WorldWideScience

Sample records for youngest massive protostars

  1. CHARACTERIZING THE YOUNGEST HERSCHEL-DETECTED PROTOSTARS. I. ENVELOPE STRUCTURE REVEALED BY CARMA DUST CONTINUUM OBSERVATIONS

    International Nuclear Information System (INIS)

    Tobin, John J.; Stutz, Amelia M.; Henning, Thomas; Ragan, Sarah E.; Megeath, S. Thomas; Fischer, William J.; Ali, Babar; Stanke, Thomas; Manoj, P.; Calvet, Nuria; Hartmann, Lee

    2015-01-01

    We present Combined Array for Research in Millimeter-wave Astronomy 2.9 mm dust continuum emission observations of a sample of 14 Herschel-detected Class 0 protostars in the Orion A and B molecular clouds, drawn from the PACS Bright Red Sources (PBRS) sample. These objects are characterized by very red 24-70 μm colors and prominent submillimeter emission, suggesting that they are very young Class 0 protostars embedded in dense envelopes. We detect all of the PBRS in 2.9 mm continuum emission and emission from four protostars and one starless core in the fields toward the PBRS; we also report one new PBRS source. The ratio of 2.9 mm luminosity to bolometric luminosity is higher by a factor of ∼5 on average, compared to other well-studied protostars in the Perseus and Ophiuchus clouds. The 2.9 mm visibility amplitudes for 6 of the 14 PBRS are very flat as a function of uv distance, with more than 50% of the source emission arising from radii <1500 AU. These flat visibility amplitudes are most consistent with spherically symmetric envelope density profiles with ρ ∝ R –2.5 . Alternatively, there could be a massive unresolved structure like a disk or a high-density inner envelope departing from a smooth power law. The large amount of mass on scales <1500 AU (implying high average central densities) leads us to suggest that that the PBRS with flat visibility amplitude profiles are the youngest PBRS and may be undergoing a brief phase of high mass infall/accretion and are possibly among the youngest Class 0 protostars. The PBRS with more rapidly declining visibility amplitudes still have large envelope masses, but could be slightly more evolved

  2. EVOLUTION OF MASSIVE PROTOSTARS VIA DISK ACCRETION

    International Nuclear Information System (INIS)

    Hosokawa, Takashi; Omukai, Kazuyuki; Yorke, Harold W.

    2010-01-01

    Mass accretion onto (proto-)stars at high accretion rates M-dot * > 10 -4 M sun yr -1 is expected in massive star formation. We study the evolution of massive protostars at such high rates by numerically solving the stellar structure equations. In this paper, we examine the evolution via disk accretion. We consider a limiting case of 'cold' disk accretion, whereby most of the stellar photosphere can radiate freely with negligible backwarming from the accretion flow, and the accreting material settles onto the star with the same specific entropy as the photosphere. We compare our results to the calculated evolution via spherically symmetric accretion, the opposite limit, whereby the material accreting onto the star contains the entropy produced in the accretion shock front. We examine how different accretion geometries affect the evolution of massive protostars. For cold disk accretion at 10 -3 M sun yr -1 , the radius of a protostar is initially small, R * ≅ a few R sun . After several solar masses have accreted, the protostar begins to bloat up and for M * ≅ 10 M sun the stellar radius attains its maximum of 30-400 R sun . The large radius ∼100 R sun is also a feature of spherically symmetric accretion at the same accreted mass and accretion rate. Hence, expansion to a large radius is a robust feature of accreting massive protostars. At later times, the protostar eventually begins to contract and reaches the zero-age main sequence (ZAMS) for M * ≅ 30 M sun , independent of the accretion geometry. For accretion rates exceeding several 10 -3 M sun yr -1 , the protostar never contracts to the ZAMS. The very large radius of several hundreds R sun results in the low effective temperature and low UV luminosity of the protostar. Such bloated protostars could well explain the existence of bright high-mass protostellar objects, which lack detectable H II regions.

  3. CLASS 0 PROTOSTARS IN THE PERSEUS MOLECULAR CLOUD: A CORRELATION BETWEEN THE YOUNGEST PROTOSTARS AND THE DENSE GAS DISTRIBUTION

    Energy Technology Data Exchange (ETDEWEB)

    Sadavoy, S. I.; Di Francesco, J. [Department of Physics and Astronomy, University of Victoria, P.O. Box 355, STN CSC, Victoria, BC, V8W 3P6 (Canada); André, Ph.; Maury, A.; Men' shchikov, A.; Motte, F.; Hennemann, M.; Könyves, V.; Louvet, F.; Roy, A. [Laboratoire AIM, CEA/DSM-CNRS-Université Paris Diderot, IRFU/Service dAstrophysique, Saclay, F-91191 Gif-sur-Yvette (France); Pezzuto, S.; Benedettini, M.; Elia, D. [Istituto di Astrofisica e Planetologia Spaziali, Via Fosso del Cavaliere 100, I-00133 Rome (Italy); Bernard, J.-P. [CNRS, IRAP, 9 Av. Colonel Roche, BP 44346, F-31028 Toulouse Cedex 4 (France); Nguyên-Lu' o' ng, Q. [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, ON, M5S 3H8 (Canada); Schneider, N.; Bontemps, S. [Université de Bordeaux, LAB, UMR 5804, F-33270 Floirac (France); Arzoumanian, D. [IAS, CNRS (UMR 8617), Université Paris-Sud 11, Bâtiment 121, F-91400 Orsay (France); Hill, T. [Joint ALMA Observatory, Alonso de Cordova 3107, Vitacura 763-0355, Santiago (Chile); Peretto, N., E-mail: sadavoy@mpia.de [School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom); and others

    2014-06-01

    We use PACS and SPIRE continuum data at 160 μm, 250 μm, 350 μm, and 500 μm from the Herschel Gould Belt Survey to sample seven clumps in Perseus: B1, B1-E, B5, IC 348, L1448, L1455, and NGC 1333. Additionally, we identify and characterize the embedded Class 0 protostars using detections of compact Herschel sources at 70 μm as well as archival Spitzer catalogs and SCUBA 850 μm photometric data. We identify 28 candidate Class 0 protostars, four of which are newly discovered sources not identified with Spitzer. We find that the star formation efficiency of clumps, as traced by Class 0 protostars, correlates strongly with the flatness of their respective column density distributions at high values. This correlation suggests that the fraction of high column density material in a clump reflects only its youngest protostellar population rather than its entire source population. We propose that feedback from either the formation or evolution of protostars changes the local density structure of clumps.

  4. ON THE SIMULTANEOUS EVOLUTION OF MASSIVE PROTOSTARS AND THEIR HOST CORES

    International Nuclear Information System (INIS)

    Kuiper, R.; Yorke, H. W.

    2013-01-01

    Studies of the evolution of massive protostars and the evolution of their host molecular cloud cores are commonly treated as separate problems. However, interdependencies between the two can be significant. Here, we study the simultaneous evolution of massive protostars and their host molecular cores using a multi-dimensional radiation hydrodynamics code that incorporates the effects of the thermal pressure and radiative acceleration feedback of the centrally forming protostar. The evolution of the massive protostar is computed simultaneously using the stellar evolution code STELLAR, modified to include the effects of variable accretion. The interdependencies are studied in three different collapse scenarios. For comparison, stellar evolutionary tracks at constant accretion rates and the evolution of the host cores using pre-computed stellar evolutionary tracks are computed. The resulting interdependencies of the protostellar evolution and the evolution of the environment are extremely diverse and depend on the order of events, in particular the time of circumstellar accretion disk formation with respect to the onset of the bloating phase of the star. Feedback mechanisms affect the instantaneous accretion rate and the protostar's radius, temperature, and luminosity on timescales t ≤ 5 kyr, corresponding to the accretion timescale and Kelvin-Helmholtz contraction timescale, respectively. Nevertheless, it is possible to approximate the overall protostellar evolution in many cases by pre-computed stellar evolutionary tracks assuming appropriate constant average accretion rates

  5. A HERSCHEL AND APEX CENSUS OF THE REDDEST SOURCES IN ORION: SEARCHING FOR THE YOUNGEST PROTOSTARS

    Energy Technology Data Exchange (ETDEWEB)

    Stutz, Amelia M.; Robitaille, Thomas; Henning, Thomas; Krause, Oliver [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Tobin, John J. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Stanke, Thomas [ESO, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Muenchen (Germany); Megeath, S. Thomas; Fischer, William J. [Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft Street, Toledo, OH 43606 (United States); Ali, Babar; Furlan, Elise [NHSC/IPAC/Caltech, 770 S. Wilson Avenue, Pasadena, CA 91125 (United States); Di Francesco, James [National Research Council of Canada, Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Hartmann, Lee [Department of Astronomy, University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Osorio, Mayra [Instituto de Astrofisica de Andalucia, CSIC, Camino Bajo de Huetor 50, E-18008 Granada (Spain); Wilson, Thomas L. [Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Allen, Lori [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Manoj, P., E-mail: stutz@mpia.de [Department of Physics and Astronomy, 500 Wilson Boulevard, University of Rochester, Rochester, NY 14627 (United States)

    2013-04-10

    We perform a census of the reddest, and potentially youngest, protostars in the Orion molecular clouds using data obtained with the PACS instrument on board the Herschel Space Observatory and the LABOCA and SABOCA instruments on APEX as part of the Herschel Orion Protostar Survey (HOPS). A total of 55 new protostar candidates are detected at 70 {mu}m and 160 {mu}m that are either too faint (m{sub 24} > 7 mag) to be reliably classified as protostars or undetected in the Spitzer/MIPS 24 {mu}m band. We find that the 11 reddest protostar candidates with log {lambda}F{sub {lambda}}70/{lambda}F{sub {lambda}}24 > 1.65 are free of contamination and can thus be reliably explained as protostars. The remaining 44 sources have less extreme 70/24 colors, fainter 70 {mu}m fluxes, and higher levels of contamination. Taking the previously known sample of Spitzer protostars and the new sample together, we find 18 sources that have log {lambda}F{sub {lambda}}70/{lambda}F{sub {lambda}}24 > 1.65; we name these sources 'PACS Bright Red sources', or PBRs. Our analysis reveals that the PBR sample is composed of Class 0 like sources characterized by very red spectral energy distributions (SEDs; T{sub bol} < 45 K) and large values of sub-millimeter fluxes (L{sub smm}/L{sub bol} > 0.6%). Modified blackbody fits to the SEDs provide lower limits to the envelope masses of 0.2-2 M{sub Sun} and luminosities of 0.7-10 L{sub Sun }. Based on these properties, and a comparison of the SEDs with radiative transfer models of protostars, we conclude that the PBRs are most likely extreme Class 0 objects distinguished by higher than typical envelope densities and hence, high mass infall rates.

  6. METHYL CYANIDE OBSERVATIONS TOWARD MASSIVE PROTOSTARS

    Energy Technology Data Exchange (ETDEWEB)

    Rosero, V.; Hofner, P. [Physics Department, New Mexico Tech, 801 Leroy Place, Socorro, NM 87801 (United States); Kurtz, S. [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, Morelia 58090 (Mexico); Bieging, J. [Department of Astronomy and Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Araya, E. D. [Physics Department, Western Illinois University, 1 University Circle, Macomb, IL 61455 (United States)

    2013-07-01

    We report the results of a survey in the CH{sub 3}CN J = 12 {yields} 11 transition toward a sample of massive proto-stellar candidates. The observations were carried out with the 10 m Submillimeter Telescope on Mount Graham, AZ. We detected this molecular line in 9 out of 21 observed sources. In six cases this is the first detection of this transition. We also obtained full beam sampled cross-scans for five sources which show that the lower K-components can be extended on the arcminute angular scale. The higher K-components, however, are always found to be compact with respect to our 36'' beam. A Boltzmann population diagram analysis of the central spectra indicates CH{sub 3}CN column densities of about 10{sup 14} cm{sup -2}, and rotational temperatures above 50 K, which confirms these sources as hot molecular cores. Independent fits to line velocity and width for the individual K-components resulted in the detection of an increasing blueshift with increasing line excitation for four sources. Comparison with mid-infrared (mid-IR) images from the SPITZER GLIMPSE/IRAC archive for six sources show that the CH{sub 3}CN emission is generally coincident with a bright mid-IR source. Our data clearly show that the CH{sub 3}CN J = 12 {yields} 11 transition is a good probe of the hot molecular gas near massive protostars, and provide the basis for future interferometric studies.

  7. Characterizing the Energetics of the Youngest Protostars: FIFI-LS Spectroscopy of Herschel-Identified Extreme Class 0 objects in Orion

    Science.gov (United States)

    Megeath, S.

    2014-10-01

    We propose FIFI-LS spectroscopy observations toward 3 of the youngest known Herschel- detected Class 0 protostars in the Orion molecular clouds. Characterization of the far-IR spectrum toward these PACS Bright Red Sources (PBRS) is imperative: this is the only observational means to characterize the complete energetics of the outflow in the earliest stages of the star formation process. We have already obtained Herschel-PACS spectroscopy for 8/14 PBRS; for these, the CO rotation temperatures are systematically lower than the larger samples of 'more typical' protostars observed. Furthermore, all of the Herschel-detected PBRS also have CARMA CO (J=1-0) outflow maps, enabling us to identify tentative trends between the detection and morphology (compact or extended) of the CO outflow and the presence or lack of far-infrared emission lines. Moreover, we only convincingly detect [OI] emission toward the source with the brightest outflow emission; thus, [OI] may not be universally present in protostellar outflows. However, due to the small-numbers with PACS spectroscopy, it is unclear if these trends are real and the three proposed PBRS have outflow maps of varying morphologies, but no far-infrared spectra. The results from this program will provide a firm observational footing for the presence or lack of such trends and will strengthen the connection of the far-IR emission lines to the outflow.

  8. WATER ABSORPTION FROM GAS VERY NEAR THE MASSIVE PROTOSTAR AFGL 2136 IRS 1

    International Nuclear Information System (INIS)

    Indriolo, Nick; Neufeld, D. A.; Seifahrt, A.; Richter, M. J.

    2013-01-01

    We present ground-based observations of the ν 1 and ν 3 fundamental bands of H 2 O toward the massive protostar AFGL 2136 IRS 1, identifying absorption features due to 47 different ro-vibrational transitions between 2.468 μm and 2.561 μm. Analysis of these features indicates the absorption arises in warm (T = 506 ± 25 K), very dense (n(H 2 ) > 5 × 10 9 cm –3 ) gas, suggesting an origin close to the central protostar. The total column density of warm water is estimated to be N(H 2 O) = (1.02 ± 0.02) × 10 19 cm –2 , giving a relative abundance of N(H 2 O)/N(H 2 ) ≈ 10 –4 . Our study represents the first extensive use of water vapor absorption lines in the near infrared, and demonstrates the utility of such observations in deriving physical parameters

  9. Protostar formation in the early universe.

    Science.gov (United States)

    Yoshida, Naoki; Omukai, Kazuyuki; Hernquist, Lars

    2008-08-01

    The nature of the first generation of stars in the universe remains largely unknown. Observations imply the existence of massive primordial stars early in the history of the universe, and the standard theory for the growth of cosmic structure predicts that structures grow hierarchically through gravitational instability. We have developed an ab initio computer simulation of the formation of primordial stars that follows the relevant atomic and molecular processes in a primordial gas in an expanding universe. The results show that primeval density fluctuations left over from the Big Bang can drive the formation of a tiny protostar with a mass 1% that of the Sun. The protostar is a seed for the subsequent formation of a massive primordial star.

  10. VizieR Online Data Catalog: Deconvolved Spitzer images of 89 protostars (Velusamy+, 2014)

    Science.gov (United States)

    Velusamy, T.; Langer, W. D.; Thompson, T.

    2016-03-01

    The sample of Class 0 protostars, H2 jets, and outflow sour selected for HiRes deconvolution of Spitzer images are listed in Table1. The majority of our target protostellar objects were selected from "The Youngest Protostars" webpage hosted by the University of Kent (http://astro.kent.ac.uk/protostars/old/), which are based on the young Class 0 objects compiled by Froebrich 2005 (cat. J/ApJS/156/169). In addition to these objects, our sample includes some Herbig-Haro (HH) sources and a few well known jet outflow sources. Our sample also includes one high-mass protostar (IRAS20126+4104; cf. Caratti o Garatti et al., 2008A&A...485..137C) to demonstrate the use of HiRes for such sources. Our choice for target selection was primarily based on the availability of Spitzer images in IRAC and MIPS bands in the archives and the feasibility for reprocessing based on the published Spitzer images wherever available. (1 data file).

  11. Peering to the Heart of Massive Star Birth

    Science.gov (United States)

    Tan, Jonathan

    2015-10-01

    We propose a small survey of massive/intermediate-mass protostars with WFC3/IR to probe J and H band continuum emission, the Pa-beta and the [FeII] emission. The protostar sample is already the subject of approved SOFIA-FORCAST observations from 10-40 microns. Combined with sophisticated radiative transfer models, these observations are providing the most detailed constraints on the nature of massive protostars, their luminosities, outflow cavity structures and orientations, and distribution of surrounding dense core gas and dust. Recently, we were also awarded ALMA Cycle 3 time to study these sources at up to 0.14 resolution. The proposed HST observations, with very similar resolution, have three main goals: 1) Detect and characterize J and H band continuum emission from the massive/intermediate-mass protostars, which is expected to arise from jet and outflow knot features and from scattered light emerging from the outflow cavities; 2) Detect and characterize Pa-beta and [FeII] line emission tracing ionized and FUV-illuminated regions around the massive protostars, important diagnostics of the protostellar source and its outflow structure; 3) Search for lower-mass protostars that may be clustered around the forming massive protostar. All of these objectives will help test massive star formation theories. The high sensitivity and angular resolution of WFC3/IR enables these observations to be carried out efficiently in a timely fashion. Mid-Cycle observations are critical for near contemporaneous observation with ALMA, since jet/outflow knots may have large proper motions, and to maximize the potential time baseline for a future HST study of jet/outflow proper motions.

  12. Multiple monopolar outflows driven by massive protostars in IRAS 18162-2048

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-López, M. [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Girart, J. M. [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB, Facultat de Ciencies, Torre C5-parell 2, E-08193 Bellaterra, Catalunya (Spain); Curiel, S.; Fonfría, J. P. [Instituto de Astronomía, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-264, 04510 México, DF (Mexico); Zapata, L. A. [Centro de Radioastronomía y Astrofísica, UNAM, Apartado Postal 3-72, Morelia, Michoacán 58089 (Mexico); Qiu, K., E-mail: manferna@illinois.edu, E-mail: girart@ieec.cat [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China)

    2013-11-20

    In this article, we present Combined Array for Research in Millimeter-wave Astronomy (CARMA) 3.5 mm observations and SubMillimeter Array (SMA) 870 μm observations toward the high-mass star-forming region IRAS 18162-2048, which is the core of the HH 80/81/80N system. Molecular emission from HCN, HCO{sup +}, and SiO traces two molecular outflows (the so-called northeast and northwest outflows). These outflows have their origin in a region close to the position of MM2, a millimeter source known to harbor two protostars. For the first time we estimate the physical characteristics of these molecular outflows, which are similar to those of 10{sup 3}-5 × 10{sup 3} L {sub ☉} protostars, and suggest that MM2 harbors high-mass protostars. High-angular resolution CO observations show an additional outflow due southeast. Also for the first time, we identify its driving source, MM2(E), and see evidence of precession. All three outflows have a monopolar appearance, but we link the NW and SE lobes, and explain their asymmetric shape as being a consequence of possible deflection.

  13. Luminous Herbig-Haro objects from a massive protostar: The unique case of HH 80/81

    Science.gov (United States)

    Reipurth, Bo

    2017-08-01

    Herbig-Haro (HH) objects are the optical manifestations of shock waves excited by outflows from young stars. They represent one of the few classes of spatially extended astronomical objects where both structural changes and proper motions can be measured on time scales of years to decades. HH 80/81 is a pair of HH objects in Sagittarius which are the intrinsically most luminous HH objects known. The driving source of HH 80/81 is the embedded star IRAS 18162-2048, which has a luminosity of 20,000 Lsun and excites a compact HII region, suggesting that it is a newborn massive star. HH objects associated with massive young stars are very rare, only a handful of cases are known, but what makes the HH 80/81 source unique among massive protostars is that it produces a finely collimated bipolar radio jet with extremely high velocity and pointing straight to HH 80/81. We propose to observe the HH 80/81 complex with WFC3 and the following four filters: Halpha 6563, Hbeta 4861, [SII] 6717/31, and [OIII] 5007. First epoch HST images were obtained 22 years ago, which now allows a very precise determination of proper motions. Groundbased optical and radio proper motions are not only uncertain, but actually contradict each other, a controversy that will be resolved by HST. The fine resolution of WFC3 allows a study of both fine structural details and structural changes of the shocks. Finally we will use a sophisticated adaptive grid code to interpret the (de-reddened) line ratios across the shocks.

  14. Constraining the disk masses of the class I binary protostar GV Tau

    Energy Technology Data Exchange (ETDEWEB)

    Sheehan, Patrick D.; Eisner, Josh A., E-mail: psheehan@email.arizona.edu [Steward Observatory, University of Arizona 933 North Cherry Avenue, Tucson, AZ 85721 (United States)

    2014-08-10

    We present new spatially resolved 1.3 mm imaging with CARMA of the GV Tau system. GV Tau is a Class I binary protostar system in the Taurus Molecular Cloud, the components of which are separated by 1.''2. Each protostar is surrounded by a protoplanetary disk, and the pair may be surrounded by a circumbinary envelope. We analyze the data using detailed radiative transfer modeling of the system. We create synthetic protostar model spectra, images, and visibilities and compare them with CARMA 1.3 mm visibilities, a Hubble Space Telescope near-infrared scattered light image, and broadband spectral energy distributions from the literature to study the disk masses and geometries of the GV Tau disks. We show that the protoplanetary disks around GV Tau fall near the lower end of estimates of the Minimum Mass Solar Nebula, and may have just enough mass to form giant planets. When added to the sample of Class I protostars from Eisner, we confirm that Class I protostars are on average more massive than their Class II counterparts. This suggests that substantial dust grain processing occurs between the Class I and Class II stages, and may help to explain why the Class II protostars do not appear to have, on average, enough mass in their disks to form giant planets.

  15. Small scale kinematics of massive star-forming cores

    NARCIS (Netherlands)

    Wang, Kuo-Song

    2013-01-01

    Unlike the formation of Solar-type stars, the formation of massive stars (M>8 Msun) is not yet well understood. For Solar-type protostars, the presence of circumstellar or protoplanetary disks which provide a path for mass accretion onto protostars is well established. However, to date only few

  16. RESOLVING THE CIRCUMSTELLAR DISK AROUND THE MASSIVE PROTOSTAR DRIVING THE HH 80-81 JET

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco-Gonzalez, Carlos [Max-Planck-Institut fuer Radioastronomie (MPIfR), Auf dem Huegel 69, 53121 Bonn (Germany); Galvan-Madrid, Roberto [European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching (Germany); Anglada, Guillem; Osorio, Mayra [Instituto de Astrofisica de Andalucia, CSIC, Camino Bajo de Huetor 50, E-18008 Granada (Spain); D' Alessio, Paola; Rodriguez, Luis F. [Centro de Radioastronomia y Astrofisica UNAM, Apartado Postal 3-72 (Xangari), 58089 Morelia, Michoacan (Mexico); Hofner, Peter [Physics Department, New Mexico Tech, 801 Leroy Pl., Socorro, NM 87801 (United States); Linz, Hendrik [Max-Planck-Institut fuer Astronomie (MPIA), Koenigstuhl 17, 69117 Heidelberg (Germany); Araya, Esteban D., E-mail: carrasco@mpifr-bonn.mpg.de [Physics Department, Western Illinois University, 1 University Circle, Macomb, IL 61455 (United States)

    2012-06-20

    We present new high angular resolution observations toward the driving source of the HH 80-81 jet (IRAS 18162-2048). Continuum emission was observed with the Very Large Array at 7 mm and 1.3 cm, and with the Submillimeter Array at 860 {mu}m, with angular resolutions of {approx}0.''1 and {approx}0.''8, respectively. Submillimeter observations of the sulfur oxide (SO) molecule are reported as well. At 1.3 cm the emission traces the well-known radio jet, while at 7 mm the continuum morphology is quadrupolar and seems to be produced by a combination of free-free and dust emission. An elongated structure perpendicular to the jet remains in the 7 mm image after subtraction of the free-free contribution. This structure is interpreted as a compact accretion disk of {approx}200 AU radius. Our interpretation is favored by the presence of rotation in our SO observations observed at larger scales. The observations presented here add to the small list of cases where the hundred-AU scale emission from a circumstellar disk around a massive protostar has been resolved.

  17. The gas/solid methane abundance ratio toward deeply embedded protostars

    NARCIS (Netherlands)

    Boogert, ACA; Helmich, EP; van Dishoeck, EF; Schutte, WA

    1998-01-01

    We present the detection of re-vibrational absorption lines of the deformation mode of gaseous CH4 toward the massive protostars W 33A, and NGC 7538 : IRS9, using the SWS spectrometer an board of the Infrared Space Observatory. The observed lines indicate that the CH4 gas is warm (T similar to N 90

  18. Physics and chemistry of irradiated protostars

    DEFF Research Database (Denmark)

    Lindberg, Johan

    not resemble so-called hot corinos or warm carbon-chain chemistry sources (the previously known types of low-mass Class 0 objects as defined by their chemistry). The absence of complex organic molecules in combination with high abundances of radicals such as cyanide (CN) and hydroxyl (OH) suggest...... that the chemistry is dominated by radiation from R CrA. In the high-resolution interferometry data we also detect signs of a 100 AU Keplerian disc around the Class 0/I object IRS7B. The disc may be responsible for the lack of detections of complex organic molecules on the smaller scales as it may have flattened......) and chemistry (such as molecular abundances) in low-mass protostellar envelopes is studied. The work studies the nearby low-mass star-forming region Corona Australis, in which a large proportion of the youngest low-mass protostars (so-called Class 0 and Class I objects) are located in a dense cloud situated...

  19. HIERARCHICAL FRAGMENTATION AND JET-LIKE OUTFLOWS IN IRDC G28.34+0.06: A GROWING MASSIVE PROTOSTAR CLUSTER

    International Nuclear Information System (INIS)

    Wang Ke; Wu Yuefang; Zhang Huawei; Zhang Qizhou

    2011-01-01

    We present Submillimeter Array (SMA) λ = 0.88 mm observations of an infrared dark cloud G28.34+0.06. Located in the quiescent southern part of the G28.34 cloud, the region of interest is a massive (>10 3 M sun ) molecular clump P1 with a luminosity of ∼10 3 L sun , where our previous SMA observations at 1.3 mm have revealed a string of five dust cores of 22-64 M sun along the 1 pc IR-dark filament. The cores are well aligned at a position angle (P.A.) of 48 deg. and regularly spaced at an average projected separation of 0.16 pc. The new high-resolution, high-sensitivity 0.88 mm image further resolves the five cores into 10 compact condensations of 1.4-10.6 M sun , with sizes of a few thousand AU. The spatial structure at clump (∼1 pc) and core (∼0.1 pc) scales indicates a hierarchical fragmentation. While the clump fragmentation is consistent with a cylindrical collapse, the observed fragment masses are much larger than the expected thermal Jeans masses. All the cores are driving CO (3-2) outflows up to 38 km s -1 , the majority of which are bipolar, jet-like outflows. The moderate luminosity of the P1 clump sets a limit on the mass of protostars of 3-7 M sun . Because of the large reservoir of dense molecular gas in the immediate medium and ongoing accretion as evident by the jet-like outflows, we speculate that P1 will grow and eventually form a massive star cluster. This study provides a first glimpse of massive, clustered star formation that currently undergoes through an intermediate-mass stage.

  20. The Envelope Kinematics and a Possible Disk around the Class 0 Protostar within BHR7

    Science.gov (United States)

    Tobin, John J.; Bos, Steven P.; Dunham, Michael M.; Bourke, Tyler L.; van der Marel, Nienke

    2018-04-01

    We present a characterization of the protostar embedded within the BHR7 dark cloud, based on both photometric measurements from the near-infrared to millimeter and interferometric continuum and molecular line observations at millimeter wavelengths. We find that this protostar is a Class 0 system, the youngest class of protostars, measuring its bolometric temperature to be 50.5 K, with a bolometric luminosity of 9.3 L ⊙. The near-infrared and Spitzer imaging show a prominent dark lane from dust extinction separating clear bipolar outflow cavities. Observations of 13CO (J=2\\to 1), C18O (J=2\\to 1), and other molecular lines with the Submillimeter Array (SMA) exhibit a clear rotation signature on scales <1300 au. The rotation can be traced to an inner radius of ∼170 au and the rotation curve is consistent with an R ‑1 profile, implying that angular momentum is being conserved. Observations of the 1.3 mm dust continuum with the SMA reveal a resolved continuum source, extended in the direction of the dark lane, orthogonal to the outflow. The deconvolved size of the continuum indicates a radius of ∼100 au for the continuum source at the assumed distance of 400 pc. The visibility amplitude profile of the continuum emission cannot be reproduced by an envelope alone and needs a compact component. Thus, we posit that the resolved continuum source could be tracing a Keplerian disk in this very young system. If we assume that the continuum radius traces a Keplerian disk (R ∼ 120 au) the observed rotation profile is consistent with a protostar mass of 1.0 M ⊙.

  1. SIMULATING THE FORMATION OF MASSIVE PROTOSTARS. I. RADIATIVE FEEDBACK AND ACCRETION DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Klassen, Mikhail; Pudritz, Ralph E. [Department of Physics and Astronomy, McMaster University, 1280 Main Street W, Hamilton, ON L8S 4M1 (Canada); Kuiper, Rolf [Institute of Astronomy and Astrophysics, University of Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen (Germany); Peters, Thomas [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, D-85748 Garching (Germany); Banerjee, Robi, E-mail: klassm@mcmaster.ca [Hamburger Sternwarte, Universität Hamburg, Gojenbergsweg 112, D-21029 Hamburg (Germany)

    2016-05-20

    We present radiation hydrodynamic simulations of collapsing protostellar cores with initial masses of 30, 100, and 200 M {sub ⊙}. We follow their gravitational collapse and the formation of a massive protostar and protostellar accretion disk. We employ a new hybrid radiative feedback method blending raytracing techniques with flux-limited diffusion for a more accurate treatment of the temperature and radiative force. In each case, the disk that forms becomes Toomre-unstable and develops spiral arms. This occurs between 0.35 and 0.55 freefall times and is accompanied by an increase in the accretion rate by a factor of 2–10. Although the disk becomes unstable, no other stars are formed. In the case of our 100 and 200 M {sub ⊙} simulations, the star becomes highly super-Eddington and begins to drive bipolar outflow cavities that expand outwards. These radiatively driven bubbles appear stable, and appear to be channeling gas back onto the protostellar accretion disk. Accretion proceeds strongly through the disk. After 81.4 kyr of evolution, our 30 M {sub ⊙} simulation shows a star with a mass of 5.48 M {sub ⊙} and a disk of mass 3.3 M {sub ⊙}, while our 100 M {sub ⊙} simulation forms a 28.8 M {sub ⊙} mass star with a 15.8 M {sub ⊙} disk over the course of 41.6 kyr, and our 200 M {sub ⊙} simulation forms a 43.7 M {sub ⊙} star with an 18 M {sub ⊙} disk in 21.9 kyr. In the absence of magnetic fields or other forms of feedback, the masses of the stars in our simulation do not appear to be limited by their own luminosities.

  2. Effects of turbulence and rotation on protostar formation as a precursor of massive black holes

    DEFF Research Database (Denmark)

    Van Borm, C.; Bovino, S.; Latif, M. A.

    2014-01-01

    Context. The seeds of the first supermassive black holes may have resulted from the direct collapse of hot primordial gas in ≳104 K haloes, forming a supermassive or quasi-star as an intermediate stage. Aims. We explore the formation of a protostar resulting from the collapse of primordial gas...

  3. Effects of turbulence and rotation on protostar formation as a precursor of massive black holes

    NARCIS (Netherlands)

    Van Borm, C.; Bovino, S.; Latif, M. A.; Schleicher, D. R. G.; Spaans, M.; Grassi, T.

    2014-01-01

    Context. The seeds of the first supermassive black holes may have resulted from the direct collapse of hot primordial gas in ≳104 K haloes, forming a supermassive or quasi-star as an intermediate stage. Aims: We explore the formation of a protostar resulting from the collapse of primordial gas in

  4. YOUNG STELLAR POPULATIONS IN MYStIX STAR-FORMING REGIONS: CANDIDATE PROTOSTARS

    Energy Technology Data Exchange (ETDEWEB)

    Romine, Gregory; Feigelson, Eric D.; Getman, Konstantin V. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Kuhn, Michael A. [Millennium Institute of Astrophysics, Camino El Observatorio 1515, Las Condes, Santiago (Chile); Povich, Matthew S., E-mail: edf@astro.psu.edu [Department of Physics and Astronomy, California State Polytechnic University, 3801 West Temple Ave., Pomona, CA 91768 (United States)

    2016-12-20

    The Massive Young Star-Forming Complex in Infrared and X-ray (MYStIX) project provides a new census on stellar members of massive star-forming regions within 4 kpc. Here the MYStIX Infrared Excess catalog and Chandra -based X-ray photometric catalogs are mined to obtain high-quality samples of Class I protostars using criteria designed to reduce extragalactic and Galactic field star contamination. A total of 1109 MYStIX Candidate Protostars (MCPs) are found in 14 star-forming regions. Most are selected from protoplanetary disk infrared excess emission, but 20% are found from their ultrahard X-ray spectra from heavily absorbed magnetospheric flare emission. Two-thirds of the MCP sample is newly reported here. The resulting samples are strongly spatially associated with molecular cores and filaments on Herschel far-infrared maps. This spatial agreement and other evidence indicate that the MCP sample has high reliability with relatively few “false positives” from contaminating populations. But the limited sensitivity and sparse overlap among the infrared and X-ray subsamples indicate that the sample is very incomplete with many “false negatives.” Maps, tables, and source descriptions are provided to guide further study of star formation in these regions. In particular, the nature of ultrahard X-ray protostellar candidates without known infrared counterparts needs to be elucidated.

  5. YOUNG STELLAR POPULATIONS IN MYStIX STAR-FORMING REGIONS: CANDIDATE PROTOSTARS

    International Nuclear Information System (INIS)

    Romine, Gregory; Feigelson, Eric D.; Getman, Konstantin V.; Kuhn, Michael A.; Povich, Matthew S.

    2016-01-01

    The Massive Young Star-Forming Complex in Infrared and X-ray (MYStIX) project provides a new census on stellar members of massive star-forming regions within 4 kpc. Here the MYStIX Infrared Excess catalog and Chandra -based X-ray photometric catalogs are mined to obtain high-quality samples of Class I protostars using criteria designed to reduce extragalactic and Galactic field star contamination. A total of 1109 MYStIX Candidate Protostars (MCPs) are found in 14 star-forming regions. Most are selected from protoplanetary disk infrared excess emission, but 20% are found from their ultrahard X-ray spectra from heavily absorbed magnetospheric flare emission. Two-thirds of the MCP sample is newly reported here. The resulting samples are strongly spatially associated with molecular cores and filaments on Herschel far-infrared maps. This spatial agreement and other evidence indicate that the MCP sample has high reliability with relatively few “false positives” from contaminating populations. But the limited sensitivity and sparse overlap among the infrared and X-ray subsamples indicate that the sample is very incomplete with many “false negatives.” Maps, tables, and source descriptions are provided to guide further study of star formation in these regions. In particular, the nature of ultrahard X-ray protostellar candidates without known infrared counterparts needs to be elucidated.

  6. YOUNG STELLAR OBJECTS IN THE MASSIVE STAR-FORMING REGION W49

    Energy Technology Data Exchange (ETDEWEB)

    Saral, G.; Hora, J. L.; Willis, S. E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Koenig, X. P. [Yale University, Department of Astronomy, 208101, New Haven, CT 06520-8101 (United States); Gutermuth, R. A. [University of Massachusetts, Department of Astronomy, Amherst, MA 01003 (United States); Saygac, A. T., E-mail: gsaral@cfa.harvard.edu [Istanbul University, Faculty of Science, Astronomy and Space Sciences Department, Istanbul-Turkey (Turkey)

    2015-11-01

    We present the initial results of our investigation of the star-forming complex W49, one of the youngest and most luminous massive star-forming regions in our Galaxy. We used Spitzer/Infrared Array Camera (IRAC) data to investigate massive star formation with the primary objective of locating a representative set of protostars and the clusters of young stars that are forming around them. We present our source catalog with the mosaics from the IRAC data. In this study we used a combination of IRAC, MIPS, Two Micron All Sky Survey, and UKIRT Deep Infrared Sky Survey (UKIDSS) data to identify and classify the young stellar objects (YSOs). We identified 232 Class 0/I YSOs, 907 Class II YSOs, and 74 transition disk candidate objects using color–color and color–magnitude diagrams. In addition, to understand the evolution of star formation in W49, we analyzed the distribution of YSOs in the region to identify clusters using a minimal spanning tree method. The fraction of YSOs that belong to clusters with ≥7 members is found to be 52% for a cutoff distance of 96″, and the ratio of Class II/I objects is 2.1. We compared the W49 region to the G305 and G333 star-forming regions and concluded that W49 has the richest population, with seven subclusters of YSOs.

  7. Protostar Evolution in the Orion Nebula Cluster (ONC)

    Science.gov (United States)

    Sanchez, Michael Allan

    2018-01-01

    We present our preliminary analysis of the protostars within the Orion Nebula Cluster (ONC). We developed a pipeline to identify protostars in the ONC using the IRAC instrument aboard Spitzer. We verified our photometric measurements with the catalog provided by Megeath et al. (2012). We then classified the protostar evolution stages (0/I, Flatt, II, and III) based on their spectral slope.

  8. CO outflows from high-mass Class 0 protostars in Cygnus-X

    Science.gov (United States)

    Duarte-Cabral, A.; Bontemps, S.; Motte, F.; Hennemann, M.; Schneider, N.; André, Ph.

    2013-10-01

    Context. The earliest phases of the formation of high-mass stars are not well known. It is unclear whether high-mass cores in monolithic collapse exist or not, and what the accretion process and origin of the material feeding the precursors of high-mass stars are. As outflows are natural consequences of the accretion process, they represent one of the few (indirect) tracers of accretion. Aims: We aim to search for individual outflows from high-mass cores in Cygnus X and to study the characteristics of the detected ejections. We compare these to what has been found for the low-mass protostars, to understand how ejection and accretion change and behave with final stellar mass. Methods: We used CO (2-1) PdBI observations towards six massive dense clumps, containing a total of 9 high-mass cores. We estimated the bolometric luminosities and masses of the 9 high-mass cores and measured the energetics of outflows. We compared our sample to low-mass objects studied in the literature and developed simple evolutionary models to reproduce the observables. Results: We find that 8 out of 9 high-mass cores are driving clear individual outflows. They are therefore true equivalents of Class 0 protostars in the high-mass regime. The remaining core, CygX-N53 MM2, has only a tentative outflow detection. It could be one of the first examples of a true individual high-mass prestellar core. We also find that the momentum flux of high-mass objects has a linear relation to the reservoir of mass in the envelope, as a scale up of the relations previously found for low-mass protostars. This suggests a fundamental proportionality between accretion rates and envelope masses. The linear dependency implies that the timescale for accretion is similar for high- and low-mass stars. Conclusions: The existence of strong outflows driven by high-mass cores in Cygnus X clearly indicates that high-mass Class 0 protostars exist. The collapsing envelopes of these Class 0 objects have similar sizes and a

  9. Opacity Limit for Supermassive Protostars

    Science.gov (United States)

    Becerra, Fernando; Marinacci, Federico; Inayoshi, Kohei; Bromm, Volker; Hernquist, Lars E.

    2018-04-01

    We present a model for the evolution of supermassive protostars from their formation at {M}\\star ≃ 0.1 {M}ȯ until their growth to {M}\\star ≃ {10}5 {M}ȯ . To calculate the initial properties of the object in the optically thick regime, we follow two approaches: one based on idealized thermodynamic considerations, and another based on a more detailed one-zone model. Both methods derive a similar value of {n}{{F}}≃ 2× {10}17 {cm}}-3 for the density of the object when opacity becomes important, i.e., the opacity limit. The subsequent evolution of the growing protostar is determined by the accretion of gas onto the object and can be described by a mass–radius relation of the form {R}\\star \\propto {M}\\star 1/3 during the early stages, and of the form {R}\\star \\propto {M}\\star 1/2 when internal luminosity becomes important. For the case of a supermassive protostar, this implies that the radius of the star grows from {R}\\star ≃ 0.65 {au} to {R}\\star ≃ 250 {au} during its evolution. Finally, we use this model to construct a subgrid recipe for accreting sink particles in numerical simulations. A prime ingredient thereof is a physically motivated prescription for the accretion radius and the effective temperature of the growing protostar embedded inside it. From the latter, we can conclude that photoionization feedback can be neglected until very late in the assembly process of the supermassive object.

  10. EXTREMELY LARGE AND HOT MULTILAYER KEPLERIAN DISK AROUND THE O-TYPE PROTOSTAR W51N: THE PRECURSORS OF THE HCH II REGIONS?

    International Nuclear Information System (INIS)

    Zapata, Luis A.; Tang, Ya-Wen; Leurini, Silvia

    2010-01-01

    We present sensitive high angular resolution (0.''57-0.''78) SO, SO 2 , CO, C 2 H 5 OH, HC 3 N, and HCOCH 2 OH line observations at millimeter and submillimeter wavelengths of the young O-type protostar W51 North made with the Submillimeter Array. We report the presence of a large (about 8000 AU) and hot molecular circumstellar disk around this object, which connects the inner dusty disk with the molecular ring or toroid reported recently and confirms the existence of a single bipolar outflow emanating from this object. The molecular emission from the large disk is observed in layers with the transitions characterized by high excitation temperatures in their lower energy states (up to 1512 K) being concentrated closer to the central massive protostar. The molecular emission from those transitions with low or moderate excitation temperatures is found in the outermost parts of the disk and exhibits an inner cavity with an angular size of around 0.''7. We modeled all lines with a local thermodynamic equilibrium (LTE) synthetic spectrum. A detailed study of the kinematics of the molecular gas together with an LTE model of a circumstellar disk shows that the innermost parts of the disk are also Keplerian plus a contracting velocity. The emission of the HCOCH 2 OH reveals the possible presence of a warm 'companion' located to the northeast of the disk, however its nature is unclear. The emission of the SO and SO 2 is observed in the circumstellar disk as well as in the outflow. We suggest that the massive protostar W51 North appears to be in a phase before the presence of a hypercompact or an ultracompact H II (HC/UCH II) region and propose a possible sequence on the formation of the massive stars.

  11. Infrared emission from protostars

    International Nuclear Information System (INIS)

    Adams, F.C.; Shu, F.H.

    1985-01-01

    The emergent spectral energy distribution at infrared to radio wavelengths is calculated for the simplest theoretical construct of a low-mass protostar. It is shown that the emergent spectrum in the infrared is insensitive to the details assumed for the temperature profile as long as allowance is made for a transition from optically thick to optically thin conditions and luminosity conservation isenforced at the inner and outer shells. The radiation in the far infrared and submillimeter wavelengths depends on the exact assumptions made for grain opacities at low frequencies. An atlas of emergent spectral energy distributions is presented for a grid of values of the instantaneous mass of the protostar and the mass infall rate. The attenuated contribution of the accretion shock to the near-infrared radiation is considered. 50 references

  12. PROTOSTELLAR OUTFLOW HEATING IN A GROWING MASSIVE PROTOCLUSTER

    Energy Technology Data Exchange (ETDEWEB)

    Wang Ke; Wu Yuefang; Zhang Huawei [Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China); Zhang Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Li Huabai, E-mail: kwang@cfa.harvard.edu [Max-Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2012-02-15

    The dense molecular clump P1 in the infrared dark cloud complex G28.34+0.06 harbors a massive protostellar cluster at its extreme youth. Our previous Submillimeter Array observations revealed several jet-like CO outflows emanating from the protostars, indicative of intense accretion and potential interaction with ambient natal materials. Here, we present the Expanded Very Large Array spectral line observations toward P1 in the NH{sub 3} (J,K) = (1,1), (2,2), (3,3) lines, as well as H{sub 2}O and class I CH{sub 3}OH masers. Multiple NH{sub 3} transitions reveal the heated gas widely spread in the 1 pc clump. The temperature distribution is highly structured; the heated gas is offset from the protostars, and morphologically matches the outflows very well. Hot spots of spatially compact, spectrally broad NH{sub 3} (3,3) emission features are also found coincident with the outflows. A weak NH{sub 3} (3,3) maser is discovered at the interface between an outflow jet and the ambient gas. These findings suggest that protostellar heating may not be effective in suppressing fragmentation during the formation of massive cores.

  13. PROTOSTELLAR OUTFLOW HEATING IN A GROWING MASSIVE PROTOCLUSTER

    International Nuclear Information System (INIS)

    Wang Ke; Wu Yuefang; Zhang Huawei; Zhang Qizhou; Li Huabai

    2012-01-01

    The dense molecular clump P1 in the infrared dark cloud complex G28.34+0.06 harbors a massive protostellar cluster at its extreme youth. Our previous Submillimeter Array observations revealed several jet-like CO outflows emanating from the protostars, indicative of intense accretion and potential interaction with ambient natal materials. Here, we present the Expanded Very Large Array spectral line observations toward P1 in the NH 3 (J,K) = (1,1), (2,2), (3,3) lines, as well as H 2 O and class I CH 3 OH masers. Multiple NH 3 transitions reveal the heated gas widely spread in the 1 pc clump. The temperature distribution is highly structured; the heated gas is offset from the protostars, and morphologically matches the outflows very well. Hot spots of spatially compact, spectrally broad NH 3 (3,3) emission features are also found coincident with the outflows. A weak NH 3 (3,3) maser is discovered at the interface between an outflow jet and the ambient gas. These findings suggest that protostellar heating may not be effective in suppressing fragmentation during the formation of massive cores.

  14. X-RAY AND RADIO OBSERVATIONS OF THE MASSIVE STAR-FORMING REGION IRAS 20126+4104

    Energy Technology Data Exchange (ETDEWEB)

    Montes, V. A.; Hofner, P.; Anderson, C.; Rosero, V. [Physics Department, New Mexico Tech, 801 Leroy Place, Socorro, NM 87801 (United States)

    2015-08-15

    We present results from Chandra ACIS-I and Karl G. Jansky Very Large Array 6 cm continuum observations of the IRAS 20126+4104 massive star-forming region. We detect 150 X-ray sources within the 17′ × 17′ ACIS-I field, and a total of 13 radio sources within the 9.′2 primary beam at 4.9 GHz. Among these observtions are the first 6 cm detections of the central sources reported by Hofner et al., namely, I20N1, I20S, and I20var. A new variable radio source is also reported. Searching the 2MASS archive, we identified 88 near-infrared (NIR) counterparts to the X-ray sources. Only four of the X-ray sources had 6 cm counterparts. Based on an NIR color–color analysis and on the Besançon simulation of Galactic stellar populations, we estimate that approximately 80 X-ray sources are associated with this massive star-forming region. We detect an increasing surface density of X-ray sources toward the massive protostar and infer the presence of a cluster of at least 43 young stellar objects within a distance of 1.2 pc from the massive protostar.

  15. The SOFIA Massive (SOMA) Star Formation Survey. I. Overview and First Results

    Energy Technology Data Exchange (ETDEWEB)

    De Buizer, James M.; Shuping, Ralph [SOFIA-USRA, NASA Ames Research Center, MS 232-12, Moffett Field, CA 94035 (United States); Liu, Mengyao; Tan, Jonathan C.; Staff, Jan E.; Tanaka, Kei E. I. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Zhang, Yichen [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Beltrán, Maria T. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Whitney, Barbara [Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter St, Madison, WI 53706 (United States)

    2017-07-01

    We present an overview and first results of the Stratospheric Observatory For Infrared Astronomy Massive (SOMA) Star Formation Survey, which is using the FORCAST instrument to image massive protostars from ∼10 to 40 μ m. These wavelengths trace thermal emission from warm dust, which in Core Accretion models mainly emerges from the inner regions of protostellar outflow cavities. Dust in dense core envelopes also imprints characteristic extinction patterns at these wavelengths, causing intensity peaks to shift along the outflow axis and profiles to become more symmetric at longer wavelengths. We present observational results for the first eight protostars in the survey, i.e., multiwavelength images, including some ancillary ground-based mid-infrared (MIR) observations and archival Spitzer and Herschel data. These images generally show extended MIR/FIR emission along directions consistent with those of known outflows and with shorter wavelength peak flux positions displaced from the protostar along the blueshifted, near-facing sides, thus confirming qualitative predictions of Core Accretion models. We then compile spectral energy distributions and use these to derive protostellar properties by fitting theoretical radiative transfer models. Zhang and Tan models, based on the Turbulent Core Model of McKee and Tan, imply the sources have protostellar masses m {sub *} ∼ 10–50 M {sub ⊙} accreting at ∼10{sup −4}–10{sup −3} M {sub ⊙} yr{sup −1} inside cores of initial masses M {sub c} ∼ 30–500 M {sub ⊙} embedded in clumps with mass surface densities Σ{sub cl} ∼ 0.1–3 g cm{sup −2}. Fitting the Robitaille et al. models typically leads to slightly higher protostellar masses, but with disk accretion rates ∼100× smaller. We discuss reasons for these differences and overall implications of these first survey results for massive star formation theories.

  16. A highly embedded protostar in SFO 18: IRAS 05417+0907

    Science.gov (United States)

    Saha, Piyali; Gopinathan, Maheswar; Puravankara, Manoj; Sharma, Neha; Soam, Archana

    2018-04-01

    Bright-rimmed clouds, located at the periphery of relatively evolved HIT regions, are considered to be the sites of star formation possibly triggered by the implosion caused due to the ionizing radiation from nearby massive stars. SFO 18 is one such region showing a bright-rim on the side facing the 0-type star, A Ori. A point source, IRAS 05417+0907, is detected towards the high density region of the cloud. A molecular outflow has been found to be associated with the source. The outflow is directed towards a Herbig-Haro object, HH 175. From the Spitzer and WISE observations, we show evidence of a physical connection between the molecular outflow, IRAS 05417+0907 and the HH object. The spectral energy distribution constructed using multi-wavelength data shows that the point source is most likely a highly embedded protostar.

  17. A RING/DISK/OUTFLOW SYSTEM ASSOCIATED WITH W51 NORTH: A VERY MASSIVE STAR IN THE MAKING

    International Nuclear Information System (INIS)

    Zapata, Luis A.; Schilke, Peter; Menten, Karl; Ho, Paul T. P.; Rodriguez, Luis F.; Palau, Aina; Garrod, Robin T.

    2009-01-01

    Sensitive and high angular resolution (∼0.''4) SO 2 [22 2,20 → 22 1,21 ] and SiO[5 → 4] line and 1.3 and 7 mm continuum observations made with the Submillimeter Array (SMA) and the Very Large Array (VLA) toward the young massive cluster W51 IRS2 are presented. We report the presence of a large (of about 3000 AU) and massive (40 M sun ) dusty circumstellar disk and a hot gas molecular ring around a high-mass protostar or a compact small stellar system associated with W51 North. The simultaneous observations of the silicon monoxide molecule, an outflow gas tracer, further revealed a massive (200 M sun ) and collimated (∼14 0 ) outflow nearly perpendicular to the dusty and molecular structures suggesting thus the presence of a single very massive protostar with a bolometric luminosity on the order of 10 5 L sun . A molecular hybrid local thermodynamic equilibrium model of a Keplerian and infalling disk with an inner cavity and a central stellar mass of more than 60 M sun agrees well with the SO 2 [22 2,20 → 22 1,21 ] line observations. Finally, these results suggest that mechanisms, such as mergers of low- and intermediate-mass stars, might not be necessary for forming very massive stars.

  18. THE SMALL-SCALE PHYSICAL STRUCTURE AND FRAGMENTATION DIFFERENCE OF TWO EMBEDDED INTERMEDIATE-MASS PROTOSTARS IN ORION

    International Nuclear Information System (INIS)

    Van Kempen, T. A.; Longmore, S. N.; Johnstone, D.; Pillai, T.; Fuente, A.

    2012-01-01

    Intermediate-mass (IM) protostars, the bridge between the very common solar-like protostars and the more massive, but rarer, O and B stars, can only be studied at high physical spatial resolutions in a handful of clouds. In this paper, we present and analyze the continuum results from an observing campaign at the Submillimeter Array (SMA) targeting two well-studied IM protostars in Orion, NGC 2071 and L1641 S3 MMS 1. The extended SMA (eSMA) probes structure at angular resolutions up to 0.''2, revealing protostellar disks on scales of ∼200 AU. Continuum flux measurements on these scales indicate that a significant amount of mass, a few tens of M ☉ , is present. Envelope, stellar, and disk masses are derived using compact, extended, and eSMA configurations and compared against spectral energy distribution fitting models. We hypothesize that fragmentation into three components occurred within NGC 2071 at an early time, when the envelopes were less than 10% of their current masses, e.g., ☉ . No fragmentation occurred for L1641 S3 MMS 1. For NGC 2071, evidence is given that the bulk of the envelope material currently around each source was accreted after the initial fragmentation. In addition, about 30% of the total core mass is not yet associated to one of the three sources. A global accretion model is favored and a potential accretion history of NGC 2071 is presented. It is shown that the relatively low level of fragmentation in NGC 2071 was stifled compared to the expected fragmentation from a Jeans argument. Similarly, the lack of fragmentation in L1641 S3 MMS 1 is likely due to similar arguments.

  19. Evolution of Deeply Embedded Protostars

    DEFF Research Database (Denmark)

    Frimann, Søren

    consequences for the evolution of protostellar systems. The sublimation of CO-ice from dust grains in the surrounding envelope can be used to trace accretion variability in protostars, because the increased heating during an accretion burst will cause the CO-ice to sublimate into the gas-phase where the excess...

  20. Formation of massive seed black holes via collisions and accretion

    Science.gov (United States)

    Boekholt, T. C. N.; Schleicher, D. R. G.; Fellhauer, M.; Klessen, R. S.; Reinoso, B.; Stutz, A. M.; Haemmerlé, L.

    2018-05-01

    Models aiming to explain the formation of massive black hole seeds, and in particular the direct collapse scenario, face substantial difficulties. These are rooted in rather ad hoc and fine-tuned initial conditions, such as the simultaneous requirements of extremely low metallicities and strong radiation backgrounds. Here, we explore a modification of such scenarios where a massive primordial star cluster is initially produced. Subsequent stellar collisions give rise to the formation of massive (104-105 M⊙) objects. Our calculations demonstrate that the interplay among stellar dynamics, gas accretion, and protostellar evolution is particularly relevant. Gas accretion on to the protostars enhances their radii, resulting in an enhanced collisional cross-section. We show that the fraction of collisions can increase from 0.1 to 1 per cent of the initial population to about 10 per cent when compared to gas-free models or models of protostellar clusters in the local Universe. We conclude that very massive objects can form in spite of initial fragmentation, making the first massive protostellar clusters viable candidate birth places for observed supermassive black holes.

  1. THE SMALL-SCALE PHYSICAL STRUCTURE AND FRAGMENTATION DIFFERENCE OF TWO EMBEDDED INTERMEDIATE-MASS PROTOSTARS IN ORION

    Energy Technology Data Exchange (ETDEWEB)

    Van Kempen, T. A. [Joint ALMA Offices, Alonso de Cordova 3107, Vitacura, Santiago (Chile); Longmore, S. N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Johnstone, D. [National Research Council Canada, Herzberg Institute for Astronomy, 5071 West Saanich Road, Victoria, BC (Canada); Pillai, T. [Caltech, MC 249-17, 1200 East California Blvd, Pasadena, CA 91125 (United States); Fuente, A., E-mail: tkempen@alma.cl [Observatorio Astronomico Nacional (OAN), Apdo. 112, E-28803 Alcala de Henares, Madrid (Spain)

    2012-06-01

    Intermediate-mass (IM) protostars, the bridge between the very common solar-like protostars and the more massive, but rarer, O and B stars, can only be studied at high physical spatial resolutions in a handful of clouds. In this paper, we present and analyze the continuum results from an observing campaign at the Submillimeter Array (SMA) targeting two well-studied IM protostars in Orion, NGC 2071 and L1641 S3 MMS 1. The extended SMA (eSMA) probes structure at angular resolutions up to 0.''2, revealing protostellar disks on scales of {approx}200 AU. Continuum flux measurements on these scales indicate that a significant amount of mass, a few tens of M{sub Sun }, is present. Envelope, stellar, and disk masses are derived using compact, extended, and eSMA configurations and compared against spectral energy distribution fitting models. We hypothesize that fragmentation into three components occurred within NGC 2071 at an early time, when the envelopes were less than 10% of their current masses, e.g., <0.5 M{sub Sun }. No fragmentation occurred for L1641 S3 MMS 1. For NGC 2071, evidence is given that the bulk of the envelope material currently around each source was accreted after the initial fragmentation. In addition, about 30% of the total core mass is not yet associated to one of the three sources. A global accretion model is favored and a potential accretion history of NGC 2071 is presented. It is shown that the relatively low level of fragmentation in NGC 2071 was stifled compared to the expected fragmentation from a Jeans argument. Similarly, the lack of fragmentation in L1641 S3 MMS 1 is likely due to similar arguments.

  2. Curtain-Lifting Winds Allow Rare Glimpse into Massive Star Factory

    Science.gov (United States)

    2003-06-01

    Formation of Exceedingly Luminous and Hot Stars in Young Stellar Cluster Observed Directly Summary Based on a vast observational effort with different telescopes and instruments, ESO-astronomer Dieter Nürnberger has obtained a first glimpse of the very first stages in the formation of heavy stars. These critical phases of stellar evolution are normally hidden from the view, because massive protostars are deeply embedded in their native clouds of dust and gas, impenetrable barriers to observations at all but the longest wavelengths. In particular, no visual or infrared observations have yet "caught" nascent heavy stars in the act and little is therefore known so far about the related processes. Profiting from the cloud-ripping effect of strong stellar winds from adjacent, hot stars in a young stellar cluster at the center of the NGC 3603 complex, several objects located near a giant molecular cloud were found to be bona-fide massive protostars, only about 100,000 years old and still growing. Three of these objects, designated IRS 9A-C, could be studied in more detail. They are very luminous (IRS 9A is about 100,000 times intrinsically brighter than the Sun), massive (more than 10 times the mass of the Sun) and hot (about 20,000 degrees). They are surrounded by relative cold dust (about 0°C), probably partly arranged in disks around these very young objects. Two possible scenarios for the formation of massive stars are currently proposed, by accretion of large amounts of circumstellar material or by collision (coalescence) of protostars of intermediate masses. The new observations favour accretion, i.e. the same process that is active during the formation of stars of smaller masses. PR Photo 16a/03: Stellar cluster and star-forming region NGC 3603. PR Photo 16b/03: Region near very young, massive stars IRS 9A-C in NGC 3603 (8 bands from J to Q). How do massive stars form? This question is easy to pose, but so far very difficult to answer. In fact, the processes

  3. SMA observations of Class 0 Protostars

    DEFF Research Database (Denmark)

    Chen, Xuepeng; Arce, Héctor G.; Zhang, Qizhou

    2013-01-01

    We present high angular resolution 1.3 mm and 850 μm dust continuum data obtained with the Submillimeter Array toward 33 Class 0 protostars in nearby clouds (distance <500 pc), which represents so far the largest survey toward protostellar binary/multiple systems. The median angular resolution in...

  4. The Red MSX Source Survey: The Massive Young Stellar Population of Our Galaxy

    Science.gov (United States)

    Lumsden, S. L.; Hoare, M. G.; Urquhart, J. S.; Oudmaijer, R. D.; Davies, B.; Mottram, J. C.; Cooper, H. D. B.; Moore, T. J. T.

    2013-09-01

    We present the Red MSX Source survey, the largest statistically selected catalog of young massive protostars and H II regions to date. We outline the construction of the catalog using mid- and near-infrared color selection. We also discuss the detailed follow up work at other wavelengths, including higher spatial resolution data in the infrared. We show that within the adopted selection bounds we are more than 90% complete for the massive protostellar population, with a positional accuracy of the exciting source of better than 2 arcsec. We briefly summarize some of the results that can be obtained from studying the properties of the objects in the catalog as a whole; we find evidence that the most massive stars form: (1) preferentially nearer the Galactic center than the anti-center; (2) in the most heavily reddened environments, suggestive of high accretion rates; and (3) from the most massive cloud cores.

  5. THE RED MSX SOURCE SURVEY: THE MASSIVE YOUNG STELLAR POPULATION OF OUR GALAXY

    International Nuclear Information System (INIS)

    Lumsden, S. L.; Hoare, M. G.; Oudmaijer, R. D.; Cooper, H. D. B.; Urquhart, J. S.; Davies, B.; Moore, T. J. T.; Mottram, J. C.

    2013-01-01

    We present the Red MSX Source survey, the largest statistically selected catalog of young massive protostars and H II regions to date. We outline the construction of the catalog using mid- and near-infrared color selection. We also discuss the detailed follow up work at other wavelengths, including higher spatial resolution data in the infrared. We show that within the adopted selection bounds we are more than 90% complete for the massive protostellar population, with a positional accuracy of the exciting source of better than 2 arcsec. We briefly summarize some of the results that can be obtained from studying the properties of the objects in the catalog as a whole; we find evidence that the most massive stars form: (1) preferentially nearer the Galactic center than the anti-center; (2) in the most heavily reddened environments, suggestive of high accretion rates; and (3) from the most massive cloud cores

  6. THE RED MSX SOURCE SURVEY: THE MASSIVE YOUNG STELLAR POPULATION OF OUR GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Lumsden, S. L.; Hoare, M. G.; Oudmaijer, R. D.; Cooper, H. D. B. [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom); Urquhart, J. S. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, Bonn (Germany); Davies, B.; Moore, T. J. T. [Astrophysics Research Institute, Liverpool John Moores University, Liverpool L3 5RF (United Kingdom); Mottram, J. C. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)

    2013-09-01

    We present the Red MSX Source survey, the largest statistically selected catalog of young massive protostars and H II regions to date. We outline the construction of the catalog using mid- and near-infrared color selection. We also discuss the detailed follow up work at other wavelengths, including higher spatial resolution data in the infrared. We show that within the adopted selection bounds we are more than 90% complete for the massive protostellar population, with a positional accuracy of the exciting source of better than 2 arcsec. We briefly summarize some of the results that can be obtained from studying the properties of the objects in the catalog as a whole; we find evidence that the most massive stars form: (1) preferentially nearer the Galactic center than the anti-center; (2) in the most heavily reddened environments, suggestive of high accretion rates; and (3) from the most massive cloud cores.

  7. THE HERSCHEL ORION PROTOSTAR SURVEY: SPECTRAL ENERGY DISTRIBUTIONS AND FITS USING A GRID OF PROTOSTELLAR MODELS

    Energy Technology Data Exchange (ETDEWEB)

    Furlan, E. [Infrared Processing and Analysis Center, California Institute of Technology, 770 S. Wilson Ave., Pasadena, CA 91125 (United States); Fischer, W. J. [Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Ali, B. [Space Science Institute, 4750 Walnut Street, Boulder, CO 80301 (United States); Stutz, A. M. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Stanke, T. [ESO, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei München (Germany); Tobin, J. J. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Megeath, S. T.; Booker, J. [Ritter Astrophysical Research Center, Department of Physics and Astronomy, University of Toledo, 2801 W. Bancroft Street, Toledo, OH 43606 (United States); Osorio, M. [Instituto de Astrofísica de Andalucía, CSIC, Camino Bajo de Huétor 50, E-18008 Granada (Spain); Hartmann, L.; Calvet, N. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Poteet, C. A. [New York Center for Astrobiology, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180 (United States); Manoj, P. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India); Watson, D. M. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627 (United States); Allen, L., E-mail: furlan@ipac.caltech.edu [National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States)

    2016-05-01

    We present key results from the Herschel Orion Protostar Survey: spectral energy distributions (SEDs) and model fits of 330 young stellar objects, predominantly protostars, in the Orion molecular clouds. This is the largest sample of protostars studied in a single, nearby star formation complex. With near-infrared photometry from 2MASS, mid- and far-infrared data from Spitzer and Herschel , and submillimeter photometry from APEX, our SEDs cover 1.2–870 μ m and sample the peak of the protostellar envelope emission at ∼100 μ m. Using mid-IR spectral indices and bolometric temperatures, we classify our sample into 92 Class 0 protostars, 125 Class I protostars, 102 flat-spectrum sources, and 11 Class II pre-main-sequence stars. We implement a simple protostellar model (including a disk in an infalling envelope with outflow cavities) to generate a grid of 30,400 model SEDs and use it to determine the best-fit model parameters for each protostar. We argue that far-IR data are essential for accurate constraints on protostellar envelope properties. We find that most protostars, and in particular the flat-spectrum sources, are well fit. The median envelope density and median inclination angle decrease from Class 0 to Class I to flat-spectrum protostars, despite the broad range in best-fit parameters in each of the three categories. We also discuss degeneracies in our model parameters. Our results confirm that the different protostellar classes generally correspond to an evolutionary sequence with a decreasing envelope infall rate, but the inclination angle also plays a role in the appearance, and thus interpretation, of the SEDs.

  8. Water in massive star-forming regions with Herschel Space Observatory

    Science.gov (United States)

    Chavarria, L.; Herpin, F.; Bontemps, S.; Jacq, T.; Baudry, A.; Braine, J.; van der Tak, F.; Wyrowski, F.; van Dishoeck, E. F.

