WorldWideScience

Sample records for ytterbium selenides

  1. Formation of copper-indium-selenide and/or copper-indium-gallium-selenide films from indium selenide and copper selenide precursors

    Science.gov (United States)

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; Van Hest, Maikel [Lakewood, CO; Ginley, David S [Evergreen, CO; Nekuda, Jennifer A [Lakewood, CO

    2011-11-15

    Liquid-based indium selenide and copper selenide precursors, including copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent, are used to form crystalline copper-indium-selenide, and/or copper indium gallium selenide films (66) on substrates (52).

  2. Precursors for formation of copper selenide, indium selenide, copper indium diselenide, and/or copper indium gallium diselenide films

    Science.gov (United States)

    Curtis, Calvin J; Miedaner, Alexander; Van Hest, Maikel; Ginley, David S

    2014-11-04

    Liquid-based precursors for formation of Copper Selenide, Indium Selenide, Copper Indium Diselenide, and/or copper Indium Galium Diselenide include copper-organoselenides, particulate copper selenide suspensions, copper selenide ethylene diamine in liquid solvent, nanoparticulate indium selenide suspensions, and indium selenide ethylene diamine coordination compounds in solvent. These liquid-based precursors can be deposited in liquid form onto substrates and treated by rapid thermal processing to form crystalline copper selenide and indium selenide films.

  3. ytterbium- & erbium-doped silica for planar waveguide lasers & amplifiers

    DEFF Research Database (Denmark)

    Dyndgaard, Morten Glarborg

    2001-01-01

    The purpose of this work was to demonstrate ytterbium doped planar components and investigate the possibilities of making erbium/ytterbium codoped planar waveguides in germano-silica glass. Furthermore, tools for modelling lasers and erbium/ytterbium doped amplifiers. The planar waveguides were...

  4. Diagnostics of ytterbium/aluminium laser plasmas

    International Nuclear Information System (INIS)

    Bailey, J.; Lee, R.W.; Landen, O.L.; Kilkenny, J.D.; Lewis, C.L.; Busquet, M.

    1986-11-01

    Microdot spectroscopy was used to study the x-ray emission from laser-produced plasmas consisting of 10% ytterbium, 90% aluminium. Spectra were recorded with a space-resolving flat crystal (PET) mini-spectrometer in the 4.0-8.0 A range. The Janus research laser at LLNL irradiated the targets with green (0.53 μm) light in a 1 nsec pulse. The power density was varied between 4x10 13 and 3x10 14 W/cm 2 . The plasma electron density and temperature were determined from the aluminium XI, XII and XIII line emission. By examining correlations between changes in the plasma conditions with changes in the ytterbium spectra, we will determine the potential for using ytterbium line emission as a plasma diagnostic

  5. Reaction of organic ytterbium derivatives with alkyl- and arylhalogenides

    International Nuclear Information System (INIS)

    Rybakova, L.F.; Syutkina, O.P.; Garbar, A.V.; Petrov, Eh.S.

    1988-01-01

    Interaction of a series of organic halogenides with organic bivalent ytterbium derivatives (like Grignard reagent, RYbX, where R=CH 3 , C 6 H 5 ; X=Br, I) under metal complex catalysis is studied. Aromatic and aliphatic ytterbium derivatives undergo a reaction of cross combination with organic iodides and bromides under catalysis by NiCl 2 (PPh 3 ) 2 and Pd(PPh 3 ) 4 complexes. Therewith organo-ytterbium compounds quantitatively react with alkyl (aryl) iodides, bromine substitution for iodine in arylhalogenides results in decrease of yield of cross-combination products. Reactions of organo-ytterbium compounds with organic halogenides are more effectively catalysed by nickel complexes than by palladium ones

  6. Characterization of tin selenides synthesized by high-energy milling

    Directory of Open Access Journals (Sweden)

    Marcela Achimovičová

    2011-12-01

    Full Text Available Tin selenides SnSeX (x=1,2 were synthesized from tin and selenium powder precursors by high-energy milling in the planetary ballmill Pulverisette 6 (Fritsch, Germany. The orthorhombic tin selenide SnSe and the hexagonal tin diselenide SnSe2 phases were formed after4 min and 5 min of milling, respectively. Specific surface area of both selenides increased with increasing time of mechanochemicalsynthesis. The particle size distribution analysis demonstrated that the synthesized products contain agglomerated selenide particlesconsisting of numerous idiomorphic tin selenide crystals, measuring from 2 to more than 100 nm in diameter, which were also documentedby TEM. UV-Vis spectrophotometry confirmed that tin selenide particles do not behave as quantum dots.

  7. Multiwavelength ytterbium-Brillouin random Rayleigh feedback fiber laser

    Science.gov (United States)

    Wu, Han; Wang, Zinan; Fan, Mengqiu; Li, Jiaqi; Meng, Qingyang; Xu, Dangpeng; Rao, Yunjiang

    2018-03-01

    In this letter, we experimentally demonstrate the multiwavelength ytterbium-Brillouin random fiber laser for the first time, in the half-open cavity formed by a fiber loop mirror and randomly distributed Rayleigh mirrors. With a cladding-pumped ytterbium-doped fiber and a long TrueWave fiber, the narrow linewidth Brillouin pump can generate multiple Brillouin Stokes lines with hybrid ytterbium-Brillouin gain. Up to six stable channels with a spacing of about 0.06 nm are obtained. This work extends the operation wavelength of the multiwavelength Brillouin random fiber laser to the 1 µm band, and has potential in various applications.

  8. Determination of cadmium selenide nonstoichiometry

    International Nuclear Information System (INIS)

    Brezhnev, V.Yu.; Kharif, Ya.L.; Kovtunenko, P.V.

    1986-01-01

    Physicochemical method of determination of cadmium selenide nonstoichiometry is developed. The method nature consists in the fact, that under definite conditions dissolved cadmium is extracted from crystals to a vapor phase and then is determined in it using the photocolorimetric method. Cadmium solubility in CdSe crystal is calculated from known CdSe mass and amount of separated cadmium. The lower boundary of determined contents constitutes 1x10 -5 % mol at sample of cadmium selenide 10 g

  9. Contrast opacification for CT from iodine, gadolinium and ytterbium

    International Nuclear Information System (INIS)

    Zwicker, C.; Langer, M.; Ullrich, V.; Felix, R.

    1993-01-01

    The absorption of the elements iodine, gadolinium und ytterbium in various dilutions was studied in relation to CT. Regression analysis and specific CT density measurements showed that absorption decreases from gadolinium to ytterbium and iodine. These results were confirmed by experiments using ten dogs. Boli of 0.5 molar gadolinium used for angio-CT without table movement showed the largest increase in density in the aorta and liver with an average of 190 HU and 21 HU respectively compared with iodine which gave 157 HU and 12 HU respectively. The animal experimental studies suggest that gadolinium and ytterbium are suitable contrast media for dynamic CT investigations. (orig.) [de

  10. Neutralization by metal ions of the toxicity of sodium selenide.

    Directory of Open Access Journals (Sweden)

    Marc Dauplais

    Full Text Available Inert metal-selenide colloids are found in animals. They are believed to afford cross-protection against the toxicities of both metals and selenocompounds. Here, the toxicities of metal salt and sodium selenide mixtures were systematically studied using the death rate of Saccharomyces cerevisiae cells as an indicator. In parallel, the abilities of these mixtures to produce colloids were assessed. Studied metal cations could be classified in three groups: (i metal ions that protect cells against selenium toxicity and form insoluble colloids with selenide (Ag⁺, Cd²⁺, Cu²⁺, Hg²⁺, Pb²⁺ and Zn²⁺, (ii metal ions which protect cells by producing insoluble metal-selenide complexes and by catalyzing hydrogen selenide oxidation in the presence of dioxygen (Co²⁺ and Ni²⁺ and, finally, (iii metal ions which do not afford protection and do not interact (Ca²⁺, Mg²⁺, Mn²⁺ or weakly interact (Fe²⁺ with selenide under the assayed conditions. When occurring, the insoluble complexes formed from divalent metal ions and selenide contained equimolar amounts of metal and selenium atoms. With the monovalent silver ion, the complex contained two silver atoms per selenium atom. Next, because selenides are compounds prone to oxidation, the stabilities of the above colloids were evaluated under oxidizing conditions. 5,5'-dithiobis-(2-nitrobenzoic acid (DTNB, the reduction of which can be optically followed, was used to promote selenide oxidation. Complexes with cadmium, copper, lead, mercury or silver resisted dissolution by DTNB treatment over several hours. With nickel and cobalt, partial oxidation by DTNB occurred. On the other hand, when starting from ZnSe or FeSe complexes, full decompositions were obtained within a few tens of minutes. The above properties possibly explain why ZnSe and FeSe nanoparticles were not detected in animals exposed to selenocompounds.

  11. System of ytterbium nitrate-hydrazine(mono-)dinitrate-water

    International Nuclear Information System (INIS)

    Khisaeva, D.A.; Katamanov, V.L.

    1986-01-01

    Solubility in ternary systems ytterbium nitrate-hydrazine monohydrate-water and ytterbium nitrate-hydrazine dinitrate-water is studied at 25 and 50 deg C. Salt components of both systems do not form with each other double addition compounds in the chosen temperature range. Initial salts are equilibrium solid phases of saturated solutions. Correlation of the range of primary crystallization of nitrate acydocomplexes of lanthanides formed in similar systems with their atomic number is considered. It is shown that hydrazine dinitrate can be used for separation of rare earth elements of cerium group

  12. Dimer self-organization of impurity ytterbium ions in synthetic forsterite single crystals

    Science.gov (United States)

    Tarasov, V. F.; Sukhanov, A. A.; Dudnikova, V. B.; Zharikov, E. V.; Lis, D. A.; Subbotin, K. A.

    2017-07-01

    Paramagnetic centers formed by impurity Yb3+ ions in synthetic forsterite (Mg2SiO4) grown by the Czochralski technique are studied by X-band CW and pulsed EPR spectroscopy. These centers are single ions substituting magnesium in two different crystallographic positions denoted M1 and M2, and dimer associates formed by two Yb3+ ions in nearby positions M1. It is established that there is a pronounced mechanism favoring self-organization of ytterbium ions in dimer associates during the crystal growth, and the mechanism of the spin-spin coupling between ytterbium ions in the associate has predominantly a dipole-dipole character, which makes it possible to control the energy of the spin-spin interaction by changing the orientation of the external magnetic field. The structural computer simulation of cluster ytterbium centers in forsterite crystals is carried out by the method of interatomic potentials using the GULP 4.0.1 code (General Utility Lattice Program). It is established that the formation of dimer associates in the form of a chain parallel to the crystallographic axis consisting of two ytterbium ions with a magnesium vacancy between them is the most energetically favorable for ytterbium ions substituting magnesium in the position M1.

  13. Density of liquid Ytterbium

    International Nuclear Information System (INIS)

    Stankus, S.V.; Basin, A.S.

    1983-01-01

    Results are presented for measurements of the density of metallic ytterbium in the liquid state and at the liquid-solid phase transition. Based on the numerical data obtained, the coefficient of thermal expansion βZ of the liquid and the density discontinuity on melting deltarho/sub m/ are calculated. The magnitudes of βZ and deltarho/sub m/ for the heavy lanthanides are compared

  14. Sympathetic cooling of ytterbium with rubidium; Sympathetische Kuehlung von Ytterbium mit Rubidium

    Energy Technology Data Exchange (ETDEWEB)

    Tassy, S.

    2007-12-14

    Within the scope of this thesis, a mixture of ultracold ytterbium and rubidium atoms was experimentally realized and investigated. For these experiments, a novel trap geometry was developed which allows simultaneous trapping and cooling of diamagnetic and paramagnetic atomic species. The main focus was put on the investigation of the interspecies scattering properties, where sympathetic cooling of ytterbium through elastic collisions with rubidium could be demonstrated. In addition, the interspecies scattering length could be determined. In the current configuration the combined trap allows the preparation of up to 2.10{sup 5} atoms of {sup 170}Yb, {sup 171}Yb, {sup 172}Yb, {sup 174}Yb or {sup 176}Yb at a temperature of 40..60 {mu}K and a density in the range of 10{sup 12} cm{sup -3}, and of about 10{sup 7} {sup 87}Rb atoms at a temperature of 25 {mu}K and a density in the range of 5.10{sup 11} cm{sup -3}. Detailed studies of the thermalization of bosonic {sup 170}Yb, {sup 172}Yb, {sup 174}Yb and {sup 176}Yb and of fermionic {sup 171}Yb each with {sup 87}Rb were performed under varying experimental conditions. The deduced total scattering cross section was clearly found to increase with higher mass of the ytterbium isotope. In general, a mass scaling of the scattering properties is in agreement with theoretical models and former experimental work. With the assumption of pure s-wave scattering, which is approximately fulfilled for the given experimental parameters, the interspecies scattering length could be derived from the measured thermalization data and was found to be (in units of the Bohr radius a{sub 0}): {sup 170}Yb-{sup 87}Rb:(18{sup +12}{sub -4})a{sub 0}, {sup 171}Yb-{sup 87}Rb:(25{sup +14}{sub -7})a{sub 0}, {sup 172}Yb-{sup 87}Rb:(33{sup +23}{sub -7})a{sub 0}, {sup 174}Yb-{sup 87}Rb:(83{sup +89}{sub -25})a{sub 0}, {sup 176}Yb-{sup 87}Rb:(127{sup +245}{sub -45})a{sub 0}. (orig./HSI)

  15. The ytterbium nitrate-quinoline (piperidine) nitrate-water system

    International Nuclear Information System (INIS)

    Khisaeva, D.A.; Boeva, M.K.; Zhuravlev, E.F.

    1985-01-01

    Using the method of cross sections the solubility of solid phases in the ytterbium nitrate-quinoline nitrate - water (1) and ytterbium nitrate-piperidine nitrate-water (2) systems is studied at 25 and 50 deg C. It is established, that in system 1 congruently melting compound of the composition Yb(NO 3 ) 3 x2C 9 H 7 NxHNO 3 x3H 2 O is formed. The new solid phase has been isolated as a preparation and subjected to chemical X-ray diffraction, differential thermal and IR spectroscopic analyses. Isotherms of system 2 in the studied range of concentrations and temperatures consist of two branches, corresponding to crystallization of tetruaqueous ytterbi um nitrate and nitric acid piperidine

  16. Interaction distances in oxides, sulfides and selenides with face-centered packing

    International Nuclear Information System (INIS)

    Kesler, Ya.A.

    1993-01-01

    Concept of characteristic distances (CD) was specified with account of the principle of topologically face-centered anion packing: calculation method was presented and boundary conditions of CD concept applicability were considered. Tables of CD in oxides, sulfides and selenides, obtained in result of self-consistent calculations on the basis of experimental crystallographic data, are presented. Pair correlations between CD in oxides, sulfides and selenides were considered, their relationship with cation electron structure was established. Peculiarities of chemical bond in oxides, sulfides and selenides with face-centered anion packing were discussed

  17. Green Hydroselenation of Aryl Alkynes: Divinyl Selenides as a Precursor of Resveratrol

    Directory of Open Access Journals (Sweden)

    Gelson Perin

    2017-02-01

    Full Text Available A simple and efficient protocol to prepare divinyl selenides has been developed by the regio- and stereoselective addition of sodium selenide species to aryl alkynes. The nucleophilic species was generates in situ, from the reaction of elemental selenium with NaBH4, utilizing PEG-400 as the solvent. Several divinyl selenides were obtained in moderate to excellent yields with selectivity for the (Z,Z-isomer by a one-step procedure that was carried out at 60 °C in short reaction times. The methodology was extended to tellurium, giving the desired divinyl tellurides in good yields. Furthermore, the Fe-catalyzed cross-coupling reaction of bis(3,5-dimethoxystyryl selenide 3f with (4-methoxyphenylmagnesium bromide 5 afforded resveratrol trimethyl ether 6 in 57% yield.

  18. Green Hydroselenation of Aryl Alkynes: Divinyl Selenides as a Precursor of Resveratrol.

    Science.gov (United States)

    Perin, Gelson; Barcellos, Angelita M; Luz, Eduardo Q; Borges, Elton L; Jacob, Raquel G; Lenardão, Eder J; Sancineto, Luca; Santi, Claudio

    2017-02-20

    A simple and efficient protocol to prepare divinyl selenides has been developed by the regio- and stereoselective addition of sodium selenide species to aryl alkynes. The nucleophilic species was generates in situ , from the reaction of elemental selenium with NaBH₄, utilizing PEG-400 as the solvent. Several divinyl selenides were obtained in moderate to excellent yields with selectivity for the ( Z , Z )-isomer by a one-step procedure that was carried out at 60 °C in short reaction times. The methodology was extended to tellurium, giving the desired divinyl tellurides in good yields. Furthermore, the Fe-catalyzed cross-coupling reaction of bis(3,5-dimethoxystyryl) selenide 3f with (4-methoxyphenyl)magnesium bromide 5 afforded resveratrol trimethyl ether 6 in 57% yield.

  19. Asymmetric supercapacitors with metal-like ternary selenides and porous graphene electrodes

    KAUST Repository

    Xia, Chuan; Jiang, Qiu; Zhao, Chao; Beaujuge, Pierre; Alshareef, Husam N.

    2016-01-01

    nanostructured ternary nickel cobalt selenides result in a much higher areal capacitance (2.33 F cm−2 at 4 mA cm−2), better rate performance and cycling stability than their binary selenide equivalents, and other ternary oxides and chalcogenides. Those hybrid

  20. Ytterbium triflate as a new catalyst on the curing of epoxy-isocyanate based thermosets

    Energy Technology Data Exchange (ETDEWEB)

    Flores, Marjorie; Fernandez-Francos, Xavier [Departament de Quimica Analitica i Quimica Organica, Universitat Rovira i Virgili, Marcelli Domingo s/n, 43007 Tarragona (Spain); Morancho, Josep M. [Laboratori de Termodinamica, ETSEIB, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain); Serra, Angels [Departament de Quimica Analitica i Quimica Organica, Universitat Rovira i Virgili, Marcelli Domingo s/n, 43007 Tarragona (Spain); Ramis, Xavier, E-mail: ramis@mmt.upc.es [Laboratori de Termodinamica, ETSEIB, Universitat Politecnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain)

    2012-09-10

    Highlights: Black-Right-Pointing-Pointer Ytterbium triflate is an active catalyst for diepoxides/diisocyanate formulations. Black-Right-Pointing-Pointer Ytterbium triflate promotes the formation of oxazolidone, isocyanurate, urethane and allophanate groups and the polyetherification of epoxides. Black-Right-Pointing-Pointer Diepoxides/diisocyanate formulations catalyzed by ytterbium triflate show higher pot-life than equivalent formulations catalyzed by benzyldimethylamine. - Abstract: Networks containing oxazolidone, isocyanurate, urethane, allophanate and ether groups were prepared by copolymerization of mixtures of diglycidylether of bisphenol A and toluene-2,4-diisocyanate in presence of ytterbium triflate. It has been demonstrated that ytterbium triflate promotes six elemental reactions that coexist during curing and yield the aforementioned groups. Changes during curing, fraction of different groups present in the network and final properties of the cured materials were investigated by thermal analysis and infrared spectroscopy. The influence of the molar ratio of isocyanate to epoxide groups on the properties and curing has been studied. The curing kinetics were analyzed by means of an integral isoconversional non-isothermal procedure. The results obtained were compared with those obtained by using a common catalyst such as the benzyldimethylamine. The structure and the properties of the resulting thermosets are controlled by the initial composition of the formulation and the catalyst used.

  1. Selenide isotope generator for the Galileo mission

    International Nuclear Information System (INIS)

    Goebel, C.J.; Hammel, T.E.

    1978-01-01

    A significantly improved thermoelectric generator has been developed to provide electric power for NASA's Galileo Mission in 1982. Nominal power requirements for Galileo will be about 450 watts at BOL (Beginning of Life), and this will be furnished by two Selenide Isotope Generators (SIG) each powered by a Multi Hundred Watt (MHW) radioisotopic heat source. A Ground Demonstration System (GDS) of a nominal 100 w(e) features a 3M - produced selenide ring module around a shortened MHW-dimensioned electrical heat source, newly developed axially-grooved heat pipes on a disc-shaped radiator, and other innovations which will allow a full-sized generator's weight to be held at about 90 lbs

  2. Slow recombination centers in cadmium selenide monocrystalline films

    International Nuclear Information System (INIS)

    Smyntyna, V.A.

    1983-01-01

    As a result of annealing when concentration of selenium Vacancies decreases due to their diffusion towards the surface, show recombination K-centers begin to influence the photoelectric properties of monocrystalline cadmium selenide layers. Energy levels of K-centers are located by 0.23-0.25 eV over the valent zone ceiling. The nature of K-centers is determined by the presence in the cadmium selenide layer structure of intrisic defects-cadmium vacancies in contrast to r-centers of slow recombination which are bound with impurities in a semiconductor material

  3. Vapor transport deposition of antimony selenide thin film solar cells with 7.6% efficiency.

    Science.gov (United States)

    Wen, Xixing; Chen, Chao; Lu, Shuaicheng; Li, Kanghua; Kondrotas, Rokas; Zhao, Yang; Chen, Wenhao; Gao, Liang; Wang, Chong; Zhang, Jun; Niu, Guangda; Tang, Jiang

    2018-06-05

    Antimony selenide is an emerging promising thin film photovoltaic material thanks to its binary composition, suitable bandgap, high absorption coefficient, inert grain boundaries and earth-abundant constituents. However, current devices produced from rapid thermal evaporation strategy suffer from low-quality film and unsatisfactory performance. Herein, we develop a vapor transport deposition technique to fabricate antimony selenide films, a technique that enables continuous and low-cost manufacturing of cadmium telluride solar cells. We improve the crystallinity of antimony selenide films and then successfully produce superstrate cadmium sulfide/antimony selenide solar cells with a certified power conversion efficiency of 7.6%, a net 2% improvement over previous 5.6% record of the same device configuration. We analyze the deep defects in antimony selenide solar cells, and find that the density of the dominant deep defects is reduced by one order of magnitude using vapor transport deposition process.

  4. Fabrication, characterization and applications of iron selenide

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Raja Azadar, E-mail: hussainazadar@yahoo.com [Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Badshah, Amin [Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Lal, Bhajan [Department of Energy Systems Engineering, Sukkur Institute of Business Administration (Pakistan)

    2016-11-15

    This review article presents fabrication of FeSe by solid state reactions, solution chemistry routes, chemical vapor deposition, spray pyrolysis and chemical vapor transport. Different properties and applications such as crystal structure and phase transition, band structure, spectroscopy, superconductivity, photocatalytic activity, electrochemical sensing, and fuel cell activity of FeSe have been discussed. - Graphical abstract: Iron selenide can be synthesized by solid state reactions, chemical vapor deposition, solution chemistry routes, chemical vapor transport and spray pyrolysis. - Highlights: • Different fabrication methods of iron selenide (FeSe) have been reviewed. • Crystal structure, band structure and spectroscopy of FeSe have been discussed. • Superconducting, catalytic and fuel cell application of FeSe have been presented.

  5. In Silico Studies of Mammalian δ-ALAD Interactions with Selenides and Selenoxides.

    Science.gov (United States)

    Andrei Nogara, Pablo; Batista Teixeira Rocha, João

    2018-04-01

    Previous studies have shown that the mammalian δ-aminolevulinic acid dehydratase (δ-ALAD) is inhibited by selenides and selenoxides, which can involve thiol oxidation. However, the precise molecular interaction of selenides and selenoxides with the active center of the enzyme is unknown. Here, we try to explain the interaction of selenides and the respective selenoxides with human δ-ALAD by in silico molecular docking. The in silico data indicated that Se atoms of selenoxides have higher electrophilic character than their respective selenides. Further, the presence of oxygen increased the interaction of selenoxides with the δ-ALAD active site by O…Zn coordination. The interaction of S atom from Cys124 with the Se atom indicated the importance of the nucleophilic attack of the enzyme thiolate to the organoselenium molecules. These observations help us to understand the interaction of target proteins with organoselenium compounds. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Metal Selenides as Efficient Counter Electrodes for Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Jin, Zhitong; Zhang, Meirong; Wang, Min; Feng, Chuanqi; Wang, Zhong-Sheng

    2017-04-18

    Solar energy is the most abundant renewable energy available to the earth and can meet the energy needs of humankind, but efficient conversion of solar energy to electricity is an urgent issue of scientific research. As the third-generation photovoltaic technology, dye-sensitized solar cells (DSSCs) have gained great attention since the landmark efficiency of ∼7% reported by O'Regan and Grätzel. The most attractive features of DSSCs include low cost, simple manufacturing processes, medium-purity materials, and theoretically high power conversion efficiencies. As one of the key materials in DSSCs, the counter electrode (CE) plays a crucial role in completing the electric circuit by catalyzing the reduction of the oxidized state to the reduced state for a redox couple (e.g., I 3 - /I - ) in the electrolyte at the CE-electrolyte interface. To lower the cost caused by the typically used Pt CE, which restricts the large-scale application because of its low reserves and high price, great effort has been made to develop new CE materials alternative to Pt. A lot of Pt-free electrocatalysts, such as carbon materials, inorganic compounds, conductive polymers, and their composites with good electrocatalytic activity, have been applied as CEs in DSSCs in the past years. Metal selenides have been widely used as electrocatalysts for the oxygen reduction reaction and light-harvesting materials for solar cells. Our group first expanded their applications to the DSSC field by using in situ-grown Co 0.85 Se nanosheet and Ni 0.85 Se nanoparticle films as CEs. This finding has inspired extensive studies on developing new metal selenides in order to seek more efficient CE materials for low-cost DSSCs, and a lot of meaningful results have been achieved in the past years. In this Account, we summarize recent advances in binary and mutinary metal selenides applied as CEs in DSSCs. The synthetic methods for metal selenides with various morphologies and stoichiometric ratios and

  7. Ex situ formation of metal selenide quantum dots using bacterially derived selenide precursors

    International Nuclear Information System (INIS)

    Fellowes, J W; Pattrick, R A D; Lloyd, J R; Charnock, J M; Coker, V S; Mosselmans, J F W; Weng, T-C; Pearce, C I

    2013-01-01

    Luminescent quantum dots were synthesized using bacterially derived selenide (Se II− ) as the precursor. Biogenic Se II− was produced by the reduction of Se IV by Veillonella atypica and compared directly against borohydride-reduced Se IV for the production of glutathione-stabilized CdSe and β-mercaptoethanol-stabilized ZnSe nanoparticles by aqueous synthesis. Biological Se II− formed smaller, narrower size distributed QDs under the same conditions. The growth kinetics of biologically sourced CdSe phases were slower. The proteins isolated from filter sterilized biogenic Se II− included a methylmalonyl-CoA decarboxylase previously characterized in the closely related Veillonella parvula. XAS analysis of the glutathione-capped CdSe at the S K-edge suggested that sulfur from the glutathione was structurally incorporated within the CdSe. A novel synchrotron based XAS technique was also developed to follow the nucleation of biological and inorganic selenide phases, and showed that biogenic Se II− is more stable and more resistant to beam-induced oxidative damage than its inorganic counterpart. The bacterial production of quantum dot precursors offers an alternative, ‘green’ synthesis technique that negates the requirement of expensive, toxic chemicals and suggests a possible link to the exploitation of selenium contaminated waste streams. (paper)

  8. Ex Situ Formation of Metal Selenide Quantum Dots Using Bacterially Derived Selenide Precursors

    Energy Technology Data Exchange (ETDEWEB)

    Fellowes, Jonathan W.; Pattrick, Richard; Lloyd, Jon; Charnock, John M.; Coker, Victoria S.; Mosselmans, JFW; Weng, Tsu-Chien; Pearce, Carolyn I.

    2013-04-12

    Luminescent quantum dots were synthesized using bacterially derived selenide (SeII-) as the precursor. Biogenic SeII- was produced by the reduction of Se-IV by Veillonella atypica and compared directly against borohydride-reduced Se-IV for the production of glutathione-stabilized CdSe and beta-mercaptoethanol-stabilized ZnSe nanoparticles by aqueous synthesis. Biological SeII- formed smaller, narrower size distributed QDs under the same conditions. The growth kinetics of biologically sourced CdSe phases were slower. The proteins isolated from filter sterilized biogenic SeII- included a methylmalonyl-CoA decarboxylase previously characterized in the closely related Veillonella parvula. XAS analysis of the glutathione-capped CdSe at the S K-edge suggested that sulfur from the glutathione was structurally incorporated within the CdSe. A novel synchrotron based XAS technique was also developed to follow the nucleation of biological and inorganic selenide phases, and showed that biogenic SeII- is more stable and more resistant to beam-induced oxidative damage than its inorganic counterpart. The bacterial production of quantum dot precursors offers an alternative, 'green' synthesis technique that negates the requirement of expensive, toxic chemicals and suggests a possible link to the exploitation of selenium contaminated waste streams.

  9. A pure silica ytterbium-doped sol–gel-based fiber laser

    International Nuclear Information System (INIS)

    Baz, Assaad; El Hamzaoui, Hicham; Fsaifes, Ihsan; Bouwmans, Géraud; Bouazaoui, Mohamed; Bigot, Laurent

    2013-01-01

    In this letter it is demonstrated that the sol–gel route combined with fiber fabrication by the stack and draw method can be used to realize efficient fiber lasers. More precisely, a pure silica ytterbium-doped photonic crystal fiber with a core obtained by the sol–gel polymeric technique is studied, and a laser efficiency of more than 73% is achieved for a laser emission around 1034 nm. The optical and spectroscopic properties of the monolith and fiber are investigated, together with the sensitivity of the fiber to photodarkening. The dimensions of the ytterbium-doped monolith combined with the uniform doping and refractive index that are reported make this technique particularly interesting for the realization of large-mode area fibers. (letter)

  10. Assessment of fibrous insulation materials for the selenide isotope generator system

    International Nuclear Information System (INIS)

    Wei, G.C; Tennery, V.J.

    1977-11-01

    Fibrous insulations for use in the converter and the heat source of the radioisotope-powered, selenide element, thermoelectric generator (selenide isotope generator) are assessed. The most recent system design and material selection basis is presented. Several fibrous insulation materials which have the potential for use as load-bearing or nonload-bearing thermal insulations are reviewed, and thermophysical properties supplied by manufacturers or published in the literature are presented. Potential problems with the application of fibrous insulations in the selenide isotope generator are as follows: compatibility with graphite, the thermoelectric elements, and the isolation hot frame; devitrification, grain growth, and sintering with an accompanying degradation of insulation quality; impurity diffusion from the insulation to adjoining structures; outgassing and storage of fibrous materials. Areas in which thermophysical data or quantitative information on the insulation and structural stability is lacking are identified

  11. Etherification of Ferrocenyl Alcohol by Highly-efficient Ytterbium Triflate%Etherification of Ferrocenyl Alcohol by Highly-efficient Ytterbium Triflate

    Institute of Scientific and Technical Information of China (English)

    Jiang, Ran; Shen, Yechen; Zhang, Ying; Xu, Xiaoping; Shao, Jinjun; Ji, Shunjun

    2011-01-01

    Nucleophilic substitution of ferrocenyl alcohols with various aliphatic alcohols in the presence of a catalytic amount of ytterbium triflate [Yb(OTf)3] was studied. It was found the unsymmetrical ferrocenyl ethers could be easily obtained in excellent yields when the reactions were performed in primary and secondary alcohols. However, in other organic non-alcoholic solvents such as acetonitrile, the formation of symmetrical ferrocenyl ethers rather than unsymmetrical ones was observed.

  12. A facile way to control phase of tin selenide flakes by chemical vapor deposition

    Science.gov (United States)

    Wang, Zhigang; Pang, Fei

    2018-06-01

    Although two-dimensional (2D) tin selenides are attracting intense attentions, studies on its phase transition are still relatively few. Here we report a facile way to control the phase growth of tin selenide flakes on mica and SiO2/Si by only adjusting nominal Sn:Se ratio, which refers to the amount of loaded SnO2 and Se precursors. High normal Sn:Se ratio induced SnSe flakes, conversely SnSe2 flakes formed. It could be used as a practical guide to selectively synthesize pure phase of single crystalline 2D layered chalcogenide materials similar to tin selenides.

  13. Selenide Mineralization in the Příbram Uranium and Base-Metal District (Czech Republic

    Directory of Open Access Journals (Sweden)

    Pavel Škácha

    2017-06-01

    Full Text Available Selenium mineralization in the Příbram uranium and base-metal district (Central Bohemia, Czech Republic bound to uraninite occurrences in calcite hydrothermal veins is extremely diverse. The selenides antimonselite, athabascaite, bellidoite, berzelianite, brodtkorbite, bukovite, bytízite, cadmoselite, chaméanite, clausthalite, crookesite, dzharkenite, eskebornite, eucairite, ferroselite, giraudite, hakite, klockmannite, naumannite, permingeatite, příbramite, sabatierite, tiemannite, and umangite were found here, including two new mineral phases: Hg-Cu-Sb and Cu-As selenides. Those selenides—and in some cases their sulphidic equivalents—are characterized using wavelength-dispersive spectroscopy, reflected light, powder X-ray diffraction, single crystal X-ray diffraction, Raman spectroscopy, and electron backscatter diffraction. The selenide mineralization in the Příbram uranium district is bound to the border of the carbonate-uraninite and subsequent carbonate-sulphidic stages. Selenides crystallized there at temperatures near 100 °C in the neutral-to-weakly-alkaline environment from solutions with high oxygen fugacity and a high Se2/S2 fugacity ratio.

  14. High-quality laser cutting of stainless steel in inert gas atmosphere by ytterbium fibre and CO2 lasers

    International Nuclear Information System (INIS)

    Golyshev, A A; Malikov, A G; Orishich, A M; Shulyat'ev, V B

    2014-01-01

    Processes of cutting stainless steel by ytterbium fibre and CO 2 lasers have been experimentally compared. The cut surface roughnesses for 3- and 5-mm-thick stainless steel sheets are determined. The absorption coefficient of laser radiation during cutting is measured. It is established that the power absorbed by metal during cutting by the CO 2 laser exceeds that for the ytterbium laser (provided that the cutting speed remains the same). The fact that the maximum cutting speed of the CO 2 laser is lower than that of the ytterbium fibre laser is explained. (laser technologies)

  15. Ammonia-free chemical bath method for deposition of microcrystalline cadmium selenide films

    International Nuclear Information System (INIS)

    Lokhande, C.D.; Lee, Eun-Ho; Jung, Kwang-Deog; Joo, Oh-Shim

    2005-01-01

    Chemical deposition of cadmium selenide (CdSe) films has been carried out from alkaline aqueous solution containing Cd 2+ and Se 2- ions. In general, the alkaline pH of the CdSe deposition bath has been adjusted by addition of liquid ammonia. However, the use of ammonia in large-scale chemical deposition method represents an environmental problem due to its volatility and toxicity. The volatility of ammonia changes the pH of deposition bath and results into irreproducible film properties. In the present paper, ammonia-free and weak alkaline (pH < 9.0) chemical method for cadmium selenide film has been developed. The cadmium selenide films are microcrystalline (grain size 0.5-0.7 μm) with hexagonal crystal structure. These films are photoactive and therefore, useful in photo conversion of light into electrical power

  16. Mechanochemical synthesis of nanocrystalline lead selenide. Industrial approach

    Energy Technology Data Exchange (ETDEWEB)

    Achimovicova, Marcela; Balaz, Peter [Slovak Academy of Sciences, Kosice (Slovakia). Inst. of Geotechnics; Durisin, Juraj [Slovak Academy of Sciences, Kosice (Slovakia). Inst. of Materials Research; Daneu, Nina [Josef Stefan Institute, Ljubljana (Slovenia). Dept. for Nanostructured Materials; Kovac, Juraj; Satka, Alexander [Slovak Univ. of Technology and International Laser Centre, Bratislava (Slovakia). Dept. of Microelectronics; Feldhoff, Armin [Leibniz Univ. Hannover (Germany). Inst. fuer Physikalische Chemie und Elektrochemie; Gock, Eberhard [Technical Univ. Clausthal, Clausthal-Zellerfeld (Germany). Inst. of Mineral and Waste Processing and Dumping Technology

    2011-04-15

    Mechanochemical synthesis of lead selenide PbSe nanoparticles was performed by high-energy milling of lead and selenium powder in a laboratory planetary ball mill and in an industrial eccentric vibratory mill. Structural properties of the synthesized lead selenide were characterized using X-ray diffraction that confirmed crystalline nature of PbSe nanoparticles. The average size of PbSe crystallites of 37 nm was calculated from X-ray diffraction data using the Williamson-Hall method. The methods of particle size distribution analysis, specific surface area measurement, scanning electron microscopy and transmission electron microscopy were used for characterization of surface, mean particle size, and morphology of PbSe. An application of industrial mill verified a possibility of the synthesis of a narrow bandgap semiconductor PbSe at ambient temperature and in a relatively short reaction time. (orig.)

  17. High-quality laser cutting of stainless steel in inert gas atmosphere by ytterbium fibre and CO{sub 2} lasers

    Energy Technology Data Exchange (ETDEWEB)

    Golyshev, A A; Malikov, A G; Orishich, A M; Shulyat' ev, V B [S.A. Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences, Novosibirsk (Russian Federation)

    2014-03-28

    Processes of cutting stainless steel by ytterbium fibre and CO{sub 2} lasers have been experimentally compared. The cut surface roughnesses for 3- and 5-mm-thick stainless steel sheets are determined. The absorption coefficient of laser radiation during cutting is measured. It is established that the power absorbed by metal during cutting by the CO{sub 2} laser exceeds that for the ytterbium laser (provided that the cutting speed remains the same). The fact that the maximum cutting speed of the CO{sub 2} laser is lower than that of the ytterbium fibre laser is explained. (laser technologies)

  18. Cybernetic prediction of selenide Chevreul's phases

    International Nuclear Information System (INIS)

    Kiseleva, N.N.; Savitskij, E.M.

    1981-01-01

    The method of training a computer is used to forecast the possibility for the formation of selenide Chevreul's phases of the Asub(x)Bsub(6)Sesub(8) composition (where A is any chemical element, B-Mo, Cr, W, Re). The peculiarities of applying cybernetic forecasting systems in inorganic chemistry are considered. The critical temperature of transfer into the superconducting state of some phases forecasted is estimated [ru

  19. Diagnostic Genesis Features of Au-Ag Selenide-Telluride Mineralization of Western Java Deposits

    Directory of Open Access Journals (Sweden)

    Euis Tintin Yuningsih

    2016-01-01

    Full Text Available DOI: 10.17014/ijog.3.1.67-76The ore mineralogy of the westernmost part of West Java such as Pongkor, Cibaliung, Cikidang, Cikotok, and Cirotan are characterized by the dominance of silver-arsenic-antimony sulfosalt with silver selenides and rarely tellurides over the argentite, whereas the eastern part of West Java including Arinem and Cineam deposits are dominated by silver-gold tellurides. Mineralogy of Se-type deposits at Pongkor, Cikidang, Cibaliung, Cisungsang, and Cirotan and Te-type deposits at Arinem and Cineam shows their different geochemical characteristics. Mineralogical and geochemical differences can be explained by variation of physico-chemical conditions that existed during gold-silver deposition by applying the phase relation among sulfide, telluride, and selenide mineral association in the deposits. The relative values of ƒSe2(g, ƒTe(g, and ƒS2(g control the actual presence of selenide or telluride minerals within the West Java deposits, which also depend on their concentrations in the hydrothermal fluid. Even though the concentration of selenium in the hydrothermal fluid of Te-type deposits might have been similar or even higher than that in the Se-type, early substitution of selenium in the sulfide minerals prevents its concentration in the hydrothermal fluid to the levels for precipitating selenide minerals. Therefore, early sulfide mineral deposition from reduction fluids will not increase the ƒSe2(g/ƒS2(g ratio to form selenide minerals in Te-type deposits of Arinem and Cineam, other than selenium-bearing sulfide mineral such as Se-bearing galena or Se-bearing pyrargyrite-proustite.

  20. Erbium–ytterbium fibre laser emitting more than 13 W of power in ...

    Indian Academy of Sciences (India)

    2014-01-05

    ytterbium fibre laser emitting more than 13W of ... Proceedings of the International Workshop/Conference on Computational Condensed Matter Physics and Materials Science (IWCCMP-2015). Posted on November 27, 2015.

  1. Phase-Engineered Type-II Multimetal-Selenide Heterostructures toward Low-Power Consumption, Flexible, Transparent, and Wide-Spectrum Photoresponse Photodetectors.

    Science.gov (United States)

    Chen, Yu-Ze; Wang, Sheng-Wen; Su, Teng-Yu; Lee, Shao-Hsin; Chen, Chia-Wei; Yang, Chen-Hua; Wang, Kuangye; Kuo, Hao-Chung; Chueh, Yu-Lun

    2018-05-01

    Phase-engineered type-II metal-selenide heterostructures are demonstrated by directly selenizing indium-tin oxide to form multimetal selenides in a single step. The utilization of a plasma system to assist the selenization facilitates a low-temperature process, which results in large-area films with high uniformity. Compared to single-metal-selenide-based photodetectors, the multimetal-selenide photodetectors exhibit obviously improved performance, which can be attributed to the Schottky contact at the interface for tuning the carrier transport, as well as the type-II heterostructure that is beneficial for the separation of the electron-hole pairs. The multimetal-selenide photodetectors exhibit a response to light over a broad spectrum from UV to visible light with a high responsivity of 0.8 A W -1 and an on/off current ratio of up to 10 2 . Interestingly, all-transparent photodetectors are successfully produced in this work. Moreover, the possibility of fabricating devices on flexible substrates is also demonstrated with sustainable performance, high strain tolerance, and high durability during bending tests. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Henry's Law vaporization studies and thermodynamics of einsteinium-253 metal dissolved in ytterbium

    International Nuclear Information System (INIS)

    Kleinschmidt, P.D.; Ward, J.W.; Matlack, G.M.; Haire, R.G.

    1984-01-01

    The cohesive energy of metallic einsteinium determines whether einsteinium is a trivalent or divalent metal. The enthalpy of sublimation, a measure of the cohesive energy, is calculated from the partial pressures of einsteinium over an alloy. The partial pressure of 253 Es has been measured over the range 470--870 K, using combined target and mass spectrometric Knudsen effusion techniques. An alloy was prepared with einsteinium dissolved in a ytterbium solvent to produce a very dilute solution. Partial pressure measurements on the alloy were amenable to the experimental technique and a data analysis using a Henry's law treatment of the data. Vapor pressure data are combined with an estimated crystal entropy S 0 298 and ΔC 0 /sub p/ for ytterbium, to produce enthalpy, entropy, and free energy functions from 298 to 1300 K. The vapor pressure of einsteinium in a dilute einsteinium--ytterbium alloy is described by the equation log P(atm) = -(6815 +- 216)/T+2.576 +- 0.337, from which we calculate for the enthalpy of sublimation of pure einsteinium ΔH 0 298 (second law) = 31.76 kcal/mol. The value of the enthalpy of sublimation is consistent with the conclusion that Es is a divalent metal

  3. Self-Q-switched ytterbium-doped cladding-pumped fibre laser

    International Nuclear Information System (INIS)

    Grukh, Dmitrii A; Kurkov, Andrei S; Razdobreev, I M; Fotiadi, A A

    2002-01-01

    A self-Q-switched ytterbium-doped double-clad fibre laser is described. A samarium-doped fibre is used as a filter for protecting a pump source. A fibre coupler is employed to obtain a nonlinear feedback. The mechanism of pulse formation in the laser is considered, and the dependence of its output pulse on the coupler parameters is studied. (solitons and optical fibers)

  4. Morphology-Tuned Synthesis of Nickel Cobalt Selenides as Highly Efficient Pt-Free Counter Electrode Catalysts for Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Qian, Xing; Li, Hongmei; Shao, Li; Jiang, Xiancai; Hou, Linxi

    2016-11-02

    In this work, morphology-tuned ternary nickel cobalt selenides based on different Ni/Co molar ratios have been synthesized via a simple precursor conversion method and used as counter electrode (CE) materials for dye-sensitized solar cells (DSSCs). The experimental facts and mechanism analysis clarified the possible growth process of product. It can be found that the electrochemical performance and structures of ternary nickel cobalt selenides can be optimized by tuning the Ni/Co molar ratio. Benefiting from the unique morphology and tunable composition, among the as-prepared metal selenides, the electrochemical measurements showed that the ternary nickel cobalt selenides exhibited a more superior electrocatalytic activity in comparison with binary Ni and Co selenides. In particular, the three-dimensional dandelion-like Ni 0.33 Co 0.67 Se microspheres delivered much higher power conversion efficiency (9.01%) than that of Pt catalyst (8.30%) under AM 1.5G irradiation.

  5. Bis(pentamethylcyclopentadienyl) ytterbium: Electron-transfer reactions with organotransition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, P.T.

    1991-11-01

    The divalent lanthanide complex, (Me{sub 5}C{sub 5}){sub 2}Yb, reacts with methylcopper to produce the base-free, ytterbium-methyl complex, (Me{sub 5}C{sub 5}){sub 2}YbMe. This product forms a asymmetric, methyl-bridged dimer in the solid state. The bulky alkyl complex, (Me{sub 5}C{sub 5}){sub 2}YbCH(SiMe{sub 3}){sub 2}, displays similar chemistry to (Me{sub 5}C{sub 5}){sub 2}YbMe, but at a reduced reaction rate due to the limited accessibility of the metal in (Me{sub 5}C{sub 5}){sub 2}YbCH(SiMe{sub 3}){sub 2}. Copper and silver halide salts react with (Me{sub 5}C{sub 5}){sub 2}V to produce the trivalent halide derivatives, (Me{sub 5}C{sub 5}){sub 2}VX (X + F, Cl, Br, I). The chloride complex, (Me{sub 5}C{sub 5}){sub 2}VCl, reacts with lithium reagents to form the phenyl and borohydride species. Nitrous oxide transfers an oxygen atom to (Me{sub 5}C{sub 5}){sub 2}V producing the vanadium-oxo complex, (Me{sub 5}Ce{sub 5}){sub 2}VO. The trivalent titanium species, (Me{sub 5}C{sub 5}){sub 2}TiX (X = Cl, Br, Me, BH{sub 4}), form bimetallic coordination complexes with (Me{sub 5}C{sub 5}){sub 2}Yb. The magnetic behavior of the products indicates that electron transfer has not occurred. The solid state structures of the chloride and bromide complexes show unusual bend angles for the halide bridges between ytterbium and titanium. A model based on frontier orbital theory has been proposed to account for the bending behavior in these species. The bimetallic methyl complex contains a linear methyl bridge between ytterbium and titanium.

  6. Polymerization of methyl methacrylate by diphenylamido bis (methylcyclopentadienyl) ytterbium complex

    Institute of Scientific and Technical Information of China (English)

    WANG, Yao-Rong(王耀荣); SHEN, Qi(沈琪); MA, Jia-Le(马家乐); ZHAO, Qun(赵群)

    2000-01-01

    Methyl methacrylate (MMA) was effectively polymerized by diphenylamido bis(methyicyclopentadienyl) ytterbium complex (MeCp)2YbNPh2(THF). Tne reaction can be carried out over a range of polymerization temperature from - 40℃ to 40℃ and gives the polyMMA with high molecular weights.The initiation mechanism was demonstrated by diphenylamidoterminated methyl methacrylate oligomer.

  7. Theory of two-magnon Raman scattering in alkaline iron selenide superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.S. [Department of Physics, Yanshan University, Qinhuangdao 006004 (China); Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan (China); Zhang, A.M. [Department of Physics, Renmin University of China, Beijing 100872 (China); Xu, T.F. [Department of Physics, Yanshan University, Qinhuangdao 006004 (China); Wu, W.C., E-mail: wu@phy.ntnu.edu.tw [Department of Physics, National Taiwan Normal University, Taipei 11677, Taiwan (China)

    2014-11-15

    Highlights: • Two-magnon Raman scattering is theoretically studied for alkaline iron selenides. • Underlying spin interactions of the √(5)×√(5) AF superstructure are investigated in details. • Optimal set of exchange parameters is revealed when fitting to experiments. - Abstract: Motivated by the recent experiment of two-magnon Raman scattering in alkaline iron selenide superconductors (Zhang et al., 2012), we investigate in details the underlying spin interactions of the √(5)×√(5) antiferromagnetic superstructure. Based on the linear spin wave approximation, the Fleury-London (FL) two-magnon Raman cross-sections are calculated. By comparing theoretical results with the Raman data in both A{sub g} and B{sub g} channels, an optimal set of exchange parameters which are consistent with the fitting to the neutron scattering data are obtained. It reveals that the experimentally observed broad and asymmetric peaks around 1600 cm{sup −1} are dominantly originated from quasiparticle excitations in two nearly degenerate magnon bands in the (0,±π) and (±π,0) directions. The result thus supports that the magnetic properties in alkaline iron selenide AFe{sub 1.6+x}Se{sub 6} superconductors can be basically described by the quantum spin model with up to third nearest-neighbor exchange couplings.

  8. Erbium–ytterbium fibre laser emitting more than 13 W of power in ...

    Indian Academy of Sciences (India)

    2014-01-05

    Jan 5, 2014 ... We report the work on erbium:ytterbium-doped double clad fibre laser (EYDFL), that is pumped at ... reduction in life-time. The active ... region. Figure 2 shows plot of output power vs. absorbed pump power (after accounting.

  9. Flashlamp pumped Ti-sapphire laser for ytterbium glass chirped pulse amplification

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, Akihiko; Ohzu, Akira; Sugiyama, Akira [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; and others

    1998-03-01

    A flashlamp pumped Ti:sapphire laser is designed for ytterbium glass chirped pulse amplification. A high quality Ti:sapphire rod and a high energy long pulse discharging power supply are key components. The primary step is to produce the output power of 10 J per pulse at 920 nm. (author)

  10. Modelling the competition between photo-darkening and photo-bleaching effects in high-power ytterbium-doped fibre amplifiers

    Science.gov (United States)

    Jolly, A.; Vinçont, C.; Pierre, Ch.; Boullet, J.

    2017-08-01

    We propose an innovative, fully space-time model to take into account the seed-dependent nature of ageing penalties in high-power ytterbium-doped fibre amplifiers. Ageing is shown to be based on the on-going competition between photo-darkening and photo-bleaching phenomena. Our approach is based on the natural interplay between the excited states of co-existing ytterbium pairs and colour centres in highly doped fibres, in the presence of thermal coupling between the closely spaced excited states. As initiated from IR photons, the excitation of colour centres up to the UV band is supposed to be governed by multi-photon absorption. The interactions of interest in the kinetics of photo-bleaching then take the form of highly efficient charge transfers, which imply the reduction of some fraction of the basically trivalent ions to their divalent state. Due to the activation of ytterbium pairs by means of energy transfer up-conversion, these interactions get more and more effective at elevated operating powers. Computational results using these principles actually help to fit our experimental data regarding seeding effects, as well as fully generic trends already evidenced in the literature. This gives a fine demonstration for the need to discriminate co-active pump and signal contributions. Our self-consistent, still simplified model then consists of a valuable tool to help for a deeper understanding of the ageing issues. Furthermore, considering higher-order ytterbium aggregates, this should open new routes towards more comprehensive models.

  11. Synthesis of samarium, europium and ytterbium acetylenides

    International Nuclear Information System (INIS)

    Bochkarev, M.N.; Fedorova, E.A.; Glushkova, N.V.; Protchenko, A.V.; Druzhkov , O.N.; Khorshev, S.Ya.

    1995-01-01

    Ethynyl complexes of samarium, europium and ytterbium were prepared by interaction of naphthalinides of metals with acetylene in tetrahydrofuran. The compounds are isolated in the form of dark-coloured pyrophore powders. Data of magnetic measurements suggest that in the course of the reaction Sm(2) is oxidized completely to Sm(3), Yb(2) transforms into Yb(3) partially, whereas europium preserves its initial bivalent state. Hydrolysis of the compounds prepared provides acetylene, ethylene, ethane and hydrogen which indicates the presence of acethylenide Ln 2 C 2 and hydride LnH groupings (Ln = Sm, Eu, Yb). 9 refs., 2 tabs

  12. Reverse spontaneous laser line sweeping in ytterbium fiber laser

    Czech Academy of Sciences Publication Activity Database

    Navrátil, Petr; Peterka, Pavel; Honzátko, Pavel; Kubeček, V.

    2017-01-01

    Roč. 14, č. 3 (2017), č. článku 035102. ISSN 1612-2011 R&D Projects: GA ČR(CZ) GA16-13306S Institutional support: RVO:67985882 ; RVO:68378271 Keywords : laser line sweeping * ytterbium * fiber lasers Subject RIV: BH - Optics, Masers, Lasers; BH - Optics, Masers, Lasers (FZU-D) OBOR OECD: Optics (including laser optics and quantum optics); Optics (including laser optics and quantum optics) (FZU-D) Impact factor: 2.537, year: 2016

  13. Peroxidase-like activity of nanocrystalline cobalt selenide and its application for uric acid detection

    Directory of Open Access Journals (Sweden)

    Zhuang QQ

    2017-04-01

    Full Text Available Quan-Quan Zhuang,1 Zhi-Hang Lin,1 Yan-Cheng Jiang,1 Hao-Hua Deng,2 Shao-Bin He,1,3 Li-Ting Su,4 Xiao-Qiong Shi,2 Wei Chen2 1Department of Pharmacy, Affiliated Quanzhou First Hospital of Fujian Medical University, Quanzhou, 2Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou, 3Department of Pharmacy, Quanzhou Infectious Disease Hospital, 4Department of Pharmaceutical Analysis, Quanzhou Medical College, Quanzhou, People’s Republic of China Abstract: Dendrite-like cobalt selenide nanostructures were synthesized from cobalt and selenium powder precursors by a solvothermal method in anhydrous ethylenediamine. The as-prepared nanocrystalline cobalt selenide was found to possess peroxidase-like activity that could catalyze the reaction of peroxidase substrates in the presence of H2O2. A spectrophotometric method for uric acid (UA determination was developed based on the nanocrystalline cobalt selenide-catalyzed coupling reaction between N-ethyl-N-(3-sulfopropyl-3-methylaniline sodium salt and 4-aminoantipyrine (4-AAP in the presence of H2O2. Under optimum conditions, the absorbance was proportional to the concentration of UA over the range of 2.0–40 µM with a detection limit of 0.5 µM. The applicability of the proposed method has been validated by determination of UA in human serum samples with satisfactory results. Keywords: enzyme mimics, cobalt selenide, peroxidase-like activity, uric acid, human serum

  14. Beyond-Born-Oppenheimer effects in sub-kHz-precision photoassociation spectroscopy of ytterbium atoms

    Science.gov (United States)

    Borkowski, Mateusz; Buchachenko, Alexei A.; Ciuryło, Roman; Julienne, Paul S.; Yamada, Hirotaka; Kikuchi, Yuu; Takahashi, Kakeru; Takasu, Yosuke; Takahashi, Yoshiro

    2017-12-01

    We present high-resolution two-color photoassociation spectroscopy of Bose-Einstein condensates of ytterbium atoms. The use of narrow Raman resonances and careful examination of systematic shifts enabled us to measure 13 bound-state energies for three isotopologues of the ground-state ytterbium molecule with standard uncertainties of the order of 500 Hz. The atomic interactions are modeled using an ab initio based mass-scaled Born-Oppenheimer potential whose long-range van der Waals parameters and total WKB phase are fitted to experimental data. We find that the quality of the fit of this model, of about 112.9 kHz (rms) can be significantly improved by adding the recently calculated beyond-Born-Oppenheimer (BBO) adiabatic corrections [J. J. Lutz and J. M. Hutson, J. Mol. Spectrosc. 330, 43 (2016), 10.1016/j.jms.2016.08.007] and by partially treating the nonadiabatic effects using distance-dependent reduced masses. Our BBO interaction model represents the experimental data to within about 30.2 kHz on average, which is 3.7 times better than the "reference" Born-Oppenheimer model. We calculate the s -wave scattering lengths for bosonic isotopic pairs of ytterbium atoms with error bars over two orders of magnitude smaller than previous determinations. For example, the s -wave scattering length for 174Yb is +5.55812 (50 ) nm.

  15. Bis(pentamethylcyclopentadienyl) ytterbium: Electron-transfer reactions with organotransition metal complexes

    Energy Technology Data Exchange (ETDEWEB)

    Matsunaga, Phillip Thomas [Univ. of California, Berkeley, CA (United States)

    1991-11-01

    The divalent lanthanide complex, (Me5C5)2Yb, reacts with methylcopper to produce the base-free, ytterbium-methyl complex, (Me5C5)2YbMe. This product forms a asymmetric, methyl-bridged dimer in the solid state. The bulky alkyl complex, (Me5C5)2YbCH(SiMe3)2, displays similar chemistry to (Me5C5)2YbMe, but at a reduced reaction rate due to the limited accessibility of the metal in (Me5C5)3YbCH(SiMe5)2. Copper and silver halide salts react with (Me5C5)2V to produce the trivalent halide derivatives, (Me5C5)2VX (X + F, Cl, Br, I). The chloride complex, (Me5C5)2VCl, reacts with lithium reagents to form the phenyl and borohydride species. Nitrous oxide transfers an oxygen atom to (Me5C5)2V producing the vanadium-oxo complex, (Me5Ce5)2VO. The trivalent titanium species, (Me5C5)2TiX (X = Cl, Br, Me, BH4), form bimetallic coordination complexes with (Me5C5)2Yb. The magnetic behavior of the products indicates that electron transfer has not occurred. The solid state structures of the chloride and bromide complexes show unusual bend angles for the halide bridges between ytterbium and titanium. A model based on frontier orbital theory has been proposed to account for the bending behavior in these species. The bimetallic methyl complex contains a linear methyl bridge between ytterbium and titanium.

  16. Separation of thulium, ytterbium and lutetium from uranium

    International Nuclear Information System (INIS)

    Lopez, G.H.

    1987-01-01

    The behaviour at different temperatures, shaking times and hydrochloric acid concentrations on the solvent extraction system UO 2 2+ - (Tm 3+ , Yb 3+ , Lu 3+ ) - H 2 O - HCl - TBP was studied. Quantitative determinations of the elements were performed by visible spectrophotometry and X-ray fluorescence. The uranyl ion was efficiently extracted by TBP from an aqueous hydrochloric acid solution (4-7M) shaken during 10 minutes at room temperature. On these conditions the separation factors for uranium from thulium and ytterbium were found to be 3000 and from lutetium 140. (author)

  17. Synthesis, structure, and thermal properties of soluble hydrazinium germanium(IV) and tin(IV) selenide salts.

    Science.gov (United States)

    Mitzi, David B

    2005-05-16

    The crystal structures of two hydrazinium-based germanium(IV) and tin(IV) selenide salts are determined. (N(2)H(5))(4)Ge(2)Se(6) (1) [I4(1)cd, a = 12.708(1) Angstroms, c = 21.955(2) Angstroms, Z = 8] and (N(2)H(4))(3)(N(2)H(5))(4)Sn(2)Se(6) (2) [P, a = 6.6475(6) Angstroms, b = 9.5474(9) Angstroms, c = 9.8830(10) Angstroms, alpha = 94.110(2) degrees, beta = 99.429(2) degrees, gamma = 104.141(2) degrees, Z = 1] each consist of anionic dimers of edge-sharing metal selenide tetrahedra, M(2)Se(6)(4-) (M = Ge or Sn), separated by hydrazinium cations and, for 2, additional neutral hydrazine molecules. Substantial hydrogen bonding exists among the hydrazine/hydrazinium molecules as well as between the hydrazinium cations and the selenide anions. Whereas the previously reported tin(IV) sulfide system, (N(2)H(5))(4)Sn(2)S(6), decomposes cleanly to microcrystalline SnS(2) when heated to 200 degrees C in an inert atmosphere, higher temperatures (>300 degrees C) are required to dissociate selenium from 1 and 2 for the analogous preparations of single-phase metal selenides. The metal chalcogenide salts are highly soluble in hydrazine, as well as in a variety of amines and DMSO, highlighting the potential usefulness of these compounds as precursors for the solution deposition of the corresponding metal chalcogenide films.

  18. Size-dependent abnormal thermo-enhanced luminescence of ytterbium-doped nanoparticles.

    Science.gov (United States)

    Cui, Xiangshui; Cheng, Yao; Lin, Hang; Huang, Feng; Wu, Qingping; Wang, Yuansheng

    2017-09-21

    Thermal quenching above 300 K is widely expected in photoluminescence. Luminescence quenching is usually ascribed to the non-radiative relaxation of excited electrons to the ground state of the activators, during which a high temperature always plays a role in pushing the excited electrons towards the quenching channels, leading to thermal quenching. For the lanthanide-doped nanoparticles, however, there is a special luminescence quenching channel that does not exist in their bulk counterparts, i.e., energy migration-induced surface quenching. Herein, a size-dependent abnormal thermal enhancement of luminescence in the temperature range of 300 K to 423 K in the ytterbium-doped fluoride nanoparticles is presented for the first time. Importantly, in this work, we originally demonstrate that the energy migration-induced surface quenching can be suppressed by increasing temperature, which results in the abnormal thermal enhancement of luminescence. According to the temperature-dependent X-ray diffraction and lifetime analyses, an underlying mechanism based on the effect of thermal lattice expansion on ytterbium-mediated energy migration is proposed. This new finding adds new insights to the size effect on the luminescent characteristics of nanoparticles, which could be utilized to construct some unique nanostructures, especially for many important temperature-related purposes, such as thermal sensing technology.

  19. The three-electron bond =Siytterbium-doped silica

    DEFF Research Database (Denmark)

    Mattsson, Kent Erik

    2013-01-01

    The formation and bleaching of color centers during annealing of pre-darkened ytterbium-doped silica fibers is modeled by three-electron bond (TEB) = Si... bonds is described in terms of a Markov statistical model with state change set by Bose-Einstein phonon statistics. The center hold one terminal and four active states with activation energies for transitions among these found to match bond energies of molecular oxygen in ionic character bonds of 1...... and 1½ bond order. Experimentally observed in- and decrease in absorption during ramp and isothermal annealing of pre-darkened ytterbium co-doped silica fibers are hereby matched by a set of = Si

  20. Hybrid Ytterbium-doped large-mode-area photonic crystal fiber amplifier for long wavelengths

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas T.; Poli, Federica

    2012-01-01

    A large-mode-area Ytterbium-doped photonic crystal fiber amplifier with build-in gain shaping is presented. The fiber cladding consists of a hexagonal lattice of air holes, where three rows are replaced with circular high-index inclusions. Seven missing air holes define the large-mode-area core. ...

  1. Coulometric titration at low temperatures-nonstoichiometric silver selenide

    OpenAIRE

    Beck, Gesa K.; Janek, Jürgen

    2003-01-01

    A modified coulometric titration technique is described for the investigation of nonstoichiometric phases at low temperatures. It allows to obtain titration curves at temperatures where the conventional coulometric titration technique fails because of too small chemical diffusion coefficients of the mobile component. This method for indirect coulometric titration is applied to silver selenide between -100 and 100 °C. The titration curves are analyzed on the basis of a defect chemical model an...

  2. Charge-transfer state excitation as the main mechanism of the photodarkening process in ytterbium-doped aluminosilicate fibres

    Energy Technology Data Exchange (ETDEWEB)

    Bobkov, K K; Rybaltovsky, A A; Vel' miskin, V V; Likhachev, M E; Bubnov, M M; Dianov, E M [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation); Umnikov, A A; Gur' yanov, A N; Vechkanov, N N [G.G.Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation); Shestakova, I A [Open Joint-Stock Company M.F. Stel' makh Polyus Research Institute, Moscow (Russian Federation)

    2014-12-31

    We have studied photodarkening in ytterbium-doped fibre preforms with an aluminosilicate glass core. Analysis of their absorption and luminescence spectra indicates the formation of stable Yb{sup 2+} ions in the glass network under IR laser pumping at a wavelength λ = 915 nm and under UV irradiation with an excimer laser (λ = 193 nm). We have performed comparative studies of the luminescence spectra of the preforms and crystals under excitation at a wavelength of 193 nm. The mechanism behind the formation of Yb{sup 2+} ions and aluminium – oxygen hole centres (Al-OHCs), common to ytterbium-doped YAG crystals and aluminosilicate glass, has been identified: photoinduced Yb{sup 3+} charge-transfer state excitation. (optical fibres)

  3. Selenide-Based Electrocatalysts and Scaffolds for Water Oxidation Applications

    KAUST Repository

    Xia, Chuan; Jiang, Qiu; Zhao, Chao; Hedhili, Mohamed N.; Alshareef, Husam N.

    2015-01-01

    Selenide-based electrocatalysts and scaffolds on carbon cloth are successfully fabricated and demonstrated for enhanced water oxidation applications. A max­imum current density of 97.5 mA cm−2 at an overpotential of a mere 300 mV and a small Tafel slope of 77 mV dec−1 are achieved, suggesting the potential of these materials to serve as advanced oxygen evolution reaction catalysts.

  4. Selenide-Based Electrocatalysts and Scaffolds for Water Oxidation Applications

    KAUST Repository

    Xia, Chuan

    2015-11-05

    Selenide-based electrocatalysts and scaffolds on carbon cloth are successfully fabricated and demonstrated for enhanced water oxidation applications. A max­imum current density of 97.5 mA cm−2 at an overpotential of a mere 300 mV and a small Tafel slope of 77 mV dec−1 are achieved, suggesting the potential of these materials to serve as advanced oxygen evolution reaction catalysts.

  5. Towards diode-pumped mid-infrared praseodymium-ytterbium-doped fluoride fiber lasers

    Science.gov (United States)

    Woodward, R. I.; Hudson, D. D.; Jackson, S. D.

    2018-02-01

    We explore the potential of a new mid-infrared laser transition in praseodymium-doped fluoride fiber for emission around 3.4 μm, which can be conveniently pumped by 0.975 μm diodes via ytterbium sensitizer co-doping. Optimal cavity designs are determined through spectroscopic measurements and numerical modeling, suggesting that practical diode-pumped watt-level mid-infrared fiber sources beyond 3 μm could be achieved.

  6. Hydrothermal synthesis and characterization of sea urchin-like nickel and cobalt selenides nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Liu Xiaohe [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China) and School of Metallurgical Science and Engineering, Central South University, Changsha, Hunan 410083 (China)]. E-mail: liuxh@mail.csu.edu.cn; Zhang Ning [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China); Yi Ran [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China); Qiu Guanzhou [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China); Yan Aiguo [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China); Wu Hongyi [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China); Meng Dapeng [Department of Inorganic Materials, Central South University, Changsha, Hunan 410083 (China); Tang, Motang [School of Metallurgical Science and Engineering, Central South University, Changsha, Hunan 410083 (China)

    2007-05-25

    Sea urchin-like nanorod-based nickel and cobalt selenides nanocrystals have been selective synthesized via a hydrothermal reduction route in which hydrated nickel chloride and hydrated cobalt chloride were employed to supply Ni and Co source and aqueous hydrazine (N{sub 2}H{sub 4}.H{sub 2}O) was used as reducing agent. The composition, morphology, and structure of final products could be easily controlled by adjusting the molar ratios of reactants and process parameters such as hydrothermal time. The morphology and phase structure of the final products have been investigated by X-ray diffraction, transmission electron microscopy, and scanning electron microscopy. The probable formation mechanism of the sea urchin-like nanorod-based nickel and cobalt selenides nanocrystals was discussed on the basis of the experimental results.

  7. Double nanosecond pulses generation in ytterbium fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Veiko, V. P.; Samokhvalov, A. A., E-mail: samokhvalov.itmo@gmail.com; Yakovlev, E. B.; Zhitenev, I. Yu.; Kliushin, A. N. [Saint-Petersburg State University of Information Technologies, Mechanics and Optics, Kronverksky Pr. 49, Saint Petersburg (Russian Federation); Lednev, V. N. [Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str., 38, Moscow (Russian Federation); National University of Science and Technology MISiS, Leninskyave., 4, Moscow (Russian Federation); Pershin, S. M. [Prokhorov General Physics Institute of the Russian Academy of Sciences, Vavilov Str., 38, Moscow (Russian Federation)

    2016-06-15

    Double pulse generation mode for nanosecond ytterbium fiber laser was developed. Two sequential 60-200 ns laser pulses with variable delay between them were generated by acousto-optic modulator opening with continuous diode pumping. A custom radio frequency generator was developed to produce two sequential “opening” radio pulses with a delay of 0.2–1 μs. It was demonstrated that double pulse generation did not decrease the average laser power while providing the control over the laser pulse power profile. Surprisingly, a greater peak power in the double pulse mode was observed for the second laser pulse. Laser crater studies and plasma emission measurements revealed an improved efficiency of laser ablation in the double pulse mode.

