense structure and had -5µm thickness. When 3 mol% YSZ powders with tetragonal phase were deposited on STS304 substrate, tetragonal structure was transformed to cubic structure due to the high impact energy during the AD process. At the same time, strong impact by YSZ particles allowed the austenite phase in STS304 to be transformed into martensite phase. Surface hardness measured with nano indentor showed that YSZ coated film had 11.5 GPa, which is larger value than 7 GPa of STS304.

  5. Influence of zirconium doping on the activities of zirconium and iodine co-doped titanium dioxide in the decolorization of methyl orange under visible light irradiation

    International Nuclear Information System (INIS)

    Song Shuang; Hong Fangyue; He Zhiqiao; Wang Hongyu; Xu Xianghong; Chen Jianmeng

    2011-01-01

    Zirconium and iodine co-doped titanium dioxide (Zr-I-TiO 2 ) was prepared by the hydrolysis of tetrabutyl titanate, premixed with zirconium nitrate in an iodic acid aqueous solution, followed by calcination in air. The structure and properties of the resultant catalyst powders were characterized by X-ray diffraction, the Brunauer-Emmett-Teller method, X-ray photoelectron spectroscopy, transmission electron microscopy, and UV-vis absorption spectroscopy. The catalytic activity of the catalyst was evaluated by monitoring the photocatalytic decolorization of methyl orange under visible light irradiation. The results showed that the activities of Zr-I-TiO 2 catalysts were higher than that of TiO 2 doped with iodine alone (I-TiO 2 ), and the optimal doping concentration in the Zr-I-TiO 2 calcined at 400 deg. C was determined to be about 0.05 (molar ratio of Zr:Ti). In addition, the photocatalytic activity of Zr-I-TiO 2 calcined at 400 deg. C was found to be significantly higher than that calcined at 500 or 600 deg. C. Based on the physico-chemical characterization, we concluded that the role of zirconium on the I-TiO 2 surface is to increase the number of reactive sites by generating a small crystal size and large surface area. The inhibition of electron-hole pair recombination, by trapping photo-generated electrons with Zr 4+ , did not contribute markedly to the improved photocatalytic activity of Zr-I-TiO 2 .

  6. Immobilization of transition metal ions on zirconium phosphate monolayers

    International Nuclear Information System (INIS)

    Melezhik, A.V.; Brej, V.V.

    1998-01-01

    It is shown that ions of transition metals (copper, iron, vanadyl, titanium) are adsorbed on zirconium phosphate monolayers. The zirconium phosphate threshold capacity corresponds to substitution of all protons of hydroxyphosphate groups by equivalent amounts of copper, iron or vanadyl. Adsorption of polynuclear ions is possible in case of titanium. The layered substance with specific surface up to 300 m 2 /g, wherein ultradispersed titanium dioxide particles are intercalirated between zirconium-phosphate layers, is synthesized

  7. Atomistic modeling of La3+ doping segregation effect on nanocrystalline yttria-stabilized zirconia.

    Science.gov (United States)

    Zhang, Shenli; Sha, Haoyan; Castro, Ricardo H R; Faller, Roland

    2018-05-16

    The effect of La3+ doping on the structure and ionic conductivity change in nanocrystalline yttria-stabilized zirconia (YSZ) was studied using a combination of Monte Carlo and molecular dynamics simulations. The simulation revealed the segregation of La3+ at eight tilt grain boundary (GB) structures and predicted an average grain boundary (GB) energy decrease of 0.25 J m-2, which is close to the experimental values reported in the literature. Cation stabilization was found to be the main reason for the GB energy decrease, and energy fluctuations near the grain boundary are smoothed out with La3+ segregation. Both dynamic and energetic analysis on the Σ13(510)/[001] GB structure revealed La3+ doping hinders O2- diffusion in the GB region, where the diffusion coefficient monotonically decreases with increasing La3+ doping concentration. The effect was attributed to the increase in the site-dependent migration barriers for O2- hopping caused by segregated La3+, which also leads to anisotropic diffusion at the GB.

  8. Lattice parameters and electrical resistivity of Ceria-Yttria solid solutions

    International Nuclear Information System (INIS)

    Rey, Jose Fernando Queiruga

    2002-01-01

    Ce0 2 :u mol% Y 2 O 3 (u=0, 4, 6, 8, 10 and 12) solid solutions were prepared by the conventional powder mixture technique. The main purposes of this work are: the study of the dependence of the lattice parameter of the Ceria cubic phase on the Yttria content, comparing the experimental data with data calculated according to the existing theoretical models; to determine the dependence of the ionic conductivity on the Yttria content; and to study the stability of the cubic fluorite phase after extensive thermal treatments (aging) of the Ceria-Yttria specimens. The results show that the lattice parameter of the solid solutions follows the Vegard's law and can be described by the two reported theoretical models. The 8 mol% Yttria-doped Ceria was found to present the largest value of ionic conductivity. Preliminary results show that a large decrease is found for only 1 h aging at 700 deg C and that the ionic conductivity decreases for ceramic specimens aged for times up to 10 h. (author)

  9. Fabrication of Yttria stabilized zirconia thin films on poroussubstrates for fuel cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Leming, Andres [Univ. of California, Berkeley, CA (United States)

    2003-06-16

    A process for the deposition of yttria stabilized zirconia (YSZ) films, on porous substrates, has been developed. These films have possible applications as electrolyte membranes in fuel cells. The films were deposited from colloidal suspensions through the vacuum infiltration technique. Films were deposited on both fully sintered and partially sintered substrates. A critical cracking thickness for the films was identified and strategies are presented to overcome this barrier. Green film density was also examined, and a method for improving green density by changing suspension pH and surfactant was developed. A dependence of film density on film thickness was observed, and materials interactions are suggested as a possible cause. Non-shorted YSZ films were obtained on co-fired substrates, and a cathode supported solid oxide fuel cell was constructed and characterized.

  10. Thermo-stimulated luminescence of ion-irradiated yttria-stabilized zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Costantini, Jean-Marc [CEA, DMN, SRMA, 91191 Gif-sur Yvette Cedex (France); Beuneu, Francois [LSI, CEA-CNRS-Ecole Polytechnique, 91128 Palaiseau Cedex (France); Fasoli, Mauro; Galli, Anna; Vedda, Anna; Martini, Marco, E-mail: jean-marc.costantini@cea.fr [CNR-IFN (Italy)

    2011-03-23

    Yttria-stabilized zirconia (ZrO{sub 2}:Y{sup 3+}) single crystals (with 9.5 mol% Y{sub 2}O{sub 3}) were irradiated with ions (from 1 MeV He to 2.6 GeV U). Electron paramagnetic resonance (EPR) data show that two kinds of colour centres (F{sup +}-type and T centres) are produced. Thermo-stimulated luminescence (TSL) data exhibit a quite strong peak at {approx} 500-550 K in the glow curves of all irradiated samples regardless of the ion species and energy. Moreover, the 3D-TSL measurements reveal that this peak is correlated with a light emission at a wavelength of {approx} 620 nm (i.e. photon energy {approx} 2 eV). The TSL peak maximum temperatures are consistent with characteristic temperatures of about 500 K of annealing stages of colour centres. However, the trap-depth energies (ranging between 0.7 and 1.4 eV) deduced from the initial rise of partially cleaned TSL peaks, or from a rough approximation using Urbach's formula, are rather larger than the activation energies for defect recovery, ranging between 0.3 and 0.7 eV, as deduced from the EPR data. The processes involved in TSL are discussed in relation to available photoluminescence and defect energy-level data.

  11. The effect of Al intermediate layer on thermal resistance of EB-PVD yttria-stabilized zirconia coatings on titanium substrate

    Science.gov (United States)

    Panin, Alexey; Panin, Victor; Kazachenok, Marina; Shugurov, Artur; Sinyakova, Elena; Martynov, Sergey; Rusyaev, Andrey; Kasterov, Artur

    2017-12-01

    The yttria-stabilized zirconia coatings sprayed on titanium substrates by the electron beam physical vapor deposition were subjected to thermal annealing in air at 1000°C for 1, 30 and 60 min. The delamination and fracture of the coatings are studied by the scanning electron microscopy and X-ray diffraction. It is shown that a magnetron sputtered Al interlayer between the coating and the substrate considerably improves the thermal resistance of ceramic coatings.

  12. Fracture toughness of yttria-stabilized zirconia sintered in conventional and microwave ovens.

    Science.gov (United States)

    Marinis, Aristotelis; Aquilino, Steven A; Lund, Peter S; Gratton, David G; Stanford, Clark M; Diaz-Arnold, Ana M; Qian, Fang

    2013-03-01

    The fabrication of zirconium dioxide (ZrO2) dental prosthetic substructures requires an extended sintering process (8 to 10 hours) in a conventional oven. Microwave sintering is a shorter process (2 hours) than conventional sintering. The purpose of this study was to compare the fracture toughness of 3 mol % Y2O3-stabilized ZrO2 sintered in a conventional or microwave oven. Partially sintered ZrO2 specimens from 3 manufacturers, KaVo, Lava 3M, and Crystal HS were milled (KaVo Everest engine) and randomly divided into 2 groups: conventional sintering and microwave sintering (n=16 per group). The specimens were sintered according to the manufacturers' recommendations and stored in artificial saliva for 10 days. Fracture toughness was determined by using a 4-point bend test, and load to fracture was recorded. Mean fracture toughness for each material was calculated. A 2-way ANOVA followed by the Tukey HDS post hoc test was used to assess the significance of sintering and material effects on fracture toughness, including an interaction between the 2 factors (α=.05). The 2-way ANOVA suggested a significant main effect for ZrO2 manufacturer (P.05). The main effect of the sintering process (Conventional [5.30 MPa·m(1/2) ±1.00] or Microwave [5.36 MPa·m(1/2) ±0.92]) was not significant (P=.76), and there was no interaction between sintering and ZrO2 manufacturer (P=.91). Based on the results of this study, no statistically significant difference was observed in the fracture toughness of ZrO2 sintered in microwave or conventional ovens. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  13. SiC fiber and yttria-stabilized zirconia composite thick thermal barrier coatings fabricated by plasma spray

    Science.gov (United States)

    Ma, Rongbin; Cheng, Xudong; Ye, Weiping

    2015-12-01

    Approximately 4 mm-thick SiC fiber/yttria-stabilized zirconia (YSZ) composite thermal barrier coatings (TBCs) were prepared by atmospheric plasma spray (APS). The composite coatings have a 'reinforced concrete frame structure', which can protect the coating from failure caused by increasing thickness of coating. The SiC fiber plays an important role in reducing the residual stress level of the composite coatings. The thermal conductivity (TC) value of the composite coatings is 0.632 W/m K, which is about 50% reduction compared to that of typical APS YSZ TBCs. And the composite coatings have higher fracture toughness and better thermal shock resistance than the YSZ TBCs.

  14. Electrode materials for an open-cycle MHD generator channel

    International Nuclear Information System (INIS)

    Telegin, G.P.; Romanov, A.I.; Akopov, F.A.; Gokhshtejn, Ya.P.; Rekov, A.I.

    1983-01-01

    The results of investigations, technological developments and tests of high temperature materials for MHD electrodes on the base of zirconium dioxide, stabilized with oxides of calcium, yttrium, neodymium, and dioxide of cerium, chromites, tamping masses from stabilized dioxide of zirconium, cermets are considered. It is established that binary and ternary solutions on the base of zirconium dioxide and alloyed chromites are the perspective materials for the MHD electrodes on pure fuel

  15. Radiation stability of proton irradiated zirconium carbide

    International Nuclear Information System (INIS)

    Yang, Yong; Dickerson, Clayton A.; Allen, Todd R.

    2009-01-01

    The use of zirconium carbide (ZrC) is being considered for the deep burn (DB)-TRISO fuel as a replacement for the silicon carbide coating. The radiation stability of ZrC was studied using 2.6 MeV protons, across the irradiation temperature range from 600 to 900degC and to doses up to 1.75 dpa. The microstructural characterization shows that the irradiated microstructure is comprised of a high density of nanometer-sized dislocation loops, while no irradiation induced amorphization or voids are observed. The lattice expansion induced by point defects is found to increase as the dose increases for the samples irradiated at 600 and 800degC, while for the 900degC irradiation, a slight lattice contraction is observed. The radiation hardening is also quantified using a micro indentation technique for the temperature and doses studies. (author)

  16. Polarity control and growth mode of InN on yttria-stabilized zirconia (111) surfaces

    International Nuclear Information System (INIS)

    Kobayashi, Atsushi; Okubo, Kana; Ohta, Jitsuo; Oshima, Masaharu; Fujioka, Hiroshi

    2012-01-01

    We have found that polarity of epitaxial InN layers has been controlled by choice of a capping material during high-temperature annealing of yttria-stabilized zirconia (YSZ) (111) substrates in air. Angle-resolved X-ray photoelectron spectroscopy has revealed that the amount of segregation of Y atoms to the YSZ surface depended on the capping material of the substrates. In-polar and N-polar InN have been reproducibly grown on Y-segregated and Y-segregation-free YSZ surfaces, respectively. We have also found that the growth of the first monolayer (ML) of N-polar InN proceeds in a step-flow mode which then switches to layer-by-layer mode after the coverage by 1-ML-thick InN. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Study of tape casting of Yttria stabilized zirconia for apply in solid oxide fuel cell

    International Nuclear Information System (INIS)

    Santana, Leonardo de Paulo

    2008-01-01

    The hydrogen economy has been risen as new option for supply the growing global demand for energy. A fuel cell is an electrochemical device able to use hydrogen as a energy source. Carbon dioxide (CO 2 ) emission is very low so it is ecologically friendly, once energy is produced by a reaction of hydrogen and oxygen. The production of energy from hydrogen fuelled devices can be done even in small unities and in a distributed way. It can bring energy for isolated communities, where traditional energy distribution systems can not be reached. A fuel cell is composed essentially of 3 components: anode, cathode and the electrolyte. In present days, there are many materials proposed for use as electrolyte in fuel cells. Among then, Yttria stabilized zirconia (YSZ) is the most studied and effectively used in solid oxide fuel cell. Tape casting technology is a cheap, simple and efficient way to cast ceramics slurries in laminates thick enough to be used as components for fuel cells. Considering theses aspects, in this work, ceramic thin film forming was studied using tape casting technology with raw materials prepared from Brazilian zircon ores. It is described in literature that ceramic slurries are generally made from powders with low surface area (often between 0,5 to 10m 2 /g), and the powders used in this study had larger surface area (often between 40 to 80m 2 /g). The use of zeta potential is indicated to study the stability of a suspension of ceramic powders. However, for suspensions with large concentration of solid, it is also necessary to determine the flow curve, because in these conditions, the double electric layer formed during the stabilization of suspensions can be compressed. In the rheological properties study, calcined ceramic powders were classified using a set of ABNT series screens and separated and retained by the de mesh 60 screen. Flow curve of suspension was determined in aqueous suspensions of these powders. For tape casting processing, a binder

  18. Effects of artificial aging conditions on yttria-stabilized zirconia implant abutments.

    Science.gov (United States)

    Basílio, Mariana de Almeida; Cardoso, Kátia Vieira; Antonio, Selma Gutierrez; Rizkalla, Amin Sami; Santos Junior, Gildo Coelho; Arioli Filho, João Neudenir

    2016-08-01

    Most ceramic abutments are fabricated from yttria-stabilized tetragonal zirconia (Y-TZP). However, Y-TZP undergoes hydrothermal degradation, a process that is not well understood. The purpose of this in vitro study was to assess the effects of artificial aging conditions on the fracture load, phase stability, and surface microstructure of a Y-TZP abutment. Thirty-two prefabricated Y-TZP abutments were screwed and tightened down to external hexagon implants and divided into 4 groups (n = 8): C, control; MC, mechanical cycling (1×10(6) cycles; 10 Hz); AUT, autoclaving (134°C; 5 hours; 0.2 MPa); and TC, thermal cycling (10(4) cycles; 5°/55°C). A single-load-to-fracture test was performed at a crosshead speed of 0.5 mm/min to assess the assembly's resistance to fracture (ISO Norm 14801). X-ray diffraction (XRD) analysis was applied to observe and quantify the tetragonal-monoclinic (t-m) phase transformation. Representative abutments were examined with high-resolution scanning electron microscopy (SEM) to observe the surface characteristics of the abutments. Load-to-fracture test results (N) were compared by ANOVA and Tukey test (α=.05). XRD measurements revealed the monoclinic phase in some abutments after each aging condition. All the aging conditions reduced the fracture load significantly (Paging conditions. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  19. Long-time aging in 3 mol.% yttria-stabilized tetragonal zirconia polycrystals at human body temperature.

    Science.gov (United States)

    Keuper, Melanie; Berthold, Christoph; Nickel, Klaus Georg

    2014-02-01

    We present new findings on the low-temperature degradation of yttria-stabilized zirconia at 37°C over several years and at high and low partial pressures of water. With the aid of focused ion beam cross-section confirmation studies we are able to show an extensive linear, continuous degradation without retardation, even at low temperatures and low water pressures. The characteristic layer growth and its inferred rate constant imply a lifetime of tens of years under simple tension and open the possibility of studying the longevity of these ceramics more rigorously. In addition, we show reproducibility complications of accelerated aging tests by the use of different autoclaves and possible implications for standardized procedures. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Research into zirconium alloys resistant to carbon dioxide under pressure at temperatures of up to 600 deg C (1963)

    International Nuclear Information System (INIS)

    Baque, P.; Dominget, R.; Bossard, J.

    1963-01-01

    Zirconium is a metal having a relatively low neutron capture cross-section and a high melting point; it is thus possible to consider its use in particular as a canning material for fuel elements in CO 2 -cooled nuclear reactors. A preliminary study of several types of zirconium showed that the metal is already strongly oxidised in this gas at 500 deg C. The 'breakaway' phenomenon is generalised; the oxidation rate is then linear and depends on the carbon dioxide pressure. An attempt was therefore made to find binary and tertiary alloys in order to improve the metal behaviour. Several interesting compositions were found: 1, 1.6 and 2.5 per cent of copper, 2 per cent of vanadium, and 0.05 and 0.5 per cent of calcium. Tertiary copper-molybdenum and copper-phosphorus alloys are also less liable to oxidation and in particular do not exhibit the 'breakaway' phenomenon even after a prolonged treatment at 600 deg C. (authors) [fr

  1. Synthesis, microstructural, optical and mechanical properties of yttria stabilized zirconia thin films

    International Nuclear Information System (INIS)

    Amézaga-Madrid, P.; Hurtado-Macías, A.; Antúnez-Flores, W.; Estrada-Ortiz, F.; Pizá-Ruiz, P.; Miki-Yoshida, M.

    2012-01-01

    Highlights: ► Thin films of YSZ obtained by AACVD have high quality. ► They are uniform, very transparent, and have high hardness. ► Optical characterization were performed in detail, optical constants and band gap energy were determined as a function of dopant content. - Abstract: Thin films of yttria-stabilized zirconia (YSZ) exhibit exceptional properties, such as high thermal, chemical and mechanical stability. Here, we report the synthesis of YSZ thin films by aerosol assisted chemical vapour deposition onto borosilicate glass and fused silica substrates. Optimum deposition temperature was 673 ± 5 K. In addition, different Y content was tried to analyse its influence in the microstructure and properties of the films. The films were uniform, transparent and non-light scattering. Surface morphology and cross sectional microstructure were studied by field emission scanning electron microscopy. The microstructure of the films was characterized by grazing incidence X-ray diffraction. Crystallite size and lattice parameter were obtained. Optical properties were analysed from reflectance and transmittance spectra; from these measurements, optical constants and band gap were obtained. Quantum confinement effect, due to the small grain size of the films, was evident in the high band gap energy obtained. Nanoindentation tests were realized at room temperature employing the continuous stiffness measurement method, to determine the hardness and elastic modulus as a function of Y content.

  2. Tribological and wear behavior of yttria stabilized zirconia thermal barrier coatings on mild steel

    International Nuclear Information System (INIS)

    Farooq, M.; Pervez, A.

    2012-01-01

    The perfection of the temperature confrontation of the engine essentials can be obtained by claim of a single ceramic thermal barrier coating (TBC) or several composite layers. Engine elements protected by TBC can work safely in elevated temperature range above 1000 degree C. Continuous endeavor to increase thermal resistance of engine the elements requires, apart from laboratory investigations, also numerical study of the different engine parts. The high temperatures and stress concentrations can act as the local sources of damage initiation and defects propagation in the form of cracks. The current study focuses the development of Yttria stabilized zirconia thermal barrier coating by Thermal spray technique. Mild steel was used as a substrate and the coating was then characterized for tribological analysis followed by the optical analysis of wear tracks and found the TBC behavior more promising then steel. (author)

  3. Processing-structure-property relationships in electron beam physical vapor deposited yttria stabilized zirconia coatings

    International Nuclear Information System (INIS)

    Rao, D. Srinivasa; Valleti, Krishna; Joshi, S. V.; Janardhan, G. Ranga

    2011-01-01

    The physical and mechanical properties of yttria stabilized zirconia (YSZ) coatings deposited by the electron beam physical vapor deposition technique have been investigated by varying the key process variables such as vapor incidence angle and sample rotation speed. The tetragonal zirconia coatings formed under varying process conditions employed were found to have widely different surface and cross-sectional morphologies. The porosity, phase composition, planar orientation, hardness, adhesion, and surface residual stresses in the coated specimens were comprehensively evaluated to develop a correlation with the process variables. Under transverse scratch test conditions, the YSZ coatings exhibited two different crack formation modes, depending on the magnitude of residual stress. The influence of processing conditions on the coating deposition rate, column orientation angle, and adhesion strength has been established. Key relationships between porosity, hardness, and adhesion are also presented.

  4. Rapid, cool sintering of wet processed yttria-stabilized zirconia ceramic electrolyte thin films.

    Science.gov (United States)

    Park, Jun-Sik; Kim, Dug-Joong; Chung, Wan-Ho; Lim, Yonghyun; Kim, Hak-Sung; Kim, Young-Beom

    2017-09-29

    Here we report a photonic annealing process for yttria-stabilized zirconia films, which are one of the most well-known solid-state electrolytes for solid oxide fuel cells (SOFCs). Precursor films were coated using a wet-chemical method with a simple metal-organic precursor solution and directly annealed at standard pressure and temperature by two cycles of xenon flash lamp irradiation. The residual organics were almost completely decomposed in the first pre-annealing step, and the fluorite crystalline phases and good ionic conductivity were developed during the second annealing step. These films showed properties comparable to those of thermally annealed films. This process is much faster than conventional annealing processes (e.g. halogen furnaces); a few seconds compared to tens of hours, respectively. The significance of this work includes the treatment of solid-state electrolyte oxides for SOFCs and the demonstration of the feasibility of other oxide components for solid-state energy devices.

  5. Alkylation of isobutane by butenes on zirconium sulfate catalysts

    International Nuclear Information System (INIS)

    Lavrenov, A.V.; Perelevskij, E.V.; Finevich, V.P.; Zajkovskij, V.I.; Paukshtis, E.A.; Duplyakiv, V.K.; Bal'zhinimaev, B.S.

    2003-01-01

    Preparation of applied zirconium sulfate catalysts obtained by the method of impregnation is investigated. Results of comparative study of structural, acid-base and catalytic properties of sulfated zirconium dioxide applied on silica gel and aluminium oxide are represented. Intervals of values of synthesis basic parameters and characteristics of catalysts properties providing achievement of high activity and selectivity in isobutane alkylation by butenes in liquid phase are determined [ru

  6. Very low pressure plasma sprayed yttria-stabilized zirconia coating using a low-energy plasma gun

    International Nuclear Information System (INIS)

    Zhu, Lin; Zhang, Nannan; Bolot, Rodolphe; Planche, Marie-Pierre; Liao, Hanlin; Coddet, Christian

    2011-01-01

    In the present study, a more economical low-energy plasma source was used to perform a very low pressure plasma-spray (VLPPS) process. The plasma-jet properties were analyzed by means of optical emission spectroscopy (OES). Moreover, yttria-stabilized zirconia coating (YSZ) was elaborated by a F100 low-power plasma gun under working pressure of 1 mbar, and the substrate specimens were partially shadowed by a baffle-plate during plasma spraying for obtaining different coating microstructures. Based on the SEM observation, a column-like grain coating was deposited by pure vapor deposition at the shadowed region, whereas, in the unshadowed region, the coating exhibited a binary microstructure which was formed by a mixed deposition of melted particles and evaporated particles. The mechanical properties of the coating were also well under investigation. (orig.)

  7. Design and Fabrication of Porous Yttria-Stabilized Zirconia Ceramics for Hot Gas Filtration Applications

    Science.gov (United States)

    Shahini, Shayan

    Hot gas filtration has received growing attention in a variety of applications over the past few years. Yttria-stabilized zirconia (YSZ) is a promising candidate for such an application. In this study, we fabricated disk-type porous YSZ filters using the pore forming procedure, in which poly methyl methacrylate (PMMA) was used as the pore-forming agent. After fabricating the pellets, we characterized them to determine their potential for application as gas filters. We investigated the effect of sintering temperature, polymer particle size, and polymer-to-ceramic ratio on the porosity, pore size, gas permeability, and Vickers hardness of the sintered pellets. Furthermore, we designed two sets of experiments to investigate the robustness of the fabricated pellets--i.e., cyclic heating/cooling and high temperature exposure. This study ushers in a robust technique to fabricate such porous ceramics, which have the potential to be utilized in hot gas filtration.

  8. Artificial in-plane ordering of textured YBa2Cu3O(7-x) films deposited on polycrystalline yttria-stabilized zirconia substrates

    Science.gov (United States)

    Harshavardhan, K. S.; Rajeswari, M.; Hwang, D. M.; Chen, C. Y.; Sands, T. D.; Venkatesan, T.; Tkaczyk, J. E.; Lay, K. W.; Safari, A.; Johnson, L.

    1992-12-01

    Anisotropic surface texturing of the polycrystalline yttria-stabilized zirconia substrates, prior to YBa2Cu3O(7-x) film deposition, is shown to promote in-plane (basal plane) ordering of the film growth in addition to the c-axis texturing. The Jc's of the films in the weak-link-dominated low-field regime are enhanced considerably, and this result is attributed to the reduction of weak links resulting from a reduction in the number of in-plane large-angle grain boundaries.

  9. Band structure of TiO sub 2 -doped yttria-stabilized zirconia probed by soft-x-ray spectroscopy

    CERN Document Server

    Higuchi, T; Kobayashi, K; Yamaguchi, S; Fukushima, A; Shin, S

    2003-01-01

    The electronic structure of TiO sub 2 -doped yttria-stabilized zirconia (YSZ) has been studied by soft-X-ray emission spectroscopy (SXES) and X-ray absorption spectroscopy (XAS). The valence band is mainly composed of the O 2p state. The O 1s XAS spectrum exhibits the existence of the Ti 3d unoccupied state under the Zr 4d conduction band. The intensity of the Ti 3d unoccupied state increases with increasing TiO sub 2 concentration. The energy separation between the top of the valence band and the bottom of the Ti 3d unoccupied state is in accord with the energy gap, as expected from dc-polarization and total conductivity measurements. (author)

  10. The influence of pigments on the slow crack growth in dental zirconia

    NARCIS (Netherlands)

    Aboushelib, M.N.; de Jager, N.; Kleverlaan, C.J.; Feilzer, A.J.

    2012-01-01

    Objectives Partially yttria stabilized zirconium oxide was introduced as core material for core-veneered full ceramic dental restorations, because of its biological inertness, high mechanical strength, and toughness. In order to improve the esthetical possibilities pigments in the core are

  11. Determination of the ruthenium, cerium and zirconium radio-activity of sea-water by carrying-over and adsorption using manganese dioxide

    International Nuclear Information System (INIS)

    Guegueniat, P.

    1967-01-01

    Principle: Manganese dioxide is precipitated in the medium to be analyzed by the action of hydrogen peroxide on potassium permanganate. Large volumes of sea-water are treated by successive adsorptions of 80 litre fractions using always the same precipitate obtained from 30 g of potassium permanganate. Some examples are given concerning the analysis of 80, 160, 1000 and 2000 litres of water. Advantages of the technique: The existence of low activities due to ruthenium, zirconium and cerium can be demonstrated if sufficiently large volumes of water are treated. (author) [fr

  12. Quercetin as colorimetric reagent for determination of zirconium

    Science.gov (United States)

    Grimaldi, F.S.; White, C.E.

    1953-01-01

    Methods described in the literature for the determination of zirconium are generally designed for relatively large amounts of this element. A good procedure using colorimetric reagent for the determination of trace amounts is desirable. Quercetin has been found to yield a sensitive color reaction with zirconium suitable for the determination of from 0.1 to 50?? of zirconium dioxide. The procedure developed involves the separation of zirconium from interfering elements by precipitation with p-dimethylaminoazophenylarsonic acid prior to its estimation with quercetin. The quercetin reaction is carried out in 0.5N hydrochloric acid solution. Under the operating conditions it is indicated that quercetin forms a 2 to 1 complex with zirconium; however, a 2 to 1 and a 1 to 1 complex can coexist under special conditions. Approximate values for the equilibrium constants of the complexes are K1 = 0.33 ?? 10-5 and K2 = 1.3 ?? 10-9. Seven Bureau of Standards samples of glass sands and refractories were analyzed with excellent results. The method described should find considerable application in the analysis of minerals and other materials for macro as well as micro amounts of zirconium.

  13. Structure of yttria stabilized zirconia beads produced by gel supported precipitation

    International Nuclear Information System (INIS)

    Walter, M.; Somers, J.; Fernandez, A.; Specht, Eliot D.; Hunn, John D.; Boulet, P.; Denecke, M. A.; Gobel, C.

    2007-01-01

    Yttria stabilized zirconia (YSZ) is one of the inert matrix candidates selected for investigation as host matrix for minor actinide (MA) transmutation. The structural properties of (Zr0.84, Y0.16)O1.92 beads prepared by a sol-gel method for MA infiltration, are characterized as calcined (850 C) and sintered (1,600 C) beads. The calcined YSZ beads are fine-grained and homogenous over the entire sphere and are surrounded by a uniform outer layer of approximately 30 (micro)m thickness. After sintering at 1,600 C, the beads are compacted to 51% of their initial volume and exhibit a granular structure. The thermal expansion is nearly linear for the calcined material, but shows a parabolic behavior for the sintered (1,400 C) beads. In addition, the thermal expansion of calcined material is 20-25% less than after sintering. During heating up to 1,400 C, two processes can be distinguished. The first occurs between 900 and 1,000 C and is related to an increase in unit cell order. The second process involves grain-growth of the less crystalline calcined material between 1,100 and 1,300 C. These results have implications for preparation of YSZ and its use as an inert MA transmutation matrix

  14. Preparation and characterization of epitaxially grown unsupported yttria-stabilized zirconia (YSZ) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Götsch, Thomas; Mayr, Lukas [Institute of Physical Chemistry, Universität Innsbruck, A-6020 Innsbruck (Austria); Stöger-Pollach, Michael [University Service Center for Transmission Electron Microscopy (USTEM), Vienna University of Technology, A-1040 Vienna (Austria); Klötzer, Bernhard [Institute of Physical Chemistry, Universität Innsbruck, A-6020 Innsbruck (Austria); Penner, Simon, E-mail: simon.penner@uibk.ac.at [Institute of Physical Chemistry, Universität Innsbruck, A-6020 Innsbruck (Austria)

    2015-03-15

    Highlights: • Preparation of unsupported yttrium-stabilized zirconia films. • Control of ordering and epitaxy by temperature of deposition template. • Adjustment of film defectivity by deposition and post-oxidation temperature. • Reproducibility of target stoichiometry in the deposited films. • Lateral and vertical chemical homogeneity. - Abstract: Epitaxially grown, chemically homogeneous yttria-stabilized zirconia thin films (“YSZ”, 8 mol% Y{sub 2}O{sub 3}) are prepared by direct-current sputtering onto a single-crystalline NaCl(0 0 1) template at substrate temperatures ≥493 K, resulting in unsupported YSZ films after floating off NaCl in water. A combined methodological approach by dedicated (surface science) analytical characterization tools (transmission electron microscopy and diffraction, atomic force microscopy, angle-resolved X-ray photoelectron spectroscopy) reveals that the film grows mainly in a [0 0 1] zone axis and no Y-enrichment in surface or bulk regions takes place. In fact, the Y-content of the sputter target is preserved in the thin films. Analysis of the plasmon region in EEL spectra indicates a defective nature of the as-deposited films, which can be suppressed by post-deposition oxidation at 1073 K. This, however, induces considerable sintering, as deduced from surface morphology measurements by AFM. In due course, the so-prepared unsupported YSZ films might act as well-defined model systems also for technological applications.

  15. Glass properties in the yttria-alumina-silica system

    Science.gov (United States)

    Hyatt, M. J.; Day, D. E.

    1987-01-01

    The glass formation region in the yttria-alumina-silica system was investigated. Properties of glasses containing 25 to 55 wt pct yttria were measured and the effect of the composition was determined. The density, refractive index, thermal-expansion coefficient, and microhardness increased with increasing yttria content. The dissolution rate in 1N HCl increased with increasing yttria content and temperature. These glasses were also found to have high electrical resistivity.

  16. Penetrate-leach dissolution of zirconium-clad uranium and uranium dioxide fuels

    International Nuclear Information System (INIS)

    Harmon, H.D.

    1975-01-01

    A new decladding-dissolution process was developed for zirconium-clad uranium metal and UO 2 fuels. The proposed penetrate-leach process consists of penetrating the zirconium cladding with Alniflex solution (2M HF--1M HNO 3 --1M Al(NO 3 ) 3 --0.1M K 2 Cr 2 O 7 ) and of leaching the exposed core with 10M HNO 3 . Undissolved cladding pieces are discarded as solid waste. Periodic HF and HNO 3 additions, efficient agitation, and in-line zirconium analyses are required for successful control of ZrF 4 and/or AlF 3 precipitation during the cladding-penetration step. Preliminary solvent extraction studies indicated complete recovery of uranium with 30 vol. percent tributyl phosphate (TBP) from both Alniflex solution and blended Alniflex-HNO 3 leach solutions. With 7.5 vol. percent TBP, high extractant/feed flow ratios and low scrub flows are required for satisfactory uranium recovery from Alniflex solution. Modified waste-handling procedures may be required for Alniflex waste, because it cannot be evaporated before neutralization and large quantities of solids are generated on neutralization. The effect of unstable UZr 3 (epsilon phase of uranium-zirconium system) on the safety of penetrate-leach dissolution was investigated

  17. On composition and thermal degradation of basic zirconium sulfates

    Energy Technology Data Exchange (ETDEWEB)

    Grizik, A A; Nekhamkin, L G; Kondrashova, I A; Serebrennikov, E L; Kerina, V P

    1988-02-01

    Methods of potentiometric titration, conductometry and thermal gravimetric analysis are used to study composition and properties of basic zirconium sulfates (BZS) obtained under different conditions of precipitation from aqueous solutions. Three X-ray amorphous phases of BZR with mole ratio SO/sub 4//sup 2-/:Zr, being 0.60+-0.03; 0.37+-0.04 and 0.176+-0.005, are identified. Different character of thermal decomposition of these phases in the process of zirconium dioxide preparation from BZS is confirmed.

  18. On composition and thermal degradation of basic zirconium sulfates

    International Nuclear Information System (INIS)

    Grizik, A.A.; Nekhamkin, L.G.; Kondrashova, I.A.; Serebrennikov, E.L.; Kerina, V.P.

    1988-01-01

    Methods of potentiometric titration, conductometry and thermal gravimetric analysis are used to study composition and properties of basic zirconium sulfates (BZS) obtained under different conditions of precipitation from aqueous solutions. Three X-ray amorphous phases of BZR with mole ratio SO 4 2- :Zr, being 0.60±0.03; 0.37±0.04 and 0.176±0.005, are identified. Different character of thermal decomposition of these phases in the process of zirconium dioxide preparation from BZS is confirmed

  19. Nickel/Yttria-stabilised zirconia cermet anodes for solid oxide fuel cells

    NARCIS (Netherlands)

    Primdahl, Søren

    1999-01-01

    This thesis deals with the porous Ni/yttria-stabilized zirconia (YSZ) cermet anode on a YSZ electrolyte for solid oxide fuel cells (SOFC). Such anodes are predominantly operated in moist hydrogen at 700°C to 1000°C, and the most important technological parameters are the polarization resistance and

  20. Characterization of single crystal uranium-oxide thin films grown via reactive-gas magnetron sputtering on yttria-stabilized zirconia and sapphire

    Energy Technology Data Exchange (ETDEWEB)

    Strehle, Melissa M.; Heuser, Brent J., E-mail: bheuser@illinois.edu; Elbakhshwan, Mohamed S.; Han Xiaochun; Gennardo, David J.; Pappas, Harrison K.; Ju, Hyunsu

    2012-06-30

    The microstructure and valence states of three single crystal thin film systems, UO{sub 2} on (11{sup Macron }02) r-plane sapphire, UO{sub 2} on (001) yttria-stabilized zirconia, and U{sub 3}O{sub 8} on (11{sup Macron }02) r-plane sapphire, grown via reactive-gas magnetron sputtering are analyzed primarily with X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and ultraviolet photoelectron spectroscopy (UPS). XRD analysis indicates the growth of single crystal domains with varying degrees of mosaicity. XPS and UPS analyses yield U-4f, U-5f, O-1s, and O-2p electron binding energies consistent with reported bulk values. A change from p-type to n-type semiconductor behavior induced by preferential sputtering of oxygen during depth profile analysis was observed with both XPS and UPS. Trivalent cation impurities (Nd and Al) in UO{sub 2} lower the Fermi level, shifting the XPS spectral weight. This observation is consistent with hole-doping of a Mott-Hubbard insulator. The uranium oxide-(11{sup Macron }02) sapphire system is unstable with respect to Al interdiffusion across the film-substrate interface at elevated temperature. - Highlights: Black-Right-Pointing-Pointer Single crystal uranium-oxides grown on sapphire and yttria-stabilized zirconia. Black-Right-Pointing-Pointer Anion and cation valence states studied by photoelectron emission spectroscopy. Black-Right-Pointing-Pointer Trivalent Nd and Al impurities lower the Fermi level. Black-Right-Pointing-Pointer Uranium-oxide films on sapphire found to be unstable with respect to Al interdiffusion.

  1. Electroactive mesoporous yttria stabilized zirconia containing platinum or nickel oxide nanoclusters: a new class of solid oxide fuel cell electrode materials

    Energy Technology Data Exchange (ETDEWEB)

    Mamak, M.; Coombs, N.; Ozin, G.A. [Toronto Univ., ON (Canada). Dept. of Chemistry

    2001-02-01

    The electroactivity of surfactant-templated mesoporous yttria stabilized zirconia, containing nanoclusters of platinum or nickel oxide, is explored by alternating current (AC) complex impedance spectroscopy. The observed oxygen ion and mixed oxygen ion-electron charge-transport behavior for these materials, compared to the sintered-densified non-porous crystalline versions, is ascribed to the unique integration of mesoporosity and nanocrystallinity within the binary and ternary solid solution microstructure. These attributes inspire interest in this new class of materials as candidates for the development of improved performance solid oxide fuel cell electrodes. (orig.)

  2. Characterization on the electrophoretic deposition of the 8 mol% yttria-stabilized zirconia nanocrystallites prepared by a sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.-H. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Kuo, C.-W. [Department of Resources Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Shih, C.-J. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Hung, I-M. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Fung, K.-Z. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Wen, S.-B. [Department of Resources Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Wang, M.-C. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 807, Taiwan (China)]. E-mail: cjshih@kmu.edu.tw

    2007-02-15

    An 8 mol% yttria-stabilized zirconia (8YSZ) films are electrophoretically deposited on the La{sub 0.8}Sr{sub 0.2}MnO{sub 3} substrate using 8YSZ nanocrystallites prepared by a sol-gel process. Effects of liquid suspension on the particle zeta potential and degree of agglomeration at different pH values are investigated. When the pH value deviates from the point of zero charge (PZC), the adsorption of protons on particle surfaces cause higher zeta potential and well-dispersed suspension. The optimal values of the iodine concentration, applied voltage and deposition time for the electrophoretic deposition of 8YSZ films are also found.

  3. Dehydration and crystallization kinetics of zirconia-yttria gels

    International Nuclear Information System (INIS)

    Ramanathan, S.; Muraleedharan, R.V.; Roy, S.K.; Nayar, P.K.K.

    1995-01-01

    Zirconia and zirconia-yttria gels containing 4 and 8 mol% yttria were obtained by coprecipitation and drying at 373 K. The dehydration and crystallization behavior of the dried gels was studied by DSC, TG, and XRD. The gels undergo elimination of water over a wide temperature range of 373--673 K. The peak temperature of the endotherm corresponding to dehydration and the kinetic constants for the process were not influenced by the yttria content of the gel. The enthalpy of dehydration observed was in good agreement with the heat of vaporization data. The dehydration was followed by a sharp exothermic crystallization process. The peak temperature of the exotherm and the activation energy of the process increased with an increase in yttria content, while the enthalpy of crystallization showed a decrease. The ''glow effect'' reduced with increasing yttria content. Pure zirconia crystallizes in the tetragonal form while the zirconia containing 4 and 8 mol% yttria appears to crystallize in the cubic form

  4. Yttria and ceria doped zirconia thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Saporiti, F.; Juarez, R. E., E-mail: cididi@fi.uba.ar [Grupo de Materiales Avanzados, Facultad de Ingenieria, Universidad de Buenos Aires (Argentina); Audebert, F. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Boudard, M. [Laboratoire des Materiaux et du Genie Physique (CNRS), Grenoble (France)

    2013-11-01

    The Yttria stabilized Zirconia (YSZ) is a standard electrolyte for solid oxide fuel cells (SOFCs), which are potential candidates for next generation portable and mobile power sources. YSZ electrolyte thin films having a cubic single phase allow reducing the SOFC operating temperature without diminishing the electrochemical power density. Films of 8 mol% Yttria stabilized Zirconia (8YSZ) and films with addition of 4 weight% Ceria (8YSZ + 4CeO{sub 2}) were grown by pulsed laser deposition (PLD) technique using 8YSZ and 8YSZ + 4CeO{sub 2} targets and a Nd-YAG laser (355 nm). Films have been deposited on Soda-Calcia-Silica glass and Si(100) substrates at room temperature. The morphology and structural characteristics of the samples have been studied by means of X-ray diffraction and scanning electron microscopy. Films of a cubic-YSZ single phase with thickness in the range of 1-3 Micro-Sign m were grown on different substrates (author)

  5. Optical characterization of Pr3+-doped yttria-stabilized zirconia single crystals

    International Nuclear Information System (INIS)

    Savoini, B.; Munoz Santiuste, J.E.; Gonzalez, R.

    1997-01-01

    The optical absorption and fluorescence of Pr 3+ ions in yttria-stabilized zirconia single crystals are investigated. Fluorescence emissions from the 1 D 2 level are clearly dominant and low intensity emission lines from the 3 P 0 and 1 G 4 states are also observed. Analysis with the Judd-Ofelt theory of the absorption intensities has been made assuming that only ∼40% of the praseodymium ions contribute to the optical absorption bands. Quantum efficiency values of η( 3 P 0 )∼0.2 and η( 1 D 2 )∼ 1 are obtained at room temperature. 1 D 2 fluorescence quenching has been observed in heavily-doped samples due to cross relaxation processes among neighboring Pr 3+ ions. Analysis using the Inokuti-Hirayama model shows that electric dipole-dipole interactions are mainly responsible for the quenching effect. Pr 3+ ions are present in seven and sixfold configurations with a statistical distribution. The energy position of the 4f5d configuration is very different for each center. The fluorescence dynamics is explained by a mechanism involving thermally assisted population of the 3 P 1,2 + 1 I 6 upper levels and fast relaxation to the 1 D 2 level via states of the excited 4f5d configuration. copyright 1997 The American Physical Society

  6. Effect of highly dispersed yttria addition on thermal stability of hydroxyapatite

    International Nuclear Information System (INIS)

    Parente, P.; Savoini, B.; Ferrari, B.; Monge, M.A.; Pareja, R.; Sanchez-Herencia, A.J.

    2013-01-01

    The capability of the colloidal method to produce yttria (Y 2 O 3 ) dispersed hydroxyapatite (HA) has been investigated as an alternative method to the conventional method of mechanical mixing and sintering for developing HA-based materials that could exhibit controllable and enhanced functional properties. A water based colloidal route to produce HA materials with highly dispersed Y 2 O 3 has been applied, and the effect of 10 wt.% Y 2 O 3 addition to HA investigated by thermal analysis, X-ray diffraction and Fourier transform infrared spectroscopy. These measurements evidence a remarkable effect of this Y 2 O 3 addition on decomposition mechanisms of synthetic HA. Results show that incorporation of Y 2 O 3 as dispersed second phase is beneficial because it hinders the decomposition mechanisms of HA into calcium phosphates. This retardation will allow the control of the sintering conditions for developing HA implants with improved properties. Besides, substitution of Ca 2+ with Y 3+ ions appears to promote the formation of OH − vacancies, which could improve the conductive properties of HA favorable to osseointegration. - Highlights: ► We reveal the influence of Y 2 O 3 on thermal stability of hydroxyapatite. ► Incorporation of Y 2 O 3 delays decomposition of hydroxyapatite to calcium phosphates. ► Addition of Y 2 O 3 enables sintering conditions more favorable to the densification.

  7. Preparation of stabilized zirconia (Zr O2) with Yttria (Y2 O3) by simultaneous precipitation

    International Nuclear Information System (INIS)

    Campos, M. de.

    1993-01-01

    The preparation of cubic or tetragonal partially stabilized zirconia with Yttria by simultaneous precipitation was studied. The metals Zr and Y, in nitric acid and hydrogen peroxide medium, were precipitated with ammonia solution. The variables studied were: the pH of the aqueous medium (8, 9 e 10) and yttrium molar concentration (2, 3 and 5 mol %) in the final product. The resulting oxide samples were divided and calcined at 500, 700 and 900 0 C, separately. After that, all samples were sintered at 1500 0 C for one hour. For physico-chemical characterization were used techniques such as: ICP-AES, XRF, XRD, SEM etc. The results have showed that using this approach predominant cubic and/or tetragonal phases can be reached with theoretical density over 92% and grain size lower than 1 μm. (author)

  8. Experiments on interactions between zirconium-containing melt and water (ZREX). Hydrogen generation and chemical augmentation of energetics

    Energy Technology Data Exchange (ETDEWEB)

    Cho, D.H.; Armstrong, D.R.; Gunther, W.H. [Argonne National Lab., IL (United States); Basu, S.

    1998-01-01

    The results of the first data series of experiments on interactions between zirconium-containing melt and water are described. These experiments involved dropping 1-kg batches of pure zirconium or zirconium-zirconium dioxide mixture melt into a column of water. A total of nine tests were conducted, including four with pure zirconium melt and five with Zr-ZrO{sub 2} mixture melt. Explosions took place only in those tests which were externally triggered. While the extent of zirconium oxidation in the triggered experiments was quite extensive, the estimated explosion energetics were found to be very small compared to the combined thermal and chemical energy available. (author)

  9. Color center annealing and ageing in electron and ion-irradiated yttria-stabilized zirconia

    International Nuclear Information System (INIS)

    Costantini, Jean-Marc; Beuneu, Francois

    2005-01-01

    We have used X-band electron paramagnetic resonance (EPR) measurements at room-temperature (RT) to study the thermal annealing and RT ageing of color centers induced in yttria-stabilized zirconia (YSZ), i.e. ZrO 2 :Y with 9.5 mol% Y 2 O 3 , by swift electron and ion-irradiations. YSZ single crystals with the orientation were irradiated with 2.5 MeV electrons, and implanted with 100 MeV 13 C ions. Electron and ion beams produce the same two color centers, namely an F + -type center (singly ionized oxygen vacancy) and the so-called T-center (Zr 3+ in a trigonal oxygen local environment) which is also produced by X-ray irradiations. Isochronal annealing was performed in air up to 973 K. For both electron and ion irradiations, the defect densities are plotted versus temperature or time at various fluences. The influence of a thermal treatment at 1373 K of the YSZ single crystals under vacuum prior to the irradiations was also investigated. In these reduced samples, color centers are found to be more stable than in as-received samples. Two kinds of recovery processes are observed depending on fluence and heat treatment

  10. Formation of zirconium dioxide layers on microelectrode of zirconium. Inhibition of the hydrogen evolution reaction

    Czech Academy of Sciences Publication Activity Database

    Pospíšil, Lubomír; Fanelli, N.; Hromadová, Magdaléna

    2017-01-01

    Roč. 49, C (2017), s. 128-133 ISSN 0324-1130 R&D Projects: GA ČR(CZ) GA16-03085S Institutional support: RVO:61388955 Keywords : zirconium * ZrO2 * corrosion Subject RIV: CG - Electrochemistry OBOR OECD: Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis) Impact factor: 0.238, year: 2016

  11. Internal Nano Voids in Yttria-Stabilised Zirconia (YSZ Powder

    Directory of Open Access Journals (Sweden)

    Chen Barad

    2017-12-01

    Full Text Available Porous yttria-stabilised zirconia ceramics have been gaining popularity throughout the years in various fields, such as energy, environment, medicine, etc. Although yttria-stabilised zirconia is a well-studied material, voided yttria-stabilised zirconia powder particles have not been demonstrated yet, and might play an important role in future technology developments. A sol-gel synthesis accompanied by a freeze-drying process is currently being proposed as a method of obtaining sponge-like nano morphology of embedded faceted voids inside yttria-stabilised zirconia particles. The results rely on a freeze-drying stage as an effective and simple method for generating nano-voided yttria-stabilised zirconia particles without the use of template-assisted additives.

  12. Tungsten metallizing alumina--yttria ceramics

    International Nuclear Information System (INIS)

    Cowan, R.E.; Stoddard, S.D.

    1977-03-01

    The ease with which high-alumina bodies may be metallized with tungsten is improved by additions of yttria to the alumina. Mechanisms of this bonding process were studied by use of optical and electron microscopy, electron microprobe, and tensile tests. Variables studied included yttria content of the body and the firing temperature during metallizing. The study showed that a reaction between the tungsten and the yttrogarnet grain boundary phase markedly improved adherence

  13. Laser surface modification of Yttria Stabilized Zirconia (YSZ) thermal barrier coating on AISI H13 tool steel substrate

    Science.gov (United States)

    Reza, M. S.; Aqida, S. N.; Ismail, I.

    2018-03-01

    This paper presents laser surface modification of plasma sprayed yttria stabilized zirconia (YSZ) coating to seal porosity defect. Laser surface modification on plasma sprayed YSZ was conducted using 300W JK300HPS Nd: YAG laser at different operating parameters. Parameters varied were laser power and pulse frequency with constant residence time. The coating thickness was measured using IM7000 inverted optical microscope and surface roughness was analysed using two-dimensional Mitutoyo Surface Roughness Tester. Surface roughness of laser surface modification of YSZ H-13 tool steel decreased significantly with increasing laser power and decreasing pulse frequency. The re-melted YSZ coating showed higher hardness properties compared to as-sprayed coating surface. These findings were significant to enhance thermal barrier coating surface integrity for dies in semi-solid processing.

  14. Microencapsulation of silicon nitride particles with yttria and yttria-alumina precursors

    International Nuclear Information System (INIS)

    Garg, A.K.; De Jonghe, L.C.

    1990-01-01

    Procedures are described to deposit uniform layers of yttria and yttria-alumina precursors on fine powders and whiskers of silicon nitride. The coatings were produced by aging at elevated temperatures aqueous systems containing the silicon nitride core particles, yttrium and aluminum nitrates, and urea. Optimum concentrations of the core particles, in relation to the reactants, were established to promote surface deposition of the oxide precursors. Polymeric dispersants were used effectively to prevent agglomeration of the solids during the microencapsulation process. The morphology of the powders was characterized using scanning and transmission electron microscopy. The mechanisms for the formation of the coated layers are discussed. A description is provided that allows qualitative assessment of the experimental factors that determine microencapsulation by a slurry method

  15. High yttria ferritic ODS steels through powder forging

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Deepak [Department of Metallurgical and Materials Engineering, I.I.T-Roorkee, Uttarakhand 247667 (India); Prakash, Ujjwal, E-mail: ujwalfmt@iitr.ac.in [Department of Metallurgical and Materials Engineering, I.I.T-Roorkee, Uttarakhand 247667 (India); Dabhade, Vikram V. [Department of Metallurgical and Materials Engineering, I.I.T-Roorkee, Uttarakhand 247667 (India); Laha, K.; Sakthivel, T. [Mechanical Metallurgy Group, IGCAR, Kalpakkam, Tamilnadu 603102 (India)

    2017-05-15

    Oxide dispersion strengthened (ODS) steels are being developed for future nuclear reactors. ODS Fe-18%Cr-2%W-0.2%Ti steels with 0, 0.35, 0.5, 1 and 1.5% Y{sub 2}O{sub 3} (all compositions in weight%) dispersion were fabricated by mechanical alloying of elemental powders. The powders were placed in a mild steel can and forged in a stream of hydrogen gas at 1473 K. The steels were forged again to final density. The strength of ODS steel increased with yttria content. Though this was accompanied by a decrease in tensile elongation, all the steels showed significant ductility. The ductility in high yttria alloys may be attributed to improved inter-particle bonding between milled powders due to reduction of surface oxides by hydrogen. This may permit development of ODS steels with yttria contents higher than the conventional limit of 0.5%. It is suggested that powder forging is a promising route to fabricate ODS steels with high yttria contents and improved ductility. - Highlights: •ODS steels with yttria contents beyond the conventional limit of 0.5 wt% were fabricated by powder forging in a hydrogen atmosphere. •All the alloys exhibited significant ductility. •This may be attributed to improved inter-particle bonding due to reduction of surface oxides by hydrogen. •Strength in excess of 300 MPa was obtained at 973 K for 0.5%, 1% and 1.5% yttria ODS alloys. •Powder forging is a promising route to fabricate ODS steels and permits development of compositions with up to 1.5% yttria.

  16. Effects of NiO addition on the densification, microstructure and electrical conductivity of Yttria fully-stabilized zirconia

    International Nuclear Information System (INIS)

    Batista, Rafael Morgado

    2010-01-01

    The effects produced by NiO addition to yttria fully-stabilized zirconia were systematically investigated. Commercial zirconia-8 mol% yttria, nickel acetate, nitrate, trihydroxycarbonate and nickel oxide were used as starting materials. The NiO content varied from 0.5 to 5 mol%, and the compositions were prepared by mechanically mixing the starting materials in the stoichiometric proportions. Densification studies carried out by density and dilatometry measurements revealed that the maximum shrinkage (∼16-∼20%) depends on the type of nickel precursor. In the second sintering stage the linear shrinkage increased with increasing NiO content (precursor: nickel trihydroxy-carbonate). In the first sintering stage, the activation energy for grain boundary diffusion changed according to the additive precursor, being lower for the oxide and higher for the trihydroxy-carbonate. In the second stage, when the major part of porosity is eliminated, the maximum shrinkage rate temperatures were found to be independent on the precursor except when nickel acetate is used. The solubility limit at 1350 degree C is 1.48% as determined by X-ray diffraction. Above the solubility limit the excess NiO is retained as a second randomly distributed phase. The main effect of the additive in the ceramic microstructure is to increase the average grain size. The electrical measurements showed that the additive did not produce any significant effect in the grain conductivity irrespective of the sintering time, except when the precursor material was nickel oxide. In this case, the grain conductivity increased with increasing sintering time. This effect is attributed to the crystallite size of the nickel oxide precursor, which is higher than that of 8YSZ, slowing down the formation of solid solution. However, the grain conductivity of samples prepared with nickel trihydroxy-carbonate precursor is slightly lower than those of other samples. The samples sintered for 15 h exhibited an additional

  17. Influence of nature of the substrate in the deposition of yttria-stabilized zirconia by spray pyrolysis

    International Nuclear Information System (INIS)

    Halmenschlager, C.M.; Malfatti, C.F.; Bergmann, C.P.; Neagu, R.