    2011-05-01

    High-mass stars formation process is much less understood than the low-mass case: short timescales, high opacities and long distance to the sources challenge the study of young massive stars. The instruments on board the Heschel Space Observatory permit us to investigate molecular species at high spectral resolution in the sub-milimeter wavelengths. Water, one of the most abundant molecules in the Universe, might elucidate key episodes in the process of stellar birth and it may play a major role in the formation of high-mass stars. This contribution presents the first results of the Heschel Space Observatory key-program WISH (Water In Star forming regions with Herschel) concerning high-mass protostars. The program main purpose is to follow the process of star formation during the various stages using the water molecule as a physical diagnostic throughout the evolution. In general, we aim to adress the following questions: How does protostars interact with their environment ? How and where water is formed ? How is it transported from cloud to disk ? When and where water becomes a dominant cooling or heating agent ? We use the HIFI and PACS instruments to obtain maps and spectra of ~20 water lines in ~20 massive protostars spanning a large range in physical parameters, from pre-stellar cores to UCHII regions. I will review the status of the program and focus specifically on the spectroscopic results. I will show how powerful are the HIFI high-resolution spectral observations to resolve different physical source components such as the dense core, the outflows and the extended cold cloud around the high-mass object. We derive water abundances between 10-7 and 10-9 in the outer envelope. The abundance variations derived from our models suggest that different chemical mechanisms are at work on these scales (e.g. evaporation of water-rich icy grain mantles). The detection and derived abundance ratios for rare isotopologues will be discussed. Finally, a comparison in tems

  9. Discovery of a protostar in the Large Magellanic Cloud

    International Nuclear Information System (INIS)

    Gatley, I.; Becklin, E.E.; Hyland, A.R.; Jones, T.J.

    1981-01-01

    A near infrared search of the H II region/molecular cloud complex N 159 in the Large Magellanic Cloud has revealed a very red (H-K = 2.1, K-L' = 2.7) compact object. The location, brightness, colour and 2.1 to 2.4 μm spectrum of this source suggest that it is very young, and similar to the galactic infrared 'protostars'. This is the first identification of an infrared protostar in an external galaxy. Its discovery provides direct evidence of current star formation in the Large Magellanic Cloud, and suggests that regions of star formation in external galaxies will appear similar to those in the Milky Way. (author)

  10. LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Kryukova, E.; Megeath, S. T.; Allen, T. S. [Department of Physics and Astronomy, University of Toledo, Toledo, OH (United States); Gutermuth, R. A. [Department of Astronomy, University of Massachusetts, Amherst, MA (United States); Pipher, J. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Allen, L. E. [National Optical Astronomy Observatories, Tucson, AZ (United States); Myers, P. C. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Muzerolle, J. [Space Telescope Science Institute, Baltimore, MD (United States)

    2012-08-15

    We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 {mu}m spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 {mu}m), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L{sub Sun} and show a tail extending toward luminosities above 100 L{sub Sun }. The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L{sub Sun }. Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity

  11. LUMINOSITY FUNCTIONS OF SPITZER-IDENTIFIED PROTOSTARS IN NINE NEARBY MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Kryukova, E.; Megeath, S. T.; Allen, T. S.; Gutermuth, R. A.; Pipher, J.; Allen, L. E.; Myers, P. C.; Muzerolle, J.

    2012-01-01

    We identify protostars in Spitzer surveys of nine star-forming (SF) molecular clouds within 1 kpc: Serpens, Perseus, Ophiuchus, Chamaeleon, Lupus, Taurus, Orion, Cep OB3, and Mon R2, which combined host over 700 protostar candidates. These clouds encompass a variety of SF environments, including both low-mass and high-mass SF regions, as well as dense clusters and regions of sparsely distributed star formation. Our diverse cloud sample allows us to compare protostar luminosity functions in these varied environments. We combine near- and mid-infrared photometry from the Two Micron All Sky Survey and Spitzer to create 1-24 μm spectral energy distributions (SEDs). Using protostars from the c2d survey with well-determined bolometric luminosities, we derive a relationship between bolometric luminosity, mid-IR luminosity (integrated from 1-24 μm), and SED slope. Estimations of the bolometric luminosities for protostar candidates are combined to create luminosity functions for each cloud. Contamination due to edge-on disks, reddened Class II sources, and galaxies is estimated and removed from the luminosity functions. We find that luminosity functions for high-mass SF clouds (Orion, Mon R2, and Cep OB3) peak near 1 L ☉ and show a tail extending toward luminosities above 100 L ☉ . The luminosity functions of the low-mass SF clouds (Serpens, Perseus, Ophiuchus, Taurus, Lupus, and Chamaeleon) do not exhibit a common peak, however the combined luminosity function of these regions peaks below 1 L ☉ . Finally, we examine the luminosity functions as a function of the local surface density of young stellar objects. In the Orion molecular clouds, we find a significant difference between the luminosity functions of protostars in regions of high and low stellar density, the former of which is biased toward more luminous sources. This may be the result of primordial mass segregation, although this interpretation is not unique. We compare our luminosity functions to those

  12. SUBARCSECOND ANALYSIS OF THE INFALLING–ROTATING ENVELOPE AROUND THE CLASS I PROTOSTAR IRAS 04365+2535

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Nami [The Institute of Physical and Chemical Research (RIKEN), 2-1, Hirosawa, Wako-shi, Saitama 351-0198 (Japan); Oya, Yoko; López-Sepulcre, Ana; Watanabe, Yoshimasa; Yamamoto, Satoshi [Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sakai, Takeshi [Department of Communication Engineering and Informatics, Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo 182-8585 (Japan); Hirota, Tomoya [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); Aikawa, Yuri [Center for Computational Science, University of Tsukuba, Tsukuba, Ibaraki 305-8577 (Japan); Ceccarelli, Cecilia; Lefloch, Bertrand; Kahane, Claudine [Universite de Grenoble Alpes, IPAG, F-38000 Grenoble (France); Caux, Emmanuel; Vastel, Charlotte [Universite de Toulouse, UPS-OMP, IRAP, Toulouse (France)

    2016-04-01

    Subarcsecond images of the rotational line emission of CS and SO have been obtained toward the Class I protostar IRAS 04365+2535 in TMC-1A with ALMA. A compact component around the protostar is clearly detected in the CS and SO emission. The velocity structure of the compact component of CS reveals infalling–rotating motion conserving the angular momentum. It is well explained by a ballistic model of an infalling–rotating envelope with the radius of the centrifugal barrier (one-half of the centrifugal radius) of 50 au, although the distribution of the infalling gas is asymmetric around the protostar. The distribution of SO is mostly concentrated around the radius of the centrifugal barrier of the simple model. Thus, a drastic change in chemical composition of the gas infalling onto the protostar is found to occur at a 50 au scale probably due to accretion shocks, demonstrating that the infalling material is significantly processed before being delivered into the disk.

  13. Heavy water stratification in a low-mass protostar

    NARCIS (Netherlands)

    Coutens, A.; Vastel, C.; Cazaux, S.; Bottinelli, S.; Caux, E.; Ceccarelli, C.; Demyk, K.; Taquet, V.; Wakelam, V.

    Context. Despite the low elemental deuterium abundance in the Galaxy, enhanced molecular deuterium fractionation has been found in the environments of low-mass star-forming regions and, in particular, the Class 0 protostar IRAS 16293-2422. Aims. The key program Chemical HErschel Surveys of Star

  14. THE VLA NASCENT DISK AND MULTIPLICITY SURVEY OF PERSEUS PROTOSTARS (VANDAM). II. MULTIPLICITY OF PROTOSTARS IN THE PERSEUS MOLECULAR CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, John J.; Harris, Robert J. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300-RA Leiden (Netherlands); Looney, Leslie W.; Segura-Cox, Dominique [Department of Astronomy, University of Illinois, Urbana, IL 61801 (United States); Li, Zhi-Yun [Department of Astronomy, University of Virginia, Charlottesville, VA 22903 (United States); Chandler, Claire J.; Perez, Laura [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Dunham, Michael M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St, MS 78, Cambridge, MA 02138 (United States); Sadavoy, Sarah I. [Max-Planck-Institut für Astronomie, D-69117 Heidelberg (Germany); Melis, Carl [Center for Astrophysics and Space Sciences, University of California, San Diego, CA 92093 (United States); Kratter, Kaitlin, E-mail: tobin@strw.leidenuniv.nl [University of Arizona, Steward Observatory, Tucson, AZ 85721 (United States)

    2016-02-10

    We present a multiplicity study of all known protostars (94) in the Perseus molecular cloud from a Karl G. Jansky Very Large Array survey at Ka-band (8 mm and 1 cm) and C-band (4 and 6.6 cm). The observed sample has a bolometric luminosity range between 0.1 L{sub ⊙} and ∼33 L{sub ⊙}, with a median of 0.7 L{sub ⊙}. This multiplicity study is based on the Ka-band data, having a best resolution of ∼0.″065 (15 au) and separations out to ∼43″ (10,000 au) can be probed. The overall multiplicity fraction (MF) is found to be 0.40 ± 0.06 and the companion star fraction (CSF) is 0.71 ± 0.06. The MF and CSF of the Class 0 protostars are 0.57 ± 0.09 and 1.2 ± 0.2, and the MF and CSF of Class I protostars are both 0.23 ± 0.08. The distribution of companion separations appears bi-modal, with a peak at ∼75 au and another peak at ∼3000 au. Turbulent fragmentation is likely the dominant mechanism on >1000 au scales and disk fragmentation is likely to be the dominant mechanism on <200 au scales. Toward three Class 0 sources we find companions separated by <30 au. These systems have the smallest separations of currently known Class 0 protostellar binary systems. Moreover, these close systems are embedded within larger (50–400 au) structures and may be candidates for ongoing disk fragmentation.

  15. Supersonic gas streams enhance the formation of massive black holes in the early universe.

    Science.gov (United States)

    Hirano, Shingo; Hosokawa, Takashi; Yoshida, Naoki; Kuiper, Rolf

    2017-09-29

    The origin of super-massive black holes in the early universe remains poorly understood. Gravitational collapse of a massive primordial gas cloud is a promising initial process, but theoretical studies have difficulty growing the black hole fast enough. We report numerical simulations of early black hole formation starting from realistic cosmological conditions. Supersonic gas motions left over from the Big Bang prevent early gas cloud formation until rapid gas condensation is triggered in a protogalactic halo. A protostar is formed in the dense, turbulent gas cloud, and it grows by sporadic mass accretion until it acquires 34,000 solar masses. The massive star ends its life with a catastrophic collapse to leave a black hole-a promising seed for the formation of a monstrous black hole. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  16. Late stages of solar type protostars

    International Nuclear Information System (INIS)

    Winkler, K.H.A.

    1978-05-01

    A consistent hydrodynamical and radiative transfer calculation in spherical symmetry for a 1 M protostar is presented. The calculation starts with Larson's initial conditions and continues until almost all the material has fallen onto a hydrostatic core with a large outer convection zone. The innermost percent of the mass is partially degenerate. Due to the numerical technique used, the radius of the hydrostatic core is determined with a high degree of accuracy. (orig.) [de

  17. The Herschel/HIFI unbiased spectral survey of the solar-mass protostar IRAS16293

    Science.gov (United States)

    Bottinelli, S.; Caux, E.; Cecarelli, C.; Kahane, C.

    2012-03-01

    Unbiased spectral surveys are powerful tools to study the chemistry and the physics of star forming regions, because they can provide a complete census of the molecular content and the observed lines probe the physical structure of the source. While unbiased surveys at the millimeter and sub-millimeter wavelengths observable from ground-based telescopes have previously been performed towards several high-mass protostars, very little data exist on low-mass protostars, with only one such ground-based survey carried out towards this kind of object. However, since low-mass protostars are believed to resemble our own Sun's progenitor, the information provided by spectral surveys is crucial in order to uncover the birth mechanisms of low-mass stars and hence of our Sun. To help fill up this gap in our understanding, we carried out an almost complete spectral survey towards the solar-type protostar IRAS16293-2422 with the HIFI instrument onboard Herschel. The observations covered a range of about 700 GHz, in which a few hundreds lines were detected with more than 3σ confidence interval certainty and identified. All the detected lines which were free from obvious blending effects were fitted with Gaussians to estimate their basic kinematic properties. Contrarily to what is observed in the millimeter range, no lines from complex organic molecules have been observed. In this work, we characterize the different components of IRAS16293-2422 (a known binary at least) by analyzing the numerous emission and absorption lines identified.

  18. Radio variability survey of very low luminosity protostars

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Minho; Kang, Miju [Korea Astronomy and Space Science Institute, 776 Daedeokdaero, Daejeon 305-348 (Korea, Republic of); Lee, Jeong-Eun, E-mail: minho@kasi.re.kr [Department of Astronomy and Space Science, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of)

    2014-07-01

    Ten very low luminosity objects were observed multiple times in the 8.5 GHz continuum in search of protostellar magnetic activities. A radio outburst of IRAM 04191+1522 IRS was detected, and the variability timescale was about 20 days or shorter. The results of this survey and archival observations suggest that IRAM 04191+1522 IRS is in active states about half the time. Archival data show that L1014 IRS and L1148 IRS were detectable previously and suggest that at least 20%-30% of very low luminosity protostars are radio variables. Considering the variability timescale and flux level of IRAM 04191+1522 IRS and the previous detection of the circular polarization of L1014 IRS, the radio outbursts of these protostars are probably caused by magnetic flares. However, IRAM 04191+1522 IRS is too young and small to develop an internal convective dynamo. If the detected radio emission is indeed coming from magnetic flares, the discovery implies that the flares may be caused by the fossil magnetic fields of interstellar origin.

  19. Is Episodic Accretion Necessary to Resolve the Luminosity Problem in Low-Mass Protostars?

    Science.gov (United States)

    Sevrinsky, Raymond Andrew; Dunham, Michael

    2017-01-01

    In this contribution, we compare the results of protostellar accretion simulations for scenarios both containing and lacking episodic accretion activity. We determine synthetic observational signatures for collapsing protostars by taking hydrodynamical simulations predicting highly variable episodic accretion events, filtering out the stochastic behavior by applying power law fits to the mass accretion rates onto the disk and central star, and using the filtered rates as inputs to two-dimensional radiative transfer calculations. The spectral energy distributions generated by these calculations are used to calculate standard observational signatures of Lbol and Tbol, and compared directly to a sample of 230 embedded protostars. We explore the degree to which these continually declining accretion models successfully reproduce the observed spread of protostellar luminosities, and examine their consistency with the prior variable models to investigate the degree to which episodic accretion bursts are necessary in protostellar formation theories to match observations of field protostars. The SAO REU program is funded in part by the National Science Foundation REU and Department of Defense ASSURE programs under NSF Grant no. 1262851, and by the Smithsonian Institution.

  20. Origin of the hot gas in low-mass protostars

    DEFF Research Database (Denmark)

    Van Kempen, T. A.; Kristensen, L. E.; Herczeg, G. J.

    2010-01-01

    Aims. "Water In Star-forming regions with Herschel" (WISH) is a Herschel key programme aimed at understanding the physical and chemical structure of young stellar objects (YSOs) with a focus on water and related species. Methods. The low-mass protostar HH 46 was observed with the Photodetector Ar...

  1. X-ray sources in stars formation areas: T Tauri stars and proto-stars in the rho Ophiuchi dark cloud

    International Nuclear Information System (INIS)

    Grosso, Nicolas

    1999-01-01

    This thesis studies from large to small scales, X-ray sources in the rho Ophiuchi dark cloud. After some background on the formation of the low-mass young stars (Chapter 1), Chapter 2 takes an interest in the T Tauri star population. Chapter 3 tackles the search of the magnetic activity at the younger stage of protostar, presenting a powerful X-ray emission from an IR protostar, called YLW15, during a flare, and a quasi-periodic flare of the same source; as well as a new detection of another IR protostar in the ROSAT archives. It ends with a review of protostar detections. Some IR protostar flares show a very long increasing phase. Chapter 4 links this behaviour with a modulation by the central star rotation. The standard model of jet emission assumes that the central star rotates at the same speed that the inner edge of its accretion disk. This chapter shows that the observation of the YLW15 quasi-periodic flare suggests rather that the forming star rotates faster than its accretion disk, at the break up limit. The synchronism with the accretion disk, observed on T Tauri stars, must be reach progressively by magnetic breaking during the IR protostar stage, and more or less rapidly depending on the forming star mass. Recent studies have shown that T Tauri star X-ray emission could ionize the circumstellar disk, and play a role in the instability development, as well as stimulate the accretion. The protostar X-ray emission might be higher than the T Tauri star one, Chapter 5 presents a millimetric interferometric observation dedicated to measure this effect on YLW15. Finally, Chapter 6 reassembles conclusions and perspectives of this work. (author) [fr

  2. CONSTRAINING THE ABUNDANCES OF COMPLEX ORGANICS IN THE INNER REGIONS OF SOLAR-TYPE PROTOSTARS

    Energy Technology Data Exchange (ETDEWEB)

    Taquet, Vianney; Charnley, Steven B. [Astrochemistry Laboratory and The Goddard Center for Astrobiology, Mailstop 691, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20770 (United States); López-Sepulcre, Ana; Ceccarelli, Cecilia; Kahane, Claudine [Univ. Grenoble Alpes, IPAG, F-38000 Grenoble (France); Neri, Roberto, E-mail: taquet@strw.leidenuniv.nl [Institut de Radioastronomie Millimétrique, Grenoble (France)

    2015-05-10

    The high abundances of Complex Organic Molecules (COMs) with respect to methanol, the most abundant COM, detected toward low-mass protostars, tend to be underpredicted by astrochemical models. This discrepancy might come from the large beam of the single-dish telescopes, encompassing several components of the studied protostar, commonly used to detect COMs. To address this issue, we have carried out multi-line observations of methanol and several COMs toward the two low-mass protostars NGC 1333-IRAS 2A and -IRAS 4A with the Plateau de Bure interferometer at an angular resolution of 2″, resulting in the first multi-line detection of the O-bearing species glycolaldehyde and ethanol and of the N-bearing species ethyl cyanide toward low-mass protostars other than IRAS 16293. The high number of detected transitions from COMs (more than 40 methanol transitions for instance) allowed us to accurately derive the source size of their emission and the COM column densities. The COM abundances with respect to methanol derived toward IRAS 2A and IRAS 4A are slightly, but not substantitally, lower than those derived from previous single-dish observations. The COM abundance ratios do not vary significantly with the protostellar luminosity, over five orders of magnitude, implying that low-mass hot corinos are quite chemically rich as high-mass hot cores. Astrochemical models still underpredict the abundances of key COMs, such as methyl formate or di-methyl ether, suggesting that our understanding of their formation remains incomplete.

  3. SOFIA/FORCAST AND SPITZER/IRAC IMAGING OF THE ULTRACOMPACT H II REGION W3(OH) AND ASSOCIATED PROTOSTARS IN W3

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, Lea; Adams, Joseph D.; Herter, Terry L.; Gull, George E.; Henderson, Charles P.; Schoenwald, Justin [Department of Astronomy, Cornell University, 105 Space Sciences Building, Ithaca, NY 14853 (United States); Hora, Joseph L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 65, Cambridge, MA 02138-1516 (United States); De Buizer, James M.; Vacca, William [SOFIA-University Space Research Association, NASA Ames Reseach Center, Mail Stop N211-3, Moffett Field, CA 94035 (United States); Megeath, S. Thomas [Department of Physics and Astronomy, University of Toledo, Mailstop 111, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Keller, Luke D. [Ithaca College, Physics Department, 264 Center for Natural Sciences, Ithaca, NY 14850 (United States)

    2012-10-01

    We present infrared observations of the ultracompact H II region W3(OH) made by the FORCAST instrument aboard the Stratospheric Observatory for Infrared Astronomy (SOFIA) and by the Spitzer/Infrared Array Camera. We contribute new wavelength data to the spectral energy distribution (SED), which constrains the optical depth, grain size distribution, and temperature gradient of the dusty shell surrounding the H II region. We model the dust component as a spherical shell containing an inner cavity with radius {approx}600 AU, irradiated by a central star of type O9 and temperature {approx}31, 000 K. The total luminosity of this system is 7.1 Multiplication-Sign 10{sup 4} L{sub Sun }. An observed excess of 2.2-4.5 {mu}m emission in the SED can be explained by our viewing a cavity opening or clumpiness in the shell structure whereby radiation from the warm interior of the shell can escape. We claim to detect the nearby water maser source W3 (H{sub 2}O) at 31.4 and 37.1 {mu}m using beam deconvolution of the FORCAST images. We constrain the flux densities of this object at 19.7-37.1 {mu}m. Additionally, we present in situ observations of four young stellar and protostellar objects in the SOFIA field, presumably associated with the W3 molecular cloud. Results from the model SED fitting tool of Robitaille et al. suggest that two objects (2MASS J02270352+6152357 and 2MASS J02270824+6152281) are intermediate-luminosity ({approx}236-432 L{sub Sun }) protostars; one object (2MASS J02270887+6152344) is either a high-mass protostar with luminosity 3 Multiplication-Sign 10{sup 3} L{sub Sun} or a less massive young star with a substantial circumstellar disk but depleted envelope; and the other (2MASS J02270743+6152281) is an intermediate-luminosity ({approx}768 L{sub Sun }) protostar nearing the end of its envelope accretion phase or a young star surrounded by a circumstellar disk with no appreciable circumstellar envelope.

  4. Uncovering the Protostars in Serpens South with ALMA: Continuum Sources and Their Outflow Activity

    Science.gov (United States)

    Plunkett, Adele; Arce, H.; Corder, S.; Dunham, M.

    2017-06-01

    Serpens South is an appealing protostellar cluster to study due the combination of several factors: (1) a high protostar fraction that shows evidence for very recent and ongoing star formation; (2) iconic clustered star formation along a filamentary structure; (3) its relative proximity within a few hundred parsecs. An effective study requires the sensitivity, angular and spectral resolution, and mapping capabilities recently provided with ALMA. Here we present a multi-faceted data set acquired from Cycles 1 through 3 with ALMA, including maps of continuum sources and molecular outflows throughout the region, as well as a more focused kinematical study of the protostar that is the strongest continuum source at the cluster center. Together these data span spatial scales over several orders of magnitude, allowing us to investigate the outflow-driving sources and the impact of the outflows on the cluster environment. Currently, we focus on the census of protostars in the cluster center, numbering about 20, including low-flux, low-mass sources never before detected in mm-wavelengths and evidence for multiplicity that was previously unresolved.

  5. Radiative transfer modelling of W33A MM1: 3-D structure and dynamics of a complex massive star forming region

    Science.gov (United States)

    Izquierdo, Andrés F.; Galván-Madrid, Roberto; Maud, Luke T.; Hoare, Melvin G.; Johnston, Katharine G.; Keto, Eric R.; Zhang, Qizhou; de Wit, Willem-Jan

    2018-05-01

    We present a composite model and radiative transfer simulations of the massive star forming core W33A MM1. The model was tailored to reproduce the complex features observed with ALMA at ≈0.2 arcsec resolution in CH3CN and dust emission. The MM1 core is fragmented into six compact sources coexisting within ˜1000 au. In our models, three of these compact sources are better represented as disc-envelope systems around a central (proto)star, two as envelopes with a central object, and one as a pure envelope. The model of the most prominent object (Main) contains the most massive (proto)star (M⋆ ≈ 7 M⊙) and disc+envelope (Mgas ≈ 0.4 M⊙), and is the most luminous (LMain ˜ 104 L⊙). The model discs are small (a few hundred au) for all sources. The composite model shows that the elongated spiral-like feature converging to the MM1 core can be convincingly interpreted as a filamentary accretion flow that feeds the rising stellar system. The kinematics of this filament is reproduced by a parabolic trajectory with focus at the center of mass of the region. Radial collapse and fragmentation within this filament, as well as smaller filamentary flows between pairs of sources are proposed to exist. Our modelling supports an interpretation where what was once considered as a single massive star with a ˜103 au disc and envelope, is instead a forming stellar association which appears to be virialized and to form several low-mass stars per high-mass object.

  6. Radio Telescopes Reveal Youngest Stellar Corpse

    Science.gov (United States)

    2004-06-01

    Astronomers using a global combination of radio telescopes to study a stellar explosion some 30 million light-years from Earth have likely discovered either the youngest black hole or the youngest neutron star known in the Universe. Their discovery also marks the first time that a black hole or neutron star has been found associated with a supernova that has been seen to explode since the invention of the telescope nearly 400 years ago. M51 An artist's impression of Supernova 1986J. The newly discovered nebula around the black hole or neutron star in the center is shown in blue, and is in the center of the expanding, fragmented shell of material thrown off in the supernova explosion, which is shown in red. CREDIT: Norbert Bartel and Michael F. Bietenholz, York University; Artist: G. Arguner (Click on image for larger version) Image Files Artist's Conception (above image, 836K) Galaxy and Supernova (47K) A VLA image (left) of the galaxy NGC 891, showing the bright supernova explosion below the galaxy's center. At right, a closer view of the supernova, made with a global array of radio telescopes. CREDIT: Miguel A. Perez-Torres, Antxon Alberdi and Lucas Lara, Instituto de Astrofisica de Andalucia - CSIC, Spain, Jon Marcaide and Jose C. Guirado, Universidad de Valencia, Spain Franco Mantovani, IRA-CNR, Italy, Eduardo Ros, MPIfR, Germany, and Kurt W. Weiler, Naval Research Laboratory, USA Multi-Frequency Closeup View (201K) Blue and white area shows the nebula surrounding the black hole or neutron star lurking in the center of the supernova. This nebula is apparent at a higher radio frequency (15 GHz). The red and also the contours show the distorted, expanding shell of material thrown off in the supernova explosion. This shell is seen at a lower radio frequency (5 GHz). CREDIT: Michael F. Bietenholz and Norbert Bartel, York University, Michael Rupen, NRAO, NRAO/AUI/NSF A supernova is the explosion of a massive star after it exhausts its supply of nuclear fuel and

  7. HOPS 383: AN OUTBURSTING CLASS 0 PROTOSTAR IN ORION

    Energy Technology Data Exchange (ETDEWEB)

    Safron, Emily J.; Megeath, S. Thomas; Booker, Joseph [Ritter Astrophysical Observatory, Department of Physics and Astronomy, University of Toledo, Toledo, OH (United States); Fischer, William J. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Furlan, Elise; Rebull, Luisa M. [Infrared Processing and Analysis Center, Caltech, Pasadena, CA (United States); Stutz, Amelia M. [Max-Planck-Institut für Astronomie, Heidelberg (Germany); Stanke, Thomas [European Southern Observatory, Garching bei München (Germany); Billot, Nicolas [Instituto de Radio Astronomía Milimétrica, Granada (Spain); Tobin, John J. [Leiden Observatory, Leiden (Netherlands); Ali, Babar [Space Science Institute, Boulder, CO (United States); Allen, Lori E. [National Optical Astronomy Observatory, Tucson, AZ (United States); Watson, Dan M. [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States); Wilson, T. L., E-mail: wjfischer@gmail.com [Naval Research Laboratory, Washington, DC (United States)

    2015-02-10

    We report the dramatic mid-infrared brightening between 2004 and 2006 of Herschel Orion Protostar Survey (HOPS) 383, a deeply embedded protostar adjacent to NGC 1977 in Orion. By 2008, the source became a factor of 35 brighter at 24 μm with a brightness increase also apparent at 4.5 μm. The outburst is also detected in the submillimeter by comparing APEX/SABOCA to SCUBA data, and a scattered-light nebula appeared in NEWFIRM K{sub s} imaging. The post-outburst spectral energy distribution indicates a Class 0 source with a dense envelope and a luminosity between 6 and 14 L{sub ⊙}. Post-outburst time-series mid- and far-infrared photometry show no long-term fading and variability at the 18% level between 2009 and 2012. HOPS 383 is the first outbursting Class 0 object discovered, pointing to the importance of episodic accretion at early stages in the star formation process. Its dramatic rise and lack of fading over a 6 year period hint that it may be similar to FU Ori outbursts, although the luminosity appears to be significantly smaller than the canonical luminosities of such objects.

  8. GRAVITATIONAL SLINGSHOT OF YOUNG MASSIVE STARS IN ORION

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Sourav; Tan, Jonathan C., E-mail: s.chatterjee@astro.ufl.edu, E-mail: jt@astro.ufl.edu [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States)

    2012-08-01

    The Orion Nebula Cluster (ONC) is the nearest region of massive star formation and thus a crucial testing ground for theoretical models. Of particular interest among the ONC's {approx}1000 members are: {theta}{sup 1} Ori C, the most massive binary in the cluster with stars of masses 38 and 9 M{sub Sun }; the Becklin-Neugebauer (BN) object, a 30 km s{sup -1} runaway star of {approx}8 M{sub Sun }; and the Kleinmann-Low (KL) nebula protostar, a highly obscured, {approx}15 M{sub Sun} object still accreting gas while also driving a powerful, apparently 'explosive' outflow. The unusual behavior of BN and KL is much debated: How did BN acquire its high velocity? How is this related to massive star formation in the KL nebula? Here, we report the results of a systematic survey using {approx}10{sup 7} numerical experiments of gravitational interactions of the {theta}{sup 1}C and BN stars. We show that dynamical ejection of BN from this triple system at its observed velocity leaves behind a binary with total energy and eccentricity matching those observed for {theta}{sup 1}C. Five other observed properties of {theta}{sup 1}C are also consistent with it having ejected BN and altogether we estimate that there is only a {approx}< 10{sup -5} probability that {theta}{sup 1}C has these properties by chance. We conclude that BN was dynamically ejected from the {theta}{sup 1}C system about 4500 years ago. BN then plowed through the KL massive star-forming core within the last 1000 years causing its recently enhanced accretion and outflow activity.

  9. Study of deuterated water in the low-mass protostar IRAS16293-2422

    Science.gov (United States)

    Coutens, A.; Vastel, C.; Caux, E.; Ceccarelli, C.; Herschel Chess Team

    2011-05-01

    Observations of deuterated water are an important complement for studies of H2O, since they give strong constraints on the formation processes: grain surfaces versus gas-phase chemistry through energetic process as shocks. The CHESS (Chemical HErschel Surveys of Star forming regions) Key Program has allowed to detect a lot of transitions of HDO (8) and H2O (16) as well as its isotopes H_218O and H_217O towards the low-mass protostar IRAS16293-2422 thanks to the unbiaised spectral survey carried out with the HIFI instrument on board the Herschel Space Observatory. Complementary data of HDO from the ground-based telescopes IRAM and JCMT are also available, allowing a precise determination of the abundance of deuterated water through the protostar envelope. In order to reproduce the observed line profiles, we have performed a modeling of HDO from the hot corino through the envelope using the physical structure of the protostar (Crimier et al. 2010) and the spherical Monte Carlo radiative transfer code RATRAN, which takes also into account radiative pumping by continuum emission from dust. We have used new HDO collision rates with H_2, recently computed by Wiesenfeld, Scribano and Faure (2011, PCCP). The same method has been applied to model H_2O and its isotopes H_218O and H_217O. We will present the results of this analysis and discuss the determined abundances.

  10. The formation of massive primordial stars in the presence of moderate UV backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Latif, M. A.; Schleicher, D. R. G.; Bovino, S. [Institut für Astrophysik, Georg-August-Universität, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany); Grassi, T. [Centre for Star and Planet Formation, Natural History Museum of Denmark, Øster Voldgade 5-7, DK-1350 Copenhagen (Denmark); Spaans, M., E-mail: mlatif@astro.physik.uni-goettingen.de [Kapteyn Astronomical Institute, University of Groningen, 9700-AV Groningen (Netherlands)

    2014-09-01

    Radiative feedback produced by stellar populations played a vital role in early structure formation. In particular, photons below the Lyman limit can escape the star-forming regions and produce a background ultraviolet (UV) flux, which consequently may influence the pristine halos far away from the radiation sources. These photons can quench the formation of molecular hydrogen by photodetachment of H{sup –}. In this study, we explore the impact of such UV radiation on fragmentation in massive primordial halos of a few times 10{sup 7} M {sub ☉}. To accomplish this goal, we perform high resolution cosmological simulations for two distinct halos and vary the strength of the impinging background UV field in units of J {sub 21} assuming a blackbody radiation spectrum with a characteristic temperature of T {sub rad} = 10{sup 4} K. We further make use of sink particles to follow the evolution for 10,000 yr after reaching the maximum refinement level. No vigorous fragmentation is observed in UV-illuminated halos while the accretion rate changes according to the thermal properties. Our findings show that a few 10{sup 2}-10{sup 4} solar mass protostars are formed when halos are irradiated by J {sub 21} = 10-500 at z > 10 and suggest a strong relation between the strength of the UV flux and mass of a protostar. This mode of star formation is quite different from minihalos, as higher accretion rates of about 0.01-0.1 M {sub ☉} yr{sup –1} are observed by the end of our simulations. The resulting massive stars are potential cradles for the formation of intermediate-mass black holes at earlier cosmic times and contribute to the formation of a global X-ray background.

  11. THE SPITZER c2d SURVEY OF NEARBY DENSE CORES. VI. THE PROTOSTARS OF LYNDS DARK NEBULA 1221

    International Nuclear Information System (INIS)

    Young, Chadwick H.; Young, Kaisa E.; Popa, Victor; Bourke, Tyler L.; Dunham, Michael M.; Evans, Neal J.; Joergensen, Jes K.; Shirley, Yancy L.; De Vries, Christopher; Claussen, Mark J.

    2009-01-01

    Observations of Lynds Dark Nebula 1221 from the Spitzer Space Telescope are presented. These data show three candidate protostars toward L1221, only two of which were previously known. The infrared observations also show signatures of outflowing material, an interpretation which is also supported by radio observations with the Very Large Array. In addition, molecular line maps from the Five College Radio Astronomy Observatory are shown. One-dimensional dust continuum modeling of two of these protostars, IRS1 and IRS3, is described. These models show two distinctly different protostars forming in very similar environments. IRS1 shows a higher luminosity and a larger inner radius of the envelope than IRS3. The disparity could be caused by a difference in age or mass, orientation of outflow cavities, or the impact of a binary in the IRS1 core.

  12. HIGH-RESOLUTION 8 mm AND 1 cm POLARIZATION OF IRAS 4A FROM THE VLA NASCENT DISK AND MULTIPLICITY (VANDAM) SURVEY

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Erin G.; Harris, Robert J.; Looney, Leslie W.; Segura-Cox, Dominique M. [Department of Astronomy, University of Illinois at Urbana-Champaign, Urbana, IL 61801 (United States); Tobin, John [Leiden Observatory, Leiden University, P.O. Box 9513, 2000-RA Leiden (Netherlands); Li, Zhi-Yun [Department of Astronomy, University of Virginia, Charlottesville, VA 22903 (United States); Tychoniec, Łukasz [Astronomical Observatory Institute, Faculty of Physics, A. Mickiewicz University, Słoneczna 36, PL-60-268 Poznań (Poland); Chandler, Claire J.; Perez, Laura M. [National Radio Astronomy Observatory, Socorro, NM 87801 (United States); Dunham, Michael M. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Kratter, Kaitlin [Steward Observatory, University of Arizona, Tucson, AZ 85721 (United States); Melis, Carl [Center for Astrophysics and Space Sciences, University of California, San Diego, CA 92093 (United States); Sadavoy, Sarah I., E-mail: egcox2@illinois.edu [Max-Planck-Institut für Astronomie, D-69117 Heidelberg (Germany)

    2015-12-01

    Magnetic fields can regulate disk formation, accretion, and jet launching. Until recently, it has been difficult to obtain high-resolution observations of the magnetic fields of the youngest protostars in the critical region near the protostar. The VANDAM survey is observing all known protostars in the Perseus Molecular Cloud. Here we present the polarization data of IRAS 4A. We find that with ∼0.″2 (50 AU) resolution at λ = 8.1 and 10.3 mm, the inferred magnetic field is consistent with a circular morphology, in marked contrast with the hourglass morphology seen on larger scales. This morphology is consistent with frozen-in field lines that were dragged in by rotating material entering the infall region. The field morphology is reminiscent of rotating circumstellar material near the protostar. This is the first polarization detection of a protostar at these wavelengths. We conclude from our observations that the dust emission is optically thin with β ∼ 1.3, suggesting that millimeter-/centimeter-sized grains have grown and survived in the short lifetime of the protostar.

  13. A RECENT ACCRETION BURST IN THE LOW-MASS PROTOSTAR IRAS 15398-3359: ALMA IMAGING OF ITS RELATED CHEMISTRY

    International Nuclear Information System (INIS)

    Jørgensen, Jes K.; Brinch, Christian; Lindberg, Johan E.; Bisschop, Suzanne E.; Visser, Ruud; Bergin, Edwin A.; Sakai, Nami; Yamamoto, Satoshi; Harsono, Daniel; Van Dishoeck, Ewine F.; Persson, Magnus V.

    2013-01-01

    Low-mass protostars have been suggested to show highly variable accretion rates throughout their evolution. Such changes in accretion, and related heating of their ambient envelopes, may trigger significant chemical variations on different spatial scales and from source-to-source. We present images of emission from C 17 O, H 13 CO + , CH 3 OH, C 34 S and C 2 H toward the low-mass protostar IRAS 15398-3359 on 0.''5 (75 AU diameter) scales with the Atacama Large Millimeter/submillimeter Array at 340 GHz. The resolved images show that the emission from H 13 CO + is only present in a ring-like structure with a radius of about 1-1.''5 (150-200 AU) whereas the CO and other high dipole moment molecules are centrally condensed toward the location of the central protostar. We propose that HCO + is destroyed by water vapor present on small scales. The origin of this water vapor is likely an accretion burst during the last 100-1000 yr increasing the luminosity of IRAS 15398-3359 by a factor of 100 above its current luminosity. Such a burst in luminosity can also explain the centrally condensed CH 3 OH and extended warm carbon-chain chemistry observed in this source and furthermore be reflected in the relative faintness of its compact continuum emission compared to other protostars

  14. Xanthogranulomatous Salpingooophoritis: The Youngest Documented Case Report

    Directory of Open Access Journals (Sweden)

    Harshawardhan Tanwar

    2015-01-01

    Full Text Available Background. Xanthogranulomatous inflammation is an uncommon affection of the female genital tract. The youngest case reported of xanthogranulomatous salpingooophoritis in literature was by Shilpa et al. in 2013 in an eighteen-year-old female. Case Report. We report a case of 2-year-old female child with right-sided xanthogranulomatous salpingooophoritis presented as mass in abdomen. This is a case report of the youngest documented case of xanthogranulomatous salpingooophoritis in literature. As per abdominal examination, there was generalized distention of abdomen and a mass was palpable which was arising out of pelvis more on the right side. The ultrasonography (USG abdomen and pelvis revealed a thick-walled mass measuring 9.2 cm × 6.0 cm × 7.6 cm in pelvis. We did right salpingooophorectomy of the patient. On histopathology, the diagnosis of xanthogranulomatous salpingooophoritis was confirmed. Conclusion. Clinical presentation, radiological appearance, and gross features of xanthogranulomatous lesions of ovary can mimic neoplastic lesions and lead to misdiagnosis. Though, it is very rare in pediatric age group, xanthogranulomatous salpingooophoritis as one of the differential diagnoses should be kept in mind while dealing with tuboovarian masses in this age group.

  15. The Complex Chemistry of Embedded Protostars

    DEFF Research Database (Denmark)

    Lykke, Julie Maria

    - or molecular astrophysics - has evolved fast in recent years, due to major technological advancements for radio telescopes. But some of the most central questions still remain unanswered: how, where and when are complex organic molecules formed around young stars? How complex can these molecules become......? Is there a difference in the chemistry for high- and low-mass protostars? The work in this thesis aim to provide answer for these questions by searching for molecules where they have not been detected before and by comparing the relative abundance of different molecules to models and laboratory work as well as between......- and low-mass sources. Modified models and laboratory work as well as more observations are therefore needed to further develop our understanding of the chemistry occurring in star-forming regions....

  16. ORPHANED PROTOSTARS

    International Nuclear Information System (INIS)

    Reipurth, Bo; Connelley, Michael; Mikkola, Seppo; Valtonen, Mauri

    2010-01-01

    We explore the origin of a population of distant companions (∼1000-5000 AU) to Class I protostellar sources recently found by Connelley and coworkers, who noted that the companion fraction diminished as the sources evolved. Here, we present N-body simulations of unstable triple systems embedded in dense cloud cores. Many companions are ejected into unbound orbits and quickly escape, but others are ejected with insufficient momentum to climb out of the potential well of the cloud core and associated binary. These loosely bound companions reach distances of many thousands of AU before falling back and eventually being ejected into escapes as the cloud cores gradually disappear. We use the term orphans to denote protostellar objects that are dynamically ejected from their placental cloud cores, either escaping or for a time being tenuously bound at large separations. Half of all triple systems are found to disintegrate during the protostellar stage, so if multiple systems are a frequent outcome of the collapse of a cloud core, then orphans should be common. Bound orphans are associated with embedded close protostellar binaries, but escaping orphans can travel as far as ∼0.2 pc during the protostellar phase. The steep climb out of a potential well ensures that orphans are not kinematically distinct from young stars born with a less violent pre-history. The identification of orphans outside their heavily extincted cloud cores will allow the detailed study of protostars high up on their Hayashi tracks at near-infrared and in some cases even at optical wavelengths.

  17. Chasing discs around O-type (proto)stars: Evidence from ALMA observations

    Science.gov (United States)

    Cesaroni, R.; Sánchez-Monge, Á.; Beltrán, M. T.; Johnston, K. G.; Maud, L. T.; Moscadelli, L.; Mottram, J. C.; Ahmadi, A.; Allen, V.; Beuther, H.; Csengeri, T.; Etoka, S.; Fuller, G. A.; Galli, D.; Galván-Madrid, R.; Goddi, C.; Henning, T.; Hoare, M. G.; Klaassen, P. D.; Kuiper, R.; Kumar, M. S. N.; Lumsden, S.; Peters, T.; Rivilla, V. M.; Schilke, P.; Testi, L.; van der Tak, F.; Vig, S.; Walmsley, C. M.; Zinnecker, H.

    2017-06-01

    Context. Circumstellar discs around massive stars could mediate the accretion onto the star from the infalling envelope, and could minimize the effects of radiation pressure. Despite such a crucial role, only a few convincing candidates have been provided for discs around deeply embedded O-type (proto)stars. Aims: In order to establish whether disc-mediated accretion is the formation mechanism for the most massive stars, we have searched for circumstellar, rotating discs around a limited sample of six luminous (>105L⊙) young stellar objects. These objects were selected on the basis of their IR and radio properties in order to maximize the likelihood of association with disc+jet systems. Methods: We used ALMA with 0.̋2 resolution to observe a large number of molecular lines typical of hot molecular cores. In this paper we limit our analysis to two disc tracers (methyl cyanide, CH3CN, and its isotopologue, 13CH3CN), and an outflow tracer (silicon monoxide, SiO). Results: We reveal many cores, although their number depends dramatically on the target. We focus on the cores that present prominent molecular line emission. In six of these a velocity gradient is seen across the core,three of which show evidence of Keplerian-like rotation. The SiO data reveal clear but poorly collimated bipolar outflow signatures towards two objects only. This can be explained if real jets are rare (perhaps short-lived) in very massive objects and/or if stellar multiplicity significantly affects the outflow structure.For all cores with velocity gradients, the velocity field is analysed through position-velocity plots to establish whether the gas is undergoing rotation with νrot ∝ R- α, as expected for Keplerian-like discs. Conclusions: Our results suggest that in three objects we are observing rotation in circumstellar discs, with three more tentative cases, and one core where no evidence for rotation is found. In all cases but one, we find that the gas mass is less than the mass of

  18. Monitoring Baby - Listening in on the Youngest Known Pulsar

    Science.gov (United States)

    Gotthelf, Eric

    We have discovered a most remarkable young pulsar, PSR J1846-0258, in the core of a Crab-like pulsar wind nebula at the center of the bright shell-type supernova remnant Kes 75. Based on its spin-down rate and X- ray spectrum, PSR J1846-0258 is likely the youngest known rotation- powered pulsar. Compared to the Crab pulsar, however, its period, spin- down rate, and spin-down to X-ray luminosity conversion efficiency are each an order of magnitude greater, likely the result of its extreme magnetic field, above the quantum critical threshold. We propose to continue our monitoring campaign of PSR J1846-0258 to measure the braking index, characterize its timing noise, and search for evidence of glitches. This pulsar provides important insight into the evolution of the youngest NS-SNR systems.

  19. SMA OBSERVATIONS OF CLASS 0 PROTOSTARS: A HIGH ANGULAR RESOLUTION SURVEY OF PROTOSTELLAR BINARY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Chen Xuepeng [Purple Mountain Observatory, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing 210008 (China); Arce, Hector G.; Dunham, Michael M. [Department of Astronomy, Yale University, Box 208101, New Haven, CT 06520-8101 (United States); Zhang Qizhou; Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Launhardt, Ralf; Henning, Thomas [Max Planck Institute for Astronomy, Koenigstuhl 17, D-69117 Heidelberg (Germany); Jorgensen, Jes K. [Niels Bohr Institute and Centre for Star and Planet Formation, Copenhagen University, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark); Lee, Chin-Fei [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Foster, Jonathan B. [Institute for Astrophysical Research, Boston University, Boston, MA 02215 (United States); Pineda, Jaime E., E-mail: xpchen@pmo.ac.cn, E-mail: xuepeng.chen@yale.edu [ESO, Karl Schwarzschild Str. 2, D-85748 Garching bei Munchen (Germany)

    2013-05-10

    We present high angular resolution 1.3 mm and 850 {mu}m dust continuum data obtained with the Submillimeter Array toward 33 Class 0 protostars in nearby clouds (distance < 500 pc), which represents so far the largest survey toward protostellar binary/multiple systems. The median angular resolution in the survey is 2.''5, while the median linear resolution is approximately 600 AU. Compact dust continuum emission is observed from all sources in the sample. Twenty-one sources in the sample show signatures of binarity/multiplicity, with separations ranging from 50 AU to 5000 AU. The numbers of singles, binaries, triples, and quadruples in the sample are 12, 14, 5, and 2, respectively. The derived multiplicity frequency (MF) and companion star fraction (CSF) for Class 0 protostars are 0.64 {+-} 0.08 and 0.91 {+-} 0.05, respectively, with no correction for completeness. The derived MF and CSF in this survey are approximately two times higher than the values found in the binary surveys toward Class I young stellar objects, and approximately three (for MF) and four (for CSF) times larger than the values found among main-sequence stars, with a similar range of separations. Furthermore, the observed fraction of high-order multiple systems to binary systems in Class 0 protostars (0.50 {+-} 0.09) is also larger than the fractions found in Class I young stellar objects (0.31 {+-} 0.07) and main-sequence stars ({<=}0.2). These results suggest that binary properties evolve as protostars evolve, as predicted by numerical simulations. The distribution of separations for Class 0 protostellar binary/multiple systems shows a general trend in which CSF increases with decreasing companion separation. We find that 67% {+-} 8% of the protobinary systems have circumstellar mass ratios below 0.5, implying that unequal-mass systems are preferred in the process of binary star formation. We suggest an empirical sequential fragmentation picture for binary star formation, based on this

  20. STAR FORMATION IN DENSE CLUSTERS

    International Nuclear Information System (INIS)

    Myers, Philip C.

    2011-01-01

    A model of core-clump accretion with equally likely stopping describes star formation in the dense parts of clusters, where models of isolated collapsing cores may not apply. Each core accretes at a constant rate onto its protostar, while the surrounding clump gas accretes as a power of protostar mass. Short accretion flows resemble Shu accretion and make low-mass stars. Long flows resemble reduced Bondi accretion and make massive stars. Accretion stops due to environmental processes of dynamical ejection, gravitational competition, and gas dispersal by stellar feedback, independent of initial core structure. The model matches the field star initial mass function (IMF) from 0.01 to more than 10 solar masses. The core accretion rate and the mean accretion duration set the peak of the IMF, independent of the local Jeans mass. Massive protostars require the longest accretion durations, up to 0.5 Myr. The maximum protostar luminosity in a cluster indicates the mass and age of its oldest protostar. The distribution of protostar luminosities matches those in active star-forming regions if protostars have a constant birthrate but not if their births are coeval. For constant birthrate, the ratio of young stellar objects to protostars indicates the star-forming age of a cluster, typically ∼1 Myr. The protostar accretion luminosity is typically less than its steady spherical value by a factor of ∼2, consistent with models of episodic disk accretion.

  1. EARLY-STAGE MASSIVE STAR FORMATION NEAR THE GALACTIC CENTER: Sgr C

    Energy Technology Data Exchange (ETDEWEB)

    Kendrew, S.; Johnston, K.; Beuther, H. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Ginsburg, A.; Bally, J.; Battersby, C. [CASA, University of Colorado at Boulder, UCB 389, Boulder, CO 80309 (United States); Cyganowski, C. J., E-mail: kendrew@mpia.de [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States)

    2013-10-01

    We present near-infrared spectroscopy and 1 mm line and continuum observations of a recently identified site of high mass star formation likely to be located in the Central Molecular Zone (CMZ) near Sgr C. Located on the outskirts of the massive evolved H II region associated with Sgr C, the area is characterized by an Extended Green Object (EGO) measuring ∼10'' in size (0.4 pc), whose observational characteristics suggest the presence of an embedded massive protostar driving an outflow. Our data confirm that early-stage star formation is taking place on the periphery of the Sgr C H II region, with detections of two protostellar cores and several knots of H{sub 2} and Brackett γ emission alongside a previously detected compact radio source. We calculate the cores' joint mass to be ∼10{sup 3} M {sub ☉}, with column densities of 1-2 × 10{sup 24} cm{sup –2}. We show the host molecular cloud to hold ∼10{sup 5} M {sub ☉} of gas and dust with temperatures and column densities favorable for massive star formation to occur, however, there is no evidence of star formation outside of the EGO, indicating that the cloud is predominantly quiescent. Given its mass, density, and temperature, the cloud is comparable to other remarkable non-star-forming clouds such as G0.253 in the eastern CMZ.

  2. The Youngest Korean Case of Urachal Carcinoma

    Directory of Open Access Journals (Sweden)

    Seung Ryeol Lee

    2015-01-01

    Full Text Available Urachal anomalies are relatively uncommon and result from incomplete obliteration of the urachus perinatally. In children, most urachal diseases including urachal cysts and sinuses are benign, and these can sometimes become secondarily infected. Malignant involvement of the urachus is rarely reported, one in 5 million people, accounting for 0.35% to 0.7% of all bladder cancers. There are only five cases of urachal cancer diagnosed at the age of twenties in English written literature. Age at the diagnosis of urachal carcinoma is important to understand pathogenetic transition from benign to malignancy. A 26-year-old man visited our clinic with gross hematuria starting a few months before. CT scan showed a 4.0 × 6.8 cm sized lobulated cystic mass over the bladder dome. Cystoscopy showed a ball-shaped extrinsic mass from the bladder dome with intact bladder mucosa. With an impression of urachal cancer, laparoscopic partial cystectomy with wide excision of urachus was performed. Final diagnosis was well differentiated mucinous urachal adenocarcinoma invading bladder muscle, staged as pT3a based on Sheldon’s staging system. To our best knowledge, this case is the youngest Korean case of urachal carcinoma (the fourth youngest ever in English written literature.

  3. Detection of glycolaldehyde toward the solar-type protostar NGC 1333 IRAS2A

    DEFF Research Database (Denmark)

    Coutens, Audrey; Persson, M. V.; Jørgensen, J. K.

    2015-01-01

    Glycolaldehyde is a key molecule in the formation of biologically relevant molecules such as ribose. We report its detection with the Plateau de Bure interferometer toward the Class 0 young stellar object NGC 1333 IRAS2A, which is only the second solar-type protostar for which this prebiotic mole...

  4. A substellar-mass protostar and its outflow of IRAS 15398–3359 revealed by subarcsecond-resolution observations of H2CO and CCH

    International Nuclear Information System (INIS)

    Oya, Yoko; Sakai, Nami; Watanabe, Yoshimasa; Yamamoto, Satoshi; Sakai, Takeshi; Hirota, Tomoya; Lindberg, Johan E.; Bisschop, Suzanne E.; Jørgensen, Jes K.; Van Dishoeck, Ewine F.

    2014-01-01

    Subarcsecond (0.''5) images of H 2 CO and CCH line emission have been obtained in the 0.8 mm band toward the low-mass protostar IRAS 15398–3359 in the Lupus 1 cloud as one of the Cycle 0 projects of the Atacama Large Millimeter/Submillimeter Array. We have detected a compact component concentrated in the vicinity of the protostar and a well-collimated outflow cavity extending along the northeast-southwest axis. The inclination angle of the outflow is found to be about 20°, or almost edge-on, based on the kinematic structure of the outflow cavity. This is in contrast to previous suggestions of a more pole-on geometry. The centrally concentrated component is interpreted by use of a model of the infalling rotating envelope with the estimated inclination angle and the mass of the protostar is estimated to be less than 0.09 M ☉ . Higher spatial resolution data are needed to infer the presence of a rotationally supported disk for this source, hinted at by a weak high-velocity H 2 CO emission associated with the protostar.

  5. Shockingly low water abundances in Herschel/PACS observations of low-mass protostars in Perseus

    DEFF Research Database (Denmark)

    Karska, A.; Kristensen, L. E.; Dishoeck, E. F. van

    2014-01-01

    Protostars interact with their surroundings through jets and winds impacting on the envelope and creating shocks, but the nature of these shocks is still poorly understood. Our aim is to survey far-infrared molecular line emission from a uniform and significant sample of deeply-embedded low...

  6. A Detached Protostellar Disk around a ˜0.2 M ⊙ Protostar in a Possible Site of a Multiple Star Formation in a Dynamical Environment in Taurus

    Science.gov (United States)

    Tokuda, Kazuki; Onishi, Toshikazu; Saigo, Kazuya; Hosokawa, Takashi; Matsumoto, Tomoaki; Inutsuka, Shu-ichiro; Machida, Masahiro N.; Tomida, Kengo; Kunitomo, Masanobu; Kawamura, Akiko; Fukui, Yasuo; Tachihara, Kengo

    2017-11-01

    We report ALMA observations in 0.87 mm continuum and 12CO (J = 3-2) toward a very low-luminosity (<0.1 L ⊙) protostar, which is deeply embedded in one of the densest cores, MC27/L1521F, in Taurus with an indication of multiple star formation in a highly dynamical environment. The beam size corresponds to ˜20 au, and we have clearly detected blueshifted/redshifted gas in 12CO associated with the protostar. The spatial/velocity distributions of the gas show there is a rotating disk with a size scale of ˜10 au, a disk mass of ˜10-4 M ⊙, and a central stellar mass of ˜0.2 M ⊙. The observed disk seems to be detached from the surrounding dense gas, although it is still embedded at the center of the core whose density is ˜106 cm-3. The current low-outflow activity and the very low luminosity indicate that the mass accretion rate onto the protostar is extremely low in spite of a very early stage of star formation. We may be witnessing the final stage of the formation of ˜0.2 M ⊙ protostar. However, we cannot explain the observed low luminosity with the standard pre-main-sequence evolutionary track unless we assume cold accretion with an extremely small initial radius of the protostar (˜0.65 {R}⊙ ). These facts may challenge our current understanding of the low mass star formation, in particular the mass accretion process onto the protostar and the circumstellar disk.

  7. An Extraordinary Outburst in the Massive Protostellar System NGC 6334I-MM1: Quadrupling of the Millimeter Continuum

    Energy Technology Data Exchange (ETDEWEB)

    Hunter, T. R.; Brogan, C. L.; Indebetouw, R. [NRAO, 520 Edgemont Road, Charlottesville, VA 22903 (United States); MacLeod, G. [Hartebeesthoek Radio Astronomy Observatory, P.O. Box 443, Krugersdorp 1740 (South Africa); Cyganowski, C. J. [SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS (United Kingdom); Chandler, C. J. [NRAO, P.O. Box O, Socorro, NM 87801 (United States); Chibueze, J. O. [Department of Physics and Astronomy, Faculty of Physical Sciences, University of Nigeria, Carver Building, 1 University Road, Nsukka (Nigeria); Friesen, R. [Dunlap Institute for Astronomy and Astrophysics, University of Toronto, Toronto, ON M5S 3H4 (Canada); Thesner, C. [Centre for Space Research, Physics Department, North-West University, Potchefstroom 2520 (South Africa); Young, K. H., E-mail: thunter@nrao.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-03-10

    Based on sub-arcsecond Atacama Large Millimeter/submillimeter Array (ALMA) and Submillimeter Array (SMA) 1.3 mm continuum images of the massive protocluster NGC 6334I obtained in 2015 and 2008, we find that the dust emission from MM1 has increased by a factor of 4.0 ± 0.3 during the intervening years, and undergone a significant change in morphology. The continuum emission from the other cluster members (MM2, MM4, and the UCH ii region MM3 = NGC 6334F) has remained constant. Long-term single-dish maser monitoring at HartRAO finds that multiple maser species toward NGC 6334I flared beginning in early 2015, a few months before our ALMA observation, and some persist in that state. New ALMA images obtained in 2016 July–August at 1.1 and 0.87 mm confirm the changes with respect to SMA 0.87 mm images from 2008, and indicate that the (sub)millimeter flaring has continued for at least a year. The excess continuum emission, centered on the hypercompact H ii region MM1B, is extended and elongated (1.″6 × 1.″0 ≈ 2100 × 1300 au) with multiple peaks, suggestive of general heating of the surrounding subcomponents of MM1, some of which may trace clumps in a fragmented disk rather than separate protostars. In either case, these remarkable increases in maser and dust emission provide direct observational evidence of a sudden accretion event in the growth of a massive protostar yielding a sustained luminosity surge by a factor of 70 ± 20, analogous to the largest events in simulations by Meyer et al. This target provides an excellent opportunity to assess the impact of such a rare event on a protocluster over many years.

  8. Feedback from deeply embedded low- and high-mass protostars. Surveying hot molecular gas with Herschel

    NARCIS (Netherlands)

    Karska, Agata

    2014-01-01

    Protostars interact violently with their natal cocoons within dense molecular clouds. Characterizing this feedback is key to understanding the efficiency of the star formation process and the chemical processing of material that will be available for planet formation. In this thesis, the imprints

  9. A substellar-mass protostar and its outflow of IRAS 15398–3359 revealed by subarcsecond-resolution observations of H{sub 2}CO and CCH

    Energy Technology Data Exchange (ETDEWEB)

    Oya, Yoko; Sakai, Nami; Watanabe, Yoshimasa; Yamamoto, Satoshi [Department of Physics, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sakai, Takeshi [Department of Communication Engineering and Informatics, Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofugaoka, Chofu, Tokyo 182-8585 (Japan); Hirota, Tomoya [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan); Lindberg, Johan E.; Bisschop, Suzanne E.; Jørgensen, Jes K. [Center for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, Østeer Voldgade 5-7, DK-1350 Copenhagen K. (Denmark); Van Dishoeck, Ewine F., E-mail: nami@taurus.phys.s.u-tokyo.ac.jp [Leiden Observatory, Leiden University, P.O. Box 9513, 2300-RA Leiden, The Netherland (Netherlands)

    2014-11-10

    Subarcsecond (0.''5) images of H{sub 2}CO and CCH line emission have been obtained in the 0.8 mm band toward the low-mass protostar IRAS 15398–3359 in the Lupus 1 cloud as one of the Cycle 0 projects of the Atacama Large Millimeter/Submillimeter Array. We have detected a compact component concentrated in the vicinity of the protostar and a well-collimated outflow cavity extending along the northeast-southwest axis. The inclination angle of the outflow is found to be about 20°, or almost edge-on, based on the kinematic structure of the outflow cavity. This is in contrast to previous suggestions of a more pole-on geometry. The centrally concentrated component is interpreted by use of a model of the infalling rotating envelope with the estimated inclination angle and the mass of the protostar is estimated to be less than 0.09 M {sub ☉}. Higher spatial resolution data are needed to infer the presence of a rotationally supported disk for this source, hinted at by a weak high-velocity H{sub 2}CO emission associated with the protostar.

  10. VLA and CARMA observations of protostars in the Cepheus clouds: Sub-arcsecond proto-binaries formed via disk fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, John J.; Looney, Leslie W. [National Radio Astronomy Observatory, Charlottesville, VA 22903 (United States); Chandler, Claire J. [National Radio Astronomy Observatory, Socorro, NM (United States); Wilner, David J.; Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Loinard, Laurent; D' Alessio, Paola [Centro de Radioastronomía y Astrofísica, UNAM, Apartado Postal 3-72 (Xangari), 58089 Morelia, Michoacán (Mexico); Chiang, Hsin-Fang [Institute for Astronomy and NASA Astrobiology Institute, University of Hawaii at Manoa, Hilo, HI 96720 (United States); Hartmann, Lee; Calvet, Nuria [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Kwon, Woojin, E-mail: jtobin@nrao.edu [SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD Groningen (Netherlands)

    2013-12-20

    We present observations of three Class 0/I protostars (L1157-mm, CB230 IRS1, and L1165-SMM1) using the Karl G. Jansky Very Large Array (VLA) and observations of two (L1165-SMM1 and CB230 IRS1) with the Combined Array for Research in Millimeter-wave Astronomy (CARMA). The VLA observations were taken at wavelengths of λ = 7.3 mm, 1.4 cm, 3.3 cm, 4.0 cm, and 6.5 cm with a best resolution of ∼0.''06 (18 AU) at 7.3 mm. The L1165-SMM1 CARMA observations were taken at λ = 1.3 mm with a best resolution of ∼0.''3 (100 AU) and the CB230 IRS1 observations were taken at λ = 3.4 mm with a best resolution of ∼3'' (900 AU). We find that L1165-SMM1 and CB230 IRS1 have probable binary companions at separations of ∼0.''3 (100 AU) from detections of secondary peaks at multiple wavelengths. The position angles of these companions are nearly orthogonal to the direction of the observed bipolar outflows, consistent with the expected protostellar disk orientations. We suggest that these companions may have formed from disk fragmentation; turbulent fragmentation would not preferentially arrange the binary companions to be orthogonal to the outflow direction. For L1165-SMM1, both the 7.3 mm and 1.3 mm emission show evidence of a large (R > 100 AU) disk. For the L1165-SMM1 primary protostar and the CB230 IRS1 secondary protostar, the 7.3 mm emission is resolved into structures consistent with ∼20 AU radius disks. For the other protostars, including L1157-mm, the emission is unresolved, suggesting disks with radii <20 AU.

  11. THE LUMINOSITIES OF PROTOSTARS IN THE SPITZER c2d AND GOULD BELT LEGACY CLOUDS

    International Nuclear Information System (INIS)

    Dunham, Michael M.; Arce, Héctor G.; Allen, Lori E.; Evans II, Neal J.; Harvey, Paul M.; Broekhoven-Fiene, Hannah; Matthews, Brenda C.; Chapman, Nicholas L.; Cieza, Lucas A.; Gutermuth, Robert A.; Hatchell, Jennifer; Huard, Tracy L.; Miller, Jennifer F.; Kirk, Jason M.; Merín, Bruno; Peterson, Dawn E.; Spezzi, Loredana

    2013-01-01

    Motivated by the long-standing 'luminosity problem' in low-mass star formation whereby protostars are underluminous compared to theoretical expectations, we identify 230 protostars in 18 molecular clouds observed by two Spitzer Space Telescope Legacy surveys of nearby star-forming regions. We compile complete spectral energy distributions, calculate L bol for each source, and study the protostellar luminosity distribution. This distribution extends over three orders of magnitude, from 0.01 L ☉ to 69 L ☉ , and has a mean and median of 4.3 L ☉ and 1.3 L ☉ , respectively. The distributions are very similar for Class 0 and Class I sources except for an excess of low luminosity (L bol ∼ ☉ ) Class I sources compared to Class 0. 100 out of the 230 protostars (43%) lack any available data in the far-infrared and submillimeter (70 μm bol underestimated by factors of 2.5 on average, and up to factors of 8-10 in extreme cases. Correcting these underestimates for each source individually once additional data becomes available will likely increase both the mean and median of the sample by 35%-40%. We discuss and compare our results to several recent theoretical studies of protostellar luminosities and show that our new results do not invalidate the conclusions of any of these studies. As these studies demonstrate that there is more than one plausible accretion scenario that can match observations, future attention is clearly needed. The better statistics provided by our increased data set should aid such future work.

  12. First detection of cyanamide (NH2CN) towards solar-type protostars

    Science.gov (United States)

    Coutens, A.; Willis, E. R.; Garrod, R. T.; Müller, H. S. P.; Bourke, T. L.; Calcutt, H.; Drozdovskaya, M. N.; Jørgensen, J. K.; Ligterink, N. F. W.; Persson, M. V.; Stéphan, G.; van der Wiel, M. H. D.; van Dishoeck, E. F.; Wampfler, S. F.

    2018-05-01

    Searches for the prebiotically relevant cyanamide (NH2CN) towards solar-type protostars have not been reported in the literature. We present here the first detection of this species in the warm gas surrounding two solar-type protostars, using data from the Atacama Large Millimeter/Submillimeter Array Protostellar Interferometric Line Survey (PILS) of IRAS 16293-2422 B and observations from the IRAM Plateau de Bure Interferometer of NGC 1333 IRAS2A. We also detected the deuterated and 13C isotopologs of NH2CN towards IRAS 16293-2422 B. This is the first detection of NHDCN in the interstellar medium. Based on a local thermodynamic equilibrium analysis, we find that the deuteration of cyanamide ( 1.7%) is similar to that of formamide (NH2CHO), which may suggest that these two molecules share NH2 as a common precursor. The NH2CN/NH2CHO abundance ratio is about 0.2 for IRAS 16293-2422 B and 0.02 for IRAS2A, which is comparable to the range of values found for Sgr B2. We explored the possible formation of NH2CN on grains through the NH2 + CN reaction using the chemical model MAGICKAL. Grain-surface chemistry appears capable of reproducing the gas-phase abundance of NH2CN with the correct choice of physical parameters.