  8. Cladding-pumped ytterbium-doped fiber laser with radially polarized output.

    Science.gov (United States)

    Lin, Di; Daniel, J M O; Gecevičius, M; Beresna, M; Kazansky, P G; Clarkson, W A

    2014-09-15

    A simple technique for directly generating a radially polarized output beam from a cladding-pumped ytterbium-doped fiber laser is reported. Our approach is based on the use of a nanograting spatially variant waveplate as an intracavity polarization-controlling element. The laser yielded ~32 W of output power (limited by available pump power) with a radially polarized TM (01)-mode output beam at 1040 nm with a corresponding slope efficiency of 66% and a polarization purity of 95%. The beam-propagation factor (M(2)) was measured to be ~1.9-2.1.

  9. The bulk modulus of cubic spinel selenides: an experimental and theoretical study

    DEFF Research Database (Denmark)

    Waskowska, A.; Gerward, Leif; Olsen, J.S.

    2009-01-01

    It is argued that mainly the selenium sublattice determines the overall compressibility of the cubic spinel selenides, AB2Se4, and that the bulk modulus for these compounds is about 100GPa. The hypothesis is supported by experiments using high-pressure X-ray diffraction and synchrotron radiation...

  10. Alloying of Yb-Cu and Yb-Ag utilizing liquid ammonia metal solutions of ytterbium

    International Nuclear Information System (INIS)

    Imamura, H.; Yoshimura, T.; Sakata, Y.

    2003-01-01

    In the course of the studies on preparation of novel compounds using the dissolution of Eu or Yb metals in liquid ammonia, the formation of Yb-Cu and Yb-Ag intermetallic films has been found. When Cu or Ag metal powders were placed in a reactor containing a solution of Yb metal in liquid ammonia, the dissolved Yb readily react with the Cu or Ag metal particles to form surface alloy compounds. X-ray diffraction of Yb-Cu showed that upon thermal treatment above 673 K, the Yb metal deposited on the Cu particles reacted together to be transformed into the YbCu 6.5 intermetallic compound. A characteristic endothermic peak at 749 K, due to alloying of Yb-Cu, was observed by the differential scanning calorimeter measurements. By use of the high reactivity of liquid ammonia metal solutions of ytterbium, it was found that the ytterbium intermetallic films were readily formed under mild conditions. Yb-Cu and Yb-Ag exhibited enhanced catalytic activity for the hydrogenation of ethene as a result of alloying

  11. Extinction in an extended-face crystal of zinc selenide

    International Nuclear Information System (INIS)

    Stevenson, A.W.; Barnea, Z.

    1982-01-01

    X-ray intensity measurements from an extended-face single crystal of cubic zinc selenide obtained by McIntyre, Moss and Barnea (1980) have been re-analysed with a view to explaining the unresolved discrepancies between theory and experiment present in the original analysis of the most severely extinguished reflections. The results are shown to complement the recent findings of a wavelength dependent study using the same crystal specimen and foreshadow the need to allow for the presence of the Borrmann effect

  12. The incorporation of selenium and ytterbium into the eyes of mice

    International Nuclear Information System (INIS)

    Samochocka, K.; Czauderna, M.; Konecki, J.; Wolna, M.

    1984-01-01

    The incorporation of Se and Yb into the eyes of mice has been studied. Selenodiglutathione, (GS) 2 Se, or ytterbium chloride, YbCl 3 , were injected intraperitoneally into mice: either alone, combined, or after various time intervals. Instrumental neutron activation analysis was applied as the analytical method for the determination of the levels of Se and Yb. The concentrations of both investigated elements were highest in the retinal tissue of the eye. YbCl 3 influenced the distribution of Se in the eye. (author)

  13. Transverse mode instability in high-power ytterbium doped fiber ampliers

    DEFF Research Database (Denmark)

    Hansen, Kristian Rymann

    The last couple of decades have brought an impressive growth in the output power of rare-earth doped fiber lasers and amplifiers, reaching the kW average power regime in both CW and pulsed systems. As a result, even though fiber lasers have excellent heat dissipation properties, thermal effects due...... is to provide a theoretical understanding of the thermo-optical effects in high-power ytterbium doped fiber amplifiers, with a particular emphasis on understanding the aforementioned mode instability issue. Two main approaches to the problem have been used. The first is the development of a numerical model...

  14. Single-mode ytterbium-doped large-mode-area photonic bandgap rod fiber amplifier

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Scolari, Lara; Broeng, Jes

    2011-01-01

    bandgap structure. The structure allows resonant coupling of higher-order modes from the core and acts as a spatially Distributed Mode Filter (DMF). With this approach, we demonstrate passive SM performance in an only ~50cm long and straight ytterbium-doped rod fiber. The amplifier has a mode field...... diameter of ∼59Lim at 1064nm and exhibits a pump absorption of 27dB/m at 976nm. © 2011 Optical Society of America....

  15. Cross sections for fast-neutron interaction with ytterbium isotopes

    International Nuclear Information System (INIS)

    Luo, Junhua; Liu, Rong; Jiang, Li; Ge, Suhong; Liu, Zhenlai; Sun, Guihua

    2013-01-01

    Highlights: ► The cross sections for the (n,x) reactions on ytterbium isotopes have been measured. ► Mono-energetic neutron beams using the D + T reaction; Energies: 13.5 and 14.8 MeV. ► Neutron cross-section measurements by means of the activation technique. ► Reference reactions 93 Nb(n,2n) 92m Nb and 27 (n,α) 24 Na. ► Data for 172 Yb(n,p) 172 Tm and 176 Yb(n,d * ) 175 Tm are reported for the first time. - Abstract: Measurements of (n,2n), (n,p), and (n,d * ) (The expression (n,d * ) cross section used in this work includes a sum of (n,d), (n,np) and (n,pn) cross sections.) reaction cross-sections on ytterbium isotopes have been carried out in the range of 13.5–14.8 MeV using the activation technique. The monoenergetic neutron beams were produced via the 3 H(d,n) 3 He reaction. The neutron energies of different directions were determined using the Nb/Zr method. Samples were activated along with along with Nb and Al monitor foils to determine the incident neutron flux. Data are reported for the following reactions: 168 Yb(n,2n) 167 Yb, 170 Yb(n,2n) 169m+g Yb, 176 Yb(n,2n) 175m+g Yb, 172 Yb(n,p) 172 Tm, 173 Yb(n,p) 173 Tm, 176 Yb(n,d * ) 175 Tm, 174 Yb(n,p) 174 Tm, and 176 Yb(n,p) 176 Tm. The experimentally deduced cross-sections are compared with the existing experimental data. Furthermore, theoretical statistical model, based on the Hauser–Feshbach formalism, have been carried out using the HFTT

  16. A simple and effective approach to the synthesis of alkynyl selenides from terminal alkynes

    Institute of Scientific and Technical Information of China (English)

    Barahman Movassagh; Mozhgan Navidi

    2012-01-01

    Alkynyl selenides were prepared under very mild conditions by reacting terminal alkynes with respective diorganic diselenides in the presence of potassium t-butoxide.The advantages of this protocol include the use of readily available substrates and reagent and good yield of the products.

  17. Ytterbium-doped large-mode-area photonic crystal fiber amplifier with gain shaping for use at long wavelengths

    DEFF Research Database (Denmark)

    Petersen, Sidsel Rübner; Alkeskjold, Thomas T.; Poli, Federica

    2012-01-01

    A large-mode-area Ytterbium-doped photonic crystal fiber amplifier with efficient suppression of amplified spontaneous emission is presented. The fiber cladding consists of a hexagonal lattice of air holes, where three rows are replaced with circular high-index inclusions. Seven missing air holes...

  18. Electronic band structure and optical properties of antimony selenide under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Abhijit, B.K.; Jayaraman, Aditya; Molli, Muralikrishna, E-mail: muralikrishnamolli@sssihl.edu.in [Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthinilayam, 515 134 (India)

    2016-05-23

    In this work we present the optical properties of Antimony Selenide (Sb{sub 2}Se{sub 3}) under ambient conditions and under pressure of 9.2 GPa obtained using first principles calculations. We investigated the electronic band structure using the FP-LAPW method within the sphere of the density functional theory. Optical properties like refractive index, absorption coefficient and optical conductivity are calculated using the WIEN2k code.

  19. 32-core erbium/ytterbium-doped multicore fiber amplifier for next generation space-division multiplexed transmission system

    DEFF Research Database (Denmark)

    Jain, Saurabh; Castro, Carlos; Jung, Yongmin

    2017-01-01

    We present a high-core-count 32-core multicore erbium/ytterbium-doped fiber amplifier (32c-MC-EYDFA) in a cladding pumped configuration. A side pumping technique is employed for ease of pump coupling in this monolithic all-fiber amplifier. A minimum gain of >17 dB and an average noise figure (NF)...

  20. Adsorption and gas-chromatographic properties of tungsten selenide

    International Nuclear Information System (INIS)

    Gavrilova, T.B.; Kiselev, A.V.; Roshchina, T.M.

    1988-01-01

    Method of gas chromatography was used to investigate the surface properties of a series of tungsten selenide WSe 2 samples as well as to determine the role of geometrical and electronic structure of adsorbate molecules and their orientation with respect to the surface during adsorption on WSe 2 . Thermodynamic characteristics of hydrocarbon C 6 -C 10 adsorption at surface occupation close to the zero one were determined. Correlation of the values of thermodynamic characteristics of saturated and aromatic hydrocarbon adsorption enabled to refer WSe 2 to nonspecific adsorbents. It is noted that the main role during hydrocarbon adsorption on WSe 2 is played by nonpolar basic facets, occupied by selenium atoms

  1. The solvent extraction of ytterbium from a molten eutectic

    International Nuclear Information System (INIS)

    Lengyel, T.

    1977-01-01

    The paper summarizes the results which were obtained in measurements performed with different binary mixtures of solvents being capable of effectively extracting ytterbium from the molten eutectic lithium nitrate--ammonium nitrate. In the course of elaborating the possible ways of extractive separation of rare earths systematic investigations regarding the individual members of the group are required. The binary solvent mixtures consisted of thenoyl-trifluoracetone (TTA), β-isopropil-tropolone (IPT), tributyl phosphate (TBP), di-2-ethylhexyl phosphoric acid (HDEHP), 2,2'-bipyridyl (bipy), dibutyl phtalate (DBP) and Amberlite LA-2 (LA-2). The concentration of the central ion was kept at 5x10 -6 M by using Yb-169 of high specific activity as a tracer for the radiometric assay. (T.I.)

  2. Two-photon Doppler cooling of alkaline-earth-metal and ytterbium atoms

    International Nuclear Information System (INIS)

    Magno, Wictor C.; Cavasso Filho, Reinaldo L.; Cruz, Flavio C.

    2003-01-01

    The possibility of laser cooling of alkaline-earth-metal atoms and ytterbium atoms using a two-photon transition is analyzed. We consider a 1 S 0 - 1 S 0 transition with excitation in near resonance with the 1 P 1 level. This greatly increases the two-photon transition rate, allowing an effective transfer of momentum. The experimental implementation of this technique is discussed and we show that for calcium, for example, two-photon cooling can be used to achieve a Doppler limit of 123 μK. The efficiency of this cooling scheme and the main loss mechanisms are analyzed

  3. Compatibility of Pt-3008 with selected components of the selenide isotope generator system

    International Nuclear Information System (INIS)

    Keiser, J.R.

    1979-04-01

    The first in a new generation of radioisotopic thermoelectric generators being built by Teledyne Energy Systems and designated the Selenide Isotope Generator has thermoelectric materials that can be degraded by reaction with O 2 , H 2 O, CO, and other gases. Consequently, for at least the first ground demonstration system a protective xenon atmosphere will be maintained over the thermoelectrics. The high-temperature portion of the atmosphere-retaining structure will be fabricated from the alloy Pt-3008 (Pt--30 wt % Rh--8 wt % W), which was developed at Oak Ridge National Laboratory. For this application Pt-3008 must be compatible with the various insulations and thermoelectric materials. A study of the compatibility of Pt-3008 with these materials and showed that Pt-3008 was embrittled after exposure to some of the insulations that were not adequately outgassed and by one of the thermoelectric materials (Cu 2 Se) in some of the isothermal tests. It is believed that Pt-3008 will be compatible with the Selenide Isotope Generator materials when they are well outgassed and under the temperature gradient conditions of the operating system

  4. Experimental study of a Q-switched ytterbium-doped double-clad fiber laser

    International Nuclear Information System (INIS)

    Anzueto S, G.; Estudillo A, M.; Martinez R, A.; Torres G, I.; Selvas A, R.

    2008-01-01

    We report an experimental characterization of a Q-switched operation of an all-fiber laser using , 30 m of a double-clad ytterbium-doped fiber spliced to a piece of single-mode un-doped holey fiber. Loss modulation in the splicing point between the active and un-doped fiber due to a substantial coupling of light into lossy cladding modes stimulates pulsed operation of the fiber laser. Pulse energy of ∼2.5 μJ was estimated and the repetition rate was measured in the range of 4-16 KHz. (Author)

  5. Studies on Ytterbium-doped Fibre Laser Operating in Different Regimes

    International Nuclear Information System (INIS)

    Gan, Y; Xiang, W H; Zhang, G Z

    2006-01-01

    An ytterbium-doped fibre laser with a unidirectional ring cavity containing a polarizer placed between two in-line polarization controllers is presented. Depending on an equivalent saturable absorber, this laser operates in continuous, Q-switched mode-locked or CW mode-locked regimes. The passive method described here allowed us to choose the operating regime of the fibre laser by rotating the two polarization controllers and adjusting the pump power. Results of numerical simulations of pulse propagation in such a mode-locked fibre ring laser are presented, which reveals that the Q-switched mode-locked or CW modelocked regimes can be achieved by aligning the polarizer near the slow or the fast axes of the fibre

  6. Determination of dimethyl selenide and dimethyl sulphide compounds causing off-flavours in bottled mineral waters.

    Science.gov (United States)

    Guadayol, Marta; Cortina, Montserrat; Guadayol, Josep M; Caixach, Josep

    2016-04-01

    Sales of bottled drinking water have shown a large growth during the last two decades due to the general belief that this kind of water is healthier, its flavour is better and its consumption risk is lower than that of tap water. Due to the previous points, consumers are more demanding with bottled mineral water, especially when dealing with its organoleptic properties, like taste and odour. This work studies the compounds that can generate obnoxious smells, and that consumers have described like swampy, rotten eggs, sulphurous, cooked vegetable or cabbage. Closed loop stripping analysis (CLSA) has been used as a pre-concentration method for the analysis of off-flavour compounds in water followed by identification and quantification by means of GC-MS. Several bottled water with the aforementioned smells showed the presence of volatile dimethyl selenides and dimethyl sulphides, whose concentrations ranged, respectively, from 4 to 20 ng/L and from 1 to 63 ng/L. The low odour threshold concentrations (OTCs) of both organic selenide and sulphide derivatives prove that several objectionable odours in bottled waters arise from them. Microbial loads inherent to water sources, along with some critical conditions in water processing, could contribute to the formation of these compounds. There are few studies about volatile organic compounds in bottled drinking water and, at the best of our knowledge, this is the first study reporting the presence of dimethyl selenides and dimethyl sulphides causing odour problems in bottled waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Depression-like behavior and mechanical allodynia are reduced by bis selenide treatment in mice with chronic constriction injury: a comparison with fluoxetine, amitriptyline, and bupropion.

    Science.gov (United States)

    Jesse, Cristiano R; Wilhelm, Ethel A; Nogueira, Cristina W

    2010-12-01

    Neuropathic pain is associated with significant co-morbidities, including depression, which impact considerably on the overall patient experience. Pain co-morbidity symptoms are rarely assessed in animal models of neuropathic pain. Neuropathic pain is characterized by hyperexcitability within nociceptive pathways and remains difficult to treat with standard analgesics. The present study determined the effect of bis selenide and conventional antidepressants (fluoxetine, amitriptyline, and bupropion) on neuropathic pain using mechanical allodynic and on depressive-like behavior. Male mice were subjected to chronic constriction injury (CCI) or sham surgery and were assessed on day 14 after operation. Mice received oral treatment with bis selenide (1-5 mg/kg), fluoxetine, amitriptyline, or bupropion (10-30 mg/kg). The response frequency to mechanical allodynia in mice was measured with von Frey hairs. Mice were evaluated in the forced swimming test (FST) test for depression-like behavior. The CCI procedure produced mechanical allodynia and increased depressive-like behavior in the FST. All of the drugs produced antiallodynic effects in CCI mice and produced antidepressant effects in control mice without altering locomotor activity. In CCI animals, however, only the amitriptyline and bis selenide treatments significantly reduced immobility in the FST. These data demonstrate an important dissociation between the antiallodynic and antidepressant effects in mice when tested in a model of neuropathic pain. Depressive behavior in CCI mice was reversed by bis selenide and amitriptyline but not by the conventional antidepressants fluoxetine and buproprion. Bis selenide was more potent than the other drugs tested for antidepressant-like and antiallodynic effects in mice.

  8. Modulation Transfer Spectroscopy of Ytterbium Atoms in a Hollow Cathode Lamp

    International Nuclear Information System (INIS)

    Wang Wen-Li; Xu Xin-Ye

    2011-01-01

    We present the experimental study of modulation transfer spectroscopy of ytterbium atoms in a hollow cathode lamp. The dependences of its linewidth, slope and magnitude on the various experimental parameters are measured and fitted by the well-known theoretical expressions. The experimental results are in good agreement with the theoretical prediction. We have observed the Dicke narrowing effect by increasing the current of the hollow cathode lamp. It is also found that there are the optimal current and laser power to generate the better modulation transfer spectroscopy signal, which can be employed for locking the laser frequency to the atomic transition. (atomic and molecular physics)

  9. Chemical Potential Tuning and Enhancement of Thermoelectric Properties in Indium Selenides.

    Science.gov (United States)

    Rhyee, Jong-Soo; Kim, Jin Hee

    2015-03-20

    Researchers have long been searching for the materials to enhance thermoelectric performance in terms of nano scale approach in order to realize phonon-glass-electron-crystal and quantum confinement effects. Peierls distortion can be a pathway to enhance thermoelectric figure-of-merit ZT by employing natural nano-wire-like electronic and thermal transport. The phonon-softening known as Kohn anomaly, and Peierls lattice distortion decrease phonon energy and increase phonon scattering, respectively, and, as a result, they lower thermal conductivity. The quasi-one-dimensional electrical transport from anisotropic band structure ensures high Seebeck coefficient in Indium Selenide. The routes for high ZT materials development of In₄Se₃ - δ are discussed from quasi-one-dimensional property and electronic band structure calculation to materials synthesis, crystal growth, and their thermoelectric properties investigations. The thermoelectric properties of In₄Se₃ - δ can be enhanced by electron doping, as suggested from the Boltzmann transport calculation. Regarding the enhancement of chemical potential, the chlorine doped In₄Se₃ - δ Cl 0.03 compound exhibits high ZT over a wide temperature range and shows state-of-the-art thermoelectric performance of ZT = 1.53 at 450 °C as an n -type material. It was proven that multiple elements doping can enhance chemical potential further. Here, we discuss the recent progress on the enhancement of thermoelectric properties in Indium Selenides by increasing chemical potential.

  10. Asymmetric supercapacitors with metal-like ternary selenides and porous graphene electrodes

    KAUST Repository

    Xia, Chuan

    2016-04-14

    Asymmetric supercapacitors provide a promising approach to fabricate capacitive energy storage devices with high energy and power densities. In this work, asymmetric supercapacitors with excellent performance have been fabricated using ternary (Ni, Co)0.85Se on carbon fabric as bind-free positive electrode and porous free-standing graphene films as negative electrode. Owing to their metal-like conductivity (~1.67×106 S m−1), significant electrochemical activity, and superhydrophilic nature, our nanostructured ternary nickel cobalt selenides result in a much higher areal capacitance (2.33 F cm−2 at 4 mA cm−2), better rate performance and cycling stability than their binary selenide equivalents, and other ternary oxides and chalcogenides. Those hybrid supercapacitors can afford impressive areal capacitance and stack capacitance of 529.3 mF cm−2 and 6330 mF cm−3 at 1 mA cm−2, respectively. More impressively, our optimized asymmetric device operating at 1.8 V delivers a very high stack energy density of 2.85 mWh cm−3 at a stack power density of 10.76 mW cm−3, as well as 85% capacitance retention after 10,000 continuous charge-discharge cycles. Even at a high stack power density of 1173 mW cm−3, this device still deliveries a stack energy density of 1.19 mWh cm−3, superior to most of the reported supercapacitors.

  11. Elaboration by epitaxy in liquid phase and monocrystalline layers of doped Yag. Realisation of wave guides lasers neodymium and ytterbium at low thresholds

    International Nuclear Information System (INIS)

    Pelenc, D.

    1993-10-01

    This thesis reports on the prototype development of a new laser waveguide fabrication technique, Liquid Phase Epitaxy, as part of the research on diode-pumped compact laser devices. This technique has been applied to the growth of single crystal thin layers of neodymium and ytterbium doped YAG on pure YAG substrates. In order to obtain good quality waveguides, we have defined the growth conditions, and demonstrated the advantage of the growth of an undoped YAG cladding layer. Two extra dopings have been studied: gallium, in order to control the refractive index of the layer, and lutetium, in order to control their lattice mismatch. The determination of the segregation coefficient of these four dopants has required the development of a model that takes into account the evolution of the melt with time. We have measured the refractive index increase for each dopant and proposed a mechanism that explains this increase. The spectroscopic characterisation of the layers has shown that the neodymium and ytterbium ions have the same properties as in the bulk material of the same composition. The laser characterisation has shown very low propagation losses (around 0.1 dB/cm), comparable to those of bulk. For the neodymium laser transition at 1064 nm, we have demonstrated the laser effect for an absorbed power threshold of 700μW and measured a slope efficiency of 40% for a threshold of 14 mW in diode pumping. For quasi 3 level transitions, a significant reduction in threshold with respect to unguided lasers has been obtained: at 946 nm in a neodymium doped waveguide, at 1029 nm in an ytterbium doped waveguide, with a 1W diode bar pump. A slope efficiency of 80% has also been measured in an ytterbium doped waveguided emitting at 1048nm

  12. Polarizing Ytterbium-Doped all-Solid Photonic Bandgap Fiber with 1150 micrometers2 Effective Mode Area

    Science.gov (United States)

    2015-02-11

    RESPONSIBLE PERSON 19b. TELEPHONE NUMBER Liang Dong Fanting Kong,, Guancheng Gu,, Thomas W. Hawkins ,, Joshua Parsons, Maxwell Jones,, Christopher...Dunn,, Monica T. Kalichevsky-Dong,, Benjamin Pulford,, Iyad Dajani,, Kunimasa Saitoh,, Stephen P. Palese,, Eric Cheung,, Liang Dong c. THIS PAGE The...ytterbium-doped all-solid photonic bandgap fiber with ~1150µm2 effective mode area Fanting Kong,1,* Guancheng Gu,1 Thomas W. Hawkins ,1 Joshua Parsons

  13. Two-step synthesis of silver selenide semiconductor with a linear magnetoresistance effect

    International Nuclear Information System (INIS)

    Yang, Fengxia; Xiong, Shuangtao; Liu, Fengxian; Han, Chong; Zhang, Duanming; Xia, Zhengcai

    2012-01-01

    A two-step synthesis method for polycrystalline β-silver selenide (β-Ag 2 Se) was developed. In the first step, nanopowder was prepared using a chemical conversion method at room temperature. In the second step, the nanopowder was compressed and then the bulk Ag 2 Se was fabricated by the solid-state sintering process. The crystalline phase and morphology were examined. The results showed that β-Ag 2 Se was fast fabricated at room temperature. The dense polycrystalline Ag-rich Ag 2 Se was synthesized successfully at 450 °C for 0.5 h under Argon flow. For the polycrystalline, the electronic properties and transverse magnetoresistance (TMR) in a pulsed magnetic field were investigated. The samples displayed n-type semiconducting behaviors and a critical temperature with a broaden temperature range of 140–150 K. Also, it presented a positive and nearly linear dependence on magnetic field H at H ≥ H c (crossover field) ranging from 2 to 20 T. Moreover, the linear dependence of TMR at strong field was non-saturating up to 35 T. Combining with the observation of morphology, it is thought that this unusual TMR effect was caused by slightly excess Ag. This new synthesis method provided a potential route to synthesize nonstoichiometric silver selenide. (paper)

  14. PROPERTIES AND OPTICAL APPLICATION OF POLYCRYSTALLINE ZINC SELENIDE OBTAINED BY PHYSICAL VAPOR DEPOSITION

    Directory of Open Access Journals (Sweden)

    A. A. Dunaev

    2015-05-01

    Full Text Available Findings on production technology, mechanical and optical properties of polycrystalline zinc selenide are presented. The combination of its physicochemical properties provides wide application of ZnSe in IR optics. Production technology is based on the method of physical vapor deposition on a heated substrate (Physical Vapor Deposition - PVD. The structural features and heterogeneity of elemental composition for the growth surfaces of ZnSe polycrystalline blanks were investigated using CAMEBAX X-ray micro-analyzer. Characteristic pyramid-shaped crystallites were recorded for all growth surfaces. The measurements of the ratio for major elements concentrations show their compliance with the stoichiometry of the ZnSe compounds. Birefringence, optical homogeneity, thermal conductivity, mechanical and optical properties were measured. It is established that regardless of polycrystalline condensate columnar and texturing, the optical material is photomechanically isotropic and homogeneous. The actual performance of parts made of polycrystalline optical zinc selenide in the thermal spectral ranges from 3 to 5 μm and from 8 to 14 μm and in the CO2 laser processing plants with a power density of 500 W/cm2 is shown. The developed technology gives the possibility to produce polycrystalline optical material on an industrial scale.

  15. Investigation of deep level defects in epitaxial semiconducting zinc sulpho-selenide. Progress report, 15 June 1979-14 June 1980

    International Nuclear Information System (INIS)

    Wessels, B.W.

    1980-01-01

    In an effort to understand the defect structure of the ternary II-VI compound zinc sulpho-selenide, the binary compound zinc selenide was investigated. Thin single crystalline films of zinc selenide were heteroepitaxially grown on (100) GaAs. Epitaxial layers from 5 to 50 microns thick could be readily grown using a chemical vapor transport technique. The layers had an excellent morphology with few stacking faults and hillocks. Detailed epitaxial growth kinetics were examined as a function of temperature and reactant concentration. It was found that hydrogen flow rate, source and substrate temperature affect the growth rate of the epitaxial films. Au - ZnSe Schottky barrier diodes and ZnSe - GaAs n-p heterojunctions were prepared from the epitaxial layers. Current-voltage characteristics were measured on both types of diodes. From capacitance-voltage measurements the residual doping density of the epitaxial layers were found to be of the order of 10 14 - 10 15 cm -3 . Finally, we have begun to measure the deep level spectrum of both the Schottky barrier diodes and the heterojunctions. Deep level transient spectroscopy appears to be well suited for determining trapping states in ZnSe provided the material has a low enough resistivity

  16. Efficient compression of the femtosecond pulses of an ytterbium laser in a gas-filled capillary

    International Nuclear Information System (INIS)

    Konyashchenko, Aleksandr V; Losev, Leonid L; Tenyakov, S Yu

    2011-01-01

    A 290-fs radiation pulse of an ytterbium laser system with a central wavelength of 1028 nm and an energy of 145 μJ was compressed to a 27-fs pulse with an energy of 75 μJ. The compression was realised on the basis of the effect of pulse spectrum broadening in a xenon-filled glass capillary for a pulse repetition rate of 3kHz. (control of laser radiation parameters)

  17. Electrosynthesis of cadmium selenide films from sodium citrate-selenosulphite bath

    International Nuclear Information System (INIS)

    Lokhande, C.D.; Lee, Eun-Ho; Jung, Kwang-Deog; Joo, Oh-Shim

    2005-01-01

    Electrosynthesis of cadmium selenide (CdSe) film has been carried out from deposition bath containing sodium selenosulphite, along with cadmium complexed with sodium citrate under potentiostatic deposition condition on titanium substrates. The pH of deposition bath was weakly basic (< 9.0). The CdSe films up to 3.0 μm were deposited. The X-ray diffraction (XRD) studies revealed that the CdSe films are microcrystalline with increased grain size after annealing. The scanning electron microscopy showed that the films are porous with cauliflower-like morphology. The photelectrochemical characterization showed that the CdSe films are photoactive

  18. Chemical Potential Tuning and Enhancement of Thermoelectric Properties in Indium Selenides

    Directory of Open Access Journals (Sweden)

    Jong-Soo Rhyee

    2015-03-01

    Full Text Available Researchers have long been searching for the materials to enhance thermoelectric performance in terms of nano scale approach in order to realize phonon-glass-electron-crystal and quantum confinement effects. Peierls distortion can be a pathway to enhance thermoelectric figure-of-merit ZT by employing natural nano-wire-like electronic and thermal transport. The phonon-softening known as Kohn anomaly, and Peierls lattice distortion decrease phonon energy and increase phonon scattering, respectively, and, as a result, they lower thermal conductivity. The quasi-one-dimensional electrical transport from anisotropic band structure ensures high Seebeck coefficient in Indium Selenide. The routes for high ZT materials development of In4Se3−δ are discussed from quasi-one-dimensional property and electronic band structure calculation to materials synthesis, crystal growth, and their thermoelectric properties investigations. The thermoelectric properties of In4Se3−δ can be enhanced by electron doping, as suggested from the Boltzmann transport calculation. Regarding the enhancement of chemical potential, the chlorine doped In4Se3−δCl0.03 compound exhibits high ZT over a wide temperature range and shows state-of-the-art thermoelectric performance of ZT = 1.53 at 450 °C as an n-type material. It was proven that multiple elements doping can enhance chemical potential further. Here, we discuss the recent progress on the enhancement of thermoelectric properties in Indium Selenides by increasing chemical potential.

  19. From zinc selenate to zinc selenide nano structures synthesized by reduction process

    International Nuclear Information System (INIS)

    Hutagalung, S.D.; Eng, S.T.; Ahmad, Z.A.; Ishak Mat; Yussof Wahab

    2009-01-01

    One-dimensional nano structure materials are very attractive because of their electronic and optical properties depending on their size. It is well known that properties of material can be tuned by reducing size to nano scale because at the small sizes, that they behave differently with its bulk materials and the band gap will control by the size. The tunability of the band gap makes nano structured materials useful for many applications. As one of the wide band gaps semiconductor compounds, zinc selenide (ZnSe) nano structures (nanoparticles, nano wires, nano rods) have received much attention for the application in optoelectronic devices, such as blue laser diode, light emitting diodes, solar cells and IR optical windows. In this study, ZnSe nano structures have been synthesized by reduction process of zinc selenate using hydrazine hydrate (N 2 H 4 .2H 2 O). The reductive agent of hydrazine hydrate was added to the starting materials of zinc selenate were heat treated at 500 degree Celsius for 1 hour under argon flow to form one-dimensional nano structures. The SEM and TEM images show the formation of nano composite-like structure, which some small nano bar and nano pellets stick to the rod. The x-ray diffraction and elemental composition analysis confirm the formation of mixture zinc oxide and zinc selenide phases. (author)

  20. Probing SU(N)-symmetric orbital interactions with ytterbium Fermi gases in optical lattices

    International Nuclear Information System (INIS)

    Scazza, Francesco

    2015-01-01

    This thesis reports on the creation and investigation of interacting two-orbital quantum gases of ytterbium in optical lattices. Degenerate fermionic gases of ytterbium or other alkaline-earth-like atoms have been recently proposed as model systems for orbital phenomena in condensed matter, such as Kondo screening, heavy-Fermi behaviour and colossal magnetoresistance. Such gases are moreover expected to obey a high SU(N) symmetry, owing to their highly decoupled nuclear spin, for which the emergence of novel, exotic phases of matter has been predicted. With the two lowest (meta-) stable electronic states mimicking electrons in distinct orbitals of solid materials, the two-orbital SU(N) Hubbard model and its spin-exchange inter-orbital interactions are realised. The interactions in two-orbital degenerate mixtures of different nuclear spin states of 173 Yb are probed by addressing the transition to the metastable state in a state-independent optical lattice. The complete characterisation of the two-orbital scattering channels and the demonstration of the SU(N=6) symmetry within the experimental uncertainty are presented. Most importantly, a strong spin- exchange coupling between the two orbitals is identified and the associated exchange process is observed through the dynamic equilibration of spin imbalances between ensembles in different orbitals. These findings are enabled by the implementation of high precision spectroscopic techniques and of full coherent control of the metastable state population. The realisation of SU(N)-symmetric gases with spin-exchange interactions, the elementary building block of orbital quantum magnetism, represents an important step towards the simulation of paradigmatic many-body models, such as the Kondo lattice model.

  1. Polycrystalline thin films of antimony selenide via chemical bath deposition and post deposition treatments

    International Nuclear Information System (INIS)

    Rodriguez-Lazcano, Y.; Pena, Yolanda; Nair, M.T.S.; Nair, P.K.

    2005-01-01

    We report a method for obtaining thin films of polycrystalline antimony selenide via chemical bath deposition followed by heating the thin films at 573 K in selenium vapor. The thin films deposited from chemical baths containing one or more soluble complexes of antimony, and selenosulfate initially did not show X-ray diffraction (XRD) patterns corresponding to crystalline antimony selenide. Composition of the films, studied by energy dispersive X-ray analyses indicated selenium deficiency. Heating these films in presence of selenium vapor at 573 K under nitrogen (2000 mTorr) resulted in an enrichment of Se in the films. XRD peaks of such films matched Sb 2 Se 3 . Evaluation of band gap from optical spectra of such films shows absorption due to indirect transition occurring in the range of 1-1.2 eV. The films are photosensitive, with dark conductivity of about 2 x 10 -8 (Ω cm) -1 and photoconductivity, about 10 -6 (Ω cm) -1 under tungsten halogen lamp illumination with intensity of 700 W m -2 . An estimate for the mobility life time product for the film is 4 x 10 -9 cm 2 V -1

  2. Optical properties of ytterbium-doped yttrium oxide ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Solomonov, V.I.; Maksimov, R.N. [Institute of Electrophysics UrB RAS, Amundsena 106, 620016 Ekaterinburg (Russian Federation); Ural Federal University Named After the First President of Russia B.N. Yeltsin, Mira 19, 620002 Ekaterinburg (Russian Federation); Osipov, V.V.; Shitov, V.A.; Lipchak, A.I. [Institute of Electrophysics UrB RAS, Amundsena 106, 620016 Ekaterinburg (Russian Federation)

    2017-05-15

    Ytterbium-doped yttrium oxide (Yb:Y{sub 2}O{sub 3}) transparent ceramics with different sintering additives (Lu{sub 2}O{sub 3}, Sc{sub 2}O{sub 3}, CeO{sub 2}, ZrO{sub 2}, or HfO{sub 2}) were fabricated using nanopowders produced by laser ablation. Transmission and photoluminescence spectra of the obtained ceramics were investigated at room temperature. Highest in-line transmittance was over 80% at the wavelength of 1060 nm for 2 mm thick Yb:Y{sub 2}O{sub 3} ceramics with zirconium and hafnium. Divalent Yb ions with the ground state electron configuration 4f{sup 13}6s were revealed. The absorption and emission bands caused by s <-> s transitions of these ions were observed in the IR spectral range of Yb{sup 3+} ions. The superposition of both Yb{sup 3+} and Yb{sup 2+} emission bands leads to an effective broadening of the whole luminescence band. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Electronic and ionic conductivities and point defects in ytterbium sesquioxide at high temperature

    International Nuclear Information System (INIS)

    Carpentier, J.-L.; Lebrun, A.; Perdu, F.; Tellier, P.

    1982-01-01

    From the study of complex impedance diagrams applied to a symmetric cell Pt-Yb 2 O 3 -Pt, the authors have shown the mixed character of electrical conduction within the ytterbium sesquioxide. The measurements were performed at thermodynamic equilibrium in the temperature range from 1423 to 1623 K and the partial pressure of oxygen range from 10 -12 to 1 atm. The variations of ionic and electronic conductivity as a function of Psub(O 2 ) were interpreted in terms of four different point defects in the general case of a Frenkel disorder. The relative contributions and the activation energies of conduction of these different defects were determined. (author)

  4. Erbium:ytterbium fiber-laser system delivering watt-level femtosecond pulses using divided pulse amplification

    Science.gov (United States)

    Herda, Robert; Zach, Armin

    2015-03-01

    We present an Erbium:Ytterbium codoped fiber-amplifer system based on Divided-Pulses-Amplification (DPA) for ultrashort pulses. The output from a saturable-absorber mode-locked polarization-maintaining (PM) fiber oscillator is amplified in a PM normal-dispersion Erbium-doped fiber. After this stage the pulses are positively chirped and have a duration of 2.0 ps at an average power of 93 mW. A stack of 5 birefringent Yttrium-Vanadate crystals divides these pulses 32 times. We amplify these pulses using a double-clad Erbium:Ytterbium codoped fiber pumped through a multimode fiber combiner. The pulses double pass the amplifier and recombine in the crystals using non-reciprocal polarization 90° rotation by a Faraday rotating mirror. Pulses with a duration of 144 fs are obtained after separation from the input beam using a polarizing beam splitter cube. These pulses have an average power of 1.85 W at a repetition rate of 80 MHz. The generation of femtosecond pulses directly from the amplifier was enabled by a positively chirped seed pulse, normally dispersive Yttrium-Vanadate crystals, and anomalously dispersive amplifier fibers. Efficient frequency doubling to 780 nm with an average power of 725 mW and a pulse duration of 156 fs is demonstrated. In summary we show a DPA setup that enables the generation of femtosecond pulses at watt-level at 1560 nm without the need for further external dechirping and demonstrate a good pulse quality by efficient frequency doubling. Due to the use of PM fiber components and a Faraday rotator the setup is environmentally stable.

  5. Intense upconversion luminescence in ytterbium-sensitized thulium-doped oxychloride germanate glass

    International Nuclear Information System (INIS)

    Sun Hongtao; Zhanga Liyan; Zhang Junjie; Wen Lei; Yu Chunlei; Duan Zhongchao; Dai Shixun; Hu Lili; Jiang Zhonghong

    2005-01-01

    Structural and upconversion fluorescence properties in ytterbium-sensitized thulium-doped oxychloride germanate glass have been studied. The structure of oxychloride germanate glass was investigated by peak-deconvolution of Raman spectrum, and the structural information was obtained from the peak wavenumbers. The Raman spectrum investigation indicates that PbCl 2 plays an important role in the formation of glass network, and has an important influence on the upconversion luminescence. Intense blue and weak red emissions centered at 477 and 650 nm, corresponding to the transitions 1 G 4 → 3 H 6 and 1 G 4 → 3 H 4 , respectively, were observed at room temperature. The possible upconversion mechanisms are discussed and estimated. Intense upconversion luminescence indicates that oxychloride germanate glass can be used as potential host material for upconversion lasers

  6. Radiation-induced physical ageing in network arsenic-sulfide/selenide glasses

    International Nuclear Information System (INIS)

    Shpotyuk, M; Golovchak, R; Kozdras, A; Shpotyuk, O

    2010-01-01

    Effect of radiation-induced physical ageing is investigated by differential scanning calorimetry method in As x Se 100-x (10 ≤ x ≤ 42) and As x S 100-x (30 ≤ x ≤ 42) glasses. Obtained results are compared with conventional physical ageing at normal conditions. Significant radiation-induced physical ageing is recorded for glassy As x S 100-x within 30 ≤ x x Se 100-x glasses from the same compositional interval do not show any measurable changes in DSC curves after γ-irradiation. Observed difference in radiation-induced physical ageing in arsenic-sulfide/selenide glasses is explained by a greater lifetime of γ-induced excitations within sulfur-based network in comparison with selenium-based one.

  7. Short-range order in amorphous thin films of indium selenides

    International Nuclear Information System (INIS)

    Zakharov, V.P.; Poltavtsev, Yu.G.; Sheremet, G.P.

    1982-01-01

    A structure of the short-range order and a character of interatomic interactions in indium selenides Insub(1-x)Sesub(x) with 0.333 <= x <= 0.75, obtained in the form of amorphous films 0.05-0.80 μm thick are studied using electron diffraction method. It is found out that mostly tetrahedrical coordination of nearest neighbours in the vicinity of indium atoms is characteristic for studied amorphous films, and coordination of selenium atoms is different. Amorphous film with x=0.75 posesses a considereably microheterogeneous structure of the short-range order, which is characterized by the presence of microunclusions of amorphous selenium and atoms of indium, octohedrically coordinated by selenium atoms

  8. Study of ytterbium doping effects on structural, mechanical and opto-thermal properties of sprayed ZnO thin films using the Boubaker Polynomials Expansion Scheme (BPES)

    Energy Technology Data Exchange (ETDEWEB)

    Amlouk, A. [Unite de physique des dispositifs a semi-conducteurs, Faculte des sciences de Tunis, Universite de Tunis El Manar, 2092 Tunis (Tunisia); Boubaker, K., E-mail: mmbb11112000@yahoo.f [Unite de physique des dispositifs a semi-conducteurs, Faculte des sciences de Tunis, Universite de Tunis El Manar, 2092 Tunis (Tunisia); Amlouk, M. [Unite de physique des dispositifs a semi-conducteurs, Faculte des sciences de Tunis, Universite de Tunis El Manar, 2092 Tunis (Tunisia); Bouhafs, M. [Unite de Recherche MA2I, Ecole Nationale d' Ingenieurs de Tunis, B.P. 37 Le Belvedere, 1002 Tunis (Tunisia)

    2009-10-19

    In this work, ZnO thin films have been grown on glass substrates by using a solution of propanol (C{sub 3}H{sub 8}O), water (H{sub 2}O) and zinc acetate (Z{sub n}(CH{sub 3}CO{sub 2}){sub 2}) in acidified medium (pH 5). The obtained films were n doped with ytterbium (Yb) at the rates of 100, 200 and 300 ppm. The structural features of the doped films were investigated using XRD, atomic force microscopy and scanning electronic microscopy techniques. XRD analysis shows a strong (0 0 2) X-ray diffraction line for increasing Yb-doping amounts. This c-axis preferential orientation of ZnO crystallites is naturally required to use this oxide as transparent conductor in optoelectronic applications. Atomic force microscopy (AFM) analysis shows an enhancement in the surface roughness of the doped ZnO:Yb thin films. Optical measurements were performed in 300-1800 nm domain via transmittance T(lambda) and reflectance R(lambda) spectra. Conjoint optical and thermal properties were deduced from the optical measurements in reference to the Amlouk-Boubaker opto-thermal expansivity psi{sub AB}. Optically relevant ytterbium doping effects have been discussed. Finally, mechanical measurements have been carried out using Vickers standard disposal. The results confirmed the structural and functional changes that several recent studies attributed to ytterbium doping.

  9. Generation of high-field terahertz pulses in an HMQ-TMS organic crystal pumped by an ytterbium laser at 1030 nm.

    Science.gov (United States)

    Rovere, Andrea; Jeong, Young-Gyun; Piccoli, Riccardo; Lee, Seung-Heon; Lee, Seung-Chul; Kwon, O-Pil; Jazbinsek, Mojca; Morandotti, Roberto; Razzari, Luca

    2018-02-05

    We present the generation of high-peak-electric-field terahertz pulses via collinear optical rectification in a 2-(4-hydroxy-3-methoxystyryl)-1-methilquinolinium-2,4,6-trimethylbenzenesulfonate (HMQ-TMS) organic crystal. The crystal is pumped by an amplified ytterbium laser system, emitting 170-fs-long pulses centered at 1030 nm. A terahertz peak electric field greater than 200 kV/cm is obtained for 420 µJ of optical pump energy, with an energy conversion efficiency of 0.26% - about two orders of magnitude higher than in common inorganic crystals collinearly pumped by amplified femtosecond lasers. An open-aperture Z-scan measurement performed on an n-doped InGaAs thin film using such terahertz source shows a nonlinear increase in the terahertz transmission of about 2.2 times. Our findings demonstrate the potential of this terahertz generation scheme, based on ytterbium laser technology, as a simple and efficient alternative to the existing intense table-top terahertz sources. In particular, we show that it can be readily used to explore nonlinear effects at terahertz frequencies.

  10. Fibre amplifier based on an ytterbium-doped active tapered fibre for the generation of megawatt peak power ultrashort optical pulses

    Energy Technology Data Exchange (ETDEWEB)

    Koptev, M Yu; Anashkina, E A; Lipatov, D S; Andrianov, A V; Muravyev, S V; Kim, A V [Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod (Russian Federation); Bobkov, K K; Likhachev, M E; Levchenko, A E; Aleshkina, S S; Semjonov, S L; Denisov, A N; Bubnov, M M [Fiber Optics Research Center, Russian Academy of Sciences, Moscow (Russian Federation); Laptev, A Yu; Gur' yanov, A N [G.G.Devyatykh Institute of Chemistry of High-Purity Substances, Russian Academy of Sciences, Nizhnii Novgorod (Russian Federation)

    2015-05-31

    We report a new ytterbium-doped active tapered fibre used in the output amplifier stage of a fibre laser system for the generation of megawatt peak power ultrashort pulses in the microjoule energy range. The tapered fibre is single-mode at its input end (core and cladding diameters of 10 and 80 μm) and multimode at its output end (diameters of 45 and 430 μm), but ultrashort pulses are amplified in a quasi-single-mode regime. Using a hybrid Er/Yb fibre system comprising an erbium master oscillator and amplifier at a wavelength near 1.5 μm, a nonlinear wavelength converter to the 1 μm range and a three-stage ytterbium-doped fibre amplifier, we obtained pulses of 1 μJ energy and 7 ps duration, which were then compressed by a grating-pair dispersion compressor with 60% efficiency to a 130 fs duration, approaching the transform-limited pulse duration. The present experimental data agree well with numerical simulation results for pulse amplification in the threestage amplifier. (extreme light fields and their applications)

  11. Selenide mineralization in the Příbram uranium and base-metal district (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Škácha, P.; Sejkora, J.; Plášil, Jakub

    2017-01-01

    Roč. 7, č. 6 (2017), s. 1-56, č. článku 91. ISSN 2075-163X R&D Projects: GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : selenides * chemical composition * crystal structure * wavelength-dispersive spectroscopy * X-ray diffraction * Příbram Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 2.088, year: 2016

  12. Radiation-induced physical ageing in network arsenic-sulfide/selenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, M; Golovchak, R; Kozdras, A; Shpotyuk, O, E-mail: shpotyuk@novas.lviv.ua

    2010-11-15

    Effect of radiation-induced physical ageing is investigated by differential scanning calorimetry method in As{sub x}Se{sub 100-x} (10 {<=} x {<=} 42) and As{sub x}S{sub 100-x} (30 {<=} x {<=} 42) glasses. Obtained results are compared with conventional physical ageing at normal conditions. Significant radiation-induced physical ageing is recorded for glassy As{sub x}S{sub 100-x} within 30 {<=} x < 40 range, while As{sub x}Se{sub 100-x} glasses from the same compositional interval do not show any measurable changes in DSC curves after {gamma}-irradiation. Observed difference in radiation-induced physical ageing in arsenic-sulfide/selenide glasses is explained by a greater lifetime of {gamma}-induced excitations within sulfur-based network in comparison with selenium-based one.

  13. Selenide isotope generator for the Galileo mission. Reliability program plan

    International Nuclear Information System (INIS)

    1978-10-01

    The reliability program plan for the Selenide Isotope Generator (SIG) program is presented. It delineates the specific tasks that will be accomplished by Teledyne Energy Systems and its suppliers during design, development, fabrication and test of deliverable Radioisotopic Thermoelectric Generators (RTG), Electrical Heated Thermoelectric Generators (ETG) and associated Ground Support Equipment (GSE). The Plan is formulated in general accordance with procedures specified in DOE Reliability Engineering Program Requirements Publication No. SNS-2, dated June 17, 1974. The Reliability Program Plan presented herein defines the total reliability effort without further reference to Government Specifications. The reliability tasks to be accomplished are delineated herein and become the basis for contract compliance to the extent specified in the SIG contract Statement of Work

  14. Overview of ultraviolet and infrared spectroscopic properties of Yb{sup 3+} doped borate and oxy-borates compounds; De l'ultraviolet a l'infrarouge: caracterisation spectroscopique de materiaux type borate et oxyborate dopes a l'ytterbium trivalent

    Energy Technology Data Exchange (ETDEWEB)

    Sablayrolles, J

    2006-12-15

    The trivalent ytterbium ion can give rise to two emissions with different spectroscopic properties: the first one, with a short lifetime, in the ultraviolet (charge transfer emission) is used in detectors such as scintillators, and the other one, with a long lifetime, in the infrared (4f-4f emission) for laser applications. The strong link between material structure and properties is illustrated through ytterbium luminescence study, in the ultraviolet and infrared, inserted in the borate Li{sub 6}Y(BO{sub 3}){sub 3} and two oxy-borates: LiY{sub 6}O{sub 5}(BO{sub 3}){sub 3} and Y{sub 17,33}B{sub 8}O{sub 38}. For the first time an ytterbium charge transfer emission in oxy-borates has been observed. The calculation of the single configurational coordinate diagram, as well as the thermal quenching, has been conducted under a fundamental approach on the ytterbium - oxygen bond. The study of the ytterbium infrared spectroscopy in these compounds has been realised and an energy level attribution is proposed in the particular case of the borate Li{sub 6}Y(BO{sub 3}){sub 3}: Yb{sup 3+}. An original approach is introduced with the study of the charge transfer states for the three compounds by looking at the infrared emission. The first laser performances in three operating modes (continuous wave, Q-switch and mode locking) of a Li{sub 6}Y(BO{sub 3}){sub 3}: Yb{sup 3+} crystal are reported. (author)

  15. Trace electrochemical analysis of Europium, Ytterbium, and Cerium at their joint presence in solution

    Directory of Open Access Journals (Sweden)

    Rema Matakova

    2012-03-01

    Full Text Available In the course of several decades at the department of analytical chemistry and chemistry of rare elements there were studied the electrode processes with participation of rare-earth metals (REM in accordance with the long awaiting problem of the development of rare-metal and rare-earth branch of non-ferrous metallurgy of Kazakhstan. With the aim of express and highly sensitive analytical control of raw materials and final product of rare-earth industry there were developed the methods of inversion-voltamperometric determination of low concentrations of europium, ytterbium and cerium under the conditions of their individual and combined presence in the solution.

  16. Efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser.

    Science.gov (United States)

    Wang, P; Cooper, L J; Sahu, J K; Clarkson, W A

    2006-01-15

    A novel approach to achieving robust single-spatial-mode operation of cladding-pumped fiber lasers with multimode cores is reported. The approach is based on the use of a fiber geometry in which the core has a helical trajectory within the inner cladding to suppress laser oscillation on higher-order modes. In a preliminary proof-of-principle study, efficient single-mode operation of a cladding-pumped ytterbium-doped helical-core fiber laser with a 30 microm diameter core and a numerical aperture of 0.087 has been demonstrated. The laser yielded 60.4 W of output at 1043 nm in a beam with M2 clad fiber lasers.

  17. The digital structural analysis of cadmium selenide crystals by a method of ion beam thinning for high resolution electron microscopy

    International Nuclear Information System (INIS)

    Kanaya, Koichi; Baba, Norio; Naka, Michiaki; Kitagawa, Yukihisa; Suzuki, Kunio

    1986-01-01

    A digital processing method using a scanning densitometer system for structural analysis of electron micrographs was successfully applied to a study of cadmium selenide crystals, which were prepared by an argon-ion beam thinning method. Based on Fourier techniques for structural analysis from a computer-generated diffractogram, it was demonstrated that when cadmium selenide crystals were sufficiently thin to display the higher order diffraction spots at a high resolution approaching the atomic level, they constitute an alternative hexagonal lattice of imperfect wurtzite phase from a superposition of individual harmonic images by the enhanced scattering amplitude and corrected phase. From the structural analysis data, a Fourier synthetic lattice image was reconstructed, representing the precise location and three-dimensional arrangement of each of the atoms in the unit cell. Extensively enhanced lattice defect images of dislocations and stacking faults were also derived and shown graphically. (author)

  18. A study on the optics of copper indium gallium (di)selenide (CIGS) solar cells with ultra-thin absorber layers

    NARCIS (Netherlands)

    Xu, M.; Wachters, A.J.H.; Van Deelen, J.; Mourad, M.C.D.; Buskens, P.J.P.

    2014-01-01

    We present a systematic study of the effect of variation of the zinc oxide (ZnO) and copper indium gallium (di)selenide (CIGS) layer thickness on the absorption characteristics of CIGS solar cells using a simulation program based on finite element method (FEM). We show that the absorption in the

  19. A mass spectrometric study of the neutral and ionic vapor components of ytterbium chlorides; formation enthalpies of YbCl2 and YbCl3 molecules, and YbCl3- and YbCl4- ions in the gas phase

    International Nuclear Information System (INIS)

    Kuznetsov, F.Yh.; Kudin, L.S.; Pogrebnoj, A.M.; Butman, M.F.; Burdukovskaya, G.G.

    1997-01-01

    Ionic and neutral components of saturated vapour over the ytterbium di-and trichloride is studied through the Knudsen effusive method with mass-spectromic registration of evaporated products within the temperature range of 1000-1300 K. It is found that ytterbium trichloride is subjected to thermal decomposition with formation of ytterbium dichloride and molecular chloride. Sublimation enthalpy and enthalpy of YbCl 2 and YbCl 3 molecules formation in a gaseous phase at 298 K, comprising 356±6, 293±8, -425±6 and -667±6 kJ/mole correspondingly, are determined with application of 2 and 3 thermodynamical laws. Enthalpies of YbCl 3 - and YbCl 4 - negative ions formation in a gaseous phase at 298 K equal to -895 and -1211±30 kJ/mole correspondingly are calculated by measured equilibrium constants ion-molecular reaction. 30 refs., 3 figs., 3 tabs

  20. Exploring the thermoelectric and magnetic properties of uranium selenides: Tl2Ag2USe4 and Tl3Cu4USe6

    International Nuclear Information System (INIS)

    Azam, Sikander; Khan, Saleem Ayaz; Din, Haleem Ud; Khenata, Rabah; Goumri-Said, Souraya

    2016-01-01

    The electronic, magnetic and thermoelectric properties of Tl 2 Ag 2 USe 4 and Tl 3 Cu 4 USe 6 compounds were investigated using the full potential linear augmented plane wave (FP-LAPW) method based on the density functional theory (DFT). The exchange correlation was treated with the generalized gradient approximation plus optimized effective Hubbard parameter and spin–orbit coupling (GGA+U+SOC). The present uranium selenides show narrow direct energy band gap values of 0.7 and 0.875 eV for Tl 2 Ag 2 USe 4 and Tl 3 Cu 4 USe 6 respectively. For both selenides U-d/f states are responsible for electrical transport properties. Uranium atoms were the most contributors in the magnetic moment compared to other atoms and show ferromagnetic nature. The spin density isosurfaces show the polarization of neighboring atoms of Uranium, such as silver/copper and selenium. Thermoelectric calculations reveal that Tl 3 Cu 4 USe 6 is more suitable for thermoelectric device applications than Tl 2 Ag 2 USe 4 . - Highlights: • Electronic, magnetic and thermoelectric properties of uranium selenides are investigated with DFT. • They show a narrow direct energy band gap of 0.7 and 0.875 eV. • U-d/f states are responsible for electrical transport properties. • Tl 3 Cu 4 USe 6 is more suitable for thermoelectric device applications than Tl 2 Ag 2 USe 4 .

  1. Investigation of the vapour-plasma plume in the welding of titanium by high-power ytterbium fibre laser radiation

    Energy Technology Data Exchange (ETDEWEB)

    Bykovskiy, D P; Petrovskii, V N; Uspenskiy, S A [National Research Nuclear University ' MEPhI' (Russian Federation)

    2015-03-31

    The vapour-plasma plume produced in the welding of 6-mm thick VT-23 titanium alloy plates by ytterbium fibre laser radiation of up to 10 kW power is studied in the protective Ar gas medium. High-speed video filming of the vapour-plasma plume is used to visualise the processes occurring during laser welding. The coefficient of inverse bremsstrahlung by the welding plasma plume is calculated from the data of the spectrometric study. (interaction of laser radiation with matter)

  2. Study of the crystallographic phase change on copper (I) selenide thin films prepared through chemical bath deposition by varying the pH of the solution

    Energy Technology Data Exchange (ETDEWEB)

    Sandoval-Paz, M.G., E-mail: myrnasandoval@udec.cl [Departament of Physics, Faculty of Physical Sciences and Mathematics, University of Concepcion, Box 160-C, Concepción (Chile); Rodríguez, C.A. [Department of Materials Engineering, Faculty of Engineering, University of Concepción, Edmundo Larenas 270, Concepción 4070409 (Chile); Porcile-Saavedra, P.F. [Departament of Physics, Faculty of Physical Sciences and Mathematics, University of Concepcion, Box 160-C, Concepción (Chile); Trejo-Cruz, C. [Department of Physics, Faculty of Science, University of Biobío, Avenue Collao 1202, Box 5C, Concepción 4051381 (Chile)

    2016-07-15

    Copper (I) selenide thin films with orthorhombic and cubic structure were deposited on glass substrates by using the chemical bath deposition technique. The effects of the solution pH on the films growth and subsequently the structural, optical and electrical properties of the films were studied. Films with orthorhombic structure were obtained from baths wherein both metal complex and hydroxide coexist; while films with cubic structure were obtained from baths where the metal hydroxide there is no present. The structural modifications are accompanied by changes in bandgap energy, morphology and electrical resistivity of the films. - Graphical abstract: “Study of the crystallographic phase change on copper (I) selenide thin films prepared through chemical bath deposition by varying the pH of the solution” by M. G. Sandoval-Paz, C. A. Rodríguez, P. F. Porcile-Saavedra, C. Trejo-Cruz. Display Omitted - Highlights: • Copper (I) selenide thin films were obtained by chemical bath deposition. • Orthorhombic to cubic phase change was induced by varying the reaction solution pH. • Orthorhombic phase is obtained mainly from a hydroxides cluster mechanism. • Cubic phase is obtained mainly from an ion by ion mechanism. • Structural, optical and electrical properties are presented as a function of pH.

  3. Enhanced performance of hybrid solar cells using longer arms of quantum cadmium selenide tetrapods

    KAUST Repository

    Lee, Kyu-Sung

    2011-12-01

    We demonstrate that enhanced device performance of hybrid solar cells based on tetrapod (TP)-shaped cadmium selenide (CdSe) nanoparticles and conjugated polymer of poly (3-hexylthiophene) (P3HT) can be obtained by using longer armed tetrapods which aids in better spatial connectivity, thus decreasing charge hopping events which lead to better charge transport. Longer tetrapods with 10 nm arm length lead to improved power conversion efficiency of 1.12% compared to 0.80% of device having 5 nm short-armed tetrapods:P3HT photoactive blends.

  4. Enhanced Manifold of States Achieved in Heterostructures of Iron Selenide and Boron-Doped Graphene

    Directory of Open Access Journals (Sweden)

    Valentina Cantatore

    2017-10-01

    Full Text Available Enhanced superconductivity is sought by employing heterostructures composed of boron-doped graphene and iron selenide. Build-up of a composite manifold of near-degenerate noninteracting states formed by coupling top-of-valence-band states of FeSe to bottom-of-conduction-band states of boron-doped graphene is demonstrated. Intra- and intersubsystem excitons are explored by means of density functional theory in order to articulate a normal state from which superconductivity may emerge. The results are discussed in the context of electron correlation in general and multi-band superconductivity in particular.

  5. Enhanced performance of hybrid solar cells using longer arms of quantum cadmium selenide tetrapods

    KAUST Repository

    Lee, Kyu-Sung; Kim, Inho; Gullapalli, Sravani; Wong, Michael S.; Jabbour, Ghassan E.

    2011-01-01

    We demonstrate that enhanced device performance of hybrid solar cells based on tetrapod (TP)-shaped cadmium selenide (CdSe) nanoparticles and conjugated polymer of poly (3-hexylthiophene) (P3HT) can be obtained by using longer armed tetrapods which aids in better spatial connectivity, thus decreasing charge hopping events which lead to better charge transport. Longer tetrapods with 10 nm arm length lead to improved power conversion efficiency of 1.12% compared to 0.80% of device having 5 nm short-armed tetrapods:P3HT photoactive blends.

  6. The gadolinium nitrate-carbamide-water and the ytterbium nitrate-carbamide-water systems at 30 deg C

    International Nuclear Information System (INIS)

    Khudajbergenova, N.; Sulajmankulov, K.

    1980-01-01

    Gadolinium nitrate-carbamide-water(1) and ytterbium nitrate-carbamide-water(2) systems are studied at 30 deg C by the solubility method. Two new compounds are formed in the system(1). One of them is incongruent Gd(NO 3 ) 3 x3CON 2 H 4 and Gd(NO 3 ) 3 x4CON 2 H 4 is congruently soluble. Incongruent compound of Yb(NO 3 ) 3 xCON 2 H 4 composition and congruently soluble Yb(NO 3 ) 3 x4CON 2 H 4 are also formed in the system(2). Presented are solubility isotherms of the systems [ru

  7. Combined up conversion, down conversion and down shifting photo-luminescence of low cost erbium-ytterbium co-doped porous silicon produced by stain etching

    Energy Technology Data Exchange (ETDEWEB)

    Diaz-Herrera, B. [Departamento de Fisica Basica, Universidad de La Laguna (ULL), Avenida Astrofisico Francisco Sanchez, 2, 38206 La Laguna, S/C de Tenerife (Spain); Linsun Power Technology (Quanzhou) Corp. Ltd. Co., Economic Development Zone, Jinjiang 362200, Fujian (China); Jimenez-Rodriguez, E. [Departamento de Fisica Basica, Universidad de La Laguna (ULL), Avenida Astrofisico Francisco Sanchez, 2, 38206 La Laguna, S/C de Tenerife (Spain); Gonzalez-Diaz, B. [Departamento de Fisica Basica, Universidad de La Laguna (ULL), Avenida Astrofisico Francisco Sanchez, 2, 38206 La Laguna, S/C de Tenerife (Spain); Instituto Tecnologico y de Energias Renovables, S.A. (ITER), Poligono Industrial de Granadilla, S/N, E38600, Granadilla de Abona (Spain); Montesdeoca-Santana, A. [Departamento de Fisica Basica, Universidad de La Laguna (ULL), Avenida Astrofisico Francisco Sanchez, 2, 38206 La Laguna, S/C de Tenerife (Spain); Velazquez, J.J. [Departamento de Fisica Fundamental y Experimental, Electronica y Sistemas, Avenida Astrofisico Francisco Sanchez, 2, 38206 La Laguna, S/C de Tenerife (Spain); Guerrero-Lemus, R., E-mail: rglemus@ull.es [Departamento de Fisica Basica, Universidad de La Laguna (ULL), Avenida Astrofisico Francisco Sanchez, 2, 38206 La Laguna, S/C de Tenerife (Spain); Fundacion de Estudios de Economia Aplicada, Programa Focus-Abengoa de Energia y Cambio Climaticoi, Jorge Juan 46, 28001 Madrid (Spain)

    2011-07-01

    In this work, erbium and ytterbium have been incorporated into luminescent porous silicon (PS) layers by simple impregnation of the PS substrate with a saturated nitrate solution of erbium and ytterbium. The photoluminescence of the co-doped rare earth layers have been evaluated. The doping process has been designed for its potential in silicon-based solar cell production, with the aim to improve the Shockley-Queisser limit with a reasonable cost effective method for the industry, which implies a significant enhancement of the efficiency under non-concentrated sunlight irradiation. The temperature and annealing time of the doping process were selected according to industry standards in order to ease a trial adoption. The composition was analyzed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy in order to characterize the doping profile. Different up-conversion and down-conversion contributions from the rare earths in the visible and IR were detected, together with the down shifting effect of the stain etched PS. There is no evidence of energy transference between the PS matrix and the rare earths.

  8. Combined up conversion, down conversion and down shifting photo-luminescence of low cost erbium-ytterbium co-doped porous silicon produced by stain etching

    International Nuclear Information System (INIS)

    Diaz-Herrera, B.; Jimenez-Rodriguez, E.; Gonzalez-Diaz, B.; Montesdeoca-Santana, A.; Velazquez, J.J.; Guerrero-Lemus, R.

    2011-01-01

    In this work, erbium and ytterbium have been incorporated into luminescent porous silicon (PS) layers by simple impregnation of the PS substrate with a saturated nitrate solution of erbium and ytterbium. The photoluminescence of the co-doped rare earth layers have been evaluated. The doping process has been designed for its potential in silicon-based solar cell production, with the aim to improve the Shockley-Queisser limit with a reasonable cost effective method for the industry, which implies a significant enhancement of the efficiency under non-concentrated sunlight irradiation. The temperature and annealing time of the doping process were selected according to industry standards in order to ease a trial adoption. The composition was analyzed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy in order to characterize the doping profile. Different up-conversion and down-conversion contributions from the rare earths in the visible and IR were detected, together with the down shifting effect of the stain etched PS. There is no evidence of energy transference between the PS matrix and the rare earths.

  9. Photo-induced cooperative covalent-bond switching in amorphous arsenic selenide

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202, Stryjska str., Lviv, UA-290031 (Ukraine); Balitska, V [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202, Stryjska str., Lviv, UA-290031 (Ukraine); Filipecki, J [Institute of Physics of Jan Dlugosz University, 13/15, Al. Armii Krajowej, Czestochowa, PL-42201 (Poland)

    2005-01-01

    A microstructural mechanism of photoinduced transformations in amorphous arsenic selenide films was studied with IR Fourier-spectroscopy technique in 300-100 cm{sup -1} region. It was shown that stage of irreversible photostructural changes was connected with cooperative process of coordination defect formation accompanied by homopolar chemical bonds switching in heteropolar ones. On the contrary, reversible photoinduced effects were caused by heteropolar chemical bonds switching in homopolar ones, as well as additional channel of bridge heteropolar bonds switching in short-layer ones. The both processes were associated with formation of anomalously coordinated defect pairs and accompanying atomic displacements at the level of medium-range ordering. The developed mathematical simulation procedure testified in a favour of defect-related origin of the reversible photo-thermallyinduced transformations, since their kinetics corresponded to known stretched-exponential dependence, tending to bimolecular behaviour rather then to single-exponential one.

  10. Transition metal oxide nanopowder and ionic liquid: an efficient system for the synthesis of diorganyl selenides, selenocysteine and derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Narayanaperumal, Senthil; Gul, Kashif; Kawasoko, Cristiane Y.; Singh, Devender; Dornelles, Luciano; Rodrigues, Oscar E.D. [Universidade Federal de Santa Maria (UFSC), RS (Brazil). Dept. de Quimica. LabSelen-NanoBio; Braga, Antonio L. [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Dept. de Quimica. LabSelen

    2010-07-01

    We have developed an efficient method for the synthesis of diorganyl selenides and {beta}-seleno amines using Zn, catalytic amounts of ZnO nanopowder, as a catalyst and ionic liquid as a recyclable solvent. This ZnO/ionic liquid system shows high efficiency in catalyzing these transformations with the formation of the desired products in high yields. (author)

  11. Organic molecules passivated Mn doped Zinc Selenide quantum dots and its properties

    International Nuclear Information System (INIS)

    Archana, J.; Navaneethan, M.; Ponnusamy, S.; Hayakawa, Y.; Muthamizhchelvan, C.