    2012-01-01

    Spray pyrolysis technique consist in spraying a precursor solution on a heated substrate. In the last few decades this process has attracted much attention because of its versatility. Controlling the parameters is possible to produce dense or porous film. Spray pyrolysis has been applied to obtain several materials such as electrodes or electrolytes for SOFC, semiconductors, materials for solar cells and so on. However, some behaviors such as Leidenfrost effect have been poorly considered and it may affect the coating quality. This work aims to evaluate the influence of the substrate and how Leidenfrost effect affects the coating by spray pyrolysis. To achieve this goal yttria-stabilized zirconia solutions made with different solvents were deposited on different substrates at different temperatures. These coatings were characterized by X-ray diffraction and scanning electron microscopy. The results show that there is a limit temperature which is related to properties of the solvent and the surface of the substrates where films are continuous. (author)

  18. Significance of internal stresses for the martensitic transformation in yttria-stabilized tetragonal zirconia polycrystals during degradation

    International Nuclear Information System (INIS)

    Schmauder, S.; Schubert, H.

    1986-01-01

    Various aspects of the tetragonal (t) to monoclinic (m) transformation during degradation have been studied experimentally and theoretically in yttria-stabilized tetragonal zirconia polycrystals (Y-TZP), i.e., polycrystalline t-ZrO/sub 2/ containing Y/sub 2/O/sub 3/ in solution. Transmission electron microscopy (TEM) revealed that protruding grains at the surface of Y-TZP specimens do not transform under corrosive conditions (250 0 C, humid atmosphere) even after n annealing time of 168 h.) Eigenstresses due to anistropic thermal expansion in and around protruding and bulk grains have been calculated for Y-TZP containing 2 and 3 mol% Y/sub 2/O/sub 3/. The prominent role of these stresses on subsequent transformation nucleation during degradation is shown to agree qualitatively with an established free energy concept. The lack of complete transformation of m-ZrO/sub 2/ is attributed to characteristics of the nucleation - and growth- controlled transformation process

  19. Surface modification of yttria stabilized zirconia via polydopamine inspired coating for hydroxyapatite biomineralization

    Science.gov (United States)

    Zain, Norhidayu Muhamad; Hussain, Rafaqat; Kadir, Mohammed Rafiq Abdul

    2014-12-01

    Yttria stabilized zirconia (YSZ) has been widely used as biomedical implant due to its high strength and enhanced toughening characteristics. However, YSZ is a bioinert material which constrains the formation of chemical bonds with bone tissue following implantation. Inspired by the property of mussels, the surface of YSZ ceramics was functionalized by quinone-rich polydopamine to facilitate the biomineralization of hydroxyapatite. YSZ discs were first immersed in 2 mg/mL of stirred or unstirred dopamine solution at either 25 or 37 °C. The samples were then incubated in 1.5 simulated body fluid (SBF) for 7d. The effect of coating temperature for stirred and unstirred dopamine solutions during substrate grafting was investigated on the basis of chemical compositions, wettability and biomineralization of hydroxyapatite on the YSZ functionalized surface. The results revealed that the YSZ substrate grafted at 37 °C in stirred solution of dopamine possessed significantly improved hydrophilicity (water contact angle of 44.0 ± 2.3) and apatite-mineralization ability (apatite ratio of 1.78). In summary, the coating temperature and stirring condition during grafting procedure affected the chemical compositions of the films and thus influenced the formation of apatite layer on the substrate during the biomineralization process.

  20. An investigation on the preparation of nanocrystalline hydrous zirconia from zirconium tungstate

    Science.gov (United States)

    Antunes, M.; Perottoni, C. A.; Gouvêa, D.; Machado, G.; Zorzi, J. E.

    2018-02-01

    Hydrous nanocrystalline zirconia was prepared from an unusual precursor—the bimetallic oxide zirconium tungstate (ZrW2O8)—in alkaline medium. Different experimental conditions (NaOH concentration, time and temperature) were used to investigate the effects on crystallographic, morphological, chemical and thermal characteristics of the products. The resulting materials are composed of particles with a crystal structure similar to that of cubic ZrO2 (or a mixture of tetragonal and cubic phases, depending on the synthesis conditions), with particle size around 5 nm and crystallites around 3 nm in diameter. These particles form high surface area agglomerates, exhibiting mesoporosity and capacity for adsorption of water and carbon dioxide. The synthesis mechanism appears to be constituted, first, by a chemical substitution reaction between the WO4 tetrahedra and hydroxyl ions, with subsequent solubilization of the structure. Indeed, excess hydroxyls in the medium form colloidal zirconium ions which polymerize/condense, generating crystalline nuclei in a process facilitated by heterogeneous nucleation and supersaturation. The presence of residual tungsten in all samples appears to be a key element for stabilizing the size and crystalline structure of the materials produced.

  1. Effect of Co3O4 addition on densification of 8 mil% Yttria stabilized zirconia

    International Nuclear Information System (INIS)

    Grilo, J.P.F.; Neto, P.P.B.; Souza, G.L.; Macedo, D.A.; Paskocimas, C.A.; Nascimento, R.M.

    2012-01-01

    8 mol% Yttria stabilized zirconia (8YSZ) is the most common material used as electrolyte in solid oxide fuel cells (SOFC). In recent years, many research efforts have been focused on trying to reduce its sintering temperature with a view of the possibility of co-sintering of the anode/electrolyte interface. In this context, the use of sintering aids is a major technological routes used to enhance the densification of YSZ. In this work, Co 3 O 4 powders obtained by the Pechini method were used as sintering aids for 8YSZ. The effect of the addition of Co 3 O 4' (between 0.075 and 1 wt.%) in the densification of 8YSZ was investigated by X-ray diffraction, electron microscopy and density measurements. The results indicated that the optimum temperature sintering decreases with increasing content of Co 3 O 4 . The best content of the sintering aid was 0.25 wt.%, for this content was obtained value of relative density above 90% after sintering at temperatures as low as 1350 deg C. (author)

  2. TECHNOLOGICAL PECULIARITIES OF THERMAL BARRIER COATINGS BASED ON ZIRCONIUM DIOXIDE

    Directory of Open Access Journals (Sweden)

    V. V. Okovity

    2016-01-01

    Full Text Available A technology for formation of thermal barrier coatings (TBC based on zirconium dioxide has been developed in the paper. The paper investigates structures of phase composition and thermal stability of such developed coatings. Investigation results pertaining to formation of an oxide system ZrO2 – Y2O3, while using plasma spraying and subsequent high-energy processing, which allows to increase resistance of a thermal barrier coating to thermal cycling heat resistance of the coating at temperature of 1100 °C. This leads to longer protection of bottom layer against high-temperature exposure. The methodology is based on complex metallographic, X-ray diffraction and electron microscopy investigations of structural elements in composite plasma coatings of the ZrO2 – Y2O system. Resistance of plasma coatings (Мe – Cr – Al – Y/ZrO2 – Y2O3-type, used as TBC to protect gas turbine engine blades under conditions of frequent thermal cyclings is limited by cleavage of an outer ceramic layer. Structural and electron microprobe investigations have shown that as a result of thermal cycling an outer atmosphere due to porous structure of the ceramic coating layer, migrates to the surface of lower metal coating, causing its oxidation. As a result, the metal-ceramic Al2O3 layer is formed at a metal-ceramic interface and it changes a stress state of the coating that causes a reduction of protective properties. Thus, a high heat resistance of thermal barrier coatings depends on processes occurring at the interface between metal and ceramic coating layers. A laser impact on samples with TBC leads to changes in the structure of the oxide layer of ZrO2 – Y2O3. In this case its initial surface characterized by considerable relief is significantly flattened due to processing and the coating is fractured and it is separated in fragments. As the oxide coating has low thermal conductivity, and the time of laser exposure is about 10–3 sec, a heat flux

  3. Effect of highly dispersed yttria addition on thermal stability of hydroxyapatite

    Energy Technology Data Exchange (ETDEWEB)

    Parente, P., E-mail: pparente@icv.csic.es [Instituto de Ceramica y Vidrio, CSIC, C/Kelsen 5, Madrid 28049 (Spain); Savoini, B. [Departamento de Fisica, Universidad Carlos III de Madrid, Avda. Universidad 30, Leganes 28911 (Spain); Ferrari, B. [Instituto de Ceramica y Vidrio, CSIC, C/Kelsen 5, Madrid 28049 (Spain); Monge, M.A.; Pareja, R. [Departamento de Fisica, Universidad Carlos III de Madrid, Avda. Universidad 30, Leganes 28911 (Spain); Sanchez-Herencia, A.J. [Instituto de Ceramica y Vidrio, CSIC, C/Kelsen 5, Madrid 28049 (Spain)

    2013-03-01

    The capability of the colloidal method to produce yttria (Y{sub 2}O{sub 3}) dispersed hydroxyapatite (HA) has been investigated as an alternative method to the conventional method of mechanical mixing and sintering for developing HA-based materials that could exhibit controllable and enhanced functional properties. A water based colloidal route to produce HA materials with highly dispersed Y{sub 2}O{sub 3} has been applied, and the effect of 10 wt.% Y{sub 2}O{sub 3} addition to HA investigated by thermal analysis, X-ray diffraction and Fourier transform infrared spectroscopy. These measurements evidence a remarkable effect of this Y{sub 2}O{sub 3} addition on decomposition mechanisms of synthetic HA. Results show that incorporation of Y{sub 2}O{sub 3} as dispersed second phase is beneficial because it hinders the decomposition mechanisms of HA into calcium phosphates. This retardation will allow the control of the sintering conditions for developing HA implants with improved properties. Besides, substitution of Ca{sup 2+} with Y{sup 3+} ions appears to promote the formation of OH{sup -} vacancies, which could improve the conductive properties of HA favorable to osseointegration. - Highlights: Black-Right-Pointing-Pointer We reveal the influence of Y{sub 2}O{sub 3} on thermal stability of hydroxyapatite. Black-Right-Pointing-Pointer Incorporation of Y{sub 2}O{sub 3} delays decomposition of hydroxyapatite to calcium phosphates. Black-Right-Pointing-Pointer Addition of Y{sub 2}O{sub 3} enables sintering conditions more favorable to the densification.

  4. OPTIMIZATION OF COMPLEX MINERAL TANNING MATERIAL ON THE BASIS OF ALUMINIUM AND ZIRCONIUM

    Directory of Open Access Journals (Sweden)

    K. Toguzbaev

    2012-01-01

    Full Text Available Influence of acetate ion on stability of alumina-zirconium tanning to alkalization has been investigated in the paper. The investigation results have shown that at the ratio of Al3+:Zr4+:CH3COO = 1:1:1 it  is  possible  to  prepare  a  solution  of  masking   alumina-zirconium  tanning  (АЦД-М   with  high stability and low consumption of aluminum sulfate. The paper reveals that masking of alumina-zirconium tanning by natrium acetate allows to increase stability to alkalization and improve tanning properties. It has been established that for a stable increase of fatty matter viscosity and improvement of  leather water-resistant properties it is necessary to use water-insoluble aluminum and zirconium soaps of carboxylic acids.

  5. Study of physical and mechanical properties and metallic resistance of zirconium dioxide refractories

    International Nuclear Information System (INIS)

    Karaulov, A.G.; Piskun, T.V.; Kvasman, N.M.

    1993-01-01

    Method of planned experiment was used to study the effect of binding, strengthening and sintering additions on the edge wetting angle and ultimate strength in compression of samples of zirconium ramming and concrete masses. Linear regression equations, enabling to determine the regularities of addition influence on analyzed properties, were derived. It is shown that the edge wetting angle nicreases from 110 up to 113-118 deg in result of introduction of zirconium-containing binding agents

  6. Effect of preparation technique of hydrated zirconium(4) dioxide on sorption of microimpurities of nonferrous metals, iron(3) and thorium(4) from lanthanum(3) nitrate solutions

    International Nuclear Information System (INIS)

    Bekrenev, A.V.; Pyartman, A.K.; Belousov, E.A.

    1989-01-01

    A study was made on the effect of peculiarities of hydrated zirconium(4) dioxide (HZD) synthesis on reproducibility of its sorption properties. It is shown that change of zirconium(4) concentration in basic solution within the limits of 0-1.0 mol/dm 3 its HCl acidity from 0 up to 1.0 mol/dm 3 concentration of NaOH solution used for HZD precipitation within the limits of 1.0-10.0 mol/dm 3 the final pH value of HZD gel from 10 up to 14 affects slightly the impurity element sorption from lanthanum nitrate solution. Freezing of HZD leads to increase of capacity and decrease of selectivity of sorbent samples with respect to impurity ions (Ni 2+ , Co 2+ , Bi 3+ , Fe 3+ , Th 4+ ); increase of the time of gel ripening leads to decrease of capacity and growth of selectivity

  7. Thickness effects of yttria-doped ceria interlayers on solid oxide fuel cells

    Science.gov (United States)

    Fan, Zeng; An, Jihwan; Iancu, Andrei; Prinz, Fritz B.

    2012-11-01

    Determining the optimal thickness range of the interlayed yttria-doped ceria (YDC) films promises to further enhance the performance of solid oxide fuel cells (SOFCs) at low operating temperatures. The YDC interlayers are fabricated by the atomic layer deposition (ALD) method with one super cycle of the YDC deposition consisting of 6 ceria deposition cycles and one yttria deposition cycle. YDC films of various numbers of ALD super cycles, ranging from 2 to 35, are interlayered into bulk fuel cells with a 200 um thick yttria-stabilized zirconia (YSZ) electrolyte. Measurements and analysis of the linear sweep voltammetry of these fuel cells reveal that the performance of the given cells is maximized at 10 super cycles. Auger elemental mapping and X-ray photoelectron spectroscopy (XPS) techniques are employed to determine the film completeness, and they verify 10 super cycles of YDC to be the critical thickness point. This optimal YDC interlayer condition (6Ce1Y × 10 super cycles) is applied to the case of micro fuel cells as well, and the average performance enhancement factor is 1.4 at operating temperatures of 400 and 450 °C. A power density of 1.04 W cm-2 at 500 °C is also achieved with the optimal YDC recipe.

  8. Dominant pinning mechanisms in YBa2Cu3O7-x films on single and polycrystalline yttria stabilized zirconia substrates

    Science.gov (United States)

    Harshavardhan, K. S.; Rajeswari, M.; Hwang, D. M.; Chen, C. Y.; Sands, T.; Venkatesan, T.; Tkaczyk, J. E.; Lay, K. W.; Safari, A.

    1992-04-01

    Critical-current densities have been measured in YBa2Cu3O7-x films deposited on (100) yttria stabilized zirconia (YSZ) and polycrystalline YSZ substrates as a function of temperature (4.5-88 K), magnetic field (0-1 T) and orientation relative to the applied field. The results indicate that in films on polycrystalline substrates, surface and interface pinning play a dominant role at high temperatures. In films on (100) YSZ, pinning is mainly due to intrinsic layer pinning as well as extrinsic pinning associated with the interaction of the fluxoids with point defects and low energy planar (2D) boundaries. The differences are attributed to the intrinsic rigidity of single fluxoids which is reduced in films on polycrystalline substrates thereby weakening the intrinsic layer pinning.

  9. Study of crystallite size of yttria-stabilized zirconia powders by Rietveld method

    International Nuclear Information System (INIS)

    Leite, Wellington Claiton; Brinatti, Andre Mauricio; Ribeiro, Mauricio Aparecido; Andrade, Andre Vitor Chaves de; Chinelatto, Adriana Scoton Antonio; Chinelatto, Adilson Luiz

    2009-01-01

    The yttria-stabilized zirconia (YSZ) is used in a great variety of applications, for example, electrolytes of solid oxide fuel cells and oxygen sensors. In the study of YSZ, the particle size powders and sintering processes are important to define the final properties of the zirconia products. The objectives of this work were to determine the phases and the crystalline size using X-Ray Diffraction (XRD) data and the Rietveld Method (RM) of the YSZ powders obtained by chemical synthesis based on the Pechini method. It was used ZrOCl 2.8 H 2 O and Y(NO 3 ) 3.5 H 2 O as precursors reagents. After calcination at 550 deg C during 24 hours, the powder was analyzed by XRD and scanning electronic microscopy (SEM). From XRD and using Rietveld method were verified that there is only cubic phase with lattice parameter a = 5.1307(1) Å and the space group Fm3m. Due to substitution of the Zr atoms in the Y atoms sites, there were vacancies in 17.72 % of O atoms sites. However, the percentage of substitution of Zr atoms in Y atoms sites in the structure not was determinate because the curves of atomic scattering of them are very similar. Using Scherrer equation and considering anisotropy effect, the average crystalline size was determinate: 10,43 nm (c axis) and 10,39 (b axis). This spherical symmetry also observed for SEM. (author)

  10. Contribution to Yttria corrosion study by liquid uranium

    International Nuclear Information System (INIS)

    Tournier, C.

    1995-02-01

    We are studying liquid uranium and polycrystalline Yttria interactions under secondary vacuum. The type, morphology and thickness of interfacial reaction products between U and Y 2 O 3 are examined by optical and confocal microscopy, SEM, X ray diffraction, X analysis and XPS. The most important parameters are the stoechiometry and microstructure of the Yttria, the oxygen partial pressure of the furnace atmosphere, pO 2 , and the duration and temperature of experiments. In the thermodynamic modelization, we take into account exchanges at the ceramic/metal interface and exchanges between the molten metal and the furnace atmosphere. Liquid uranium reacts with Yttria to form UO 2 at the interface which gradually changes into a solid solution UO 2 -Y 2 O 3 . The total thickness of reaction products results from two opposing reactions: (i) oxidation of uranium by Yttria (low pO 2 ) or by the atmosphere (high pO 2 ), controlled by migration of oxygen vacancies at Yttria grain boundaries. (ii) deoxidation caused by the formation of volatile uranium monoxide. On the other hand, we observed a transition of the type ''non-wettability → wettability '' which occurs subsequent to an increase of the stoichiometric variation x in Y 2 O 3-x . (author). 69 refs., 76 figs., 30 tabs

  11. Evaluation of tensile strength and fracture toughness of yttria-stabilized zirconia polycrystals with fracture surface analysis

    International Nuclear Information System (INIS)

    Oishi, Manabu; Matsuda, Yukihisa; Noguchi, Kenichi; Masaki, Takaki

    1995-01-01

    The tensile strength of yttria-stabilized tetragonal zirconia polycrystals (Y-TZPs) was measured and the fracture surfaces were analyzed with the scanning electron microscope and X-ray microanalyzer. The fracture origins of the pressureless-sintered samples were voids or inclusions such as Al 2 O 3 , Al 2 O 3 with SiO 2 , and cubic-ZrO 2 , while the fracture origins of the hot isostatically pressed samples were inclusions; no voids were detected at fracture origins. The higher strengths of the hot isostatically pressed samples versus those of the pressureless-sintered samples were consistent with the change in fracture origins. The fracture toughness of the samples calculate from the tensile strength and analysis of the fracture origins was 3.4 to 3.7 MPa ·√m. These values are lower than those measured with the SEPB method. These discrepancies might be caused by the difference in the state of the fracture origin and its neighborhood, such as the size of the fracture origin and interaction between two surfaces in the precrack

  12. Influence of surface treatment of yttria-stabilized tetragonal zirconia polycrystal with hot isostatic pressing on cyclic fatigue strength.

    Science.gov (United States)

    Iijima, Toshihiko; Homma, Shinya; Sekine, Hideshi; Sasaki, Hodaka; Yajima, Yasutomo; Yoshinari, Masao

    2013-01-01

    Hot isostatic pressing processed yttria-stabilized tetragonal zirconia polycrystal (HIP Y-TZP) has the potential for application to implants due to its high mechanical performance. The aim of this study was to investigate the influence of surface treatment of HIP Y-TZP on cyclic fatigue strength. HIP Y-TZP specimens were subjected to different surface treatments. Biaxial flexural strength was determined by both static and cyclic fatigue testing. In the cyclic fatigue test, the load was applied at a frequency of 10 Hz for 10(6) cycles in distilled water at 37°C. The surface morphology, roughness, and crystal phase of the surfaces were also evaluated. The cyclic fatigue strength (888 MPa) of HIP Y-TZP with sandblasting and acid-etching was more than twice that of Y-TZP as specified in ISO 13356 for surgical implants (320 MPa), indicating the clinical potential of this material.

  13. Novel Cranial Implants of Yttria-Stabilized Zirconia as Acoustic Windows for Ultrasonic Brain Therapy.

    Science.gov (United States)

    Gutierrez, Mario I; Penilla, Elias H; Leija, Lorenzo; Vera, Arturo; Garay, Javier E; Aguilar, Guillermo

    2017-11-01

    Therapeutic ultrasound can induce changes in tissues by means of thermal and nonthermal effects. It is proposed for treatment of some brain pathologies such as Alzheimer's, Parkinson's, Huntington's diseases, and cancer. However, cranium highly absorbs ultrasound reducing transmission efficiency. There are clinical applications of transcranial focused ultrasound and implantable ultrasound transducers proposed to address this problem. In this paper, biocompatible materials are proposed for replacing part of the cranium (cranial implants) based on low porosity polycrystalline 8 mol% yttria-stabilized-zirconia (8YSZ) ceramics as acoustic windows for brain therapy. In order to assess the viability of 8YSZ implants to effectively transmit ultrasound, various 8YSZ ceramics with different porosity are tested; their acoustic properties are measured; and the results are validated using finite element models simulating wave propagation to brain tissue through 8YSZ windows. The ultrasound attenuation is found to be linearly dependent on ceramics' porosity. Results for the nearly pore-free case indicate that 8YSZ is highly effective in transmitting ultrasound, with overall maximum transmission efficiency of ≈81%, compared to near total absorption of cranial bone. These results suggest that 8YSZ polycrystals could be suitable acoustic windows for ultrasound brain therapy at 1 MHz. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. High yttria ferritic ODS steels through powder forging

    Science.gov (United States)

    Kumar, Deepak; Prakash, Ujjwal; Dabhade, Vikram V.; Laha, K.; Sakthivel, T.

    2017-05-01

    Oxide dispersion strengthened (ODS) steels are being developed for future nuclear reactors. ODS Fe-18%Cr-2%W-0.2%Ti steels with 0, 0.35, 0.5, 1 and 1.5% Y2O3 (all compositions in weight%) dispersion were fabricated by mechanical alloying of elemental powders. The powders were placed in a mild steel can and forged in a stream of hydrogen gas at 1473 K. The steels were forged again to final density. The strength of ODS steel increased with yttria content. Though this was accompanied by a decrease in tensile elongation, all the steels showed significant ductility. The ductility in high yttria alloys may be attributed to improved inter-particle bonding between milled powders due to reduction of surface oxides by hydrogen. This may permit development of ODS steels with yttria contents higher than the conventional limit of 0.5%. It is suggested that powder forging is a promising route to fabricate ODS steels with high yttria contents and improved ductility.

  15. Effect of impregnation of La0.85Sr0.15MnO3/Yttria Stabilized Zirconia Solid Oxide Fuel Cell cathodes with La0.85Sr0.15MnO3 or Al2O3 nano-particles

    DEFF Research Database (Denmark)

    Kammer Hansen, Kent; Wandel, Marie; Liu, Yi-Lin

    2010-01-01

    Strontium substituted lanthanum manganite and yttria stabilized zirconia solid oxide fuel cell composite electrodes were impregnated with nano-particles of strontium substituted lanthanum manganite or alumina. A clear positive effect was observed on low performing electrodes and on good performing...

  16. Photometric determination of zirconium in phosphorites by reaction with arsenazo III

    Energy Technology Data Exchange (ETDEWEB)

    Nikol' skaya, I V; Maksimov, A V

    1976-05-01

    The reaction between zirconium and arsenazo III has been studied over a wide range of hydrochloric acid concentration and under different conditions. 6 and 9 M HCl solutions are optimal for determining zirconium; the least effect of phosphate ions and color stability in time are observed in this case. The determination of zirconium should be carried out using 10-fold reagent excess and in 15-20 min after adding the reagent. The interference of phosphate ions has been estimated. A procedure has been developed for photometric determination of zirconium in phosphorites with prior acid separation of soluble impurities.

  17. Oxidation kinetics of some zirconium alloys in flowing carbon dioxide at high temperatures

    International Nuclear Information System (INIS)

    Kohli, R.

    1980-01-01

    The oxidation kinetics of three zirconium alloys (Zr-2.2 wt% Hf, Zr-2.5 wt% Nb, and Zr-3 wt% Nb-1 wt% Sn) have been measured in flowing carbon dioxide in the temperature range from 873 to 1173 K to 120 ks (2000 min). At all oxidation temperatures, Zr-2.5 Nb and Zr-3 Nb-1 Sn showed a transition to rapid linear kinetics after initial parabolic oxidation. The Zr-2.2 Hf showed this transition at temperatures in the range from 973 to 1173 K; at 873 K, no transition was observed within the oxidation times reported. The Zr-2.2 Hf showed the smallest weight gains, followed in order by Zr-2.5 Nb and Zr-3 Nb-1 Sn. Increased oxidation rates and shorter times-to-rate-transition of Zr-2.2 Nb and Zr-1 Sn as compared with Zr-2.2 Hf can be attributed to the presence of niobium, tin, and hafnium in the alloys. This is considered in terms of the Nomura-Akutsu model, according to which hafnium should delay the rate transition, while niobium and tin lead to shorter times-to-rate-transition. The scale on Zr-2.2 Hf was identified as monoclinic zirconia, while the tetragonal phase, 6ZrO 2 .Nb 2 O 5 , was contained in the monoclinic zirconia scales on both other alloys

  18. Phase evolution and thermal properties of yttria-stabilized hafnia nano-coatings deposited on alumina

    Science.gov (United States)

    Rubio, Ernesto Javier

    High-temperature coatings are critical to the future power-generation systems and industries. Thermal barrier coatings (TBCs), which are usually the ceramic materials applied as thin coatings, protect engine components and allow further increase in engine temperatures for higher efficiency. Thus, the durability and reliability of the coating systems have to be more robust compared to current natural gas based engines. While a near and mid-term target is to develop TBC architecture with a 1300 °C surface temperature tolerance, a deeper understanding of the structure evolution and thermal behavior of the TBC-bond coat interface, specifically the thermally grown oxide (TGO), is of primary importance. In the present work, attention is directed towards yttria-stabilized hafnia (YSH) coatings on alumina (α-Al2O 3) to simulate the TBC-TGO interface and understand the phase evolution, microstructure and thermal oxidation of the coatings. YSH coatings were grown on α-Al2O3 substrates by sputter deposition by varying coating thickness in a wide range ˜30-1000 nm. The effect of coating thickness on the structure, morphology and the residual stress has been investigated using X-ray diffraction (XRD) and high resolution scanning electron microscopy (SEM). Thermal oxidation behavior of the coatings has been evaluated using the isothermal oxidation measurements under static conditions. X-ray diffraction analyses revealed the existence of monoclinic hafnia phase for relatively thin coatings indicating that the interfacial phenomena are dominant in phase stabilization. The evolution towards pure stabilized cubic phase of hafnia with the increasing coating thickness is observed. The SEM results indicate the changes in morphology of the coatings; the average grain size increases from 15 to 500 nm with increasing thickness. Residual stress was calculated employing XRD using the variable ψ-angle. Relation between residual stress and structural change is also studied. The results

  19. Electroless deposition process for zirconium and zirconium alloys

    Science.gov (United States)

    Donaghy, Robert E.; Sherman, Anna H.

    1981-01-01

    A method is disclosed for preventing stress corrosion cracking or metal embrittlement of a zirconium or zirconium alloy container that is to be coated on the inside surface with a layer of a metal such as copper, a copper alloy, nickel, or iron and used for holding nuclear fuel material as a nuclear fuel element. The zirconium material is etched in an etchant solution, desmutted mechanically or ultrasonically, oxidized to form an oxide coating on the zirconium, cleaned in an aqueous alkaline cleaning solution, activated for electroless deposition of a metal layer and contacted with an electroless metal plating solution. This method provides a boundary layer of zirconium oxide between the zirconium container and the metal layer.

  20. Penetration and characteristics of an intergranular-liquid phase during sintering of CaSi2O5-dropped 8 mol%-yttria-stabilized zirconia estimation by impedance spectroscopy

    International Nuclear Information System (INIS)

    Jung, Young-Soo; Choi, Jung-Hae; Lee, Jong-Heun

    2004-01-01

    The grain-boundary resistivity of CaSi 2 O 5 -dropped 8 mol%-yttria-stabilized zirconia (8YSZ) was determined by impedance spectroscopy using sub-millimeter-scale electrodes. During sintering, a liquid that formed at the top surface of the specimen penetrated into the 8YSZ and induced enhanced grain growth near the surface region. The grain-boundary resistivity of the specimen surface was observed to be 150 times higher than that of the interior. The deterioration of the grain-boundary conductivity was explained in terms of the presence of an intergranular siliceous phase

  1. Zirconium-cerin solid solutions: thermodynamic model and thermal stability at high temperature; Solutions solides de zirconium dans la cerine: modele thermodynamique et stabilite thermique a haute temperature

    Energy Technology Data Exchange (ETDEWEB)

    Janvier, C.

    1998-04-02

    The oxides-gaseous dioxygen equilibria and the textural thermal stability of six zirconium-cerin solutions Ce{sub 1-x}Zr{sub x}O{sub 2} (0zirconium concentration. A kinetic study (by calcination at 950 degrees Celsius of the solid solutions) of the specific surface area decrease has revealed a minima (0

  2. On the stabilization of niobium(V) solutions by zirconium(IV) and hafnium(IV)

    DEFF Research Database (Denmark)

    Sørensen, E.; Bjerre, A.B.

    1992-01-01

    Niobium cannot be separated from zirconium or hafnium when these elements occur together in solution with common anions such as chloride and sulphate. This is ascribed to the co-polymerization of niobium(V) and the hydrolysed ionic species of zirconium(IV) and hafnium(IV) to form colloidal...

  3. Removal of arsenic and methylene blue from water by granular activated carbon media impregnated with zirconium dioxide nanoparticles

    International Nuclear Information System (INIS)

    Sandoval, Robert; Cooper, Anne Marie; Aymar, Kathryn; Jain, Arti; Hristovski, Kiril

    2011-01-01

    Highlights: → The morphology, content and distribution of ZrO 2 nanoparticles inside the pores of GAC are affected by the type of GAC. → Lignite ZrO 2 -GAC exhibited Zr content of 12%, while bituminous based ZrO 2 -GAC exhibited Zr content of 9.5%. → The max. adsorption capacities under equilibrium conditions in 5 mM NaHCO 3 buffered water matrix were ∼8.6 As/g Zr and ∼12.2 mg As/g Zr at pH = 7.6. → The max. adsorption capacities under equilibrium conditions in NSF 53 Challenge water matrix while ∼1.5 mg As/g Zr and ∼3.2 mg As/g Zr at pH = 7.6. → Introduction of nanoparticles did not impact the MB adsorption capacity of the lignite ZrO 2 -GAC, while the one of bituminous ZrO 2 -GAC decreased. - Abstract: This study investigated the effects of in situ ZrO 2 nanoparticle formation on properties of granulated activated carbon (GAC) and their impacts on arsenic and organic co-contaminant removal. Bituminous and lignite based zirconium dioxide impregnated GAC (Zr-GAC) media were fabricated by hydrolysis of zirconium salt followed by annealing of the product at 400 o C in an inert environment. Media characterization suggested that GAC type does not affect the crystalline structure of the resulting ZrO 2 nanoparticles, but does affect zirconium content of the media, nanoparticle morphology, nanoparticle distribution, and surface area of Zr-GAC. The arsenic removal performance of both media was compared using 5 mM NaHCO 3 buffered ultrapure water and model groundwater containing competing ions, both with an initial arsenic C 0 ∼ 120 μg/L. Experimental outcomes suggested favorable adsorption energies and higher or similar adsorption capacities than commercially available or experimental adsorbents when compared on the basis of metal content. Short bed adsorber column tests showed that arsenic adsorption capacity decreases as a result of kinetics of competing ions. Correlation between the properties of the media and arsenic and methylene blue removal

  4. Temperature-dependent thermal conductivity of flexible yttria-stabilized zirconia substrate via 3ω technique

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Shivkant; Yarali, Milad; Mavrokefalos, Anastassios [Department of Mechanical Engineering, University of Houston, Houston, TX (United States); Shervin, Shahab [Materials Science and Engineering Program, University of Houston, Houston, TX (United States); Venkateswaran, Venkat; Olenick, Kathy; Olenick, John A. [ENrG Inc., Buffalo, NY (United States); Ryou, Jae-Hyun [Department of Mechanical Engineering, University of Houston, Houston, TX (United States); Materials Science and Engineering Program, University of Houston, Houston, TX (United States); Texas Center for Superconductivity, University of Houston (TcSUH), Houston, TX (United States)

    2017-10-15

    Thermal management in flexible electronic has proven to be challenging thereby limiting the development of flexible devices with high power densities. To truly enable the technological implementation of such devices, it is imperative to develop highly thermally conducting flexible substrates that are fully compatible with large-scale fabrication. Here, we present the thermal conductivity of state-of-the-art flexible yttria-stabilized zirconia (YSZ) substrates measured using the 3ω technique, which is already commercially manufactured via roll-to-roll technique. We observe that increasing the grain size increases the thermal conductivity of the flexible 3 mol.% YSZ, while the flexibility and transparency of the sample are hardly affected by the grain size enlargement. We exhibit thermal conductivity values of up to 4.16 Wm{sup -1}K {sup -1} that is at least 4 times higher than state-of-the-art polymeric flexible substrates. Phonon-hopping model (PHM) for granular material was used to fit the measured thermal conductivity and accurately define the thermal transport mechanism. Our results show that through grain size optimization, YSZ flexible substrates can be realized as flexible substrates, that pave new avenues for future novel application in flexible electronics through the utilization of both their ceramic structural flexibility and high heat dissipating capability. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Contribution to Yttria corrosion study by liquid uranium; Contribution a l`etude de la corrosion de l`yttria par l`uranium liquide

    Energy Technology Data Exchange (ETDEWEB)

    Tournier, C

    1995-02-01

    We are studying liquid uranium and polycrystalline Yttria interactions under secondary vacuum. The type, morphology and thickness of interfacial reaction products between U and Y{sub 2}O{sub 3} are examined by optical and confocal microscopy, SEM, X ray diffraction, X analysis and XPS. The most important parameters are the stoechiometry and microstructure of the Yttria, the oxygen partial pressure of the furnace atmosphere, pO{sub 2}, and the duration and temperature of experiments. In the thermodynamic modelization, we take into account exchanges at the ceramic/metal interface and exchanges between the molten metal and the furnace atmosphere. Liquid uranium reacts with Yttria to form UO{sub 2} at the interface which gradually changes into a solid solution UO{sub 2}-Y{sub 2}O{sub 3}. The total thickness of reaction products results from two opposing reactions: (i) oxidation of uranium by Yttria (low pO{sub 2}) or by the atmosphere (high pO{sub 2}), controlled by migration of oxygen vacancies at Yttria grain boundaries. (ii) deoxidation caused by the formation of volatile uranium monoxide. On the other hand, we observed a transition of the type ``non-wettability {yields} wettability `` which occurs subsequent to an increase of the stoichiometric variation x in Y{sub 2}O{sub 3-x}. (author). 69 refs., 76 figs., 30 tabs.

  6. Thickness determination of large-area films of yttria-stabilized zirconia produced by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Pryds, N. [Materials Research Department, Riso National Laboratory, DK-4000 Roskilde (Denmark)]. E-mail: nini.pryds@risoe.dk; Toftmann, B. [Department of Optics and Plasma Research, Riso National Laboratory, DK-4000 Roskilde (Denmark); Bilde-Sorensen, J.B. [Materials Research Department, Riso National Laboratory, DK-4000 Roskilde (Denmark); Schou, J. [Department of Optics and Plasma Research, Riso National Laboratory, DK-4000 Roskilde (Denmark); Linderoth, S. [Materials Research Department, Riso National Laboratory, DK-4000 Roskilde (Denmark)

    2006-04-30

    Films of yttria-stabilized zirconia (YSZ) on a polished silicon substrate of diameter up to 125 mm have been produced in a large-area pulsed laser deposition (PLD) setup under typical PLD conditions. The film thickness over the full film area has been determined by energy-dispersive X-ray spectrometry in a scanning electron microscope (SEM) with use of a method similar to one described by Bishop and Poole. The attenuation of the electron-induced X-rays from the Si wafer by the film was monitored at a number of points along a diameter and the thickness was determined by Monte Carlo simulations of the attenuation for various values of film thickness with the program CASINO. These results have been compared with direct measurements in the SEM of the film thickness on a cross-section on one of the wafers. The results of these measurements demonstrate the ability of this technique to accurately determine the thickness of a large film, i.e. up to diameters of 125 mm, in a relatively short time, without destroying the substrate, without the need of a standard sample and without the need of a flat substrate. We have also demonstrated that by controlling the deposition parameters large-area YSZ films with uniform thickness can be produced.

  7. Thickness determination of large-area films of yttria-stabilized zirconia produced by pulsed laser deposition

    International Nuclear Information System (INIS)

    Pryds, N.; Toftmann, B.; Bilde-Sorensen, J.B.; Schou, J.; Linderoth, S.

    2006-01-01

    Films of yttria-stabilized zirconia (YSZ) on a polished silicon substrate of diameter up to 125 mm have been produced in a large-area pulsed laser deposition (PLD) setup under typical PLD conditions. The film thickness over the full film area has been determined by energy-dispersive X-ray spectrometry in a scanning electron microscope (SEM) with use of a method similar to one described by Bishop and Poole. The attenuation of the electron-induced X-rays from the Si wafer by the film was monitored at a number of points along a diameter and the thickness was determined by Monte Carlo simulations of the attenuation for various values of film thickness with the program CASINO. These results have been compared with direct measurements in the SEM of the film thickness on a cross-section on one of the wafers. The results of these measurements demonstrate the ability of this technique to accurately determine the thickness of a large film, i.e. up to diameters of 125 mm, in a relatively short time, without destroying the substrate, without the need of a standard sample and without the need of a flat substrate. We have also demonstrated that by controlling the deposition parameters large-area YSZ films with uniform thickness can be produced

  8. Synthesis of Yttria-stabilized zirconia nanoparticles by decomposition of metal nitrates coated on carbon powder

    International Nuclear Information System (INIS)

    Jiang, S.; Stangle, G.C.; Amarakoon, V.R.; Schulze, W.A.

    1996-01-01

    Weakly agglomerated nanoparticles of yttria-stabilized zirconia (YSZ) were synthesized by a novel process which involved the decomposition of metal nitrates that had been coated on ultrafine carbon black powder, after which the carbon black was gasified. The use of ultrafine, high-surface-area carbon black powder apparently allowed the nanocrystalline oxide particles to form and remain separate from each other, after which the carbon black was gasified at a somewhat higher temperature. As a result, the degree of agglomeration was shown to be relatively low. The average crystallite size and the specific surface area of the as-synthesized YSZ nanoparticles were 5∼6 nm and 130 m 2 /g, respectively, for powder synthesized at 650 degree C. The as-synthesized YSZ nanoparticles had a light brown color and were translucent, which differs distinctly from conventional YSZ particles which are typically white and opaque. The mechanism of the synthesis process was investigated, and indicated that the gasification temperature had a direct effect on the crystallite size of the as-synthesized YSZ nanoparticles. High-density and ultrafine-grained YSZ ceramic articles were prepared by fast-firing, using a dwell temperature of 1250 degree C and a dwell time of two minutes or less. copyright 1996 Materials Research Society

  9. Fast reactor irradiation effects on fracture toughness of Si_3N_4 in comparison with MgAl_2O_4 and yttria stabilized ZrO_2

    International Nuclear Information System (INIS)

    Tada, K.; Watanabe, M.; Tachi, Y.; Kurishita, H.; Nagata, S.; Shikama, T.

    2016-01-01

    Fracture toughness of silicon nitride (Si_3N_4), magnesia-alumina spinel (MgAl_2O_4) and yttria stabilized zirconia (8 mol%Y_2O_3–ZrO_2) was evaluated by the Vickers-indentation technique after the fast reactor irradiation up to 55 dpa (displacement per atom) at about 700 °C in the Joyo. The change of the fracture toughness by the irradiation was correlated with nanostructural evolution by the irradiation, which was examined by transmission electron microscopy. The observed degradation of fracture toughness in Si_3N_4 is thought to be due to the relatively high density of small-sized of the irradiation induced defects, which should be resulted from a large amount of transmutation gases of hydrogen and helium. Observed improvement of fracture toughness in MgAl_2O_4 was due to the blocking of crack propagation by the antiphase boundaries. The radiation effects affected the fracture toughness of yttria stabilized zirconia at 55 dpa, suggesting that the generated high density voids would affect the propagation of cracks. - Highlights: • Si_3N_4, MgAl_2O_4 and YSZ were neutron irradiated up to 55dpa around 700 °C in the Joyo. • They are candidate ceramics for the inert matrices of nuclear fuels in the fast reactors. • The irradiation enhanced the fracture toughness of MgAl_2O_4 and YSZ, while degraded that of Si_3N_4. • The toughness changes were correlated with radiation induced defects and transmutation gases.

  10. Raman and luminescence spectroscopy of zirconium oxide with the use of the MOLE microprobe

    International Nuclear Information System (INIS)

    Doyle, T.E.; Alvarez, J.L.

    1984-01-01

    Raman and luminescence spectroscopy with the use of the MOLE microprobe has been used to characterize ZrO 2 originating from oxidized fuel-rod cladding in nuclear accidents. Micro-Raman analysis of samples from Three Mile Island Unit 2 and the Power Burst Facility identified tetragonal and cubic ZrO 2 . The tetragonal and cubic phases are high-temperature polymorphs of ZrO 2 and provide information about temperatures and hydrogen formation in the TMI-2 core. The data suggest that the tetragonal ZrO 2 in TMI-2 samples was stabilized by a crystallite size effect, whereas cubic ZrO 2 in PBF debris samples was stabilized by impurities. Luminescence was used to differentiate yttria-stabilized ZrO 2 ceramics and oxidized fuel-rod cladding in PBF debris samples. The ZrO 2 ceramics produced strong, sharp luminescence peaks which indicated the presence of titanium and yttria in the ZrO 2 . Oxidized fuel-rod cladding displayed no luminescence

  11. Self-adapting metal-ceramic coating for biomass and waste incineration plants

    Energy Technology Data Exchange (ETDEWEB)

    Faulstich, Martin [Technische Univ. Muenchen (Germany); Fehr, Karl Thomas; Ye, Ya-Ping [Ludwig-Maximilians-Univ., Muenchen (Germany); Loeh, Ingrid; Mocker, Mario; Wolf, Gerhard [ATZ Entwicklungszentrum, Sulzbach-Rosenberg (Germany)

    2010-07-01

    Thermally sprayed coatings might become a reasonable alternative to cost-intensive cladding of heat exchangers in biomass and waste incineration. Shortcomings of these coatings might be overcome by a double-layer system, consisting of Alloy 625 covered with yttria-stabilized zirconia. Under appropriate conditions, re-crystallized zirconium oxide and chromium oxide form a dense, self-adapting and self-healing barrier against further infiltration of gaseous species. (orig.)

  12. Research into zirconium alloys resistant to carbon dioxide under pressure at temperatures of up to 600 deg C (1963); Recherche d'alliages de zirconium compatibles avec le gaz carbonique sous pression jusqu'a 500 ou 600 deg C (1063)

    Energy Technology Data Exchange (ETDEWEB)

    Baque, P; Dominget, R; Bossard, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    Zirconium is a metal having a relatively low neutron capture cross-section and a high melting point; it is thus possible to consider its use in particular as a canning material for fuel elements in CO{sub 2}-cooled nuclear reactors. A preliminary study of several types of zirconium showed that the metal is already strongly oxidised in this gas at 500 deg C. The 'breakaway' phenomenon is generalised; the oxidation rate is then linear and depends on the carbon dioxide pressure. An attempt was therefore made to find binary and tertiary alloys in order to improve the metal behaviour. Several interesting compositions were found: 1, 1.6 and 2.5 per cent of copper, 2 per cent of vanadium, and 0.05 and 0.5 per cent of calcium. Tertiary copper-molybdenum and copper-phosphorus alloys are also less liable to oxidation and in particular do not exhibit the 'breakaway' phenomenon even after a prolonged treatment at 600 deg C. (authors) [French] Le zirconium se trouve parmi les metaux a section de capture neutronique relativement faible et possede une temperature de fusion elevee; aussi peut on songer a l'employer notamment comme materiau de gainage d'elements combustibles pour reacteurs nucleaires refroidis au gaz carbonique. Une etude prealable de plusieurs qualites de zirconium a montre que le metal est deja assez fortement oxyde dans ce gaz des 500 deg C. En effet, le phenomene de ''breakaway'' est general; la vitesse d'oxydation devient alors lineaire et depend de la pression du gaz carbonique. La recherche d'alliages binaires et ternaires a donc ete entreprise afin de tenter d'ameliorer le comportement du metal. Elle a permis d'aboutir a quelques compositions interessantes: cuivre 1, 1,6 et 2,5 pour cent, vanadium 2 pour cent, et calcium 0,05 et 0,5 pour cent. Des alliages ternaires au cuivre-molybdene et cuivre-phosphore sont egalement moins oxydables, et en particulier ne presentent pas le phenomene de ''breakaway'', meme apres une longue exposition a 600 deg C. (auteurs)

  13. Epitaxial growth of In-rich InGaN on yttria-stabilized zirconia and its application to metal–insulator–semiconductor field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Atsushi; Lye, Khe Shin; Ueno, Kohei [Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505 (Japan); Ohta, Jitsuo [Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505 (Japan); PRESTO, Japan Science and Technology Agency, Saitama 332-0012 (Japan); Fujioka, Hiroshi, E-mail: hfujioka@iis.u-tokyo.ac.jp [Institute of Industrial Science, The University of Tokyo, Tokyo 153-8505 (Japan); ACCEL, Japan Science and Technology Agency, Tokyo 102-0076 (Japan)

    2016-08-28

    We grew In-rich In{sub x}Ga{sub 1-x}N films on yttria-stabilized zirconia (YSZ) substrates at low temperatures by pulsed sputtering deposition. It was found that single-crystal In{sub x}Ga{sub 1-x}N (0.63 ≤ x ≤ 0.82) films can be prepared without significant compositional fluctuations at growth temperatures below 500 °C. It was also found that the electrical properties of InGaN are strongly dependent on In composition, growth temperature, and film polarity. N-channel operation of the metal–insulator–semiconductor field-effect transistor (MISFET) with an ultrathin InGaN channel on the YSZ substrates was successfully demonstrated. These results indicate that an InGaN-based MISFET is a promising device for next-generation high-speed electronics.

  14. High-Temperature Particulate Matter Filtration with Resilient Yttria-Stabilized ZrO2 Nanofiber Sponge.

    Science.gov (United States)

    Wang, Haolun; Lin, Sen; Yang, Shen; Yang, Xudong; Song, Jianan; Wang, Dong; Wang, Haiyang; Liu, Zhenglian; Li, Bo; Fang, Minghao; Wang, Ning; Wu, Hui

    2018-05-01

    Particulate matter (PM) is a major air pollutant in many regions, jeopardizing ecosystems and public health. Filtration at pollutant source is one of the most important ways to protect the environment, however, considering the high-temperature exhaust gas emissions, effective removal of PM and related pollutants from their sources remains a major challenge. In this study, a resilient, heat-resisting, and high-efficiency PM filter based on yttria-stabilized ZrO 2 (YSZ) nanofiber sponge produced with a scalable solution blow spinning process is reported. The porous 3D sponge composed of YSZ nanofibers is lightweight (density of 20 mg cm -3 ) and resilient at both room temperature and high temperatures. At room-temperature conditions, the YSZ nanofiber sponge exhibits 99.4% filtration efficiency for aerosol particles with size in the range of 20-600 nm, associated with a low pressure drop of only 57 Pa under an airflow velocity of 4.8 cm s -1 . At a high temperature of 750 °C, the ceramic sponge maintains a high filtration efficiency of 99.97% for PM 0.3-2.5 under a high airflow velocity of 10 cm s -1 . A practical vehicle exhaust filter to capture particles with filtration efficiency of >98.3% is also assembled. Hence, the YSZ nanofiber sponge has enormous potential to be applied in industry. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Straight-chain halocarbon forming fluids for TRISO fuel kernel production – Tests with yttria-stabilized zirconia microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Baker, M.P. [Nuclear Science and Engineering Program, Metallurgical and Materials Engineering Department, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); King, J.C., E-mail: kingjc@mines.edu [Nuclear Science and Engineering Program, Metallurgical and Materials Engineering Department, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Gorman, B.P. [Metallurgical and Materials Engineering Department, Colorado Center for Advanced Ceramics, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Braley, J.C. [Nuclear Science and Engineering Program, Chemistry and Geochemistry Department, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States)

    2015-03-15

    Highlights: • YSZ TRISO kernels formed in three alternative, non-hazardous forming fluids. • Kernels characterized for size, shape, pore/grain size, density, and composition. • Bromotetradecane is suitable for further investigation with uranium-based precursor. - Abstract: Current methods of TRISO fuel kernel production in the United States use a sol–gel process with trichloroethylene (TCE) as the forming fluid. After contact with radioactive materials, the spent TCE becomes a mixed hazardous waste, and high costs are associated with its recycling or disposal. Reducing or eliminating this mixed waste stream would not only benefit the environment, but would also enhance the economics of kernel production. Previous research yielded three candidates for testing as alternatives to TCE: 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane. This study considers the production of yttria-stabilized zirconia (YSZ) kernels in silicone oil and the three chosen alternative formation fluids, with subsequent characterization of the produced kernels and used forming fluid. Kernels formed in silicone oil and bromotetradecane were comparable to those produced by previous kernel production efforts, while those produced in chlorooctadecane and iodododecane experienced gelation issues leading to poor kernel formation and geometry.

  16. Removal of arsenic and methylene blue from water by granular activated carbon media impregnated with zirconium dioxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval, Robert; Cooper, Anne Marie; Aymar, Kathryn; Jain, Arti [Environmental Technology, College of Technology and Innovation, Arizona State University, 6073 S. Backus Mall, Mesa, AZ 85212 (United States); Hristovski, Kiril, E-mail: Kiril.Hristovski@asu.edu [Environmental Technology, College of Technology and Innovation, Arizona State University, 6073 S. Backus Mall, Mesa, AZ 85212 (United States)

    2011-10-15

    Highlights: {yields} The morphology, content and distribution of ZrO{sub 2} nanoparticles inside the pores of GAC are affected by the type of GAC. {yields} Lignite ZrO{sub 2}-GAC exhibited Zr content of 12%, while bituminous based ZrO{sub 2}-GAC exhibited Zr content of 9.5%. {yields} The max. adsorption capacities under equilibrium conditions in 5 mM NaHCO{sub 3} buffered water matrix were {approx}8.6 As/g Zr and {approx}12.2 mg As/g Zr at pH = 7.6. {yields} The max. adsorption capacities under equilibrium conditions in NSF 53 Challenge water matrix while {approx}1.5 mg As/g Zr and {approx}3.2 mg As/g Zr at pH = 7.6. {yields} Introduction of nanoparticles did not impact the MB adsorption capacity of the lignite ZrO{sub 2}-GAC, while the one of bituminous ZrO{sub 2}-GAC decreased. - Abstract: This study investigated the effects of in situ ZrO{sub 2} nanoparticle formation on properties of granulated activated carbon (GAC) and their impacts on arsenic and organic co-contaminant removal. Bituminous and lignite based zirconium dioxide impregnated GAC (Zr-GAC) media were fabricated by hydrolysis of zirconium salt followed by annealing of the product at 400 {sup o}C in an inert environment. Media characterization suggested that GAC type does not affect the crystalline structure of the resulting ZrO{sub 2} nanoparticles, but does affect zirconium content of the media, nanoparticle morphology, nanoparticle distribution, and surface area of Zr-GAC. The arsenic removal performance of both media was compared using 5 mM NaHCO{sub 3} buffered ultrapure water and model groundwater containing competing ions, both with an initial arsenic C{sub 0} {approx} 120 {mu}g/L. Experimental outcomes suggested favorable adsorption energies and higher or similar adsorption capacities than commercially available or experimental adsorbents when compared on the basis of metal content. Short bed adsorber column tests showed that arsenic adsorption capacity decreases as a result of kinetics of

  17. The Influence of Heat Treatments on the Porosity of Suspension Plasma-Sprayed Yttria-Stabilized Zirconia Coatings

    Science.gov (United States)

    Ekberg, Johanna; Ganvir, Ashish; Klement, Uta; Creci, Simone; Nordstierna, Lars

    2018-02-01

    Suspension plasma-sprayed coatings are produced using fine-grained feedstock. This allows to control the porosity and to achieve low thermal conductivity which makes the coatings attractive as topcoats in thermal barrier coatings (TBCs). Used in gas turbine applications, TBCs are exposed to high temperature exhaust gases which lead to microstructure alterations. In order to obtain coatings with optimized thermomechanical properties, microstructure alterations like closing of pores and opening of cracks have to be taken into account. Hence, in this study, TBC topcoats consisting of 4 mol.% yttria-stabilized zirconia were heat-treated in air at 1150 °C and thereafter the coating porosity was investigated using image analysis (IA) and nuclear magnetic resonance (NMR) cryoporometry. Both IA and NMR cryoporometry showed that the porosity changed as a result of the heat treatment for all investigated coatings. In fact, both techniques showed that the fine porosity decreased as a result of the heat treatment, while IA also showed an increase in the coarse porosity. When studying the coatings using scanning electron microscopy, it was noticed that finer pores and cracks disappeared and larger pores grew slightly and achieved a more distinct shape as the material seemed to become more compact.

  18. Synthesis of Zirconium-Containing Polyhedral Oligometallasilsesquioxane as an Efficient Thermal Stabilizer for Silicone Rubber

    Directory of Open Access Journals (Sweden)

    Jiedong Qiu

    2018-05-01

    Full Text Available Free radicals play a negative role during the thermal degradation of silicone rubber (SR. Quenching free radicals is proposed to be an efficient way to improve the thermal-oxidative stability of SR. In this work, a novel zirconium-containing polyhedral oligometallasilsesquioxane (Zr-POSS with free-radical quenching capability was synthesized and characterized. The incorporation of Zr-POSS effectively improved the thermal-oxidative stability of SR. The T5 (temperature at 5% weight loss of SR/Zr-POSS significantly increased by 31.7 °C when compared to the unmodified SR. Notably, after aging 12 h at 280 °C, SR/Zr-POSS was still retaining about 65%, 60%, 75%, and 100% of the tensile strength, tear strength, elongation at break, and hardness before aging, respectively, while the mechanical properties of the unmodified SR were significantly decreased. The possible mechanism of Zr-POSS for improving the thermal-oxidative stability of SR was intensively studied and it was revealed that the POSS structure could act as a limiting point to suppress the random scission reaction of backbone. Furthermore, Zr could quench the free radicals by its empty orbital and transformation of valence states. Therefore, it effectively suppressed the thermal-oxidative degradation and crosslinking reaction of the side chains.

  19. Hydrogen desorption kinetics from zirconium hydride and zirconium metal in vacuum

    International Nuclear Information System (INIS)

    Hu, Xunxiang; Terrani, Kurt A.; Wirth, Brian D.