  13. Multi-wavelength investigations on feedback of massive star formation

    Science.gov (United States)

    Yuan, Jinghua

    2014-05-01

    outflow driven by a massive protostar. Multi-wavelength observations based on classical tracers of outflows are highly necessary. Extensive investigations of IRAS 18114-1825 may contribute to our understanding of massive star formation in early stage.

  14. Monitoring Baby - Listening in on the Youngest Known Pulsar (XTEAO11)

    Science.gov (United States)

    Gotthelf, Eric

    We have discovered a most remarkable young pulsar, PSR~J1846-0258, in the core of a Crab-like pulsar wind nebula at the center of the bright shell-type supernova remnant Kes~75. Based on its spin-down rate and X- ray spectrum, PSR~J1846-0258 is likely the youngest known rotation- powered pulsar. Compared to the Crab pulsar, however, its period, spin- down rate, and spin-down to X-ray luminosity conversion efficiency are each an order of magnitude greater, likely the result of its extreme magnetic field, above the quantum critical threshold. We propose to continue our monitoring campaign to measure the pulsar's braking index, characterize its timing noise, and search for evidence of timing glitches. This pulsar provides important insight into the evolution of the youngest NS-SNR systems.

  15. THE LUMINOSITIES OF PROTOSTARS IN THE SPITZER c2d AND GOULD BELT LEGACY CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, Michael M.; Arce, Hector G. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Allen, Lori E. [National Optical Astronomy Observatories, Tucson, AZ (United States); Evans II, Neal J.; Harvey, Paul M. [Department of Astronomy, University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712-1205 (United States); Broekhoven-Fiene, Hannah; Matthews, Brenda C. [Herzberg Institute, National Research Council of Canada, 5071 W. Saanich Road, Victoria, BC V9E 2E7 (Canada); Chapman, Nicholas L. [Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA), Department of Physics and Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Cieza, Lucas A. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Gutermuth, Robert A. [Department of Astronomy, University of Massachusetts, Amherst, MA (United States); Hatchell, Jennifer [Astrophysics Group, Physics, University of Exeter, Exeter EX4 4QL (United Kingdom); Huard, Tracy L.; Miller, Jennifer F. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Kirk, Jason M. [School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA (United Kingdom); Merin, Bruno [Herschel Science Centre, ESAC-ESA, P.O. Box 78, E-28691 Villanueva de la Canada, Madrid (Spain); Peterson, Dawn E. [Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 (United States); Spezzi, Loredana, E-mail: michael.dunham@yale.edu [European Southern Observatory (ESO), Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Muenchen (Germany)

    2013-04-15

    Motivated by the long-standing 'luminosity problem' in low-mass star formation whereby protostars are underluminous compared to theoretical expectations, we identify 230 protostars in 18 molecular clouds observed by two Spitzer Space Telescope Legacy surveys of nearby star-forming regions. We compile complete spectral energy distributions, calculate L{sub bol} for each source, and study the protostellar luminosity distribution. This distribution extends over three orders of magnitude, from 0.01 L{sub Sun} to 69 L{sub Sun }, and has a mean and median of 4.3 L{sub Sun} and 1.3 L{sub Sun }, respectively. The distributions are very similar for Class 0 and Class I sources except for an excess of low luminosity (L{sub bol} {approx}< 0.5 L{sub Sun }) Class I sources compared to Class 0. 100 out of the 230 protostars (43%) lack any available data in the far-infrared and submillimeter (70 {mu}m <{lambda} < 850 {mu}m) and have L{sub bol} underestimated by factors of 2.5 on average, and up to factors of 8-10 in extreme cases. Correcting these underestimates for each source individually once additional data becomes available will likely increase both the mean and median of the sample by 35%-40%. We discuss and compare our results to several recent theoretical studies of protostellar luminosities and show that our new results do not invalidate the conclusions of any of these studies. As these studies demonstrate that there is more than one plausible accretion scenario that can match observations, future attention is clearly needed. The better statistics provided by our increased data set should aid such future work.

  16. The JCMT Transient Survey: Detection of Submillimeter Variability in a Class I Protostar EC 53 in Serpens Main

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hyunju; Cho, Jungyeon [Department of Astronomy and Space Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 (Korea, Republic of); Lee, Jeong-Eun [School of Space Research, Kyung Hee University, 1732, Deogyeong-Daero, Giheung-gu Yongin-shi, Gyunggi-do 17104 (Korea, Republic of); Mairs, Steve; Johnstone, Doug [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 1A1 (Canada); Herczeg, Gregory J. [Kavli Institute for Astronomy and Astrophysics, Peking University, Yiheyuan 5, Haidian Qu, 100871 Beijing (China); Kang, Sung-ju; Kang, Miju, E-mail: jeongeun.lee@khu.ac.kr [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 34055 (Korea, Republic of); Collaboration: JCMT Transient Team

    2017-11-01

    During the protostellar phase of stellar evolution, accretion onto the star is expected to be variable, but this suspected variability has been difficult to detect because protostars are deeply embedded. In this paper, we describe a submillimeter luminosity burst of the Class I protostar EC 53 in Serpens Main, the first variable found during our dedicated JCMT/SCUBA-2 monitoring program of eight nearby star-forming regions. EC 53 remained quiescent for the first six months of our survey, from 2016 February to August. The submillimeter emission began to brighten in 2016 September, reached a peak brightness of 1.5 times the faint state, and has been decaying slowly since 2017 February. The change in submillimeter brightness is interpreted as dust heating in the envelope, generated by a luminosity increase of the protostar of a factor of ≥4. The 850 μ m light curve resembles the historical K -band light curve, which varies by a factor of ∼6 with a 543 period and is interpreted as accretion variability excited by interactions between the accretion disk and a close binary system. The predictable detections of accretion variability observed at both near-infrared and submillimeter wavelengths make the system a unique test-bed, enabling us to capture the moment of the accretion burst and to study the consequences of the outburst on the protostellar disk and envelope.

  17. Evolution of the outflow activity of protostars

    International Nuclear Information System (INIS)

    Bontemps, Sylvain

    1996-01-01

    After a first part describing the formation of low-mass stars (sites of stellar formation, protostellar evolution) and matter outflows from young objects (molecular flows and their origin, optical and radio jets, outflow mechanisms), this research thesis discusses the evolution of molecular flows by reprinting a published article (Evolution of outflow activity around low-mass embedded young stellar objects), and by outlining some remaining issues (differences between clouds of stellar formation, morphological evolution of molecular flows). The author then discusses the continuous radio centimetre emission: origin, systematic search for Class 0 objects by using the VLA (Very Large Array radio interferometer), presentation of a new Class 0 protostar (HH24MMS). The author reports the study of H_2 emission in the infrared: generalities on protostellar shocks, infrared jet by HH24MMS, H_2 emission at 10 microns by using the ISOCAM camera [fr

  18. LOW-METALLICITY PROTOSTARS AND THE MAXIMUM STELLAR MASS RESULTING FROM RADIATIVE FEEDBACK: SPHERICALLY SYMMETRIC CALCULATIONS

    International Nuclear Information System (INIS)

    Hosokawa, Takashi; Omukai, Kazuyuki

    2009-01-01

    The final mass of a newborn star is set at the epoch when the mass accretion onto the star is terminated. We study the evolution of accreting protostars and the limits of accretion in low-metallicity environments under spherical symmetry. Accretion rates onto protostars are estimated via the temperature evolution of prestellar cores with different metallicities. The derived rates increase with decreasing metallicity, from M-dot≅10 -6 M odot yr -1 at Z = Z sun to 10 -3 M sun yr -1 at Z = 0. With the derived accretion rates, the protostellar evolution is numerically calculated. We find that, at lower metallicity, the protostar has a larger radius and reaches the zero-age main sequence (ZAMS) at higher stellar mass. Using this protostellar evolution, we evaluate the upper stellar mass limit where the mass accretion is hindered by radiative feedback. We consider the effects of radiation pressure exerted on the accreting envelope, and expansion of an H II region. The mass accretion is finally terminated by radiation pressure on dust grains in the envelope for Z ∼> 10 -3 Z sun and by the expanding H II region for lower metallicity. The mass limit from these effects increases with decreasing metallicity from M * ≅ 10 M sun at Z = Z sun to ≅300 M sun at Z = 10 -6 Z sun . The termination of accretion occurs after the central star arrives at the ZAMS at all metallicities, which allows us to neglect protostellar evolution effects in discussing the upper mass limit by stellar feedback. The fragmentation induced by line cooling in low-metallicity clouds yields prestellar cores with masses large enough that the final stellar mass is set by the feedback effects. Although relaxing the assumption of spherical symmetry will alter feedback effects, our results will be a benchmark for more realistic evolution to be explored in future studies.

  19. Deuterated water in the solar-type protostars NGC 1333 IRAS 4A and IRAS 4B

    NARCIS (Netherlands)

    Coutens, A.; Vastel, C.; Cabrit, S.; Codella, C.; Kristensen, L. E.; Ceccarelli, C.; van Dishoeck, E. F.; Boogert, A. C. A.; Bottinelli, S.; Castets, A.; Caux, E.; Comito, C.; Demyk, K.; Herpin, F.; Lefloch, B.; McCoey, C.; Mottram, J. C.; Parise, B.; Taquet, V.; van der Tak, F. F. S.; Visser, R.; Yıldız, U. A.

    2013-01-01

    Context. The measure of the water deuterium fractionation is a relevant tool for understanding mechanisms of water formation and evolution from the prestellar phase to the formation of planets and comets. Aims: The aim of this paper is to study deuterated water in the solar-type protostars NGC 1333

  20. Earth's youngest exposed granite and its tectonic implications: the 10-0.8 Ma Kurobegawa Granite.

    Science.gov (United States)

    Ito, Hisatoshi; Yamada, Ryuji; Tamura, Akihiro; Arai, Shoji; Horie, Kenji; Hokada, Tomokazu

    2013-01-01

    Although the quest for Earth's oldest rock is of great importance, identifying the youngest exposed pluton on Earth is also of interest. A pluton is a body of intrusive igneous rock that crystallized from slowly cooling magma at depths of several kilometers beneath the surface of the Earth. Therefore, the youngest exposed pluton represents the most recent tectonic uplift and highest exhumation. The youngest exposed pluton reported to date is the Takidani Granodiorite (~ 1.4 Ma) in the Hida Mountain Range of central Japan. Using LA-ICP-MS and SHRIMP U-Pb zircon dating methods, this study demonstrates that the Kurobegawa Granite, also situated in the Hida Mountain Range, is as young as ~ 0.8 Ma. In addition, data indicate multiple intrusion episodes in this pluton since 10 Ma with a ~ 2-million-year period of quiescence; hence, a future intrusion event is likely within 1 million years.

  1. Valuing lives and allocating resources: a defense of the modified youngest first principle of scarce resource distribution.

    Science.gov (United States)

    Tallman, Ruth

    2014-06-01

    In this paper, I argue that the 'modified youngest first' principle provides a morally appropriate criterion for making decisions regarding the distribution of scarce medical resources, and that it is morally preferable to the simple 'youngest first' principle. Based on the complete lives system's goal of maximizing complete lives rather than individual life episodes, I argue that essential to the value we see in complete lives is the first person value attributed by the experiencer of that life. For a life to be 'complete' or 'incomplete,' the subject of that life must be able to understand the concept of a complete life, to have started goals and projects, and to know what it would be for that life to be complete. As the very young are not able to do this, it can reasonably be said that their characteristically human lives have not yet begun, giving those accepting a complete lives approach good reason to accept the modified youngest first principle over a simple 'youngest first' approach. © 2012 John Wiley & Sons Ltd.

  2. Origin of warm and hot gas emission from low-mass protostars: Herschel-HIFI observations of CO J = 16-15

    DEFF Research Database (Denmark)

    Kristensen, Lars Egstrøm; Van Dishoeck, E. F.; Mottram, J. C.

    2017-01-01

    Context. Through spectrally unresolved observations of high-J CO transitions, Herschel Photodetector Array Camera and Spectrometer (PACS) has revealed large reservoirs of warm (300 K) and hot (700 K) molecular gas around low-mass protostars. The excitation and physical origin of this gas is still...... in cooling molecular H2-poor gas just prior to the onset of H2 formation. High spectral resolution observations of highly excited CO transitions uniquely shed light on the origin of warm and hot gas in low-mass protostellar objects....... not understood. Aims. We aim to shed light on the excitation and origin of the CO ladder observed toward protostars, and on the water abundance in different physical components within protostellar systems using spectrally resolved Herschel-HIFI data. Methods. Observations are presented of the highly excited CO...

  3. Radio outburst from a massive (proto)star. When accretion turns into ejection

    Science.gov (United States)

    Cesaroni, R.; Moscadelli, L.; Neri, R.; Sanna, A.; Caratti o Garatti, A.; Eisloffel, J.; Stecklum, B.; Ray, T.; Walmsley, C. M.

    2018-05-01

    Context. Recent observations of the massive young stellar object S255 NIRS 3 have revealed a large increase in both methanol maser flux density and IR emission, which have been interpreted as the result of an accretion outburst, possibly due to instabilities in a circumstellar disk. This indicates that this type of accretion event could be common in young/forming early-type stars and in their lower mass siblings, and supports the idea that accretion onto the star may occur in a non-continuous way. Aims: As accretion and ejection are believed to be tightly associated phenomena, we wanted to confirm the accretion interpretation of the outburst in S255 NIRS 3 by detecting the corresponding burst of the associated thermal jet. Methods: We monitored the radio continuum emission from S255 NIRS 3 at four bands using the Karl G. Jansky Very Large Array. The millimetre continuum emission was also observed with both the Northern Extended Millimeter Array of IRAM and the Atacama Large Millimeter/Submillimeter Array. Results: We have detected an exponential increase in the radio flux density from 6 to 45 GHz starting right after July 10, 2016, namely 13 months after the estimated onset of the IR outburst. This is the first ever detection of a radio burst associated with an IR accretion outburst from a young stellar object. The flux density at all observed centimetre bands can be reproduced with a simple expanding jet model. At millimetre wavelengths we infer a marginal flux increase with respect to the literature values and we show this is due to free-free emission from the radio jet. Conclusions: Our model fits indicate a significant increase in the jet opening angle and ionized mass loss rate with time. For the first time, we can estimate the ionization fraction in the jet and conclude that this must be low (memory of MalcolmWalmsley, who passed away before the present study could be completed. Without his insights and enlightened advice this work would have been impossible

  4. A SYSTEMATIC SEARCH FOR MOLECULAR OUTFLOWS TOWARD CANDIDATE LOW-LUMINOSITY PROTOSTARS AND VERY LOW LUMINOSITY OBJECTS

    Energy Technology Data Exchange (ETDEWEB)

    Schwarz, Kamber R.; Shirley, Yancy L. [Steward Observatory, 933 N. Cherry Ave., Tucson, AZ 85721 (United States); Dunham, Michael M. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States)

    2012-10-01

    We present a systematic single-dish search for molecular outflows toward a sample of nine candidate low-luminosity protostars and 30 candidate very low luminosity objects (VeLLOs; L{sub int} {<=} 0.1 L{sub Sun }). The sources are identified using data from the Spitzer Space Telescope cataloged by Dunham et al. toward nearby (D < 400 pc) star-forming regions. Each object was observed in {sup 12}CO and {sup 13}CO J = 2 {yields} 1 simultaneously using the sideband separating ALMA Band-6 prototype receiver on the Heinrich Hertz Telescope at 30'' resolution. Using five-point grid maps, we identify five new potential outflow candidates and make on-the-fly maps of the regions surrounding sources in the dense cores B59, L1148, L1228, and L1165. Of these new outflow candidates, only the map of B59 shows a candidate blue outflow lobe associated with a source in our survey. We also present larger and more sensitive maps of the previously detected L673-7 and the L1251-A-IRS4 outflows and analyze their properties in comparison to other outflows from VeLLOs. The accretion luminosities derived from the outflow properties of the VeLLOs with detected CO outflows are higher than the observed internal luminosity of the protostars, indicating that these sources likely had higher accretion rates in the past. The known L1251-A-IRS3 outflow is detected but not re-mapped. We do not detect clear, unconfused signatures of red and blue molecular wings toward the other 31 sources in the survey indicating that large-scale, distinct outflows are rare toward this sample of candidate protostars. Several potential outflows are confused with the kinematic structure in the surrounding core and cloud. Interferometric imaging is needed to disentangle large-scale molecular cloud kinematics from these potentially weak protostellar outflows.

  5. A SYSTEMATIC SEARCH FOR MOLECULAR OUTFLOWS TOWARD CANDIDATE LOW-LUMINOSITY PROTOSTARS AND VERY LOW LUMINOSITY OBJECTS

    International Nuclear Information System (INIS)

    Schwarz, Kamber R.; Shirley, Yancy L.; Dunham, Michael M.

    2012-01-01

    We present a systematic single-dish search for molecular outflows toward a sample of nine candidate low-luminosity protostars and 30 candidate very low luminosity objects (VeLLOs; L int ≤ 0.1 L ☉ ). The sources are identified using data from the Spitzer Space Telescope cataloged by Dunham et al. toward nearby (D 12 CO and 13 CO J = 2 → 1 simultaneously using the sideband separating ALMA Band-6 prototype receiver on the Heinrich Hertz Telescope at 30'' resolution. Using five-point grid maps, we identify five new potential outflow candidates and make on-the-fly maps of the regions surrounding sources in the dense cores B59, L1148, L1228, and L1165. Of these new outflow candidates, only the map of B59 shows a candidate blue outflow lobe associated with a source in our survey. We also present larger and more sensitive maps of the previously detected L673-7 and the L1251-A-IRS4 outflows and analyze their properties in comparison to other outflows from VeLLOs. The accretion luminosities derived from the outflow properties of the VeLLOs with detected CO outflows are higher than the observed internal luminosity of the protostars, indicating that these sources likely had higher accretion rates in the past. The known L1251-A-IRS3 outflow is detected but not re-mapped. We do not detect clear, unconfused signatures of red and blue molecular wings toward the other 31 sources in the survey indicating that large-scale, distinct outflows are rare toward this sample of candidate protostars. Several potential outflows are confused with the kinematic structure in the surrounding core and cloud. Interferometric imaging is needed to disentangle large-scale molecular cloud kinematics from these potentially weak protostellar outflows.

  6. Are Parental Welfare Work Requirements Good for Disadvantaged Children? Evidence from Age-of-Youngest-Child Exemptions

    OpenAIRE

    Herbst, Chris M.

    2014-01-01

    This paper assesses the short-run impact of first-year maternal employment on low-income children's cognitive development. The identification strategy exploits an important feature of the U.S.'s welfare work requirement rules – namely, age-of-youngest-child exemptions – as a source of quasi-experimental variation in maternal employment. The 1996 welfare reform law empowered states to exempt adult recipients from the work requirements until the youngest child reaches a certain age. This led to...

  7. Earth's youngest exposed granite and its tectonic implications: the 10–0.8 Ma Kurobegawa Granite

    Science.gov (United States)

    Ito, Hisatoshi; Yamada, Ryuji; Tamura, Akihiro; Arai, Shoji; Horie, Kenji; Hokada, Tomokazu

    2013-01-01

    Although the quest for Earth's oldest rock is of great importance, identifying the youngest exposed pluton on Earth is also of interest. A pluton is a body of intrusive igneous rock that crystallized from slowly cooling magma at depths of several kilometers beneath the surface of the Earth. Therefore, the youngest exposed pluton represents the most recent tectonic uplift and highest exhumation. The youngest exposed pluton reported to date is the Takidani Granodiorite (~ 1.4 Ma) in the Hida Mountain Range of central Japan. Using LA-ICP-MS and SHRIMP U-Pb zircon dating methods, this study demonstrates that the Kurobegawa Granite, also situated in the Hida Mountain Range, is as young as ~ 0.8 Ma. In addition, data indicate multiple intrusion episodes in this pluton since 10 Ma with a ~ 2-million-year period of quiescence; hence, a future intrusion event is likely within 1 million years. PMID:23419636

  8. Complex molecules in the hot core of the low-mass protostar NGC 1333 IRAS 4A

    NARCIS (Netherlands)

    Bottinelli, S; Ceccarelli, C; Lefloch, B; Williams, JP; Castets, A; Caux, E; Cazaux, S; Maret, S; Parise, B; Tielens, AGGM

    2004-01-01

    We report the detection of complex molecules (HCOOCH3, HCOOH, and CH3CN), signposts of a hot core like region, toward the low-mass Class 0 source NGC 1333 IRAS 4A. This is the second low-mass protostar in which such complex molecules have been searched for and reported, the other source being IRAS

  9. Grain processes in massive star formation

    International Nuclear Information System (INIS)

    Wolfire, M.G.; Cassinelli, J.P.

    1986-01-01

    Observational evidence suggests that stars greater than 100 M(solar) exist in the Galaxy and Large Magellanic Cloud (LMC), however classical star formation theory predicts stellar mass limits of only approx. 60 M(solar). A protostellar accretion flow consists of inflowing gas and dust. Grains are destroyed as they are near the central protostar creating a dust shell or cocoon. Radiation pressure acting on the grain can halt the inflow of material thereby limiting the amount of mass accumulated by the protostar. We first consider rather general constraints on the initial grain to gas ratio and mass accretion rates that permit inflow. We further constrain these results by constructing a numerical model. Radiative deceleration of grains and grain destruction processes are explicitly accounted for in an iterative solution of the radiation-hydrodynamic equations. Findings seem to suggest that star formation by spherical accretion requires rather extreme preconditioning of the grain and gas environment

  10. The HDO/H2O Ratio in Gas in the Inner Regions of a Low-mass Protostar

    DEFF Research Database (Denmark)

    Jørgensen, Jes Kristian; van Dishoeck, Ewine F.

    2010-01-01

    The HDO/H2O abundance ratio is thought to be a key diagnostic for the evolution of water during the star and planet formation process and thus for its origin on Earth. We here present millimeter-wavelength high angular resolution observations of the deeply embedded protostar NGC 1333-IRAS4B from...

  11. DETECTION OF FORMAMIDE, THE SIMPLEST BUT CRUCIAL AMIDE, IN A SOLAR-TYPE PROTOSTAR

    International Nuclear Information System (INIS)

    Kahane, C.; Ceccarelli, C.; Faure, A.; Caux, E.

    2013-01-01

    Formamide (NH 2 CHO), the simplest possible amide, has recently been suggested to be a central species in the synthesis of metabolic and genetic molecules, the chemical basis of life. In this Letter, we report the first detection of formamide in a protostar, IRAS 16293–2422, which may be similar to the Sun and solar system progenitor. The data combine spectra from the millimeter and submillimeter TIMASSS survey with recent, more sensitive observations at the IRAM 30 m telescope. With an abundance relative to H 2 of ∼10 –10 , formamide appears as abundant in this solar-type protostar as in the two high-mass star-forming regions, Orion-KL and SgrB2, where this species has previously been detected. Given the largely different UV-illuminated environments of the three sources, the relevance of UV photolysis of interstellar ices in the synthesis of formamide is therefore questionable. Assuming that this species is formed in the gas phase via the neutral-neutral reaction between the radical NH 2 and H 2 CO, we predict an abundance in good agreement with the value derived from our observations. The comparison of the relative abundance [NH 2 CHO]/[H 2 O] in IRAS 16293–2422 and in the coma of the comet Hale-Bopp supports the similarity between interstellar and cometary chemistry. Our results thus suggest that the abundance of some cometary organic volatiles could reflect gas phase rather than grain-surface interstellar chemistry.

  12. THE EXTRAORDINARY FAR-INFRARED VARIATION OF A PROTOSTAR: HERSCHEL/PACS OBSERVATIONS OF LRLL54361

    Energy Technology Data Exchange (ETDEWEB)

    Balog, Zoltan; Detre, Örs H.; Bouwmann, Jeroen; Nielbock, Markus; Klaas, Ulrich; Krause, Oliver; Henning, Thomas [Max Planck Institute for Astronomy Königstuhl 17, Heidelberg D-69117 (Germany); Muzerolle, James [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Flaherty, Kevin [Astronomy Department, Wesleyan University, Middletown, CT 06459 (United States); Furlan, Elise [Natinal Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Gutermuth, Rob [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Juhasz, Attila [Leiden Observatory, Leiden University, Niels Bohrweg 2, NL-2333-CA Leiden (Netherlands); Bally, John [CASA, University of Colorado, CB 389, Boulder, CO 80309 (United States); Marton, Gabor, E-mail: balog@mpia.de [Konkoly Observatory, Research Center for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Konkoly Thege 15-17, 1121 Budapest (Hungary)

    2014-07-10

    We report Herschel/Photodetector Array Camera and Spectrometer (PACS) photometric observations at 70 μm and 160 μm of LRLL54361—a suspected binary protostar that exhibits periodic (P = 25.34 days) flux variations at shorter wavelengths (3.6 μm and 4.5 μm) thought to be due to pulsed accretion caused by binary motion. The PACS observations show unprecedented flux variation at these far-infrared wavelengths that are well correlated with the variations at shorter wavelengths. At 70 μm the object increases its flux by a factor of six while at 160 μm the change is about a factor of two, consistent with the wavelength dependence seen in the far-infrared spectra. The source is marginally resolved at 70 μm with varying FWHM. Deconvolved images of the sources show elongations exactly matching the outflow cavities traced by the scattered light observations. The spatial variations are anti-correlated with the flux variation, indicating that a light echo is responsible for the changes in FWHM. The observed far-infrared flux variability indicates that the disk and envelope of this source is periodically heated by the accretion pulses of the central source, and suggests that such long wavelength variability in general may provide a reasonable proxy for accretion variations in protostars.

  13. CERN’s biggest and youngest family

    CERN Multimedia

    Panos Charitos for PH News

    2013-01-01

    In a sort of happy reply to the CERN Director-General, who cited them as the summer “addition to the big CERN family”, some of the 2013 summer students submitted their enthusiastic messages to the PH Newsletter. There is no way to include all of them in a single article. Instead, a world map will do the job. Click on it and enjoy the messages from the youngest part of the big CERN family.   Every summer CERN turns into one of the most international and lively places you could imagine as hundreds of summer students arrive from all over the world. Students from different backgrounds spend a few weeks working with their supervisors on numerous topics of scientific research. Among this year's summer students you will meet an astronomer, a biochemist, a computational biologist and even an Olympic winner! These are young scientists with an incredible amount of talent, intelligence and energy. CERN summer students clearly have an e...

  14. Infall-driven protostellar accretion and the solution to the luminosity problem

    DEFF Research Database (Denmark)

    Padoan, Paolo; Haugbølle, Troels; Nordlund, Åke

    2014-01-01

    We investigate the role of mass infall in the formation and evolution of protostars. To avoid ad hoc initial and boundary conditions, we consider the infall resulting self-consistently from modeling the formation of stellar clusters in turbulent molecular clouds. We show that infall rates...... in turbulent clouds are comparable to accretion rates inferred from protostellar luminosities or measured in pre-main-sequence stars. They should not be neglected in modeling the luminosity of protostars and the evolution of disks, even after the embedded protostellar phase. We find large variations of infall...... rates from protostar to protostar, and large fluctuations during the evolution of individual protostars. In most cases, the infall rate is initially of order 10–5 M ☉ yr–1, and may either decay rapidly in the formation of low-mass stars, or remain relatively large when more massive stars are formed...

  15. MASSIVE STAR FORMATION IN THE LMC. I. N159 AND N160 COMPLEXES

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Michael S.; Jones, Terry J.; Gehrz, Robert D. [Minnesota Institute for Astrophysics, School of Physics and Astronomy 116 Church St SE, University of Minnesota, Minneapolis, MN 55455 (United States); Helton, L. Andrew [USRA–SOFIA Science Center, NASA Ames Research Center, Moffett Field, CA 94035 (United States)

    2017-01-10

    We present images and spectral energy distributions (SEDs) of massive young stellar objects (YSOs) in three star-forming H ii regions of the Large Magellanic Cloud: N159A, N159 Papillon, and N160. We use photometry from SOFIA/FORCAST at 25.3–37.1 μ m to constrain model fits to the SEDs and determine luminosities, ages, and dust content of the embedded YSOs and their local environments. By placing these sources on mid-infrared color–magnitude and color–color diagrams, we analyze their dust properties and consider their evolutionary status. Since each object in the FORCAST images has an obvious bright near-infrared counterpart in Spitzer Space Telescope images, we do not find any evidence for new, very cool, previously undiscovered Class 0 YSOs. Additionally, based on its mid-infrared colors and model parameters, N159A is younger than N160 and the Papillon. The nature of the first extragalactic protostars in N159, P1, and P2, is also discussed.

  16. The Herschel-PACS Legacy of Low-mass Protostars: The Properties of Warm and Hot Gas Components and Their Origin in Far-UV Illuminated Shocks

    Science.gov (United States)

    Karska, Agata; Kaufman, Michael J.; Kristensen, Lars E.; van Dishoeck, Ewine F.; Herczeg, Gregory J.; Mottram, Joseph C.; Tychoniec, Łukasz; Lindberg, Johan E.; Evans, Neal J., II; Green, Joel D.; Yang, Yao-Lun; Gusdorf, Antoine; Itrich, Dominika; Siódmiak, Natasza

    2018-04-01

    Recent observations from Herschel allow the identification of important mechanisms responsible both for the heating of the gas that surrounds low-mass protostars and for its subsequent cooling in the far-infrared. Shocks are routinely invoked to reproduce some properties of the far-IR spectra, but standard models fail to reproduce the emission from key molecules, e.g., H2O. Here, we present the Herschel Photodetector Array Camera and Spectrometer (PACS) far-IR spectroscopy of 90 embedded low-mass protostars (Class 0/I). The Herschel-PACS spectral maps, covering ∼55–210 μm with a field of view of ∼50″, are used to quantify the gas excitation conditions and spatial extent using rotational transitions of H2O, high-J CO, and OH, as well as [O I] and [C II]. We confirm that a warm (∼300 K) CO reservoir is ubiquitous and that a hotter component (760 ± 170 K) is frequently detected around protostars. The line emission is extended beyond ∼1000 au spatial scales in 40/90 objects, typically in molecular tracers in Class 0 and atomic tracers in Class I objects. High-velocity emission (≳90 km s‑1) is detected in only 10 sources in the [O I] line, suggesting that the bulk of [O I] arises from gas that is moving slower than typical jets. Line flux ratios show an excellent agreement with models of C-shocks illuminated by ultraviolet (UV) photons for pre-shock densities of ∼105 cm‑3 and UV fields 0.1–10 times the interstellar value. The far-IR molecular and atomic lines are a unique diagnostic of feedback from UV emission and shocks in envelopes of deeply embedded protostars.

  17. The youngest children in each school cohort are overrepresented in referrals to mental health services.

    Science.gov (United States)

    Berg, Shipra; Berg, Erlend

    2014-05-01

    To investigate whether the youngest children in each school cohort are overrepresented as users of specialist mental health services. Dates of birth were obtained for all 9,157 children and adolescents referred to specialist mental health services in 3 London boroughs from 2008 to 2011. The actual frequency of referrals by month of birth is compared to the expected frequency of referrals as determined by birth statistics for the relevant age group. August-born children, who are the youngest in their cohorts in England, represent 9.38% of referrals but only 8.59% of the population in the relevant age segment. Hence, August-born children are overrepresented in referrals to specialist mental health services (P value = .007). September- and October-born children, who are the oldest in their cohorts, are underrepresented: September-born children represent 8.62% of the population but 7.99% of referrals to mental health services (P value = .032), and October-born children are 8.56% of the population but 7.86% of referrals (P value = .016). Being among the youngest in a school cohort is associated with a higher risk of referral to mental health services, while being among the oldest is a protective factor. © Copyright 2014 Physicians Postgraduate Press, Inc.

  18. The complete far-infrared and submillimeter spectrum of the Class 0 protostar Serpens SMM1 obtained with Herschel

    DEFF Research Database (Denmark)

    R. Goicoechea, Javier; Cernicharo, J.; Karska, A.

    2012-01-01

    We present the first complete 55-671 um spectral scan of a low-mass Class 0 protostar (Serpens SMM1) taken with the PACS and SPIRE spectrometers on board Herschel. More than 145 lines have been detected, most of them rotationally excited lines of 12CO (full ladder from J=4-3 to 42-41), H2O, OH, 13...

  19. Star Formation Under the Outflow: The Discovery of a Non-thermal Jet from OMC-2 FIR 3 and Its Relationship to the Deeply Embedded FIR 4 Protostar

    Energy Technology Data Exchange (ETDEWEB)

    Osorio, Mayra; Díaz-Rodríguez, Ana K.; Anglada, Guillem; Gómez, José F. [Instituto de Astrofísica de Andalucía (CSIC) Glorieta de la Astronomía s/n E-18008 Granada (Spain); Megeath, S. Thomas [Ritter Astrophysical Research Center, Department of Physics and Astronomy University of Toledo 2801 West Bancroft Street Toledo, OH 43606 (United States); Rodríguez, Luis F.; Loinard, Laurent; Carrasco-González, Carlos [Instituto de Radioastronomía y Astrofísica, UNAM Apartado Postal 3-72 (Xangari), 58089 Morelia, Michoacán (Mexico); Tobin, John J. [Homer L. Dodge Department of Physics and Astronomy University of Oklahoma, Norman, OK 73019 (United States); Stutz, Amelia M. [Department of Astronomy, University of Concepción Concepción (Chile); Furlan, Elise [IPAC, Mail Code 314-6, Caltech 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Fischer, William J. [Space Telescope Science Institute 3700 San Martin Drive, Baltimore, MD 21218 (United States); Manoj, P. [Tata Institute of Fundamental Research Homi Bhabha Road, Mumbai 400 005 (India); González-García, Beatriz; Vavrek, Roland [European Space Astronomy Center, ESA P.O. Box 78, E-28691 Villanueva de la Cañada, Madrid (Spain); Stanke, Thomas [European Southern Observatory Garching bei München (Germany); Watson, Dan M., E-mail: osorio@iaa.es [Department of Physics and Astronomy, University of Rochester Rochester, NY 14627 (United States)

    2017-05-01

    We carried out multiwavelength (0.7–5 cm), multi-epoch (1994–2015) Very Large Array (VLA) observations toward the region enclosing the bright far-IR sources FIR 3 (HOPS 370) and FIR 4 (HOPS 108) in OMC-2. We report the detection of 10 radio sources, 7 of them identified as young stellar objects. We image a well-collimated radio jet with a thermal free–free core (VLA 11) associated with the Class I intermediate-mass protostar HOPS 370. The jet features several knots (VLA 12N, 12C, 12S) of non-thermal radio emission (likely synchrotron from shock-accelerated relativistic electrons) at distances of ∼7500–12,500 au from the protostar, in a region where other shock tracers have been previously identified. These knots are moving away from the HOPS 370 protostar at ∼100 km s{sup −1}. The Class 0 protostar HOPS 108, which itself is detected as an independent, kinematically decoupled radio source, falls in the path of these non-thermal radio knots. These results favor the previously proposed scenario in which the formation of HOPS 108 is triggered by the impact of the HOPS 370 outflow with a dense clump. However, HOPS 108 has a large proper motion velocity of ∼30 km s{sup −1}, similar to that of other runaway stars in Orion, whose origin would be puzzling within this scenario. Alternatively, an apparent proper motion could result because of changes in the position of the centroid of the source due to blending with nearby extended emission, variations in the source shape, and/or opacity effects.

  20. Star Formation Under the Outflow: The Discovery of a Non-thermal Jet from OMC-2 FIR 3 and Its Relationship to the Deeply Embedded FIR 4 Protostar

    International Nuclear Information System (INIS)

    Osorio, Mayra; Díaz-Rodríguez, Ana K.; Anglada, Guillem; Gómez, José F.; Megeath, S. Thomas; Rodríguez, Luis F.; Loinard, Laurent; Carrasco-González, Carlos; Tobin, John J.; Stutz, Amelia M.; Furlan, Elise; Fischer, William J.; Manoj, P.; González-García, Beatriz; Vavrek, Roland; Stanke, Thomas; Watson, Dan M.

    2017-01-01

    We carried out multiwavelength (0.7–5 cm), multi-epoch (1994–2015) Very Large Array (VLA) observations toward the region enclosing the bright far-IR sources FIR 3 (HOPS 370) and FIR 4 (HOPS 108) in OMC-2. We report the detection of 10 radio sources, 7 of them identified as young stellar objects. We image a well-collimated radio jet with a thermal free–free core (VLA 11) associated with the Class I intermediate-mass protostar HOPS 370. The jet features several knots (VLA 12N, 12C, 12S) of non-thermal radio emission (likely synchrotron from shock-accelerated relativistic electrons) at distances of ∼7500–12,500 au from the protostar, in a region where other shock tracers have been previously identified. These knots are moving away from the HOPS 370 protostar at ∼100 km s −1 . The Class 0 protostar HOPS 108, which itself is detected as an independent, kinematically decoupled radio source, falls in the path of these non-thermal radio knots. These results favor the previously proposed scenario in which the formation of HOPS 108 is triggered by the impact of the HOPS 370 outflow with a dense clump. However, HOPS 108 has a large proper motion velocity of ∼30 km s −1 , similar to that of other runaway stars in Orion, whose origin would be puzzling within this scenario. Alternatively, an apparent proper motion could result because of changes in the position of the centroid of the source due to blending with nearby extended emission, variations in the source shape, and/or opacity effects.

  1. Rotation-Infall Motion around the Protostar IRAS 16293-2422 Traced by Water Maser Emission

    Science.gov (United States)

    Imai, Hiroshi; Iwata, Takahiro; Miyoshi, Makoto

    1999-08-01

    We made VLBI observations of the water maser emission associated with a protostar, IRAS 16293-2422, using the Kashima-Nobeyama Interferometer (KNIFE) and the Japanese domestic VLBI network (J-Net).\\footnote[2]. These distributions of water maser features showed the blue-shifted and red-shifted components separated in the north-south direction among three epochs spanning three years. The direction of the separation was perpendicular to the molecular outflow and parallel to the elongation of the molecular disk. These steady distributions were successfully modeled by a rotating-infalling disk with an outer radius of 100 AU around a central object with a mass of 0.3 MO . The local specific angular momentum of the disk was calculated to be 0.2-1.0times 10-3 km s-1 pc at a radius of 20-100 AU. This value is roughly equal to that of the disk of IRAS 00338+6312 in L1287 and those of the molecular disks around the protostars in the Taurus molecular cloud. The relatively large disk radius of about 100 AU traced by water maser emission suggests that impinging clumps onto the disk should be hotter than 200 K to excite the water maser emission. Mizusawa, Nobeyama, and Kagoshima stations are operated by staff members of National Astronomical Observatory of the Ministry of Education, Science, Sports and Culture. Kashima station is operated by staff members of Communications Research Laboratory of the Ministry of Posts and Telecomunications. The recent status of J-Net is seen in the WWW home page: http://www.nro.nao.ac.jp/\\ \\ miyaji/Jnet.

  2. Massive Outflows Associated with ATLASGAL Clumps

    Science.gov (United States)

    Yang, A. Y.; Thompson, M. A.; Urquhart, J. S.; Tian, W. W.

    2018-03-01

    We have undertaken the largest survey for outflows within the Galactic plane using simultaneously observed {}13{CO} and {{{C}}}18{{O}} data. Out of a total of 919 ATLASGAL clumps, 325 have data suitable to identify outflows, and 225 (69% ± 3%) show high-velocity outflows. The clumps with detected outflows show significantly higher clump masses ({M}clump}), bolometric luminosities ({L}bol}), luminosity-to-mass ratios ({L}bol}/{M}clump}), and peak H2 column densities ({N}{{{H}}2}) compared to those without outflows. Outflow activity has been detected within the youngest quiescent clump (i.e., 70 μ {{m}} weak) in this sample, and we find that the outflow detection rate increases with {M}clump}, {L}bol}, {L}bol}/{M}clump}, and {N}{{{H}}2}, approaching 90% in some cases (UC H II regions = 93% ± 3%; masers = 86% ± 4%; HC H II regions = 100%). This high detection rate suggests that outflows are ubiquitous phenomena of massive star formation (MSF). The mean outflow mass entrainment rate implies a mean accretion rate of ∼ {10}-4 {M}ȯ {yr}}-1, in full agreement with the accretion rate predicted by theoretical models of MSF. Outflow properties are tightly correlated with {M}clump}, {L}bol}, and {L}bol}/{M}clump} and show the strongest relation with the bolometric clump luminosity. This suggests that outflows might be driven by the most massive and luminous source within the clump. The correlations are similar for both low-mass and high-mass outflows over 7 orders of magnitude, indicating that they may share a similar outflow mechanism. Outflow energy is comparable to the turbulent energy within the clump; however, we find no evidence that outflows increase the level of clump turbulence as the clumps evolve. This implies that the origin of turbulence within clumps is fixed before the onset of star formation.

  3. HOPS 136: An edge-on orion protostar near the end of envelope infall

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, William J.; Megeath, S. Thomas [Department of Physics and Astronomy, University of Toledo, Toledo, OH (United States); Tobin, John J. [National Radio Astronomy Observatory, Charlottesville, VA (United States); Hartmann, Lee; Kounkel, Marina [Department of Astronomy, University of Michigan, Ann Arbor, MI (United States); Stutz, Amelia M. [Max-Planck-Institut für Astronomie, Heidelberg (Germany); Poteet, Charles A. [New York Center for Astrobiology, Rensselaer Polytechnic Institute, Troy, NY (United States); Ali, Babar [NHSC/IPAC/Caltech, Pasadena, CA (United States); Osorio, Mayra [Instituto de Astrofísica de Andalucía, CSIC, Granada (Spain); Manoj, P. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, Mumbai (India); Remming, Ian [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL (United States); Stanke, Thomas [ESO, Garching bei München (Germany); Watson, Dan M., E-mail: wjfischer@gmail.com [Department of Physics and Astronomy, University of Rochester, Rochester, NY (United States)

    2014-02-01

    Edge-on protostars are valuable for understanding the disk and envelope properties of embedded young stellar objects, since the disk, envelope, and envelope cavities are all distinctly visible in resolved images and well constrained in modeling. Comparing Two Micron All Sky Survey, Wide-field Infrared Survey Explorer, Spitzer, Herschel, and APEX photometry and an IRAM limit from 1.2 to 1200 μm, Spitzer spectroscopy from 5 to 40 μm, and high-resolution Hubble imaging at 1.60 and 2.05 μm to radiative transfer modeling, we determine envelope and disk properties for the Class I protostar HOPS 136, an edge-on source in Orion's Lynds 1641 region. The source has a bolometric luminosity of 0.8 L {sub ☉}, a bolometric temperature of 170 K, and a ratio of submillimeter to bolometric luminosity of 0.8%. Via modeling, we find a total luminosity of 4.7 L {sub ☉} (larger than the observed luminosity due to extinction by the disk), an envelope mass of 0.06 M {sub ☉}, and a disk radius and mass of 450 AU and 0.002 M {sub ☉}. The stellar mass is highly uncertain but is estimated to fall between 0.4 and 0.5 M {sub ☉}. To reproduce the flux and wavelength of the near-infrared scattered-light peak in the spectral energy distribution, we require 5.4 × 10{sup –5} M {sub ☉} of gas and dust in each cavity. The disk has a large radius and a mass typical of more evolved T Tauri disks in spite of the significant remaining envelope. HOPS 136 appears to be a key link between the protostellar and optically revealed stages of star formation.

  4. NGC 346: Looking in the Cradle of a Massive Star Cluster

    Science.gov (United States)

    Gouliermis, Dimitrios A.; Hony, Sacha

    2017-03-01

    How does a star cluster of more than few 10,000 solar masses form? We present the case of the cluster NGC 346 in the Small Magellanic Cloud, still embedded in its natal star-forming region N66, and we propose a scenario for its formation, based on observations of the rich stellar populations in the region. Young massive clusters host a high fraction of early-type stars, indicating an extremely high star formation efficiency. The Milky Way galaxy hosts several young massive clusters that fill the gap between young low-mass open clusters and old massive globular clusters. Only a handful, though, are young enough to study their formation. Moreover, the investigation of their gaseous natal environments suffers from contamination by the Galactic disk. Young massive clusters are very abundant in distant starburst and interacting galaxies, but the distance of their hosting galaxies do not also allow a detailed analysis of their formation. The Magellanic Clouds, on the other hand, host young massive clusters in a wide range of ages with the youngest being still embedded in their giant HII regions. Hubble Space Telescope imaging of such star-forming complexes provide a stellar sampling with a high dynamic range in stellar masses, allowing the detailed study of star formation at scales typical for molecular clouds. Our cluster analysis on the distribution of newly-born stars in N66 shows that star formation in the region proceeds in a clumpy hierarchical fashion, leading to the formation of both a dominant young massive cluster, hosting about half of the observed pre-main-sequence population, and a self-similar dispersed distribution of the remaining stars. We investigate the correlation between stellar surface density (and star formation rate derived from star-counts) and molecular gas surface density (derived from dust column density) in order to unravel the physical conditions that gave birth to NGC 346. A power law fit to the data yields a steep correlation between these

  5. Extremely Low Mass: The Circumstellar Envelope of a Potential Proto-Brown Dwarf

    Science.gov (United States)

    Wiseman, Jennifer

    2011-01-01

    What is the environment for planet formation around extremely low mass stars? Is the environment around brown dwarfs and extremely low mass stars conducive and sufficiently massive for planet production? The determining conditions may be set very early in the process of the host object's formation. IRAS 16253-2429, the source of the Wasp-Waist Nebula seen in Spitzer IRAC images, is an isolated, very low luminosity ("VeLLO") Class 0 protostar in the nearby rho Ophiuchi cloud. We present VLA ammonia mapping observations of the dense gas envelope feeding the central core accreting system. We find a flattened envelope perpendicular to the outflow axis, and gas cavities that appear to cradle the outflow lobes as though carved out by the flow and associated (apparently precessing) jet, indicating environmental disruption. Based on the NH3 (1,1) and (2,2) emission distribution, we derive the mass, velocity fields and temperature distribution for the envelope. We discuss the combined evidence for this source to be one of the youngest and lowest mass sources in formation yet known, and discuss the ramifications for planet formation potential in this extremely low mass system.

  6. LINEAR POLARIZATION OF CLASS I METHANOL MASERS IN MASSIVE STAR-FORMING REGIONS

    International Nuclear Information System (INIS)

    Kang, Ji-hyun; Byun, Do-Young; Kim, Kee-Tae; Kim, Jongsoo; Lyo, A-Ran; Vlemmings, W. H. T.

    2016-01-01

    Class I methanol masers are found to be good tracers of the interaction between outflows from massive young stellar objects with their surrounding media. Although polarization observations of Class II methanol masers have been able to provide information about magnetic fields close to the central (proto)stars, polarization observations of Class I methanol masers are rare, especially at 44 and 95 GHz. We present the results of linear polarization observations of 39 Class I methanol maser sources at 44 and 95 GHz. These two lines are observed simultaneously with one of the 21 m Korean VLBI Network telescopes in single-dish mode. Approximately 60% of the observed sources have fractional polarizations of a few percent in at least one transition. This is the first reported detection of linear polarization of the 44 GHz methanol maser. The two maser transitions show similar polarization properties, indicating that they trace similar magnetic environments, although the fraction of the linear polarization is slightly higher at 95 GHz. We discuss the association between the directions of polarization angles and outflows. We also discuss some targets having different polarization properties at both lines, including DR21(OH) and G82.58+0.20, which show the 90° polarization angle flip at 44 GHz.

  7. Listening in on Baby - Monitoring the Youngest Known Pulsar

    Science.gov (United States)

    Gotthelf, Eric

    We have discovered a most remarkable young pulsar, PSR J1846-0258, in the core of a Crab-like pulsar wind nebula at the center of the bright shell-type SNR Kes 75. Based on its spin-down rate and X-ray spectrum, PSR J1846-0258 is likely the youngest known rotation-powered pulsar. Compared to the Crab pulsar, however, its period, spin-down rate, and X-ray conversion efficiency are each an order of magnitude greater, likely the result of its extreme magnetic field, above the quantum critical threshold. We propose to continue our monitoring campaign of PSR~J1846-0258 to measure the braking index, characterize its timing noise, and search for evidence of timing glitches. Furthermore, an X- ray ephemeris contemporal with GLAST is critical to detecting the pulsar at higher energies.

  8. X-Ray Snapshots Capture the First Cries of Baby Stars

    Science.gov (United States)

    2000-11-01

    CXC PR: 00-27 Stars, like babies, make quite a fuss in their first days after birth. Astronomers using the Chandra X-ray Observatory have discovered that protostars--stars in their youngest, "neonatal" stage--are marked by powerful X rays from plasma ten times hotter and 100 to 100,000 times brighter than the flares on our Sun. This is all long before their nuclear furnaces of hydrogen even ignite, the mark of stellar maturity. The X-ray flares have also provided the closest look yet at the youngest stars in the universe, never before detected because they are hidden within dust and molecular clouds that filter all other types of light. Yohko Tsuboi of the Pennsylvania State University (Penn State) presents these findings today in a press conference at the meeting of the High Energy Astrophysics Division of the American Astronomical Society in Honolulu, Hawaii. "We peered at newborn stars deeply embedded in their cradle and found that their crying is much more tumultuous than we expected," said Tsuboi. "With Chandra, we now have a new tool to examine protostars, which have been impossible to gain access to in any other wavelength." Protostars located in the rho-Ophiuchi molecular cloud Protostars located in the rho-Ophiuchi molecular cloud 1 square light years field X-ray image around rho Ophiuchi molecular cloud core. Red colorrepresents less absorbed X rays, while blue represents absorbed X rays. Lightcurves for each sources are also shown. Tsuboi and her collaborators looked at the two youngest types of protostars: Class-0 (zero) protostars, about 10,000 years old; and Class-I protostars, about 100,000 years old. In human terms, these protostars are like one-hour-old and 10-hour-old babies, respectively. The transition from one class to another is marked by changes in the protostar's infrared spectrum as the gas and dust envelope diminishes. The envelope has been well studied by infrared and radio astronomers. Protostars themselves and their most extreme

  9. Formation of protostars in collapsing, rotating, turbulent clouds

    International Nuclear Information System (INIS)

    Regev, O.; Shaviv, G.

    1981-01-01

    Collapse and star formation processes in rotating turbulent interstellar gas clouds have been studied. For this purpose numerical collapse calculations have been performed for a number of representative cases. These calculations have been carried out by a two-dimensional hydrodynamical computer code, which solves the equations of hydrodynamics explicitly, coupled to the Poisson equation. The computer code has been written especially for this work and has been thoroughly tested. The calculations in this work have been performed with an effort to obtain physically reliable results (by repeating the same calculations with different numerical spatial resolutions). A physical mechanism for angular momentum transport by turbulent viscosity has been proposed and incorporated in new collapse calculations. The main results can be summerized as follows: When there is no physical mechanism for angular momentum transport, the result of the collaps is a ringlike structure. The turbulent viscosity affects the nature of the collaps. For the two cases studied, the mass of the central object is a major fraction (30%) of the total mass of the system. The exact form of the central object and its ultimate fate depend on the parameters, especially rotational energy/gravitational energy and Re. The present calculations cannot predict the future evolution of the central object. In the new theoretical model proposed, a central protostar forms as a result of the collaps of a protostellar rotating cloud

  10. ROTATING BULLETS FROM A VARIABLE PROTOSTAR

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xuepeng [Purple Mountain Observatory, Chinese Academy of Sciences, 2 West Beijing Road, Nanjing 210008 (China); Arce, Héctor G. [Department of Astronomy, Yale University, Box 208101, New Haven, CT 06520-8101 (United States); Zhang, Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Launhardt, Ralf; Henning, Thomas, E-mail: xpchen@pmo.ac.cn [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany)

    2016-06-20

    We present Submillimeter Array (SMA) CO (2–1) observations toward the protostellar jet driven by SVS 13 A, a variable protostar in the NGC 1333 star-forming region. The SMA CO (2–1) images show an extremely high-velocity jet composed of a series of molecular “bullets.” Based on the SMA CO observations, we discover clear and large systematic velocity gradients, perpendicular to the jet axis, in the blueshifted and redshifted bullets. After discussing several alternative interpretations, such as twin-jets, jet precession, warped disk, and internal helical shock, we suggest that the systematic velocity gradients observed in the bullets result from the rotation of the SVS 13 A jet. From the SMA CO images, the measured rotation velocities are 11.7–13.7 km s{sup −1} for the blueshifted bullet and 4.7 ± 0.5 km s{sup −1} for the redshifted bullet. The estimated specific angular momenta of the two bullets are comparable to those of dense cores, about 10 times larger than those of protostellar envelopes, and about 20 times larger than those of circumstellar disks. If the velocity gradients are due to the rotation of the SVS 13 A jet, the significant amount of specific angular momenta of the bullets indicates that the rotation of jets/outflows is a key mechanism to resolve the so-called “angular momentum problem” in the field of star formation. The kinematics of the bullets suggests that the jet launching footprint on the disk has a radius of ∼7.2–7.7 au, which appears to support the extended disk-wind model. We note that further observations are needed to comprehensively understand the kinematics of the SVS 13 A jet, in order to confirm the rotation nature of the bullets.

  11. Molecular outflows driven by low-mass protostars. I. Correcting for underestimates when measuring outflow masses and dynamical properties

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, Michael M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 78, Cambridge, MA 02138 (United States); Arce, Héctor G. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Mardones, Diego [Departamento de Astronomía, Universidad de Chile, Casilla 36-D, Santiago (Chile); Lee, Jeong-Eun [Department of Astronomy and Space Science, Kyung Hee University, Yongin, Gyeonggi 446-701 (Korea, Republic of); Matthews, Brenda C. [National Research Council of Canada, Herzberg Astronomy and Astrophysics, 5071 W. Saanich Road, Victoria, BC V9E 2E7 (Canada); Stutz, Amelia M. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117, Heidelberg (Germany); Williams, Jonathan P., E-mail: mdunham@cfa.harvard.edu [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2014-03-01

    We present a survey of 28 molecular outflows driven by low-mass protostars, all of which are sufficiently isolated spatially and/or kinematically to fully separate into individual outflows. Using a combination of new and archival data from several single-dish telescopes, 17 outflows are mapped in {sup 12}CO (2-1) and 17 are mapped in {sup 12}CO (3-2), with 6 mapped in both transitions. For each outflow, we calculate and tabulate the mass (M {sub flow}), momentum (P {sub flow}), kinetic energy (E {sub flow}), mechanical luminosity (L {sub flow}), and force (F {sub flow}) assuming optically thin emission in LTE at an excitation temperature, T {sub ex}, of 50 K. We show that all of the calculated properties are underestimated when calculated under these assumptions. Taken together, the effects of opacity, outflow emission at low velocities confused with ambient cloud emission, and emission below the sensitivities of the observations increase outflow masses and dynamical properties by an order of magnitude, on average, and factors of 50-90 in the most extreme cases. Different (and non-uniform) excitation temperatures, inclination effects, and dissociation of molecular gas will all work to further increase outflow properties. Molecular outflows are thus almost certainly more massive and energetic than commonly reported. Additionally, outflow properties are lower, on average, by almost an order of magnitude when calculated from the {sup 12}CO (3-2) maps compared to the {sup 12}CO (2-1) maps, even after accounting for different opacities, map sensitivities, and possible excitation temperature variations. It has recently been argued in the literature that the {sup 12}CO (3-2) line is subthermally excited in outflows, and our results support this finding.

  12. Are Parental Welfare Work Requirements Good for Disadvantaged Children? Evidence from Age-of-Youngest-Child Exemptions

    Science.gov (United States)

    Herbst, Chris M.

    2017-01-01

    This paper assesses the impact of welfare reform's parental work requirements on low-income children's cognitive and social-emotional development. The identification strategy exploits an important feature of the work requirement rules--namely, age-of-youngest-child exemptions--as a source of quasi-experimental variation in first-year maternal…

  13. STAR FORMATION NEAR BERKELEY 59: EMBEDDED PROTOSTARS

    Energy Technology Data Exchange (ETDEWEB)

    Rosvick, J. M. [Department of Physical Sciences, Thompson Rivers University, 900 McGill Road, Kamloops, BC V2C 0C8 (Canada); Majaess, D. [Department of Astronomy and Physics, Saint Mary' s University, Halifax, NS B3H 3C3 (Canada)

    2013-12-01

    A group of suspected protostars in a dark cloud northwest of the young (∼2 Myr) cluster Berkeley 59 and two sources in a pillar south of the cluster have been studied in order to determine their evolutionary stages and ascertain whether their formation was triggered by Berkeley 59. Narrowband near-infrared observations from the Observatoire du Mont Mégantic, {sup 12}CO (J = 3-2) and SCUBA-2 (450 and 850 μm) observations from the JCMT, 2MASS, and WISE images, and data extracted from the IPHAS survey catalog were used. Of 12 sources studied, two are Class I objects, while three others are flat/Class II, one of which is a T Tauri candidate. A weak CO outflow and two potential starless cores are present in the cloud, while the pillar possesses substructure at different velocities, with no outflows present. The CO spectra of both regions show peaks in the range v {sub LSR} = –15 to –17 km s{sup –1}, which agrees with the velocity adopted for Berkeley 59 (–15.7 km s{sup –1}), while spectral energy distribution models yield an average interstellar extinction A{sub V} and distance of 15 ± 2 mag and 830 ± 120 pc, respectively, for the cloud, and 6.9 mag and 912 pc for the pillar, indicating that the regions are in the same vicinity as Berkeley 59. The formation of the pillar source appears to have been triggered by Berkeley 59. It is unclear whether Berkeley 59 triggered the association's formation.

  14. Massive branes

    International Nuclear Information System (INIS)

    Bergshoeff, E.; Ortin, T.

    1998-01-01

    We investigate the effective world-volume theories of branes in a background given by (the bosonic sector of) 10-dimensional massive IIA supergravity (''''massive branes'''') and their M-theoretic origin. In the case of the solitonic 5-brane of type IIA superstring theory the construction of the Wess-Zumino term in the world-volume action requires a dualization of the massive Neveu-Schwarz/Neveu-Schwarz target space 2-form field. We find that, in general, the effective world-volume theory of massive branes contains new world-volume fields that are absent in the massless case, i.e. when the mass parameter m of massive IIA supergravity is set to zero. We show how these new world-volume fields can be introduced in a systematic way. (orig.)

  15. Near-IR spectroscopic monitoring of CLASS I protostars: Variability of accretion and wind indicators

    Energy Technology Data Exchange (ETDEWEB)

    Connelley, Michael S. [Institute for Astronomy, University of Hawaii, 640 N. Aohoku Place, Hilo, HI 96720 (United States); Greene, Thomas P. [NASA Ames Research Center, M.S. 245-6, Moffett Field, CA 94035 (United States)

    2014-06-01

    We present the results of a program that monitored the near-IR spectroscopic variability of a sample of 19 embedded protostars. Spectra were taken on time intervals from 2 days to 3 yr, over a wavelength range from 0.85 μm to 2.45 μm, for 4-9 epochs of observations per target. We found that the spectra of all targets are variable and that every emission feature observed is also variable (although not for all targets). With one exception, there were no drastic changes in the continua of the spectra, nor did any line completely disappear, nor did any line appear that was not previously apparent. This analysis focuses on understanding the connection between accretion (traced by H Br γ and CO) and the wind (traced by He I, [Fe II], and sometimes H{sub 2}). For both accretion and wind tracers, the median variability was constant versus the time interval between observations; however, the maximum variability that we observed increased with the time interval between observations. Extinction is observed to vary within the minimum sampling time of 2 days, suggesting extinguishing material within a few stellar radii at high disk latitudes. The variability of [Fe II] and H{sub 2} were correlated for most (but not all) of the 7 young stellar objects showing both features, and the amplitude of the variability depends on the veiling. Although the occurrence of CO and Br γ emission are connected, their variability is uncorrelated, suggesting that these emissions originate in separate regions near the protostar (e.g., disk and wind). The variability of Br γ and wind tracers were found to be positively correlated, negatively correlated, or uncorrelated, depending on the target. The variability of Br γ, [Fe II], and H{sub 2} always lies on a plane, although the orientation of the plane in three dimensions depends on the target. While we do not understand all interactions behind the variability that we observed, we have shown that spectroscopic variability is a powerful tool

  16. DIVERSE PROTOSTELLAR EVOLUTIONARY STATES IN THE YOUNG CLUSTER AFGL961

    International Nuclear Information System (INIS)

    Williams, Jonathan P.; Mann, Rita K.; Beaumont, Christopher N.; Swift, Jonathan J.; Adams, Joseph D.; Hora, Joe; Kassis, Marc; Lada, Elizabeth A.; Roman-Zuniga, Carlos G.

    2009-01-01

    We present arcsecond resolution mid-infrared and millimeter observations of the center of the young stellar cluster AFGL961 in the Rosette molecular cloud. Within 0.2 pc of each other, we find an early B star embedded in a dense core, a neighboring star of similar luminosity with no millimeter counterpart, a protostar that has cleared out a cavity in the circumcluster envelope, and two massive, dense cores with no infrared counterparts. An outflow emanates from one of these cores, indicating a deeply embedded protostar, but the other is starless, bound, and appears to be collapsing. The diversity of states implies either that protostellar evolution is faster in clusters than in isolation or that clusters form via quasi-static rather than dynamic collapse. The existence of a pre-stellar core at the cluster center shows that some star formation continues after and in close proximity to massive, ionizing stars.

  17. The protostar OMC-2 FIR 4: Results from the CHESS Herschel/HIFI spectral survey

    Science.gov (United States)

    Kama, Mihkel; Lopez-Sepulcre, Ana; Ceccarelli, Cecilia; Dominik, Carsten; Caux, Emmanuel; Fuente, Asuncion

    2013-07-01

    The intermediate-mass protostar OMC-2 FIR 4 in Orion is the focus of several ongoing studies, including a CHESS key programme Herschel/HIFI spectral survey. In this poster, we review recent CHESS results on this source, including the properties of the central hot core, the presence of a compact outflow, the spatial variation of the chemical composition, and the discovery of a tenuous foreground cloud. The HIFI spectrum of FIR 4 contains 719 lines from 40 species and isotopologs. Cooling by lines detectable with our sensitivity contributes 2% of the total in the 480 to 1900 GHz range. The total line flux is dominated by CO, followed by H2O and CH3OH. Initial comparisons with spectral surveys of other sources will also be presented.

  18. The Destructive Birth of Massive Stars and Massive Star Clusters

    Science.gov (United States)

    Rosen, Anna; Krumholz, Mark; McKee, Christopher F.; Klein, Richard I.; Ramirez-Ruiz, Enrico

    2017-01-01

    Massive stars play an essential role in the Universe. They are rare, yet the energy and momentum they inject into the interstellar medium with their intense radiation fields dwarfs the contribution by their vastly more numerous low-mass cousins. Previous theoretical and observational studies have concluded that the feedback associated with massive stars' radiation fields is the dominant mechanism regulating massive star and massive star cluster (MSC) formation. Therefore detailed simulation of the formation of massive stars and MSCs, which host hundreds to thousands of massive stars, requires an accurate treatment of radiation. For this purpose, we have developed a new, highly accurate hybrid radiation algorithm that properly treats the absorption of the direct radiation field from stars and the re-emission and processing by interstellar dust. We use our new tool to perform a suite of three-dimensional radiation-hydrodynamic simulations of the formation of massive stars and MSCs. For individual massive stellar systems, we simulate the collapse of massive pre-stellar cores with laminar and turbulent initial conditions and properly resolve regions where we expect instabilities to grow. We find that mass is channeled to the massive stellar system via gravitational and Rayleigh-Taylor (RT) instabilities. For laminar initial conditions, proper treatment of the direct radiation field produces later onset of RT instability, but does not suppress it entirely provided the edges of the radiation-dominated bubbles are adequately resolved. RT instabilities arise immediately for turbulent pre-stellar cores because the initial turbulence seeds the instabilities. To model MSC formation, we simulate the collapse of a dense, turbulent, magnetized Mcl = 106 M⊙ molecular cloud. We find that the influence of the magnetic pressure and radiative feedback slows down star formation. Furthermore, we find that star formation is suppressed along dense filaments where the magnetic field is

  19. The Formation and Early Evolution of Embedded Massive Star Clusters

    Science.gov (United States)

    Barnes, Peter

    We propose to combine Spitzer, WISE, Herschel, and other archival spacecraft data with an existing ground- and space-based mm-wave to near-IR survey of molecular clouds over a large portion of the Milky Way, in order to systematically study the formation and early evolution of massive stars and star clusters, and provide new observational calibrations for a theoretical paradigm of this key astrophysical problem. Central Objectives: The Galactic Census of High- and Medium-mass Protostars (CHaMP) is a large, unbiased, uniform, and panchromatic survey of massive star and cluster formation and early evolution, covering 20°x6° of the Galactic Plane. Its uniqueness lies in the comprehensive molecular spectroscopy of 303 massive dense clumps, which have also been included in several archival spacecraft surveys. Our objective is a systematic demographic analysis of massive star and cluster formation, one which has not been possible without knowledge of our CHaMP cloud sample, including all clouds with embedded clusters as well as those that have not yet formed massive stars. For proto-clusters deeply embedded within dense molecular clouds, analysis of these space-based data will: 1. Yield a complete census of Young Stellar Objects in each cluster. 2. Allow systematic measurements of embedded cluster properties: spectral energy distributions, luminosity functions, protostellar and disk fractions, and how these vary with cluster mass, age, and density. Combined with other, similarly complete and unbiased infrared and mm data, CHaMP's goals include: 3. A detailed comparison of the embedded stellar populations with their natal dense gas to derive extinction maps, star formation efficiencies and feedback effects, and the kinematics, physics, and chemistry of the gas in and around the clusters. 4. Tying the demographics, age spreads, and timescales of the clusters, based on pre-Main Sequence evolution, to that of the dense gas clumps and Giant Molecular Clouds. 5. A

  20. Massive Gravity

    OpenAIRE

    de Rham, Claudia

    2014-01-01

    We review recent progress in massive gravity. We start by showing how different theories of massive gravity emerge from a higher-dimensional theory of general relativity, leading to the Dvali–Gabadadze–Porrati model (DGP), cascading gravity, and ghost-free massive gravity. We then explore their theoretical and phenomenological consistency, proving the absence of Boulware–Deser ghosts and reviewing the Vainshtein mechanism and the cosmological solutions in these models. Finally, we present alt...