    2011-01-01

    Quantum dots of Mn doped Zinc Selenide with N-Methylaniline as the capping agent was prepared by simple and inexpensive wet chemical method. Size of the particles observed by TEM was of the order of 2-4 nm which was well consistent with the size measured by UV analysis. The presence of paramagnetic substance Mn 2+ in the ZnSe quantum dots was confirmed by EPR measurement. Mn doped ZnSe nanoparticles exhibited a strong blue emission that was strongly dependent upon the Mn dopant level and the surface passivation produced by N-Methylaniline. The stability of the product was studied by thermal analysis which shows that this product is highly suitable for opto-electronic applications.

  12. Fluorescence imaging technology (FI) for high-throughput screening of selenide-modified nano-TiO2 catalysts.

    Science.gov (United States)

    Wang, Liping; Lee, Jianchao; Zhang, Meijuan; Duan, Qiannan; Zhang, Jiarui; Qi, Hailang

    2016-02-18

    A high-throughput screening (HTS) method based on fluorescence imaging (FI) was implemented to evaluate the catalytic performance of selenide-modified nano-TiO2. Chemical ink-jet printing (IJP) technology was reformed to fabricate a catalyst library comprising 1405 (Ni(a)Cu(b)Cd(c)Ce(d)In(e)Y(f))Se(x)/TiO2 (M6Se/Ti) composite photocatalysts. Nineteen M6Se/Tis were screened out from the 1405 candidates efficiently.

  13. Controllable synthesis of metal selenide heterostructures mediated by Ag2Se nanocrystals acting as catalysts

    Science.gov (United States)

    Zhou, Jiangcong; Huang, Feng; Xu, Ju; Wang, Yuansheng

    2013-09-01

    Ag2Se nanocrystals were demonstrated to be novel semiconductor mediators, or in other word catalysts, for the growth of semiconductor heterostructures in solution. This is a result of the unique feature of Ag2Se as a fast ion conductor, allowing foreign cations to dissolve and then to heterogrow the second phase. Using Ag2Se nanocrystals as catalysts, dimeric metal selenide heterostructures such as Ag2Se-CdSe and Ag2Se-ZnSe, and even multi-segment heterostructures such as Ag2Se-CdSe-ZnSe and Ag2Se-ZnSe-CdSe, were successfully synthesized. Several interesting features were found in the Ag2Se based heterogrowth. At the initial stage of heterogrowth, a layer of the second phase forms on the surface of an Ag2Se nanosphere, with a curved junction interface between the two phases. With further growth of the second phase, the Ag2Se nanosphere tends to flatten the junction surface by modifying its shape from sphere to hemisphere in order to minimize the conjunct area and thus the interfacial energy. Notably, the crystallographic relationship of the two phases in the heterostructure varies with the lattice parameters of the second phase, in order to reduce the lattice mismatch at the interface. Furthermore, a small lattice mismatch at the interface results in a straight rod-like second phase, while a large lattice mismatch would induce a tortuous product. The reported results may provide a new route for developing novel selenide semiconductor heterostructures which are potentially applicable in optoelectronic, biomedical, photovoltaic and catalytic fields.Ag2Se nanocrystals were demonstrated to be novel semiconductor mediators, or in other word catalysts, for the growth of semiconductor heterostructures in solution. This is a result of the unique feature of Ag2Se as a fast ion conductor, allowing foreign cations to dissolve and then to heterogrow the second phase. Using Ag2Se nanocrystals as catalysts, dimeric metal selenide heterostructures such as Ag2Se-CdSe and Ag2Se

  14. Study by vibration spectrometry of addition compounds of boron fluoride with some alkyl oxides, sulphides and selenides

    International Nuclear Information System (INIS)

    Le Calve, Jacques

    1966-01-01

    This research thesis reports the study of the vibration spectrum of some addition compounds of boron fluoride with alkyl oxides, sulphides and selenides. The objective was first the assignment of spectra, and then the study of the influence of the formation of a coordination bound on boron fluoride vibrations and on that of its donor. The author also tried to define correlations between spectrum and structures, and studied the effects of physical status and solvents [fr

  15. Lead Selenide Nanostructures Self-Assembled across Multiple Length Scales and Dimensions

    Directory of Open Access Journals (Sweden)

    Evan K. Wujcik

    2016-01-01

    Full Text Available A self-assembly approach to lead selenide (PbSe structures that have organized across multiple length scales and multiple dimensions has been achieved. These structures consist of angstrom-scale 0D PbSe crystals, synthesized via a hot solution process, which have stacked into 1D nanorods via aligned dipoles. These 1D nanorods have arranged into nanoscale 2D sheets via directional short-ranged attraction. The nanoscale 2D sheets then further aligned into larger 2D microscale planes. In this study, the authors have characterized the PbSe structures via normal and cryo-TEM and EDX showing that this multiscale multidimensional self-assembled alignment is not due to drying effects. These PbSe structures hold promise for applications in advanced materials—particularly electronic technologies, where alignment can aid in device performance.

  16. Synthesis and characterization of (Ni{sub 1−x}Co{sub x})Se{sub 2} based ternary selenides as electrocatalyst for triiodide reduction in dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Theerthagiri, J.; Senthil, R.A. [Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore 632115 (India); Buraidah, M.H. [Centre for Ionics University of Malaya, Department of Physics, University of Malaya, Kuala Lumpur 50603 (Malaysia); Raghavender, M. [Department of Physics, Yogi Vemana University, Kadapa 516003, Andhra Pradesh (India); Madhavan, J., E-mail: jagan.madhavan@gmail.com [Solar Energy Lab, Department of Chemistry, Thiruvalluvar University, Vellore 632115 (India); Arof, A.K. [Centre for Ionics University of Malaya, Department of Physics, University of Malaya, Kuala Lumpur 50603 (Malaysia)

    2016-06-15

    Ternary metal selenides of (Ni{sub 1−x}Co{sub x})Se{sub 2} with 0≤x≤1 were synthesized by using one-step hydrothermal reduction route. The synthesized metal selenides were utilized as an efficient, low-cost platinum free counter electrode for dye-sensitized solar cells. The cyclic voltammetry and electrochemical impedance spectroscopy studies revealed that the Ni{sub 0.5}Co{sub 0.5}Se{sub 2} counter electrode exhibited higher electrocatalytic activity and lower charge transfer resistance at the counter electrode/electrolyte interface than the other compositions for reduction of triiodide to iodide. Ternary selenides of Ni{sub 0.5}Co{sub 0.5}Se{sub 2} offer a synergistic effect to the electrocatalytic activity for the reduction of triiodide that might be due to an increase in active catalytic sites and small charge transfer resistance. The DSSC with Ni{sub 0.5}Co{sub 0.5}Se{sub 2} counter electrode achieved a high power conversion efficiency of 6.02%, which is comparable with that of conventional platinum counter electrode (6.11%). This present investigation demonstrates the potential application of Ni{sub 0.5}Co{sub 0.5}Se{sub 2} as counter electrode in dye-sensitized solar cells.

  17. Remarkable photo-catalytic degradation of malachite green by nickel doped bismuth selenide under visible light irradiation

    International Nuclear Information System (INIS)

    Kulsi, Chiranjit; Ghosh, Amrita; Mondal, Anup; Kargupta, Kajari; Ganguly, Saibal; Banerjee, Dipali

    2017-01-01

    Highlights: • Bi_2Se_3 and Ni doped Bi_2Se_3 were synthesized by solvothermal approach. • Presence of nickel was confirmed by X-ray photoelectron spectroscopy (XPS) measurement. • Complete degradation of malachite green (MG) dye was achieved by Ni doped Bi_2Se_3 with H_2O_2. • Remarkable photo-catalytic degradation by doped bismuth selenide has been explained. • Scavenger tests show degradation of MG is mainly dominated by ·OH oxidation process. - Abstract: Bismuth selenide (Bi_2Se_3) and nickel (Ni) doped Bi_2Se_3 were prepared by a solvothermal approach to explore the photo-catalytic performance of the materials in degradation of malachite green (MG). The presence of nickel was confirmed by X-ray photoelectron spectroscopy (XPS) measurement in doped Bi_2Se_3. The results showed that the nickel doping played an important role in microstructure and photo-catalytic activity of the samples. Nickel doped Bi_2Se_3 sample exhibited higher photo-catalytic activity than that of the pure Bi_2Se_3 sample under visible-light irradiation. The photo-catalytic degradation followed first-order reaction kinetics. Fast degradation kinetics and complete (100% in 5 min of visible light irradiation) removal of MG was achieved by nickel doped Bi_2Se_3 in presence of hydrogen peroxide (H_2O_2) due to modification of band gap energies leading to suppression of photo-generated electron-hole recombination.

  18. Methods of making copper selenium precursor compositions with a targeted copper selenide content and precursor compositions and thin films resulting therefrom

    Science.gov (United States)

    Curtis, Calvin J [Lakewood, CO; Miedaner, Alexander [Boulder, CO; van Hest, Marinus Franciscus Antonius Maria; Ginley, David S [Evergreen, CO; Leisch, Jennifer [Denver, CO; Taylor, Matthew [West Simsbury, CT; Stanbery, Billy J [Austin, TX

    2011-09-20

    Precursor compositions containing copper and selenium suitable for deposition on a substrate to form thin films suitable for semi-conductor applications. Methods of forming the precursor compositions using primary amine solvents and methods of forming the thin films wherein the selection of temperature and duration of heating controls the formation of a targeted species of copper selenide.

  19. catena-Poly[[copper(II-bis[μ-bis(3,5-dimethyl-1H-pyrazol-4-yl selenide

    Directory of Open Access Journals (Sweden)

    Maksym Seredyuk

    2009-11-01

    Full Text Available In the title compound, {[Cu(C10H14N4Se2](ClO42}n, the CuII ion is located on a twofold rotation axis and has a tetragonally distorted square-planar geometry constituted by four N atoms. A pair of bis(3,5-dimethyl-1H-pyrazol-4-yl selenide (L ligands bridges the copper centers into a polymeric chain extending along [001]. The perchlorate anions are involved in intermolecular N—H...O hydrogen bonding, which links the chains into layers parallel to the bc plane.

  20. Control of accidental releases of hydrogen selenide in vented storage cabinets

    Science.gov (United States)

    Fthenakis, V. M.; Moskowitz, P. D.; Sproull, R. D.

    1988-07-01

    Highly toxic hydrogen selenide and hydrogen sulfide gases are used in the production of copper-indium-diselenide photovoltaic cells by reactive sputtering. In the event of an accident, these gases may be released to the atmosphere and pose hazards to public and occupational safety and health. This paper outlines an approach for designing systems for the control of these releases given the uncertainty in release conditions and lack of data on the chemical systems involved. Accidental releases of these gases in storage cabinets can be controlled by either a venturi and packed-bed scrubber and carbon adsorption bed, or containment scrubbing equipment followed by carbon adsorption. These systems can effectively reduce toxic gas emissions to levels needed to protect public health. The costs of these controls (˜0.012/Wp) are samll in comparison with current (˜6/Wp) and projected (˜I/Wp) production costs.

  1. Ytterbium and erbium derivatives of 2-methoxyethanol and their use in the thin film deposition of Er-doped Yb.sub.3./sub.Al.sub.5./sub.O.sub.12./sub..

    Czech Academy of Sciences Publication Activity Database

    Rubešová, E.; Hlásek, T.; Jakeš, V.; Matějka, P.; Oswald, Jiří; Holzhauser, P.

    2014-01-01

    Roč. 70, č. 1 (2014), s. 142-148 ISSN 0928-0707 Institutional support: RVO:68378271 Keywords : ytterbium-aluminium garnets * sol-gel growth * thin films * IR spectroscopy * optical materials * luminescence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.532, year: 2014

  2. Dual-Mode Operation of an Optical Lattice Clock Using Strontium and Ytterbium Atoms.

    Science.gov (United States)

    Akamatsu, Daisuke; Kobayashi, Takumi; Hisai, Yusuke; Tanabe, Takehiko; Hosaka, Kazumoto; Yasuda, Masami; Hong, Feng-Lei

    2018-06-01

    We have developed an optical lattice clock that can operate in dual modes: a strontium (Sr) clock mode and an ytterbium (Yb) clock mode. Dual-mode operation of the Sr-Yb optical lattice clock is achieved by alternately cooling and trapping 87 Sr and 171 Yb atoms inside the vacuum chamber of the clock. Optical lattices for Sr and Yb atoms were arranged with horizontal and vertical configurations, respectively, resulting in a small distance of the order of between the trapped Sr and Yb atoms. The 1 S 0 - 3 P 0 clock transitions in the trapped atoms were interrogated in turn and the clock lasers were stabilized to the transitions. We demonstrated the frequency ratio measurement of the Sr and Yb clock transitions by using the dual-mode operation of the Sr-Yb optical lattice clock. The dual-mode operation can reduce the uncertainty of the blackbody radiation shift in the frequency ratio measurement, because both Sr and Yb atoms share the same blackbody radiation.

  3. Growth and Low Temperature Transport Measurements of Pure and Doped Bismuth Selenide

    DEFF Research Database (Denmark)

    Mlack, Jerome Thomas

    Se3, which is a strong spin orbit material and a topological insulator. I describe a synthesis technique and low-temperature transport measurements of nanostructures of Bi2Se3, that when annealed with palladium show evidence of superconductivity. The growth method is a catalyst-free atmospheric...... with palladium via annealing, the transport properties of the samples can be altered to exhibit superconductivity. Thin films of palladium are deposited on prefabricated Bi2Se3 nanodevices and annealed at temperatures in excess of 100 Celsius. We find that Bi2Se3 absorbs Pd under these conditions...... pressure vapor-solid growth. The growth method yields a variety of nanostructures, and materials analysis shows ordered structures of bismuth selenide in all cases. Low-temperature measurements of as-grown nanostructures indicate tunable carrier density in all samples. By doping the nanostructures...

  4. Crystal structure of non-stoichiometric copper selenides studied by neutron scattering and X-ray diffraction

    International Nuclear Information System (INIS)

    Bikkulova, N.N.; Yagafarova, Z.A.; Asylguzhina, G.N.; Danilkin, S.A.; Fuess, H.; Skomorokhov, A.N.; Yadrovskii, E.L.; Beskrovnyi, A.I.

    2003-01-01

    Structural characteristics of non-stoichiometric copper selenides were studied by the elastic neutron and X-ray scattering techniques. Rietveld analysis was used to refine the structure of the high-temperature β-phase of the Cu 1.75 Se, Cu 1.78 Se, and Cu 1.83 Se samples. The homogeneity ranges of the cubic phase were determined. The modification of the crystal structure accompanying the β-α phase transition was studied for Cu 1.75 Se and Cu 1.98 Se compounds within the 443-10 K temperature range. It was shown that the phase transition is accompanied by distortions of the fcc lattice and the ordering of copper ions

  5. Laser Photolysis and Thermolysis of Organic Selenides and Tellurides for Chemical Gas-phase Deposition of Nanostructured Materials

    Directory of Open Access Journals (Sweden)

    Josef Pola

    2009-03-01

    Full Text Available Laser radiation-induced decomposition of gaseous organic selenides and tellurides resulting in chemical deposition of nanostructured materials on cold surfaces is reviewed with regard to the mechanism of the gas-phase decomposition and properties of the deposited materials. The laser photolysis and laser thermolysis of the Se and Te precursors leading to chalcogen deposition can also serve as a useful approach to nanostructured chalcogen composites and IVA group (Si, Ge, Sn element chalcogenides provided that it is carried out simultaneously with laser photolysis or thermolysis of polymer and IVA group element precursor.

  6. Self-standing nanoribbons of antimony selenide and antimony sulfide with well-defined size and band gap

    International Nuclear Information System (INIS)

    Vadapoo, Rajasekarakumar; Krishnan, Sridevi; Yilmaz, Hulusi; Marin, Carlos

    2011-01-01

    Sub-10 nm semiconducting nanostructures are crucial for the realization of nanoscale devices. Fabrication of nanostructures at this scale with homogeneous properties is challenging. Using ab initio calculations, we show that self-standing ribbons of antimony selenide and antimony sulfide of width 1.1 nm exhibit well-defined bandgaps of 1.66 and 2.16 eV, respectively. Molecular dynamics studies show that these ribbons are stable at 500 K. The one-dimensional (1D) heterostructure of these nanoribbons (Sb 2 Se 3 /Sb 2 S 3 ) along the [001] direction shows a straddling type behavior.

  7. catena-Poly[[copper(II)-bis[μ-bis(3,5-dimethyl-1H-pyrazol-4-yl) selenide

    Science.gov (United States)

    Seredyuk, Maksym; Haukka, Matti; Pavlenko, Vadim A.; Fritsky, Igor O.

    2009-01-01

    In the title compound, {[Cu(C10H14N4Se)2](ClO4)2}n, the CuII ion is located on a twofold rotation axis and has a tetra­gonally distorted square-planar geometry constituted by four N atoms. A pair of bis(3,5-dimethyl-1H-pyrazol-4-yl) selenide (L) ligands bridges the copper centers into a polymeric chain extending along [001]. The perchlorate anions are involved in inter­molecular N—H⋯O hydrogen bonding, which links the chains into layers parallel to the bc plane. PMID:21578140

  8. Evolution of the chemical bonding nature and electrode activity of indium selenide upon the composite formation with graphene nanosheets

    International Nuclear Information System (INIS)

    Oh, Seung Mi; Lee, Eunsil; Adpakpang, Kanyaporn; Patil, Sharad B.; Park, Mi Jin; Lim, Young Soo; Lee, Kyu Hyoung; Kim, Jong-Young; Hwang, Seong-Ju

    2015-01-01

    Graphical abstract: Display Omitted -- Highlights: • In 4 Se 2.85 @graphene nanocomposite is easily prepared by high energy mechanical milling process. • The bond covalency of In 4 Se 2.85 is notably changed upon the composite formation with graphene. • In 4 Se 2.85 @graphene nanocomposite shows promising anode performance for lithium ion battery. -- Abstract: Evolution of the chemical bonding nature and electrochemical activity of indium selenide upon the composite formation with carbon species is systematically investigated. Nanocomposites of In 4 Se 2.85 @graphene and In 4 Se 2.85 @carbon-black are synthesized via a solid state reaction between In and Se elements, and the following high energy mechanical milling of In 4 Se 2.85 with graphene and carbon-black, respectively. The high energy mechanical milling (HEMM) of In 4 Se 2.85 with carbon species gives rise to a decrease of particle size with a significant depression of the crystallinity of In 4 Se 2.85 phase. In contrast to the composite formation with carbon-black, that with graphene induces a notable decrease of (In−Se) bond covalency, underscoring significant chemical interaction between graphene and In 4 Se 2.85 . Both the nanocomposites of In 4 Se 2.85 @graphene and In 4 Se 2.85 @carbon-black show much better anode performance for lithium ion batteries with larger discharge capacity and better cyclability than does the pristine In 4 Se 2.85 material, indicating the beneficial effect of composite formation on the electrochemical activity of indium selenide. Between the present nanocomposites, the electrode performance of the In 4 Se 2.85 @graphene nanocomposite is superior to that of the In 4 Se 2.85 @carbon-black nanocomposite, which is attributable to the weakening of (In−Se) bonds upon the composite formation with graphene as well as to the better mixing between In 4 Se 2.85 and graphene. The present study clearly demonstrates that the composite formation with graphene has strong influence

  9. Electron exchange between neutral and ionized impurity iron centers in vitreous arsenic selenide

    Energy Technology Data Exchange (ETDEWEB)

    Marchenko, A. V. [Herzen State Pedagogical University of Russia (Russian Federation); Terukov, E. I. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Egorova, A. Yu. [St.-Petersburg Mining University (Russian Federation); Kiselev, V. S.; Seregin, P. P., E-mail: ppseregin@mail.ru [Herzen State Pedagogical University of Russia (Russian Federation)

    2017-04-15

    Impurity iron atoms in vitreous arsenic-selenide As{sub 2}Se{sub 3} films modified by iron form one-electron donor centers with an ionization energy of 0.24 (3) eV (the energy is counted from the conduction-band bottom). The Fermi level is shifted with an increase in the iron concentration from the mid-gap to the donorlevel position of iron due to the filling of one-electron states of the acceptor type lying below the Fermi level. At an iron concentration of ≥3 at %, the electron-exchange process is observed between neutral and ionized iron centers resulting in a change both in the electron density and in the tensor of the electric-field gradient at iron-atom nuclei with increasing temperature above 350 K.

  10. Transition-Metal-Free Diarylannulated Sulfide and Selenide Construction via Radical/Anion-Mediated Sulfur-Iodine and Selenium-Iodine Exchange.

    Science.gov (United States)

    Wang, Ming; Fan, Qiaoling; Jiang, Xuefeng

    2016-11-04

    A facile, straightforward protocol was established for diarylannulated sulfide and selenide construction through S-I and Se-I exchange without transition metal assistance. Elemental sulfur and selenium served as the chalcogen source. Diarylannulated sulfides were systematically achieved from a five- to eight-membered ring. A trisulfur radical anion was demonstrated as the initiator for this radical process via electron paramagnetic resonance (EPR) study. OFET molecules [1]benzothieno[3,2-b][1]benzothiophene (BTBT) and [1]benzothieno[3,2-b][1]benzoselenophene (BTBS) were efficiently established.

  11. Stark effect investigations of excited cadmium, ytterbium, and thulium I-levels using the methods of double resonance and level crossing

    International Nuclear Information System (INIS)

    Rinkleff, R.H.

    1977-01-01

    Using the method of optical double resonance, the 5s5p 3 P 1 level tensor polarizability of Cadmium has been measured. For this state, various authors have published different results, using different experimental methods. The experimental result presented here is in excellent agreement with the value of Happer, based on level crossing investigations, and agrees well with the theoretical result of Robinson based on a modified Sternheimer approximation, and so gives a reliable value for the tensor polarizability. Furthermore the tensor polarizability of the 6s6p 3 P 1 - level of the even Ytterbium isotopes and the odd Ytterbium 171 nucleus have been measured with the optical double resonance method, and the Stark constant has been calculated based on a given theory and oscillator strengths. Using the methods of optical double resonance and level crossing, the tensor polarizability of 5 excited levels of the Thulium configurations 4f 13 6s6p + 4f 12 5d6s 2 have been measured. From the experimental Stark constants and the angular coefficients of the eigenfunctions calculated by Camus, the radial integrals I(5d, 5p) and I(6p, 5d) are calculated for electric dipole transitions between levels of the configurations 4f 12 5d6s 2 + 4f 13 6s6p and levels of the 4f 12 6p6s 2 + 4f 13 6s5d configurations. The tensor polarizability calculated with these radial integrals show very good agreement with the experimental values. (orig./LH) [de

  12. A crystal chemistry approach for high-power ytterbium doped solid-state lasers: diffusion-bonded crystals and new crystalline hosts

    International Nuclear Information System (INIS)

    Gaume, R.

    2002-11-01

    This work deals with ytterbium based crystals for high-power laser applications. In particular, we focus our interest in reducing crystal heating and its consequences during laser operation following two different ways. First, we review the specific properties of ytterbium doped solid-state lasers in order to define a figure-of-merit which gives the evaluation of laser performances, thermo-mechanical and thermo-optical properties. Bearing in mind this analysis, we propose a set of theoretical tools, based on the crystallographic structure of the crystal and its chemical composition, to predict thermo-mechanical and optical potentials. This approach, used for the seek of new Yb 3+ -doped materials for high-power laser applications, shows that simple oxides containing rare-earths are favorable. Therefore, the spectroscopic properties of six new materials Yb 3+ :GdVO 4 , Yb 3+ :GdAlO 3 , Yb 3+ :Gd 2 O 3 , Yb 3+ :Sc 2 SiO 5 , Yb 3+ :CaSc 2 O 4 and Yb 3+ :SrSc 2 O 4 are described. The second aspect developed in this work deals with thermal properties enhancement of already well characterized laser materials. Two different ways are explored: a) elaboration by diffusion bonding of end-caps lasers with undoped crystals (composite crystals). Thus, different composites were obtained and a fairly lowering of thermal lensing effect was observed during laser operation. b) strengthening of crystalline structures by ionic substitution of one of its constituents. We demonstrate how crystal growth ability can be improved by a cationic substitution in the case of Yb 3+ :BOYS, a largely-tunable laser material which is of great interest for femtosecond pulses generation. (author)

  13. Density functional theory study of inter-layer coupling in bulk tin selenide

    Science.gov (United States)

    Song, Hong-Yue; Lü, Jing-Tao

    2018-03-01

    We study the inter-layer coupling in bulk tin selenide (SnSe) through density functional theory based calculations. Different approximations for the exchange-correlation functionals and the van der Waals interaction are employed. By performing comparison with graphite, MoS2 and black phosphorus, we analyze the inter-layer coupling from different points of view, including the binding energy, the low frequency inter-layer optical phonons, and the inter-layer charge transfer. We find that, there is a strong charge transfer between layers of SnSe, resulting in the strongest inter-layer coupling. Moreover, the charge transfer renders the inter-layer coupling in SnSe not of van der Waals type. Mechanical exfoliation has been used to fabricate mono- or few-layer graphene, MoS2 and black phosphorus. But, our results show that it may be difficult to apply similar technique to SnSe.

  14. Solar Light Responsive Photocatalytic Activity of Reduced Graphene Oxide-Zinc Selenide Nanocomposite

    Science.gov (United States)

    Chakraborty, Koushik; Ibrahim, Sk; Das, Poulomi; Ghosh, Surajit; Pal, Tanusri

    2017-10-01

    Solution processable reduced graphene oxide-zinc selenide (RGO-ZnSe) nanocomposite has been successfully synthesized by an easy one-pot single-step solvothermal reaction. The RGO-ZnSe composite was characterized structurally and morphologically by the study of XRD analysis, SEM and TEM imaging. Reduction in graphene oxide was confirmed by FTIR spectroscopy analysis. Photocatalytic efficiency of RGO-ZnSe composite was investigated toward the degradation of Rhodamine B under solar light irradiation. Our study indicates that the RGO-ZnSe composite is catalytically more active compared to the controlled-ZnSe under the solar light illumination. Here, RGO plays an important role for photoinduced charge separation and subsequently hinders the electron-hole recombination probability that consequently enhances photocatalytic degradation efficiency. We expect that this type of RGO-based optoelectronics materials opens up a new avenue in the field of photocatalytic degradation of different organic water pollutants.

  15. Zr{sub 2}N{sub 2}Se. The first zirconium(IV) nitride selenide by the oxidation of zirconium(III) nitride with selenium

    Energy Technology Data Exchange (ETDEWEB)

    Lissner, Falk; Hack, Bettina; Schleid, Thomas [Institute for Inorganic Chemistry, University of Stuttgart (Germany); Lerch, Martin [Institute for Chemistry, Technical University of Berlin (Germany)

    2012-08-15

    The oxidation of zirconium(III) nitride (ZrN) with suitable amounts of selenium (Se) in the presence of sodium chloride (NaCl) as flux yields small yellow brownish platelets of the first zirconium(IV) nitride selenide with the composition Zr{sub 2}N{sub 2}Se. The new compound crystallizes in the hexagonal space group P6{sub 3}/mmc (no. 194) with a = 363.98(2) pm, c = 1316.41(9) pm (c/a = 3.617) and two formula units per unit cell. The crystallographically unique Zr{sup 4+} cations are surrounded by three selenide and four nitride anions in the shape of a capped trigonal antiprism. The Se{sup 2-} anions are coordinated by six Zr{sup 4+} cations as trigonal prism and the N{sup 3-} anions reside in tetrahedral surrounding of Zr{sup 4+} cations. These [NZr{sub 4}]{sup 13+} tetrahedra become interconnected via three edges each to form {sup 2}{sub ∞}{[(NZr_4_/_4)_2]"2"+} double layers parallel to the (001) plane, which are held together by monolayers of Se{sup 2-} anions. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Phase diagram of (Li(1-x)Fe(x))OHFeSe: a bridge between iron selenide and arsenide superconductors.

    Science.gov (United States)

    Dong, Xiaoli; Zhou, Huaxue; Yang, Huaixin; Yuan, Jie; Jin, Kui; Zhou, Fang; Yuan, Dongna; Wei, Linlin; Li, Jianqi; Wang, Xinqiang; Zhang, Guangming; Zhao, Zhongxian

    2015-01-14

    Previous experimental results have shown important differences between iron selenide and arsenide superconductors which seem to suggest that the high-temperature superconductivity in these two subgroups of iron-based families may arise from different electronic ground states. Here we report the complete phase diagram of a newly synthesized superconducting (SC) system, (Li1-xFex)OHFeSe, with a structure similar to that of FeAs-based superconductors. In the non-SC samples, an antiferromagnetic (AFM) spin-density-wave (SDW) transition occurs at ∼127 K. This is the first example to demonstrate such an SDW phase in an FeSe-based superconductor system. Transmission electron microscopy shows that a well-known √5×√5 iron vacancy ordered state, resulting in an AFM order at ∼500 K in AyFe2-xSe2 (A = metal ions) superconductor systems, is absent in both non-SC and SC samples, but a unique superstructure with a modulation wave vector q = (1)/2(1,1,0), identical to that seen in the SC phase of KyFe2-xSe2, is dominant in the optimal SC sample (with an SC transition temperature Tc = 40 K). Hence, we conclude that the high-Tc superconductivity in (Li1-xFex)OHFeSe stems from the similarly weak AFM fluctuations as FeAs-based superconductors, suggesting a universal physical picture for both iron selenide and arsenide superconductors.

  17. Investigating Phase Transform Behavior in Indium Selenide Based RAM and Its Validation as a Memory Element

    Directory of Open Access Journals (Sweden)

    Swapnil Sourav

    2016-01-01

    Full Text Available Phase transform properties of Indium Selenide (In2Se3 based Random Access Memory (RAM have been explored in this paper. Phase change random access memory (PCRAM is an attractive solid-state nonvolatile memory that possesses potential to meet various current technology demands of memory design. Already reported PCRAM models are mainly based upon Germanium-Antimony-Tellurium (Ge2Sb2Te5 or GST materials as their prime constituents. However, PCRAM using GST material lacks some important memory attributes required for memory elements such as larger resistance margin between the highly resistive amorphous and highly conductive crystalline states in phase change materials. This paper investigates various electrical and compositional properties of the Indium Selenide (In2Se3 material and also draws comparison with its counterpart mainly focusing on phase transform properties. To achieve this goal, a SPICE model of In2Se3 based PCRAM model has been reported in this work. The reported model has been also validated to act as a memory cell by associating it with a read/write circuit proposed in this work. Simulation results demonstrate impressive retentivity and low power consumption by requiring a set pulse of 208 μA for a duration of 100 μs to set the PCRAM in crystalline state. Similarly, a reset pulse of 11.7 μA for a duration of 20 ns can set the PCRAM in amorphous state. Modeling of In2Se3 based PCRAM has been done in Verilog-A and simulation results have been extensively verified using SPICE simulator.

  18. Soliton rains in a graphene-oxide passively mode-locked ytterbium-doped fiber laser with all-normal dispersion

    International Nuclear Information System (INIS)

    Huang, S S; Yan, P G; Zhang, G L; Zhao, J Q; Li, H Q; Lin, R Y; Wang, Y G

    2014-01-01

    We experimentally investigated soliton rains in an ytterbium-doped fiber (YDF) laser with a net normal dispersion cavity using a graphene-oxide (GO) saturable absorber (SA). The 195 m-long-cavity, the fiber birefringence filter and the inserted 2.5 nm narrow bandwidth filter play important roles in the formation of the soliton rains. The soliton rain states can be changed by the effective gain bandwidth of the laser. The experimental results can be conducive to an understanding of dissipative soliton features and mode-locking dynamics in all-normal dispersion fiber lasers with GOSAs. To the best of our knowledge, this is the first demonstration of soliton rains in a GOSA passively mode-locked YDF laser with a net normal dispersion cavity. (letter)

  19. Status of fiber lasers study of on ytterbium doped fiber laser and laser spectroscopy of doped fibers

    International Nuclear Information System (INIS)

    Magne, S.

    1994-07-01

    This work shows all the advantages and drawbacks of the rare-earth-doped fiber lasers and fiber optical amplifiers, pointing out their potential use for instrumentation and optical fiber sensor technology. The theory of light propagation in optical fibers is presented in order to understand the manufacturing methods. A comparative study of preform surface and concentration analysis is performed. The gain behaviour is also thoroughly examined. A synthesis of all technological parameters of the fiber laser is then established and all technologies of the constituting integrated components are reviewed and compared. The experimental techniques mainly involve: site selective excitation tunability, cooperative luminescence, oxidation state changes induced by gamma irradiation, ytterbium-doped mono-mode continuous wave tunable three-level fiber laser. (TEC). 622 refs., 176 figs

  20. Kinetics of electrophilic substitution of neodymium(III) by ytterbium(III) in aqueous solutions of ethylenediamintetraacetate and cyclohexanediaminetetraacetate

    International Nuclear Information System (INIS)

    Nikitenko, S.I.; Martynenko, L.I.; Pechurova, N.I.; Spitsyn, V.I.

    1982-01-01

    The kinetics of electrophilic substitution in systems containing rare earth element ions (REE) and Komplexon [tetrasodium ethylenediaminetetraacetate] have been studied little. At the same time, information about the mechanism of exchange is not only of theoretical interest but is important for the optimization of processes for separating and purifying REE. Least studied of all has been the mutual exchange in Komplexonate ions of light and heavy REE, although it is precisely the kinetics of exchange of different kinds of REE ions that primarily determines the effectiveness of the separation of their mixtures. We have studied electrophilic substitution in the case of the replacement of neodymium(III) by ytterbium(III) in solutions containing NdL - and Yb 3 + , where L 4 - and D 4 -

  1. Status of fiber lasers study of on ytterbium doped fiber laser and laser spectroscopy of doped fibers; Etat de l`art des lasers a fibre, etude d`un laser a fibre dopee ytterbium et spectroscopie laser de fibres dopees

    Energy Technology Data Exchange (ETDEWEB)

    Magne, S

    1994-07-01

    This work shows all the advantages and drawbacks of the rare-earth-doped fiber lasers and fiber optical amplifiers, pointing out their potential use for instrumentation and optical fiber sensor technology. The theory of light propagation in optical fibers is presented in order to understand the manufacturing methods. A comparative study of preform surface and concentration analysis is performed. The gain behaviour is also thoroughly examined. A synthesis of all technological parameters of the fiber laser is then established and all technologies of the constituting integrated components are reviewed and compared. The experimental techniques mainly involve: site selective excitation tunability, cooperative luminescence, oxidation state changes induced by gamma irradiation, ytterbium-doped mono-mode continuous wave tunable three-level fiber laser. (TEC). 622 refs., 176 figs.

  2. Synthesis and photocatalytic activity of ytterbium-doped titania/diatomite composite photocatalysts

    Science.gov (United States)

    Tang, Wenjian; Qiu, Kehui; Zhang, Peicong; Yuan, Xiqiang

    2016-01-01

    Ytterbium-doped titanium dioxide (Yb-TiO2)/diatomite composite materials with different Yb concentrations were prepared by sol-gel method. The phase structure, morphology, and chemical composition of the as-prepared composites were well characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), and ultraviolet-visible (UV-vis) diffuse reflection spectroscopy. The XRD and Raman spectroscopy analysis indicated that the TiO2 existed in the form of pure anatase in the composites. The SEM images exhibited the well deposition and dispersion of TiO2 nanoparticles with little agglomeration on the surfaces of diatoms. The UV-vis diffuse reflection spectra showed that the band gap of TiO2 could be narrowed by the introduction of Yb species, which was further affected by doping concentration of Yb. The photocatalytic activity of synthesized samples was investigated by the degradation of methylene blue (MB) under UV light irradiation. It was observed that the photocatalytic degradation followed a pseudo-first-order kinetics according to the Langmuir-Hinshelwood model. Compared to TiO2 and TiO2/diatomite, the Yb-TiO2/diatomite composites exhibited higher photocatalytic activity toward degradation of MB using UV light irradiation.

  3. The role of isomorphous substitutions in natural selenides belonging to the pyrite group

    International Nuclear Information System (INIS)

    Bindi, Luca; Cipriani, Curzio; Pratesi, Giovanni; Trosti-Ferroni, Renza

    2008-01-01

    The present paper reports chemical and structural data of selenide minerals belonging to the pyrite group. Eighteen samples of minerals in this group with variable chemical composition (7 samples of penroseite, NiSe 2 ; 10 samples of krutaite, CuSe 2 ; 1 sample of trogtalite, CoSe 2 ) were studied by means of X-ray single-crystal diffraction and electron microprobe. On the basis of information gained from the chemical characterization, we can conclude that a complete solid solution between NiSe 2 and CuSe 2 exists in nature with the absence of pure end-members. Although verified only for the Ni-rich members, we also infer a solid solution between NiSe 2 and CoSe 2 . The unit-cell parameters were modeled using a multiple regression method as a function of the Co, Ni, and Cu contents

  4. Two-dimensional ytterbium oxide nanodisks based biosensor for selective detection of urea.

    Science.gov (United States)

    Ibrahim, Ahmed A; Ahmad, Rafiq; Umar, Ahmad; Al-Assiri, M S; Al-Salami, A E; Kumar, Rajesh; Ansari, S G; Baskoutas, S

    2017-12-15

    Herein, we demonstrate synthesis and application of two-dimensional (2D) rectangular ytterbium oxide (Yb 2 O 3 ) nanodisks via a facile hydrothermal method. The structural, morphological, compositional, crystallinity, and phase properties of as-synthesized nanodisks were carried out using several analytical techniques that showed well defined 2D rectangular nanodisks/sheet like morphologies. The average thickness and edge length of the nanosheet structures were 20 ± 5nm and 600 ± 50nm, respectively. To develop urea biosensor, glassy carbon electrodes (GCE) were modified with Yb 2 O 3 nanodisks, followed by urease immobilization and Nafion membrane covering (GCE/Yb 2 O 3 /Urease/Nafion). The fabricated biosensor showed sensitivity of 124.84μAmM -1 cm -2 , wide linear range of 0.05-19mM, detection limit down to ~ 2μM, and fast response time of ~ 3s. The developed biosensor was also used for the urea detection in water samples through spike-recovery experiments, which illustrates satisfactory recoveries. In addition, the obtained desirable selectivity towards specific interfering species, long-term stability, reproducibility, and repeatability further confirm the potency of as-fabricated urea biosensor. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Selective growth of gold onto copper indium sulfide selenide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Elena; Parisi, Juergen; Kolny-Olesiak, Joanna [Oldenburg Univ. (Germany). Inst. of Physics, Energy and Semiconductor Research

    2013-05-15

    Hybrid nanostructures are interesting materials for numerous applications in chemistry, physics, and biology, due to their novel properties and multiple functionalities. Here, we present a synthesis of metal-semiconductor hybrid nanostructures composed of nontoxic I-III-VI semiconductor nanoparticles and gold. Copper indium sulfide selenide (CuInSSe) nanocrystals with zinc blende structure and trigonal pyramidal shape, capped with dodecanethiol, serve as an original semiconductor part of a new hybrid nanostructure. Metallic gold nanocrystals selectively grow onto vertexes of these CuInSSe pyramids. The hybrid nanostructures were studied by transmission electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, and UV-Vis-absorption spectroscopy, which allowed us conclusions about their growth mechanism. Hybrid nanocrystals are generated by replacement of a sacrificial domain in the CuInSSe part. At the same time, small selenium nanocrystals form that stay attached to the remaining CuInSSe/Au particles. Additionally, we compare the synthesis and properties of CuInSSe-based hybrid nanostructures with those of copper indium disulfide (CuInS{sub 2}). CuInS{sub 2}/Au nanostructures grow by a different mechanism (surface growth) and do not show any selectivity. (orig.)

  6. Synthesis and stability of hydrogen selenide compounds at high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Pace, Edward J.; Binns, Jack; Alvarez, Miriam Pena; Dalladay-Simpson, Philip; Gregoryanz, Eugene; Howie, Ross T. (Edinburgh); (CHPSTAR- China)

    2017-11-14

    The observation of high-temperature superconductivity in hydride sulfide (H2S) at high pressures has generated considerable interest in compressed hydrogen-rich compounds. High-pressure hydrogen selenide (H2Se) has also been predicted to be superconducting at high temperatures; however, its behaviour and stability upon compression remains unknown. In this study, we synthesize H2Se in situ from elemental Se and molecular H2 at pressures of 0.4 GPa and temperatures of 473 K. On compression at 300 K, we observe the high-pressure solid phase sequence (I-I'-IV) of H2Se through Raman spectroscopy and x-ray diffraction measurements, before dissociation into its constituent elements. Through the compression of H2Se in H2 media, we also observe the formation of a host-guest structure, (H2Se)2H2, which is stable at the same conditions as H2Se, with respect to decomposition. These measurements show that the behaviour of H2Se is remarkably similar to that of H2S and provides further understanding of the hydrogen chalcogenides under pressure.

  7. All-optical switching in Sagnac loop mirror containing an ytterbium-doped fiber and fiber Bragg grating.

    Science.gov (United States)

    Zang, Zhigang

    2013-08-10

    A configuration of all-optical switching based on a Signac loop mirror that incorporates an ytterbium-doped fiber and uniform fiber Bragg grating (FBG) is proposed in this paper. It is found that the transmission spectrum of this structure is the narrow splitting of the reflection spectrum of the FBG. The shift of this ultranarrow transmission spectrum is very sensitive to the intensity of the pump power. Thus, the threshold switching power can be greatly reduced by shifting such narrow transmission spectrum. Compared with the single FBG, the threshold switching power of this configuration is reduced by 4 orders of magnitude. In addition, the results indicate that this optical switching has a high extinction ratio of 20 dB and a ultrafast response time of 3 ns. The operation regime and switching performance under the cross-phase modulation cases are also investigated.

  8. Transport properties of Cu-doped bismuth selenide single crystals at high magnetic fields up to 60 Tesla: Shubnikov-de Haas oscillations and π-Berry phase

    Science.gov (United States)

    Romanova, Taisiia A.; Knyazev, Dmitry A.; Wang, Zhaosheng; Sadakov, Andrey V.; Prudkoglyad, Valery A.

    2018-05-01

    We report Shubnikov-de Haas (SdH) and Hall oscillations in Cu-doped high quality bismuth selenide single crystals. To increase the accuracy of Berry phase determination by means of the of the SdH oscillations phase analysis we present a study of n-type samples with bulk carrier density n ∼1019 -1020cm-3 at high magnetic field up to 60 Tesla. In particular, Landau level fan diagram starting from the value of the Landau index N = 4 was plotted. Thus, from our data we found π-Berry phase that directly indicates the Dirac nature of the carriers in three-dimensional topological insulator (3D TI) based on Cu-doped bismuth selenide. We argued that in our samples the magnetotransport is determined by a general group of carriers that exhibit quasi-two-dimensional (2D) behaviour and are characterized by topological π-Berry phase. Along with the main contribution to the conductivity the presence of a small group of bulk carriers was registered. For 3D-pocket Berry phase was identified as zero, which is a characteristic of trivial metallic states.

  9. Exploring the thermoelectric and magnetic properties of uranium selenides: Tl{sub 2}Ag{sub 2}USe{sub 4} and Tl{sub 3}Cu{sub 4}USe{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Azam, Sikander; Khan, Saleem Ayaz [New Technologies – Research Center, University of West Bohemia, Univerzitni 8, 30614 Pilsen (Czech Republic); Din, Haleem Ud [Department of Physics, Hazara University, Mansehra (Pakistan); Khenata, Rabah [Laboratoire de Physique Quantique et de Modélisation Mathématique (LPQ3M), Département de Technologie, Université de Mascara, Mascara 29000 (Algeria); Goumri-Said, Souraya, E-mail: sosaid@alfaisal.edu [College of Science, Physics department, Alfaisal University, P.O. Box 50927, Riyadh 11533 (Saudi Arabia)

    2016-09-01

    The electronic, magnetic and thermoelectric properties of Tl{sub 2}Ag{sub 2}USe{sub 4} and Tl{sub 3}Cu{sub 4}USe{sub 6} compounds were investigated using the full potential linear augmented plane wave (FP-LAPW) method based on the density functional theory (DFT). The exchange correlation was treated with the generalized gradient approximation plus optimized effective Hubbard parameter and spin–orbit coupling (GGA+U+SOC). The present uranium selenides show narrow direct energy band gap values of 0.7 and 0.875 eV for Tl{sub 2}Ag{sub 2}USe{sub 4} and Tl{sub 3}Cu{sub 4}USe{sub 6} respectively. For both selenides U-d/f states are responsible for electrical transport properties. Uranium atoms were the most contributors in the magnetic moment compared to other atoms and show ferromagnetic nature. The spin density isosurfaces show the polarization of neighboring atoms of Uranium, such as silver/copper and selenium. Thermoelectric calculations reveal that Tl{sub 3}Cu{sub 4}USe{sub 6} is more suitable for thermoelectric device applications than Tl{sub 2}Ag{sub 2}USe{sub 4}. - Highlights: • Electronic, magnetic and thermoelectric properties of uranium selenides are investigated with DFT. • They show a narrow direct energy band gap of 0.7 and 0.875 eV. • U-d/f states are responsible for electrical transport properties. • Tl{sub 3}Cu{sub 4}USe{sub 6} is more suitable for thermoelectric device applications than Tl{sub 2}Ag{sub 2}USe{sub 4}.

  10. Thermal characteristics of an end-pumped high-power ytterbium-sensitized erbium-doped fiber laser under natural convection.

    Science.gov (United States)

    Jeong, Y; Baek, S; Dupriez, P; Maran, J-N; Sahu, J K; Nilsson, J; Lee, B

    2008-11-24

    We investigate the thermal characteristics of a polymer-clad fiber laser under natural convection when it is strongly pumped up to the damage point of the fiber. For this, we utilize a temperature sensing technique based on a fiber Bragg grating sensor array. We have measured the longitudinal temperature distribution of a 2.4-m length ytterbium-sensitized erbium-doped fiber laser that was end-pumped at approximately 975 nm. The measured temperature distribution decreases exponentially, approximately, decaying away from the pump-launch end. We attribute this to the heat dissipation of absorbed pump power. The maximum temperature difference between the fiber ends was approximately 190 K at the maximum pump power of 60.8 W. From this, we estimate that the core temperature reached approximately 236 degrees C.

  11. The role of isomorphous substitutions in natural selenides belonging to the pyrite group

    Energy Technology Data Exchange (ETDEWEB)

    Bindi, Luca [Museo di Storia Naturale, sez. di Mineralogia e Litologia, Universita degli Studi di Firenze, via La Pira 4, I-50121 Firenze (Italy)], E-mail: luca.bindi@unifi.it; Cipriani, Curzio [Museo di Storia Naturale, sez. di Mineralogia e Litologia, Universita degli Studi di Firenze, via La Pira 4, I-50121 Firenze (Italy); Pratesi, Giovanni [Museo di Storia Naturale, sez. di Mineralogia e Litologia, Universita degli Studi di Firenze, via La Pira 4, I-50121 Firenze (Italy); Dipartimento di Scienze della Terra, Universita degli Studi di Firenze, via La Pira 4, I-50121 Firenze (Italy); Trosti-Ferroni, Renza [Dipartimento di Scienze della Terra, Universita degli Studi di Firenze, via La Pira 4, I-50121 Firenze (Italy)

    2008-07-14

    The present paper reports chemical and structural data of selenide minerals belonging to the pyrite group. Eighteen samples of minerals in this group with variable chemical composition (7 samples of penroseite, NiSe{sub 2}; 10 samples of krutaite, CuSe{sub 2}; 1 sample of trogtalite, CoSe{sub 2}) were studied by means of X-ray single-crystal diffraction and electron microprobe. On the basis of information gained from the chemical characterization, we can conclude that a complete solid solution between NiSe{sub 2} and CuSe{sub 2} exists in nature with the absence of pure end-members. Although verified only for the Ni-rich members, we also infer a solid solution between NiSe{sub 2} and CoSe{sub 2}. The unit-cell parameters were modeled using a multiple regression method as a function of the Co, Ni, and Cu contents.

  12. Low-energy electron energy losses and inelastic mean free paths in zinc, selenium, and zinc selenide

    Energy Technology Data Exchange (ETDEWEB)

    Bourke, J.D.; Chantler, C.T., E-mail: chantler@unimelb.edu.au

    2014-10-15

    We compute low-energy optical energy loss spectra for the elemental solids zinc and selenium, and for the binary compound zinc selenide. The optical data are transformed via a constrained partial-pole algorithm to produce momentum-dependent electron energy loss spectra and electron inelastic mean free paths. This enables a comparison between the electron scattering behaviour in a compound solid and its constituent elements. Results cannot be explained by aggregation methods or commonly used universal curves, and prove that new approaches are required. Our work demonstrates new capabilities for the determination of fundamental material properties for a range of structures previously inaccessible to established theoretical models, and at energy levels inaccessible to most experimental techniques.

  13. Low-energy electron energy losses and inelastic mean free paths in zinc, selenium, and zinc selenide

    International Nuclear Information System (INIS)

    Bourke, J.D.; Chantler, C.T.

    2014-01-01

    We compute low-energy optical energy loss spectra for the elemental solids zinc and selenium, and for the binary compound zinc selenide. The optical data are transformed via a constrained partial-pole algorithm to produce momentum-dependent electron energy loss spectra and electron inelastic mean free paths. This enables a comparison between the electron scattering behaviour in a compound solid and its constituent elements. Results cannot be explained by aggregation methods or commonly used universal curves, and prove that new approaches are required. Our work demonstrates new capabilities for the determination of fundamental material properties for a range of structures previously inaccessible to established theoretical models, and at energy levels inaccessible to most experimental techniques

  14. A crystal chemistry approach for high-power ytterbium doped solid-state lasers: diffusion-bonded crystals and new crystalline hosts; Relations structures-proprietes dans les lasers solides de puissance a l'ytterbium: elaboration et caracterisation de nouveaux materiaux et de cristaux composites soudes par diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Gaume, R

    2002-11-15

    This work deals with ytterbium based crystals for high-power laser applications. In particular, we focus our interest in reducing crystal heating and its consequences during laser operation following two different ways. First, we review the specific properties of ytterbium doped solid-state lasers in order to define a figure-of-merit which gives the evaluation of laser performances, thermo-mechanical and thermo-optical properties. Bearing in mind this analysis, we propose a set of theoretical tools, based on the crystallographic structure of the crystal and its chemical composition, to predict thermo-mechanical and optical potentials. This approach, used for the seek of new Yb{sup 3+}-doped materials for high-power laser applications, shows that simple oxides containing rare-earths are favorable. Therefore, the spectroscopic properties of six new materials Yb{sup 3+}:GdVO{sub 4}, Yb{sup 3+}:GdAlO{sub 3}, Yb{sup 3+}:Gd{sub 2}O{sub 3}, Yb{sup 3+}:Sc{sub 2}SiO{sub 5}, Yb{sup 3+}:CaSc{sub 2}O{sub 4} and Yb{sup 3+}:SrSc{sub 2}O{sub 4} are described. The second aspect developed in this work deals with thermal properties enhancement of already well characterized laser materials. Two different ways are explored: a) elaboration by diffusion bonding of end-caps lasers with undoped crystals (composite crystals). Thus, different composites were obtained and a fairly lowering of thermal lensing effect was observed during laser operation. b) strengthening of crystalline structures by ionic substitution of one of its constituents. We demonstrate how crystal growth ability can be improved by a cationic substitution in the case of Yb{sup 3+}:BOYS, a largely-tunable laser material which is of great interest for femtosecond pulses generation. (author)

  15. A crystal chemistry approach for high-power ytterbium doped solid-state lasers: diffusion-bonded crystals and new crystalline hosts; Relations structures-proprietes dans les lasers solides de puissance a l'ytterbium: elaboration et caracterisation de nouveaux materiaux et de cristaux composites soudes par diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Gaume, R

    2002-11-15

    This work deals with ytterbium based crystals for high-power laser applications. In particular, we focus our interest in reducing crystal heating and its consequences during laser operation following two different ways. First, we review the specific properties of ytterbium doped solid-state lasers in order to define a figure-of-merit which gives the evaluation of laser performances, thermo-mechanical and thermo-optical properties. Bearing in mind this analysis, we propose a set of theoretical tools, based on the crystallographic structure of the crystal and its chemical composition, to predict thermo-mechanical and optical potentials. This approach, used for the seek of new Yb{sup 3+}-doped materials for high-power laser applications, shows that simple oxides containing rare-earths are favorable. Therefore, the spectroscopic properties of six new materials Yb{sup 3+}:GdVO{sub 4}, Yb{sup 3+}:GdAlO{sub 3}, Yb{sup 3+}:Gd{sub 2}O{sub 3}, Yb{sup 3+}:Sc{sub 2}SiO{sub 5}, Yb{sup 3+}:CaSc{sub 2}O{sub 4} and Yb{sup 3+}:SrSc{sub 2}O{sub 4} are described. The second aspect developed in this work deals with thermal properties enhancement of already well characterized laser materials. Two different ways are explored: a) elaboration by diffusion bonding of end-caps lasers with undoped crystals (composite crystals). Thus, different composites were obtained and a fairly lowering of thermal lensing effect was observed during laser operation. b) strengthening of crystalline structures by ionic substitution of one of its constituents. We demonstrate how crystal growth ability can be improved by a cationic substitution in the case of Yb{sup 3+}:BOYS, a largely-tunable laser material which is of great interest for femtosecond pulses generation. (author)

  16. Optoelectronic and low temperature thermoelectric studies on nanostructured thin films of silver gallium selenide

    Science.gov (United States)

    Jacob, Rajani; Philip, Rachel Reena; Nazer, Sheeba; Abraham, Anitha; Nair, Sinitha B.; Pradeep, B.; Urmila, K. S.; Okram, G. S.

    2014-01-01

    Polycrystalline thin films of silver gallium selenide were deposited on ultrasonically cleaned soda lime glass substrates by multi-source vacuum co-evaporation technique. The structural analysis done by X-ray diffraction ascertained the formation of nano structured tetragonal chalcopyrite thin films. The compound formation was confirmed by X-ray photo-electron spectroscopy. Atomic force microscopic technique has been used for surface morphological analysis. Direct allowed band gap ˜1.78eV with high absorption coefficient ˜106/m was estimated from absorbance spectra. Low temperature thermoelectric effects has been investigated in the temperature range 80-330K which manifested an unusual increase in Seebeck coefficient with negligible phonon drag toward the very low and room temperature regime. The electrical resistivity of these n-type films was assessed to be ˜2.6Ωm and the films showed good photo response.

  17. Kinetic study by FTIR and DSC on the cationic curing of a DGEBA/{gamma}-valerolactone mixture with ytterbium triflate as an initiator

    Energy Technology Data Exchange (ETDEWEB)

    Arasa, M. [Departament de Quimica Analitica i Quimica Organica, Universitat Rovira i Virgili. C/Marcel.li Domingo s/n, 43007 Tarragona (Spain); Ramis, X. [Laboratori de Termodinamica, ETSEIB. Universitat Politecnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain)], E-mail: ramis@mmt.upc.edu; Salla, J.M. [Laboratori de Termodinamica, ETSEIB. Universitat Politecnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Mantecon, A.; Serra, A. [Departament de Quimica Analitica i Quimica Organica, Universitat Rovira i Virgili. C/Marcel.li Domingo s/n, 43007 Tarragona (Spain)

    2008-12-05

    A mixture of diglycidylether of bisphenol A (DGEBA) and {gamma}-valerolactone ({gamma}-VL) was cured in the presence of ytterbium triflate as an initiator to obtain poly(esther-ether) thermosets. The kinetics of the various elemental reactions, which take place during the curing process, was studied by means of isothermal curing in the FTIR spectrometer. The kinetic parameters were calculated by means of the isoconversional procedure and the best-fit kinetic model was determined with the so-called compensation effect (isokinetic relationship). The isothermal kinetic analysis was compared with that obtained by dynamic curing in DSC.

  18. Kinetic study by FTIR and DSC on the cationic curing of a DGEBA/γ-valerolactone mixture with ytterbium triflate as an initiator

    International Nuclear Information System (INIS)

    Arasa, M.; Ramis, X.; Salla, J.M.; Mantecon, A.; Serra, A.

    2008-01-01

    A mixture of diglycidylether of bisphenol A (DGEBA) and γ-valerolactone (γ-VL) was cured in the presence of ytterbium triflate as an initiator to obtain poly(esther-ether) thermosets. The kinetics of the various elemental reactions, which take place during the curing process, was studied by means of isothermal curing in the FTIR spectrometer. The kinetic parameters were calculated by means of the isoconversional procedure and the best-fit kinetic model was determined with the so-called compensation effect (isokinetic relationship). The isothermal kinetic analysis was compared with that obtained by dynamic curing in DSC

  19. Ytterbium 169 citrate in the diagnosis of lung opacities of cancerous origin

    International Nuclear Information System (INIS)

    Peltier, Patrick.

    1976-01-01

    Lung scintigraphy for tumour exploration has been widely studied for some years, but unfortunately with the many radioisotopes used at present this examination is not entirely reliable. It seemed interesting therefore to investigate a new tracer, 169 Yb citrate, the properties of which were demonstrated recently by HISADA. To estimate the specificity of this tracer we chose 62 records of different bronchopulmonary diseases. After an introductory review of various diagnostic methods the physical and physiological characteristics of ytterbium citrate and its method of use are described, then the records examined are presented and our thoughts and conclusions discussed. 169 Yb citrate possesses excellent biophysical properties for tumour scintigraphy but this isotope, though causing no radioactive pollution, delivers an appreciable irradiation dose to the patient examined. It has a positive tropism for pathological lung images. The fixation index of the documents taken separately, apart from that of the 14th day, cannot distinguish between benign and malignant diseases. This is possible with the kinetic uptake curve and the index ratios for the 2nd and 14th days. With these diagnostic criteria the overall results are better than those obtained with other commonly used radioisotopes: true positives 70%, false negatives 11%, false positives 4.5% [fr

  20. CsPbBr3 nanocrystal saturable absorber for mode-locking ytterbium fiber laser

    Science.gov (United States)

    Zhou, Yan; Hu, Zhiping; Li, Yue; Xu, Jianqiu; Tang, Xiaosheng; Tang, Yulong

    2016-06-01

    Cesium lead halide perovskite nanocrystals (CsPbX3, X = Cl, Br, I) have been reported as efficient light-harvesting and light-emitting semiconductor materials, but their nonlinear optical properties have been seldom touched upon. In this paper, we prepare layered CsPbBr3 nanocrystal films and characterize their physical properties. Broadband linear absorption from ˜0.8 to over 2.2 μm and nonlinear optical absorption at the 1-μm wavelength region are measured. The CsPbBr3 saturable absorber (SA), manufactured by drop-casting of colloidal CsPbBr3 liquid solution on a gold mirror, shows modulation depth and saturation intensity of 13.1% and 10.7 MW/cm2, respectively. With this SA, mode-locking operation of a polarization-maintained ytterbium fiber laser produces single pulses with duration of ˜216 ps, maximum average output power of 10.5 mW, and the laser spectrum is centered at ˜1076 nm. This work shows that CsPbBr3 films can be efficient SA candidates for fiber lasers and also have great potential to become broadband linear and nonlinear optical materials for photonics and optoelectronics.

  1. Synthesis and Characterization of Aqueous Lead Selenide Quantum Dots for Solar Cell Application

    Science.gov (United States)

    Albert, Ancy; Sreekala, C. O.; Prabhakaran, Malini

    2018-02-01

    High quality, colloidal lead selenide (PbSe) nanoparticles possessing cube shaped morphology have been successfully synthesized by organometallic synthesis method, using oleic acid (OA) as capping agent. The use of non-coordinating solvent, 1-Octadecene (ODE), during the synthesis results in good quality nanocrystals. Morphology analysis by transmission electron microscopy reveals that cube-shaped nanocrystals with a size range of 10 nm have been produced during the synthesis. The absorption and PL spectra analysis showed an emission peak at 675 nm when excited to a wavelength of 610 nm, further confirmed the formation of PbSe nanocrystals. The surface modification of this colloidal quantum dots was then carried out using L- cysteine ligand, to make them water soluble, for solar cell application. The J-V characteristics study of this PbSe quantum dots solar cell (PbSe QDSC) showed a little power conversion efficiency which intern it shows significant advance toward effective utilization of PbSe nanocrystals sensitized in solar cells.

  2. Point contacts at the copper-indium-gallium-selenide interface—A theoretical outlook

    Energy Technology Data Exchange (ETDEWEB)

    Bercegol, Adrien, E-mail: adrien.bercegol@polytechnique.edu; Chacko, Binoy; Klenk, Reiner; Lauermann, Iver; Lux-Steiner, Martha Ch. [Helmholtz-Zentrum Berlin für Materialien und Energie, Albert Einstein Straße 15, 12489 Berlin (Germany); Liero, Matthias [Weierstraß-Institut für Angewandte Analysis und Stochastik, 10117 Berlin (Germany)

    2016-04-21

    For a long time, it has been assumed that recombination in the space-charge region of copper-indium-gallium-selenide (CIGS) is dominant, at least in high efficiency solar cells with low band gap. The recent developments like potassium fluoride post deposition treatment and point-contact junction may call this into question. In this work, a theoretical outlook is made using three-dimensional simulations to investigate the effect of point-contact openings through a passivation layer on CIGS solar cell performance. A large set of solar cells is modeled under different scenarios for the charged defect levels and density, radius of the openings, interface quality, and conduction band offset. The positive surface charge created by the passivation layer induces band bending and this influences the contact (CdS) properties, making it beneficial for the open circuit voltage and efficiency, and the effect is even more pronounced when coverage area is more than 95%, and also makes a positive impact on the device performance, even in the presence of a spike at CIGS/CdS heterojunction.

  3. Optoelectronic and low temperature thermoelectric studies on nanostructured thin films of silver gallium selenide

    International Nuclear Information System (INIS)

    Jacob, Rajani; Philip, Rachel Reena; Nazer, Sheeba; Abraham, Anitha; Nair, Sinitha B.; Pradeep, B.; Urmila, K. S.; Okram, G. S.

    2014-01-01

    Polycrystalline thin films of silver gallium selenide were deposited on ultrasonically cleaned soda lime glass substrates by multi-source vacuum co-evaporation technique. The structural analysis done by X-ray diffraction ascertained the formation of nano structured tetragonal chalcopyrite thin films. The compound formation was confirmed by X-ray photo-electron spectroscopy. Atomic force microscopic technique has been used for surface morphological analysis. Direct allowed band gap ∼1.78eV with high absorption coefficient ∼10 6 /m was estimated from absorbance spectra. Low temperature thermoelectric effects has been investigated in the temperature range 80–330K which manifested an unusual increase in Seebeck coefficient with negligible phonon drag toward the very low and room temperature regime. The electrical resistivity of these n-type films was assessed to be ∼2.6Ωm and the films showed good photo response

  4. Effects of adding metals to MoS2 in a ytterbium doped Q-switched fiber laser

    Science.gov (United States)

    Khaleque, Abdul; Liu, Liming

    2018-03-01

    Molybdenum disulfide (MoS2) is widely used in lubricants, metallic alloys and in electronic and optical components. It is also used as saturable absorbers (SAs) in lasers (e.g. fiber lasers): a simple deposition of MoS2 on the fiber end can create a saturable absorber without the necessity of extensive alignment of the optical beam. In this article, we study the effects of adding different metals (Cr, Au, and Al) to MoS2 in a ytterbium (Yb)-doped Q-switched fiber laser. Experimental results show that the addition of a thin layer of gold and aluminium can reduce pulse durations to about 5.8 μs and 8.5 μs, respectively, compared with pure MoS2 with pulse duration of 12 μs. Experimental analysis of the combined metal and MoS2 based composite SAs can be useful in fiber laser applications where it may also find applications in medical, three dimensional (3D) active imaging and dental applications.

  5. Erbium/ytterbium co-doped double clad fiber amplifier, its applications and effects in fiber optic communication systems

    Science.gov (United States)

    Dua, Puneit

    Increased demand for larger bandwidth and longer inter-amplifiers distances translates to higher power budgets for fiber optic communication systems in order to overcome large splitting losses and achieve acceptable signal-to-noise ratios. Due to their unique design ytterbium sensitized erbium doped, double clad fiber amplifiers; offer significant increase in the output powers that can be obtained. In this thesis we investigate, a one-stage, high power erbium and ytterbium co-doped double clad fiber amplifier (DCFA) with output power of 1.4W, designed and built in our lab. Experimental demonstration and numerical simulation techniques have been used to systematically study the applications of such an amplifier and the effects of incorporating it in various fiber optic communication systems. Amplitude modulated subcarrier multiplexed (AM-SCM) CATV distribution experiment has been performed to verify the feasibility of using this amplifier in an analog/digital communication system. The applications of the amplifier as a Fabry-Perot and ring fiber laser with an all-fiber cavity, a broadband supercontinuum source and for generation of high power, short pulses at 5GHz have been experimentally demonstrated. A variety of observable nonlinear effects occur due to the high intensity of the optical powers confined in micron-sized cores of the fibers, this thesis explores in detail some of these effects caused by using the high power Er/Yb double clad fiber amplifier. A fiber optic based analog/digital CATV system experiences composite second order (CSO) distortion due to the interaction between the gain tilt---the variation of gain with wavelength, of the doped fiber amplifier and the wavelength chirp of the directly modulated semiconductor laser. Gain tilt of the Er/Yb co-doped fiber amplifier has been experimentally measured and its contribution to the CSO of the system calculated. Theoretical analysis of a wavelength division multiplexed system with closely spaced

  6. Comparative effects of indium/ytterbium doping on, mechanical and gas-sensitivity-related morphological, properties of sprayed ZnO compounds

    International Nuclear Information System (INIS)

    Boukhachem, A.; Fridjine, S.; Amlouk, A.; Boubaker, K.; Bouhafs, M.; Amlouk, M.

    2010-01-01

    In this study, conducting and transparent indium-doped zinc oxide (ZnO) thin films have been deposited on glass substrates by the micro-spray technique. First, zinc oxide layers were obtained by spaying a solution of propanol and zinc acetate in acidified medium. Alternatively, some of the obtained films were doped with indium (In) at the molar rates of: 1%, 2% and 3%. In addition to the classical structural investigated using XRD, AFM and SEM techniques, microhardness Vickers (Hv) measurements have been carried out along with comparative morphological prospecting. The specific gases sensitivity-related surface morphology of the doped ZnO compounds was favorably different from that of the non-doped ones, and showed a thin overlay structure. Results were compared to those recorded for similar ytterbium-doped material.

  7. Cell damage evaluation of mammalian cells in cell manipulation by amplified femtosecond ytterbium laser

    Science.gov (United States)

    Hong, Z.-Y.; Iino, T.; Hagihara, H.; Maeno, T.; Okano, K.; Yasukuni, R.; Hosokawa, Y.

    2018-03-01

    A micrometer-scale explosion with cavitation bubble generation is induced by focusing a femtosecond laser in an aqueous solution. We have proposed to apply the explosion as an impulsive force to manipulate mammalian cells especially in microfluidic chip. Herein, we employed an amplified femtosecond ytterbium laser as an excitation source for the explosion and evaluated cell damage in the manipulation process to clarify the application potential. The damage of C2C12 myoblast cell prepared as a representative mammalian cell was investigated as a function of distance between cell and laser focal point. Although the cell received strong damage on the direct laser irradiation condition, the damage sharply decreased with increasing distance. Since the threshold distance, above which the cell had no damage, was consistent with radius of the cavitation bubble, impact of the cavitation bubble would be a critical factor for the cell damage. The damage had strong nonlinearity in the pulse energy dependence. On the other hand, cell position shift by the impact of the cavitation bubble was almost proportional to the pulse energy. In balance between the cell viability and the cell position shift, we elucidated controllability of the cell manipulation in microfluidic chip.

  8. Post-test analysis of components from selenide isotope generator modules M-7, M-15, and M-18

    International Nuclear Information System (INIS)

    Wei, G.C.; Keiser, J.R.; Crouse, R.S.; Allen, M.D.; Schaffhauser, A.C.