    2014-01-01

    The kinetics of hydrogen desorption from zirconium hydride is important in many nuclear design and safety applications. In this paper, a coordinated experimental and modeling study has been used to explicitly demonstrate the applicability of existing kinetic theories for hydrogen desorption from zirconium hydride and α-zirconium. A static synthesis method was used to produce δ-zirconium hydride, and the crystallographic phases of the zirconium hydride were confirmed by X-ray diffraction (XRD). Three obvious stages, involving δ-zirconium hydride, a two-phase region, and α-zirconium, were observed in the hydrogen desorption spectra of two zirconium hydride specimens with H/Zr ratios of 1.62 and 1.64, respectively, which were obtained using thermal desorption spectroscopy (TDS). A continuous, one-dimensional, two-phase moving boundary model, coupled with the zero- and second-order kinetics of hydrogen desorption from δ-zirconium hydride and α-zirconium, respectively, has been developed to reproduce the TDS experimental results. A comparison of the modeling predictions with the experimental results indicates that a zero-order kinetic model is valid for description of hydrogen flux away from the δ-hydride phase, and that a second-order kinetic model works well for hydrogen desorption from α-Zr if the activation energy of desorption is optimized to be 70% of the value reported in the literature

  20. Preparation and performance of lipophilic α-zirconium phosphate with high thermal stability and its application in thermal-plastic polymers

    Directory of Open Access Journals (Sweden)

    Ya Du

    2015-10-01

    Full Text Available To prepare lipophilic α-zirconium phosphate with high grafting ratio and thermal stability (OZrP-HT and explore its potential application in thermal-plastic polymers, a novel method was developed by surface lipophilicity enhancement strategy. The commercial α-zirconium phosphate (α-ZrP was pre-intercalated by n-propylamine (PA and grafted by silane coupling agents. Then the pre-intercalated PA was removed by heat-treatment, and the obtained OZrP-HT was utilized to fabricate the phosphorous-containing polyester (P-co-PET/OZrP-HT nanocomposites by melt-blending method. The prepared OZrP-HT and P-co-PET/OZrP-HT nanocomposites were characterized by Wide Angle X-ray Diffraction (WAXD, Fourier Transform Infrared Spectroscopy (FTIR, Thermogravimetric Analysis (TGA, Transmission Electron Microscope (TEM, etc. The results show that OZrP-HT with high grafting ratio (13.78 wt% and thermal stability (Tonset=368 °C was successfully prepared via this novel method and was uniformly intercalated by P-co-PET molecular chains. OZrP-HT had no significant effect on the fiber processability of P-co-PET polymer, and flame retardant properties of (P-co-PET/OZrP-HT nanocomposites were improved. This method may be suitable for organic modification of general inorganic layered compounds and could extend the potential applications in thermo-plastic polymers.

  1. The influence of adding modified zirconium oxide-titanium dioxide nano-particles on mechanical properties of orthodontic adhesive: an in vitro study.

    Science.gov (United States)

    Felemban, Nayef H; Ebrahim, Mohamed I

    2017-01-13

    The purpose of this in-vitro study was to examine the effect of incorporating different concentrations of Zirconium oxide-Titanium dioxide (ZrO2-TiO2) nanoparticles, which can have antibacterial properties, on the mechanical properties of an orthodontic adhesive. ZrO2-TiO2 (Zirconium oxide, HWNANO, Hongwu International Group Ltd, China) -Titanium dioxide, Nanoshell, USA) nanopowder were incorporated into orthodontic adhesive (Transbond XT, 3 M Unitek, Monrovia, USA) with different concentrations (0.5% weight nonofiller and 1% weight nanofiller). The size of nanoparticle was 70-80 nm for ZrO2 and less than 50 nm for TiO2. For measuring the shear bond strength of the three groups of orthodontic adhesives [Transbond (control), Transbond mixed with 0.5% weight ZrO2-TiO2, and Transbond mixed with 1% weight ZrO2-TiO2], 30 freshly extracted human first premolars were used and bonded with stainless steel metal brackets (Dentaurum®, Discovery®, Deutschland), using the 3 orthodontic adhesives and 3 M Unitek; Transbond TM Plus Self-Etching Primer (10 samples in each group). The recorded values of compressive strength and tensile strength (measured separately on 10 samples of orthodontic adhesives (add the 3 D size of sample, light cured for 40 s on both sides) of each orthodontic adhesives), as well as the shear bond strength in Mega Pascal unit (MPa) were collected and exposed to one-way analysis of variance (ANOVA) and Tukey's post-hoc tests. orthodontic adhesive with 1% weight ZrO2-TiO2 showed the highest mean compressive (73.42 ± 1.55 MPa, p: 0.003, F: 12.74), tensile strength (8.65 ± 0.74 MPa, p: 0.001, F: 68.20), and shear bond strength (20.05 ± 0.2 MPa, p: 0.001, F: 0.17). Adding ZrO2-TiO2 nanoparticle to orthodontic adhesive increased compressive strength, tensile strength, and shear bond strength in vitro, but in vivo studies and randomized clinical trials are needed to validate the present findings.

  2. Standard Specification for Nuclear Grade Zirconium Oxide Pellets

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This specification applies to pellets of stabilized zirconium oxide used in nuclear reactors. 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.

  3. Role of yttria-stabilized zirconia produced by ion-beam-assisted deposition on the properties of RuO2 on SiO2/Si

    International Nuclear Information System (INIS)

    Jia, Q.X.; Arendt, P.; Groves, J.R.; Fan, Y.; Roper, J.M.; Foltyn, S.R.

    1998-01-01

    Highly conductive biaxially textured RuO 2 thin films were deposited on technically important SiO 2 /Si substrates by pulsed laser deposition, where yttria-stabilized zirconia (YSZ) produced by ion-beam-assisted-deposition (IBAD) was used as a template to enhance the biaxial texture of RuO 2 on SiO 2 /Si. The biaxially oriented RuO 2 had a room-temperature resistivity of 37 μΩ-cm and residual resistivity ratio above 2. We then deposited Ba 0.5 Sr 0.5 TiO 3 thin films on RuO 2 /IBAD-YSZ/SiO 2 /Si. The Ba 0.5 Sr 0.5 TiO 3 had a pure (111) orientation normal to the substrate surface and a dielectric constant above 360 at 100 kHz. copyright 1998 Materials Research Society

  4. About the structure and stability of complex carbonates of thorium (IV), cerium (IV), zirconium (IV), hafnium (IV)

    International Nuclear Information System (INIS)

    Dervin, Jacqueline

    1972-01-01

    This research thesis addressed the study of complex carbonates of cations of metals belonging to the IV A column, i.e. thorium (IV), zirconium (IV), hafnium (IV), and also cerium (IV) and uranium (VI), and more particularly focused on ionic compounds formed in solution, and also on the influence of concentration and nature of cations on stability and nature of the formed solid. The author first presents methods used in this study, discusses their precision and scope of validity. She reports the study of the formation of different complex ions which have been highlighted in solution, and the determination of their formation constants. She reports the preparation and study of the stability domain of solid complexes. The next part reports the use of thermogravimetric analysis, IR spectrometry, and crystallography for the structural study of these compounds

  5. Preparation of zirconium molybdate gel generator

    International Nuclear Information System (INIS)

    Charoen, S.; Aungurarat, G.; Laohawilai, S.; Sukontpradit, W.; Jingjit, S.

    1994-01-01

    A procedure for preparation of 99mTc generator based on conversion to zirconium molybdate gel of 99Mo produced by neutron activation was reported. The gel was prepared from zirconium oxychloride solution pH 1.6, ammonium molybdate solution pH 3-5 and mole ratio of Zr:Mo 1:1 which had water content about 7-8%. Small generators containing 1-1.5 g of gel were eluted with average efficiencies of 77% and the activity peak in the first 3 ml of 10 ml of saline solution. The amount of Mo and Zr in eluates were below the acceptance limit. The gel generators of activity about 100 mCi were prepared and had the good performance in elutability and stability

  6. Development of zirconium/magnesium phosphate composites for immobilization of fission products

    International Nuclear Information System (INIS)

    Singh, D.; Tlustochowicz, M.; Wagh, A.S.

    1999-01-01

    Novel chemically bonded phosphate ceramics have been investigated for the capture and stabilization of volatile fission-product radionuclides. The authors have used low-temperature processing to fabricate zirconium phosphate and zirconium/magnesium phosphate composites. A zirconium/magnesium phosphate composite has been developed and shown to stabilize ash waste that has been contaminated with a radioactive surrogate of the 137 Cs and 90 Sr species. Excellent retention of cesium in the phosphate matrix system was observed in both short- and long-term leaching tests. The retention factor determined by the USEPA Toxicity Characteristic Leaching Procedure was one order of magnitude better for cesium that for strontium. The effective diffusivity, at room temperature, for cesium and strontium in the waste forms was estimated to be as low as 2.4 x 10 -13 and 1.2 x 10 -11 m 2 /s, respectively. This behavior was attributed to the capture of cesium in the layered zirconium phosphate structure via an intercalation ion-exchange reaction, followed by microencapsulation. However, strontium is believed to be precipitated out in its phosphate form and subsequently microencapsulated in the phosphate ceramic. The performance of these final waste forms, as indicated by the compression strength and the durability in aqueous environments, satisfies the regulatory criteria

  7. Precipitation of γ-zirconium hydride in zirconium

    International Nuclear Information System (INIS)

    Carpenter, G.J.C.

    1978-01-01

    A mechanism for the precipitation of γ-zirconium hydride in zirconium is presented which does not require the diffusion of zirconium. The transformation is completed by shears caused by 1/3 (10 anti 10) Shockley partial dislocations on alternate zirconium basal planes, either by homogeneous nucleation or at lattice imperfections. Homogeneous nucleation is considered least likely in view of the large nucleation barrier involved. Hydrides may form at dislocations by the generation of partials by means of either a pole or ratchet mechanism. The former requires dislocations with a component of Burgers vector along the c-axis, but contrast experiments show that these are not normally observed in annealed zirconium. It is therefore most likely that intragranular hydrides form at the regular 1/3 (11 anti 20) dislocations, possibly by means of a ratchet mechanism. Contrast experiments in the electron microscope show that the precipitates have a shear character consistent with the mechanism suggested. The possibility that the shear dislocations associated with the hydrides are emissary dislocations is considered and a model suggested in which this function is satisfied together with the partial relief of misfit stresses. The large shear strains associated with the precipitation mechanism may play an important role in the preferential orientation of hydrides under stress

  8. Application of sol gel spin coated yttria-stabilized zirconia layers for the improvement of solid oxide fuel cell electrolytes produced by atmospheric plasma spraying

    Energy Technology Data Exchange (ETDEWEB)

    Rose, Lars [University of British Columbia, Department of Materials Engineering, 309-6350 Stores Road, Vancouver, British Columbia, V6T 1Z4 (Canada); National Research Council, Institute for Fuel Cell Innovation, 4250 Wesbrook Mall, Vancouver, British Columbia, V6T 1W5 (Canada); Kesler, Olivera [National Research Council, Institute for Fuel Cell Innovation, 4250 Wesbrook Mall, Vancouver, British Columbia, V6T 1W5 (Canada); University of British Columbia, Department of Mechanical Engineering, 2054-6250 Applied Science Lane, Vancouver, British Columbia, V6T 1Z4 (Canada); Tang, Zhaolin; Burgess, Alan [Northwest Mettech Corp., 467 Mountain Hwy, North Vancouver, British Columbia, V7J 2L3 (Canada)

    2007-05-15

    Due to its high thermal stability and purely oxide ionic conductivity, yttria-stabilized zirconia (YSZ) is the most commonly used electrolyte material for solid oxide fuel cells (SOFCs). Standard electrolyte fabrication techniques for planar SOFCs involve wet ceramic techniques such as tape-casting or screen printing, requiring sintering steps at temperatures above 1300 C. Plasma spraying (PS) may provide a more rapid and cost efficient method to produce SOFCs without sintering. High-temperature sintering requires long processing times and can lead to oxidation of metal alloys used as mechanical supports, or to detrimental interreactions between the electrolyte and adjacent electrode layers. This study investigates the use of spin coated sol gel derived YSZ precursor solutions to fill the pores present in plasma sprayed YSZ layers, and to enhance the surface area for reaction at the electrolyte-cathode interface, without the use of high-temperature firing steps. The effects of different plasma conditions and sol concentrations and solid loadings on the gas permeability and fuel cell performance have been investigated. (author)

  9. Application of the electrophoretic deposition technique for obtaining Yttria-stabilized zirconia tubes; Aplicacao da tecnica de deposicao eletroforetica para a obtencao de tubos ceramicos de zirconia-itria

    Energy Technology Data Exchange (ETDEWEB)

    Caproni, E.; Muccillo, R., E-mail: ecaproni@gmail.com, E-mail: muccillo@usp.br [Centro de Ciencia e Tecnologia de Materiais, Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2012-01-15

    The electrophoretic deposition (EPD) is recognized as the most versatile technique for processing particulate materials, due to low cost, deposition in minutes and forming of pieces with complex geometry shapes. In this work an experimental setup for the simultaneous conformation of 16 ceramic tubes by EPD was built. Bimodal submicron Yttria-stabilized zirconia particles were deposited into graphite electrodes, after suitably adjusting the rheological characteristics of the suspension in isopropanol. After graphite burning and YSZ sintering at 1500 deg C, the ceramic tubes were characterized by X-ray diffraction, scanning probe microscope, impedance spectroscopy and electrical response as a function of oxygen content. Small dense one end-closed ceramic tubes, fully stabilized in the cubic phase, were successfully obtained by the EPD technique, showing the ability of that technique for processing large quantities of tubular solid electrolytes with electrical response to different amounts of oxygen according to the Nernst law (author)

  10. Determination of the ruthenium, cerium and zirconium radio-activity of sea-water by carrying-over and adsorption using manganese dioxide; Determination de la radioactivite de l'eau de mer en ruthenium, cerium, zirconium par en- trainement et adsorption au moyen du bioxyde de manganese

    Energy Technology Data Exchange (ETDEWEB)

    Guegueniat, P [Commissariat a l' Energie Atomique, La Hague (France). Centre d' Etudes Nucleaires

    1967-07-01

    Principle: Manganese dioxide is precipitated in the medium to be analyzed by the action of hydrogen peroxide on potassium permanganate. Large volumes of sea-water are treated by successive adsorptions of 80 litre fractions using always the same precipitate obtained from 30 g of potassium permanganate. Some examples are given concerning the analysis of 80, 160, 1000 and 2000 litres of water. Advantages of the technique: The existence of low activities due to ruthenium, zirconium and cerium can be demonstrated if sufficiently large volumes of water are treated. (author) [French] Principe: Le bioxyde de manganese est precipite dans le milieu a analyser par action de l'eau oxygenee sur le permanganate de potassium. Le traitement de grands volumes d'eau de mer se fait par adsorptions successives de fractions de 80 litres en utilisant toujours le meme precipite obtenu a partir de 30 g de permanganate de potassium. Quelques exemples ayant trait a des analyses de 80, 160, 1000, 2000 litres sont donnes. Interet de la technique: De faibles activites dues au Ruthenium, Zirconium, Cerium peuvent etre mises en evidence en traitant des volumes d'eau suffisants. (auteur)

  11. Structural-morphological peculiarities of zirconium oxyhydrate with applicated ions

    International Nuclear Information System (INIS)

    Korshunova, N.K.; Sukharev, Yu.I.; Egorov, Yu.V.

    1976-01-01

    Some results of applicated zirconium ozyhydrate investigation by thermography and electronography are considered as well as the results of microscopic and picnometric investigations. Bichromate and polyvanadate ions were used as applicants. It is demonstrated that two kinds of granules are formed: globular and plane-scaly, depending on the method of applicated synthesis of hydrated zirconium dioxide samples (HZD) and the nature of applicants. It was established by electronographycal methods that samples with plane-scaly morphology have an ordered structure. Influence of the HZD granules morphology on the absorption-exchange properties was established. Globular samples are the most sensitive to applicated additions and have better absorption characteristics. The character of the density variation as a function of applicant concentration in solid phase is the same: in the region of applicant concentration 0.15-0.30 g ion/mol ZrO 2 the density is the highest, then samples density is decreasing and increasing once again at applicant concentration 0.5-0.6 g ion/mol ZrO 2

  12. The high temperature mechanical characteristics of superplastic 3 mol% yttria stabilized zirconia

    International Nuclear Information System (INIS)

    Owen, D.M.; Chokshi, A.H.

    1998-01-01

    A detailed study was undertaken to characterize the deformation behavior of a superplastic 3 mol% yttria-stabilized tetragonal zirconia (3YTZ) over a wide range of strain rates, temperatures and grain sizes. The experimental data were analyzed in terms of the following equation for high temperature deformation: SR ∝ FS n d -p exp(-Q/RT), where SR is the strain rate, FS is the flow stress, d is the grain size, Q is the activation energy, R is the gas constant, T is the absolute temperature, and n and p are constants termed the stress exponent and the inverse grain size exponent, respectively. The experimental data over a wide range of stresses revealed a transition in stress exponent. Deformation in the low and high stress regions was associated with n about 3 and p about 1, and n about 2 and p about 3, respectively. The transition stress between the two regions decreased with increasing grain size. The activation energy was similar for both regions with a value of about 550 kJ/mol. Microstructural measurements revealed that grains remained essentially equiaxed after the accumulation of large strains, and very limited concurrent grain growths occurred in most experiments. Assessment of possible rate controlling creep mechanisms and comparison with previous studied indicate that in the n=2 region, deformation occurs by a grain boundary sliding process whose rate is independent of impurity content. Deformation in the n=3 region is controlled by an interface reaction that is highly sensitive to impurity content. It is concluded that an increase in impurity content increases yttrium segregation to grain boundaries, which enhances the rate of the interface reaction, thereby decreasing the apparent transition stress between the n=2 and n=3 regions. This unified approach incorporating two sequential mechanisms can rationalize many of the apparently dissimilar results that have been reported previously for deformation of 3YTZ

  13. Automatic measuring system of zirconium thickness for zirconium liner cladding tubes

    International Nuclear Information System (INIS)

    Matsui, K.; Yamaguchi, H.; Hiroshima, T.; Sakamoto, T.; Murayama, R.

    1985-01-01

    An automatic system of pure zirconium liner thickness for zirconium-zircaloy cladding tubes has been successfully developed. The system consists of three parts. (1) An ultrasonic thickness measuring method for mother tubes before cold rolling. (2) An electromagnetic thickness measuring method for the manufactured tubes. (3) An image processing method for the cross sectional view of the manufactured cut tube samples. In Japanese nuclear industry, zirconium-zircaloy cladding tubes have been tested in order to realize load following operation in the atomic power plant. In order to provide for the practical use in the near future, Sumitomo Metal Industries, Ltd. has been studied and established the practical manufacturing process of the zirconium liner cladding tubes. The zirconium-liner cladding tube is a duplex tube comprising an inner layer of pure zirconium bonded to zircaloy metallurgically. The thickness of the pure zirconium is about 10 % of the total wall thickness. Several types of the automatic thickness measuring methods have been investigated instead of the usual microscopic viewing method in which the liner thickness is measured by the microscopic cross sectional view of the cut tube samples

  14. Zirconium and hafnium

    Science.gov (United States)

    Jones, James V.; Piatak, Nadine M.; Bedinger, George M.; Schulz, Klaus J.; DeYoung,, John H.; Seal, Robert R.; Bradley, Dwight C.

    2017-12-19

    Zirconium and hafnium are corrosion-resistant metals that are widely used in the chemical and nuclear industries. Most zirconium is consumed in the form of the main ore mineral zircon (ZrSiO4, or as zirconium oxide or other zirconium chemicals. Zirconium and hafnium are both refractory lithophile elements that have nearly identical charge, ionic radii, and ionic potentials. As a result, their geochemical behavior is generally similar. Both elements are classified as incompatible because they have physical and crystallochemical properties that exclude them from the crystal lattices of most rock-forming minerals. Zircon and another, less common, ore mineral, baddeleyite (ZrO2), form primarily as accessory minerals in igneous rocks. The presence and abundance of these ore minerals in igneous rocks are largely controlled by the element concentrations in the magma source and by the processes of melt generation and evolution. The world’s largest primary deposits of zirconium and hafnium are associated with alkaline igneous rocks, and, in one locality on the Kola Peninsula of Murmanskaya Oblast, Russia, baddeleyite is recovered as a byproduct of apatite and magnetite mining. Otherwise, there are few primary igneous deposits of zirconium- and hafnium-bearing minerals with economic value at present. The main ore deposits worldwide are heavy-mineral sands produced by the weathering and erosion of preexisting rocks and the concentration of zircon and other economically important heavy minerals, such as ilmenite and rutile (for titanium), chromite (for chromium), and monazite (for rare-earth elements) in sedimentary systems, particularly in coastal environments. In coastal deposits, heavy-mineral enrichment occurs where sediment is repeatedly reworked by wind, waves, currents, and tidal processes. The resulting heavy-mineral-sand deposits, called placers or paleoplacers, preferentially form at relatively low latitudes on passive continental margins and supply 100 percent of

  15. Selective hydrogen detection at high temperature by using yttria-stabilized zirconia-based sensor with coupled metal-oxide-based sensing electrodes

    International Nuclear Information System (INIS)

    Yamaguchi, Mami; Anggraini, Sri Ayu; Fujio, Yuki; Breedon, Michael; Plashnitsa, Vladimir V.; Miura, Norio

    2012-01-01

    A selective and sensitive hydrogen (H 2 ) sensor capable of working at a high operating temperature was developed by using a pair of metal-oxide-based SEs formed on a yttria-stabilized zirconia (YSZ) tube, operating as a mixed-potential type sensor. The utilization of SnO 2 (+30 wt.% YSZ) electrode together with NiO-TiO 2 electrode configured as a combined-type sensor, successfully diminished the response of the examined interfering gases (especially propene), while maintaining high response toward H 2 at an operating temperature of 600 °C under humid operating conditions. The developed sensor exhibited quick response to 100 ppm H 2 , as the 90% response time was observed to be 9 s. The sensing performance of the combined-type sensor was barely affected by changes in water vapor concentration within the range of 1–4 vol.%, suggesting the resilience of the sensor to function in realistic working conditions. This sensor exhibited a linear relationship between sensitivity and H 2 concentration on a logarithmic scale.

  16. Radiochemical neutron activation analysis of zirconium and zirconium-niobium alloys

    International Nuclear Information System (INIS)

    Tashimova, F.A.; Sadikov, I.I.; Salimov, M.

    2004-01-01

    Full text: Zirconium and zirconium-niobium alloys are used on nuclear technology, as fuel cladding of nuclear reactors. Their nuclear-physical, mechanical and thermophysical properties are influenced them matrix and impurity composition, therefore determination of matrix and impurity content of these materials is a very important task. Neutron activation analysis is one from multielemental and high sensible techniques that are widely applied in analysis of high purity materials. Investigation of nuclear-physical characteristics of zirconium has shown that instrumental variant NAA is unusable for analysis due to high radioactivity of a matrix. Therefore it is necessary carrying out radiochemical separation of impurity radionuclides from matrix. Study of the literature datum have shown, that zirconium and niobium are very well extracted from muriatic solution with 5% tributyl phosphineoxide (TBPO) solution in toluene and 0,75 M solution of di-2-ethyl hexyl phosphoric acid (HDEHP) in cyclohexanone. Investigation of these elements extraction in these systems has shown that more effective and selective separation of matrix radionuclides is achieved in HDEHP-3M HCI system. This system is also extracted and hafnium, witch is an accompanying element of zirconium and its high content prevented determination of other impurity elements in sample. Therefore we used extraction system HDEHP-3M HCl for analysis of zirconium and zirconium-niobium alloys in chromatographic variant. By measurement of distribution profile of a matrix and of elution curve of determined elements is established, that for effective separation of impurity and matrix radionuclides there is enough chromatographic column with diameter 1 cm and height of a sorbent layer 7 cm, thus volume of elute, necessary for complete elution of determinate elements is 35-40 ml. On the basis of the carried out researches the technique of radiochemical NAA of high purity zirconium and zirconium-niobium alloy, which allows to

  17. [The influence of the different polishing methods on the marginal sealing property of the computer aided design and computer aided manufacture zirconium dioxide full crown].

    Science.gov (United States)

    Zhou, Jianying; Deng, Jiupeng; Li, Jinyuan; Wang, Jide; Shen, Baolian

    2016-05-01

    To evaluate the influence of different polishing methods on marginal microleakage of zirconium dioxide full crown. Thirty extracted premolars were selected and randomly divided into three groups, A, B and C, with 10 in each group. Group A was prepared with MANI TF-13 bur completely without the treatment of shoulder. The shoulder of group B was polished with MANI TR13-EF bur after the preparation using MANI TF-13. The shoulder of group C was polished with the dental pneumatic ultrasonic hand-piece of KaVo SONICflex after the preparation using MANI TF-13 bur. Five specimens after preparation were selected in each group. Fifteen CAD/CAM zirconium dioxide full crowns have been made. The crowns were bonded using PULPDENT resin cement, and the root canals were sealed using nail polish, and apical foramen were closed using flow resin. The test-pieces have been immersed in a 3% solution of methylene blue for 24 h. The condition of shoulder marginal microleakage was observed using light stereomicroscopy and evaluated in classification index. The remaining specimens in each group were used for roughness test and scanning electron microscope(SEM) experiment. The marginal microleakage situations of specimens in three groups was analyzed by SPSS 17.0. The enamel surface of different polishing methods was observed using SEM. The specimens in group C demonstrated the least marginal microleakage, and those in group B showed an intermediate level of marginal microleakage, and those in group A characterized the most serious marginal microleakage (total, χ2=44.610, P<0.01; among the different groups, P<0.05). The roughness experiment showed that specimens in group C achieve the smoothest results ([0.27±0.03] μm). Preparation shoulder polished using the dental pneumatic ultrasonic hand-piece demonstrated the best result under the SEM among the three groups. The anti-microleakage effectiveness of dental pneumatic ultrasonic hand-piece in shoulder refinement is better than ordinary

  18. Charging kinetics in virgin and 1 MeV-electron irradiated yttria-stabilized zirconia in the 300-1000 K range

    International Nuclear Information System (INIS)

    Thome, T.; Braga, D.; Blaise, G.; Cousty, J.; Pham Van, L.; Costantini, J.M.

    2006-01-01

    A study performed with a dedicated scanning electron microscope (SEM) on the surface electrical properties of (1 0 0)-oriented yttria-stabilized zirconia (YSZ) single crystals irradiated with 1 MeV electrons is presented. When compared with virgin YSZ, the 1 MeV-irradiated YSZ shows a decrease of the intrinsic total electron emission coefficient σ 0 and an increase of the time constant τ associated with the charging kinetics of the material at room temperature. These measurements performed with the SEM beam at 10 keV indicate that the defects induced by the 1 MeV-electron irradiation generate a positive electric field of the order of 0.5 x 10 6 V/m at a depth of about 1 μm that prevents electrons to escape. When the SEM beam with a 1.1 keV energy is used, a smaller field (∼0.5 x 10 3 V/m) is detected closer to the surface (∼20 nm). The fading of these fields during the thermal annealing in the 400-1000 K temperature range provides information on the nature of defects induced by the 1 MeV-electron irradiation

  19. Method of reducing zirconium

    International Nuclear Information System (INIS)

    Megy, J.A.

    1980-01-01

    A method was developed for making nuclear-grade zirconium from a zirconium compound, which ismore economical than previous methods since it uses aluminum as the reductant metal rather than the more expensive magnesium. A fused salt phase containing the zirconium compound to be reduced is first prepared. The fused salt phase is then contacted with a molten metal phase which contains aluminum and zinc. The reduction is effected by mutual displacment. Aluminum is transported from the molten metal phase to the fused salt phase, replacing zirconium in the salt. Zirconium is transported from the fused salt phase to the molten metal phase. The fused salt phase and the molten metal phase are then separated, and the solvent metal and zirconium are separated by distillation or other means. (DN)

  20. Long-time corrosion and high-temperature oxidation of zirconium alloys applied on NPP like fuel elements cover

    International Nuclear Information System (INIS)

    Vrtilkova, V.; Novotny, L.; Lingart, S.; Doukha, R.; Yarosh, Ya.; Kolenchik, Ya.

    2007-01-01

    Zirconium is applying in nuclear energy since 50-th of last century in capacity of material for cover production for fuel elements, reactor fuel and structural parts, and mainly due to both corrosion stability and low effective cross section for thermal neutrons capture. Impurities in doping elements form and alloy production technology has influence on mechanical and corrosion properties of finite alloy. Long-time corrosion tests for several zirconium alloys in forcing autoclave under different reaction conditions were carried out. After that process kinetics was studied, mass increase, hydrogen formation, zirconium hydride forming morphology, zirconium oxide layer thickness have been determined as well

  1. Scandium and zirconium ion complexing with salicylic acid

    International Nuclear Information System (INIS)

    Fadeeva, V.I.; Kochetkova, S.K.

    1979-01-01

    A study has been made of the extraction of complexes containing scandium and zirconium compounds and salicylic acid by using benzene, nitrobenzene, chloroform and isoamyl alcohol. It is shown that in the metal concentration range 10 -5 -10 -3 mole/l scandium forms mononuclear complexes composed of Sc(HSal) 3 (pH 2 (pH>4), zirconium - polynuclear complexes Zrsub(x)(OH)sub(y)(HSal)sub(n), where the x:n ratio varies from 0.5 to 1.5. Stability constants have been calculated for the salicylate scandium complexes in aqueous solution, equal to β 1 =(3+-1)x10 2 ; β 2 =(5.0+-0.6)x10 4 ; β 3 =(5.3+-0.3)x10 6

  2. Protection of zirconium and its alloys by metallic coatings

    International Nuclear Information System (INIS)

    Loriers, H.; Lafon, A.; Darras, R.; Baque, P.

    1968-01-01

    At 600 deg. C in an atmosphere of carbon dioxide, zirconium and its alloys undergo corrosion which presents two aspects simultaneously: - formation of a surface layer of zirconia, - dissolution of oxygen in the alloy sub-layer leading to brittleness. The two phenomena greatly restrict the possibilities of using zirconium alloys as a canning material for fuel elements in CO 2 cooled nuclear reactors. An attempt has thus been made to limit, and perhaps to suppress, the corrosion effects in zirconium under these conditions by protecting it with metallic coatings. A first attempt to obtain a protection using copper-based coatings did not produce the result hoped for. Aluminium coatings produced by vacuum evaporation, followed by a consolidating thermal treatment make it possible to prevent the formation of the zirconia layer, but they do not eliminate the hardening effect produced by oxygen diffusion. On the other hand, electrolytically produced chromium deposits whose adherence is improved by a thermal vacuum treatment, counteract both these phenomena simultaneously. A similar result has been obtained with coatings of molybdenum produced by the technique of high-frequency inductive plasma sputtering. The particular effectiveness of the last two types of coatings is due to their structures characterized by the existence of an adherent film of chromium or molybdenum in the free state. (authors) [fr

  3. Grinding media of Zr O2-Y2 O3

    International Nuclear Information System (INIS)

    Ussui, V.; Leitao, F.; Paschoal, J.O.A.

    1994-01-01

    This paper describes an experiment carried out to test Yttria 3 mol% stabilized zirconia as a grinding media. The Powders were produced in experimental operations of a wet chemical coprecipitation process at the Zirconium Pilot Plant in IPEN. The stabilised zirconia powders obtained were cold pressed in to cylindrical shapes and sintered at 1500 0 C for hour. The ceramics produced presented good wear resistance and were found to be efficient as zirconia powders grinding media. (author)

  4. Study on technology for laboratory scale production of Zirconium Chloride (ZrCl4) by chlorinating Zirconium dioxide (ZrO2)

    International Nuclear Information System (INIS)

    Nguyen Van Sinh

    2007-01-01

    ZrCl 4 is used as a main material for producing metallic zirconium. There are four methods for obtaining ZrCl 4 . The method of chlorination of ZrO 2 was selected and some instruments have been made for the study (to produce ZrCl 4 in laboratory scale). A procedure of preparing ZrCl 4 on the obtained instruments was set up and a small amount of ZrCl 4 was successfully obtained. (author)

  5. PLUTONIUM-ZIRCONIUM ALLOYS

    Science.gov (United States)

    Schonfeld, F.W.; Waber, J.T.

    1960-08-30

    A series of nuclear reactor fuel alloys consisting of from about 5 to about 50 at.% zirconium (or higher zirconium alloys such as Zircaloy), balance plutonium, and having the structural composition of a plutonium are described. Zirconium is a satisfactory diluent because it alloys readily with plutonium and has desirable nuclear properties. Additional advantages are corrosion resistance, excellent fabrication propenties, an isotropie structure, and initial softness.

  6. ZIRCONIUM-CLADDING OF THORIUM

    Science.gov (United States)

    Beaver, R.J.

    1961-11-21

    A method of cladding thorium with zirconium is described. The quality of the bond achieved between thorium and zirconium by hot-rolling is improved by inserting and melting a thorium-zirconium alloy foil between the two materials prior to rolling. (AEC)

  7. Zirconium-hydride solid zero power reactor and its application research

    International Nuclear Information System (INIS)

    Lin Shenghuo; Luo Zhanglin; Su Zhuting

    1994-10-01

    The Zirconium Hydride Solid Zero Power Reactor built at China Institute of Atomic Energy is introduced. In the reactor Zirconium-hydride is used as moderator, plexiglass as reflector and U 3 O 8 with enrichment of 20% as the fuel, Since its initial criticality, the physical characteristics and safety features have been measured with the result showing that the reactor has sound stability and high sensitivity, etc. It has been successfully used for the personnel training and for the testing of reactor control instruments and experiment devices. It also presents the special advantage for the pre-research of some applications

  8. Characterization of the yttria-stabilized zirconia thin film electrophoretic deposited on La0.8Sr0.2MnO3 substrate

    International Nuclear Information System (INIS)

    Yang, Koho; Shen, Jung-Hsiung; Yang, Kai-Yun; Hung, I-Ming; Fung, Kuan-Zong; Wang, Moo-Chin

    2007-01-01

    The yttria-stabilized zirconia (YSZ) thin films electrophoretic deposited on the La 0.8 Sr 0.2 MnO 3 (LSM) substrate have been characterized by using zeta potential analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The La 2 Zr 2 O 7 (LZ) formed at the interface between the YSZ thin film and LSM substrate, after sintered at 1400 o C for 52 h, are identified by XRD. The zeta potential of the YSZ particles in pure ethanol-acetone is about 7.8 mV, but when the I 2 concentration is greater than 0.6 g/1, the zeta potential attains a constant value, 46 mV. The relation between deposit weight of the YSZ films and the applied voltage shows a non-linear behavior. Thickness of the YSZ thin film deposited on the LSM substrate by electrophoretic deposition is controlled by a diffusion process. A larger LZ with the thickness of 200 nm is formed at the interface between the YSZ film and the LSM substrate

  9. Effects of whitening dentifrice on yttria-stabilized tetragonal zirconia polycrystal surfaces after simulating brushing.

    Science.gov (United States)

    Pinelli, Lígia Antunes Pereira; Gimenes Olbera, Amanda Caroline; Candido, Lucas Miguel; Miotto, Larissa Natiele; Antonio, Selma Gutierrez; Fais, Laiza Maria Grassi

    2017-01-01

    The changes that occur after brushing yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) are unknown. These changes may favor the retention of microorganisms and chemisorption of water, impairing its longevity. The purpose of this in vitro study was to evaluate the effects of a whitening dentifrice on Y-TZP surfaces after simulating 10 years of brushing. Seventy-two bar-shaped specimens (20×4×1.2 mm) were divided into 4 groups: storage in distilled water (SW, control), brushing with distilled water (BW), brushing with dentifrice (BD), and brushing with whitening dentifrice (BWD). Brushing was conducted using a linear brushing machine (878400 cycles, 0.98 N, soft toothbrush). The mean roughness (Ra) was analyzed with a profilometer and the superficial topography with scanning electron microscopy (SEM) at baseline and after treatment. Crystalline phases were characterized using x-ray diffraction. Baseline and posttreatment Ra were analyzed using the 1-way ANOVA and Tukey HSD multiple comparison test; the paired t test was used for intragroup comparison (all α=.05). The Ra (μm) means (before/after treatment) were SW 0.28/0.28; BW 0.32/0.31; BD 0.28/0.36; BWD 0.30/0.20. No statistically significant difference was found for Ra at baseline (P=.108) than for posttreatment results (P<.001); the BD group had higher Ra values when compared with baseline (P=.019); the BWD group had the lowest values (P<.001). The BD surfaces showed pronounced scratches and detachment of the surface, while BWD showed smoother surfaces; similar crystallographic results among groups were observed. Brushing Y-TZP with conventional dentifrice increased roughness, while brushing with whitening dentifrice reduced roughness. Neither dentifrice changed the crystallographic phases after brushing. Copyright © 2016 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  10. All fiber passively mode locked zirconium-based erbium-doped fiber laser

    Science.gov (United States)

    Ahmad, H.; Awang, N. A.; Paul, M. C.; Pal, M.; Latif, A. A.; Harun, S. W.

    2012-04-01

    All passively mode locked erbium-doped fiber laser with a zirconium host is demonstrated. The fiber laser utilizes the Non-Linear Polarization Rotation (NPR) technique with an inexpensive fiber-based Polarization Beam Splitter (PBS) as the mode-locking element. A 2 m crystalline Zirconia-Yttria-Alumino-silicate fiber doped with erbium ions (Zr-Y-Al-EDF) acts as the gain medium and generates an Amplified Spontaneous Emission (ASE) spectrum from 1500 nm to 1650 nm. The generated mode-locked pulses have a spectrum ranging from 1548 nm to more than 1605 nm, as well as a 3-dB bandwidth of 12 nm. The mode-locked pulse train has an average output power level of 17 mW with a calculated peak power of 1.24 kW and energy per pulse of approximately 730 pJ. The spectrum also exhibits a Signal-to-Noise Ratio (SNR) of 50 dB as well as a repetition rate of 23.2 MHz. The system is very stable and shows little power fluctuation, in addition to being repeatable.

  11. Structure, stability and mobility of point defects in hexagonal close packed zirconium: an ab initio study

    International Nuclear Information System (INIS)

    Verite, G.

    2007-09-01

    This research aims at determining, by means of DFT (density functional theory) electronic structure computations, the structure, the stability, and the mobility of isolated point defects, lack defects, auto-interstitial defects, or small aggregate defects in the compact hexagonal zirconium (hc Zr). After a literature survey on the studied materials and a review of computer simulation methods in material science, the author presents and comments the available results from experiments or simulations on point defects in hc Zr. He presents the growth phenomenon under radiation. Then, he briefly described the computing techniques used in this study, reports the determination of the network parameters and elastic constants of each material. He reports and comments the results obtained with the SIESTA code and with a Monte Carlo kinetic simulation. The different types of defects are investigated

  12. MOCVD of zirconium oxide thin films: Synthesis and characterization

    International Nuclear Information System (INIS)

    Torres-Huerta, A.M.; Dominguez-Crespo, M.A.; Ramirez-Meneses, E.; Vargas-Garcia, J.R.

    2009-01-01

    The synthesis of thin films of zirconia often produces tetragonal or cubic phases, which are stable at high temperatures, but that can be transformed into the monoclinic form by cooling. In the present study, we report the deposition of thin zirconium dioxide films by metalorganic chemical vapor deposition using zirconium (IV)-acetylacetonate as precursor. Colorless, porous, homogeneous and well adherent ZrO 2 thin films in the cubic phase were obtained within the temperature range going from 873 to 973 K. The deposits presented a preferential orientation towards the (1 1 1) and (2 2 0) planes as the substrate temperature was increased, and a crystal size ranging between 20 and 25 nm. The kinetics is believed to result from film growth involving the deposition and aggregation of nanosized primary particles produced during the CVD process. A mismatch between the experimental results obtained here and the thermodynamic prediction was found, which can be associated with the intrinsic nature of the nanostructured materials, which present a high density of interfaces.

  13. MOCVD of zirconium oxide thin films: Synthesis and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Torres-Huerta, A.M., E-mail: atohuer@hotmail.com [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Altamira, Instituto Politecnico Nacional, Km. 14.5 Carr. Tampico-Puerto Industrial, C.P. 89600, Altamira, Tamaulipas (Mexico); Dominguez-Crespo, M.A.; Ramirez-Meneses, E. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Altamira, Instituto Politecnico Nacional, Km. 14.5 Carr. Tampico-Puerto Industrial, C.P. 89600, Altamira, Tamaulipas (Mexico); Vargas-Garcia, J.R. [ESIQIE, Departamento de Metalurgia y Materiales, Instituto Politecnico Nacional. A.P. 75-876, 07300 Mexico, D.F. (Mexico)

    2009-02-15

    The synthesis of thin films of zirconia often produces tetragonal or cubic phases, which are stable at high temperatures, but that can be transformed into the monoclinic form by cooling. In the present study, we report the deposition of thin zirconium dioxide films by metalorganic chemical vapor deposition using zirconium (IV)-acetylacetonate as precursor. Colorless, porous, homogeneous and well adherent ZrO{sub 2} thin films in the cubic phase were obtained within the temperature range going from 873 to 973 K. The deposits presented a preferential orientation towards the (1 1 1) and (2 2 0) planes as the substrate temperature was increased, and a crystal size ranging between 20 and 25 nm. The kinetics is believed to result from film growth involving the deposition and aggregation of nanosized primary particles produced during the CVD process. A mismatch between the experimental results obtained here and the thermodynamic prediction was found, which can be associated with the intrinsic nature of the nanostructured materials, which present a high density of interfaces.

  14. Synthesis of zirconium by zirconium tetrachloride reduction by magnesio-thermia. Experimental study and modelling; Elaboration de zirconium par reduction de tetrachlorure de zirconium par magnesothermie. Etude experimentale et modelisation

    Energy Technology Data Exchange (ETDEWEB)

    Basin, N

    2001-01-01

    This work deals with the synthesis of zirconium. The ore is carbo-chlorinated to obtain the tetrachloride which is then purified by selective condensation and extractive distillation. Zirconium tetrachloride is then reduced by magnesium and the pseudo-alloy is obtained according to the global following reaction (Kroll process): ZrCl{sub 4} + 2 Mg = 2 MgCl{sub 2}. By thermodynamics, it has been shown that the volatilization of magnesium chloride and the formation of zirconium sub-chlorides are minimized when the combined effects of temperature and of dilution with argon are limited. With these conditions, the products, essentially zirconium and magnesium chloride, are obtained in equivalence ratio in the magnesio-thermia reaction. The global kinetics of the reduction process has been studied by a thermal gravimetric method. A thermo-balance device has been developed specially for this kinetics study. It runs under a controlled atmosphere and is coupled to a vapor tetrachloride feed unit. The transformation is modelled supposing that the zirconium and magnesium chloride formation result: 1)of the evaporation of magnesium from its liquid phase 2)of the transfer of magnesium and zirconium tetrachloride vapors towards the front of the reaction located in the gaseous phase 3)of the chemical reaction. In the studied conditions, the diffusion is supposed to be the limiting process. The influence of the following parameters: geometry of the reactive zone, temperature, scanning rate of the argon-zirconium tetrachloride mixture, composition of the argon-zirconium tetrachloride mixture has been experimentally studied and confronted with success to the model. (O.M.)

  15. Zirconium - an imported mineral commodity

    International Nuclear Information System (INIS)

    1983-10-01

    This report examines Canada's position in regard to the principal zirconium materials: zircon; fusion-cast zirconium-bearing refractory products; zirconium-bearing chemicals; and zirconium metal, master alloys, and alloys. None of these is produced in Canada except fused alumina-zirconia and certain magnesium-zirconium alloys and zirconium-bearing steels. Most of the 3 000-4 000 tonnes of the various forms of zircon believed to be consumed in Canada each year is for foundry applications. Other minerals, notably chromite, olivine and silica sand are also used for these purposes and, if necessary, could be substituted for zircon. Zirconium's key role in Canada is in CANDU nuclear power reactors, where zirconium alloys are essential in the cladding for fuel bundles and in capital equipment such as pressure tubes, calandria tubes and reactivity control mechanisms. If zirconium alloys were to become unavailable, the Canadian nuclear power industry would collapse. As a contingency measure, Ontario Hydro maintains at least nine months' stocks of nuclear fuel bundles. Canada's vulnerability to short-term disruptions to supplies of nuclear fuel is diminished further by the availability of more expensive electricity from non-nuclear sources and, given time, from mothballed thermal plants. Zirconium minerals are present in many countries, notably Australia, the Republic of South Africa and the United States. Australia is Canada's principal source of zircon imports; South Africa is its sole source of baddeleyite. At this time, there are no shortages of either material. Canada has untapped zirconium resources in the Athabasca Oil Sands (zircon) and at Strange Lake along the ill-defined border between Quebec and Newfoundland (gittinsite). Adequate metal and alloy production facilities exist in France, Japan and the United States. No action by the federal government in regard to zirconium supplies is called for at this time

  16. Properties Of Soda/Yttria/Silica Glasses

    Science.gov (United States)

    Angel, Paul W.; Hann, Raiford E.

    1994-01-01

    Experimental study of glass-formation compositional region of soda/ yttria/silicate system and of selected physical properties of glasses within compositional region part of continuing effort to identify glasses with high coefficients of thermal expansion and high softening temperatures, for use as coatings on superalloys and as glass-to-metal seals.

  17. Process for purifying zirconium sponge

    International Nuclear Information System (INIS)

    Abodishish, H.A.M.; Kimball, L.S.

    1992-01-01

    This patent describes a Kroll reduction process wherein a zirconium sponge contaminated with unreacted magnesium and by-product magnesium chloride is produced as a regulus, a process for purifying the zirconium sponge. It comprises: distilling magnesium and magnesium chloride from: a regulus containing a zirconium sponge and magnesium and magnesium chloride at a temperature above about 800 degrees C and at an absolute pressure less than about 10 mmHg in a distillation vessel to purify the zirconium sponge; condensing the magnesium and the magnesium chloride distilled from the zirconium sponge in a condenser; and then backfilling the vessel containing the zirconium sponge and the condenser containing the magnesium and the magnesium chloride with a gas; recirculating the gas between the vessel and the condenser to cool the zirconium sponge from above about 800 degrees C to below about 300 degrees C; and cooling the recirculating gas in the condenser containing the condensed magnesium and the condensed magnesium chloride as the gas cools the zirconium sponge to below about 300 degrees C

  18. Zirconium oxide obtainment from brazilian zircon concentrate

    International Nuclear Information System (INIS)

    Ribeiro, S.; Martins, A.H.

    1991-01-01

    This work presents the experimental results of studies about alkaline melting, acid leaching and sulfation steps for obtention of zirconium oxide and partially stabilized zirconia by yttrium and rare-earth coprecipitation in chlorine medium, starting from the brazilian zircon concentrate. Using statistical methods of factorial design and the Packett-Burman approach, the results are discussed and the optimal conditions of the production steps were determined. (author)

  19. Solubilities and stabilities of zirconium species in aqueous solutions: Literature review

    International Nuclear Information System (INIS)

    Rizkalla, E.N.; Choppin, G.R.

    1988-01-01

    This document describes specific chemical properties of zirconium compounds in water. The information sources were published reports rather than experimental data. The information is reviewed as a comprehensive, descriptive report. Included as a supplement is a proposal for funding to study carbon-14 in the Palo Duro Basin repository. 17 refs., 4 figs., 6 tabs

  20. Zirconium molybdate gel as a generator for technetium-99m

    International Nuclear Information System (INIS)

    Evans, J.V.; Shying, M.E.

    1984-12-01

    A new sup(99m)Tc generator based on zirconium molybdate gel is described. Essentially the gel is a cation ion exchanger which permits the elution of the pertechnetate ion. The high molybdenum content of this gel, its stability under self-irradiation, and the absence of organic materials during preparation provide a generator concept that eliminates high processing costs, active waste storage costs and stability problems in other types of generator

  1. Modelling zirconium hydrides using the special quasirandom structure approach

    KAUST Repository

    Wang, Hao; Chroneos, Alexander I.; Jiang, Chao; Schwingenschlö gl, Udo

    2013-01-01

    The study of the structure and properties of zirconium hydrides is important for understanding the embrittlement of zirconium alloys used as cladding in light water nuclear reactors. Simulation of the defect processes is complicated due to the random distribution of the hydrogen atoms. We propose the use of the special quasirandom structure approach as a computationally efficient way to describe this random distribution. We have generated six special quasirandom structure cells based on face centered cubic and face centered tetragonal unit cells to describe ZrH2-x (x = 0.25-0.5). Using density functional theory calculations we investigate the mechanical properties, stability, and electronic structure of the alloys. © the Owner Societies 2013.

  2. Contribution to the study of zirconium self-diffusion in zirconium carbide

    International Nuclear Information System (INIS)

    An, Chul

    1972-01-01

    The objective of this research thesis is to determine experimental conditions allowing the measurement of the self-diffusion coefficient of zirconium in zirconium carbide. The author reports the development of a method of preparation of zirconium carbide samples. He reports the use of ion implantation as technique to obtain a radio-tracer coating. The obtained results give evidence of the impossibility to use sintered samples with small grains because of the demonstrated importance of intergranular diffusion. The self-diffusion coefficient is obtained in the case of zirconium carbide with grains having a diameter of few millimetres. The presence of 95 Nb from the disintegration of 95 Zr indicates that these both metallic elements have very close diffusion coefficients at 2.600 C [fr

  3. Improvement of water resistance and dimensional stability of wood through titanium dioxide coating

    Science.gov (United States)

    Qingfeng Sun; Haipeng Yu; Yixing Liu; Jian Li; Yun Lu; John F. Hunt

    2010-01-01

    Moisture absorption and dimensional distortion are the major drawbacks of wood utilization as building material. In this study, poplar wood coated with a thin layer of titanium dioxide (TiO2) was prepared by the cosolvent-controlled hydrothermal method. Subsequently, its moisture absorption and dimensional stability were examined. Scanning...

  4. Hydrogen oxidation mechanisms on Ni/yttria stabilized zirconia anodes: Separation of reaction pathways by geometry variation of pattern electrodes

    Science.gov (United States)

    Doppler, M. C.; Fleig, J.; Bram, M.; Opitz, A. K.

    2018-03-01

    Nickel/yttria stabilized zirconia (YSZ) electrodes are affecting the overall performance of solid oxide fuel cells (SOFCs) in general and strongly contribute to the cell resistance in case of novel metal supported SOFCs in particular. The electrochemical fuel conversion mechanisms in these electrodes are, however, still only partly understood. In this study, micro-structured Ni thin film electrodes on YSZ with 15 different geometries are utilized to investigate reaction pathways for the hydrogen electro-oxidation at Ni/YSZ anodes. From electrodes with constant area but varying triple phase boundary (TPB) length a contribution to the electro-catalytic activity is found that does not depend on the TPB length. This additional activity could clearly be attributed to a yet unknown reaction pathway scaling with the electrode area. It is shown that this area related pathway has significantly different electrochemical behavior compared to the TPB pathway regarding its thermal activation, sulfur poisoning behavior, and H2/H2O partial pressure dependence. Moreover, possible reaction mechanisms of this reaction pathway are discussed, identifying either a pathway based on hydrogen diffusion through Ni with water release at the TPB or a path with oxygen diffusion through Ni to be a very likely explanation for the experimental results.

  5. Assessing the feasibility of yttria-stabilized zirconia in novel designs as mandibular anterior fixed lingual retention following orthodontic treatment

    Science.gov (United States)

    Stout, Matthew

    The purpose of this study is to explore the feasibility of yttria-stabilized zirconia (Y-TZP) in fixed lingual retention as an alternative to stainless steel. Exploratory Y-TZP specimens were milled to establish design parameters. Next, specimens were milled according to ASTM standard C1161-13 and subjected to four-point flexural test to determine materials properties. Finite Element (FE) Analysis was employed to evaluate nine novel cross-sectional designs and compared to stainless steel wire. Each design was analyzed under the loading conditions to determine von Mises and bond stress. The most promising design was fabricated to assess accuracy and precision of current CAD/CAM milling technology. The superior design had a 1.0 x 0.5 mm semi-elliptical cross section and was shown to be fabricated reliably. Overall, the milling indicated a maximum percent standard deviation of 9.3 and maximum percent error of 13.5 with a cost of $30 per specimen. Y-TZP can be reliably milled to dimensions comparable to currently available metallic retainer wires. Further research is necessary to determine the success of bonding protocol and clinical longevity of Y-TZP fixed retainers. Advanced technology is necessary to connect the intraoral scan to an aesthetic and patient-specific Y-TZP fixed retainer.

  6. Effect of autoclave induced low-temperature degradation on the adhesion energy between yttria-stabilized zirconia veneered with porcelain.

    Science.gov (United States)

    Li, Kai Chun; Waddell, J Neil; Prior, David J; Ting, Stephanie; Girvan, Liz; van Vuuren, Ludwig Jansen; Swain, Michael V

    2013-11-01

    To investigate the effect of autoclave induced low-temperature degradation on the adhesion energy between yttria-stabilized zirconia veneered with porcelain. The strain energy release rate using a four-point bending stable fracture test was evaluated for two different porcelains [leucite containing (VM9) and glass (Zirox) porcelain] veneered to zirconia. Prior to veneering the zirconia had been subjected to 0 (control), 1, 5, 10 and 20 autoclave cycles. The specimens were manufactured to a total bi-layer dimension of 30 mm × 8 mm × 3 mm. Subsequent scanning electron microscopy/energy dispersive spectrometry, electron backscatter diffraction and X-ray diffraction analysis were performed to identify the phase transformation and fracture behavior. The strain energy release rate for debonding of the VM9 specimens were significantly higher (pautoclave cycles lowered the strain energy release rate significantly (pautoclave cycles between 5 and 20. The monoclinic phase reverted back to tetragonal phase after undergoing conventional porcelain firing cycles. EBSD data showed significant changes of the grain size distribution between the control and autoclaved specimen (cycle 20). Increasing autoclave cycles only significantly decreased the adhesion of the VM9 layered specimens. In addition, a conventional porcelain firing schedule completely reverted the monoclinic phase back to tetragonal. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  7. Scandium and zirconium ion complexing with salicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Fadeeva, V I; Kochetkova, S K [Moskovskij Gosudarstvennyj Univ. (USSR)

    1979-08-01

    A study has been made of the extraction of complexes containing scandium and zirconium compounds and salicylic acid by using benzene, nitrobenzene, chloroform and isoamyl alcohol. It is shown that in the metal concentration range 10/sup -5/-10/sup -3/ mole/l scandium forms mononuclear complexes composed of Sc(HSal)/sub 3/ (pH<=4) and Sc(OH)(HSal)/sub 2/ (pH>4), zirconium - polynuclear complexes Zrsub(x)(OH)sub(y)(HSal)sub(n), where the x:n ratio varies from 0.5 to 1.5. Stability constants have been calculated for the salicylate scandium complexes in aqueous solution, equal to ..beta../sub 1/=(3+-1)x10/sup 2/; ..beta../sub 2/=(5.0+-0.6)x10/sup 4/; ..beta../sub 3/=(5.3+-0.3)x10/sup 6/.

  8. Artefacts in multimodal imaging of titanium, zirconium and binary titanium-zirconium alloy dental implants: an in vitro study.

    Science.gov (United States)

    Smeets, Ralf; Schöllchen, Maximilian; Gauer, Tobias; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne

    2017-02-01

    To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium-zirconium alloy dental implants. Zirconium, titanium and titanium-zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line-distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. While titanium and titanium-zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium-zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium-zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium-zirconium alloy induced more severe artefacts than zirconium and titanium. MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium-zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting.

  9. Artefacts in multimodal imaging of titanium, zirconium and binary titanium–zirconium alloy dental implants: an in vitro study

    Science.gov (United States)

    Schöllchen, Maximilian; Aarabi, Ghazal; Assaf, Alexandre T; Rendenbach, Carsten; Beck-Broichsitter, Benedicta; Semmusch, Jan; Sedlacik, Jan; Heiland, Max; Fiehler, Jens; Siemonsen, Susanne

    2017-01-01

    Objectives: To analyze and evaluate imaging artefacts induced by zirconium, titanium and titanium–zirconium alloy dental implants. Methods: Zirconium, titanium and titanium–zirconium alloy implants were embedded in gelatin and MRI, CT and CBCT were performed. Standard protocols were used for each modality. For MRI, line–distance profiles were plotted to quantify the accuracy of size determination. For CT and CBCT, six shells surrounding the implant were defined every 0.5 cm from the implant surface and histogram parameters were determined for each shell. Results: While titanium and titanium–zirconium alloy induced extensive signal voids in MRI owing to strong susceptibility, zirconium implants were clearly definable with only minor distortion artefacts. For titanium and titanium–zirconium alloy, the MR signal was attenuated up to 14.1 mm from the implant. In CT, titanium and titanium–zirconium alloy resulted in less streak artefacts in comparison with zirconium. In CBCT, titanium–zirconium alloy induced more severe artefacts than zirconium and titanium. Conclusions: MRI allows for an excellent image contrast and limited artefacts in patients with zirconium implants. CT and CBCT examinations are less affected by artefacts from titanium and titanium–zirconium alloy implants compared with MRI. The knowledge about differences of artefacts through different implant materials and image modalities might help support clinical decisions for the choice of implant material or imaging device in the clinical setting. PMID:27910719

  10. Method of separating hafnium from zirconium

    International Nuclear Information System (INIS)

    Megy, J.A.