  1. The comparison of physical properties derived from gas and dust in a massive star-forming region

    Energy Technology Data Exchange (ETDEWEB)

    Battersby, Cara; Bally, John; Ginsburg, Adam; Darling, Jeremy [Center for Astrophysics and Space Astronomy, University of Colorado, UCB 389, Boulder, CO 80309 (United States); Dunham, Miranda [Department of Astronomy, Yale University, New Haven, CT 06520 (United States); Longmore, Steve [Astrophysics Research Institute, Liverpool John Moores University, Twelve Quays House, Egerton Wharf, Birkenhead CH41 1LD (United Kingdom)

    2014-05-10

    We explore the relationship between gas and dust in a massive star-forming region by comparing the physical properties derived from each. We compare the temperatures and column densities in a massive star-forming Infrared Dark Cloud (G32.02+0.05), which shows a range of evolutionary states, from quiescent to active. The gas properties were derived using radiative transfer modeling of the (1,1), (2,2), and (4,4) transitions of NH{sub 3} on the Karl G. Jansky Very Large Array, while the dust temperatures and column densities were calculated using cirrus-subtracted, modified blackbody fits to Herschel data. We compare the derived column densities to calculate an NH{sub 3} abundance, χ{sub NH{sub 3}} = 4.6 × 10{sup –8}. In the coldest star-forming region, we find that the measured dust temperatures are lower than the measured gas temperatures (mean and standard deviations T {sub dust,} {sub avg} ∼ 11.6 ± 0.2 K versus T {sub gas,} {sub avg} ∼ 15.2 ± 1.5 K), which may indicate that the gas and dust are not well-coupled in the youngest regions (∼0.5 Myr) or that these observations probe a regime where the dust and/or gas temperature measurements are unreliable. Finally, we calculate millimeter fluxes based on the temperatures and column densities derived from NH{sub 3}, which suggest that millimeter dust continuum observations of massive star-forming regions, such as the Bolocam Galactic Plane Survey or ATLASGAL, can probe hot cores, cold cores, and the dense gas lanes from which they form, and are generally not dominated by the hottest core.

  2. The comparison of physical properties derived from gas and dust in a massive star-forming region

    International Nuclear Information System (INIS)

    Battersby, Cara; Bally, John; Ginsburg, Adam; Darling, Jeremy; Dunham, Miranda; Longmore, Steve

    2014-01-01

    We explore the relationship between gas and dust in a massive star-forming region by comparing the physical properties derived from each. We compare the temperatures and column densities in a massive star-forming Infrared Dark Cloud (G32.02+0.05), which shows a range of evolutionary states, from quiescent to active. The gas properties were derived using radiative transfer modeling of the (1,1), (2,2), and (4,4) transitions of NH 3 on the Karl G. Jansky Very Large Array, while the dust temperatures and column densities were calculated using cirrus-subtracted, modified blackbody fits to Herschel data. We compare the derived column densities to calculate an NH 3 abundance, χ NH 3 = 4.6 × 10 –8 . In the coldest star-forming region, we find that the measured dust temperatures are lower than the measured gas temperatures (mean and standard deviations T dust, avg ∼ 11.6 ± 0.2 K versus T gas, avg ∼ 15.2 ± 1.5 K), which may indicate that the gas and dust are not well-coupled in the youngest regions (∼0.5 Myr) or that these observations probe a regime where the dust and/or gas temperature measurements are unreliable. Finally, we calculate millimeter fluxes based on the temperatures and column densities derived from NH 3 , which suggest that millimeter dust continuum observations of massive star-forming regions, such as the Bolocam Galactic Plane Survey or ATLASGAL, can probe hot cores, cold cores, and the dense gas lanes from which they form, and are generally not dominated by the hottest core.

  3. ALIGNMENT OF PROTOSTARS AND CIRCUMSTELLAR DISKS DURING THE EMBEDDED PHASE

    International Nuclear Information System (INIS)

    Spalding, Christopher; Batygin, Konstantin; Adams, Fred C.

    2014-01-01

    Star formation proceeds via the collapse of a molecular cloud core over multiple dynamical timescales. Turbulence within cores results in a spatially non-uniform angular momentum of the cloud, causing a stochastic variation in the orientation of the disk forming from the collapsing material. In the absence of star-disk angular momentum coupling, such disk-tilting would provide a natural mechanism for the production of primordial spin-orbit misalignments in the resulting planetary systems. However, owing to high accretion rates in the embedded phase of star formation, the inner edge of the circumstellar disk extends down to the stellar surface, resulting in efficient gravitational and accretional angular momentum transfer between the star and the disk. Here, we demonstrate that the resulting gravitational coupling is sufficient to suppress any significant star-disk misalignment, with accretion playing a secondary role. The joint tilting of the star-disk system leads to a stochastic wandering of star-aligned bipolar outflows. Such wandering widens the effective opening angle of stellar outflows, allowing for more efficient clearing of the remainder of the protostar's gaseous envelope. Accordingly, the processes described in this work provide an additional mechanism responsible for sculpting the stellar initial mass function

  4. Foraminiferal and radiolarian biostratigraphy of the youngest (Late Albian through Late Cenomanian) sediments of the Tatra massif, Central Western Carpathians

    Science.gov (United States)

    Bąk, Krzysztof; Bąk, Marta

    2013-06-01

    Bąk, K. and Bąk M. 2013. Foraminiferal and radiolarian biostratigraphy of the youngest (Late Albian through Late Cenomanian) sediments of the Tatra massif, Central Western Carpathians. Acta Geologica Polonica, 63 (2), 223-237. Warszawa. The foraminiferal and radiolarian biostratigraphy of selected sections of the Zabijak Formation, the youngest sediments of the Tatra massif (Central Western Carpathians), have been studied. Benthic foraminifers, mainly agglutinated species, occur abundantly and continuously throughout the studied succession, while planktic foraminifers are generally sparse. Five planktic and two benthic foraminiferal zones have been recognized. The marly part of the Zabijak Formation comprises the Pseudothalmanninella ticinensis (Upper Albian) through the Rotalipora cushmani (Upper Cenomanian) planktic foraminiferal zones, and the Haplophragmoides nonioninoides and Bulbobaculites problematicus benthic foraminiferal zones. The radiolarians were recognized exclusively in the Lower Cenomanian part of the formation.

  5. observations of hot molecular gas emission from embedded low-mass protostars

    DEFF Research Database (Denmark)

    Visser, R.; Kristensen, L. E.; Bruderer, S.

    2012-01-01

    Aims. Young stars interact vigorously with their surroundings, as evident from the highly rotationally excited CO (up to Eu/k = 4000 K) and H2O emission (up to 600 K) detected by the Herschel Space Observatory in embedded low-mass protostars. Our aim is to construct a model that reproduces...... the observations quantitatively, to investigate the origin of the emission, and to use the lines as probes of the various heating mechanisms. Methods. The model consists of a spherical envelope with a power-law density structure and a bipolar outflow cavity. Three heating mechanisms are considered: passive heating...... such as luminosity and envelope mass. Results. The bulk of the gas in the envelope, heated by the protostellar luminosity, accounts for 3–10% of the CO luminosity summed over all rotational lines up to J = 40–39; it is best probed by low-J CO isotopologue lines such as C18O 2–1 and 3–2. The UV-heated gas and the C...

  6. DECIPHERING THE IONIZED GAS CONTENT IN THE MASSIVE STAR-FORMING COMPLEX G75.78+0.34

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Monge, Alvaro [Osservatorio Astrofisico di Arcetri, INAF, Largo E. Fermi 5, I-50125 Firenze (Italy); Kurtz, Stan; Lizano, Susana [Centro de Radioastronomia y Astrofisica, Universidad Nacional Autonoma de Mexico, Apdo. Postal 3-72, 58090, Morelia, Michoacan (Mexico); Palau, Aina [Institut de Ciencies de l' Espai (CSIC-IEEC), Campus UAB-Facultat de Ciencies, Torre C5p 2, E-08193 Bellaterra, Catalunya (Spain); Estalella, Robert [Dpt d' Astronomia i Meteorologia (IEEC-UB), Institut de Ciencies del Cosmos, Universitat de Barcelona, Marti i Franques, 1, E-08028 Barcelona (Spain); Shepherd, Debra [NRAO, P.O. Box O, Socorro, NM 87801-0387 (United States); Franco, Jose [Instituto de Astronomia, Universidad Nacional Autonoma de Mexico, Apdo. Postal 70-264, 04510 Mexico, D.F. (Mexico); Garay, Guido, E-mail: asanchez@arcetri.astro.it [Departamento de Astronomia, Universidad de Chile, Camino el Observatorio 1515, Las Condes, Santiago (Chile)

    2013-04-01

    We present subarcsecond observations toward the massive star-forming region G75.78+0.34. We used the Very Large Array to study the centimeter continuum and H{sub 2}O and CH{sub 3}OH maser emission, and the Owens Valley Radio Observatory and Submillimeter Array to study the millimeter continuum and recombination lines (H40{alpha} and H30{alpha}). We found radio continuum emission at all wavelengths, coming from three components: (1) a cometary ultracompact (UC) H II region with an electron density {approx}3.7 Multiplication-Sign 10{sup 4} cm{sup -3}, excited by a B0 type star, and with no associated dust emission; (2) an almost unresolved UCH II region (EAST), located {approx}6'' to the east of the cometary UCH II region, with an electron density {approx}1.3 Multiplication-Sign 10{sup 5} cm{sup -3}, and associated with a compact dust clump detected at millimeter and mid-infrared wavelengths; and (3) a compact source (CORE), located {approx}2'' to the southwest of the cometary arc, with a flux density increasing with frequency, and embedded in a dust condensation of 30 M{sub Sun }. The CORE source is resolved into two compact and unresolved sources which can be well fit by two homogeneous hypercompact H II regions each one photoionized by a B0.5 zero-age main sequence star, or by free-free radiation from shock-ionized gas resulting from the interaction of a jet/outflow system with the surrounding environment. The spatial distribution and kinematics of water masers close to the CORE-N and S sources, together with excess emission at 4.5 {mu}m and the detected dust emission, suggest that the CORE source is a massive protostar driving a jet/outflow.

  7. DECIPHERING THE IONIZED GAS CONTENT IN THE MASSIVE STAR-FORMING COMPLEX G75.78+0.34

    International Nuclear Information System (INIS)

    Sánchez-Monge, Álvaro; Kurtz, Stan; Lizano, Susana; Palau, Aina; Estalella, Robert; Shepherd, Debra; Franco, José; Garay, Guido

    2013-01-01

    We present subarcsecond observations toward the massive star-forming region G75.78+0.34. We used the Very Large Array to study the centimeter continuum and H 2 O and CH 3 OH maser emission, and the Owens Valley Radio Observatory and Submillimeter Array to study the millimeter continuum and recombination lines (H40α and H30α). We found radio continuum emission at all wavelengths, coming from three components: (1) a cometary ultracompact (UC) H II region with an electron density ∼3.7 × 10 4 cm –3 , excited by a B0 type star, and with no associated dust emission; (2) an almost unresolved UCH II region (EAST), located ∼6'' to the east of the cometary UCH II region, with an electron density ∼1.3 × 10 5 cm –3 , and associated with a compact dust clump detected at millimeter and mid-infrared wavelengths; and (3) a compact source (CORE), located ∼2'' to the southwest of the cometary arc, with a flux density increasing with frequency, and embedded in a dust condensation of 30 M ☉ . The CORE source is resolved into two compact and unresolved sources which can be well fit by two homogeneous hypercompact H II regions each one photoionized by a B0.5 zero-age main sequence star, or by free-free radiation from shock-ionized gas resulting from the interaction of a jet/outflow system with the surrounding environment. The spatial distribution and kinematics of water masers close to the CORE-N and S sources, together with excess emission at 4.5 μm and the detected dust emission, suggest that the CORE source is a massive protostar driving a jet/outflow.

  8. Listening in on Baby - Monitoring the Youngest Known Pulsar (core Program)

    Science.gov (United States)

    We have discovered a most remarkable young pulsar, PSR J1846-0258, in the core of a Crab-like pulsar wind nebula at the center of the bright shell-type SNR Kes 75. Based on its spin-down rate and X-ray spectrum, PSR J1846-0258 is likely the youngest known rotation-powered pulsar. Compared to the Crab pulsar, however, its period, spin-down rate, and X-ray conversion efficiency are each an order of magnitude greater, likely the result of its extreme magnetic field, above the quantum critical threshold. We propose to continue our monitoring campaign of PSR~J1846-0258 to measure the braking index, characterize its timing noise, and search for evidence of timing glitches. Furthermore, an X- ray ephemeris contemporal with GLAST is critical to detecting the pulsar at higher energies.

  9. What is so important about completing lives? A critique of the modified youngest first principle of scarce resource allocation.

    Science.gov (United States)

    Gamlund, Espen

    2016-04-01

    Ruth Tallman has recently offered a defense of the modified youngest first principle of scarce resource allocation [1]. According to Tallman, this principle calls for prioritizing adolescents and young adults between 15-40 years of age. In this article, I argue that Tallman's defense of the modified youngest first principle is vulnerable to important objections, and that it is thus unsuitable as a basis for allocating resources. Moreover, Tallman makes claims about the badness of death for individuals at different ages, but she lacks an account of the loss involved in dying to support her claims. To fill this gap in Tallman's account, I propose a view on the badness of death that I call 'Deprivationism'. I argue that this view explains why death is bad for those who die, and that it has some advantages over Tallman's complete lives view in the context of scarce resource allocation. Finally, I consider some objections to the relevance of Deprivationism to resource allocation, and offer my responses.

  10. COMBINED ANALYSIS OF IMAGES AND SPECTRAL ENERGY DISTRIBUTIONS OF TAURUS PROTOSTARS

    International Nuclear Information System (INIS)

    Gramajo, Luciana V.; Gomez, Mercedes; Whitney, Barbara A.; Robitaille, Thomas P.

    2010-01-01

    We present an analysis of spectral energy distributions (SEDs), near- and mid-infrared images, and Spitzer spectra of eight embedded Class I/II objects in the Taurus-Auriga molecular cloud. The initial model for each source was chosen using the grid of young stellar objects (YSOs) and SED fitting tool of Robitaille et al. Then the models were refined using the radiative transfer code of Whitney et al. to fit both the spectra and the infrared images of these objects. In general, our models agree with previous published analyses. However, our combined models should provide more reliable determinations of the physical and geometrical parameters since they are derived from SEDs, including the Spitzer spectra, covering the complete spectral range; and high-resolution near-infrared and Spitzer IRAC images. The combination of SED and image modeling better constrains the different components (central source, disk, envelope) of the YSOs. Our derived luminosities are higher, on average, than previous estimates because we account for the viewing angles (usually nearly edge-on) of most of the sources. Our analysis suggests that the standard rotating collapsing protostar model with disks and bipolar cavities works well for the analyzed sample of objects in the Taurus molecular cloud.

  11. Dense Molecular Gas Around Protostars and in Galactic Nuclei European Workshop on Astronomical Molecules 2004

    CERN Document Server

    Baan, W A; Langevelde, H J

    2004-01-01

    The phenomena observed in young stellar objects (YSO), circumstellar regions and extra-galactic nuclei show some similarity in their morphology, dynamical and physical processes, though they may differ in scale and energy. The European Workshop on Astronomical Molecules 2004 gave astronomers a unique opportunity to discuss the links among the observational results and to generate common interpretations of the phenomena in stars and galaxies, using the available diagnostic tools such as masers and dense molecular gas. Their theoretical understanding involves physics, numerical simulations and chemistry. Including a dozen introductory reviews, topics of papers in this book also cover: maser and dense gas diagnostics and related phenomena, evolution of circumstellar regions around protostars, evolution of circumnuclear regions of active galaxies, diagnostics of the circumnuclear gas in stars and galactic nuclei. This book summarizes our present knowledge in these topics, highlights major problems to be addressed...

  12. Massive Submucosal Ganglia in Colonic Inertia.

    Science.gov (United States)

    Naemi, Kaveh; Stamos, Michael J; Wu, Mark Li-Cheng

    2018-02-01

    - Colonic inertia is a debilitating form of primary chronic constipation with unknown etiology and diagnostic criteria, often requiring pancolectomy. We have occasionally observed massively enlarged submucosal ganglia containing at least 20 perikarya, in addition to previously described giant ganglia with greater than 8 perikarya, in cases of colonic inertia. These massively enlarged ganglia have yet to be formally recognized. - To determine whether such "massive submucosal ganglia," defined as ganglia harboring at least 20 perikarya, characterize colonic inertia. - We retrospectively reviewed specimens from colectomies of patients with colonic inertia and compared the prevalence of massive submucosal ganglia occurring in this setting to the prevalence of massive submucosal ganglia occurring in a set of control specimens from patients lacking chronic constipation. - Seven of 8 specimens affected by colonic inertia harbored 1 to 4 massive ganglia, for a total of 11 massive ganglia. One specimen lacked massive ganglia but had limited sampling and nearly massive ganglia. Massive ganglia occupied both superficial and deep submucosal plexus. The patient with 4 massive ganglia also had 1 mitotically active giant ganglion. Only 1 massive ganglion occupied the entire set of 10 specimens from patients lacking chronic constipation. - We performed the first, albeit distinctly small, study of massive submucosal ganglia and showed that massive ganglia may be linked to colonic inertia. Further, larger studies are necessary to determine whether massive ganglia are pathogenetic or secondary phenomena, and whether massive ganglia or mitotically active ganglia distinguish colonic inertia from other types of chronic constipation.

  13. New massive gravity

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Hohm, Olaf; Townsend, Paul K.

    2012-01-01

    We present a brief review of New Massive Gravity, which is a unitary theory of massive gravitons in three dimensions obtained by considering a particular combination of the Einstein-Hilbert and curvature squared terms.

  14. STABLE ISOTOPE GEOCHEMISTRY OF MASSIVE ICE

    Directory of Open Access Journals (Sweden)

    Yurij K. Vasil’chuk

    2016-01-01

    Full Text Available The paper summarises stable-isotope research on massive ice in the Russian and North American Arctic, and includes the latest understanding of massive-ice formation. A new classification of massive-ice complexes is proposed, encompassing the range and variabilityof massive ice. It distinguishes two new categories of massive-ice complexes: homogeneousmassive-ice complexes have a similar structure, properties and genesis throughout, whereasheterogeneous massive-ice complexes vary spatially (in their structure and properties andgenetically within a locality and consist of two or more homogeneous massive-ice bodies.Analysis of pollen and spores in massive ice from Subarctic regions and from ice and snow cover of Arctic ice caps assists with interpretation of the origin of massive ice. Radiocarbon ages of massive ice and host sediments are considered together with isotope values of heavy oxygen and deuterium from massive ice plotted at a uniform scale in order to assist interpretation and correlation of the ice.

  15. Youngest reported radiocarbon age of a moa (Aves : Dinornithiformes) dated from a natural site in New Zealand

    International Nuclear Information System (INIS)

    Rawlence, N.J.; Cooper, A.

    2013-01-01

    The extinction date of the giant flightless New Zealand ratite bird, the crested moa (Pachyornis australis), is of considerable interest because the youngest verified remains are dated to the Pleistocene–Holocene transition c. 10,000 yr BP, which was characterised by severe climatic and habitat change, and are considerably earlier than the late Holocene extinctions of the other eight moa species. Analysis of a partial crested moa skeleton (NMNZ S23569) from Castle Keep Entrance, Bulmer Cave System, Mount Owen, South Island, generated a radiocarbon date of 564±26 yr BP (544-508 cal yr BP; 95.4% AD 1396-1442). As a result the Bulmer Cave specimen represents the youngest moa yet found from a natural site in New Zealand. Combined with additional crested moa remains dated to the late Holocene from Cheops Cave (Mount Arthur) and Magnesite Quarry (Cobb Valley), this indicates that crested moa did not go extinct during the Pleistocene–Holocene transition but survived until after Polynesian colonisation in c. AD 1280. The new radiocarbon dates reported here have important implications for the timing of moa extinction and the late survival of moa in alpine areas of New Zealand. (author). 47 refs., 2 figs., 1 tab.

  16. Massive graviton geons

    Science.gov (United States)

    Aoki, Katsuki; Maeda, Kei-ichi; Misonoh, Yosuke; Okawa, Hirotada

    2018-02-01

    We find vacuum solutions such that massive gravitons are confined in a local spacetime region by their gravitational energy in asymptotically flat spacetimes in the context of the bigravity theory. We call such self-gravitating objects massive graviton geons. The basic equations can be reduced to the Schrödinger-Poisson equations with the tensor "wave function" in the Newtonian limit. We obtain a nonspherically symmetric solution with j =2 , ℓ=0 as well as a spherically symmetric solution with j =0 , ℓ=2 in this system where j is the total angular momentum quantum number and ℓ is the orbital angular momentum quantum number, respectively. The energy eigenvalue of the Schrödinger equation in the nonspherical solution is smaller than that in the spherical solution. We then study the perturbative stability of the spherical solution and find that there is an unstable mode in the quadrupole mode perturbations which may be interpreted as the transition mode to the nonspherical solution. The results suggest that the nonspherically symmetric solution is the ground state of the massive graviton geon. The massive graviton geons may decay in time due to emissions of gravitational waves but this timescale can be quite long when the massive gravitons are nonrelativistic and then the geons can be long-lived. We also argue possible prospects of the massive graviton geons: applications to the ultralight dark matter scenario, nonlinear (in)stability of the Minkowski spacetime, and a quantum transition of the spacetime.

  17. Probing the CO and methanol snow lines in young protostars. Results from the CALYPSO IRAM-PdBI survey

    Science.gov (United States)

    Anderl, S.; Maret, S.; Cabrit, S.; Belloche, A.; Maury, A. J.; André, Ph.; Codella, C.; Bacmann, A.; Bontemps, S.; Podio, L.; Gueth, F.; Bergin, E.

    2016-06-01

    Context. So-called snow lines, indicating regions where abundant volatiles freeze out onto the surface of dust grains, play an important role for planet growth and bulk composition in protoplanetary disks. They can already be observed in the envelopes of the much younger, low-mass Class 0 protostars, which are still in their early phase of heavy accretion. Aims: We aim to use the information on the sublimation regions of different kinds of ices to understand the chemistry of the envelope, its temperature and density structure, and the history of the accretion process. This information is crucial to get the full picture of the early protostellar collapse and the subsequent evolution of young protostars. Methods: As part of the CALYPSO IRAM Large Program, we have obtained observations of C18O, N2H+, and CH3OH towards nearby Class 0 protostars with the IRAM Plateau de Bure interferometer at sub-arcsecond resolution. For four of these sources, we have modeled the emission using a chemical code coupled with a radiative transfer module. Results: We observe an anti-correlation of C18O and N2H+ in NGC 1333-IRAS4A, NGC 1333-IRAS4B, L1157, and L1448C, with N2H+ forming a ring (perturbed by the outflow) around the centrally peaked C18O emission. This emission morphology, which is due to N2H+ being chemically destroyed by CO, reveals the CO and N2 ice sublimation regions in these protostellar envelopes with unprecedented resolution. We also observe compact methanol emission towards three of the sources. Based on our chemical model and assuming temperature and density profiles from the literature, we find that for all four sources the CO snow line appears further inwards than expected from the binding energy of pure CO ices (~855 K). The emission regions of models and observations match for a higher value of the CO binding energy of 1200 K, corresponding to a dust temperature of ~24 K at the CO snow line. The binding energy for N2 ices is modeled at 1000 K, also higher than for

  18. Observations Of Polarized Dust Emission In Protostars: How To Reconstruct Magnetic Field Properties?

    Science.gov (United States)

    Maury, Anaëlle; Galametz, M.; Girart; Guillet; Hennebelle, P.; Houde; Rao; Valdivia, V.; Zhang, Q.

    2017-10-01

    I will present our ALMA Cycle 2 polarized dust continuum data towards the Class 0 protostar B335 where the absence of detected rotational motions in the inner envelope might suggest an efficient magnetic braking at work to inhibit the formation of a large disk. The Band 6 data we obtained shows an intriguing polarized vectors topology, which could either suggest (i) at least two different grain alignment mechanisms at work in B335 to produce the observed polarization pattern, or (ii) an interferometric bias leading to filtering of the polarized signal that is different from the filtering of Stokes I. I will discuss both options, proposing multi-wavelength and multi observatory (ALMA Band3 data in Cycle 5, NIKA2Pol camera on the IRAM-30m) strategies to lift the degeneracy when using polarization observations as a proxy of magnetic fields in dense astrophysical environments. This observational effort in the framework of the MagneticYSOs project, is also supported by our development of an end-to-end chain of ALMA synthetic observations of the polarization from non-ideal MHD simulations of protostellar collapse (see complementary contributions by V. Valdivia and M. Galametz).

  19. MULTIWAVELENGTH OBSERVATIONS OF V2775 Ori, AN OUTBURSTING PROTOSTAR IN L 1641: EXPLORING THE EDGE OF THE FU ORIONIS REGIME

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, William J.; Megeath, S. Thomas; Kounkel, Marina [Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Street, Toledo, OH 43606 (United States); Tobin, John J. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Stutz, Amelia M.; Henning, Thomas [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Ali, Babar [NHSC/IPAC/Caltech, 770 South Wilson Avenue, Pasadena, CA 91125 (United States); Remming, Ian; Manoj, P. [Department of Physics and Astronomy, 500 Wilson Boulevard, University of Rochester, Rochester, NY 14627 (United States); Stanke, Thomas [ESO, Karl-Schwarzschild-Strasse 2, D-85748 Garching bei Muenchen (Germany); Osorio, Mayra [Instituto de Astrofisica de Andalucia, CSIC, Camino Bajo de Huetor 50, E-18008, Granada (Spain); Wilson, T. L., E-mail: wfische@utnet.utoledo.edu [Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States)

    2012-09-01

    Individual outbursting young stars are important laboratories for studying the physics of episodic accretion and the extent to which this phenomenon can explain the luminosity distribution of protostars. We present new and archival data for V2775 Ori (HOPS 223), a protostar in the L 1641 region of the Orion molecular clouds that was discovered by Caratti o Garatti et al. to have recently undergone an order-of-magnitude increase in luminosity. Our near-infrared spectra of the source have strong blueshifted He I {lambda}10830 absorption, strong H{sub 2}O and CO absorption, and no H I emission, all typical of FU Orionis sources. With data from the Infrared Telescope Facility, the Two Micron All Sky Survey, the Hubble Space Telescope, Spitzer, the Wide-field Infrared Survey Explorer, Herschel, and the Atacama Pathfinder Experiment that span from 1 to 70 {mu}m pre-outburst and from 1 to 870 {mu}m post-outburst, we estimate that the outburst began between 2005 April and 2007 March. We also model the pre- and post-outburst spectral energy distributions of the source, finding it to be in the late stages of accreting its envelope with a disk-to-star accretion rate that increased from {approx}2 Multiplication-Sign 10{sup -6} M{sub Sun} yr{sup -1} to {approx}10{sup -5} M{sub Sun} yr{sup -1} during the outburst. The post-outburst luminosity at the epoch of the FU Orionis-like near-IR spectra is 28 L{sub Sun }, making V2775 Ori the least luminous documented FU Orionis outburster with a protostellar envelope. The existence of low-luminosity outbursts supports the notion that a range of episiodic accretion phenomena can partially explain the observed spread in protostellar luminosities.

  20. Massive Conformal Gravity

    International Nuclear Information System (INIS)

    Faria, F. F.

    2014-01-01

    We construct a massive theory of gravity that is invariant under conformal transformations. The massive action of the theory depends on the metric tensor and a scalar field, which are considered the only field variables. We find the vacuum field equations of the theory and analyze its weak-field approximation and Newtonian limit.

  1. MASSIVE INFANT STARS ROCK THEIR CRADLE

    Science.gov (United States)

    2002-01-01

    that are responsible for lighting up this cloud of gas. The apparently innocuous-looking star at the very center of the nebula, just below the brightest region, is actually about 30 times more massive and almost 200,000 times brighter than our Sun. The intense light and powerful stellar 'winds' from this ultra-bright star have cleared away the surrounding gas to form a large cavity. The bubble is approximately 25 light-years in diameter - about the same size as the famous star-forming Orion Nebula. The Orion Nebula is sculpted by intense radiation from newly born stars in the same way as N83B. Astronomers estimate that the spherical void in N83B must have been carved out of the nebula very recently - in astronomical terms - maybe as little as 30,000 years ago. The hottest star in N83B is 45 times more massive than the Sun and is embedded in the brightest region in the nebula. This bright region, situated just above the center, is only about 2 light-years across. The region's small size and its intense glow are telltale signs of a very young, massive star. This star is the youngest newcomer to this part of the Large Magellanic Cloud. The Hubble image shows a bright arc structure just below the luminous star. This impressive ridge may have been created in the glowing gas by the hot star's powerful wind. Measurements of the age of this star and neighboring stars in the nebula show that they are younger than the nebula's central star. Their formation may have been 'triggered' by the violent wind from the central star. This 'chain-reaction' of stellar births seems to be common in the Universe. About 20 young and luminous stars have been identified in the region, but it may well be that many more massive stars remain undetected in other areas of the Large Magellanic Cloud, hidden by dust in small clusters like N83B. To the right of the glowing N83B is a much larger diffuse nebula, known as DEM22d, which is partly obscured by an extended lane of dust and gas. This image is

  2. Massive gravity from bimetric gravity

    International Nuclear Information System (INIS)

    Baccetti, Valentina; Martín-Moruno, Prado; Visser, Matt

    2013-01-01

    We discuss the subtle relationship between massive gravity and bimetric gravity, focusing particularly on the manner in which massive gravity may be viewed as a suitable limit of bimetric gravity. The limiting procedure is more delicate than currently appreciated. Specifically, this limiting procedure should not unnecessarily constrain the background metric, which must be externally specified by the theory of massive gravity itself. The fact that in bimetric theories one always has two sets of metric equations of motion continues to have an effect even in the massive gravity limit, leading to additional constraints besides the one set of equations of motion naively expected. Thus, since solutions of bimetric gravity in the limit of vanishing kinetic term are also solutions of massive gravity, but the contrary statement is not necessarily true, there is no complete continuity in the parameter space of the theory. In particular, we study the massive cosmological solutions which are continuous in the parameter space, showing that many interesting cosmologies belong to this class. (paper)

  3. The structure of protostellar dense cores: a millimeter continuum study

    International Nuclear Information System (INIS)

    Motte, Frederique

    1998-01-01

    A comprehensive theoretical scenario explains low-mass star formation and describes the gravitational collapse of an isolated 'ideal' dense core. The major aim of this thesis is to check the standard model predictions on the structure of protostellar dense cores (or envelopes). The earliest stages of star formation remain poorly known because the protostars are still deeply embedded in massive, opaque circumstellar cocoons. On the one hand, sensitive bolometer arrays very recently allow us to measure the millimeter continuum emission arising from dense cores. Such observations are a powerful tool to constrain the density structure of proto-stellar dense cores (on large length scale). In particular, we studied the structure of isolated proto-stellar envelopes in Taurus and protostars in the ρ Ophiuchi cluster. In order to accurately derive their envelope density power law, we simulated the observation of several envelope models. Then we show that most of the Taurus protostars present a density structure consistent with the standard model predictions. In contrast, dense cores in ρ Ophiuchi main cloud are highly fragmented and protostellar envelope have finite size. Moreover fragmentation appears to be essential in determining the final stellar mass of ρ Oph forming stars. In clusters, fragmentation may thus be at the origin of the stellar initial mass function (IMF). On the other hand, our interferometric millimeter continuum observations are tracing (with higher angular resolution) the inner part of protostellar envelopes. Our study show that disks during protostellar stages are not yet massive and thus do not perturb the analysis of envelope density structure. (author) [fr

  4. Age gradients in the stellar populations of massive star forming regions based on a new stellar chronometer

    Energy Technology Data Exchange (ETDEWEB)

    Getman, Konstantin V.; Feigelson, Eric D.; Kuhn, Michael A.; Broos, Patrick S.; Townsley, Leisa K.; Luhman, Kevin L. [Department of Astronomy and Astrophysics, 525 Davey Laboratory, Pennsylvania State University, University Park, PA 16802 (United States); Naylor, Tim [School of Physics and Astronomy, University of Exeter, Stocker Road, Exeter, EX4 4QL (United Kingdom); Povich, Matthew S. [Department of Physics and Astronomy, California State Polytechnic University, 3801 West Temple Avenue, Pomona, CA 91768 (United States); Garmire, Gordon P. [Huntingdon Institute for X-ray Astronomy, LLC, 10677 Franks Road, Huntingdon, PA 16652 (United States)

    2014-06-01

    A major impediment to understanding star formation in massive star-forming regions (MSFRs) is the absence of a reliable stellar chronometer to unravel their complex star formation histories. We present a new estimation of stellar ages using a new method that employs near-infrared (NIR) and X-ray photometry, Age {sub JX} . Stellar masses are derived from X-ray luminosities using the L{sub X} -M relation from the Taurus cloud. J-band luminosities are compared to mass-dependent pre-main-sequence (PMS) evolutionary models to estimate ages. Age {sub JX} is sensitive to a wide range of evolutionary stages, from disk-bearing stars embedded in a cloud to widely dispersed older PMS stars. The Massive Young Star-Forming Complex Study in Infrared and X-ray (MYStIX) project characterizes 20 OB-dominated MSFRs using X-ray, mid-infrared, and NIR catalogs. The Age {sub JX} method has been applied to 5525 out of 31,784 MYStIX Probable Complex Members. We provide a homogeneous set of median ages for over 100 subclusters in 15 MSFRs; median subcluster ages range between 0.5 Myr and 5 Myr. The important science result is the discovery of age gradients across MYStIX regions. The wide MSFR age distribution appears as spatially segregated structures with different ages. The Age {sub JX} ages are youngest in obscured locations in molecular clouds, intermediate in revealed stellar clusters, and oldest in distributed populations. The NIR color index J – H, a surrogate measure of extinction, can serve as an approximate age predictor for young embedded clusters.

  5. WEAKLY INTERACTING MASSIVE PARTICLE DARK MATTER AND FIRST STARS: SUPPRESSION OF FRAGMENTATION IN PRIMORDIAL STAR FORMATION

    International Nuclear Information System (INIS)

    Smith, Rowan J.; Glover, Simon C. O.; Klessen, Ralf S.; Iocco, Fabio; Schleicher, Dominik R. G.; Hirano, Shingo; Yoshida, Naoki

    2012-01-01

    We present the first three-dimensional simulations to include the effects of dark matter annihilation feedback during the collapse of primordial minihalos. We begin our simulations from cosmological initial conditions and account for dark matter annihilation in our treatment of the chemical and thermal evolution of the gas. The dark matter is modeled using an analytical density profile that responds to changes in the peak gas density. We find that the gas can collapse to high densities despite the additional energy input from the dark matter. No objects supported purely by dark matter annihilation heating are formed in our simulations. However, we find that dark matter annihilation heating has a large effect on the evolution of the gas following the formation of the first protostar. Previous simulations without dark matter annihilation found that protostellar disks around Population III stars rapidly fragmented, forming multiple protostars that underwent mergers or ejections. When dark matter annihilation is included, however, these disks become stable to radii of 1000 AU or more. In the cases where fragmentation does occur, it is a wide binary that is formed.

  6. Vaidya spacetime in massive gravity's rainbow

    Directory of Open Access Journals (Sweden)

    Yaghoub Heydarzade

    2017-11-01

    Full Text Available In this paper, we will analyze the energy dependent deformation of massive gravity using the formalism of massive gravity's rainbow. So, we will use the Vainshtein mechanism and the dRGT mechanism for the energy dependent massive gravity, and thus analyze a ghost free theory of massive gravity's rainbow. We study the energy dependence of a time-dependent geometry, by analyzing the radiating Vaidya solution in this theory of massive gravity's rainbow. The energy dependent deformation of this Vaidya metric will be performed using suitable rainbow functions.

  7. Probing Protoplanetary Disks: From Birth to Planets

    Science.gov (United States)

    Cox, Erin Guilfoil

    2018-01-01

    Disks are very important in the evolution of protostars and their subsequent planets. How early disks can form has implications for early planet formation. In the youngest protostars (i.e., Class 0 sources) magnetic fields can control disk growth. When the field is parallel to the collapsing core’s rotation axis, infalling material loses angular momentum and disks form in later stages. Sub-/millimeter polarization continuum observations of Class 0 sources at ~1000 au resolution support this idea. However, in the inner (~100 au), denser regions, it is unknown if the polarization only traces aligned dust grains. Recent theoretical studies have shown that self-scattering of thermal emission in the disk may contribute significantly to the polarization. Determining the scattering contribution in these sources is important to disentangle the magnetic field. At older times (the Class II phase), the disk structure can both act as a modulator and signpost of planet formation, if there is enough of a mass reservoir. In my dissertation talk, I will present results that bear on disk evolution at both young and late ages. I will present 8 mm polarization results of two Class 0 protostars (IRAS 4A and IC348 MMS) from the VLA at ~50 au resolution. The inferred magnetic field of IRAS 4A has a circular morphology, reminiscent of material being dragged into a rotating structure. I will show results from SOFIA polarization data of the area surrounding IRAS 4A at ~4000 au. I will also present ALMA 850 micron polarization data of ten protostars in the Perseus Molecular Cloud. Most of these sources show very ordered patterns and low (~0.5%) polarization in their inner regions, while having very disordered patterns and high polarization patterns in their extended emission that may suggest different mechanisms in the inner/outer regions. Finally, I will present results from our ALMA dust continuum survey of protoplanetary disks in Rho Ophiuchus; we measured both the sizes and fluxes of

  8. MassiveNuS: cosmological massive neutrino simulations

    Science.gov (United States)

    Liu, Jia; Bird, Simeon; Zorrilla Matilla, José Manuel; Hill, J. Colin; Haiman, Zoltán; Madhavacheril, Mathew S.; Petri, Andrea; Spergel, David N.

    2018-03-01

    The non-zero mass of neutrinos suppresses the growth of cosmic structure on small scales. Since the level of suppression depends on the sum of the masses of the three active neutrino species, the evolution of large-scale structure is a promising tool to constrain the total mass of neutrinos and possibly shed light on the mass hierarchy. In this work, we investigate these effects via a large suite of N-body simulations that include massive neutrinos using an analytic linear-response approximation: the Cosmological Massive Neutrino Simulations (MassiveNuS). The simulations include the effects of radiation on the background expansion, as well as the clustering of neutrinos in response to the nonlinear dark matter evolution. We allow three cosmological parameters to vary: the neutrino mass sum Mν in the range of 0–0.6 eV, the total matter density Ωm, and the primordial power spectrum amplitude As. The rms density fluctuation in spheres of 8 comoving Mpc/h (σ8) is a derived parameter as a result. Our data products include N-body snapshots, halo catalogues, merger trees, ray-traced galaxy lensing convergence maps for four source redshift planes between zs=1–2.5, and ray-traced cosmic microwave background lensing convergence maps. We describe the simulation procedures and code validation in this paper. The data are publicly available at http://columbialensing.org.

  9. Holographically viable extensions of topologically massive and minimal massive gravity?

    Science.gov (United States)

    Altas, Emel; Tekin, Bayram

    2016-01-01

    Recently [E. Bergshoeff et al., Classical Quantum Gravity 31, 145008 (2014)], an extension of the topologically massive gravity (TMG) in 2 +1 dimensions, dubbed as minimal massive gravity (MMG), which is free of the bulk-boundary unitarity clash that inflicts the former theory and all the other known three-dimensional theories, was found. Field equations of MMG differ from those of TMG at quadratic terms in the curvature that do not come from the variation of an action depending on the metric alone. Here we show that MMG is a unique theory and there does not exist a deformation of TMG or MMG at the cubic and quartic order (and beyond) in the curvature that is consistent at the level of the field equations. The only extension of TMG with the desired bulk and boundary properties having a single massive degree of freedom is MMG.

  10. Probing the water and CO snow lines in the young protostar NGC 1333-IRAS4B

    Science.gov (United States)

    Anderl, Sibylle; Maret, Sébastien; André, Philippe; Maury, Anaëlle; Belloche, Arnaud; Cabrit, Sylvie; Codella, Claudio; Lefloch, Bertrand

    2015-08-01

    Today, we believe that the onset of life requires free energy, water, and complex, probably carbon-based chemistry. In the interstellar medium, complex organic molecules seem to mostly form in reactions happening on the icy surface of dust grains, such that they are released into the gas phase when the dust is heated. The resulting “snow lines”, marking regions where ices start to sublimate, play an important role for planet growth and bulk composition in protoplanetary disks. However, they can already be observed in the envelopes of the much younger, low-mass Class 0 protostars that are still in their early phase of heavy accretion. The information on the sublimation regions of different kinds of ices can be used to understand the chemistry of the envelope, its temperature and density structure, and may even hint at the history of the accretion process. Accordingly, it is a crucial piece of information in order to get the full picture of how organic chemistry evolves already at the earliest stages of the formation of sun-like stars. As part of the CALYPSO Large Program (http://irfu.cea.fr/Projets/Calypso/), we have obtained observations of C18O, N2H+ and CH3OH towards the Class 0 protostar NGC 1333-IRAS4B with the IRAM Plateau de Bure interferometer at sub-arcsecond resolution. Of these we use the methanol observations as a proxy for the water snow line, assuming methanol is trapped in water ice. The observed anti-correlation of C18O and N2H+, with N2H+ forming a ring around the centrally peaked C18O emission, reveals for the first time the CO snow line in this protostellar envelope, with a radius of ~300 AU. The methanol emission is much more compact than that of C18O, and traces the water snow line with a radius of ~40 AU. We have modeled the emission using a chemical model coupled with a radiative transfer module. We find that the CO snow line appears further inwards than expected from the binding energy of pure CO ices. This may hint at CO being frozen out

  11. Massive Supergravity and Deconstruction

    CERN Document Server

    Gregoire, T; Shadmi, Y; Gregoire, Thomas; Schwartz, Matthew D; Shadmi, Yael

    2004-01-01

    We present a simple superfield Lagrangian for massive supergravity. It comprises the minimal supergravity Lagrangian with interactions as well as mass terms for the metric superfield and the chiral compensator. This is the natural generalization of the Fierz-Pauli Lagrangian for massive gravity which comprises mass terms for the metric and its trace. We show that the on-shell bosonic and fermionic fields are degenerate and have the appropriate spins: 2, 3/2, 3/2 and 1. We then study this interacting Lagrangian using goldstone superfields. We find that a chiral multiplet of goldstones gets a kinetic term through mixing, just as the scalar goldstone does in the non-supersymmetric case. This produces Planck scale (Mpl) interactions with matter and all the discontinuities and unitarity bounds associated with massive gravity. In particular, the scale of strong coupling is (Mpl m^4)^1/5, where m is the multiplet's mass. Next, we consider applications of massive supergravity to deconstruction. We estimate various qu...

  12. COLA with massive neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Bill S.; Winther, Hans A.; Koyama, Kazuya, E-mail: bill.wright@port.ac.uk, E-mail: hans.winther@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Burnaby Road, Portsmouth, Hampshire, PO1 3FX (United Kingdom)

    2017-10-01

    The effect of massive neutrinos on the growth of cold dark matter perturbations acts as a scale-dependent Newton's constant and leads to scale-dependent growth factors just as we often find in models of gravity beyond General Relativity. We show how to compute growth factors for ΛCDM and general modified gravity cosmologies combined with massive neutrinos in Lagrangian perturbation theory for use in COLA and extensions thereof. We implement this together with the grid-based massive neutrino method of Brandbyge and Hannestad in MG-PICOLA and compare COLA simulations to full N -body simulations of ΛCDM and f ( R ) gravity with massive neutrinos. Our implementation is computationally cheap if the underlying cosmology already has scale-dependent growth factors and it is shown to be able to produce results that match N -body to percent level accuracy for both the total and CDM matter power-spectra up to k ∼< 1 h /Mpc.

  13. Minimal massive 3D gravity

    International Nuclear Information System (INIS)

    Bergshoeff, Eric; Merbis, Wout; Hohm, Olaf; Routh, Alasdair J; Townsend, Paul K

    2014-01-01

    We present an alternative to topologically massive gravity (TMG) with the same ‘minimal’ bulk properties; i.e. a single local degree of freedom that is realized as a massive graviton in linearization about an anti-de Sitter (AdS) vacuum. However, in contrast to TMG, the new ‘minimal massive gravity’ has both a positive energy graviton and positive central charges for the asymptotic AdS-boundary conformal algebra. (paper)

  14. TESTING MAGNETIC FIELD MODELS FOR THE CLASS 0 PROTOSTAR L1527

    International Nuclear Information System (INIS)

    Davidson, J. A.; Li, Z.-Y.; Hull, C. L. H.; Plambeck, R. L.; Kwon, W.; Crutcher, R. M.; Looney, L. W.; Novak, G.; Chapman, N. L.; Matthews, B. C.; Stephens, I. W.; Tobin, J. J.; Jones, T. J.

    2014-01-01

    For the Class 0 protostar L1527 we compare 131 polarization vectors from SCUPOL/JCMT, SHARP/CSO, and TADPOL/CARMA observations with the corresponding model polarization vectors of four ideal-MHD, nonturbulent, cloud core collapse models. These four models differ by their initial magnetic fields before collapse; two initially have aligned fields (strong and weak) and two initially have orthogonal fields (strong and weak) with respect to the rotation axis of the L1527 core. Only the initial weak orthogonal field model produces the observed circumstellar disk within L1527. This is a characteristic of nearly all ideal-MHD, nonturbulent, core collapse models. In this paper we test whether this weak orthogonal model also has the best agreement between its magnetic field structure and that inferred from the polarimetry observations of L1527. We found that this is not the case; based on the polarimetry observations, the most favored model of the four is the weak aligned model. However, this model does not produce a circumstellar disk, so our result implies that a nonturbulent, ideal-MHD global collapse model probably does not represent the core collapse that has occurred in L1527. Our study also illustrates the importance of using polarization vectors covering a large area of a cloud core to determine the initial magnetic field orientation before collapse; the inner core magnetic field structure can be highly altered by a collapse, and so measurements from this region alone can give unreliable estimates of the initial field configuration before collapse

  15. TESTING MAGNETIC FIELD MODELS FOR THE CLASS 0 PROTOSTAR L1527

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, J. A. [University of Western Australia, School of Physics, 35 Stirling Highway, Crawley, WA 6009 (Australia); Li, Z.-Y. [Astronomy Department, University of Virginia, Charlottesville, VA 22904 (United States); Hull, C. L. H.; Plambeck, R. L. [Astronomy Department and Radio Astronomy Laboratory, University of California, Berkeley, CA 94720-3411 (United States); Kwon, W. [SRON Netherlands Institute for Space Research, Landleven 12, 9747 AD, Groningen (Netherlands); Crutcher, R. M.; Looney, L. W. [Department of Astronomy, University of Illinois, 1002 West Green Street, Urbana, IL 61801 (United States); Novak, G.; Chapman, N. L. [Northwestern University, Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and the Department of Physics and Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Matthews, B. C. [Herzberg Astronomy and Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC, V9E 2E7 (Canada); Stephens, I. W. [Boston University, Institute for Astrophysical Research, Boston, MA 02215 (United States); Tobin, J. J. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Jones, T. J., E-mail: jackie.davidson@uwa.edu.au [University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States)

    2014-12-20

    For the Class 0 protostar L1527 we compare 131 polarization vectors from SCUPOL/JCMT, SHARP/CSO, and TADPOL/CARMA observations with the corresponding model polarization vectors of four ideal-MHD, nonturbulent, cloud core collapse models. These four models differ by their initial magnetic fields before collapse; two initially have aligned fields (strong and weak) and two initially have orthogonal fields (strong and weak) with respect to the rotation axis of the L1527 core. Only the initial weak orthogonal field model produces the observed circumstellar disk within L1527. This is a characteristic of nearly all ideal-MHD, nonturbulent, core collapse models. In this paper we test whether this weak orthogonal model also has the best agreement between its magnetic field structure and that inferred from the polarimetry observations of L1527. We found that this is not the case; based on the polarimetry observations, the most favored model of the four is the weak aligned model. However, this model does not produce a circumstellar disk, so our result implies that a nonturbulent, ideal-MHD global collapse model probably does not represent the core collapse that has occurred in L1527. Our study also illustrates the importance of using polarization vectors covering a large area of a cloud core to determine the initial magnetic field orientation before collapse; the inner core magnetic field structure can be highly altered by a collapse, and so measurements from this region alone can give unreliable estimates of the initial field configuration before collapse.

  16. The ALMA-PILS survey: the sulphur connection between protostars and comets: IRAS 16293-2422 B and 67P/Churyumov-Gerasimenko

    Science.gov (United States)

    Drozdovskaya, Maria N.; van Dishoeck, Ewine F.; Jørgensen, Jes K.; Calmonte, Ursina; van der Wiel, Matthijs H. D.; Coutens, Audrey; Calcutt, Hannah; Müller, Holger S. P.; Bjerkeli, Per; Persson, Magnus V.; Wampfler, Susanne F.; Altwegg, Kathrin

    2018-06-01

    The evolutionary past of our Solar system can be pieced together by comparing analogous low-mass protostars with remnants of our Protosolar Nebula - comets. Sulphur-bearing molecules may be unique tracers of the joint evolution of the volatile and refractory components. ALMA Band 7 data from the large unbiased Protostellar Interferometric Line Survey are used to search for S-bearing molecules in the outer disc-like structure, ˜60 au from IRAS 16293-2422 B, and are compared with data on 67P/Churyumov-Gerasimenko (67P/C-G) stemming from the ROSINA (Rosetta Orbiter Spectrometer for Ion and Neutral Analysis) instrument aboard Rosetta. Species such as SO2, SO, OCS, CS, H2CS, H2S, and CH3SH are detected via at least one of their isotopologues towards IRAS 16293-2422 B. The search reveals a first-time detection of OC33S towards this source and a tentative first-time detection of C36S towards a low-mass protostar. The data show that IRAS 16293-2422 B contains much more OCS than H2S in comparison to 67P/C-G; meanwhile, the SO/SO2 ratio is in close agreement between the two targets. IRAS 16293-2422 B has a CH3SH/H2CS ratio in range of that of our Solar system (differences by a factor of 0.7-5.3). It is suggested that the levels of UV radiation during the initial collapse of the systems may have varied and have potentially been higher for IRAS 16293-2422 B due to its binary nature; thereby, converting more H2S into OCS. It remains to be conclusively tested if this also promotes the formation of S-bearing complex organics. Elevated UV levels of IRAS 16293-2422 B and a warmer birth cloud of our Solar system may jointly explain the variations between the two low-mass systems.

  17. ALMA’s Polarized View of 10 Protostars in the Perseus Molecular Cloud

    Science.gov (United States)

    Cox, Erin G.; Harris, Robert J.; Looney, Leslie W.; Li, Zhi-Yun; Yang, Haifeng; Tobin, John J.; Stephens, Ian

    2018-03-01

    We present 870 μm ALMA dust polarization observations of 10 young Class 0/I protostars in the Perseus Molecular Cloud. At ∼0.″35 (80 au) resolution, all of our sources show some degree of polarization, with most (9/10) showing significantly extended emission in the polarized continuum. Each source has incredibly intricate polarization signatures. In particular, all three disk-candidates have polarization vectors roughly along the minor axis, which is indicative of polarization produced by dust scattering. On ∼100 au scales, the polarization is at a relatively low level (≲1%) and is quite ordered. In sources with significant envelope emission, the envelope is typically polarized at a much higher (≳5%) level and has a far more disordered morphology. We compute the cumulative probability distributions for both the small (disk-scale) and large (envelope-scale) polarization percentage. We find that the two are intrinsically different, even after accounting for the different detection thresholds in the high/low surface brightness regions. We perform Kolmogorov–Smirnov and Anderson–Darling tests on the distributions of angle offsets of the polarization from the outflow axis. We find disk-candidate sources are different from the non-disk-candidate sources. We conclude that the polarization on the 100 au scale is consistent with the signature of dust scattering for disk-candidates and that the polarization on the envelope-scale in all sources may come from another mechanism, most likely magnetically aligned grains.

  18. Nonsingular universe in massive gravity's rainbow

    Science.gov (United States)

    Hendi, S. H.; Momennia, M.; Eslam Panah, B.; Panahiyan, S.

    2017-06-01

    One of the fundamental open questions in cosmology is whether we can regard the universe evolution without singularity like a Big Bang or a Big Rip. This challenging subject stimulates one to regard a nonsingular universe in the far past with an arbitrarily large vacuum energy. Considering the high energy regime in the cosmic history, it is believed that Einstein gravity should be corrected to an effective energy dependent theory which could be acquired by gravity's rainbow. On the other hand, employing massive gravity provided us with solutions to some of the long standing fundamental problems of cosmology such as cosmological constant problem and self acceleration of the universe. Considering these aspects of gravity's rainbow and massive gravity, in this paper, we initiate studying FRW cosmology in the massive gravity's rainbow formalism. At first, we show that although massive gravity modifies the FRW cosmology, but it does not itself remove the big bang singularity. Then, we generalize the massive gravity to the case of energy dependent spacetime and find that massive gravity's rainbow can remove the early universe singularity. We bring together all the essential conditions for having a nonsingular universe and the effects of both gravity's rainbow and massive gravity generalizations on such criteria are determined.

  19. Massive propagators in instanton fields

    International Nuclear Information System (INIS)

    Brown, L.S.; Lee, C.

    1978-01-01

    Green's functions for massive spinor and vector particles propagating in a self-dual but otherwise arbitrary non-Abelian gauge field are shown to be completely determined by the corresponding Green's functions of massive scalar particles

  20. FRAGMENTATION OF MOLECULAR CLUMPS AND FORMATION OF A PROTOCLUSTER

    International Nuclear Information System (INIS)

    Zhang, Qizhou; Lu, Xing; Wang, Ke; Jiménez-Serra, Izaskun

    2015-01-01

    Sufficiently massive clumps of molecular gas collapse under self-gravity and fragment to spawn a cluster of stars that have a range of masses. We investigate observationally the early stages of formation of a stellar cluster in a massive filamentary infrared dark cloud, G28.34+0.06 P1, in the 1.3 mm continuum and spectral line emission using the Atacama Large Millimeter/Submillimeter Array. Sensitive continuum data reveal further fragmentation in five dusty cores at a resolution of several 10 3 AU. Spectral line emission from C 18 O, CH 3 OH, 13 CS, H 2 CO, and N 2 D + is detected for the first time toward these dense cores. We found that three cores are chemically more evolved as compared with the other two; interestingly, though, all of them are associated with collimated outflows as suggested by evidence from the CO, SiO, CH 3 OH, H 2 CO, and SO emission. The parsec-scale kinematics in exhibit velocity gradients along the filament, consistent with accretion flows toward the clumps and cores. The moderate luminosity and the chemical signatures indicate that the five cores harbor low- to intermediate-mass protostars that likely become massive ones at the end of the accretion. Despite the fact that the mass limit reached by the dust continuum sensitivity is 30 times lower than the thermal Jeans mass, there is a lack of a distributed low-mass protostellar population in the clump. Our observations indicate that in a protocluster, low-mass stars form at a later stage after the birth of more massive protostars

  1. Cold CO Gas in the Envelopes of FU Orionis-type Young Eruptive Stars

    Energy Technology Data Exchange (ETDEWEB)

    Kóspál, Á.; Ábrahám, P.; Moór, A. [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Konkoly-Thege Miklós út 15-17, 1121 Budapest (Hungary); Csengeri, T.; Güsten, R. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Henning, Th. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany)

    2017-02-20

    FU Orionis-type objects (FUors) are young stellar objects experiencing large optical outbursts due to highly enhanced accretion from the circumstellar disk onto the star. FUors are often surrounded by massive envelopes, which play a significant role in the outburst mechanism. Conversely, the subsequent eruptions might gradually clear up the obscuring envelope material and drive the protostar on its way to become a disk-only T Tauri star. Here we present an APEX {sup 12}CO and {sup 13}CO survey of eight southern and equatorial FUors. We measure the mass of the gaseous material surrounding our targets, locate the source of the CO emission, and derive physical parameters for the envelopes and outflows, where detected. Our results support the evolutionary scenario where FUors represent a transition phase from envelope-surrounded protostars to classical T Tauri stars.

  2. Topologically massive supergravity

    Directory of Open Access Journals (Sweden)

    S. Deser

    1983-01-01

    Full Text Available The locally supersymmetric extension of three-dimensional topologically massive gravity is constructed. Its fermionic part is the sum of the (dynamically trivial Rarita-Schwinger action and a gauge-invariant topological term, of second derivative order, analogous to the gravitational one. It is ghost free and represents a single massive spin 3/2 excitation. The fermion-gravity coupling is minimal and the invariance is under the usual supergravity transformations. The system's energy, as well as that of the original topological gravity, is therefore positive.

  3. Spacetime structure of massive Majorana particles and massive gravitino

    Energy Technology Data Exchange (ETDEWEB)

    Ahluwalia, D.V.; Kirchbach, M. [Theoretical Physics Group, Facultad de Fisica, Universidad Autonoma de Zacatecas, A.P. 600, 98062 Zacatecas (Mexico)

    2003-07-01

    The profound difference between Dirac and Majorana particles is traced back to the possibility of having physically different constructs in the (1/2, 0) 0 (0,1/2) representation space. Contrary to Dirac particles, Majorana-particle propagators are shown to differ from the simple linear {gamma} {mu} p{sub {mu}}, structure. Furthermore, neither Majorana particles, nor their antiparticles can be associated with a well defined arrow of time. The inevitable consequence of this peculiarity is the particle-antiparticle metamorphosis giving rise to neutrinoless double beta decay, on the one side, and enabling spin-1/2 fields to act as gauge fields, gauginos, on the other side. The second part of the lecture notes is devoted to massive gravitino. We argue that a spin measurement in the rest frame for an unpolarized ensemble of massive gravitino, associated with the spinor-vector [(1/2, 0) 0 (0,1/2)] 0 (1/2,1/2) representation space, would yield the results 3/2 with probability one half, and 1/2 with probability one half. The latter is distributed uniformly, i.e. as 1/4, among the two spin-1/2+ and spin-1/2- states of opposite parities. From that we draw the conclusion that the massive gravitino should be interpreted as a particle of multiple spin. (Author)

  4. Search of massive star formation with COMICS

    Science.gov (United States)

    Okamoto, Yoshiko K.

    2004-04-01

    Mid-infrared observations is useful for studies of massive star formation. Especially COMICS offers powerful tools: imaging survey of the circumstellar structures of forming massive stars such as massive disks and cavity structures, mass estimate from spectroscopy of fine structure lines, and high dispersion spectroscopy to census gas motion around formed stars. COMICS will open the next generation infrared studies of massive star formation.

  5. Chasing discs around O-type (proto)stars: Evidence from ALMA observations

    NARCIS (Netherlands)

    Cesaroni, R.; Sánchez-Monge, Á.; Beltrán, M. T.; Johnston, K. G.; Maud, L. T.; Moscadelli, L.; Mottram, J. C.; Ahmadi, A.; Allen, V.; Beuther, H.; Csengeri, T.; Etoka, S.; Fuller, G. A.; Galli, D.; Galván-Madrid, R.; Goddi, C.; Henning, T.; Hoare, M. G.; Klaassen, P. D.; Kuiper, R.; Kumar, M. S. N.; Lumsden, S.; Peters, T.; Rivilla, V. M.; Schilke, P.; Testi, L.; van der Tak, F.; Vig, S.; Walmsley, C. M.; Zinnecker, H.

    2017-01-01

    Context. Circumstellar discs around massive stars could mediate the accretion onto the star from the infalling envelope, and could minimize the effects of radiation pressure. Despite such a crucial role, only a few convincing candidates have been provided for discs around deeply embedded O-type

  6. On maximal massive 3D supergravity

    OpenAIRE

    Bergshoeff , Eric A; Hohm , Olaf; Rosseel , Jan; Townsend , Paul K

    2010-01-01

    ABSTRACT We construct, at the linearized level, the three-dimensional (3D) N = 4 supersymmetric " general massive supergravity " and the maximally supersymmetric N = 8 " new massive supergravity ". We also construct the maximally supersymmetric linearized N = 7 topologically massive supergravity, although we expect N = 6 to be maximal at the non-linear level. (Bergshoeff, Eric A) (Hohm, Olaf) (Rosseel, Jan) P.K.Townsend@da...

  7. Massive neutrinos in astrophysics

    International Nuclear Information System (INIS)

    Qadir, A.

    1982-08-01

    Massive neutrinos are among the big hopes of cosmologists. If they happen to have the right mass they can close the Universe, explain the motion of galaxies in clusters, provide galactic halos and even, possibly, explain galaxy formation. Tremaine and Gunn have argued that massive neutrinos cannot do all these things. I will explain, here, what some of us believe is wrong with their arguments. (author)

  8. X-RAY EMISSION FROM YOUNG STARS IN THE MASSIVE STAR-FORMING REGION IRAS 20126+4104

    International Nuclear Information System (INIS)

    Anderson, C. N.; Hofner, P.; Creech-Eakman, M.; Shepherd, D.

    2011-01-01

    We present a 40 ks Chandra observation of the IRAS 20126+4104 core region. In the inner 6'' two X-ray sources were detected, which are coincident with the radio jet source I20S and the variable radio source I20Var. No X-ray emission was detected from the nearby massive protostar I20N. The spectra of both detected sources are hard and highly absorbed, with no emission below 3 keV. For I20S, the measured 0.5-8 keV count rate was 4.3 counts ks -1 . The X-ray spectrum was fitted with an absorbed 1T APEC model with an energy of kT =10 keV and an absorbing column of N H = 1.2 x 10 23 cm -2 . An unabsorbed X-ray luminosity of about 1.4 x 10 32 erg s -1 was estimated. The spectrum shows broad line emission between 6.4 and 6.7 keV, indicative of emission from both neutral and highly ionized iron. The X-ray light curve indicates that I20S is marginally variable; however, no flare emission was observed. The variable radio source I20Var was detected with a count rate of 0.9 counts ks -1 but there was no evidence of X-ray variability. The best-fit spectral model is a 1T APEC model with an absorbing hydrogen column of N H = 1.1 x 10 23 cm -2 and a plasma energy of kT = 6.0 keV. The unabsorbed X-ray luminosity is about 3 x 10 31 erg s -1 .

  9. Hot water in the Inner 100 AU of the Class 0 protostar NGC 1333 IRAS2A

    DEFF Research Database (Denmark)

    Visser, Ruud; Jørgensen, Jes Kristian; Kristensen, Lars E.

    2013-01-01

    -303 lines of H_2^{16}O and H_2^{18}O (1097 GHz, E u/k = 249 K) in the low-mass Class 0 protostar NGC 1333 IRAS2A. A spherical radiative transfer model with a power-law density profile is unable to reproduce both the HIFI data and existing interferometric data on the H_2^{18}O 313-220 line (203 GHz, E u....../k = 204 K). Instead, the HIFI spectra likely show optically thick emission from a hot core with a radius of about 100 AU. The mass of the hot core is estimated from the C18O J = 9-8 and 10-9 lines. We derive a lower limit to the hot water abundance of 2 × 10-5, consistent with the theoretical predictions...... of ~10-4. The revised HDO/H2O abundance ratio is 1 × 10-3, an order of magnitude lower than previously estimated. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA....

  10. The efficiency of seismic attributes to differentiate between massive and non-massive carbonate successions for hydrocarbon exploration activity

    Science.gov (United States)

    Sarhan, Mohammad Abdelfattah

    2017-12-01

    The present work investigates the efficiency of applying volume seismic attributes to differentiate between massive and non-massive carbonate sedimentary successions on using seismic data. The main objective of this work is to provide a pre-drilling technique to recognize the porous carbonate section (probable hydrocarbon reservoirs) based on seismic data. A case study from the Upper Cretaceous - Eocene carbonate successions of Abu Gharadig Basin, northern Western Desert of Egypt has been tested in this work. The qualitative interpretations of the well-log data of four available wells distributed in the study area, namely; AG-2, AG-5, AG-6 and AG-15 wells, has confirmed that the Upper Cretaceous Khoman A Member represents the massive carbonate section whereas the Eocene Apollonia Formation represents the non-massive carbonate unit. The present work have proved that the most promising seismic attributes capable of differentiating between massive and non-massive carbonate sequences are; Root Mean Square (RMS) Amplitude, Envelope (Reflection Strength), Instantaneous Frequency, Chaos, Local Flatness and Relative Acoustic Impedance.

  11. Massive Born--Infeld and Other Dual Pairs

    CERN Document Server

    Ferrara, S

    2015-01-01

    We consider massive dual pairs of p-forms and (D-p-1)-forms described by non-linear Lagrangians, where non-linear curvature terms in one theory translate into non-linear mass-like terms in the dual theory. In particular, for D=2p and p even the two non-linear structures coincide when the non-linear massless theory is self-dual. This state of affairs finds a natural realization in the four-dimensional massive N=1 supersymmetric Born-Infeld action, which describes either a massive vector multiplet or a massive linear (tensor) multiplet with a Born-Infeld mass-like term. These systems should play a role for the massive gravitino multiplet obtained from a partial super-Higgs in N=2 Supergravity.