    1979-05-01

    Several critical components removed from SIG (Selenide Isotope Generator) thermoelectric modules M-7, M-15C, M-15D, and M-18 were examined. These modules failed to show the predicted stability and conversion efficiency. Understanding the degradation and identifying means for preventing it necessitated detailed post-test examinations of key parts in the modules. Steel springs, which provided pressure for contacts at the hot and cold ends of P- or N-legs, relaxed more than expected. Beryllium oxide insulators had dark deposits that caused electrical shorts. The GdSe 1 49 N-leg exhibited cracking. The (Cu,Ag) 2 Se P-leg lost weight or sublimed excessively in module M-7 and more than expected in the other modules

  9. Field Effect Transistors Using Atomically Thin Layers of Copper Indium Selenide (CuInSe)

    Science.gov (United States)

    Patil, Prasanna; Ghosh, Sujoy; Wasala, Milinda; Lei, Sidong; Vajtai, Robert; Ajayan, Pulickel; Talapatra, Saikat

    We will report fabrication of field-effect transistors (FETs) using few-layers of Copper Indium Selenide (CuInSe) flakes exfoliated from crystals grown using chemical vapor transport technique. Our transport measurements indicate n-type FET with electron mobility µ ~ 3 cm2 V-1 s-1 at room temperature when Silicon dioxide (SiO2) is used as a back gate. Mobility can be further increased significantly when ionic liquid 1-Butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6) is used as top gate. Similarly subthreshold swing can be further improved from 103 V/dec to 0.55 V/dec by using ionic liquid as a top gate. We also found ON/OFF ratio of ~ 102 for both top and back gate. Comparison between ionic liquid top gate and SiO2 back gate will be presented and discussed. This work is supported by the U.S. Army Research Office through a MURI Grant # W911NF-11-1-0362.

  10. Synthesis of Co-Electrospun Lead Selenide Nanostructures within Anatase Titania Nanotubes for Advanced Photovoltaics

    Directory of Open Access Journals (Sweden)

    Evan K. Wujcik

    2015-06-01

    Full Text Available Inorganic nano-scale heterostructures have many advantages over hybrid organic-inorganic dye-sensitized solar cells (DSSC or Grätzel cells, including their resistance to photo-bleaching, thermal stability, large specific surface areas, and general robustness. This study presents a first-of-its-kind low-cost all-inorganic lead selenide-anatase titania (PbSe/TiO2 nanotube heterostructure material for photovoltaic applications. Herein, PbSe nanostructures have been co-electrospun within a hollow TiO2 nanotube with high connectivity for highly efficient charge carrier flow and electron-hole pair separation. This material has been characterized by transmission electron microscopy (TEM, electron diffraction, energy dispersive X-ray spectroscopy (EDX to show the morphology and material composition of the synthesized nanocomposite. Photovoltaic characterization has shown this newly synthesized proof-of-concept material can easily produce a photocurrent under solar illumination, and, with further refinement, could reveal a new direction in photovoltaic materials.

  11. New homo- and heteroleptic derivatives of trivalent ytterbium containing anion-radical 1,4-diazadiene ligands. Synthesis, properties and crystal structure of (C9H7)2Yb[2-MeC6H4NC(Me)C(Me)NC6H4Me-2] and [PhNC(Ph)C(Ph)NPh]3Yb complexes

    International Nuclear Information System (INIS)

    Gudilenkov, I.D.; Fukin, G.K.; Cherkasov, A.V.; Shavyrin, A.S.; Trifonov, A.A.; Larionova, Yu.E.

    2008-01-01

    Reaction of ytterbium bisindenyl complex (C 9 H 7 ) 2 Yb II (THF) 2 (1) with 1,4-diazabutadiene 2-MeC 6 H 4 N=C(Me)-C(Me)=NC 6 H 4 Me-2 ( Me DAD) is accompanied by the oxidation of metal atom until trivalent state and results in the formation of paramagnetic compound of metallocenes type (C 9 H 7 ) 2 Yb III ( Me DAD -. ) (3) containing 1,4-diazabutadiene anion-radical. Structure of complex 3 is ascertained by the X-ray structure analysis. Reactions of bisindenyl (1) and bisfluorenyl (C 13 H 9 ) 2 Yb II (THF) 2 (2) derivatives of bivalent ytterbium with 1,4-diazabutadiene PhN=C(Ph)-C(Ph)=NPh ( Ph DAD) (at 1:2 molar ratio of reagents) proceed with the complete break of Yb-C bonds, oxidation of ytterbium atom until trivalent state, and result in the formation of homoligand complex ( Ph DAD -. ) 3 Yb (6) containing three anion-radical 1,4-diazadiene ligands. Complex 6 was also prepared by the exchange reaction of YbCl 3 with Ph DAD -. K + (1:3) in THF. Complex 6 is characterized by the X-ray structure analysis [ru

  12. Study of parameters affecting the extraction of Ytterbium from anomaly No.5 of Saghand ore Leach Solution

    International Nuclear Information System (INIS)

    Abdollahy, M.; Alamdar Milani, S.; Koleini, M. J.; Samadzadeh Yazdi, M. R.

    2010-01-01

    Extraction of ytterbium from anomaly No.5 of Saghand leach solution using D 2 EHPA as extractant, kerosene as a diluent, and optimization of the effective parameters were investigated. In addition to uranium and thorium, rare earths elements also exist in Saghand ore. The effect of p H on the extraction of Yb and other existing elements shows that their extractions increase by increasing p H. The extraction of Yb, U, La, Y, Ce and Fe in p H=2 were 99.9, 83, 13.5, 99.8, 8.5 and 27.4%, respectively. The increasing of the A/O ratio decreases the extraction of other elements more than Yb where it resulted in the increasing of the Yb separation. The theoretical number of extraction stages were determined in p H=2 and A/O=9 using McCabe-Thiele diagram. Stripping of the organic phase was also carried out by different concentrations of nitric acid.

  13. Photoconductivity in reactively evaporated copper indium selenide thin films

    Science.gov (United States)

    Urmila, K. S.; Asokan, T. Namitha; Pradeep, B.; Jacob, Rajani; Philip, Rachel Reena

    2014-01-01

    Copper indium selenide thin films of composition CuInSe2 with thickness of the order of 130 nm are deposited on glass substrate at a temperature of 423 ±5 K and pressure of 10-5 mbar using reactive evaporation, a variant of Gunther's three temperature method with high purity Copper (99.999%), Indium (99.999%) and Selenium (99.99%) as the elemental starting materials. X-ray diffraction (XRD) studies shows that the films are polycrystalline in nature having preferred orientation of grains along the (112) plane. The structural type of the film is found to be tetragonal with particle size of the order of 32 nm. The structural parameters such as lattice constant, particle size, dislocation density, number of crystallites per unit area and strain in the film are also evaluated. The surface morphology of CuInSe2 films are studied using 2D and 3D atomic force microscopy to estimate the grain size and surface roughness respectively. Analysis of the absorption spectrum of the film recorded using UV-Vis-NIR Spectrophotometer in the wavelength range from 2500 nm to cutoff revealed that the film possess a direct allowed transition with a band gap of 1.05 eV and a high value of absorption coefficient (α) of 106 cm-1 at 570 nm. Photoconductivity at room temperature is measured after illuminating the film with an FSH lamp (82 V, 300 W). Optical absorption studies in conjunction with the good photoconductivity of the prepared p-type CuInSe2 thin films indicate its suitability in photovoltaic applications.

  14. Synthesis and photocatalytic activity of ytterbium-doped titania/diatomite composite photocatalysts

    International Nuclear Information System (INIS)

    Tang, Wenjian; Qiu, Kehui; Zhang, Peicong; Yuan, Xiqiang

    2016-01-01

    Graphical abstract: - Highlights: • Yb-doped TiO_2/diatomite composite photocatalysts were prepared by a sol-gel method. • Yb-doped TiO_2/diatomite photocatalysts show much higher photocatalytic activity. • The higher photodegradation rate is due to the effect of diatomite and Yb doping. - Abstract: Ytterbium-doped titanium dioxide (Yb-TiO_2)/diatomite composite materials with different Yb concentrations were prepared by sol–gel method. The phase structure, morphology, and chemical composition of the as-prepared composites were well characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), and ultraviolet–visible (UV–vis) diffuse reflection spectroscopy. The XRD and Raman spectroscopy analysis indicated that the TiO_2 existed in the form of pure anatase in the composites. The SEM images exhibited the well deposition and dispersion of TiO_2 nanoparticles with little agglomeration on the surfaces of diatoms. The UV–vis diffuse reflection spectra showed that the band gap of TiO_2 could be narrowed by the introduction of Yb species, which was further affected by doping concentration of Yb. The photocatalytic activity of synthesized samples was investigated by the degradation of methylene blue (MB) under UV light irradiation. It was observed that the photocatalytic degradation followed a pseudo-first-order kinetics according to the Langmuir–Hinshelwood model. Compared to TiO_2 and TiO_2/diatomite, the Yb-TiO_2/diatomite composites exhibited higher photocatalytic activity toward degradation of MB using UV light irradiation.

  15. Synthesis and photocatalytic activity of ytterbium-doped titania/diatomite composite photocatalysts

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Wenjian; Qiu, Kehui; Zhang, Peicong; Yuan, Xiqiang

    2016-01-30

    Graphical abstract: - Highlights: • Yb-doped TiO{sub 2}/diatomite composite photocatalysts were prepared by a sol-gel method. • Yb-doped TiO{sub 2}/diatomite photocatalysts show much higher photocatalytic activity. • The higher photodegradation rate is due to the effect of diatomite and Yb doping. - Abstract: Ytterbium-doped titanium dioxide (Yb-TiO{sub 2})/diatomite composite materials with different Yb concentrations were prepared by sol–gel method. The phase structure, morphology, and chemical composition of the as-prepared composites were well characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), and ultraviolet–visible (UV–vis) diffuse reflection spectroscopy. The XRD and Raman spectroscopy analysis indicated that the TiO{sub 2} existed in the form of pure anatase in the composites. The SEM images exhibited the well deposition and dispersion of TiO{sub 2} nanoparticles with little agglomeration on the surfaces of diatoms. The UV–vis diffuse reflection spectra showed that the band gap of TiO{sub 2} could be narrowed by the introduction of Yb species, which was further affected by doping concentration of Yb. The photocatalytic activity of synthesized samples was investigated by the degradation of methylene blue (MB) under UV light irradiation. It was observed that the photocatalytic degradation followed a pseudo-first-order kinetics according to the Langmuir–Hinshelwood model. Compared to TiO{sub 2} and TiO{sub 2}/diatomite, the Yb-TiO{sub 2}/diatomite composites exhibited higher photocatalytic activity toward degradation of MB using UV light irradiation.

  16. Creep Behavior of Hafnia and Ytterbium Silicate Environmental Barrier Coating Systems on SiC/SiC Ceramic Matrix Composites

    Science.gov (United States)

    Zhu, Dongming; Fox, Dennis S.; Ghosn, Louis J.; Harder, Bryan

    2011-01-01

    Environmental barrier coatings will play a crucial role in future advanced gas turbine engines because of their ability to significantly extend the temperature capability and stability of SiC/SiC ceramic matrix composite (CMC) engine components, thus improving the engine performance. In order to develop high performance, robust coating systems for engine components, appropriate test approaches simulating operating temperature gradient and stress environments for evaluating the critical coating properties must be established. In this paper, thermal gradient mechanical testing approaches for evaluating creep and fatigue behavior of environmental barrier coated SiC/SiC CMC systems will be described. The creep and fatigue behavior of Hafnia and ytterbium silicate environmental barrier coatings on SiC/SiC CMC systems will be reported in simulated environmental exposure conditions. The coating failure mechanisms will also be discussed under the heat flux and stress conditions.

  17. Chemical bath deposited zinc sulfide buffer layers for copper indium gallium sulfur-selenide solar cells and device analysis

    International Nuclear Information System (INIS)

    Kundu, Sambhu; Olsen, Larry C.

    2005-01-01

    Cadmium-free copper indium gallium sulfur-selenide (CIGSS) thin film solar cells have been fabricated using chemical bath deposited (CBD) zinc sulfide (ZnS) buffer layers. Shell Solar Industries provided high quality CIGSS absorber layers. The use of CBD-ZnS, which is a higher band gap material than CdS, improved the quantum efficiency of fabricated cells at lower wavelengths, leading to an increase in short circuit current. The best cell to date yielded an active area (0.43 cm 2 ) efficiency of 13.3%. The effect of the ZnS buffer layer thickness on device performance was studied carefully. This paper also presents a discussion of issues relevant to the use of the CBD-ZnS buffer material for improving device performance

  18. IR Laser-Induced Co-decomposition of Dimethyl Selenide and Trisilane: Gas-Phase Formation of SiSe and Chemical Vapor Deposition of Nanostructured H/Si/Se/C Polymers.

    Czech Academy of Sciences Publication Activity Database

    Santos, M.; Díaz, L.; Urbanová, Markéta; Bastl, Zdeněk; Šubrt, Jan; Pola, Josef

    2007-01-01

    Roč. 188, 2-3 (2007) , s. 399-408 ISSN 1010-6030 R&D Projects: GA MŠk(CZ) ME 846 Grant - others:MCyT(ES) BQU2003/08531/C02/02 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40320502; CEZ:AV0Z40400503 Keywords : laser deposition * laser-induced polymers * silicon selenide Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 1.911, year: 2007

  19. Efficient cold cathode emission in crystalline-amorphous hybrid: Study on carbon nanotube-cadmium selenide system

    Science.gov (United States)

    Sarkar, S.; Banerjee, D.; Das, N. S.; Ghorai, U. K.; Sen, D.; Chattopadhyay, K. K.

    2018-03-01

    Cadmium Selenide (CdSe) quantum dot (QD) decorated amorphous carbon nanotubes (a-CNTs) hybrids have been synthesized by simple chemical process. The samples were characterized by field emission scanning and transmission electron microscopy, Fourier transformed infrared spectroscopy, Raman and UV-Vis spectroscopy. Lattice image obtained from transmission electron microscopic study confirms the successful attachment of CdSe QDs. It is seen that hybrid samples show an enhanced cold emission properties with good stability. The results have been explained in terms of increased roughness, more numbers of emitting sites and favorable band bending induced electron transport. ANSYS software based calculation has also supported the result. Also a first principle based study has been done which shows that due to the formation of hybrid structure there is a profound upward shift in the Fermi level, i.e. a decrease of work function, which is believed to be another key reason for the observed improved field emission performance.

  20. Swift heavy ion induced modifications in optical and electrical properties of cadmium selenide thin films

    Science.gov (United States)

    Choudhary, Ritika; Chauhan, Rishi Pal

    2017-07-01

    The modification in various properties of thin films using high energetic ion beam is an exciting area of basic and applied research in semiconductors. In the present investigations, cadmium selenide (CdSe) thin films were deposited on ITO substrate using electrodeposition technique. To study the swift heavy ion (SHI) induced effects, the deposited thin films were irradiated with 120 MeV heavy Ag9+ ions using pelletron accelerator facility at IUAC, New Delhi, India. Structural phase transformation in CdSe thin film from metastable cubic phase to stable hexagonal phase was observed after irradiation leading to decrease in the band gap from 2.47 eV to 2.12 eV. The phase transformation was analyzed through X-ray diffraction patterns. During SHI irradiation, Generation of high temperature and pressure by thermal spike along the trajectory of incident ions in the thin films might be responsible for modification in the properties of thin films.[Figure not available: see fulltext.

  1. CsPbBr{sub 3} nanocrystal saturable absorber for mode-locking ytterbium fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Yan; Li, Yue; Xu, Jianqiu; Tang, Yulong, E-mail: yulong@sjtu.edu.cn [Key Laboratory for Laser Plasmas (MOE), Department of Physics and Astronomy, Collaborative Innovation Center of IFSA, Shanghai Jiao Tong University, Shanghai 200240 (China); Hu, Zhiping; Tang, Xiaosheng [Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2016-06-27

    Cesium lead halide perovskite nanocrystals (CsPbX{sub 3}, X = Cl, Br, I) have been reported as efficient light-harvesting and light-emitting semiconductor materials, but their nonlinear optical properties have been seldom touched upon. In this paper, we prepare layered CsPbBr{sub 3} nanocrystal films and characterize their physical properties. Broadband linear absorption from ∼0.8 to over 2.2 μm and nonlinear optical absorption at the 1-μm wavelength region are measured. The CsPbBr{sub 3} saturable absorber (SA), manufactured by drop-casting of colloidal CsPbBr{sub 3} liquid solution on a gold mirror, shows modulation depth and saturation intensity of 13.1% and 10.7 MW/cm{sup 2}, respectively. With this SA, mode-locking operation of a polarization-maintained ytterbium fiber laser produces single pulses with duration of ∼216 ps, maximum average output power of 10.5 mW, and the laser spectrum is centered at ∼1076 nm. This work shows that CsPbBr{sub 3} films can be efficient SA candidates for fiber lasers and also have great potential to become broadband linear and nonlinear optical materials for photonics and optoelectronics.

  2. High-efficiency ytterbium-free erbium-doped all-glass double cladding silicate glass fiber for resonantly-pumped fiber lasers.

    Science.gov (United States)

    Qiang, Zexuan; Geng, Jihong; Luo, Tao; Zhang, Jun; Jiang, Shibin

    2014-02-01

    A highly efficient ytterbium-free erbium-doped silicate glass fiber has been developed for high-power fiber laser applications at an eye-safe wavelength near 1.55 μm. Our preliminary experiments show that high laser efficiency can be obtained from a relatively short length of the gain fiber when resonantly pumped at 1535 nm in both core- and cladding-pumping configurations. With a core-pumping configuration as high as 75%, optical-to-optical efficiency and 4 W output power were obtained at 1560 nm from a 1 m long gain fiber. When using a cladding-pumping configuration, approximately 13 W output power with 67.7% slope efficiency was demonstrated from a piece of 2 m long fiber. The lengths of silicate-based gain fiber are much shorter than their silica-based counterparts used in other experiments, which is significantly important for high-power narrow-band and/or pulsed laser applications.

  3. Synthesis and characterization of hexagonal nano-sized nickel selenide by simple hydrothermal method assisted by CTAB

    Energy Technology Data Exchange (ETDEWEB)

    Sobhani, Azam [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of); Davar, Fatemeh [Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of); Salavati-Niasari, Masoud, E-mail: salavati@kashanu.ac.ir [Department of Inorganic Chemistry, Faculty of Chemistry, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of); Institute of Nano Science and Nano Technology, University of Kashan, Kashan, P.O. Box 87317-51167 (Iran, Islamic Republic of)

    2011-07-01

    Nano-sized nickel selenide powders have been successfully synthesized via an improved hydrothermal route based on the reaction between NiCl{sub 2}.6H{sub 2}O, SeCl{sub 4} and hydrazine (N{sub 2}H{sub 4}.H{sub 2}O) in water, in present of cetyltrimethyl ammonium bromide (CTAB) as surfactant, at various conditions. The products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and X-ray energy dispersive spectroscopy analysis. Effects of temperature, reaction time and reductant agent on the morphology, the particle sizes and the phase of the final products have been investigated. It was found that the phase and morphology of the products could be greatly influenced by these parameters. The synthesis procedure is simple and uses less toxic reagents than the previously reported methods. Photoluminescence (PL) was used to study the optical properties of NiSe samples.

  4. Enhanced phosphorescence and electroluminescence in triplet emitters by doping gold into cadmium selenide/zinc sulfide nanoparticles

    International Nuclear Information System (INIS)

    Liu, H.-W.; Laskar, Inamur R.; Huang, C.-P.; Cheng, J.-A.; Cheng, S.-S.; Luo, L.-Y.; Wang, H.-R.; Chen, T.-M.

    2005-01-01

    Gold-cadmium selenide/zinc sulfide (Au-CdSe/ZnS) nanocomposites (NCs) were synthesized and characterized by transmission electron microscopy (TEM), energy dispersive X-ray (EDX) analysis, ultraviolet-visible (UV-visible) absorption and photoluminescence (PL) emission spectroscopy. The PL intensity in the Au-CdSe/ZnS NCs system was found to be much greater than that of CdSe/ZnS nanoparticles (NPs) alone, because of the surface-enhanced Raman scattering of Au NPs. Adding Au-CdSe/ZnS NCs to the cyclometalated iridium(III) complex (Ir-complex) greatly enhanced the PL intensity of a triplet emitter. Three double-layered electroluminescence (EL) devices were fabricated where the emitting zone contains the definite mixture of Ir-complex and the NCs [molar concentration of Ir-complex/NCs = 1:0 (Blank, D-1), 1:1 (D-2) and 1:3 (D-3)] and the device D-2 exhibited optimal EL performances

  5. Effects of ethylenediaminetetraacetic acid (EDTA)and diethylenetriaminepentaacetic acid (DTPA) derivatives on penetration of ytterbium-169 and cerium-144 into the rat offspring

    Energy Technology Data Exchange (ETDEWEB)

    Baltrukiewicz, Z; Burakowski, T; Derecki, J [Wojskowy Inst. Higieny i Epidemiologii, Warsaw (Poland)

    1976-01-01

    Penetration of radioactive ytterbum-169 and cerium-144 into fetuses was determined at the end of pregnancy and penetration into the organism of suckling rats was studied during feeding with the milk of exposed mothers when EDTA or DTPA derivatives were being administered. Injection of ytterbum-169 as a complex with EDTA or DTPA or injection of Na/sub 2/Ca EDTA or Na/sub 3/Ca DTPA 1h after administration of cerium-144 to mothers reduced penetration of both radionuclides into offsprings in relation to the animals receiving no complex compounds. It was observed that the action of DTPA was stronger than that of EDTA. Passage of ytterbium with milk and across the placenta was greater than the passage of cerium.

  6. Layered bismuth selenide utilized as hole transporting layer for highly stable organic photovoltaics

    KAUST Repository

    Yuan, Zhongcheng

    2015-11-01

    Abstract Layered bismuth selenide (L-Bi2Se3) nanoplates were implemented as hole transporting layers (HTLs) for inverted organic solar cells. Device based on L-Bi2Se3 showed increasing power conversion efficiency (PCE) during ambient condition storage process. A PCE of 4.37% was finally obtained after 5 days storage, which outperformed the ones with evaporated-MoO3 using poly(3-hexylthiophene) (P3HT) as donor material and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) as acceptor. The improved device efficiency can be attributed to the high conductivity and increasing work function of L-Bi2Se3. The work function of L-Bi2Se3 increased with the storage time in ambient condition due to the oxygen atom doping. Ultraviolet photoelectron spectroscopy and high resolution X-ray photoelectron spectroscopy were conducted to verify the increased work function, which originated from the p-type doping process. The device based on L-Bi2Se3 exhibited excellent stability in ambient condition up to 4 months, which was much improved compared to the device based on traditional HTLs. © 2015 Elsevier B.V.

  7. Efficient solution-processed small molecule: Cadmium selenide quantum dot bulk heterojunction solar cells

    International Nuclear Information System (INIS)

    Gupta, Vinay; Upreti, Tanvi; Chand, Suresh

    2013-01-01

    We report bulk heterojunction solar cells based on blends of solution-processed small molecule [7,7′-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene-2,6-diyl) bis(6-fluoro-4-(5′-hexyl-[2,2′-bithiophen]-5yl)benzo[c] [1,2,5] thiadiazole)] p-DTS(FBTTh 2 ) 2 : Cadmium Selenide (CdSe) (70:30, 60:40, 50:50, and 40:60) in the device configuration: Indium Tin Oxide /poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/p-DTS(FBTTh 2 ) 2 : CdSe/Ca/Al. The optimized ratio of p-DTS(FBTTh 2 ) 2 :CdSe::60:40 leads to a short circuit current density (J sc ) = 5.45 mA/cm 2 , open circuit voltage (V oc ) = 0.727 V, and fill factor (FF) = 51%, and a power conversion efficiency = 2.02% at 100 mW/cm 2 under AM1.5G illumination. The J sc and FF are sensitive to the ratio of p-DTS(FBTTh 2 ) 2 :CdSe, which is a crucial factor for the device performance

  8. Zinc Selenide-Based Schottky Barrier Detectors for Ultraviolet-A and Ultraviolet-B Detection

    Directory of Open Access Journals (Sweden)

    V. Naval

    2010-01-01

    Full Text Available Wide-bandgap semiconductors such as zinc selenide (ZnSe have become popular for ultraviolet (UV photodetectors due to their broad UV spectral response. Schottky barrier detectors made of ZnSe in particular have been shown to have both low dark current and high responsivity. This paper presents the results of electrical and optical characterization of UV sensors based on ZnSe/Ni Schottky diodes fabricated using single-crystal ZnSe substrate with integrated UV-A (320–400 nm and UV-B (280–320 nm filters. For comparison, characteristics characterization of an unfiltered detector is also included. The measured photoresponse showed good discrimination between the two spectral bands. The measured responsivities of the UV-A and UV-B detectors were 50 mA/W and 10 mA/W, respectively. A detector without a UV filter showed a maximum responsivity of about 110 mA/W at 375 nm wavelength. The speed of the unfiltered detector was found to be about 300 kHz primarily limited by the RC time constant determined largely by the detector area.

  9. Ecotoxicological assessment of solar cell leachates: Copper indium gallium selenide (CIGS) cells show higher activity than organic photovoltaic (OPV) cells

    Energy Technology Data Exchange (ETDEWEB)

    Brun, Nadja Rebecca [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätsstrasse 16, CH-8092 Zürich (Switzerland); Wehrli, Bernhard [Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätsstrasse 16, CH-8092 Zürich (Switzerland); Fent, Karl, E-mail: karl.fent@fhnw.ch [University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz (Switzerland); Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätsstrasse 16, CH-8092 Zürich (Switzerland)

    2016-02-01

    Despite the increasing use of photovoltaics their potential environmental risks are poorly understood. Here, we compared ecotoxicological effects of two thin-film photovoltaics: established copper indium gallium selenide (CIGS) and organic photovoltaic (OPV) cells. Leachates were produced by exposing photovoltaics to UV light, physical damage, and exposure to environmentally relevant model waters, representing mesotrophic lake water, acidic rain, and seawater. CIGS cell leachates contained 583 μg L{sup −1} molybdenum at lake water, whereas at acidic rain and seawater conditions, iron, copper, zinc, molybdenum, cadmium, silver, and tin were present up to 7219 μg L{sup −1}. From OPV, copper (14 μg L{sup −1}), zinc (87 μg L{sup −1}) and silver (78 μg L{sup −1}) leached. Zebrafish embryos were exposed until 120 h post-fertilization to these extracts. CIGS leachates produced under acidic rain, as well as CIGS and OPV leachates produced under seawater conditions resulted in a marked hatching delay and increase in heart edema. Depending on model water and solar cell, transcriptional alterations occurred in genes involved in oxidative stress (cat), hormonal activity (vtg1, ar), metallothionein (mt2), ER stress (bip, chop), and apoptosis (casp9). The effects were dependent on the concentrations of cationic metals in leachates. Addition of ethylenediaminetetraacetic acid protected zebrafish embryos from morphological and molecular effects. Our study suggests that metals leaching from damaged CIGS cells, may pose a potential environmental risk. - Highlights: • Photovoltaics may be disposed in the environment after usage. • Copper indium gallium selenide (CIGS) and organic (OPV) cells were compared. • Morphological and molecular effects were assessed in zebrafish embryos. • Environmental condition affected metal leaching and ecotoxicological activity. • Damaged CIGS cells pose higher risk to the environment than OPV cells.

  10. {sup 77} Se NMR of deuteride vinyl and acetylene selenides; RMn de {sup 77} Se de selenetos vinilicos e acetilenicos deuterados

    Energy Technology Data Exchange (ETDEWEB)

    Roque, L C; Stefani, H A; Arruda Campos, I.P. de; Comasseto, J V [Sao Paulo Univ., SP (Brazil). Inst. de Quimica

    1992-12-31

    The main objective of this work is a contribution for establishing a data base sufficient for interpretation of the selenium organic compound spectra. Due to the short literature on acetylene and vinyl selenides, the investigation of these compounds using {sup 77} Se NMR has been considered interesting. Particularly, compounds containing the selenium phenyl group have been selected, as they are larger used in organic chemistry. Non usual deuterated compounds have been applied, viewing simplification of the experimental results interpretation, since the use of deuterium virtually eliminates the Se-H coupling constants, due to the protons of the selenium phenyl group 5 refs., 2 tabs.

  11. A study on the optics of copper indium gallium (di)selenide (CIGS) solar cells with ultra-thin absorber layers.

    Science.gov (United States)

    Xu, Man; Wachters, Arthur J H; van Deelen, Joop; Mourad, Maurice C D; Buskens, Pascal J P

    2014-03-10

    We present a systematic study of the effect of variation of the zinc oxide (ZnO) and copper indium gallium (di)selenide (CIGS) layer thickness on the absorption characteristics of CIGS solar cells using a simulation program based on finite element method (FEM). We show that the absorption in the CIGS layer does not decrease monotonically with its layer thickness due to interference effects. Ergo, high precision is required in the CIGS production process, especially when using ultra-thin absorber layers, to accurately realize the required thickness of the ZnO, cadmium sulfide (CdS) and CIGS layer. We show that patterning the ZnO window layer can strongly suppress these interference effects allowing a higher tolerance in the production process.

  12. Layer structured bismuth selenides Bi2Se3 and Bi3Se4 for high energy and flexible all-solid-state micro-supercapacitors

    Science.gov (United States)

    Hao, Chunxue; Wang, Lidan; Wen, Fusheng; Xiang, Jianyong; Li, Lei; Hu, Wentao; Liu, Zhongyuan

    2018-02-01

    In this work, bismuth selenides (Bi2Se3 and Bi3Se4), both of which have a layered rhombohedral crystal structure, have been found to be useful as electrode materials for supercapacitor applications. In a liquid electrolyte system (6M KOH), Bi2Se3 nanoplates exhibit much better performance as an electrode material than Bi3Se4 nanoparticles do, delivering a higher specific capacitance (272.9 F g-1) than that of Bi3Se4 (193.6 F g-1) at 5 mV s-1. This result may be attributed to the fact that Bi2Se3 nanoplates possess more active electrochemical surfaces for the reversible surface redox reactions owing to their planar quintuple stacked layers (septuple layers for Bi3Se4). To meet the demands of electronic skin, we used a novel flexible annular interdigital structure electrode to support the all-solid-state micro-supercapacitors (AMSCs). The Bi2Se3 AMSC device delivers a much better supercapacitor performance, exhibits a large stack capacitance of 89.5 F cm-3 at 20 mV s-1 (Bi3Se4: 79.1 F cm-3), a high energy density of 17.9 mWh cm-3 and a high power density of 18.9 W cm-3. The bismuth selenides also exhibit good cycle stability, with 95.5% retention after 1000 c for Bi2Se3 (Bi3Se4:90.3%). Clearly, Bi2Se3 nanoplates can be promising electrode materials for flexible annular interdigital AMSCs.

  13. Remarkable photo-catalytic degradation of malachite green by nickel doped bismuth selenide under visible light irradiation

    Science.gov (United States)

    Kulsi, Chiranjit; Ghosh, Amrita; Mondal, Anup; Kargupta, Kajari; Ganguly, Saibal; Banerjee, Dipali

    2017-01-01

    Bismuth selenide (Bi2Se3) and nickel (Ni) doped Bi2Se3 were prepared by a solvothermal approach to explore the photo-catalytic performance of the materials in degradation of malachite green (MG). The presence of nickel was confirmed by X-ray photoelectron spectroscopy (XPS) measurement in doped Bi2Se3. The results showed that the nickel doping played an important role in microstructure and photo-catalytic activity of the samples. Nickel doped Bi2Se3 sample exhibited higher photo-catalytic activity than that of the pure Bi2Se3 sample under visible-light irradiation. The photo-catalytic degradation followed first-order reaction kinetics. Fast degradation kinetics and complete (100% in 5 min of visible light irradiation) removal of MG was achieved by nickel doped Bi2Se3 in presence of hydrogen peroxide (H2O2) due to modification of band gap energies leading to suppression of photo-generated electron-hole recombination.

  14. The effect of annealing on structural, optical and photosensitive properties of electrodeposited cadmium selenide thin films

    Directory of Open Access Journals (Sweden)

    Somnath Mahato

    2017-06-01

    Full Text Available Cadmium selenide (CdSe thin films have been deposited on indium tin oxide coated glass substrate by simple electrodeposition method. X-ray Diffraction (XRD studies identify that the as-deposited CdSe films are highly oriented to [002] direction and they belong to nanocrystalline hexagonal phase. The films are changed to polycrystalline structure after annealing in air for temperatures up to 450 °C and begin to degrade afterwards with the occurrence of oxidation and porosity. CdSe completely ceases to exist at higher annealing temperatures. CdSe films exhibit a maximum absorbance in the violet to blue-green region of an optical spectrum. The absorbance increases while the band gap decreases with increasing annealing temperature. Surface morphology also shows that the increase of the annealing temperature caused the grain growth. In addition, a number of distinct crystals is formed on top of the film surface. Electrical characteristics show that the films are photosensitive with a maximum sensitivity at 350 °C.

  15. X-Ray diffraction analysis of thermally evaporated copper tin selenide thin films at different annealing temperature

    International Nuclear Information System (INIS)

    Mohd Amirul Syafiq Mohd Yunos; Zainal Abidin Talib; Wan Mahmood Mat Yunus; Josephine Liew Ying Chyi; Wilfred Sylvester Paulus

    2010-01-01

    Semiconductor thin films Copper Tin Selenide, Cu 2 SnSe 3 , a potential compound for semiconductor radiation detector or solar cell applications were prepared by thermal evaporation method onto well-cleaned glass substrates. The as-deposited films were annealed in flowing purified nitrogen, N 2 , for 2 hours in the temperature range from 100 to 500 degree Celsius. The structure of as-deposited and annealed films has been studied by X-ray diffraction technique. The semi-quantitative analysis indicated from the Reitveld refinement show that the samples composed of Cu 2 SnSe 3 and SnSe. These studies revealed that the films were structured in mixed phase between cubic space group F-43 m (no. 216) and orthorhombic space group P n m a (no. 62). The crystallite size and lattice strain were determined from Scherrer calculation method. The results show that increasing in annealing temperature resulted in direct increase in crystallite size and decrease in lattice strain. (author)

  16. Improved microstructure and thermoelectric properties of iodine doped indium selenide as a function of sintering temperature

    Science.gov (United States)

    Dhama, Pallavi; Kumar, Aparabal; Banerji, P.

    2018-04-01

    In this paper, we explored the effect of sintering temperature on the microstructure, thermal and electrical properties of iodine doped indium selenide in the temperature range 300 - 700 K. Samples were prepared by a collaborative process of vacuum melting, ball milling and spark plasma sintering at 570 K, 630 K and 690 K. Single phase samples were obtained at higher sintering temperature as InSe is stable only at lower temperature. With increasing sintering temperature, densities of the samples were found to improve with larger grain size formation. Negative values of Seebeck coefficient were observed which indicates n-type carrier transport. Seebeck coefficient increases with sintering temperature and found to be the highest for the sample sintered at 690 K. Thermal conductivity found to be lower in the samples sintered at lower temperatures. The maximum thermoelectric figure of merit found to be ˜ 1 at 700 K due to the enhanced power factor as a result of improved microstructure.

  17. Ytterbium-selective polymeric membrane electrode based on substituted urea and thiourea as a suitable carrier

    International Nuclear Information System (INIS)

    Singh, A.K.; Jain, A.K.; Mehtab, Sameena

    2007-01-01

    Plasticized membranes using 1-phenyl-3-(2-thiazolyl)-2-thiourea (PTT) and 1-phenyl-3-(2-thiazolyl)-2-urea (PTU) have been prepared and explored as ytterbium ion-selective sensors. Effect of various plasticizers, viz. chloronaphthalene (CN), o-nitrophenyloctyl ether (o-NPOE), dibutylphthalate (DBP), dioctylsebacate (DOS) and anion excluders, sodium tetraphenylborate (NaTPB) and oleic acid (OA) was studied and improved membrane performance was observed. Optimum performance was noted with membrane of PTT having composition of PTT (3.5):PVC (80):DOS (160):NaTPB (1.5) in mg. The sensor works satisfactorily in the concentration range 1.2 x 10 -7 to 1.0 x 10 -2 M (detection limit 5.5 x 10 -8 M) with a Nernstian slope of 19.7 mV decade -1 of activity. Wide pH range (3.0-8.0), fast response time (10 s), non-aqueous tolerance (up to 20%) and adequate shelf life (12 weeks) indicate the vital utility of the proposed sensor. The proposed electrode comparatively shows good selectivity for Yb 3+ ion with respect to alkali, alkaline earth, transition and rare earth metals ions and can be used for its determination in binary mixtures and sulfite determination in white and red wine samples

  18. Ytterbium-selective polymeric membrane electrode based on substituted urea and thiourea as a suitable carrier.

    Science.gov (United States)

    Singh, A K; Jain, A K; Mehtab, Sameena

    2007-08-06

    Plasticized membranes using 1-phenyl-3-(2-thiazolyl)-2-thiourea (PTT) and 1-phenyl-3-(2-thiazolyl)-2-urea (PTU) have been prepared and explored as ytterbium ion-selective sensors. Effect of various plasticizers, viz. chloronaphthalene (CN), o-nitrophenyloctyl ether (o-NPOE), dibutylphthalate (DBP), dioctylsebacate (DOS) and anion excluders, sodium tetraphenylborate (NaTPB) and oleic acid (OA) was studied and improved membrane performance was observed. Optimum performance was noted with membrane of PTT having composition of PTT (3.5):PVC (80):DOS (160):NaTPB (1.5) in mg. The sensor works satisfactorily in the concentration range 1.2x10(-7) to 1.0x10(-2) M (detection limit 5.5x10(-8) M) with a Nernstian slope of 19.7 mV decade(-1) of activity. Wide pH range (3.0-8.0), fast response time (10 s), non-aqueous tolerance (up to 20%) and adequate shelf life (12 weeks) indicate the vital utility of the proposed sensor. The proposed electrode comparatively shows good selectivity for Yb3+ ion with respect to alkali, alkaline earth, transition and rare earth metals ions and can be used for its determination in binary mixtures and sulfite determination in white and red wine samples.

  19. Ytterbium-selective polymeric membrane electrode based on substituted urea and thiourea as a suitable carrier

    Energy Technology Data Exchange (ETDEWEB)

    Singh, A.K. [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667 (India)], E-mail: akscyfcy@iitr.ernet.in; Jain, A.K.; Mehtab, Sameena [Department of Chemistry, Indian Institute of Technology-Roorkee, Roorkee 247667 (India)

    2007-08-10

    Plasticized membranes using 1-phenyl-3-(2-thiazolyl)-2-thiourea (PTT) and 1-phenyl-3-(2-thiazolyl)-2-urea (PTU) have been prepared and explored as ytterbium ion-selective sensors. Effect of various plasticizers, viz. chloronaphthalene (CN), o-nitrophenyloctyl ether (o-NPOE), dibutylphthalate (DBP), dioctylsebacate (DOS) and anion excluders, sodium tetraphenylborate (NaTPB) and oleic acid (OA) was studied and improved membrane performance was observed. Optimum performance was noted with membrane of PTT having composition of PTT (3.5):PVC (80):DOS (160):NaTPB (1.5) in mg. The sensor works satisfactorily in the concentration range 1.2 x 10{sup -7} to 1.0 x 10{sup -2} M (detection limit 5.5 x 10{sup -8} M) with a Nernstian slope of 19.7 mV decade{sup -1} of activity. Wide pH range (3.0-8.0), fast response time (10 s), non-aqueous tolerance (up to 20%) and adequate shelf life (12 weeks) indicate the vital utility of the proposed sensor. The proposed electrode comparatively shows good selectivity for Yb{sup 3+} ion with respect to alkali, alkaline earth, transition and rare earth metals ions and can be used for its determination in binary mixtures and sulfite determination in white and red wine samples.

  20. Theoretical investigations of the optical and EPR spectra for trivalent cerium and ytterbium ions in orthorhombic YF{sub 3} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hong-Gang, E-mail: kezhouliu@163.com; Zheng, Wen-Chen

    2016-09-01

    The optical spectra and electron paramagnetic resonance (EPR) parameters (g factors and hyperfine structure constants A) for trivalent cerium and ytterbium ions in YF{sub 3} crystal with orthorhombic structure are investigated together by the complete diagonalization (of energy matrix) method (CDM). The obtained results are in reasonable agreement with the experimental ones. More importantly, two magnetically nonequivalent centers in YF{sub 3} crystal observed in EPR experiments are confirmed and ascribed to their specific positions in a unit cell by our calculations based on superposition model (SPM) analysis. Such identification of local sites with different magnetic properties would help us to understand not only the EPR spectra and magnetic susceptibility of other lanthanide ions doped in crystals with the same structure as YF{sub 3} but also the energy transfer scheme between two lanthanide ions occupying such two sites. All results are discussed carefully.

  1. Layer Structured Bismuth Selenides of Bi2Se3 and Bi3Se4 for High Energy and Flexible All-Solid-State Micro-Supercapacitors.

    Science.gov (United States)

    Hao, Chunxue; Wang, Lidan; Wen, Fusheng; Xiang, Jianyong; Li, Lei; Hu, Wentao; Liu, Zhongyuan

    2017-12-20

    Bismuth selenides (Bi2Se3 and Bi3Se4), both of which have the layered rhombohedral crystal structure, and found to be useful as electrode materials for supercapacitor application in this work. Bi2Se3 nanoplates as electrode material exhibit much better performance than that of Bi3Se4 nanoparticles in liquid electrolyte system (6 M KOH), which delivers a higher specific capacitance (272.9 F/g) than that of Bi3Se4 (193.6 F/g) at 5 mV/s. This result would may be attributed to that Bi2Se3 nanoplates possess more active electrochemical surfaces for the reversible surface redox reactions owing to its planar quintuple stacked layers (septuple layers for Bi3Se4). For the demand of electronic skin, we used a novel flexible annular interdigital structure electrode applying for all-solid-state micro-supercapacitors (AMSCs). Bi2Se3 AMSCs device delivers a much more excellent supercapacitor performance, exhibits a large stack capacitance 89.5 F/cm3 (Bi3Se4: 79.1 F/cm3) at 20 mV/s, a high energy density 17.9 mWh/cm3 and high power density 18.9 W/cm3. The bismuth selenides also exhibit good cycle stability, retention 95.5% (90.3%) after 1000 c for Bi2Se3 (Bi3Se4). Obviously, Bi2Se3 nanoplates can be promising electrode materials for flexible annular interdigital all-solid-sate supercapacitor. © 2017 IOP Publishing Ltd.

  2. Efficient solution-processed small molecule: Cadmium selenide quantum dot bulk heterojunction solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Vinay, E-mail: drvinaygupta@netscape.net [Physics of Energy Harvesting Division, Organic and Hybrid Solar Cell Group, CSIR-National Physical Laboratory, New Delhi-110012 (India); Department of Physics, University of California, Santa Barbara, California 93106 (United States); Upreti, Tanvi; Chand, Suresh [Physics of Energy Harvesting Division, Organic and Hybrid Solar Cell Group, CSIR-National Physical Laboratory, New Delhi-110012 (India)

    2013-12-16

    We report bulk heterojunction solar cells based on blends of solution-processed small molecule [7,7′-(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b′]dithiophene-2,6-diyl) bis(6-fluoro-4-(5′-hexyl-[2,2′-bithiophen]-5yl)benzo[c] [1,2,5] thiadiazole)] p-DTS(FBTTh{sub 2}){sub 2}: Cadmium Selenide (CdSe) (70:30, 60:40, 50:50, and 40:60) in the device configuration: Indium Tin Oxide /poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/p-DTS(FBTTh{sub 2}){sub 2}: CdSe/Ca/Al. The optimized ratio of p-DTS(FBTTh{sub 2}){sub 2}:CdSe::60:40 leads to a short circuit current density (J{sub sc}) = 5.45 mA/cm{sup 2}, open circuit voltage (V{sub oc}) = 0.727 V, and fill factor (FF) = 51%, and a power conversion efficiency = 2.02% at 100 mW/cm{sup 2} under AM1.5G illumination. The J{sub sc} and FF are sensitive to the ratio of p-DTS(FBTTh{sub 2}){sub 2}:CdSe, which is a crucial factor for the device performance.

  3. Design and fabrication of anti-reflection coating on Gallium Phosphide, Zinc Selenide and Zinc Sulfide substrates for visible and infrared application

    Directory of Open Access Journals (Sweden)

    Mokrý P.

    2013-05-01

    Full Text Available Results of design and fabrication of a dual-band anti-reflection coating on a gallium phosphide (GaP, zinc selenide (ZnSe and zinc sulfide (ZnS substrates are presented. A multilayer stack structure of antireflection coatings made of zinc sulfide and yttrium fluoride (YF3 was theoretically designed for optical bands between 0.8 and 0.9 μm and between 9.5 and 10.5 μm. This stack was designed as efficient for these materials (GaP, ZnS, ZnSe together. Multilayer stack structure was deposited using thermal evaporation method. Theoretically predicted transmittance spectra were compared with transmitted spectra measured on coated substrates. Efficiency of anti-reflection coating is estimated and discrepancies are analyzed and discussed.

  4. Influence of growth and photocatalytic properties of copper selenide (CuSe) nanoparticles using reflux condensation method

    Energy Technology Data Exchange (ETDEWEB)

    Sonia, S. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046 (India); Kumar, P. Suresh [Thin Film and Nanomaterials Laboratory, Department of Physics, Bharathiar University, Coimbatore 641046 (India); Mangalaraj, D., E-mail: dmraj800@yahoo.com [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046 (India); Ponpandian, N.; Viswanathan, C. [Department of Nanoscience and Technology, Bharathiar University, Coimbatore 641046 (India)

    2013-10-15

    Influence of reaction conditions on the synthesis of copper selenide (CuSe) nanoparticles and their photo degradation activity is studied. Nearly monodispersed uniform size (23–44 nm) nanoparticles are synthesized by varying the reaction conditions using reflux condensation method. The obtained nanoparticles are characterized by X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy and UV–visible absorption spectroscopy. The X-ray diffraction analysis of the sample shows the formation of nanoparticles with hexagonal CuSe structure. The result indicates that on increasing the reaction time from 4 to 12 h, the particle size decreases from 44 to 23 nm, but an increase in the reaction temperature increases the particle size. The calculated band gap E{sub g} is ranging from 2.34 to 3.05 eV which is blue shifted from the bulk CuSe (2.2 eV). The photocatalytic degradation efficiency of the CuSe nanoparticles on two organic dyes Methylene blue (MB) and Rhodamine-B (RhB) in aqueous solution under UV region is calculated as 76 and 87% respectively.

  5. MOF-derived Co-doped nickel selenide/C electrocatalysts supported on Ni foam for overall water splitting

    KAUST Repository

    Ming, Fangwang; Liang, Hanfeng; Shi, Huanhuan; Xu, Xun; Mei, Gui; Wang, Zhoucheng

    2016-01-01

    It is of prime importance to develop dual-functional electrocatalysts with good activity for overall water splitting, which remains a great challenge. Herein, we report the synthesis of a Co-doped nickel selenide (a mixture of NiSe and NiSe)/C hybrid nanostructure supported on Ni foam using a metal-organic framework as the precursor. The resulting catalyst exhibits excellent catalytic activity toward the oxygen evolution reaction (OER), which only requires an overpotential of 275 mV to drive a current density of 30 mA cm. This overpotential is much lower than those reported for precious metal free OER catalysts. The hybrid is also capable of catalyzing the hydrogen evolution reaction (HER) efficiently. A current density of -10 mA cm can be achieved at 90 mV. In addition, such a hybrid nanostructure can achieve 10 and 30 mA cm at potentials of 1.6 and 1.71 V, respectively, along with good durability when functioning as both the cathode and the anode for overall water splitting in basic media.

  6. MOF-derived Co-doped nickel selenide/C electrocatalysts supported on Ni foam for overall water splitting

    KAUST Repository

    Ming, Fangwang

    2016-09-01

    It is of prime importance to develop dual-functional electrocatalysts with good activity for overall water splitting, which remains a great challenge. Herein, we report the synthesis of a Co-doped nickel selenide (a mixture of NiSe and NiSe)/C hybrid nanostructure supported on Ni foam using a metal-organic framework as the precursor. The resulting catalyst exhibits excellent catalytic activity toward the oxygen evolution reaction (OER), which only requires an overpotential of 275 mV to drive a current density of 30 mA cm. This overpotential is much lower than those reported for precious metal free OER catalysts. The hybrid is also capable of catalyzing the hydrogen evolution reaction (HER) efficiently. A current density of -10 mA cm can be achieved at 90 mV. In addition, such a hybrid nanostructure can achieve 10 and 30 mA cm at potentials of 1.6 and 1.71 V, respectively, along with good durability when functioning as both the cathode and the anode for overall water splitting in basic media.

  7. Mode-locked ytterbium fiber lasers using a large modulation depth carbon nanotube saturable absorber without an additional spectral filter

    International Nuclear Information System (INIS)

    Pan, Y Z; Miao, J G; Liu, W J; Huang, X J; Wang, Y B

    2014-01-01

    We demonstrate an all-normal-dispersion ytterbium (Yb)-doped fiber laser mode-locked by a higher modulation depth carbon nanotube saturable absorber (CNT-SA) based on an evanescent field interaction scheme. The laser cavity consists of pure normal dispersion fibers without dispersion compensation and an additional spectral filter. It is exhibited that the higher modulation depth CNT-SA could contribute to stabilize the mode-locking operation within a limited range of pump power and generate the highly chirped pulses with a high-energy level in the cavity with large normal dispersion and strong nonlinearity. Stable mode-locked pulses with a maximal energy of 29 nJ with a 5.59 MHz repetition rate at the operating wavelength around 1085 nm have been obtained. The maximal time-bandwidth product is 262.4. The temporal and spectral characteristics of pulses versus pump power are demonstrated. The experimental results suggest that the CNT-SA provides a sufficient nonlinear loss to compensate high nonlinearity and catch up the gain at a different pump power and thus leads to the stable mode locking. (letter)

  8. Selenide isotope generator for the Galileo Mission: copper/water axially-grooved heat pipe topical report

    International Nuclear Information System (INIS)

    Strazza, N.P.

    1979-01-01

    This report presents a summary of the major accomplishments for the development, fabrication, and testing of axially-grooved copper/water heat pipes for Selenide Isotopic Generator (SIG) applications. The early development consisted of chemical, physical, and analytical studies to define an axially-grooved tube geometry that could be successfully fabricated and provide the desired long term (up to seven years) performance is presented. Heat pipe fabrication procedures, measured performance and accelerated life testing of heat pipes S/Ns AL-5 and LT-57 conducted at B and K Engineering are discussed. S/N AL-5 was the first axially-grooved copper/water heat pipe that was fabricated with the new internal coating process for cupric oxide (CuO) and the cleaning and water preparation methods developed by Battelle Columbus Laboratories. Heat pipe S/N LT-57 was fabricated along with sixty other axially-grooved heat pipes allocated for life testing at Teledyne Energy Systems. As of June 25, 1979, heat pipes S/Ns AL-5 and LT-57 have been accelerated life tested for 13,310 and 6,292 respectively, at a nominal operating temperature of 225 0 C without any signs of thermal performance degradation

  9. Broadband generation by multiple four-wave mixing process due to ASE Q-switching in high-power double-clad ytterbium-doped fiber amplifier

    Science.gov (United States)

    Chowdhury, Sourav D.; Shekhar, Nishant; Saha, Maitreyee; Sen, Ranjan; Pal, Mrinmay

    2014-11-01

    Broadband output from 1060nm to 1700nm and cascaded four-wave mixing generated red light pulsing is observed in a fiber amplifier set up consisting of a 5.5m double clad, double D shaped Ytterbium doped fiber, a single clad passive fiber for excess pump absorption and a splitter, both with and without a CW seed. Self-pulsing occurs from ASE due to passive Q-switching by saturable absorption effect of the active fiber and also depends on splice loss. The pulses generate broadband output by multiple four-wave mixing process with maximum broadening efficiency near 1300nm which is the zero dispersion wavelength for silica fiber. Pulses traveling both in forward and backward direction have enough peak power and energy to damage splice points and fiber components. When seeded the self-pulsing and broadband generation is often suppressed but again generate at increased pump powers.

  10. Ytterbium silicide (YbSi{sub 2}). A promising thermoelectric material with a high power factor at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Tanusilp, Sora-at; Ohishi, Yuji; Muta, Hiroaki [Graduate School of Engineering, Osaka University, Suita, Osaka (Japan); Yamanaka, Shinsuke [Graduate School of Engineering, Osaka University, Suita, Osaka (Japan); Research Institute of Nuclear Engineering, University of Fukui, Tsuruga (Japan); Nishide, Akinori [Graduate School of Engineering, Osaka University, Suita, Osaka (Japan); Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Kokubunji, Tokyo (Japan); Hayakawa, Jun [Center for Exploratory Research, Research and Development Group, Hitachi, Ltd., Kokubunji, Tokyo (Japan); Kurosaki, Ken [Graduate School of Engineering, Osaka University, Suita, Osaka (Japan); Research Institute of Nuclear Engineering, University of Fukui, Tsuruga (Japan); JST, PRESTO, Kawaguchi, Saitama (Japan)

    2018-02-15

    Metal silicide-based thermoelectric (TE) materials have attracted attention in the past two decades, because they are less toxic, with low production cost and high chemical stability. Here, we study the TE properties of ytterbium silicide YbSi{sub 2} with a specific layered structure and the mixed valence state of Yb{sup 2+} and Yb{sup 3+}. YbSi{sub 2} exhibits large Seebeck coefficient, S, accompanied by high electrical conductivity, σ, leading to high power factor, S{sup 2}σ, of 2.2 mW m{sup -1} K{sup -2} at room temperature, which is comparable to those of state-of-the-art TE materials such as Bi{sub 2}Te{sub 3} and PbTe. Moreover, YbSi{sub 2} exhibits high Grueneisen parameter of 1.57, which leads to relatively low lattice thermal conductivity, κ{sub lat}, of 3.0 W m{sup -1} K{sup -1} at room temperature. The present study reveals that YbSi{sub 2} can be a good candidate of TE materials working near room temperature. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Role of ytterbium and ytterbium/cesium fluoride on the chemistry of poly(9,9-dioctylfluorene-co-benzothiadiazole) as investigated by photoemission spectroscopy

    International Nuclear Information System (INIS)

    Fung, M.K.; Tong, S.W.; Lai, S.L.; Bao, S.N.; Lee, C.S.; Wu, W.W.; Inbasekaran, M.; O'Brien, J.J.; Liu, S.Y.; Lee, S.T.

    2003-01-01

    Since ytterbium (Yb) possesses a low work function of 2.6 eV and Yb fluoride generally has a high negative free energy of formation, it is conceivable to use Yb, either directly or parasitically, with a metal fluoride, as a cathode in organic light-emitting diodes (OLEDs). In this work, the electronic structure and chemistry at the interface of Yb/poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) were investigated by ultraviolet and x-ray photoemission spectroscopy (UPS and XPS, respectively). We found that the deposition of Yb on top of F8BT foremost formed organometallic complexes with the sulfur but interacted partly with the nitrogen of F8BT, and eventually formed a Yb-C complex at higher Yb coverages. In the UPS spectra, Yb deposition increased the relative peak intensities corresponding to the σ-bonds originated from the aliphatic side chains, implying that some of the π-conjugated carbons in the polymer backbone may be destroyed. These results agree well with the disappearance of the π-to-π* transition as observed from the shake-up peaks of the carbon 1s core level in the XPS. The chemistry at the interfaces of Yb/CsF/Au and Yb/CsF/F8BT was also examined by XPS. In both cases, Cs was liberated from the CsF upon Yb deposition and the Yb reacted with the liberated F to form YbF 3 . In the Yb/CsF/F8BT system, the dissociated Cs did not exist in the metallic state, but reacted with the N atoms and carbon backbone in the F8BT. The low work function of Cs (2.2 eV) may further enhance the injection of electrons into the polymer layer. More importantly, the utilization of Yb/CsF as an electrode is polymer independent, and the CsF layer between the Yb and F8BT could retard Yb diffusion into the bulk polymer. The present results are supported by a calculation of the free energy needed to liberate the Cs in the metal/CsF system using a simple thermodynamic model. It is suggested that the use of Yb/CsF cathode in the polymer offers an advantage over most other

  12. Kinetics of electrophilic substitution of neodymium(3) by ytterbium(3) in aqueous solution of ethylenediaminetetraacetate solution of ethylenediaminetetraacetate and cyclohexanediaminetetraacetate

    Energy Technology Data Exchange (ETDEWEB)

    Nikitenko, S.I.; Martynenko, L.I.; Pechurova, N.I.; Spitsyn, V.I. (Moskovskij Gosudarstvennyj Univ. (USSR))

    1981-01-01

    The process of electrophilic substitution is studied spectrophotometrically taking as an example neodymium (3) substitution for ytterbium (3) in solutions, containing NdL/sup -/ and Yb/sup 3 +/, where L/sup 4 -/ = A/sup 4 -/ and D/sup 4 -/ (ethylenediaminetetraacetate- and cyclohexanediaminetetraacetate). The study of the exchange kinetics is carried out in pH range of 4-6. For the system with L=A in pH range 4.0-4.8 the exchange is realized by the way of acidic dissociation, at pH 5.5-6.0 - by the way of the direct attack. In the system with L=D in pH range 3.5-4.0 the way of acid dissociation prevails, at the same time, the rate constant of acidic dissociation for NdD/sup -/ is two order lower the constant for NdA/sup -/. However, at pH 4.7 the machanism of spontaneous dissociation prevails in the system. Thus, the structure of the complex has considerable effect on the mechanism of electrophilic substitution in rare earth complexes.

  13. Kinetics of electrophilic substitution of neodymium(3) by ytterbium(3) in aqueous solution of ethylenediaminetetraacetate solution of ethylenediaminetetraacetate and cyclohexanediaminetetraacetate

    International Nuclear Information System (INIS)

    Nikitenko, S.I.; Martynenko, L.I.; Pechurova, N.I.; Spitsyn, V.I.

    1981-01-01

    The process of electrophilic substitution is studied spectrophotometrically taking as an example neodymium (3) substitution for ytterbium (3) in solutions, containing NdL - and Yb 3+ , where L 4- = A 4- and D 4- (ethylenediaminetetraacetate- and cyclohexanediaminetetraacetate). The study of the exchange kinetics is carried out in pH range of 4-6. For the system with L=A in pH range 4.0-4.8 the exchange is realized by the way of acidic dissociation, at pH 5.5-6.0 - by the way of the direct attack. In the system with L=D in pH range 3.5-4.0 the way of acid dissociation prevails, at the same time, the rate constant of acidic dissociation for NdD - is two order lower the constant for NdA - . However, at pH 4.7 the machanism of spontaneous dissociation prevails in the system. Thus, the structure of the complex has considerable effect on the mechanism of electrophilic substitution in rare earth complexes [ru

  14. Facile hot-injection synthesis of stoichiometric Cu2ZnSnSe4 nanocrystals using bis(triethylsilyl) selenide.

    Science.gov (United States)

    Jin, Chunyu; Ramasamy, Parthiban; Kim, Jinkwon

    2014-07-07

    Cu2ZnSnSe4 is a prospective material as an absorber in thin film solar cells due to its many advantages including direct band gap, high absorption coefficient, low toxicity, and relative abundance (indium-free) of its elements. In this report, CZTSe nanoparticles have been synthesized by the hot-injection method using bis-(triethylsilyl)selenide [(Et3Si)2Se] as the selenium source for the first time. Energy dispersive X-ray spectroscopy (EDS) confirmed the stoichiometry of CZTSe nanoparticles. X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies showed that the nanocrystals were single phase polycrystalline with their size within the range of 25-30 nm. X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy measurements ruled out the existence of secondary phases such as Cu2SnSe3 and ZnSe. The effect of reaction time and precursor injection order on the formation of stoichiometric CZTSe nanoparticles has been studied by Raman spectroscopy. UV-vis-NIR data indicate that the CZTSe nanocrystals have an optical band gap of 1.59 eV, which is optimal for photovoltaic applications.

  15. Investigation of Electronic and Opto-Electronic Properties of Two-Dimensional (2D) Layers of Copper Indium Selenide Field Effect Transistors

    Science.gov (United States)

    Patil, Prasanna Dnyaneshwar

    Investigations performed in order to understand the electronic and optoelectronic properties of field effect transistors based on few layers of 2D Copper Indium Selenide (CuIn7Se11) are reported. In general, field effect transistors (FETs), electric double layer field effect transistors (EDL-FETs), and photodetectors are crucial part of several electronics based applications such as tele-communication, bio-sensing, and opto-electronic industry. After the discovery of graphene, several 2D semiconductor materials like TMDs (MoS2, WS2, and MoSe2 etc.), group III-VI materials (InSe, GaSe, and SnS2 etc.) are being studied rigorously in order to develop them as components in next generation FETs. Traditionally, thin films of ternary system of Copper Indium Selenide have been extensively studied and used in optoelectronics industry as photoactive component in solar cells. Thus, it is expected that atomically thin 2D layered structure of Copper Indium Selenide can have optical properties that could potentially be more advantageous than its thin film counterpart and could find use for developing next generation nano devices with utility in opto/nano electronics. Field effect transistors were fabricated using few-layers of CuIn7Se11 flakes, which were mechanically exfoliated from bulk crystals grown using chemical vapor transport technique. Our FET transport characterization measurements indicate n-type behavior with electron field effect mobility microFE ≈ 36 cm2 V-1 s-1 at room temperature when Silicon dioxide (SiO2) is used as a back gate. We found that in such back gated field effect transistor an on/off ratio of 104 and a subthreshold swing ≈ 1 V/dec can be obtained. Our investigations further indicate that Electronic performance of these materials can be increased significantly when gated from top using an ionic liquid electrolyte [1-Butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6)]. We found that electron field effect mobility microFE can be increased from

  16. Structural and electrochemical analysis of chemically synthesized microcubic architectured lead selenide thin films

    Science.gov (United States)

    Bhat, T. S.; Shinde, A. V.; Devan, R. S.; Teli, A. M.; Ma, Y. R.; Kim, J. H.; Patil, P. S.

    2018-01-01

    The present work deals with the synthesis of lead selenide (PbSe) thin films by simple and cost-effective chemical bath deposition method with variation in deposition time. The structural, morphological, and electrochemical properties of as-deposited thin films were examined using characterization techniques such as X-ray diffraction spectroscopy (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy. XRD reveals formation of rock salt phase cubic structured PbSe. FE-SEM images show the formation of microcubic structured morphology. The existence of the PbSe is confirmed from the XPS analysis. On the other hand, CV curves show four reaction peaks corresponding to oxidation [PbSe and Pb(OH)2] and reduction (PbO2 and Pb(OH)2) at the surface of PbSe thin films. The PbSe:2 sample deposited for 80 min. shows maximum specific capacitance of 454 ± 5 F g- 1 obtained at 0.25 mA cm- 2 current density. The maximum energy density of 69 Wh kg- 1 was showed by PbSe:2 electrode with a power density of 1077 W kg- 1. Furthermore, electrochemical impedance studies of PbSe:2 thin film show 80 ± 3% cycling stability even after 500 CV cycles. Such results show the importance of microcubic structured PbSe thin film as an anode in supercapacitor devices.

  17. A transparent nickel selenide counter electrode for high efficient dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Jia; Wu, Jihuai, E-mail: jhwu@hqu.edu.cn; Jia, Jinbiao; Ge, Jinhua; Bao, Quanlin; Wang, Chaotao; Fan, Leqing

    2017-04-15

    Highlights: • Ni{sub 0.85}Se was obtained by hydrothermal way and the film was gained by spin-coating. • Ni{sub 0.85}Se film has good conductivity and excellent electrocatalytic activity. • DSSC based on transparent Ni{sub 0.85}Se counter electrode obtains PCE of 8.96%. • The PCE reaches 10.76% when putting a mirror under Ni{sub 0.85}Se counter electrode. - Abstract: Nickel selenide (Ni{sub 0.85}Se) was synthesized by a facile one-step hydrothermal reaction and Ni{sub 0.85}Se film was prepared by spin-coating Ni{sub 0.85}Se ink on FTO and used as counter electrode (CE) in dye-sensitized solar cells (DSSC). The Ni{sub 0.85}Se CEs not only show high transmittance in visible range, but also possess remarkable electrocatalytic activity toward I{sup −}/I{sub 3}{sup −}. The electrocatalytic ability of Ni{sub 0.85}Se films was verified by cyclic voltammetry, electrochemical impedance spectroscopy and Tafel polarization curves. The DSSC using Ni{sub 0.85}Se CE exhibits a power conversion efficiency (PCE) of 8.96%, while the DSSC consisting of sputtered Pt CE only exhibits a PCE of 8.15%. When adding a mirror under Ni{sub 0.85}Se CE, the resultant DSSC exhibits a PCE of 10.76%, which exceeds that of a DSSC based on sputtered Pt CE (8.44%) by 27.49%.

  18. Iron selenide films by aerosol assisted chemical vapor deposition from single source organometallic precursor in the presence of surfactants

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, Raja Azadar [Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Badshah, Amin, E-mail: aminbadshah@yahoo.com [Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Younis, Adnan [School of Materials Science and Engineering, University of New South Wales, Sydney 2052, NSW (Australia); Khan, Malik Dilshad [Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad (Pakistan); Akhtar, Javeed [Department of Physics, COMSATS Institute of Information Technology, Park Road, Chak Shahzad, Islamabad (Pakistan)

    2014-09-30

    This article presents the synthesis and characterization (multinuclear nuclear magnetic resonance, Fourier transform infrared spectroscopy, carbon–hydrogen–nitrogen–sulfur analyzer, atomic absorption spectrometry and thermogravimetric analysis) of a single source organometallic precursor namely 1-acetyl-3-(4-ferrocenylphenyl)selenourea for the fabrication of iron selenide (FeSe) films on glass substrates using aerosol assisted chemical vapor deposition (AACVD). The changes in the morphologies of the films have been monitored by the use of two different surfactants i.e. triton X-100 and tetraoctylphosphonium bromide during AACVD. The role of surfactant has been evaluated by examining the interaction of the surfactants with the precursor by using UV–vis spectroscopy and cyclic voltammetry. The fabricated FeSe films have been characterized with powder X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. - Highlights: • Ferrocene incorporated selenourea (FIS) has been synthesized and characterized. • FeSe thin films have been fabricated from FIS. • Mechanism of film growth was studied with cyclic voltammetry and UV–vis spectroscopy.

  19. Transparent nickel selenide used as counter electrode in high efficient dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Jinbiao; Wu, Jihuai, E-mail: jhwu@hqu.edu.cn; Tu, Yongguang; Huo, Jinghao; Zheng, Min; Lin, Jianming

    2015-08-15

    Highlights: • A transparent Ni{sub 0.85}Se is prepared by a facile solvothermal reaction. • Ni{sub 0.85}Se electrode has better electrocatalytic activity than Pt electrode. • DSSC with Ni{sub 0.85}Se electrode obtains efficiency of 8.88%, higher than DSSC with Pt. • DSSC with Ni{sub 0.85}Se/mirror electrode achieves an efficiency of 10.19%. - Abstract: A transparent nickel selenide (Ni{sub 0.85}Se) is prepared by a facile solvothermal reaction and used as an efficient Pt-free counter electrode (CE) for dye-sensitized solar cells (DSSCs). Field emission scanning electron microscopy observes that the as-prepared Ni{sub 0.85}Se possesses porous structure. Cyclic voltammogram measurement indicates that Ni{sub 0.85}Se electrode has larger current density than Pt electrode. Electrochemical impedance spectroscopy shows that the Ni{sub 0.85}Se electrode has lower charge-transfer resistance than Pt electrode. Under simulated solar light irradiation with intensity of 100 mW cm{sup −2} (AM 1.5), the DSSC based on the Ni{sub 0.85}Se CE achieves a power conversion efficiency (PCE) of 8.88%, which is higher than the solar cell based on Pt CE (8.13%). Based on the transparency of Ni{sub 0.85}Se, the DSSC with Ni{sub 0.85}Se/mirror achieves a PCE of 10.19%.

  20. Coexistence of multiphase superconductivity and ferromagnetism in lithiated iron selenide hydroxide [(L i1 -xF ex) OH ]FeSe

    Science.gov (United States)

    Urban, Christian; Valmianski, Ilya; Pachmayr, Ursula; Basaran, Ali C.; Johrendt, Dirk; Schuller, Ivan K.