    1980-01-01

    English. A new anhydrous method was developed for separating zirconium and hafnium, which gives higher separation factors and is more economical than previous methods. A molten phase, comprising a solution of unseparated zirconium and hafnium and a solvent metal, is first prepared. The molten metal phase is contacted with a fused salt phase which includes a zirconium salt. Zirconium and hafnium separation is effected by mutual displacement with hafnium being transported from the molten metal phase to the fused salt phase, while zirconium is transported from the fused salt phase to the molten metal phase. The solvent metal is less electropositive than zirconium. Zinc was chosen as the solvent metal, from a group which also included cadmium, lead, bismuth, copper, and tin. The fused salt phase cations are more electropositive than zirconium and were selected from a group comprising the alkali elements, the alkaline earth elements, the rare earth elements, and aluminum. A portion of the zirconium in the molten metal phase was oxidized by injecting an oxidizing agent, chlorine, to form zirconium tetrachlorid

  11. THE EFFECTS OF 1‰ STABILIZED LIQUID SOLUTION OF CHLORINE DIOXIDE (ClO2 ON SOME FOOD-BORN BACTERIA

    Directory of Open Access Journals (Sweden)

    Sead Hadziabdić

    2014-03-01

    Full Text Available The conducted research gives an overview of the results obtained after the application of 1‰ solution of stabilized liquid chlorine dioxide on some food-born related bacteria - E. coli, Staphylococcus aureus, S. Enteritidis and C. jejuni.  For this purpose,  reference strains of the aforementioned pathogens in decimal dilutions were exposed to 1 ml of 1‰ solution of stabilized liquid chlorine dioxide for one hour. Reduction of bacteria counts per mililitre (CFU/ml has been noticed for all bacteria, with total reduction of C. jejuni and Staphylococcus aureus in the fourth (1:104, and for S. Enteritidis and E. coli in the sixth (1:106 decimal dilution. Key words: chlorine dioxide, E. coli, S. aureus, S. Enteritidis, C. jejuni

  12. Plasma spraying of zirconium carbide – hafnium carbide – tungsten cermets

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Ctibor, Pavel; Cheong, D.-I.; Yang, S.-H.

    2009-01-01

    Roč. 9, č. 1 (2009), s. 49-64 ISSN 1335-8987 Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma spraying * cermet coatings * microhardness * zirconium carbide * hafnium carbide * tungsten * water stabilized plasma Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  13. Zirconium-barrier cladding attributes

    International Nuclear Information System (INIS)

    Rosenbaum, H.S.; Rand, R.A.; Tucker, R.P.; Cheng, B.; Adamson, R.B.; Davies, J.H.; Armijo, J.S.; Wisner, S.B.

    1987-01-01

    This metallurgical study of Zr-barrier fuel cladding evaluates the importance of three salient attributes: (1) metallurgical bond between the zirconium liner and the Zircaloy substrate, (2) liner thickness (roughly 10% of the total cladding wall), and (3) softness (purity). The effect that each of these attributes has on the pellet-cladding interaction (PCI) resistance of the Zr-barrier fuel was studied by a combination of analytical model calculations and laboratory experiments using an expanding mandrel technique. Each of the attributes is shown to contribute to PCI resistance. The effect of the zirconium liner on fuel behavior during off-normal events in which steam comes in contact with the zirconium surface was studied experimentally. Simulations of loss-of-coolant accident (LOCA) showed that the behavior of Zr-barrier cladding is virtually indistinguishable from that of conventional Zircaloy cladding. If steam contacts the zirconium liner surface through a cladding perforation and the fuel rod is operated under normal power conditions, the zirconium liner is oxidized more rapidly than is Zircaloy, but the oxidation rate returns to the rate of Zircaloy oxidation when the oxide phase reaches the zirconium-Zircaloy metallurgical bond

  14. Plasmachemical synthesis of nanopowders of yttria and zirconia from dispersed water-salt-organic mixtures

    Science.gov (United States)

    Novoselov, Ivan; Karengin, Alexander; Shamanin, Igor; Alyukov, Evgeny; Gusev, Alexander

    2018-03-01

    Article represents results on theoretical and experimental research of yttria and zirconia plasmachemical synthesis in air plasma from water-salt-organic mixtures "yttrium nitrate-water-acetone" and "zirconyl nitrate-water-acetone". On the basis of thermotechnical calculations the influence of organic component on lower heat value and adiabatic combustion temperature of water-salt-organic mixtures as well as compositions of mixtures providing their energy-efficient plasma treatment were determined. The calculations found the influence of mass fraction and temperature of air plasma supporting gas on the composition of plasma treatment products. It was determined the conditions providing yttria and zirconia plasmachemical synthesis in air plasma. During experiments it was b eing carried out the plasmachemical synthesis of yttria and zirconia powders in air plasma flow from water -salt-organic mixtures. Analysis of the results for obtained powders (scanning electron microscopy, X-ray diffraction analysis, BET analysis) confirm nanostructure of yttria and zirconia.

  15. Localized deformation of zirconium-liner tube

    International Nuclear Information System (INIS)

    Nagase, Fumihisa; Uchida, Masaaki

    1988-03-01

    Zirconium-liner tube has come to be used in BWR. Zirconium liner mitigates the localized stress produced by the pellet-cladding interaction (PCI). In this study, simulating the ridging, stresses were applied to the inner surfaces of zirconium-liner tubes and Zircaloy-2 tubes, and, to investigate the mechanism and the extent of the effect, the behavior of zirconium liner was examined. As the result of examination, stress was concentrated especially at the edge of the deformed region, where zirconium liner was highly deformed. Even after high stress was applied, the deformation of Zircaloy part was small, since almost the concentrated stress was mitigated by the deformation of zirconium liner. In addition, stress and strain distributions in the cross section of specimen were calculated with a computer code FEMAXI-III. The results also showed that zirconium liner mitigated the localized stress in Zircaloy, although the affected zone was restricted to the region near the boundary between zirconium liner and Zircaloy. (author)

  16. Crystallization kinetics and growth mechanism of 8 mol% yttria-stabilized zirconia (8YSZ) nano-powders prepared by a sol-gel process

    International Nuclear Information System (INIS)

    Kuo, C.-W.; Lee, Y.-H.; Hung, I-M.; Wang, M.-C.; Wen, S.-B.; Fung, K.-Z.; Shih, C.-J.

    2008-01-01

    Eight mol% yttria-stabilized zirconia (8YSZ) gel powders were synthesized at 348 K for 2 h using ZrOCl 2 .8H 2 O and Y(NO 3 ) 3 .6H 2 O as starting materials in an ethanol-water solution by a sol-gel process. The crystallization kinetics and growth mechanism of the 8YSZ gel powders have been investigated using differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). The XRD results and SAED pattern show that the 8YSZ gel powders calcined at 773 K for 2 h is a cubic ZrO 2 . The activation energy for the crystallization of the cubic ZrO 2 formation in the 8YSZ gel powders is determined as 231.76 kJ/mol by a non-isothermal DTA method. Both growth morphology parameter (n) and crystallization mechanism index (m) are close to 3.0, indicating that the bulk nucleation is dominant in the cubic ZrO 2 formation. The TEM examination shows that the cubic ZrO 2 has a spherical-like morphology with a size ranging from 10 to 20 nm

  17. Time and amplitude dependent damping in a single crystal of zirconium

    International Nuclear Information System (INIS)

    Atrens, A.; Ritchie, I.G.; Sprungmann, K.W.; CEA Centre d'Etudes Nucleaires de Grenoble, 38

    1977-01-01

    The amplitude dependent and time dependent damping in a single crystal of zirconium has been investigated in the temperature range ambient to 400 0 C. The results are attributed to a combination of dislocation unpinning and pin rearrangement. After stabilization of the pin distribution by vibration conditioning, followed by a sudden large increase in amplitude, it is shown that the specimen retains a memory of the stabilized state

  18. Spectrophotometric study of the complexation equilibria of zirconium(IV) with 1-amino-4-hydroxyanthraquinone and the determination of zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Idriss, K A; Seleim, M M; Saleh, M S; Abu-Bakr, M S; Sedaira, Hassan

    1988-11-01

    The spectral absorption and acid-base characteristics of 1-amino-4-hydroxyanthraquinone (AMHA) were studied in water -ethanol media. The composition, molar absorptivities, equilibrium constants and stability constants of the chelates of this reagent with zirconium(IV) have been determined spectrophotometrically in 40% V/V ethanol at 20/sup 0/C and an ionic strength of 0.1 M (NaClO/sub 4/). Graphical logarithmic analysis of the absorbance graphs was used to demonstrate and characterise the complexation equilibria in solution. A simple, rapid, selective and sensitive method for the spectrophotometric determination of trace amounts of zirconium is proposed based on the formation of the Zr(AMHA)/sub 2/ complex at pH 3.5 (lambda/sub max/ = 600 nm, epsilon 1.621 x 10/sup 4/ l mol/sup -1/ cm/sup -1/). Interference caused by a number of ions was masked by the addition of cyanide ions.

  19. Zirconium isotope separation process

    International Nuclear Information System (INIS)

    Peterson, S.H.; Lahoda, E.J.

    1988-01-01

    A process is described for reducing the amount of zirconium 91 isotope in zirconium comprising: forming a first solution of (a) a first solvent, (b) a scavenger, and (c) a zirconium compound which is soluble in the first solvent and reacts with the scavenger when exposed to light of a wavelength of 220 to 600 nm; irradiating the first solution with light at the wavelength for a time sufficient to photoreact a disproportionate amount of the zirconium compound containing the zirconium 91 isotope with the scavenger to form a reaction product in the first solution; contacting the first solution, while effecting the irradiation, with a second solvent which is immiscible with the first solvent, which the second solvent is a preferential solvent for the reaction product relative to the first solvent, such that at least a portion of the reaction product is transferred to the second solvent to form a second solution; and separating the second solution from the first solution after the contacting

  20. Atomistic studies of cation transport in tetragonal ZrO2 during zirconium corrosion

    International Nuclear Information System (INIS)

    Bai, Xian-Ming; Zhang, Yongfeng; Tonks, Michael R.

    2015-01-01

    Zirconium alloys are the major fuel cladding materials in current reactors. The water-side corrosion is a significant degradation mechanism of these alloys. During corrosion, the transport of oxidizing species in zirconium dioxide (ZrO 2 ) determines the corrosion kinetics. Previously, it has been argued that the outward diffusion of cations is important for forming protective oxides. In this work, the migration of Zr defects in tetragonal ZrO 2 is studied with temperature accelerated dynamics and molecular dynamics simulations. The results show that Zr interstitials have anisotropic diffusion and migrate preferentially along the [001] or c direction in tetragonal ZrO 2 . The compressive stresses can increase the Zr interstitial migration barrier significantly. The migration of Zr interstitials at a grain boundary is much slower than in a bulk oxide. The implications of these atomistic simulation results in the Zr corrosion are discussed. (authors)

  1. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89.

    Science.gov (United States)

    Bhatt, Nikunj B; Pandya, Darpan N; Xu, Jide; Tatum, David; Magda, Darren; Wadas, Thaddeus J

    2017-01-01

    The development of bifunctional chelators (BFCs) for zirconium-89 immuno-PET applications is an area of active research. Herein we report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2) as zirconium-89 chelators. While both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. Differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimization is necessary to enhance 89Zr chelation.

  2. Evaluation of macrocyclic hydroxyisophthalamide ligands as chelators for zirconium-89.

    Directory of Open Access Journals (Sweden)

    Nikunj B Bhatt

    Full Text Available The development of bifunctional chelators (BFCs for zirconium-89 immuno-PET applications is an area of active research. Herein we report the synthesis and evaluation of octadentate hydroxyisophthalamide ligands (1 and 2 as zirconium-89 chelators. While both radiometal complexes could be prepared quantitatively and with excellent specific activity, preparation of 89Zr-1 required elevated temperature and an increased reaction time. 89Zr-1 was more stable than 89Zr-2 when challenged in vitro by excess DTPA or serum proteins and in vivo during acute biodistribution studies. Differences in radiometal complex stability arise from structural changes between the two ligand systems, and suggest further ligand optimization is necessary to enhance 89Zr chelation.

  3. Suspensions on the basis of stabilised zirconium oxide for three-dimensional printing

    Science.gov (United States)

    Sokolov, P. S.; Komissarenko, D. A.; Shmeleva, I. A.; Slyusar, I. V.; Dosovitskiy, G. A.; Evdokimov, P. V.; Putlyaev, V. I.; Dosovitskiy, A. E.

    2018-04-01

    Present work considers the first results on rheological and photo-curing behaviour of suspension consisting of nanocrystalline stabilised zirconium dioxide powders (19 - 27 vol. %) and a liquid UV-photosensitive organic monomer. At ambient temperature compositions showed a viscosity of 2.5 and 0.8 Pa×s at 10 and 100 s-1 shear rates, respectively. Printability of these compositions was subsequently investigated by using an stereolithography machine Ember (Autodesk). 3D objects were later sintered in a separate furnace into dense translucent ZrO2 ceramics.

  4. Zirconium for nitric acid solutions

    International Nuclear Information System (INIS)

    Yau, T.L.

    1984-01-01

    The excellent corrosion resistance of zirconium in nitric acid has been known for over 30 years. Recently, there is an increasing interest in using zirconium for nitric acid services. Therefore, an extensive research effort has been carried out to achieve a better understanding of the corrosion properties of zirconium in nitric acid. Particular attention is paid to the effect of concentration, temperature, structure, solution impurities, and stress. Immersion, autoclave, U-bend, and constant strain-rate tests were used in this study. Results of this study indicate that the corrosion resistance of zirconium in nitric acid is little affected by changes in temperature and concentration, and the presence of common impurities such as seawater, sodium chloride, ferric chloride, iron, and stainless steel. Moreover, the presence of seawater, sodium chloride, ferric chloride, and stainless steel has little effect on the stress corrosion craking (SCC) susceptibility of zirconium in 70% nitric acid at room temperatures. However, zirconium could be attacked by fluoride-containing nitric acid and the vapors of chloride-containing nitric acid. Also, high sustained tensile stresses should be avoided when zirconium is used to handle 70% nitric acid at elevated temperatures or > 70% nitric acid

  5. TOF-SIMS studies of yttria-stabilised zirconia

    DEFF Research Database (Denmark)

    Hansen, Karin Vels; Norrman, Kion; Mogensen, Mogens Bjerg

    2006-01-01

    The surface of an as-polished and an as-sintered yttria-stabilised zirconia pellet was analysed with XPS and TOF-SIMS (depth profiling and imaging) in order to study the distribution of impurities. The polished sample was slightly contaminated with Na, K, Mg and Ca. The sintered sample showed...

  6. Experimental and thermodynamic study of the erbium-oxygen-zirconium and gadolinium-oxygen-zirconium systems

    International Nuclear Information System (INIS)

    Jourdan, J.

    2009-11-01

    This work is a contribution to the development of innovative concepts for fuel cladding in pressurized water nuclear reactors. This concept implies the insertion of rare earth (erbium and gadolinium) in the zirconium fuel cladding. The determination of phase equilibria in the systems is essential prior to the implementation of such a promising solution. This study consisted in an experimental determination of the erbium-zirconium phase diagram. For this, we used many different techniques in order to obtain diagram data such as solubility limits, solidus, liquidus or invariant temperatures. These data allowed us to present a new diagram, very different from the previous one available in the literature. We also assessed the diagram using the CALPHAD approach. In the gadolinium-zirconium system, we determined experimentally the solubility limits. Those limits had never been determined before, and the values we obtained showed a very good agreement with the experimental and assessed versions of the diagram. Because these alloys are subjected to oxygen diffusion throughout their life, we focused our attention on the erbium-oxygen-zirconium and gadolinium-oxygen-zirconium systems. The first system has been investigated experimentally. The alloys fabrication has been performed using powder metallurgy. In order to obtain pure raw materials, we fabricated powder from erbium and zirconium bulk metals using hydrogen absorption/desorption. The characterisation of the ternary pellets allowed the determination of two ternary isothermal sections at 800 and 1100 C. For the gadolinium-oxygen-zirconium system, we calculated the phase equilibria at temperatures ranging from 800 to 1100 C, using a homemade database compiled from literature assessments of the oxygen-zirconium, gadolinium-zirconium and gadolinia-zirconia systems. Finally, we determined the mechanical properties, in connexion with the microstructure, of industrial quality alloys in order to identify the influence of

  7. Process for etching zirconium metallic objects

    International Nuclear Information System (INIS)

    Panson, A.J.

    1988-01-01

    In a process for etching of zirconium metallic articles formed from zirconium or a zirconium alloy, wherein the zirconium metallic article is contacted with an aqueous hydrofluoric acid-nitric acid etching bath having an initial ratio of hydrofluoric acid to nitric acid and an initial concentration of hydrofluoric and nitric acids, the improvement, is described comprising: after etching of zirconium metallic articles in the bath for a period of time such that the etching rate has diminished from an initial rate to a lesser rate, adding hydrofluoric acid and nitric acid to the exhausted bath to adjust the concentration and ratio of hydrofluoric acid to nitric acid therein to a value substantially that of the initial concentration and ratio and thereby regenerate the etching solution without removal of dissolved zirconium therefrom; and etching further zirconium metallic articles in the regenerated etching bath

  8. Development of Self-Healing Zirconium-Silicide Coatings for Improved Performance Zirconium-Alloy Fuel Cladding

    Energy Technology Data Exchange (ETDEWEB)

    Sridharan, Kumar [University of Wisconsin-Madison; Mariani, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bai, Xianming [Idaho National Lab. (INL), Idaho Falls, ID (United States); Xu, Peng [Westinghouse Electric Company; Lahoda, Ed [Westinghouse Electric Company

    2018-03-31

    Given the long-term goal of developing such coatings for use with nuclear reactor fuel cladding, this work describes results of oxidation and corrosion behavior of bulk zirconium-silicide and fabrication of zirconium-silicide coatings on zirconium-alloy test flats, tube configurations, and SiC test flats. In addition, boiling heat transfer of these modified surfaces (including ZrSi2 coating) during clad quenching experiments is discussed in detail. Oxidation of bulk ZrSi2 was found to be negligible compared to Zircaloy-4 (a common Zr-alloy cladding material) and mechanical integrity of ZrSi2 was superior to that of bulk Zr2Si at high temperatures in ambient air. Very interesting and unique multi-nanolayered composite of ZrO2 and SiO2 were observed. Physical model for the oxidation has been proposed wherein Zr–Si–O mixture undergoes a spinodal phase decomposition into ZrO2 and SiO2, which is manifested as a nanoscale assembly of alternating layer of the two oxides. Steam corrosion at high pressure (10.3 MPa) led to weight loss of ZrSi2 and produced oxide scale with depletion of silicon, possibly attributed to volatile silicon hydroxide, gaseous silicon monoxide, and a solubility of silicon dioxide in water. Only Zircon phase (ZrSiO4) formed during oxidation of ZrSi2 at 1400°C in air, and allowed for immobilization silicon species in oxide scale in the aqueous environments. Zirconium-silicide coatings (on zirconium-alloy substrates) investigated in this study were deposited primarily using magnetron sputter deposition method and slurry method, although powder spray deposition processes cold spray and thermal spray methods were also investigated. The optimized ZrSi2 sputtered coating exhibited a highly protective nature at elevated temperatures in ambient air by mitigating oxygen permeation to the underlying zirconium alloy substrate. The high oxidation resistance of the coating has been shown to be due to nanocrystalline SiO2 and ZrSiO4 phases in the amorphous

  9. Variation on wettability of anodic zirconium oxide nanotube surface

    International Nuclear Information System (INIS)

    Wang, Lu-Ning; Shen, Chen; Shinbine, Alyssa; Luo, Jing-Li

    2013-01-01

    The present study reports the effect of fabrication conditions and environmental conditions, such as anodization voltage and aging period, on the wetting of zirconium dioxide nanotube (ZrNT) surfaces. Comparing with intact zirconium foil, which was inherently less hydrophilic, possessing an approximate contact angle of 60–70°, the as-formed ZrNT surfaces were much hydrophilic with an approximate contact angle of 18°. However, the hydrophilicity of the surfaces exhibited a decrease when the nanotubular opening diameters decreased while maintaining the nanotubular layer thickness. This phenomenon was attributed to the balance of capillary force and force generated by compressed air in the ZrNTs. The annealing treatment further increased the hydrophilic property of the ZrNTs. In addition, it was found that the wettability of ZrNTs, when aged in air over a period of 105 days, demonstrated a decrease in hydrophilic characteristics and exhibited, to some extent, an increase in hydrophobic characteristics. It was believed that the surface wettability was able to be changed due to the decreasing content of hydroxyl groups in ambient atmosphere. This work can provide guidelines for improving the structural and environmental conditions responsible for changing surface wettability of ZrNT surfaces for biomedical application. - Highlights: ► Wettability of zirconium oxide nanotubes (ZrNTs) was observed and characterized. ► Increasing of nanotubular diameter decreased the hydrophilicity of ZrNTs. ► Annealing processes enhanced the hydrophilicity of ZrNTs. ► Long term aging resulted in the hydrophobicity of ZrNTs

  10. Fracture toughness improvements of dental ceramic through use of yttria-stabilized zirconia (YSZ) thin-film coatings.

    Science.gov (United States)

    Chan, Ryan N; Stoner, Brian R; Thompson, Jeffrey Y; Scattergood, Ronald O; Piascik, Jeffrey R

    2013-08-01

    The aim of this study was to evaluate strengthening mechanisms of yttria-stabilized zirconia (YSZ) thin film coatings as a viable method for improving fracture toughness of all-ceramic dental restorations. Bars (2mm×2mm×15mm, n=12) were cut from porcelain (ProCAD, Ivoclar-Vivadent) blocks and wet-polished through 1200-grit using SiC abrasive. A Vickers indenter was used to induce flaws with controlled size and geometry. Depositions were performed via radio frequency magnetron sputtering (5mT, 25°C, 30:1 Ar/O2 gas ratio) with varying powers of substrate bias. Film and flaw properties were characterized by optical microscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD). Flexural strength was determined by three-point bending. Fracture toughness values were calculated from flaw size and fracture strength. Data show improvements in fracture strength of up to 57% over unmodified specimens. XRD analysis shows that films deposited with higher substrate bias displayed a high %monoclinic volume fraction (19%) compared to non-biased deposited films (87%), and resulted in increased film stresses and modified YSZ microstructures. SEM analysis shows critical flaw sizes of 67±1μm leading to fracture toughness improvements of 55% over unmodified specimens. Data support surface modification of dental ceramics with YSZ thin film coatings to improve fracture toughness. Increase in construct strength was attributed to increase in compressive film stresses and modified YSZ thin film microstructures. It is believed that this surface modification may lead to significant improvements and overall reliability of all-ceramic dental restorations. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Zirconium and cast zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Krone, K

    1977-04-01

    A survey is given on the occurence of zirconium, production of Zr sponge and semi-finished products, on physical and mechanical properties, production of Zr cast, composition of the commercial grades and reactor grades qualities, metal cutting, welding, corrosion behavior and use.

  12. Synthesis of zirconium by zirconium tetrachloride reduction by magnesio-thermia. Experimental study and modelling

    International Nuclear Information System (INIS)

    Basin, N.

    2001-01-01

    This work deals with the synthesis of zirconium. The ore is carbo-chlorinated to obtain the tetrachloride which is then purified by selective condensation and extractive distillation. Zirconium tetrachloride is then reduced by magnesium and the pseudo-alloy is obtained according to the global following reaction (Kroll process): ZrCl 4 + 2 Mg = 2 MgCl 2 . By thermodynamics, it has been shown that the volatilization of magnesium chloride and the formation of zirconium sub-chlorides are minimized when the combined effects of temperature and of dilution with argon are limited. With these conditions, the products, essentially zirconium and magnesium chloride, are obtained in equivalence ratio in the magnesio-thermia reaction. The global kinetics of the reduction process has been studied by a thermal gravimetric method. A thermo-balance device has been developed specially for this kinetics study. It runs under a controlled atmosphere and is coupled to a vapor tetrachloride feed unit. The transformation is modelled supposing that the zirconium and magnesium chloride formation result: 1)of the evaporation of magnesium from its liquid phase 2)of the transfer of magnesium and zirconium tetrachloride vapors towards the front of the reaction located in the gaseous phase 3)of the chemical reaction. In the studied conditions, the diffusion is supposed to be the limiting process. The influence of the following parameters: geometry of the reactive zone, temperature, scanning rate of the argon-zirconium tetrachloride mixture, composition of the argon-zirconium tetrachloride mixture has been experimentally studied and confronted with success to the model. (O.M.)

  13. Development and evaluation of suspension plasma sprayed yttria stabilized zirconia coatings as thermal barriers

    Science.gov (United States)

    van Every, Kent J.

    The insulating effects from thermal barrier coatings (TBCs) in gas turbine engines allow for increased operational efficiencies and longer service lifetimes. Consequently, improving TBCs can lead to enhanced gas turbine engine performance. This study was conducted to investigate if yttria-stabilized zirconia (YSZ) coatings, the standard industrial choice for TBCs, produced from nano-sized powder could provide better thermal insulation than current commericial YSZ coatings generated using micron-sized powders. The coatings for this research were made via the recently developed suspension plasma spraying (SPS) process. With SPS, powders are suspended in a solvent containing dispersing agents; the suspension is then injected directly into a plasma flow that evaporates the solvent and melts the powder while transporting it to the substrate. Although related to the industrial TBC production method of air plasma spraying (APS), SPS has two important differences---the ability to spray sub-micron diameter ceramic particles, and the ability to alloy the particles with chemicals dissolved in the solvent. These aspects of SPS were employed to generate a series of coatings from suspensions containing ˜100 nm diameter YSZ powder particles, some of which were alloyed with neodymium and ytterbium ions from the solvent. The SPS coatings contained columnar structures not observed in APS TBCs; thus, a theory was developed to explain the formation of these features. The thermal conductivity of the coatings was tested to evaluate the effects of these unique microstructures and the effects of the alloying process. The results for samples in the as-sprayed and heat-treated conditions were compared to conventional YSZ TBCs. This comparison showed that, relative to APS YSZ coatings, the unalloyed SPS samples typically exhibited higher as-sprayed and lower heat-treated thermal conductivities. All thermal conductivity values for the alloyed samples were lower than conventional YSZ TBCs

  14. Microstructure-electrical properties relation of zirconia based ceramic composites

    International Nuclear Information System (INIS)

    Fonseca, Fabio Coral

    2001-01-01

    the activation energy for ionic conduction with increasing Yttria content is caused by the increase in the intergranular (low frequency) contribution. For Y 2 O 3 +8 mol% Y 2 O 3 , impedance spectroscopy was used to correlate the bulk resistivity to the cubic phase formation for different sintering temperatures and times. The activation energy for oxygen ion diffusion was obtained by a parameter related to the variation of the electrical resistivity with sintering time. The activation energy for the zirconium diffusion in the Yttria-stabilized zirconia matrix (4.6 ± 0,3 eV) was determined by the intragranular conductivity of specimens sintered at different temperatures. (author)

  15. A comparative approach to synthesis and sintering of alumina/yttria nanocomposite powders using different precipitants

    Energy Technology Data Exchange (ETDEWEB)

    Kafili, G. [Department of Nanotechnology Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441 (Iran, Islamic Republic of); Movahedi, B., E-mail: b.movahedi@ast.ui.ac.ir [Department of Nanotechnology Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441 (Iran, Islamic Republic of); Milani, M. [Faculty of Advanced Materials and Renewable Energy Research Center, Tehran (Iran, Islamic Republic of)

    2016-11-01

    Alumina/yttria nanocomposite powder as an yttrium aluminum garnet (YAG) precursor was synthesized via partial wet route using urea and ammonium hydrogen carbonate (AHC) as precipitants, respectively. The products were characterized using X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and energy dispersive spectroscopy. The use of urea produced very tiny spherical Y-compounds with chemical composition of Y{sub 2}(CO{sub 3}){sub 3}·nH{sub 2}O, which were attracted to the surface of alumina nanoparticles and consequently, a core-shell structure was obtained. The use of ammonium hydrogen carbonate produced sheets of Y-compounds with chemical composition of Y(OH)CO{sub 3} covering the alumina nanoparticles. A fine-grained YAG ceramic (about 500 nm), presenting a non-negligible transparency (45% RIT at IR range) was obtained by the spark plasma sintering (SPS) of alumina-yttria nanocomposite synthesized in the urea system. This amount of transmission was obtained by only the sintering of the powder specimen without any colloidal forming process before sintering or adding any sintering aids or dopant elements. However, by spark plasma sintering of alumina-yttria nanocomposite powder synthesized in AHC system, an opaque YAG ceramic with an average grain size of 1.2 μm was obtained. - Highlights: • Urea proved to be an appropriate precipitant for obtaining a core-shell alumina/yttria nanocomposite. • Alumina/yttria nanocomposite powders with more appropriate morphology and highly sinterability. • A fine-grained YAG ceramic was obtained by SPS of alumina-yttria nanocomposite.

  16. Investigation of the oxygen exchange mechanism on Pt|yttria stabilized zirconia at intermediate temperatures: Surface path versus bulk path.

    Science.gov (United States)

    Opitz, Alexander K; Lutz, Alexander; Kubicek, Markus; Kubel, Frank; Hutter, Herbert; Fleig, Jürgen

    2011-11-30

    The oxygen exchange kinetics of platinum on yttria-stabilized zirconia (YSZ) was investigated by means of geometrically well-defined Pt microelectrodes. By variation of electrode size and temperature it was possible to separate two temperature regimes with different geometry dependencies of the polarization resistance. At higher temperatures (550-700 °C) an elementary step located close to the three phase boundary (TPB) with an activation energy of ∼1.6 eV was identified as rate limiting. At lower temperatures (300-400 °C) the rate limiting elementary step is related to the electrode area and exhibited a very low activation energy in the order of 0.2 eV. From these observations two parallel pathways for electrochemical oxygen exchange are concluded.The nature of these two elementary steps is discussed in terms of equivalent circuits. Two combinations of parallel rate limiting reaction steps are found to explain the observed geometry dependencies: (i) Diffusion through an impurity phase at the TPB in parallel to diffusion of oxygen through platinum - most likely along Pt grain boundaries - as area-related process. (ii) Co-limitation of oxygen diffusion along the Pt|YSZ interface and charge transfer at the interface with a short decay length of the corresponding transmission line (as TPB-related process) in parallel to oxygen diffusion through platinum.

  17. Preparation of epitaxial YBa2Cu3O7-y films on CeO2-buffered yttria-stabilized zirconia substrates by fluorine-free metalorganic deposition

    International Nuclear Information System (INIS)

    Tsukada, Kenichi; Yamaguchi, Iwao; Sohma, Mitsugu; Kondo, Wakichi; Kamiya, Kunio; Kumagai, Toshiya; Manabe, Takaaki

    2007-01-01

    Epitaxial YBa 2 Cu 3 O 7-y (YBCO) films of 120-550 nm thickness have been prepared by fluorine-free metalorganic deposition using a metal acetylacetonate-based coating solution on yttria-stabilized zirconia (YSZ) substrates with an evaporated CeO 2 buffer layer. The YBCO films were highly (0 0 1)-oriented by X-ray diffraction θ-2θ scanning and φ scanning. The YBCO films 120-400 nm in thickness demonstrated high critical current densities (J c ) with an average in excess of 3 MA/cm 2 at 77 K using an inductive method. In particular, a 210-nm-thick film showed a J c of 4.5 MA/cm 2 . These excellent properties are attributed to the high crystallinity, small in-plane fluctuation due to high epitaxy and to the microstructure free from grain boundaries in the YBCO films. Further increase of film thickness increased the fraction of irregularities, i.e., precipitates and micropores, in the film surfaces, resulting in lower J c values

  18. Neutron activation of chlorine in zirconium and zirconium alloys use of the matrix as comparator

    International Nuclear Information System (INIS)

    Cohen, I.M.; Gomez, C.D.; Mila, M.I.

    1981-01-01

    A procedure is described for neutron activation analysis of chlorine in zirconium and zirconium alloys. Calculation of chlorine concentration is performed relative to zirconium concentration in the matrix in order to minimize effects of differences in irradiation and counting geometry. Principles of the method and the results obtained are discussed. (author)

  19. High Temperature Co‐Electrolysis of Steam and CO2 in an SOC Stack: Performance and Durability

    DEFF Research Database (Denmark)

    Chen, Ming; Høgh, Jens Valdemar Thorvald; Nielsen, J. U.

    2013-01-01

    In this work, co‐electrolysis of steam and carbon dioxide was studied in a Topsoe Fuel Cell (TOFC®) 10‐cell stack, containing three different types of Ni/yttria stabilized zirconia (YSZ) electrode supported solid oxide electrolysis cells with a footprint of 12 × 12 cm. The stack was operated at 800...

  20. Modification of Different Zirconium Propoxide Precursors by Diethanolamine. Is There a Shelf Stability Issue for Sol-Gel Applications?

    Science.gov (United States)

    Spijksma, Gerald I.; Blank, Dave H. A.; Bouwmeester, Henny J. M.; Kessler, Vadim G.

    2009-01-01

    Modification of different zirconium propoxide precursors with H2dea was investigated by characterization of the isolated modified species. Upon modification of zirconium n-propoxide and [Zr(OnPr)(OiPr)3(iPrOH)]2 with ½ a mol equivalent of H2dea the complexes [Zr2(OnPr)6(OCH2CH2)2NH]2 (1) and [Zr2(OnPr)2(OiPr)4(OCH2CH2)2NH]2 (2) were obtained. However, 1H-NMR studies of these tetranuclear compounds showed that these are not time-stable either in solution or solid form. The effect of this time instability on material properties is demonstrated by light scattering and TEM experiments. Modification of zirconium isopropoxide with either ½ or 1 equivalent mol of H2dea results in formation of the trinuclear complex, Zr{η3μ2-NH(C2H4O)2}3[Zr(OiPr)3]2(iPrOH)2 (3) countering a unique nona-coordinated central zirconium atom. This complex 3 is one of the first modified zirconium propoxide precursors shown to be stable in solution for long periods of time. The particle size and morphology of the products of sol-gel synthesis are strongly dependent on the time factor and eventual heat treatment of the precursor solution. Reproducible sol-gel synthesis requires the use of solution stable precursors. PMID:20087472

  1. Extraction of zirconium from raffinate stream of Zirconium Oxide Plant raffinate

    International Nuclear Information System (INIS)

    Pandey, Garima; Chinchale, R.; Renjith, A.U.; Mukhopadhyay, S.; Shenoy, K.T.; Ghosh, S.K.

    2013-01-01

    Recovery of metals from dilute streams is a major task in nuclear industry in the view of environmental remediation and value recovery. Presently solvent extraction process is employed on the commercial scale to recover nuclear pure zirconium using TBP as extractant. The waste stream of TBP extraction process contains about 1.2 gpl of Zirconium in nitrate form. At present there is no process to recover Zirconium from this raffinate stream. Hence, under the present study recovery of zirconium from the raffinate stream of Zirconium Oxide Plant Raffinate has been investigated. TBP, which is the most commonly used solvent in the nuclear industry is not suitable for the extraction of zirconium from lean solution at low acidity as its distribution coefficient is less than one. In search of a suitable extractant Mixed Alkyl Phosphine Oxide (MAPO) was investigated as potential carrier. Parametric batch studies for various equilibrium data like extractant concentration, strippant concentration, solvent reusability, equilibration time, acidity etc. were done to optimize the process condition. For the distribution studies, equal volumes of the raffinate and organic phase were shaken at room temperature in digital wrist action shaker for 10 minutes to ensure complete equilibrium. It was found that 0.1 M MAPO in 80:20 dodecane: isodecanol is suitable for extraction of Zr at 2 N acidity. 0.1 M MAPO gives distribution coefficient in the range of 12-15 for Zr. The slope of log-log plot between MAPO concentration and K, suggests involvement of 3 molecules of MAPO in the formation of extracting species. 0.2 M Oxalic acid was able to completely back extract Zr from the organic phase into aqueous phase. Also good regeneration capacity of MAPO projects its potential to be used as extractant for the process. Based on the equilibrium studies, Dispersion Liquid Membrane configuration in hollow fiber contactor was explored for the extraction of Zirconium from Zirconium Nitrate Pure

  2. Obtainment of zirconium oxide and partially stabilized zirconium oxide with yttrium and rare earth oxides, from Brazilian zirconite, for ceramic aim

    International Nuclear Information System (INIS)

    Ribeiro, S.

    1991-05-01

    This work presents experimental results for processing of brazilian zirconite in order to obtain zirconium oxide with Yttrium and Rare Earth oxide by mutual coprecipitation for ceramics purposes. Due to analysis of experimental results was possible to obtain the optimum conditions for each one of technological route stage, such as: alkaline fusion; acid leaching; sulfactation and coprecipitation. (author)

  3. Determination of hydrogen in zirconium hydride and uranium-zirconium hydride by inert gas exraction-gravimetric method

    International Nuclear Information System (INIS)

    Hoshino, Akira; Iso, Shuichi

    1976-01-01

    An inert gas extraction-gravimetric method has been applied to the determination of hydrogen in zirconium hydride and uranium-zirconium hydride which are used as neutron moderator and fuel of nuclear safety research reactor (NSRR), respectively. The sample in a graphite-enclosed quartz crucible is heated inductively to 1200 0 C for 20 min in a helium stream. Hydrogen liberated from the sample is oxidized to water by copper(I) oxide-copper(II) oxide at 400 0 C, and the water is determined gravimetrically by absorption in anhydrone. The extraction curves of hydrogen for zirconium hydride and uranium-zirconium hydride samples are shown in Figs. 2 and 3. Hydrogen in the samples is extracted quantitatively by heating at (1000 -- 1250) 0 C for (10 -- 40) min. Recoveries of hydrogen in the case of zirconium hydride were examined as follows: a weighed zirconium rod (5 phi x 6 mm, hydrogen -5 Torr. After the chamber was filled with purified hydrogen to 200 Torr, the rod was heated to 400 0 C for 15 h, and again weighed to determine the increase in weight. Hydrogen in the rod was then determined by the proposed method. The results are in excellent agreement with the increase in weight as shown in Table 1. Analytical results of hydrogen in zirconium hydride samples and an uranium-zirconium hydride sample are shown in Table 2. (auth.)

  4. Zirconium oxide based ceramic solid electrolytes for oxygen detection

    International Nuclear Information System (INIS)

    Caproni, Erica

    2007-01-01

    Taking advantage of the high thermal shock resistance of zirconia-magnesia ceramics and the high oxide ion conductivity of zirconia-yttria ceramics, composites of these ceramics were prepared by mixing, pressing and sintering different relative concentrations of ZrO 2 : 8.6 mol% MgO and ZrO 2 : 3 mol% Y 2 O 3 solid electrolytes. Microstructural analysis of the composites was carried out by X-ray diffraction and scanning electron microscopy analyses. The thermal behavior was studied by dilatometric analysis. The electrical behavior was evaluated by the impedance spectroscopy technique. An experimental setup was designed for measurement the electrical signal generated as a function of the amount of oxygen at high temperatures. The main results show that these composites are partially stabilized (monoclinic, cubic and tetragonal) and the thermal behavior is similar to that of ZrO 2 : 8.6 mol% MgO materials used in disposable high temperature oxygen sensors. Moreover, the results of analysis of impedance spectroscopy show that the electrical conductivity of zirconia:magnesia is improved with zirconia-yttria addition and that the electrical signal depends on the amount of oxygen at 1000 deg C, showing that the ceramic composites can be used in oxygen sensors. (author)

  5. Modification in band gap of zirconium complexes

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Mayank, E-mail: mayank30134@gmail.com; Singh, J.; Chouhan, S. [Department of Physics, ISLE, IPS Academy, Indore (M.P.) (India); Mishra, A. [School of Physics, Devi Ahilya Vishwavidyalaya, Indore (M.P.) (India); Shrivastava, B. D. [Govt. P. G. College, Biora (M.P.) (India)

    2016-05-06

    The optical properties of zirconium complexes with amino acid based Schiff bases are reported here. The zirconium complexes show interesting stereo chemical features, which are applicable in organometallic and organic synthesis as well as in catalysis. The band gaps of both Schiff bases and zirconium complexes were obtained by UV-Visible spectroscopy. It was found that the band gap of zirconium complexes has been modified after adding zirconium compound to the Schiff bases.

  6. Supplemental Carbon Dioxide Stabilizes the Upper Airway in Volunteers Anesthetized with Propofol.

    Science.gov (United States)

    Ruscic, Katarina Jennifer; Bøgh Stokholm, Janne; Patlak, Johann; Deng, Hao; Simons, Jeroen Cedric Peter; Houle, Timothy; Peters, Jürgen; Eikermann, Matthias

    2018-05-10

    Propofol impairs upper airway dilator muscle tone and increases upper airway collapsibility. Preclinical studies show that carbon dioxide decreases propofol-mediated respiratory depression. We studied whether elevation of end-tidal carbon dioxide (PETCO2) via carbon dioxide insufflation reverses the airway collapsibility (primary hypothesis) and impaired genioglossus muscle electromyogram that accompany propofol anesthesia. We present a prespecified, secondary analysis of previously published experiments in 12 volunteers breathing via a high-flow respiratory circuit used to control upper airway pressure under propofol anesthesia at two levels, with the deep level titrated to suppression of motor response. Ventilation, mask pressure, negative pharyngeal pressure, upper airway closing pressure, genioglossus electromyogram, bispectral index, and change in end-expiratory lung volume were measured as a function of elevation of PETCO2 above baseline and depth of propofol anesthesia. PETCO2 augmentation dose-dependently lowered upper airway closing pressure with a decrease of 3.1 cm H2O (95% CI, 2.2 to 3.9; P < 0.001) under deep anesthesia, indicating improved upper airway stability. In parallel, the phasic genioglossus electromyogram increased by 28% (23 to 34; P < 0.001). We found that genioglossus electromyogram activity was a significant modifier of the effect of PETCO2 elevation on closing pressure (P = 0.005 for interaction term). Upper airway collapsibility induced by propofol anesthesia can be reversed in a dose-dependent manner by insufflation of supplemental carbon dioxide. This effect is at least partly mediated by increased genioglossus muscle activity.

  7. Study of diffusion processes in the oxide layer of zirconium alloys

    Directory of Open Access Journals (Sweden)

    Sialini P.

    2016-03-01

    Full Text Available In the active zone of a nuclear reactor where zirconium alloys are used as a coating material, this material is subject to various harmful impacts. During water decomposition reactions, hydrogen and oxygen are evolved that may diffuse through the oxidic layer either through zirconium dioxide (ZrO2 crystals or along ZrO2 grains. The diffusion mechanism can be studied using the Ion Beam Analysis (IBA method where nuclear reaction 18O(p,α15N is used. A tube made of zirconium alloy E110 (with 1 wt. % of Nb was used for making samples that were pre-exposed in UJP PRAHA a.s. and subsequently exposed to isotopically cleansed environment of H2 18O medium in an autoclave. The samples were analysed with gravimetric methods and IBA methods performed at the electrostatic particle accelerator Tandetron 4130 MC in the Nucler Physics Institute of the CAS, Řež. With IBA methods, the overall thicknesses of corrosion layers on the samples, element composition of the alloy and distribution of oxygen isotope 18O in the corrosion layer and its penetration in the alloy were identified. The retrieved data shows at the oxygen diffusion along ZrO2 grains because there are two peaks of 18O isotope concentrations in the corrosion layer. These peaks occur at the environment-oxide and oxide-metal interface. The element analysis identified the presence of undesirable hafnium.

  8. Transport properties of water and oxygen in yttria-stabilized zirconia; Transporteigenschaften von Wasser und Sauerstoff in Yttrium-stabilisiertem Zirkoniumdioxid

    Energy Technology Data Exchange (ETDEWEB)

    Pietrowski, Martha Joanna

    2012-12-21

    Oxide materials that adopt the fluorite structure, such as yttria-stabilized zirconia (YSZ), play a central role in electrochemical devices, such as fuel cells and sensors, because of their high ionic conductivity. By virtue of the technological importance of such devices there exists a broad interest in understanding and enhancing mass transport processes in YSZ. In such oxides, not only does transport through the bulk play a critical role; interfaces (internal and external) have an influence, too. The effect of interfaces on the transport properties, however, is not investigated in detail, and remains in many places unclear. In this work two open questions concerning the effect of interfaces on mass transport processes in YSZ are addressed: The first issue is the phenomenon of protonic conductivity observed at low temperatures for nanocrystalline YSZ in wet atmospheres. This protonic conductivity was attributed to the high density of interfaces (grain boundaries) caused by the nanostructure, in which protonic species can be mobile. Through isotope exchange experiments with subsequent Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) the presence of hydrogen in nano-YSZ was confirmed. Questions as to which hydrogen-containing species are present and which transport path is taken in nanocrystalline YSZ were examined by means of in-situ of near-infrared (NIR) spectroscopy. The results indicate that water is adsorbed on internal surfaces, such as pores and micro-cracks. Microscopic analysis of nanocrystalline YSZ showed first indications of nanopores. The second issue concerned transport across the solidgas interface, that is the surface. To this end, oxygen isotope exchange experiments were performed on single crystal samples of yttria-stabilised zirconia under wet and dry conditions as function of oxygen partial pressure pO{sub 2} and water partial pressure pH{sub 2}O with subsequent determination of the oxygen isotope profiles by ToF-SIMS. As expected, the

  9. Present understanding of the stability of Li-stuffed garnets with moisture, carbon dioxide, and metallic lithium

    Science.gov (United States)

    Hofstetter, Kyle; Samson, Alfred Junio; Narayanan, Sumaletha; Thangadurai, Venkataraman

    2018-06-01

    Fast lithium-ion conducting garnet-type metal oxides are promising membranes for next-generation all-solid-state Li batteries and beyond Li-ion batteries, including Li-air and Li-S batteries, due to their high total Li-ion conductivity and excellent chemical stability against reaction with elemental Li. Several studies have been reported on structure-chemical composition-ionic conductivity property in Li-stuffed garnet-type metal oxides. Here, an overview of the chemical and electrochemical stability of lithium-based garnets against moisture/humidity, aqueous solutions, carbon dioxide, sulfur, and metallic lithium are analyzed. Moisture and aqueous stability studies focus on understanding the crystal structure stability, the proton exchange capacity as a function of Li content in Li-stuffed garnets, and how the protonated species affect the crystal structure and mass transport properties. H+/Li+ exchange was found to be in the range of 2-100%. Stability concerning Li-ion conductivity and morphology under carbon dioxide are discussed. Interfacial chemical stability with lithium metal characterized by electrochemical stability window, Li dendrite formation and area specific resistance (ASR) for the reaction Li ⇌ Li+ +e- are presented. Recent attempts to suppress dendrite formation and to reduce ASR via surface modification are also highlighted. Li and Li-stuffed garnet interface ASR values are shown to be as high as >2000 Ω cm2 and as low as 1 Ω cm2 at room temperature for surface modified Li-stuffed samples. Furthermore, recent studies on Li-S battery utilizing chemically stable Li - garnet electrolyte are also discussed.

  10. Plasma arc melting of zirconium

    International Nuclear Information System (INIS)

    Tubesing, P.K.; Korzekwa, D.R.; Dunn, P.S.

    1997-01-01

    Zirconium, like some other refractory metals, has an undesirable sensitivity to interstitials such as oxygen. Traditionally, zirconium is processed by electron beam melting to maintain minimum interstitial contamination. Electron beam melted zirconium, however, does not respond positively to mechanical processing due to its large grain size. The authors undertook a study to determine if plasma arc melting (PAM) technology could be utilized to maintain low interstitial concentrations and improve the response of zirconium to subsequent mechanical processing. The PAM process enabled them to control and maintain low interstitial levels of oxygen and carbon, produce a more favorable grain structure, and with supplementary off-gassing, improve the response to mechanical forming

  11. Crystallization kinetics and growth mechanism of 8 mol% yttria-stabilized zirconia (8YSZ) nano-powders prepared by a sol-gel process

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, C.-W. [Department of Resources Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Lee, Y.-H. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Hung, I-M. [Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Far-East Road, Chung-Li, Taoyuan, Taiwan (China); Wang, M.-C. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 807, Taiwan (China); Wen, S.-B. [Department of Resources Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Fung, K.-Z. [Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Shih, C.-J. [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 807, Taiwan (China)], E-mail: cjshih@kmu.edu.tw

    2008-04-03

    Eight mol% yttria-stabilized zirconia (8YSZ) gel powders were synthesized at 348 K for 2 h using ZrOCl{sub 2}.8H{sub 2}O and Y(NO{sub 3}){sub 3}.6H{sub 2}O as starting materials in an ethanol-water solution by a sol-gel process. The crystallization kinetics and growth mechanism of the 8YSZ gel powders have been investigated using differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and selected area electron diffraction (SAED). The XRD results and SAED pattern show that the 8YSZ gel powders calcined at 773 K for 2 h is a cubic ZrO{sub 2}. The activation energy for the crystallization of the cubic ZrO{sub 2} formation in the 8YSZ gel powders is determined as 231.76 kJ/mol by a non-isothermal DTA method. Both growth morphology parameter (n) and crystallization mechanism index (m) are close to 3.0, indicating that the bulk nucleation is dominant in the cubic ZrO{sub 2} formation. The TEM examination shows that the cubic ZrO{sub 2} has a spherical-like morphology with a size ranging from 10 to 20 nm.

  12. Effects of ion implantation on corrosion of zirconium and zirconium base alloys

    International Nuclear Information System (INIS)

    Zelenskij, V.F.; Petel'guzov, I.A.; Rekova, L.P.; Rodak, A.G.

    1989-01-01

    The influence of He and Ar ion bombardment on the corrosion of Zr and Zr-1%Nb and Zr-2.5%Nb alloys is investigated with the aims of finding the irradiation influence laws, obtaining the dependences of the effect of increasing the corrosiuon resistance on the type and dose of bombarding ions and of finding the conditions for the maximum effect. The prolonged corrosion test of specimens (3500 hours) have shown that the strongest effect is obtained for the irradiation with Ar ions up to the dose 1x10 16 ion/cm 2 . The kinetics of ion thermosorption after corrosion of irradiated materials is studied, the temperature threshold of implanted ion stability in zirconium and its alloys is found to be 400 deg C

  13. Zirconium alloy barrier having improved corrosion resistance

    International Nuclear Information System (INIS)

    Adamson, R.B.; Rosenbaum, H.S.

    1983-01-01

    A nuclear fuel element for use in the core of a nuclear reactor has a composite cladding container having a substrate and a dilute zirconium alloy liner bonded to the inside surface of the substrate. The dilute zirconium alloy liner forms about 1 to about 20 percent of the thickness of the cladding and is comprised of zirconium and a metal selected from the group consisting of iron, chromium, iron plus chromium, and copper. The dilute zirconium alloy liner shields the substrate from impurities or fission products from the nuclear fuel material and protects the substrate from stress corrosion and stress cracking. The dilute zirconium alloy liner displays greater corrosion resistance, especially to oxidation by hot water or steam than unalloyed zirconium. The substrate material is selected from conventional cladding materials, and preferably is a zirconium alloy. (author)

  14. The costs of different energy taxes for stabilizing U.S. carbon dioxide emissions: An application of the Gemini model

    International Nuclear Information System (INIS)

    Leary, N.A.; Scheraga, J.D.

    1993-01-01

    In the absence of policies to mitigate emissions of carbon dioxide, US emissions will grow substantially over the period 1990 to 2030. One option for mitigation of carbon dioxide emissions is to tax energy use. For example, fossil energy might be taxed according to its carbon content, heating value, or market value. Using a partial equilibrium model of US energy markets that combines detailed representation of technological processes with optimizing behavior by energy users and suppliers, the authors compare the costs of using carbon, Btu, and ad valorem taxes as instruments to implement a policy of emission stabilization. The authors also examine the differential impacts of these taxes on the mix of primary energy consumed in the US. The carbon tax induces the substitution of renewables and natural gas for coal and stabilizes carbon dioxide emissions at an estimated annual cost of $125 billion. The Btu tax induces the substitution of renewables for coal, but does not encourage the use of natural gas. The estimated cost of stabilization with the Btu tax is $210 billion per year. The ad valorem tax, like the Btu tax, does not encourage the substitution of natural gas for coal. It also causes a significant shift away from oil in comparison to the carbon tax. The cost of stabilizing emissions with the ad valorem tax is estimated at $450 billion per year

  15. Mechanochemically Activated, Calcium Oxide-Based, Magnesium Oxide-Stabilized Carbon Dioxide Sorbents.

    Science.gov (United States)

    Kurlov, Alexey; Broda, Marcin; Hosseini, Davood; Mitchell, Sharon J; Pérez-Ramírez, Javier; Müller, Christoph R

    2016-09-08

    Carbon dioxide capture and storage (CCS) is a promising approach to reduce anthropogenic CO2 emissions and mitigate climate change. However, the costs associated with the capture of CO2 using the currently available technology, that is, amine scrubbing, are considered prohibitive. In this context, the so-called calcium looping process, which relies on the reversible carbonation of CaO, is an attractive alternative. The main disadvantage of naturally occurring CaO-based CO2 sorbents, such as limestone, is their rapid deactivation caused by thermal sintering. Here, we report a scalable route based on wet mechanochemical activation to prepare MgO-stabilized, CaO-based CO2 sorbents. We optimized the synthesis conditions through a fundamental understanding of the underlying stabilization mechanism, and the quantity of MgO required to stabilize CaO could be reduced to as little as 15 wt %. This allowed the preparation of CO2 sorbents that exceed the CO2 uptake of the reference limestone by 200 %. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Influence of zirconium ion concentration in model extraction systems TBP - diluents - Zr+4 - nitric acid

    International Nuclear Information System (INIS)

    Rogoz, F.; Tlalka, M.

    1987-07-01

    In systems containing TBP, MBP, DBP and 1-butanol stable emulsions and precipitates are formed which separation is difficult in certain domain of concentration in zirconium ions. MPB and DBP increase stability of primary emulsion in kerosen and carbon tetrachloride but for different concentrations of nitric acid. Addition of 1-butanol decreases slightly the stability of primary emulsion [fr

  17. Determination of Scattering and Absorption Coefficients for Plasma-Sprayed Yttria-Stabilized Zirconia Thermal Barrier Coatings at Elevated Temperatures

    Science.gov (United States)

    Eldridge, Jeffrey I.; Spuckler, Charles M.; Markham, James R.

    2009-01-01

    The temperature dependence of the scattering and absorption coefficients for a set of freestanding plasma-sprayed 8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) was determined at temperatures up to 1360 C in a wavelength range from 1.2 micrometers up to the 8YSZ absorption edge. The scattering and absorption coefficients were determined by fitting the directional-hemispherical reflectance and transmittance values calculated by a four-flux Kubelka Munk method to the experimentally measured hemispherical-directional reflectance and transmittance values obtained for five 8YSZ thicknesses. The scattering coefficient exhibited a continuous decrease with increasing wavelength and showed no significant temperature dependence. The scattering is primarily attributed to the relatively temperature-insensitive refractive index mismatch between the 8YSZ and its internal voids. The absorption coefficient was very low (less than 1 per centimeter) at wavelengths between 2 micrometers and the absorption edge and showed a definite temperature dependence that consisted of a shift of the absorption edge to shorter wavelengths and an increase in the weak absorption below the absorption edge with increasing temperature. The shift in the absorption edge with temperature is attributed to strongly temperature-dependent multiphonon absorption. While TBC hemispherical transmittance beyond the absorption edge can be predicted by a simple exponential decrease with thickness, below the absorption edge, typical TBC thicknesses are well below the thickness range where a simple exponential decrease in hemispherical transmittance with TBC thickness is expected. [Correction added after online publication August 11, 2009: "edge to a shorter wavelengths" has been updated as edge to shorter wavelengths."