  12. MASSIVE+: The Growth Histories of MASSIVE Survey Galaxies from their Globular Cluster Colors

    Science.gov (United States)

    Blakeslee, John

    2017-08-01

    The MASSIVE survey is targeting the 100 most massive galaxies within 108 Mpc that are visible in the northern sky. These most massive galaxies in the present-day universe reside in a surprisingly wide variety of environments, from rich clusters to fossil groups to near isolation. We propose to use WFC3/UVIS and ACS to carry out a deep imaging study of the globular cluster populations around a selected subset of the MASSIVE targets. Though much is known about GC systems of bright galaxies in rich clusters, we know surprisingly little about the effects of environment on these systems. The MASSIVE sample provides a golden opportunity to learn about the systematics of GC systems and what they can tell us about environmental drivers on the evolution of the highest mass galaxies. The most pressing questions to be addressed include: (1) Do isolated giants have the same constant mass fraction of GCs to total halo mass as BCGs of similar luminosity? (2) Do their GC systems show the same color (metallicity) distribution, which is an outcome of the mass spectrum of gas-rich halos during hierarchical growth? (3) Do the GCs in isolated high-mass galaxies follow the same radial distribution versus metallicity as in rich environments (a test of the relative importance of growth by accretion)? (4) Do the GCs of galaxies in sparse environments follow the same mass function? Our proposed second-band imaging will enable us to secure answers to these questions and add enormously to the legacy value of existing HST imaging of the highest mass galaxies in the universe.

  13. INVESTIGATING PARTICLE ACCELERATION IN PROTOSTELLAR JETS: THE TRIPLE RADIO CONTINUUM SOURCE IN SERPENS

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez-Kamenetzky, Adriana; Valotto, Carlos [Instituto de Astronomía Teórica y Experimental, (IATE-UNC), X5000BGR Córdoba (Argentina); Carrasco-González, Carlos; Rodríguez, Luis F. [Instituto de Radioastronomía y Astrofísica (IRyA-UNAM), 58089 Morelia, México (Mexico); Araudo, Anabella [University of Oxford, Astrophysics, Keble Road, Oxford OX1 3RH (United Kingdom); Torrelles, José M. [Institut de Ciències de l’Espai (CSIC-IEEC) and Institut de Ciències del Cosmos (UB-IEEC), Martí i Franquès 1, E-08028 Barcelona (Spain); Anglada, Guillem [Instituto de Astrofísica de Andalucía, CSIC, Camino Bajo de Huétor 50, E-18008 Granada (Spain); Martí, Josep [Dept. de Física, EPS de Jaén, Universidad de Jaén, Campus Las Lagunillas s/n, A3-402, E-23071 Jaén (Spain)

    2016-02-10

    While most protostellar jets present free–free emission at radio wavelengths, synchrotron emission has also been proposed to be present in a handful of these objects. The presence of nonthermal emission has been inferred by negative spectral indices at centimeter wavelengths. In one case (the HH 80-81 jet arising from a massive protostar), its synchrotron nature was confirmed by the detection of linearly polarized radio emission. One of the main consequences of these results is that synchrotron emission implies the presence of relativistic particles among the nonrelativistic material of these jets. Therefore, an acceleration mechanism should be taking place. The most probable scenario is that particles are accelerated when the jets strongly impact against the dense envelope surrounding the protostar. Here we present an analysis of radio observations obtained with the Very Large Array of the triple radio source in the Serpens star-forming region. This object is known to be a radio jet arising from an intermediate-mass protostar. It is also one of the first protostellar jets where the presence of nonthermal emission was proposed. We analyze the dynamics of the jet and the nature of the emission and discuss these issues in the context of the physical parameters of the jet and the particle acceleration phenomenon.

  14. Thermodynamics inducing massive particles' tunneling and cosmic censorship

    International Nuclear Information System (INIS)

    Zhang, Baocheng; Cai, Qing-yu; Zhan, Ming-sheng

    2010-01-01

    By calculating the change of entropy, we prove that the first law of black hole thermodynamics leads to the tunneling probability of massive particles through the horizon, including the tunneling probability of massive charged particles from the Reissner-Nordstroem black hole and the Kerr-Newman black hole. Novelly, we find the trajectories of massive particles are close to that of massless particles near the horizon, although the trajectories of massive charged particles may be affected by electromagnetic forces. We show that Hawking radiation as massive particles tunneling does not lead to violation of the weak cosmic-censorship conjecture. (orig.)

  15. Topological massive sigma models

    International Nuclear Information System (INIS)

    Lambert, N.D.

    1995-01-01

    In this paper we construct topological sigma models which include a potential and are related to twisted massive supersymmetric sigma models. Contrary to a previous construction these models have no central charge and do not require the manifold to admit a Killing vector. We use the topological massive sigma model constructed here to simplify the calculation of the observables. Lastly it is noted that this model can be viewed as interpolating between topological massless sigma models and topological Landau-Ginzburg models. ((orig.))

  16. The formation of massive molecular filaments and massive stars triggered by a magnetohydrodynamic shock wave

    Science.gov (United States)

    Inoue, Tsuyoshi; Hennebelle, Patrick; Fukui, Yasuo; Matsumoto, Tomoaki; Iwasaki, Kazunari; Inutsuka, Shu-ichiro

    2018-05-01

    Recent observations suggest an that intensive molecular cloud collision can trigger massive star/cluster formation. The most important physical process caused by the collision is a shock compression. In this paper, the influence of a shock wave on the evolution of a molecular cloud is studied numerically by using isothermal magnetohydrodynamics simulations with the effect of self-gravity. Adaptive mesh refinement and sink particle techniques are used to follow the long-time evolution of the shocked cloud. We find that the shock compression of a turbulent inhomogeneous molecular cloud creates massive filaments, which lie perpendicularly to the background magnetic field, as we have pointed out in a previous paper. The massive filament shows global collapse along the filament, which feeds a sink particle located at the collapse center. We observe a high accretion rate \\dot{M}_acc> 10^{-4} M_{⊙}yr-1 that is high enough to allow the formation of even O-type stars. The most massive sink particle achieves M > 50 M_{⊙} in a few times 105 yr after the onset of the filament collapse.

  17. Very massive runaway stars from three-body encounters

    Science.gov (United States)

    Gvaramadze, Vasilii V.; Gualandris, Alessia

    2011-01-01

    Very massive stars preferentially reside in the cores of their parent clusters and form binary or multiple systems. We study the role of tight very massive binaries in the origin of the field population of very massive stars. We performed numerical simulations of dynamical encounters between single (massive) stars and a very massive binary with parameters similar to those of the most massive known Galactic binaries, WR 20a and NGC 3603-A1. We found that these three-body encounters could be responsible for the origin of high peculiar velocities (≥70 km s-1) observed for some very massive (≥60-70 M⊙) runaway stars in the Milky Way and the Large Magellanic Cloud (e.g. λ Cep, BD+43°3654, Sk -67°22, BI 237, 30 Dor 016), which can hardly be explained within the framework of the binary-supernova scenario. The production of high-velocity massive stars via three-body encounters is accompanied by the recoil of the binary in the opposite direction to the ejected star. We show that the relative position of the very massive binary R145 and the runaway early B-type star Sk-69°206 on the sky is consistent with the possibility that both objects were ejected from the central cluster, R136, of the star-forming region 30 Doradus via the same dynamical event - a three-body encounter.

  18. GAS GAPS IN THE PROTOPLANETARY DISK AROUND THE YOUNG PROTOSTAR HL TAU

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Hsi-Wei; Gu, Pin-Gao; Hirano, Naomi; Lee, Chin-Fei; Takakuwa, Shigehisa [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Liu, Hauyu Baobab [European Southern Observatory (ESO), Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany); Puspitaningrum, Evaria, E-mail: hwyen@asiaa.sinica.edu.tw [Department of Astronomy, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung 40132 (Indonesia)

    2016-04-01

    We have analyzed the HCO{sup +} (1–0) data of the Class I–II protostar, HL Tau, obtained from the Atacama Large Millimeter/submillimeter Array long baseline campaign. We generated the HCO{sup +} image cube at an angular resolution of ∼0.″07 (∼10 au) and performed azimuthal averaging on the image cube to enhance the signal-to-noise ratio and measure the radial profile of the HCO{sup +} integrated intensity. Two gaps at radii of ∼28 and ∼69 au and a central cavity are identified in the radial intensity profile. The inner HCO{sup +} gap is coincident with the millimeter continuum gap at a radius of 32 au. The outer HCO{sup +} gap is located at the millimeter continuum bright ring at a radius of 69 au and overlaps with the two millimeter continuum gaps at radii of 64 and 74 au. On the contrary, the presence of the central cavity is likely due to the high optical depth of the 3 mm continuum emission and not the depletion of the HCO{sup +} gas. We derived the HCO{sup +} column density profile from its intensity profile. From the column density profile, the FWHM widths of the inner and outer HCO{sup +} gaps are both estimated to be ∼14 au, and their depths are estimated to be ∼2.4 and ∼5.0. These results are consistent with the expectation from the gaps opened by forming (sub-)Jovian mass planets, while placing tight constraints on the theoretical models solely incorporating the variation of dust properties and grain sizes.

  19. Epidemiology of massive transfusion

    DEFF Research Database (Denmark)

    Halmin, M A; Chiesa, F; Vasan, S K

    2015-01-01

    and to describe characteristics and mortality of massively transfused patients. Methods: We performed a retrospective cohort study based on the Scandinavian Donations and Transfusions (SCANDAT2) database, linking data on blood donation, blood components and transfused patients with inpatient- and population.......4% among women transfused for obstetrical bleeding. Mortality increased gradually with age and among all patients massively transfused at age 80 years, only 26% were alive [TABLE PRESENTED] after 5 years. The relative mortality, early after transfusion, was high and decreased with time since transfusion...

  20. Reappraising the concept of massive transfusion in trauma

    DEFF Research Database (Denmark)

    Stanworth, Simon J; Morris, Timothy P; Gaarder, Christine

    2010-01-01

    ABSTRACT : INTRODUCTION : The massive-transfusion concept was introduced to recognize the dilutional complications resulting from large volumes of packed red blood cells (PRBCs). Definitions of massive transfusion vary and lack supporting clinical evidence. Damage-control resuscitation regimens...... of modern trauma care are targeted to the early correction of acute traumatic coagulopathy. The aim of this study was to identify a clinically relevant definition of trauma massive transfusion based on clinical outcomes. We also examined whether the concept was useful in that early prediction of massive...... transfusion as a concept in trauma has limited utility, and emphasis should be placed on identifying patients with massive hemorrhage and acute traumatic coagulopathy....

  1. MASSIVE STARS IN THE Cl 1813-178 CLUSTER: AN EPISODE OF MASSIVE STAR FORMATION IN THE W33 COMPLEX

    International Nuclear Information System (INIS)

    Messineo, Maria; Davies, Ben; Figer, Donald F.; Trombley, Christine; Kudritzki, R. P.; Valenti, Elena; Najarro, F.; Michael Rich, R.

    2011-01-01

    Young massive (M > 10 4 M sun ) stellar clusters are a good laboratory to study the evolution of massive stars. Only a dozen of such clusters are known in the Galaxy. Here, we report about a new young massive stellar cluster in the Milky Way. Near-infrared medium-resolution spectroscopy with UIST on the UKIRT telescope and NIRSPEC on the Keck telescope, and X-ray observations with the Chandra and XMM satellites, of the Cl 1813-178 cluster confirm a large number of massive stars. We detected 1 red supergiant, 2 Wolf-Rayet stars, 1 candidate luminous blue variable, 2 OIf, and 19 OB stars. Among the latter, twelve are likely supergiants, four giants, and the faintest three dwarf stars. We detected post-main-sequence stars with masses between 25 and 100 M sun . A population with age of 4-4.5 Myr and a mass of ∼10, 000 M sun can reproduce such a mixture of massive evolved stars. This massive stellar cluster is the first detection of a cluster in the W33 complex. Six supernova remnants and several other candidate clusters are found in the direction of the same complex.

  2. How I treat patients with massive hemorrhage

    DEFF Research Database (Denmark)

    Johansson, Pär I; Stensballe, Jakob; Oliveri, Roberto

    2014-01-01

    Massive hemorrhage is associated with coagulopathy and high mortality. The transfusion guidelines up to 2006 recommended that resuscitation of massive hemorrhage should occur in successive steps using crystalloids, colloids and red blood cells (RBC) in the early phase, and plasma and platelets...... in the late phase. With the introduction of the cell-based model of hemostasis in the mid 1990ties, our understanding of the hemostatic process and of coagulopathy has improved. This has contributed to a change in resuscitation strategy and transfusion therapy of massive hemorrhage along with an acceptance...... outcome, although final evidence on outcome from randomized controlled trials are lacking. We here present how we in Copenhagen and Houston, today, manage patients with massive hemorrhage....

  3. VLA Ammonia Observations of IRAS 16253-2429: A Very Young and Low Mass Protostellar System

    Science.gov (United States)

    Wiseman, Jennifer J.

    2011-01-01

    IRAS l6253-2429. the source of the Wasp-Waist Nebula seen in Spitzer IRAC images, is an isolated very low luminosity ("VeLLO") Class 0 protostar in the nearby rho Ophiuchi cloud. We present VLA ammonia mapping observations of the dense gas envelope feeding the central core accreting system. We find a flattened envelope perpendicular to the outflow axis, and gas cavities that appear to cradle the outflow lobes as though carved out by the flow and associated (apparently precessing) jet. Based on the NH3 (1,1) and (2,2) emission distribution, we derive the mass, velocity fields and temperature distribution for the envelope. We discuss the combined evidence for this source as possibly one of the youngest and lowest mass sources in formation yet known.

  4. On the singularities of massive superstring amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.

    1987-06-04

    Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are not terms in the perturbative expansion of physical S-matrix elements: These can be defined only with massless external states. Consistent massive amplitudes repuire an off-shell formalism.

  5. Massive supermultiplets in four-dimensional superstring theory

    International Nuclear Information System (INIS)

    Feng Wanzhe; Lüst, Dieter; Schlotterer, Oliver

    2012-01-01

    We extend the discussion of Feng et al. (2011) on massive Regge excitations on the first mass level of four-dimensional superstring theory. For the lightest massive modes of the open string sector, universal supermultiplets common to all four-dimensional compactifications with N=1,2 and N=4 spacetime supersymmetry are constructed respectively - both their vertex operators and their supersymmetry variations. Massive spinor helicity methods shed light on the interplay between individual polarization states.

  6. The Discovery of Anti-Matter The Autobiography of Carl David Anderson, the Youngest Man to Win the Nobel Prize

    CERN Document Server

    1999-01-01

    In 1936, at age 31, Carl David Anderson became the second youngest Nobel laureate for his discovery of antimatter when he observed positrons in a cloud chamber.He is responsible for developing rocket power weapons that were used in World War II.He was born in New York City in 1905 and was educated in Los Angeles. He served for many years as a physics professor at California Institute of Technology. Prior to Oppenheimer, Anderson was offered the job of heading the Los Alamos atomic bomb program but could not assume the role because of family obligations.He was a pioneer in studying cosmic rays

  7. Magnetically regulated collapse in the B335 protostar? I. ALMA observations of the polarized dust emission

    Science.gov (United States)

    Maury, A. J.; Girart, J. M.; Zhang, Q.; Hennebelle, P.; Keto, E.; Rao, R.; Lai, S.-P.; Ohashi, N.; Galametz, M.

    2018-06-01

    The role of the magnetic field during protostellar collapse is poorly constrained from an observational point of view, although it could be significant if we believe state-of-the-art models of protostellar formation. We present polarimetric observations of the 233 GHz thermal dust continuum emission obtained with ALMA in the B335 Class 0 protostar. Linearly polarized dust emission arising from the circumstellar material in the envelope of B335 is detected at all scales probed by our observations (50 to 1000 au). The magnetic field structure producing the dust polarization has a very ordered topology in the inner envelope, with a transition from a large-scale poloidal magnetic field, in the outflow direction, to strongly pinched in the equatorial direction. This is probably due to magnetic field lines being dragged along the dominating infall direction since B335 does not exhibit prominent rotation. Our data and their qualitative comparison to a family of magnetized protostellar collapse models show that, during the magnetized collapse in B335, the magnetic field is maintaining a high level of organization from scales 1000 au to 50 au: this suggests the field is dynamically relevant and capable of influencing the typical outcome of protostellar collapse, such as regulating the disc size in B335.

  8. Magnetically regulated collapse in the B335 protostar? I. ALMA observations of the polarized dust emission

    Science.gov (United States)

    Maury, A. J.; Girart, J. M.; Zhang, Q.; Hennebelle, P.; Keto, E.; Rao, R.; Lai, S.-P.; Ohashi, N.; Galametz, M.

    2018-03-01

    The role of the magnetic field during protostellar collapse is poorly constrained from an observational point of view, although it could be significant if we believe state-of-the-art models of protostellar formation. We present polarimetric observations of the 233 GHz thermal dust continuum emission obtained with ALMA in the B335 Class 0 protostar. Linearly polarized dust emission arising from the circumstellar material in the envelope of B335 is detected at all scales probed by our observations, from radii of 50 to 1000 au. The magnetic field structure producing the dust polarization has a very ordered topology in the inner envelope, with a transition from a large-scale poloidal magnetic field, in the outflow direction, to strongly pinched in the equatorial direction. This is probably due to magnetic field lines being dragged along the dominating infall direction since B335 does not exhibit prominent rotation. Our data and their qualitative comparison to a family of magnetized protostellar collapse models show that, during the magnetized collapse in B335, the magnetic field is maintaining a high level of organization from scales 1000 au to 50 au: this suggests the field is dynamically relevant and capable of influencing the typical outcome of protostellar collapse, such as regulating the disk size in B335.

  9. Update on massive transfusion.

    Science.gov (United States)

    Pham, H P; Shaz, B H

    2013-12-01

    Massive haemorrhage requires massive transfusion (MT) to maintain adequate circulation and haemostasis. For optimal management of massively bleeding patients, regardless of aetiology (trauma, obstetrical, surgical), effective preparation and communication between transfusion and other laboratory services and clinical teams are essential. A well-defined MT protocol is a valuable tool to delineate how blood products are ordered, prepared, and delivered; determine laboratory algorithms to use as transfusion guidelines; and outline duties and facilitate communication between involved personnel. In MT patients, it is crucial to practice damage control resuscitation and to administer blood products early in the resuscitation. Trauma patients are often admitted with early trauma-induced coagulopathy (ETIC), which is associated with mortality; the aetiology of ETIC is likely multifactorial. Current data support that trauma patients treated with higher ratios of plasma and platelet to red blood cell transfusions have improved outcomes, but further clinical investigation is needed. Additionally, tranexamic acid has been shown to decrease the mortality in trauma patients requiring MT. Greater use of cryoprecipitate or fibrinogen concentrate might be beneficial in MT patients from obstetrical causes. The risks and benefits for other therapies (prothrombin complex concentrate, recombinant activated factor VII, or whole blood) are not clearly defined in MT patients. Throughout the resuscitation, the patient should be closely monitored and both metabolic and coagulation abnormalities corrected. Further studies are needed to clarify the optimal ratios of blood products, treatment based on underlying clinical disorder, use of alternative therapies, and integration of laboratory testing results in the management of massively bleeding patients.

  10. Massive lepton pair production in massive quantum electrodynamics

    International Nuclear Information System (INIS)

    Raychaudhuri, P.

    1976-01-01

    The pp → l + +l - +x inclusive interaction has been studied at high energies in terms of the massive quantum electrodynamics. The differential cross-section (dsigma/dQ 2 ) is derived and proves to be proportional to Q -4 , where Q-mass of the lepton pair. Basic features of the cross-section are demonstrated to be consistent with the Drell-Yan model

  11. Epidemiology of Massive Transfusion

    DEFF Research Database (Denmark)

    Halmin, Märit; Chiesa, Flaminia; Vasan, Senthil K

    2016-01-01

    in Sweden from 1987 and in Denmark from 1996. A total of 92,057 patients were included. Patients were followed until the end of 2012. MEASUREMENTS AND MAIN RESULTS: Descriptive statistics were used to characterize the patients and indications. Post transfusion mortality was expressed as crude 30-day...... mortality and as long-term mortality using the Kaplan-Meier method and using standardized mortality ratios. The incidence of massive transfusion was higher in Denmark (4.5 per 10,000) than in Sweden (2.5 per 10,000). The most common indication for massive transfusion was major surgery (61.2%) followed...

  12. On the singularities of massive superstring amplitudes

    International Nuclear Information System (INIS)

    Foda, O.

    1987-01-01

    Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are not terms in the perturbative expansion of physical S-matrix elements: These can be defined only with massless external states. Consistent massive amplitudes repuire an off-shell formalism. (orig.)

  13. Resolving the Polarized Dust Emission of the Disk around the Massive Star Powering the HH 80–81 Radio Jet

    Science.gov (United States)

    Girart, J. M.; Fernández-López, M.; Li, Z.-Y.; Yang, H.; Estalella, R.; Anglada, G.; Áñez-López, N.; Busquet, G.; Carrasco-González, C.; Curiel, S.; Galvan-Madrid, R.; Gómez, J. F.; de Gregorio-Monsalvo, I.; Jiménez-Serra, I.; Krasnopolsky, R.; Martí, J.; Osorio, M.; Padovani, M.; Rao, R.; Rodríguez, L. F.; Torrelles, J. M.

    2018-04-01

    Here we present deep (16 μJy beam‑1), very high (40 mas) angular resolution 1.14 mm, polarimetric, Atacama Large Millimeter/submillimeter Array (ALMA) observations toward the massive protostar driving the HH 80–81 radio jet. The observations clearly resolve the disk oriented perpendicularly to the radio jet, with a radius of ≃0.″171 (∼291 au at 1.7 kpc distance). The continuum brightness temperature, the intensity profile, and the polarization properties clearly indicate that the disk is optically thick for a radius of R ≲ 170 au. The linear polarization of the dust emission is detected almost all along the disk, and its properties suggest that dust polarization is produced mainly by self-scattering. However, the polarization pattern presents a clear differentiation between the inner (optically thick) part of the disk and the outer (optically thin) region of the disk, with a sharp transition that occurs at a radius of ∼0.″1 (∼170 au). The polarization characteristics of the inner disk suggest that dust settling has not occurred yet with a maximum dust grain size between 50 and 500 μm. The outer part of the disk has a clear azimuthal pattern but with a significantly higher polarization fraction compared to the inner disk. This pattern is broadly consistent with the self-scattering of a radiation field that is beamed radially outward, as expected in the optically thin outer region, although contribution from non-spherical grains aligned with respect to the radiative flux cannot be excluded.

  14. Thermodynamics inducing massive particles' tunneling and cosmic censorship

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Baocheng [Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonances and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Wuhan (China); Graduate University of Chinese Academy of Sciences, Beijing (China); Cai, Qing-yu [Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonances and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Wuhan (China); Zhan, Ming-sheng [Chinese Academy of Sciences, State Key Laboratory of Magnetic Resonances and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Wuhan (China); Chinese Academy of Sciences, Center for Cold Atom Physics, Wuhan (China)

    2010-08-15

    By calculating the change of entropy, we prove that the first law of black hole thermodynamics leads to the tunneling probability of massive particles through the horizon, including the tunneling probability of massive charged particles from the Reissner-Nordstroem black hole and the Kerr-Newman black hole. Novelly, we find the trajectories of massive particles are close to that of massless particles near the horizon, although the trajectories of massive charged particles may be affected by electromagnetic forces. We show that Hawking radiation as massive particles tunneling does not lead to violation of the weak cosmic-censorship conjecture. (orig.)

  15. Exact Solutions in 3D New Massive Gravity

    Science.gov (United States)

    Ahmedov, Haji; Aliev, Alikram N.

    2011-01-01

    We show that the field equations of new massive gravity (NMG) consist of a massive (tensorial) Klein-Gordon-type equation with a curvature-squared source term and a constraint equation. We also show that, for algebraic type D and N spacetimes, the field equations of topologically massive gravity (TMG) can be thought of as the “square root” of the massive Klein-Gordon-type equation. Using this fact, we establish a simple framework for mapping all types D and N solutions of TMG into NMG. Finally, we present new examples of types D and N solutions to NMG.

  16. Spacetime structure of massive Majorana particles and massive gravitino

    CERN Document Server

    Ahluwalia, D V

    2003-01-01

    The profound difference between Dirac and Majorana particles is traced back to the possibility of having physically different constructs in the (1/2, 0) 0 (0,1/2) representation space. Contrary to Dirac particles, Majorana-particle propagators are shown to differ from the simple linear gamma mu p submu, structure. Furthermore, neither Majorana particles, nor their antiparticles can be associated with a well defined arrow of time. The inevitable consequence of this peculiarity is the particle-antiparticle metamorphosis giving rise to neutrinoless double beta decay, on the one side, and enabling spin-1/2 fields to act as gauge fields, gauginos, on the other side. The second part of the lecture notes is devoted to massive gravitino. We argue that a spin measurement in the rest frame for an unpolarized ensemble of massive gravitino, associated with the spinor-vector [(1/2, 0) 0 (0,1/2)] 0 (1/2,1/2) representation space, would yield the results 3/2 with probability one half, and 1/2 with probability one half. The ...

  17. Massive vector fields and black holes

    International Nuclear Information System (INIS)

    Frolov, V.P.

    1977-04-01

    A massive vector field inside the event horizon created by the static sources located outside the black hole is investigated. It is shown that the back reaction of such a field on the metric near r = 0 cannot be neglected. The possibility of the space-time structure changing near r = 0 due to the external massive field is discussed

  18. Investigation of the status quo of massive blood transfusion in China and a synopsis of the proposed guidelines for massive blood transfusion.

    Science.gov (United States)

    Yang, Jiang-Cun; Wang, Qiu-Shi; Dang, Qian-Li; Sun, Yang; Xu, Cui-Xiang; Jin, Zhan-Kui; Ma, Ting; Liu, Jing

    2017-08-01

    The aim of this study was to provide an overview of massive transfusion in Chinese hospitals, identify the important indications for massive transfusion and corrective therapies based on clinical evidence and supporting experimental studies, and propose guidelines for the management of massive transfusion. This multiregion, multicenter retrospective study involved a Massive Blood Transfusion Coordination Group composed of 50 clinical experts specializing in blood transfusion, cardiac surgery, anesthesiology, obstetrics, general surgery, and medical statistics from 20 tertiary general hospitals across 5 regions in China. Data were collected for all patients who received ≥10 U red blood cell transfusion within 24 hours in the participating hospitals from January 1 2009 to December 31 2010, including patient demographics, pre-, peri-, and post-operative clinical characteristics, laboratory test results before, during, and after transfusion, and patient mortality at post-transfusion and discharge. We also designed an in vitro hemodilution model to investigate the changes of blood coagulation indices during massive transfusion and the correction of coagulopathy through supplement blood components under different hemodilutions. The experimental data in combination with the clinical evidence were used to determine the optimal proportion and timing for blood component supplementation during massive transfusion. Based on the findings from the present study, together with an extensive review of domestic and international transfusion-related literature and consensus feedback from the 50 experts, we drafted the guidelines on massive blood transfusion that will help Chinese hospitals to develop standardized protocols for massive blood transfusion.

  19. Massive protostars in the infrared dark cloud MSXDC G034.43+00.24

    NARCIS (Netherlands)

    Rathborne, JM; Jackson, JM; Chambers, ET; Simon, R; Shipman, R; Frieswijk, W

    2005-01-01

    We present a multiwavelength study of the infrared dark cloud MSXDC G034.43 + 00.24. Dust emission, traced by millimeter/submmillimeter images obtained with the IRAM, JCMT, and CSO telescopes, reveals three compact cores within this infrared dark cloud with masses of 170 - 800 M-circle dot and sizes

  20. Management of massive haemoptysis | Adegboye | Nigerian Journal ...

    African Journals Online (AJOL)

    Background: This study compares two management techniques in the treatment of massive haemotysis. Method: All patients with massive haemoptysis treated between January 1969 and December 1980 (group 1) were retrospectively reviewed and those prospectively treated between January 1981 and August 1999 ...

  1. Topologically massive gravity and Ricci-Cotton flow

    Energy Technology Data Exchange (ETDEWEB)

    Lashkari, Nima; Maloney, Alexander, E-mail: lashkari@physics.mcgill.ca, E-mail: maloney@physics.mcgill.ca [McGill Physics Department, 3600 rue University, Montreal, QC H3A 2T8 (Canada)

    2011-05-21

    We consider topologically massive gravity (TMG), which is three-dimensional general relativity with a cosmological constant and a gravitational Chern-Simons term. When the cosmological constant is negative the theory has two potential vacuum solutions: anti-de Sitter space and warped anti-de Sitter space. The theory also contains a massive graviton state which renders these solutions unstable for certain values of the parameters and boundary conditions. We study the decay of these solutions due to the condensation of the massive graviton mode using Ricci-Cotton flow, which is the appropriate generalization of Ricci flow to TMG. When the Chern-Simons coupling is small the AdS solution flows to warped AdS by the condensation of the massive graviton mode. When the coupling is large the situation is reversed, and warped AdS flows to AdS. Minisuperspace models are constructed where these flows are studied explicitly.

  2. Topologically massive gravity and Ricci-Cotton flow

    International Nuclear Information System (INIS)

    Lashkari, Nima; Maloney, Alexander

    2011-01-01

    We consider topologically massive gravity (TMG), which is three-dimensional general relativity with a cosmological constant and a gravitational Chern-Simons term. When the cosmological constant is negative the theory has two potential vacuum solutions: anti-de Sitter space and warped anti-de Sitter space. The theory also contains a massive graviton state which renders these solutions unstable for certain values of the parameters and boundary conditions. We study the decay of these solutions due to the condensation of the massive graviton mode using Ricci-Cotton flow, which is the appropriate generalization of Ricci flow to TMG. When the Chern-Simons coupling is small the AdS solution flows to warped AdS by the condensation of the massive graviton mode. When the coupling is large the situation is reversed, and warped AdS flows to AdS. Minisuperspace models are constructed where these flows are studied explicitly.

  3. Neutron stars structure in the context of massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Hendi, S.H.; Bordbar, G.H.; Panah, B. Eslam; Panahiyan, S., E-mail: hendi@shirazu.ac.ir, E-mail: ghbordbar@shirazu.ac.ir, E-mail: behzad.eslampanah@gmail.com, E-mail: sh.panahiyan@gmail.com [Physics Department and Biruni Observatory, College of Sciences, Shiraz University, Shiraz 71454 (Iran, Islamic Republic of)

    2017-07-01

    Motivated by the recent interests in spin−2 massive gravitons, we study the structure of neutron star in the context of massive gravity. The modifications of TOV equation in the presence of massive gravity are explored in 4 and higher dimensions. Next, by considering the modern equation of state for the neutron star matter (which is extracted by the lowest order constrained variational (LOCV) method with the AV18 potential), different physical properties of the neutron star (such as Le Chatelier's principle, stability and energy conditions) are investigated. It is shown that consideration of the massive gravity has specific contributions into the structure of neutron star and introduces new prescriptions for the massive astrophysical objects. The mass-radius relation is examined and the effects of massive gravity on the Schwarzschild radius, average density, compactness, gravitational redshift and dynamical stability are studied. Finally, a relation between mass and radius of neutron star versus the Planck mass is extracted.

  4. Neutron stars structure in the context of massive gravity

    Science.gov (United States)

    Hendi, S. H.; Bordbar, G. H.; Eslam Panah, B.; Panahiyan, S.

    2017-07-01

    Motivated by the recent interests in spin-2 massive gravitons, we study the structure of neutron star in the context of massive gravity. The modifications of TOV equation in the presence of massive gravity are explored in 4 and higher dimensions. Next, by considering the modern equation of state for the neutron star matter (which is extracted by the lowest order constrained variational (LOCV) method with the AV18 potential), different physical properties of the neutron star (such as Le Chatelier's principle, stability and energy conditions) are investigated. It is shown that consideration of the massive gravity has specific contributions into the structure of neutron star and introduces new prescriptions for the massive astrophysical objects. The mass-radius relation is examined and the effects of massive gravity on the Schwarzschild radius, average density, compactness, gravitational redshift and dynamical stability are studied. Finally, a relation between mass and radius of neutron star versus the Planck mass is extracted.

  5. Neutron stars structure in the context of massive gravity

    International Nuclear Information System (INIS)

    Hendi, S.H.; Bordbar, G.H.; Panah, B. Eslam; Panahiyan, S.

    2017-01-01

    Motivated by the recent interests in spin−2 massive gravitons, we study the structure of neutron star in the context of massive gravity. The modifications of TOV equation in the presence of massive gravity are explored in 4 and higher dimensions. Next, by considering the modern equation of state for the neutron star matter (which is extracted by the lowest order constrained variational (LOCV) method with the AV18 potential), different physical properties of the neutron star (such as Le Chatelier's principle, stability and energy conditions) are investigated. It is shown that consideration of the massive gravity has specific contributions into the structure of neutron star and introduces new prescriptions for the massive astrophysical objects. The mass-radius relation is examined and the effects of massive gravity on the Schwarzschild radius, average density, compactness, gravitational redshift and dynamical stability are studied. Finally, a relation between mass and radius of neutron star versus the Planck mass is extracted.

  6. Permutations of massive vacua

    Energy Technology Data Exchange (ETDEWEB)

    Bourget, Antoine [Department of Physics, Universidad de Oviedo, Avenida Calvo Sotelo 18, 33007 Oviedo (Spain); Troost, Jan [Laboratoire de Physique Théorique de l’É cole Normale Supérieure, CNRS,PSL Research University, Sorbonne Universités, 75005 Paris (France)

    2017-05-09

    We discuss the permutation group G of massive vacua of four-dimensional gauge theories with N=1 supersymmetry that arises upon tracing loops in the space of couplings. We concentrate on superconformal N=4 and N=2 theories with N=1 supersymmetry preserving mass deformations. The permutation group G of massive vacua is the Galois group of characteristic polynomials for the vacuum expectation values of chiral observables. We provide various techniques to effectively compute characteristic polynomials in given theories, and we deduce the existence of varying symmetry breaking patterns of the duality group depending on the gauge algebra and matter content of the theory. Our examples give rise to interesting field extensions of spaces of modular forms.

  7. Massive stars in galaxies

    International Nuclear Information System (INIS)

    Humphreys, R.M.

    1987-01-01

    The relationship between the morphologic type of a galaxy and the evolution of its massive stars is explored, reviewing observational results for nearby galaxies. The data are presented in diagrams, and it is found that the massive-star populations of most Sc spiral galaxies and irregular galaxies are similar, while those of Sb spirals such as M 31 and M 81 may be affected by morphology (via differences in the initial mass function or star-formation rate). Consideration is also given to the stability-related upper luminosity limit in the H-R diagram of hypergiant stars (attributed to radiation pressure in hot stars and turbulence in cool stars) and the goals of future observation campaigns. 88 references

  8. ON THE NATURE OF THE ENIGMATIC OBJECT IRAS 19312+1950: A RARE PHASE OF MASSIVE STAR FORMATION?

    Energy Technology Data Exchange (ETDEWEB)

    Cordiner, M. A.; Charnley, S. B.; Milam, S. N. [Astrochemistry Laboratory, NASA Goddard Space Flight Center, Code 691, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Boogert, A. C. A. [Universities Space Research Association, Stratospheric Observatory for Infrared Astronomy, NASA Ames Research Center, MS 232-11, Moffett Field, CA 94035 (United States); Justtanont, K.; Wirström, E. S. [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-439 92, Onsala (Sweden); Cox, N. L. J. [Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, bus 2401, B-3001, Leuven (Belgium); Smith, R. G. [School of Physical, Environmental and Mathematical Sciences, The University of New South Wales, Australian Defence Force Academy, Canberra ACT 2600 (Australia); Tielens, A. G. G. M. [Leiden Observatory, University of Leiden, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Keane, J. V., E-mail: martin.cordiner@nasa.gov [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States)

    2016-09-01

    IRAS 19312+1950 is a peculiar object that has eluded firm characterization since its discovery, with combined maser properties similar to an evolved star and a young stellar object (YSO). To help determine its true nature, we obtained infrared spectra of IRAS 19312+1950 in the range 5–550 μ m using the Herschel and Spitzer space observatories. The Herschel PACS maps exhibit a compact, slightly asymmetric continuum source at 170 μ m, indicative of a large, dusty circumstellar envelope. The far-IR CO emission line spectrum reveals two gas temperature components: ≈0.22 M {sub ⊙} of material at 280 ± 18 K, and ≈1.6 M {sub ⊙} of material at 157 ± 3 K. The O i 63 μ m line is detected on-source but no significant emission from atomic ions was found. The HIFI observations display shocked, high-velocity gas with outflow speeds up to 90 km s{sup −1} along the line of sight. From Spitzer spectroscopy, we identify ice absorption bands due to H{sub 2}O at 5.8 μ m and CO{sub 2} at 15 μ m. The spectral energy distribution is consistent with a massive, luminous (∼2 × 10{sup 4} L {sub ⊙}) central source surrounded by a dense, warm circumstellar disk and envelope of total mass ∼500–700 M {sub ⊙}, with large bipolar outflow cavities. The combination of distinctive far-IR spectral features suggest that IRAS 19312+1950 should be classified as an accreting, high-mass YSO rather than an evolved star. In light of this reclassification, IRAS 19312+1950 becomes only the fifth high-mass protostar known to exhibit SiO maser activity, and demonstrates that 18 cm OH maser line ratios may not be reliable observational discriminators between evolved stars and YSOs.

  9. On the Nature of the Enigmatic Object IRAS 19312+1950: A Rare Phase of Massive Star Formation?

    Science.gov (United States)

    Cordiner, M. A.; Boogert, A. C. A.; Charnley, S. B.; Justtanont, K.; Cox, N. L. J.; Smith, R. G.; Tielens, A. G. G. M.; Wirstrom, E. S.; Milam, S. N.; Keane, J. V.

    2016-01-01

    IRAS?19312+1950 is a peculiar object that has eluded firm characterization since its discovery, with combined maser properties similar to an evolved star and a young stellar object (YSO). To help determine its true nature, we obtained infrared spectra of IRAS?19312+1950 in the range 5-550 microns using the Herschel and Spitzer space observatories. The Herschel PACS maps exhibit a compact, slightly asymmetric continuum source at 170 microns, indicative of a large, dusty circumstellar envelope. The far-IR CO emission line spectrum reveals two gas temperature components: approx. = 0.22 Stellar Mass of material at 280+/-18 K, and ˜1.6 Me of material at 157+/-3 K. The OI 63 micron line is detected on-source but no significant emission from atomic ions was found. The HIFI observations display shocked, high-velocity gas with outflow speeds up to 90 km/s along the line of sight. From Spitzer spectroscopy, we identify ice absorption bands due to H2O at 5.8 microns and CO2 at 15 microns. The spectral energy distribution is consistent with a massive, luminous (approx. 2 × 10(exp 4) Stellar Luminosity) central source surrounded by a dense, warm circumstellar disk and envelope of total mass approx. 500-700 Stellar Mass with large bipolar outflow cavities. The combination of distinctive far-IR spectral features suggest that IRAS19312+1950 should be classified as an accreting, high-mass YSO rather than an evolved star. In light of this reclassification, IRAS19312+1950 becomes only the fifth high-mass protostar known to exhibit SiO maser activity, and demonstrates that 18 cm OH maser line ratios may not be reliable observational discriminators between evolved stars and YSOs.

  10. Nitrogen chronology of massive main sequence stars

    NARCIS (Netherlands)

    Köhler, K.; Borzyszkowski, M.; Brott, I.; Langer, N.; de Koter, A.

    2012-01-01

    Context. Rotational mixing in massive main sequence stars is predicted to monotonically increase their surface nitrogen abundance with time. Aims. We use this effect to design a method for constraining the age and the inclination angle of massive main sequence stars, given their observed luminosity,

  11. Using massive digital libraries a LITA guide

    CERN Document Server

    Weiss, Andrew

    2014-01-01

    Some have viewed the ascendance of the digital library as some kind of existential apocalypse, nothing less than the beginning of the end for the traditional library. But Weiss, recognizing the concept of the library as a ""big idea"" that has been implemented in many ways over thousands of years, is not so gloomy. In this thought-provoking and unabashedly optimistic book, he explores how massive digital libraries are already adapting to society's needs, and looks ahead to the massive digital libraries of tomorrow, coveringThe author's criteria for defining massive digital librariesA history o

  12. Two-dimensional thermofield bosonization II: Massive fermions

    International Nuclear Information System (INIS)

    Amaral, R.L.P.G.; Belvedere, L.V.; Rothe, K.D.

    2008-01-01

    We consider the perturbative computation of the N-point function of chiral densities of massive free fermions at finite temperature within the thermofield dynamics approach. The infinite series in the mass parameter for the N-point functions are computed in the fermionic formulation and compared with the corresponding perturbative series in the interaction parameter in the bosonized thermofield formulation. Thereby we establish in thermofield dynamics the formal equivalence of the massive free fermion theory with the sine-Gordon thermofield model for a particular value of the sine-Gordon parameter. We extend the thermofield bosonization to include the massive Thirring model

  13. Limiting Accretion onto Massive Stars by Fragmentation-Induced Starvation

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Thomas; /ZAH, Heidelberg; Klessen, Ralf S.; /ZAH, Heidelberg /KIPAC, Menlo Park; Mac Low, Mordecai-Mark; /Amer. Museum Natural Hist.; Banerjee, Robi; /ZAH, Heidelberg

    2010-08-25

    Massive stars influence their surroundings through radiation, winds, and supernova explosions far out of proportion to their small numbers. However, the physical processes that initiate and govern the birth of massive stars remain poorly understood. Two widely discussed models are monolithic collapse of molecular cloud cores and competitive accretion. To learn more about massive star formation, we perform simulations of the collapse of rotating, massive, cloud cores including radiative heating by both non-ionizing and ionizing radiation using the FLASH adaptive mesh refinement code. These simulations show fragmentation from gravitational instability in the enormously dense accretion flows required to build up massive stars. Secondary stars form rapidly in these flows and accrete mass that would have otherwise been consumed by the massive star in the center, in a process that we term fragmentation-induced starvation. This explains why massive stars are usually found as members of high-order stellar systems that themselves belong to large clusters containing stars of all masses. The radiative heating does not prevent fragmentation, but does lead to a higher Jeans mass, resulting in fewer and more massive stars than would form without the heating. This mechanism reproduces the observed relation between the total stellar mass in the cluster and the mass of the largest star. It predicts strong clumping and filamentary structure in the center of collapsing cores, as has recently been observed. We speculate that a similar mechanism will act during primordial star formation.

  14. Hunting for a massive neutrino

    CERN Document Server

    AUTHOR|(CDS)2108802

    1997-01-01

    A great effort is devoted by many groups of physicists all over the world to give an answer to the following question: Is the neutrino massive ? This question has profound implications with particle physics, astrophysics and cosmology, in relation to the so-called Dark Matter puzzle. The neutrino oscillation process, in particular, can only occur if the neutrino is massive. An overview of the neutrino mass measurements, of the oscillation formalism and experiments will be given, also in connection with the present experimental programme at CERN with the two experiments CHORUS and NOMAD.

  15. On the singularities of massive superstring amplitudes

    NARCIS (Netherlands)

    Foda, O.

    1987-01-01

    Superstring one-loop amplitudes with massive external states are shown to be in general ill-defined due to internal on-shell propagators. However, we argue that since any massive string state (in the uncompactified theory) has a finite lifetime to decay into massless particles, such amplitudes are

  16. Black holes in massive gravity as heat engines

    Science.gov (United States)

    Hendi, S. H.; Eslam Panah, B.; Panahiyan, S.; Liu, H.; Meng, X.-H.

    2018-06-01

    The paper at hand studies the heat engine provided by black holes in the presence of massive gravity. The main motivation is to investigate the effects of massive gravity on different properties of the heat engine. It will be shown that massive gravity parameters modify the efficiency of engine on a significant level. Furthermore, it will be pointed out that it is possible to have a heat engine for non-spherical black holes in massive gravity, and therefore, we will study the effects of horizon topology on the properties of heat engine. Surprisingly, it will be shown that the highest efficiency for the heat engine belongs to black holes with the hyperbolic horizon, while the lowest one belongs to the spherical black holes.

  17. The VLT-FLAMES survey of massive stars

    NARCIS (Netherlands)

    Evans, C.; Langer, N.; Brott, I.; Hunter, I.; Smartt, S.J.; Lennon, D.J.

    2008-01-01

    The VLT-FLAMES Survey of Massive Stars was an ESO Large Programme to understand rotational mixing and stellar mass loss in different metallicity environments, in order to better constrain massive star evolution. We gathered high-quality spectra of over 800 stars in the Galaxy and in the Magellanic

  18. Massive cerebellar infarction: a neurosurgical approach

    Directory of Open Access Journals (Sweden)

    Salazar Luis Rafael Moscote

    2015-12-01

    Full Text Available Cerebellar infarction is a challenge for the neurosurgeon. The rapid recognition will crucial to avoid devastating consequences. The massive cerebellar infarction has pseudotumoral behavior, should affect at least one third of the volume of the cerebellum. The irrigation of the cerebellum presents anatomical diversity, favoring the appearance of atypical infarcts. The neurosurgical management is critical for massive cerebellar infarction. We present a review of the literature.

  19. On massive gravitons in 2+1 dimensions

    NARCIS (Netherlands)

    Bergshoeff, Eric; Hohm, Olaf; Townsend, Paul; Lazkoz, R; Vera, R

    2010-01-01

    The Fierz-Pauli (FP) free field theory for massive spin-2 particles can be extended, in a spacetime of (1+2) dimensions (3D), to a generally covariant parity-preserving interacting field theory, in at least two ways. One is "new massive gravity" (NMG), with an action that involves curvature-squared

  20. Holographic heat engine within the framework of massive gravity

    Science.gov (United States)

    Mo, Jie-Xiong; Li, Gu-Qiang

    2018-05-01

    Heat engine models are constructed within the framework of massive gravity in this paper. For the four-dimensional charged black holes in massive gravity, it is shown that the existence of graviton mass improves the heat engine efficiency significantly. The situation is more complicated for the five-dimensional neutral black holes since the constant which corresponds to the third massive potential also contributes to the efficiency. It is also shown that the existence of graviton mass can improve the heat engine efficiency. Moreover, we probe how the massive gravity influences the behavior of the heat engine efficiency approaching the Carnot efficiency.

  1. Formation of Massive Molecular Cloud Cores by Cloud-cloud Collision

    OpenAIRE

    Inoue, Tsuyoshi; Fukui, Yasuo

    2013-01-01

    Recent observations of molecular clouds around rich massive star clusters including NGC3603, Westerlund 2, and M20 revealed that the formation of massive stars could be triggered by a cloud-cloud collision. By using three-dimensional, isothermal, magnetohydrodynamics simulations with the effect of self-gravity, we demonstrate that massive, gravitationally unstable, molecular cloud cores are formed behind the strong shock waves induced by the cloud-cloud collision. We find that the massive mol...

  2. Massively Parallel Algorithms for Solution of Schrodinger Equation

    Science.gov (United States)

    Fijany, Amir; Barhen, Jacob; Toomerian, Nikzad

    1994-01-01

    In this paper massively parallel algorithms for solution of Schrodinger equation are developed. Our results clearly indicate that the Crank-Nicolson method, in addition to its excellent numerical properties, is also highly suitable for massively parallel computation.

  3. Critical N = (1, 1) general massive supergravity

    Science.gov (United States)

    Deger, Nihat Sadik; Moutsopoulos, George; Rosseel, Jan

    2018-04-01

    In this paper we study the supermultiplet structure of N = (1, 1) General Massive Supergravity at non-critical and critical points of its parameter space. To do this, we first linearize the theory around its maximally supersymmetric AdS3 vacuum and obtain the full linearized Lagrangian including fermionic terms. At generic values, linearized modes can be organized as two massless and 2 massive multiplets where supersymmetry relates them in the standard way. At critical points logarithmic modes appear and we find that in three of such points some of the supersymmetry transformations are non-invertible in logarithmic multiplets. However, in the fourth critical point, there is a massive logarithmic multiplet with invertible supersymmetry transformations.

  4. HOW TO FIND YOUNG MASSIVE CLUSTER PROGENITORS

    Energy Technology Data Exchange (ETDEWEB)

    Bressert, E.; Longmore, S.; Testi, L. [European Southern Observatory, Karl Schwarzschild Str. 2, D-85748 Garching bei Muenchen (Germany); Ginsburg, A.; Bally, J.; Battersby, C. [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309 (United States)

    2012-10-20

    We propose that bound, young massive stellar clusters form from dense clouds that have escape speeds greater than the sound speed in photo-ionized gas. In these clumps, radiative feedback in the form of gas ionization is bottled up, enabling star formation to proceed to sufficiently high efficiency so that the resulting star cluster remains bound even after gas removal. We estimate the observable properties of the massive proto-clusters (MPCs) for existing Galactic plane surveys and suggest how they may be sought in recent and upcoming extragalactic observations. These surveys will potentially provide a significant sample of MPC candidates that will allow us to better understand extreme star-formation and massive cluster formation in the Local Universe.

  5. Massive type IIA supergravity and E10

    International Nuclear Information System (INIS)

    Henneaux, M.; Kleinschmidt, A.; Persson, D.; Jamsin, E.

    2009-01-01

    In this talk we investigate the symmetry under E 10 of Romans' massive type IIA supergravity. We show that the dynamics of a spinning particle in a non-linear sigma model on the coset space E 10 /K(E 10 ) reproduces the bosonic and fermionic dynamics of massive IIA supergravity, in the standard truncation. In particular, we identify Romans' mass with a generator of E 10 that is beyond the realm of the generators of E 10 considered in the eleven-dimensional analysis, but using the same, underformed sigma model. As a consequence, this work provides a dynamical unification of the massless and massive versions of type IIA supergravity inside E 10 . (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  6. Hyper-massive cloud, shock and stellar formation efficiency

    International Nuclear Information System (INIS)

    Louvet, Fabien

    2014-01-01

    O and B types stars are of paramount importance in the energy budget of galaxies and play a crucial role enriching the interstellar medium. However, their formation, unlike that of solar-type stars, is still subject to debate, if not an enigma. The earliest stages of massive star formation and the formation of their parent cloud are still crucial astrophysical questions that drew a lot of attention in the community, both from the theoretical and observational perspective, during the last decade. It has been proposed that massive stars are born in massive dense cores that form through very dynamic processes, such as converging flows of gas. During my PhD, I conducted a thorough study of the formation of dense cores and massive stars in the W43-MM1 supermassive structure, located at 6 kpc from the sun. At first, I showed a direct correlation between the star formation efficiency and the volume gas density of molecular clouds, in contrast with scenarios suggested by previous studies. Indeed, the spatial distribution and mass function of the massive dense cores currently forming in W43-MM1 suggests that this supermassive filament is undergoing a star formation burst, increasing as one approaches its center. I compared these observational results with the most recent numerical and analytical models of star formation. This comparison not only provides new constraints on the formation of supermassive filaments, but also suggests that understanding star formation in high density, extreme ridges requires a detailed portrait of the structure of these exceptional objects. Second, having shown that the formation of massive stars depends strongly on the properties of the ridges where they form, I studied the formation processes of these filaments, thanks of the characterization of their global dynamics. Specifically, I used a tracer of shocks (SiO molecule) to disentangle the feedback of local star formation processes (bipolar jets and outflows) from shocks tracing the pristine

  7. The census of complex organic molecules in the solar-type protostar IRAS16293-2422

    Energy Technology Data Exchange (ETDEWEB)

    Jaber, Ali A.; Ceccarelli, C.; Kahane, C. [Université Grenoble Alpes, IPAG, F-38000 Grenoble (France); Caux, E. [Université de Toulouse, UPS-OMP, IRAP, F-31400 Toulouse (France)

    2014-08-10

    Complex organic molecules (COMs) are considered to be crucial molecules, since they are connected with organic chemistry, at the basis of terrestrial life. More pragmatically, they are molecules which in principle are difficult to synthesize in harsh interstellar environments and, therefore, are a crucial test for astrochemical models. Current models assume that several COMs are synthesized on lukewarm grain surfaces (≳30-40 K) and released in the gas phase at dust temperatures of ≳100 K. However, recent detections of COMs in ≲20 K gas demonstrate that we still need important pieces to complete the puzzle of COMs formation. Here, we present a complete census of the oxygen- and nitrogen-bearing COMs, previously detected in different Interstellar Medium (ISM) regions, toward the solar-type protostar IRAS16293-2422. The census was obtained from the millimeter-submillimeter unbiased spectral survey TIMASSS. Of the 29 COMs searched for, 6 were detected: methyl cyanide, ketene, acetaldehyde, formamide, dimethyl ether, and methyl formate. Multifrequency analysis of the last five COMs provides clear evidence that they are present in the cold (≲30 K) envelope of IRAS16293-2422, with abundances of 0.03-2 × 10{sup –10}. Our data do not allow us to support the hypothesis that the COMs abundance increases with increasing dust temperature in the cold envelope, as expected if COMs were predominately formed on lukewarm grain surfaces. Finally, when also considering other ISM sources, we find a strong correlation over five orders of magnitude between methyl formate and dimethyl ether, and methyl formate and formamide abundances, which may point to a link between these two couples of species in cold and warm gas.

  8. UNVEILING THE EVOLUTIONARY SEQUENCE FROM INFALLING ENVELOPES TO KEPLERIAN DISKS AROUND LOW-MASS PROTOSTARS

    Energy Technology Data Exchange (ETDEWEB)

    Yen, Hsi-Wei [Institute of Astrophysics, National Taiwan University, Taipei 10617, Taiwan (China); Takakuwa, Shigehisa; Ohashi, Nagayoshi; Ho, Paul T. P., E-mail: hwyen@asiaa.sinica.edu.tw [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China)

    2013-07-20

    We performed Submillimeter Array observations in the C{sup 18}O (2-1) emission line toward six Class 0 and I protostars to study rotational motions of their surrounding envelopes and circumstellar material on 100-1000 AU scales. C{sup 18}O (2-1) emission with intensity peaks located at the protostellar positions is detected toward all six sources. The rotational velocities of the protostellar envelopes as a function of radius were measured from the position-velocity diagrams perpendicular to the outflow directions passing through the protostellar positions. Two Class 0 sources, B335 and NGC 1333 IRAS 4B, show no detectable rotational motion, while L1527 IRS (Class 0/I) and L1448-mm (Class 0) exhibit rotational motions with radial profiles of V{sub rot}{proportional_to}r {sup -1.0{+-}0.2} and {proportional_to}r {sup -1.0{+-}0.1}, respectively. The other Class I sources, TMC-1A and L1489 IRS, exhibit the fastest rotational motions among the sample, and their rotational motions have flatter radial profiles of V{sub rot}{proportional_to}r {sup -0.6{+-}0.1} and {proportional_to}r {sup -0.5{+-}0.1}, respectively. The rotational motions with the radial dependence of {approx}r {sup -1} can be interpreted as rotation with a conserved angular momentum in a dynamically infalling envelope, while those with the radial dependence of {approx}r {sup -0.5} can be interpreted as Keplerian rotation. These observational results demonstrate categorization of rotational motions from infalling envelopes to Keplerian-disk formation. Models of the inside-out collapse where the angular momentum is conserved are discussed and compared with our observational results.

  9. A Massive Star Census of the Starburst Cluster R136

    Science.gov (United States)

    Crowther, Paul

    2012-10-01

    We propose to carry out a comprehensive census of the most massive stars in the central parsec {4"} of the starburst cluster, R136, which powers the Tarantula Nebula in the LMC. R136 is both sufficiently massive that the upper mass function is richly populated and young enough that its most massive stars have yet to explode as supernovae. The identification of very massive stars in R136, up to 300 solar masses, raises general questions of star formation, binarity and feedback in young massive clusters. The proposed STIS spectral survey of 36 stars more massive than 50 solar masses within R136 is ground-breaking, of legacy value, and is specifically tailored to a} yield physical properties; b} detect the majority of binaries by splitting observations between Cycles 19 and 20; c} measure rotational velocities, relevant for predictions of rotational mixing; d} quantify mass-loss properties for very massive stars; e} determine surface compositions; f} measure radial velocities, relevant for runaway stars and cluster dynamics; g} quantify radiative and mechanical feedback. This census will enable the mass function of very massive stars to be measured for the first time, as a result of incomplete and inadequate spectroscopy to date. It will also perfectly complement our Tarantula Survey, a ground-based VLT Large Programme, by including the most massive stars that are inaccessible to ground-based visual spectroscopy due to severe crowding. These surveys, together with existing integrated UV and optical studies will enable 30 Doradus to serve as a bona-fide template for unresolved extragalactic starburst regions.

  10. Reappraising the concept of massive transfusion in trauma

    DEFF Research Database (Denmark)

    Stanworth, Simon J; Morris, Timothy P; Gaarder, Christine

    2010-01-01

    ABSTRACT : INTRODUCTION : The massive-transfusion concept was introduced to recognize the dilutional complications resulting from large volumes of packed red blood cells (PRBCs). Definitions of massive transfusion vary and lack supporting clinical evidence. Damage-control resuscitation regimens o...

  11. Massive stars and X-ray pulsars

    International Nuclear Information System (INIS)

    Henrichs, H.

    1982-01-01

    This thesis is a collection of 7 separate articles entitled: long term changes in ultraviolet lines in γ CAS, UV observations of γ CAS: intermittent mass-loss enhancement, episodic mass loss in γ CAS and in other early-type stars, spin-up and spin-down of accreting neutron stars, an excentric close binary model for the X Persei system, has a 97 minute periodicity in 4U 1700-37/HD 153919 really been discovered, and, mass loss and stellar wind in massive X-ray binaries. (Articles 1, 2, 5, 6 and 7 have been previously published). The first three articles are concerned with the irregular mass loss in massive stars. The fourth critically reviews thoughts since 1972 on the origin of the changes in periodicity shown by X-ray pulsars. The last articles indicate the relation between massive stars and X-ray pulsars. (C.F.)

  12. An effective theory of massive gauge bosons

    International Nuclear Information System (INIS)

    Doria, R.M.; Helayel Neto, J.A.

    1986-01-01

    The coupling of a group-valued massive scalar field to a gauge field through a symmetric rank-2 field strenght is studied. By considering energies very small compared with the mass of the scalar and invoking the decoupling theorem, one is left with a low-energy effective theory describing a dynamics of massive vector fields. (Author) [pt

  13. ATLASGAL-selected massive clumps in the inner Galaxy. II. Characterisation of different evolutionary stages and their SiO emission

    Science.gov (United States)

    Csengeri, T.; Leurini, S.; Wyrowski, F.; Urquhart, J. S.; Menten, K. M.; Walmsley, M.; Bontemps, S.; Wienen, M.; Beuther, H.; Motte, F.; Nguyen-Luong, Q.; Schilke, P.; Schuller, F.; Zavagno, A.; Sanna, C.

    2016-02-01

    rate from the dedicated follow-ups in the (5-4) transition. Up to 25% of the infrared-quiet clumps exhibit high-velocity line wings, suggesting that molecular tracers are more efficient tools to determine the level of star formation activity than infrared colour criteria. We also find infrared-quiet clumps that exhibit only a low-velocity component (FWHM ~ 5-6 km s-1) SiO emission in the (2-1) line. In the current picture, where this is attributed to low-velocity shocks from cloud-cloud collisions, this can be used to pinpoint the youngest, thus, likely prestellar massive structures. Using the optically thin isotopologue (29SiO), we estimate that the (2-1) line is optically thin towards most of the sample. Furthermore, based on the line ratio of the (5-4) to the (2-1) line, our study reveals a trend of changing excitation conditions that lead to brighter emission in the (5-4) line towards more evolved sources. Our models show that a proper treatment of non-LTE effects and beam dilution is necessary to constrain trends in the SiO column density and abundance. Conclusions: We conclude that the SiO (2-1) line with broad line profiles and high detection rates is a powerful probe of star formation activity in the deeply embedded phase of the evolution of massive clumps. The ubiquitous detection of SiO in all evolutionary stages suggests a continuous star formation process in massive clumps. Our analysis delivers a more robust estimate of SiO column density and abundance than previous studies and questions the decrease of jet activity in massive clumps as a function of age. The observed increase of excitation conditions towards the more evolved clumps suggests a higher pressure in the shocked gas towards more evolved or more massive clumps in our sample. Full Tables 4, 6, 7 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A149

  14. Youngest Stellar Explosion in Our Galaxy Discovered

    Science.gov (United States)

    2008-05-01

    Astronomers have found the remains of the youngest supernova, or exploded star, in our Galaxy. The supernova remnant, hidden behind a thick veil of gas and dust, was revealed by the National Science Foundation's Very Large Array (VLA) and NASA's Chandra X-Ray Observatory, which could see through the murk. The object is the first example of a "missing population" of young supernova remnants. 1985 and 2008 VLA Images Move cursor over image to blink. VLA Images of G1.9+0.3 in 1985 and 2008: Circle for size comparison. CREDIT: Green, et al., NRAO/AUI/NSF From observing supernovae in other galaxies, astronomers have estimated that about three such stellar explosions should occur in our Milky Way every century. However, the most recent one known until now occurred around 1680, creating the remnant called Cassiopeia A. The newly-discovered object is the remnant of an explosion only about 140 years ago. "If the supernova rate estimates are correct, there should be the remnants of about 10 supernova explosions in the Milky Way that are younger than Cassiopeia A," said David Green of the University of Cambridge in the UK, who led the VLA study. "It's great to finally track one of them down." Supernova explosions, which mark the violent death of a star, release tremendous amounts of energy and spew heavy elements such as calcium and iron into interstellar space. They thus seed the clouds of gas and dust from which new stars and planets are formed and, through their blast shocks, can even trigger such formation. The lack of evidence for young supernova remnants in the Milky Way had caused astronomers to wonder if our Galaxy, which appears otherwise normal, differed in some unknown way from others. Alternatively, scientists thought that the "missing" Milky Way supernovae perhaps indicated that their understanding of the relationship between supernovae and other galactic processes was in error. The astronomers made their discovery by measuring the expansion of the debris from

  15. Massive gravity with mass term in three dimensions

    International Nuclear Information System (INIS)

    Nakasone, Masashi; Oda, Ichiro

    2009-01-01

    We analyze the effect of the Pauli-Fierz mass term on a recently established, new massive gravity theory in three space-time dimensions. We show that the Pauli-Fierz mass term makes the new massive gravity theory nonunitary. Moreover, although we add the gravitational Chern-Simons term to this model, the situation remains unchanged and the theory stays nonunitary despite that the structure of the graviton propagator is greatly changed. Thus, the Pauli-Fierz mass term is not allowed to coexist with mass-generating higher-derivative terms in the new massive gravity.

  16. Quantification of carbon dioxide emissions of Ciomadul, the youngest volcano of the Carpathian-Pannonian Region (Eastern-Central Europe, Romania)

    Science.gov (United States)

    Kis, Boglárka-Mercédesz; Ionescu, Artur; Cardellini, Carlo; Harangi, Szabolcs; Baciu, Călin; Caracausi, Antonio; Viveiros, Fátima

    2017-07-01

    We provide the first high-resolution CO2 flux data for the Neogene to Quaternary volcanic regions of the entire Carpathian-Pannonian Region, Eastern-Central Europe, and estimate the CO2 emission of the seemingly inactive Ciomadul volcanic complex, the youngest volcano of this area. Our estimate includes data from focused and diffuse CO2 emissions from soil. The CO2 fluxes of focused emissions range between 277 and 8172 g d- 1, corresponding to a CO2 output into the atmosphere between 0.1 and 2.98 t per year. The investigated areas for diffuse soil gas emissions were characterized by wide range of CO2 flux values, at Apor Baths, ranging from 1.7 × 101 to 8.2 × 104 g m- 2 d- 1, while at Lăzărești ranging between 1.43 and 3.8 × 104 g m- 2 d- 1. The highest CO2 focused gas fluxes at Ciomadul were found at the periphery of the youngest volcanic complex, which could be explained either by tectonic control across the brittle older volcanic edifices or by degassing from a deeper crustal zone resulting in CO2 flux at the periphery of the supposed melt-bearing magma body beneath Ciomadul. The estimate of the total CO2 output in the area is 8.70 × 103 t y- 1, and it is consistent with other long (> 10 kyr) dormant volcanoes with similar age worldwide, such as in Italy and USA. Taking into account the isotopic composition of the gases that indicate deep origin of the CO2 emissions, this yields further support that Ciomadul may be considered indeed a dormant, or PAMS volcano (volcano with potentially active magma storage) rather than an inactive one. Furthermore, hazard of CO2 outpourings has to be taken into account and it has to be communicated to the visitors. Finally, we suggest that CO2 output of dormant volcanic systems has to be also accounted in the estimation of the global volcanic CO2 budget.