    2018-01-01

    We present experimental evidence for (a) multiphase superconductivity and (b) coexistence of magnetism and superconductivity in a single structural phase of lithiated iron selenide hydroxide [(L i1 -xF ex )OH]FeSe. Magnetic field modulated microwave spectroscopy data confirms superconductivity with at least two distinct transition temperatures attributed to well-defined superconducting phases at TSC 1=40 ±2 K and TSC 2=35 ±2 K. Magnetometry data for the upper critical fields reveal a change in the magnetic order (TM=12 K) below TSC 1 and TSC 2 that is consistent with ferromagnetism. This occurs because the superconducting coherence length is much smaller than the structural coherence length, allowing for several different electronic and magnetic states on a single crystallite. The results give insight into the physics of complex multinary materials, where several phenomena governed by different characteristic length scales coexist.

  1. Physical, optical and electrical properties of copper selenide (CuSe) thin films deposited by solution growth technique at room temperature

    International Nuclear Information System (INIS)

    Gosavi, S.R.; Deshpande, N.G.; Gudage, Y.G.; Sharma, Ramphal

    2008-01-01

    Copper selenide (CuSe) thin films are grown onto amorphous glass substrate from an aqueous alkaline medium using solution growth technique (SGT) at room temperature. The preparative parameters were optimized to obtain good quality of thin films. The as-deposited films were characterized for physical, optical and electrical properties. X-ray diffraction (XRD) pattern reveals that the films are polycrystalline in nature. Energy dispersive analysis by X-ray (EDAX) shows formation of stoichiometric CuSe compound. Uniform deposition of CuSe thin films on glass substrate was observed from scanning electron microscopy (SEM) and atomic force microscopy (AFM) micrographs. Average grain size was determined to 144.53 ± 10 nm using atomic force microscopy. The band gap was found to be 2.03 eV with direct band-to-band transition. Semi-conducting behaviour was observed from resistivity measurements. Ohmic behaviour was seen from I-V curve with good electrical conductivity

  2. Influence of Heavy Fermion Ytterbium Substitution on the Electronic and Crystal Properties of the Frustrated Magnet CuFeO2 Oxide

    Science.gov (United States)

    Ozkendir, Osman Murat

    2017-11-01

    The influence of heavy fermion Ytterbium substitution was investigated on the crystal, electronic, and magnetic properties of CuFeO2 with the general formula Yb x Cu1- x FeO2. The results of the crystal structure study revealed polycrystalline formations in the sample. The electronic and magnetic properties of the samples were studied using X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) techniques. Both XAS and XMCD revealed that the substituted Yb atoms govern the entire phenomena with their narrow 4 f levels by forming broader molecular bonds with the 3 d levels of the transition metals. Owing to the prominent changes caused by the activity of the 4 f electrons in the crystal structures, Yb atoms were determined to be the main "role player" in the phase transitions. XMCD measurements were performed at room temperature 300 K (27 °C) to determine the magnetic properties of the samples and, except for CuFeO2 ( x = 0.0), the samples were observed to be ordered magnetically (mainly ferrimagnetic) in the bulk.

  3. Engineering phase transformation of cobalt selenide in carbon cages and the phases’ bifunctional electrocatalytic activity for water splitting

    Science.gov (United States)

    Gao, Jiaojiao; Liu, Li; Qiu, Hua-Jun; Wang, Yu

    2017-08-01

    Using Co-based metal-organic frameworks as the precursor, we synthesized cobalt selenide (CoSe2) nanoparticles imbedded in carbon cages. By simply controlling the annealing conditions, phase transformation of CoSe2 from the orthorhombic phase to the cubic phase has been realized. Benefitting from the metallic character, the cubic phase CoSe2 shows greatly enhanced electrocatalytic activity for both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). The as-prepared cubic phase CoSe2 electrode possesses onset overpotentials of 43 and 200 mV, and Tafel slopes of 51 and 83 mV dec-1 for HER and OER, respectively, which are remarkably superior to that of the orthorhombic phase CoSe2 catalyst and comparable to those of commercial noble-metal catalysts. In addition, the cubic phase CoSe2 electrode also demonstrates excellent stability after long-term operations. Our work not only provides a high performance catalyst for water splitting, but also introduces a new route to the design of a highly efficient catalyst by phase transformation.

  4. Analysis on the Performance of Copper Indium Gallium Selenide (CIGS Based Photovoltaic Thermal

    Directory of Open Access Journals (Sweden)

    Zulkepli Afzam

    2016-01-01

    Full Text Available This paper deals with the efficiency improvement of Copper Indium Gallium Selenide (CIGS Photovoltaic (PV and also solar thermal collector. Photovoltaic thermal (PV/T can improve overall efficiency for PV and also solve the problem of limited roof space at urban area. Objective of this study is to clarify the effect of mass flow rate on the efficiency of the PV/T system. A CIGS solar cell is used with rated output power 65 W and 1.18 m2 of area. 4 set of experiments were carried out, which were: thermal collector with 0.12 kg/s flow rate, PV/T with 0.12 kg/s flow rate, PV/T with 0.09 kg/s flow rate and PV. It was found that PV/T with 0.12 kg/s flow rate had the highest electrical efficiency, 2.92 %. PV/T with 0.09 kg/s flow rate had the lowest electrical efficiency, 2.68 %. It also had 2 % higher overall efficiency. The efficiency gained is low due to several factors. The rated output power of the PV is low for the area of 1.18 m2. The packing factor of the PV also need to be considered as it may not be operated at the optimal packing factor. Furthermore, aluminium sheet of the PV may affect the PV temperature due to high thermal conductivity. Further study on more values of mass flow rate and also other parameters that affect the efficiency of the PV/T is necessary.

  5. Structure data of elements and intermetallic phases. SubVol. B. Sulfides, selenides, tellurides. Pt. 1. Ag-Al-Cd-S. Cu-Te-Yb

    Energy Technology Data Exchange (ETDEWEB)

    Hellwege, K H; Hellwege, A M [eds.; Eisenmann, B; Schaefer, H

    1986-01-01

    Volume III/14 'Structure data of elements and intermetallic phases' is a supplement to and extension of Volume III/6. Since the publication of III/6 in 1971 (considering original papers up to 1967), the amount of new information for these substances has increased rapidly. Therefore the data had to be divided into several parts. The first part, III/14b1, is presented herewith. In Volume III/6, simple sulfides, selenides and tellurides were treated together with the intermetallic phases. The data are compiled in the same way as in III/6: for each substance the space group, lattice constants, their dependence on temperature and pressure, and other information is listed in the tables. In several cases, mostly for solid solutions, diagrams are given which are added in a separate chapter. Original papers containing a complete structure analysis are referred to in the tables. (orig./GSCH).

  6. Relationship between strains of tumor-bearing animals and the tumor affinity of /sup 169/Yb and /sup 67/Ga

    Energy Technology Data Exchange (ETDEWEB)

    Ando, A; Hiraki, T [Kanazawa Univ. (Japan). School of Paramedicine; Hisada, K; Ando, I; Ugiie, T

    1975-02-01

    It is well a well-known fact that ytterbium-169 is a strong bone seeking element. We have already reported that this element was concentrated in nonosseous tumor tissues and that its tumor affinity was stronger than that of gallium-67 in our previous experiment using Yoshida sarcoma-bearing rats. Ytterbium-169 citrate and gallium-67 citrate were compared in four strains of tumor-bearing rats and mice. The uptake rate of ytterbium-169 in tumor tissues was much larger than that of gallium-67 in Ehrlich cancer-bearing mice, but these values of ytterbium-169 were slightly smaller than those of gallium-67 in Yoshida sarcoma-bearing rats, Walker carcinosarcoma 256-bearing rats and sarcoma 180-bearing mice. Tumor to organ ratios of ytterbium-169, which were most important for tumor scanning agents, were much larger than those of gallium-67 in all four strains except for the tumor to bone ratio of ytterbium-169. From the above-described facts, it was shown that ytterbium-169 citrate had a stronger tumor affinity than did gallium-67 citrate and that the tumor affinity of ytterbium-169 citrate was similar in each of these four strains of tumor-bearing animals.

  7. Polyamide–thallium selenide composite materials via temperature and pH controlled adsorption–diffusion method

    International Nuclear Information System (INIS)

    Ivanauskas, Remigijus; Samardokas, Linas; Mikolajunas, Marius; Virzonis, Darius; Baltrusaitis, Jonas

    2014-01-01

    Graphical abstract: Single phase polyamide–thallium selenide hybrid functional materials were synthesized for solar energy conversion. - Highlights: • Thallium selenide–polyamide composite materials surfaces synthesized. • Mixed phase composition confirmed by XRD. • Increased temperature resulted in a denser surface packing. • Urbach energies correlated with AFM showing decreased structural disorder. • Annealing in N 2 at 100 °C yielded a single TlSe phase. - Abstract: Composite materials based on III–VI elements are promising in designing efficient photoelectronic devices, such as thin film organic–inorganic solar cells. In this work, TlSe composite materials were synthesized on a model polymer polyamide using temperature and pH controlled adsorption–diffusion method via (a) selenization followed by (b) the exposure to the group III metal (Tl) salt solution and their surface morphological, chemical and crystalline phase information was determined with particular focus on their corresponding structure–optical property relationship. XRD analysis yielded a complex crystalline phase distribution which correlated well with the optical and surface morphological properties measured. pH 11.3 and 80 °C yielded well defined, low structural disorder composite material surface. After annealing in N 2 at 100 °C, polycrystalline PA-Tl x Se y composite materials yielded a single TlSe phase due to the enhanced diffusion and reaction of thallium ions into the polymer. The method described here can be used to synthesize variety of binary III–VI compounds diffused into the polymer at relatively low temperatures and low overall cost, thus providing for a flexible synthesis route for novel composite solar energy harvesting materials

  8. Dependence of Optical Properties of SEL-Deposited Silver Gallium Selenide Thin Films on the On-Line Growth Parameter: Annealing Duration

    International Nuclear Information System (INIS)

    Bhuiyan, M.R.A.; Firoz Hasan, S.M.

    2005-01-01

    Silver gallium selenide (AGS) composite thin films were formed onto ultrasonically and chemically cleaned glass substrates by successive on-line thermal evaporation of individual elements and post-deposition annealing at 300 0 C for various durations in vacuum. The annealing duration was varied between 5 and 20 minutes. The structural and optical properties of the films were ascertained by x-ray diffraction (XRD) and uv-vis-nir spectrophotometry (photon wavelength ranging between 300 and 2500 nm), respectively. The diffractogram indicated that these films were polycrystalline in nature having tetragonal structure with lattice parameters, a ∼ 6.0034 A and c ∼ 10.9165 A. The optical transmittance and reflectance were utilized to compute the absorption coefficient, refractive index and energy gap of the films. Dependence of the optical and structural properties of the films on various annealing durations has been analyzed. The nature of the optical transitions has been direct allowed with band gap energies ranging between 1.713 and 1.757 eV and refractive indices between 1.596 and 3.351 depending on photon energy as well as annealing duration. (authors)

  9. ThSi_2 type ytterbium disilicide and its analogues YbT_xSi_2_-_x (T = Cr, Fe, Co)

    International Nuclear Information System (INIS)

    Peter, Sebastian C.; Kanatzidis, Mercouri G.

    2012-01-01

    YbSi_2 and the derivatives YbT_xSi_2_-_x (T = Cr, Fe, Co) crystallizing in the α-ThSi_2 structure type were obtained as single crystals from reactions run in liquid indium. All silicides were investigated by single-crystal X-ray diffraction, I4_1/amd space group and the lattice constants are: a = 3.9868(6) Aa and c = 13.541(3) Aa for YbSi_2, a = 4.0123(6) Aa and c = 13.542(3) Aa for YbCr_0_._2_7Si_1_._7_3, a = 4.0142(6) Aa and c = 13.830(3) Aa for YbCr_0_._7_1Si_1_._2_9, a = 4.0080(6) Aa and c = 13.751(3) Aa for YbFe_0_._3_4Si_1_._6_6, and a = 4.0036(6) Aa, c = 13.707(3) Aa for YbCo_0_._2_1Si_1_._7_9. YbSi_2 and YbT_xSi_2_-_x compounds are polar intermetallics with three-dimensional Si and M (T+Si) polyanion sub-networks, respectively, filled with ytterbium atoms. The degree of substitution of transition metal at the silicon site is signficant and leads to changes in the average bond lengths and bond angles substantially. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Electrical and optical characteristics of heterojunction devices composed of silicon nanowires and mercury selenide nanoparticle films on flexible plastics.

    Science.gov (United States)

    Yeo, Minje; Yun, Junggwon; Kim, Sangsig

    2013-09-01

    A pn heterojunction device based on p-type silicon (Si) nanowires (NWs) prepared by top-down method and n-type mercury selenide (HgSe) nanoparticles (NPs) synthesized by the colloidal method have been fabricated on a flexible plastic substrate. The synthesized HgSe NPs were analyzed through the effective mass approximation. The characteristics of the heterojunction device were examined and studied with the energy band diagram. The device showed typical diode characteristics with a turn-on voltage of 1.5 V and exhibited a high rectification ratio of 10(3) under relatively low forward bias. Under illumination of 633-nm-wavelength light, the device presented photocurrent efficiency of 117.5 and 20.1 nA/W under forward bias and reverse bias conditions, respectively. Moreover, the photocurrent characteristics of the device have been determined by bending of the plastic substrate upward and downward with strain of 0.8%. Even though the photocurrent efficiency has fluctuations during the bending cycles, the values are roughly maintained for 10(4) bending cycles. This result indicates that the fabricated heterojunction device has the potential to be applied as fundamental elements of flexible nanoelectronics.

  11. Polyamide–thallium selenide composite materials via temperature and pH controlled adsorption–diffusion method

    Energy Technology Data Exchange (ETDEWEB)

    Ivanauskas, Remigijus; Samardokas, Linas [Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilenu str. 19, Kaunas LT-50254 (Lithuania); Mikolajunas, Marius; Virzonis, Darius [Department of Technology, Kaunas University of Technology, Panevezys Faculty, Daukanto 12, 35212 Panevezys (Lithuania); Baltrusaitis, Jonas, E-mail: job314@lehigh.edu [Department of Chemical and Biomolecular Engineering, Lehigh University, B336 Iacocca Hall, 111 Research Drive, Bethlehem, PA 18015 (United States)

    2014-10-30

    Graphical abstract: Single phase polyamide–thallium selenide hybrid functional materials were synthesized for solar energy conversion. - Highlights: • Thallium selenide–polyamide composite materials surfaces synthesized. • Mixed phase composition confirmed by XRD. • Increased temperature resulted in a denser surface packing. • Urbach energies correlated with AFM showing decreased structural disorder. • Annealing in N{sub 2} at 100 °C yielded a single TlSe phase. - Abstract: Composite materials based on III–VI elements are promising in designing efficient photoelectronic devices, such as thin film organic–inorganic solar cells. In this work, TlSe composite materials were synthesized on a model polymer polyamide using temperature and pH controlled adsorption–diffusion method via (a) selenization followed by (b) the exposure to the group III metal (Tl) salt solution and their surface morphological, chemical and crystalline phase information was determined with particular focus on their corresponding structure–optical property relationship. XRD analysis yielded a complex crystalline phase distribution which correlated well with the optical and surface morphological properties measured. pH 11.3 and 80 °C yielded well defined, low structural disorder composite material surface. After annealing in N{sub 2} at 100 °C, polycrystalline PA-Tl{sub x}Se{sub y} composite materials yielded a single TlSe phase due to the enhanced diffusion and reaction of thallium ions into the polymer. The method described here can be used to synthesize variety of binary III–VI compounds diffused into the polymer at relatively low temperatures and low overall cost, thus providing for a flexible synthesis route for novel composite solar energy harvesting materials.

  12. Transition from Sign-Reversed to Sign-Preserved Cooper-Pairing Symmetry in Sulfur-Doped Iron Selenide Superconductors.

    Science.gov (United States)

    Wang, Qisi; Park, J T; Feng, Yu; Shen, Yao; Hao, Yiqing; Pan, Bingying; Lynn, J W; Ivanov, A; Chi, Songxue; Matsuda, M; Cao, Huibo; Birgeneau, R J; Efremov, D V; Zhao, Jun

    2016-05-13

    An essential step toward elucidating the mechanism of superconductivity is to determine the sign or phase of the superconducting order parameter, as it is closely related to the pairing interaction. In conventional superconductors, the electron-phonon interaction induces attraction between electrons near the Fermi energy and results in a sign-preserved s-wave pairing. For high-temperature superconductors, including cuprates and iron-based superconductors, prevalent weak coupling theories suggest that the electron pairing is mediated by spin fluctuations which lead to repulsive interactions, and therefore that a sign-reversed pairing with an s_{±} or d-wave symmetry is favored. Here, by using magnetic neutron scattering, a phase sensitive probe of the superconducting gap, we report the observation of a transition from the sign-reversed to sign-preserved Cooper-pairing symmetry with insignificant changes in T_{c} in the S-doped iron selenide superconductors K_{x}Fe_{2-y}(Se_{1-z}S_{z})_{2}. We show that a rather sharp magnetic resonant mode well below the superconducting gap (2Δ) in the undoped sample (z=0) is replaced by a broad hump structure above 2Δ under 50% S doping. These results cannot be readily explained by simple spin fluctuation-exchange pairing theories and, therefore, multiple pairing channels are required to describe superconductivity in this system. Our findings may also yield a simple explanation for the sometimes contradictory data on the sign of the superconducting order parameter in iron-based materials.

  13. Measurement of the isotope shift of the 63 P 1 ↔53 D 1 transition of ytterbium by using a diode oscillator fiber amplified laser

    Science.gov (United States)

    Lee, L.; Park, H.; Ko, K.-H.; Jeong, D.-Y.

    2010-08-01

    We demonstrated a Diode Oscillator Fiber Amplification (DOFA) system in order to study the 63 P 1 ↔53 D 1 (1539 nm) transition line of a neutral ytterbium atom that is accessed by the stepwise excitation of the ground state. The frequency of the DOFA system was doubled by a MgO:PPLN crystal for the resonant excitation of the 61 S 0 ↔63 P 1 transition. The frequency of the second harmonic beam was stabilized to the 61 S 0 ↔63 P 1 transition of each isotope with the stability of about 2 MHz. We performed absorption spectroscopy on the 63 P 1 ↔53 D 1 (1539 nm) transition after the velocity selective excitation by the frequency-doubled beam. The isotope shifts in the 63 P 1 ↔53 D 1 (1539 nm) transition were directly measured for the first time. The relative isotope shifts from 174Yb were measured as -105.8 MHz and 109.7 MHz for 176Yb and 172Yb, respectively.

  14. Aspects of a Distinct Cytotoxicity of Selenium Salts and Organic Selenides in Living Cells with Possible Implications for Drug Design

    Directory of Open Access Journals (Sweden)

    Ethiene Castellucci Estevam

    2015-07-01

    Full Text Available Selenium is traditionally considered as an antioxidant element and selenium compounds are often discussed in the context of chemoprevention and therapy. Recent studies, however, have revealed a rather more colorful and diverse biological action of selenium-based compounds, including the modulation of the intracellular redox homeostasis and an often selective interference with regulatory cellular pathways. Our basic activity and mode of action studies with simple selenium and tellurium salts in different strains of Staphylococcus aureus (MRSA and Saccharomyces cerevisiae indicate that such compounds are sometimes not particularly toxic on their own, yet enhance the antibacterial potential of known antibiotics, possibly via the bioreductive formation of insoluble elemental deposits. Whilst the selenium and tellurium compounds tested do not necessarily act via the generation of Reactive Oxygen Species (ROS, they seem to interfere with various cellular pathways, including a possible inhibition of the proteasome and hindrance of DNA repair. Here, organic selenides are considerably more active compared to simple salts. The interference of selenium (and tellurium compounds with multiple targets could provide new avenues for the development of effective antibiotic and anticancer agents which may go well beyond the traditional notion of selenium as a simple antioxidant.

  15. Surface oxidation of porous ZrB2-SiC ceramic composites by continuous-wave ytterbium fibre laser

    International Nuclear Information System (INIS)

    Mahmod, Dayang Salyani Abang; Glandut, Nicolas; Khan, Amir Azam; Labbe, Jean-Claude

    2015-01-01

    Highlights: • Surface oxidation of ZrB 2 -SiC ceramic composites by Yb-fibre laser. • Round spiral laser pattern created for the surface oxidation. • Presence of laser-formed oxide scale and unaffected beneath regions. • Crazed but uncracked surface oxide. • A dense glassy SiO 2 -rich layer exhibited enhances oxidation resistance. - Abstract: Surface treatment of ceramic substrates by a laser beam can allow to incorporate interesting properties to these ceramics. In the present work, surface oxidation of ca. 30% porous ZrB 2 -SiC ceramic composites by using an ytterbium fibre laser was conducted. Oxidation of ceramic substrates through this process under ambient conditions has certain advantages compared to the classical oxidation method. A particular spiral laser pattern was created in order to produce an oxidized structure on ZrB 2 -SiC porous substrates. The laser parameters were as follows i.e., laser power of 50, 60 and 70 W, a beam diameter of 1.25 mm, velocity of 2 mm/s, acceleration and deceleration of 1 mm/s 2 . The microstructural and morphological changes in the laser-treated region was examined using scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. At laser power of 70 W, the sample exhibits uniform oxidation. It revealed that the very porous bulk beneath remained unaffected and unoxidized because this laser-formed oxide scale protects the substrate from oxidation. The presence of oxidized and unaffected regions indicated a high degree of heat localization. The dense glassy SiO 2 -rich layer prevents the inward oxygen diffusion into the inner bulk hence enhances the oxidation resistance.

  16. Pulsed voltage deposited lead selenide thin film as efficient counter electrode for quantum-dot-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Bin Bin [Key Laboratory of Macromolecular Science of Shaanxi Province & School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China); Department of Chemical Engineering, Institute of Chemical Industry, Shaanxi Institute of Technology, Xi’an 710300 (China); Wang, Ye Feng [Key Laboratory of Macromolecular Science of Shaanxi Province & School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China); Wang, Xue Qing [Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024 (China); Zeng, Jing Hui, E-mail: jhzeng@ustc.edu [Key Laboratory of Macromolecular Science of Shaanxi Province & School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062 (China)

    2016-04-30

    Highlights: • PbSe thin film is deposited on FTO glass by a pulse voltage electrodeposition method. • The thin film is used as counter electrode (CE) in quantum dot-sensitized solar cell. • Superior electrocatalytic activity and stability in the polysulfide electrolyte is received. • The narrow band gap characteristics and p-type conductivity enhances the cell efficiency. • An efficiency of 4.67% is received for the CdS/CdSe co-sensitized solar cells. - Abstract: Lead selenide (PbSe) thin films were deposited on fluorine doped tin oxide (FTO) glass by a facile one-step pulse voltage electrodeposition method, and used as counter electrode (CE) in CdS/CdSe quantum dot-sensitized solar cells (QDSSCs). A power conversion efficiency of 4.67% is received for the CdS/CdSe co-sensitized solar cells, which is much better than that of 2.39% received using Pt CEs. The enhanced performance is attributed to the extended absorption in the near infrared region, superior electrocatalytic activity and p-type conductivity with a reflection of the incident light at the back electrode in addition. The physical and chemical properties were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), energy-dispersive spectroscopy (EDS), reflectance spectra, electrochemical impedance spectroscopy (EIS) and Tafel polarization measurements. The present work provides a facile pathway to an efficient CE in the QDSSCs.

  17. New quaternary thallium indium germanium selenide TlInGe2Se6: Crystal and electronic structure

    Science.gov (United States)

    Khyzhun, O. Y.; Parasyuk, O. V.; Tsisar, O. V.; Piskach, L. V.; Myronchuk, G. L.; Levytskyy, V. O.; Babizhetskyy, V. S.

    2017-10-01

    Crystal structure of a novel quaternary thallium indium germanium selenide TlInGe2Se6 was investigated by means of powder X-ray diffraction method. It was determined that the compound crystallizes in the trigonal space group R3 with the unit cell parameters a = 10.1798(2) Å, c = 9.2872(3) Å. The relationship with similar structures was discussed. The as-synthesized TlInGe2Se6 ingot was tested with X-ray photoelectron spectroscopy (XPS) and X-ray emission spectroscopy (XES). In particular, the XPS valence-band and core-level spectra were recorded for initial and Ar+ ion-bombarded surfaces of the sample under consideration. The XPS data allow for statement that the TlInGe2Se6 surface is rigid with respect to Ar+ ion-bombardment. Particularly, Ar+ ion-bombardment (3.0 keV, 5 min duration, ion current density fixed at 14 μA/cm2) did not cause substantial modifications of stoichiometry in topmost surface layers. Furthermore, comparison on a common energy scale of the XES Se Kβ2 and Ge Kβ2 bands and the XPS valence-band spectrum reveals that the principal contributions of the Se 4p and Ge 4p states occur in the upper and central portions of the valence band of TlInGe2Se6, respectively, with also their substantial contributions in other portions of the band. The bandgap energy of TlInGe2Se6 at the level of αg=103 cm-1 is equal to 2.38 eV at room temperature.

  18. In Situ Determination of Bisphenol A in Beverage Using a Molybdenum Selenide/Reduced Graphene Oxide Nanoparticle Composite Modified Glassy Carbon Electrode

    Directory of Open Access Journals (Sweden)

    Rongguang Shi

    2018-05-01

    Full Text Available Due to the endocrine disturbing effects of bisphenol A (BPA on organisms, rapid detection has become one of the most important techniques for monitoring its levels in the aqueous solutions associated with plastics and human beings. In this paper, a glassy carbon electrode (GCE modified with molybdenum selenide/reduced graphene oxide (MoSe2/rGO was fabricated for in situ determination of bisphenol A in several beverages. The surface area of the electrode dramatically increases due to the existence of ultra-thin nanosheets in a flower-like structure of MoSe2. Adding phosphotungstic acid in the electrolyte can significantly enhance the repeatability (RSD = 0.4% and reproducibility (RSD = 2.2% of the electrode. Under the optimized condition (pH = 6.5, the linear range of BPA was from 0.1 μM–100 μM and the detection limit was 0.015 μM (S/N = 3. When using the as-prepared electrode for analyzing BPA in beverage samples without any pretreatments, the recoveries ranged from 98–107%, and the concentrations were from below the detection limit to 1.7 μM, indicating its potential prospect for routine analysis of BPA.

  19. In Situ Determination of Bisphenol A in Beverage Using a Molybdenum Selenide/Reduced Graphene Oxide Nanoparticle Composite Modified Glassy Carbon Electrode.

    Science.gov (United States)

    Shi, Rongguang; Liang, Jing; Zhao, Zongshan; Liu, Yi; Liu, Aifeng

    2018-05-22

    Due to the endocrine disturbing effects of bisphenol A (BPA) on organisms, rapid detection has become one of the most important techniques for monitoring its levels in the aqueous solutions associated with plastics and human beings. In this paper, a glassy carbon electrode (GCE) modified with molybdenum selenide/reduced graphene oxide (MoSe₂/rGO) was fabricated for in situ determination of bisphenol A in several beverages. The surface area of the electrode dramatically increases due to the existence of ultra-thin nanosheets in a flower-like structure of MoSe₂. Adding phosphotungstic acid in the electrolyte can significantly enhance the repeatability (RSD = 0.4%) and reproducibility (RSD = 2.2%) of the electrode. Under the optimized condition (pH = 6.5), the linear range of BPA was from 0.1 μM⁻100 μM and the detection limit was 0.015 μM (S/ N = 3). When using the as-prepared electrode for analyzing BPA in beverage samples without any pretreatments, the recoveries ranged from 98⁻107%, and the concentrations were from below the detection limit to 1.7 μM, indicating its potential prospect for routine analysis of BPA.

  20. Atomic frequency reference at 1033 nm for ytterbium (Yb)-doped fiber lasers and applications exploiting a rubidium (Rb) 5S_1/2 to 4D_5/2 one-colour two-photon transition

    Science.gov (United States)

    Roy, Ritayan; Condylis, Paul C.; Johnathan, Yik Jinen; Hessmo, Björn

    2017-04-01

    We demonstrate a two-photon transition of rubidium (Rb) atoms from the ground state (5$S_{1/2}$) to the excited state (4$D_{5/2}$), using a home-built ytterbium (Yb)-doped fiber amplifier at 1033 nm. This is the first demonstration of an atomic frequency reference at 1033 nm as well as of a one-colour two-photon transition for the above energy levels. A simple optical setup is presented for the two-photon transition fluorescence spectroscopy, which is useful for frequency stabilization for a broad class of lasers. This spectroscopy has potential applications in the fiber laser industry as a frequency reference, particularly for the Yb-doped fiber lasers. This two-photon transition also has applications in atomic physics as a background- free high- resolution atom detection and for quantum communication, which is outlined in this article.

  1. Surface oxidation of porous ZrB{sub 2}-SiC ceramic composites by continuous-wave ytterbium fibre laser

    Energy Technology Data Exchange (ETDEWEB)

    Mahmod, Dayang Salyani Abang, E-mail: dygsalyani@gmail.com [Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak (Malaysia); Glandut, Nicolas [SPCTS, UMR 7315, CNRS, University of Limoges, European Ceramic Center, 12 Rue Atlantis, 87068 Limoges (France); Khan, Amir Azam [Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Sarawak (Malaysia); Labbe, Jean-Claude [SPCTS, UMR 7315, CNRS, University of Limoges, European Ceramic Center, 12 Rue Atlantis, 87068 Limoges (France)

    2015-12-01

    Highlights: • Surface oxidation of ZrB{sub 2}-SiC ceramic composites by Yb-fibre laser. • Round spiral laser pattern created for the surface oxidation. • Presence of laser-formed oxide scale and unaffected beneath regions. • Crazed but uncracked surface oxide. • A dense glassy SiO{sub 2}-rich layer exhibited enhances oxidation resistance. - Abstract: Surface treatment of ceramic substrates by a laser beam can allow to incorporate interesting properties to these ceramics. In the present work, surface oxidation of ca. 30% porous ZrB{sub 2}-SiC ceramic composites by using an ytterbium fibre laser was conducted. Oxidation of ceramic substrates through this process under ambient conditions has certain advantages compared to the classical oxidation method. A particular spiral laser pattern was created in order to produce an oxidized structure on ZrB{sub 2}-SiC porous substrates. The laser parameters were as follows i.e., laser power of 50, 60 and 70 W, a beam diameter of 1.25 mm, velocity of 2 mm/s, acceleration and deceleration of 1 mm/s{sup 2}. The microstructural and morphological changes in the laser-treated region was examined using scanning electron microscopy, energy dispersive X-ray spectroscopy, and X-ray diffraction. At laser power of 70 W, the sample exhibits uniform oxidation. It revealed that the very porous bulk beneath remained unaffected and unoxidized because this laser-formed oxide scale protects the substrate from oxidation. The presence of oxidized and unaffected regions indicated a high degree of heat localization. The dense glassy SiO{sub 2}-rich layer prevents the inward oxygen diffusion into the inner bulk hence enhances the oxidation resistance.

  2. Multifunctional stannum oxide compact bilayer modified by europium and erbium respectively doped ytterbium fluoride for high-performance dye-sensitized solar cell

    International Nuclear Information System (INIS)

    Yue, Jingyi; Xiao, Yaoming; Li, Yanping; Han, Gaoyi

    2017-01-01

    Graphical abstract: Multifunctional SnO 2 compact bilayer respectively modified by YbF 3 :Eu 3+ (SYEu) and YbF 3 :Er 3+ (SYEr) demonstrates three functions: 1) reducing the recombination rate of electron-hole pairs, 2) improving the utilization of sunlight, and 3) enhancing the long-term stability of the photovoltaic device. Display Omitted -- Highlights: •Multifunctional SYEu/SYEr compact bilayer is designed and fabricated. •The compact bilayer exhibits a reduced electron recombination rate. •The compact bilayer shows enhanced UV and IR light response via light-conversions. •The double layer has no significant influence on arising quenching effect. -- Abstract: Multifunctional stannum oxide compact bilayer modified by europium and erbium respectively doped ytterbium fluoride (SYEu/SYEr) is designed and prepared by a convenient and low-cost spin-coating approach for dye-sensitized solar cell. The most important three functions of the compact bilayer are reducing the recombination rate of electrons as a barrier layer, enlarging the utilization of sunlight as a luminescence material both with down- and up- conversions, and enhancing the long-term stability of the device as a defender of the dye. Besides, the construction of double layer with down- and up- conversion functions has no significant influence on giving rise to quenching effect. Furthermore, these findings offer potential applications for photovoltaic device with a wide range response of sunlight via the variation in rare-earth species and cell structures.

  3. Cytocompatibility of direct water synthesized cadmium selenide quantum dots in colo-205 cells

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-Torres, Marcos R. [Universidad Metropolitana, Nanomaterials Science Laboratory, School of Science and Technology (United States); Velez, Christian; Zayas, Beatriz [Universidad Metropolitana, ChemTox Laboratory, School of Environmental Affairs (United States); Rivera, Osvaldo [Universidad Metropolitana, Nanomaterials Science Laboratory, School of Science and Technology (United States); Arslan, Zikri [Jackson State University, Department of Chemistry (United States); Gonzalez-Vega, Maxine N. [Universidad Metropolitana, Nanomaterials Science Laboratory, School of Science and Technology (United States); Diaz-Diestra, Daysi; Beltran-Huarac, Juan; Morell, Gerardo [University of Puerto Rico, Molecular Science Research Center (United States); Primera-Pedrozo, Oliva M., E-mail: oprimera1@suagm.edu [Universidad Metropolitana, Nanomaterials Science Laboratory, School of Science and Technology (United States)

    2015-06-15

    Cadmium selenide quantum dots (CdSe QDs), inorganic semiconducting nanocrystals, are alluring increased attraction due to their highly refined chemistry, availability, and super tunable optical properties suitable for many applications in different research areas, such as photovoltaics, light-emitting devices, environmental sciences, and nanomedicine. Specifically, they are being widely used in bio-imaging in contrast to organic dyes due to their high brightness and improved photo-stability, and their ability to tune their absorption and emission spectra upon changing the crystal size. The production of CdSe QDs is mostly assisted by trioctylphosphine oxide compound, which acts as solvent or solubilizing agent and renders the QDs soluble in organic compounds (such as toluene, chloroform, and hexane) that are highly toxic. To circumvent the toxicity-related factor in CdSe QDs, we report the synthesis of CdSe QDs capped with thioglycolic acid (TGA) in an aqueous medium, and their biocompatibility in colo-205 cancer cells. In this study, the [Cd{sup 2+}]/[TGA] ratio was adjusted to 11:1 and the Se concentration (10 and 15 mM) was monitored in order to evaluate its influence on the optical properties and cytocompatibility. QDs resulted to be quite stable in water (after purification) and RPMI cell medium and no precipitation was observed for long contact times, making them appealing for in vitro experiments. The spectroscopy analysis, advanced electron microscopy, and X-ray diffractometry studies indicate that the final products were successfully formed exhibiting an improved optical response. Colo-205 cells being exposed to different concentrations of TGA-capped CdSe QDs for 12, 24, and 48 h with doses ranging from 0.5 to 2.0 mM show high tolerance reaching cell viabilities as high as 93 %. No evidence of cellular apoptotic pathways was observed as pointed out by our Annexin V assays at higher concentrations. Moreover, confocal microscopy analysis conducted to

  4. Physical and biophysical assessment of highly fluorescent, magnetic quantum dots of a wurtzite-phase manganese selenide system

    Science.gov (United States)

    Sarma, Runjun; Das, Queen; Hussain, Anowar; Ramteke, Anand; Choudhury, Amarjyoti; Mohanta, Dambarudhar

    2014-07-01

    Combining fluorescence and magnetic features in a non-iron based, select type of quantum dots (QDs) can have immense value in cellular imaging, tagging and other nano-bio interface applications, including targeted drug delivery. Herein, we report on the colloidal synthesis and physical and biophysical assessment of wurtzite-type manganese selenide (MnSe) QDs in cell culture media. Aiming to provide a suitable colloidal system of biological relevance, different concentrations of reactants and ligands (e.g., thioglycolic acid, TGA) have been considered. The average size of the QDs is ˜7 nm, which exhibited a quantum yield of ˜75% as compared to rhodamine 6 G dye®. As revealed from time-resolved photoluminescence (TR-PL) response, the near band edge emission followed a bi-exponential decay feature with characteristic times of ˜0.64 ns and 3.04 ns. At room temperature, the QDs were found to exhibit paramagnetic features with coercivity and remanence impelled by TGA concentrations. With BSA as a dispersing agent, the QDs showed an improved optical stability in Dulbecco’s Modified Eagle Media® (DMEM) and Minimum Essential Media® (MEM), as compared to the Roswell Park Memorial Institute® (RPMI-1640) media. Finally, the cell viability of lymphocytes was found to be strongly influenced by the concentration of MnSe QDs, and had a safe limit upto 0.5 μM. With BSA inclusion in cell media, the cellular uptake of MnSe QDs was observed to be more prominent, as revealed from fluorescence imaging. The fabrication of water soluble, nontoxic MnSe QDs would open up an alternative strategy in nanobiotechnology, while preserving their luminescent and magnetic properties intact.

  5. Growth Mechanism of Nanowires: Binary and Ternary Chalcogenides

    Science.gov (United States)

    Singh, N. B.; Coriell, S. R.; Su, Ching-Hua; Hopkins, R. H.; Arnold, B.; Choa, Fow-Sen; Cullum, Brian

    2016-01-01

    Semiconductor nanowires exhibit very exciting optical and electrical properties including high transparency and a several order of magnitude better photocurrent than thin film and bulk materials. We present here the mechanism of nanowire growth from the melt-liquid-vapor medium. We describe preliminary results of binary and ternary selenide materials in light of recent theories. Experiments were performed with lead selenide and thallium arsenic selenide systems which are multifunctional material and have been used for detectors, acousto-optical, nonlinear and radiation detection applications. We observed that small units of nanocubes and elongated nanoparticles arrange and rearrange at moderate melt undercooling to form the building block of a nanowire. Since we avoided the catalyst, we observed self-nucleation and uncontrolled growth of wires from different places. Growth of lead selenide nanowires was performed by physical vapor transport method and thallium arsenic selenide nanowire by vapor-liquid-solid (VLS) method. In some cases very long wires (>mm) are formed. To achieve this goal experiments were performed to create situation where nanowires grew on the surface of solid thallium arsenic selenide itself.

  6. Ecotoxicological assessment of solar cell leachates: Copper indium gallium selenide (CIGS) cells show higher activity than organic photovoltaic (OPV) cells.

    Science.gov (United States)

    Brun, Nadja Rebecca; Wehrli, Bernhard; Fent, Karl

    2016-02-01

    Despite the increasing use of photovoltaics their potential environmental risks are poorly understood. Here, we compared ecotoxicological effects of two thin-film photovoltaics: established copper indium gallium selenide (CIGS) and organic photovoltaic (OPV) cells. Leachates were produced by exposing photovoltaics to UV light, physical damage, and exposure to environmentally relevant model waters, representing mesotrophic lake water, acidic rain, and seawater. CIGS cell leachates contained 583 μg L(-1) molybdenum at lake water, whereas at acidic rain and seawater conditions, iron, copper, zinc, molybdenum, cadmium, silver, and tin were present up to 7219 μg L(-1). From OPV, copper (14 μg L(-1)), zinc (87 μg L(-1)) and silver (78 μg L(-1)) leached. Zebrafish embryos were exposed until 120 h post-fertilization to these extracts. CIGS leachates produced under acidic rain, as well as CIGS and OPV leachates produced under seawater conditions resulted in a marked hatching delay and increase in heart edema. Depending on model water and solar cell, transcriptional alterations occurred in genes involved in oxidative stress (cat), hormonal activity (vtg1, ar), metallothionein (mt2), ER stress (bip, chop), and apoptosis (casp9). The effects were dependent on the concentrations of cationic metals in leachates. Addition of ethylenediaminetetraacetic acid protected zebrafish embryos from morphological and molecular effects. Our study suggests that metals leaching from damaged CIGS cells, may pose a potential environmental risk. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Effect of deposition temperature on the structural, morphological and optical band gap of lead selenide thin films synthesized by chemical bath deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Hone, Fekadu Gashaw, E-mail: fekeye@gmail.com [Hawassa University, Department of Physics, Hawassa (Ethiopia); Ampong, Francis Kofi [Kwame Nkrumah University of Science and Technology, Department of Physics, Kumasi (Ghana)

    2016-11-01

    Lead selenide (PbSe) nanocrystalline thin films have been deposited on silica glass substrates by the chemical bath deposition technique. The samples were deposited at the bath temperatures of 60, 75 and 90 °C respectively and characterized by a variety of techniques. The XRD results revealed that the PbSe thin film deposited at 60 °C was amorphous in nature. Films deposited at higher temperatures exhibited sharp and intense diffraction peaks, indicating an improvement in crystallinety. The deposition temperature also had a strong influence on the preferred orientation of the crystallites as well as other structural parameters such as microstrain and dislocation density. From the SEM study it was observed that film deposited at 90 °C had well defined crystallites, uniformly distributed over the entire surface of the substrate. The EDAX study confirmed that the samples deposited at the higher temperature had a better stoichiometric ratio. The optical band gap varied from 2.26 eV to 1.13 eV with increasing deposition temperature. - Highlights: • The crystallinety of the films improved as the deposition temperature increased. • The deposition temperature strongly influenced the preferred orientations. • Microstrain and dislocation density are decreased linearly with deposition temperature. • Band gap decreased from 2.26 eV to 1.13 eV as the deposition temperature increased.

  8. Zinc sulfide and zinc selenide immersion gratings for astronomical high-resolution spectroscopy: evaluation of internal attenuation of bulk materials in the short near-infrared region

    Science.gov (United States)

    Ikeda, Yuji; Kobayashi, Naoto; Kondo, Sohei; Yasui, Chikako; Kuzmenko, Paul J.; Tokoro, Hitoshi; Terada, Hiroshi

    2009-08-01

    We measure the internal attenuation of bulk crystals of chemical vapor deposition zinc selenide (CVD-ZnS), chemical vapor deposition zinc sulfide (CVD-ZnSe), Si, and GaAs in the short near-infrared (sNIR) region to evaluate the possibility of astronomical immersion gratings with those high refractive index materials. We confirm that multispectral grade CVD-ZnS and CVD-ZnSe are best suited for the immersion gratings, with the smallest internal attenuation of αatt=0.01 to 0.03 cm-1 among the major candidates. The measured attenuation is roughly in proportion to λ-2, suggesting it is dominated by bulk scattering due to the polycrystalline grains rather than by absorption. The total transmittance in the immersion grating is estimated to be at least >80%, even for the spectral resolution of R=300,000. Two potential problems, the scattered light by the bulk material and the degradation of the spectral resolution due to the gradient illumination in the diffracted beam, are investigated and found to be negligible for usual astronomical applications. Since the remaining problem, the difficulty of cutting grooves on CVD-ZnS and CVD-ZnSe, has recently been overcome by the nanoprecision fly-cutting technique, ZnS and ZnSe immersion gratings for astronomy can be technically realized.

  9. Absorption Spectra Of Rbcl:Yb Rbbr:Yb And Rbi:Yb Crystals ...

    African Journals Online (AJOL)

    Single crystals of rubidium chloride, bromide and iodide were doped with substitutional divalent ytterbium, Yb ions, by heating them in ytterbium atmosphere. The absorption spectra of the Yb doped crystals were measured at room and liquid nitrogen temperatures. The spectra were found to consist of intense broad ...

  10. New Antimony Selenide/Nickel Oxide Photocathode Boosts the Efficiency of Graphene Quantum-Dot Co-Sensitized Solar Cells.

    Science.gov (United States)

    Kolay, Ankita; Kokal, Ramesh K; Kalluri, Ankarao; Macwan, Isaac; Patra, Prabir K; Ghosal, Partha; Deepa, Melepurath

    2017-10-11

    A novel assembly of a photocathode and a photoanode is investigated to explore their complementary effects in enhancing the photovoltaic performance of a quantum-dot solar cell (QDSC). While p-type nickel oxide (NiO) has been used previously, antimony selenide (Sb 2 Se 3 ) has not been used in a QDSC, especially as a component of a counter electrode (CE) architecture that doubles as the photocathode. Here, near-infrared (NIR) light-absorbing Sb 2 Se 3 nanoparticles (NPs) coated over electrodeposited NiO nanofibers on a carbon (C) fabric substrate was employed as the highly efficient photocathode. Quasi-spherical Sb 2 Se 3 NPs, with a band gap of 1.13 eV, upon illumination, release photoexcited electrons in addition to other charge carriers at the CE to further enhance the reduction of the oxidized polysulfide. The p-type conducting behavior of Sb 2 Se 3 , coupled with a work function at 4.63 eV, also facilitates electron injection to polysulfide. The effect of graphene quantum dots (GQDs) as co-sensitizers as well as electron conduits is also investigated in which a TiO 2 /CdS/GQDs photoanode structure in combination with a C-fabric CE delivered a power-conversion efficiency (PCE) of 5.28%, which is a vast improvement over the 4.23% that is obtained by using a TiO 2 /CdS photoanode (without GQDs) with the same CE. GQDs, due to a superior conductance, impact efficiency more than Sb 2 Se 3 NPs do. The best PCE of a TiO 2 /CdS/GQDs-nS 2- /S n 2- -Sb 2 Se 3 /NiO/C-fabric cell is 5.96% (0.11 cm 2 area), which, when replicated on a smaller area of 0.06 cm 2 , is seen to increase dramatically to 7.19%. The cell is also tested for 6 h of continuous irradiance. The rationalization for the channelized photogenerated electron movement, which augments the cell performance, is furnished in detail in these studies.

  11. Overview of ultraviolet and infrared spectroscopic properties of Yb3+ doped borate and oxy-borates compounds

    International Nuclear Information System (INIS)

    Sablayrolles, J.

    2006-12-01

    The trivalent ytterbium ion can give rise to two emissions with different spectroscopic properties: the first one, with a short lifetime, in the ultraviolet (charge transfer emission) is used in detectors such as scintillators, and the other one, with a long lifetime, in the infrared (4f-4f emission) for laser applications. The strong link between material structure and properties is illustrated through ytterbium luminescence study, in the ultraviolet and infrared, inserted in the borate Li 6 Y(BO 3 ) 3 and two oxy-borates: LiY 6 O 5 (BO 3 ) 3 and Y 17,33 B 8 O 38 . For the first time an ytterbium charge transfer emission in oxy-borates has been observed. The calculation of the single configurational coordinate diagram, as well as the thermal quenching, has been conducted under a fundamental approach on the ytterbium - oxygen bond. The study of the ytterbium infrared spectroscopy in these compounds has been realised and an energy level attribution is proposed in the particular case of the borate Li 6 Y(BO 3 ) 3 : Yb 3+ . An original approach is introduced with the study of the charge transfer states for the three compounds by looking at the infrared emission. The first laser performances in three operating modes (continuous wave, Q-switch and mode locking) of a Li 6 Y(BO 3 ) 3 : Yb 3+ crystal are reported. (author)

  12. Etudes optiques de nouveaux materiaux laser: Des orthosilicates dopes a l'ytterbium: Le yttrium (lutetium,scandium) pentoxide de silicium

    Science.gov (United States)

    Denoyer, Aurelie

    La decouverte et l'elaboration de nouveaux materiaux laser solides suscitent beaucoup d'interet parmi la communaute scientifique. En particulier les lasers dans la gamme de frequence du micron debouchent sur beaucoup d'applications, en telecommunication, en medecine, dans le domaine militaire, pour la, decoupe des metaux (lasers de puissance), en optique non lineaire (doublage de frequence, bistabilite optique). Le plus couramment utilise actuellement est le Nd:YAG dans cette famille de laser, mais des remplacants plus performants sont toujours recherches. Les lasers a base d'Yb3+ possedent beaucoup d'avantages compares aux lasers Nd3+ du fait de leur structure electronique simple et de leur deterioration moins rapide. Parmi les matrices cristallines pouvant accueillir l'ytterbium, les orthosilicates Yb:Y 2SiO5, Yb:Lu2SiO5 et Yb:Sc2SiO 5 se positionnent tres bien, du fait de leur bonne conductivite thermique et du fort eclatement de leur champ cristallin necessaire a l'elaboration de lasers quasi-3 niveaux. De plus l'etude fine et systematique des proprietes microscopiques de nouveaux materiaux s'avere toujours tres interessante du point de vue de la recherche fondamentale, c'est ainsi que de nouveaux modeles sont concus (par exemple pour le champ cristallin) ou que de nouvelles proprietes inhabituelles sont decouvertes, menant a de nouvelles applications. Ainsi d'autres materiaux dopes a l'ytterbium sont connus pour leurs proprietes de couplage electron-phonon, de couplage magnetique, d'emission cooperative ou encore de bistabilite optique, mais ces proprietes n'ont encore jamais ete mises en evidence dans Yb:Y 2SiO5, Yb:Lu2SiO5 et Yb:Sc2SiO 5. Ainsi, cette these a pour but l'etude des proprietes optiques et des interactions microscopiques dans Yb:Y2SiO 5, Yb:Lu2SiO5 et Yb:Sc2SiO5. Nous utilisons principalement les techniques d'absorption IR et de spectroscopie Raman pour determiner les excitations du champ cristallin et les modes de vibration dans le materiau

  13. Barium iodide and strontium iodide crystals and scintillators implementing the same

    Science.gov (United States)

    Payne, Stephen A.; Cherepy, Nerine; Pedrini, Christian; Burger, Arnold

    2016-09-13

    In one embodiment, a crystal includes at least one metal halide; and an activator dopant comprising ytterbium. In another general embodiment, a scintillator optic includes: at least one metal halide doped with a plurality of activators, the plurality of activators comprising: a first activator comprising europium, and a second activator comprising ytterbium. In yet another general embodiment, a method for manufacturing a crystal suitable for use in a scintillator includes mixing one or more salts with a source of at least one dopant activator comprising ytterbium; heating the mixture above a melting point of the salt(s); and cooling the heated mixture to a temperature below the melting point of the salts. Additional materials, systems, and methods are presented.

  14. An approach to global rovibrational analysis based on anharmonic ladder operators: Application to Hydrogen Selenide (H{sub 2}{sup 80}Se)

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Bajo, O. [Dpto. Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Huelva, 21071 Huelva (Spain); Carvajal, M., E-mail: miguel.carvajal@dfa.uhu.es [Dpto. Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Huelva, 21071 Huelva (Spain); Perez-Bernal, F. [Dpto. Fisica Aplicada, Facultad de Ciencias Experimentales, Universidad de Huelva, 21071 Huelva (Spain)

    2012-01-02

    Graphical abstract: Schematic diagram of a bent triatomic molecule, depicting the atom numbering, and molecular axis system. An algebraic approach to perform global rovibrational analysis is presented. Highlights: Black-Right-Pointing-Pointer Novel approach for a global rovibrational analysis of polyatomic molecules spectra. Black-Right-Pointing-Pointer One-dimensional vibron model limit combined with rotational degrees of freedom. Black-Right-Pointing-Pointer Phase space Hamiltonian written in terms of anharmonic ladder operators. Black-Right-Pointing-Pointer Algebraic calculations performed with a symmetry-adapted rovibrational basis. Black-Right-Pointing-Pointer Description of the rovibrational spectrum of H{sub 2}Se in the ground electronic state. - Abstract: An algebraic approach to perform global rovibrational analysis of molecular spectra is presented. The approach combines the one-dimensional limit of the vibron model with rotational degrees of freedom. The model is based on the expression of the phase space Hamiltonian in terms of anharmonic ladder operators and the use of a symmetry-adapted basis set given by the linear combination of products of local vibrational and rotational wavefunctions. As an example we model the rovibrational spectra of a bent triatomic molecule, providing a global analysis for vibrational bands up to polyad 12 and J{sub max} = 5 of Hydrogen Selenide (H{sub 2}Se). Satisfactory fits of vibrational and rovibrational energies are obtained. A prediction of 2579 rovibrational energies up to J Less-Than-Or-Slanted-Equal-To 5 and polyad 12 for the 140 lowest vibrational bands is also obtained. A possible extension of the model to reach spectroscopic quality results in larger molecular systems is also given.

  15. Synthesis and Characterization of Yttria-Stabilized Zirconia Nanoparticles Doped with Ytterbium and Gadolinium: ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3

    Science.gov (United States)

    Bahamirian, M.; Hadavi, S. M. M.; Rahimipour, M. R.; Farvizi, M.; Keyvani, A.

    2018-06-01

    Defect cluster thermal barrier coatings (TBCs) are attractive alternatives to Yttria-stabilized zirconia (YSZ) in advanced applications. In this study, YSZ nanoparticles doped with ytterbium and gadolinium (ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 (ZGYbY)) were synthesized through a chemical co-precipitation and calcination method, and characterized by in situ high-temperature X-ray diffraction analysis in the temperature range of 25 °C to 1000 °C (HTK-XRD), thermogravimetric analysis, differential thermal analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, and field emission scanning electron microscopy (FE-SEM). Precise cell parameters of t-prime phase and the best zirconia phase for TBC applications were calculated by Cohen's and Rietveld refinement methods. Optimum crystallization temperature of the precursor powder was found to be 1000 °C. Furthermore, FE-SEM results for the calcined ZGYbY powders indicated orderly particles of uniform shape and size with a small tendency toward agglomeration. Average lattice thermal expansion coefficient in the temperature range of 25 °C to 1000 °C was determined to be 31.71 × 10-6 K-1.

  16. Synthesis and Characterization of Yttria-Stabilized Zirconia Nanoparticles Doped with Ytterbium and Gadolinium: ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3

    Science.gov (United States)

    Bahamirian, M.; Hadavi, S. M. M.; Rahimipour, M. R.; Farvizi, M.; Keyvani, A.

    2018-03-01

    Defect cluster thermal barrier coatings (TBCs) are attractive alternatives to Yttria-stabilized zirconia (YSZ) in advanced applications. In this study, YSZ nanoparticles doped with ytterbium and gadolinium (ZrO2 9.5Y2O3 5.6Yb2O3 5.2Gd2O3 (ZGYbY)) were synthesized through a chemical co-precipitation and calcination method, and characterized by in situ high-temperature X-ray diffraction analysis in the temperature range of 25 °C to 1000 °C (HTK-XRD), thermogravimetric analysis, differential thermal analysis, Fourier transform infrared spectroscopy, Raman spectroscopy, and field emission scanning electron microscopy (FE-SEM). Precise cell parameters of t-prime phase and the best zirconia phase for TBC applications were calculated by Cohen's and Rietveld refinement methods. Optimum crystallization temperature of the precursor powder was found to be 1000 °C. Furthermore, FE-SEM results for the calcined ZGYbY powders indicated orderly particles of uniform shape and size with a small tendency toward agglomeration. Average lattice thermal expansion coefficient in the temperature range of 25 °C to 1000 °C was determined to be 31.71 × 10-6 K-1.

  17. Effects of ethylenediaminetetraacetic acid (EDTA) and diethylenetriaminepentaacetic acid (DTPA) derivatives on penetration of /sup 169/Yb and /sup 144/Ce into the rat offspring

    Energy Technology Data Exchange (ETDEWEB)

    Baltrukiewicz, Z; Burakowski, T; Derecki, J

    1976-01-01

    Penetration of radioactive ytterbium-169 and cerium-144 into fetuses was determined at the end of pregnancy and penetration into suckling rats was studied during feeding with the milk of exposed mothers when EDTA or DTPA derivatives were being administered. Injection of ytterbium-169 as a complex with EDTA or DTPA or injection of Na/sub 2/Ca EDTA or Na/sub 3/Ca DTPA 1h after administration of cerium-144 to mothers reduced penetration of both radionuclides into offsprings in relation to the animals receiving no complex compounds. It was observed that the action of DTPA was stronger than that of EDTA. Passage of ytterbium with milk and across the placenta was greater than the passage of cerium.

  18. On observation of the downconversion mechanism in Er{sup 3+}/Yb{sup 3+} co-doped tellurite glass using thermal and optical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Figueiredo, M.S.; Santos, F.A. [Universidade Federal da Grande Dourados, Faculdade de Ciências Exatas e Tecnologias, Dourados, MS (Brazil); Yukimitu, K.; Moraes, J.C.S. [Universidade Estadual Paulista, UNESP, Departamento de Física e Química, Av. Brasil, 56, 15385-000 Ilha Solteira, SP (Brazil); Nunes, L.A.O. [Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970 São Carlos, SP (Brazil); Andrade, L.H.C. [Grupo de Espectroscopia Óptica e Fototérmica, Universidade Estadual de Mato Grosso do Sul, Cidade Universitária de Dourados, CP 351, Dourados, MS (Brazil); Lima, S.M., E-mail: smlima@uems.br [Grupo de Espectroscopia Óptica e Fototérmica, Universidade Estadual de Mato Grosso do Sul, Cidade Universitária de Dourados, CP 351, Dourados, MS (Brazil)

    2015-01-15

    In this work we report the observed downconversion (DC) mechanism in Er{sup 3+}/Yb{sup 3+}-codoped tellurite glasses (in mol%, 80TeO{sub 2}–10Li{sub 2}O–10TiO{sub 2}). The samples were synthesized by the conventional melt-quenching method and then studied using optical spectroscopy and thermal lens spectroscopy (TLS). These characterizations enabled investigation of the radiative and nonradiative processes involved in energy transfer from erbium to ytterbium. The visible Er{sup 3+} fluorescence intensities decreased as a function of the Yb{sup 3+} concentration, and there was a corresponding increase in the ytterbium emission at around 980 nm. Simultaneously, there was a reduction in the heat-generated due nonradiative decays (∼21%) when ytterbium was added. This temperature change was measured by TLS measurements and the results corroborate with the indicated by spectroscopic interpretation. - Highlights: • Energy transfer from erbium to ytterbium in tellurite glass. • ∼56% of cross-relaxation efficiency from Er{sup 3+} to Yb{sup 3+}. • Downconversion effect in tellurite glasses. • Downconversion effect observation by thermal lens spectroscopy.

  19. Structural properties of pure and Fe-doped Yb films prepared by vapor condensation

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Ayala, C., E-mail: chachi@cbpf.br [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ (Brazil); Facultad de Ciencias Físicas, Universidad Nacional Mayor de San Marcos, Lima, P.O.B. 14-149, Lima 14 (Peru); Passamani, E.C. [Departamento de Física, Universidade Federal do Espírito Santo, Vitória 29075-910, ES (Brazil); Suguihiro, N.M. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ (Brazil); Litterst, F.J. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ (Brazil); Institut für Physik der Kondensierten Materie, Technische Universität Braunschweig, 38106 Braunschweig (Germany); Baggio Saitovitch, E. [Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro 22290-180, RJ (Brazil)

    2014-10-15

    Ytterbium and iron-doped ytterbium films were prepared by vapor quenching on Kapton substrates at room temperature. Structural characterization was performed by X-ray diffraction and transmission electron microscopy. The aim was to study the microstructure of pure and iron-doped films and thereby to understand the effects induced by iron incorporation. A coexistence of face centered cubic and hexagonal close packed-like structures was observed, the cubic-type structure being the dominant contribution. There is an apparent thickness dependence of the cubic/hexagonal relative ratios in the case of pure ytterbium. Iron-clusters induce a crystalline texture effect, but do not influence the cubic/hexagonal volume fraction. A schematic model is proposed for the microstructure of un-doped and iron-doped films including the cubic- and hexagonal-like structures, as well as the iron distribution in the ytterbium matrix. - Highlights: • Pure and Fe-doped Yb films have been prepared by vapor condensation. • Coexistence of fcc- and hcp-type structures was observed. • No oxide phases have been detected. • Fe-clustering does not affect the fcc/hcp ratio, but favors a crystalline texture. • A schematic model is proposed to describe microscopically the microstructure.

  20. XRD and 119Sn Moessbauer spectroscopy characterization of SnSe obtained from a simple chemical route

    International Nuclear Information System (INIS)

    Bernardes-Silva, Ana Claudia; Mesquita, A.F.; Moura de Neto, E.; Porto, A.O.; Ardisson, J.D.; Lima, G.M. de; Lameiras, F.S.

    2005-01-01

    Crystalline tin selenide semiconductor was synthesized by a chemical route. Selenium powder reacted with potassium boronhydride, giving a soluble selenium species potassium seleniumhydride. The reaction of potassium seleniumhydride with tin chloride produced crystalline tin selenide, which was characterized by X-ray diffraction, 119 Sn Moessbauer spectroscopy and scanning electronic microscopy. The material was thermally treated, in nitrogen flow, at 300 and 600 deg. C for 2 h and the particle size evolution was studied by X-ray diffraction. The X-ray diffraction and 119 Sn Moessbauer results showed that a mixture of tin oxides and orthorhombic tin selenide was obtained

  1. Determination of the some electronic parameters of nanostructure copper selenide and Cu/Cu3Se2/n-GaAs/In structure

    International Nuclear Information System (INIS)

    Güzeldir, B.; Sağlam, M.; Ateş, A.; Türüt, A.

    2015-01-01

    Highlights: • Introducing to a new degree of freedom in the control of effective barrier height by using Cu. • We want to experimentally observe whether or not the diode continues the ideality in the temperature range of 60–400 K. • We have modified the Richardson’s plot using the temperature dependent values of effective area of the patches. - Abstract: The nanostructure copper selenide thin film has been grown on n-type gallium arsenide substrate by Successive Ionic Layer Adsorption and Reaction (SILAR) method. The film has been characterized by X-ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM) measurements. X-ray diffraction analysis of the film confirms a polycrystalline with preferred orientation. The AFM and SEM micrographs of the film reveal smooth and uniform surface pattern without any dark pits, pinholes and microcracks. The Cu/Cu 3 Se 2 /n-GaAs/In structure has been thermally formed in evaporating system after the SILAR process. The electrical analysis of Cu/Cu 3 Se 2 /n-GaAs/In structure has been investigated by means of current–voltage (I–V) measurements in the temperature range of 60–400 K in dark conditions. The values of barrier height (BH) and ideality factor (n) ranged from 0.21 eV and 4.97 (60 K) to 0.83 eV and 1.14 (400 K), respectively. In the calculations, the electrical parameters of the experimental forward bias I–V characteristics of the Cu/Cu 3 Se 2 /n-GaAs/In with the homogeneity in the 60–400 K range have been explained by means of the thermionic emission (TE), considering Gaussian distribution (GD) of BH with linear bias dependence

  2. Zinc-enriched boutons in rat spinal cord

    DEFF Research Database (Denmark)

    Schrøder, H D; Danscher, G; Jo, S M

    2000-01-01

    The rat spinal cord reveals a complex pattern of zinc-enriched (ZEN) boutons. As a result of in vivo exposure to selenide ions, nanosized clusters of zinc selenide are created in places where zinc ions are present, including the zinc-containing synaptic vesicles of ZEN boutons. The clusters can...

  3. A study of the atmospherically important reactions between dimethyl selenide (DMSe) and molecular halogens (X2 = Cl2, Br2, and I2) with ab initio calculations.

    Science.gov (United States)

    Rhyman, Lydia; Armata, Nerina; Ramasami, Ponnadurai; Dyke, John M

    2012-06-14

    The atmospherically relevant reactions between dimethyl selenide (DMSe) and the molecular halogens (X(2) = Cl(2), Br(2), and I(2)) have been studied with ab initio calculations at the MP2/aug-cc-pVDZ level of theory. Geometry optimization calculations showed that the reactions proceed from the reagents to the products (CH(3)SeCH(2)X + HX) via three minima, a van der Waals adduct (DMSe:X(2)), a covalently bound intermediate (DMSeX(2)), and a product-like complex (CH(3)SeCH(2)X:HX). The computed potential energy surfaces are used to predict what molecular species are likely to be observed in spectroscopic experiments such as gas-phase photoelectron spectroscopy and infrared matrix isolation spectroscopy. It is concluded that, for the reactions of DMSe with Cl(2) and Br(2), the covalent intermediate should be seen in spectroscopic experiments, whereas, in the DMSe + I(2) reaction, the van der Waals adduct DMSe:I(2) should be observed. Comparison is made with previous related calculations and experiments on dimethyl sulfide (DMS) with molecular halogens. The relevance of the results to atmospheric chemistry is discussed. The DMSeX(2) and DMSe:X(2) intermediates are likely to be reservoirs of molecular halogens in the atmosphere which will lead on photolysis to ozone depletion.

  4. Ln{sup 3+}:KLu(WO{sub 4}){sub 2}/KLu(WO{sub 4}){sub 2} epitaxial layers: Crystal growth and physical characterisation

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre, O.; Pujol, M.C.; Sole, R.; Bolanos, W.; Carvajal, J.J.; Massons, J.; Aguilo, M. [Fisica i Cristal.lografia de Materials (FiCMA), Universitat Rovira i Virgili, Campus Sescelades c/Marcel.li Domingo, s/n E-43007 Tarragona (Spain); Diaz, F. [Fisica i Cristal.lografia de Materials (FiCMA), Universitat Rovira i Virgili, Campus Sescelades c/Marcel.li Domingo, s/n E-43007 Tarragona (Spain)], E-mail: f.diaz@urv.cat

    2008-01-15

    Monoclinic epitaxial layers of single doped KLu{sub 1-x}Ln{sub x}(WO{sub 4}){sub 2} (Ln{sup 3+} = Yb{sup 3+} and Tm{sup 3+}) have been grown on optically passive KLuW substrates by liquid phase epitaxy (LPE) technique using K{sub 2}W{sub 2}O{sub 7} as solvent. The ytterbium content in the layer is in the range of 0.05 < x < 0.75 atomic substitution and the studied thulium concentrations are 0.05 < x < 0.10. The grown epitaxies are free of macroscopic defects and only in highly ytterbium-doped epilayers do some cracks or inclusions appear. The refractive indices of the epilayers were determined. The absorption and emission cross sections of ytterbium and thulium in KLuW are characterised and laser generation results are presented and discussed.

  5. Electronic Structure of Cdse Nanowires Terminated With Gold ...

    African Journals Online (AJOL)

    Cadmium selenide nanowires in the wurtzite bulk phase, connected to gold electrodes are studied using local density approximation. The short wire is fully metalized by metal-induced gap states. For longer wires, a gap similar to that in bare cadmium selenide nanowires is observed near the center while sub-gap structure ...

  6. 75 FR 39520 - Certain New Chemicals; Receipt and Status Information

    Science.gov (United States)

    2010-07-09

    ... of manufacturing copper indium metal selenide solar panel. The finished solar panel with copper indium metal selenide deposited on the substrate is encapsulated with the complete solar panel unit. The solar panel is sold to commercial entities only. P-10-0425 06/18/10 09/15/10 CBI (G) Component of (G...

  7. Optimization of Electrochemically Deposited Highly Doped ZnO Bilayers on Ga-Rich Chalcopyrite Selenide for Cost-Effective Photovoltaic Device Technology

    Directory of Open Access Journals (Sweden)

    Dimitra N. Papadimitriou

    2016-11-01

    Full Text Available High quality polycrystalline bilayers of aluminium doped ZnO (Al:ZnO were successively electrodeposited in the form of columnar structures preferentially oriented along the ( 10 1 ¯ 1 crystallographic direction from aqueous solution of zinc nitrate (Zn(NO32 at negative electrochemical potential of EC = (−0.8–(−1.2 V and moderate temperature of 80 °C on gallium rich (30% Ga chalcopyrite selenide Cu(In,GaSe2 (CIGS with chemically deposited ZnSe buffer (ZnSe/Cu(In,GaSe2/Mo/glass. The aluminium doped ZnO layer properties have initially been probed by deposition of Al:ZnO/i-ZnO bilayers directly on Mo/glass substrates. The band-gap energy of the Al:ZnO/i-ZnO reference layers was found to vary from 3.2 to 3.7 eV by varying the AlCl3 solute dopant concentration from 1 to 20 mM. The electrical resistivity of indium-pellet contacted highly doped Al:ZnO sheet of In/Al:ZnO/i-ZnO/Mo/glass reference samples was of the order ρ ~10−5 Ω·cm; the respective carrier concentration of the order 1022 cm−3 is commensurate with that of sputtered Al:ZnO layers. For crystal quality optimization of the bilayers by maintenance of the volatile selenium content of the chalcopyrite, they were subjected to 2-step annealing under successive temperature raise and N2 flux regulation. The hydrostatic compressive strain due to Al3+ incorporation in the ZnO lattice of bilayers processed successively with 5 and 12 mM AlCl3 dopant was εh = −0.046 and the respective stress σh = −20 GPa. The surface reflectivity of maximum 5% over the scanned region of 180–900 nm and the (optical band gap of Eg = 3.67 eV were indicative of the high optical quality of the electrochemically deposited (ECD Al:ZnO bilayers.