  18. Structure and chemistry of epitaxial ceria thin films on yttria-stabilized zirconia substrates, studied by high resolution electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, Robert, E-mail: bobsinc@stanford.edu [Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States); Lee, Sang Chul, E-mail: sclee99@stanford.edu [Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States); Shi, Yezhou; Chueh, William C. [Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States)

    2017-05-15

    We have applied aberration-corrected transmission electron microscopy (TEM) imaging and electron energy loss spectroscopy (EELS) to study the structure and chemistry of epitaxial ceria thin films, grown by pulsed laser deposition onto (001) yttria-stabilized zirconia (YSZ) substrates. There are few observable defects apart from the expected mismatch interfacial dislocations and so the films would be expected to have good potential for applications. Under high electron beam dose rate (above about 6000 e{sup -}/Å{sup 2}s) domains of an ordered structure appear and these are interpreted as being created by oxygen vacancy ordering. The ordered structure does not appear at lower lose rates (ca. 2600 e{sup -}/Å{sup 2}s) and can be removed by imaging under 1 mbar oxygen gas in an environmental TEM. EELS confirms that there is both oxygen deficiency and the associated increase in Ce{sup 3+} versus Ce{sup 4+} cations in the ordered domains. In situ high resolution TEM recordings show the formation of the ordered domains as well as atomic migration along the ceria thin film (001) surface. - Highlights: • The local structure and chemistry of ceria can be studied by TEM combined with EELS. • At lower electron, there are no observable changes in the ceria thin films. • At higher dose rates, an ordered phase is created due to oxygen vacancy ordering. • In situ HRTEM shows the oxygen vacancy ordering and the movement of surface atoms.

  19. Zirconium behaviour in purex process solutions

    International Nuclear Information System (INIS)

    Shu, J.

    1982-01-01

    The extraction behaviour of zirconium, as fission product, in TBP/diluent- HNO 3 -H 2 O systems, simulating Purex solutions, is studied. The main purpose is to attain an increasing in the zirconium decontamination factor by adjusting the extraction parameters. Equilibrium diagram, TBP concentration, aqueous:organic ratio, salting-out effects and, uranium loading in the organic phase were the main factors studied. All these experiments had been made with zirconium in the 10 - 2 - 10 - 3 concentration range. The extractant degradation products influence uppon the zirconium behaviour was also verified. With the obtained data it was possible to introduce some modification in the standard Purex flow-sheet in order to obtain the uranium product with higher zirconium decontamination. (Author) [pt

  20. Anisotropy of mechanical properties of zirconium and zirconium alloys

    International Nuclear Information System (INIS)

    Medrano, R.E.

    1975-01-01

    In studies of technological applications of zirconium to fuel elements of nuclear reactor, it was found that the use of plasticity equations for isotropic materials is not in agreement with experimental results, because of the strong anisotropy of zirconium. The present review describes recent progress on the knowledge of the influence of anisotropy on mechanical properties, after Douglass' review in 1971. The review was written to be selfconsistent, changing drastically the presentation of some of the referenced papers. It is also suggested some particular experiments to improve developments in this area

  1. Development of microstructure in thermomechanical processing of zirconium alloys

    International Nuclear Information System (INIS)

    Jha, S.K.; Saibaba, N.; Jayaraj, R.N.

    2009-01-01

    Zirconium based alloys are used for the manufacture of fuel tubes pressure tubes calandria tubes and other components of Pressurized Heavy Water Reactors (PHWRS). In single or two phase zirconium alloy system a variety of microstructure can be generated by suitable heat treatments by the process of equilibrium and non equilibrium phase transformations Microstructure can also be modified by alloying with α and β stabilizers. The microstructure in Zr alloys could be single hexagonal phase (α alloys) two phase bcc and hexagonal (α + β alloys) phase, single metastable martensitic microstructure and β with ω phase. The microstructural and micro textural evolution during thermo mechanical treatments depends strongly on such initial microstructure. Hot extrusion is a significant bulk deformation step which decides the initial microstructure of the alloy. It is carried out at elevated temperature i e above the recrystallization temperature, which enable imposition of large strains in single step. This deformation causes a significant change in the microstructure of the material and depends on extrusion process parameters such as temperature, strain rate (Ram speed), reduction ratio etc. In the present paper development of microstructures, microtexture and texture have been examined. An attempt is also made to optimise the hot working parameters for different Zirconium alloys with help of these studies. (author)

  2. Long-term stability and properties of zirconia ceramics for heavy duty diesel engine components

    Science.gov (United States)

    Larsen, D. C.; Adams, J. W.

    1985-01-01

    Physical, mechanical, and thermal properties of commercially available transformation-toughened zirconia are measured. Behavior is related to the material microstructure and phase assemblage. The stability of the materials is assessed after long-term exposure appropriate for diesel engine application. Properties measured included flexure strength, elastic modulus, fracture toughness, creep, thermal shock, thermal expansion, internal friction, and thermal diffusivity. Stability is assessed by measuring the residual property after 1000 hr/1000C static exposure. Additionally static fatigue and thermal fatigue testing is performed. Both yttria-stabilized and magnesia-stabilized materials are compared and contrasted. The major limitations of these materials are short term loss of properties with increasing temperature as the metastable tetragonal phase becomes more stable. Fine grain yttria-stabilized material (TZP) is higher strength and has a more stable microstructure with respect to overaging phenomena. The long-term limitation of Y-TZP is excessive creep deformation. Magnesia-stabilized PSZ has relatively poor stability at elevated temperature. Overaging, decomposition, and/or destabilization effects are observed. The major limitation of Mg-PSZ is controlling unwanted phase changes at elevated temperature.

  3. Improving the neutronic characteristics of a boiling water reactor by using uranium zirconium hydride fuel instead of uranium dioxide fuel

    Energy Technology Data Exchange (ETDEWEB)

    Galahom, Ahmed Abdelghafar [Higher Technological Institute, Ramadan (Egypt)

    2016-06-15

    The present work discusses two different models of boiling water reactor (BWR) bundle to compare the neutronic characteristics of uranium dioxide (UO{sub 2}) and uranium zirconium hydride (UZrH{sub 1.6}) fuel. Each bundle consists of four assemblies. The BWR assembly fueled with UO{sub 2} contains 8 × 8 fuel rods while that fueled with UZrH{sub 1.6} contains 9 × 9 fuel rods. The Monte Carlo N-Particle Transport code, based on the Mont Carlo method, is used to design three dimensional models for BWR fuel bundles at typical operating temperatures and pressure conditions. These models are used to determine the multiplication factor, pin-by-pin power distribution, axial power distribution, thermal neutron flux distribution, and axial thermal neutron flux. The moderator and coolant (water) are permitted to boil within the BWR core forming steam bubbles, so it is important to calculate the reactivity effect of voiding at different values. It is found that the hydride fuel bundle design can be simplified by eliminating water rods and replacing the control blade with control rods. UZrH{sub 1.6} fuel improves the performance of the BWR in different ways such as increasing the energy extracted per fuel assembly, reducing the uranium ore, and reducing the plutonium accumulated in the BWR through burnup.

  4. Effect of environmental dust particles on laser textured yttria-stabilized zirconia surface in humid air ambient

    Science.gov (United States)

    Yilbas, B. S.; Ali, H.; Al-Sharafi, A.; Al-Sulaiman, F.; Karatas, C.

    2018-05-01

    Zirconium nitride is used as a selective surface for concentrated solar heating applications and one of the methods to form a zirconium nitride is texturing of zirconia surface by a high intensity laser beam under high pressure nitrogen gas environment. Laser texturing also provides hydrophobic surface characteristics via forming micro/nano pillars at the surface; however, environmental dust settlement on textured surface influences the surface characteristics significantly. In the present study, laser texturing of zirconia surface and effects of the dust particles on the textured surface in a humid air ambient are investigated. Analytical tools are used to assess the morphological changes on the laser textured surface prior and after the dust settlement in the humid air ambient. It is found that laser textured surface has hydrophobic characteristics. The mud formed during condensate of water on the dust particles alters the characteristics of the laser textured surface. The tangential force required to remove the dry mud from the textured surface remains high; in which case, the dried liquid solution at the mud-textured surface interface is responsible for the strong adhesion of the dry mud on the textured surface. The textured surface becomes hydrophilic after the dry mud was removed from the surface by a desalinated water jet.

  5. Melting point of yttria

    International Nuclear Information System (INIS)

    Skaggs, S.R.

    1977-06-01

    Fourteen samples of 99.999 percent Y 2 O 3 were melted near the focus of a 250-W CO 2 laser. The average value of the observed melting point along the solid-liquid interface was 2462 +- 19 0 C. Several of these same samples were then melted in ultrahigh-purity oxygen, nitrogen, helium, or argon and in water vapor. No change in the observed temperature was detected, with the exception of a 20 0 C increase in temperature from air to helium gas. Post test examination of the sample characteristics, clarity, sphericity, and density is presented, along with composition. It is suggested that yttria is superior to alumina as a secondary melting-point standard

  6. New solvent extraction process for zirconium and hafnium

    International Nuclear Information System (INIS)

    Takahashi, M.; Katoh, Y.; Miyazaki, H.

    1984-01-01

    The authors' company developed a new solvent extraction process for zirconium and hafnium separation, and started production of zirconium sponge by this new process in September 1979. The process utilizes selective extraction of zirconium oxysulfate using high-molecular alkyl amine, and has the following advantages: 1. This extraction system has a separation factor as high as 10 to 20 for zirconium and hafnium in the range of suitable acid concentration. 2. In the scrubbing section, removal of all the hafnium that coexists with zirconium in the organic solvent can be effectively accomplished by using scrubbing solution containing hafnium-free zirconium sulfate. Consequently, hafnium in the zirconium sponge obtained is reduced to less than 50 ppm. 3. The extractant undergoes no chemical changes but is very stable for a long period. In particular, its solubility in water is small, about 20 ppm maximum, posing no environmental pollution problems such as are often caused by other process raffinates. At the present time, the zirconium and hafnium separation operation is very stable, and zirconium sponge made by this process can be applied satisfactorily to nuclear reactors

  7. Fine-grained zirconium-base material

    Science.gov (United States)

    Van Houten, G.R.

    1974-01-01

    A method is described for making zirconium with inhibited grain growth characteristics, by the process of vacuum melting the zirconium, adding 0.3 to 0.5% carbon, stirring, homogenizing, and cooling. (Official Gazette)

  8. Transparent Yttria for IR Windows and Domes - Past and Present

    National Research Council Canada - National Science Library

    Hogan, Patrick; Stefanik, Todd; Willingham, Charles; Gentilman, Richard

    2004-01-01

    ... (sapphire, ALON, spinel), its thermal shock performance is similar. In fact, 7 out of 7 flat yttria windows were successfully wind-tunnel tested under hypersonic conditions simulating representative surface-to-air interceptor missile flights...

  9. Microhardness and microplasticity of zirconium nitride

    International Nuclear Information System (INIS)

    Neshpor, V.S.; Eron'yan, M.A.; Petrov, A.N.; Kravchik, A.E.

    1978-01-01

    To experimentally check the concentration dependence of microhardness of 4 group nitrides, microhardness of zirconium nitride compact samples was measured. The samples were obtained either by bulk saturation of zirconium iodide plates or by chemical precipitation from gas. As nitrogen content decreased within the limits of homogeneity of zirconium nitride samples where the concentration of admixed oxygen was low, the microhardness grew from 1500+-100 kg/mm 2 for ZrNsub(1.0) to 27000+-100 kg/mm 2 for ZrNsub(0.78). Microplasticity of zirconium nitride (resistance to fracture) decreased, as the concentration of nitrogen vacancies was growing

  10. SEPARATION OF HAFNIUM FROM ZIRCONIUM

    Science.gov (United States)

    Overholser, L.B.; Barton, C.J. Sr.; Ramsey, J.W.

    1960-05-31

    The separation of hafnium impurities from zirconium can be accomplished by means of organic solvent extraction. The hafnium-containing zirconium feed material is dissolved in an aqueous chloride solution and the resulting solution is contacted with an organic hexone phase, with at least one of the phases containing thiocyanate. The hafnium is extracted into the organic phase while zirconium remains in the aqueous phase. Further recovery of zirconium is effected by stripping the onganic phase with a hydrochloric acid solution and commingling the resulting strip solution with the aqueous feed solution. Hexone is recovered and recycled by means of scrubbing the onganic phase with a sulfuric acid solution to remove the hafnium, and thiocyanate is recovered and recycled by means of neutralizing the effluent streams to obtain ammonium thiocyanate.

  11. Zirconium

    Science.gov (United States)

    Bedinger, G.M.

    2013-01-01

    Zirconium is the 20th most abundant element in the Earth’s crust. It occurs in a variety of rock types and geologic environments but most often in igneous rocks in the form of zircon (ZrSiO4). Zircon is recovered as a coproduct of the mining and processing of heavy mineral sands for the titanium minerals ilmenite and rutile. The sands are formed by the weathering and erosion of rock containing zircon and titanium heavy minerals and their subsequent concentration in sedimentary systems, particularly in coastal environments. A small quantity of zirconium, less than 10 kt/a (11,000 stpy), compared with total world production of 1.4 Mt (1.5 million st) in 2012, was derived from the mineral baddeleyite (ZrO2), produced from a single source in Kovdor, Russia.

  12. Microbial adhesion on novel yttria-stabilized tetragonal zirconia (Y-TZP) implant surfaces with nitrogen-doped hydrogenated amorphous carbon (a-C:H:N) coatings.

    Science.gov (United States)

    Schienle, Stefanie; Al-Ahmad, Ali; Kohal, Ralf Joachim; Bernsmann, Falk; Adolfsson, Erik; Montanaro, Laura; Palmero, Paola; Fürderer, Tobias; Chevalier, Jérôme; Hellwig, Elmar; Karygianni, Lamprini

    2016-09-01

    Biomaterial surfaces are at high risk for initial microbial colonization, persistence, and concomitant infection. The rationale of this study was to assess the initial adhesion on novel implant surfaces of Enterococcus faecalis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans upon incubation. The tested samples were 3 mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP) samples with nitrogen-doped hydrogenated amorphous carbon (a-C:H:N) coating (A) and 3Y-TZP samples coated with ceria-stabilized zirconia-based (Ce-TZP) composite and a-C:H:N (B). Uncoated 3Y-TZP samples (C) and bovine enamel slabs (BES) served as controls. Once the surface was characterized, the adherent microorganisms were quantified by estimating the colony-forming units (CFUs). Microbial vitality was assessed by live/dead staining, and microbial-biomaterial surface topography was visualized by scanning electron microscopy (SEM). Overall, A and B presented the lowest CFU values for all microorganisms, while C sheltered significantly less E. faecalis, P. aeruginosa, and C. albicans than BES. Compared to the controls, B demonstrated the lowest vitality values for E. coli (54.12 %) and C. albicans (67.99 %). Interestingly, A (29.24 %) exhibited higher eradication rates for S. aureus than B (13.95 %). Within the limitations of this study, a-C:H:N-coated 3Y-TZP surfaces tended to harbor less initially adherent microorganisms and selectively interfered with their vitality. This could enable further investigation of the new multi-functional zirconia surfaces to confirm their favorable antimicrobial properties in vivo.

  13. Extractive metallurgy of zirconium--1945 to the present

    International Nuclear Information System (INIS)

    Franklin, D.G.; Adamson, R.B.

    1984-01-01

    Although the history of the reduction of zirconium dates from 1824 and the first ductile zirconium metal was produced in the laboratory in 1914, modern reduction practice was pioneered by the U.S. Bureau of Mines starting in 1945. This paper reviews the history of the extractive metallurgy of zirconium from the early work of W. J. Kroll and co-workers at the Bureau of Mines in Albany, Ore., through the commercial development of the production of reactor-grade zirconium metal which was spurred by the requirements of the Naval Reactor Program and the development of commercial nuclear power. Technical subjects covered include processes for opening the ore, zirconium-hafnium separation, chlorination of zirconium oxide, reduction processes, and electrowinning of zirconium metal. Proposed new processes and process modifications are reviewed

  14. Zirconium titanate: stability and thermal expansion; Titanato de circonio: estabilidad termodinamica y expansion termica

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Lopez, E.; Moreno, R.; Baudin, C.

    2011-07-01

    Zirconium titanate is a well known compound in the field of electro ceramics, although it has also been used in catalyst and sensors applications. The crystallographic thermal expansion anisotropy of this compound makes it a potential candidate as constituent of structural components. In general, to assure the structural integrity and microstructural homogeneity of a ceramic piece, relatively low cooling rates from the fabrication temperature are required. This requirement is essential for zirconium titanate because thermal expansion as well as phase distribution is affected by small variations in the composition and cooling rate. This work reviews the available data on the phase equilibrium relationships in the systems ZrO{sub 2}-TiO{sub 2} and ZrO{sub 2}-TiO{sub 2}-Y{sub 2}O{sub 3}. The main discrepancies as well as the possible origins of them are discussed. Additionally, the crystallographic thermal expansion data in the current literature are reviewed. (Author) 56 refs.

  15. Thermodynamic and kinetic characterization of a zirconium chelate

    International Nuclear Information System (INIS)

    Stumpf, H.O.; Ekman, M.F.; Souza, R.F.; Costa, V.H.; Dick, Y.P.

    1980-01-01

    The chemical preparation, composition and characteristics of a zirconium complex with hemateine was studied. Hematein is the common name of an organic compound containing hydroxy-aromatic and hydroxyquinonic groups. The stability constant of this complex was determined spectrophotometrically. Other thermodynamic parameters for the complex formation were also determined; the effect of temperature on these parameters was examined. Reaction kinetics was investigated, as well as the charge of reacting species for the formation of the activated complex. (C.L.B.) [pt

  16. Solvent extraction of zirconium

    International Nuclear Information System (INIS)

    Kim, S.S.; Yoon, J.H.

    1981-01-01

    The extraction of zirconium(VI) from an aqueous solution of constant ionic strength with versatic acid-10 dissolved in benzen was studied as a function of pH and the concentration of zirconium(VI) and organic acid. The effects of sulphate and chlorine ions on the extraction of the zirconium(VI) were briefly examined. It was revealed that (ZrOR 2 .2RH) is the predominant species of extracted zirconium(VI) in the versatic acid-10. The chemical equation and the apparent equilibrium constants thereof have been determined as follows. (ZrOsup(2+))aq+ 2(R 2 H 2 )sub(org) = (ZrOR 2 .2RH)sub(org)+2(H + )aq Ksub(Zr) = (ZrOR 2 .2RH)sub(org)(H + ) 2 /(ZrOsup(2+))sub(aq)(R 2 H 2 )sup(2)sub(org) = 3.3 x 10 -7 . The synergistic effects of TBP and D2EHPA were also studied. In the mixed solvent with 0.1M TBP, the synergistic effect was observed, while the mixed solvent with D2EHPA showed the antisynergistic effect. (Author)

  17. Generation of colour centres in yttria-stabilized zirconia by heavy ion irradiations in the GeV range

    International Nuclear Information System (INIS)

    Costantini, Jean-Marc; Beuneu, Francois; Schwartz, Kurt; Trautmann, Christina

    2010-01-01

    We have studied the colour centre production in yttria-stabilized zirconia (ZrO 2 :Y 3+ ) by heavy ion irradiation in the GeV range using on-line UV-visible optical absorption spectroscopy. Experiments were performed with 11.4 MeV amu -1 127 Xe, 197 Au, 208 Pb and 238 U ion irradiations at 8 K or room temperature (RT). A broad and asymmetrical absorption band peaked at a wavelength about 500 nm is recorded regardless of the irradiation parameters, in agreement with previous RT irradiations with heavy ions in the 100 MeV range. This band is de-convoluted into two broad Gaussian-shaped bands centred at photon energies about 2.4 and 3.1 eV that are respectively associated with the F + -type centres (involving a singly ionized oxygen vacancy, V O · ) and T centres (i.e. Zr 3+ in a trigonal symmetry) observed by electron paramagnetic resonance (EPR) spectroscopy. In the case of 8 K Au ion irradiation at low fluences, six bands are used at about 1.9, 2.3, 2.7, 3.1 and 4.0 eV. The three bands near 2.0-2.5 eV can be assigned to oxygen divacancies (i.e. F 2 + centres). No significant effect of the irradiation temperature is found on the widths of all absorption bands for the same ion and fluence. This is attributed to the inhomogeneous broadening arising from the static disorder due to the native charge-compensating oxygen vacancies. However, the colour centre production yield is strongly enhanced at 8 K with respect to RT. When heating irradiated samples from 8 K to RT, the extra colour centres produced at low temperature do not recover completely to the level of RT irradiation. The latter results are accounted for by an electronically driven defect recovery process.

  18. Transparent Yttria for IR Windows and Domes - Past and Present

    National Research Council Canada - National Science Library

    Hogan, Patrick; Stefanik, Todd; Willingham, Charles; Gentilman, Richard

    2004-01-01

    ...) atmospheric transmission band at both ambient and elevated temperatures. Current state-of-the-art yttria's thermomechanical properties are adequate for a number of IR window and dome applications, but only marginal for the most demanding missions...

  19. Purification of zirconium concentrates

    International Nuclear Information System (INIS)

    Brown, A.E.P.

    1976-01-01

    A commercial grade ZrO 2 and an ammonium uranate (yellow cake) are obtained from the caldasito ore processing. This ore is found in the Pocos de Caldas Plateau, State of Minas Gerais, Brazil. Caldasito is an uranigerous zirconium ore, a mixture of zircon and baddeleyite and contains 60% ZrO 2 and 0,3% U 3 O 8 . The chemical opening of the ore was made by alkaline fusion with NaOH at controlled temperature. The zirconium-uranium separation took place by a continuous liquid-liquid extraction in TBP-varsol-HNO 3 -H 2 O system. The raffinate containing zirconium + impurities (aluminium, iron and titanium) was purified by an ion exchange operation using a strong cationic resin [pt

  20. Determination of zirconium by fluoride ion selective electrode

    International Nuclear Information System (INIS)

    Mahanty, B.N.; Sonar, V.R.; Gaikwad, R.; Raul, S.; Das, D.K.; Prakash, A.; Afzal, Md.; Panakkal, J.P.

    2010-01-01

    Full text: Zirconium is used in a wide range of applications including nuclear clad, catalytic converters, surgical appliances, metallurgical furnaces, superconductors, ceramics, lamp filaments, anti corrosive alloys and photographical purposes. Irradiation testing of U-Zr and U-Pu-Zr fuel pins has also demonstrated their feasibility as fuel in liquid metal reactors. Different methods that are employed for the determination of zirconium are spectrophotometry, potentiometry, neutron activation analysis and mass spectrometry. Ion-selective electrode (ISE), selective to zirconium ion has been studied for the direct potentiometric measurements of zirconium ions in various samples. In the present work, an indirect method has been employed for the determination of zirconium in zirconium nitrate sample using fluoride ion selective electrode. This method is based on the addition of known excess amount of fluoride ion to react with the zirconium ion to produce zirconium tetra fluoride at about pH 2-3, followed by determination of residual fluoride ion selective electrode. The residual fluoride ion concentrations were determined from the electrode potential data using calibration plot. Subsequently, zirconium ion concentrations were determined from the concentration of consumed fluoride ions. A precision of about 2% (RSD) with the mean recovery of more than 94% has been achieved for the determination of zirconium at the concentration of 4.40 X 10 -3 moles lit -1

  1. Thermofluency in zirconium alloys

    International Nuclear Information System (INIS)

    Orozco M, E.A.

    1976-01-01

    A summary is presented about the theoretical and experimental results obtained at present in thermofluency under radiation in zirconium alloys. The phenomenon of thermofluency is presented in a general form, underlining the thermofluency at high temperature because this phenomenon is similar to the thermofluency under radiation, which ocurrs in zirconium alloys into the operating reactor. (author)

  2. Metal waste forms from the electrometallurgical treatment of spent nuclear fuel

    International Nuclear Information System (INIS)

    Abraham, D.P.; McDeavitt, S.M.; Park, J.

    1996-01-01

    Stainless steel-zirconium alloys are being developed for the disposal of radioactive metal isotopes isolated using an electrometallurgical treatment technique to treat spent nuclear fuel. The nominal waste forms are stainless steel-15 wt% zirconium alloy and zirconium-8 wt% stainless steel alloy. These alloys are generated in yttria crucibles by melting the starting materials at 1,600 C under an argon atmosphere. This paper discusses the microstructures, corrosion and mechanical test results, and thermophysical properties of the metal waste form alloys

  3. Quantitative analysis of nickel in zirconium and zircaloy; Dosage du nickel dans le zirconium et dans le zircaloy

    Energy Technology Data Exchange (ETDEWEB)

    Rastoix, M [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    A rapid spectrophotometric has been developed for determination of 10 to 1000 ppm of Ni in zirconium and zircaloy using dimethylglyoxime. Iron, copper, tin and chromium, do not interfere at the concentration usually present in zirconium and its alloys. (author) [French] On determine colorimetriquenent 10 a 1000 ppm de Ni dans le zirconium et le zircaloy par photo colorimetrie a 440 m{mu} de la dimethylglyoxime nickelique. Le dosage est rapide. Le fer, le cuivre, l'etain, le chrome ne genent pas aux concentrations habituellement rencontrees dans le zirconium et ses alliages. (auteur)

  4. 40 CFR 721.9973 - Zirconium dichlorides (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Zirconium dichlorides (generic). 721... Substances § 721.9973 Zirconium dichlorides (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as zirconium dichlorides (PMNs P...

  5. Molten salt scrubbing of zirconium or hafnium tetrachloride

    International Nuclear Information System (INIS)

    Lee, E.D.; McLaughlin, D.F.

    1990-01-01

    This patent describes a continuous process for removing impurities of iron or aluminum chloride or both from vaporous zirconium or hafnium chloride or both. It comprises: introducing impure zirconium or hafnium chloride vapor or both into a middle portion of an absorbing column containing a molten salt phase, the molten salt phase absorbing the impurities of iron or aluminum chloride or both to produce chloride vapor stripped of zirconium or hafnium chloride; introducing sodium or potassium chloride or both into a top portion of the column; controlling the top portion of the column to between 300--375 degrees C.; heating a bottom portion of the column to 450--550 degrees C. To vaporize zirconium chloride or hafnium chloride or hafnium and zirconium chloride from the molten salt; withdrawing molten salt substantially free of zirconium and hafnium chloride from the bottom portion of the column; and withdrawing zirconium chloride or hafnium chloride or hafnium and zirconium chloride vapor substantially free of impurities of iron and aluminum chloride from the top of the column

  6. Characterization of the yttria-stabilized zirconia thin film electrophoretic deposited on La{sub 0.8}Sr{sub 0.2}MnO{sub 3} substrate

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Koho [Department of Mold and Die Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Rode, Kaohsiung 80782, Taiwan (China); Shen, Jung-Hsiung [Department of Mold and Die Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Rode, Kaohsiung 80782, Taiwan (China); Yang, Kai-Yun [Department of Materials Science and Engineering, National Chen Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Hung, I-Ming [Department of Materials Science and Engineering, National Chen Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Department of Chemical Engineering and Materials Science, Yuan Ze University, 135 Yuan-Tung Road, Chungli, Taoyunn 320, Taiwan (China); Fung, Kuan-Zong [Department of Materials Science and Engineering, National Chen Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan (China); Wang, Moo-Chin [Faculty of Fragrance and Cosmetics, Kaohsiung Medical University, 100 Shi-Chuan 1st Road, Kaohsiung 807, Taiwan (China)]. E-mail: mcwang@kmu.edu.tw

    2007-06-14

    The yttria-stabilized zirconia (YSZ) thin films electrophoretic deposited on the La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSM) substrate have been characterized by using zeta potential analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The La{sub 2}Zr{sub 2}O{sub 7} (LZ) formed at the interface between the YSZ thin film and LSM substrate, after sintered at 1400 {sup o}C for 52 h, are identified by XRD. The zeta potential of the YSZ particles in pure ethanol-acetone is about 7.8 mV, but when the I{sub 2} concentration is greater than 0.6 g/1, the zeta potential attains a constant value, 46 mV. The relation between deposit weight of the YSZ films and the applied voltage shows a non-linear behavior. Thickness of the YSZ thin film deposited on the LSM substrate by electrophoretic deposition is controlled by a diffusion process. A larger LZ with the thickness of 200 nm is formed at the interface between the YSZ film and the LSM substrate.

  7. Advances in zirconium technology for nuclear reactor application

    International Nuclear Information System (INIS)

    Ganguly, C.

    2002-01-01

    Zirconium alloys are extensively used as a material for cladding nuclear fuels and for making core structurals of water-cooled nuclear power reactors all over the world for generation of nearly 16 percent of the worlds electricity. Only four countries in the world, namely France, USA, Russia and India, have large zirconium industry and capability to manufacture reactor grade zirconium sponge, a number of zirconium alloys and a wide variety of structural components for water cooled nuclear reactor. The present paper summarises the status of zirconium technology and highlights the achievement of Nuclear Fuel Complex during the last ten years in developing a wide variety of zirconium alloys and components for water-cooled nuclear power programme

  8. Thermal stability and surface acidity of mesoporous silica doubly doped by incorporation of sulfate and zirconium ions

    International Nuclear Information System (INIS)

    Salas, P.; Chen, L.F.; Wang, J.A.; Armendariz, H.; Guzman, M.L.; Montoya, J.A.; Acosta, D.R.

    2005-01-01

    A sulfated Si-Zr-MCM-41 solid with highly ordered mesostructure was synthesized through a templated synthesis route where the CTAB surfactant was used as template. During the synthesis procedure, various amounts of (NH 4 ) 2 SO 4 were added into the mixed solution of Zr and Si precursors to in situ sulfate the MCM-41 solids, aiming to enhance the acidity and thermal stability. The resultant materials showed a long-range ordered hexagonal arrangement with high surface area larger than 797 m 2 /g and an average pore size distributed at approximate 2.5-2.8 nm. The high-resolution TEM observations confirmed that the order of the mesostructure gained when the molar ratio of SO 4 2- /(ZrO 2 + SiO 2 ) increased from 0.1 to 0.3 but decreased as it reached 0.5, which is consistent with the results of 29 Si MAS-NMR and XRD analysis. Compared to Si-MCM-41, the (Q 2 + Q 3 )/Q 4 ratio derived from the NMR spectra of the Zr-doped sample was higher, indicating that zirconium atoms were incorporated into the silica framework. Unexpectedly, in situ sulfation does not enhance the surface Broensted acidity, most likely due to the sulfur retained within the bulk of the materials; however, it indeed improved the thermal stability of the solid and long-range order of the structure

  9. Zirconium: The material of the future in modern implantology.

    Science.gov (United States)

    Kubasiewicz-Ross, Paweł; Dominiak, Marzena; Gedrange, Tomasz; Botzenhart, Ute U

    2017-01-01

    The authors present the contemporary state of knowledge concerning alternative materials for dental implantology. First of all, factors influencing osseointegration are stated. The most important factors seem to be the type of implant surface. Among the numerous parameters describing them, the most important are: average roughness and porous density. Some studies proved that materials with comparable surface roughness provide similar osseointegration. In modern implantology titanium is the material still considered as a "gold standard". However, aesthetic features of titanium still bear several disadvantages, especially in the case of periodontium with a thin biotype in the anterior, aesthetic sensitive area of the jaw. If a titanium implant is used in such a case, the mucosa at the implant's neck may become grayish and, consequently limits the success of the overall treatment. That was the reason for seeking alternative materials to manufacture dental implants. Initiated by general medicine, mainly orthopedics, the search led to the discovery of zirconium dioxide used in dental implantology. A small number of complications, good chemical parameters, anticorrosion, mechanical strength, elasticity module close to the one of steel, and especially biocompatibility made zirconium a perfect material for this purpose, although this material presents several problems in achieving optimal roughness. In this overview one of the probable methods, a process of partial synterization, is presented.

  10. Production of defect-poor nanostructured ceramics of yttria-zirconia

    NARCIS (Netherlands)

    Sagel-Ransijn, C.D.; Sagel-Ransijn, C.D.; Winnubst, Aloysius J.A.; Kerkwijk, B.; Burggraaf, Anthonie; Burggraaf, A.J.; Verweij, H.

    1997-01-01

    For the production of nanostructured ceramics of yttria-zirconia four powders differing in agglomerate strength, agglomerate size and crystallite size are compared. An ultra-fine-grained ceramic with a final density of 98% and a grain size of 0.18 μm could be produced from a hydrothermally

  11. Yttria-stabilized zirkonia / gadolinium zirconate double-layer plasma-sprayed thermal barrier coating systems (TBCs)

    International Nuclear Information System (INIS)

    Bakan, Emine

    2015-01-01

    Thermal barrier coating (TBC) research and development is driven by the desirability of further increasing the maximum inlet temperature in a gas turbine engine. A number of new top coat ceramic materials have been proposed during the last decades due to limited temperature capability (1200 C) of the state-of-the-art yttria-stabilized zirconia (7 wt. % Y 2 O 3 -ZrO 2 , YSZ) at long term operation. Zirconate pyrochlores of the large lanthanides((Gd → La) 2 Zr 2 O 7 ) have been particularly attractive due to their higher temperature phase stability than that of the YSZ. Nonetheless, the issues related with the implementation of pyrochlores such as low fracture toughness and formation of deleterious interphases with thermally grown oxide (TGO, Al 2 O 3 ) were reported. The implication was the requirement of an interlayer between the pyrochlores and TGO, which introduced double-layer systems to the TBC literature. Furthermore, processability issues of pyrochlores associated with the different evaporation rates of lanthanide oxides and zirconia resulting in unfavorable composition variations in the coatings were addressed in different studies. After all, although the material properties are available, there is a paucity of data in the literature concerning the properties of the coatings made of pyrochlores. From the processability point of view the most reported pyrochlore is La 2 Zr 2 O 7 . Hence, the goal of this research was to investigate plasma-sprayed Gd 2 Zr 2 O 7 (GZO) coatings and YSZ/GZO double-layer TBC systems. Three main topics were examined based on processing, performance and properties: (i) the plasma spray processing of the GZO and its impact on the microstructural and compositional properties of the GZO coatings; (ii) the cycling lifetime of the YSZ/GZO double-layer systems under thermal gradient at a surface temperature of 1400 C; (iii) the properties of the GZO and YSZ coatings such as thermal conductivity, coefficient of thermal expansion as well

  12. Applications for zirconium and columbium alloys

    International Nuclear Information System (INIS)

    Condliff, A.F.

    1986-01-01

    Currently, zirconium and columbium are used in a wide range of applications, overlapping only in the field of corrosion control. As a construction material, zirconium is primarily used by the nuclear power industry. The use of zirconium in the chemical processing industry (CPI) is, however, increasing steadily. Columbian alloys are primarily applied as superconducting alloys for research particle accelerators and fusion generators as well as in magnetic resonance imaging for medical diagnosis

  13. Role of temperature in the radiation stability of yttria stabilized zirconia under swift heavy ion irradiation: A study from the perspective of nuclear reactor applications

    Science.gov (United States)

    Kalita, Parswajit; Ghosh, Santanu; Sattonnay, Gaël; Singh, Udai B.; Grover, Vinita; Shukla, Rakesh; Amirthapandian, S.; Meena, Ramcharan; Tyagi, A. K.; Avasthi, Devesh K.

    2017-07-01

    The search for materials that can withstand the harsh radiation environments of the nuclear industry has become an urgent challenge in the face of ever-increasing demands for nuclear energy. To this end, polycrystalline yttria stabilized zirconia (YSZ) pellets were irradiated with 80 MeV Ag6+ ions to investigate their radiation tolerance against fission fragments. To better simulate a nuclear reactor environment, the irradiations were carried out at the typical nuclear reactor temperature (850 °C). For comparison, irradiations were also performed at room temperature. Grazing incidence X-ray diffraction and Raman spectroscopy measurements reveal degradation in crystallinity for the room temperature irradiated samples. No bulk structural amorphization was however observed, whereas defect clusters were formed as indicated by transmission electron microscopy and supported by thermal spike simulation results. A significant reduction of the irradiation induced defects/damage, i.e., improvement in the radiation tolerance, was seen under irradiation at 850 °C. This is attributed to the fact that the rapid thermal quenching of the localized hot molten zones (arising from spike in the lattice temperature upon irradiation) is confined to 850 °C (i.e., attributed to the resistance inflicted on the rapid thermal quenching of the localized hot molten zones by the high temperature of the environment) thereby resulting in the reduction of the defects/damage produced. Our results present strong evidence for the applicability of YSZ as an inert matrix fuel in nuclear reactors, where competitive effects of radiation damage and dynamic thermal healing mechanisms may lead to a strong reduction in the damage production and thus sustain its physical integrity.

  14. The development of zirconium alloy and its manufacturing

    International Nuclear Information System (INIS)

    Yuan Gaihuan; Yue Qiang

    2015-01-01

    Nuclear power which acts as one of low-carbon energy resources is the most realistic in large-scale application. It is also the preferred choice for many countries to develop energy resources and optimize its structure. Zirconium alloy is a key structural material for nuclear power plant fuel assemblies and cladding tubes of zirconium alloy are often referred as the first safeguard to nuclear power safety. With the development of nuclear power, three kinds of zirconium alloys Zr-Sn, Zr-Nb, Zr-Sn-Nb and with the representative products of Zr-4, M5, Zirlo respectively are developed and widely applied. Because of its severe operating environment and influence to nuclear safety, the requirements to zirconium alloys for physical and chemical properties, nuclear capability, tolerance and surface quality are very strict. The in-depth research and its manufacture capability become one of the main barriers for many countries who are developing the nuclear energy. In recent years, a stated-owned company, State Nuclear Bao Ti Zirconium Industry Company ('SNZ' for short) as well as National R and D Center for Nuclear Grade Zirconium material, is founded to meet the requirement of the rapid development of China's nuclear power industry. SNZ is dedicated for the fabrication and the research of nuclear grade zirconium products. After the successful completion of technology transfer of manufacturing for production chain and fully grasped of the manufacturing technology for the nuclear grade zirconium sponge through zirconium alloy tube, rod and strip products. National R and D Center for Nuclear Grade Zirconium material is cooperating with universities, nuclear energy research and design institutes and the owners of nuclear power plant to develop new zirconium alloy of self-owned brand. Through the selection of components, in-process testing and product inspection, four kinds of new zirconium alloys owns better performance than currently commercialized M5, Zirlo etc

  15. Purification in the interaction between yttria mould and Nb-silicide-based alloy during directional solidification: A novel effect of yttrium

    International Nuclear Information System (INIS)

    Ma, Limin; Tang, Xiaoxia; Wang, Bin; Jia, Lina; Yuan, Sainan; Zhang, Hu

    2012-01-01

    Nb-silicide-based alloys were directionally solidified in yttria moulds. As a result of thermal dissociation of yttria, the alloys were slightly contaminated with oxygen, which caused a competitive oxidation between yttrium and hafnium. The addition of 0.15 at.% yttrium reduced the oxygen increment by 42%, because the buoyant inclusions concentrated around the top surface. The yttrium addition caused a significant purification of the interaction between the yttria mould and the Nb-silicide-based alloys during the directional solidification.

  16. Oxidized zirconium on ceramic; Catastrophic coupling.

    Science.gov (United States)

    Ozden, V E; Saglam, N; Dikmen, G; Tozun, I R

    2017-02-01

    Oxidized zirconium (Oxinium™; Smith & Nephew, Memphis, TN, USA) articulated with polyethylene in total hip arthroplasty (THA) appeared to have the potential to reduce wear dramatically. The thermally oxidized metal zirconium surface is transformed into ceramic-like hard surface that is resistant to abrasion. The exposure of soft zirconium metal under hard coverage surface after the damage of oxidized zirconium femoral head has been described. It occurred following joint dislocation or in situ succeeding disengagement of polyethylene liner. We reported three cases of misuse of Oxinium™ (Smith & Nephew, Memphis, TN, USA) heads. These three cases resulted in catastrophic in situ wear and inevitable failure although there was no advice, indication or recommendation for this use from the manufacturer. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  17. Electrochemical-metallothermic reduction of zirconium in molten salt solutions

    International Nuclear Information System (INIS)

    McLaughlin, D.F.; Talko, F.

    1990-01-01

    This patent describes a method for separating hafnium from zirconium of the type wherein a feed containing zirconium and hafnium chlorides is prepared from zirconium-hafnium chloride and the feed is introduced into a distillation column, which distillation column has a reboiler connected at the bottom and a reflux condenser connected at the top and wherein a hafnium chloride enriched stream is taken from the top of the column and a zirconium enriched chloride stream is taken from the bottom of the column. It comprises: reducing the zirconium enriched chloride stream taken from the distillation column to metal by electrochemically reducing an alkaline earth metal in a molten salt bath with the molten salt in the molten salt bath consisting essentially of a mixture of at least one alkali metal chloride and at least one alkaline earth metal chloride and zirconium chloride, with the reduced alkaline earth metal reacting with the zirconium chloride to produce zirconium metal and alkaline earth metal chloride

  18. Surface modification of yttria stabilized zirconia by ion implantation

    International Nuclear Information System (INIS)

    Scholten, D.

    1987-01-01

    The results of investigations of surface modification by ion implantation in zirconia are described. As dopant material, iron was investigated thoroughly. The depth distribution of implanted ions depends on implantation parameters and the dopant-matrix system. The investigations of thermal stability of some implanted iron profiles by RBS and AES are described. Special interest lies in the thermal stability under working conditions of the zirconia material (400-1000 0 C). Radiation damage introduced in the implanted layer was investigated using transmission electron microscopy on polycrystalline material and channeling experiments on a single crystal implanted with iron. 179 refs.; 87 figs.; 20 tabs

  19. Problems of zirconium metal production in Czechoslovakia

    International Nuclear Information System (INIS)

    Vareka, J.; Vaclavik, E.

    1975-01-01

    The problems are summed up of the production and quality control of zirconium sponge. A survey is given of industrial applications of zirconium in form of pure metal or alloys in nuclear power production, ferrous and non-ferrous metallurgy, chemical engineering and electrical engineering. A survey is also presented of the manufacture of zirconium metal in advanced capitalist countries. (J.B.)

  20. Investigation of the oxygen exchange mechanism on Pt|yttria stabilized zirconia at intermediate temperatures: Surface path versus bulk path

    International Nuclear Information System (INIS)

    Opitz, Alexander K.; Lutz, Alexander; Kubicek, Markus; Kubel, Frank; Hutter, Herbert; Fleig, Juergen

    2011-01-01

    Highlights: → Oxygen exchange kinetics of Pt on YSZ investigated by means of Pt model electrodes. → Two different geometry dependencies of the polarization resistance identified. → At higher temperatures the oxygen exchange reaction proceeds via a Pt surface path. → At lower temperatures a bulk path through the Pt thin film electrode is discussed. - Abstract: The oxygen exchange kinetics of platinum on yttria-stabilized zirconia (YSZ) was investigated by means of geometrically well-defined Pt microelectrodes. By variation of electrode size and temperature it was possible to separate two temperature regimes with different geometry dependencies of the polarization resistance. At higher temperatures (550-700 deg. C) an elementary step located close to the three phase boundary (TPB) with an activation energy of ∼1.6 eV was identified as rate limiting. At lower temperatures (300-400 deg. C) the rate limiting elementary step is related to the electrode area and exhibited a very low activation energy in the order of 0.2 eV. From these observations two parallel pathways for electrochemical oxygen exchange are concluded. The nature of these two elementary steps is discussed in terms of equivalent circuits. Two combinations of parallel rate limiting reaction steps are found to explain the observed geometry dependencies: (i) Diffusion through an impurity phase at the TPB in parallel to diffusion of oxygen through platinum - most likely along Pt grain boundaries - as area-related process. (ii) Co-limitation of oxygen diffusion along the Pt|YSZ interface and charge transfer at the interface with a short decay length of the corresponding transmission line (as TPB-related process) in parallel to oxygen diffusion through platinum.

  1. Mechanical characterization of the 3Y-TZP co-doped with yttria and niobia Equimolar addition

    International Nuclear Information System (INIS)

    Assis, Joao Marcos Kruszynski de; Nono, Maria do Carmo de Andrade; Dorat, Daniele Ramos; Fonseca, Flavia Baccaro; Reis, Danieli Aparecida

    2010-01-01

    The main goal of this work is to study the effect of the yttria and niobia equimolar addition in the 3Y-TZP on the mechanical properties (hardness, fracture toughness and four point bending strength) aiming to get a stable tetragonal phase (t´) under applied stress, to use as TBC´s. Four compositions with equimolar addition of yttria and niobia in the 3Y-TZP were produced, 13%, 14.5%, 16% and 17.5%. The mixtures were prepared in high energy ball milling for 10 minutes and the samples prepared on uniaxial and isostatic pressing. The selected temperature sintering was 1.550 deg C for 1 hour. Analyses of X-Ray Diffraction, hardness, fracture toughness and four point bending strength were performed. An increase on the mechanical properties analyzed was expected with yttria and niobia addition in comparison to 3Y-TZP, but instead a decrease was observed after these additions. (author)

  2. Thermal stability and surface acidity of mesoporous silica doubly doped by incorporation of sulfate and zirconium ions

    Energy Technology Data Exchange (ETDEWEB)

    Salas, P. [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas No. 152, 07730 Mexico D.F. (Mexico)]. E-mail: psalas@imp.mx; Chen, L.F. [Departamento de Ingenieria Quimica, Universidad Autonoma Metropolitana-A, Av. San Pablo 180, Col. Reynosa-Tamaulipas, 02200 Mexico D.F. (Mexico); Wang, J.A. [Laboratorio de Catalisis y Materiales, ESIQIE, Instituto Politecnico Nacional, Col. Zacatenco, 07738 Mexico D.F. (Mexico); Armendariz, H. [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas No. 152, 07730 Mexico D.F. (Mexico); Guzman, M.L. [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas No. 152, 07730 Mexico D.F. (Mexico); Montoya, J.A. [Instituto Mexicano del Petroleo, Programa de Ingenieria Molecular, Eje Central Lazaro Cardenas No. 152, 07730 Mexico D.F. (Mexico); Acosta, D.R. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, A. P. 20-364, 01000 Mexico D.F. (Mexico)

    2005-11-15

    A sulfated Si-Zr-MCM-41 solid with highly ordered mesostructure was synthesized through a templated synthesis route where the CTAB surfactant was used as template. During the synthesis procedure, various amounts of (NH{sub 4}){sub 2}SO{sub 4} were added into the mixed solution of Zr and Si precursors to in situ sulfate the MCM-41 solids, aiming to enhance the acidity and thermal stability. The resultant materials showed a long-range ordered hexagonal arrangement with high surface area larger than 797 m{sup 2}/g and an average pore size distributed at approximate 2.5-2.8 nm. The high-resolution TEM observations confirmed that the order of the mesostructure gained when the molar ratio of SO{sub 4} {sup 2-}/(ZrO{sub 2} + SiO{sub 2}) increased from 0.1 to 0.3 but decreased as it reached 0.5, which is consistent with the results of {sup 29}Si MAS-NMR and XRD analysis. Compared to Si-MCM-41, the (Q{sup 2} + Q{sup 3})/Q{sup 4} ratio derived from the NMR spectra of the Zr-doped sample was higher, indicating that zirconium atoms were incorporated into the silica framework. Unexpectedly, in situ sulfation does not enhance the surface Broensted acidity, most likely due to the sulfur retained within the bulk of the materials; however, it indeed improved the thermal stability of the solid and long-range order of the structure.

  3. Phase Transformations in a Uranium-Zirconium Alloy containing 2 weight per cent Zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Lagerberg, G

    1961-04-15

    The phase transformations in a uranium-zirconium alloy containing 2 weight percent zirconium have been examined metallographically after heat treatments involving isothermal transformation of y and cooling from the -y-range at different rates. Transformations on heating and cooling have also been studied in uranium-zirconium alloys with 0.5, 2 and 5 weight per cent zirconium by means of differential thermal analysis. The results are compatible with the phase diagram given by Howlett and Knapton. On quenching from the {gamma}-range the {gamma} phase transforms martensitically to supersaturated a the M{sub S} temperature being about 490 C. During isothermal transformation of {gamma} in the temperature range 735 to 700 C {beta}-phase is precipitated as Widmanstaetten plates and the equilibrium structure consists of {beta} and {gamma}{sub 1}. Below 700 C {gamma} transforms completely to Widmanstaetten plates which consist of {beta} above 660 C and of a at lower temperatures. Secondary phases, {gamma}{sub 2} above 610 C and {delta} below this temperature, are precipitated from the initially supersaturated Widmanstaetten plates during the isothermal treatments. At and slightly below 700 C the cooperative growth of |3 and {gamma}{sub 2} is observed. The results of isothermal transformation are summarized in a TTTdiagram.

  4. Irradiation effects in hydrated zirconium molybdate

    Energy Technology Data Exchange (ETDEWEB)

    Fourdrin, C., E-mail: chloe.fourdrin@polytechnique.edu [CEA Saclay, DEN/DANS/DPC/SECR/LSRM, 91 191 Gif-sur-Yvette (France); CEA Saclay, DSM/IRAMIS/SIS2M-UMR 3299/Lrad, 91 191 Gif-sur-Yvette (France); Esnouf, S. [CEA Saclay, DSM/IRAMIS/SIS2M-UMR 3299/Lrad, 91 191 Gif-sur-Yvette (France); Dauvois, V. [CEA Saclay, DEN/DANS/DPC/SECR/LSRM, 91 191 Gif-sur-Yvette (France); Renault, J.-P. [CEA Saclay, DSM/IRAMIS/SIS2M-UMR 3299/Lrad, 91 191 Gif-sur-Yvette (France); Venault, L. [CEN Valrho, DEN/DRCP/SCPS/LC2A, 30 207 Bagnols-sur-Ceze (France); Tabarant, M. [CEA Saclay, DEN/DANS/DPC/LRSI, 91 191 Gif-sur-Yvette (France); Durand, D. [CEA Saclay, DEN/DANS/DPC/SECR/LSRM, 91 191 Gif-sur-Yvette (France); Cheniere, A. [CEA Saclay, DEN/DANS/DPC/LRSI, 91 191 Gif-sur-Yvette (France); Lamouroux-Lucas, C. [CEA Saclay, DEN/DANS/DPC/SECR/LSRM, 91 191 Gif-sur-Yvette (France); Cochin, F. [AREVA NC Tour, AREVA, 92 084 Paris La Defense cedex (France)

    2012-07-15

    Hydrated zirconium molybdate is a precipitate formed during the process of spent nuclear fuel dissolution. In order to study the radiation stability of this material, we performed gamma and electron irradiation in a dose range of 10-100 kGy. XRD patterns showed that the crystalline structure is not affected by irradiation. However, the yellow original sample exhibits a blue-grey color after exposure. The resulting samples were analyzed by means of EPR and diffuse reflectance spectroscopy. Two sites for trapped electrons were evidenced leading to a d{sup 1} configuration responsible for the observed coloration. Moreover, a third defect corresponding to a hole trapped on oxygen was observed after electron irradiation at low temperature.

  5. Yttria-stabilized zirkonia / gadolinium zirconate double-layer plasma-sprayed thermal barrier coating systems (TBCs)

    Energy Technology Data Exchange (ETDEWEB)

    Bakan, Emine

    2015-07-01

    Thermal barrier coating (TBC) research and development is driven by the desirability of further increasing the maximum inlet temperature in a gas turbine engine. A number of new top coat ceramic materials have been proposed during the last decades due to limited temperature capability (1200 C) of the state-of-the-art yttria-stabilized zirconia (7 wt. % Y{sub 2}O{sub 3}-ZrO{sub 2}, YSZ) at long term operation. Zirconate pyrochlores of the large lanthanides((Gd → La){sub 2}Zr{sub 2}O{sub 7}) have been particularly attractive due to their higher temperature phase stability than that of the YSZ. Nonetheless, the issues related with the implementation of pyrochlores such as low fracture toughness and formation of deleterious interphases with thermally grown oxide (TGO, Al{sub 2}O{sub 3}) were reported. The implication was the requirement of an interlayer between the pyrochlores and TGO, which introduced double-layer systems to the TBC literature. Furthermore, processability issues of pyrochlores associated with the different evaporation rates of lanthanide oxides and zirconia resulting in unfavorable composition variations in the coatings were addressed in different studies. After all, although the material properties are available, there is a paucity of data in the literature concerning the properties of the coatings made of pyrochlores. From the processability point of view the most reported pyrochlore is La{sub 2}Zr{sub 2}O{sub 7}. Hence, the goal of this research was to investigate plasma-sprayed Gd{sub 2}Zr{sub 2}O{sub 7} (GZO) coatings and YSZ/GZO double-layer TBC systems. Three main topics were examined based on processing, performance and properties: (i) the plasma spray processing of the GZO and its impact on the microstructural and compositional properties of the GZO coatings; (ii) the cycling lifetime of the YSZ/GZO double-layer systems under thermal gradient at a surface temperature of 1400 C; (iii) the properties of the GZO and YSZ coatings such as

  6. The fluorimetric titration of zirconium in the ppm-range

    International Nuclear Information System (INIS)

    Linden, W.E. von der; Boef, G. den; Ozinga, W.

    1976-01-01

    A fluorimetric titration of zirconium(IV) with EDTA is proposed. The fluorescence intensity of the zirconium-morin complex is used to indicate the end-point. More than twenty other cations were investigated and it was found that they did not interfere, neither did common anions. Mercury(II) can only be tolerated in amount not exceeding that of zirconium. Bismuth(III) interferes and hafnium(IV0 is titrated together with zirconium. The relative standard deviation of the titration of 10ml of a solution containing 1 ppm of zirconium does not exceed 1.5%

  7. Zirconium behaviour during electrorefining of actinide-zirconium alloy in molten LiCl-KCl on aluminium cathodes

    Energy Technology Data Exchange (ETDEWEB)

    Meier, R. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, Karlsruhe 76125 (Germany); Heidelberg University, Institute of Physical Chemistry, Im Neuenheimer Feld 253, Heidelberg 69120 (Germany); Souček, P., E-mail: Pavel.Soucek@ec.europa.eu [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, Karlsruhe 76125 (Germany); Malmbeck, R.; Krachler, M.; Rodrigues, A.; Claux, B.; Glatz, J.-P. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, Karlsruhe 76125 (Germany); Fanghänel, Th. [European Commission, Joint Research Centre (JRC), Institute for Transuranium Elements (ITU), Postfach 2340, Karlsruhe 76125 (Germany); Heidelberg University, Institute of Physical Chemistry, Im Neuenheimer Feld 253, Heidelberg 69120 (Germany)

    2016-04-15

    A pyrochemical electrorefining process for the recovery of actinides from metallic nuclear fuel based on actinide-zirconium alloys (An–Zr) in a molten salt is being investigated. In this process actinides are group-selectively recovered on solid aluminium cathodes as An–Al alloys using a LiCl–KCl eutectic melt at a temperature of 450 °C. In the present study the electrochemical behaviour of zirconium during electrorefining was investigated. The maximum amount of actinides that can be oxidised without anodic co-dissolution of zirconium was determined at a selected constant cathodic current density. The experiment consisted of three steps to assess the different stages of the electrorefining process, each of which employing a fresh aluminium cathode. The results indicate that almost a complete dissolution of the actinides without co-dissolution of zirconium is possible under the applied experimental conditions. - Highlights: • Recovery of actinides was shown by electrorefining of U/Pu–Zr alloys in LiCl–KCl. • Constant current density of 20 mA/cm{sup 2} is applied. • Most of the actinides were dissolved avoiding zirconium co-dissolution. • Deterioration of the deposit quality by a small amount of co-deposited Zr is not observed.

  8. SEPARATING HAFNIUM FROM ZIRCONIUM

    Science.gov (United States)

    Lister, B.A.J.; Duncan, J.F.

    1956-08-21

    A dilute aqueous solution of zirconyl chloride which is 1N to 2N in HCl is passed through a column of a cation exchange resin in acid form thereby absorbing both zirconium and associated hafnium impurity in the mesin. The cation exchange material with the absorbate is then eluted with aqueous sulfuric acid of a O.8N to 1.2N strength. The first portion of the eluate contains the zirconium substantially free of hafnium.

  9. Spectrophotometric titration of zirconium in siliceous materials

    International Nuclear Information System (INIS)

    Sugawara, K.F.; Su, Y.-S.; Strzegowski, W.R.