  17. Reappraising the concept of massive transfusion in trauma

    NARCIS (Netherlands)

    Stanworth, Simon J.; Morris, Timothy P.; Gaarder, Christine; Goslings, J. Carel; Maegele, Marc; Cohen, Mitchell J.; König, Thomas C.; Davenport, Ross A.; Pittet, Jean-Francois; Johansson, Pär I.; Allard, Shubha; Johnson, Tony; Brohi, Karim

    2010-01-01

    The massive-transfusion concept was introduced to recognize the dilutional complications resulting from large volumes of packed red blood cells (PRBCs). Definitions of massive transfusion vary and lack supporting clinical evidence. Damage-control resuscitation regimens of modern trauma care are

  18. Massive-Star Magnetospheres: Now in 3-D!

    Science.gov (United States)

    Townsend, Richard

    Magnetic fields are unexpected in massive stars, due to the absence of a dynamo convection zone beneath their surface layers. Nevertheless, kilogauss-strength, ordered fields were detected in a small subset of these stars over three decades ago, and the intervening years have witnessed the steady expansion of this subset. A distinctive feature of magnetic massive stars is that they harbor magnetospheres --- circumstellar environments where the magnetic field interacts strongly with the star's radiation-driven wind, confining it and channelling it into energetic shocks. A wide range of observational signatures are associated with these magnetospheres, in diagnostics ranging from X-rays all the way through to radio emission. Moreover, these magnetospheres can play an important role in massive-star evolution, by amplifying angular momentum loss in the wind. Recent progress in understanding massive-star magnetospheres has largely been driven by magnetohydrodynamical (MHD) simulations. However, these have been restricted to two- dimensional axisymmetric configurations, with three-dimensional configurations possible only in certain special cases. These restrictions are limiting further progress; we therefore propose to develop completely general three-dimensional models for the magnetospheres of massive stars, on the one hand to understand their observational properties and exploit them as plasma-physics laboratories, and on the other to gain a comprehensive understanding of how they influence the evolution of their host star. For weak- and intermediate-field stars, the models will be based on 3-D MHD simulations using a modified version of the ZEUS-MP code. For strong-field stars, we will extend our existing Rigid Field Hydrodynamics (RFHD) code to handle completely arbitrary field topologies. To explore a putative 'photoionization-moderated mass loss' mechanism for massive-star magnetospheres, we will also further develop a photoionization code we have recently

  19. Key Technologies in Massive MIMO

    Directory of Open Access Journals (Sweden)

    Hu Qiang

    2018-01-01

    Full Text Available The explosive growth of wireless data traffic in the future fifth generation mobile communication system (5G has led researchers to develop new disruptive technologies. As an extension of traditional MIMO technology, massive MIMO can greatly improve the throughput rate and energy efficiency, and can effectively improve the link reliability and data transmission rate, which is an important research direction of 5G wireless communication. Massive MIMO technology is nearly three years to get a new technology of rapid development and it through a lot of increasing the number of antenna communication, using very duplex communication mode, make the system spectrum efficiency to an unprecedented height.

  20. Complicated Massive Choledochal Cyst: A Case Report | Okoromah ...

    African Journals Online (AJOL)

    Choledochal cysts are rare congenital anomalies resulting from congenital dilatations of the common bile duct (CBD) and usually they present during infancy with cholestatic jaundice. This report is on a massive-sized choledochal cyst associated with massive abdominal distention, respiratory embarrassment, postprandial ...

  1. Observations of Bright Massive Stars Using Small Size Telescopes

    Science.gov (United States)

    Beradze, Sopia; Kochiashvili, Nino

    2017-11-01

    The size of a telescope determines goals and objects of observations. During the latest decades it becomes more and more difficult to get photometric data of bright stars because most of telescopes of small sizes do not operate already. But there are rather interesting questions connected to the properties and evolution ties between different types of massive stars. Multi-wavelength photometric data are needed for solution of some of them. We are presenting our observational plans of bright Massive X-ray binaries, WR and LBV stars using a small size telescope. All these stars, which are presented in the poster are observational targets of Sopia Beradze's future PhD thesis. We already have got very interesting results on the reddening and possible future eruption of the massive hypergiant star P Cygni. Therefore, we decided to choose some additional interesting massive stars of different type for future observations. All Massive stars play an important role in the chemical evolution of galaxies because of they have very high mass loss - up to 10-4M⊙/a year. Our targets are on different evolutionary stages and three of them are the members of massive binaries. We plan to do UBVRI photometric observations of these stars using the 48 cm Cassegrain telescope of the Abastumani Astrophisical Observatory.

  2. Extensive tumor reconstruction with massive allograft

    International Nuclear Information System (INIS)

    Zulmi Wan

    1999-01-01

    Massive deep-frozen bone allografts were implanted in four patients after wide tumor resection. Two cases were solitary proximal femur metastases, secondary to Thyroid cancer and breast cancer respectively; while the other two cases were primary in nature i.e. Chondrosarcoma proximal humerus and Osteosarcoma proximal femur. All were treated with a cemented alloprosthesis except in the upper limb where shoulder fusion was performed. Augmentation of these techniques were done with a segment 1 free vascularised fibular composite graft to the proximal femur of breast secondaries and proximal humerus Chondrosarcoma. Coverage of the wound of the latter was also contributed by lattisimus dorsi flap. The present investigations demonstrated the massive bone allografts were intimately anchored by host bone and there had been no evidence of aseptic loosening at the graft-cement interface. This study showed that with good effective tumor control, reconstructive surgery with massive allografts represented a good alternative to prosthetic implants in tumors of the limbs. No infection was seen in all four cases

  3. Massive Splenomegaly in Children: Laparoscopic Versus Open Splenectomy

    OpenAIRE

    Hassan, Mohamed E.; Al Ali, Khalid

    2014-01-01

    Background and Objectives: Laparoscopic splenectomy for massive splenomegaly is still a controversial procedure as compared with open splenectomy. We aimed to compare the feasibility of laparoscopic splenectomy versus open splenectomy for massive splenomegaly from different surgical aspects in children. Methods: The data of children aged

  4. A Massively Parallel Face Recognition System

    Directory of Open Access Journals (Sweden)

    Lahdenoja Olli

    2007-01-01

    Full Text Available We present methods for processing the LBPs (local binary patterns with a massively parallel hardware, especially with CNN-UM (cellular nonlinear network-universal machine. In particular, we present a framework for implementing a massively parallel face recognition system, including a dedicated highly accurate algorithm suitable for various types of platforms (e.g., CNN-UM and digital FPGA. We study in detail a dedicated mixed-mode implementation of the algorithm and estimate its implementation cost in the view of its performance and accuracy restrictions.

  5. A Massively Parallel Face Recognition System

    Directory of Open Access Journals (Sweden)

    Ari Paasio

    2006-12-01

    Full Text Available We present methods for processing the LBPs (local binary patterns with a massively parallel hardware, especially with CNN-UM (cellular nonlinear network-universal machine. In particular, we present a framework for implementing a massively parallel face recognition system, including a dedicated highly accurate algorithm suitable for various types of platforms (e.g., CNN-UM and digital FPGA. We study in detail a dedicated mixed-mode implementation of the algorithm and estimate its implementation cost in the view of its performance and accuracy restrictions.

  6. Primordial inhomogeneities from massive defects during inflation

    Energy Technology Data Exchange (ETDEWEB)

    Firouzjahi, Hassan; Karami, Asieh; Rostami, Tahereh, E-mail: firouz@ipm.ir, E-mail: karami@ipm.ir, E-mail: t.rostami@ipm.ir [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2016-10-01

    We consider the imprints of local massive defects, such as a black hole or a massive monopole, during inflation. The massive defect breaks the background homogeneity. We consider the limit that the physical Schwarzschild radius of the defect is much smaller than the inflationary Hubble radius so a perturbative analysis is allowed. The inhomogeneities induced in scalar and gravitational wave power spectrum are calculated. We obtain the amplitudes of dipole, quadrupole and octupole anisotropies in curvature perturbation power spectrum and identify the relative configuration of the defect to CMB sphere in which large observable dipole asymmetry can be generated. We observe a curious reflection symmetry in which the configuration where the defect is inside the CMB comoving sphere has the same inhomogeneous variance as its mirror configuration where the defect is outside the CMB sphere.

  7. A dearth of short-period massive binaries in the young massive star forming region M 17. Evidence for a large orbital separation at birth?

    Science.gov (United States)

    Sana, H.; Ramírez-Tannus, M. C.; de Koter, A.; Kaper, L.; Tramper, F.; Bik, A.

    2017-03-01

    Aims: The formation of massive stars remains poorly understood and little is known about their birth multiplicity properties. Here, we aim to quantitatively investigate the strikingly low radial-velocity dispersion measured for a sample of 11 massive pre- and near-main-sequence stars (σ1D= 5.6 ± 0.2 km s-1) in the very young massive star forming region M 17, in order to obtain first constraints on the multiplicity properties of young massive stellar objects. Methods: We compute the radial-velocity dispersion of synthetic populations of massive stars for various multiplicity properties and we compare the obtained σ1D distributions to the observed value. We specifically investigate two scenarios: a low binary fraction and a dearth of short-period binary systems. Results: Simulated populations with low binary fractions () or with truncated period distributions (Pcutoff > 9 months) are able to reproduce the low σ1D observed within their 68%-confidence intervals. Furthermore, parent populations with fbin > 0.42 or Pcutoff < 47 d can be rejected at the 5%-significance level. Both constraints are in stark contrast with the high binary fraction and plethora of short-period systems in few Myr-old, well characterized OB-type populations. To explain the difference in the context of the first scenario would require a variation of the outcome of the massive star formation process. In the context of the second scenario, compact binaries must form later on, and the cut-off period may be related to physical length-scales representative of the bloated pre-main-sequence stellar radii or of their accretion disks. Conclusions: If the obtained constraints for the M 17's massive-star population are representative of the multiplicity properties of massive young stellar objects, our results may provide support to a massive star formation process in which binaries are initially formed at larger separations, then harden or migrate to produce the typical (untruncated) power-law period

  8. Massive stars in the Sagittarius Dwarf Irregular Galaxy

    Science.gov (United States)

    Garcia, Miriam

    2018-02-01

    Low metallicity massive stars hold the key to interpret numerous processes in the past Universe including re-ionization, starburst galaxies, high-redshift supernovae, and γ-ray bursts. The Sagittarius Dwarf Irregular Galaxy [SagDIG, 12+log(O/H) = 7.37] represents an important landmark in the quest for analogues accessible with 10-m class telescopes. This Letter presents low-resolution spectroscopy executed with the Gran Telescopio Canarias that confirms that SagDIG hosts massive stars. The observations unveiled three OBA-type stars and one red supergiant candidate. Pending confirmation from high-resolution follow-up studies, these could be the most metal-poor massive stars of the Local Group.

  9. Massive IIA string theory and Matrix theory compactification

    International Nuclear Information System (INIS)

    Lowe, David A.; Nastase, Horatiu; Ramgoolam, Sanjaye

    2003-01-01

    We propose a Matrix theory approach to Romans' massive Type IIA supergravity. It is obtained by applying the procedure of Matrix theory compactifications to Hull's proposal of the massive Type IIA string theory as M-theory on a twisted torus. The resulting Matrix theory is a super-Yang-Mills theory on large N three-branes with a space-dependent noncommutativity parameter, which is also independently derived by a T-duality approach. We give evidence showing that the energies of a class of physical excitations of the super-Yang-Mills theory show the correct symmetry expected from massive Type IIA string theory in a lightcone quantization

  10. Massively Parallel QCD

    International Nuclear Information System (INIS)

    Soltz, R; Vranas, P; Blumrich, M; Chen, D; Gara, A; Giampap, M; Heidelberger, P; Salapura, V; Sexton, J; Bhanot, G

    2007-01-01

    The theory of the strong nuclear force, Quantum Chromodynamics (QCD), can be numerically simulated from first principles on massively-parallel supercomputers using the method of Lattice Gauge Theory. We describe the special programming requirements of lattice QCD (LQCD) as well as the optimal supercomputer hardware architectures that it suggests. We demonstrate these methods on the BlueGene massively-parallel supercomputer and argue that LQCD and the BlueGene architecture are a natural match. This can be traced to the simple fact that LQCD is a regular lattice discretization of space into lattice sites while the BlueGene supercomputer is a discretization of space into compute nodes, and that both are constrained by requirements of locality. This simple relation is both technologically important and theoretically intriguing. The main result of this paper is the speedup of LQCD using up to 131,072 CPUs on the largest BlueGene/L supercomputer. The speedup is perfect with sustained performance of about 20% of peak. This corresponds to a maximum of 70.5 sustained TFlop/s. At these speeds LQCD and BlueGene are poised to produce the next generation of strong interaction physics theoretical results

  11. Interactions between massive dark halos and warped disks

    NARCIS (Netherlands)

    Kuijken, K; Persic, M; Salucci, P

    1997-01-01

    The normal mode theory for warping of galaxy disks, in which disks are assumed to be tilted with respect to the equator of a massive, flattened dark halo, assumes a rigid, fixed halo. However, consideration of the back-reaction by a misaligned disk on a massive particle halo shows there to be strong

  12. Reconstructing the massive black hole cosmic history through gravitational waves

    International Nuclear Information System (INIS)

    Sesana, Alberto; Gair, Jonathan; Berti, Emanuele; Volonteri, Marta

    2011-01-01

    The massive black holes we observe in galaxies today are the natural end-product of a complex evolutionary path, in which black holes seeded in proto-galaxies at high redshift grow through cosmic history via a sequence of mergers and accretion episodes. Electromagnetic observations probe a small subset of the population of massive black holes (namely, those that are active or those that are very close to us), but planned space-based gravitational wave observatories such as the Laser Interferometer Space Antenna (LISA) can measure the parameters of 'electromagnetically invisible' massive black holes out to high redshift. In this paper we introduce a Bayesian framework to analyze the information that can be gathered from a set of such measurements. Our goal is to connect a set of massive black hole binary merger observations to the underlying model of massive black hole formation. In other words, given a set of observed massive black hole coalescences, we assess what information can be extracted about the underlying massive black hole population model. For concreteness we consider ten specific models of massive black hole formation, chosen to probe four important (and largely unconstrained) aspects of the input physics used in structure formation simulations: seed formation, metallicity ''feedback'', accretion efficiency and accretion geometry. For the first time we allow for the possibility of 'model mixing', by drawing the observed population from some combination of the 'pure' models that have been simulated. A Bayesian analysis allows us to recover a posterior probability distribution for the ''mixing parameters'' that characterize the fractions of each model represented in the observed distribution. Our work shows that LISA has enormous potential to probe the underlying physics of structure formation.

  13. Massive vulval oedema in multiple pregnancies at Bugando Medical ...

    African Journals Online (AJOL)

    In this report we describe two cases of massive vulval oedema seen in two ... passage of yellow-whitish discharge per vagina (Figure 1). Examination revealed massive oedema, and digital vaginal examination was difficult due to tenderness.

  14. Remarks on search methods for stable, massive, elementary particles

    International Nuclear Information System (INIS)

    Perl, Martin L.

    2001-01-01

    This paper was presented at the 69th birthday celebration of Professor Eugene Commins, honoring his research achievements. These remarks are about the experimental techniques used in the search for new stable, massive particles, particles at least as massive as the electron. A variety of experimental methods such as accelerator experiments, cosmic ray studies, searches for halo particles in the galaxy and searches for exotic particles in bulk matter are described. A summary is presented of the measured limits on the existence of new stable, massive particle

  15. Dual descriptions of massive spin-2 particles in D=3+1

    International Nuclear Information System (INIS)

    Dalmazi, Denis

    2013-01-01

    Full text: Since the sixties (last century) one speculates on the effects of a possible (tiny) mass for the graviton. One expects a decrease in the gravitational interaction at large distances which comes handy regarding the experimental data of the last 15 years on the accelerated expansion of the universe. There has been a growing interest in massive quantum gravity in the last years. Almost all recent works are built up on the top of a free (quadratic) action for a massive spin-2 particle known as massive Fierz-Pauli (FP) theory which has first appeared in 1939. In this theory the basic field is a symmetric rank-2 tensor. It is a common belief in the massive gravity community that the massive FP theory is the unique self-consistent (ghost free, Poincare covariant, correct number of degrees of freedom) description of massive spin-2 particles in terms of a rank-2 tensor. We have shown recently that there are other possibilities if we start with a general (non-symmetric) rank-2 tensor. Here we show how our previous work is related with the well known massive FP theory via the introduction of spectators fields of rank-0 (scalar) and rank-1 (vector). We comment on the introduction of interacting vertices and how they affect the free duality with the massive FP theory (author)

  16. Quark–hadron phase transition in massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Atazadeh, K., E-mail: atazadeh@azaruniv.ac.ir

    2016-11-15

    We study the quark–hadron phase transition in the framework of massive gravity. We show that the modification of the FRW cosmological equations leads to the quark–hadron phase transition in the early massive Universe. Using numerical analysis, we consider that a phase transition based on the chiral symmetry breaking after the electroweak transition, occurred at approximately 10 μs after the Big Bang to convert a plasma of free quarks and gluons into hadrons.

  17. A rare case of massive hepatosplenomegaly due to acute ...

    African Journals Online (AJOL)

    massive hepatosplenomegaly include chronic lymphoproliferative malignancies, infections (malaria, leishmaniasis) and glycogen storage diseases (Gaucher's disease).[4] In our case the probable causes of the massive hepatosplenomegaly were a combination of late presentation after symptom onset, leukaemic infiltration.

  18. VizieR Online Data Catalog: The Red MSX Source Survey: massive protostars (Lumsden+, 2013)

    Science.gov (United States)

    Lumsden, S. L.; Hoare, M. G.; Urquhart, J. S.; Oudmaijer, R. D.; Davies, B.; Mottram, J. C.; Cooper, H. D. B.; Moore, T. J. T.

    2013-10-01

    The Midcourse Space Experiment (MSX) satellite mission included an astronomy experiment (SPIRIT III) designed to acquire mid-infrared photometry of sources in the Galactic plane (bMSX had a raw resolution of 18.3", a beam size 50 times smaller than that of IRAS at 12 and 25um. MSX observed six bands between 4 and 21um, of which the four between 8 and 21um are sensitive to astronomical sources. We used v2.3 of the MSX PSC (Egan et al. 2003, Cat. V/114) as our basic input, restricting ourselves to the main Galactic plane catalog, which excludes sources seen in only a single observing pass and those seen in multiple passes but with low significance. We restricted our catalog to 10

  19. Magnetic fields and massive star formation

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qizhou; Keto, Eric; Ho, Paul T. P.; Ching, Tao-Chung; Chen, How-Huan [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Qiu, Keping [School of Astronomy and Space Science, Nanjing University, 22 Hankou Road, Nanjing 210093 (China); Girart, Josep M.; Juárez, Carmen [Institut de Ciències de l' Espai, (CSIC-IEEC), Campus UAB, Facultat de Ciències, C5p 2, E-08193 Bellaterra, Catalonia (Spain); Liu, Hauyu; Tang, Ya-Wen; Koch, Patrick M.; Rao, Ramprasad; Lai, Shih-Ping [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Li, Zhi-Yun [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Frau, Pau [Observatorio Astronómico Nacional, Alfonso XII, 3 E-28014 Madrid (Spain); Li, Hua-Bai [Department of Physics, The Chinese University of Hong Kong, Hong Kong (China); Padovani, Marco [Laboratoire de Radioastronomie Millimétrique, UMR 8112 du CNRS, École Normale Supérieure et Observatoire de Paris, 24 rue Lhomond, F-75231 Paris Cedex 05 (France); Bontemps, Sylvain [OASU/LAB-UMR5804, CNRS, Université Bordeaux 1, F-33270 Floirac (France); Csengeri, Timea, E-mail: qzhang@cfa.harvard.edu [Max Planck Institute for Radioastronomy, Auf dem Hügel 69, D-53121 Bonn (Germany)

    2014-09-10

    Massive stars (M > 8 M {sub ☉}) typically form in parsec-scale molecular clumps that collapse and fragment, leading to the birth of a cluster of stellar objects. We investigate the role of magnetic fields in this process through dust polarization at 870 μm obtained with the Submillimeter Array (SMA). The SMA observations reveal polarization at scales of ≲0.1 pc. The polarization pattern in these objects ranges from ordered hour-glass configurations to more chaotic distributions. By comparing the SMA data with the single dish data at parsec scales, we found that magnetic fields at dense core scales are either aligned within 40° of or perpendicular to the parsec-scale magnetic fields. This finding indicates that magnetic fields play an important role during the collapse and fragmentation of massive molecular clumps and the formation of dense cores. We further compare magnetic fields in dense cores with the major axis of molecular outflows. Despite a limited number of outflows, we found that the outflow axis appears to be randomly oriented with respect to the magnetic field in the core. This result suggests that at the scale of accretion disks (≲ 10{sup 3} AU), angular momentum and dynamic interactions possibly due to close binary or multiple systems dominate over magnetic fields. With this unprecedentedly large sample of massive clumps, we argue on a statistical basis that magnetic fields play an important role during the formation of dense cores at spatial scales of 0.01-0.1 pc in the context of massive star and cluster star formation.

  20. Massive antenatal fetomaternal hemorrhage

    DEFF Research Database (Denmark)

    Dziegiel, Morten Hanefeld; Koldkjaer, Ole; Berkowicz, Adela

    2005-01-01

    Massive fetomaternal hemorrhage (FMH) can lead to life-threatening anemia. Quantification based on flow cytometry with anti-hemoglobin F (HbF) is applicable in all cases but underestimation of large fetal bleeds has been reported. A large FMH from an ABO-compatible fetus allows an estimation...

  1. WHAT SETS THE INITIAL ROTATION RATES OF MASSIVE STARS?

    International Nuclear Information System (INIS)

    Rosen, Anna L.; Krumholz, Mark R.; Ramirez-Ruiz, Enrico

    2012-01-01

    The physical mechanisms that set the initial rotation rates in massive stars are a crucial unknown in current star formation theory. Observations of young, massive stars provide evidence that they form in a similar fashion to their low-mass counterparts. The magnetic coupling between a star and its accretion disk may be sufficient to spin down low-mass pre-main-sequence (PMS) stars to well below breakup at the end stage of their formation when the accretion rate is low. However, we show that these magnetic torques are insufficient to spin down massive PMS stars due to their short formation times and high accretion rates. We develop a model for the angular momentum evolution of stars over a wide range in mass, considering both magnetic and gravitational torques. We find that magnetic torques are unable to spin down either low-mass or high-mass stars during the main accretion phase, and that massive stars cannot be spun down significantly by magnetic torques during the end stage of their formation either. Spin-down occurs only if massive stars' disk lifetimes are substantially longer or their magnetic fields are much stronger than current observations suggest.

  2. Magmatic tempo of Earth's youngest exposed plutons as revealed by detrital zircon U-Pb geochronology.

    Science.gov (United States)

    Ito, Hisatoshi; Spencer, Christopher J; Danišík, Martin; Hoiland, Carl W

    2017-09-29

    Plutons are formed by protracted crystallization of magma bodies several kilometers deep within the crust. The temporal frequency (i.e. episodicity or 'tempo') of pluton formation is often poorly constrained as timescales of pluton formation are largely variable and may be difficult to resolve by traditional dating methods. The Hida Mountain Range of central Japan hosts the youngest exposed plutons on Earth and provides a unique opportunity to assess the temporal and spatial characteristics of pluton emplacement at high temporal resolution. Here we apply U-Pb geochronology to zircon from the Quaternary Kurobegawa Granite and Takidani Granodiorite in the Hida Mountain Range, and from modern river sediments whose fluvial catchments include these plutons in order to reconstruct their formation. The U-Pb data demonstrate that the Kurobegawa pluton experienced two magmatic pulses at ~2.3 Ma and ~0.9 Ma; whereas, to the south, the Takidani pluton experienced only one magmatic pulse at ~1.6 Ma. These data imply that each of these magmatic systems were both spatially and temporally distinct. The apparent ~0.7 Myr age gap between each of the three magmatic pulses potentially constrains the recharge duration of a single pluton within a larger arc plutonic complex.

  3. Phases of massive gravity

    CERN Document Server

    Dubovsky, S L

    2004-01-01

    We systematically study the most general Lorentz-violating graviton mass invariant under three-dimensional Eucledian group using the explicitly covariant language. We find that at general values of mass parameters the massive graviton has six propagating degrees of freedom, and some of them are ghosts or lead to rapid classical instabilities. However, there is a number of different regions in the mass parameter space where massive gravity can be described by a consistent low-energy effective theory with cutoff $\\sim\\sqrt{mM_{Pl}}$ free of rapid instabilities and vDVZ discontinuity. Each of these regions is characterized by certain fine-tuning relations between mass parameters, generalizing the Fierz--Pauli condition. In some cases the required fine-tunings are consequences of the existence of the subgroups of the diffeomorphism group that are left unbroken by the graviton mass. We found two new cases, when the resulting theories have a property of UV insensitivity, i.e. remain well behaved after inclusion of ...

  4. The Massive Compound Cofre de Perote Shield Volcano: a Volcanological Oddity in the Eastern Mexican Volcanic Belt

    Science.gov (United States)

    Siebert, L.; Carrasco-Nunez, G.; Diaz-Castellon, R.; Rodriguez, J. L.

    2007-12-01

    Cofre de Perote volcano anchors the northern end of the easternmost of several volcanic chains orthogonal to the E-W trend of the Mexican Volcanic Belt (MVB). Its structure, geochemistry, and volcanic history diverge significantly from that of the large dominantly andesitic stratovolcanoes that have been the major focus of research efforts in the MVB. Andesitic-trachyandesitic to dacitic-trachydacitic effusive activity has predominated at Cofre de Perote, forming a massive low-angle compound shield volcano that dwarfs the more typical smaller shield volcanoes of the central and western MVB. The 4282-m-high volcano overlooking Xalapa, the capital city of the State of Veracruz, has a diameter of about 30 km and rises more than 3000 m above the coastal plain to the east. Repeated edifice collapse has left massive horseshoe-shaped scarps that truncate the eastern side of the edifice. Five major evolutionary stages characterize the growth of this compound volcano: 1) emplacement of a multiple-vent dome complex forming the basal structure of Cofre de Perote around 1.9-1.3 Ma; 2) construction of the basal part of the compound shield volcano from at least two main upper-edifice vents at about 400 ka; 3) effusion of the summit dome-like lavas through multiple vents at ca. 240 ka; 4) eruption of a large number of geochemically diverse, alkaline and calc-alkaline Pleistocene-to-Holocene monogenetic cones (likely related to regional volcanism) through the flanks of the Cofre de Perote edifice; 5) late-stage, large-volume edifice collapse on at least two occasions (ca. 40 ka and ca. 10 ka), producing long-runout debris avalanches that traveled to the east. An undated tephra layer from Cofre de Perote overlies deposits likely of the youngest collapse. Cofre de Perote is one of several volcanoes in the roughly N-S-trending chain that has undergone major edifice collapse. As with Citlaltepetl (Pico de Orizaba) and Las Cumbres volcanoes, Cofre de Perote was constructed at the

  5. SALT Spectroscopy of Evolved Massive Stars

    Science.gov (United States)

    Kniazev, A. Y.; Gvaramadze, V. V.; Berdnikov, L. N.

    2017-06-01

    Long-slit spectroscopy with the Southern African Large Telescope (SALT) of central stars of mid-infrared nebulae detected with the Spitzer Space Telescope and Wide-Field Infrared Survey Explorer (WISE) led to the discovery of numerous candidate luminous blue variables (cLBVs) and other rare evolved massive stars. With the recent advent of the SALT fiber-fed high-resolution echelle spectrograph (HRS), a new perspective for the study of these interesting objects is appeared. Using the HRS we obtained spectra of a dozen newly identified massive stars. Some results on the recently identified cLBV Hen 3-729 are presented.

  6. Massive Multiplayer Online Gaming: A Research Framework for Military Training and Education

    Science.gov (United States)

    2005-03-01

    Effects of violent video games on aggressive behavior, aggressive cognition, physiological arousal, and prosocial behavior: A meta...Massive Multiplayer Online Games 2.1 Massive Multiplayer Online Games Defined Massive multiplayer online games (MMOGs) allow users to interact ...2002) suggested various principles for group design and interactions in “massively multiplayer games ” (p. 1). In particular, he agued that it

  7. Dynamical structure of the inner 100 AU of the deeply embedded protostar IRAS 16293–2422

    Energy Technology Data Exchange (ETDEWEB)

    Favre, Cécile; Field, David [Department of Physics and Astronomy, University of Aarhus, Ny Munkegade 120, DK-8000 Aarhus C (Denmark); Jørgensen, Jes K.; Brinch, Christian; Bisschop, Suzanne E. [Centre for Star and Planet Formation, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Bourke, Tyler L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street MS42, Cambridge, MA 02138 (United States); Hogerheijde, Michiel R. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300-RA Leiden (Netherlands); Frieswijk, Wilfred W. F., E-mail: cfavre@umich.edu [Netherlands Institute for Radio Astronomy, Postbus 2, 7990-AA Dwingeloo (Netherlands)

    2014-07-20

    A fundamental question about the early evolution of low-mass protostars is when circumstellar disks may form. High angular resolution observations of molecular transitions in the (sub)millimeter wavelength windows make it possible to investigate the kinematics of the gas around newly formed stars, for example, to identify the presence of rotation and infall. IRAS 16293–2422 was observed with the extended Submillimeter Array (eSMA) resulting in subarcsecond resolution (0.''46 × 0.''29, i.e., ∼55 × 35 AU) images of compact emission from the C{sup 17}O (3-2) and C{sup 34}S (7-6) transitions at 337 GHz (0.89 mm). To recover the more extended emission we have combined the eSMA data with SMA observations of the same molecules. The emission of C{sup 17}O (3-2) and C{sup 34}S (7-6) both show a velocity gradient oriented along a northeast-southwest direction with respect to the continuum marking the location of one of the components of the binary, IRAS 16293A. Our combined eSMA and SMA observations show that the velocity field on the 50-400 AU scales is consistent with a rotating structure. It cannot be explained by simple Keplerian rotation around a single point mass but rather needs to take into account the enclosed envelope mass at the radii where the observed lines are excited. We suggest that IRAS 16293–2422 could be among the best candidates to observe a pseudo-disk with future high angular resolution observations.

  8. Cosmological stability bound in massive gravity and bigravity

    International Nuclear Information System (INIS)

    Fasiello, Matteo; Tolley, Andrew J.

    2013-01-01

    We give a simple derivation of a cosmological bound on the graviton mass for spatially flat FRW solutions in massive gravity with an FRW reference metric and for bigravity theories. This bound comes from the requirement that the kinetic term of the helicity zero mode of the graviton is positive definite. The bound is dependent only on the parameters in the massive gravity potential and the Hubble expansion rate for the two metrics. We derive the decoupling limit of bigravity and FRW massive gravity, and use this to give an independent derivation of the cosmological bound. We recover our previous results that the tension between satisfying the Friedmann equation and the cosmological bound is sufficient to rule out all observationally relevant FRW solutions for massive gravity with an FRW reference metric. In contrast, in bigravity this tension is resolved due to different nature of the Vainshtein mechanism. We find that in bigravity theories there exists an FRW solution with late-time self-acceleration for which the kinetic terms for the helicity-2, helicity-1 and helicity-0 are generically nonzero and positive making this a compelling candidate for a model of cosmic acceleration. We confirm that the generalized bound is saturated for the candidate partially massless (bi)gravity theories but the existence of helicity-1/helicity-0 interactions implies the absence of the conjectured partially massless symmetry for both massive gravity and bigravity

  9. Massive gravity and Fierz-Pauli theory

    Energy Technology Data Exchange (ETDEWEB)

    Blasi, Alberto [Universita di Genova, Dipartimento di Fisica, Genova (Italy); Maggiore, Nicola [I.N.F.N.-Sezione di Genova, Genoa (Italy)

    2017-09-15

    Linearized gravity is considered as an ordinary gauge field theory. This implies the need for gauge fixing in order to have well-defined propagators. Only after having achieved this, the most general mass term is added. The aim of this paper is to study of the degrees of freedom of the gauge fixed theory of linearized gravity with mass term. The main result is that, even outside the usual Fierz-Pauli constraint on the mass term, it is possible to choose a gauge fixing belonging to the Landau class, which leads to a massive theory of gravity with the five degrees of freedom of a spin-2 massive particle. (orig.)

  10. Massive gravity and Fierz-Pauli theory

    International Nuclear Information System (INIS)

    Blasi, Alberto; Maggiore, Nicola

    2017-01-01

    Linearized gravity is considered as an ordinary gauge field theory. This implies the need for gauge fixing in order to have well-defined propagators. Only after having achieved this, the most general mass term is added. The aim of this paper is to study of the degrees of freedom of the gauge fixed theory of linearized gravity with mass term. The main result is that, even outside the usual Fierz-Pauli constraint on the mass term, it is possible to choose a gauge fixing belonging to the Landau class, which leads to a massive theory of gravity with the five degrees of freedom of a spin-2 massive particle. (orig.)

  11. The Evolution of Low-Metallicity Massive Stars

    Science.gov (United States)

    Szécsi, Dorottya

    2016-07-01

    Massive star evolution taking place in astrophysical environments consisting almost entirely of hydrogen and helium - in other words, low-metallicity environments - is responsible for some of the most intriguing and energetic cosmic phenomena, including supernovae, gamma-ray bursts and gravitational waves. This thesis aims to investigate the life and death of metal-poor massive stars, using theoretical simulations of the stellar structure and evolution. Evolutionary models of rotating, massive stars (9-600 Msun) with an initial metal composition appropriate for the low-metallicity dwarf galaxy I Zwicky 18 are presented and analyzed. We find that the fast rotating models (300 km/s) become a particular type of objects predicted only at low-metallicity: the so-called Transparent Wind Ultraviolet INtense (TWUIN) stars. TWUIN stars are fast rotating massive stars that are extremely hot (90 kK), very bright and as compact as Wolf-Rayet stars. However, as opposed to Wolf-Rayet stars, their stellar winds are optically thin. As these hot objects emit intense UV radiation, we show that they can explain the unusually high number of ionizing photons of the dwarf galaxy I Zwicky 18, an observational quantity that cannot be understood solely based on the normal stellar population of this galaxy. On the other hand, we find that the most massive, slowly rotating models become another special type of object predicted only at low-metallicity: core-hydrogen-burning cool supergiant stars. Having a slow but strong stellar wind, these supergiants may be important contributors in the chemical evolution of young galactic globular clusters. In particular, we suggest that the low mass stars observed today could form in a dense, massive and cool shell around these, now dead, supergiants. This scenario is shown to explain the anomalous surface abundances observed in these low mass stars, since the shell itself, having been made of the mass ejected by the supergiant’s wind, contains nuclear

  12. On the spontaneous breakdown of massive gravities in 2 + 1 dimension

    International Nuclear Information System (INIS)

    Aragone, C.; Aria, P.J.; Andes Merida, Univ.; Khoudeir, A.

    1997-01-01

    This paper shows that locally Lorentz-invariant, third-order, topological massive gravity cannot be broken down either to the local diffeomorphism subgroup or to the rigid Poincare' group. On the other hand, the recently formulated, locally diffeomorphism-invariant, second order massive tradic (translational) Chern-Simons gravity breaks down on rigid Minkowski space to a double massive spin-two system. This flat double massive action is the uniform spin-two generalization of the Maxwell-Chern-Simons-Proca system which one is left with after U(1) Abelian gauge invariance breaks down in the presence of a sextic Higgs potential

  13. The dynamics of massive starless cores with ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Jonathan C. [Departments of Astronomy and Physics, University of Florida, Gainesville, FL 32611 (United States); Kong, Shuo; Butler, Michael J. [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States); Caselli, Paola [School of Physics and Astronomy, The University of Leeds, Leeds LS2 9JT (United Kingdom); Fontani, Francesco [INAF-Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125 Firenze (Italy)

    2013-12-20

    How do stars that are more massive than the Sun form, and thus how is the stellar initial mass function (IMF) established? Such intermediate- and high-mass stars may be born from relatively massive pre-stellar gas cores, which are more massive than the thermal Jeans mass. The turbulent core accretion model invokes such cores as being in approximate virial equilibrium and in approximate pressure equilibrium with their surrounding clump medium. Their internal pressure is provided by a combination of turbulence and magnetic fields. Alternatively, the competitive accretion model requires strongly sub-virial initial conditions that then lead to extensive fragmentation to the thermal Jeans scale, with intermediate- and high-mass stars later forming by competitive Bondi-Hoyle accretion. To test these models, we have identified four prime examples of massive (∼100 M {sub ☉}) clumps from mid-infrared extinction mapping of infrared dark clouds. Fontani et al. found high deuteration fractions of N{sub 2}H{sup +} in these objects, which are consistent with them being starless. Here we present ALMA observations of these four clumps that probe the N{sub 2}D{sup +} (3-2) line at 2.''3 resolution. We find six N{sub 2}D{sup +} cores and determine their dynamical state. Their observed velocity dispersions and sizes are broadly consistent with the predictions of the turbulent core model of self-gravitating, magnetized (with Alfvén Mach number m{sub A} ∼ 1) and virialized cores that are bounded by the high pressures of their surrounding clumps. However, in the most massive cores, with masses up to ∼60 M {sub ☉}, our results suggest that moderately enhanced magnetic fields (so that m{sub A} ≅ 0.3) may be needed for the structures to be in virial and pressure equilibrium. Magnetically regulated core formation may thus be important in controlling the formation of massive cores, inhibiting their fragmentation, and thus helping to establish the stellar IMF.

  14. DISENTANGLING THE ENTANGLED: OBSERVATIONS AND ANALYSIS OF THE TRIPLE NON-COEVAL PROTOSTELLAR SYSTEM VLA1623

    International Nuclear Information System (INIS)

    Murillo, Nadia M.; Lai, Shih-Ping

    2013-01-01

    Commonplace at every evolutionary stage, multiple protostellar systems (MPSs) are thought to be formed through fragmentation, but it is unclear when and how. The youngest MPSs, which have not yet undergone much evolution, provide important constraints to this question. It is then of interest to disentangle early stage MPSs. In this Letter we present the results of our work on VLA1623 using our observations and archival data from the Submillimeter Array. Our continuum and line observations trace VLA1623's components, outflow, and envelope, revealing unexpected characteristics. We construct the spectral energy distribution (SED) for each component using the results of our work and data from literature, as well as derive physical parameters from continuum and perform a simple kinematical analysis of the circumstellar material. Our results show VLA1623 to be a triple non-coeval system composed of VLA1623A, B, and W, with each source driving its own outflow and unevenly distributed circumstellar material. From the SED, physical parameters, and IR emission we conclude that VLA1623A and W are Class 0 and Class I protostars, respectively, and together drive the bulk of the observed outflow. Furthermore, we find two surprising results, first the presence of a rotating disk-like structure about VLA1623A with indications of pure Keplerian rotation, which, if real, would make it one of the first evidence of Keplerian disk structures around Class 0 protostars. Second, we find VLA1623B to be a bona fide extremely young protostellar object between the starless core and Class 0 stages.

  15. Massive and mass-less Yang-Mills and gravitational fields

    NARCIS (Netherlands)

    Veltman, M.J.G.; Dam, H. van

    1970-01-01

    Massive and mass-less Yang-Mills and gravitational fields are considered. It is found that there is a discrete difference between the zero-mass theories and the very small, but non-zero mass theories. In the case of gravitation, comparison of massive and mass-less theories with experiment, in

  16. Massive weight loss-induced mechanical plasticity in obese gait

    NARCIS (Netherlands)

    Hortobagyi, Tibor; Herring, Cortney; Pories, Walter J.; Rider, Patrick; DeVita, Paul

    2011-01-01

    Hortobagyi T, Herring C, Pories WJ, Rider P, DeVita P. Massive weight loss-induced mechanical plasticity in obese gait. J Appl Physiol 111: 1391-1399, 2011. First published August 18, 2011; doi:10.1152/japplphysiol.00291.2011.-We examined the hypothesis that metabolic surgery-induced massive weight

  17. Simulating nonlinear cosmological structure formation with massive neutrinos

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Arka; Dalal, Neal, E-mail: abanerj6@illinois.edu, E-mail: dalaln@illinois.edu [Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801-3080 (United States)

    2016-11-01

    We present a new method for simulating cosmologies that contain massive particles with thermal free streaming motion, such as massive neutrinos or warm/hot dark matter. This method combines particle and fluid descriptions of the thermal species to eliminate the shot noise known to plague conventional N-body simulations. We describe this method in detail, along with results for a number of test cases to validate our method, and check its range of applicability. Using this method, we demonstrate that massive neutrinos can produce a significant scale-dependence in the large-scale biasing of deep voids in the matter field. We show that this scale-dependence may be quantitatively understood using an extremely simple spherical expansion model which reproduces the behavior of the void bias for different neutrino parameters.

  18. Simulating nonlinear cosmological structure formation with massive neutrinos

    International Nuclear Information System (INIS)

    Banerjee, Arka; Dalal, Neal

    2016-01-01

    We present a new method for simulating cosmologies that contain massive particles with thermal free streaming motion, such as massive neutrinos or warm/hot dark matter. This method combines particle and fluid descriptions of the thermal species to eliminate the shot noise known to plague conventional N-body simulations. We describe this method in detail, along with results for a number of test cases to validate our method, and check its range of applicability. Using this method, we demonstrate that massive neutrinos can produce a significant scale-dependence in the large-scale biasing of deep voids in the matter field. We show that this scale-dependence may be quantitatively understood using an extremely simple spherical expansion model which reproduces the behavior of the void bias for different neutrino parameters.

  19. THE TWO MOLECULAR CLOUDS IN RCW 38: EVIDENCE FOR THE FORMATION OF THE YOUNGEST SUPER STAR CLUSTER IN THE MILKY WAY TRIGGERED BY CLOUD–CLOUD COLLISION

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Y.; Torii, K.; Ohama, A.; Hasegawa, K.; Hattori, Y.; Sano, H.; Yamamoto, H.; Tachihara, K. [Department of Physics, Nagoya University, Chikusa-ku, Nagoya, Aichi 464-8601 (Japan); Ohashi, S.; Fujii, K.; Kuwahara, S. [Department of Astronomy, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 133-0033 (Japan); Mizuno, N.; Okuda, T. [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Dawson, J. R. [Department of Physics and Astronomy and MQ Research Centre in Astronomy, Astrophysics and Astrophotonics, Macquarie University, NSW 2109 (Australia); Onishi, T. [Department of Astrophysics, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531 (Japan); Mizuno, A., E-mail: torii@a.phys.nagoya-u.ac.jp [Solar-Terrestrial Environment Laboratory, Nagoya University, Chikusa-ku, Nagoya 464-8601 (Japan)

    2016-03-20

    We present distributions of two molecular clouds having velocities of 2 and 14 km s{sup −1} toward RCW 38, the youngest super star cluster in the Milky Way, in the {sup 12}CO J = 1–0 and 3–2 and {sup 13}CO J = 1–0 transitions. The two clouds are likely physically associated with the cluster as verified by the high intensity ratio of the J = 3–2 emission to the J = 1–0 emission, the bridging feature connecting the two clouds in velocity, and their morphological correspondence with the infrared dust emission. The velocity difference is too large for the clouds to be gravitationally bound. We frame a hypothesis that the two clouds are colliding with each other by chance to trigger formation of the ∼20 O stars that are localized within ∼0.5 pc of the cluster center in the 2 km s{sup −1} cloud. We suggest that the collision is currently continuing toward part of the 2 km s{sup −1} cloud where the bridging feature is localized. This is the third super star cluster alongside Westerlund 2 and NGC 3603 where cloud–cloud collision has triggered the cluster formation. RCW 38 is the youngest super star cluster in the Milky Way, holding a possible sign of on-going O star formation, and is a promising site where we may be able to witness the moment of O star formation.

  20. Stochastic spin-one massive field

    International Nuclear Information System (INIS)

    Lim, S.C.

    1984-01-01

    Stochastic quantization schemes of Nelson and Parisi and Wu are applied to a spin-one massive field. Unlike the scalar case Nelson's stochastic spin-one massive field cannot be identified with the corresponding euclidean field even if the fourth component of the euclidean coordinate is taken as equal to the real physical time. In the Parisi-Wu quantization scheme the stochastic Proca vector field has a similar property as the scalar field; which has an asymptotically stationary part and a transient part. The large equal-time limit of the expectation values of the stochastic Proca field are equal to the expectation values of the corresponding euclidean field. In the Stueckelberg formalism the Parisi-Wu scheme gives rise to a stochastic vector field which differs from the massless gauge field in that the gauge cannot be fixed by the choice of boundary condition. (orig.)

  1. Minimal theory of massive gravity

    International Nuclear Information System (INIS)

    De Felice, Antonio; Mukohyama, Shinji

    2016-01-01

    We propose a new theory of massive gravity with only two propagating degrees of freedom. While the homogeneous and isotropic background cosmology and the tensor linear perturbations around it are described by exactly the same equations as those in the de Rham–Gabadadze–Tolley (dRGT) massive gravity, the scalar and vector gravitational degrees of freedom are absent in the new theory at the fully nonlinear level. Hence the new theory provides a stable nonlinear completion of the self-accelerating cosmological solution that was originally found in the dRGT theory. The cosmological solution in the other branch, often called the normal branch, is also rendered stable in the new theory and, for the first time, makes it possible to realize an effective equation-of-state parameter different from (either larger or smaller than) −1 without introducing any extra degrees of freedom.

  2. Generalized massive gravity in arbitrary dimensions and its Hamiltonian formulation

    International Nuclear Information System (INIS)

    Huang, Qing-Guo; Zhang, Ke-Chao; Zhou, Shuang-Yong

    2013-01-01

    We extend the four-dimensional de Rham-Gabadadze-Tolley (dRGT) massive gravity model to a general scalar massive-tensor theory in arbitrary dimensions, coupling a dRGT massive graviton to multiple scalars and allowing for generic kinetic and mass matrix mixing between the massive graviton and the scalars, and derive its Hamiltonian formulation and associated constraint system. When passing to the Hamiltonian formulation, two different sectors arise: a general sector and a special sector. Although obtained via different ways, there are two second class constraints in either of the two sectors, eliminating the BD ghost. However, for the special sector, there are still ghost instabilities except for the case of two dimensions. In particular, for the special sector with one scalar, there is a ''second BD ghost''

  3. Massive Black Hole Binaries: Dynamical Evolution and Observational Signatures

    Directory of Open Access Journals (Sweden)

    M. Dotti

    2012-01-01

    Full Text Available The study of the dynamical evolution of massive black hole pairs in mergers is crucial in the context of a hierarchical galaxy formation scenario. The timescales for the formation and the coalescence of black hole binaries are still poorly constrained, resulting in large uncertainties in the expected rate of massive black hole binaries detectable in the electromagnetic and gravitational wave spectra. Here, we review the current theoretical understanding of the black hole pairing in galaxy mergers, with a particular attention to recent developments and open issues. We conclude with a review of the expected observational signatures of massive binaries and of the candidates discussed in literature to date.

  4. QUALITY OF LIFE IN PATIENTS AFTER MASSIVE PULMONARY EMBOLISM

    Directory of Open Access Journals (Sweden)

    Dragan Kovačić

    2004-04-01

    Full Text Available Background. Pulmonary embolism is a disease, which has a 30% mortality if untreated, while an early diagnosis and treatment lowers it to 2–8%. Health related quality of life (HRQL of patients who survived massive pulmonary embolism is unknown in published literature. In our research we tried to apply experience of foreign experts in estimation of quality of life in some other diseases to the field of massive pulmonary embolism.Patients and methods. Eighteen patients with shock or hypotension due to massive pulmonary embolism, treated with thrombolysis, between July 1993 and November 2000, were prospectively included in the study. Control group included 18 gender and age matched persons. There were no significant differences regarding demographic data between the groups. The HRQL and aerobic capacity of patients and control group were tested with short questions and questionnaires (Veterans brief, self administered questionnaire (VSAQ, EuroQuality questionnaire (EQ, Living with heart failure questionnaire (LlhHF. With LlhHF physical (F-LlhHF and emotional (E-LlhHF HRQL was assessed at hospitalization and 12 months later.Results. One year after massive pulmonary embolism aerobic capacity (–9.5%, p < 0.017 and HRQL (EQ (–34.5%, F-LlhHF (–85.4%, E-LlhHF (–48.7% decreased in massive pulmonary embolism group compared to aerobic capacity 6 months before massive pulmonary embolism and HRQL. Heart rate before thrombolysis correlated with aerobic capacity (r = 0.627, p < 0.01, EQ (r = 0.479, p < 0.01 and F-LlhHF (r = 0.479, p = 0.04 1 year after massive pulmonary embolism. Total pulmonary resistance at 12 hours after start of treatment correlated with aerobic capacity at 1 year (r = 0.354, p < 0.01.With short question (»Did you need any help in everyday activities in last 2 weeks?« we successfully separated patients with decreased HRQL in EQ (74.3 ± 20.8 vs. 24.5 ± 20.7, p < 0.001 and F-LlhHF (21.7 ± 6.7 vs. 32.8 ± 4.3, p < 0.01, but we

  5. Collaborative Calibrated Peer Assessment in Massive Open Online Courses

    Science.gov (United States)

    Boudria, Asma; Lafifi, Yacine; Bordjiba, Yamina

    2018-01-01

    The free nature and open access courses in the Massive Open Online Courses (MOOC) allow the facilities of disseminating information for a large number of participants. However, the "massive" propriety can generate many pedagogical problems, such as the assessment of learners, which is considered as the major difficulty facing in the…

  6. Radiology in massive hemoptysis

    International Nuclear Information System (INIS)

    Marini, M.; Castro, J.M.; Gayol, A.; Aguilera, C.; Blanco, M.; Beraza, A.; Torres, J.

    1995-01-01

    We have reviewed our experience in diseases involving massive hemoptysis, systematizing the most common causes which include tuberculosis, bronchiectasis and cancer of the lung. Other less frequent causes, such as arteriovenous fistula, Aspergilloma, aneurysm, etc.; are also evaluated, and the most demonstrative images of each produced by the most precise imaging methods for their assessment are presented

  7. Massively Parallel Computing: A Sandia Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Dosanjh, Sudip S.; Greenberg, David S.; Hendrickson, Bruce; Heroux, Michael A.; Plimpton, Steve J.; Tomkins, James L.; Womble, David E.

    1999-05-06

    The computing power available to scientists and engineers has increased dramatically in the past decade, due in part to progress in making massively parallel computing practical and available. The expectation for these machines has been great. The reality is that progress has been slower than expected. Nevertheless, massively parallel computing is beginning to realize its potential for enabling significant break-throughs in science and engineering. This paper provides a perspective on the state of the field, colored by the authors' experiences using large scale parallel machines at Sandia National Laboratories. We address trends in hardware, system software and algorithms, and we also offer our view of the forces shaping the parallel computing industry.

  8. A spin-4 analog of 3D massive gravity

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Kovacevic, Marija; Rosseel, Jan; Townsend, Paul K.; Yin, Yihao

    2011-01-01

    A sixth-order, but ghost-free, gauge-invariant action is found for a fourth-rank symmetric tensor potential in a three-dimensional (3D) Minkowski spacetime. It propagates two massive modes of spin 4 that are interchanged by parity and is thus a spin-4 analog of linearized 'new massive gravity'. Also

  9. NEW APPROACHES TO EFFICIENCY OF MASSIVE ONLINE COURSE

    Directory of Open Access Journals (Sweden)

    Liubov S. Lysitsina

    2014-09-01

    Full Text Available This paper is focused on efficiency of e-learning, in general, and massive online course in programming and information technology, in particular. Several innovative approaches and scenarios have been proposed, developed, implemented and verified by the authors, including 1 a new approach to organize and use automatic immediate feedback that significantly helps a learner to verify developed code and increases an efficiency of learning, 2 a new approach to construct learning interfaces – it is based on “develop a code – get a result – validate a code” technique, 3 three scenarios of visualization and verification of developed code, 4 a new multi-stage approach to solve complex programming assignments, 5 a new implementation of “perfectionism” game mechanics in a massive online course. Overall, due to implementation of proposed and developed approaches, the efficiency of massive online course has been considerably increased, particularly 1 the additional 27.9 % of students were able to complete successfully “Web design and development using HTML5 and CSS3” massive online course at ITMO University, and 2 based on feedback from 5588 students a “perfectionism” game mechanics noticeably improves students’ involvement into course activities and retention factor.

  10. Photon emission from massive projectile impacts on solids.

    Science.gov (United States)

    Fernandez-Lima, F A; Pinnick, V T; Della-Negra, S; Schweikert, E A

    2011-01-01

    First evidence of photon emission from individual impacts of massive gold projectiles on solids for a number of projectile-target combinations is reported. Photon emission from individual impacts of massive Au(n) (+q) (1 ≤ n ≤ 400; q = 1-4) projectiles with impact energies in the range of 28-136 keV occurs in less than 10 ns after the projectile impact. Experimental observations show an increase in the photon yield from individual impacts with the projectile size and velocity. Concurrently with the photon emission, electron emission from the impact area has been observed below the kinetic emission threshold and under unlikely conditions for potential electron emission. We interpret the puzzling electron emission and correlated luminescence observation as evidence of the electronic excitation resulting from the high-energy density deposited by massive cluster projectiles during the impact.

  11. Astronomy4Kids: Extending STEM learning to the youngest student through an online educational outreach program

    Science.gov (United States)

    Pearson, Richard L.; Pearson, Sarah R.

    2017-06-01

    Astronomy4Kids is an online video series aimed at filling the void of effective and engaging education tools within early childhood learning. Much discussion and research has been conducted on the significance of early learning, with general trends showing significant benefits to early introductions to language, mathematics, and general science concepts. Ultimately, when ideas are introduced to a child at a young age, that child is better prepared for when the concept is re-introduced in its entirety later. National agencies—such as the AAS and NSF—have implemented Science, Technology, Engineering, and Math (STEM) initiatives to expand learning in these areas. However, despite these many resources, the education outreach available to the youngest learners (under the age of 8 or those from pre-school to about 2nd-grade) is seriously lacking. Astronomy4Kids was created to bridge this gap and provide succinct, creative-learning videos following the principles of Fred Rogers, the founder of preschool education video. We present ways to incorporate the freely accessible YouTube videos within various classroom ages and discuss how to use simple activities to promote physics, astronomy, and math learning. Current development, video statistics, and future work will be discussed. The freely accessible videos can be found at www.astronomy4kids.net.

  12. ALFIL: A Crowd Simulation Serious Game for Massive Evacuation Training and Awareness

    Science.gov (United States)

    García-García, César; Fernández-Robles, José Luis; Larios-Rosillo, Victor; Luga, Hervé

    2012-01-01

    This article presents the current development of a serious game for the simulation of massive evacuations. The purpose of this project is to promote self-protection through awareness of the procedures and different possible scenarios during the evacuation of a massive event. Sophisticated behaviors require massive computational power and it has…

  13. Effects of massive transfusion on oxygen availability

    Directory of Open Access Journals (Sweden)

    José Otávio Costa Auler Jr

    Full Text Available OBJECTIVE: To determine oxygen derived parameters, hemodynamic and biochemical laboratory data (2,3 Diphosphoglycerate, lactate and blood gases analysis in patients after cardiac surgery who received massive blood replacement. DESIGN: Prospective study. SETTING: Heart Institute (Instituto do Coração, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, Brazil. PARTICIPANTS: Twelve patients after cardiac surgery who received massive transfusion replacement; six of them evolved to a fatal outcome within the three-day postoperative follow-up. MEASUREMENTS AND MAIN RESULTS: The non-survivors group (n=6 presented high lactate levels and low P50 levels, when compared to the survivors group (p<0.05. Both groups presented an increase in oxygen consumption and O2 extraction, and there were no significant differences between them regarding these parameters. The 2,3 DPG levels were slightly reduced in both groups. CONCLUSIONS: This study shows that patients who are massively transfused following cardiovascular surgery present cell oxygenation disturbances probably as a result of O2 transport inadequacy.

  14. Transcatheter emboilization therapy of massive colonic bleeding

    International Nuclear Information System (INIS)

    Shin, G. H.; Oh, J. H.; Yoon, Y.

    1996-01-01

    To evaulate the efficacy and safety of emergent superselective transcatheter embolization for controlling massive colonic bleeding. Six of the seven patients who had symptom of massive gastrointestinal bleeding underwent emergent transcatheter embolization for control of the bleeding. Gastrointestinal bleeding in these patients was originated from various colonic diseases: rectal cancer(n=1), proctitis(n=1), benign ulcer(n=1), mucosal injury by ventriculoperitoneal shunt(n=1), and unknown(n=2). All patients except one with rectal cancer were critically ill. Superselective embolization were done by using Gelfoam particles and/or coils. The vessels embolized were ileocolic artery(n=1). superior rectal artery(n=2), inferior rectal artery (n=1), and middle and inferior rectal arteries(n=1). Hemostasis was successful immediately in all patients. Two underwnet surgery due to recurrent bleeding developed 3 days after the procedure(n=1) or in associalion with underlying rectal cancer(n=1). On surgical specimen of two cases, there was no mucosal ischemic change. Transcatheter embolization is a safe and effective treatment of method for the control of massive colonic bleeding

  15. Relativistic N-body simulations with massive neutrinos

    Science.gov (United States)

    Adamek, Julian; Durrer, Ruth; Kunz, Martin

    2017-11-01

    Some of the dark matter in the Universe is made up of massive neutrinos. Their impact on the formation of large scale structure can be used to determine their absolute mass scale from cosmology, but to this end accurate numerical simulations have to be developed. Due to their relativistic nature, neutrinos pose additional challenges when one tries to include them in N-body simulations that are traditionally based on Newtonian physics. Here we present the first numerical study of massive neutrinos that uses a fully relativistic approach. Our N-body code, gevolution, is based on a weak-field formulation of general relativity that naturally provides a self-consistent framework for relativistic particle species. This allows us to model neutrinos from first principles, without invoking any ad-hoc recipes. Our simulation suite comprises some of the largest neutrino simulations performed to date. We study the effect of massive neutrinos on the nonlinear power spectra and the halo mass function, focusing on the interesting mass range between 0.06 eV and 0.3 eV and including a case for an inverted mass hierarchy.

  16. Satisfying the Einstein-Podolsky-Rosen criterion with massive particles

    Science.gov (United States)

    Peise, J.; Kruse, I.; Lange, K.; Lücke, B.; Pezzè, L.; Arlt, J.; Ertmer, W.; Hammerer, K.; Santos, L.; Smerzi, A.; Klempt, C.

    2016-03-01

    In 1935, Einstein, Podolsky and Rosen (EPR) questioned the completeness of quantum mechanics by devising a quantum state of two massive particles with maximally correlated space and momentum coordinates. The EPR criterion qualifies such continuous-variable entangled states, as shown successfully with light fields. Here, we report on the production of massive particles which meet the EPR criterion for continuous phase/amplitude variables. The created quantum state of ultracold atoms shows an EPR parameter of 0.18(3), which is 2.4 standard deviations below the threshold of 1/4. Our state presents a resource for tests of quantum nonlocality with massive particles and a wide variety of applications in the field of continuous-variable quantum information and metrology.

  17. The MASSIVE survey. I. A volume-limited integral-field spectroscopic study of the most massive early-type galaxies within 108 Mpc

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Chung-Pei [Department of Astronomy, University of California, Berkeley, CA 94720 (United States); Greene, Jenny E.; Murphy, Jeremy D. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); McConnell, Nicholas [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Janish, Ryan [Department of Physics, University of California, Berkeley, CA 94720 (United States); Blakeslee, John P. [Dominion Astrophysical Observatory, NRC Herzberg Institute of Astrophysics, Victoria, BC V9E 2E7 (Canada); Thomas, Jens, E-mail: cpma@berkeley.edu [Max Planck-Institute for Extraterrestrial Physics, Giessenbachstr. 1, D-85741 Garching (Germany)

    2014-11-10

    Massive early-type galaxies represent the modern day remnants of the earliest major star formation episodes in the history of the universe. These galaxies are central to our understanding of the evolution of cosmic structure, stellar populations, and supermassive black holes, but the details of their complex formation histories remain uncertain. To address this situation, we have initiated the MASSIVE Survey, a volume-limited, multi-wavelength, integral-field spectroscopic (IFS) and photometric survey of the structure and dynamics of the ∼100 most massive early-type galaxies within a distance of 108 Mpc. This survey probes a stellar mass range M* ≳ 10{sup 11.5} M {sub ☉} and diverse galaxy environments that have not been systematically studied to date. Our wide-field IFS data cover about two effective radii of individual galaxies, and for a subset of them, we are acquiring additional IFS observations on sub-arcsecond scales with adaptive optics. We are also acquiring deep K-band imaging to trace the extended halos of the galaxies and measure accurate total magnitudes. Dynamical orbit modeling of the combined data will allow us to simultaneously determine the stellar, black hole, and dark matter halo masses. The primary goals of the project are to constrain the black hole scaling relations at high masses, investigate systematically the stellar initial mass function and dark matter distribution in massive galaxies, and probe the late-time assembly of ellipticals through stellar population and kinematical gradients. In this paper, we describe the MASSIVE sample selection, discuss the distinct demographics and structural and environmental properties of the selected galaxies, and provide an overview of our basic observational program, science goals and early survey results.

  18. Spin-3 topologically massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Chen Bin, E-mail: bchen01@pku.edu.cn [Department of Physics, and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Center for High Energy Physics, Peking University, Beijing 100871 (China); Long Jiang, E-mail: longjiang0301@gmail.com [Department of Physics, and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Wu Junbao, E-mail: wujb@ihep.ac.cn [Institute of High Energy Physics, and Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences, Beijing 100049 (China)

    2011-11-24

    In this Letter, we study the spin-3 topologically massive gravity (TMG), paying special attention to its properties at the chiral point. We propose an action describing the higher spin fields coupled to TMG. We discuss the traceless spin-3 fluctuations around the AdS{sub 3} vacuum and find that there is an extra local massive mode, besides the left-moving and right-moving boundary massless modes. At the chiral point, such extra mode becomes massless and degenerates with the left-moving mode. We show that at the chiral point the only degrees of freedom in the theory are the boundary right-moving graviton and spin-3 field. We conjecture that spin-3 chiral gravity with generalized Brown-Henneaux boundary condition is holographically dual to 2D chiral CFT with classical W{sub 3} algebra and central charge c{sub R}=3l/G.

  19. Minimal theory of massive gravity

    Directory of Open Access Journals (Sweden)

    Antonio De Felice

    2016-01-01

    Full Text Available We propose a new theory of massive gravity with only two propagating degrees of freedom. While the homogeneous and isotropic background cosmology and the tensor linear perturbations around it are described by exactly the same equations as those in the de Rham–Gabadadze–Tolley (dRGT massive gravity, the scalar and vector gravitational degrees of freedom are absent in the new theory at the fully nonlinear level. Hence the new theory provides a stable nonlinear completion of the self-accelerating cosmological solution that was originally found in the dRGT theory. The cosmological solution in the other branch, often called the normal branch, is also rendered stable in the new theory and, for the first time, makes it possible to realize an effective equation-of-state parameter different from (either larger or smaller than −1 without introducing any extra degrees of freedom.

  20. Multimodality imaging findings of massive ovarian edema in children

    Energy Technology Data Exchange (ETDEWEB)

    Dahmoush, Hisham [Stanford University Medical Center, Department of Radiology, Neuroradiology Division, Stanford, CA (United States); Anupindi, Sudha A.; Chauvin, Nancy A. [University of Pennsylvania, The Children' s Hospital of Philadelphia, Department of Radiology, Perelman School of Medicine, Philadelphia, PA (United States); Pawel, Bruce R. [University of Pennsylvania, The Children' s Hospital of Philadelphia, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, Philadelphia, PA (United States)

    2017-05-15

    Massive ovarian edema is a rare benign condition that predominantly affects childbearing women as well as preadolescent girls. It is thought to result from intermittent or partial torsion of the ovary compromising the venous and lymphatic drainage but with preserved arterial supply. The clinical features of massive ovarian edema are nonspecific and can simulate tumors, leading to unnecessary oophorectomy. To demonstrate imaging features that should alert radiologists to consider the diagnosis of massive ovarian edema preoperatively so that fertility-sparing surgery may be considered. We identified five girls diagnosed with massive ovarian edema at pathology. Presenting symptoms, sidedness, imaging appearance, preoperative diagnosis, and operative and histopathological findings were reviewed. Age range was 9.6-14.3 years (mean age: 12.5 years). Common imaging findings included ovarian enlargement with edema of the stroma, peripherally placed follicles, isointense signal on T1-W MRI and markedly hyperintense signal on T2-W MRI, preservation of color Doppler flow by US, and CT Hounsfield units below 40. The uterus was deviated to the affected side in all patients. Two of the five patients had small to moderate amounts of free pelvic fluid. Mean ovarian volume on imaging was 560 mL (range: 108-1,361 mL). While the clinical presentation of massive ovarian edema is nonspecific, an enlarged ovary with stromal edema, peripherally placed follicles and preservation of blood flow may be suggestive and wedge biopsy should be considered intraoperatively to avoid unnecessary removal of the ovary. (orig.)

  1. Spontaneous Lorentz and diffeomorphism violation, massive modes, and gravity

    International Nuclear Information System (INIS)

    Bluhm, Robert; Fung Shuhong; Kostelecky, V. Alan

    2008-01-01

    Theories with spontaneous local Lorentz and diffeomorphism violation contain massless Nambu-Goldstone modes, which arise as field excitations in the minimum of the symmetry-breaking potential. If the shape of the potential also allows excitations above the minimum, then an alternative gravitational Higgs mechanism can occur in which massive modes involving the metric appear. The origin and basic properties of the massive modes are addressed in the general context involving an arbitrary tensor vacuum value. Special attention is given to the case of bumblebee models, which are gravitationally coupled vector theories with spontaneous local Lorentz and diffeomorphism violation. Mode expansions are presented in both local and spacetime frames, revealing the Nambu-Goldstone and massive modes via decomposition of the metric and bumblebee fields, and the associated symmetry properties and gauge fixing are discussed. The class of bumblebee models with kinetic terms of the Maxwell form is used as a focus for more detailed study. The nature of the associated conservation laws and the interpretation as a candidate alternative to Einstein-Maxwell theory are investigated. Explicit examples involving smooth and Lagrange-multiplier potentials are studied to illustrate features of the massive modes, including their origin, nature, dispersion laws, and effects on gravitational interactions. In the weak static limit, the massive mode and Lagrange-multiplier fields are found to modify the Newton and Coulomb potentials. The nature and implications of these modifications are examined.

  2. Multimodality imaging findings of massive ovarian edema in children

    International Nuclear Information System (INIS)

    Dahmoush, Hisham; Anupindi, Sudha A.; Chauvin, Nancy A.; Pawel, Bruce R.