  8. Characterization of Materials by Raman Scattering

    Science.gov (United States)

    Kozielski, M.

    2007-03-01

    The paper reports on the use of phonon spectra obtained with the Raman spectroscopy for characterization of different materials. The Raman scattering spectra obtained for zinc selenide crystals, mixed crystals zinc selenide admixtured with magnesium or beryllium, oxide crystals including strontium lanthanum gallate, molecular crystals of triammonium hydrogen diseleniate and a homologous series of polyoxyethylene glycols are analysed.

  9. High-Power Yb-Doped Solid-Core Photonic Bandgap Fiber Amplifier at 1150-1200nm

    DEFF Research Database (Denmark)

    Maruyama, H.; Shirakawa, A.; Ueda, K.

    2008-01-01

    Solid-core photonic-bandgap fiber amplification at the long-wavelength edge of ytterbium band is reported. A 32W output at 1156nm with a 66% slope efficiency and 9.1W output at 1178nm were succesfully obtained.......Solid-core photonic-bandgap fiber amplification at the long-wavelength edge of ytterbium band is reported. A 32W output at 1156nm with a 66% slope efficiency and 9.1W output at 1178nm were succesfully obtained....

  10. Comparison of three inert markers in measuring apparent nutrient digestibility of juvenile abalone under different culture condition and temperature regimes

    Science.gov (United States)

    Nur, K. U.; Adams, L.; Stone, D.; Savva, N.; Adams, M.

    2018-03-01

    A comparative research using three inert markers, chromic oxide, yttrium and ytterbium to measure the apparent nutrient digestibility of experimental feed in juvenile Hybrid abalone (Haliotis rubra X H. laevigata) and Greenlip abalone (H.laevigata) revealed that apparent digestibility of crude protein (ADCP) measured using yttrium and ytterbium in hybrid abalone were significantly different across the treatments. Protein digestibility measured in experimental tanks was higher than those measured in indoor and outdoor commercial tanks, regardless of inert marker used. Chromic oxide led to overestimated ADCP compared to when measured using yttrium and ytterbium. There were no significant interactions between temperature and inert markers when measuring ADCP and apparent digestibility of gross energy (ADGE). However, there was a significant difference of ADCP amongst inert markers when measured in greenlip abalone cultured at two temperatures. While measurements of ADge calculated using three inert markers shared the same value.

  11. Determination of the some electronic parameters of nanostructure copper selenide and Cu/Cu{sub 3}Se{sub 2}/n-GaAs/In structure

    Energy Technology Data Exchange (ETDEWEB)

    Güzeldir, B.; Sağlam, M. [Department of Physics, Faculty of Sciences, Atatürk University, 25240 Erzurum (Turkey); Ateş, A. [Department of Material Engineering, Faculty of Engineering and Natural Sciences, Yıldırım Beyazıt University, Ankara (Turkey); Türüt, A. [Department of Physics Engineering, Faculty of Sciences, Istanbul Medeniyet University, 34000 Istanbul (Turkey)

    2015-04-05

    Highlights: • Introducing to a new degree of freedom in the control of effective barrier height by using Cu. • We want to experimentally observe whether or not the diode continues the ideality in the temperature range of 60–400 K. • We have modified the Richardson’s plot using the temperature dependent values of effective area of the patches. - Abstract: The nanostructure copper selenide thin film has been grown on n-type gallium arsenide substrate by Successive Ionic Layer Adsorption and Reaction (SILAR) method. The film has been characterized by X-ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Atomic Force Microscope (AFM) measurements. X-ray diffraction analysis of the film confirms a polycrystalline with preferred orientation. The AFM and SEM micrographs of the film reveal smooth and uniform surface pattern without any dark pits, pinholes and microcracks. The Cu/Cu{sub 3}Se{sub 2}/n-GaAs/In structure has been thermally formed in evaporating system after the SILAR process. The electrical analysis of Cu/Cu{sub 3}Se{sub 2}/n-GaAs/In structure has been investigated by means of current–voltage (I–V) measurements in the temperature range of 60–400 K in dark conditions. The values of barrier height (BH) and ideality factor (n) ranged from 0.21 eV and 4.97 (60 K) to 0.83 eV and 1.14 (400 K), respectively. In the calculations, the electrical parameters of the experimental forward bias I–V characteristics of the Cu/Cu{sub 3}Se{sub 2}/n-GaAs/In with the homogeneity in the 60–400 K range have been explained by means of the thermionic emission (TE), considering Gaussian distribution (GD) of BH with linear bias dependence.

  12. Synthesis and magnetic structure of the layered manganese oxide selenide Sr{sub 2}MnO{sub 2}Ag{sub 1.5}Se{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Blandy, Jack N. [Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR (United Kingdom); Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE (United Kingdom); Boskovic, Jelena C. [Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR (United Kingdom); Clarke, Simon J., E-mail: simon.clarke@chem.ox.ac.uk [Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR (United Kingdom)

    2017-01-15

    The synthesis of a high-purity sample of the layered oxide selenide Sr{sub 2}MnO{sub 2}Ag{sub 1.5}Se{sub 2} is reported. At ambient temperature it crystallises in the space group I4/mmm with two formula units in the unit cell and lattice parameters a=4.08771(1) Å, c=19.13087(8) Å. The compound displays mixed-valent manganese in a formal oxidation state close to +2.5 and powder neutron diffraction measurements reveal that below the Néel temperature of 63(1) K this results in an antiferromagnetic structure which may be described as A-type, modelled in the magnetic space group P{sub I}4/mnc (128.410 in the Belov, Neronova and Smirnova (BNS) scheme) in which localised Mn moments of 3.99(2) μ{sub B} are arranged in ferromagnetic layers which are coupled antiferromagnetically. In contrast to the isostructural compound Sr{sub 2}MnO{sub 2}Cu{sub 1.5}S{sub 2}, Sr{sub 2}MnO{sub 2}Ag{sub 1.5}Se{sub 2} does not display long range ordering of coinage metal ions and vacancies, nor may significant amounts of the coinage metal readily be deintercalated using soft chemical methods. - Graphical abstract: Sr{sub 2}MnO{sub 2}Ag{sub 1.5}Se{sub 2} containing mixed valent Mn ions undergoes magnetic ordering with ferromagnetic coupling within MnO{sub 2} sheets and antiferromagnetic coupling between MnO{sub 2} sheets. - Highlights: • High purity sample of Sr{sub 2}MnO{sub 2}Ag{sub 1.5}Se{sub 2} obtained. • Magnetic structure determined. • Compared with related mixed-valent manganite oxide chalcogenides.

  13. Optical properties of CuSe thin films - band gap determination

    Directory of Open Access Journals (Sweden)

    Petrović Milica

    2017-01-01

    Full Text Available Copper selenide thin films of three different thicknesses have been prepared by vacuum evaporation method on a glass substrate at room temperature. The optical properties of the films were investigated by UV-VIS-NIR spectroscopy and photoluminescence spectroscopy. Surface morphology was investigated by field-emission scanning electron microscopy. Copper selenide exhibits both direct and indirect transitions. The band gap for direct transition is found to be ~2.7 eV and that for indirect transition it is ~1.70 eV. Photoluminescence spectra of copper selenide thin films have also been analyzed, which show emission peaks at 530, 550, and 760 nm. The latter corresponds to indirect transition in investigated material. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. III45003

  14. Low Cost High Performance Generator Technology Program. Volume 4. Mission application study

    International Nuclear Information System (INIS)

    1975-07-01

    Results of initial efforts to investigate application of selenide thermoelectric RTG's to specific missions as well as an indication of development requirements to enable satisfaction of emerging RTG performance criteria are presented. Potential mission applications in DoD such as SURVSATCOM, Advance Defense Support Program, Laser Communication Satellite, Satellite Data System, Global Positioning Satellite, Deep Space Surveillance Satellite, and Unmanned Free Swimming Submersible illustrate power requirements in the range of 500 to 1000 W. In contrast, the NASA applications require lower power ranging from 50 W for outer planetary atmospheric probes to about 200 W for spacecraft flights to Jupiter and other outer planets. The launch dates for most of these prospective missions is circa 1980, a requirement roughly compatible with selenide thermoelectric and heat source technology development. A discussion of safety criteria is included to give emphasis to the requirements for heat source design. In addition, the observation is made that the potential accident environments of all launch vehicles are similar so that a reasonable composite set of design specifications may be derived to satisfy almost all applications. Details of the LCHPG application potential is afforded by three designs: an 80 W RTG using improved selenide thermoelectric material, a 55 to 65 W LCHPG using current and improved selenide materials, and the final 500 W LCHPG as reported in Volume 2. The final results of the LCHPG design study have shown that in general, all missions can expect an LCHPG design which yields 10 percent efficiency at 3 W/lb with the current standard selenide thermoelectric materials, with growth potential to 14 percent at greater than 4 W/lb in the mid 1980's time frame

  15. From Selenium- to Tellurium-Based Glass Optical Fibers for Infrared Spectroscopies

    Directory of Open Access Journals (Sweden)

    Jacques Lucas

    2013-05-01

    Full Text Available Chalcogenide glasses are based on sulfur, selenium and tellurium elements, and have been studied for several decades regarding different applications. Among them, selenide glasses exhibit excellent infrared transmission in the 1 to 15 µm region. Due to their good thermo-mechanical properties, these glasses could be easily shaped into optical devices such as lenses and optical fibers. During the past decade of research, selenide glass fibers have been proved to be suitable for infrared sensing in an original spectroscopic method named Fiber Evanescent Wave Spectroscopy (FEWS. FEWS has provided very nice and promising results, for example for medical diagnosis. Then, some sophisticated fibers, also based on selenide glasses, were developed: rare-earth doped fibers and microstructured fibers. In parallel, the study of telluride glasses, which can have transmission up to 28 µm due to its atom heaviness, has been intensified thanks to the DARWIN mission led by the European Space Agency (ESA. The development of telluride glass fiber enables a successful observation of CO2 absorption band located around 15 µm. In this paper we review recent results obtained in the Glass and Ceramics Laboratory at Rennes on the development of selenide to telluride glass optical fibers, and their use for spectroscopy from the mid to the far infrared ranges.

  16. Improving the efficiency of copper indium gallium (Di-selenide (CIGS solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide

    Directory of Open Access Journals (Sweden)

    M. Burghoorn

    2014-12-01

    Full Text Available Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed photons and, consequently, an increase in short-circuit current density (Jsc and cell efficiency. Through optical simulations, we recently obtained strong indications that texturing of the transparent conductor in copper indium gallium (di-selenide (CIGS solar cells is also optically advantageous. Here, we experimentally demonstrate that the Jsc and efficiency of CIGS solar cells with an absorber layer thickness (dCIGS of 0.85 μm, 1.00 μm and 2.00 μm increase through application of a moth-eye textured resist with a refractive index that is sufficiently similar to AZO (nresist = 1.792 vs. nAZO = 1.913 at 633 nm to avoid large optical losses at the resist-AZO interface. On average, Jsc increases by 7.2%, which matches the average reduction in reflection of 7.0%. The average relative increase in efficiency is slightly lower (6.0%. No trend towards a larger relative increase in Jsc with decreasing dCIGS was observed. Ergo, the increase in Jsc can be fully explained by the reduction in reflection, and we did not observe any increase in Jsc based on an increased photon path length.

  17. Synthesis, crystal structure, and magnetic properties of quaternary iron selenides: Ba{sub 2}FePnSe{sub 5} (Pn=Sb, Bi)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jian; Greenfield, Joshua T.; Kovnir, Kirill

    2016-10-15

    Two new barium iron pnictide–selenides, Ba{sub 2}FeSbSe{sub 5} and Ba{sub 2}FeBiSe{sub 5}, were synthesized by a high-temperature solid-state route and their crystal structures were determined using single crystal X-ray diffraction. Both compounds are isomorphic to the high pressure phase Ba{sub 3}FeS{sub 5} and crystallize in the orthorhombic space group Pnma (No. 62) with cell parameters of a=12.603(2)/12.619(2) Å, b=9.106(1)/9.183(1) Å, c=9.145(1)/9.123(1) Å and Z=4 for Ba{sub 2}FeSbSe{sub 5} and Ba{sub 2}FeBiSe{sub 5}, respectively. According to differential scanning calorimetry, Ba{sub 2}FePnSe{sub 5} compounds exhibit high thermal stability and melt congruently at 1055(5) K (Pn=Sb) and 1105(5) K (Pn=Bi). Magnetic characterizations reveal strong antiferromagnetic nearest-neighbor interactions in both compounds resulting in an antiferromagnetic ordering at 58(1) K for Ba{sub 2}FeSbSe{sub 5} and 79(2) K for Ba{sub 2}FeBiSe{sub 5}. The magnetic interactions between Fe{sup 3+} centers, which are at least 6 Å apart from each other, are mediated by superexchange interactions. - Graphical abstract: In Ba{sub 2}FeSbSe{sub 5} and Ba{sub 2}FeBiSe{sub 5} the magnetic interactions between Fe{sup 3+} centers, which are at least 6 Å apart from each other, are mediated by superexchange interactions. - Highlights: • New compounds Ba{sub 2}FeSbSe{sub 5} and Ba{sub 2}FeBiSe{sub 5} have been synthesized. • The crystal structure was determined by single crystal X-ray diffraction. • Both compounds melt congruently at temperatures above 1000 K. • Ba{sub 2}FeSbSe{sub 5} and Ba{sub 2}FeBiSe{sub 5} exhibit AFM ordering at 58 K (Sb) and 70 K (Bi). • Magnetic exchange between Fe{sup 3+} is mediated by either Se–Sb(Bi)–Se or Se–Ba–Se bridges.

  18. Brodtkorbite, Cu.sub.2./sub.HgSe.sub.2./sub., from Příbram, Czech Republic: crystal structure and description

    Czech Academy of Sciences Publication Activity Database

    Sejkora, J.; Škácha, P.; Laufek, F.; Plášil, Jakub

    2017-01-01

    Roč. 29, May (2017), s. 663-672 ISSN 0935-1221 R&D Projects: GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : brodtkorbite * silver mercury selenide * selenide minerals * crystal structure * uranium deposit * Příbram * Czech Republic Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 1.362, year: 2016

  19. Příbramite, CuSbSe.sub.2./sub., the Se-analogue of chalcostibite, a new mineral from Příbram, Czech Republic

    Czech Academy of Sciences Publication Activity Database

    Škácha, P.; Sejkora, J.; Plášil, Jakub

    2017-01-01

    Roč. 29, May (2017), s. 653-661 ISSN 0935-1221 R&D Projects: GA MŠk LO1603 EU Projects: European Commission(XE) CZ.2.16/3.1.00/24510 Institutional support: RVO:68378271 Keywords : příbramite * new mineral * Se-analogue of chalcostibite * copper antimony selenide * selenide minerals * crystal structure * uranium deposite * Příbram * Czech republic Subject RIV: DB - Geology ; Mineralogy OBOR OECD: Geology Impact factor: 1.362, year: 2016

  20. Optical gain at 1.53 {mu}m in Er{sup 3+}-Yb{sup 3+} co-doped porous silicon waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Najar, A. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, BP 80518, 22305 Lannion Cedex (France); Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 El Manar, Tunis (Tunisia)], E-mail: najar.adel@laposte.net; Charrier, J. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, BP 80518, 22305 Lannion Cedex (France); Ajlani, H. [Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 El Manar, Tunis (Tunisia); Lorrain, N.; Haesaert, S. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, BP 80518, 22305 Lannion Cedex (France); Oueslati, M. [Laboratoire de Spectroscopie Raman, Faculte des Sciences de Tunis, 2092 El Manar, Tunis (Tunisia); Haji, L. [Laboratoire d' Optronique UMR 6082-FOTON, Universite de Rennes 1, 6 rue de Kerampont, BP 80518, 22305 Lannion Cedex (France)

    2008-01-15

    Erbium-ytterbium (Er-Yb)-co-doped porous silicon planar waveguides were prepared from P{sup +}-type (1 0 0) oriented silicon wafer. Erbium and ytterbium ions were electrochemically introduced into the porous structure of the waveguide core. The doping profiles of erbium and ytterbium ions were determined by EDX analysis performed on sample cross-section. The mean concentration in the guiding layer is of about 1 x 10{sup 20} cm{sup -3}. The refractive indices were measured from co-doped porous silicon and undoped waveguides after the thermal treatments. The photoluminescence (PL) peak of optically activated erbium ions at 1.53 {mu}m was recorded. The PL enhancement is the result of the energy transfer from the excited state of Yb to the state of Er. Optical losses at 1.55 {mu}m were measured on these waveguides and were of about 2 dB/cm. An internal gain at 1.53 {mu}m of 5.8 dB/cm has been measured with a pump power of 65 mW at 980 nm.

  1. The lattice dynamical studies of rare earth compounds: electron-phonon interactions

    International Nuclear Information System (INIS)

    Jha, Prafulla K.; Sanyal, Sankar P.; Singh, R.K.

    2002-01-01

    During the last two decades chalcogenides and pnictides of rare earth (RE) atoms have drawn considerable attention of the solid state physicists because of their peculiar electronic, magnetic, optical and phonon properties. Some of these compounds e.g. sulphides and selenides of cerium (Ce), samarium (Sm), yttrium (Y), ytterbium (Yb), europium (Eu) and thulium (Tm) and their alloys show nonintegral valence (between 2 and 3), arising due to f-d electron hybridization at ambient temperature and pressure. The rare earth mixed valence compounds (MVC) reviewed in this article crystallize in simple cubic structure. Most of these compounds show the existence of strong electron-phonon coupling at half way to the zone boundary. This fact manifests itself through softening of the longitudinal acoustic mode, negative value of elastic constant C 12 etc. The purpose of this contribution is to review some of the recent activities in the fields of lattice dynamics and allied properties of rare earth compounds. The present article is primarily devoted to review the effect of electron-phonon interactions on the dynamical properties of rare earth compounds by using the lattice dynamical model theories based on charged density deformations and long-range many body forces. While the long range charge transfer effect arises due to f-d hybridization of nearly degenerate 4f-5d bands of rare earth ions, the density deformation comes into the picture of breathing motion of electron shells. These effects of charge transfer and charge density deformation when considered in the lattice dynamical models namely the three body force rigid ion model (TRM) and breathing shell model (BSM) are quite successful in explaining the phonon anomalies in these compounds and undoubtedly unraveled many important physical process governing the phonon anomalies in rare earth compounds

  2. Full four-component relativistic calculations of the one-bond 77Se-13C spin-spin coupling constants in the series of selenium heterocycles and their parent open-chain selenides.

    Science.gov (United States)

    Rusakov, Yury Yu; Rusakova, Irina L; Krivdin, Leonid B

    2014-05-01

    Four-component relativistic calculations of (77)Se-(13)C spin-spin coupling constants have been performed in the series of selenium heterocycles and their parent open-chain selenides. It has been found that relativistic effects play an essential role in the selenium-carbon coupling mechanism and could result in a contribution of as much as 15-25% of the total values of the one-bond selenium-carbon spin-spin coupling constants. In the overall contribution of the relativistic effects to the total values of (1)J(Se,C), the scalar relativistic corrections (negative in sign) by far dominate over the spin-orbit ones (positive in sign), the latter being of less than 5%, as compared to the former (ca 20%). A combination of nonrelativistic second-order polarization propagator approach (CC2) with the four-component relativistic density functional theory scheme is recommended as a versatile tool for the calculation of (1)J(Se,C). Solvent effects in the values of (1)J(Se,C) calculated within the polarizable continuum model for the solvents with different dielectric constants (ε 2.2-78.4) are next to negligible decreasing negative (1)J(Se,C) in absolute value by only about 1 Hz. The use of the locally dense basis set approach applied herewith for the calculation of (77)Se-(13)C spin-spin coupling constants is fully justified resulting in a dramatic decrease in computational cost with only 0.1-0.2-Hz loss of accuracy. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Kinetic analysis by DSC of the cationic curing of mixtures of DGEBA and 6,6-dimethyl (4,8-dioxaspiro[2.5]octane-5,7-dione)

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, Lidia [Departament de Quimica Analitica i Quimica Organica, Universitat Rovira i Virgili, C/Marcelli Domingo s/n, 43007 Tarragona (Spain); Ramis, Xavier [Laboratori de Termodinamica, ETSEIB, Universitat Politecnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain); Salla, Josep Maria [Laboratori de Termodinamica, ETSEIB, Universitat Politecnica de Catalunya, Av. Diagonal 647, 08028 Barcelona (Spain)], E-mail: salla@mmt.upc.edu; Mantecon, Ana; Serra, Angels [Departament de Quimica Analitica i Quimica Organica, Universitat Rovira i Virgili, C/Marcelli Domingo s/n, 43007 Tarragona (Spain)

    2007-11-25

    The kinetics of the thermal cationic cure reaction of mixtures in different proportions of diglycidylether of bisphenol A (DGEBA) with 6,6-dimethyl (4,8-dioxaspiro[2.5]octane-5,7-dione) (MCP) initiated by ytterbium or lanthanum triflates or using a conventional initiator, BF{sub 3}.MEA was investigated. The non-isothermal differential scanning calorimetry (DSC) experiments at a controlled heating rate was used for obtaining the kinetic parameters of the reactive systems. BF{sub 3}.MEA and lanthanide triflates initiated curing systems follow a complete different kinetic model. Among lanthanide triflates, ytterbium is the most active initiator.

  4. Kinetic analysis by DSC of the cationic curing of mixtures of DGEBA and 6,6-dimethyl (4,8-dioxaspiro[2.5]octane-5,7-dione)

    International Nuclear Information System (INIS)

    Gonzalez, Lidia; Ramis, Xavier; Salla, Josep Maria; Mantecon, Ana; Serra, Angels

    2007-01-01

    The kinetics of the thermal cationic cure reaction of mixtures in different proportions of diglycidylether of bisphenol A (DGEBA) with 6,6-dimethyl (4,8-dioxaspiro[2.5]octane-5,7-dione) (MCP) initiated by ytterbium or lanthanum triflates or using a conventional initiator, BF 3 .MEA was investigated. The non-isothermal differential scanning calorimetry (DSC) experiments at a controlled heating rate was used for obtaining the kinetic parameters of the reactive systems. BF 3 .MEA and lanthanide triflates initiated curing systems follow a complete different kinetic model. Among lanthanide triflates, ytterbium is the most active initiator

  5. High-efficiency cavity-dumped micro-chip Yb:YAG laser

    Science.gov (United States)

    Nishio, M.; Maruko, A.; Inoue, M.; Takama, M.; Matsubara, S.; Okunishi, H.; Kato, K.; Kyomoto, K.; Yoshida, T.; Shimabayashi, K.; Morioka, M.; Inayoshi, S.; Yamagata, S.; Kawato, S.

    2014-09-01

    High-efficiency cavity-dumped ytterbium-doped yttrium aluminum garnet (Yb:YAG) laser was developed. Although the high quantum efficiency of ytterbium-doped laser materials is appropriate for high-efficiency laser oscillation, the efficiency is decreased by their quasi-three/four laser natures. High gain operation by high intensity pumping is suitable for high efficiency oscillation on the quasi-three/four lasers without extremely low temperature cooling. In our group, highest efficiency oscillations for continuous wave, nanosecond to picosecond pulse lasers were achieved at room temperature by the high gain operation in which pump intensities were beyond 100 kW/cm2.

  6. Controlling Growth High Uniformity Indium Selenide (In2Se3) Nanowires via the Rapid Thermal Annealing Process at Low Temperature.

    Science.gov (United States)

    Hsu, Ya-Chu; Hung, Yu-Chen; Wang, Chiu-Yen

    2017-09-15

    High uniformity Au-catalyzed indium selenide (In 2 Se 3) nanowires are grown with the rapid thermal annealing (RTA) treatment via the vapor-liquid-solid (VLS) mechanism. The diameters of Au-catalyzed In 2 Se 3 nanowires could be controlled with varied thicknesses of Au films, and the uniformity of nanowires is improved via a fast pre-annealing rate, 100 °C/s. Comparing with the slower heating rate, 0.1 °C/s, the average diameters and distributions (standard deviation, SD) of In 2 Se 3 nanowires with and without the RTA process are 97.14 ± 22.95 nm (23.63%) and 119.06 ± 48.75 nm (40.95%), respectively. The in situ annealing TEM is used to study the effect of heating rate on the formation of Au nanoparticles from the as-deposited Au film. The results demonstrate that the average diameters and distributions of Au nanoparticles with and without the RTA process are 19.84 ± 5.96 nm (30.00%) and about 22.06 ± 9.00 nm (40.80%), respectively. It proves that the diameter size, distribution, and uniformity of Au-catalyzed In 2 Se 3 nanowires are reduced and improved via the RTA pre-treated. The systemic study could help to control the size distribution of other nanomaterials through tuning the annealing rate, temperatures of precursor, and growth substrate to control the size distribution of other nanomaterials. Graphical Abstract Rapid thermal annealing (RTA) process proved that it can uniform the size distribution of Au nanoparticles, and then it can be used to grow the high uniformity Au-catalyzed In 2 Se 3 nanowires via the vapor-liquid-solid (VLS) mechanism. Comparing with the general growth condition, the heating rate is slow, 0.1 °C/s, and the growth temperature is a relatively high growth temperature, > 650 °C. RTA pre-treated growth substrate can form smaller and uniform Au nanoparticles to react with the In 2 Se 3 vapor and produce the high uniformity In 2 Se 3 nanowires. The in situ annealing TEM is used to realize the effect of heating

  7. Formation of CuInSe{sub 2} films from metal sulfide and selenide precursor nanocrystals by gas-phase selenization, an in-situ XRD study

    Energy Technology Data Exchange (ETDEWEB)

    Capon, B., E-mail: boris.capon@ugent.be [Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, B-9000 Ghent (Belgium); Dierick, R. [Physics and Chemistry of Nanostructures, Ghent University, Krijgslaan 281-S3, B-9000 Ghent (Belgium); Hens, Z. [Physics and Chemistry of Nanostructures, Ghent University, Krijgslaan 281-S3, B-9000 Ghent (Belgium); Center for Nano and Biophotonics, Ghent University, Ghent (Belgium); Detavernier, C. [Department of Solid State Sciences, Ghent University, Krijgslaan 281-S1, B-9000 Ghent (Belgium)

    2016-08-01

    In this work phase pure CuInSe{sub 2} thin flms were obtained by selenization of ternary CuInSe{sub 2} and CuInS{sub 2} nanocrystals and mixtures of binary nanocrystals such as CuS, In{sub 2}S{sub 3}, Cu{sub 2}Se and In{sub 2}Se{sub 3}. The temperature of the selenium source was kept at 400 °C during selenization. Monitoring the process using in-situ x-ray diffraction, the effect of selenization on the phase formation and grain growth in the precursor film was investigated. Whereas CuInSe{sub 2} and CuInS{sub 2} nanocrystals exhibit little grain growth, we found that mixtures of binary nanocrystals can show significant sintering depending on the reaction conditions. For the mixture of CuS and In{sub 2}S{sub 3} nanocrystals, the crystallinity and the morphology of the obtained fims strongly depends on the Cu/In ratio, with a Cu excess strongly promoting grain growth. With mixtures of Cu{sub 2}Se and In{sub 2}Se{sub 3} nanocrystals the selenium partial pressure plays a crucial role. Selenium evaporation from the mixed compounds results in CuInSe{sub 2} films composed of relatively small crystallites. Higher selenium partial pressures however resulted in improved sintering. Incomplete propagation of the selenization reaction through the layer was observed though, only leading to a well sintered CuInSe{sub 2} top layer above a fine grained bottom layer. - Highlights: • Different types of colloidal nanocrystals were used as precursors to obtain CuInSe{sub 2} films by gas-phase selenization. • In-situ XRD was used to study the effect of selenization on the phase formation and grain growth in the precursor films. • For a mixture of binary metal sulfides the crystallinity and the morphology strongly depend on the Cu/In ratio. • Higher selenium partial pressures result in improved sintering for a mixture of binary metal selenides.

  8. Improving the efficiency of copper indium gallium (Di-)selenide (CIGS) solar cells through integration of a moth-eye textured resist with a refractive index similar to aluminum doped zinc oxide

    Energy Technology Data Exchange (ETDEWEB)

    Burghoorn, M.; Kniknie, B.; Deelen, J. van; Ee, R. van [The Netherlands Organisation for Applied Scientific Research (TNO), De Rondom 1, 5612 AP, Eindhoven (Netherlands); Xu, M. [The Netherlands Organisation for Applied Scientific Research (TNO), De Rondom 1, 5612 AP, Eindhoven (Netherlands); Delft University of Technology, Optics Group, Van der Waalsweg 8, 2628 CH, Delft (Netherlands); Vroon, Z. [The Netherlands Organisation for Applied Scientific Research (TNO), De Rondom 1, 5612 AP, Eindhoven (Netherlands); Zuyd Hogeschool, Nieuw Eyckholt 300, 6419 DJ, Heerlen (Netherlands); Belt, R. van de [Kriya Materials BV, Urmonderbaan 22, 6167 RD, Geleen (Netherlands); Buskens, P., E-mail: pascal.buskens@tno.nl, E-mail: buskens@dwi.rwth-aachen.de [The Netherlands Organisation for Applied Scientific Research (TNO), De Rondom 1, 5612 AP, Eindhoven (Netherlands); DWI – Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen (Germany)

    2014-12-15

    Textured transparent conductors are widely used in thin-film silicon solar cells. They lower the reflectivity at interfaces between different layers in the cell and/or cause an increase in the path length of photons in the Si absorber layer, which both result in an increase in the number of absorbed photons and, consequently, an increase in short-circuit current density (J{sub sc}) and cell efficiency. Through optical simulations, we recently obtained strong indications that texturing of the transparent conductor in copper indium gallium (di-)selenide (CIGS) solar cells is also optically advantageous. Here, we experimentally demonstrate that the J{sub sc} and efficiency of CIGS solar cells with an absorber layer thickness (d{sub CIGS}) of 0.85 μm, 1.00 μm and 2.00 μm increase through application of a moth-eye textured resist with a refractive index that is sufficiently similar to AZO (n{sub resist} = 1.792 vs. n{sub AZO} = 1.913 at 633 nm) to avoid large optical losses at the resist-AZO interface. On average, J{sub sc} increases by 7.2%, which matches the average reduction in reflection of 7.0%. The average relative increase in efficiency is slightly lower (6.0%). No trend towards a larger relative increase in J{sub sc} with decreasing d{sub CIGS} was observed. Ergo, the increase in J{sub sc} can be fully explained by the reduction in reflection, and we did not observe any increase in J{sub sc} based on an increased photon path length.

  9. Optical Magnetometry Using Multiphoton Transitions

    Science.gov (United States)

    Degenkolb, Skyler M.

    Optical magnetometry plays a critical role in low-energy precision measurements and numerous other applications. In particular, permanent electric dipole moment (EDM) searches impose strict requirements on magnetic field sensitivity of the underlying atomic or molecular species. Other magnetometer properties - such as chemical reactivity, dielectric strength, and interaction cross-sections with other species - also impose limitations on experimental conditions. Here, we explore a novel approach to optical magnetometry, using multiphoton transitions of diamagnetic atoms to detect Larmor precession of polarized nuclei. Resonant probes are possible at moderate ultraviolet wavelengths, and hyperfine structure couples spin precession to fluorescence transitions with negligible backgrounds; paramagnetic rotation due to intensity-dependent dispersion may also be detectable. Nuclear spins and nonlinear optical excitation introduce new degrees of freedom, and evade limitations arising from rapid electronic decoherence. This dissertation reports progress towards two-photon optical magnetometry using ytterbium, rubidium, and xenon. We characterize the influence of probe polarization and magnetic fields on fluorescence spectra, for one- and two-photon continuous-wave (cw) excitation of ytterbium. Resolved hyperfine and isotope structure allow us to use spin-zero isotopes for diagnostics and normalization, and we develop analysis for overlapping two-photon resonances. We also report measurements of two-photon excitation in ytterbium and rubidium using picosecond laser pulses, and in xenon using a cw laser. Although hyperfine structure is unresolved, the rubidium measurements are sensitive to probe field polarization. Fluorescence spectra from two-photon excitation of ytterbium with femtosecond pulses show modulation when the repetition rate changes. Although techniques for polarizing noble gas nuclei are mature, existing cell designs are incompatible with two

  10. Thulium oxide fuel characterization study: Part 3, Procedures

    International Nuclear Information System (INIS)

    Nelson, C.A.; Anderson, R.W.; Talbot, M.; Bierds, W.

    1970-06-01

    Procedures are presented for the following: Tm 2 O 3 -Yb 2 O 3 pseudo - binary phase diagram tests; compatibility tests; thulium-170 oxide dose rate measurements; preparation of Tm 2 O 3 wafers; SRL thulium and/or ytterbium oxide powder reprocessing for sintering; cold pressing and sintering thulium oxide wafers; preparation of thulium and/or ytterbium oxide powder via precipitation with oxalic acid, ammonium oxalate, urea and methyl oxalate; determination of the total surface area of rare earth oxide powders; determining oxygen in thulia - thulia/ytterbia for the purpose of determining metal-to-oxygen ratios; and determination of the impact resistance to fines generation of sintered rare earth oxide

  11. Structural, magnetic, and electronic properties of iron selenide Fe{sub 6-7}Se{sub 8} nanoparticles obtained by thermal decomposition in high-temperature organic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Lyubutin, I. S., E-mail: lyubutinig@mail.ru, E-mail: crlin@mail.npue.edu.tw; Funtov, K. O.; Dmitrieva, T. V.; Starchikov, S. S. [Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow 119333 (Russian Federation); Lin, Chun-Rong, E-mail: lyubutinig@mail.ru, E-mail: crlin@mail.npue.edu.tw [Department of Applied Physics, National Pingtung University of Education, Pingtung 90003, Taiwan (China); Siao, Yu-Jhan [Department of Mechanical Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan (China); Chen, Mei-Li [Department of Electro-optical Engineering, Southern Taiwan University of Science and Technology, Tainan 71005, Taiwan (China)

    2014-07-28

    Iron selenide nanoparticles with the NiAs-like crystal structure were synthesized by thermal decomposition of iron chloride and selenium powder in a high-temperature organic solvent. Depending on the time of the compound processing at 340 °C, the nanocrystals with monoclinic (M)-Fe{sub 3}Se{sub 4} or hexagonal (H)-Fe{sub 7}Se{sub 8} structures as well as a mixture of these two phases can be obtained. The magnetic behavior of the monoclinic and hexagonal phases is very different. The applied-field and temperature dependences of magnetization reveal a complicated transformation between ferrimagnetic (FRM) and antiferromagnetic (AFM) structures, which can be related to the spin rotation process connected with the redistribution of cation vacancies. From XRD and Mössbauer data, the 3c type superstructure of vacancy ordering was found in the hexagonal Fe{sub 7}Se{sub 8}. Redistribution of vacancies in Fe{sub 7}Se{sub 8} from random to ordered leads to the transformation of the magnetic structure from FRM to AFM. The Mössbauer data indicate that vacancies in the monoclinic Fe{sub 3}Se{sub 4} prefer to appear near the Fe{sup 3+} ions and stimulate the magnetic transition with the rotation of the Fe{sup 3+} magnetic moments. Unusually high coercive force H{sub c} was found in both (H) and (M) nanocrystals with the highest (“giant”) value of about 25 kOe in monoclinic Fe{sub 3}Se{sub 4}. This is explained by the strong surface magnetic anisotropy which is essentially larger than the core anisotropy. Such a large coercivity is rare for materials without rare earth or noble metal elements, and the Fe{sub 3}Se{sub 4}-based compounds can be the low-cost, nontoxic alternative materials for advanced magnets. In addition, an unusual effect of “switching” of magnetization in a field of 10 kOe was found in the Fe{sub 3}Se{sub 4} nanoparticles below 280 K, which can be important for applications.

  12. Anisotropic formation and distribution of stacking faults in II-VI semiconductor nanorods.

    Science.gov (United States)

    Hughes, Steven M; Alivisatos, A Paul

    2013-01-09

    Nanocrystals of cadmium selenide exhibit a form of polytypism with stable forms in both the wurtzite and zinc blende crystal structures. As a result, wurtzite nanorods of cadmium selenide tend to form stacking faults of zinc blende along the c-axis. These faults were found to preferentially form during the growth of the (001) face, which accounts for 40% of the rod's total length. Since II-VI semiconductor nanorods lack inversion symmetry along the c-axis of the particle, the two ends of the nanorod may be identified by this anisotropic distribution of faults.

  13. Real Time Spectroscopic Ellipsometry Analysis of First Stage CuIn1−xGaxSe2 Growth: Indium-Gallium Selenide Co-Evaporation

    Directory of Open Access Journals (Sweden)

    Puja Pradhan

    2018-01-01

    Full Text Available Real time spectroscopic ellipsometry (RTSE has been applied for in-situ monitoring of the first stage of copper indium-gallium diselenide (CIGS thin film deposition by the three-stage co-evaporation process used for fabrication of high efficiency thin film photovoltaic (PV devices. The first stage entails the growth of indium-gallium selenide (In1−xGax2Se3 (IGS on a substrate of Mo-coated soda lime glass maintained at a temperature of 400 °C. This is a critical stage of CIGS deposition because a large fraction of the final film thickness is deposited, and as a result precise compositional control is desired in order to achieve the optimum performance of the resulting CIGS solar cell. RTSE is sensitive to monolayer level film growth processes and can provide accurate measurements of bulk and surface roughness layer thicknesses. These in turn enable accurate measurements of the bulk layer optical response in the form of the complex dielectric function ε = ε1 − iε2, spectra. Here, RTSE has been used to obtain the (ε1, ε2 spectra at the measurement temperature of 400 °C for IGS thin films of different Ga contents (x deduced from different ranges of accumulated bulk layer thickness during the deposition process. Applying an analytical expression in common for each of the (ε1, ε2 spectra of these IGS films, oscillator parameters have been obtained in the best fits and these parameters in turn have been fitted with polynomials in x. From the resulting database of polynomial coefficients, the (ε1, ε2 spectra can be generated for any composition of IGS from the single parameter, x. The results have served as an RTSE fingerprint for IGS composition and have provided further structural information beyond simply thicknesses, for example information related to film density and grain size. The deduced IGS structural evolution and the (ε1, ε2 spectra have been interpreted as well in relation to observations from scanning electron microscopy, X

  14. Diagrams of the formation of In2S3 and In2Se3 films on vitroceramic upon precipitation, according to potentiometric titration

    Science.gov (United States)

    Tulenin, S. S.; Bakhteev, S. A.; Yusupov, R. A.; Maskaeva, L. N.; Markov, V. F.

    2013-10-01

    Boundary conditions and ranges of the formation of indium(III) sulfide and selenide upon precipitation by thiocarbamide and selenocarbamide are determined. Potentiometric titration of indium chloride (InCl3) in the concentration range of 0.0001 to 0.100 mol/L by a solution of sodium hydroxide is performed. It is found that the following pH ranges are optimal for In2S3 and In2Se3 film precipitation: from 3.0 to 4.5 and from 9.0 to 14.0. Indium selenide layers 100 to 300 nm thick are prepared on vitroceramic by hydrochemcial precipitation.

  15. Effect of relativistic electron radiation on Se Zn monocrystal microembrittlement

    International Nuclear Information System (INIS)

    Mazilov, A.V.; Stratienko, V.A.; Migal', V.P.; Lugovskaya, E.I.

    2002-01-01

    The influence of 60 MeV electron irradiation (fluences between 10 9 and 10 16 el/sm 2 ) on the mikrobrittleness of n-type sphalerite-structure zinc selenide has been investigated.It was found that irradiation caused the crack lengths to increase under constant load.In the fluence range of 10 9 to 10 13 el/sm 2 , an increase was observed in the critical load, at which cracks were formed. It is shown that the mechanical properties of zinc selenide are dominantly influenced by the defect clusters, for the formation of which an energy over 400 eV is needed

  16. Electron thermal EMF for NaxCu2-xS

    Directory of Open Access Journals (Sweden)

    Kuterbekov Kairat

    2017-01-01

    Full Text Available In the present study, the temperature dependences of the thermoelectromotive force (thermo–emf in copper selenide, substituted in a small concentration, were studied. The results of the measurements showed that the thermo–emf coefficient of the samples increases, and the conductivity decreases with increasing silver concentration in its composition. These results allow – with optimal selection of the doping regime and protective coatings – to develop on the basis of nanostructured copper selenide an effective thermoelectric for use at temperatures of 20–500°C as p–type semiconductors suitable for increasing the efficiency of thermoelectric generators.

  17. Effects of Stress on the Electrical Resistance of Ytterbium and Calibration of Ytterbium Stress Transducers

    Science.gov (United States)

    1973-08-01

    loading and unloading calibration data are no more difficult to perform than experiments that produce only loading data, but the selection ol...carefully with a small glass fiber brush, and the grid photoetched on an epoxy- fiberglass or strippable mylar substrate using a mixture of

  18. Highly Efficient Fiber Lasers for Wireless Power Transmission, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop ytterbium (Yb) fiber lasers with an electrical-to-optical efficiency of nominally 64% by directly coupling 80%-efficient diode lasers with Yb...

  19. Facile synthesis of CuSe nanoparticles and high-quality single-crystal two-dimensional hexagonal nanoplatelets with tunable near-infrared optical absorption

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yimin [State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Korolkov, Ilia [Laboratory of Glasses and Ceramics, Institute of Chemistry, CNRS-Université de Rennes I, Campus de Beaulieu, 35042 Rennes Cedex (France); Qiao, Xvsheng [State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Zhang, Xianghua [Laboratory of Glasses and Ceramics, Institute of Chemistry, CNRS-Université de Rennes I, Campus de Beaulieu, 35042 Rennes Cedex (France); Wan, Jun; Fan, Xianping [State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China)

    2016-06-15

    A rapid injection approach is used to synthesize the copper selenide nanoparticles and two-dimensional single crystal nanoplates. This technique excludes the use of toxic or expensive materials, increasing the availability of two-dimensional binary chalcogenide semiconductors. The structure of the nanocrystals has been studied and the possible formation mechanism of the nanoplates has been proposed. The optical absorption showed that the nanoplates demonstrated wide and tuneable absorption band in the visible and near infrared region. These nanoplates could be interesting for converting solar energy and for nanophotonic devices operating in the near infrared. - Graphical abstract: TEM images of the copper selenides nanoparticles and nanoplates synthesized at 180 °C for 0 min, 10 min, 60 min. And the growth mechanism of the copper selenide nanoplates via the “oriented attachment”. Display Omitted - Highlights: • CuSe nanoparticles and nanoplates are synthesized by a rapid injection approach. • CuSe band gap can be widely tuned simply by modifying the synthesized time. • Al{sup 3+} ions have a significant impact on the growth rate of the nanoplates. • Growth mechanism of the CuSe nanoplates is based on the “oriented attachment”.

  20. Solid-state framing camera with multiple time frames

    Energy Technology Data Exchange (ETDEWEB)

    Baker, K. L.; Stewart, R. E.; Steele, P. T.; Vernon, S. P.; Hsing, W. W.; Remington, B. A. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    2013-10-07

    A high speed solid-state framing camera has been developed which can operate over a wide range of photon energies. This camera measures the two-dimensional spatial profile of the flux incident on a cadmium selenide semiconductor at multiple times. This multi-frame camera has been tested at 3.1 eV and 4.5 keV. The framing camera currently records two frames with a temporal separation between the frames of 5 ps but this separation can be varied between hundreds of femtoseconds up to nanoseconds and the number of frames can be increased by angularly multiplexing the probe beam onto the cadmium selenide semiconductor.

  1. Ultrasound-promoted organocatalytic enamine–azide [3 + 2] cycloaddition reactions for the synthesis of ((arylselanylphenyl-1H-1,2,3-triazol-4-ylketones

    Directory of Open Access Journals (Sweden)

    Gabriel P. Costa

    2017-04-01

    Full Text Available The use of sonochemistry is described in the organocatalytic enamine–azide [3 + 2] cycloaddition between 1,3-diketones and aryl azidophenyl selenides. These sonochemically promoted reactions were found to be amenable to a range of 1,3-diketones or aryl azidophenyl selenides, providing an efficient access to new ((arylselanylphenyl-1H-1,2,3-triazol-4-ylketones in good to excellent yields and short reaction times. In addition, this protocol was extended to β-keto esters, β-keto amides and α-cyano ketones. Selanyltriazoyl carboxylates, carboxamides and carbonitriles were synthesized in high yields at short times of reaction under very mild reaction conditions.

  2. Production and spectroscopy of ultracold YbRb* molecules

    International Nuclear Information System (INIS)

    Nemitz, Nils

    2008-11-01

    This thesis describes the formation of electronically excited but translationally cold molecules formed from rubidium atoms and two isotopes of ytterbium ( 176 Yb and 174 Yb) by means of photoassociation. The experiments were performed in a combined MOT with 10 9 rubidium atoms and 2.10 6 ytterbium atoms at temperatures of less than 1 mK. Photoassociation lines were found by trap loss spectroscopy throughout a wavelength range of 2 nm near the 795 nm D1 transition in rubidium. The majority of lines belong to two vibrational series in the excited YbRb * molecule, converging on a system of a ground state ytterbium atom and an excited rubidium atom. The strong variation of line strength between different vibrational lines is explained through the Franck-Condon principle. An improved version of the Leroy-Bernstein equation was used to extract the leading dispersion coefficient of the potential from the vibrational progression. Most of the observed lines show a resolved rotational structure as expected from a basic quantum mechanical model. The series terminates with the third or forth rotational component due to the ground state centrifugal barrier.The measured rotational constants agree very well with calculations based on the C 6 coefficient. The discovery of a splitting of the rotational components into subcomponents indicates an uncommon angular momentum coupling described by Hund's case. Variations in the depth of the subcomponents indicates a similar splitting in the ground state, with the energies of the substates based on the alignment of the rubidium atom's magnetic dipole moment relative to the angular momentum carried by an approaching ytterbium atom. This creates an additional ground state barrier, partially suppressing some of the subcomponents. Using a rate equation model developed for this purpose, a maximum formation rate of 2.5.10 6 molecules per second was calculated over the volume of the entire trap. The work presented here is an important step on

  3. Quijarroite, Cu6HgPb2Bi4Se12, a New Selenide from the El Dragόn Mine, Bolivia

    Directory of Open Access Journals (Sweden)

    Hans-Jürgen Förster

    2016-11-01

    Full Text Available Quijarroite, ideally Cu6HgPb2Bi4Se12, is a new selenide species from the El Dragόn mine, Department of Potosí, Bolivia. It most frequently occurs as lath-shaped thin plates (up to 150 µm in length and 20 µm in width intimately (subparallel intergrown with hansblockite, forming an angular network-like intersertal texture. Quijarroite is occasionally also present as sub- to anhedral grains up to 200 µm in length and 50 µm in width. It is non-fluorescent, black and opaque with a metallic luster and black streak. It is brittle, with an irregular fracture and no obvious cleavage and parting. In plane-polarized incident light, quijarroite is weakly pleochroic from cream to very slightly more brownish-cream, displaying no internal reflections. Between crossed polars, quijarroite is moderately anisotropic with pale orange-brown to blue rotation tints. Lamellar twinning on {110} is common; parquet twinning occurs rarely. The reflectance values in the air for the COM (Commission on Ore Mineralogy standard wavelengths (R1 and R2 are: 46.7, 46.8 (470 nm, 47.4, 48.2 (546 nm, 47.1, 48.5 (589 nm, and 46.6, 48.7 (650 nm. Electron-microprobe analyses yielded a mean composition of Cu 13.34, Ag 1.02, Hg 7.67, Pb 16.87, Co 0.03, Ni 0.15, Bi 27.65, Se 33.52, total 100.24 wt %. The mean empirical formula, normalized to 25 apfu (atoms per formula unit, is (Cu5.84Ag0.26Σ = 6.10(Hg1.06Ni0.07Co0.01Σ = 1.14Pb2.27Bi3.68Se11.81 (n = 24. The simplified formula is Cu6HgPb2Bi4Se12. Quijarroite is orthorhombic, space group Pmn21, with a = 9.2413(8, b = 9.0206(7, c = 9.6219(8 Å, V = 802.1(1 Å3, Z = 1. The calculated density is 5.771 g·cm−3. The five strongest X-ray powder-diffraction lines (d in Å (I/I0 (hkl are: 5.36 (55 (111, 3.785 (60 (211, 3.291 (90 (022, 3.125 (100 (212, and 2.312 (50 (400. The crystal structure of quijarroite can be considered a galena derivative and could be derived from that of bournonite. It is a primary mineral, deposited from an

  4. Waveguide source of amplified spontaneous emission ASE 1550 nm

    International Nuclear Information System (INIS)

    Razik, M.; Budnicki, A.; Abramski, M.

    2003-01-01

    Light source of amplified spontaneous emission (ASE) type has been built on the base of double-clad waveguide doped with ytterbium and erbium. The characteristics and applications of the ASE source have been also presented

  5. Studies on Cd1Se0.6Te0.4 Thin Films by Spectroscopic and Diffractometer Characterization

    Directory of Open Access Journals (Sweden)

    Cliff Orori Mosiori

    2017-09-01

    Full Text Available Cadmium selenide tellurium is a compound containing cadmium, tellurium and selenium elements forming a combined solid. Hall measurements suggest that it is an n-type semiconductor. Related optical studies indicate that is transparent to infra-red radiation. Structural studies clearly show that it has a wurtzite, sphalerite crystalline forms. Cadmium is a toxic heavy metal, and selenium is only toxic in large amounts or doses. By this toxicity, cadmium selenide is a known to be carcinogen to humans; however, this does not stop investigating it for optoelectronic applications. Current research has narrowed down to investigating cadmium selenide when in the form of nanoparticles. Cadmium selenide finds applications has found applications in opto-electronic devices like laser diodes, biomedical imaging, nano-sensing, high-efficiency solar cells and thin-film transistors. By chemical bath deposition, Cd1Se0.6Te0.4 thin films were grown onto glass. Tellurium was gradually introduced as an impurity and its crystalline structure and optical properties were investigated by XRD and UV-VIS spectroscopy. The main Cd1Se0.6Te0.4/glass characteristics were correlated with the conditions of growing and post-growth treatment and it was found out that films were homogeneous films with controllable thickness onto the glass substrate and suitable for n-type “sandwich” heterostructures applications. Comparison of the intensities of equivalent reflexions provided a test for the internal consistency of the measurements. Equivalent reflexions in two specimens differed on average by 1.4 % and 0.6% from the mean measured intensity, attesting to the high internal consistency of measurements from extended-face crystals. By comparison from data obtained from all samples showed their average deviation from the mean to be 0.9 %.

  6. Production techniques and quality control of sealed radioactive sources of palladium-103, iodine-125, iridium-192 and ytterbium-169. Final report of a coordinated research project 2001-2005

    International Nuclear Information System (INIS)

    2006-06-01

    of sealed sources based on Iodine-125, Palladium-103, Iridium-192 and Ytterbium-169. Experienced scientist groups from Belarus, China, Hungary, India, the Islamic Republic of Iran, Kazakhstan, the Republic of Korea, Peru, Poland and the Russian Federation participated in the CRP under research contracts and agreements. The technology and experimental procedures described in this report are the result of the common collaborative research of all the participants in the CRP. Many of these procedures are innovative and yet simple to follow by anyone wishing to prepare radioactive sealed sources based on 125 I, 103 Pd, 169 Yb and 192 Ir

  7. Chemical bath ZnSe thin films: deposition and characterisation

    Science.gov (United States)

    Lokhande, C. D.; Patil, P. S.; Ennaoui, A.; Tributsch, H.

    1998-01-01

    The zinc selenide (ZnSe) thin films have been deposited by a simple and inexpensive chemical bath deposition (CBD) method. The selenourea was used as a selenide ion source. The ZnSe films have been characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDAX), Rutherford back scattering (RBS), and optical absorption. The as-deposited ZnSe films on various substrates are found to be amorphous and contain O2 and N2 in addition to Zn and Se. The optical band gap of the film is estimated to be 2.9 eV. The films are photoactive as evidenced by time resolved microwave conductivity (TRMC).

  8. Non-destructive local determination of doping additions and main components in single crystals

    International Nuclear Information System (INIS)

    Ehksperiandova, L.P.; Blank, A.B.; Kukhtina, N.N.; Afanasiadi, L.I.

    1994-01-01

    Procedures for local non-destructive determination of elements in optical and scintillation single crystals are developed. They are applied for determination of the main components (in cadmium tungstate) and doping additions (tellurium in zinc selenide, europium in gadolinium silicate). The metrological characteristics of the developed micro-analysis methods are estimated. Segregation of the main components and doping additions in the objects under consideration are investigated. Tellurium is found to be distributed uniformly on the cross-sections of bulk zinc selenide single crystals. The segregation of europium along gadolinium silicate ingots is almost absent. On the cross-section surface of cadmium tungstate single crystals the microregions are found characterized by the prevailing contents of cadmium or tungsten

  9. Copolymerization of Phenylselenide-Substituted Maleimide with Styrene and Its Oxidative Elimination Behavior

    Directory of Open Access Journals (Sweden)

    Qian Liu

    2018-03-01

    Full Text Available Selenium-containing monomer monophenyl maleimide selenide (MSM was synthesized and copolymerized with styrene (St using reversible addition-fragmentation chain transfer (RAFT polymerization. Copolymers with controlled molecular weight and narrow molecular weight distribution were obtained. The structure of the copolymer was characterized by nuclear magnetic resonance, matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF mass spectrum, Fourier transform infrared spectroscopy (FT-IR and Ultraviolet–visible spectroscopy (UV-vis spectroscopy. The copolymer can be oxidized by H2O2 to form carbon-carbon double bonds within the main chain due to the unique sensitivity of selenide groups in the presence of oxidants. Such structure changing resulted in an interesting concentration-related photoluminescence emission enhancement.

  10. Green biosynthesis of biocompatible CdSe quantum dots in living Escherichia coli cells

    International Nuclear Information System (INIS)

    Yan, Zhengyu; Qian, Jing; Su, Yilong; Ai, Xiaoxia; Wu, Shengmei; Gu, Yueqing

    2014-01-01

    A green and efficient biosynthesis method to prepare fluorescence-tunable biocompatible cadmium selenide quantum dots using Escherichia coli cells as biological matrix was proposed. Decisive factors in biosynthesis of cadmium selenide quantum dots in a designed route in Escherichia coli cells were elaborately investigated, including the influence of the biological matrix growth stage, the working concentration of inorganic reactants, and the co-incubation duration of inorganic metals to biomatrix. Ultraviolet-visible, photoluminescence, and inverted fluorescence microscope analysis confirmed the unique optical properties of the biosynthesized cadmium selenide quantum dots. The size distribution of the nanocrystals extracted from cells and the location of nanocrystals foci in vivo were also detected seriously by transmission electron microscopy. A surface protein capping layer outside the nanocrystals was confirmed by Fourier transform infrared spectroscopy measurements, which were supposed to contribute to reducing cytotoxicity and maintain a high viability of cells when incubating with quantum dots at concentrations as high as 2 μM. Cell morphology observation indicated an effective labeling of living cells by the biosynthesized quantum dots after a 48 h co-incubation. The present work demonstrated an economical and environmentally friendly approach to fabricating highly fluorescent quantum dots which were expected to be an excellent fluorescent dye for broad bio-imaging and labeling. (papers)

  11. Alternative syntheses of [73,75Se]selenoethers exemplified for homocysteine[73,75Se]selenolactone

    International Nuclear Information System (INIS)

    Ermert, J.; Blum, T.; Hamacher, K.; Coenen, H.H.

    2001-01-01

    The present work describes two radiosynthetic pathways to prepare homocysteine[ 75 Se]selenolactone 1 starting from n.c.a. [ 75 Se]selenite 2. It was achieved either by alkylation reaction of n.c.a. methyl[ 75 Se]selenide 4 or by hydrolysis of alkylated 1,3-dicyclohexyl[ 75 Se]selenourea 11. N.c.a. methyl[ 75 Se]selenide 4 is available using sulfur as non-isotopic carrier. However, the radiochemical yield of the substitution of 2-tert.-butoxycarbonylamino-4-bromobutyric acid ethylester 5 with n.c.a. methyl-[ 75 Se]selenide is only in the range of 15%-20%. Birch reduction of protected n.c.a. [ 75 Se]selenomethionine 6 formed leads to a RCY of 5%-10% homocysteine[ 75 Se]selenolactone 1. Alternatively, the synthesis of homocysteine[ 75 Se]selenolactone 1 is possible by hydrolysis of the corresponding [ 75 Se]selenouronium salt 11 available by addition of 2-tert.-butoxycarbonylamino-4-bromobutyric acid ethylester 5 to 1,3-dicyclohexyl[ 75 Se]selenourea 10. A method was developed for the synthesis of 1,3-dicyclohexyl[ 75 Se]selenourea 10 by addition of c.a. [ 75 Se]SeH 2 to 1,3-dicyclohexylcarbodiimide, which leads to 20%-30% RCY of c.a. homocysteine[ 75 Se]selenolactone 1. (orig.)

  12. Data Transparent and Polarization Insensitive All-Optical Switch based on Fibers with Enhanced Nonlinearity

    Directory of Open Access Journals (Sweden)

    M. Komanec

    2014-09-01

    Full Text Available We have developed a data transparent optical packet switch prototype employing wavelength conversion based on four-wave mixing. The switch is composed of an electro-optical control unit and an all-optical switching segment. To achieve higher switching efficiencies, Ge-doped silica suspended-core and chalcogenide arsenicselenide single-mode fibers were experimentally evaluated and compared to conventional highly-nonlinear fiber. Improved connectorization technology has been developed for Ge-doped suspended-core fiber, where we achieved connection losses of 0.9 dB. For the arsenic-selenide fiber we present a novel solid joint technology, with connection losses of only 0.25 dB, which is the lowest value presented up-to-date. Conversion efficiency of -13.7 dB was obtained for the highly-nonlinear fiber, which is in perfect correlation with previously published results and thus verifies the functionality of the prototype. Conversion efficiency of -16.1 dB was obtained with arsenic-selenide fiber length reduced to five meters within simulations, based on measurement results with a 26 m long component. Employment of such a short arsenic-selenide fiber segment allows significant broadening of the wavelength conversion spectral range due to possible neglection of dispersion.

  13. Characterization of selenium in UO2 spent nuclear fuel by micro X-ray absorption spectroscopy and its thermodynamic stability.

    Science.gov (United States)

    Curti, E; Puranen, A; Grolimund, D; Jädernas, D; Sheptyakov, D; Mesbah, A

    2015-10-01

    Direct disposal of spent nuclear fuel (SNF) in deep geological formations is the preferred option for the final storage of nuclear waste in many countries. In order to assess to which extent radionuclides could be released to the environment, it is of great importance to understand how they are chemically bound in the waste matrix. This is particularly important for long-lived radionuclides such as (79)Se, (129)I, (14)C or (36)Cl, which form poorly sorbing anionic species in water and therefore migrate without significant retardation through argillaceous repository materials and host rocks. We present here X-ray absorption spectroscopic data providing evidence that in the investigated SNF samples selenium is directly bound to U atoms as Se(-II) (selenide) ion, probably replacing oxygen in the cubic UO2 lattice. This result is corroborated by a simple thermodynamic analysis, showing that selenide is the stable form of Se under reactor operation conditions. Because selenide is almost insoluble in water, our data indirectly explain the unexpectedly low release of Se in short-term aqueous leaching experiments, compared to iodine or cesium. These results have a direct impact on safety analyses for potential nuclear waste repository sites, as they justify assuming a small fractional release of selenium in performance assessment calculations.

  14. Determination of the Isotope Ratio for Metal Samples Using a Laser Ablation/Ionization Time-of-flight Mass Spectrometry

    International Nuclear Information System (INIS)

    Song, Kyu Seok; Cha, Hyung Ki; Kim, Duk Hyeon; Min, Ki Hyun

    2004-01-01

    The laser ablation/ionization time-of-flight mass spectrometry is applied to the isotopic analysis of solid samples using a home-made instrument. The technique is convenient for solid sample analysis due to the onestep process of vaporization and ionization of the samples. The analyzed samples were lead, cadmium, molybdenum, and ytterbium. To optimize the analytical conditions of the technique, several parameters, such as laser energy, laser wavelength, size of the laser beam on the samples surface, and high voltages applied on the ion source electrodes were varied. Low energy of laser light was necessary to obtain the optimal mass resolution of spectra. The 532 nm light generated mass spectra with the higher signal-to-noise ratio compared with the 355 nm light. The best mass resolution obtained in the present study is ∼1,500 for the ytterbium

  15. Sol–gel-derived planar waveguides of Er.sup.3+./sup.: Yb.sub.3./sub.Al.sub.5./sub.O.sub.12./sub. prepared by a polyvinylpyrrolidone-based method.

    Czech Academy of Sciences Publication Activity Database

    Hlásek, T.; Polák, V.; Rubešová, K.; Jakeš, V.; Nekvindová, P.; Jankovský, O.; Mikolášová, D.; Oswald, Jiří

    2016-01-01

    Roč. 80, č. 2 (2016), s. 531-537 ISSN 0928-0707 Institutional support: RVO:68378271 Keywords : sol–gel * polyvinylpyrrolidone * planar waveguide * ytterbium- aluminum garnet * erbium Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.575, year: 2016

  16. Cladding-pumped Yb-doped fiber laser with vortex output beam

    OpenAIRE

    Lin, Di; Clarkson, William

    2015-01-01

    A simple technique for selectively generating a donut-shaped LP11 mode with vortex phase front in a cladding-pumped ytterbium-doped fiber laser is reported. The laser yielded 36W of output with a slope efficiency of 74%.

  17. Linearly polarized intracavity passive Q-switched Yb-doped ...

    Indian Academy of Sciences (India)

    2014-02-14

    Feb 14, 2014 ... ytterbium-doped photonic crystal fibre laser with a Cr4+:YAG crystal ... average output power of 9.4 W with pulse duration of 64 ns and ... applications of nonlinear frequency shifting like frequency doubling and optical paramet-.

  18. Highly stable microwave carrier generation using a dual-frequency distributed feedback laser

    NARCIS (Netherlands)

    Khan, M.R.H.; Bernhardi, Edward; Marpaung, D.A.I.; Burla, M.; de Ridder, R.M.; Worhoff, Kerstin; Pollnau, Markus; Roeloffzen, C.G.H.

    2012-01-01

    Photonic generation of microwave carriers by using a dual-frequency distributed feedback waveguide laser in ytterbium-doped aluminum oxide is demonstrated. A highperformance optical frequency locked loop is implemented to stabilize the microwave carrier. This approach results in a microwave

  19. Enhanced exciton emission from ZnO nano-phosphor induced by Yb3+ ions

    CSIR Research Space (South Africa)

    Kabongo, GL

    2014-01-01

    Full Text Available In this work, the sol–gel method was used to prepare Ytterbium (Yb(sup3+)) doped ZnO nano-phosphors with different concentrations of Yb(sup3+) ions. Their structural, morphological, photoluminescence, electronic states and the chemical composition...

  20. Physical vapor deposition of Er.sup.3+./sup.: Yb.sub.3./sub.Al.sub.5./sub.O.sub.12./sub. thin films from sol-gel derived targets

    Czech Academy of Sciences Publication Activity Database

    Hlásek, T.; Rubešová, K.; Jakeš, V.; Nováček, M.; Oswald, Jiří; Fitl, P.; Siegel, J.; Macháč, P.

    2016-01-01

    Roč. 60, č. 4 (2016), s. 285-290 ISSN 0862-5468 Institutional support: RVO:68378271 Keywords : PLD * electron beam deposition * thin film * ytterbium-aluminium garnet * erbium Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.439, year: 2016

  1. Effect of palladium dispersion on the capture of toxic components from fuel gas by palladium-alumina sorbents

    Energy Technology Data Exchange (ETDEWEB)

    John P. Baltrus; Evan J. Granite; Erik C. Rupp; Dennis C. Stanko; Bret Howard; Henry W. Pennline [US DOE National Energy Technology Laboratory, Pittsburgh, PA (United States)

    2011-05-15

    The dispersion and location of Pd in alumina-supported sorbents prepared by different methods was found to influence the performance of the sorbents in the removal of mercury, arsine, and hydrogen selenide from a simulated fuel gas. When Pd is well dispersed in the pores of the support, contact interaction with the support is maximized, Pd is less susceptible to poisoning by sulfur, and the sorbent has better long-term activity for adsorption of arsine and hydrogen selenide, but poorer adsorption capacity for Hg. As the contact interaction between Pd and the support is lessened the Pd becomes more susceptible to poisoning by sulfur, resulting in higher capacity for Hg, but poorer long-term performance for adsorption of arsenic and selenium. 18 refs., 3 figs., 4 tabs.

  2. Anchoring selenido-carbonyl ruthenium clusters to functionalized silica xerogels

    International Nuclear Information System (INIS)

    Cauzzi, Daniele; Graiff, Claudia; Pattacini, Roberto; Predieri, Giovanni; Tiripicchio, Antonio

    2003-01-01

    Silica Xerogels containing carbonyl Ru 3 Se 2 nido clusters were prepared in three different ways. The simple dispersion of [Ru 3 (μ 3 -Se) 2 (CO) 7 (PPh 3 ) 2 ] via sol gel process produces an inhomogeneous material; by contrast, homogeneous xerogels were obtained by reaction of [Ru 3 (μ 3 -Se) 2 (CO) 8 (PPh 3 )] with functionalized xerogels containing grafted diphenylphosphine moieties and by reaction of [Ru 3 (CO) 12 ] with a xerogel containing grafted phosphine-selenide groups. The reaction between [Ru 3 (CO) 12 ] and dodecyl diphenylphosphine selenide led to the formation of four selenido carbonyl clusters, which are soluble in hydrocarbon solvents and can be deposited as thin films from their solution by slow evaporation. (author)

  3. Production and spectroscopy of ultracold YbRb{sup *} molecules

    Energy Technology Data Exchange (ETDEWEB)

    Nemitz, Nils

    2008-11-15

    This thesis describes the formation of electronically excited but translationally cold molecules formed from rubidium atoms and two isotopes of ytterbium ({sup 176}Yb and {sup 174}Yb) by means of photoassociation. The experiments were performed in a combined MOT with 10{sup 9} rubidium atoms and 2.10{sup 6} ytterbium atoms at temperatures of less than 1 mK. Photoassociation lines were found by trap loss spectroscopy throughout a wavelength range of 2 nm near the 795 nm D1 transition in rubidium. The majority of lines belong to two vibrational series in the excited YbRb{sup *} molecule, converging on a system of a ground state ytterbium atom and an excited rubidium atom. The strong variation of line strength between different vibrational lines is explained through the Franck-Condon principle. An improved version of the Leroy-Bernstein equation was used to extract the leading dispersion coefficient of the potential from the vibrational progression. Most of the observed lines show a resolved rotational structure as expected from a basic quantum mechanical model. The series terminates with the third or forth rotational component due to the ground state centrifugal barrier.The measured rotational constants agree very well with calculations based on the C{sub 6} coefficient. The discovery of a splitting of the rotational components into subcomponents indicates an uncommon angular momentum coupling described by Hund's case. Variations in the depth of the subcomponents indicates a similar splitting in the ground state, with the energies of the substates based on the alignment of the rubidium atom's magnetic dipole moment relative to the angular momentum carried by an approaching ytterbium atom. This creates an additional ground state barrier, partially suppressing some of the subcomponents. Using a rate equation model developed for this purpose, a maximum formation rate of 2.5.10{sup 6} molecules per second was calculated over the volume of the entire trap. The

  4. Relationships between ytterbium precipitation assay, colorimetric ...

    African Journals Online (AJOL)

    digestion and metabolism of protein (Komolong et al., 2001). ... room temperature (25 °C) pending chemical analyses and in vitro ... assayed without sodium sulphite but with a heat-stable α-amylase due to the high ... of starch in the tree fruits.