    1978-01-01

    An accurate and selective complexometric titration procedure based upon a spectrophotometrically detected end-point has been developed for the determination of zirconium in glasses, glass-ceramics and refractories. A p-bromomandelic acid separation step for zirconium imparts excellent selectivity to the procedure. The method is particularly important for the 1 to 5% concentration range where a simple, accurate and selective method for the determination of zirconium has been lacking. (author)

  10. Wear and chemistry of zirconium-silicate, aluminium-silicate and zirconium-aluminium-silicate glasses in alkaline medium

    International Nuclear Information System (INIS)

    Rouse, C.G.; Lemos Guenaga, C.M. de

    1984-01-01

    A study of the chemical durability, in alkaline solutions, of zirconium silicate, aluminium silicate, zirconium/aluminium silicate glasses as a function of glass composition is carried out. The glasses were tested using standard DIN-52322 method, where the glass samples are prepared in small polished pieces and attacked for 3 hours in a 800 ml solution of 1N (NaOH + NA 2 CO 3 ) at 97 0 C. The results show that the presence of ZrO 2 in the glass composition increases its chemical durability to alkaline attack. Glasses of the aluminium/zirconium silicate series were melted with and without TiO 2 . It was shown experimentally that for this series of glasses, the presence of both TiO 2 and ZrO 2 gave better chemical durability results. However, the best overall results were obtained from the simpler zirconium silicate glasses, where it was possible to make glasses with higher values of ZrO 2 . (Author) [pt

  11. Study for the chlorination of zirconium oxide

    International Nuclear Information System (INIS)

    Seo, E.S.M.; Takiishi, H.; Paschoal, J.O.A.; Andreoli, M.

    1990-12-01

    In the development of new ceramic and metallic materials the chlorination process constitutes step in the formation of several intermediate compounds, such as metallic chlorides, used for the production of high, purity raw materials. Chlorination studies with the aim of fabrication special zirconium-base alloys have been carried out at IPEN. Within this program the chlorination technique has been used for zirconium tetrachloride production from zirconium oxide. In this paper some relevant parameters such as: time and temperature of reaction, flow rate of chloride gas and percentage of the reducing agent which influence the efficiency of chlorination of zirconium oxide are evaluated. Thermodynamical aspects about the reactions involved in the process are also presented. (author)

  12. Ductile zirconium powder by hydride-dehydride process

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, T S [BHABHA ATOMIC RESEARCH CENTRE, BOMBAY (INDIA); CHAUDHARY, S [NUCLEAR FUEL COMPLEX, HYDERABAD (INDIA)

    1976-09-01

    The preparation of ductile zirconium powder by the hydride-dehydride process has been described. In this process massive zirconium obtained from Kroll reduction of ZrCl/sub 4/ is first rendered brittle by hydrogenation and the hydride crushed and ground in a ball mill to the required particle size. Hydrogen is then hot vacuum extracted to yield the metal powder. The process has been successfully employed for the production of zirconium powders with low oxygen content and having hardness values in the range of 115-130 BHN, starting from a zirconium sponge of 100-120 BHN hardness. Influence of surface characteristics of the starting metal on its hydriding behaviour has been studied and the optimum hydriding-dehydriding conditions established.

  13. Joint titrimetric determination of zirconium and hafnium

    International Nuclear Information System (INIS)

    Vazquez, Cristina; Botbol, Moises; Bianco de Salas, G.N.; Cornell de Casas, M.I.

    1980-01-01

    A method for the joint titrimetric determination of zirconium and hafnium, which are elements of similar chemical behaviour, is described. The disodic salt of the ethylendiaminetetracetic acid (EDTA) is used for titration, while xilenol orange serves as final point indicator. Prior to titration it is important to evaporate with sulfuric acid, the solution resulting from the zirconium depolymerization process, to adjust the acidity and to eliminate any interferences. The method, that allows the quick and precise determination of zirconium and hafnium in quantities comprised between 0.01 and mg, was applied to the analysis of raw materials and of intermediate and final products in the fabrication of zirconium sponge and zircaloy. (M.E.L.) [es

  14. Investigation of Zirconium Oxide Films in Different Dissolved Hydrogen Concentration

    International Nuclear Information System (INIS)

    Kim, Taeho; Choi, Kyoung Joon; Yoo, Seung Chang; Kim, Ji Hyun

    2016-01-01

    It has been reported that in pre-transition zirconium oxide, the volume fraction of tetragonal zirconium oxide increased near the oxide/metal (O/M) interface, and the sub-stoichiometric zirconium oxide layer was observed. The diffusion of oxygen ion through the oxide layer is the rate-limiting process during the pre-transition oxidation process, and this diffusion mainly occurs in the grain boundaries. The two layered oxide structure is formed in pre-transition oxide for the zirconium alloy in high-temperature water environment. It is known that the corrosion rate is related to the volume fraction of zirconium oxide and the pores in the oxides; therefore, the aim of this paper is to investigate the oxidation behavior in the pre-transition zirconium oxide in high-temperature water chemistry. In this study, in situ Raman and TEM analysis were conducted for investigating the phase transformation of zirconium alloy in primary water. From this study, the following conclusions are drawn: 1. The zirconium alloy was oxidized in primary water chemistry for 100 d, and Raman and TEM were measured after 30, 50, 80, and 100 d from start-up. 2. TEM and FFT analysis showed that the zirconium oxide mostly consisted of the monoclinic phase. The tetragonal zirconium oxide was just found near the O/M interface

  15. Voltammetric determination of zirconium using azo compounds

    International Nuclear Information System (INIS)

    Orshulyak, O.O.; Levitskaya, G.D.

    2008-01-01

    The optimum conditions for zirconium complexation with azo compounds are found. The applicability of Eriochrome Red B, Calcon, and Calcion to the voltammetric determination of zirconium, total Zr(IV) and Hf(IV), and Zr(IV) in the presence of Zn(II), Cu(II), Cd(II), Ni(II), or Ti(IV) is demonstrated. The developed procedures are used to determine zirconium in a terbium alloy and in an alloy for airplane wheel drums [ru

  16. Zr O2-Y2 O3 ceramic bodies forming by slip casting

    International Nuclear Information System (INIS)

    Menezes, Cristiane A.B. de; Menezes, Fernanda; Ussui, Valter; Lazar, Dolores R.R.; Paschoal, Jose Otavio A.

    1996-01-01

    Slip casting technique of 3 mol% yttria stabilized zirconia powders suspensions has been used for ceramic bodies forming. The powders were produced by coprecipitation process with ammonium hydroxide in the Zirconium Pilot Plant of IPEN (Institute for Energy and Nuclear Researches, Sao Paulo, SP, (Brazil). Experiments were performed by preparing suspensions of powders with dispersing agents. These suspensions were submitted to milling and casting in plaster molds. After drying and heating at 700 deg C, the obtained specimens were sintered at 1500 deg C for 3 hours. The ceramic bodies were investigated by scanning electron microscopy and X-ray diffraction, and tested in high temperature conditions. (author)

  17. Effect of Stabilization on Morphology Polystyrene and Supercritical Carbon Dioxide Thermoplastic Foams

    Directory of Open Access Journals (Sweden)

    Mozafar Mokhtari Motameni Shirvan

    2016-01-01

    Full Text Available Microcellular thermoplastic foams can be usually produced in a one-step batch system using a physical foaming agent which is dissolved in a polymer system under specific pressure and temperature, higher than the critical condition of solvent and the glass transition temperature of polymer and solvent mixture. By application of a sudden pressure drop the foam structure is formed through stages of nucleation, growth and coalescence. After pressure drop, if the foam temperature is reduced below the glass transition of the gas-polymer mixture, the cells stop growing which results in a foam with stabilized morphology. This stabilization stage has not been thoroughly focused in previous studies. In this work, polystyrene as a polymer system and supercritical carbon dioxide as a solvent were used at 18.5 MPa pressure and different temperatures. The stabilization process took place within milliseconds and helped to a better understanding of cellular structure in thermoplastic foams. In this mechanism, the nucleation takes place in the phase transition of solvent molecules at supercritical state to the gas state and the formation of very small nuclei containing gas molecules between polymer chains. The energy originated from the nuclei growth is in competition with the elastic energy of polymer chains, and the predominance of one type of energy over another determines the final cell size. The results showed that the effect of stabilization process on the structure of the foam depended on the foaming temperature. Stabilization at 110°C resulted in a 50% cell size reduction and a 60% cell density promotion, while at lower temperatures, the stabilization led to greater cell size and reduced cell density.

  18. Evaluation of the effect of heavy rare earth elements on the microstructure and mechanical and electrical properties of zirconia - Yttria ceramics

    International Nuclear Information System (INIS)

    Lazar, Dolores Ribeiro Ricci

    2002-01-01

    The use of Yttria concentrates for synthesis and processing of zirconia based ceramics, applied as structural and solid electrolyte materials, was investigated in this work. Terbium, dysprosium, holmium, erbium and ytterbium are chemical elements, classified as heavy rare earths, that can be found in those concentrates due to their association with yttrium ores. The ceramic characteristics were compared to zirconia - Yttria and zirconia - Yttria - rare earth oxide systems. The dopant content was 3 and 9 mol%. The raw materials were prepared by the coprecipitation route using solutions from the chemical processing of zircon and monazite ores and obtained by dissolution of high purity rare earth oxides. In the first part of this work, calcination, milling and ceramic processing were studied to produce ceramics with densities up to 95% TD. Samples were prepared in optimized conditions for the evaluation of the effect of each heavy rare earth element. Powders were characterized by chemical analysis. X-ray diffraction, scanning and transmission electron microscopy, gas adsorption (BET) and laser diffraction for the determination of the agglomerate size distributions. Green pellets were characterized by mercury porosimetry and the sintering kinetic was studied by dilatometry. The characterization of the as-sintered pellets was performed by the apparent density measurement (Archimedes method). X-ray diffraction, microstructure analysis by scanning and transmission electron microscopy, Vickers indentation tests for hardness and fracture toughness determination, dynamic mechanical analysis for the elastic modulus measurement, and impedance spectroscopy for electrical resistivity measurement. It was observed that the presence of heavy rare earths in a concentrate containing 85 wt% of Yttria has no significant influence on the properties of zirconia based ceramics. TZP ceramics, containing 3 mol% of dopants, have grain size smaller than 0.4μm, and Vickers hardness and

  19. URANIUM DECONTAMINATION WITH RESPECT TO ZIRCONIUM

    Science.gov (United States)

    Vogler, S.; Beederman, M.

    1961-05-01

    A process is given for separating uranium values from a nitric acid aqueous solution containing uranyl values, zirconium values and tetravalent plutonium values. The process comprises contacting said solution with a substantially water-immiscible liquid organic solvent containing alkyl phosphate, separating an organic extract phase containing the uranium, zirconium, and tetravalent plutonium values from an aqueous raffinate, contacting said organic extract phase with an aqueous solution 2M to 7M in nitric acid and also containing an oxalate ion-containing substance, and separating a uranium- containing organic raffinate from aqueous zirconium- and plutonium-containing extract phase.

  20. Balancing atmospheric carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Goreau, T.J. (Discovery Bay Marine Laboratory, Univ. of the West Indies (JM))

    1990-01-01

    Rising carbon dioxide and global temperatures are causing increasing worldwide concern, and pressure towards an international law of the atmosphere is rapidly escalating, yet widespread misconceptions about the greenhouse effect's inevitability, time scale, and causes have inhibited effective consensus and action. Observations from Antarctic ice cores, Amazonian rain forests, and Carribean coral reefs suggest that the biological effects of climate change may be more severe than climate models predict. Efforts to limit emissions from fossil-fuel combustion alone are incapable of stabilizing levels of carbon dioxide in the atmosphere. Stabilizing atmospheric carbon dioxide requires coupled measures to balance sources and sinks of the gas, and will only be viable with large-scale investments in increased sustainable productivity on degraded tropical soils, and in long-term research on renewable energy and biomass product development in the developing countries. A mechanism is outlined which directly links fossil-fuel combustion sources of carbon dioxide to removal via increasing biotic productivity and storage. A preliminary cost-benefit analysis suggests that such measures are very affordable, costing far less than inaction. (With 88 refs.).

  1. Balancing atmospheric carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Goreau, T J [Discovery Bay Marine Laboratory, Univ. of the West Indies (JM)

    1990-01-01

    Rising carbon dioxide and global temperatures are causing increasing worldwide concern, and pressure towards an international law of the atmosphere is rapidly escalating, yet widespread misconceptions about the greenhouse effect's inevitability, time scale, and causes have inhibited effective consensus and action. Observations from Antarctic ice cores, Amazonian rain forests, and Carribean coral reefs suggest that the biological effects of climate change may be more severe than climate models predict. Efforts to limit emissions from fossil-fuel combustion alone are incapable of stabilizing levels of carbon dioxide in the atmosphere. Stabilizing atmospheric carbon dioxide requires coupled measures to balance sources and sinks of the gas, and will only be viable with large-scale investments in increased sustainable productivity on degraded tropical soils, and in long-term research on renewable energy and biomass product development in the developing countries. A mechanism is outlined which directly links fossil-fuel combustion sources of carbon dioxide to removal via increasing biotic productivity and storage. A preliminary cost-benefit analysis suggests that such measures are very affordable, costing far less than inaction. (With 88 refs.).

  2. Effects of titanium and zirconium on iron aluminide weldments

    Energy Technology Data Exchange (ETDEWEB)

    Mulac, B.L.; Edwards, G.R. [Colorado School of Mines, Golden, CO (United States). Center for Welding, Joining, and Coatings Research; Burt, R.P. [Alumax Technical Center, Golden, CO (United States); David, S.A. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1997-12-01

    When gas-tungsten arc welded, iron aluminides form a coarse fusion zone microstructure which is susceptible to hydrogen embrittlement. Titanium inoculation effectively refined the fusion zone microstructure in iron aluminide weldments, but the inoculated weldments had a reduced fracture strength despite the presence of a finer microstructure. The weldments fractured by transgranular cleavage which nucleated at cracked second phase particles. With titanium inoculation, second phase particles in the fusion zone changed shape and also became more concentrated at the grain boundaries, which increased the particle spacing in the fusion zone. The observed decrease in fracture strength with titanium inoculation was attributed to increased spacing of second phase particles in the fusion zone. Current research has focused on the weldability of zirconium- and carbon-alloyed iron aluminides. Preliminary work performed at Oak Ridge National Laboratory has shown that zirconium and carbon additions affect the weldability of the alloy as well as the mechanical properties and fracture behavior of the weldments. A sigmajig hot cracking test apparatus has been constructed and tested at Colorado School of Mines. Preliminary characterization of hot cracking of three zirconium- and carbon-alloyed iron aluminides, each containing a different total concentration of zirconium at a constant zirconium/carbon ratio of ten, is in progress. Future testing will include low zirconium alloys at zirconium/carbon ratios of five and one, as well as high zirconium alloys (1.5 to 2.0 atomic percent) at zirconium/carbon ratios of ten to forty.

  3. Production of nuclear grade zirconium: A review

    Energy Technology Data Exchange (ETDEWEB)

    Xu, L., E-mail: L.Xu-2@tudelft.nl [School of Materials Science and Metallurgy, Northeastern University, Shenyang 110004 (China); Department of Materials Science and Engineering, Delft University of Technology, Delft 2628 CD (Netherlands); Xiao, Y. [Department of Metallurgical Engineering, Anhui University of Technology, Ma' anshan 243002 (China); Zr-Hf-Ti Metallurgie B.V., Den Haag 2582 SB (Netherlands); Sandwijk, A. van [Zr-Hf-Ti Metallurgie B.V., Den Haag 2582 SB (Netherlands); Xu, Q. [School of Materials Science and Metallurgy, Northeastern University, Shenyang 110004 (China); Yang, Y. [Department of Materials Science and Engineering, Delft University of Technology, Delft 2628 CD (Netherlands)

    2015-11-15

    Zirconium is an ideal material for nuclear reactors due to its low absorption cross-section for thermal neutrons, whereas the typically contained hafnium with strong neutron-absorption is very harmful for zirconium as a fuel cladding material. This paper provides an overview of the processes for nuclear grade zirconium production with emphasis on the methods of Zr–Hf separation. The separation processes are roughly classified into hydro- and pyrometallurgical routes. The known pyrometallurgical Zr–Hf separation methods are discussed based on the following reaction features: redox characteristics, volatility, electrochemical properties and molten salt–metal equilibrium. In the present paper, the available Zr–Hf separation technologies are compared. The advantages and disadvantages as well as future directions of research and development for nuclear grade zirconium production are discussed.

  4. Titanium(IV), zirconium, hafnium and thorium

    International Nuclear Information System (INIS)

    Brown, Paul L.; Ekberg, Christian

    2016-01-01

    Titanium can exist in solution in a number of oxidation states. The titanium(IV) exists in acidic solutions as the oxo-cation, TiO 2+ , rather than Ti 4+ . Zirconium is used in the ceramics industry and in nuclear industry as a cladding material in reactors where its reactivity towards hydrolysis reactions and precipitation of oxides may result in degradation of the cladding. In nature, hafnium is found together with zirconium and as a consequence of the contraction in ionic radii that occurs due to the 4f -electron shell, the ionic radius of hafnium is almost identical to that of zirconium. All isotopes of thorium are radioactive and, as a consequence of it being fertile, thorium is important in the nuclear fuel cycle. The polymeric hydrolysis species that have been reported for thorium are somewhat different to those identified for zirconium and hafnium, although thorium does form the Th 4 (OH) 8 8+ species.

  5. Environmental Effects on Zirconium Hydroxide Nanoparticles and Chemical Warfare Agent Decomposition: Implications of Atmospheric Water and Carbon Dioxide.

    Science.gov (United States)

    Balow, Robert B; Lundin, Jeffrey G; Daniels, Grant C; Gordon, Wesley O; McEntee, Monica; Peterson, Gregory W; Wynne, James H; Pehrsson, Pehr E

    2017-11-15

    Zirconium hydroxide (Zr(OH) 4 ) has excellent sorption properties and wide-ranging reactivity toward numerous types of chemical warfare agents (CWAs) and toxic industrial chemicals. Under pristine laboratory conditions, the effectiveness of Zr(OH) 4 has been attributed to a combination of diverse surface hydroxyl species and defects; however, atmospheric components (e.g., CO 2 , H 2 O, etc.) and trace contaminants can form adsorbates with potentially detrimental impact to the chemical reactivity of Zr(OH) 4 . Here, we report the hydrolysis of a CWA simulant, dimethyl methylphosphonate (DMMP) on Zr(OH) 4 determined by gas chromatography-mass spectrometry and in situ attenuated total reflectance Fourier transform infrared spectroscopy under ambient conditions. DMMP dosing on Zr(OH) 4 formed methyl methylphosphonate and methoxy degradation products on free bridging and terminal hydroxyl sites of Zr(OH) 4 under all evaluated environmental conditions. CO 2 dosing on Zr(OH) 4 formed adsorbed (bi)carbonates and interfacial carbonate complexes with relative stability dependent on CO 2 and H 2 O partial pressures. High concentrations of CO 2 reduced DMMP decomposition kinetics by occupying Zr(OH) 4 active sites with carbonaceous adsorbates. Elevated humidity promoted hydrolysis of adsorbed DMMP on Zr(OH) 4 to produce methanol and regenerated free hydroxyl species. Hydrolysis of DMMP by Zr(OH) 4 occurred under all conditions evaluated, demonstrating promise for chemical decontamination under diverse, real-world conditions.

  6. Translucency and Strength of High-Translucency Monolithic Zirconium-Oxide Materials

    Science.gov (United States)

    2016-05-12

    Capt Todd D. Church APPROVED: Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide Materials C~t) Kraig/[ Vandewalle Date...copyrighted material in the thesis/dissertation manuscript entitled: "Translucency arid Strength of High-Translucency Monolithic Zirconium -Oxide...Translucency Monolithic Zirconium -Oxide Materials Abstract Dental materials manufacturers have developed more translucent monolithic zirconium oxide

  7. Review of zirconium-zircaloy pyrophoricity

    International Nuclear Information System (INIS)

    Cooper, T.D.

    1984-11-01

    Massive zirconium metal scrap can be handled, shipped, and stored with no evidence of combustion or pyrophoricity hazards. Mechanically produced fine scrap such as shavings, turnings, or powders can burn but are not pyrophoric unless the particle diameter is less than 54 μm. Powders with particle diameters less than 54 μm can be both pyrophoric and explosive. Pyrophoric powders should be collected and stored underwater or under inert gas cover to reduce the flammability hazard. Opening sealed containers of zirconium stored underwater should be attempted with caution since hydrogen may be present. The factors that influence the ignition temperature have been explored in depth and recommendations are included for the safe handling, shipping, and storage of pyrophoric or flammable zirconium. 29 refs., 5 figs., 6 tabs

  8. Effect of Burnable Absorbers on Inert Matrix Fuel Performance and Transuranic Burnup in a Low Power Density Light-Water Reactor

    Directory of Open Access Journals (Sweden)

    Geoff Recktenwald

    2013-04-01

    Full Text Available Zirconium dioxide has received particular attention as a fuel matrix because of its ability to form a solid solution with transuranic elements, natural radiation stability and desirable mechanical properties. However, zirconium dioxide has a lower coefficient of thermal conductivity than uranium dioxide and this presents an obstacle to the deployment of these fuels in commercial reactors. Here we show that axial doping of a zirconium dioxide based fuel with erbium reduces power peaking and fuel temperature. Full core simulations of a modified AP1000 core were done using MCNPX 2.7.0. The inert matrix fuel contained 15 w/o transuranics at its beginning of life and constituted 28% of the assemblies in the core. Axial doping reduced power peaking at startup by more than ~23% in the axial direction and reduced the peak to average power within the core from 1.80 to 1.44. The core was able to remain critical between refueling while running at a simulated 2000 MWth on an 18 month refueling cycle. The results show that the reactor would maintain negative core average reactivity and void coefficients during operation. This type of fuel cycle would reduce the overall production of transuranics in a pressurized water reactor by 86%.

  9. Tests for depositing thin films of metallic zirconium; Essais de depot de zirconium metallique en couches minces

    Energy Technology Data Exchange (ETDEWEB)

    Bentolila, J.; Pattoret, A.; Platzer, R.

    1957-01-15

    The authors report a study which aimed at obtaining a thin, adhesive and non porous coating of metallic zirconium on a uranium substrate by means of chemical process. The main required condition was not to go beyond the uranium phase change temperature (650 C). Two kinds of tests have been performed: on the one hand, tests of reduction of zirconium tetrachloride in non aqueous solvent medium, and on the other hand, tests of vacuum decomposition of zirconium hydride. As far as the first tests are concerned, the authors studied organic solvent media (reduction by aluminium and lithium hydride, action of organic-magnesium compounds), and liquid ammoniac. For the second test type, they describe the apparatus, the preparation of the zirconium hydride, preparation of the substrate surfaces, coating preparation, and decomposition process. Results are discussed in terms of temperature, of presence of copper powder in the coating, of early surface hydriding of uranium, surface polishing.

  10. Analysis of hafnium in zirconium alloys

    International Nuclear Information System (INIS)

    Kondo, Isao; Sakai, Fumiaki; Ohuchi, Yoshifusa; Nakamura, Hisashi

    1977-01-01

    It is required to analyse alloying components and impurity elements in the acceptance analysis of zirconium alloys as the material for fuel cladding tubes and pressure tubes for advanced thermal reactors. Because of extreme similarity in chemical properties between zirconium and hafnium, about 100 ppm of hafnium is usually contained in zirconium alloys. Zircaloy-2 alloy and 2.5% Nb-zirconium with the addition of hafnium had been prepared as in-house standard samples for rapid analysis. Study was made on fluorescent X-ray analysis and emission spectral analysis to establish the analytical method. By using these in-house standard samples, acceptance analysis was successfully carried out for the fuel cladding tubes for advanced thermal reactors. Sulfuric acid solution was prepared from JAERI-Z 1, 2 and 3, the standard sample for zircaloy-2 prepared by the Analytical Committee on Nuclear Fuel and Reactor Materials, JAERI, and zirconium oxide (Hf 1 ppm/Zr). Standard Hf solution was added to the sulfuric acid solution step by step, to make up a series of the standard oxide samples by the precipitation process. By the use of these standard samples, the development of the analytical method and joint analysis were made by the three-member analytical technique research group including PNC. The analytical precision for the fluorescent X-ray analysis was improved by attaching a metallic yttrium filter to the window of an X-ray tube so as to suppress the effect due to zirconium matrix. The variation factor of the joint analysis was about 10% to show good agreement, and the indication value was determined. (Kobatake, H.)

  11. Removal of iron contaminant from zirconium chloride solution

    International Nuclear Information System (INIS)

    Voit, D.O.

    1992-01-01

    This patent describes a process for eliminating iron contaminant from an aqueous zirconium chloride solution that has been contaminated with FeCl 3 in a plant in which zirconium and hafnium chloride solutions are separated by a main MINK solvent extraction system and the FeCl 3 is normally removed from the zirconium chloride solution by a secondary MINK solvent extraction system

  12. Effects of Al2O3 and/or CaO on properties of yttria stabilized zirconia electrolyte doped with multi-elements

    International Nuclear Information System (INIS)

    Lv Zhengang; Guo Ruisong; Yao Pei; Dai Fengying

    2007-01-01

    Yttria stabilized zirconia (YSZ) has a high oxide ion conductivity at high temperatures. Some rare earth elements (e.g., Yb, Sc, Dy) with similar cation radii to Zr 4+ can dissolve into ZrO 2 , increasing its vacancy concentration and crystal lattice distortion, and therefore enhancing its conductivity and lowering the activation energy. It is expected this material could be used as intermediate temperature electrolyte. In the present work, YSZ electrolyte materials doped by multi-elements (Sc 2 O 3 or Dy 2 O 3 and Yb 2 O 3 ) were prepared by high temperature solid-state method. The high temperature conductivity was improved obviously, reaching 0.18 S/cm at 1000 deg. C, but the density and mechanical properties of sintered materials were not sufficiently high. It is found that sinterability and mechanical properties could be improved by inclusion of a small amount of Al 2 O 3 and/or CaO into the multi-elements doped YSZ materials and our results proved it. The results showed density and bending strength of sintered bodies were enhanced by Al 2 O 3 addition by 4.6% and 30%, respectively, while the conductivity did not degrade remarkably. But the degradation in bending strength and conductivity resulting from the CaO addition happened due to the second phase formed at the grain boundary. XRD patterns showed that all samples had cubic fluorite structure and crystalline lattice parameter was increased. SEM photographs obviously revealed the grain growth for the samples with CaO inclusion

  13. Solid oxide fuel cell having a glass composite seal

    Science.gov (United States)

    De Rose, Anthony J.; Mukerjee, Subhasish; Haltiner, Jr., Karl Jacob

    2013-04-16

    A solid oxide fuel cell stack having a plurality of cassettes and a glass composite seal disposed between the sealing surfaces of adjacent cassettes, thereby joining the cassettes and providing a hermetic seal therebetween. The glass composite seal includes an alkaline earth aluminosilicate (AEAS) glass disposed about a viscous glass such that the AEAS glass retains the viscous glass in a predetermined position between the first and second sealing surfaces. The AEAS glass provides geometric stability to the glass composite seal to maintain the proper distance between the adjacent cassettes while the viscous glass provides for a compliant and self-healing seal. The glass composite seal may include fibers, powders, and/or beads of zirconium oxide, aluminum oxide, yttria-stabilized zirconia (YSZ), or mixtures thereof, to enhance the desirable properties of the glass composite seal.

  14. Synthesis, processing and characterization of the solid oxide half-cells cathode/electrolyte of strontium-doped lanthanum manganite/Yttria-stabilized zirconia

    International Nuclear Information System (INIS)

    Chiba, Rubens

    2010-01-01

    The ceramic films of strontium-doped lanthanum manganite (LSM) and strontium doped lanthanum manganite/Yttria-stabilized zirconia (LSM/YSZ) are used as cathodes of the high temperature solid oxide fuel cells (HTSOFC). These porous ceramic films had been deposited on the YSZ dense ceramic substrate, used as electrolyte, structural component of the module, thus conferring a configuration of half-cell called auto-support. The study of the half-cell it is basic, therefore in the interface cathode/electrolyte occurs the oxygen reduction reaction, consequently influencing in the performance of the HTSOFC. In this direction, the present work contributes for the processing of thin films, using the wet powder spraying technique, adopted for the conformation of the ceramic films for allowing the attainment of porous layers with thicknesses varied in the order of micrometers. The LSM powders were synthesized by the citrate technique and the LSM/YSZ powders synthesized by the solid mixture technique. In the stage of formation were prepared organic suspensions of LSM and LSM/YSZ fed by gravity in a manual aerograph. For the formation of the YSZ substrate was used a hydraulic uniaxial press. The attainment of solid oxide half-cells cathode/electrolyte was possible of crystalline structures hexagonal for phase LSM and cubic for phase YSZ. The half-cells micrographs show that the YSZ substrate is dense, enough to be used as solid electrolyte, and the LSM and LSM/YSZ films are presented porous with approximately 30 μm of thickness and good adherence between the cathodes and the electrolyte. The presence of composite cathode between the LSM cathode and YSZ substrate, presented an increase in the electrochemical performance in the oxygen reduction reaction. (author)

  15. High purity zirconium obtainment through the iodine compounds transport method

    International Nuclear Information System (INIS)

    Bolcich, J.C.; Zuzek, E.; Dutrus, S.M.; Corso, H.L.

    1987-01-01

    This paper describes the experimental method and the equipment designed, constructed and actually applied for the high purity zirconium obtainment from a zirconium sponge of the nuclear type. The mechanism of purification is based on the impure metal attack with gaseous iodine (at 200 deg C) to obtain zirconium tetra iodine as main product which is then transformed into a pure zirconium base (at 1000-1300 deg C), precipitating the metallic zirconium and releasing the gaseous iodine. From the first experiences carried out, pure zirconium has been obtained from an initial filament of 0.5 mm of diameter as well as wires up to 2.5 mm of diameter. This work presents the results from the studies and analysis made to characterize the material obtained. Finally, the refining methods to which the zirconium produced may be submitted so as to optimize the final purity are discussed. (Author)

  16. Antimony removal from aqueous solutions using Zirconium hydroxide

    International Nuclear Information System (INIS)

    Petrescu, D.; Velciu, L.; Bucur, C.

    2016-01-01

    In this paper it is presented an experimental test for non-radioactive antimony removal from aqueous solutions using zirconium hydroxide powder. Also, it was studied how the temperature and pH influences antimony adsorption onto zirconium hydroxide surface. After the adsorption, solutions were filtered on Cellulose Mixed Ester Membrane with 0.2 μm pore size to remove the zirconium powder and then the aqueous solutions were sent to Inductively Coupled Plasma Optic Emission Spectrometry (ICP-OES) for quantitative analysis of Sb. Zirconium hydroxide powders were examined by optical microscopy. For the solutions that were tested at pH 4.5 and 10.2 the antimony concentration dropped below the detection limit of ICP-OES device, proof of antimony adsorption on zirconium hydroxide. Also, for the other tested solutions which had pH=12 the antimony concentration reduced with 77% and 80%. The temperature had no influence upon adsorption mechanism. (authors)

  17. Thermal barrier coating by electron beam-physical vapor deposition of zirconia co-doped with yttria and niobia

    Directory of Open Access Journals (Sweden)

    Daniel Soares de Almeida

    2010-08-01

    Full Text Available The most usual ceramic material for coating turbine blades is yttria doped zirconia. Addition of niobia, as a co-dopant in the Y2O3-ZrO2 system, can reduce the thermal conductivity and improve mechanical properties of the coating. The purpose of this work was to evaluate the influence of the addition of niobia on the microstructure and thermal properties of the ceramic coatings. SEM on coatings fractured cross-section shows a columnar structure and the results of XRD show only zirconia tetragonal phase in the ceramic coating for the chemical composition range studied. As the difference NbO2,5-YO1,5 mol percent increases, the tetragonality increases. A significant reduction of the thermal conductivity, measured by laser flash technique in the zirconia coating co-doped with yttria and niobia when compared with zirconia-yttria coating was observed.

  18. Molten salt extractive distillation process for zirconium-hafnium separation

    International Nuclear Information System (INIS)

    McLaughlin, D.F.; Stoltz, R.A.

    1989-01-01

    This patent describes an improvement in a process for zirconium-hafnium separation. It utilizes an extractive distillation column with a mixture of zirconium and hafnium tetrachlorides introduced into a distillation column having a top and bottom with hafnium enriched overheads taken from the top of the column and a molten salt solvent circulated through the column to provide a liquid phase, and with molten salt solvent containing zirconium chloride being taken from the bottom of the distillation column. The improvements comprising: utilizing a molten salt solvent consisting principally of lithium chloride and at least one of sodium, potassium, magnesium and calcium chlorides; stripping of the zirconium chloride taken from the bottom of the distillation column by electrochemically reducing zirconium from the molten salt solvent; and utilizing a pressurized reflux condenser on the top of the column to add the hafnium chloride enriched overheads to the molten salt solvent previously stripped of zirconium chloride

  19. Compatibility of various magnesium alloys with pressurized carbon dioxide at high temperatures; Compatibilite de divers alliages de magnesium avec le gaz carbonique sous pression aux temperatures elevees

    Energy Technology Data Exchange (ETDEWEB)

    Dewanckel, B; David, R; Hulin, C; Leclercq, D [Commissariat a l' Energie Atomique, 38 - Grenoble (France). Centre d' Etudes Nucleaires

    1968-07-01

    This work on the compatibility of magnesium alloys with pressurized carbon dioxide has been carried out along three lines: - testing of special alloys containing additions of zirconium, manganese, cerium, zinc, beryllium and yttrium. The results are satisfactory, generally speaking, and the corrosion kinetics are often comparable to those of conventional magnesium-zirconium alloy; - influence of the quality of the carbon dioxide, in particular the presence of water vapour or of carbon monoxide in this gas. It appears that oxidation is reduced if the carbon dioxide contains traces of water vapour, but is more pronounced if carbon monoxide is also present; - study of certain phenomena related to corrosion: size changes in the samples during tests, structural modifications in the alloys (grain-size changes, formation of a cortical zone in the case of alloys containing zirconium). The influence of thermal cycling has also been studied in a few specific tests. The results obtained make it possible to compare the behaviour of various alloys under varying conditions of long-term use, and to choose, if required, the best composition for a given application. (authors) [French] Ce travail sur la compatibilite des alliages de magnesium avec le gaz carbonique sous pression a ete particulierement oriente dans trois directions: - epreuve, d'alliages speciaux comportant des additions de zirconium, manganese, cerium, zinc, beryllium et yttrium. Les resultats sont generalement satisfaisants et les cinetiques de corrosion souvent comparables a celles de l'alliage magnesium-zirconium classique; - influence de la qualite du gaz carbonique, et notamment de la presence de vapeur d'eau ou d'oxyde de carbone dans ce gaz. Il est apparu que l'oxydation est reduite si le gaz carbonique contient des traces d'eau, mais accrue si l'oxyde de carbone est egalement present; - etude de certains phenomenes lies a la corrosion: variations dimensionnelles des echantillons au cours des essais

  20. Techniques for chemical characterization of zirconium and its alloys

    International Nuclear Information System (INIS)

    Iyer, K.V.; Bassan, M.K.T.; Sudersanan, M.

    2002-01-01

    Chemical characterization of zirconium and its alloys such as zircaloy, Zr-Nb, etc for minor and trace constituents like Nb, Ti, Fe, Cr, Ni, Sn, Al etc has been carried out. Zirconium, being a major constituent, has been determined by gravimetry as zirconium oxide while other constituents like Nb, Ti, Fe have been determined by spectrophotometric methods. Other metals of importance at trace level have been estimated by AAS or ICPAES. The judicious use of both conventional and modern instrumental methods of analysis helps in the characterization of zirconium and its alloys for various major and minor constituents. The role of matrix effect in the determination was also investigated and methods have been worked out based on a preliminary separation of zirconium by a hydroxide precipitation. (author)

  1. The defect structure of the double layer in yttria-stabilised zirconia

    NARCIS (Netherlands)

    Hendriks, M.G.H.M.; ten Elshof, Johan E.; Bouwmeester, Henricus J.M.; Verweij, H.

    2002-01-01

    The space charge density of 2–10 mol% yttria-stabilised zirconia (YSZ) at the interface with a gold electrode was determined from differential capacity measurements at 748–848 K. The oxygen vacancy fraction in the space charge layer was calculated as function of bias potential, temperature and

  2. Intercalation chemistry of zirconium 4-sulfophenylphosphonate

    International Nuclear Information System (INIS)

    Svoboda, Jan; Zima, Vítězslav; Melánová, Klára; Beneš, Ludvík; Trchová, Miroslava

    2013-01-01

    Zirconium 4-sulfophenylphosphonate is a layered material which can be employed as a host for the intercalation reactions with basic molecules. A wide range of organic compounds were chosen to represent intercalation ability of zirconium 4-sulfophenylphosphonate. These were a series of alkylamines from methylamine to dodecylamine, 1,4-phenylenediamine, p-toluidine, 1,8-diaminonaphthalene, 1-aminopyrene, imidazole, pyridine, 4,4′-bipyridine, poly(ethylene imine), and a series of amino acids from glycine to 6-aminocaproic acid. The prepared compounds were characterized by powder X-ray diffraction, thermogravimetry analysis and IR spectroscopy and probable arrangement of the guest molecules in the interlayer space of the host is proposed based on the interlayer distance of the prepared intercalates and amount of the intercalated guest molecules. - Graphical abstract: Nitrogen-containing organic compounds can be intercalated into the interlayer space of zirconium 4-sulfophenylphosphonate. - Highlights: • Zirconium 4-sulfophenylphosphonate was examined as a host material in intercalation chemistry. • A wide range of nitrogen-containing organic compounds were intercalated. • Possible arrangement of the intercalated species is described

  3. Chemistry of titanium, zirconium and thorium picramates

    International Nuclear Information System (INIS)

    Srivastava, R.S.; Agrawal, S.P.; Bhargava, H.N.

    1976-01-01

    Picramates of titanium, zirconium and thorium are prepared by treating the aqueous sulphate, chloride and nitrate solutions with sodium picramate. Micro-analysis, colorimetry and spectrophotometry are used to establish the compositions (metal : ligand ratio) of these picramates as 1 : 2 (for titanium and zirconium) and 1 : 4 (for thorium). IR studies indicate H 2 N → Me coordination (where Me denotes the metal). A number of explosive properties of these picramates point to the fact that the zirconium picramate is thermally more stable than the picramates of titanium and thorium. (orig.) [de

  4. Surface functionalization of zirconium dioxide nano-adsorbents with 3-aminopropyl triethoxysilane and promoted adsorption activity for bovine serum albumin

    International Nuclear Information System (INIS)

    Liu, Gen; Wu, Chaochao; Zhang, Xia; Liu, Yufeng; Meng, Hao; Xu, Junli; Han, Yide; Xu, Xinxin; Xu, Yan

    2016-01-01

    Surface functionalization of zirconium dioxide (ZrO_2) nano-adsorbents was carried out by using 3-aminopropyl triethoxysilane (APTES) as the modifier. The addition amount of APTES was varied to determine the optimum modification extent, and the bulk ZrO_2 microparticles were also modified by APTES for comparison. Some means, such as TEM, XRD, FT-IR, XPS and TG-DSC were used to character these ZrO_2 particles. The results showed that the APTES molecules were chemically immobilized on the surface of ZrO_2 nanoparticles via Zr−O−Si bonds, and the nano-ZrO_2 samples showed larger special surface area. In the adsorption of bovine serum albumin (BSA), nano-ZrO_2 samples exhibited enhanced adsorption activity, and APTES modified nano-ZrO_2 with proper APTES content presented the best adsorption property. Under the same adsorption conditions, the equilibrium adsorption capacity of BSA on APTES-ZrO_2-2 was almost 2.3 times as that on pristine nano-ZrO_2 and 3.0 times as on bulk ZrO_2 microparticles. The increased adsorption capacity of APTES-ZrO_2 nano-adsorbents can be attributed to the chemical interaction between amino and carboxyl groups at APTES-ZrO_2/BSA interface. The pH-dependent experiments showed that the optimum pH value for the adsorption and desorption was 5.0 and 9.0, respectively, which suggested that the adsorption and release of BSA could be controlled simply by adjusting the solution pH condition. - Highlights: • APTES chemically immobilized on ZrO_2 nanoparticles via Zr−O−Si bond. • Enhanced adsorption capacity of BSA was observed on APTES-ZrO_2. • Chemical adsorption character of BSA on APTES-ZrO_2. • Adsorption/release of BSA on APTES-ZrO_2 accomplished by adjusting pH value.

  5. Synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanosized powders prepared using a simple co-precipitation process

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Yu-Wei [Graduate Institute of Applied Science, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Yang, Ko-Ho, E-mail: yangkoho@cc.kuas.edu.tw [Graduate Institute of Applied Science, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Department of Mold and Die Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Chang, Kuo-Ming [Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Dental Materials Research Center, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan (China); Yeh, Sung-Wei [Metal Industries Research and Development Centre, 1001 Kaohsiung Highway, Kaohsiung 811, Taiwan (China); Wang, Moo-Chin, E-mail: mcwang@kmu.edu.tw [Department of Fragrance and Cosmetics Science, Kaohsiung Medical University, 100, Shihchuan 1st Road, Kaohsiung 80728, Taiwan (China)

    2011-06-16

    Highlights: > The thermal behavior of 3Y-TZP precursor powders had been investigated. > The crystallization behavior of 3Y-TZP nanopowders had been investigated. > The activation energy for crystallization of tetragonal ZrO{sub 2} was obtained. > The growth morphology parameter n is approximated as 2.0. > The crystallites show a plate-like morphology. - Abstract: The synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanopowders prepared using a simple co-precipitation process at 348 K and pH = 7 were investigated using differential scanning calorimetry/thermogravimetry (DSC/TG), an X-ray diffractometer (XRD), the Raman spectra, transmission electron microscopy (TEM), selected area electron diffraction (SAED), and an energy dispersive spectrometer (EDS). The activation energy of tetragonal ZrO{sub 2} crystallization from 3Y-TZP freeze-dried precursor powders using a non-isothermal method, namely, 169.2 {+-} 21.9 kJ mol{sup -1}, was obtained. The growth morphology parameter n was approximated as 2.0, which indicated that it had a plate-like morphology. The XRD, Raman spectra, and SAED patterns showed that the phase of the tetragonal ZrO{sub 2} was maintained at 1273 K. The crystallite size of 3Y-TZP freeze-dried precursor powders calcined at 1273 K for 5 min was 21.3 nm.

  6. Synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanosized powders prepared using a simple co-precipitation process

    International Nuclear Information System (INIS)

    Hsu, Yu-Wei; Yang, Ko-Ho; Chang, Kuo-Ming; Yeh, Sung-Wei; Wang, Moo-Chin

    2011-01-01

    Highlights: → The thermal behavior of 3Y-TZP precursor powders had been investigated. → The crystallization behavior of 3Y-TZP nanopowders had been investigated. → The activation energy for crystallization of tetragonal ZrO 2 was obtained. → The growth morphology parameter n is approximated as 2.0. → The crystallites show a plate-like morphology. - Abstract: The synthesis and crystallization behavior of 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) nanopowders prepared using a simple co-precipitation process at 348 K and pH = 7 were investigated using differential scanning calorimetry/thermogravimetry (DSC/TG), an X-ray diffractometer (XRD), the Raman spectra, transmission electron microscopy (TEM), selected area electron diffraction (SAED), and an energy dispersive spectrometer (EDS). The activation energy of tetragonal ZrO 2 crystallization from 3Y-TZP freeze-dried precursor powders using a non-isothermal method, namely, 169.2 ± 21.9 kJ mol -1 , was obtained. The growth morphology parameter n was approximated as 2.0, which indicated that it had a plate-like morphology. The XRD, Raman spectra, and SAED patterns showed that the phase of the tetragonal ZrO 2 was maintained at 1273 K. The crystallite size of 3Y-TZP freeze-dried precursor powders calcined at 1273 K for 5 min was 21.3 nm.

  7. Magnesium and related low alloys

    International Nuclear Information System (INIS)

    Bernard, J.; Caillat, R.; Darras, R.

    1959-01-01

    In the first part the authors examine the comparative corrosion of commercial magnesium, of a magnesium-zirconium alloy (0,4 per cent ≤ Zr ≤ 0,7 per cent) of a ternary magnesium-zinc-zirconium alloy (0,8 per cent ≤ Zn ≤ 1,2 per cent) and of english 'Magnox type' alloys, in dry carbon dioxide-free air, in damp carbon dioxide-free air, and in dry and damp carbon dioxide, at temperatures from 300 to 600 deg. C. In the second part the structural stability of these materials is studied after annealings, of 10 to 1000 hours at 300 to 450 deg. C. Variations in grain after these heat treatments and mechanical stretching properties at room temperature are presented. Finally various creep rate and life time diagrams are given for these materials, for temperatures ranging from 300 to 450 deg. C. (author) [fr

  8. The chemistry of PET imaging with zirconium-89.

    Science.gov (United States)

    Dilworth, Jonathan R; Pascu, Sofia I

    2018-04-23

    This Tutorial Review aims to provide an overview of the use of zirconium-89 complexes in biomedical imaging. Over the past decade there have been many new papers in this field, ranging from chemistry through to preclinical and clinical applications. Here we attempt to summarise the main developments that have occurred in this period. The primary focus is on coordination chemistry but other aspects such as isotope production, isotope properties, handling and radiochemical techniques and characterisation of cold and labelled complexes are included. Selected results from animal and human clinical studies are presented in the context of the stabilities and properties of the labelled bioconjugates.

  9. 21 CFR 700.16 - Use of aerosol cosmetic products containing zirconium.

    Science.gov (United States)

    2010-04-01

    ... zirconium. 700.16 Section 700.16 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... cosmetic products containing zirconium. (a) Zirconium-containing complexes have been used as an ingredient... indicates that certain zirconium compounds have caused human skin granulomas and toxic effects in the lungs...

  10. Zirconium alloy fuel cladding resistant to PCI crack propagation

    International Nuclear Information System (INIS)

    Boyle, R.F.; Foster, J.P.

    1987-01-01

    A nuclear fuel element is described cladding tube comprising: concentric tubular layers of zirconium base alloys; the concentric tubular layers including an inner layer and outer layer; the outer layer metallurgically bonded to the inner layer; the outer layer composed of a first zirconium base alloy characterized by excellent resistance to corrosion caused by exposure to high temperature and pressure aqueous environments; the inner layer composed of a second zirconium base alloy consisting of: about 0.2 to 0.6 wt.% tin, about 0.03 to 0.11 wt.% iron, less than about 0.02 wt.% chromium, up to about 350 ppm oxygen and the remainder being zirconium and incidental impurities, and the inner layer characterized by improved resistance to crack propagation under reactor operating conditions compared to the first zirconium alloy

  11. XRD study of yttria stabilized zirconia irradiated with 7.3 MeV Fe, 10 MeV I, 16 MeV Au, 200 MeV Xe and 2.2 GeV Au ions

    Energy Technology Data Exchange (ETDEWEB)

    Nakano, K.; Yoshizaki, H. [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan); Saitoh, Y. [Takasaki Advanced Radiation Research Institute, Japan Atomic Energy Agency, Takasaki, Gunma 370-1292 (Japan); Ishikawa, N. [Tokai Research and Development Center, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Iwase, A., E-mail: iwase@mtr.osakafu-u.ac.jp [Department of Materials Science, Osaka Prefecture University, Sakai, Osaka 599-8531 (Japan)

    2016-03-01

    To simulate energetic neutron irradiation effects, yttria-stabilized zirconia (YSZ) which is one of the major materials for electrical corrosion potential sensors (ECP sensors) was irradiated with heavy ions at energies ranging from 7.3 MeV to 2.2 GeV. Ion irradiation effects on the lattice structure were analyzed using the X-ray diffraction (XRD). The increase in lattice constant was induced by the ion irradiation. It was dominated by the elastic collision process and not by the electronic excitation process. The lattice disordering which was observed as a broadening of XRD peaks was also induced by the irradiation especially for 200 MeV Xe ion irradiation. The present result suggests that the expansion and/or the disordering of YSZ lattice induced by energetic neutrons may affect the durability of a joint interface between a metal housing and YSZ membrane for the usage of ECP sensors in nuclear power reactors.

  12. Waterside corrosion of zirconium alloys in nuclear power plants

    International Nuclear Information System (INIS)

    1998-01-01

    Technically the study of corrosion of zirconium alloys in nuclear power reactors is a very active field and both experimental work and understanding of the mechanisms involved are going through rapid changes. As a result, the lifetime of any publication in this area is short. Because of this it has been decided to revise IAEA-TECDOC-684 - Corrosion of Zirconium Alloys in Nuclear Power Plants - published in 1993. This updated, revised and enlarged version includes major changes to incorporate some of the comments received about the first version. Since this review deals exclusively with the corrosion of zirconium and zirconium based alloys in water, and another separate publication is planned to deal with the fuel-side corrosion of zirconium based fuel cladding alloys, i.e. stress corrosion cracking, it was decided to change the original title to Waterside Corrosion of Zirconium Alloys in Nuclear Power Plants. The rapid changes in the field have again necessitated a cut-off date for incorporating new data. This edition incorporates data up to the end of 1995; including results presented at the 11 International Symposium on Zirconium in the Nuclear Industry held in Garmisch-Partenkirchen, Germany, in September 1995. The revised format of the review now includes: Introductory chapters on basic zirconium metallurgy and oxidation theory; A revised chapter discussing the present extent of our knowledge of the corrosion mechanism based on laboratory experiments; a separate and revised chapter discussing hydrogen uptake; a completely reorganized chapter summarizing the phenomenological observations of zirconium alloy corrosion in reactors; a new chapter on modelling in-reactor corrosion; a revised chapter devoted exclusively to the manner in which irradiation might influence the corrosion process; finally, a summary of our present understanding of the corrosion mechanisms operating in reactor

  13. Processing fissile material mixtures containing zirconium and/or carbon

    Science.gov (United States)

    Johnson, Michael Ernest; Maloney, Martin David

    2013-07-02

    A method of processing spent TRIZO-coated nuclear fuel may include adding fluoride to complex zirconium present in a dissolved TRIZO-coated fuel. Complexing the zirconium with fluoride may reduce or eliminate the potential for zirconium to interfere with the extraction of uranium and/or transuranics from fission materials in the spent nuclear fuel.

  14. Hot zirconium cathode sputtered layers for useful surface modification

    International Nuclear Information System (INIS)

    Duckworth, R.G.

    1986-01-01

    It has been found that multilayer zirconium based sputtered coatings can greatly improve the wear properties of a wide variety of mechanical components, machine tools, and metal surfaces. Although a hot (approximately 1000 0 C) cathode is employed, temperature sensitive components can be beneficially treated, and for precision parts a total coating thickness of only 0.5μm is often perfectly effective. Even at the highest coating rates substrate temperatures are below 300 0 C. For the corrosion protection of less well finished surfaces thicker layers are usually required and it is important that relatively stress free layers are produced. The authors employed a variety of tailored zirconium/zirconium nitride/zirconium oxide mixed layers to solve a number of tribological problems for some 5 or 6 years. However, it is only recently that they designed, built, and commissioned rapid cycle, multiple cathode, load-lock plant for economic production of such coatings. This paper provides an introduction to this method of depositing pure zirconium and pure synthetic zirconium nitride films

  15. Analysis of hydrogen in zirconium metallic

    International Nuclear Information System (INIS)

    Rodrigues, A.N.; Vega Bustillos, J.O.W.

    1991-02-01

    Determination of hydrogen in zirconium metallic have been performed using the hot vacuum extraction system and the gas chromatographic technique. The zirconium metallic samples were hydrieded by electrolitic technique at difference temperatures and times, then the samples were annealing at vacuum and eatching by fluoridric acid solution. The details of the hydrieded process, analytical technique and the data obtained are discussed. (author)

  16. Development of zirconium hydride highly effective moderator materials

    International Nuclear Information System (INIS)

    Yin Changgeng

    2005-10-01

    The zirconium hydride with highly content of hydrogen and low density is new efficient moderator material for space nuclear power reactor. Russia has researched it to use as new highly moderator and radiation protection materials. Japanese has located it between the top of pressure vessel and the main protection as a shelter, the work temperature is rach to 220 degree C. The zirconium hydride moderator blocks are main parts of space nuclear power reactor. Development of zirconium hydride moderator materials have strength research and apply value. Nuclear Power Research and Design Instituteoh China (NPIC) has sep up the hydrogenation device and inspect systems, and accumurate a large of experience about zirconium hydride, also set up a strict system of QA and QC. (authors)

  17. Separation process of zirconium and hafnium; Procede de separation du zirconium et du hafnium

    Energy Technology Data Exchange (ETDEWEB)

    Hure, J; Saint-James, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    About the separation different processes of zirconium-hafnium, the extraction by solvent in cross-current is the most easily the process usable on an industrial scale. It uses tributyl phosphate as solvent, diluted with white spirit to facilitate the decanting. Some exploratory tests showed that nitric environment seemed the most favorable for extraction; but a lot of other factors intervene in the separation process. We studied the influence of the acidity successively, the NO{sub 3}{sup -} ions concentration, the role of the cation coming with NO{sub 3}{sup -}, as well as the influence of the concentration of zirconium in the solution on the separation coefficient {beta} = {alpha}{sub Zr} / {alpha}{sub Hf}. (M.B.) [French] Des differents procedes de separation zirconium-hafnium, l'extraction par solvant en contre-courant est le procede le plus facilement utilisable a l'echelle industrielle. On utilise comme solvant le phosphate de tributyle, dilue avec du white spirit pour faciliter les decantations. Des essais preliminaires ont montre que le milieu nitrique semblait le plus favorable a l'extraction; mais beaucoup d'autres facteurs interviennent dans le processus de separation. Nous avons etudie successivement l'influence de l'acidite, celle de la concentration en ions NO{sub 3}{sup -}, le role du cation accompagnant NO{sub 3}{sup -}, ainsi que l'influence de la concentration en zirconium de la solution sur le coefficient de separation {beta} = {alpha}{sub Zr} / {alpha}{sub Hf}. (MB)

  18. Effect of Electric Voltage and Current of X-ray Chamber on the Element inthe Zirconium Alloy Analysis X-ray by X-ray Fluorescence

    International Nuclear Information System (INIS)

    Yusuf-Nampira; Narko-Wibowo, L; Rosika-Krisnawati; Nudia-Barenzani

    2000-01-01

    The using of x-ray fluorescence in the chemical analysis depend heavilyon the parameters of x-ray chamber, for examples : electric voltage andelectric current. That parameter give effect in the result of determine ofSn, Cr, Fe and Ni in the zirconium alloy. 20 kV electric voltages are used onthe Mo x-ray chamber shall product x-ray of zirconium in the sample materialcan give effect in the stability of the analysis result (deviation more than5%). The result of analysis of elements in the zirconium alloy shall givedeviation less than 5% when using of electric voltage of the x-ray chamberless than 19 kV. The sensitivity of analysis can be reached by step upelectric current of x-ray chamber. (author)

  19. Reactivity and interdiffusion of alternative SOFC cathodes with yttria stabilized zirconia, gadolinia doped ceria and doped lanthanum gallate solid electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Kostogloudis, G.C.; Tsiniarakis, G.; Riza, F.; Ftikos, C. [National Tech. Univ. of Athens (Greece)

    2000-07-01

    The chemical compatibility between the cathode composition Pr{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} and the electrolyte compositions yttria stabilized zirconia (YSZ), Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9} (CGO) and La{sub 0.8}Sr{sub 0.2}Ga{sub 0.9}Mg{sub 0.1}O{sub 3-{delta}} (LSGM) was investigated. Also, the influence of the substitution of Al for Fe on the reactivity of the cathode with YSZ was examined. All oxides were single-phase materials except for LSGM, which contained two additional phases, namely LaSrGa{sub 3}O{sub 7} and LaSrGaO{sub 4}. Two types of experiments were performed: (a) reactivity experiments by XRD in cathode/electrolyte powder mixtures and (b) diffusion experiments by SEM/EDX analysis in cathode/electrolyte double-layer pellets. Pr{sub 2}Zr{sub 2}O{sub 7}, SrZrO{sub 3} and CoFe{sub 2}O{sub 4} were formed by the interaction of the cathode materials with YSZ. Substitution by Al at the B-site of the perovskite cathode led to a decrease of its reactivity with YSZ. No reaction products were formed for powder mixtures of Pr{sub 0.8}Sr{sub 0.2}Co{sub 0.2}Fe{sub 0.8}O{sub 3-{delta}} and CGO or LSGM electrolytes. High Co and Fe diffusion into LSGM was identified. Pr, La and Ga show a smaller tendency for diffusion. The diffusion of transition metal cations into LSGM electrolyte caused the destabilisation and disappearance of the second phases in the interdiffusion zone. (orig.)