    2017-01-01

    Massive ovarian edema is a rare benign condition that predominantly affects childbearing women as well as preadolescent girls. It is thought to result from intermittent or partial torsion of the ovary compromising the venous and lymphatic drainage but with preserved arterial supply. The clinical features of massive ovarian edema are nonspecific and can simulate tumors, leading to unnecessary oophorectomy. To demonstrate imaging features that should alert radiologists to consider the diagnosis of massive ovarian edema preoperatively so that fertility-sparing surgery may be considered. We identified five girls diagnosed with massive ovarian edema at pathology. Presenting symptoms, sidedness, imaging appearance, preoperative diagnosis, and operative and histopathological findings were reviewed. Age range was 9.6-14.3 years (mean age: 12.5 years). Common imaging findings included ovarian enlargement with edema of the stroma, peripherally placed follicles, isointense signal on T1-W MRI and markedly hyperintense signal on T2-W MRI, preservation of color Doppler flow by US, and CT Hounsfield units below 40. The uterus was deviated to the affected side in all patients. Two of the five patients had small to moderate amounts of free pelvic fluid. Mean ovarian volume on imaging was 560 mL (range: 108-1,361 mL). While the clinical presentation of massive ovarian edema is nonspecific, an enlarged ovary with stromal edema, peripherally placed follicles and preservation of blood flow may be suggestive and wedge biopsy should be considered intraoperatively to avoid unnecessary removal of the ovary. (orig.)

  3. A Massive-born Neutron Star with a Massive White Dwarf Companion

    Energy Technology Data Exchange (ETDEWEB)

    Cognard, Ismaël; Guillemot, Lucas; Theureau, Gilles [Laboratoire de Physique et Chimie de l’Environnement et de l’Espace, Université d’Orléans/CNRS, F-45071 Orléans Cedex 02 (France); Freire, Paulo C. C. [Station de radioastronomie de Nançay, Observatoire de Paris, CNRS/INSU, F-18330 Nançay (France); Tauris, Thomas M.; Wex, Norbert; Graikou, Eleni; Kramer, Michael; Desvignes, Gregory; Lazarus, Patrick [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Stappers, Benjamin; Lyne, Andrew G. [Jodrell Bank Center for Astrophysics, School of Physics and Astronomy, The University of Manchester, M13 9PL (United Kingdom); Bassa, Cees [ASTRON, The Netherlands Institute for Radioastronomy, Postbus 2, 7900 AA, Dwingeloo (Netherlands)

    2017-08-01

    We report on the results of a 4 year timing campaign of PSR J2222−0137, a 2.44 day binary pulsar with a massive white dwarf (WD) companion, with the Nançay, Effelsberg, and Lovell radio telescopes. Using the Shapiro delay for this system, we find a pulsar mass m {sub p} = 1.76 ± 0.06 M {sub ⊙} and a WD mass m {sub c} = 1.293 ± 0.025 M {sub ⊙}. We also measure the rate of advance of periastron for this system, which is marginally consistent with the general relativity prediction for these masses. The short lifetime of the massive WD progenitor star led to a rapid X-ray binary phase with little (< 10{sup −2} M {sub ⊙}) mass accretion onto the neutron star; hence, the current pulsar mass is, within uncertainties, its birth mass, which is the largest measured to date. We discuss the discrepancy with previous mass measurements for this system; we conclude that the measurements presented here are likely to be more accurate. Finally, we highlight the usefulness of this system for testing alternative theories of gravity by tightly constraining the presence of dipolar radiation. This is of particular importance for certain aspects of strong-field gravity, like spontaneous scalarization, since the mass of PSR J2222−0137 puts that system into a poorly tested parameter range.

  4. The Fate of Massive Black Holes in Gas-Rich Galaxy Mergers

    Science.gov (United States)

    Escala, A.; Larson, R. B.; Coppi, P. S.; Mardones, D.

    2006-06-01

    Using SPH numerical simulations, we investigate the effects of gas on the inspiral and merger of a massive black hole binary. This study is motivated by the very massive nuclear gas disks observed in the central regions of merging galaxies. Here we present results that expand on the treatment in previous works (Escala et al. 2004, 2005), by studying the evolution of a binary with different black holes masses in a massive gas disk.

  5. Fitful and protracted magma assembly leading to a giant eruption, Youngest Toba Tuff, Indonesia

    Science.gov (United States)

    Reid, Mary R; Vazquez, Jorge A.

    2017-01-01

    The paroxysmal eruption of the 74 ka Youngest Toba Tuff (YTT) of northern Sumatra produced an extraordinary 2800 km3 of non-welded to densely welded ignimbrite and co-ignimbrite ash-fall. We report insights into the duration of YTT magma assembly obtained from ion microprobe U-Th and U-Pb dates, including continuous age spectra over >50% of final zircon growth, for pumices and a welded tuff spanning the compositional range of the YTT. A relatively large subpopulation of zircon crystals nucleated before the penultimate caldera-related eruption at 501 ka, but most zircons yielded interior dates 100-300 ka thereafter. Zircon nucleation and growth was likely episodic and from diverse conditions over protracted time intervals of >100 to >500 ka. Final zircon growth is evident as thin rim plateaus that are in Th/U chemical equilibrium with hosts, and that give crystallization ages within tens of ka of eruption. The longevity and chemical characteristics of the YTT zircons, as well as evidence for intermittent zircon isolation and remobilization associated with magma recharge, is especially favored at the cool and wet eutectoid conditions that characterize at least half of the YTT, wherein heat fluxes could dissolve major phases but have only a minor effect on larger zircon crystals. Repeated magma recharge may have contributed to the development of compositional zoning in the YTT but, considered together with limited allanite, quartz, and other mineral dating and geospeedometry, regular perturbations to the magma reservoir over >400 ka did not lead to eruption until 74 ka ago.

  6. The formation and gravitational-wave detection of massive stellar black hole binaries

    International Nuclear Information System (INIS)

    Belczynski, Krzysztof; Walczak, Marek; Buonanno, Alessandra; Cantiello, Matteo; Fryer, Chris L.; Holz, Daniel E.; Mandel, Ilya; Miller, M. Coleman

    2014-01-01

    If binaries consisting of two ∼100 M ☉ black holes exist, they would serve as extraordinarily powerful gravitational-wave sources, detectable to redshifts of z ∼ 2 with the advanced LIGO/Virgo ground-based detectors. Large uncertainties about the evolution of massive stars preclude definitive rate predictions for mergers of these massive black holes. We show that rates as high as hundreds of detections per year, or as low as no detections whatsoever, are both possible. It was thought that the only way to produce these massive binaries was via dynamical interactions in dense stellar systems. This view has been challenged by the recent discovery of several ≳ 150 M ☉ stars in the R136 region of the Large Magellanic Cloud. Current models predict that when stars of this mass leave the main sequence, their expansion is insufficient to allow common envelope evolution to efficiently reduce the orbital separation. The resulting black hole-black hole binary remains too wide to be able to coalesce within a Hubble time. If this assessment is correct, isolated very massive binaries do not evolve to be gravitational-wave sources. However, other formation channels exist. For example, the high multiplicity of massive stars, and their common formation in relatively dense stellar associations, opens up dynamical channels for massive black hole mergers (e.g., via Kozai cycles or repeated binary-single interactions). We identify key physical factors that shape the population of very massive black hole-black hole binaries. Advanced gravitational-wave detectors will provide important constraints on the formation and evolution of very massive stars.

  7. f (T) Non-linear Massive Gravity and the Cosmic Acceleration

    International Nuclear Information System (INIS)

    Wu You; Chen Zu-Cheng; Wei Hao; Wang Jia-Xin

    2015-01-01

    Inspired by the f (R) non-linear massive gravity, we propose a new kind of modified gravity model, namely f (T) non-linear massive gravity, by adding the dRGT mass term reformulated in the vierbein formalism, to the f (T) theory. We then investigate the cosmological evolution of f (T) massive gravity, and constrain it by using the latest observational data. We find that it slightly favors a crossing of the phantom divide line from the quintessence-like phase (w_d_e > −1) to the phantom-like one (w_d_e < −1) as redshift decreases. (paper)

  8. Deployment and Implementation Strategies for Massive MIMO in 5G

    DEFF Research Database (Denmark)

    Panzner, Berthold; Zirwas, Wolfgang; Dierks, Stefan

    2015-01-01

    for 5G is a successful and cost-efficient integration in the overall network concept. This work highlights deployment and implementation strategies for massive MIMO in the context of 5G indoor small cell scenarios. Different massive MIMO deployment scenarios are analyzed for a standard 3GPP indoor...... to spatial streams is varied stepwise from equality to a factor of ten. For implementation of massive MIMO in 5G networks trends in beamforming techniques, mutually coupled subarrays, over the calibration procedure and estimated ADC performance in 2020 time-frame are discussed. Based on the debate the paper...

  9. A dynamical theory for linearized massive superspin 3/2

    International Nuclear Information System (INIS)

    Gates, James S. Jr.; Koutrolikos, Konstantinos

    2014-01-01

    We present a new theory of free massive superspin Y=3/2 irreducible representation of the 4D, N=1 Super-Poincaré group, which has linearized non-minimal supergravity (superhelicity Y=3/2) as it’s massless limit. The new results will illuminate the underlying structure of auxiliary superfields required for the description of higher massive superspin systems

  10. Cleaning Massive Sonar Point Clouds

    DEFF Research Database (Denmark)

    Arge, Lars Allan; Larsen, Kasper Green; Mølhave, Thomas

    2010-01-01

    We consider the problem of automatically cleaning massive sonar data point clouds, that is, the problem of automatically removing noisy points that for example appear as a result of scans of (shoals of) fish, multiple reflections, scanner self-reflections, refraction in gas bubbles, and so on. We...

  11. Classical and quantum cosmology of minimal massive bigravity

    Energy Technology Data Exchange (ETDEWEB)

    Darabi, F., E-mail: f.darabi@azaruniv.edu; Mousavi, M., E-mail: mousavi@azaruniv.edu

    2016-10-10

    In a Friedmann–Robertson–Walker (FRW) space–time background we study the classical cosmological models in the context of recently proposed theory of nonlinear minimal massive bigravity. We show that in the presence of perfect fluid the classical field equations acquire contribution from the massive graviton as a cosmological term which is positive or negative depending on the dynamical competition between two scale factors of bigravity metrics. We obtain the classical field equations for flat and open universes in the ordinary and Schutz representation of perfect fluid. Focusing on the Schutz representation for flat universe, we find classical solutions exhibiting singularities at early universe with vacuum equation of state. Then, in the Schutz representation, we study the quantum cosmology for flat universe and derive the Schrodinger–Wheeler–DeWitt equation. We find its exact and wave packet solutions and discuss on their properties to show that the initial singularity in the classical solutions can be avoided by quantum cosmology. Similar to the study of Hartle–Hawking no-boundary proposal in the quantum cosmology of de Rham, Gabadadze and Tolley (dRGT) massive gravity, it turns out that the mass of graviton predicted by quantum cosmology of the minimal massive bigravity is large at early universe. This is in agreement with the fact that at early universe the cosmological constant should be large.

  12. Classical and quantum cosmology of minimal massive bigravity

    International Nuclear Information System (INIS)

    Darabi, F.; Mousavi, M.

    2016-01-01

    In a Friedmann–Robertson–Walker (FRW) space–time background we study the classical cosmological models in the context of recently proposed theory of nonlinear minimal massive bigravity. We show that in the presence of perfect fluid the classical field equations acquire contribution from the massive graviton as a cosmological term which is positive or negative depending on the dynamical competition between two scale factors of bigravity metrics. We obtain the classical field equations for flat and open universes in the ordinary and Schutz representation of perfect fluid. Focusing on the Schutz representation for flat universe, we find classical solutions exhibiting singularities at early universe with vacuum equation of state. Then, in the Schutz representation, we study the quantum cosmology for flat universe and derive the Schrodinger–Wheeler–DeWitt equation. We find its exact and wave packet solutions and discuss on their properties to show that the initial singularity in the classical solutions can be avoided by quantum cosmology. Similar to the study of Hartle–Hawking no-boundary proposal in the quantum cosmology of de Rham, Gabadadze and Tolley (dRGT) massive gravity, it turns out that the mass of graviton predicted by quantum cosmology of the minimal massive bigravity is large at early universe. This is in agreement with the fact that at early universe the cosmological constant should be large.

  13. NONUNIFORM EXPANSION OF THE YOUNGEST GALACTIC SUPERNOVA REMNANT G1.9+0.3

    International Nuclear Information System (INIS)

    Borkowski, Kazimierz J.; Reynolds, Stephen P.; Green, David A.; Hwang, Una; Petre, Robert; Krishnamurthy, Kalyani; Willett, Rebecca

    2014-01-01

    We report measurements of the X-ray expansion of the youngest Galactic supernova remnant, G1.9+0.3, using Chandra observations in 2007, 2009, and 2011. The measured rates strongly deviate from uniform expansion, decreasing radially by about 60% along the X-ray bright SE-NW axis from 0.84% ± 0.06% yr –1 to 0.52% ± 0.03% yr –1 . This corresponds to undecelerated ages of 120-190 yr, confirming the young age of G1.9+0.3 and implying a significant deceleration of the blast wave. The synchrotron-dominated X-ray emission brightens at a rate of 1.9% ± 0.4% yr –1 . We identify bright outer and inner rims with the blast wave and reverse shock, respectively. Sharp density gradients in either the ejecta or ambient medium are required to produce the sudden deceleration of the reverse shock or the blast wave implied by the large spread in expansion ages. The blast wave could have been decelerated recently by an encounter with a modest density discontinuity in the ambient medium, such as may be found at a wind termination shock, requiring strong mass loss in the progenitor. Alternatively, the reverse shock might have encountered an order-of-magnitude density discontinuity within the ejecta, such as may be found in pulsating delayed-detonation Type Ia models. We demonstrate that the blast wave is much more decelerated than the reverse shock in these models for remnants at ages similar to G1.9+0.3. Similar effects may also be produced by dense shells possibly associated with high-velocity features in Type Ia spectra. Accounting for the asymmetry of G1.9+0.3 will require more realistic three-dimensional Type Ia models

  14. THE SECOND SURVEY OF THE MOLECULAR CLOUDS IN THE LARGE MAGELLANIC CLOUD BY NANTEN. II. STAR FORMATION

    International Nuclear Information System (INIS)

    Kawamura, Akiko; Mizuno, Yoji; Minamidani, Tetsuhiro; Mizuno, Norikazu; Onishi, Toshikazu; Fukui, Yasuo; Fillipovic, Miroslav D.; Staveley-Smith, Lister; Kim, Sungeun; Mizuno, Akira

    2009-01-01

    We studied star formation activities in the molecular clouds in the Large Magellanic Cloud. We have utilized the second catalog of 272 molecular clouds obtained by NANTEN to compare the cloud distribution with signatures of massive star formation including stellar clusters, and optical and radio H II regions. We find that the molecular clouds are classified into three types according to the activities of massive star formation: Type I shows no signature of massive star formation; Type II is associated with relatively small H II region(s); and Type III with both H II region(s) and young stellar cluster(s). The radio continuum sources were used to confirm that Type I giant molecular clouds (GMCs) do not host optically hidden H II regions. These signatures of massive star formation show a good spatial correlation with the molecular clouds in the sense that they are located within ∼100 pc of the molecular clouds. Among possible ideas to explain the GMC types, we favor that the types indicate an evolutionary sequence; i.e., the youngest phase is Type I, followed by Type II, and the last phase is Type III, where the most active star formation takes place leading to cloud dispersal. The number of the three types of GMCs should be proportional to the timescale of each evolutionary stage if a steady state of massive star and cluster formation is a good approximation. By adopting the timescale of the youngest stellar clusters, 10 Myr, we roughly estimate the timescales of Types I, II, and III to be 6 Myr, 13 Myr, and 7 Myr, respectively, corresponding to a lifetime of 20-30 Myr for the GMCs with a mass above the completeness limit, 5 x 10 4 M sun .

  15. Cosmology in general massive gravity theories

    International Nuclear Information System (INIS)

    Comelli, D.; Nesti, F.; Pilo, L.

    2014-01-01

    We study the cosmological FRW flat solutions generated in general massive gravity theories. Such a model are obtained adding to the Einstein General Relativity action a peculiar non derivative potentials, function of the metric components, that induce the propagation of five gravitational degrees of freedom. This large class of theories includes both the case with a residual Lorentz invariance as well as the case with rotational invariance only. It turns out that the Lorentz-breaking case is selected as the only possibility. Moreover it turns out that that perturbations around strict Minkowski or dS space are strongly coupled. The upshot is that even though dark energy can be simply accounted by massive gravity modifications, its equation of state w eff has to deviate from -1. Indeed, there is an explicit relation between the strong coupling scale of perturbations and the deviation of w eff from -1. Taking into account current limits on w eff and submillimiter tests of the Newton's law as a limit on the possible strong coupling scale, we find that it is still possible to have a weakly coupled theory in a quasi dS background. Future experimental improvements on short distance tests of the Newton's law may be used to tighten the deviation of w eff form -1 in a weakly coupled massive gravity theory

  16. Proliferation of massive destruction weapons: fantasy or reality?

    International Nuclear Information System (INIS)

    Duval, M.

    2001-01-01

    This article evaluates the threat of massive destruction weapons (nuclear, chemical, biological) for Europe and recalls the existing safeguards against the different forms of nuclear proliferation: legal (non-proliferation treaty (NPT), comprehensive nuclear test ban treaty (CTBT), fissile material cut off treaty (FMCT) etc..), technical (fabrication of fissile materials, delays). However, all these safeguards can be overcome as proven by the activities of some countries. The situation of proliferation for the other type of massive destruction weapons is presented too. (J.S.)

  17. Kundt solutions of minimal massive 3D gravity

    Science.gov (United States)

    Deger, Nihat Sadik; Sarıoǧlu, Ã.-zgür

    2015-11-01

    We construct Kundt solutions of minimal massive gravity theory and show that, similar to topologically massive gravity (TMG), most of them are constant scalar invariant (CSI) spacetimes that correspond to deformations of round and warped (A)dS. We also find an explicit non-CSI Kundt solution at the merger point. Finally, we give their algebraic classification with respect to the traceless Ricci tensor (Segre classification) and show that their Segre types match with the types of their counterparts in TMG.

  18. Complexity growth in minimal massive 3D gravity

    Science.gov (United States)

    Qaemmaqami, Mohammad M.

    2018-01-01

    We study the complexity growth by using "complexity =action " (CA) proposal in the minimal massive 3D gravity (MMG) model which is proposed for resolving the bulk-boundary clash problem of topologically massive gravity (TMG). We observe that the rate of the complexity growth for Banados-Teitelboim-Zanelli (BTZ) black hole saturates the proposed bound by physical mass of the BTZ black hole in the MMG model, when the angular momentum parameter and the inner horizon of black hole goes to zero.

  19. Volcanogenic massive sulfide occurrence model: Chapter C in Mineral deposit models for resource assessment

    Science.gov (United States)

    Shanks, W.C. Pat; Koski, Randolph A.; Mosier, Dan L.; Schulz, Klaus J.; Morgan, Lisa A.; Slack, John F.; Ridley, W. Ian; Dusel-Bacon, Cynthia; Seal, Robert R.; Piatak, Nadine M.; Shanks, W.C. Pat; Thurston, Roland

    2012-01-01

    Volcanogenic massive sulfide deposits, also known as volcanic-hosted massive sulfide, volcanic-associated massive sulfide, or seafloor massive sulfide deposits, are important sources of copper, zinc, lead, gold, and silver (Cu, Zn, Pb, Au, and Ag). These deposits form at or near the seafloor where circulating hydrothermal fluids driven by magmatic heat are quenched through mixing with bottom waters or porewaters in near-seafloor lithologies. Massive sulfide lenses vary widely in shape and size and may be podlike or sheetlike. They are generally stratiform and may occur as multiple lenses.

  20. Massive Neurofibroma of the Breast

    African Journals Online (AJOL)

    Valued eMachines Customer

    Neurofibromas are benign nerve sheath tumors that are extremely rare in the breast. We report a massive ... plexiform breast neurofibromas may transform into a malignant peripheral nerve sheath tumor1. We present a case .... Breast neurofibroma. http://www.breast-cancer.ca/type/breast-neurofibroma.htm. August 2011. 2.

  1. SUPERDENSE MASSIVE GALAXIES IN WINGS LOCAL CLUSTERS

    International Nuclear Information System (INIS)

    Valentinuzzi, T.; D'Onofrio, M.; Fritz, J.; Poggianti, B. M.; Bettoni, D.; Fasano, G.; Moretti, A.; Omizzolo, A.; Varela, J.; Cava, A.; Couch, W. J.; Dressler, A.; Moles, M.; Kjaergaard, P.; Vanzella, E.

    2010-01-01

    Massive quiescent galaxies at z > 1 have been found to have small physical sizes, and hence to be superdense. Several mechanisms, including minor mergers, have been proposed for increasing galaxy sizes from high- to low-z. We search for superdense massive galaxies in the WIde-field Nearby Galaxy-cluster Survey (WINGS) of X-ray selected galaxy clusters at 0.04 10 M sun , are mostly S0 galaxies, have a median effective radius (R e ) = 1.61 ± 0.29 kpc, a median Sersic index (n) = 3.0 ± 0.6, and very old stellar populations with a median mass-weighted age of 12.1 ± 1.3 Gyr. We calculate a number density of 2.9 x 10 -2 Mpc -3 for superdense galaxies in local clusters, and a hard lower limit of 1.3 x 10 -5 Mpc -3 in the whole comoving volume between z = 0.04 and z = 0.07. We find a relation between mass, effective radius, and luminosity-weighted age in our cluster galaxies, which can mimic the claimed evolution of the radius with redshift, if not properly taken into account. We compare our data with spectroscopic high-z surveys and find that-when stellar masses are considered-there is consistency with the local WINGS galaxy sizes out to z ∼ 2, while a discrepancy of a factor of 3 exists with the only spectroscopic z > 2 study. In contrast, there is strong evidence for a large evolution in radius for the most massive galaxies with M * > 4 x 10 11 M sun compared to similarly massive galaxies in WINGS, i.e., the brightest cluster galaxies.

  2. The Massive Yang-Mills Model and Diffractive Scattering

    CERN Document Server

    Forshaw, J R; Parrinello, C

    1999-01-01

    We argue that the massive Yang-Mills model of Kunimasa and Goto, Slavnov, and Cornwall, in which massive gauge vector bosons are introduced in a gauge-invariant way without resorting to the Higgs mechanism, may be useful for studying diffractive scattering of strongly interacting particles. With this motivation, we perform in this model explicit calculations of S-matrix elements between quark states, at tree level, one loop, and two loops, and discuss issues of renormalisability and unitarity. In particular, it is shown that the S-matrix element for quark scattering is renormalisable at one-loop order and is only logarithmically non-renormalisable at two loops. The discrepancies in the ultraviolet regime between the one-loop predictions of this model and those of massless QCD are discussed in detail. In addition, some of the similarities and differences between the massive Yang-Mills model and theories with a Higgs mechanism are analysed at the level of the S-matrix. As an elementary application of the model ...

  3. Massive fields as systematics for single field inflation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Hongliang; Wang, Yi, E-mail: hjiangag@connect.ust.hk, E-mail: phyw@ust.hk [Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (China)

    2017-06-01

    During inflation, massive fields can contribute to the power spectrum of curvature perturbation via a dimension-5 operator. This contribution can be considered as a bias for the program of using n {sub s} and r to select inflation models. Even the dimension-5 operator is suppressed by Λ = M {sub p} , there is still a significant shift on the n {sub s} - r diagram if the massive fields have m ∼ H . On the other hand, if the heavy degree of freedom appears only at the same energy scale as the suppression scale of the dimension-5 operator, then significant shift on the n {sub s} - r diagram takes place at m =Λ ∼ 70 H , which is around the inflationary time-translation symmetry breaking scale. Hence, the systematics from massive fields pose a greater challenge for future high precision experiments for inflationary model selection. This result can be thought of as the impact of UV sensitivity to inflationary observables.

  4. Massive MIMO meets small cell backhaul and cooperation

    CERN Document Server

    Yang, Howard H

    2017-01-01

    This brief explores the utilization of large antenna arrays in massive multiple-input-multiple-output (MIMO) for both interference suppression, where it can improve cell-edge user rates, and for wireless backhaul in small cell networks, where macro base stations can forward data to small access points in an energy efficient way. Massive MIMO is deemed as a critical technology for next generation wireless technology. By deploying an antenna array that has active elements in excess of the number of users, massive MIMO not only provides tremendous diversity gain but also powers new aspects for network design to improve performance. This brief investigates a better utilization of the excessive spatial dimensions to improve network performance. It combines random matrix theory and stochastic geometry to develop an analytical framework that accounts for all the key features of a network, including number of antenna array, base station density, inter-cell interference, random base station deployment, and network tra...

  5. Scattering of massive open strings in pure spinor

    International Nuclear Information System (INIS)

    Park, I.Y.

    2011-01-01

    In Park (2008) , it was proposed that the D-brane geometry could be produced by open string quantum effects. In an effort to verify the proposal, we consider scattering amplitudes involving massive open superstrings. The main goal of this paper is to set the ground for two-loop 'renormalization' of an oriented open superstring on a D-brane and to strengthen our skill in the pure spinor formulation of a superstring, an effective tool for multi-loop string diagrams. We start by reviewing scattering amplitudes of massless states in the 2D component method of the NSR formulation. A few examples of massive string scattering are worked out. The NSR results are then reproduced in the pure spinor formulation. We compute the amplitudes using the unintegrated form of the massive vertex operator constructed by Berkovits and Chandia (2002) . We point out that it may be possible to discover new Riemann type identities involving Jacobi θ-functions by comparing a NSR computation and the corresponding pure spinor computation.

  6. The evolution of massive stars

    International Nuclear Information System (INIS)

    Loore, C. de

    1980-01-01

    The evolution of stars with masses between 15 M 0 and 100 M 0 is considered. Stars in this mass range lose a considerable fraction of their matter during their evolution. The treatment of convection, semi-convection and the influence of mass loss by stellar winds at different evolutionary phases are analysed as well as the adopted opacities. Evolutionary sequences computed by various groups are examined and compared with observations, and the advanced evolution of a 15 M 0 and a 25 M 0 star from zero-age main sequence (ZAMS) through iron collapse is discussed. The effect of centrifugal forces on stellar wind mass loss and the influence of rotation on evolutionary models is examined. As a consequence of the outflow of matter deeper layers show up and when the mass loss rates are large enough layers with changed composition, due to interior nuclear reactions, appear on the surface. The evolution of massive close binaries as well during the phase of mass loss by stellar wind as during the mass exchange and mass loss phase due to Roche lobe overflow is treated in detail, and the value of the parameters governing mass and angular momentum losses are discussed. The problem of the Wolf-Rayet stars, their origin and the possibilities of their production either as single stars or as massive binaries is examined. Finally, the origin of X-ray binaries is discussed and the scenario for the formation of these objects (starting from massive ZAMS close binaries, through Wolf-Rayet binaries leading to OB-stars with a compact companion after a supernova explosion) is reviewed and completed, including stellar wind mass loss. (orig.)

  7. Three-dimensional massive gravity and the bigravity black hole

    International Nuclear Information System (INIS)

    Banados, Maximo; Theisen, Stefan

    2009-01-01

    We study three-dimensional massive gravity formulated as a theory with two dynamical metrics, like the f-g theories of Isham-Salam and Strathdee. The action is parity preserving and has no higher derivative terms. The spectrum contains a single massive graviton. This theory has several features discussed recently in TMG and NMG. We find warped black holes, a critical point, and generalized Brown-Henneaux boundary conditions.

  8. Frontiers of massively parallel scientific computation

    International Nuclear Information System (INIS)

    Fischer, J.R.

    1987-07-01

    Practical applications using massively parallel computer hardware first appeared during the 1980s. Their development was motivated by the need for computing power orders of magnitude beyond that available today for tasks such as numerical simulation of complex physical and biological processes, generation of interactive visual displays, satellite image analysis, and knowledge based systems. Representative of the first generation of this new class of computers is the Massively Parallel Processor (MPP). A team of scientists was provided the opportunity to test and implement their algorithms on the MPP. The first results are presented. The research spans a broad variety of applications including Earth sciences, physics, signal and image processing, computer science, and graphics. The performance of the MPP was very good. Results obtained using the Connection Machine and the Distributed Array Processor (DAP) are presented

  9. Adapting algorithms to massively parallel hardware

    CERN Document Server

    Sioulas, Panagiotis

    2016-01-01

    In the recent years, the trend in computing has shifted from delivering processors with faster clock speeds to increasing the number of cores per processor. This marks a paradigm shift towards parallel programming in which applications are programmed to exploit the power provided by multi-cores. Usually there is gain in terms of the time-to-solution and the memory footprint. Specifically, this trend has sparked an interest towards massively parallel systems that can provide a large number of processors, and possibly computing nodes, as in the GPUs and MPPAs (Massively Parallel Processor Arrays). In this project, the focus was on two distinct computing problems: k-d tree searches and track seeding cellular automata. The goal was to adapt the algorithms to parallel systems and evaluate their performance in different cases.

  10. M2M massive wireless access

    DEFF Research Database (Denmark)

    Zanella, Andrea; Zorzi, Michele; Santos, André F.

    2013-01-01

    In order to make the Internet of Things a reality, ubiquitous coverage and low-complexity connectivity are required. Cellular networks are hence the most straightforward and realistic solution to enable a massive deployment of always connected Machines around the globe. Nevertheless, a paradigm...... shift in the conception and design of future cellular networks is called for. Massive access attempts, low-complexity and cheap machines, sporadic transmission and correlated signals are among the main properties of this new reality, whose main consequence is the disruption of the development...... Access Reservation, Coded Random Access and the exploitation of multiuser detection in random access. Additionally, we will show how the properties of machine originated signals, such as sparsity and spatial/time correlation can be exploited. The end goal of this paper is to provide motivation...

  11. Nonperturbative construction of massive Yang-Mills fields without the Higgs field

    Science.gov (United States)

    Kondo, Kei-Ichi

    2013-01-01

    In order to understand the so-called decoupling solution for gluon and ghost propagators in QCD, we give a nonperturbative construction of a massive vector field describing a non-Abelian massive spin-one particle, which has the correct physical degrees of freedom and is invariant under a modified Becchi-Rouet-Stora-Tyutin transformation, in a massive Yang-Mills model without the Higgs field, i.e., the Curci-Ferrari model. The resulting non-Abelian massive vector boson field is written by using a nonlinear but local transformation from the original fields in the Curci-Ferrari model. As an application, we write down a local mass term for the Yang-Mills field and a dimension-two condensate, which are exactly invariant under the modified Becchi-Rouet-Stora-Tyutin transformation, Lorentz transformation, and color rotation.

  12. Efficient linear precoding for massive MIMO systems using truncated polynomial expansion

    KAUST Repository

    Mü ller, Axel; Kammoun, Abla; Bjö rnson, Emil; Debbah, Mé roú ane

    2014-01-01

    Massive multiple-input multiple-output (MIMO) techniques have been proposed as a solution to satisfy many requirements of next generation cellular systems. One downside of massive MIMO is the increased complexity of computing the precoding

  13. The 2nd Symposium on the Frontiers of Massively Parallel Computations

    Science.gov (United States)

    Mills, Ronnie (Editor)

    1988-01-01

    Programming languages, computer graphics, neural networks, massively parallel computers, SIMD architecture, algorithms, digital terrain models, sort computation, simulation of charged particle transport on the massively parallel processor and image processing are among the topics discussed.

  14. Explaining the luminosity spread in young clusters: proto and pre-main sequence stellar evolution in a molecular cloud environment

    Science.gov (United States)

    Jensen, Sigurd S.; Haugbølle, Troels

    2018-02-01

    Hertzsprung-Russell diagrams of star-forming regions show a large luminosity spread. This is incompatible with well-defined isochrones based on classic non-accreting protostellar evolution models. Protostars do not evolve in isolation of their environment, but grow through accretion of gas. In addition, while an age can be defined for a star-forming region, the ages of individual stars in the region will vary. We show how the combined effect of a protostellar age spread, a consequence of sustained star formation in the molecular cloud, and time-varying protostellar accretion for individual protostars can explain the observed luminosity spread. We use a global magnetohydrodynamic simulation including a sub-scale sink particle model of a star-forming region to follow the accretion process of each star. The accretion profiles are used to compute stellar evolution models for each star, incorporating a model of how the accretion energy is distributed to the disc, radiated away at the accretion shock, or incorporated into the outer layers of the protostar. Using a modelled cluster age of 5 Myr, we naturally reproduce the luminosity spread and find good agreement with observations of the Collinder 69 cluster, and the Orion Nebular Cluster. It is shown how stars in binary and multiple systems can be externally forced creating recurrent episodic accretion events. We find that in a realistic global molecular cloud model massive stars build up mass over relatively long time-scales. This leads to an important conceptual change compared to the classic picture of non-accreting stellar evolution segmented into low-mass Hayashi tracks and high-mass Henyey tracks.

  15. Massive stars in colliding wind systems: the GLAST perspective

    International Nuclear Information System (INIS)

    Reimer, Anita; Reimer, Olaf

    2007-01-01

    Colliding winds of massive stars in binary systems arc considered as candidate sites of high-energy non-thermal photon emission. They are already among the suggested counterparts for a few individual unidentified EGRET sources, but may constitute a detectable source population for the GLAST observatory.The present work investigates such population study of massive colliding wind systems at high-energy gamma-rays. Based on the recent detailed model (Reimer et al. 2006) for non-thermal photon production in prime candidate systems, we unveil the expected characteristics of this source class in the observables accessible at LAT energies. Combining the broadband emission model with the presently cataloged distribution of such systems and their individual parameters allows us to conclude on the expected maximum number of LAT-detections among massive stars in colliding wind binary systems

  16. Geometric approach to a massive p form duality

    International Nuclear Information System (INIS)

    Arias, Pio J.; Leal, Lorenzo; Perez-Mosquera, J. C.

    2003-01-01

    Massive theories of Abelian p forms are quantized in a generalized path representation that leads to a description of the phase space in terms of a pair of dual nonlocal operators analogous to the Wilson loop and the 't Hooft disorder operators. Special attention is devoted to the study of the duality between the topologically massive and self-dual models in 2+1 dimensions. It is shown that these models share a geometric representation in which just one nonlocal operator suffices to describe the observables

  17. Supernovae from massive AGB stars

    NARCIS (Netherlands)

    Poelarends, A.J.T.; Izzard, R.G.; Herwig, F.; Langer, N.; Heger, A.

    2006-01-01

    We present new computations of the final fate of massive AGB-stars. These stars form ONeMg cores after a phase of carbon burning and are called Super AGB stars (SAGB). Detailed stellar evolutionary models until the thermally pulsing AGB were computed using three di erent stellar evolution codes. The

  18. Topologically Massive Higher Spin Gravity

    NARCIS (Netherlands)

    Bagchi, A.; Lal, S.; Saha, A.; Sahoo, B.

    2011-01-01

    We look at the generalisation of topologically massive gravity (TMG) to higher spins, specifically spin-3. We find a special "chiral" point for the spin-three, analogous to the spin-two example, which actually coincides with the usual spin-two chiral point. But in contrast to usual TMG, there is the

  19. Massively parallel quantum computer simulator

    NARCIS (Netherlands)

    De Raedt, K.; Michielsen, K.; De Raedt, H.; Trieu, B.; Arnold, G.; Richter, M.; Lippert, Th.; Watanabe, H.; Ito, N.

    2007-01-01

    We describe portable software to simulate universal quantum computers on massive parallel Computers. We illustrate the use of the simulation software by running various quantum algorithms on different computer architectures, such as a IBM BlueGene/L, a IBM Regatta p690+, a Hitachi SR11000/J1, a Cray

  20. Using Massively Multiplayer Online Role-Playing Games for Online Learning

    Science.gov (United States)

    Childress, Marcus D.; Braswell, Ray

    2006-01-01

    This article addresses the use of a massively multiplayer online role-playing game (MMORPG) to foster communication and interaction and to facilitate cooperative learning in an online course. The authors delineate the definition and history of massively multiplayer online games (MMOGs), and describe current uses of MMORPGs in education, including…

  1. An Alternative Technique in the Control of Massive Presacral Rectal ...

    African Journals Online (AJOL)

    Bleeding control was provided by GORE‑TEX® graft. We conclude that fıxatıon of GORE‑TEX® aortic patch should be kept in mind for uncontrolled massive presacral bleeding. KEYWORDS: GORE‑TEX® graft, presacral bleeding, rectal cancer. An Alternative Technique in the Control of Massive Presacral Rectal. Bleeding: ...

  2. On the inflationary perturbations of massive higher-spin fields

    Energy Technology Data Exchange (ETDEWEB)

    Kehagias, Alex [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece); Riotto, Antonio, E-mail: kehagias@central.ntua.gr, E-mail: Antonio.Riotto@unige.ch [Department of Theoretical Physics and Center for Astroparticle Physics (CAP), 24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland)

    2017-07-01

    Cosmological perturbations of massive higher-spin fields are generated during inflation, but they decay on scales larger than the Hubble radius as a consequence of the Higuchi bound. By introducing suitable couplings to the inflaton field, we show that one can obtain statistical correlators of massive higher-spin fields which remain constant or decay very slowly outside the Hubble radius. This opens up the possibility of new observational signatures from inflation.

  3. Long-term outcomes of patients receiving a massive transfusion after trauma.

    Science.gov (United States)

    Mitra, Biswadev; Gabbe, Belinda J; Kaukonen, Kirsi-Maija; Olaussen, Alexander; Cooper, David J; Cameron, Peter A

    2014-10-01

    Resuscitation of patients presenting with hemorrhagic shock after major trauma has evolved to incorporate multiple strategies to maintain tissue perfusion and oxygenation while managing coagulation disorders. We aimed to study changes across time in long-term outcomes in patients with major trauma. A retrospective observational study in a single major trauma center in Australia was conducted. We included all patients with major trauma and massive blood transfusion within the first 24 h during a 6-year period (from 2006 to 2011). The main outcome measures were Glasgow Outcome Score-Extended (GOSE) and work capacity at 6 and 12 months. There were 5,915 patients with major trauma of which 365 (6.2%; 95% confidence interval [95% CI], 5.6 - 6.8) received a massive transfusion. The proportion of major trauma patients receiving a massive transfusion decreased across time from 8.2% to 4.4% (P GOSE at 6 months, and 44% unfavorable GOSE at 12 months. Massive transfusion was independently associated with unfavorable outcomes at 6 months after injury (adjusted odds ratio, 1.56; 95% CI, 1.05 - 2.31) but not at 12 months (adjusted odds ratio, 0.85; 95% CI, 0.72 - 1.01). A significant reduction in massive transfusion rates was observed. Unfavorable long-term outcomes among patients receiving a massive transfusion after trauma were frequent with a substantial proportion of survivors experiencing poor functional status 1 year after injury.

  4. CO{sub 2} ICE TOWARD LOW-LUMINOSITY EMBEDDED PROTOSTARS: EVIDENCE FOR EPISODIC MASS ACCRETION VIA CHEMICAL HISTORY

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo Jeong; Evans, Neal J. II [Department of Astronomy, University of Texas at Austin, 2515 Speedway, Stop C1400 Austin, TX 78712-1205 (United States); Dunham, Michael M. [Department of Astronomy, Yale University, P.O. Box 208101, New Haven, CT 06520 (United States); Lee, Jeong-Eun [Department of Astronomy and Space Science, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701 (Korea, Republic of); Pontoppidan, Klaus M., E-mail: hyojeong@astro.as.utexas.edu [Space Telescope Science Institute, Baltimore, MD 21218 (United States)

    2012-10-10

    We present Spitzer IRS spectroscopy of CO{sub 2} ice bending mode spectra at 15.2 {mu}m toward 19 young stellar objects (YSOs) with luminosity lower than 1 L{sub Sun} (3 with luminosity lower than 0.1 L{sub Sun }). Ice on dust grain surfaces can encode the history of heating because pure CO{sub 2} ice forms only at elevated temperature, T > 20 K, and thus around protostars of higher luminosity. Current internal luminosities of YSOs with L < 1L{sub Sun} do not provide the conditions needed to produce pure CO{sub 2} ice at radii where typical envelopes begin. The presence of detectable amounts of pure CO{sub 2} ice would signify a higher past luminosity. Many of the spectra require a contribution from a pure, crystalline CO{sub 2} component, traced by the presence of a characteristic band splitting in the 15.2 {mu}m bending mode. About half of the sources (9 out of 19) in the low-luminosity sample have evidence for pure CO{sub 2} ice, and 6 of these have significant double-peaked features, which are very strong evidence of pure CO{sub 2} ice. The presence of the pure CO{sub 2} ice component indicates that the dust temperature, and hence luminosity of the central star/accretion disk system, must have been higher in the past. An episodic accretion scenario, in which mixed CO-CO{sub 2} ice is converted to pure CO{sub 2} ice during each high-luminosity phase, explains the presence of pure CO{sub 2} ice, the total amount of CO{sub 2} ice, and the observed residual C{sup 18}O gas.

  5. RAMA: A file system for massively parallel computers

    Science.gov (United States)

    Miller, Ethan L.; Katz, Randy H.

    1993-01-01

    This paper describes a file system design for massively parallel computers which makes very efficient use of a few disks per processor. This overcomes the traditional I/O bottleneck of massively parallel machines by storing the data on disks within the high-speed interconnection network. In addition, the file system, called RAMA, requires little inter-node synchronization, removing another common bottleneck in parallel processor file systems. Support for a large tertiary storage system can easily be integrated in lo the file system; in fact, RAMA runs most efficiently when tertiary storage is used.

  6. Massive transfusion protocols: current best practice

    Directory of Open Access Journals (Sweden)

    Hsu YM

    2016-03-01

    Full Text Available Yen-Michael S Hsu,1 Thorsten Haas,2 Melissa M Cushing1 1Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY, USA; 2Department of Anesthesia, University Children's Hospital Zurich, Zurich, Switzerland Abstract: Massive transfusion protocols (MTPs are established to provide rapid blood replacement in a setting of severe hemorrhage. Early optimal blood transfusion is essential to sustain organ perfusion and oxygenation. There are many variables to consider when establishing an MTP, and studies have prospectively evaluated different scenarios and patient populations to establish the best practices to attain improved patient outcomes. The establishment and utilization of an optimal MTP is challenging given the ever-changing patient status during resuscitation efforts. Much of the MTP literature comes from the trauma population, due to the fact that massive hemorrhage is the leading cause of preventable trauma-related death. As we come to further understand the positive and negative clinical impacts of transfusion-related factors, massive transfusion practice can be further refined. This article will first discuss specific MTPs targeting different patient populations and current relevant international guidelines. Then, we will examine a wide selection of therapeutic products to support MTPs, including newly available products and the most suitable of the traditional products. Lastly, we will discuss the best design for an MTP, including ratio-based MTPs and MTPs based on the use of point-of-care coagulation diagnostic tools. Keywords: hemorrhage, MTP, antifibrinolytics, coagulopathy, trauma, ratio, logistics, guidelines, hemostatic

  7. Galaxy bispectrum from massive spinning particles

    Science.gov (United States)

    Moradinezhad Dizgah, Azadeh; Lee, Hayden; Muñoz, Julian B.; Dvorkin, Cora

    2018-05-01

    Massive spinning particles, if present during inflation, lead to a distinctive bispectrum of primordial perturbations, the shape and amplitude of which depend on the masses and spins of the extra particles. This signal, in turn, leaves an imprint in the statistical distribution of galaxies; in particular, as a non-vanishing galaxy bispectrum, which can be used to probe the masses and spins of these particles. In this paper, we present for the first time a new theoretical template for the bispectrum generated by massive spinning particles, valid for a general triangle configuration. We then proceed to perform a Fisher-matrix forecast to assess the potential of two next-generation spectroscopic galaxy surveys, EUCLID and DESI, to constrain the primordial non-Gaussianity sourced by these extra particles. We model the galaxy bispectrum using tree-level perturbation theory, accounting for redshift-space distortions and the Alcock-Paczynski effect, and forecast constraints on the primordial non-Gaussianity parameters marginalizing over all relevant biases and cosmological parameters. Our results suggest that these surveys would potentially be sensitive to any primordial non-Gaussianity with an amplitude larger than fNL≈ 1, for massive particles with spins 2, 3, and 4. Interestingly, if non-Gaussianities are present at that level, these surveys will be able to infer the masses of these spinning particles to within tens of percent. If detected, this would provide a very clear window into the particle content of our Universe during inflation.

  8. Molecular Cloud Structures and Massive Star Formation in N159

    Science.gov (United States)

    Nayak, O.; Meixner, M.; Fukui, Y.; Tachihara, K.; Onishi, T.; Saigo, K.; Tokuda, K.; Harada, R.

    2018-02-01

    The N159 star-forming region is one of the most massive giant molecular clouds (GMCs) in the Large Magellanic Cloud (LMC). We show the 12CO, 13CO, CS molecular gas lines observed with ALMA in N159 west (N159W) and N159 east (N159E). We relate the structure of the gas clumps to the properties of 24 massive young stellar objects (YSOs) that include 10 newly identified YSOs based on our search. We use dendrogram analysis to identify properties of the molecular clumps, such as flux, mass, linewidth, size, and virial parameter. We relate the YSO properties to the molecular gas properties. We find that the CS gas clumps have a steeper size–linewidth relation than the 12CO or 13CO gas clumps. This larger slope could potentially occur if the CS gas is tracing shocks. The virial parameters of the 13CO gas clumps in N159W and N159E are low (<1). The threshold for massive star formation in N159W is 501 M ⊙ pc‑2, and the threshold for massive star formation in N159E is 794 M ⊙ pc‑2. We find that 13CO is more photodissociated in N159E than N159W. The most massive YSO in N159E has cleared out a molecular gas hole in its vicinity. All the massive YSO candidates in N159E have a more evolved spectral energy distribution type in comparison to the YSO candidates in N159W. These differences lead us to conclude that the giant molecular cloud complex in N159E is more evolved than the giant molecular cloud complex in N159W.

  9. Bronchial Artery Embolization for Massive Hemoptysis: a Retrospective Study

    Directory of Open Access Journals (Sweden)

    Ali Fani

    2013-05-01

    Full Text Available   Introduction: To assess the efficacy and safety of bronchial artery embolization in the treatment of massive hemoptysis.   Materials and Methods: A retrospective study on 46 patients (26 males and 20 females who were referred to the Razavi Hospital from April 2009 to May 2012 with massive hemoptysis and had bronchial artery embolization procedures. General characteristics of the patients including age, gender, etiology, and thorax computed tomograms, findings of bronchial angiographic, results of the embolization, complications related to bronchial artery embolization and clinical outcome during follow-up were reviewed. Results: The etiology included previous pulmonary tuberculosis in 20 cases, previous tuberculosis with bronchiectasis in 16 cases, bronchiectasis in 6 cases, and active pulmonary tuberculosis in one case. No identifiable causes could be detected in three patients. Moreover, massive hemoptysis was successfully and immediately controlled following the embolization procedure in all patients. One patient developed recurrent hemoptysis during one month following the procedure and was treated by re-embolization. No major procedure–related complication such as bronchial infarction was identified However none of the patientsexperienced neurological complications. Conclusion: Bronchial artery embolization is a safe and effective means of controlling massive hemoptysis and should be regarded as the first-line treatment for this condition.

  10. On the equivalence of massive qed with renormalizable and in unitary gauge

    International Nuclear Information System (INIS)

    Abdalla, E.

    1978-03-01

    In the framework of BPHZ renormalization procedure, we discuss the equivalence between 4-dimensional renormalizable massive quantum electrodynamics (Stueckelberg lagrangian), and massive QED in the unitary gauge

  11. THERE ARE NO STARLESS MASSIVE PROTO-CLUSTERS IN THE FIRST QUADRANT OF THE GALAXY

    Energy Technology Data Exchange (ETDEWEB)

    Ginsburg, A.; Bally, J.; Battersby, C. [Center for Astrophysics and Space Astronomy, University of Colorado, Boulder, CO 80309 (United States); Bressert, E. [European Southern Observatory, Karl Schwarzschild str. 2, D-85748 Garching bei Muenchen (Germany)

    2012-10-20

    We search the {lambda} = 1.1 mm Bolocam Galactic Plane Survey for clumps containing sufficient mass to form {approx}10{sup 4} M{sub Sun} star clusters. Eighteen candidate massive proto-clusters are identified in the first Galactic quadrant outside of the central kiloparsec. This sample is complete to clumps with mass M{sub clump} > 10{sup 4} M{sub Sun} and radius r {approx}< 2.5 pc. The overall Galactic massive cluster formation rate is CFR(M{sub cluster} > 10{sup 4}) {approx}<5 Myr{sup -1}, which is in agreement with the rates inferred from Galactic open clusters and M31 massive clusters. We find that all massive proto-clusters in the first quadrant are actively forming massive stars and place an upper limit of {tau}{sub starless} < 0.5 Myr on the lifetime of the starless phase of massive cluster formation. If massive clusters go through a starless phase with all of their mass in a single clump, the lifetime of this phase is very short.

  12. Cosmological viability of theories with massive spin-2 fields

    Energy Technology Data Exchange (ETDEWEB)

    Koennig, Frank

    2017-03-30

    Theories of spin-2 fields take on a particular role in modern physics. They do not only describe the mediation of gravity, the only theory of fundamental interactions of which no quantum field theoretical description exists, it furthermore was thought that they necessarily predict massless gauge bosons. Just recently, a consistent theory of a massive graviton was constructed and, subsequently, generalized to a bimetric theory of two interacting spin-2 fields. This thesis studies both the viability and consequences at cosmological scales in massive gravity as well as bimetric theories. We show that all consistent models that are free of gradient and ghost instabilities behave like the cosmological standard model, LCDM. In addition, we construct a new theory of massive gravity which is stable at both classical background and quantum level, even though it suffers from the Boulware-Deser ghost.

  13. Impact analysis on a massively parallel computer

    International Nuclear Information System (INIS)

    Zacharia, T.; Aramayo, G.A.

    1994-01-01

    Advanced mathematical techniques and computer simulation play a major role in evaluating and enhancing the design of beverage cans, industrial, and transportation containers for improved performance. Numerical models are used to evaluate the impact requirements of containers used by the Department of Energy (DOE) for transporting radioactive materials. Many of these models are highly compute-intensive. An analysis may require several hours of computational time on current supercomputers despite the simplicity of the models being studied. As computer simulations and materials databases grow in complexity, massively parallel computers have become important tools. Massively parallel computational research at the Oak Ridge National Laboratory (ORNL) and its application to the impact analysis of shipping containers is briefly described in this paper

  14. THE PREVALENCE AND IMPACT OF WOLF–RAYET STARS IN EMERGING MASSIVE STAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Sokal, Kimberly R.; Johnson, Kelsey E.; Indebetouw, Rémy [Department of Astronomy, University of Virginia, P.O. Box 3818, Charlottesville, VA 22903 (United States); Massey, Philip, E-mail: krs9tb@virginia.edu [Lowell Observatory, 1400 W Mars Hill Road, Flagstaff, AZ 86001 (United States)

    2016-08-01

    We investigate Wolf–Rayet (WR) stars as a source of feedback contributing to the removal of natal material in the early evolution of massive star clusters. Despite previous work suggesting that massive star clusters clear out their natal material before the massive stars evolve into the WR phase, WR stars have been detected in several emerging massive star clusters. These detections suggest that the timescale for clusters to emerge can be at least as long as the time required to produce WR stars (a few million years), and could also indicate that WR stars may be providing the tipping point in the combined feedback processes that drive a massive star cluster to emerge. We explore the potential overlap between the emerging phase and the WR phase with an observational survey to search for WR stars in emerging massive star clusters hosting WR stars. We select candidate emerging massive star clusters from known radio continuum sources with thermal emission and obtain optical spectra with the 4 m Mayall Telescope at Kitt Peak National Observatory and the 6.5 m MMT.{sup 4} We identify 21 sources with significantly detected WR signatures, which we term “emerging WR clusters.” WR features are detected in ∼50% of the radio-selected sample, and thus we find that WR stars are commonly present in currently emerging massive star clusters. The observed extinctions and ages suggest that clusters without WR detections remain embedded for longer periods of time, and may indicate that WR stars can aid, and therefore accelerate, the emergence process.

  15. MAX-SLNR Precoding Algorithm for Massive MIMO System

    Directory of Open Access Journals (Sweden)

    Jiang Jing

    2016-01-01

    Full Text Available Pilot Contamination obviously degrades the system performance of Massive MIMO systems. In this paper, a downlink precoding algorithm based on the Signal-to- Leakage-plus-Noise-Ratio (SLNR criterion is put forward. First, the impact of Pilot Contamination on SLNR is analyzed,then the precoding matrix is calculated with the eigenvalues decomposition of SLNR, which not only maximize the array gains of the target user, but also minimize the impact of Pilot Contamination and the leak to the users of other cells. Further, a simplified solution is derived, in which the impact of Pilot Contamination can be suppressed only with the large-scale fading coefficients. Simulation results reveal that: in the scenario of the serious pilot contamination, the proposed algorithm can avoid the performance loss caused by the pilot contamination compared with the conventional Massive MIMO precoding algorithm. Thus the proposed algorithm can acquire the perfect performance gains of Massive MIMO system and has better practical value since the large-scale fading coefficients are easy to measure and feedback.

  16. The coupling between pulsation and mass loss in massive stars

    OpenAIRE

    Townsend, Rich

    2007-01-01

    To what extent can pulsational instabilities resolve the mass-loss problem of massive stars? How important is pulsation in structuring and modulating the winds of these stars? What role does pulsation play in redistributing angular momentum in massive stars? Although I cannot offer answers to these questions, I hope at the very least to explain how they come to be asked.

  17. Evolution of massive stars

    International Nuclear Information System (INIS)

    Loore, C. de

    1984-01-01

    The evolution of stars with masses larger than 15 sun masses is reviewed. These stars have large convective cores and lose a substantial fraction of their matter by stellar wind. The treatment of convection and the parameterisation of the stellar wind mass loss are analysed within the context of existing disagreements between theory and observation. The evolution of massive close binaries and the origin of Wolf-Rayet Stars and X-ray binaries is also sketched. (author)

  18. PARALLEL SPATIOTEMPORAL SPECTRAL CLUSTERING WITH MASSIVE TRAJECTORY DATA

    Directory of Open Access Journals (Sweden)

    Y. Z. Gu

    2017-09-01

    Full Text Available Massive trajectory data contains wealth useful information and knowledge. Spectral clustering, which has been shown to be effective in finding clusters, becomes an important clustering approaches in the trajectory data mining. However, the traditional spectral clustering lacks the temporal expansion on the algorithm and limited in its applicability to large-scale problems due to its high computational complexity. This paper presents a parallel spatiotemporal spectral clustering based on multiple acceleration solutions to make the algorithm more effective and efficient, the performance is proved due to the experiment carried out on the massive taxi trajectory dataset in Wuhan city, China.

  19. A discrete ordinate response matrix method for massively parallel computers

    International Nuclear Information System (INIS)

    Hanebutte, U.R.; Lewis, E.E.

    1991-01-01

    A discrete ordinate response matrix method is formulated for the solution of neutron transport problems on massively parallel computers. The response matrix formulation eliminates iteration on the scattering source. The nodal matrices which result from the diamond-differenced equations are utilized in a factored form which minimizes memory requirements and significantly reduces the required number of algorithm utilizes massive parallelism by assigning each spatial node to a processor. The algorithm is accelerated effectively by a synthetic method in which the low-order diffusion equations are also solved by massively parallel red/black iterations. The method has been implemented on a 16k Connection Machine-2, and S 8 and S 16 solutions have been obtained for fixed-source benchmark problems in X--Y geometry

  20. Has Research on Collaborative Learning Technologies Addressed Massiveness? A Literature Review

    Science.gov (United States)

    Manathunga, Kalpani; Hernández-Leo, Davinia

    2015-01-01

    There is a growing interest in understanding to what extent innovative educational technologies can be used to support massive courses. Collaboration is one of the main desired elements in massive learning actions involving large communities of participants. Accumulated research in collaborative learning technologies has proposed and evaluated…

  1. Transarterial embolization for postoperative massive hemorrhage in patients with abdominal tumors

    International Nuclear Information System (INIS)

    Wang Zhiwei; Shi Haifeng; Sun Hao; Zhou Kang; Li Xiaoguang; Pan Jie; Zhang Xiaobo; Liu Wei; Yang Ning; Jin Zhengyu

    2010-01-01

    Objective: To discuss the feasibility and effectiveness of transarterial embolization for the management of postoperative massive hemorrhage in patients with abdominal tumors. Methods: Between January 2004 and December 2009 in authors' hospital transarterial embolization for postoperative massive hemorrhage was performed in thirteen patients with abdominal tumors. The clinical data and the technical points were retrospectively analyzed. Results: Of 13 patients,the bleeding was completely controlled in 10 after single embolization procedure. Re-bleeding occurred in the other 3 patients, and angiography showed the new bleeding arteries. Trans arterial embolization was carried out again, and the bleeding was successfully stopped in 2 patients. The remaining one patient had to be treated with surgery as the microcatheter could not be super-selectively placed into the bleeding vessel. The overall clinical success rate of trans arterial embolization for postoperative massive hemorrhage was 92% (12 /13). No severe complications occurred. Conclusion: Trans arterial embolization is a safe and effective treatment for postoperative massive hemorrhage in patients with abdominal tumors. (authors)

  2. Massive vulvar edema in a woman with preeclampsia: a case report.

    Science.gov (United States)

    Daponte, Alexandros; Skentou, Hara; Dimopoulos, Konstantinos D; Kallitsaris, Athanasios; Messinis, Ioannis E

    2007-11-01

    Massive vulvar edema in a woman with preeclampsia preceded the development of massive ascites and impending eclampsia. A 17-year-old preeclamptic, primiparous woman was admitted with preeclampsia and massive vulvar edema. Other causes were excluded. The vulvar edema increased as the blood pressure and ascites increased, and a severe headache developed. Cesarean section for increasing preclampsia was performed. In the puerperium, the blood pressure improved and vulvar edema resolved. The clinical picture of the vulvar edema correlated with the severity of the preeclampsia. The presence of vulvar edema in women with preeclampsia should indicate immediate admission to the hospital. These patients must be considered as at high risk, and close monitoring must be instituted. In our case, vulvar edema preceded massive ascites development. We assume a common development mechanism for these signs in preeclampsia, due mainly to increased capillary permeability and hypoalbuminemia. The attending physician must be prepared for immediate delivery and possible preeclampsia complications in these patients.

  3. Mechanical Thrombectomy for Early Treatment of Massive Pulmonary Embolism

    International Nuclear Information System (INIS)

    Reekers, Jim A.; Baarslag, Henk Jan; Koolen, Maria G.J.; Delden, Otto van; Beek, Edwin J.R. van

    2003-01-01

    We report our technique and results of percutaneous mechanical thrombectomy in a consecutive series of eight patients with massive PE. We also discuss the possible role of mechanical PE thrombectomy. Eight consecutive patients with acute massive PE, with or without hemodynamic impairment, were treated with mechanical thrombectomy. We used a modified 7-fr hydrolyzer catheter. The treatment was combined with systemic fibrinolysis. From the logistic and technical point we encountered no problems. All patients showed significant improvement while still in the angiography suite. There were no bleeding complications and no other events related to the procedure. Despite the clinical improvement, one patient died shortly after the procedure from cardiac failure. In all patients there was an acute increase in PO2 to normal values. Only a mean of about 50% of all local thrombus could be removed (range 30-80%). The mean PAP pre-intervention decreased only minimally from 42.5 mmHg to 36.3 mm Hg post-intervention (not significant). In three patients, the PAP continues to remain high at follow-up. The most important feature of mechanical thrombectomy for massive PE is the immediate improvement of the cardiac output, PO2, and clinical situation, overcoming the first critical hours after massive PE. The amount of thrombus reduction seems not to be an important parameter

  4. Massive ovarian edema, due to adjacent appendicitis.

    Science.gov (United States)

    Callen, Andrew L; Illangasekare, Tushani; Poder, Liina

    2017-04-01

    Massive ovarian edema is a benign clinical entity, the imaging findings of which can mimic an adnexal mass or ovarian torsion. In the setting of acute abdominal pain, identifying massive ovarian edema is a key in avoiding potential fertility-threatening surgery in young women. In addition, it is important to consider other contributing pathology when ovarian edema is secondary to another process. We present a case of a young woman presenting with subacute abdominal pain, whose initial workup revealed marked enlarged right ovary. Further imaging, diagnostic tests, and eventually diagnostic laparoscopy revealed that the ovarian enlargement was secondary to subacute appendicitis, rather than a primary adnexal process. We review the classic ultrasound and MRI imaging findings and pitfalls that relate to this diagnosis.

  5. HII regions in collapsing massive molecular clouds

    International Nuclear Information System (INIS)

    Yorke, H.W.; Bodenheimer, P.; Tenorio-Tagle, G.

    1982-01-01

    Results of two-dimensional numerical calculations of the evolution of HII regions associated with self-gravitating, massive molecular clouds are presented. Depending on the location of the exciting star, a champagne flow can occur concurrently with the central collapse of a nonrotating cloud. Partial evaporation of the cloud at a rate of about 0.005 solar masses/yr results. When 100 O-stars are placed at the center of a freely falling cloud of 3x10 5 solar masses no evaporation takes place. Rotating clouds collapse to disks and the champagne flow can evaporate the cloud at a higher rate (0.01 solar masses/yr). It is concluded that massive clouds containing OB-stars have lifetimes of no more than 10 7 yr. (Auth.)

  6. Massive and massless supersymmetry: Multiplet structure and unitary irreducible representations

    International Nuclear Information System (INIS)

    Jarvis, P.D.

    1976-01-01

    UIR's of the supersymmetry algebra for the massive and massless cases are analyzed covariantly (without the use of induced representations) in terms of their component spins. For the massive case normalized basis vectors vertical-barp 2 >0, j 0 ; sigma; pjlambda> are constructed, where j 0 is the ''superspin'' and sigma is an additional quantum number serving to distinguish the different vertical-barpjlambda>, the constituent p 2 >0, spin-j UIR's of the Poincare group. For the massless case, normalized basis vectors vertical-barp 2 =0, lambda 0 ; plambda> are similarly constructed, where lambda 0 is the ''superhelicity.'' Matrix elements of the supersymmetry generators, in these bases, are explicitly given. The ''sigma basis'' is used to define weight diagrams for the massive UIR's of supersymmetry, and their properties are briefly described. Eigenfunctions ω/sub sigma/(theta) are also defined, and their connection with the reduction of higher spin massive superfields PHI/subJ/(x,theta) is discussed. Finally, it is shown how gauge dependence necessarily arises with certain massless superfields. The massless scalar superfield, both gauge-dependent and gauge-independent, is discussed as an example

  7. Massive rectal bleeding from colonic diverticulosis

    African Journals Online (AJOL)

    ABEOLUGBENGAS

    Rapport De Cas: Nous mettons un cas d'un homme de 79 ans quiàprésente une hémorragie rectal massive ... cause of overt lower gastrointestinal (GI) ... vessels into the intestinal lumen results in ... placed on a high fibre diet, and intravenous.

  8. Massively parallel sequencing of forensic STRs

    DEFF Research Database (Denmark)

    Parson, Walther; Ballard, David; Budowle, Bruce

    2016-01-01

    The DNA Commission of the International Society for Forensic Genetics (ISFG) is reviewing factors that need to be considered ahead of the adoption by the forensic community of short tandem repeat (STR) genotyping by massively parallel sequencing (MPS) technologies. MPS produces sequence data that...

  9. Facial transplantation for massive traumatic injuries.

    Science.gov (United States)

    Alam, Daniel S; Chi, John J

    2013-10-01

    This article describes the challenges of facial reconstruction and the role of facial transplantation in certain facial defects and injuries. This information is of value to surgeons assessing facial injuries with massive soft tissue loss or injury. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. A massive, quiescent galaxy at a redshift of 3.717

    Science.gov (United States)

    Glazebrook, Karl; Schreiber, Corentin; Labbé, Ivo; Nanayakkara, Themiya; Kacprzak, Glenn G.; Oesch, Pascal A.; Papovich, Casey; Spitler, Lee R.; Straatman, Caroline M. S.; Tran, Kim-Vy H.; Yuan, Tiantian

    2017-04-01

    Finding massive galaxies that stopped forming stars in the early Universe presents an observational challenge because their rest-frame ultraviolet emission is negligible and they can only be reliably identified by extremely deep near-infrared surveys. These surveys have revealed the presence of massive, quiescent early-type galaxies appearing as early as redshift z ≈ 2, an epoch three billion years after the Big Bang. Their age and formation processes have now been explained by an improved generation of galaxy-formation models, in which they form rapidly at z ≈ 3-4, consistent with the typical masses and ages derived from their observations. Deeper surveys have reported evidence for populations of massive, quiescent galaxies at even higher redshifts and earlier times, using coarsely sampled photometry. However, these early, massive, quiescent galaxies are not predicted by the latest generation of theoretical models. Here we report the spectroscopic confirmation of one such galaxy at redshift z = 3.717, with a stellar mass of 1.7 × 1011 solar masses. We derive its age to be nearly half the age of the Universe at this redshift and the absorption line spectrum shows no current star formation. These observations demonstrate that the galaxy must have formed the majority of its stars quickly, within the first billion years of cosmic history in a short, extreme starburst. This ancestral starburst appears similar to those being found by submillimetre-wavelength surveys. The early formation of such massive systems implies that our picture of early galaxy assembly requires substantial revision.