  5. Resonant filtered fiber amplifiers

    DEFF Research Database (Denmark)

    Alkeskjold, Thomas Tanggaard; Laurila, Marko; Olausson, Christina Bjarnal Thulin

    2013-01-01

    In this paper we present our recent result on utilizing resonant/bandgap fiber designs to achieve high performance ytterbium doped fiber amplifers for achieving diffraction limited beam quality in large mode area fibers, robust bending performance and gain shaping for long wavelength operation...

  6. Direct conversion of glucose to 5-(hydroxymethyl)furfural in ionic liquids with lanthanide catalysts

    DEFF Research Database (Denmark)

    Ståhlberg, Tim; Sørensen, Mathilde Grau; Riisager, Anders

    2010-01-01

    The direct conversion of glucose to 5-(hydroxymethyl)furfural (HMF) in ionic liquids with lanthanide catalysts was examined in search of a possibly more environmentally feasible process not involving chromium. The highest HMF yield was obtained with ytterbium chloride or triflate together...

  7. Intra-laser-cavity microparticle sensing with a dual-wavelength distributed-feedback laser

    NARCIS (Netherlands)

    Bernhardi, Edward H.; van der Werf, Kees O; Hollink, Anton J F; Wörhoff, Kerstin; de Ridder, René M; Subramaniam, Vinod; Pollnau, Markus

    An integrated intra-laser-cavity microparticle sensor based on a dual-wavelength distributed-feedback channel waveguide laser in ytterbium-doped amorphous aluminum oxide on a silicon substrate is demonstrated. Real-time detection and accurate size measurement of single micro-particles with diameters

  8. On-chip microparticle detection and sizing using a dual-wavelength waveguide laser

    NARCIS (Netherlands)

    Bernhardi, Edward; van der Werf, Kees; Hollink, Anton; Worhoff, Kerstin; de Ridder, R.M.; Subramaniam, Vinod; Pollnau, Markus

    An integrated intra-laser-cavity microparticle sensor based on a dual-phase-shift, dual-wavelength distributed-feedback channel waveguide laser in ytterbium-doped aluminium oxide is presented. Single micro-particles with diameters ranging between 1 μm and 20 μm are detected.

  9. Studies on high-pressure reaction of Er/sub 2/O/sub 3/ or Yb/sub 2/O/sub 3/ with VO/sub 2/

    Energy Technology Data Exchange (ETDEWEB)

    Shin-ike, T [Osaka Dental Coll., Hirakata (Japan); Adachi, G; Shiokawa, J; Shimada, M; Koizumi, M

    1980-12-01

    The reaction of erbium sesquioxide (Er/sub 2/O/sub 3/) or ytterbium sesquioxide (Yb/sub 2/O/sub 3/) with vanadium dioxide (VO/sub 2/) at 1400/sup 0/C and 50 kbar and 30 kbar pressures was studied. Quadrivalent vanadium ions were reduced to the trivalent state, erbium vanadate (ErVO/sub 3/) or ytterbium vanadate (YbVO/sub 3/) being obtained. The crystal structure of ErVO/sub 3/ obtained at 50 kbar pressure was vaterite-type isostructural with ErBO/sub 3/ belonging to a hexagonal system, and that obtained at 30 kbar calcite-type belonging to a rhombohedral (pseudo-hexagonal) system. In the reaction of Yb/sub 2/O/sub 3/ with VO/sub 2/ at high pressure, a perovskite-type crystal was obtained. The electrical and magnetic properties of the vaterite- and the calcite-type ErVO/sub 3/ were studied.

  10. Sideband-cooling of trapped ytterbium-ions in the microwave regime; Seitenbandkuehlung von gespeicherten Ytterbium-Ionen im Mikrowellenregime

    Energy Technology Data Exchange (ETDEWEB)

    Scharfenberger, Benedikt J.

    2012-12-14

    Trapped ions in a Paul trap are at present one of the most promising candidates for Quantum Information Processing (QIP). The technique that is used for this purpose in this experiment was introduced in 2001 by F. Mintert and Ch. Wunderlich. The core of this method is the use of atomic transitions in the radio- or microwave region, while a magnetic field gradient along the trap axis (where the ion chain is situated) lifts the degeneracy of the transition frequencies, such that the ions can be distinguished in frequency space; it also serves for the coupling of internal and external degrees of freedom of the ion chain. This method is called MAGIC (MAgnetic Gradient Induced Coupling). The performance of the measurements required that the apparatus of the experiment, which consists of laser sources, lambdameter, vacuum- and microwave system as well as imaging- and detection-units, had to be assembled and tested, which was an important prerequisite for the successful performance of the here described experiments. For the experiments it is advantageous to prepare the ions in an energetic state close to the motional ground state, which contributes to a reduction of the dephasing of the system while manipulating it with microwaves. By using the sideband-cooling technique to the sub-Doppler regime it is taken advantage of the fact, that ions in a linear trap are in good approximation situated in a harmonic oscillator potential and can therefore only populate discrete vibrational energy levels, whose frequency difference is given by the axial trap frequency {omega}{sub z}. If the system is excited by a microwave, which frequency is detuned from resonance to lower energies by a vibrational quantum, the ion looses one such phonon within each cooling-cycle. When this cycle is driven several times, the average phonon number and thus the temperature of the ion can be reduced efficiently and the ion can be initialized in a state close to the motional ground state. As sideband-cooling-transition two hyperfine-levels of {sup 171}Yb{sup +} were used, addressed with a microwave at about 12.6 GHz. In principle microwave photons do not carry enough momentum to cool down the ions but due to the MAGIC-technique, this is even possible. In this work the parameters relevant for the sideband-cooling process were characterized, including the heat rate that counteracts the cooling. With this, the average phonon number was reduced from about 100 to left angle n right angle 4(4), which is compatible with the motional ground state. For the verification of the successful cooling process two different methods for analysis were used while the results agreed. The work is to the knowledge of the author the first detailed description of sideband-cooling of trapped ions in a static magnetic field gradient in the microwave regime.

  11. Fast Photo-detection in Phototransistors based on Group III-VI Layered Materials.

    Science.gov (United States)

    Patil, Prasanna; Ghosh, Sujoy; Wasala, Milinda; Lei, Sidong; Vajtai, Robert; Ajayan, Pulickel; Talapatra, Saikat

    Response time of a photo detector is one of the crucial aspect of photo-detection. Recently it has been shown that direct band gap of few layered group III-VI materials helps in increased absorption of light thereby enhancing the photo responsive properties of these materials. Ternary system of Copper Indium Selenide has been extensively used in optoelectronics industry and it is expected that 2D layered structure of Copper Indium Selenide will be a key component of future optoelectronics devices based on 2D materials. Here we report fast photo detection in few layers of Copper Indium Selenide (CuIn7Se11) phototransistor. Few-layers of CuIn7Se11 flakes were exfoliated from crystals grown using chemical vapor transport technique. Our photo response characterization indicates responsivity of 104 mA/W with external quantum efficiency exceeding 103. We have found response time of few μs which is one of the fastest response among photodetectors based on 2D materials. We also found specific detectivity of 1012 Jones which is an order higher than conventional photodetectors. A comparison between response times of various layered group III-VI materials will be presented and discussed. This work is supported by the U.S. Army Research Office through a MURI Grant # W911NF-11-1-0362.

  12. Synthesis, characterization, and anomalous dielectric and conductivity performance of one-dimensional (bdaH)InSe2 (bda = 1,4-butanediamine)

    International Nuclear Information System (INIS)

    Du, Ke-Zhao; Hu, Wan-Biao; Hu, Bing; Guan, Xiang-Feng; Huang, Xiao-Ying

    2011-01-01

    Graphical abstract: Anomalous dielectric and conductivity performance have been observed in the organic-containing indium selenide (bdaH)InSe 2 , which are attributed to the water molecules existing in the crystal boundary rather than phase transition. Highlights: → The title compound is the first example of organic-containing one-dimensional indium selenide. → The anomalous dielectric peak is attributed to water molecules in crystal boundary. → The inorganic and organic components of the title compound are connected via hydrogen bonding to form a supramolecular three-dimensional network. -- Abstract: A new indium selenide, namely (bdaH)InSe 2 (1) (bda = 1,4-butanediamine) has been solvothermally synthesized and structurally characterized. It belongs to the non-centrosymmetric space group Fdd2. Its structure features an infinite one-dimensional anionic chain of [InSe 2 ] n n- with monoprotonated [bdaH] + as charge compensating cation. The organic [bdaH] + cations are joined into a supramolecular one-dimensional chain via N-H...N hydrogen bonding, which further interacts with the inorganic chain via N-H...Se and C-H...Se hydrogen bonding, forming a supramolecular three-dimensional network. Based on such a well-defined structure, the thermal stability, optical, conductivity, and dielectric properties were systematically investigated, showing that dielectric constant, as well as conductivity, had a hump at about 95 o C, which could be attributed to water molecules in the crystal boundary.

  13. Single-mode pumped high air-fill fraction photonic crystal fiber taper for high-power deep-blue supercontinuum sources

    DEFF Research Database (Denmark)

    Sørensen, Simon Toft; Larsen, Casper; Jakobsen, Christian

    2014-01-01

    Dispersion control with axially nonuniform photonic crystal fibers (PCFs) permits supercontinuum (SC) generation into the deep-blue from an ytterbium pump laser. In this Letter, we exploit the full degrees of freedom afforded by PCFs to fabricate a fiber with longitudinally increasing air-fill fr...

  14. Self-induced laser line sweeping in double-clad Yb-doped fiber-ring lasers

    Czech Academy of Sciences Publication Activity Database

    Peterka, Pavel; Navrátil, P.; Maria, J.; Dussardier, B.; Slavík, Radan; Honzátko, Pavel; Kubeček, V.

    2012-01-01

    Roč. 9, č. 6 (2012), s. 445-450 ISSN 1612-2011 R&D Projects: GA MŠk(CZ) ME10119 Institutional support: RVO:67985882 Keywords : fiber laser * tunable laser * ytterbium Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 7.714, year: 2012

  15. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Well-crystalline structured ZnO nanoparticles with cobalt (Co) and ytterbium (Yb) multiple ions doping were successfully synthesized by the chemical precipitation technique. The structures, optical and magnetic properties of the samples were analysed with X-ray diffraction (XRD), UV–visible spectroscopy and magnetic ...

  16. On the Molecular Structure of GexSbxSe1-2x glasses

    Science.gov (United States)

    Gunasekera, K.; Boolchand, P.; Jackson, A.

    2010-03-01

    The GexSbxSe100-2x ternary is isovalent to the phase-change material, GexSbxTe100-2x , except the Selenides can be prepared as bulk alloy glasses while the Tellurides exist only as amorphous thin-films. Here we report on the Selenides synthesized over a wide composition range, 0 modulated-DSC, Raman scattering and molar volume experiments. The enthalpy of relaxation at Tg shows the opening of a reversibility window or Intermediate Phase (IP) in the 13% 18.18%, the chemical threshold, and are thought to result from homopolar bonds. Ab-initio cluster calculations place pyramidal SbSe3 units and ethylene-like Sb2Se2 units to reveal Raman activity near 215 cm-1 and 228 cm-1 respectively. Evolution of glass structure with composition x will be discussed.

  17. Electrically tunable liquid crystal photonic bandgap fiber laser

    DEFF Research Database (Denmark)

    Olausson, Christina Bjarnal Thulin; Scolari, Lara; Wei, Lei

    2010-01-01

    We demonstrate electrical tunability of a fiber laser by using a liquid crystal photonic bandgap fiber. Tuning of the laser is achieved by combining the wavelength filtering effect of a liquid crystal photonic bandgap fiber device with an ytterbium-doped photonic crystal fiber. We fabricate an al...

  18. Modeling of Yb3+-sensitized Er3+-doped silica waveguide amplifiers

    DEFF Research Database (Denmark)

    Lester, Christian; Bjarklev, Anders Overgaard; Rasmussen, Thomas

    1995-01-01

    A model for Yb3+-sensitized Er3+-doped silica waveguide amplifiers is described and numerically investigated in the small-signal regime. The amplified spontaneous emission in the ytterbium-band and the quenching process between excited erbium ions are included in the model. For pump wavelengths...

  19. Chelating extractants of improved selectivity. Progress report for period November 1, 1977--July 31 1978

    International Nuclear Information System (INIS)

    Freiser, H.

    1978-08-01

    During the current contract period, the high susceptibility of lanthanide chelate stability to steric hindrance was confirmed. The increase in coordination number of lanthanides from lanthanum to ytterbium as evidenced from extraction equilibria serves to increase their separability. 8-Quinolinol immobilized on silica can separate lanthanide ions

  20. Rapidly tunable continuous-wave optical parametric oscillator pumped by a fiber laser

    NARCIS (Netherlands)

    Klein, M.E.; Gross, P.; Boller, Klaus J.; Auerbach, M.; Wessels, P.; Fallnich, C.

    2003-01-01

    We report on rapid, all-electronically controlled wavelength tuning of a continuous-wave (cw) optical parametric oscillator (OPO) pumped by an ytterbium fiber laser. The OPO is singly resonant for the signal wave and consists of a 40-mm-long periodically poled lithium niobate crystal in a

  1. Watt-level passively Q-switched double-cladding fiber laser based on graphene oxide saturable absorber.

    Science.gov (United States)

    Yu, Zhenhua; Song, Yanrong; Dong, Xinzheng; Li, Yanlin; Tian, Jinrong; Wang, Yonggang

    2013-10-10

    A watt-level passively Q-switched ytterbium-doped double-cladding fiber laser with a graphene oxide (GO) absorber was demonstrated. The structure of the GO saturable absorber mirror (GO-SAM) was of the sandwich type. A maximum output power of 1.8 W was obtained around a wavelength of 1044 nm. To the best of our knowledge, this is the highest output power in Q-switched fiber lasers based on a GO saturable absorber. The pure GO was protected from the oxygen in the air so that the damage threshold of the GO-SAM was effectively raised. The gain fiber was a D-shaped ytterbium-doped double-cladding fiber. The pulse repetition rates were tuned from 120 to 215 kHz with pump powers from 3.89 to 7.8 W. The maximum pulse energy was 8.37 μJ at a pulse width of 1.7 μs.

  2. Synthesis and crystal structure of tischendorfite, Pd8Hg3Se9

    Czech Academy of Sciences Publication Activity Database

    Laufek, F.; Vymazalová, A.; Drábek, J.; Navrátil, Jiří; Drahokoupil, Jan

    2014-01-01

    Roč. 26, č. 1 (2014), s. 157-162 ISSN 0935-1221 Institutional support: RVO:68378271 Keywords : tischendorfite * crystal structure * Pd-Hg selenides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.483, year: 2014

  3. Synthesis and crystal structure of tischendorfite, Pd.sub.8./sub.Hg.sub.3./sub.Se.sub.9./sub

    Czech Academy of Sciences Publication Activity Database

    Laufek, F.; Vymazalová, A.; Drábek, M.; Navrátil, J.; Drahokoupil, Jan

    2014-01-01

    Roč. 26, č. 1 (2014), s. 157-162 ISSN 0935-1221 Institutional support: RVO:68378271 Keywords : tischendorfite * crystal structure * Pd-Hg selenides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.483, year: 2014

  4. Crystal field effect in YbMnO.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Diviš, M.; Hölsä, J.; Lastusaari, M.; Litvinchuk, A. P.; Nekvasil, Vladimír

    2008-01-01

    Roč. 451, 1-2 (2008), s. 662-665 ISSN 0925-8388 R&D Projects: GA AV ČR IAA100100627 Institutional research plan: CEZ:AV0Z10100521 Keywords : ytterbium * manganites * IR spectroscopy * crystal field Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.510, year: 2008

  5. Reflectivity of transient Bragg reflection gratings in fiber laser with laser-wavelength selfsweeping

    Czech Academy of Sciences Publication Activity Database

    Peterka, Pavel; Honzátko, Pavel; Koška, Pavel; Todorov, Filip; Aubrecht, Jan; Podrazký, Ondřej; Kašík, Ivan

    2014-01-01

    Roč. 22, č. 24 (2014), s. 30024-30031 ISSN 1094-4087 R&D Projects: GA ČR(CZ) GAP205/11/1840 Institutional support: RVO:67985882 Keywords : Ytterbium-doped fiber * Laser optics * Q switched lasers Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.488, year: 2014

  6. Reflectivity of transient Bragg reflection gratings in fiber laser with laser-wavelength self-sweeping: erratum

    Czech Academy of Sciences Publication Activity Database

    Peterka, Pavel; Honzátko, Pavel; Koška, Pavel; Todorov, Filip; Aubrecht, Jan; Podrazký, Ondřej; Kašík, Ivan

    2016-01-01

    Roč. 24, č. 14 (2016), s. 16222-16223 ISSN 1094-4087 R&D Projects: GA ČR(CZ) GA16-13306S Institutional support: RVO:67985882 Keywords : Ytterbium-doped fiber * Laser optics * Q switched lasers Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 3.307, year: 2016

  7. High average power supercontinuum sources

    Indian Academy of Sciences (India)

    The physical mechanisms and basic experimental techniques for the creation of high average spectral power supercontinuum sources is briefly reviewed. We focus on the use of high-power ytterbium-doped fibre lasers as pump sources, and the use of highly nonlinear photonic crystal fibres as the nonlinear medium.

  8. Two hexagonal series of lanthanoid(III) oxide fluoride selenides.: M{sub 6}O{sub 2}F{sub 8}Se{sub 3} (M = La - Nd) and M{sub 2}OF{sub 2}Se (M = Nd, Sm, Gd - Ho)

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, Dirk D.; Grossholz, Hagen; Wolf, Sarah; Schleid, Thomas [Institut fuer Anorganische Chemie, Universitaet Stuttgart (Germany); Janka, Oliver [Institut fuer Anorganische Chemie, Universitaet Stuttgart (Germany); Institut fuer Anorganische und Analytische Chemie, Westfaelische Wilhelms-Universitaet Muenster (Germany); Mueller, Alexander C. [Institut fuer Anorganische Chemie, Universitaet Stuttgart (Germany); Institut fuer Textilchemie und Chemiefasern, Denkendorf (Germany)

    2015-09-15

    Two hexagonal series of lanthanoid(III) oxide fluoride selenides with similar structure types can be obtained by the reaction of the components MF{sub 3}, M{sub 2}O{sub 3}, M, and Se in sealed niobium tubes at 850 C using CsI as fluxing agent. The compounds with the lighter and larger representatives (M = La - Nd) occur with the formula M{sub 6}O{sub 2}F{sub 8}Se{sub 3}, whereas with the heavier and smaller ones (M = Nd, Sm, Gd - Ho) their composition is M{sub 2}OF{sub 2}Se. For both systems single-crystal determinations were used in all cases. The compounds crystallize in the hexagonal crystal system (space group: P6{sub 3}/m) with lattice parameters of a = 1394-1331 pm and c = 403-372 pm (Z = 2 for M{sub 6}O{sub 2}F{sub 8}Se{sub 3} and Z = 6 for M{sub 2}OF{sub 2}Se). The (M1){sup 3+} cations show different square antiprismatic coordination spheres with or without an extra capping fluoride anion. All (M2){sup 3+} cations exhibit a ninefold coordination environment shaped as tricapped trigonal prism. In both structure types the Se{sup 2-} anions are sixfold coordinated as trigonal prisms of M{sup 3+} cations, being first condensed by edges to generate trimeric units and then via faces to form strands running along [001]. The light anions reside either in threefold triangular or in fourfold tetrahedral cationic coordination. For charge compensation, both structures have to contain a certain amount of oxide besides fluoride anions. Since F{sup -} and O{sup 2-} can not be distinguished by X-ray diffraction, bond-valence calculations were used to address the problem of their adjunction to the available crystallographic sites. (Copyright copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Integration of Solar Cells on Top of CMOS Chips - Part II: CIGS Solar Cells

    NARCIS (Netherlands)

    Lu, J.; Liu, Wei; Kovalgin, Alexeij Y.; Sun, Yun; Schmitz, Jurriaan

    2011-01-01

    We present the monolithic integration of deepsubmicrometer complementary metal–oxide–semiconductor (CMOS) microchips with copper indium gallium (di)selenide (CIGS) solar cells. Solar cells are manufactured directly on unpackaged CMOS chips. The microchips maintain comparable electronic performance,

  10. Photoelectric sensor output controlled by eyeball movements

    Science.gov (United States)

    1965-01-01

    The difference between the infrared absorption of the iris and infrared reflectivity of the eyeball controls the operation of a device consisting of an infrared source and amplifier, a cadmium selenide infrared sensor, and an infrared filter.

  11. Preparation of PbSe nanoparticles by electron beam irradiation ...

    Indian Academy of Sciences (India)

    Wintec

    Recently, the synthesis of binary metal selenides of group. IV has been investigated ... Pb(Ac)2 and Se powder reacted ... hol (PVA), potassium hydroxide (KOH), and isopropyl. *Author for ... 40 ml distilled water and reacted adequately. Subse-.

  12. Synthesis, characterization, and anomalous dielectric and conductivity performance of one-dimensional (bdaH)InSe{sub 2} (bda = 1,4-butanediamine)

    Energy Technology Data Exchange (ETDEWEB)

    Du, Ke-Zhao; Hu, Wan-Biao [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Hu, Bing; Guan, Xiang-Feng [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China); Huang, Xiao-Ying, E-mail: xyhuang@fjirsm.ac.cn [State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2011-11-15

    Graphical abstract: Anomalous dielectric and conductivity performance have been observed in the organic-containing indium selenide (bdaH)InSe{sub 2}, which are attributed to the water molecules existing in the crystal boundary rather than phase transition. Highlights: {yields} The title compound is the first example of organic-containing one-dimensional indium selenide. {yields} The anomalous dielectric peak is attributed to water molecules in crystal boundary. {yields} The inorganic and organic components of the title compound are connected via hydrogen bonding to form a supramolecular three-dimensional network. -- Abstract: A new indium selenide, namely (bdaH)InSe{sub 2} (1) (bda = 1,4-butanediamine) has been solvothermally synthesized and structurally characterized. It belongs to the non-centrosymmetric space group Fdd2. Its structure features an infinite one-dimensional anionic chain of [InSe{sub 2}]{sub n}{sup n-} with monoprotonated [bdaH]{sup +} as charge compensating cation. The organic [bdaH]{sup +} cations are joined into a supramolecular one-dimensional chain via N-H...N hydrogen bonding, which further interacts with the inorganic chain via N-H...Se and C-H...Se hydrogen bonding, forming a supramolecular three-dimensional network. Based on such a well-defined structure, the thermal stability, optical, conductivity, and dielectric properties were systematically investigated, showing that dielectric constant, as well as conductivity, had a hump at about 95 {sup o}C, which could be attributed to water molecules in the crystal boundary.

  13. Selenylation Modification of Degraded Polysaccharide from Enteromorpha prolifera and Its Biological Activities

    Science.gov (United States)

    Lv, Haitao; Duan, Ke; Shan, Hu

    2018-04-01

    Polysaccharide extracted from Enteromorpha prolifera possessed excellent biological activities, but its molecular weight was greatly high which influenced the activity. Organic Se had higher biological activities and was safer than inorganic Se species. In the present study, Enteromorpha polysaccharide was degraded to low molecular weight by free-radical degradation method of H2O2 and ascorbic acid. By single factor and orthogonal experiments, the optimal degradation conditions were reaction time of 2 h, reaction temperature of 50°C, H2O2/ascorbic acid (n/n=1:1) concentration of 15 mmol L-1, and solid-liquid ratio of 1:50 (g mL-1). Then, the degraded polysaccharide was chemically modified to obtain its selenide derivatives by nitric acid-sodium selenite method. The selenium content was 1137.29 μg g-1, while the content of sulfate radical had no change. IR spectra indicated that the selenite ester group was formed. Degraded polysaccharide selenide was characterized and evaluated for antioxidant, antifungal and antibacterial activities. The results showed that degraded polysaccharide selenide had strong capacity of scavenging DPPH and ·OH free radical. It had significant antibacterial properties for Escherichia coli, Bacillus subtilis and Salmonella spp., and it also had significant antifungal properties for Apple anthrax. The result ascertained degradation and selenylation modification did not change the main structure of polysaccharides. It was possible that free-radical degradation was an effective way for enhancing antioxidant activity to decrease molecular weight of polysaccharides.

  14. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    scale grain growth of two nanocrystalline materials, Pd81Zr19 and RuAl. ... Structural, optical and electrical properties of chemically deposited copper selenide films .... Effect of substitution of titanium by magnesium and niobium on structure and ...

  15. Resonance journal of science education

    Indian Academy of Sciences (India)

    Photograph of laser-cooled cloud of ytterbium atoms taken with a CCD camera. The inven- tors of the CCD sensor shared the 2009 Nobel. Prize in Physics. See page 732. (Courtesy: Atomic and Optical Physics Lab, IISc). Ferdinand Freudenstein. (1926–2006). ( Illustration: Subhankar Biswas ). Front Cover. Back Cover. 681.

  16. Tm-Yb Doped Optical Fiber Performance with Variation of Host-Glass Composition

    Directory of Open Access Journals (Sweden)

    Anirban Dhar

    2014-01-01

    Full Text Available The fabrication process of Thulium-Ytterbium doped optical fiber comprising different host glass through the Modified Chemical Vapor Deposition (MCVD coupled with solution doping technique is presented. The material and optical performance of different fibers are compared with special emphasis on their lasing efficiency for 2 µm application.

  17. Luminescent converter of neodymium laser radiation

    International Nuclear Information System (INIS)

    Ryba-Romanowski, W.; Golab, S.

    1992-01-01

    The new luminescent converter of neodymium laser radiation has been worked out. Activated inorganic compounds of ytterbium and erbium ions has been used as luminescent agent. The multi-component inorganic glass containing tellurium oxide as well as boron, sodium, magnesium and zinc oxides has been applied as a converter matrix

  18. High-power picosecond pulse delivery through hollow core photonic band gap fibers

    DEFF Research Database (Denmark)

    Michieletto, Mattia; Johansen, Mette Marie; Lyngsø, Jens Kristian

    2016-01-01

    We demonstrated robust and bend insensitive fiber delivery of high power laser with diffraction limited beam quality for two different kinds of hollow core band gap fibers. The light source for this experiment consists of ytterbium-doped double clad fiber aeroGAIN-ROD-PM85 in a high power amplifier...

  19. 1018 nm Yb-doped high-power fiber laser pumped by broadband pump sources around 915 nm with output power above 100 W

    DEFF Research Database (Denmark)

    Midilli, Yakup; Efunbajo, Oyewole Benjamin; Şimşek, Bartu

    2017-01-01

    laser were also addressed in this study. Finally, we have tested this system for high power experimentation and obtained 67% maximum optical-to-optical efficiency at an approximately 110 W output power level. To the best of our knowledge, this is the first 1018 nm ytterbium-doped all-fiber laser pumped...

  20. The occurrence and origin of selenium minerals in Se-rich stone coals, spoils and their adjacent soils in Yutangba, China

    Czech Academy of Sciences Publication Activity Database

    Zhu, J.M.; Johnson, T.M.; Finkelman, R.B.; Zheng, B.S.; Sýkorová, Ivana; Pešek, J.

    2012-01-01

    Roč. 330, November (2012), s. 27-38 ISSN 0009-2541 Institutional support: RVO:67985891 Keywords : native Se * Cu-selenides * mandarinoite Subject RIV: DD - Geochemistry Impact factor: 3.154, year: 2012 http://www.sciencedirect.com/science/article/pii/S0009254112003828

  1. Advanced Gasification Mercury/Trace Metal Control with Monolith Traps

    Energy Technology Data Exchange (ETDEWEB)

    Musich, Mark; Swanson, Michael; Dunham, Grant; Stanislowski, Joshua

    2010-10-05

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-μg/m{sup 3} (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-μg/m{sup 3} (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most

  2. ADVANCED GASIFICATION MERCURY/TRACE METAL CONTROL WITH MONOLITH TRAPS

    Energy Technology Data Exchange (ETDEWEB)

    Mark A. Musich; Michael L. Swanson; Grant E. Dunham; Joshua J. Stanislowski

    2010-07-31

    Two Corning monoliths and a non-carbon-based material have been identified as potential additives for mercury capture in syngas at temperatures above 400°F and pressure of 600 psig. A new Corning monolith formulation, GR-F1-2189, described as an active sample appeared to be the best monolith tested to date. The Corning SR Liquid monolith concept continues to be a strong candidate for mercury capture. Both monolith types allowed mercury reduction to below 5-μg/m3 (~5 ppb), a current U.S. Department of Energy (DOE) goal for trace metal control. Preparation methods for formulating the SR Liquid monolith impacted the ability of the monolith to capture mercury. The Energy & Environmental Research Center (EERC)-prepared Noncarbon Sorbents 1 and 2 appeared to offer potential for sustained and significant reduction of mercury concentration in the simulated fuel gas. The Noncarbon Sorbent 1 allowed sustained mercury reduction to below 5-μg/m3 (~5 ppb). The non-carbon-based sorbent appeared to offer the potential for regeneration, that is, desorption of mercury by temperature swing (using nitrogen and steam at temperatures above where adsorption takes place). A Corning cordierite monolith treated with a Group IB metal offered limited potential as a mercury sorbent. However, a Corning carbon-based monolith containing prereduced metallic species similar to those found on the noncarbon sorbents did not exhibit significant or sustained mercury reduction. EERC sorbents prepared with Group IB and IIB selenide appeared to have some promise for mercury capture. Unfortunately, these sorbents also released Se, as was evidenced by the measurement of H2Se in the effluent gas. All sorbents tested with arsine or hydrogen selenide, including Corning monoliths and the Group IB and IIB metal-based materials, showed an ability to capture arsine or hydrogen selenide at 400°F and 600 psig. Based on current testing, the noncarbon metal-based sorbents appear to be the most effective arsine

  3. Effect of long- and short-term exposure to laser light at 1070 nm on growth of Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Aabo, Thomas; Perch-Nielsen, Ivan R.; Dam, Jeppe Seidelin

    2010-01-01

    The effect of a 1070-nm continuous and pulsed wave ytterbium fiber laser on the growth of Saccharomyces cerevisiae single cells is investigated over a time span of 4 to 5 h. The cells are subjected to optical traps consisting of two counterpropagating plane wave beams with a uniform flux along th...

  4. Optical properties of ion beam modified waveguide materials doped with erbium and silver

    NARCIS (Netherlands)

    Strohhöfer, C. (Christof)

    2001-01-01

    In the first part of this thesis we investigate codoping of erbium-doped waveguide materials with different ions in order to increase the efficiency of erbium-doped optical amplifiers. Codoping with ytterbium can overcome the limitations due to the small absorption cross section of Er3+ in Al2O3 at

  5. Millijoule Pulse Energy Second Harmonic Generation With Single-Stage Photonic Bandgap Rod Fiber Laser

    DEFF Research Database (Denmark)

    Laurila, Marko; Saby, Julien; Alkeskjold, Thomas Tanggaard

    2011-01-01

    In this paper, we demonstrate, for the first time, a single-stage Q-switched single-mode (SM) ytterbium-doped rod fiber laser delivering record breaking pulse energies at visible and UV light. We use a photonic bandgap rod fiber with a mode field diameter of 59μm based on a new distributed...

  6. XAFS studies of ytterbium doped lead-telluride

    International Nuclear Information System (INIS)

    Radisavljevic, I.; Novakovic, N.; Romcevic, N.; Manasijevic, M.; Mahnke, H.-E.; Ivanovic, N.

    2010-01-01

    X-ray Absorption Fine Structure (XAFS) measurements were performed on uniformly doped PbTe:Yb (1.3 at.%) at all elemental absorption edges and the analysis of the results has provided precise information on the local structure around each atom. From the near edge part of the absorption spectra it was determined that Yb is in the mixed valent state, which is predominantly divalent with a small trivalent contribution. The analysis of the high energy region of the absorption spectra revealed that Yb incorporation causes deformation of the host PbTe lattice, manifested through extension of all the nearest-, and next-nearest neighbour distances.

  7. Efficient diode pumped ytterbium-doped fibre laser

    Czech Academy of Sciences Publication Activity Database

    Harun, S.W.; Paul, M.C.; Moghaddam, M.R.A.; Das, S.; Sen, R.; Dhar, Anirban; Pal, M.; Bhadra, S.K.; Ahmad, H.

    2010-01-01

    Roč. 46, č. 1 (2010), s. 68-69 ISSN 0013-5194 Institutional research plan: CEZ:AV0Z20670512 Keywords : Fibre lasers * Oscillator * Diode-pumped Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.001, year: 2010

  8. Radiation Effects on Ytterbium-doped Optical Fibers

    Science.gov (United States)

    2014-06-02

    conducted on Er- doped fiber amplifiers (Lezius, et al., 2012; Ahrens, et al., 1999; Ahrens, Jaques , LuValle, DiGiovanni, & Windeler, 2001; Ott, 2004...Ahrens, R. G., Abate, J. A., Jaques , J. J., Presby, H. M., Fields, A. B., DiGiovanni, D. J., LuValle, M. J. (1999). Radiation reliability of rare... Jaques , J. J., LuValle, M. J., DiGiovanni, D. J., & Windeler, R. S. (2001). Radiation effects on optical fibers and amplifiers. Testing, Reliability

  9. Cathodoluminescence study of ytterbium doped GaSb

    International Nuclear Information System (INIS)

    Hidalgo, P.; Mendez, B.; Ruiz, C.; Bermudez, V.; Piqueras, J.; Dieguez, E.

    2005-01-01

    Yb-doped GaSb ingots have been grown by the Bridgman method. The defect structure and compositional homogeneity of the crystals have been investigated by cathodoluminescence and X-ray microanalysis in the scanning electron microscope. The nature of the point defects has been found to depend on the position along the growth axis. Doping with Yb has been found to reduce the luminescence intensity of GaSb and no infrared emission related to intra-ionic transitions of the Yb 3+ ions has been detected

  10. Ytterbium-Phosphate Glass for Microstructured Fiber Laser

    Directory of Open Access Journals (Sweden)

    Ryszard Stępień

    2014-06-01

    Full Text Available In the paper, we report on the development of a synthesis and melting method of phosphate glasses designed for active microstructured fiber manufacturing. Non-doped glass synthesized in a P2O5-Al2O3-BaO-ZnO-MgO-Na2O oxide system served as the matrix material; meanwhile, the glass was doped with 6 mol% (18 wt% of Yb2O3, as fiber core. The glasses were well-fitted in relation to optical (refractive index and thermal proprieties (thermal expansion coefficient, rheology. The fiber with the Yb3+-doped core, with a wide internal photonic microstructure for a laser pump, as well as with a high relative hole size in the photonic outer air-cladding, was produced. The laser built on the basis of this fiber enabled achieving 8.07 W of output power with 20.5% slope efficiency against the launched pump power, in single-mode operation M2 = 1.59, from a 53 cm-long cavity.

  11. Effect of quantum confinement on the dielectric function of PbSe

    NARCIS (Netherlands)

    Hens, Z.; Vanmaekelbergh, D.; Kooij, Ernst S.; Wormeester, Herbert; Allan, G.; Delerue, C.

    2004-01-01

    Monolayers of lead selenide nanocrystals of a few nanometers in height have been made by electrodeposition on a Au(111) substrate. These layers show a thickness-dependent dielectric function, which was determined using spectroscopic ellipsometry. The experimental results are compared with electronic

  12. Rapid Surface Oxidation as a Source of Surface Degradation Factor for Bi 2 Se 3

    KAUST Repository

    Kong, Desheng; Cha, Judy J.; Lai, Keji; Peng, Hailin; Analytis, James G.; Meister, Stefan; Chen, Yulin; Zhang, Hai-Jun; Fisher, Ian R.; Shen, Zhi-Xun; Cui, Yi

    2011-01-01

    Bismuth selenide (Bi2Se3) is a topological insulator with metallic surface states (SS) residing in a large bulk bandgap. In experiments, synthesized Bi2Se3 is often heavily n-type doped due to selenium vacancies. Furthermore, it is discovered from

  13. Hyperbranched polyether hybrid nanospheres with CdSe quantum dots incorporated for selective detection of nitric oxide

    DEFF Research Database (Denmark)

    Liu, Shuiping; Jin, Lanming; Chronakis, Ioannis S.

    2014-01-01

    In this work, hybrid nanosphere vehicles consisting of cadmium selenide quantum dots (CdSe QDs) were synthesized for nitric oxide (NO) donating and real-time detecting. The nanospheres with QDs being encapsulation have spherical outline with dimension of ~127 nm. The fluorescence properties...

  14. Bulletin of Materials Science | News

    Indian Academy of Sciences (India)

    Synthesis, characterization and electrochemical performance of Li 2 Ni x Fe 1 ..... Two-dimensional cadmium selenide electronic and optical properties: first ...... Fabrication of low specific resistance ceramic carbon composites by colloidal processing .... strategy: a redox state-controlled toxicity of cerium oxide nanoparticles.

  15. Retrograde tracing of zinc-enriched (ZEN) neuronal somata in rat spinal cord

    DEFF Research Database (Denmark)

    Wang, Z.; Danscher, G.; Jo, S.M.

    2001-01-01

    neurons have relatively short axons or boutons en passage close to the neuronal origin. Ultrastructurally, the retrogradely transported zinc selenide clusters were found in the lysosomes of ZEN somata and proximal dendrites. Electron microscopic studies also revealed two different kinds of ZEN terminals...

  16. Positron lifetime experiments in indium selenide

    International Nuclear Information System (INIS)

    Cruz, R.M. de la; Pareja, R.

    1988-01-01

    Positron lifetime experiments have been performed on as-grown samples which had been isochronally annealed up to 820 K and plastically deformed and these experiments yield a constant lifetime of 282 ± 2 ps which is attributed to bulk positron states in InSe. Electron-irradiated samples exhibit a two-component spectrum, revealing the presence of positron traps which anneal out at about 330 K. The nature of the native shallow donors in InSe is discussed in the light of the results, which support the idea that native donor centres are probably interstitial In atoms rather than Se vacancies. Positron trapping observed in the electron-irradiated samples is attributed to defects related to In vacancies. (author)

  17. Lead selenide quantum dot polymer nanocomposites

    Science.gov (United States)

    Waldron, Dennis L.; Preske, Amanda; Zawodny, Joseph M.; Krauss, Todd D.; Gupta, Mool C.

    2015-02-01

    Optical absorption and fluorescence properties of PbSe quantum dots (QDs) in an Angstrom Bond AB9093 epoxy polymer matrix to form a nanocomposite were investigated. To the authors’ knowledge, this is the first reported use of AB9093 as a QD matrix material and it was shown to out-perform the more common poly(methyl methacrylate) matrix in terms of preserving the optical properties of the QD, resulting in the first reported quantum yield (QY) for PbSe QDs in a polymer matrix, 26%. The 1-s first excitonic absorption peak of the QDs in a polymer matrix red shifted 65 nm in wavelength compared to QDs in a hexane solution, while the emission peak in the polymer matrix red shifted by 38 nm. The fluorescence QY dropped from 55% in hexane to 26% in the polymer matrix. A time resolved fluorescence study of the QDs showed single exponential lifetimes of 2.34 and 1.34 μs in toluene solution and the polymer matrix respectively.

  18. Mercury Cadmium Selenide for Infrared Detection

    Science.gov (United States)

    2013-06-01

    were grown using elemental mercury (Hg), cadmium (Cd), and selenium (Se) sources. The beam equiva- lent pressure ( BEP ) emanating from all sources was...flux), the BEP measured for the cracker source was found to vary with the cracking zone temperature, tracking with the data found in Ref. 7. This sug...The Se BEP measured for the typical cracking zone temperature of 800 C was found to be close to a factor of two lower than at the typical effusion cell

  19. Interferometric investigation and simulation of refractive index in glass matrixes containing nanoparticles of varying sizes

    Energy Technology Data Exchange (ETDEWEB)

    Feeney, Michael Gerard; Ince, Rabia; Yukselici, Mehmet Hikmet; Allahverdi, Cagdas

    2011-07-01

    The relationship between refractive index and nanoparticle radii of cadmium selenide (CdSe) nanoparticles embedded within glass matrixes was investigated experimentally and by simulations. A homemade automated Michelson interferometer arrangement employing a rotating table and a He-Ne laser source at a wavelength of 632.8 nm determined the refractive index versus nanoparticle radii of embedded cadmium selenide (CdSe) nanoparticles. The refractive index was found to decrease linearly with nanoparticle radius increase. However, one sample showed a step increase in refractive index; on spectroscopic analysis, it was found that its resonant wavelength matched that of the He-Ne source wavelength. The simulations showed that two conditions caused the step increase in refractive index: low plasma frequency and matched sample and source resonances. This simple interferometer setup defines a new method of determining the radii of nanoparticles embedded in substrates and enables refractive index tailoring by modification of exact annealing conditions.

  20. Thermoelectric materials evaluation program. Quarterly technical task report No. 46

    International Nuclear Information System (INIS)

    Hampl, E.F. Jr.

    1976-02-01

    This forty-sixth Technical Task Report prepared under contract E(11-1)-2331 with the U.S. AEC and U.S. ERDA covers the performance period from October 1, 1975, to December 31, 1975. Highlights include the following tasks: N-type material development (material synthesis--gadolinium selenide compositions; material analyses; material processing; element contacting; ingradient compatibility and life testing; mechanical property characterization), TPM-217 P-type characterization (material preparation and analyses; element contacting; thermodynamic stability; isothermal chemical compatibility; ingradient compatibility and ingradient life testing; performance mapping of contacted and noncontacted elements; high-temperature partitioned P-legs), couple development (design and development of TPM-217/gadolinium selenide rare earth chalcogenide couple; design and development of TPM-217/3N-PbTe couples; advanced generator concepts), module development, liaison with Jet Propulsion Laboratory and material supply, liaison with GGA, and program management. 24 figures, 27 tables

  1. A probabilistic model of the electron transport in films of nanocrystals arranged in a cubic lattice

    Energy Technology Data Exchange (ETDEWEB)

    Kriegel, Ilka [Department of Nanochemistry, Istituto Italiano di Tecnologia (IIT), via Morego, 30, 16163 Genova (Italy); Scotognella, Francesco, E-mail: francesco.scotognella@polimi.it [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy); Center for Nano Science and Technology@PoliMi, Istituto Italiano di Tecnologia, Via Giovanni Pascoli, 70/3, 20133 Milan (Italy)

    2016-08-01

    The fabrication of nanocrystal (NC) films, starting from colloidal dispersion, is a very attractive topic in condensed matter physics community. NC films can be employed for transistors, light emitting diodes, lasers, and solar cells. For this reason the understanding of the film conductivity is of major importance. In this paper we describe a probabilistic model that allows the prediction of the conductivity of NC films, in this case of a cubic lattice of Lead Selenide or Cadmium Selenide NCs. The model is based on the hopping probability between NCs. The results are compared to experimental data reported in literature. - Highlights: • Colloidal nanocrystal (NC) film conductivity is a topic of major importance. • We present a probabilistic model to predict the electron conductivity in NC films. • The model is based on the hopping probability between NCs. • We found a good agreement between the model and data reported in literature.

  2. Semiconductor materials for solar photovoltaic cells

    CERN Document Server

    Wong-Ng, Winnie; Bhattacharya, Raghu

    2016-01-01

    This book reviews the current status of semiconductor materials for conversion of sunlight to electricity, and highlights advances in both basic science and manufacturing.  Photovoltaic (PV) solar electric technology will be a significant contributor to world energy supplies when reliable, efficient PV power products are manufactured in large volumes at low cost.  Expert chapters cover the full range of semiconductor materials for solar-to-electricity conversion, from crystalline silicon and amorphous silicon to cadmium telluride, copper indium gallium sulfide selenides, dye sensitized solar cells, organic solar cells, and environmentally friendly copper zinc tin sulfide selenides. The latest methods for synthesis and characterization of solar cell materials are described, together with techniques for measuring solar cell efficiency. Semiconductor Materials for Solar Photovoltaic Cells presents the current state of the art as well as key details about future strategies to increase the efficiency and reduce ...

  3. C-type Nd2Se3

    Directory of Open Access Journals (Sweden)

    2009-03-01

    Full Text Available The title compound, neodymium sesquiselenide, is isotypic with the other known rare-earth metal(III selenides M2Se3 (M = La–Pr and Sm–Lu with the cubic C-type structure. It adopts a cation-defective Th3P4-type arrangement with close to 8/9 of the unique neodymium-cation site occupied, leading to the composition Nd2.667Se4 (Z = 4 or Nd2Se3 (Z = 5.333, respectively. The Nd3+ cations are thus surrounded by eight selenide anions, forming trigonal [NdSe8]13− dodecahedra, whereas the Se2− anions exhibit a sixfold coordination, but due to the under-occupation of neodymium, each one is statistically surrounded by only 5.333 cations. The crystal studied was a merohedral twin with a 0.31 (6:0.69 (6 domain ratio.

  4. Pump radiation distribution in multi-element first cladding laser fibres

    International Nuclear Information System (INIS)

    Mel'kumov, Mikhail A; Bufetov, Igor' A; Bubnov, M M; Shubin, Aleksei V; Semenov, S L; Dianov, Evgenii M

    2005-01-01

    Pump radiation transfer is studied experimentally in multi-element first cladding laser fibres. A model of this process is proposed, which is in good agreement with experimental results. An all-fibre single-mode cw ytterbium laser based on a three-element first cladding fibre with an output power of 100W is fabricated. (lasers)

  5. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics. B N Upadhyay. Articles written in Pramana – Journal of Physics. Volume 82 Issue 1 January 2014 pp 143-146 Contributed Papers. Erbium–ytterbium fibre laser emitting more than 13W of power in 1.55 m region · Srikanth Gurram Antony Kuruvilla Rajpal Singh Blacius Ekka ...

  6. ACRT technique for the single crystal growth of the heavy fermion compound YbRh{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Sebastian; Kliemt, Kristin; Butzke, Constantin; Krellner, Cornelius [Goethe University Frankfurt, 60438 Frankfurt am Main (Germany)

    2016-07-01

    In the heavy fermion compound YbRh{sub 2}Si{sub 2} the antiferromagnetic ordering below 70 mK close to a quantum critical point is well-studied. Beneath the magnetic ordering a new phase transition was found recently at 2 mK. It is necessary to prepare large and high-quality single crystals for studying the nature of this new phase transition. Besides the optimization of the single crystal growth it is important to investigate single crystals with different isotopes at this phase transition. Here, we report the crystal growth of YbRh{sub 2}Si{sub 2} with the accelerated crucible rotation technique (ACRT). ACRT shows for other compounds, e.g. YAG (yttrium aluminum garnet, Y{sub 3}Al{sub 5}O{sub 12}), that this technique can reduce flux impurities and enhance the yield of larger crystals. We also report the attempt to receive metallic isotopes of ytterbium with metallothermic reduction. Crystals with different isotopes of silicon and ytterbium can be used for NMR measurements to investigate the underlying phenomena of quantum criticality in more detail.

  7. Fingermark detection on non-porous and semi-porous surfaces using YVO4:Er,Yb luminescent upconverting particles.

    Science.gov (United States)

    Ma, Rongliang; Shimmon, Ronald; McDonagh, Andrew; Maynard, Philip; Lennard, Chris; Roux, Claude

    2012-04-10

    This article describes the use of an anti-Stokes luminescent material (upconverter), yttrium vanadate doped with ytterbium and erbium (YVO(4):Er,Yb), for the development of latent fingermarks on a range of non-porous surfaces. Anti-Stokes luminescent materials emit light at shorter wavelengths than the excitation wavelength. This property is unusual in both natural and artificial materials commonly found as exhibits in forensic science casework. As a result, fingermark detection techniques based on anti-Stokes luminescence are potentially extremely sensitive and selective. Latent fingermarks on non-luminescent and inherently luminescent substrates, including Australian polymer banknotes (a well-known 'difficult' surface), were developed with YVO(4):Er,Yb by dry powder and wet powder techniques. The effectiveness of YVO(4):Er,Yb for fingermark detection was compared with that of cyanoacrylate fuming and of sodium yttrium tetrafluoride doped with ytterbium and erbium (NaYF(4):Er,Yb). The results illustrate some benefit of luminescent up-converting phosphors over traditional luminescence techniques for the detection of latent fingermarks. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  8. Effect of increasing tellurium content on the electronic and optical properties of cadmium selenide telluride alloys CdSe{sub 1-x}Te{sub x}: An ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, Ali Hussain, E-mail: maalidph@yahoo.co.uk [Institute of Physical Biology-South Bohemia University, Nove Hrady 37333 (Czech Republic); School of Material Engineering, Malaysia University of Perlis, P.O Box 77, d/a Pejabat Pos Besar, 01007 Kangar, Perlis (Malaysia); Kityk, I.V. [Electrical Engineering Department, Technical University of Czestochowa, Al. Armii Krajowej 17/19, Czestochowa (Poland); Khenata, R. [Laboratoire de Physique Quantique et de Modelisation Mathematique de la Matiere (LPQ3 M), universite de Mascara, Mascara 29000 (Algeria); Department of Physics and Astronomy, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Auluck, S. [National Physical Laboratory Dr. K S Krishnan Marg, New Delhi 110012 (India)

    2011-06-16

    Highlights: > Theoretical study of effect of vary Te content on band structure, density of states, linear and nonlinear optical susceptibilities of CdSe{sub 1-x}Te{sub x}. > Increasing Te content leads to a decrease in the energy band gap. > Significant enhancement of the electronic properties as a function of tellurium concentration - Abstract: An all electron full potential linearized augmented plane wave method, within a framework of GGA (EV-GGA) approach, has been used for an ab initio theoretical study of the effect of increasing tellurium content on the band structure, density of states, and the spectral features of the linear and nonlinear optical susceptibilities of the cadmium-selenide-telluride ternary alloys CdSe{sub 1-x}Te{sub x} (x = 0.0, 0.25, 0.5, 0.75 and 1.0). Our calculations show that increasing Te content leads to a decrease in the energy band gap. We find that the band gaps are 0.95 (1.76), 0.89 (1.65), 0.83 (1.56), 0.79 (1.44) and 0.76 (1.31) eV for x = 0.0, 0.25, 0.5, 0.75 and 1.0 in the cubic structure. As these alloys are known to have a wurtzite structure for x less than 0.25, the energy gaps are 0.8 (1.6) eV and 0.7 (1.55) eV for the wurtzite structure (x = 0.0, 0.25) for the GGA (EV-GGA) exchange correlation potentials. This reduction in the energy gaps enhances the functionality of the CdSe{sub 1-x}Te{sub x} alloys, at least for these concentrations, leading to an increase in the effective second-order susceptibility coefficients from 16.75 pm/V (CdSe) to 18.85 pm/V (CdSe{sub 0.75}Te{sub 0.25}), 27.23 pm/V (CdSe{sub 0.5}Te{sub 0.5}), 32.25 pm/V (CdSe{sub 0.25}Te{sub 0.75}), and 37.70 pm/V (CdTe) for the cubic structure and from 12.65 pm/V (CdSe) to 21.11 pm/V (CdSe{sub 0.75}Te{sub 0.25}) in the wurtzite structure. We find a nonlinear relationship between the absorption/emission energies and composition, and a significant enhancement of the electronic properties as a function of tellurium concentration. This variation will help in

  9. Above-CMOS a-Si and CIGS Solar Cells for Powering Autonomous Microsystems

    NARCIS (Netherlands)

    Lu, J.; Liu, W.; van der Werf, C.H.M.; Kovalgin, A.Y.; Sun, Y.; Schropp, R.E.I.; Schmitz, J.

    2010-01-01

    Two types of solar cells are successfully grown on chips from two CMOS generations. The efficiency of amorphous-silicon (a-Si) solar cells reaches 5.2%, copperindium-gallium-selenide (CIGS) cells 7.1%. CMOS functionality is unaffected. The main integration issues: adhesion, surface topography, metal

  10. A Biphasic Ligand Exchange Reaction on Cdse Nanoparticles: Introducing Undergraduates to Functionalizing Nanoparticles for Solar Cells

    Science.gov (United States)

    Zemke, Jennifer M.; Franz, Justin

    2016-01-01

    Semiconductor nanoparticles, including cadmium selenide (CdSe) particles, are attractive as light harvesting materials for solar cells. In the undergraduate laboratory, the size-tunable optical and electronic properties can be easily investigated; however, these nanoparticles (NPs) offer another platform for application-based tunability--the NP…

  11. Hakite from Příbram, Czech Republic: compositional variability, crystal structure and the role in Se mineralization

    Czech Academy of Sciences Publication Activity Database

    Škácha, P.; Sejkora, J.; Palatinus, Lukáš; Makovicky, E.; Plášil, Jakub; Macek, I.; Goliáš, V.

    2016-01-01

    Roč. 80, č. 6 (2016), s. 1115-1128 ISSN 0026-461X Institutional support: RVO:68378271 Keywords : hakite * selenides * tetrahedrite group * crystal structure * Příbram * uranium district * analyses * diffraction data Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.285, year: 2016

  12. Sythesis of rare earth metal - GIC graphite intercalation compound in molten chloride system

    International Nuclear Information System (INIS)

    Ito, Masafumi; Hagiwara, Rika; Ito, Yasuhiko

    1994-01-01

    Graphite intercalation compounds of ytterbium and neodymium have been prepared by interacting graphite and metals in molten chlorides. These rare earth metals can be suspended in molten chlorides in the presence of trichlorides via disproportionation reaction RE(0) + RE(III) = 2RE(II) at lower than 300 degC. Carbides-free compounds are obtained in these systems. (author)

  13. Monolithic two-terminal hybrid a-Si:H/CIGS tandem cells

    NARCIS (Netherlands)

    Blanker, J.; Vroon, Z.; Zeman, M.; Smets, A.

    2016-01-01

    Copper-indium-gallium-di-selenide (CIGS) is the present record holder in lab-scale thin-film photovoltaics (TFPV). One of the problems of this PV technology is the scarcity of indium. Multi-junction solar cells allow better spectral utilization of the light spectrum, while the required current

  14. Thin-Film Photovoltaic Cells: Long-Term Metal(loid) Leaching at Their End-of-Life

    NARCIS (Netherlands)

    Zimmermann, Y.S.; Schäffer, A.; Corvini, P.F.X.; Lenz, M.

    2013-01-01

    The photovoltaic effect of thin-film copper indium gallium selenide cells (CIGS) is conferred by the latter elements. Organic photovoltaic cells (OPV), relying on organic light-absorbing molecules, also contain a variety of metals (e.g., Zn, Al, In, Sn, Ag). The environmental impact of such

  15. Method of making metal-chalcogenide photosensitive devices

    International Nuclear Information System (INIS)

    Kazacos, M.S.; Miller, B.

    1981-01-01

    We have found that a photoactive metal selenide film, such as cdse, may be formed by cathodic eletrodeposition from a selenosulfite (Seso32-) solution without the need for a subsequent heat treating step which, it is hypothesized, was required by the simultaneous deposition of elemental selenium

  16. Exploring FeSe-based superconductors by liquid ammonia method

    International Nuclear Information System (INIS)

    Ying Tian-Ping; Wang Gang; Jin Shi-Feng; Shen Shi-Jie; Zhang Han; Zhou Ting-Ting; Lai Xiao-Fang; Wang Wan-Yan; Chen Xiao-Long

    2013-01-01

    Our recent progress on the preparation of a series of new FeSe-based superconductors and the clarification of SC phases in potassium-intercalated iron selenides are reviewed here. By the liquid ammonia method, metals Li, Na, Ca, Sr, Ba, Eu, and Yb are intercalated in between FeSe layers and form superconductors with transition temperatures of 30 K∼46 K, which cannot be obtained by high-temperature routes. In the potassium-intercalated iron selenides, we demonstrate that at least two SC phases exist, K x Fe 2 Se 2 (NH 3 ) y (x ≈ 0.3 and 0.6), determined mainly by the concentration of potassium. NH 3 has little, if any, effect on superconductivity, but plays an important role in stabilizing the structures. All these results provide a new starting point for studying the intrinsic properties of this family of superconductors, especially for their particular electronic structures. (topical review - iron-based high temperature superconductors)

  17. Investigating different mechanisms for biogenic selenite transformations: Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica

    Science.gov (United States)

    Pearce, C.I.; Pattrick, R.A.D.; Law, N.; Charnock, J.M.; Coker, V.S.; Fellowes, J.W.; Oremland, R.S.; Lloyd, J.R.

    2009-01-01

    The metal-reducing bacteria Geobacter sulfurreducens, Shewanella oneidensis and Veillonella atypica, use different mechanisms to transform toxic, bioavailable sodium selenite to less toxic, non-mobile elemental selenium and then to selenide in anaerobic environments, offering the potential for in situ and ex situ bioremediation of contaminated soils, sediments, industrial effluents, and agricultural drainage waters. The products of these reductive transformations depend on both the organism involved and the reduction conditions employed, in terms of electron donor and exogenous extracellular redox mediator. The intermediary phase involves the precipitation of elemental selenium nanospheres and the potential role of proteins in the formation of these structures is discussed. The bionanomineral phases produced during these transformations, including both elemental selenium nanospheres and metal selenide nanoparticles, have catalytic, semiconducting and light-emitting properties, which may have unique applications in the realm of nanophotonics. This research offers the potential to combine remediation of contaminants with the development of environmentally friendly manufacturing pathways for novel bionanominerals. ?? 2009 Taylor & Francis.

  18. Electrometallurgy of copper refinery anode slimes

    Science.gov (United States)

    Scott, J. D.

    1990-08-01

    High-selenium copper refinery anode slimes form two separate and dynamically evolving series of compounds with increasing electrolysis time. In one, silver is progressively added to non-stoichiometric copper selenides, both those originally present in the anode and those formed subsequently in the slime layer, and in the other, silver-poor copper selenides undergo a dis-continuous crystallographic sequence of anodic-oxidative transformations. The silver-to-selenium molar ratio in the as-cast anode and the current density of electrorefining can be used to construct predominance diagrams for both series and, thus, to predict the final bulk “mineralogy” of the slimes. Although totally incorrect in detail, these bulk data are sufficiently accurate to provide explanations for several processing problems which have been experienced by Kidd Creek Division, Falconbridge Ltd., in its commercial tankhouse. They form the basis for a computer model which predicts final cathode quality from chemical analyses of smelter feed.

  19. Formation of a Colloidal CdSe and ZnSe Quantum Dots via a Gamma Radiolytic Technique

    Directory of Open Access Journals (Sweden)

    Aeshah Salem

    2016-09-01

    Full Text Available Colloidal cadmium selenide (CdSe and zinc selenide (ZnSe quantum dots with a hexagonal structure were synthesized by irradiating an aqueous solution containing metal precursors, poly (vinyl pyrrolidone, isopropyl alcohol, and organic solvents with 1.25-MeV gamma rays at a dose of 120 kGy. The radiolytic processes occurring in water result in the nucleation of particles, which leads to the growth of the quantum dots. The physical properties of the CdSe and ZnSe nanoparticles were measured by various characterization techniques. X-ray diffraction (XRD was used to confirm the nanocrystalline structure, energy-dispersive X-ray spectroscopy (EDX was used to estimate the material composition of the samples, transmission electron microscopy (TEM was used to determine the morphologies and average particle size distribution, and UV-visible spectroscopy was used to measure the optical absorption spectra, from which the band gap of the CdSe and ZnSe nanoparticles could be deduced.

  20. Preparation and thermopower of new mischmetal-based partially filled skutterudites Mm yFe4-x(Co/Ni) xSb12

    International Nuclear Information System (INIS)

    Bourgoin, B.; Berardan, D.; Alleno, E.; Godart, C.; Rouleau, O.; Leroy, E.

    2005-01-01

    We report on sample preparation and electron probe microanalysis (EPMA) in the series Mm y Fe 4-x (Co/Ni) x Sb 12 with Mm being mischmetal. We show the possibility of preparing mischmetal-based partially filled skutterudites without any segregation of the rare-earths. Room temperature thermopower is similar in mischmetal-based skutterudites to cerium- or ytterbium-based partially filled skutterudites

  1. Test plan for air monitoring during the Cryogenic Retrieval Demonstration

    International Nuclear Information System (INIS)

    Yokuda, E.

    1992-06-01

    This report presents a test plan for air monitoring during the Cryogenic Retrieval Demonstration (CRD). Air monitors will be used to sample for the tracer elements neodymium, terbium, and ytterbium, and dysprosium. The results from this air monitoring will be used to determine if the CRD is successful in controlling dust and minimizing contamination. Procedures and equipment specifications for the test are included

  2. High repetition rate, high energy, actively Q-switched all-in-fiber laser

    Science.gov (United States)

    Lecourt, J. B.; Bertrand, A.; Guillemet, S.; Hernandez, Y.; Giannone, D.

    2010-05-01

    We report an actively Q-switched Ytterbium-doped all-in-fibre laser delivering 10ns pulses with high repetition rate (from 100kHz to 1MHz). The laser operation has been validated at three different wavelengths (1040, 1050 and 1064nm). The laser can deliver up to 20Watts average power with an high beam quality (M2 = 1).

  3. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    2014-02-14

    Feb 14, 2014 ... In this paper we report linearly polarized high average power passive Q-switched ytterbium-doped photonic crystal fibre laser with a Cr4+:YAG crystal as a saturable absorber. An average output power of 9.4 W with pulse duration of 64 ns and pulse repetition rate of 57.4 kHz with a slope efficiency of 52% ...

  4. Journal of Chemical Sciences | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The effect of ytterbium substitution at the lanthanum site on the superconducting properties of La1-YbO0.8F0.2FeAs ( = 0.10, 0.20 and 0.30) oxypnictides has been investigated. Powder X-ray diffraction studies show the presence of Yb2O3 and LaOF as secondary phases. The superconducting transition temperature ...

  5. Lifetimes Measurements in 160Yb,162Yb,164Yb,166Yb,168Yb

    International Nuclear Information System (INIS)

    Araddad, S. Y.; El-barouni, A. M.; Rateb, G. M.; Mosbah, D. S.; Elahrash, M. S.; Sergiwa, S. M.

    2004-01-01

    From our measurements of the lifetimes of high spin states in 168 Yb along with the published lifetime data for the nearby even even ytterbium isotopes, 160-168 Yb using the Recoil Distance Method (RDM) and the Doppler Shift Attenuation Method (DSAM) present a great opportunity to probe systematically the relationship between the nuclear shape changes and the reduction in collectivity. (authors)

  6. Heavy stable isotope separation by ion cyclotron resonance

    International Nuclear Information System (INIS)

    Louvet, P.; Compant La Fontaine, A.; Larousse, B.; Patris, M.

    1994-01-01

    The scientific feasibility of the ion cyclotron resonance process (ICR), as well as the technical one, has been investigated carefully for light metallic elements, whose masses lies between 40 and 100/1,2/. The present work deals mainly with the same demonstration for heavier elements such as ytterbium, gadolinium and barium. Recent results, as well as future prospects, are considered here. (authors)

  7. Permingeatite Cu.sub.3./sub.SbSe.sub.4./sub., from Příbram (Czech Republic): description and Raman spectroscopy investigations of the luzonite-subgroup of minerals

    Czech Academy of Sciences Publication Activity Database

    Škácha, P.; Buixaderas, Elena; Plášil, Jakub; Sejkora, J.; Goliáš, V.; Vlček, V.

    2014-01-01

    Roč. 52, č. 3 (2014), s. 501-511 ISSN 0008-4476 R&D Projects: GA ČR GP13-31276P Institutional support: RVO:68378271 Keywords : permingeatite * luzonite subgroup * Raman spectroscopy * reflectance * selenide minerals * Příbram * Czech Republic Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.181, year: 2014

  8. Rakesh Dhar

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science. Rakesh Dhar. Articles written in Bulletin of Materials Science. Volume 38 Issue 5 September 2015 pp 1247-1252. Effect of capping agents on optical and antibacterial properties of cadmium selenide quantum dots · Deepika Rakesh Dhar Suman Singh Atul Kumar · More Details ...

  9. Effect of capping agents on optical and antibacterial properties

    Indian Academy of Sciences (India)

    Cadmium selenide quantum dots (CdSe QDs) were synthesized in aqueous phase by the freezing temperature injection technique using different capping agents (viz. thioglycolic acid, 1-thioglycerol, L-cysteine). Absorption spectra of CdSe QDs exhibited a blue shift as compared to its bulk counterpart, which is an indication ...

  10. Decamethylytterbocene Complexes of Bipyridines and Diazabutadienes: Multiconfigurational Ground States and Open-Shell Singlet Formation

    Energy Technology Data Exchange (ETDEWEB)

    Booth, Corwin H.; Walter, Marc D.; Kazhdan, Daniel; Hu, Yung-Jin; Lukens, Wayne W.; Bauer, Eric D.; Maron, Laurent; Eisenstein, Odile; Andersen, Richard A.

    2009-04-22

    Partial ytterbium f-orbital occupancy (i.e., intermediate valence) and open-shell singlet formation are established for a variety of bipyridine and diazabutadiene adducts with decamethylytterbocene, (C5Me5)2Yb, abbreviated as Cp*2Yb. Data used to support this claim include ytterbium valence measurements using Yb LIII-edge X-ray absorption near-edge structure spectroscopy, magnetic susceptibility, and complete active space self-consistent field (CASSCF) multiconfigurational calculations, as well as structural measurements compared to density functional theory calculations. The CASSCF calculations indicate that the intermediate valence is the result of a multiconfigurational ground-state wave function that has both an open-shell singlet f13(?*)1, where pi* is the lowest unoccupied molecular orbital of the bipyridine or dpiazabutadiene ligands, and a closed-shell singlet f14 component. A number of other competing theories for the unusual magnetism in these materials are ruled out by the lack of temperature dependence of the measured intermediate valence. These results have implications for understanding chemical bonding not only in organolanthanide complexes but also for f-element chemistry in general, as well as understanding magnetic interactions in nanoparticles and devices.

  11. Decamethylytterbocene complexes of bipyridines and diazabutadines: multiconfigurational ground states and open-shell singlet formation

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Eric D [Los Alamos National Laboratory; Booth, C H [LBNL; Walter, M D [LBNL; Kazhdan, D [LBNL; Hu, Y - J [LBNL; Lukens, Wayne [LBNL; Maron, Laurent [INSA TOULOUSE; Eisentein, Odile [UNIV MONTPELLIER 2; Anderson, Richard [LBNL

    2009-01-01

    Partial ytterbium f-orbital occupancy (i.e. intermediate valence) and open-shell singlet Draft 12/formation are established for a variety of bipyridine and diazabutadiene adducts to decamethylytterbocene, (C{sub 5}Me{sub 5}){sub 2}Yb or Cp*{sub 2}Yb. Data used to support this claim includes ytterbium valence measurements using Yb Lm-edge x-ray absorption near-edge structure (XANES) spectroscopy, magnetic susceptibility and Complete Active Space Self-Consistent Field (CASSCF) multi configurational calculations, as well as structural measurements compared to density-functional theory (DFT) calculations. The CASSCF calculations indicate that the intermediate valence is the result of a multiconfigurational ground state wave function that has both an open-shell singlet f{sup 13} and a closed-shell singlet f{sup 14} component. A number of other competing theories for the unusual magnetism in these materials are ruled out by the presence of intermediate valence and its lack of any significant temperature dependence. These results have implications for understanding chemical bonding not only in organolanthanide complexes, but also for organometallic chemistry in general, as well as understanding magnetic interactions in nanopartic1es and devices.

  12. Manhattan Project Technical Series: The Chemistry of Uranium (I)

    International Nuclear Information System (INIS)

    Rabinowitch, E. I.; Katz, J. J.

    1947-01-01

    This constitutes Chapters 11 through 16, inclusive, of the Survey Volume on Uranium Chemistry prepared for the Manhattan Project Technical Series. Chapters are titled: Uranium Oxides, Sulfides, Selenides, and Tellurides; The Non-Volatile Fluorides of Uranium; Uranium Hexafluoride; Uranium-Chlorine Compounds; Bromides, Iodides, and Pseudo-Halides of Uranium; and Oxyhalides of Uranium.