  20. Determination of the stability of the uranyl ion sipped in τ-hydrogen phosphate of zirconium in sodic form

    International Nuclear Information System (INIS)

    Ordonez R, E.; Fernandez V, S.M.; Drot, R.; Simoni, E.

    2005-01-01

    The stability of the uranyl sipped in the zirconium τ-hydrogen phosphate in sodic form (τ-NaZrP), was carried out characterizing the complexes formed by Laser spectroscopy in the visible region and by X-ray photoelectron spectroscopy. The material was prepared by a new synthesis technique working in nitrogen atmosphere and to low temperatures. The sorption of the uranyl ion was made in acid media with concentrations of 10 -4 and 10 -5 of uranyl nitrate and with ion forces of 0.1 and 0.5 M of NaClO 4 . The spectra of induced fluorescence with laser (TRLFS) show that the uranyl is fixed in very acid media in three well differentiated species, to pH less acid, the specie of long half life disappears and are only those of short half life. The results of the binding energy obtained by XPS indicate that the binding energy of the uranyl confer it a stable character to the complex formed in the τ-NaZP, that makes to this material appropriate to retain to the uranyl in solution to high ion forces and in acid media. (Author)

  1. The determination of nitrogen in zirconium by charged-particle activation analysis

    International Nuclear Information System (INIS)

    Strijckmans, K.; Mortier, R.; Vandecasteele, C.; Hoste, J.

    1982-01-01

    The determination of nitrogen in zirconium by charged-particle activation analysis is described. The 14 N(α, αn) 13 N and the 14 N(p, α) 11 C reactions were used. The 13 N activity was separated from matrix activity as ammonia by steam-distillation after dissolution of the sample in dilute hydrofluoric acid.The 11 C activity was separated as carbon dioxide by dissolution of the sample in a mixture of concentrated sulphuric acid, sodium fluoride and potassium periodate, followed by oxidation of the evolved gases with a copper oxide-iron oxide-kaolin mixture and trapping of the carbon dioxide in dilute sodium hydroxide solution. The chemical yield of both separations was investigated. The nuclear interference of boron can be neglected, in view of the low boron content. Alpha- and protonactivation yielded the following results for BCR reference materials (alpha-activation results first): CRM 21: 24.6 +- 3.3 and 25.9 +- 0.8 μg/g (certified value: 26.4 +- 2.5 μg/g);CRM 56: 12.0 +- 1.1 and 10.5 +- 0.3 μg/g (certified value: 11.7 +- 1.7 μg/g); CRM 57: 11.2 +- 0.3 μg/g (alpha/activation) (certified value: 11.9 +- 1.8 μg/g). (Author)

  2. Raman spectroscopy analysis of air grown oxide scale developed on pure zirconium substrate

    Energy Technology Data Exchange (ETDEWEB)

    Kurpaska, L., E-mail: lukasz.kurpaska@ncbj.gov.pl [Laboratoire Roberval, UMR 7337, Université de Technologie de Compiègne, Centre de Recherche de Royallieu, CS 60319, 60203 Compiègne Cedex (France); National Center for Nuclear Research, St. A. Soltana 7/23, 05-400 Otwock-Swierk (Poland); Favergeon, J. [Laboratoire Roberval, UMR 7337, Université de Technologie de Compiègne, Centre de Recherche de Royallieu, CS 60319, 60203 Compiègne Cedex (France); Lahoche, L. [Laboratoire Roberval, UMR 7337, Université de Technologie de Compiègne, Centre de Recherche de Royallieu, CS 60319, 60203 Compiègne Cedex (France); Laboratoire des Technologies Innovantes, Université de Picardie Jules-Verne, EA 3899, Avenue des Facultés – Le Bailly, 80025 Amiens Cedex (France); El-Marssi, M. [Laboratoire de Physique de la Matière Condensée, Université de Picardie Jules-Verne, 33 rue St. Leu, 80039 Amiens Cedex (France); Grosseau Poussard, J.-L. [LaSIE UMR-CNRS 7356, Pole Sciences et Technologie, Universite de La Rochelle, av. M Crepeau, 17042 La Rochelle, Cedex (France); Moulin, G.; Roelandt, J.-M. [Laboratoire Roberval, UMR 7337, Université de Technologie de Compiègne, Centre de Recherche de Royallieu, CS 60319, 60203 Compiègne Cedex (France)

    2015-11-15

    Using Raman spectroscopy technique, external and internal parts of zirconia oxide films developed at 500 °C and 600 °C on pure zirconium substrate under air at normal atmospheric pressure have been examined. Comparison of Raman peak positions of tetragonal and monoclinic zirconia phases, recorded during the oxide growth at elevated temperature, and after cooling at room temperature have been presented. Subsequently, Raman peak positions (or shifts) were interpreted in relation with the stress evolution in the growing zirconia scale, especially closed to the metal/oxide interface, where the influence of compressive stress in the oxide is the biggest. Reported results, for the first time show the presence of a continuous layer of tetragonal zirconia phase developed in the proximity of pure zirconium substrate. Based on the Raman peak positions we prove that this tetragonal layer is stabilized by the high compressive stress and sub-stoichiometry level. Presence of the tetragonal phase located in the outer part of the scale have been confirmed, yet its Raman characteristics suggest a stress-free tetragonal phase, therefore different type of stabilization mechanism. Presented study suggest that its stabilization could be related to the lattice defects introduced by highstoichiometry of zirconia or presence of heterovalent cations. - Highlights: • The oxide layer consists of a mixture of tetragonal and monoclinic phases, clearly distinguishable by Raman spectroscopy. • The layer located close to the metal/oxide interphase consists mainly of the tetragonal phase. • Small amount of tetragonal layer located in the external oxide scale have been observed. • Stabilization mechanism of the tetragonal phase located in the external part of the oxide have been proposed.

  3. Preferable removal of phosphate from water using hydrous zirconium oxide-based nanocomposite of high stability.

    Science.gov (United States)

    Chen, Liang; Zhao, Xin; Pan, Bingcai; Zhang, Weixian; Hua, Ming; Lv, Lu; Zhang, Weiming

    2015-03-02

    In this study, we employed a new nanocomposite adsorbent HZO-201, which featured high stability under varying solution chemistry, for preferable removal of phosphate from synthetic solution and a real effluent. An anion exchange resin (D-201) was employed as the host of HZO-201, where nano-hydrous zirconium oxide (HZO) was encapsulated as the active species. D-201 binds phosphate through nonspecific electrostatic affinity, whereas the loaded HZO nanoparticles capture phosphate through formation of the inner-sphere complexes. Quantitative contribution of both species to phosphate adsorption was predicted based on the double-Langmuir model. Preferable removal of phosphate by HZO-201 was observed in the presence of the competing anions at higher levels (Cl(-), NO3(-), SO4(2-), HCO3(-)). Fixed-bed adsorption indicated that the effective volume capacity of a synthetic water (2.0 mg P-PO4(3-)/L) by using HZO-201 was ∼1600 BV in the first run (<0.5mg P-PO4(3-)/L), comparable to Fe(III)-based nanocomposite HFO-201 (∼1500 BV) and much larger than D-201 (<250 BV). The exhausted HZO-201 can be in situ regenerated by using a binary NaOH-NaCl solution for cyclic runs, whether fed with the synthetic solution or real effluent. In general, HZO-201 is a promising alternative to Fe(III)-based adsorbents for trace phosphate removal from effluent particularly at acidic pH. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. A study of the fixing of phosphoric ions by zirconium-montmorillonite; Etude de la fixation d'ions phosphoriques par la montmorillonite-zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Bittel, R; Boursat, C; Platzer, R [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    In connection with the research carried out on the purification of nuclear reactor water, we have undertaken a study of the ion-exchange properties of acid montmorillonite. In a previous paper, we described the preparation of zirconium-montmorillonite small plate. The present article aims to study some of the properties of the clay obtained. We have observed that zirconium-montmorillonite fixes very strongly the phosphorus from solutions of phosphoric acid or of phosphates: on 1 g of clay it is possible to fix 1,2 milli-atoms-gram of zirconium and the zirconium montmorillonite itself fixes 2,1 milli-atoms-gram of phosphorus. An explanation of these experimental results, which is as much chemical as mineralogical, is the hypothesis that the fixing of phosphoric ions modifies the distribution of the ions between the platelets and precipitates a very slightly soluble product of the type diphospho-zirconic acid. (author) [French] En rapport avec des recherches sur I'epuration de l'eau des reacteurs nucleaires nous avons entrepris une etude sur les proprietes d'echangeur d'ions de la montmorillonite-acide. Dans une precedente publication, nous avons decrit la preparation des plaquettes de montmorillonite-zirconium. La presente communication a pour but d'etudier quelques proprietes de l'argile obtenue. Nous avons constate que la montmorilionite-zirconium fixe le phosphore de solutions d'acide phosphorique ou de phosphate avec une grande intensite: sur 1 g d'argile, on peut fixer 1,2 atomes-gramme de zirconium, et la montmorillonite-zirconium fixe a son tour 2,1 milli-atomesgramme de phosphore. Une explication des resultats experimentaux, tant d'ordre chimique que d'ordre mineralogique, consiste en l'hypothese suivant laquelle la fixation d'ions phosphoriques modifierait la repartition des ions entre les feuillets avec precipitation du compose tres peu soluble (type: acide diphosphozirconique). (auteur)

  5. A computation model for the corrosion resistance of nanocrystalline zirconium metal

    International Nuclear Information System (INIS)

    Zhang Xiyan; Shi Minghua; Liu Nianfu; Wei Yiming; Li Cong; Qiu Shaoyu; Zhang Qiang; Zhang Pengcheng

    2007-01-01

    In this paper a computation model of corrosion rate-grain size of nanocrystalline and ultra-fine zirconium has been presented. The model is based on the Wagner's theory and the electron theory of solids. The conductivity, electronic mean free path and grain size of metal were considered. By this model, the corrosion rate of zirconium metal under different temperature was computed. The results show that the corrosion weight gain and rate constant of nanocrystalline zirconium is lower than that of zirconium with coarse grain size. And the corrosion rate constant and weight gain of nanocrystalline zirconium metal decrease with the decrease of grain size. So the refinement of grain size can remarkably improve the corrosion resistance of zirconium metal. (authors)

  6. 40 CFR 721.10089 - Modified salicylic acid, zirconium complex (generic).

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified salicylic acid, zirconium... Specific Chemical Substances § 721.10089 Modified salicylic acid, zirconium complex (generic). (a) Chemical... as modified salicylic acid, zirconium complex (PMN P-00-552) is subject to reporting under this...

  7. Preparation of complexes of zirconium and hafnium tetrachlorides with phosphorus oxychloride

    International Nuclear Information System (INIS)

    McLaughlin, D.F.

    1989-01-01

    This patent describes an improvement in a method for separating hafnium tetrachloride from zirconium tetrachloride where a complex of zirconium-hafnium tetrachlorides and phosphorus oxychloride is prepared from zirconium-hafnium tetrachlorides and the complex of zirconium-hafnium tetrachlorides and phosphorus oxychloride is introduced into a distillation column, which distillation column has a reboiler connected at the bottom and a reflux condenser connected at the top and where a hafnium tetrachloride enriched stream is taken from the top of the column and a zirconium enriched tetrachloride stream is taken from the bottom of the column. The improvement comprising: prepurifying the zirconium-hafnium tetrachlorides, prior to preparation of the complex and introduction of the complex into a distillation column, to substantially eliminate iron chloride from the zirconium hafnium tetrachlorides, whereby buildup or iron chloride in the distillation column and in the reboiler is substantially eliminated and the column can be operated in a continuous, stable and efficient manner

  8. Low cycle fatigue behaviour of zirconium alloys at 3000C

    International Nuclear Information System (INIS)

    Hosbons, R.R.

    1975-01-01

    The low cycle fatigue lives of two zirconium alloys, zirconium--2.5 wt percent niobium and zirconium--1.1 wt percent chromium--0.1 wt percent iron, have been determined at 300 0 C. Both annealed material and cold-worked and stress-relieved material have similar fatigue lives to annealed Zircaloy-2 but β-quenched zirconium--niobium and zirconium--chromium--iron have lower fatigue lives than annealed Zircaloy-2. An atmosphere containing a concentration of iodine lower than that required for stress corrosion cracking still significantly lowers the fatigue life. A mathematical relationship between fatigue life and short-term tensile properties was used to estimate the fatigue life of zirconium alloy fuel sheaths and it was estimated that for a strain cycle of 0.1 percent a cyclic frequency exceeding 0.116 Hz (10,000 cycles/ day) would be required to cause fatigue failure of the sheath before its design life is realized

  9. Low cycle fatigue behaviour of zirconium alloys at 3000C

    International Nuclear Information System (INIS)

    Hosbons, R.R.

    1975-01-01

    The low cycle fatigue lives of two zirconium alloys, zirconium-2.5 wt% niobium and zirconium-1.1 wt% chronium-0.1 wt% iron, have been determined at 300 0 C. Both annealed material and cold-worked and stress-relieved material have similar fatigue lives to annealed Zircaloy-2 but β-quenched zirconium-niobium and zirconium-chromium-iron have lower fatigue lives than annealed Zircaloy-2. An atmosphere containing a concentration of iodine lower than that required for stress corrosion cracking still significantly lowers the fatigue life. A mathematical relationship between fatigue life and short-term tensile properties was used to estimate the fatigue life of zirconium alloy fuel sheaths and it was estimated that for a strain cycle of 0.1 per cent a cyclic frequency exceeding 0.116 Hz (10 000 cycles/day) would be required to cause fatigue failure of the sheath before its design life is realized. (author)

  10. Investigation of anodic oxide coatings on zirconium after heat treatment

    International Nuclear Information System (INIS)

    Sowa, Maciej; Dercz, Grzegorz; Suchanek, Katarzyna; Simka, Wojciech

    2015-01-01

    Highlights: • Oxide layers prepared via PEO of zirconium were subjected to heat treatment. • Surface characteristics were determined for the obtained oxide coatings. • Heat treatment led to the partial destruction of the anodic oxide layer. • Pitting corrosion resistance of zirconium was improved after the modification. - Abstract: Herein, results of heat treatment of zirconium anodised under plasma electrolytic oxidation (PEO) conditions at 500–800 °C are presented. The obtained oxide films were investigated by means of SEM, XRD and Raman spectroscopy. The corrosion resistance of the zirconium specimens was evaluated in Ringer's solution. A bilayer oxide coatings generated in the course of PEO of zirconium were not observed after the heat treatment. The resulting oxide layers contained a new sublayer located at the metal/oxide interface is suggested to originate from the thermal oxidation of zirconium. The corrosion resistance of the anodised metal was improved after the heat treatment

  11. Annealing of a ferritic stainless steel 409 stabilized with titanium and zirconium additions

    Directory of Open Access Journals (Sweden)

    Zambrano, P.

    2011-02-01

    Full Text Available A ferritic stainless steel 409 stabilized with titanium and zirconium was subject to thermomechanical processing. It was heated at 1210 °C for one hour, followed by a 75 % hot reduction in three passes, this rolling schedule ended at 980 °C. Samples were cooled to 600 °C by water spraying followed by air-cooling. The alloy was pickled, and was reduced 80 % by cold rolling. The alloy was annealed at different temperatures for 105 s. Additional annealing treatments were carried out at temperatures of 800, 850 and 900 °C for different times. Mechanical testing and texture were made to corroborate the degree of annealing and formability. Mechanical properties and Texture analyses showed that the alloy annealed at 850 °C for 14 min was both completely recrystallized and a very good formability.

    Un acero inoxidable ferrítico 409 estabilizado con titanio y zirconio fue sujeto a procesos termomecánicos. El acero fue calentado a 1210 ºC durante una hora, seguido por un laminado en caliente del 75 % en tres pases, el proceso terminó a los 980 ºC. Las muestras fueron enfriadas hasta 600 ºC por agua atomizada seguido de enfriamiento al aire. La aleación fue decapada y laminada en frío un 80 %. Posteriormente de desarrollaron tratamientos térmicos de recocido a diferentes temperaturas por un tiempo de 105 s. Adicionalmente se desarrollaron tratamientos de recocido a temperaturas de 800, 850 y 900 ºC a diferentes tiempos. Pruebas mecánicas y textura fueron realizadas para corroborar el grado de recocido y su formalidad. El análisis de las propiedades mecánicas y la Textura mostraron que la aleación recocida a 850 ºC por 14 min (840 s fue completamente recristalizada obteniendo la mejor formabilidad.

  12. Determination of nitrogen in zirconium by charged-particle activation analysis

    Energy Technology Data Exchange (ETDEWEB)

    Strijckmans, K; Mortier, R; Vandecasteele, C; Hoste, J [Ghent Rijksuniversiteit (Belgium)

    1982-01-01

    The determination of nitrogen in zirconium by charged-particle activation analysis is described. The /sup 14/N(..cap alpha.., ..cap alpha..n)/sup 13/N and the /sup 14/N(p, ..cap alpha..)/sup 11/C reactions were used. The /sup 13/N activity was separated from matrix activity as ammonia by steam-distillation after dissolution of the sample in dilute hydrofluoric acid.The /sup 11/C activity was separated as carbon dioxide by dissolution of the sample in a mixture of concentrated sulphuric acid, sodium fluoride and potassium periodate, followed by oxidation of the evolved gases with a copper oxide-iron oxide-kaolin mixture and trapping of the carbon dioxide in dilute sodium hydroxide solution. The chemical yield of both separations was investigated. The nuclear interference of boron can be neglected, in view of the low boron content. Alpha- and protonactivation yielded the following results for BCR reference materials (alpha-activation results first): CRM 21: 24.6 +- 3.3 and 25.9 +- 0.8 ..mu..g/g (certified value: 26.4 +- 2.5 ..mu..g/g);CRM 56: 12.0 +- 1.1 and 10.5 +- 0.3 ..mu..g/g (certified value: 11.7 +- 1.7 ..mu..g/g); CRM 57: 11.2 +- 0.3 ..mu..g/g (alpha/activation) (certified value: 11.9 +- 1.8 ..mu..g/g).

  13. RECOVERY OF URANIUM FROM ZIRCONIUM-URANIUM NUCLEAR FUELS

    Science.gov (United States)

    Gens, T.A.

    1962-07-10

    An improvement was made in a process of recovering uranium from a uranium-zirconium composition which was hydrochlorinated with gsseous hydrogen chloride at a temperature of from 350 to 800 deg C resulting in volatilization of the zirconium, as zirconium tetrachloride, and the formation of a uranium containing nitric acid insoluble residue. The improvement consists of reacting the nitric acid insoluble hydrochlorination residue with gaseous carbon tetrachloride at a temperature in the range 550 to 600 deg C, and thereafter recovering the resulting uranium chloride vapors. (AEC)

  14. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds.

    Science.gov (United States)

    Ahmad, Nor Monica; Abdullah, Jaafar; Yusof, Nor Azah; Ab Rashid, Ahmad Hazri; Abd Rahman, Samsulida; Hasan, Md Rakibul

    2016-06-29

    A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB), polyethylene glycol (PEG), and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE). Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM), Electrochemical Impedance Spectroscopy (EIS), and Cyclic voltamogram (CV). The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075-10 µM and 10-55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days.

  15. Nanosize stabilization of cubic and tetragonal phases in reactive plasma synthesized zirconia powders

    Energy Technology Data Exchange (ETDEWEB)

    Jayakumar, S., E-mail: sjayakumar.physics@gmail.com [Research and Development Centre, Bharathiar University, Coimbatore 641 014 (India); Department of Physics, Pollachi Institute of Engineering and Technology, Pollachi 642 205 (India); Ananthapadmanabhan, P.V.; Thiyagarajan, T.K. [Laser and Plasma Technology Division, BARC, Trombay, Mumbai 400 085 (India); Perumal, K. [Vision for Wisdom, Temple of Consciousness, Aliyar 642 101 (India); Mishra, S.C. [Department of Metallurgical and Materials Engg, National Institute of Technology, Rourkela 769 008 (India); Suresh, G. [Department of Physics, Park College of Engineering and Technology, Coimbatore 641 659 (India); Su, L.T.; Tok, A.I.Y. [School of Materials Science and Engg, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639 798 (Singapore)

    2013-06-15

    Pure zirconium oxide powders with particle size 2–33 nm are synthesized by reactive plasma processing. Transmission electron microscopy investigation of these particles revealed size dependent behavior for their phase stabilization. The monoclinic phase is found to be stable when particle size is ≥20 nm; Tetragonal is found to be stabilized in the range of 7–20 nm and as the particle size decreases to 6 nm and less, the cubic phase is stabilized. - Highlights: ► Direct conversion of micron-sized zirconium hydride powder to single crystal ZrO{sub 2} nanopowder. ► Size dependent stabilization of cubic, tetragonal and monoclinic phases in the reactive plasma synthesized ZrO{sub 2} nanopowder. ► Transmission electron microscopic investigation to identify particles of different sizes and their corresponding phase structure.

  16. Beryllium and zirconium

    International Nuclear Information System (INIS)

    Salesse, Marc

    1959-01-01

    Pure beryllium and zirconium, both isolated at about the same date but more than a century ago remained practically unused for eighty years. Fifteen years ago they were released from this state of inactivity by atomic energy, which made them into current metal a with an annual production which runs into tens of tons for the one and thousands for the other. The reasons for this promotion promise well for the future of the two metals, which moreover will probably find additional uses in other branches of industry. The attraction of beryllium and zirconium for atomic energy is easily explained. The curve of figure 1 gives the price per gram of uranium-235 as a function of enrichment: this price increases by about a factor of 3 on passing from natural uranium (0, 7 percent 235 U) to almost pure uranium-235. Because of their tow capture cross-section beryllium and zirconium make it possible, or at least easier, to use natural uranium and they thus enjoy an advantage the extent of which must be calculated for each reactor or fuel element project, but which is generally considerable. It will be seen later that this advantage should be based on figures which are even more favourable that would appear from the simple ratio 3 of the price of pure uranium- 235 contained in natural uranium. Reprint of a paper published in 'Industries Atomiques' - n. 1-2, 1959

  17. Characterization of amorphous yttria layers deposited by aqueous solutions of Y-chelate alkoxides complex

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Young-Soon, E-mail: kyscjb@i-sunam.com; Lee, Yu-Ri; Kim, Byeong-Joo; Lee, Jae-Hun; Moon, Seung-Hyun; Lee, Hunju

    2015-01-15

    Highlights: • Economical method for crack-free amorphous yttria layer deposition by dip coating. • Simpler process for planar yttria film as a diffusion barrier and nucleation layer. • Easy control over the film properties with better characteristics. • Easy control over the thickness of the deposited films. • A feasible process that can be easily adopted by HTSCC industries. - Abstract: Crack-free amorphous yttria layers were deposited by dip coating in solutions of different Y-chelate alkoxides complex. Three Y-chelate solutions of different concentrations were prepared using yttrium acetate tetrahydrate, yttrium stearic acid as Y source materials. PEG, diethanolamine were used as chelating agents, while ethanol, methanol and tetradecane were used as solvent. Three different combinations of chelating and solvents were used to prepare solutions for Y{sub 2}O{sub 3} dip coating on SUS, electropolished and non-electropolished Hastelloy C-276 substrates. The thickness of the films was varied by changing the number of dipping cycles. At an optimized condition, the substrate surface roughness (rms) value was reduced from ∼50 nm to ∼1 nm over a 10 × 10 μm{sup 2} area. After Y{sub 2}O{sub 3} deposition, MgO was deposited using ion-beam assisted deposition (IBAD), then LaMnO{sub 3} (LMO) was deposited using sputtering and GdBCO was deposited using reactive co-evaporation by deposition and reaction (RCE-DR). Detailed X-ray study indicates that LMO/MgO/Y{sub 2}O{sub 3} and GdBCO/LMO/MgO/Y{sub 2}O{sub 3} stack films have good out-of-plane and in-plane textures with strong c-axis alignment. The critical current (Ic) of GdBCO/LMO/MgO/Y{sub 2}O{sub 3} multilayer structure varied from 190 to 420 A/cm with different solutions, when measured at 77 K. These results demonstrated that amorphous yttria can be easily deposited by dip coating using Y-chelates complex as a diffusion barrier and nucleation layer.

  18. PROCESS OF DISSOLVING ZIRCONIUM ALLOYS

    Science.gov (United States)

    Shor, R.S.; Vogler, S.

    1958-01-21

    A process is described for dissolving binary zirconium-uranium alloys where the uranium content is about 2%. In prior dissolution procedures for these alloys, an oxidizing agent was added to prevent the precipitation of uranium tetrafluoride. In the present method complete dissolution is accomplished without the use of the oxidizing agent by using only the stoichiometric amount or slight excess of HF required by the zirconium. The concentration of the acid may range from 2M to 10M and the dissolution is advatageously carried out at a temperature of 80 deg C.

  19. Thermal behaviour of nitrogen implanted into zirconium

    International Nuclear Information System (INIS)

    Miyagawa, S.; Ikeyama, M.; Saitoh, K.; Nakao, S.; Niwa, H.; Tanemura, S.; Miyagawa, Y.

    1994-01-01

    Zirconium films were implanted with 15 N ions of energy 50keV to a total fluence of 1x10 18 ionscm -2 in an attempt to study the formation process and thermal stability of ZrN layers produced by high fluence implantation of nitrogen. Subsequent to the implantation at room temperature, samples were annealed at temperatures of 300 C-900 C. The depth profiles of the implanted nitrogen were measured by nuclear reaction analysis using the 15 N(p,αγ) 12 C at E R =429keV, and the surfaces were examined by thin film X-ray diffraction (XRD) and scanning electron microscopy. There were many blisters 0.2-0.4μm in diameter on the surface of the as-implanted samples and double peaks were observed in the nitrogen depth profiles; they were in both sides of the mean projected range. It was found that most of the blisters became extinct after annealing above 400 C, and the XRD peak (111) intensity was increased with the increase in the annealing temperature. Moreover, 14 N and 15 N implantations were superimposed on Zr samples in order to study the atomic migration of nitrogen at each stage of high fluence implantation. It was found that the decrease in the peak at the deeper layers was related to blister extinction and nitrogen diffusion into underling zirconium which could be correlated with radiation damage induced by post-implanted ions. ((orig.))

  20. Laser-Based Additive Manufacturing of Zirconium

    Directory of Open Access Journals (Sweden)

    Himanshu Sahasrabudhe

    2018-03-01

    Full Text Available Additive manufacturing of zirconium is attempted using commercial Laser Engineered Net Shaping (LENSTM technique. A LENSTM-based approach towards processing coatings and bulk parts of zirconium, a reactive metal, aims to minimize the inconvenience of traditional metallurgical practices of handling and processing zirconium-based parts that are particularly suited to small volumes and one-of-a-kind parts. This is a single-step manufacturing approach for obtaining near net shape fabrication of components. In the current research, Zr metal powder was processed in the form of coating on Ti6Al4V alloy substrate. Scanning electron microscopy (SEM and energy dispersive spectroscopy (EDS as well as phase analysis via X-ray diffraction (XRD were studied on these coatings. In addition to coatings, bulk parts were also fabricated using LENS™ from Zr metal powders, and measured part accuracy.

  1. Quantitative analysis of nickel in zirconium and zircaloy

    International Nuclear Information System (INIS)

    Rastoix, M.

    1957-01-01

    A rapid spectrophotometric has been developed for determination of 10 to 1000 ppm of Ni in zirconium and zircaloy using dimethylglyoxime. Iron, copper, tin and chromium, do not interfere at the concentration usually present in zirconium and its alloys. (author) [fr

  2. environmental studies for removal of some radioactive elements using zirconium silicate as inorganic ion exchange material

    International Nuclear Information System (INIS)

    El-Aryan, Y.F.A.

    2007-01-01

    inorganic ion exchangers have a good potential than the commonly used organic ones for removal and separation of radionuclides from irradiated nuclear fuel solutions. therefore, the main aim of this work is directed to find the optimum conditions for removal of some radionuclides such as Cs + ,Co 2+ ,and Eu 3+ by the prepared zirconium silicate as cation exchanger. the following items will be involved:-1- preparation of zirconium silicate as a cation exchanger. 2- characterization of the prepared exchanger using IR spectra, X-ray diffraction patterns, DTA and TG analyses. 3-chemical stability, capacity and equilibrium measurements will be determined on the materials using at different conditions (heating temperature and reaction temperature). 4- ion exchange isotherms. 5- breakthrough curves for removal of the investigated metal ions on the prepared exchanger under certain conditions

  3. Titanium zirconium and hafnium coordination compounds with vanillin thiosemicarbazone

    International Nuclear Information System (INIS)

    Konunova, Ts.B.; Kudritskaya, S.A.

    1987-01-01

    Coordination compounds of titanium zirconium and hafnium tetrachlorides with vanillin thiosemicarbazone of MCl 4 x nLig composition, where n=1.5, 4 for titanium and 1, 2, 4 for zirconium and hafnium, are synthesized. Molar conductivity of ethanol solutions is measured; IR spectroscopic and thermochemical investigation are carried out. The supposition about ligand coordination via sulfur and azomethine nitrogen atoms is made. In all cases hafnium forms stable compounds than zirconium

  4. The chemical vapor deposition of zirconium carbide onto ceramic substrates

    International Nuclear Information System (INIS)

    Glass A, John Jr.; Palmisiano, Nick Jr.; Welsh R, Edward

    1999-01-01

    Zirconium carbide is an attractive ceramic material due to its unique properties such as high melting point, good thermal conductivity, and chemical resistance. The controlled preparation of zirconium carbide films of superstoichiometric, stoichiometric, and substoichiometric compositions has been achieved utilizing zirconium tetrachloride and methane precursor gases in an atmospheric pressure high temperature chemical vapor deposition system

  5. Modelling of Zirconium and Hafnium separation using continuous annular chromatography

    International Nuclear Information System (INIS)

    Moch-Setyadji; Endang Susiantini

    2014-01-01

    Nuclear degrees of zirconium in the form of a metal alloy is the main material for fuel cladding of NPP. Zirconium is also used as sheathing UO 2 kernel in the form of ZrC as a substitute of SiC in the fuel elements of High Temperature Reactor (HTR). Difficulty separating hafnium from zirconium because it has a lot of similarities in the chemical properties of Zr and Hf. Annular chromatography is a device that can be used for separating of zirconium and hafnium to obtain zirconium nuclear grade. Therefore, it is necessary to construct the mathematical modelling that can describe the separation of zirconium and hafnium in the annular chromatography containing anion resin dowex-1X8. The aim of research is to perform separation simulation by using the equilibrium model and mass transfer coefficient resulted from research. Zr and Hf feed used in this research were 26 and 1 g/l, respectively. Height of resin (L), angular velocity (ω) and the superficial flow rate (uz) was varied to determine the effect of each parameter on the separation of Zr and Hf. By using Kd and Dv values resulted previous research. Simulation results showed that zirconium and hafnium can be separated using a continuous annular chromatography with high resin (long bed) 50 cm, superficial flow rate of 0.001 cm/s, the rotation speed of 0.006 rad/min and 20 cm diameter annular. In these conditions the results obtained zirconium concentration of 10,303.226 g/m 3 and hafnium concentration of 12.324 g/m 3 (ppm). (author)

  6. Young's modulus of crystal bar zirconium and zirconium alloys (zircaloy-2, zircaloy-4, zirconium-2.5wt% niobium) to 1000 K

    International Nuclear Information System (INIS)

    Rosinger, H.E.; Ritchie, I.G.; Shillinglaw, A.J.

    1975-09-01

    This report contains experimentally determined data on the dynamic elastic moduli of zircaloy-2, zircaloy-4, zirconium-2.5wt% niobium and Marz grade crystal bar zirconium. Data on both the dynamic Young's moduli and shear moduli of the alloys have been measured at room temperature and Young's modulus as a function of temperature has been determined over the temperature range 300 K to 1000 K. In every case, Young's modulus decreases linearly with increasing temperature and is expressed by an empirical equation fitted to the data. Differences in Young's modulus values determined from specimens with longitudinal axes parallel and perpendicular to the rolling direction are small, as are the differences between Young's moduli determined from strip, bar stock and fuel sheathing. (author)

  7. Suspensions Plasma Spraying of Ceramics with Hybrid Water-Stabilized Plasma Technology

    Czech Academy of Sciences Publication Activity Database

    Mušálek, Radek; Medřický, Jan; Tesař, T.; Kotlan, Jiří; Pala, Zdeněk; Lukáč, František; Chráska, Tomáš; Curry, N.

    2017-01-01

    Roč. 26, 1-2 (2017), s. 37-46 ISSN 1059-9630. [ISTC 2016: International Thermal Spray Conference. Shanghai, 10.05.2016-12.05.2016] R&D Projects: GA ČR GA15-12145S Institutional support: RVO:61389021 Keywords : alumina * ceramics * dense * hybrid plasma torch * suspension plasma spraying * water-stabilized plasma * yttria-stabilized zirconia (YSZ) Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 1.488, year: 2016 http://link.springer.com/article/10.1007/s11666-016-0493-6

  8. Spectrophotometric titration of sulfates in the presence of zirconium

    International Nuclear Information System (INIS)

    Kuznetsov, V.V.; Kotova, S.S.; Molokanova, L.G.; Chekmarev, A.M.; Yagodin, G.A.

    1978-01-01

    The procedure has been proposed for express determination of sulphate ions in the presence of zirconium by spectrophotometric titration with the use of barium chloride and nitrochromazo as an indicator. The procedure is based on bonding zirconium into a more stable complex with EDTA (ethylenediaminotetraacetic acid). The presence of excess of EDTA and zirconium (4) complexonate in the solution being titrated does not affect the titration curve shape and the character of break on the curve in the equivalence point. A complete demasking of SO 4 2- is observed in the case of 1O-fold excess of EDTA with respect to zirconium (4). Statistic evaluation of the method has shown that the results of titration can be distorted by chance errors only

  9. Effect of Sol Concentration, Aging and Drying Process on Cerium Stabilization Zirconium Gel Produced by External Gelation

    Science.gov (United States)

    Sukarsono, R.; Rachmawati, M.; Susilowati, S. R.; Husnurrofiq, D.; Nurwidyaningrum, K.; Dewi, A. K.

    2018-02-01

    Cerium Stabilized Zirconium gel has been prepared using external gelation process. As the raw materials was used ZrO(NO3)2 and Ce(NO3)4 nitrate salt which was dissolved with water into Zr-Ce nitrate mixture. The concentration of the nitrate salt mixture in the sol solution was varied by varying the concentration of zirconium and cerium nitrate in the sol solution and the addition of PVA and THFA to produce a sol with a viscosity of 40-60 cP. The viscosity range of 40-60cP is the viscosity of the sol solution that was easy to produce a good gel in the gelation apparatus. Sol solution was casted in a gelation column equipped with following tools: a 1 mm diameter drip nozzle which was vibrated to adjust the best frequency and amplitude of vibration, a flow meter to measure the flow rate of sol, flowing of NH3 gas to presolidification process. Gelation column was contained NH4OH solution as gelation medium and gel container to collect gel product. Gel obtained from the gelation process than processed with ageing, washing, drying and calcinations to get round gel and not broken at calcinations up to 500°C. The parameters observed in this research are variation of Zr nitrate concentration, Ce nitrate concentration, ratio of Zr and Ce in the sol and ageing and drying process method which was appropriate to get a good gel. From the gelation processes that has been done, it can be seen that with the presolidification process can be obtained a round gel and without presolidification process, produce not round gel. In the process of ageing to get not broken gel, ageing was done on the rotary flask so that during the ageing, gels rotate in gelation media. Gels, then be washed by dilute ammonium nitrate, demireralized water and iso prophyl alcohol. The washed gel was then dried by vacuum drying to form pores on the gel which become the path for the gases resulting from decomposition of the gel to exit the gel. Vacuum drying can prevent cracking because the pores allow the gel

  10. Study of the uranium-zirconium diffusion; Etude de la diffusion uranium-zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Adda, Y; Mairy, C; Bouchet, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1957-07-01

    The intermetallic diffusion of uranium fuel and zirconium used as cladding is studied. Intermetallic diffusion can occur during the cladding of uranium rods and uranium can penetrate the zirconium cladding. Different parameters are involved in this mechanism as structure and mechanical properties of the diffusion area as well as presence of impurities in the metal. The uses of different analysis techniques (micrography, Castaing electronic microprobe, microhardness and autoradiography) have permitted to determine with great accuracy the diffusion coefficient in gamma phase (body centered cubic system) and the results have given important information on the intermetallic diffusion mechanisms. The existence of the Kirkendall effect in the U-Zr diffusion is also an argument in favor of the generality of the diffusion mechanism by vacancies in body centered cubic system. (M.P.)

  11. Uranium (Vi) sorption onto zirconium diphosphate chemically modified

    International Nuclear Information System (INIS)

    Garcia G, N.; Ordonez R, E.

    2010-10-01

    This work deals with the uranium (Vi) speciation after sorption onto zirconium diphosphate (ZrP 2 O 7 ) surface, hydrated and in a surface modified with organic acids. Oxalic and citric acids were chosen to modify the ZrP 2 O 7 surface because they have poly carboxylic groups and they mimic the organic matter in nature. Thus the interest of this work is to evaluate the uranium (Vi) sorption edge at different s ph values in natural and modified surfaces. The luminescence technique (fluorescence and phosphorescence, respectively) was used for the quantification and speciation of uranyl sorbed at the zirconium diphosphate interface. The fluorescence experiment, showed that adsorption of uranyl on surface of zirconium diphosphate tends to 100%. The speciation shows that there are different complexes in surface which were formed between zirconium diphosphate and uranyl, since it is produced a displacement of wavelength in fluorescence spectra of each system. (Author)

  12. A study of a production process for hafnium-free zirconium from zircon

    International Nuclear Information System (INIS)

    Ratanalert, N.

    1985-01-01

    The purpose of this experiment was to extract and purify the zirconium from zircon. The effects of time of extraction and stripping of zirconium, concentration of feed solution, concentration of hydrochloric acid in stripping process, equilibrium curve of extraction of zirconium and hafnium and equilibrium curve of stripping zirconium or scrubbing hafnium were studied from standard zirconium and hafnium. The results, subsequently were applied to the extraction procedures for zirconium from zircon. Minus 100 mesh zircon was fused with sodium hydroxide in the ratio of 1 : 6 at 700 degree C for l hour. After fusion the zirconate was leached with water and dissolved in hot concentrated hydrochloric acid. Zirconyl chloride octahydrate crystallized out when the solution was cooled. An agueons solution of zirconyl chloride was used as the feed to the hexone - thiocyanate solvent extraction process. This was prepared by dissolving zirconyl chloride octahydrate crystal in waster. This zirconium feed solution in 1 M HCl and 1 M N H 4 CNS was extracted with 2.7 m N H 4 CNS in hexone and then stripped with 3.6 M HCl the aqueous phase was got rid of thiocyanate ion by extracting with pure hexone, then the zirconium in aqueous phase was precipitated with sulfuric acid and ammonium hydroxide at pH 1.8 - 2.0 and zirconium oxide was obtained by ignition at 700 degree C. The process could be modified to improve the purity of zirconium by using cation exchange resin to get rid of thiocyanate ion after solvent extraction process

  13. Minimalistic Liquid-Assisted Route to Highly Crystalline α-Zirconium Phosphate.

    Science.gov (United States)

    Cheng, Yu; Wang, Xiaodong Tony; Jaenicke, Stephan; Chuah, Gaik-Khuan

    2017-08-24

    Zirconium phosphates have potential applications in areas of ion exchange, catalysis, photochemistry, and biotechnology. However, synthesis methodologies to form crystalline α-zirconium phosphate (Zr(HPO 4 ) 2 ⋅H 2 O) typically involve the use of excess phosphoric acid, addition of HF or oxalic acid and long reflux times or hydrothermal conditions. A minimalistic sustainable route to its synthesis has been developed by using only zirconium oxychloride and concentrated phosphoric acid to form highly crystalline α-zirconium phosphate within hours. The morphology can be changed from platelets to rod-shaped particles by fluoride addition. By varying the temperature and time, α-zirconium phosphate with particle sizes from nanometers to microns can be obtained. Key features of this minimal solvent synthesis are the excellent yields obtained with high atom economy under mild conditions and ease of scalability. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Surface functionalization of zirconium dioxide nano-adsorbents with 3-aminopropyl triethoxysilane and promoted adsorption activity for bovine serum albumin

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Gen; Wu, Chaochao [Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819 (China); Zhang, Xia, E-mail: xzhang@mail.neu.edu.cn [Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819 (China); Liu, Yufeng, E-mail: liuyufeng@bjmu.edu.cn [College of Pharmacy, Liaoning University, Shenyang 110036 (China); Meng, Hao; Xu, Junli; Han, Yide; Xu, Xinxin; Xu, Yan [Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819 (China)

    2016-06-15

    Surface functionalization of zirconium dioxide (ZrO{sub 2}) nano-adsorbents was carried out by using 3-aminopropyl triethoxysilane (APTES) as the modifier. The addition amount of APTES was varied to determine the optimum modification extent, and the bulk ZrO{sub 2} microparticles were also modified by APTES for comparison. Some means, such as TEM, XRD, FT-IR, XPS and TG-DSC were used to character these ZrO{sub 2} particles. The results showed that the APTES molecules were chemically immobilized on the surface of ZrO{sub 2} nanoparticles via Zr−O−Si bonds, and the nano-ZrO{sub 2} samples showed larger special surface area. In the adsorption of bovine serum albumin (BSA), nano-ZrO{sub 2} samples exhibited enhanced adsorption activity, and APTES modified nano-ZrO{sub 2} with proper APTES content presented the best adsorption property. Under the same adsorption conditions, the equilibrium adsorption capacity of BSA on APTES-ZrO{sub 2}-2 was almost 2.3 times as that on pristine nano-ZrO{sub 2} and 3.0 times as on bulk ZrO{sub 2} microparticles. The increased adsorption capacity of APTES-ZrO{sub 2} nano-adsorbents can be attributed to the chemical interaction between amino and carboxyl groups at APTES-ZrO{sub 2}/BSA interface. The pH-dependent experiments showed that the optimum pH value for the adsorption and desorption was 5.0 and 9.0, respectively, which suggested that the adsorption and release of BSA could be controlled simply by adjusting the solution pH condition. - Highlights: • APTES chemically immobilized on ZrO{sub 2} nanoparticles via Zr−O−Si bond. • Enhanced adsorption capacity of BSA was observed on APTES-ZrO{sub 2}. • Chemical adsorption character of BSA on APTES-ZrO{sub 2}. • Adsorption/release of BSA on APTES-ZrO{sub 2} accomplished by adjusting pH value.

  15. Electrochemical impedance spectroscopic study of passive zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Ai Jiahe; Chen Yingzi [Center for Electrochemical Science and Technology, Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Urquidi-Macdonald, Mirna [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802 (United States); Macdonald, Digby D. [Center for Electrochemical Science and Technology, Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802 (United States)], E-mail: ddm2@psu.edu

    2008-09-30

    Spent, unreproccessed nuclear fuel is generally contained within the operational fuel sheathing fabricated from a zirconium alloy (Zircaloy 2, Zircaloy 4, or Zirlo) and is then stored in a swimming pool and/or dry storage facilities until permanent disposal in a licensed repository. During this period, which begins with irradiation of the fuel in the reactor during operation, the fuel sheathing is exposed to various, aggressive environments. The objective of the present study was to characterize the nature of the passive film that forms on pure zirconium in contact with an aqueous phase [0.1 M B(OH){sub 3} + 0.001 M LiOH, pH 6.94] at elevated temperatures (in this case, 250 deg. C), prior to storage, using electrochemical impedance spectroscopy (EIS) with the data being interpreted in terms of the point defect model (PDM). The results show that the corrosion resistance of zirconium in high temperature, de-aerated aqueous solutions is dominated by the outer layer. The extracted model parameter values can be used in deterministic models for predicting the accumulation of general corrosion damage to zirconium under a wide range of conditions that might exist in some repositories.

  16. Some recent trends in the use of zirconium alloys for nuclear service

    International Nuclear Information System (INIS)

    Balaramamoorthy, K.

    1992-01-01

    Without any exception nuclear power reactors particularly the water cooled ones, operating in the World use natural or slightly enriched uranium oxide fuel pellets with zirconium alloy cladding. While the zirconium alloys have proven to be successful in their designed usage, a desire for longer lifetimes of core components and increased duty cycle puts more demand on materials performance. This demand has led to more in depth studies of phenomena associated with zirconium alloy corrosion mechanism, fine tuning of the zirconium alloy composition, development of fabrication techniques and to the evaluation of newer zirconium alloys for critical applications. (author). 5 refs., 32 figs

  17. Translucency and Strength of High Translucency Monolithic Zirconium Oxide Materials

    Science.gov (United States)

    2016-05-17

    Zirconium -Oxide Materials presented at/published to the Journal of General Dentistry with MDWI 41-108, and has been assigned local file #16208. 2...Zirconia-Oxide Materials 6. TITLE OF MATERIAL TO BE PUBLISHED OR PRESENTED: Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide...OBSOLETE 48. DATE Page 3 of 3 Pages Translucency and Strength of High-Translucency Monolithic Zirconium -Oxide Materials Abstract Dental materials

  18. DISSOLUTION OF ZIRCONIUM AND ALLOYS THEREFOR

    Science.gov (United States)

    Swanson, J.L.

    1961-07-11

    The dissolution of zirconium cladding in a water solution of ammonium fluoride and ammonium nitrate is described. The method finds particular utility in processing spent fuel elements for nuclear reactors. The zirconium cladding is first dissolved in a water solution of ammonium fluoride and ammonium nitrate; insoluble uranium and plutonium fiuorides formed by attack of the solvent on the fuel materiai of the fuel element are then separated from the solution, and the fuel materiai is dissolved in another solution.

  19. International strategic minerals inventory summary report; zirconium

    Science.gov (United States)

    Towner, R.R.

    1992-01-01

    Zircon, a zirconium silicate, is currently the most important commercial zirconium-bearing mineral. Baddeleyite, a natural form of zirconia, is less important but has some specific end uses. Both zircon and baddeleyite occur in hard-rock and placer deposits, but at present all zircon production is from placer deposits. Most baddeleyite production is from hard-rock deposits, principally as a byproduct of copper and phosphate-rock mining. World zirconium resources in identified, economically exploitable deposits are about 46 times current production rates. Of these resources, some 71 percent are in South Africa, Australia, and the United States. The principal end uses of zirconium minerals are in ceramic applications and as refractories, abrasives, and mold linings in foundries. A minor amount, mainly of zircon, is used for the production of hafnium-free zirconium metal, which is used principally for sheathing fuel elements in nuclear reactors and in the chemical-processing industry, aerospace engineering, and electronics. Australia and South Africa are the largest zircon producers and account for more than 70 percent of world output; the United States and the Soviet Union account for another 20 percent. South Africa accounts for almost all the world's production of baddeleyite, which is about 2 percent of world production of contained zirconia. Australia and South Africa are the largest exporters of zircon. Unless major new deposits are developed in countries that have not traditionally produced zircon, the pattern of world production is unlikely to change by 2020. The proportions, however, of production that come from existing producing countries may change somewhat.

  20. PROCESS FOR DISSOLVING BINARY URANIUM-ZIRCONIUM OR ZIRCONIUM-BASE ALLOYS

    Science.gov (United States)

    Jonke, A.A.; Barghusen, J.J.; Levitz, N.M.

    1962-08-14

    A process of dissolving uranium-- zirconium and zircaloy alloys, e.g. jackets of fuel elements, with an anhydrous hydrogen fluoride containing from 10 to 32% by weight of hydrogen chloride at between 400 and 450 deg C., preferably while in contact with a fluidized inert powder, such as calcium fluoride is described. (AEC)

  1. Large-scale self-assembled zirconium phosphate smectic layers via a simple spray-coating process

    Science.gov (United States)

    Wong, Minhao; Ishige, Ryohei; White, Kevin L.; Li, Peng; Kim, Daehak; Krishnamoorti, Ramanan; Gunther, Robert; Higuchi, Takeshi; Jinnai, Hiroshi; Takahara, Atsushi; Nishimura, Riichi; Sue, Hung-Jue

    2014-04-01

    The large-scale assembly of asymmetric colloidal particles is used in creating high-performance fibres. A similar concept is extended to the manufacturing of thin films of self-assembled two-dimensional crystal-type materials with enhanced and tunable properties. Here we present a spray-coating method to manufacture thin, flexible and transparent epoxy films containing zirconium phosphate nanoplatelets self-assembled into a lamellar arrangement aligned parallel to the substrate. The self-assembled mesophase of zirconium phosphate nanoplatelets is stabilized by epoxy pre-polymer and exhibits rheology favourable towards large-scale manufacturing. The thermally cured film forms a mechanically robust coating and shows excellent gas barrier properties at both low- and high humidity levels as a result of the highly aligned and overlapping arrangement of nanoplatelets. This work shows that the large-scale ordering of high aspect ratio nanoplatelets is easier to achieve than previously thought and may have implications in the technological applications for similar materials.

  2. Feasibility of suspension spraying of yttria-stabilized zirconia with water-stabilized plasma torch

    Czech Academy of Sciences Publication Activity Database

    Mušálek, Radek; Bertolissi, Gabriele; Medřický, J.; Kotlan, Jiří; Pala, Zdeněk; Curry, N.

    2015-01-01

    Roč. 268, April (2015), s. 58-62 ISSN 0257-8972. [Rencontres Internationales de la Projection Thermique/6./. Limoges, 11.12.2013-13.12.2013] R&D Projects: GA ČR(CZ) GPP108/12/P552 Institutional support: RVO:61389021 Keywords : Thermal spray coating * Suspension spray ing * Thermal barrier coating * Water-stabilized plasma * High enthalpy plasma Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 2.139, year: 2015 http://www.sciencedirect.com/science/article/pii/S025789721400680X

  3. Stabilization of carbon dioxide and chromium slag via carbonation.

    Science.gov (United States)

    Wu, Xingxing; Yu, Binbin; Xu, Wei; Fan, Zheng; Wu, Zucheng; Zhang, Huimin

    2017-08-01

    As the main greenhouse gas, CO 2 is considered as a threat in the context of global warming. Many available technologies to reduce CO 2 emission was about CO 2 separation from coal combustion and geological sequestration. However, how to deal with the cost-effective storage of CO 2 has become a new challenge. Moreover, chromium pollution, the treatment of which requires huge energy consumption, has attracted people's widespread attention. This study is aimed to develop the sequestration of CO 2 via chromium slag. A dynamic leaching experiment of chromium slag was designed to testify the ability of CO 2 adsorption onto chromium slag and to release Cr(VI) for stabilization. The results showed that the accumulative amounts of Cr(VI) were ca. 2.6 mg/g released from the chromium slag after 24 h of leaching. In addition, ca. 89 mg/g CO 2 was adsorbed by using pure CO 2 in the experiment at 12 h. Calcite is the only carbonate species in the post-carbonated slag analyzed by powder X-ray diffraction and thermal analysis. The approach provides the feasibility of the utilization of chromium slag and sequestration of the carbon dioxide at the same time at ordinary temperatures and pressures.

  4. Amperometric Biosensor Based on Zirconium Oxide/Polyethylene Glycol/Tyrosinase Composite Film for the Detection of Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Nor Monica Ahmad

    2016-06-01

    Full Text Available A phenolic biosensor based on a zirconium oxide/polyethylene glycol/tyrosinase composite film for the detection of phenolic compounds has been explored. The formation of the composite film was expected via electrostatic interaction between hexacetyltrimethylammonium bromide (CTAB, polyethylene glycol (PEG, and zirconium oxide nanoparticles casted on screen printed carbon electrode (SPCE. Herein, the electrode was treated by casting hexacetyltrimethylammonium bromide on SPCE to promote a positively charged surface. Later, zirconium oxide was mixed with polyethylene glycol and the mixture was dropped cast onto the positively charged SPCE/CTAB. Tyrosinase was further immobilized onto the modified SPCE. Characterization of the prepared nanocomposite film and the modified SPCE surface was investigated by scanning electron microscopy (SEM, Electrochemical Impedance Spectroscopy (EIS, and Cyclic voltamogram (CV. The developed biosensor exhibits rapid response for less than 10 s. Two linear calibration curves towards phenol in the concentrations ranges of 0.075–10 µM and 10–55 µM with the detection limit of 0.034 µM were obtained. The biosensor shows high sensitivity and good storage stability for at least 30 days.

  5. Capture of Tritium Released from Cladding in the Zirconium Recycle Process

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Barry B [ORNL; Bruffey, Stephanie H [ORNL; DelCul, Guillermo Daniel [ORNL; Walker, Trenton Baird [ORNL

    2016-08-31

    Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-based cladding and could be released from the cladding when the solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using nonradioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.

  6. Capture of Tritium Released from Cladding in the Zirconium Recycle Process

    Energy Technology Data Exchange (ETDEWEB)

    Bruffey, Stephanie H [ORNL; Spencer, Barry B [ORNL; DelCul, Guillermo Daniel [ORNL

    2016-08-31

    This report is issued as the first revision to FCRD-MRWFD-2016-000297. Zirconium may be recovered from the Zircaloy® cladding of used nuclear fuel (UNF) for recycle or to reduce the quantities of high-level waste destined for a geologic repository. Recovery of zirconium using a chlorination process is currently under development at the Oak Ridge National Laboratory. The approach is to treat the cladding with chlorine gas to convert the zirconium in the alloy (~98 wt % of the alloy mass) to zirconium tetrachloride. A significant fraction of the tritium (0–96%) produced in nuclear fuel during irradiation may be found in zirconium-based cladding and could be released from the cladding when the solid matrix is destroyed by the chlorination reaction. To prevent uncontrolled release of radioactive tritium to other parts of the plant or to the environment, a method to recover the tritium may be required. The focus of this effort was to (1) identify potential methods for the recovery of tritium from the off-gas of the zirconium recycle process, (2) perform scoping tests on selected recovery methods using non-radioactive gas simulants, and (3) select a process design appropriate for testing on radioactive gas streams generated by the engineering-scale zirconium recycle demonstrations on radioactive used cladding.

  7. Methods for determination of zirconium in titanium alloys

    International Nuclear Information System (INIS)

    1985-01-01

    Two methods for determining zirconium content in titanium alloys are specified in this standard. One is the ion-exchange/mandelic acid gravimetry for Zr content below 20 % down to 1 % while the other is the mandelic acid gravimetry for Zr content below 20 % down to 0.5 %. In the former, a specimen is decomposed by hydrochloric acid and hydrofluoric acid. After substances such as titanium are oxidized by adding nitric acid, the liquid is adjusted into a 4N hydrochloric acid - gN hydrofluoric acid solution, which is them passed through an ion-exchange column. The niobium and tantalum contents are absorbed while the titanium and zirconium contents flow out. Perchloric acid and sulfuric acid are poured in the solution to remove hydrofluoric acid. Aqueous ammonia is added to produce hydroxide of titanium and zirconium, which is then filtered out. The hydroxyde is dissolved in hydrochloric acid, and mandelic acid is poured to precipitate the zirconium content. The precipitate is ignited and the weight of the oxide formed is measured. The coprecipitated titanium content is determined by the absorptiometric method using hydrogen peroxide. Finally, the weight of the oxide is corrected. In the latter determination method, on the other hand, only several steps of the above procedure are used, namely, decomposition by hydrochloric acid, precipitation of zirconium, ignition of precipitate, measurement of oxide weight and weight correction. (Nogami, K.)

  8. Corrosion resistant zirconium alloys prepared by powder metallurgy

    International Nuclear Information System (INIS)

    Wojeik, C.C.

    1984-01-01

    Pure zirconium and zirconium 2.5% niobium were prepared by powder metallurgy. The powders were prepared directly from sponge and consolidated by cold isostatic pressing and sintering. Hot isostatic pressing was also used to obtain full density after sintering. For pure zirconium the effects of particle size, compaction pressure, sintering temperature and purity were investigated. Fully densified zirconium and Zr-2.5%Nb exhibited tensile properties comparable to cast material at room temperature and 300 0 F (149 0 C). Pressed and sintered material having density of 94-99% had slightly lower tensile properties. Corrosion tests were performed in boiling 65% H/sub 2/SO/sub 4/, 70% HNO/sub 3/, 20% HCl and 20% HCl + 500 ppm FeCl/sub 3/ (a known pitting solution). For fully dense material the observed corrosion behavior was nearly equivalent to cast material. A slightly higher rate of attack was observed for samples which were only 94-99% dense. Welding tests were also performed on zirconium and Zr-2.5%Nb alloy. Unlike P/M titanium alloys, these materials had good weldability due to the lower content of volatile impurities in the powder. A slight amount of weld porosity was observed but joint efficiencies were always not 100%, even for 94-99% density samples. Several practical applications of the P/M processed material will be briefly described

  9. Investigation on the corrosion resistance of zirconium in nitric acid

    International Nuclear Information System (INIS)

    Fauvet, P.; Mur, P.

    1990-01-01

    Zirconium in nitric solutions exhibits an excellent corrosion resistance in the passive state, and a mediocre corrosion resistance in the unpassive state with risk of stress corrosion cracking. Results of the influence of some parameters (medium, potential, temperature, stress, friction, metallurgical structure and surface state) on zirconium passivation are presented. Zirconium remains passive in a large range of HNO 3 concentration (at least up to 14.4N), in the presence of oxidizing ions (Cr 4 , Ce 4 ), in a spent fuel dissolution solution. Zirconium is depassived by friction at high speed and pressure, by platinum coupling in boiling 14.4N HNO 3 with or without stress, or by imposed deformation speed under high potential. (A.B.)

  10. Thermotransport of nitrogen and oxygen in β-zirconium

    NARCIS (Netherlands)

    Vogel, D.L.; Rieck, G.D.

    1971-01-01

    An investigation of thermotransport of nitrogen in ß-zirconium is reported. Using a method previously described, the heat of transport turned out to be 25.1 kcal/mole with a standard deviation of 2.5 kcal/mole. The formerly published value of the heat of transport of oxygen in ß-zirconium, viz. 20

  11. METHOD OF IMPROVING CORROSION RESISTANCE OF ZIRCONIUM

    Science.gov (United States)

    Shannon, D.W.

    1961-03-28

    An improved intermediate rinse for zirconium counteracts an anomalous deposit that often results in crevices and outof-the-way places when ordinary water is used to rinse away a strong fluoride etching solution designed to promote passivation of the metal. The intermediate rinse, which is used after the etching solution and before the water, is characterized by a complexing agent for fluoride ions such as aluminum or zirconium nitrates or chlorides.

  12. Influence of solvent on the morphology and microstructure of YSZ films obtained by spray pyrolysis technique

    International Nuclear Information System (INIS)

    Falcade, T.; Oliveira, G.B.; Mueller, I.L.; Malfatti, C.F.

    2010-01-01

    This work aims to investigate the influence of solvent used for the deposition of thin films of yttria stabilized zirconia (YSZ) on porous substrate. The films were obtained directly on the porous LSM substrate by spray pyrolysis technique, which consists of spraying a precursor solution containing salts of zirconium (Zr (C 6 H 7 O 2 ) 4) and yttrium (YCl 3 .6H 2 O), dissolved in specific solvents, on the heated substrate. The use of solvents with different boiling points and viscosity aims the optimization of experimental operating parameters to obtain homogeneous and dense films suitable for application as electrolyte in fuel cells, solid oxide (SOFC). The films were characterized by scanning electron microscopy, infrared spectroscopy and X-ray diffraction. (author)

  13. Preparation and properties of highly porous, biomorphic YSZ ceramics

    International Nuclear Information System (INIS)

    Rambo, C.R.; Cao, J.; Sieber, H.

    2004-01-01

    Highly porous, biomorphic YSZ (yttria-stabilized zirconia) ceramics were manufactured by infiltration of zirconium-oxychloride (ZrOCl 2 ·8H 2 O) sol into biological template structures derived from rattan and pine wood. 3-5 mol% yttrium nitrate (Y(NO 3 ) 3 ·5H 2 O) was added to the sol to stabilize the tetragonal ZrO 2 phase. After vacuum-assisted infiltration, the specimens were pyrolysed at 800 deg. C in N 2 atmosphere. Repeated infiltrations and subsequent annealing in air at temperatures up to 1550 deg. C yields the burn out of the biocarbon template and resulted in the formation of biomorphous YSZ ceramics, which maintained the microstructural features of the biological preform. Depending on the type of the biological template as well as the processing parameters, biomorphic ZrO 2 ceramics with an unidirected pore morphology and a large variety of microstructures can be obtained

  14. Accelerated irradiation growth of zirconium alloys

    International Nuclear Information System (INIS)

    Griffiths, M.; Gilbert, R.W.; Fidleris, V.

    1989-01-01

    This paper discusses how sponge zirconium and Zr-2.5 wt% Nb, Zircaloy, or Excel alloys all exhibit accelerated irradiation growth compared with high-purity crystal-bar zirconium for irradiation temperatures between 550 to 710 K and fluences between 0.1 to 10 x 10 25 n · m -2 (E > 1 MeV). There is generally an incubation period or fluence before the onset of accelerated or breakaway growth, which is dependent on the particular material being irradiated, its metallurgical condition before irradiation, and the irradiation temperature. Transmission electron microscopy has shown that there is a correlation between accelerated irradiation growth and the appearance of c-component vacancy loops on basal planes. Measurements in some specimens indicate that a significant fraction of the strain can be directly attributed to the loops themselves. There is considerable evidence to show that their formation is dependent both on the specimen purity and on the irradiation temperature. Materials that have a high interstitial-solute content contain c-component loops and exhibit high growth rates even at low fluences ( 2 :5 n · m -2 , E > 1 MeV). For sponge zirconium and the Zircaloys, c-component loop formation and the associated acceleration of growth (breakaway) during irradiation occurs because the intrinsic interstitial solute (mainly, oxygen, carbon and nitrogen) in the zirconium matrix is supplemented by interstitial iron, chromium, and nickel from the radiation-induced dissolution of precipitates. (author)

  15. Separation of zirconium from hafnium by ion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Felipe, Elaine C.B.; Palhares, Hugo G.; Ladeira, Ana Claudia Q., E-mail: elainecfelipe@yahoo.com.br, E-mail: hugopalhares@gmail.com, E-mail: ana.ladeira@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    Zirconium and hafnium are two of the most important metals for the nuclear industry. Hafnium occurs in all zirconium ores usually in the range 2 - 3%. However, for the most nuclear industry applications, it is necessary to use a zirconium of extremely pure level. The current work consists in the separation of zirconium and hafnium by the ion exchange method in order to obtain a zirconium concentrate of high purity. The zirconium and hafnium liquors were produced from the leaching of the Zr(OH){sub 4} and Hf(OH){sub 4} with nitric acid for 24 hours. From these two liquors it was prepared one solution containing 7.5 x 10{sup -2} mol L{sup -1} of Zr and 5.8 x 10{sup -3} mol L{sup -1} of Hf with acidity of 1 M. Ion exchange experiments were carried out in batch with the resins Dowex 50WX4, Dowex 50WX8 100, Dowex 50WX8 50, Amberlite IR-120 and Marathon C at constant temperature 28 deg C. Other variables such as, acidity and agitation were kept constant. The data were adjusted to Langmuir equation in order to calculate the maximum loading capacity (q{sub max}) of the resins, the distribution coefficient (K{sub d}) for Zr and Hf and the separation factor (α{sub Hf}{sup Zr} ). The results of maximum loading capacity (q{sub max}) for Zr and Hf, in mmol g{sup -}1, showed that the most suitable resins for columns experiments are: Dowex 50WX4 50 (q{sub max} Z{sub r} = 2.21, Hf = 0.18), Dowex 50WX8 50 (q{sub max} Zr = 1.89, Hf = 0.13) and Amberlite (q{sub max} Zr = 1.64, Hf = 0.12). However, separations factors, α{sub Hf}{sup Zr}, showed that the resins are not selective. (author)

  16. 40 CFR 471.90 - Applicability; description of the zirconium-hafnium forming subcategory.

    Science.gov (United States)

    2010-07-01

    ... zirconium-hafnium forming subcategory. 471.90 Section 471.90 Protection of Environment ENVIRONMENTAL... POINT SOURCE CATEGORY Zirconium-Hafnium Forming Subcategory § 471.90 Applicability; description of the zirconium-hafnium forming subcategory. This subpart applies to discharges of pollutants to waters of the...

  17. Influence of zirconium ions on the sorption of carrier-free radiophosphate (32P)

    International Nuclear Information System (INIS)

    Friedmann, Ch.; Schoenfeld, T.

    1975-01-01

    In acid solutions the addition of zirconium ions largely affects the sorption of carrier-free radiophosphate on various materials. With some sorbents, such as diatomeceous earth, clay minerals or activated charcoal, the addition of small quantities of zirconium leads to a substantial increase of 32 P adsorption. On the other hand, important quantities of zirconium cause decrease of sorption. With alumina as an adsorbent, any addition of zirconium leads to reduced adsorption of radiophosphate. These phenomena are due to the formation of soluble zirconium-phosphate complex ions. (author)

  18. A half-century of changes in zirconium alloys

    International Nuclear Information System (INIS)

    Mardon, J.P.; Barberis, P.; Hoffmann, P.B.

    2008-01-01

    This article presents the history of zirconium alloys for PWR and BWR technologies. For more than 20 years zirconium alloys have evolved to cope with demands of the reactor operators concerning the burn-up extension and new safety margins. The poor properties of Zircaloy-1 concerning corrosion have led researchers to add elements like iron by developing Zircaloy-3A and Zircaloy-3C, and resulting in Zircaloy-4 with tin addition (from 1.30% to 1.50%). Zircaloy-4 is now outdated for PWR and new zirconium alloys with niobium are used (M5, ZIRLO...) they present a better resistance to corrosion, to hydridation, to creep and they are less prone to dimensional changes under irradiation. (A.C.)

  19. Research and development of zirconium industry in China

    International Nuclear Information System (INIS)

    Liu Jianzhang; Tian Zhenye

    2001-01-01

    The development of uranium material for nuclear power and silicon material for information industry represents two revolutionary changes in the material field in 20-th century. The development of these kinds of materials not only brings about great revolution of technology in the material field, but also promotes the great advancement of the world economy. Zirconium or its alloy, as one of the most important material in atomic age, just as the same as foreign countries has been developed under promotion of nuclear submarine project in China, and building of civil nuclear power reactor then has been laid a solid foundation for zirconium industry and provide a broad market for zirconium material

  20. Preparation of complexes of zirconium and hafnium tetrachlorides with phosphorus oxychloride

    International Nuclear Information System (INIS)

    Snyder, T.S.; Stoltz, R.A.

    1989-01-01

    This patent describes an improvement in a method for separating hafnium chloride from zirconium chloride using a distillation column, with a hafnium chloride enriched vapor stream taken from the top of the column and a zirconium enriched chloride stream taken from the bottom of the column. The improvement comprising: purifying the zirconium-hafnium chloride in a molten salt purification vessel prior to or after introduction into the distillation column to substantially eliminate iron chloride from the zirconium-hafnium chloride by at least periodically removing iron chloride from the molten salt purification vessel by electrochemically plating iron onto an electrode in the molten salt purification vessel. The molten salt in the molten salt purification vessel consisting essentially of a mixture of chlorides selected from the group consisting of alkali metals, alkaline earth metals, zirconium, hafnium, aluminum, manganese, and zinc

  1. Zirconium distribution in the system HNO3-H2O-TBP-diluent

    International Nuclear Information System (INIS)

    Shu, J.; Araujo, B.F. de.

    1984-01-01

    The extraction behaviour of zirconium in TBP/diluent-HNO 3 -H 2 O systems is studied in order to increase the uranium decontamination factor by adjusting the extraction conditions so that zirconium extraction is kept at a minimum. Equilibrium diagram, TBP concentration, aqueous: organic phases ratio, salting-out effects and uranium loading in the organic phase were the main factors studied. All the experiments have been carried out with zirconium in the 10 -2 - 10 -3 M concentration range. The extractant degradation products influence upon zirconium behaviour was also verified. With the data obtained it was possible to introduce some modifications in the standard Purex flowsheet with the increase of the decontamination of uranium product from zirconium. (Author) [pt

  2. Sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides

    Directory of Open Access Journals (Sweden)

    R.V. Smotraiev

    2016-05-01

    Full Text Available The actual problem of water supply in the world and in Ukraine, in particular, is a high level of pollution in water resources and an insufficient level of drinking water purification. With industrial wastewater, a significant amount of pollutants falls into water bodies, including suspended particles, sulfates, iron compounds, heavy metals, etc. Aim: The aim of this work is to determine the impact of aluminum and manganese ions additives on surface and sorption properties of zirconium oxyhydroxide based sorbents during their production process. Materials and Methods: The sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides were prepared by sol-gel method during the hydrolysis of metal chlorides (zirconium oxychloride ZrOCl2, aluminum chloride AlCl3 and manganese chloride MnCl2 with carbamide. Results: The surface and sorption properties of sorbents based on xerogels of zirconium, aluminum and manganese oxyhydroxides were investigated. X-ray amorphous structure and evolved hydroxyl-hydrate cover mainly characterize the obtained xerogels. The composite sorbents based on xerogels of zirconium oxyhydroxide doped with aluminum oxyhydroxide (aS = 537 m2/g and manganese oxyhydroxide (aS = 356 m2/g have more developed specific surface area than single-component xerogels of zirconium oxyhydroxide (aS = 236 m2/g and aluminum oxyhydroxide (aS = 327 m2/g. The sorbent based on the xerogel of zirconium and manganese oxyhydroxides have the maximum SO42--ions sorption capacity. It absorbs 1.5 times more SO42–-ions than the industrial anion exchanger AN-221. The sorbents based on xerogels of zirconium oxyhydroxide has the sorption capacity of Fe3+-ions that is 1.5…2 times greater than the capacity of the industrial cation exchanger KU-2-8. The Na+-ions absorption capacity is 1.47…1.56 mmol/g for each sorbent. Conclusions: Based on these data it can be concluded that the proposed method is effective for sorbents production based on

  3. Manufacturing process to reduce large grain growth in zirconium alloys

    International Nuclear Information System (INIS)

    Rosecrans, P.M.

    1987-01-01

    A method is described of treating cold worked zirconium alloys to reduce large grain growth during thermal treatment above its recrystallization temperature. The method comprises heating the zirconium alloy at a temperature of about 1300 0 F. to 1350 0 F. for about 1 to 3 hours subsequent to cold working the zirconium alloy and prior to the thermal treatment at a temperature of between 1450 0 -1550 0 F., the thermal treatment temperature being above the recrystallization temperature

  4. High temperature zirconia binders for ex-vessel catcher brickwork

    International Nuclear Information System (INIS)

    Mineev, V.N.; Borovkova, L.B.; Akopov, F.A.; Akopyan, A.A.; Barykin, B.M.; Borodina, T.I.; Val'yano, G.E.; Bel'maz, N.S.; Bel'maz, K.N.

    2000-01-01

    The studies on selection of compositions of binding materials (mortars) on the zirconium dioxide basis with two types of binders - the barium monoaluminate and zirconium dioxide binding suspension - are accomplished. The bases of technology for their fabrication and application are developed; the density, porosity, shrinkage and behavior in contact with the steel melts and iron oxide are specified. The mortars developed are recommended for application in the external trap fireproof protection on the basis of the zirconium dioxide refractory materials [ru

  5. A comparative crystallographic analysis of the tetragonal-to-monoclinic transformation in the yttria-zirconia system

    Science.gov (United States)

    Navruz, N.

    2008-06-01

    The various requirements for effective transformation toughening cannot be predicted without a detailed understanding of the crystallography of the martensitic transformation. In this connection, a comparative crystallographic analysis for four pairs of lattice-correspondence variants in the yttria-zirconia system has been performed on the basis of infinitesimal-deformation (ID) approach and Wechsler-Lieberman-Read (WLR) crystallographic theory. A comparison of the crystallographic features obtained from these two theories was made. In order to verify the applicability of the two theories to this transformation, the calculated results were also compared with the experimental data available. The present study shows that the predictions of both the ID approach and the WLR crystallographic theory can provide data necessary for the model of transformation toughening and act as a guideline for the experimental work in the yttria-zirconia system.

  6. Method of purifying zirconium tetrachloride and hafnium tetrachloride in a vapor stream

    International Nuclear Information System (INIS)

    Snyder, T.S.; Stolz, R.A.

    1992-01-01

    This patent describes a method of purifying zirconium tetrachloride and hafnium tetrachloride in a vapor stream from a sand chlorinator in which the silicon and metals present in sand fed to the chlorinator are converted to chlorides at temperatures over about 800 degrees C. It comprises cooling a vapor stream from a sand chlorinator, the vapor stream containing principally silicon tetrachloride, zirconium tetrachloride, and hafnium tetrachloride contaminated with ferric chloride, to a temperature of from about 335 degrees C to about 600 degrees C; flowing the vapor stream through a gaseous diffusion separative barrier to produce a silicon tetrachloride-containing vapor stream concentrated in zirconium tetrachloride and hafnium tetrachloride and a silicon tetrachloride-containing vapor stream depleted in zirconium tetrachloride and hafnium tetrachloride; adsorbing the ferric chloride in the separative barrier; and recovering the silicon tetrachloride stream concentrated in zirconium tetrachloride and hafnium tetrachloride separately from the silicon tetrachloride stream depleted in zirconium tetrachloride and hafnium tetrachloride

  7. Determination of impurities in zirconium by emission spectrograph method

    International Nuclear Information System (INIS)

    Simbolon, S.; Masduki, B.; Aryadi

    2000-01-01

    Analysis of B, Cd, Si and Cr elements in zirconium oxide was carried out. Zirconium oxide was made by precipitating zirconium solution with oxalic acid and calcination was at temperature 900 oC for four hours. Silver chloride compound as much as 10% was used as a distillation carrier and 7 step filtration was used to reduce the impurities element spectra having high density. It was found that B concentration is between 3.80 and 7.44 ppm, Cd less then 0.5 ppm, Si between 74.38-150.33 ppm and Cr between 19.90-45.76 ppm. (author)

  8. Fluorometric determination of zirconium in minerals

    Science.gov (United States)

    Alford, W.C.; Shapiro, L.; White, C.E.

    1951-01-01

    The increasing use of zirconium in alloys and in the ceramics industry has created renewed interest in methods for its determination. It is a common constituent of many minerals, but is usually present in very small amounts. Published methods tend to be tedious, time-consuming, and uncertain as to accuracy. A new fluorometric procedure, which overcomes these objections to a large extent, is based on the blue fluorescence given by zirconium and flavonol in sulfuric acid solution. Hafnium is the only element that interferes. The sample is fused with borax glass and sodium carbonate and extracted with water. The residue is dissolved in sulfuric acid, made alkaline with sodium hydroxide to separate aluminum, and filtered. The precipitate is dissolved in sulfuric acid and electrolysed in a Melaven cell to remove iron. Flavonol is then added and the fluorescence intensity is measured with a photo-fluorometer. Analysis of seven standard mineral samples shows excellent results. The method is especially useful for minerals containing less than 0.25% zirconium oxide.

  9. Low stress creep behaviour of zirconium

    International Nuclear Information System (INIS)

    Prasad, N.

    1989-01-01

    Creep behaviour of alpha zirconium of grain size varying between 16 and 55 μm has been investigated in the temperature range 813 to 1003K at stresses upto 5.5 MNm -2 using high sensitive spring specimen geometry. Creep experiments on specimens of 50 μm grain size revealed a transition from lattice diffusion controlled viscous creep at temperatures greater than 940K to grain boundary diffusion controlled viscous creep at lower temperatures. Tests conducted on either side of the transition suggest the dominance of Nabarro-Herring and Coble creep processes respectively. Evidence for power-law creep has been observed in practically all the creep tests. Based on the experimental data obtained in the present study and those recently reported by Novotny et al (1985), Langdon creep mechanism maps have bee n constructed at 873 and 973K. With the help of these maps for zirconium and those published for titanium the low stress creep behaviour of zirconium and titanium are compared. (author). 22 refs., 11 figs., 3 tabs

  10. Electrocnecical behaviour of zirconium during its anodic polarization in nitrate solutions

    International Nuclear Information System (INIS)

    Stabrovskij, A.I.; Karasev, A.F.

    1983-01-01

    Electrochemical behaviour of zirconium during its anodic polarization in nitrate solutions is investigated in detail to find the method of its complete dissolution. A study has been made of the influence of varioUs factors: current density electric potential, composition and temperature of the solution, anodic polarization duration on the Zr anodic polarization in nitric acid, on the maximum permissible current density and on the zirconium yield to the solution. The zirconium polarization decreases with an acid concentration and temperature increase and increases with the current density. Iron nitrate additions to nitric acid decrease, while ammonium fluoride additions increase zirconium yield into the solution

  11. Spectrofluorimetric determination of hafnium and zirconium with 3,7-dihydroxyflavone

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Takushi; Suzuki, Osamu; Seuzuki, Tetsuo; Murata, Akira

    1986-04-01

    The absorptive and fluorescent characteristics of the hafnium and zirconium complexes of 3-hydroxyflavone and its 12 hydroxy and methoxy derivatives have been studied. The fluorescence of the 1:1 hafnium - 3,7-dihydroxyflavone complex (lambdasub(ex.)397 nm,lambdasub(em.) 465 nm) in 3 M hydrochloric acid has been used to determine 2-40 ng ml/sup -1/ of hafnium. The fluorescence of the 1:1 zirconium - 3,7-dihydroxyflavone complex (lambdasub(ex.) 395 nm, lambda sub(em.) 465 nm) at pH 2.0 in 0.02 M sulphate solution has been used to determine 2-40 ng ml/sup -1/ of zirconium. These methods are very sensitive and can be used for the simultaneous determination of hafnium and zirconium with an error of about 5%.

  12. Geologic structure of Gofitsky deposit of titanium and zirconium and perspectives of the reserve base of titanium and zirconium in Russia

    Science.gov (United States)

    Kukhmazov, Iskander

    2016-04-01

    With the fall of the Soviet Union, all the mining deposits of titanium and zirconium appeared outside of Russian Federation. Therefore the studying of deposits of titanium and zirconium in Russia is very important nowadays. There is a paradoxical situation in the country: in spite of possible existence of national mineral resource base of Ti-Zr material, which can cover needs of the country, Russia is the one of the largest buyers of imported Ti-Zr material in the world. Many deposits are not mined, and those which are in the process of mining have poor reserves. Demand for this raw material is very great not only for Russia, but also for the world in general. Today there is a scarcity of zircon around the world and it will only increase through time. Therefore prices of products of titanium and zirconium also increase. Consequently Russian deposits of titanium and zirconium with higher content than foreign may become competitive. Russia is forced to buy raw materials (zirconium and titanium production) from former Soviet Union countries at prices higher than the world's and thus incur huge losses, including customs charges. Russia should create its own mineral resource base of Ti-Zr. Studied titanium-zirconium deposits of Stavropol region may become the basis for the south part of Russia. At first, Beshpagirsky deposit should be pointed out. It has large reserves of ore sands with high content of Ti-Zr. A combination of favorable geographical position of the area with developed industrial infrastructure makes it very beneficial as an object for high priority development. Gofitsky deposit should be pointed out as well. Its sands have a wide areal distribution and a high content of titanium and zirconium. Chokrak, Karagan-Konksk and Sarmatian sediments of the Miocene of Gofitsky deposit are productive for titanium and zirconium placers within Stavropol region of Russia. Gofitsky deposit was evaluated from financial and economic point of view and the following data

  13. Collaborative study of the colorimetric determination of zirconium in antiperspirant aerosols

    International Nuclear Information System (INIS)

    Beavin, P. Jr.

    1977-01-01

    A previously published method for determining zirconium in antiperspirant aerosols was collaboratively studied by 7 laboratories. The method consists of 2 procedures: a rapid dilution procedure for soluble zirconium compounds or a lengthier fusion procedure for total zirconium followed by colorimetric determination. The collaborators were asked to perform the following: Spiking materials representing 4 levels of soluble zirconium were added to weighed portions of a zirconium-free cream base concentrate and the portions were assayed by the dilution procedure. Spiking materials representing 4 levels of zirconium in either the soluble or the insoluble form (or as a mixture) were also added to portions of the same concentrate and these portions were assayed by the fusion procedure. They were also asked to concentrate and assay, by both procedures, 2 cans each of 2 commercial aerosol antiperspirants containing zirconyl hydroxychloride. The average percent recoveries and standard deviations for spiked samples were 99.8-100.2 and 1.69-2.71, respectively, for soluble compounds determined by the dilution procedure, and 93.8-97.4 and 3.09-4.78, respectively, for soluble and/or insoluble compounds determined by the fusion procedure. The average perent zirconium found by the dilution procedure in the 2 commercial aerosol products was 0.751 and 0.792. Insufficient collaborative results were received for the fusion procedure for statistical evaluation. The dilution procedure has been adopted as official first action

  14. Quantum chemical study of the elementary reactions in zirconium oxide atomic layer deposition

    International Nuclear Information System (INIS)

    Widjaja, Yuniarto; Musgrave, Charles B.

    2002-01-01

    Elementary reactions in atomic layer deposition of zirconia using zirconium tetrachloride and water are investigated using the density functional theory. The atomistic mechanisms of the two deposition half cycles on the Zr-OH and Zr-Cl surface sites are investigated. Both half reactions proceed through the formation of stable intermediates, resulting in high barriers for HCl formation. We find that the intermediate stability is lowered as the surface temperature is raised. However, increasing temperature also increases the dissociation free-energy barrier, which in turn results in increased desorption of adsorbed precursors

  15. Titrimetric determination of thiocyanate in solutions of the hafnium-zirconium separation process

    International Nuclear Information System (INIS)

    Vazquez, Cristina; Botbol, Moises; Hernandez, M.H.

    1980-01-01

    The control of the thiocyanate concentration is necessary during the process of separating hafnium from zirconium by the hexone-thiocyanate method. Said control is carried out by titrimetric determination of thiocyanate in aqueous and organic solutions containing hydrochloric acid and ammonium thiocyanate in presence or absence of zirconium and/or hafnium. The method consists in a redox volumetric analysis using a cerium (IV) salt as titrating agent, and ferroine as the final point indicator. Owing to the instability of thiocyanate in an acid medium it is necessary to know previously if the decomposition of solutions with different concentration of ammonium thiocyanate and hydrochloric acid may have an influence upon the analytic results or may even invalidate them. In order to obtain reliable results, it must be taken into account that the stability of the solutions depends on the thiocyanate concentration, the acidity and the time elapsed from the moment the sample is taken until the test is performed. The decomposition process can be slowed down by cooling the solutions. This method allows to control the plant and does not require any special equipment. (M.E.L) [es

  16. Membranes for separation of carbon dioxide

    Science.gov (United States)

    Ku, Anthony Yu-Chung [Rexford, NY; Ruud, James Anthony [Delmar, NY; Ramaswamy, Vidya [Niskayuna, NY; Willson, Patrick Daniel [Latham, NY; Gao, Yan [Niskayuna, NY

    2011-03-01

    Methods for separating carbon dioxide from a fluid stream at a temperature higher than about 200.degree. C. with selectivity higher than Knudsen diffusion selectivity include contacting a porous membrane with the fluid stream to preferentially transport carbon dioxide. The porous membrane includes a porous support and a continuous porous separation layer disposed on a surface of the porous support and extending between the fluid stream and the porous support layer. The porous support comprises alumina, silica, zirconia, stabilized zirconia, stainless steel, titanium, nickel-based alloys, aluminum-based alloys, zirconium-based alloys or a combination thereof. Median pore size of the porous separation layer is less than about 10 nm, and the porous separation layer comprises titania, MgO, CaO, SrO, BaO, La.sub.2O.sub.3, CeO.sub.2, HfO.sub.2, Y.sub.2O.sub.3, VO.sub.z, NbO.sub.z, TaO.sub.z, ATiO.sub.3, AZrO.sub.3, AAl.sub.2O.sub.4, A.sup.1FeO.sub.3, A.sup.1MnO.sub.3, A.sup.1CoO.sub.3, A.sup.1NiO.sub.3, A.sup.2HfO.sub.3, A.sup.3 CeO.sub.3, Li.sub.2ZrO.sub.3, Li.sub.2SiO.sub.3, Li.sub.2TiO.sub.3, Li.sub.2HfO.sub.3, A.sup.4N.sup.1.sub.yO.sub.z, Y.sub.xN.sup.1.sub.yO.sub.z, La.sub.xN.sup.1.sub.yO.sub.z, HfN.sup.2.sub.yO.sub.z, or a combination thereof; wherein A is La, Mg, Ca, Sr or Ba; A.sup.1 is La, Ca, Sr or Ba; A.sup.2 is Ca, Sr or Ba; A.sup.3 is Sr or Ba; A.sup.4 is Mg, Ca, Sr, Ba, Ti or Zr; N.sup.1 is V, Nb, Ta, Cr, Mo, W, Mn, Si or Ge; N.sup.2 is V, Mo, W or Si; x is 1 or 2; y ranges from 1 to 3; and z ranges from 2 to 7.

  17. Hydrogen outbreak of Zirconium Molybdate Hihydrate

    International Nuclear Information System (INIS)

    Miura, Yasuhiko; Fukuda, Kazuhiro; Ochi, Eiji

    2008-01-01

    JNFL is planning to construct a facility for enclosing the hull and end pieces produced due to reprocessing of spent fuel into stainless canisters after compressing, while those hull and end pieces enclosed into the stainless canisters are called 'compressed hulls'. Since the compressed hulls contain moisture absorbent Zirconium Molybdate Hihydrate accompanying hull and end pieces, there is a risk of outbreak of radiolysisradiolysis gas such as hydrogen, etc. by radiolysisradiolysis. This report intends to state the result of radiation irradiation experiment with the purpose of examining the volume of hydrogen outbreak from Zirconium Molybdate Hihydrate of the compressed hulls. (author)

  18. Electron microscopy of nuclear zirconium alloys

    International Nuclear Information System (INIS)

    Versaci, R.A.; Ipohorski, Miguel

    1986-01-01

    Transmission electron microscopy observations of the microstructure of zirconium alloys used in fuel sheaths of nuclear power reactors are reported. Specimens were observed after different thermal and mechanical treatment, similar to those actually used during fabrication of the sheaths. Electron micrographs and electron diffraction patterns of second phase particles present in zircaloy-2 and zircaloy-4 were also obtained, as well as some characteristic parameters. Images of oxides and hydrides most commonly present in zirconium alloys are also shown. Finally, the structure of a Zr-2,5Nb alloy used in CANDU reactors pressure tubes, is observed by electron microscopy. (Author) [es

  19. Yttria hydroxy-salt binders

    International Nuclear Information System (INIS)

    Holcombe, C.E. Jr.

    1978-01-01

    Binder phase (primarily chloride or nitrate) formation was examined in YX 3 --NaOH--H 2 O, Y 2 O 3 --acid--H 2 O, and Y 2 O 3 --salt--H 2 O systems. The cementitious phase consisted mostly of plate- (or needle-) shaped hydroxy salts of the general formula Y 2 (OH)/sub 6-m/X/sub m/ nH 2 O, where m and n normally equal one. These binders were examined by x-ray diffraction and thermal analysis techniques. Nitrate binders decompose to Y 2 O 3 by 600 0 C, whereas chloride binders form oxychlorides that sublime or convert to Y 2 O 3 after oxygen replacement of chlorine (in air) at > 1000 0 C. Although nitric and hydrochloric acid solutions form porous ( 2 O 3 powder, salt solutions (i.e., NH 4 NO 3 , Mg(NO 3 ) 2 , NH 4 Cl, and YCl 3 approx. = 6H 2 O) slow the reaction considerably (48 h to 4 weeks), allowing 70- to 80%-dense cements to form. The effects of formation conditions on physical properties of binders were studied. Examination of scandium and lanthanide oxides showed that several behave in the same way as yttria

  20. Surface Ligand Promotion of Carbon Dioxide Reduction through Stabilizing Chemisorbed Reactive Intermediates.

    Science.gov (United States)

    Wang, Zhijiang; Wu, Lina; Sun, Kun; Chen, Ting; Jiang, Zhaohua; Cheng, Tao; Goddard, William A

    2018-05-23

    We have explored functionalizing metal catalysts with surface ligands as an approach to facilitate electrochemical carbon dioxide reduction reaction (CO 2 RR). To provide a molecular level understanding of the mechanism by which this enhancement occurs, we combine in situ spectroscopy analysis with an interpretation based on quantum mechanics (QM) calculations. We find that a surface ligand can play a critical role in stabilizing the chemisorbed CO 2 , which facilitates CO 2 activation and leads to a 0.3 V decrease in the overpotential for carbon monoxide (CO) formation. Moreover, the presence of the surface ligand leads to nearly exclusive CO production. At -0.6 V (versus reversible hydrogen electrode, RHE), CO is the only significant product with a faradic efficiency of 93% and a current density of 1.9 mA cm -2 . This improvement corresponds to 53-fold enhancement in turnover frequency compared with the Ag nanoparticles (NPs) without surface ligands.

  1. Assessment of uranium dioxide fuel performance with the addition of beryllium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Muniz, Rafael O.R.; Abe, Alfredo; Gomes, Daniel S.; Silva, Antonio T., E-mail: romuniz@usp.br, E-mail: ayabe@ipen.br, E-mail: danieldesouza@gmail.com, E-mail: teixeira@ipen.br [Instituto de Pesquisas Energética s e Nucleares (IPEN/CNEN-SP), São Paulo, SP (Brazil); Giovedi, Claudia, E-mail: claudia.giovedi@labrisco.usp.br [Universidade de Sao Paulo (LabRisco/USP), Sao Paulo, SP (Brazil). Lab. de Análise, Avaliação e Gerenciamento de Risco; Aguiar, Amanda A., E-mail: amanda.abati.aguiar@gmail.com [Centro Tecnológico da Marinha em São Paulo (CTMSP), São Paulo, SP (Brazil)

    2017-07-01

    The Fukushima Daiichi accident in 2011 pointed the problem related to the hydrogen generation under accident scenarios due to the oxidation of zirconium-based alloys widely used as fuel rod cladding in water-cooled reactors. This problem promoted research programs aiming the development of accident tolerant fuels (ATF) which are fuels that under accident conditions could keep longer its integrity enabling the mitigation of the accident effects. In the framework of the ATF program, different materials have been studied to be applied as cladding to replace zirconium-based alloy; also efforts have been made to improve the uranium dioxide thermal conductivity doping the fuel pellet. This paper evaluates the addition of beryllium oxide (BeO) to the uranium dioxide in order to enhance the thermal conductivity of the fuel pellet. Investigations performed in this area considering the addition of 10% in volume of BeO, resulting in the UO{sub 2}-BeO fuel, have shown good results with the improvement of the fuel thermal conductivity and the consequent reduction of the fuel temperatures under irradiation. In this paper, two models obtained from open literature for the thermal conductivity of UO{sub 2}- BeO fuel were implemented in the FRAPCON 3.5 code and the results obtained using the modified code versions were compared. The simulations were carried out using a case available in the code documentation related to a typical pressurized water reactor (PWR) fuel rod irradiated under steady state condition. The results show that the fuel centerline temperatures decrease with the addition of BeO, when compared to the conventional UO{sub 2} pellet, independent of the model applied. (author)

  2. A review of the inorganic and organometallic chemistry of zirconium

    International Nuclear Information System (INIS)

    Kalvins, A.K.

    1985-01-01

    The results of a literature review of the inorganic and organometallic chemistry of zirconium are presented. Compounds with physical and chemical properties compatible with the requirements of an ir laser zirconium isotope separation process have been identified

  3. Long term stability of yttria-stabilized zirconia waste forms. Stability for secular change of partitioned TRU waste composition by disintegration

    International Nuclear Information System (INIS)

    Kuramoto, Ken-ichi; Banba, Tsunetaka; Mitamura, Hisayoshi; Sakai, Etsuro; Uno, Masayoshi; Kinoshita, H.; Yamanaka, Shinsuke

    1999-01-01

    In this study, the stability of YSZ waste forms for secular change of partitioned TRU waste composition by disintegration, one of important terms in long-term stability, is the special concern. Designed amount of waste and YSZ powder were mixed and sintered. These TRU waste forms were submitted to tests of phase stability, chemical durability, mechanical property and compactness. The results were compared with those of another YSZ waste forms, non-radioactive Ce and/or Nd doped YSZ samples, and glass and Synroc waste forms. Experimental results show following: (1) Phase stability of (Np+Am)-, (Np+U)-, and (Np+U+Bi)-doped YSZ waste forms could be maintained of that of the initial Np+Am-doped YSZ waste form permanently even when the composition of partitioned TRU waste were changed by disintegration. (2) Secular change also accelerated volume increase of YSZ waste forms as well as alpha-decay damage. (3) Hv, E and K IC of (Np+U)- and (Np+U+Bi)-doped YSZ waste forms were independent of the secular change of the partitioned TRU waste composition by disintegration. (4) Mechanical properties of YSZ waste forms were more than those of a glass and Synroc waste forms. (5) Compactness of YSZ waste forms was good as waste forms for the partitioned TRU wastes. (J.P.N.)

  4. Mechanical resistance of zirconium implant abutments: A review of the literature

    Science.gov (United States)

    Vaquero-Aguilar, Cristina; Torres-Lagares, Daniel; Jiménez-Melendo, Manuel; Gutiérrez-Pérez, José L.

    2012-01-01

    The increase of aesthetic demands, together with the successful outcome of current implants, has renewed interest in the search for new materials with enough mechanical properties and better aesthetic qualities than the materials customarily used in implanto-prosthetic rehabilitation. Among these materials, zirconium has been used in different types of implants, including prosthetic abutments. The aim of the present review is to analyse current scientific evidence supporting the use of this material for the above mentioned purposes. We carried out the review of the literature published in the last ten years (2000 through 2010) of in vitro trials of dynamic and static loading of zirconium abutments found in the databases of Medline and Cochrane using the key words zirconium abutment, fracture resistance, fracture strength, cyclic loading. Although we have found a wide variability of values among the different studies, abutments show favourable clinical behaviour for the rehabilitation of single implants in the anterior area. Such variability may be explained by the difficulty to simulate daily mastication under in vitro conditions. The clinical evidence, as found in our study, does not recommend the use of implanto-prosthetic zirconium abutments in the molar area. Key words: Zirconium abutment, zirconium implant abutment, zirconia abutment, fracture resistance, fracture strength, cyclic loading. PMID:22143702

  5. Investigations of titamium and zirconium hydrides to determine suitability of recoverable tritium immobilization for the Pickering tritium removal system

    International Nuclear Information System (INIS)

    Noga, J.O.

    1981-11-01

    A tritium removal system will be constructed at Pickering Nuclear Generating station to reduce the adverse effects of this radioactive hydrogen isotope. This report summarizes various properties of titanium and zirconium sponge hydrides which have been selected as suitable candidates for tritium product immobilization. Equilibrium pressure-composition-temperature data indicates that both materials behave suitably to provide a safe, solid form of tritium storage. Titanium tritide is recommended as the best choice due to higher dissociation pressures which can be achieved at equivalent temperatures when compared to zirconium tritide. Higher dissociation pressures would result in faster and more efficient recovery of tritium gas from the immobilized state. It is evident from the stability of these compounds that their utilization as tritides will greatly enhance the integrity of tritium storage

  6. Synthesis, Characterization and Antimicrobial Activity of Zirconium (IV) Complexes

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Shobhana; Jain, Asha; Saxena, Sanjiv [Univ. of Rajasthan, Jaipur (India)

    2012-08-15

    Heteroleptic complexes of zirconium (IV) derived from bulky Schiff base ligands containing a sulphur atom and oximes of heterocyclic β-diketones of the general formula ZrLL' (where L'H{sub 2}=RCNH(C{sub 6}H{sub 4})SC : C(OH)N(C{sub 6}H{sub 5})N : CCH{sub 3}, R=-C{sub 6}H{sub 5}, -C{sub 6}H{sub 4}Cl(p) and L'H{sub 2}=R'C : (NOH)C : C(OH)N(C{sub 6}H{sub 5})N : CCH{sub 3}, R' = -CH{sub 2}CH{sub 3}, -C{sub 6}H{sub 5}, -C{sub 6}H{sub 4}Cl (p) were prepared by the reactions of zirconium tetrachloride with disodium salts of Schiff bases (L Na{sub 2}) and oximes of heterocyclic β-diketones (L' Na{sub 2}) in 1:1:1 molar ratio in dry refluxing THF. The structures of these monomeric zirconium (IV) complexes were elucidated with the help of elemental analysis, molecular weight measurements, spectroscopic (IR, NMR and mass) studies. A distorted trigonal bipyramidal geometry may be suggested for these heteroleptic zirconium (IV) complexes. The ligands (bulky Schiff base ligands containing a sulphur atom and oximes of heterocyclic β-diketones) and their heteroleptic complexes of zirconium (IV) were screened against A. flavus, P. aeruginesa and E. coli.

  7. 40 CFR 421.330 - Applicability: Description of the primary zirconium and hafnium subcategory.

    Science.gov (United States)

    2010-07-01

    ... primary zirconium and hafnium subcategory. 421.330 Section 421.330 Protection of Environment ENVIRONMENTAL... CATEGORY Primary Zirconium and Hafnium Subcategory § 421.330 Applicability: Description of the primary zirconium and hafnium subcategory. The provisions of this subpart are applicable to discharges resulting...

  8. Oxygen stabilized zirconium-vanadium-iron alloy

    International Nuclear Information System (INIS)

    Gruen, D.M.; Mendelsohn, M.H.

    1982-01-01

    An oxygen stabilized intermetallic compound having the formula (Zrsub(1-x)Tisub(x))sub(2-u)(Vsub(1-y)Fesub(y))Osub(z) where x = 0.0 to 0.9, y = 0.01 to 0.9, z = 0.25 to 0.5 and u = 0 to 1. The compound is capable of reversibly sorbing hydrogen at temperatures from -196 deg C to 200 deg C at pressures down to 10 - 6 torr. The compound is suitable for use as a hydrogen getter in low pressure, high temperature applications such as magnetic confinement fusion devices, and the iron content may be substituted by nickel, cobalt or manganese. (author)

  9. Oxygen stabilized zirconium-vanadium-iron alloy

    International Nuclear Information System (INIS)

    Gruen, D.M.; Mendelsohn, M.H.

    1982-01-01

    An oxygen stabilized intermetallic compound having the formula (Zrsub(1-x)Tisub(x))sub(2-u)(Vsub(1-y)Fesub(y))Osub(z) where x=0.0 to 0.9, y=0.01 to 0.9, z=0.25 to 0.5 and u=0 to 1. The compound is capable of reversibly sorbing hydrogen at temperatures from -196 0 C to 200 0 C at pressures down to 10 - 6 torr. The compound is suitable for use as a hydrogen getter in low pressure, high temperature applications such as magnetic confinement fusion devices, and the iron content may be substituted by nickel, cobalt or manganese. (author)

  10. Laves intermetallics in stainless steel-zirconium alloys

    International Nuclear Information System (INIS)

    Abraham, D.P.; McDeavitt, S.M.; Richardson, J.W. Jr.

    1997-01-01

    Laves intermetallics have a significant effect on properties of metal waste forms being developed at Argonne National Laboratory. These waste forms are stainless steel-zirconium alloys that will contain radioactive metal isotopes isolated from spent nuclear fuel by electrometallurgical treatment. The baseline waste form composition for stainless steel-clad fuels is stainless steel-15 wt.% zirconium (SS-15Zr). This article presents results of neutron diffraction measurements, heat-treatment studies and mechanical testing on SS-15Zr alloys. The Laves intermetallics in these alloys, labeled Zr(Fe,Cr,Ni) 2+x , have both C36 and C15 crystal structures. A fraction of these intermetallics transform into (Fe,Cr,Ni) 23 Zr 6 during high-temperature annealing; the authors have proposed a mechanism for this transformation. The SS-15Zr alloys show virtually no elongation in uniaxial tension, but exhibit good strength and ductility in compression tests. This article also presents neutron diffraction and microstructural data for a stainless steel-42 wt.% zirconium (SS-42Zr) alloy

  11. Interrelationship between structure and corrosion behaviour of zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, T [Bayer A.G., Leverkusen (Germany, F.R.)

    1979-05-01

    Due to plant failures caused by the break-down of zirconium grade 702 subjected to sulphuric acid the structure and corrosion behaviour of welded and as delivered specimens were tested for various heat treatments. It was shown by structure investigations and electron microprobe analysis that the corrosion behaviour of zirconium (in boiling 65 pct sulphuric acid) is strongly infuenced by the structure, which in its turn is dependent on the grade of purity and the prehistory of the material. Type, amount, and distribution of residual elements or precipitations caused by them are responsible for the corrosion resistance. This is valid particularly for the element iron. The plant failures mentioned here coincided with the examination results. Measures to improve the chemical resistance of pure zirconium subjected to extremely aggressive media were derived.

  12. Titanium dioxide modified with various amines used as sorbents of carbon dioxide

    International Nuclear Information System (INIS)

    Kapica-Kozar, Joanna; Pirog, Ewa; Kusiak-Nejman, Ewelina; Wrobel, Rafal J.; Gesikiewicz-Puchalska, Andzelika; Morawski, Antoni W.; Narkiewicz, Urszula; Michalkiewicz, Beata

    2017-01-01

    In this study, titanium dioxide was modified with various amines through hydrothermal treatment for adsorption of CO_2. The carbon dioxide adsorption performance of the prepared samples was measured using an STA 449 C thermo-balance (Netzsch Company, Germany). The morphological structures, functional groups and elemental compositions of the unmodified and amine-modified titanium dioxide sorbents were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR/DR) and scanning electron microscopy (SEM), respectively. The results showed that modification of TiO_2 with amines through hydrothermal treatment is a simple method to prepare CO_2 sorbents with high adsorption capacities. Moreover, the results revealed that TEPA-modified titanium dioxide shoved the highest adsorption capacity, enabling an increase in CO_2 uptake from 0.45 mmol CO_2 g"-"1 in the case of raw TiO_2 to 1.63 mmol CO_2 g"-"1. This result could be indirectly related to the fact that TEPA has the highest amino group content among the three amines used in our research. Additionally, durability tests performed by cyclic adsorption-desorption revealed that TEPA modified titanium dioxide also possesses excellent stability, despite a slight decrease in adsorption capacity over time. (authors)

  13. Methods for the preparation of ultra-pure anhydrous zirconium tetrafluoride from zirconium tetraborohydride, researches in connection with halide glasses

    International Nuclear Information System (INIS)

    Tortevois, R.

    1990-01-01

    The synthesis of ultrapure zirconium tetrafluoride, the main component of fluorozirconate based optical fibers, was successfully attempted from zirconium tetraborohydride. Of the fluorinating agents used, nitrogen trifluoride doesn't react with zirconium tetraborohydride while xenon difluoride reacts too violently and leads to phases which contain boron. The fluorination in a compatible solvent enabled us to minimize the degradation. The best results were obtained with the fluorination of Zr(BH 4 ) 4 dissolved in CFCl 3 at -40 deg C by anhydrous HF. Using several analytical methods such as graphite furnace atomic absorption and proton activation, we analyzed the purity. The degree of transition element impurities is less than the ppm level for ZrF 4 . The dehydration of ZrF 4 ,H 2 O and ZrF 4 ,3H 2 O at room temperature by CIF 3 in gaseous and liquid state was also investigated. At exceptionally low temperature, this process allows oxide and oxyfluoride components to be reduced

  14. Preferable removal of phosphate from water using hydrous zirconium oxide-based nanocomposite of high stability

    International Nuclear Information System (INIS)

    Chen, Liang; Zhao, Xin; Pan, Bingcai; Zhang, Weixian; Hua, Ming; Lv, Lu; Zhang, Weiming

    2015-01-01

    Highlights: • The nanocomposite HZO-201 was stable under varying solution chemistry. • HZO-201 exhibited preferable phosphate removal over other ubiquitous anions. • Selective sorption mechanism was probed and discussed. • HZO-201 could be regenerated for cyclic use with constant efficiency. - Abstract: In this study, we employed a new nanocomposite adsorbent HZO-201, which featured high stability under varying solution chemistry, for preferable removal of phosphate from synthetic solution and a real effluent. An anion exchange resin (D-201) was employed as the host of HZO-201, where nano-hydrous zirconium oxide (HZO) was encapsulated as the active species. D-201 binds phosphate through nonspecific electrostatic affinity, whereas the loaded HZO nanoparticles capture phosphate through formation of the inner-sphere complexes. Quantitative contribution of both species to phosphate adsorption was predicted based on the double-Langmuir model. Preferable removal of phosphate by HZO-201 was observed in the presence of the competing anions at higher levels (Cl − , NO 3 − , SO 4 2− , HCO 3 − ). Fixed-bed adsorption indicated that the effective volume capacity of a synthetic water (2.0 mg P-PO 4 3− /L) by using HZO-201 was ∼1600 BV in the first run (<0.5 mg P-PO 4 3− /L), comparable to Fe(III)-based nanocomposite HFO-201 (∼1500 BV) and much larger than D-201 (<250 BV). The exhausted HZO-201 can be in situ regenerated by using a binary NaOH–NaCl solution for cyclic runs, whether fed with the synthetic solution or real effluent. In general, HZO-201 is a promising alternative to Fe(III)-based adsorbents for trace phosphate removal from effluent particularly at acidic pH

  15. Corrosion evaluation of zirconium doped oxide coatings on aluminum formed by plasma electrolytic oxidation.

    Science.gov (United States)

    Bajat, Jelena; Mišković-Stanković, Vesna; Vasilić, Rastko; Stojadinović, Stevan

    2014-01-01

    The plasma electrolytic oxidation (PEO) of aluminum in sodium tungstate (Na(2)WO(4) · (2)H(2)O) and Na(2)WO(4) · (2)H(2)O doped with Zr was analyzed in order to obtain oxide coatings with improved corrosion resistance. The influence of current density in PEO process and anodization time was investigated, as well as the influence of Zr, with the aim to find out how they affect the chemical content, morphology, surface roughness, and corrosion stability of oxide coatings. It was shown that the presence of Zr increases the corrosion stability of oxide coatings for all investigated PEO times. Evolution of EIS spectra during the exposure to 3% NaCl, as a strong corrosive agent, indicated the highest corrosion stability for PEO coating formed on aluminum at 70 mA/cm(2) for 2 min in a zirconium containing electrolyte.

  16. Identification and characterization of a new Zirconium hydride

    International Nuclear Information System (INIS)

    Zhao, Z.

    2007-01-01

    In order to control the integrity of the fuel clad, alloy of zirconium, it is necessary to predict the behavior of zirconium hydrides in the environment (temperature, stress...), at a microscopic scale. A characterization study by TEM of hydrides has been realized. It shows little hydrides about 500 nm, in hydride Zircaloy 4. Then a more detailed study identified a new hydride phase presented in this paper. (A.L.B.)

  17. Sorption of cesium on titanium and zirconium phosphates

    International Nuclear Information System (INIS)

    Lebedev, V.N.; Mel'nik, N.A.; Rudenko, A.V.

    2003-01-01

    Titanium and zirconium phosphates were prepared from mineral raw materials of the Kola Peninsula. Their capability to recover cesium cations from the model solutions and liquid radioactive waste (LRW) was studied. Titanium phosphate prepared from solutions formed by titanite breakdown demonstrates greater distribution coefficients of cesium as compared to zirconium phosphate. Titanium phosphate as a cheaper agent featuring greater sorption capacity was recommended for treatment of LRW to remove cesium [ru

  18. Peculiarities of formation of zirconium aluminides in hydride cycle mode

    International Nuclear Information System (INIS)

    Muradyan, G.N.

    2016-01-01

    The zirconium aluminides are promising structural materials in aerospace, mechanical engineering, chemical industry, etc. They are promising for manufacturing of heat-resistant wires, that will improve the reliability and efficiency of electrical networks. In the present work, the results of study of zirconium aluminides formation in the Hydride Cycle (HC) mode, developed in the Laboratory of high-temperature synthesis of the Institute of Chemical Physics of NAS RA, are described. The formation of zirconium aluminides in HC proceeded according to the reaction xZrH_2+(1-x)Al → alloy Zr_xAl(1-x)+H_2↑. The samples were certified using: chemical analysis to determine the content of hydrogen (pyrolysis method); differential thermal analysis (DTA, derivatograph Q-1500, T_heating = 1000°C, rate 20°C/min); X-ray analysis (XRD, diffractometer DRON-0.5). The influences of the ratio of powders ZrH_2/Al in the reaction mixture, compacting pressure, temperature and heating velocity on the characteristics of the synthesized aluminides were determined. In HC, the solid solutions of Al in Zr, single phase ZrAl_2 and ZrAl_3 aluminides and Zr_3AlH_4.49 hydride were synthesized. Formation of aluminides in HC mode took place by the solid-phase mechanism, without melting of aluminum. During processing, the heating of the initial charge up to 540°C resulted in the decomposition of zirconium hydride (ZrH_2) to HCC ZrH_1.5, that interacted with aluminum at 630°C forming FCC alumohydride of zirconium. Further increase of the temperature up to 800°C led to complete decomposition of the formed alumohydride of zirconium. The final formation of the zirconium aluminide occurred at 1000-1100°C in the end of HC process. Conclusion: in the synthesis of zirconium aluminides, the HC mode has several significant advantages over the conventional modes: lower operating temperatures (1000°C instead of 1800°C); shorter duration (1.5-2 hours instead of tens of hours); the availability of

  19. Distribution of zirconium in the nitric acid-water-TPB-diluent system

    International Nuclear Information System (INIS)

    Shu, J.; Floh de Araujo, B.

    1984-10-01

    This paper deals with the extraction behaviour of zirconium in TBP/diluent-HNO 3 -H 2 O systems. The main purpose is to increase the uranium decontamination factor by adjusting the extraction conditions so that zirconium extraction is kept at a mininum. Equilibrium diagram, TBP concentration, aqueous: organic phases ratio, salting-out effects and uranium loading in the organic phase were the main factors studied. All the experiments have been carried out with zirconium in the 10 -2 - 10 -3 M concentration range. The extractant degradation products influence upon ziconium behaviour was also verified. With the data obtained it was possible to introduce some modification in the standard Purex flow-sheet with the increase of the decontamination of uranium from zirconium. 5 refs., 9 figs

  20. Evaluation of bonding strength between yttria coating and vanadium alloys for development of self-cooled blanket

    Energy Technology Data Exchange (ETDEWEB)

    Akamatsu, Hitoshi, E-mail: akamatsu@jupiter.qse.tohoku.ac.jp [Department of Quantum Science and Energy Engineering, Tohoku University, 6-6-01-2, Aramaki-aza-Aoba, Sendai 980-8579 (Japan); Satou, Manabu; Sato, Takashi [Department of Quantum Science and Energy Engineering, Tohoku University, 6-6-01-2, Aramaki-aza-Aoba, Sendai 980-8579 (Japan); Jain, Amit; Gupta, Vijay [Department of Mechanical and Aerospace Engineering, 38-137E, Eng IV Building, University of California, Los Angels, CA 90095-1597 (United States); Hasegawa, Akira [Department of Quantum Science and Energy Engineering, Tohoku University, 6-6-01-2, Aramaki-aza-Aoba, Sendai 980-8579 (Japan)

    2011-10-01

    A laser spallation technique was utilized for measurement of the bonding strength between yttria coating and vanadium alloys. The bonding strength between the alloys containing small amounts of yttrium made by levitation melting method and the yttria coating prepared by vacuum plasma-spray was evaluated to be about 950 MPa. It was not clearly observed the effects of alloying elements on the bonding strength. The strength varied about 100 MPa by specimens and by alloy compositions. Detailed observation of the failure type at the interface indicated that crack formation in the coating reduced the stress at the interface, so that the evaluation might be overestimated. It was demonstrated that application of the laser spallation technique to measure the bonding strength between ceramics coating and base material was useful for the evaluation of mechanical integrity of the coating.