  13. New semiconductor scintillators ZnSe(Te,O) and integrated radiation detectors based thereon

    NARCIS (Netherlands)

    Ryzhikov, [No Value; Starzhinskiy, N; Gal'chinetskii, L; Gashin, P; Kozin, D; Danshin, E

    Data are presented on properties of a new type of scintillator based on isovalently doped crystals of zinc selenide. Depending upon concentration of activating dopants Te and O, the wavelength of the luminescence maximum is 590-640 nm, response time is 1-50 mus, and afterglow level after 5 ms is not

  14. Surfactant free metal chalcogenides microparticles consisting of ...

    Indian Academy of Sciences (India)

    SANYASINAIDU GOTTAPU

    2017-11-11

    Nov 11, 2017 ... Metal chalcogenides; copper sulphide; copper selenide; micro flowers. 1. Introduction .... adding calculated quantity (2.7 mmol) of each acid separately. .... salts (LiCl, LiNO3, and LiOAc), and then hydride ions from (BH. − ... Concentration of metal .... hait A and Lim J Y 2016 Cation exchange synthesis of.

  15. Manhattan Project Technical Series: The Chemistry of Uranium (I)

    Energy Technology Data Exchange (ETDEWEB)

    Rabinowitch, E. I. [Argonne National Lab. (ANL), Argonne, IL (United States); Katz, J. J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    1947-03-10

    This constitutes Chapters 11 through 16, inclusive, of the Survey Volume on Uranium Chemistry prepared for the Manhattan Project Technical Series. Chapters are titled: Uranium Oxides, Sulfides, Selenides, and Tellurides; The Non-Volatile Fluorides of Uranium; Uranium Hexafluoride; Uranium-Chlorine Compounds; Bromides, Iodides, and Pseudo-Halides of Uranium; and Oxyhalides of Uranium.

  16. Cathodoluminescence | Materials Science | NREL

    Science.gov (United States)

    shown on a computer screen; the image of a sample semiconductor material appears as a striated oval material sample shown above; the image is a high-contrast light and dark oval on a dark background and was top left of copper indium gallium selenide semiconductor material sample; the image is shown on a

  17. Synthesis and molecular structure of YbI(bipy)(DME)2 complex

    International Nuclear Information System (INIS)

    Petrovskaya, T.V.; Fedyushkin, I.L.; Nevodchikov, V.I.; Bochkarev, M.N.; Borodina, N.V.; Eremenko, I.L.; Nefedov, S.E.

    1998-01-01

    The reaction of the ytterbium naphthaline complex [Yb(DME) 2 ] 2 (μ-C 10 H 8 ) with 2,2 ' -bipyridine in DME is found to lead to the formation of the complex with the Yb 2+ atom, YbI(bipy)(DME) 2 (1) containing 2,2 ' -bipyridine radical anion. Complex 1 is characterized by IR and UV spectroscopy, magnetic methods and X-ray analysis [ru

  18. Reversibility windows in selenide-based chalcogenide glasses

    International Nuclear Information System (INIS)

    Shpotyuk, O.; Hyla, M.; Boyko, V.; Golovchak, R.

    2008-01-01

    A simple route for the estimation of the reversibility windows in the sense of non-ageing ability is developed for chalcogenide glasses obeying '8-N' rule at the example of As-Se, Ge-Se and Ge-As-Se glass systems. The low limit of their reversibility windows is determined at the average coordination number Z=2.4 in full agreement with rigidity percolation theory, while the upper limit is shown to be related to the glass preparation conditions and samples prehistory

  19. Reversibility windows in selenide-based chalcogenide glasses

    Energy Technology Data Exchange (ETDEWEB)

    Shpotyuk, O. [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202, Stryjska Street, Lviv, UA 79031 (Ukraine); Institute of Physics of Jan Dlugosz University, 13/15, al. Armii Krajowej, Czestochowa, PL 42200 (Poland); Hyla, M. [Institute of Physics of Jan Dlugosz University, 13/15, al. Armii Krajowej, Czestochowa, PL 42200 (Poland); Boyko, V. [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202, Stryjska Street, Lviv, UA 79031 (Ukraine); Lviv National Polytechnic University, 12, Bandera Street, Lviv, UA 79013 (Ukraine); Golovchak, R. [Lviv Scientific Research Institute of Materials of SRC ' Carat' , 202, Stryjska Street, Lviv, UA 79031 (Ukraine)], E-mail: golovchak@novas.lviv.ua

    2008-10-01

    A simple route for the estimation of the reversibility windows in the sense of non-ageing ability is developed for chalcogenide glasses obeying '8-N' rule at the example of As-Se, Ge-Se and Ge-As-Se glass systems. The low limit of their reversibility windows is determined at the average coordination number Z=2.4 in full agreement with rigidity percolation theory, while the upper limit is shown to be related to the glass preparation conditions and samples prehistory.

  20. Short-range order of germanium selenide glass

    Indian Academy of Sciences (India)

    Carlo (RMC) simulations are useful to compute the partial pair distribution ... recent times,13 the sorption ability of Ge20Se80 thin films, ... and the structural configuration is adjusted so as to mini- ... it is accepted with probability exp(−(χ2 n − χ2.

  1. Fabrication of single-phase ε-GaSe films on Si(100) substrate by metal organic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chia-Chen; Zeng, Jia-Xian; Lan, Shan-Ming [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Uen, Wu-Yih, E-mail: uenwuyih@ms37.hinet.net [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Liao, Sen-Mao [Department of Electronic Engineering, College of Electrical Engineering and Computer Science, Chung Yuan Christian University, Chung-Li 32023, Taiwan (China); Yang, Tsun-Neng; Ma, Wei-Yang [Institute of Nuclear Energy Research, P.O. Box 3-11, Lungtan 32500, Taiwan (China); Chang, Kuo-Jen [Chung-Shan Institute of Science and Technology, No.15, Shi Qi Zi, Gaoping Village, Longtan Township, Taoyuan County, Taiwan (China)

    2013-09-02

    Single-phase ε-gallium selenide (GaSe) films were fabricated on Si(100) substrate by metal organic chemical vapor deposition using dual-source precursors: triethylgallium (TEG) and hydrogen selenide (H{sub 2}Se) with the flow ratio of [H{sub 2}Se]/[TEG] being maintained at 1.2. In particular, an arsine (AsH{sub 3}) flow was introduced to the Si substrate before the film deposition to induce an arsenic (As)-passivation effect on the substrate. The crystalline structure of GaSe films prepared was analyzed using X-ray diffraction and the surface morphology of them was characterized by scanning electron microscopy. It was found that the film quality could be improved by the As-passivation effect. The optical properties of the films were studied by temperature dependent photoluminescence (PL) measurements. PL spectra obtained with different distributions and intensities favored for resolving the superior material quality of the films produced on the substrate with As-passivation compared to those produced on the substrate without As-passivation. The former was dominated by the excitonic emissions for the whole temperature range of 20–300 K examined, while the latter was initially dominated by the defect-related emission at 1.907 eV for a low-temperature range ≦ 80 K and then became dominated by the weak excitonic emission band instead. The ε modification of GaSe films prepared was further recognized by the Raman scattering measurements conducted at room temperature. - Highlights: • Gallium selenide (GaSe) layered structures are fabricated on Si(100) substrate. • Metal–organic chemical vapor deposition is used for film fabrication. • Arsenic-passivation effects of Si substrate on the GaSe film quality are analyzed. • Photoluminescence measurements of GaSe polycrystals are reported.

  2. Structural investigation of the ZnSe(001)-c(2×2) surface

    DEFF Research Database (Denmark)

    Weigand, W.; Müller, A.; Kilian, L.

    2003-01-01

    Zinc selenide is a model system for II-VI compound semiconductors. The geometric structure of the clean (001)-c(2x2) surface has recently been the subject of intense debate. We report here a surface x-ray-diffraction study on the ZnSe(001)-c(2x2) surface performed under ultrahigh vacuum using...

  3. The Availability of Indium: The Present, Medium Term, and Long Term

    Energy Technology Data Exchange (ETDEWEB)

    Lokanc, Martin [Colorado School of Mines, Golden, CO (United States); Eggert, Roderick [Colorado School of Mines, Golden, CO (United States); Redlinger, Michael [Colorado School of Mines, Golden, CO (United States)

    2015-10-01

    Demand for indium is likely to increase if the growth in deployment of the copper-indium-gallium-selenide (CIGS) and III-V thin-film photovoltaic technologies accelerates. There are concerns about indium supply constraints since it is relatively rare element in the earth's crust and because it is produced exclusively as a byproduct.

  4. Estimation of the behaviors of selenium in the near field of repository

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seung Soo; Min, Jae Ho; Baik, Min Hoon; Kim, Gye Nam; Choi, Jong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2012-12-15

    The sorption of selenium ions onto iron and iron compounds as a disposal container material and its corrosion products, and onto bentonite as a buffer material, was studied to understand the behaviors of selenium in a waste repository. Selenite was sorbed onto commercial magnetite very well in solutions at around pH 9, but silicate hindered their sorption onto both magnetite and ferrite. Unlike commercial magnetite and ferrite, flesh synthesized magnetite, green rust and iron greatly decreased selenium concentration even in a silicate solution. These results might be due to the formation of precipitates, or the sorption of selenide or selenite onto an iron surface at below Eh= -0.2 V. Red-colored Se(Cr) was observed on the surface of a reaction bottle containing iron powder added into a selenite solution. Silicate influences on the sorption onto magnetite and iron for selenide are the same as those for selenite. Even though bentonite adsorbed a slight amount of selenite, the sorption cannot be ignored in the waste repository since a very large quantity of bentonite is used.

  5. Bulletin of Materials Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The electrical properties of silver selenide thin films prepared by reactive evaporation have been studied. Samples show a polymorphic phase transition at a temperature of 403 ± 2 K. Hall effect study shows that it has a mobility of 2000 cm2V–1s–1 and carrier concentration of 1018 cm–3 at room temperature. The carriers ...

  6. Crystal structure of a synthetic tin-selenium representative of the cylindrite structure type

    Czech Academy of Sciences Publication Activity Database

    Makovicky, E.; Petříček, Václav; Dušek, Michal; Topa, D.

    2008-01-01

    Roč. 93, 11-12 (2008), s. 1787-1798 ISSN 0003-004X R&D Projects: GA ČR GA202/06/0757 Institutional research plan: CEZ:AV0Z10100521 Keywords : cylindrite * tin-antimony-iron selenide * non-commensurate layer structure * layer-misfit structure * interlayer match Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.962, year: 2008

  7. Jacutingait, paladiové zlato a Pd-selenidy v Cu-zrudnění z karbonských sedimentů od Košťálova u Semil (podkrkonošská pánev)

    Czech Academy of Sciences Publication Activity Database

    Malec, J.; Veselovský, F.; Böhmová, Vlasta; Prouza, V.

    2012-01-01

    Roč. 2011, podzim (2012), s. 189-192 ISSN 0514-8057 Institutional research plan: CEZ:AV0Z30130516 Keywords : jacutingaite * Pd-gold * Pd-selenide * silver * chalcodite s. l. * analyses of ore elements * siltstone * Upper Carboniferous * Krkonoše Piedmont Bassin (Czech Republic) Subject RIV: DB - Geology ; Mineralogy http://www.geology.cz/zpravy/obsah/2011/zpravy_2011-43.pdf

  8. Thin film solar cell configuration and fabrication method

    Science.gov (United States)

    Menezes, Shalini

    2009-07-14

    A new photovoltaic device configuration based on an n-copper indium selenide absorber and a p-type window is disclosed. A fabrication method to produce this device on flexible or rigid substrates is described that reduces the number of cell components, avoids hazardous materials, simplifies the process steps and hence the costs for high volume solar cell manufacturing.

  9. Evidence of β-antimonene at the Sb/Bi2Se3 interface

    Science.gov (United States)

    Flammini, R.; Colonna, S.; Hogan, C.; Mahatha, S. K.; Papagno, M.; Barla, A.; Sheverdyaeva, P. M.; Moras, P.; Aliev, Z. S.; Babanly, M. B.; Chulkov, E. V.; Carbone, C.; Ronci, F.

    2018-02-01

    We report a study of the interface between antimony and the prototypical topological insulator Bi2Se3. Scanning tunnelling microscopy measurements show the presence of ordered domains displaying a perfect lattice match with bismuth selenide. Density functional theory calculations of the most stable atomic configurations demonstrate that the ordered domains can be attributed to stacks of β-antimonene.

  10. Surface tension and density of fusible metal melt with sulphur and selenium

    International Nuclear Information System (INIS)

    Najdich, Yu.V.; Krasovskij, Yu.P.; Chuvashov, Yu.N.

    1990-01-01

    Surface tension and density at 970 K have been determined for melts of Ga, In, Sn and Pb with S and Se. High surface activity of chalcogens in the melts has been found. A maximal adsorption of the active components and their ultimate surface activity that correlate with thermodinamical strength of the corresponding sulfides and selenides have been calculated

  11. Cryogenic Yb: YAG Thin-Disk Laser

    Science.gov (United States)

    2016-09-09

    as a 4- level laser. Its absorption and emission cross-sections increase, and its thermal conductivity improves. Yb:YAG thin disk laser performance...Air Force Base, NM USA 87117 4RINI Technologies, 582 South Econ Circle, Oviedo, FL USA 32765 Keywords: Laser materials; Lasers, ytterbium...temperatures, Yb:YAG behaves as a 4- level laser. Its absorption and emission cross-sections increase, and its thermal conductivity improves. Yb:YAG

  12. Spin noise measurement with diamagnetic atoms

    International Nuclear Information System (INIS)

    Takeuchi, M.; Ichihara, S.; Takano, T.; Kumakura, M.; Takahashi, Y.

    2007-01-01

    We report the measurement of the atomic spin noise of the diamagnetic atom ytterbium (Yb). Yb has various merits for utilizing the quantum nature of the atomic spin ensemble compared with the paramagnetic atoms used in all previous experiments. From the magnitude of the noise level and dependence on the detuning, we concluded that we succeeded in the measurement of 171 Yb atomic spin noise in an atomic beam

  13. TECHNICAL REPORT

    Energy Technology Data Exchange (ETDEWEB)

    ADAMS, RICHARD D., PhD.

    2011-04-06

    Cadmium selenide nanoparticles and nanoclusters were prepared and added to polymer solar cells to improve their photon capture ability. These nanoparticles did exhibit some beneficial effects on the photon conversion efficiencies of selected polymer solar cells. Ternary bulk heterojunction systems based on composites of methyl viologen-doped, CdSe nanoparticles blended with poly (3-hexothiopene) (P3HT) and 6, 6-phenyl C{sub 61}-butyric acid methyl ester (PCBM) were also tested. It was found that the devices with methyl viologen-doped CdSe nanoparticles do produce more photocurrent in a region surrounding the absorption peak of the particles (560 to 660nm) when compared to pristine P3HT:PCBM devices. Gold nanorods were also prepared and tested in some solar cells. These nanorods did produce a very small enhancement in photon absorbance, but the observed increase the photon conversion efficiency was not sufficient to make the effort worthwhile. Our goals were (1) to prepare cadmium sulfide and cadmium selenide clusters and nanoparticles to be tested as photon absorbers to enhance the photon conversion efficiency of polymer solar polymer solar cells and (2) to prepare gold and silver nanorods to be added to polymer solar cells to enhance their photon capture capability. The cadmium sulfide and cadmium selenide nanoparticles and some new nanoclusters were prepared. The cadmium selenide nanoparticles were also tested in solar cells and did exhibit some positive effects when they were combined with certain co-absorbing polymers. Due to solubility problems that were not solved in the available time, the new nanoclusters were not tested in solar cells. Ternary bulk heterojunction systems based on composites of methyl viologen doped, CdSe nanoparticles blended with poly (3-hexothiopene) (P3HT) and 6, 6-phenyl C61-butyric acid methyl ester (PCBM) have been examined in detail. The methyl viologen was added to promote charge separation of the initially formed excitons. It was

  14. Synthesis, magnetism and electronic structure of YbNi{sub 2-x}Fe{sub x}Al{sub 8} (x=0.91) isolated from Al flux

    Energy Technology Data Exchange (ETDEWEB)

    Xiuni, Wu [Department of Physical Sciences, Rhode Island College, Providence, RI 02908 (United States); Francisco, Melanie [Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States); Rak, Zsolt [Department of Physics, Michigan State University, East Lansing, MI 48824 (United States); Bakas, T [Department of Physics, University of Ioannina, GR-45110 Ioannina (Greece); Mahanti, S D [Department of Physics, Michigan State University, East Lansing, MI 48824 (United States); Kanatzidis, Mercouri G. [Department of Chemistry, Northwestern University, Evanston, IL 60208 (United States)], E-mail: m-kanatzidis@northwestern.edu

    2008-12-15

    The combination of ytterbium, nickel, iron in liquid aluminum resulted in the formation of the new intermetallic compound YbNi{sub 2-x}Fe{sub x}Al{sub 8} (x=0.91) which adopts the CaCo{sub 2}Al{sub 8} structure type with a=14.458(3) A, b=12.455(3) A, c=3.9818(8) A and space group Pbam. Its resistivity drops with decreasing temperature, saturating to a constant value at lower temperatures. Above 50 K, the inverse magnetic susceptibility data follows Curie-Weiss Law, with a calculated {mu}{sub eff}=2.19 {mu}{sub B}. Although the observed reduced moment in magnetic susceptibility measurement suggests that the Yb ions in this compound are of mixed-valent nature, ab initio electronic structure calculations within density functional theory using LDA+U approximation give an f{sup 13} configuration in the ground state. - Graphical abstract: The reaction of ytterbium, nickel, iron in aluminum flux gives crystals of the intermetallic compound YbNi{sub 2-x}Fe{sub x}Al{sub 8} (x=0.96) which adopts the CaCo{sub 2}Al{sub 8} structure, ab initio electronic structure calculations within density functional theory using LDA+U approximation suggest an f{sup 13} configuration in the ground state.

  15. Investigations on Ce- and Yb-based intermetallic compounds

    International Nuclear Information System (INIS)

    Elenbaas, R.A.

    1980-01-01

    The author describes investigations on a number of cerium- and ytterbium-based intermetallic compounds and alloys, yielding a lot of experimental results which could not always be put in a quantitative picture. All experimental data are consistent with a single-ion behaviour, where the 4f state is more or less modified by the conduction electrons. In the investigated systems several different features of the magnetism of cerium atoms in metals were studied. (Auth.)

  16. Diaroyl Tellurides: Synthesis, Structure and NBO Analysis of (2-MeOC6H4CO2Te – Comparison with Its Sulfur and Selenium Isologues. The First Observation of [MgBr][R(C=TeO] Salts

    Directory of Open Access Journals (Sweden)

    Fumio Ando

    2009-07-01

    Full Text Available A series of aromatic diacyl tellurides were prepared in moderate to good yields by the reactions of sodium orpotassium arenecarbotelluroates with acyl chlorides in acetonitrile. X-ray structure analyses and theoretical calculations of 2-methoxybenzoic anhydride and bis(2-methoxybenzoyl sulfide, selenide and telluride were carried out. The two 2-MeOC6H4CO moieties of bis(2-methoxybenzoyl telluride are nearly planar and the two methoxy oxygen atoms intramolecularly coordinate to the central tellurium atom from both side of C(11-Te(11-C(22 plane. In contrast, the oxygen and sulfur isologues (2-MeOC6H4CO2E (E = O, S, show that one of the two methoxy oxygen atoms contacts with the oxygen atom of the carbonyl group connected to the same benzene ring. The structure of di(2-methoxybenzoyl selenide which was obtained by MO calculation resembles that of tellurium isologues rather than the corresponding oxygen and sulfur isologues. The reactions of di(aroyl tellurides with Grignard reagents lead to the formation of tellurocarboxylato magnesium complexes [MgBr][R(C=TeO].

  17. Real-space Mapping of Surface Trap States in CIGSe Nanocrystals using 4D Electron Microscopy

    KAUST Repository

    Bose, Riya

    2016-05-26

    Surface trap states in semiconductor copper indium gallium selenide nanocrystals (NCs) which serve as undesirable channels for non-radiative carrier recombination, remain a great challenge impeding the development of solar and optoelectronics devices based on these NCs. In order to design efficient passivation techniques to minimize these trap states, a precise knowledge about the charge carrier dynamics on the NCs surface is essential. However, selective mapping of surface traps requires capabilities beyond the reach of conventional laser spectroscopy and static electron microscopy; it can only be accessed by using a one-of-a-kind, second-generation four-dimensional scanning ultrafast electron microscope (4D S-UEM) with sub-picosecond temporal and nanometer spatial resolutions. Here, we precisely map the surface charge carrier dynamics of copper indium gallium selenide NCs before and after surface passivation in real space and time using S-UEM. The time-resolved snapshots clearly demonstrate that the density of the trap states is significantly reduced after zinc sulfide (ZnS) shelling. Furthermore, removal of trap states and elongation of carrier lifetime are confirmed by the increased photocurrent of the self-biased photodetector fabricated using the shelled NCs.

  18. Characterization of Raw and Decopperized Anode Slimes from a Chilean Refinery

    Science.gov (United States)

    Melo Aguilera, Evelyn; Hernández Vera, María Cecilia; Viñals, Joan; Graber Seguel, Teófilo

    2016-04-01

    This work characterizes raw and decopperized slimes, with the objective of identifying the phases in these two sub-products. The main phases in copper anodes are metallic copper, including CuO, which are present in free form or associated with the presence of copper selenide or tellurides (Cu2(Se,Te)) and several Cu-Pb-Sb-As-Bi oxides. During electrorefining, the impurities in the anode release and are not deposited in the cathode, part of them dissolving and concentrated in the electrolyte, and others form a raw anode slime that contains Au, Ag, Cu, As, Se, Te and PGM, depending on the composition of the anode. There are several recovery processes, most of which involve acid leaching in the first step to dissolve copper, whose product is decopperized anode slime. SEM analysis revealed that the mineralogical species present in the raw anode slime under study were mainly eucarite (CuAgSe), naumannite (Ag2Se), antimony arsenate (SbAsO4), and lead sulfate (PbSO4). In the case of decopperized slime, the particles were mainly composed of SbAsO4 (crystalline appearance), non-stoichiometric silver selenide (Ag(2- x)Se), and chlorargyrite (AgCl).

  19. Electrochemical lithium and sodium intercalation into the tantalum-rich layered chalcogenides Ta2Se and Ta2Te3

    International Nuclear Information System (INIS)

    Lavela, P.; Tirado, J.L.

    1999-01-01

    Two-layered tantalum chalcogenides are evaluated as alkali metal intercalation hosts in lithium and sodium electrochemical cells. The metal-rich pseudo-two-dimensional solid Ta 2 Se shows a poor intercalation behaviour. Lithium reacts with the selenide by deintercalating selenium from the blocks of Ta-related b.c.c. structure leading to a collapse of the structure and the formation of tantalum metal. Sodium is reversibly intercalated to a limited extent leading to complex structural changes in the selenide, as revealed by electron diffraction. The two-dimensional telluride Ta 2 Te 3 allows a topotactic intercalation of lithium below 1 F/mol, while a more extended reaction leads to sample amorphization. The better intercalation behaviour of this solid can be related with the one-atom thick metal layer and the van der Waals gap separating tellurium atoms of successive layers. Sodium can be reversibly intercalated into Ta 2 Te 3 in sodium cells which show a good cycling behaviour. Exposure of the intercalated solid to water vapour allows the preparation of hydrated products with a monolayer or a bilayer of water molecules solvating sodium in the interlayer space. (orig.)

  20. Real-space Mapping of Surface Trap States in CIGSe Nanocrystals using 4D Electron Microscopy

    KAUST Repository

    Bose, Riya; Bera, Ashok; Parida, Manas R.; Adhikari, Aniruddha; Shaheen, Basamat; Alarousu, Erkki; Sun, Jingya; Wu, Tao; Bakr, Osman; Mohammed, Omar F.

    2016-01-01

    Surface trap states in semiconductor copper indium gallium selenide nanocrystals (NCs) which serve as undesirable channels for non-radiative carrier recombination, remain a great challenge impeding the development of solar and optoelectronics devices based on these NCs. In order to design efficient passivation techniques to minimize these trap states, a precise knowledge about the charge carrier dynamics on the NCs surface is essential. However, selective mapping of surface traps requires capabilities beyond the reach of conventional laser spectroscopy and static electron microscopy; it can only be accessed by using a one-of-a-kind, second-generation four-dimensional scanning ultrafast electron microscope (4D S-UEM) with sub-picosecond temporal and nanometer spatial resolutions. Here, we precisely map the surface charge carrier dynamics of copper indium gallium selenide NCs before and after surface passivation in real space and time using S-UEM. The time-resolved snapshots clearly demonstrate that the density of the trap states is significantly reduced after zinc sulfide (ZnS) shelling. Furthermore, removal of trap states and elongation of carrier lifetime are confirmed by the increased photocurrent of the self-biased photodetector fabricated using the shelled NCs.

  1. Single crystal growth of europium and ytterbium based intermetallic ...

    Indian Academy of Sciences (India)

    The difference between an intermetallic compound and a regular metal (e.g., ... intriguing properties, there have not been any reports of thorough investigations of .... scanning electron microscope (SEM) equipped with an energy dispersive ...

  2. Towards improved measurements of parity violation in atomic ytterbium

    Energy Technology Data Exchange (ETDEWEB)

    Antypas, D., E-mail: dantypas@uni-mainz.de [Helmholtz-Institut Mainz (Germany); Fabricant, A.; Bougas, L. [Johannes Gutenberg-Universität Mainz, Institut für Physik (Germany); Tsigutkin, K. [ASML (Netherlands); Budker, D. [Helmholtz-Institut Mainz (Germany)

    2017-11-15

    We report on progress towards performing precision measurements of parity violation in Yb, in which the theoretical prediction for a strong weak-interaction-induced effect in the 6s{sup 2} {sup 1}S{sub 0}→ 5d6s{sup 3}D{sub 1} optical transition at 408 nm has already been confirmed, with a measurement of the effect at the ≈10 % level of accuracy. With a new atomic-beam apparatus offering enhanced sensitivity, we are aiming at precisely determining the parity violation observable in Yb, which will allow us to probe the distributions of neutrons in different isotopes, investigate physics beyond the Standard Model, as well as to study intra-nucleus weak interactions, through an observation of the anapole moment of Yb nuclei with nonzero spin. We present the experimental principle employed to probe atomic parity violation, describe our new apparatus, and discuss the attained experimental sensitivity as well as the methods for characterizing systematics in these measurements.

  3. Theory of Valence Transitions in Ytterbium and Europium Intermetallics

    International Nuclear Information System (INIS)

    Zlatic, V.; Freericks, J.K.

    2001-01-01

    The exact solution of the multi-component Falicov-Kimball model in infinite-dimensions is presented and used to discuss a new fixed point of valence fluctuating intermetallics with Yb and Eu ions. In these compounds, temperature, external magnetic field, pressure, or chemical pressure induce a transition between a metallic state with the f-ions in a mixed-valent (non-magnetic) configuration and a semi-metallic state with the f-ions in an integral-valence (paramagnetic) configuration. The zero-field transition occurs at the temperature T V , while the zero-temperature transition sets in at the critical field H c . We present the thermodynamic and dynamic properties of the model for an arbitrary concentration of d- and f -electrons. For large U, we find a MI transition, triggered by the temperature or field- induced change in the f-occupancy. (author)

  4. Aqueous-salt system containing ytterbium nitrate and pyridine nitrate

    International Nuclear Information System (INIS)

    Zhuravlev, E.F.; Khisaeva, D.A.; Izmajlova, L.V.

    1983-01-01

    Cross-section method has been used to study solubility in ternary aqueous-salt system Yb(NO 3 ) 3 -C 5 H 5 NxHNO 3 -H 2 0 at 25 and 50 deg C. It is established that the system is characterized by chemical interaction. Congruently soluble compound of Yb(NO 3 ) 3 x2[C 5 H 5 NxHNO 3 ] composition is discovered in the system. Composition of the compound is confirmed by chemical analysis; its infrared spectra are studied. Interplanar distances are determined; derivatogram of the compound is given. The results of the works are compared with analogous investigations of another rare earth nitrates

  5. Contamination of YBCO bulk superconductors by samarium and ytterbium

    Czech Academy of Sciences Publication Activity Database

    Volochová, D.; Jurek, Karel; Radušovská, M.; Piovarči, S.; Antal, V.; Kováč, J.; Jirsa, Miloš; Diko, P.

    2014-01-01

    Roč. 496, JAN (2014), s. 14-17 ISSN 0921-4534 Institutional support: RVO:68378271 Keywords : YBCO bulk superconductors * critical temperature * critical current density * peak effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.942, year: 2014

  6. Investigation of adducts of tris-(acetylacetonato)lanthanides with o-phenanthroline and α,α'-dipyridyl by mass spectroscopy

    International Nuclear Information System (INIS)

    Gavrishchuk, E.M.; Dzyubenko, N.G.; Martynenko, L.I.

    1984-01-01

    Mass spectra of adducts of tris-acetylacetonates of REE (REE, Ln, M) with O-phenanthroline (Phen) and α, α 1 -dipyridyl (Dipy) are obtained. A scheme of fragmentation is suggested. Peculiarities of dissociative ionization processes for samarium-, europium-thulium-, and ytterbium compounds are shown to be determined by a possibility of changing the oxidation state of a central ion. Energy characteristics of separation of the first and second ligands of compleXes in the entire REE series are compared

  7. Application of diamond window for infrared laser diagnostics in a tokamak device

    International Nuclear Information System (INIS)

    Kawano, Yasunori; Chiba, Shinichi; Inoue, Akira

    2004-01-01

    Chemical vapor deposited diamond disks have been successfully applied as the vacuum windows for infrared CO 2 laser interferometry and polarimetry used in electron density measurement in the JT-60U tokamak. In comparison with the conventional zinc-selenide windows, the Faraday rotation component of diamond windows was negligible. This results in an improvement of the Faraday rotation measurement of tokamak plasma by polarimetry

  8. Non-stoichiometry in sulfides produced by pulsed laser deposition

    DEFF Research Database (Denmark)

    Canulescu, Stela; Cazzaniga, Andrea Carlo; Ettlinger, Rebecca Bolt

    and the most volatile component in the film. A very well studied case in the one of oxides, for which the O2 or N2O background gases can reduce the loss of oxygen in the growing films. A much less studied case is the one of sulfides or selenides, such as the solar cell absorber layers of CIGS (Cu(Ga,In)Se2...

  9. Investigation of the thermophysical properties of high-melting materials with the aid of a complex of instruments

    Science.gov (United States)

    Bolgar, A. S.; Gordiyenko, S. P.; Guseva, Y. A.; Turchanin, A. G.; Fenochka, B. V.; Fesenko, V. V.

    1984-01-01

    The evaporation rate, vapor pressure, heats of evaporation reaction (sublimation, dissociation), enthalpy, electrical resistance, heat capacity, emissivity, and heat conductivity of various carbides, borides, sulfides, nitrides, selenides, and phosphides were investigated. A set of high temperature high vacuum devices, calorimeters (designed for operation at 400 to 1300 K and from 1200 K), and mass spectrometers, most of which were specially developed for these studies, is described.

  10. Characterization of Nanomaterials Using Field Flow Fractionation and Single Particle Inductively Coupled Plasma Mass Spectrometery (FFF-ICP-MS and SP-ICP-MS): Scientific Operating Procedure SOP-C

    Science.gov (United States)

    2015-04-01

    constituents of Cadmium Selenide/Zinc Sulfide core-shell quantum dots, silver nanoparticles with gold seed cores, and gold nanoparticles. Additionally...nanoparticles from tissues is possible using tetramethylammonium hydroxide (TMAH). Though any analysis described above is possible, only SP-ICP-MS has been...ENPs), through the various separation and detection techniques described above. These analytical tools were tested on a variety of gold and silver

  11. Studies on the preparation of low-carrier Se-73,75 tracers for in vivo examinations

    International Nuclear Information System (INIS)

    Helfer, Andreas

    2013-01-01

    With the growing importance of positron emission tomography (PET) for in vivo imaging in diagnostic medicine there is great interest of developing new labelling methods for the positron emitter selenium-73. As attractive application an examination of a no-carrier-added (n.c.a.) preparation of the analogous tracer Sulindac Selenid and of the selenium containing compound Ebselen was examined with 73,75 Se. First of all a labelling strategy for Sulindac Selenid based on a protected precursor was developed. This precursor should further be transformed into the corresponding standard compound for chomatographic identification of the n.c.a. product. This, however, was not possible. An alternative synthesis method also did not result in a product. Thus, a radioactive labelling in case of Sulindac Selenid was not indicated in spite of a successful synthesis of a precursor. The preparation of Ebselen was performed as earlier described by a sequential one-pot synthesis with a yield of 46 %. An adaption of the reaction parameters to a radiosynthesis with 75 Se failed on the n.c.a. state and also after adding carrier to the reaction mixture. The desired product could, however, be prepared in a copper catalysed one-pot radiosynthesis for the first time under carrier-added conditions. Here, optimized conditions resulted in radiochemical yields of 60 ± 18 %. A no-carrier-added product could finally be achieved using sulphur as nonisotopic carrier in the reaction mixture. After optimisation of reaction parameters n.c.a. [ 75 Se]Ebselen could be synthesized with radiochemical yields of 55 ± 7 % within 4 h. Furthermore the desired product could be separated by RHPL-chromatography from its co-produced sulfur-analogue. After transferring the conditions to radiosyntheses with the positron emitter 73 Se, n.c.a. [ 73 Se]Ebselen could be achieved with a radiochemical yield of 22 ± 1 % and can now be used as a potential radiotracer in preclinical evaluation studies with respect to

  12. Redistribution of elements between wastes and organic-bearing material in the dispersion train of gold-bearing sulfide tailings: Part I. Geochemistry and mineralogy.

    Science.gov (United States)

    Saryg-Ool, B Yu; Myagkaya, I N; Kirichenko, I S; Gustaytis, M A; Shuvaeva, O V; Zhmodik, S M; Lazareva, E V

    2017-03-01

    Migration and redistribution of elements during prolonged interaction of cyanide wastes with the underlying natural organic-bearing material have been studied in two ~40cm deep cores that sample primary ores and their weathering profile (wastes I and II, respectively) in the dispersion train of gold-bearing sulfide tailings in Siberia. Analytical results of SR-XRF, whole-rock XRF, AAS, CHNS, and SEM measurements of core samples show high K, Sr, Ti, and Fe enrichments and correlation of P 2 O 5 and Mn with LOI and C org . Organic material interlayered or mixed with the wastes accumulates Cu, Zn, Se, Cd, Ag, Au, and Hg. The peat that contacts wastes II bears up to 3wt.% Zn, 1000g/t Se, 100g/t Cd, and 8000g/t Hg. New phases of Zn and Hg sulfides and Hg selenides occur as abundant sheaths over bacterial cells suggesting microbial mediation in sorption of elements. Organic-bearing material in the cores contains 10-30g/t Au in 2-5cm thick intervals, both within and outside the intervals rich in sulfides and selenides. Most of gold is invisible but reaches 345g/t and forms 50nm to 1.5μm Au 0 particles in a thin 2-3cm interval of organic remnants mixed with wastes I. Vertical and lateral infiltration of AMD waters in peat and oxidative dissolution of wastes within the dispersion train of the Ursk tailings lead to redistribution of elements and their accumulation by combined physical (material's permeability, direction AMD), chemical (complexing, sorption by organic matter and Fe(III) hydroxides) and biochemical (metabolism of sulfate-reducing bacteria) processes. The accumulated elements form secondary sulfates, and Hg and Zn selenides. The results provide insights into accumulation of elements in the early history of coal and black shale deposits and have implications for remediation of polluted areas and for secondary enrichment technologies. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Effect of substrate temperature on the optical, structural and morphological properties of In{sub 2}Se{sub 3} thin films grown by a two-step process

    Energy Technology Data Exchange (ETDEWEB)

    Clavijo, J; Gordillo, G [Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia); Romero, E, E-mail: jiclavijop@unal.edu.c, E-mail: erromerom@unal.edu.c, E-mail: ggordillog@unal.edu.c

    2009-05-01

    Polycrystalline gamma - In{sub 2}Se{sub 3} thin films with adequate properties to use them as buffer layer in solar cells, were grown on corning glass substrates using a novel procedure which includes the formation of the alpha- In{sub 2}Se{sub 3} phase in a first step followed by thermal annealing in Se ambient to activate the formation of the gamma- In{sub 2}Se{sub 3} phase. X-ray diffraction (XRD) measurements revealed that the substrate temperature strongly affects the phase in which the indium selenide films grow; at substrate temperatures of around 300{sup 0}C the indium selenide grow in the alpha-In{sub 2}Se{sub 3} phase, whereas the samples deposited at temperatures between 300 and 550{sup 0}C grow with a mixture of the alpha-In{sub 2}Se{sub 3} and gamma-In{sub 2}Se{sub 3} phases. The alpha-In{sub 2}Se{sub 3} samples change into the gamma-In{sub 2}Se{sub 3} phase when subjected to heat treatment around 550{sup 0}C in Se ambient. Spectrophotometric measurements also revealed that the phase in which the indium selenide films grow, significantly affects the optical gap Eg. Eg values of 1.47 eV and 2.11 eV were determined for the alpha-In{sub 2}Se{sub 3} and gamma-In{sub 2}Se{sub 3} films respectively, indicating that this gamma-In{sub 2}Se{sub 3} compound has better properties to perform as buffer layer in thin film solar cells. The effect of substrate temperature on the structural, optical and morphological properties was investigated using XRD, spectral transmittance and atomic force microscope (AFM) measurements. Theoretical simulation of the XRD pattern carried out with the help of the PowderCell package, allowed us to identify the phases associated to the X-Ray reflections, with a good degree of confidence.

  14. Selenidation of epitaxial silicene on ZrB2

    NARCIS (Netherlands)

    Wiggers, F. B.; Yamada-Takamura, Y.; Kovalgin, A. Y.; de Jong, M. P.

    2018-01-01

    The deposition of elemental Se on epitaxial silicene on ZrB2 thin films was investigated with synchrotron-based core-level photoelectron spectroscopy and low-energy electron diffraction. The deposition of Se at room temperature caused the appearance of Si 2p peaks with chemical shifts of n × 0.51 ±

  15. Two-dimensional cadmium selenide electronic and optical properties

    Indian Academy of Sciences (India)

    2017-09-12

    Sep 12, 2017 ... determine the energy gap within the plasmon pole and the random phase ... the stability and possible applications in the fabrication of thin ... conditions and characterization [19,20]. ... In CdSe nanosheets, the surface is polarized, which could .... layer structure is not distorted drastically in comparison to the.

  16. Ab initio transport across bismuth selenide surface barriers

    KAUST Repository

    Narayan, Awadhesh

    2014-11-24

    © 2014 American Physical Society. We investigate the effect of potential barriers in the form of step edges on the scattering properties of Bi2Se3(111) topological surface states by means of large-scale ab initio transport simulations. Our results demonstrate the suppression of perfect backscattering, while all other scattering processes, which do not entail a complete spin and momentum reversal, are allowed. Furthermore, we find that the spin of the surface state develops an out-of-plane component as it traverses the barrier. Our calculations reveal the existence of quasibound states in the vicinity of the surface barriers, which appear in the form of an enhanced density of states in the energy window corresponding to the topological state. For double barriers we demonstrate the formation of quantum well states. To complement our first-principles results we construct a two-dimensional low-energy effective model and illustrate its shortcomings. Our findings are discussed in the context of a number of recent experimental works.

  17. Iron-Doped Zinc Selenide: Spectroscopy and Laser Development

    Science.gov (United States)

    2014-03-27

    pulsed and CW platforms have been continuously tuned across the whole gain bandwidth of Cr:ZnSe using dispersive tuning elements [9, 13, 14]. Lasers...induced fluorescence studies of the upper state manifold of Fe:ZnSe. 3.2 Laser-Induced Fluorescence Spectroscoscopy of Fe:ZnSe A Cryo Industries of...that temperature was recorded to provide a basis for calculation of the spectral distribution of gain. The recorded spectrum was black- body

  18. Ab initio transport across bismuth selenide surface barriers

    KAUST Repository

    Narayan, Awadhesh; Rungger, Ivan; Droghetti, Andrea; Sanvito, Stefano

    2014-01-01

    © 2014 American Physical Society. We investigate the effect of potential barriers in the form of step edges on the scattering properties of Bi2Se3(111) topological surface states by means of large-scale ab initio transport simulations. Our results

  19. A chimeric protein of aluminum-activated malate transporter generated from wheat and Arabidopsis shows enhanced response to trivalent cations.

    Science.gov (United States)

    Sasaki, Takayuki; Tsuchiya, Yoshiyuki; Ariyoshi, Michiyo; Ryan, Peter R; Yamamoto, Yoko

    2016-07-01

    TaALMT1 from wheat (Triticum aestivum) and AtALMT1 from Arabidopsis thaliana encode aluminum (Al)-activated malate transporters, which confer acid-soil tolerance by releasing malate from roots. Chimeric proteins from TaALMT1 and AtALMT1 (Ta::At, At::Ta) were previously analyzed in Xenopus laevis oocytes. Those studies showed that Al could activate malate efflux from the Ta::At chimera but not from At::Ta. Here, functions of TaALMT1, AtALMT1 and the chimeric protein Ta::At were compared in cultured tobacco BY-2 cells. We focused on the sensitivity and specificity of their activation by trivalent cations. The activation of malate efflux by Al was at least two-fold greater in the chimera than the native proteins. All proteins were also activated by lanthanides (erbium, ytterbium, gadolinium, and lanthanum), but the chimera again released more malate than TaALMT1 or AtALMT1. In Xenopus oocytes, Al, ytterbium, and erbium activated inward currents from the native TaALMT1 and the chimeric protein, but gadolinium only activated currents from the chimera. Lanthanum inhibited currents from both proteins. These results demonstrated that function of the chimera protein was altered compared to the native proteins and was more responsive to a range of trivalent cations when expressed in plant cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Combustion synthesis and photoluminescence properties of LaAlO{sub 3} nanophosphors doped with Yb{sup 3+} ions

    Energy Technology Data Exchange (ETDEWEB)

    Dhahri, A. [Laboratoire de Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National des Recherches en Sciences des Matériaux, Technopole de Borj Cedria, B.P. 73, Soliman 8027 (Tunisia); Horchani-Naifer, K., E-mail: karima_horchani@yahoo.com [Laboratoire de Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National des Recherches en Sciences des Matériaux, Technopole de Borj Cedria, B.P. 73, Soliman 8027 (Tunisia); Benedetti, A. [Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari Venezia, Dorsoduro 2137, 30123 Venezia (Italy); Enrichi, F. [CIVEN – Coordinamento Interuniversitario Veneto per le Nanotecnologie, Via Delle Industrie 5, Marghera, Venice 30175 (Italy); Ferid, M. [Laboratoire de Physico-chimie des Matériaux Minéraux et leurs Applications, Centre National des Recherches en Sciences des Matériaux, Technopole de Borj Cedria, B.P. 73, Soliman 8027 (Tunisia)

    2014-09-15

    Ytterbium doped lanthanum aluminate (LaAlO{sub 3}) nanophosphors have been prepared by a combustion process with glycine as a fuel. The structures of the powders were determined by X-ray diffraction (XRD), the morphology of the annealed materials was observed using scanning electron microscopy (SEM), the average crystalline grain sizes have been determined by transmission electron microscopy (TEM) and photoluminescence properties using fluorescence spectroscopy. Pure LaAlO{sub 3} phase was obtained at 800 °C heated for 4 h, with an average crystal size, as determined by TEM, of 60 nm. Emission spectra and decay times of main luminescence transitions were measured at room temperature. A strong emission is reported at 986 nm from the ({sup 2}F{sub 5/2}→{sup 2}F{sub 7/2}) transition, whose intensity depends on Yb concentration. - Highlights: • Ytterbium doped lanthanum aluminate (LaAlO{sub 3}) nanophosphors have been prepared by a combustion process with glycine as a fuel. • Powders were characterized by DRX, FTIR, TEM and fluorescence spectroscopy. • Pure LaAlO{sub 3} phase was obtained at 800 °C heated for 4 h, with an average crystal size of 60 nm. • A strong emission is reported at 986 nm from the ({sup 2}F{sub 5/2}→{sup 2}F{sub 7/2}) transition, whose intensity depends on Yb concentration.

  1. Improvement of the thermal and thermo-oxidative stability of high-density polyethylene by free radical trapping of rare earth compound

    Energy Technology Data Exchange (ETDEWEB)

    Ran, Shiya; Zhao, Li; Han, Ligang [Laboratory of Polymer Materials and Engineering, Ningbo Institute of Technology, ZhejiangUniversity, Ningbo, 315100 (China); MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Institute of Polymer Composites, Zhejiang University, Hangzhou, 310027 (China); Guo, Zhenghong, E-mail: guozhenghong@nit.zju.edu.cn [Laboratory of Polymer Materials and Engineering, Ningbo Institute of Technology, ZhejiangUniversity, Ningbo, 315100 (China); Fang, Zhengping [Laboratory of Polymer Materials and Engineering, Ningbo Institute of Technology, ZhejiangUniversity, Ningbo, 315100 (China); MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Institute of Polymer Composites, Zhejiang University, Hangzhou, 310027 (China)

    2015-07-20

    Highlights: • Polyethylene filled with ytterbium trifluoromethanesulfonate was prepared. • A low Yb loading improved thermal stability of PE obviously by radical trapping. • Yb(OTf){sub 3} is expected to be an efficient thermal stabilizer for the polymer. - Abstract: A kind of rare earth compound, ytterbium trifluoromethanesulfonate (Yb(OTf){sub 3}), was introduced into high-density polyethylene (HDPE) by melt compounding to investigate the effect of Yb(OTf){sub 3} on the thermal and thermo-oxidative stability of HDPE. The results of thermogravimetric (TG) and differential scanning calorimetry (DSC) showed that the addition of Yb(OTf){sub 3} made the thermal degradation temperatures dramatically increased, the oxidative induction time (OIT) extended, and the enthalpy (ΔH{sub d}) reduced. Very low Yb(OTf){sub 3} loading (0.5 wt%) in HDPE could increase the onset degradation temperature in air from 334 to 407 °C, delay the OIT from 11.0 to 24.3 min, and decrease the ΔH{sub d} from 61.0 to 13.0 J/g remarkably. Electron spin resonance spectra (ESR), thermogravimetric analysis coupled to Fourier transform infrared spectroscopy (TGA-FTIR), rheological investigation and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) indicated that the free radicals-trapping ability of Yb(OTf){sub 3} was responsible for the improved thermal and thermo-oxidative stability.

  2. Organoamido- and aryloxo-lanthanoids. Pt. IV

    International Nuclear Information System (INIS)

    Deacon, G.B.; Feng, T.; Nickel, S.; Ogden, M.I.

    1992-01-01

    This study illustrates the capacity of bulky aryl oxide ligands to stabilize low-coordination numbers in lanthanoid complexes, the isolation of the first low-coordinate hydroxo-bridged complex being of particular interest. (Tetrahydrofuran)tis(2,4,6-tri-t-butylphenolato)ytterbium(III) was isolated following oxidation of the aryloxoytterbium(II) complex Yb(Otbp)2(thf)3 with thallium (I) 2,4,6-tri-t-butylphenolate in tetrahydrofuran. A further synthesis was achieved by redox transmetallation between ytterbium metal and thallium(I) aryl oxide in tetrahydrofuran. The X-ray characterization of Yb(Otbp) 3 (thf)(thp=2,4,6-Bu t -3 C 6h2 ) is also presented. An interesting feature of the bond angles of (2).(thf) n is the marked difference between the O(4)-Yb-O(n) and the corresponding O(4')-Yb-O(n) (n=1-3) values. This illustrates the irregularity of the five coordination. Nevertheless, there is similarity between the sums of the O(4)-Yb-O(n) and O(4')-Yb-O(n) angles (333/336 deg). The Yb-O(H)-Yb and HO-Yb-OH angles of (2).(thf) n are larger and smaller, respectively, than those of the organolanthanoid hydroxides. This reflects the weaker bridging (longer bond lengths) of the present complex. 32 refs., 4 tabs., 2 figs

  3. Efficient green and red up-conversion emissions in Er/Yb co-doped TiO{sub 2} nanopowders prepared by hydrothermal-assisted sol–gel process

    Energy Technology Data Exchange (ETDEWEB)

    Salhi, Rached, E-mail: salhi_rached@yahoo.fr [Laboratoire de chimie industrielle, Ecole Nationale d’ingénieurs de Sfax, Université de Sfax, 3018 Sfax (Tunisia); Deschanvres, Jean-Luc [Laboratoire des Matériaux et du Génie Physique, 3 Parvis Louis Néel, BP 257, 38016 Grenoble (France)

    2016-08-15

    In this work, erbium and ytterbium co-doped titanium dioxide (Er–Yb:TiO{sub 2}) nanopowders have been successfully prepared by hydrothermal-assisted sol–gel method using supercritical drying of ethyl alcohol and annealing at 500 °C for 1 h. Nanopowders were prepared with fixed 5 mol% Erbium concentration and various Ytterbium concentrations of 5 and 10 mol%. The powders were characterized by studying their structural, morphology and photo-luminescent properties. The annealing treatment at 500 °C was found to enhance the crystallinity of the TiO{sub 2} anatase structure and the upconversion (UC) emission of the nanopowders. UC emissions were investigated under 980 nm excitation, and the Er–Yb:TiO{sub 2} nanopowders exhibited the intense green (520–570 nm) and red (640–690 nm) upconverted emissions of Er ions originating from an efficient Yb–Er energy transfer process. The absolute upconversion quantum yield (UC-QY) of each nanopowders was measured for the UC emissions centered at 525, 550 and 655 nm at varying excitation power densities. UC-QY analysis has revealed that 5 mol% Er–5 mol% Yb:TiO{sub 2} nanopowders possess the highest total quantum yield of 2.8±0.1% with a power density of 16.7 W/cm{sup 2}. These results make these nanopowders promising materials for efficient upconversion in photonic applications.

  4. Development of Ceramic Solid-State Laser Host Material

    Science.gov (United States)

    Prasad, Narasimha S.; Trivedi, Sudhir; Kutcher, Susan; Wang, Chen-Chia; Kim, Joo-Soo; Hommerich, Uwe; Shukla, Vijay; Sadangi, Rajendra

    2009-01-01

    Polycrystalline ceramic laser materials are gaining importance in the development of novel diode-pumped solid-state lasers. Compared to single-crystals, ceramic laser materials offer advantages in terms of ease of fabrication, shape, size, and control of dopant concentrations. Recently, we have developed Neodymium doped Yttria (Nd:Y2O3) as a solid-state ceramic laser material. A scalable production method was utilized to make spherical non agglomerated and monodisperse metastable ceramic powders of compositions that were used to fabricate polycrystalline ceramic material components. This processing technique allowed for higher doping concentrations without the segregation problems that are normally encountered in single crystalline growth. We have successfully fabricated undoped and Neodymium doped Yttria material up to 2" in diameter, Ytterbium doped Yttria, and erbium doped Yttria. We are also in the process of developing other sesquioxides such as scandium Oxide (Sc2O3) and Lutesium Oxide (Lu2O3) doped with Ytterbium, erbium and thulium dopants. In this paper, we present our initial results on the material, optical, and spectroscopic properties of the doped and undoped sesquioxide materials. Polycrystalline ceramic lasers have enormous potential applications including remote sensing, chem.-bio detection, and space exploration research. It is also potentially much less expensive to produce ceramic laser materials compared to their single crystalline counterparts because of the shorter fabrication time and the potential for mass production in large sizes.

  5. Design and Development of New Radiopharmaceuticals

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Jr., H. N.; Stern, H. S.; Rhodes, B. A.; Reba, R. C.; Hosain, F.; Zolle, I. [Johns Hopkins Medical Institutions, Baltimore, MD (United States)

    1969-05-15

    The major factors in the design of a new radiopharmaceutical for radioisotope scintigraphy are the photon energy of the radionuclide, the ability to incorporate the radionuclide insuitable chemical and biological form, the radiation dose to the patient, and the cost of production of the radiopharmaceutical. In this laboratory, the radionuclides, indium-113m and ytterbium-169, and technetium-99m, have been incorporated into a variety of radiopharmaceuticals. These include particles suitable for lung and liver studies, chelates for brain and kidney studies, and ionic forms for blood pool imaging. Studies in experimental animals and man indicate that these agents offer certain advantages over previously available radiopharmaceuticals. By providing larger numbers of photons, they permit more precise temporal and spatial resolution. The longer half-life of the tin-113 parent radionuclide from which indium-113m can be eluted makes indium-113m readily available, even at sites distant from the source of production. The tin-indium generator system need be purchased only every five months rather than weekly as in the case of the widely used molybdenum-technetium system. The ytterbium-radionuclide in the chemical form of a chelate is particularly useful as an inexpensive agent that provides high photon yields for renal and brain imaging. The rapid and complete biological excretion results in low radiation dose while the longer physical half-life greatly extends the shelf-life. (author)

  6. Ultrafast laser writing of optical waveguides in ceramic Yb:YAG: a study of thermal and non-thermal regimes

    Energy Technology Data Exchange (ETDEWEB)

    Benayas, A.; Jaque, D. [Universidad Autonoma de Madrid, Departamento de Fisica de Materiales, Madrid (Spain); Silva, W.F.; Jacinto, C. [Universidade Federal de Alagoas, Grupo de Fotonica e Fluidos Complexos, Instituto de Fisica, Maceio, Alagoas (Brazil); Rodenas, A.; Thomsom, R.R.; Psaila, N.D.; Reid, D.T.; Kar, A.K. [Heriot-Watt University, School of Engineering and Physical Sciences, Edinburgh (United Kingdom); Vazquez de Aldana, J. [Universidad de Salamanca, Grupo de Optica, Departamento de Fisica Aplicada, Facultad de Ciencias Fisicas, Salamanca (Spain); Chen, F.; Tan, Y. [Shandong University, School of Physics, Jinan (China); Torchia, G.A. [CONICET-CIC, Centro de Investigaciones Opticas, La Plata (Argentina)

    2011-07-15

    We report the improvement of ultrafast laser written optical waveguides in Yb:YAG ceramics by tailoring the presence of heat accumulation effects. From a combination of ytterbium micro-luminescence and micro-Raman structural analysis, maps of lattice defects and stress fields have been obtained. We show how laser annealing can strongly reduce the concentration of defects and also reduce compressive stress, leading to an effective 50% reduction in the propagation losses and to more extended and symmetric propagation modes. (orig.)

  7. Casualty Estimation for Nuclear and Radiological Weapons

    Science.gov (United States)

    2016-06-01

    rate 2.69 d β Metal Polonium - 210 210Po Static eliminators 138 d α Metal foil Radium-226 226Ra Brachytherapy - low dose rate 1600 y α Salt...Promethium-147 153Gd Gadolinium-153 169Yb Ytterbium-169 170Tm Thulium-170 192Ir Iridium-192 210Po Polonium - 210 226Ra Radium-226 238Pu Plutonium-238...Brussels: NATO, in development). iv present in a large food irradiator facility, and constitutes about 34.5 kg of 137Cs. To illustrate alternative

  8. Synthesis, properties, and crystal structure of complex Cp2Yb(DAD)

    International Nuclear Information System (INIS)

    Trifonov, A.A.; Kirillov, E.N.; Bochkarev, M.N.; Shumani, G.; Myule, S.

    1999-01-01

    Diazadiene complex of trivalent ytterbium Cp 2 Yb(DAD) (1) (DAD = Bu 1 -N CH-CH = N-Bu 1 ) was obtained by three routes: the oxidation of Cp 2 Yb(THF) 2 by diazadiene in tetrahydrofuran (THF), the reaction of Cp 2 YbCl with DAD 2- Na 2 + (2:1), and the reaction of Cp 2 YbCl(THF) with DAD - K + in the 1:1 ratio. Complex 1 was characterized by microanalysis, IR spectroscopy, magnetochemistry, and X-ray structural analysis [ru

  9. Enhancing Photocatalytic Degradation of Methyl Blue Using PVP-Capped and Uncapped CdSe Nanoparticles

    OpenAIRE

    Chepape, Kgobudi Frans; Mofokeng, Thapelo Prince; Nyamukamba, Pardon; Mubiayi, Kalenga Pierre; Moloto, Makwena Justice

    2017-01-01

    Quantum confinement of semiconductor nanoparticles is a potential feature which can be interesting for photocatalysis, and cadmium selenide is one simple type of quantum dot to use in the following photocatalytic degradation of organic dyes. CdSe nanoparticles capped with polyvinylpyrrolidone (PVP) in various concentration ratios were synthesized by the chemical reduction method and characterized. The transmission electron microscopy (TEM) analysis of the samples showed that 50% PVP-capped Cd...

  10. Interaction of Radiation with Graphene Based Nanomaterials for Sensing Fissile Materials

    Science.gov (United States)

    2016-03-01

    kelvin ( K ) Radiation curie (Ci) [activity of radionuclides] 3.7 × 10 10 per second (s –1 ) [becquerel (Bq)] roentgen (R) [air exposure] 2.579...quantum dots/ nanoparticles . Photosensitive hybrid devices made of CVD graphene decorated with cadmium selenide quantum dots (CdSe QDs) have been...valuable for understanding Raman spectra and electron-phonon physics in doped and disordered graphene. This study provides us valuable information about

  11. Evidence of β-antimonene at the Sb/Bi2Se3 interface.

    Science.gov (United States)

    Flammini, Roberto; Colonna, Stefano; Hogan, Conor; Mahatha, Sanjoy; Papagno, Marco; Barla, Alessandro; Sheverdyaeva, Polina; Moras, Paolo; Aliev, Ziya; Babanly, M B; Chulkov, Evgueni V; Carbone, Carlo; Ronci, Fabio

    2017-12-19

    We report a study of the interface between antimony and the prototypical topological insulator Sb/Bi2Se3. Scanning tunnelling microscopy measurements show the presence of ordered domains displaying a perfect lattice match with bismuth selenide. Density functional theory calculations of the most stable atomic configurations demonstrate that the ordered domains can be attributed to stacks of β-antimonene. © 2017 IOP Publishing Ltd.

  12. KCeSe[sub 4]: A new solid-state lanthanide polychalcogenide

    Energy Technology Data Exchange (ETDEWEB)

    Sutorik, A C; Kanatzidis, M G [Michigan State Univ., East Lansing, MI (United States). Dept. of Chemistry and Center for Fundamental Materials Research

    1992-12-01

    Cerium and molten potassium selenide flux provide access to KCeSe[sub 4]. The structure of this novel lanthanide polychalcogenide is related to the CuAl[sub 2] structure, and Ce and Se form anionic layers with K[sup +] ions in the cavities. Each Ce[sup 3+] ion is surrounded by eight Se[sub 2][sup 2-] units in a square antiprismatic arrangement (structure shown on the right). (orig.).

  13. Growth Mechanism of Nanowires: Ternary Chalcogenides

    Science.gov (United States)

    Singh, N. B.; Coriell, S. R.; Hopkins, R. H.; Su, Ching Hua; Arnold, B.; Choa, Fow-Sen; Cullum, Brian

    2016-01-01

    In the past two decades there has been a large rise in the investment and expectations for nanotechnology use. Almost every area of research has projected improvements in sensors, or even a promise for the emergence of some novel device technologies. For these applications major focuses of research are in the areas of nanoparticles and graphene. Although there are some near term applications with nanowires in photodetectors and other low light detectors, there are few papers on the growth mechanism and fabrication of nanowire-based devices. Semiconductor nanowires exhibit very favorable and promising optical properties, including high transparency and a several order of magnitude better photocurrent than thin film and bulk materials. We present here an overview of the mechanism of nanowire growth from the melt, and some preliminary results for the thallium arsenic selenide material system. Thallium arsenic selenide (TAS) is a multifunctional material combining excellent acousto-optical, nonlinear and radiation detection properties. We observed that small units of (TAS) nanocubes arrange and rearrange at moderate melt undercooling to form the building block of a nanowire. In some cases very long wires (less than mm) are formed. Since we avoided the catalyst, we observed self-nucleation and uncontrolled growth of wires from different places.

  14. Prospects and performance limitations for Cu-Zn-Sn-S-Se photovoltaic technology.

    Science.gov (United States)

    Mitzi, David B; Gunawan, Oki; Todorov, Teodor K; Barkhouse, D Aaron R

    2013-08-13

    While cadmium telluride and copper-indium-gallium-sulfide-selenide (CIGSSe) solar cells have either already surpassed (for CdTe) or reached (for CIGSSe) the 1 GW yr⁻¹ production level, highlighting the promise of these rapidly growing thin-film technologies, reliance on the heavy metal cadmium and scarce elements indium and tellurium has prompted concern about scalability towards the terawatt level. Despite recent advances in structurally related copper-zinc-tin-sulfide-selenide (CZTSSe) absorbers, in which indium from CIGSSe is replaced with more plentiful and lower cost zinc and tin, there is still a sizeable performance gap between the kesterite CZTSSe and the more mature CdTe and CIGSSe technologies. This review will discuss recent progress in the CZTSSe field, especially focusing on a direct comparison with analogous higher performing CIGSSe to probe the performance bottlenecks in Earth-abundant kesterite devices. Key limitations in the current generation of CZTSSe devices include a shortfall in open circuit voltage relative to the absorber band gap and secondarily a high series resistance, which contributes to a lower device fill factor. Understanding and addressing these performance issues should yield closer performance parity between CZTSSe and CdTe/CIGSSe absorbers and hopefully facilitate a successful launch of commercialization for the kesterite-based technology.

  15. High rate deposition of thin film cadmium sulphide by pulsed direct current magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Lisco, F., E-mail: F.Lisco@lboro.ac.uk [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Kaminski, P.M.; Abbas, A.; Bowers, J.W.; Claudio, G. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom); Losurdo, M. [Institute of Inorganic Methodologies and of Plasmas, IMIP-CNR, via Orabona 4, 70126 Bari (Italy); Walls, J.M. [Centre for Renewable Energy Systems Technology (CREST), School of Electronic, Electrical and Systems Engineering, Loughborough University, Leicestershire LE11 3TU (United Kingdom)

    2015-01-01

    Cadmium Sulphide (CdS) is an important n-type semiconductor widely used as a window layer in thin film photovoltaics Copper Indium Selenide, Copper Indium Gallium (di)Selenide, Copper Zinc Tin Sulphide and Cadmium Telluride (CdTe). Cadmium Sulphide has been deposited using a number of techniques but these techniques can be slow (chemical bath deposition and Radio Frequency sputtering) or the uniformity and the control of thickness can be relatively difficult (close space sublimation). In this paper we report on the development of a process using pulsed Direct Current magnetron sputtering which allows nanometre control of thin film thickness using time only. The CdS thin films deposited in this process are highly uniform and smooth. They exhibit the preferred hexagonal structure at room temperature deposition and they have excellent optical properties. Importantly, the process is highly stable despite the use of a semi-insulating magnetron target. Moreover, the process is very fast. The deposition rate using 1.5 kW of power to a 6-inch circular magnetron was measured to be greater than 8 nm/s. This makes the process suitable for industrial deployment. - Highlights: • Pulsed DC magnetron sputtering of CdS • High deposition rate deposition • Uniform, pinhole free films.

  16. High rate deposition of thin film cadmium sulphide by pulsed direct current magnetron sputtering

    International Nuclear Information System (INIS)

    Lisco, F.; Kaminski, P.M.; Abbas, A.; Bowers, J.W.; Claudio, G.; Losurdo, M.; Walls, J.M.

    2015-01-01

    Cadmium Sulphide (CdS) is an important n-type semiconductor widely used as a window layer in thin film photovoltaics Copper Indium Selenide, Copper Indium Gallium (di)Selenide, Copper Zinc Tin Sulphide and Cadmium Telluride (CdTe). Cadmium Sulphide has been deposited using a number of techniques but these techniques can be slow (chemical bath deposition and Radio Frequency sputtering) or the uniformity and the control of thickness can be relatively difficult (close space sublimation). In this paper we report on the development of a process using pulsed Direct Current magnetron sputtering which allows nanometre control of thin film thickness using time only. The CdS thin films deposited in this process are highly uniform and smooth. They exhibit the preferred hexagonal structure at room temperature deposition and they have excellent optical properties. Importantly, the process is highly stable despite the use of a semi-insulating magnetron target. Moreover, the process is very fast. The deposition rate using 1.5 kW of power to a 6-inch circular magnetron was measured to be greater than 8 nm/s. This makes the process suitable for industrial deployment. - Highlights: • Pulsed DC magnetron sputtering of CdS • High deposition rate deposition • Uniform, pinhole free films

  17. An optimized In–CuGa metallic precursors for chalcopyrite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jun-feng, E-mail: junfeng.han@cnrs-imn.fr [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France); Department of Physics, Peking University, Beijing 100871 (China); Liao, Cheng [Department of Physics, Peking University, Beijing 100871 (China); Chengdu Green Energy and Green Manufacturing Technology R and D Center, Chengdu, Sichuan Province 601207 (China); Jiang, Tao; Xie, Hua-mu; Zhao, Kui [Department of Physics, Peking University, Beijing 100871 (China); Besland, M.-P. [Institut des Matériaux Jean Rouxel (IMN), Université de Nantes, UMR CNRS 6502, 2 rue de la Houssinière, BP 32229, 44322 Nantes Cedex 3 (France)

    2013-10-31

    We report a study of CuGa–In metallic precursors for chalcopyrite thin film. CuGa and In thin films were prepared by DC sputtering at room temperature. Due to low melting point of indium, the sputtering power on indium target was optimized. Then, CuGa and In multilayers were annealed at low temperature. At 120 °C, the annealing treatment could enhance diffusion and alloying of CuGa and In layers; however, at 160 °C, it caused a cohesion and crystalline of indium from the alloy which consequently formed irregular nodules on the film surface. The precursors were selenized to form copper indium gallium selenide (CIGS) thin films. The morphological and structural properties were investigated by scanning electron microscopy, X-ray diffraction and Raman spectra. The relationships between metallic precursors and CIGS films were discussed in the paper. A smooth precursor layer was the key factor to obtain a homogeneous and compact CIGS film. - Highlights: • An optimized sputtered indium film • An optimized alloying process of metallic precursor • An observation of nodules forming on the indium film and precursor surface • An observation of cauliflower structure in copper indium gallium selenide film • The relationship between precursor and CIGS film surface morphology.

  18. General and Robust Strategies for Multifunctional Organic-Inorganic Nanocompositesvia Direct Growth of Monodisperse Nanocrystals Intimately and Permanently Connected with Polymers

    Science.gov (United States)

    2016-04-21

    cells: from complex nanostructure to planar heterojunction ”, Journal of Materials Chemistry A, 2, 5994 (2014). (featured on Cover of Journal of...naphthalenide solution. Trifluoroacetic acid (TFA, 99%), Yttrium(III) oxide (Y2O3, 99.99%), Ytterbium(III) oxide (Yb2O3, 99.9%), Erbium(III) oxide ...Er2O3, ≥99.99%) and Thulium(III) oxide (Tm2O3, 99.9%) were purchased from Sigma-Aldrich and used as received. Gold(III) chloride trihydrate (HAuCl4·3H2O

  19. Low Cost High Performance Generator Technology Program. Volume 2. Design study

    International Nuclear Information System (INIS)

    1975-06-01

    The systems studies directed towards up-rating the performance of an RTG using selenide thermoelectrics and a heat source with improved safety are reported. The resulting generator design, designated LCHPG, exhibits conversion efficiency of greater than 10 percent, a specific power of 3 W/lb., and a cost of $6,000/W(e). In the course of system analyses, the significant development activities required to achieve this performance by the 1980 time period are identified

  20. Radioisotope space power generator. Annual report, July 1, 1975--September 30, 1976

    International Nuclear Information System (INIS)

    Elsner, N.B.; Chin, J.; Staley, H.G.; Steeger, E.J.; Gantzel, P.K.

    1977-09-01

    TPM-217 P-type selenide usefulness in thermoelectric converters depends on its dimensional, electrical and thermal stability at high temperature and its compatibility with other converter component materials in a low pressure environment. Experimental efforts have been directed at determining: the vaporization behavior at 900 0 C, the partial pressures of vaporizing species versus temperature, vapor suppression coatings, thermal expansion, dimensional stability, and the high temperature compatibility of TPM-217 with proposed end cap materials