  11. Massive plexiform neurofibromas in childhood: natural history and management issues.

    Science.gov (United States)

    Serletis, Demitre; Parkin, Patricia; Bouffet, Eric; Shroff, Manohar; Drake, James M; Rutka, James T

    2007-05-01

    The authors review their experience with massive plexiform neurofibromas (PNs) in patients with pediatric neurofibromatosis Type 1 (NF1) to better characterize the natural history and management of these complex lesions. The authors performed a retrospective review of data obtained in seven patients with NF1 in whom massive PNs were diagnosed at The Hospital for Sick Children in Toronto, Ontario, Canada. These patients attended routine follow-up examinations conducted by a number of specialists, and serial neuroimaging studies were obtained to monitor disease progression. The most common presenting feature of PN was that of a painful, expanding lesion. Furthermore, two patients harbored multiple, distinct PNs affecting different body sites. With respect to management, two patients were simply observed, undergoing serial neuroimaging studies; two patients underwent biopsy sampling of their plexiform lesions; two patients underwent attempted medical treatment (farnesyl transferase inhibitor, R11577, and cyclophosphamide chemotherapy); and three patients required surgical debulking of their PNs because the massive growth of these tumors caused functional compromise. Ultimately, one patient died of respiratory complications due to progressive growth of the massive PN lesion. In this review of their experience, the authors found certain features that underscore the presentation and natural history of PNs. The management of these complex lesions, however, remains unclear. Slow-growing PNs may be observed conservatively, but the authors' experience suggests that resection should be considered in selected cases involving significant deterioration or functional compromise. Nevertheless, patients with massive PNs will benefit from close surveillance by a team of specialists to monitor for ongoing disease progression.

  12. The Final Stages of Massive Star Evolution and Their Supernovae

    Science.gov (United States)

    Heger, Alexander

    In this chapter I discuss the final stages in the evolution of massive stars - stars that are massive enough to burn nuclear fuel all the way to iron group elements in their core. The core eventually collapses to form a neutron star or a black hole when electron captures and photo-disintegration reduce the pressure support to an extent that it no longer can hold up against gravity. The late burning stages of massive stars are a rich subject by themselves, and in them many of the heavy elements in the universe are first generated. The late evolution of massive stars strongly depends on their mass, and hence can be significantly effected by mass loss due to stellar winds and episodic mass loss events - a critical ingredient that we do not know as well as we would like. If the star loses all the hydrogen envelope, a Type I supernova results, if it does not, a Type II supernova is observed. Whether the star makes neutron star or a black hole, or a neutron star at first and a black hole later, and how fast they spin largely affects the energetics and asymmetry of the observed supernova explosion. Beyond photon-based astronomy, other than the sun, a supernova (SN 1987) has been the only object in the sky we ever observed in neutrinos, and supernovae may also be the first thing we will ever see in gravitational wave detectors like LIGO. I conclude this chapter reviewing the deaths of the most massive stars and of Population III stars.

  13. CLUSTERED STAR FORMATION AND OUTFLOWS IN AFGL 2591

    International Nuclear Information System (INIS)

    Sanna, A.; Carrasco-González, C.; Menten, K. M.; Brunthaler, A.; Reid, M. J.; Moscadelli, L.; Rygl, K. L. J.

    2012-01-01

    We report on a detailed study of the water maser kinematics and radio continuum emission toward the most massive and young object in the star-forming region AFGL 2591. Our analysis shows at least two spatial scales of multiple star formation, one projected across 0.1 pc on the sky and another one at about 2000 AU from a ZAMS star of about 38 M ☉ . This young stellar object drives a powerful jet- and wind-driven outflow system with the water masers associated to the outflow walls, previously detected as a limb-brightened cavity in the NIR band. At about 1300 AU to the north of this object a younger protostar drives two bow shocks, outlined by arc-like water maser emission, at 200 AU either side of the source. We have traced the velocity profile of the gas that expands along these arc-like maser structures and compared it with the jet-driven outflow model. This analysis suggests that the ambient medium around the northern protostar is swept up by a jet-driven shock (>66 km s –1 ) and perhaps a lower-velocity (∼10 km s –1 ) wind with an opening angle of about 20° from the jet axis.

  14. CLUSTERED STAR FORMATION AND OUTFLOWS IN AFGL 2591

    Energy Technology Data Exchange (ETDEWEB)

    Sanna, A.; Carrasco-Gonzalez, C.; Menten, K. M.; Brunthaler, A. [Max-Planck-Institut fuer Radioastronomie, Auf dem Huegel 69, 53121 Bonn (Germany); Reid, M. J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Moscadelli, L. [INAF, Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, 50125 Firenze (Italy); Rygl, K. L. J., E-mail: asanna@mpifr-bonn.mpg.de [IFSI-INAF, Istituto di Fisica dello Spazio Interplanetario, Via del Fosso del Cavaliere 100, 00133 Roma (Italy)

    2012-02-01

    We report on a detailed study of the water maser kinematics and radio continuum emission toward the most massive and young object in the star-forming region AFGL 2591. Our analysis shows at least two spatial scales of multiple star formation, one projected across 0.1 pc on the sky and another one at about 2000 AU from a ZAMS star of about 38 M{sub Sun }. This young stellar object drives a powerful jet- and wind-driven outflow system with the water masers associated to the outflow walls, previously detected as a limb-brightened cavity in the NIR band. At about 1300 AU to the north of this object a younger protostar drives two bow shocks, outlined by arc-like water maser emission, at 200 AU either side of the source. We have traced the velocity profile of the gas that expands along these arc-like maser structures and compared it with the jet-driven outflow model. This analysis suggests that the ambient medium around the northern protostar is swept up by a jet-driven shock (>66 km s{sup -1}) and perhaps a lower-velocity ({approx}10 km s{sup -1}) wind with an opening angle of about 20 Degree-Sign from the jet axis.

  15. THE CONCEPT OF THE GEOPORTAL FOR THE YOUNGEST GENERATION ON THE EXAMPLE OF KOSZALIN

    Directory of Open Access Journals (Sweden)

    Szczepaniak-Kołtun Zofia

    2015-12-01

    Full Text Available General access to the Internet and the facility of obtaining spatial data contribute to the existence of geoportals. The diversity of such portals relate not only to their administrative range (national, regional, communal but also to a wide range of themes (for instance for mushroom pickers, globetrotters.... It allows the usage of geoportals by a larger and diverse group of society. Despite such diversity it can be observed that these portals are directed at adult society and young people who already have a certain amount of geographical knowledge. Considering that from an early age children have contact with the Internet, a good practice for them would be a geoinformational portal created for children. Such early learning would lead to the creation of children's "geo-intellect" by developing their visual and spatial intelligence. Exploring the world, including in a virtual form, it is a way of shaping the imagination of children. It is a type of learning through play, and therefore children can assimilate "geo-knowledge" in an imperceptible way. In this article the author, withthe help of his 8-year-old daughter and her peers wants to present the concepts of geoportal for children, which would include the most important objects for little recipients. By using the colour pictograms the portal shows the places where children can play (playgrounds, sports fields, eat a "little something" (ice cream parlour, or take the family to "attractive points" (parks, cinemas, railway station. To achieve better spatial identification the children's geoinformational portal also shows characteristic buildings (town hall, churches as well as natural objects (rivers, lakes.The Geoportal for the youngest generation is a way for shaping good habits in surfing the Internet, but also it can be a counterweight to social networks being in common use.

  16. Massive Pulmonary Embolism: Percutaneous Emergency Treatment Using an Aspirex Thrombectomy Catheter

    International Nuclear Information System (INIS)

    Popovic, Peter; Bunc, Matjaz

    2010-01-01

    Massive pulmonary embolism (PE) is a life-threatening condition with a high early mortality rate caused by acute right ventricular failure and cardiogenic shock. A 51-year-old woman with a massive PE and contraindication for thrombolytic therapy was treated with percutaneous mechanical thrombectomy using an Aspirex 11F catheter (Straub Medical AG, Wangs, Switzerland). The procedure was successfully performed and showed a good immediate angiographic result. The patient made a full recovery from the acute episode and was discharged on heparin treatment. Our case report indicates that in patients with contraindications to systemic thrombolysis, catheter thrombectomy may constitute a life-saving intervention for massive PE.

  17. Constrained dynamics of universally coupled massive spin 2-spin 0 gravities

    International Nuclear Information System (INIS)

    Pitts, J Brian

    2006-01-01

    The 2-parameter family of massive variants of Einsteins gravity (on a Minkowski background) found by Ogievetsky and Polubarinov by excluding lower spins can also be derived using universal coupling. A Dirac-Bergmann constrained dynamics analysis seems not to have been presented for these theories, the Freund-Maheshwari-Schonberg special case, or any other massive gravity beyond the linear level treated by Marzban, Whiting and van Dam. Here the Dirac-Bergmann apparatus is applied to these theories. A few remarks are made on the question of positive energy. Being bimetric, massive gravities have a causality puzzle, but it appears soluble by the introduction and judicious use of gauge freedom

  18. Massive Open Online Courses

    Directory of Open Access Journals (Sweden)

    Tharindu Rekha Liyanagunawardena

    2015-01-01

    Full Text Available Massive Open Online Courses (MOOCs are a new addition to the open educational provision. They are offered mainly by prestigious universities on various commercial and non-commercial MOOC platforms allowing anyone who is interested to experience the world class teaching practiced in these universities. MOOCs have attracted wide interest from around the world. However, learner demographics in MOOCs suggest that some demographic groups are underrepresented. At present MOOCs seem to be better serving the continuous professional development sector.

  19. FRW Cosmological Perturbations in Massive Bigravity

    CERN Document Server

    Comelli, D; Pilo, L

    2014-01-01

    Cosmological perturbations of FRW solutions in ghost free massive bigravity, including also a second matter sector, are studied in detail. At early time, we find that sub horizon exponential instabilities are unavoidable and they lead to a premature departure from the perturbative regime of cosmological perturbations.

  20. Massive neutrinos in almost-commutative geometry

    International Nuclear Information System (INIS)

    Stephan, Christoph A.

    2007-01-01

    In the noncommutative formulation of the standard model of particle physics by Chamseddine and Connes [Commun. Math. Phys. 182, 155 (1996), e-print hep-th/9606001], one of the three generations of fermions has to possess a massless neutrino. [C. P. Martin et al., Phys. Rep. 29, 363 (1998), e-print hep-th-9605001]. This formulation is consistent with neutrino oscillation experiments and the known bounds of the Pontecorvo-Maki-Nakagawa-Sakata matrix (PMNS matrix). But future experiments which may be able to detect neutrino masses directly and high-precision measurements of the PMNS matrix might need massive neutrinos in all three generations. In this paper we present an almost-commutative geometry which allows for a standard model with massive neutrinos in all three generations. This model does not follow in a straightforward way from the version of Chamseddine and Connes since it requires an internal algebra with four summands of matrix algebras, instead of three summands for the model with one massless neutrino

  1. Excited TBA equations I: Massive tricritical Ising model

    International Nuclear Information System (INIS)

    Pearce, Paul A.; Chim, Leung; Ahn, Changrim

    2001-01-01

    We consider the massive tricritical Ising model M(4,5) perturbed by the thermal operator phi (cursive,open) Greek 1,3 in a cylindrical geometry and apply integrable boundary conditions, labelled by the Kac labels (r,s), that are natural off-critical perturbations of known conformal boundary conditions. We derive massive thermodynamic Bethe ansatz (TBA) equations for all excitations by solving, in the continuum scaling limit, the TBA functional equation satisfied by the double-row transfer matrices of the A 4 lattice model of Andrews, Baxter and Forrester (ABF) in Regime III. The complete classification of excitations, in terms of (m,n) systems, is precisely the same as at the conformal tricritical point. Our methods also apply on a torus but we first consider (r,s) boundaries on the cylinder because the classification of states is simply related to fermionic representations of single Virasoro characters χ r,s (q). We study the TBA equations analytically and numerically to determine the conformal UV and free particle IR spectra and the connecting massive flows. The TBA equations in Regime IV and massless RG flows are studied in Part II

  2. Black-hole-regulated star formation in massive galaxies

    Science.gov (United States)

    Martín-Navarro, Ignacio; Brodie, Jean P.; Romanowsky, Aaron J.; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-01

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  3. Black-hole-regulated star formation in massive galaxies.

    Science.gov (United States)

    Martín-Navarro, Ignacio; Brodie, Jean P; Romanowsky, Aaron J; Ruiz-Lara, Tomás; van de Ven, Glenn

    2018-01-18

    Supermassive black holes, with masses more than a million times that of the Sun, seem to inhabit the centres of all massive galaxies. Cosmologically motivated theories of galaxy formation require feedback from these supermassive black holes to regulate star formation. In the absence of such feedback, state-of-the-art numerical simulations fail to reproduce the number density and properties of massive galaxies in the local Universe. There is, however, no observational evidence of this strongly coupled coevolution between supermassive black holes and star formation, impeding our understanding of baryonic processes within galaxies. Here we report that the star formation histories of nearby massive galaxies, as measured from their integrated optical spectra, depend on the mass of the central supermassive black hole. Our results indicate that the black-hole mass scales with the gas cooling rate in the early Universe. The subsequent quenching of star formation takes place earlier and more efficiently in galaxies that host higher-mass central black holes. The observed relation between black-hole mass and star formation efficiency applies to all generations of stars formed throughout the life of a galaxy, revealing a continuous interplay between black-hole activity and baryon cooling.

  4. Three-dimensional Casimir piston for massive scalar fields

    International Nuclear Information System (INIS)

    Lim, S.C.; Teo, L.P.

    2009-01-01

    We consider Casimir force acting on a three-dimensional rectangular piston due to a massive scalar field subject to periodic, Dirichlet and Neumann boundary conditions. Exponential cut-off method is used to derive the Casimir energy. It is shown that the divergent terms do not contribute to the Casimir force acting on the piston, thus render a finite well-defined Casimir force acting on the piston. Explicit expressions for the total Casimir force acting on the piston is derived, which show that the Casimir force is always attractive for all the different boundary conditions considered. As a function of a - the distance from the piston to the opposite wall, it is found that the magnitude of the Casimir force behaves like 1/a 4 when a→0 + and decays exponentially when a→∞. Moreover, the magnitude of the Casimir force is always a decreasing function of a. On the other hand, passing from massless to massive, we find that the effect of the mass is insignificant when a is small, but the magnitude of the force is decreased for large a in the massive case.

  5. Solid holography and massive gravity

    International Nuclear Information System (INIS)

    Alberte, Lasma; Baggioli, Matteo; Khmelnitsky, Andrei; Pujolàs, Oriol

    2016-01-01

    Momentum dissipation is an important ingredient in condensed matter physics that requires a translation breaking sector. In the bottom-up gauge/gravity duality, this implies that the gravity dual is massive. We start here a systematic analysis of holographic massive gravity (HMG) theories, which admit field theory dual interpretations and which, therefore, might store interesting condensed matter applications. We show that there are many phases of HMG that are fully consistent effective field theories and which have been left overlooked in the literature. The most important distinction between the different HMG phases is that they can be clearly separated into solids and fluids. This can be done both at the level of the unbroken spacetime symmetries as well as concerning the elastic properties of the dual materials. We extract the modulus of rigidity of the solid HMG black brane solutions and show how it relates to the graviton mass term. We also consider the implications of the different HMGs on the electric response. We show that the types of response that can be consistently described within this framework is much wider than what is captured by the narrow class of models mostly considered so far.

  6. Solid holography and massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Alberte, Lasma [Abdus Salam International Centre for Theoretical Physics,Strada Costiera 11, 34151, Trieste (Italy); Baggioli, Matteo [Institut de Física d’Altes Energies (IFAE),The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193 Bellaterra, Barcelona (Spain); Department of Physics, Institute for Condensed Matter Theory, University of Illinois,1110 W. Green Street, Urbana, IL 61801 (United States); Khmelnitsky, Andrei [Abdus Salam International Centre for Theoretical Physics, Strada Costiera 11, 34151, Trieste (Italy); Pujolàs, Oriol [Institut de Física d’Altes Energies (IFAE),The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193 Bellaterra, Barcelona (Spain)

    2016-02-17

    Momentum dissipation is an important ingredient in condensed matter physics that requires a translation breaking sector. In the bottom-up gauge/gravity duality, this implies that the gravity dual is massive. We start here a systematic analysis of holographic massive gravity (HMG) theories, which admit field theory dual interpretations and which, therefore, might store interesting condensed matter applications. We show that there are many phases of HMG that are fully consistent effective field theories and which have been left overlooked in the literature. The most important distinction between the different HMG phases is that they can be clearly separated into solids and fluids. This can be done both at the level of the unbroken spacetime symmetries as well as concerning the elastic properties of the dual materials. We extract the modulus of rigidity of the solid HMG black brane solutions and show how it relates to the graviton mass term. We also consider the implications of the different HMGs on the electric response. We show that the types of response that can be consistently described within this framework is much wider than what is captured by the narrow class of models mostly considered so far.

  7. No hair theorem in quasi-dilaton massive gravity

    International Nuclear Information System (INIS)

    Wu, De-Jun; Zhou, Shuang-Yong

    2016-01-01

    We investigate the static, spherically symmetric black hole solutions in the quasi-dilaton model and its generalizations, which are scalar extended dRGT massive gravity with a shift symmetry. We show that, unlike generic scalar extended massive gravity models, these theories do not admit static, spherically symmetric black hole solutions until the theory parameters in the dRGT potential are fine-tuned. When fine-tuned, the geometry of the static, spherically symmetric black hole is necessarily that of general relativity and the quasi-dilaton field is constant across the spacetime. The fine-tuning and the no hair theorem apply to black holes with flat, anti-de Sitter or de Sitter asymptotics.

  8. No hair theorem in quasi-dilaton massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Wu, De-Jun, E-mail: wudejun10@mails.ucas.ac.cn [School of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Zhou, Shuang-Yong, E-mail: sxz353@case.edu [Department of Physics, Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH 44106 (United States)

    2016-06-10

    We investigate the static, spherically symmetric black hole solutions in the quasi-dilaton model and its generalizations, which are scalar extended dRGT massive gravity with a shift symmetry. We show that, unlike generic scalar extended massive gravity models, these theories do not admit static, spherically symmetric black hole solutions until the theory parameters in the dRGT potential are fine-tuned. When fine-tuned, the geometry of the static, spherically symmetric black hole is necessarily that of general relativity and the quasi-dilaton field is constant across the spacetime. The fine-tuning and the no hair theorem apply to black holes with flat, anti-de Sitter or de Sitter asymptotics.

  9. Bosonization of fermions coupled to topologically massive gravity

    Science.gov (United States)

    Fradkin, Eduardo; Moreno, Enrique F.; Schaposnik, Fidel A.

    2014-03-01

    We establish a duality between massive fermions coupled to topologically massive gravity (TMG) in d=3 space-time dimensions and a purely gravity theory which also will turn out to be a TMG theory but with different parameters: the original graviton mass in the TMG theory coupled to fermions picks up a contribution from fermion bosonization. We obtain explicit bosonization rules for the fermionic currents and for the energy-momentum tensor showing that the identifications do not depend explicitly on the parameters of the theory. These results are the gravitational analog of the results for 2+1 Abelian and non-Abelian bosonization in flat space-time.

  10. Bosonization of fermions coupled to topologically massive gravity

    International Nuclear Information System (INIS)

    Fradkin, Eduardo; Moreno, Enrique F.; Schaposnik, Fidel A.

    2014-01-01

    We establish a duality between massive fermions coupled to topologically massive gravity (TMG) in d=3 space–time dimensions and a purely gravity theory which also will turn out to be a TMG theory but with different parameters: the original graviton mass in the TMG theory coupled to fermions picks up a contribution from fermion bosonization. We obtain explicit bosonization rules for the fermionic currents and for the energy–momentum tensor showing that the identifications do not depend explicitly on the parameters of the theory. These results are the gravitational analog of the results for 2+1 Abelian and non-Abelian bosonization in flat space–time.

  11. Bosonization of fermions coupled to topologically massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, Eduardo [Department of Physics and Institute for Condensed Matter Theory, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801-3080 (United States); Moreno, Enrique F. [Department of Physics, Northeastern University, Boston, MA 02115 (United States); Schaposnik, Fidel A. [Departamento de Física, Universidad Nacional de La Plata, Instituto de Física La Plata, C.C. 67, 1900 La Plata (Argentina)

    2014-03-07

    We establish a duality between massive fermions coupled to topologically massive gravity (TMG) in d=3 space–time dimensions and a purely gravity theory which also will turn out to be a TMG theory but with different parameters: the original graviton mass in the TMG theory coupled to fermions picks up a contribution from fermion bosonization. We obtain explicit bosonization rules for the fermionic currents and for the energy–momentum tensor showing that the identifications do not depend explicitly on the parameters of the theory. These results are the gravitational analog of the results for 2+1 Abelian and non-Abelian bosonization in flat space–time.

  12. Efficient optimal joint channel estimation and data detection for massive MIMO systems

    KAUST Repository

    Alshamary, Haider Ali Jasim

    2016-08-15

    In this paper, we propose an efficient optimal joint channel estimation and data detection algorithm for massive MIMO wireless systems. Our algorithm is optimal in terms of the generalized likelihood ratio test (GLRT). For massive MIMO systems, we show that the expected complexity of our algorithm grows polynomially in the channel coherence time. Simulation results demonstrate significant performance gains of our algorithm compared with suboptimal non-coherent detection algorithms. To the best of our knowledge, this is the first algorithm which efficiently achieves GLRT-optimal non-coherent detections for massive MIMO systems with general constellations.

  13. Massive scalar field evolution in de Sitter

    Energy Technology Data Exchange (ETDEWEB)

    Markkanen, Tommi [Department of Physics, King’s College London,Strand, London WC2R 2LS (United Kingdom); Rajantie, Arttu [Department of Physics, Imperial College London,London SW7 2AZ (United Kingdom)

    2017-01-30

    The behaviour of a massive, non-interacting and non-minimally coupled quantised scalar field in an expanding de Sitter background is investigated by solving the field evolution for an arbitrary initial state. In this approach there is no need to choose a vacuum in order to provide a definition for particle states, nor to introduce an explicit ultraviolet regularization. We conclude that the expanding de Sitter space is a stable equilibrium configuration under small perturbations of the initial conditions. Depending on the initial state, the energy density can approach its asymptotic value from above or below, the latter of which implies a violation of the weak energy condition. The backreaction of the quantum corrections can therefore lead to a phase of super-acceleration also in the non-interacting massive case.

  14. Newly diagnosed primary hypothyroidism applicant with massive pericardial effusion and acute renal failure

    Directory of Open Access Journals (Sweden)

    Ates I

    2016-01-01

    Full Text Available Objective. While non-symptomatic pericardial effusion is seen in primary hypothyroidism, massive pericardial effusion is a very rare finding. In the literature, newly diagnosed primary hypothyroidism cases presenting with massive pericardial effusion or acute renal failure are present, but we did not encounter any case first presenting with combination of two signs. In this case report, primary hypothyroidism case that presenting with massive pericardial effusion and acute renal failure will be discussed.

  15. The low-metallicity starburst NGC346: massive-star population and feedback

    Science.gov (United States)

    Oskinova, Lida

    2017-08-01

    The Small Magellanic Cloud (SMC) is ideal to study young, massive stars at low metallicity. The compact cluster NGC346 contains about half of all O-type stars in the entire SMC. The massive-star population of this cluster powers N66, the brightest and largest HII region in the SMC. We propose to use HST-STIS to slice NGC346 with 20 long-slit exposures, in order to obtain the UV spectra of most of the massive early-type stars of this cluster. Archival data of 13 exposures that cover already a minor part of this cluster will be included in our analyses. Our aim is to quantitatively analyze virtually the whole massive-star population of NGC346. We have already secured the optical spectra of all massive stars in the field with the integral-field spectrograph MUSE at the ESO-VLT. However, for the determination of the stellar-wind parameters, i.e. the mass-loss rates and the wind velocities, ultraviolet spectra are indispensable. Our advanced Potsdam Wolf-Rayet (PoWR) code will be used for modeling the stellar and wind spectra in the course of the analysis. Finally, we will obtain:(a) the fundamental stellar and wind parameters of all stars brighter than spectral type B2V in the field, which, e,g,, will constrain the initial mass function in this young low-metallicity starburst;(b) mass-loss rates of many more OB-type stars at SMC metallicity than hitherto known, allowing to better constrain their metallicity dependence;(c) the integrated feedback by ionizing radiation and stellar winds of the whole massive-star population of NGC346, which will be used as input to model the ecology of the giant HII region N66.These HST UV data will be of high legacy value.

  16. Formation and pre-MS Evolution of Massive Stars with Growing Accretion

    Science.gov (United States)

    Maeder, A.; Behrend, R.

    2002-10-01

    We briefly describe the three existing scenarios for forming massive stars and emphasize that the arguments often used to reject the accretion scenario for massive stars are misleading. It is usually not accounted for the fact that the turbulent pressure associated to large turbulent velocities in clouds necessarily imply relatively high accretion rates for massive stars. We show the basic difference between the formation of low and high mass stars based on the values of the free fall time and of the Kelvin-Helmholtz timescale, and define the concept of birthline for massive stars. Due to D-burning, the radius and location of the birthline in the HR diagram, as well as the lifetimes are very sensitive to the accretion rate dM/dt(accr). If a form dM/dt(accr) propto A(M/Msun)phi is adopted, the observations in the HR diagram and the lifetimes support a value of A approx 10-5 Msun/yr and a value of phi > 1. Remarkably, such a law is consistent with the relation found by Churchwell and Henning et al. between the outflow rates and the luminosities of ultracompact HII regions, if we assume that a fraction 0.15 to 0.3 of the global inflow is accreted. The above relation implies high dM/dt(accr) approx 10-3 Msun/yr for the most massive stars. The physical possibility of such high dM/dt(accr) is supported by current numerical models. Finally, we give simple analytical arguments in favour of the growth of dM/dt(accr) with the already accreted mass. We also suggest that due to Bondi-Hoyle accretion, the formation of binary stars is largely favoured among massive stars in the accretion scenario.

  17. Massive Kaluza-Klein theories and their spontaneously broken symmetries

    International Nuclear Information System (INIS)

    Hohm, O.

    2006-07-01

    In this thesis we investigate the effective actions for massive Kaluza-Klein states, focusing on the massive modes of spin-3/2 and spin-2 fields. To this end we determine the spontaneously broken gauge symmetries associated to these 'higher-spin' states and construct the unbroken phase of the Kaluza-Klein theory. We show that for the particular background AdS 3 x S 3 x S 3 a consistent coupling of the first massive spin-3/2 multiplet requires an enhancement of local supersymmetry, which in turn will be partially broken in the Kaluza-Klein vacuum. The corresponding action is constructed as a gauged maximal supergravity in D=3. Subsequently, the symmetries underlying an infinite tower of massive spin-2 states are analyzed in case of a Kaluza-Klein compactification of four-dimensional gravity to D=3. It is shown that the resulting gravity-spin-2 theory is given by a Chern-Simons action of an affine algebra and also allows a geometrical interpretation in terms of 'algebra-valued' differential geometry. The global symmetry group is determined, which contains an affine extension of the Ehlers group. We show that the broken phase can in turn be constructed via gauging a certain subgroup of the global symmetry group. Finally, deformations of the Kaluza-Klein theory on AdS 3 x S 3 x S 3 and the corresponding symmetry breakings are analyzed as possible applications for the AdS/CFT correspondence. (Orig.)

  18. Massive congenital tricuspid insufficiency in the newborn

    International Nuclear Information System (INIS)

    Bogren, H.G.; Ikeda, R.; Riemenschneider, T.A.; Merten, D.F.; Janos, G.G.

    1979-01-01

    Three cases of massive congenital tricuspid incompetence in the newborn are reported and discussed from diagnostic, pathologic and etiologic points of view. The diagnosis is important as cases have been reported with spontaneous resolution. (Auth.)

  19. Multiplicity in Early Stellar Evolution

    Science.gov (United States)

    Reipurth, B.; Clarke, C. J.; Boss, A. P.; Goodwin, S. P.; Rodríguez, L. F.; Stassun, K. G.; Tokovinin, A.; Zinnecker, H.

    Observations from optical to centimeter wavelengths have demonstrated that multiple systems of two or more bodies is the norm at all stellar evolutionary stages. Multiple systems are widely agreed to result from the collapse and fragmentation of cloud cores, despite the inhibiting influence of magnetic fields. Surveys of class 0 protostars with millimeter interferometers have revealed a very high multiplicity frequency of about 2/3, even though there are observational difficulties in resolving close protobinaries, thus supporting the possibility that all stars could be born in multiple systems. Near-infrared adaptive optics observations of class I protostars show a lower binary frequency relative to the class 0 phase, a declining trend that continues through the class II/III stages to the field population. This loss of companions is a natural consequence of dynamical interplay in small multiple systems, leading to ejection of members. We discuss observational consequences of this dynamical evolution, and its influence on circumstellar disks, and we review the evolution of circumbinary disks and their role in defining binary mass ratios. Special attention is paid to eclipsing PMS binaries, which allow for observational tests of evolutionary models of early stellar evolution. Many stars are born in clusters and small groups, and we discuss how interactions in dense stellar environments can significantly alter the distribution of binary separations through dissolution of wider binaries. The binaries and multiples we find in the field are the survivors of these internal and external destructive processes, and we provide a detailed overview of the multiplicity statistics of the field, which form a boundary condition for all models of binary evolution. Finally, we discuss various formation mechanisms for massive binaries, and the properties of massive trapezia.

  20. THE STRUCTURE OF THE STAR-FORMING CLUSTER RCW 38

    Energy Technology Data Exchange (ETDEWEB)

    Winston, E. [ESA-ESTEC (SRE-SA), Keplerlaan 1, 2201 AZ Noordwijk ZH (Netherlands); Wolk, S. J.; Bourke, T. L.; Spitzbart, B. [Harvard Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Megeath, S. T. [Ritter Observatory, Department of Physics and Astronomy, University of Toledo, 2801 West Bancroft Avenue, Toledo, OH 43606 (United States); Gutermuth, R., E-mail: ewinston@rssd.esa.int [Five Colleges Astronomy Department, Smith College, Northampton, MA 01027 (United States)

    2011-12-20

    We present a study of the structure of the high-mass star-forming region RCW 38 and the spatial distribution of its young stellar population. Spitzer Infrared Array Camera (IRAC) photometry (3-8 {mu}m) is combined with Two Micron All Sky Survey near-IR data to identify young stellar objects (YSOs) by IR-excess emission from their circumstellar material. Chandra X-ray data are used to identify class III pre-main-sequence stars lacking circumstellar material. We identify 624 YSOs: 23 class 0/I and 90 flat spectrum protostars, 437 class II stars, and 74 class III stars. We also identify 29 (27 new) O star candidates over the IRAC field. Seventy-two stars exhibit IR-variability, including 7 class 0/I and 12 flat spectrum YSOs. A further 177 tentative candidates are identified by their location in the IRAC [3.6] versus [3.6]-[5.8] color-magnitude diagram. We find strong evidence of subclustering in the region. Three subclusters were identified surrounding the central cluster, with massive and variable stars in each subcluster. The central region shows evidence of distinct spatial distributions of the protostars and pre-main-sequence stars. A previously detected IR cluster, DB2001{sub O}bj36, has been established as a subcluster of RCW 38. This suggests that star formation in RCW 38 occurs over a more extended area than previously thought. The gas-to-dust ratio is examined using the X-ray derived hydrogen column density, N{sub H} and the K-band extinction, and found to be consistent with the diffuse interstellar medium, in contrast with Serpens and NGC 1333. We posit that the high photoionizing flux of massive stars in RCW 38 affects the agglomeration of the dust grains.

  1. 3-loop heavy flavor corrections to DIS with two massive fermion lines

    International Nuclear Information System (INIS)

    Ablinger, J.; Schneider, C.; Klein, S.

    2011-06-01

    We report on recent results obtained for the massive operator matrix elements which contribute to the massive Wilson coefficients in deep-inelastic scattering for Q 2 >> m i 2 in case of sub-processes with two fermion lines and different mass assignment. (orig.)

  2. On the evolution of stellar systems with a massive center

    International Nuclear Information System (INIS)

    Gurzadyan, V.G.; Kocharyan, A.A.

    1986-01-01

    The evolution of stellar systems with the massive center is investigated within the framework of dynamic system theory. Open dissipative systems, for which the Liouville theorem of the phase volume preservation is not implemented, are considered. Equations determining variation, in time, of main physical system parameters have been derived and studied. Results of the investigation show a principal possibility for determining the evolution path of stellar systems with the massive centers depending on physical parameters

  3. Body image concerns amongst massive weight loss patients.

    Science.gov (United States)

    Gilmartin, Jo

    2013-05-01

    To explore body image matters amongst patients following massive weight loss. In contemporary health care, a growing number of morbidly obese patients are seeking surgical solutions such as bariatric surgery or in other cases engaging with radical lifestyle changes. Massive weight loss can leave patients with a huge excess of lax overstretched skin that in some cases can trigger major body image dissatisfaction or depression. There is a scarcity of research about the needs of this group of patients and this is important for nursing practice. A qualitative design using in-depth interviews was employed. Twenty white adults (18 women and two men) were recruited retrospectively amongst patients who had massive weight loss by undergoing bariatric surgery or radical lifestyle changes, aged 29-63 years. All of the participants gave signed informed consent. Face-to-face in-depth interviews were conducted and transcribed verbatim. The data were analysed using thematic analysis. One core theme focusing on body image ugliness and three associated subthemes were identified: the subthemes included feeling socially marginalised, feeling depressed and sexual and intimacy difficulties. Body image matters are hugely significant and appear to have a lasting effect on emotional well-being and function, contributing to psychological distress and social isolation. Greater sensitivity is required in enabling patients to work through emotional isolation and shame that has been a part of their childhood. Furthermore more, treatments need to be accessible to this growing patient population such as reconstructive surgery. Nurses who care for massive weight loss patients need to be mindful of their psychodynamic needs and be non-judgemental and accepting. Moreover, nurses need to be aware of treatment options and be able to assess body image matters and implement quality care for this particular patient group including body image acceptance programmes and support groups. © 2013 Blackwell

  4. Integrands for QCD rational terms and {N} = {4} SYM from massive CSW rules

    Science.gov (United States)

    Elvang, Henriette; Freedman, Daniel Z.; Kiermaier, Michael

    2012-06-01

    We use massive CSW rules to derive explicit compact expressions for integrands of rational terms in QCD with any number of external legs. Specifically, we present all- n integrands for the one-loop all-plus and one-minus gluon amplitudes in QCD. We extract the finite part of spurious external-bubble contributions systematically; this is crucial for the application of integrand-level CSW rules in theories without supersymmetry. Our approach yields integrands that are independent of the choice of CSW reference spinor even before integration. Furthermore, we present a recursive derivation of the recently proposed massive CSW-style vertex expansion for massive tree amplitudes and loop integrands on the Coulomb-branch of {N} = {4} SYM. The derivation requires a careful study of boundary terms in all-line shift recursion relations, and provides a rigorous (albeit indirect) proof of the recently proposed construction of massive amplitudes from soft-limits of massless on-shell amplitudes. We show that the massive vertex expansion manifestly preserves all holomorphic and half of the anti-holomorphic supercharges, diagram-by-diagram, even off-shell.

  5. A SMOKING GUN IN THE CARINA NEBULA

    International Nuclear Information System (INIS)

    Hamaguchi, Kenji; Corcoran, Michael F.; Ezoe, Yuichiro; Townsley, Leisa; Broos, Patrick; Gruendl, Robert; Vaidya, Kaushar; Chu, You-Hua; White, Stephen M.; Strohmayer, Tod; Petre, Rob

    2009-01-01

    The Carina Nebula is one of the youngest, most active sites of massive star formation in our Galaxy. In this nebula, we have discovered a bright X-ray source that has persisted for ∼30 years. The soft X-ray spectrum, consistent with kT ∼ 128 eV blackbody radiation with mild extinction, and no counterpart in the near- and mid-infrared wavelengths indicates that it is a ∼10 6 year old neutron star housed in the Carina Nebula. Current star formation theory does not suggest that the progenitors of the neutron star and massive stars in the Carina Nebula, in particular η Car, are coeval. This result suggests that the Carina Nebula experienced at least two major episodes of massive star formation. The neutron star may be responsible for remnants of high-energy activity seen in multiple wavelengths.

  6. A Smoking Gun in the Carina Nebula

    Science.gov (United States)

    Hamaguchi, Kenji; Corcoran, Michael F.; Ezoe, Yuichiro; Townsley, Leisa; Broos, Patrick; Gruendl, Robert; Vaidya, Kaushar; White, Stephen M.; Petre, Rob; Chu, You-Hua

    2009-01-01

    The Carina Nebula is one of thc youngest, most active sites of massive star formation in our Galaxy. In this nebula, we have discovered a bright X-ray source that has persisted for approx.30 years. The soft X-ray spectrum. consistent with kT approx.130 eV blackbody radiation with mild extinction, and no counterpart in the near- and mid-infrared wavelengths indicate that it is a, approx. 10(exp 6)-year-old neutron star housed in the Carina Nebula. Current star formation theory does not suggest that the progenitor of the neutron star and massive stars in the Carina Nebula, in particular (eta)Car, are coeval. This result demonstrates that the Carina Nebula experienced at least two major episodes of massive star formation. The neutron star would be responsible for remnants of high energy activity seen in multiple wavelengths.

  7. Massive hemoptysis in a patient with pulmonary embolism, a real therapeutic conundrum

    Directory of Open Access Journals (Sweden)

    Yiolanda Herodotou

    2017-01-01

    Full Text Available Massive Hemoptysis and pulmonary embolism are two very severe and potentially fatal pulmonary emergencies requiring completely different treatments. We present the case of a 45-year old male transmitted to our Hospital for massive hemoptysis who at the same time was found to suffer from pulmonary embolism. Hemoptysis was treated with bronchial artery embolization which resulted in cessation of haemorrhage and allowed the administration of anticoagulant therapy a few days later. This case report gives an answer on how to manage a real therapeutic conundrum which is the coexistence of a massive hemoptysis and a concomitant pulmonary embolism.

  8. Emergent universe with wormholes in massive gravity

    Science.gov (United States)

    Paul, B. C.; Majumdar, A. S.

    2018-03-01

    An emergent universe (EU) scenario is proposed to obtain a universe free from big-bang singularity. In this framework the present universe emerged from a static Einstein universe phase in the infinite past. A flat EU scenario is found to exist in Einstein’s gravity with a non-linear equation of state (EoS). It has been shown subsequently that a physically realistic EU model can be obtained considering cosmic fluid composed of interacting fluids with a non-linear equation of state. It results a viable cosmological model accommodating both early inflation and present accelerating phases. In the present paper, the origin of an initial static Einstein universe needed in the EU model is explored in a massive gravity theory which subsequently emerged to be a dynamically evolving universe. A new gravitational instanton solution in a flat universe is obtained in the massive gravity theory which is a dynamical wormhole that might play an important role in realizing the origin of the initial state of the emergent universe. The emergence of a Lorentzian universe from a Euclidean gravity is understood by a Wick rotation τ = i t . A universe with radiation at the beginning finally transits into the present observed universe with a non-linear EoS as the interactions among the fluids set in. Thus a viable flat EU scenario where the universe stretches back into time infinitely, with no big bang is permitted in a massive gravity.

  9. Current management of massive hemorrhage in trauma

    DEFF Research Database (Denmark)

    Johansson, Pär I; Stensballe, Jakob; Ostrowski, Sisse R

    2012-01-01

    ABSTRACT: Hemorrhage remains a major cause of potentially preventable deaths. Trauma and massive transfusion are associated with coagulopathy secondary to tissue injury, hypoperfusion, dilution, and consumption of clotting factors and platelets. Concepts of damage control surgery have evolved...

  10. A dust-obscured massive maximum-starburst galaxy at a redshift of 6.34.

    Science.gov (United States)

    Riechers, Dominik A; Bradford, C M; Clements, D L; Dowell, C D; Pérez-Fournon, I; Ivison, R J; Bridge, C; Conley, A; Fu, Hai; Vieira, J D; Wardlow, J; Calanog, J; Cooray, A; Hurley, P; Neri, R; Kamenetzky, J; Aguirre, J E; Altieri, B; Arumugam, V; Benford, D J; Béthermin, M; Bock, J; Burgarella, D; Cabrera-Lavers, A; Chapman, S C; Cox, P; Dunlop, J S; Earle, L; Farrah, D; Ferrero, P; Franceschini, A; Gavazzi, R; Glenn, J; Solares, E A Gonzalez; Gurwell, M A; Halpern, M; Hatziminaoglou, E; Hyde, A; Ibar, E; Kovács, A; Krips, M; Lupu, R E; Maloney, P R; Martinez-Navajas, P; Matsuhara, H; Murphy, E J; Naylor, B J; Nguyen, H T; Oliver, S J; Omont, A; Page, M J; Petitpas, G; Rangwala, N; Roseboom, I G; Scott, D; Smith, A J; Staguhn, J G; Streblyanska, A; Thomson, A P; Valtchanov, I; Viero, M; Wang, L; Zemcov, M; Zmuidzinas, J

    2013-04-18

    Massive present-day early-type (elliptical and lenticular) galaxies probably gained the bulk of their stellar mass and heavy elements through intense, dust-enshrouded starbursts--that is, increased rates of star formation--in the most massive dark-matter haloes at early epochs. However, it remains unknown how soon after the Big Bang massive starburst progenitors exist. The measured redshift (z) distribution of dusty, massive starbursts has long been suspected to be biased low in z owing to selection effects, as confirmed by recent findings of systems with redshifts as high as ~5 (refs 2-4). Here we report the identification of a massive starburst galaxy at z = 6.34 through a submillimetre colour-selection technique. We unambiguously determined the redshift from a suite of molecular and atomic fine-structure cooling lines. These measurements reveal a hundred billion solar masses of highly excited, chemically evolved interstellar medium in this galaxy, which constitutes at least 40 per cent of the baryonic mass. A 'maximum starburst' converts the gas into stars at a rate more than 2,000 times that of the Milky Way, a rate among the highest observed at any epoch. Despite the overall downturn in cosmic star formation towards the highest redshifts, it seems that environments mature enough to form the most massive, intense starbursts existed at least as early as 880 million years after the Big Bang.

  11. Albumin and fibrinogen levels′ relation with orthopedics traumatic patients′ outcome after massive transfusion

    Directory of Open Access Journals (Sweden)

    Mohammadreza Bazavar

    2014-01-01

    Full Text Available Background: Severe bleeding is common during limb trauma. It can lead to hemorrhagic shock required to massive blood transfusion. Coagulopathy is the major complication of massive transfusion-induced increased mortality rate. Aim of this study was evaluation of fibrinogen and albumin levels association with orthopedics traumatic patients′ outcome who received massive transfusion. Methods: In a cross sectional study, 23 patients with severe limb injury admitted to orthopedic emergency department were studied. All the patients received massive transfusion, that is, >10 unit blood. Albumin and fibrinogen levels are measured at admission and 24 h later, and compared according to final outcome. Results: Twenty-three traumatic patients with severe limb injuries were studied, out of which ten (43.2% died and 13 (56.8% were alive. There was significant difference between patients outcome in fibrinogen level after 24 h, but no difference was observed in albumin levels. Based on regression model, fibrinogen after 24 h had a significant role in determining the final outcome in traumatic patients who received massive transfusion (odds ratio 0.48, 95% confidence interval 0.15-0.92, P = 0.02. Conclusions: According to our results, fibrinogen level is the most important factor in determination of orthopedics traumatic patients when received massive transfusion. However, serum albumin does not play any role in patients′ outcome.

  12. Searches for massive neutrinos in nuclear beta decay

    International Nuclear Information System (INIS)

    Jaros, J.A.

    1992-10-01

    The status of searches for massive neutrinos in nuclear beta decay is reviewed. The claim by an ITEP group that the electron antineutrino mass > 17eV has been disputed by all the subsequent experiments. Current measurements of the tritium beta spectrum limit m bar νe < 10 eV. The status of the 17 keV neutrino is reviewed. The strong null results from INS Tokyo and Argonne, and deficiencies in the experiments which reported positive effects, make it unreasonable to ascribe the spectral distortions seen by Simpson, Hime, and others to a 17keV neutrino. Several new ideas on how to search for massive neutrinos in nuclear beta decay are discussed

  13. Complications of cesarean delivery in the massively obese parturient.

    Science.gov (United States)

    Alanis, Mark C; Villers, Margaret S; Law, Tameeka L; Steadman, Elizabeth M; Robinson, Christopher J

    2010-09-01

    The objective of the study was to determine predictors of cesarean delivery morbidity associated with massive obesity. This was an institutional review board-approved retrospective study of massively obese women (body mass index, > or = 50 kg/m(2)) undergoing cesarean delivery. Bivariable and multivariable analyses were used to assess the strength of association between wound complication and various predictors. Fifty-eight of 194 patients (30%) had a wound complication. Most (90%) were wound disruptions, and 86% were diagnosed after hospital discharge (median postoperative day, 8.5; interquartile range, 6-12). Subcutaneous drains and smoking, but not labor or ruptured membranes, were independently associated with wound complication after controlling for various confounders. Vertical abdominal incisions were associated with increased operative time, blood loss, and vertical hysterotomy. Women with a body mass index > or = 50 kg/m(2) have a much greater risk for cesarean wound complications than previously reported. Avoidance of subcutaneous drains and increased use of transverse abdominal wall incisions should be considered in massively obese parturients to reduce operative morbidity. Published by Mosby, Inc.

  14. How Massive Single Stars End Their Life

    Science.gov (United States)

    Heger, A.; Fryer, C. L.; Woosley, S. E.; Langer, N.; Hartmann, D. H.

    2003-01-01

    How massive stars die-what sort of explosion and remnant each produces-depends chiefly on the masses of their helium cores and hydrogen envelopes at death. For single stars, stellar winds are the only means of mass loss, and these are a function of the metallicity of the star. We discuss how metallicity, and a simplified prescription for its effect on mass loss, affects the evolution and final fate of massive stars. We map, as a function of mass and metallicity, where black holes and neutron stars are likely to form and where different types of supernovae are produced. Integrating over an initial mass function, we derive the relative populations as a function of metallicity. Provided that single stars rotate rapidly enough at death, we speculate on stellar populations that might produce gamma-ray bursts and jet-driven supernovae.

  15. LOS Throughput Measurements in Real-Time with a 128-Antenna Massive MIMO Testbed

    OpenAIRE

    Harris, Paul; Zhang, Siming; Beach, Mark; Mellios, Evangelos; Nix, Andrew; Armour, Simon; Doufexi, Angela; Nieman, Karl; Kundargi, Nikhil

    2017-01-01

    This paper presents initial results for a novel 128-antenna massive Multiple-Input, Multiple- Output (MIMO) testbed developed through Bristol Is Open in collaboration with National Instruments and Lund University. We believe that the results presented here validate the adoption of massive MIMO as a key enabling technology for 5G and pave the way for further pragmatic research by the massive MIMO community. The testbed operates in real-time with a Long-Term Evolution (LTE)-like PHY in Time Div...

  16. On The Detachment of Massive Trans-Neptunian Objects

    Science.gov (United States)

    Fleisig, Jacob; Madigan, Ann-Marie; Zderic, Alexander

    2018-06-01

    Our Solar System contains a large population of icy bodies stretching well beyond the orbit of Neptune. These objects, known collectively as the Scattered Disk, are remnants from the early formation of the Solar System that were scattered outward from their birth location by Neptune. But not all fit the bill.Sedna, one particularly massive Trans-Neptunian Object (TNO), does not conform to the scattering pattern. Its orbital eccentricity (e) is much lower than expected for a scattered object. This means its perihelion distance (proportional to 1-e) is much larger than the orbit of Neptune, or that it is “detached” from the main Solar System. Many more TNOs share similarities with Sedna. These observations suggest that there is a large population of detached TNOs that have a dynamical history different than that of the objects scattered by Neptune.The physical mechanism by which these massive minor planets become detached is currently unknown. However, we have discovered a phenomenon, driven by differential precession between TNOs of different masses and mutual secular gravitational torques, that naturally detach massive minor planets. This mechanism could have notable consequences for the outer Solar System and may shed some light on the origin of the detached population of minor planets near the Scattered Disk.

  17. Spontaneous massive hemopneumothorax: Double trouble with a twist

    Directory of Open Access Journals (Sweden)

    Milta Kuriakose

    2017-01-01

    Full Text Available Spontaneous hemopneumothorax (SHP is observed in 3%–7% cases of spontaneous pneumothorax where the tear of an adhesion can lead to bleeding with associated hemothorax. This condition has been reported in patients with hemophilia, sarcoidosis, congenital cystic adenomatoid malformation, systemic lupus erythematosus, etc., Here, we describe an unusual case of acute massive SHP in a 62-year-old male who underwent a percutaneous transluminal coronary angioplasty (PTCA and presented with worsening dyspnea over the next 3 days. On evaluation, he had a massive hemopneumothorax which was considered to be secondary to the use of anticoagulants during the PTCA procedure. Pleural fluid analysis revealed frank blood and was consistent with the diagnosis of hemothorax. Surprisingly, the pleural fluid cytology revealed malignant cells. As the patient had a normal chest X-ray 3 days ago, thoracoscopic pleural biopsy was taken which confirmed the diagnosis of an epithelioid mesothelioma. Although post-PTCA or mesothelioma-associated hemothorax has been rarely reported, these two conditions have not been associated with SHP. Since the patient had no prior clinicoradiological features of mesothelioma, the procedure, and the anticoagulants probably contributed to the massive and rapid accumulation of blood. The presence of small amount of air added further confusion to the dual etiology and has not been described earlier.

  18. Towards an alternative unification of massless and massive vector bosons

    International Nuclear Information System (INIS)

    Doria, R.M.; Helayel Neto, J.A.; Pugnetti, S.; Smith, A.W.

    1984-01-01

    A possible extension of the gauge principle is presented where two distinct gauge potentials are introduced in association with a single U(1) gauge group, each of them being taken to interact with a different kind of matter field. In such a picture, a massive vector boson naturally shows up in the physical spectrum. A massive photon without Higgs can be introduced. Renormalizability is seen to be a feature of the model. Possible supersymmetrizations are also contemplated. (Author) [pt

  19. Magnetic resonance imaging of massive bone allografts with histologic correlation

    International Nuclear Information System (INIS)

    Hoeffner, E.G.; Soulen, R.L.; Ryan, J.R.; Qureshi, F.

    1996-01-01

    The objective of this study was to better understand the MRI appearance of massive bone allografts. The MRI findings of three massive bone allografts imaged in vivo were correlated with the histologic findings following removal of the allografts. A fourth allograft, never implanted, was imaged and evaluated histologically. Allografts were placed for the treatment of primary or recurrent osteosarcoma. The in-vivo allografts have a heterogeneous appearance on MRI which we attribute to the revascularization process. Fibrovascular connective tissue grows into the graft in a patchy, focal fashion, down the medullary canal from the graft-host junction and adjacent to the periosteum. The marrow spaces are initially devoid of normal cellular elements and occupied by fat and gelatinous material. This normal postoperative appearance of massive bone allografts must not be interpreted as recurrent neoplasm or infection in the allograft. Recognition of these complications rests on features outside the marrow. (orig./MG)

  20. An unstable truth: how massive stars get their mass

    Science.gov (United States)

    Rosen, Anna L.; Krumholz, Mark R.; McKee, Christopher F.; Klein, Richard I.

    2016-12-01

    The pressure exerted by massive stars' radiation fields is an important mechanism regulating their formation. Detailed simulation of massive star formation therefore requires an accurate treatment of radiation. However, all published simulations have either used a diffusion approximation of limited validity; have only been able to simulate a single star fixed in space, thereby suppressing potentially important instabilities; or did not provide adequate resolution at locations where instabilities may develop. To remedy this, we have developed a new, highly accurate radiation algorithm that properly treats the absorption of the direct radiation field from stars and the re-emission and processing by interstellar dust. We use our new tool to perform 3D radiation-hydrodynamic simulations of the collapse of massive pre-stellar cores with laminar and turbulent initial conditions and properly resolve regions where we expect instabilities to grow. We find that mass is channelled to the stellar system via gravitational and Rayleigh-Taylor (RT) instabilities, in agreement with previous results using stars capable of moving, but in disagreement with methods where the star is held fixed or with simulations that do not adequately resolve the development of RT instabilities. For laminar initial conditions, proper treatment of the direct radiation field produces later onset of instability, but does not suppress it entirely provided the edges of radiation-dominated bubbles are adequately resolved. Instabilities arise immediately for turbulent pre-stellar cores because the initial turbulence seeds the instabilities. Our results suggest that RT features should be present around accreting massive stars throughout their formation.

  1. Massive Kaluza-Klein theories and their spontaneously broken symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Hohm, O.

    2006-07-15

    In this thesis we investigate the effective actions for massive Kaluza-Klein states, focusing on the massive modes of spin-3/2 and spin-2 fields. To this end we determine the spontaneously broken gauge symmetries associated to these 'higher-spin' states and construct the unbroken phase of the Kaluza-Klein theory. We show that for the particular background AdS{sub 3} x S{sup 3} x S{sup 3} a consistent coupling of the first massive spin-3/2 multiplet requires an enhancement of local supersymmetry, which in turn will be partially broken in the Kaluza-Klein vacuum. The corresponding action is constructed as a gauged maximal supergravity in D=3. Subsequently, the symmetries underlying an infinite tower of massive spin-2 states are analyzed in case of a Kaluza-Klein compactification of four-dimensional gravity to D=3. It is shown that the resulting gravity-spin-2 theory is given by a Chern-Simons action of an affine algebra and also allows a geometrical interpretation in terms of 'algebra-valued' differential geometry. The global symmetry group is determined, which contains an affine extension of the Ehlers group. We show that the broken phase can in turn be constructed via gauging a certain subgroup of the global symmetry group. Finally, deformations of the Kaluza-Klein theory on AdS{sub 3} x S{sup 3} x S{sup 3} and the corresponding symmetry breakings are analyzed as possible applications for the AdS/CFT correspondence. (Orig.)

  2. Revealing evolved massive stars with Spitzer

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Fabrika, S.

    2010-06-01

    Massive evolved stars lose a large fraction of their mass via copious stellar wind or instant outbursts. During certain evolutionary phases, they can be identified by the presence of their circumstellar nebulae. In this paper, we present the results of a search for compact nebulae (reminiscent of circumstellar nebulae around evolved massive stars) using archival 24-μm data obtained with the Multiband Imaging Photometer for Spitzer. We have discovered 115 nebulae, most of which bear a striking resemblance to the circumstellar nebulae associated with luminous blue variables (LBVs) and late WN-type (WNL) Wolf-Rayet (WR) stars in the Milky Way and the Large Magellanic Cloud (LMC). We interpret this similarity as an indication that the central stars of detected nebulae are either LBVs or related evolved massive stars. Our interpretation is supported by follow-up spectroscopy of two dozen of these central stars, most of which turn out to be either candidate LBVs (cLBVs), blue supergiants or WNL stars. We expect that the forthcoming spectroscopy of the remaining objects from our list, accompanied by the spectrophotometric monitoring of the already discovered cLBVs, will further increase the known population of Galactic LBVs. This, in turn, will have profound consequences for better understanding the LBV phenomenon and its role in the transition between hydrogen-burning O stars and helium-burning WR stars. We also report on the detection of an arc-like structure attached to the cLBV HD 326823 and an arc associated with the LBV R99 (HD 269445) in the LMC. Partially based on observations collected at the German-Spanish Astronomical Centre, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC). E-mail: vgvaram@mx.iki.rssi.ru (VVG); akniazev@saao.ac.za (AYK); fabrika@sao.ru (SF)

  3. Search for strongly interacting massive particles using semiconductor detectors on the ground

    International Nuclear Information System (INIS)

    Derbin, A.V.; Egorov, A.I.; Bakhlanov, S.V.; Muratova, V.N.

    1999-01-01

    Using signals from recoil nucleus in semiconductor detectors, search for strongly interacting massive particles, as a possible candidate for dark matter, is continued. Experimental installation and the experimental results are given. New limits on the possible masses and cross sections of strongly interacting massive particles are presented [ru

  4. MASSIVE PLEURAL EFFUSION: A CASE REPORT

    Directory of Open Access Journals (Sweden)

    Putu Bayu Dian Tresna Dewi

    2013-03-01

    Full Text Available Pleural effusion is abnormal fluid accumulation within pleural cavity between the parietal pleura and visceralis pleura, either transudation or exudates. A 47 year-old female presented with dyspneu, cough, and decreased of appetite. She had history of right lung tumor. Physical examination revealed asymmetric chest movement where right part of lung was lagged during breathing, vocal fremitus on the right chest was decreased, dullness at the right chest, decreased vesicular sound in the right chest, enlargement of supraclavicular and colli dextra lymph nodes, and hepatomegali. Complete blood count showed leukocytosis. Clinical chemistry analysis showed hipoalbumin and decreased liver function. Blood gas analysis showed hypoxemia. Pleural fluid analysis showed an exudates, murky red liquid color filled with erythrocytes, number of cells. Cytological examination showed existence of a non-small cell carcinoma tends adeno type. From chest X-ray showed massive right pleural effusion. Based on history, physical examination and investigations, she was diagnosed with massive pleural effusion et causa suspected malignancy. She had underwent pleural fluid evacuation and treated with analgesics and antibiotics.

  5. Chemical and Physical Picture of IRAS 16293–2422 Source B at a Sub-arcsecond Scale Studied with ALMA

    Science.gov (United States)

    Oya, Yoko; Moriwaki, Kana; Onishi, Shusuke; Sakai, Nami; López–Sepulcre, Ana; Favre, Cécile; Watanabe, Yoshimasa; Ceccarelli, Cecilia; Lefloch, Bertrand; Yamamoto, Satoshi

    2018-02-01

    We have analyzed the OCS, H2CS, CH3OH, and HCOOCH3 data observed toward the low-mass protostar IRAS 16293–2422 Source B at a sub-arcsecond resolution with ALMA. A clear chemical differentiation is seen in their distributions; OCS and H2CS are extended with a slight rotation signature, while CH3OH and HCOOCH3 are concentrated near the protostar. Such a chemical change in the vicinity of the protostar is similar to the companion (Source A) case. The extended component is interpreted by the infalling-rotating envelope model with a nearly face-on configuration. The radius of the centrifugal barrier of the infalling-rotating envelope is roughly evaluated to be (30–50) au. The observed lines show the inverse P-Cygni profile, indicating the infall motion within a few 10 au from the protostar. The nearly pole-on geometry of the outflow lobes is inferred from the SiO distribution, and thus, the infalling and outflowing motions should coexist along the line of sight to the protostar. This implies that the infalling gas is localized near the protostar and the current launching points of the outflow have an offset from the protostar. A possible mechanism for this configuration is discussed.

  6. THE MILKY WAY PROJECT: A STATISTICAL STUDY OF MASSIVE STAR FORMATION ASSOCIATED WITH INFRARED BUBBLES

    International Nuclear Information System (INIS)

    Kendrew, S.; Robitaille, T. P.; Simpson, R.; Lintott, C. J.; Bressert, E.; Povich, M. S.; Sherman, R.; Schawinski, K.; Wolf-Chase, G.

    2012-01-01

    The Milky Way Project citizen science initiative recently increased the number of known infrared bubbles in the inner Galactic plane by an order of magnitude compared to previous studies. We present a detailed statistical analysis of this data set with the Red MSX Source (RMS) catalog of massive young stellar sources to investigate the association of these bubbles with massive star formation. We particularly address the question of massive triggered star formation near infrared bubbles. We find a strong positional correlation of massive young stellar objects (MYSOs) and H II regions with Milky Way Project bubbles at separations of <2 bubble radii. As bubble sizes increase, a statistically significant overdensity of massive young sources emerges in the region of the bubble rims, possibly indicating the occurrence of triggered star formation. Based on numbers of bubble-associated RMS sources, we find that 67% ± 3% of MYSOs and (ultra-)compact H II regions appear to be associated with a bubble. We estimate that approximately 22% ± 2% of massive young stars may have formed as a result of feedback from expanding H II regions. Using MYSO-bubble correlations, we serendipitously recovered the location of the recently discovered massive cluster Mercer 81, suggesting the potential of such analyses for discovery of heavily extincted distant clusters.

  7. THE MILKY WAY PROJECT: A STATISTICAL STUDY OF MASSIVE STAR FORMATION ASSOCIATED WITH INFRARED BUBBLES

    Energy Technology Data Exchange (ETDEWEB)

    Kendrew, S.; Robitaille, T. P. [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Simpson, R.; Lintott, C. J. [Department of Astrophysics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Bressert, E. [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Povich, M. S. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Laboratory, University Park, PA 16802 (United States); Sherman, R. [Department of Astronomy and Astrophysics, University of Chicago, 5640 S. Ellis Avenue, Chicago, IL 60637 (United States); Schawinski, K. [Yale Center for Astronomy and Astrophysics, Yale University, P.O. Box 208121, New Haven, CT 06520 (United States); Wolf-Chase, G., E-mail: kendrew@mpia.de [Astronomy Department, Adler Planetarium, 1300 S. Lake Shore Drive, Chicago, IL 60605 (United States)

    2012-08-10

    The Milky Way Project citizen science initiative recently increased the number of known infrared bubbles in the inner Galactic plane by an order of magnitude compared to previous studies. We present a detailed statistical analysis of this data set with the Red MSX Source (RMS) catalog of massive young stellar sources to investigate the association of these bubbles with massive star formation. We particularly address the question of massive triggered star formation near infrared bubbles. We find a strong positional correlation of massive young stellar objects (MYSOs) and H II regions with Milky Way Project bubbles at separations of <2 bubble radii. As bubble sizes increase, a statistically significant overdensity of massive young sources emerges in the region of the bubble rims, possibly indicating the occurrence of triggered star formation. Based on numbers of bubble-associated RMS sources, we find that 67% {+-} 3% of MYSOs and (ultra-)compact H II regions appear to be associated with a bubble. We estimate that approximately 22% {+-} 2% of massive young stars may have formed as a result of feedback from expanding H II regions. Using MYSO-bubble correlations, we serendipitously recovered the location of the recently discovered massive cluster Mercer 81, suggesting the potential of such analyses for discovery of heavily extincted distant clusters.

  8. Discussion on massive gravitons and propagating torsion in arbitrary dimensions

    International Nuclear Information System (INIS)

    Hernaski, C.A.; Vargas-Paredes, A.A.; Helayel-Neto, J.A.

    2009-01-01

    Full text. Massive gravity has been an issue of particular interest since the early days of Quantum Gravity. More recently, in connection with models based on brane-world scenarios, the discussion of massive gravitons is drawing a great deal of attention, in view of the possibility of their production at LHC and the feasibility of detection of quantum gravity effects at the TeV scale. In this paper, we reassess a particular R 2 -type gravity action in D dimensions, recently studied by Nakasone and Oda, taking now torsion effects into account. Considering that the vielbein and the spin connection carry independent propagating degrees of freedom, we conclude that ghosts and tachyons are absent only if torsion is non-propagating, and we also conclude that there is no room for massive gravitons. To include these excitations, we understand how to enlarge Nakasone-Oda's model by means of explicit torsion terms in the action and we discuss the unitarity of the enlarged model for arbitrary dimensions. To make this we construct a complete basis of operators that projects the degrees of freedom of the dynamical fields of the model in their irreducible spin decomposition. The outcome is that we find a set of Lagrangians with a massive graviton that, in D=4, reproduce those already studied in the literature. (author)

  9. Imprints of fast-rotating massive stars in the Galactic Bulge.

    Science.gov (United States)

    Chiappini, Cristina; Frischknecht, Urs; Meynet, Georges; Hirschi, Raphael; Barbuy, Beatriz; Pignatari, Marco; Decressin, Thibaut; Maeder, André

    2011-04-28

    The first stars that formed after the Big Bang were probably massive, and they provided the Universe with the first elements heavier than helium ('metals'), which were incorporated into low-mass stars that have survived to the present. Eight stars in the oldest globular cluster in the Galaxy, NGC 6522, were found to have surface abundances consistent with the gas from which they formed being enriched by massive stars (that is, with higher α-element/Fe and Eu/Fe ratios than those of the Sun). However, the same stars have anomalously high abundances of Ba and La with respect to Fe, which usually arises through nucleosynthesis in low-mass stars (via the slow-neutron-capture process, or s-process). Recent theory suggests that metal-poor fast-rotating massive stars are able to boost the s-process yields by up to four orders of magnitude, which might provide a solution to this contradiction. Here we report a reanalysis of the earlier spectra, which reveals that Y and Sr are also overabundant with respect to Fe, showing a large scatter similar to that observed in extremely metal-poor stars, whereas C abundances are not enhanced. This pattern is best explained as originating in metal-poor fast-rotating massive stars, which might point to a common property of the first stellar generations and even of the 'first stars'.

  10. Predicting the need for massive transfusion in trauma patients: the Traumatic Bleeding Severity Score.

    Science.gov (United States)

    Ogura, Takayuki; Nakamura, Yoshihiko; Nakano, Minoru; Izawa, Yoshimitsu; Nakamura, Mitsunobu; Fujizuka, Kenji; Suzukawa, Masayuki; Lefor, Alan T

    2014-05-01

    The ability to easily predict the need for massive transfusion may improve the process of care, allowing early mobilization of resources. There are currently no clear criteria to activate massive transfusion in severely injured trauma patients. The aims of this study were to create a scoring system to predict the need for massive transfusion and then to validate this scoring system. We reviewed the records of 119 severely injured trauma patients and identified massive transfusion predictors using statistical methods. Each predictor was converted into a simple score based on the odds ratio in a multivariate logistic regression analysis. The Traumatic Bleeding Severity Score (TBSS) was defined as the sum of the component scores. The predictive value of the TBSS for massive transfusion was then validated, using data from 113 severely injured trauma patients. Receiver operating characteristic curve analysis was performed to compare the results of TBSS with the Trauma-Associated Severe Hemorrhage score and the Assessment of Blood Consumption score. In the development phase, five predictors of massive transfusion were identified, including age, systolic blood pressure, the Focused Assessment with Sonography for Trauma scan, severity of pelvic fracture, and lactate level. The maximum TBSS is 57 points. In the validation study, the average TBSS in patients who received massive transfusion was significantly greater (24.2 [6.7]) than the score of patients who did not (6.2 [4.7]) (p operating characteristic curve, sensitivity, and specificity for a TBSS greater than 15 points was 0.985 (significantly higher than the other scoring systems evaluated at 0.892 and 0.813, respectively), 97.4%, and 96.2%, respectively. The TBSS is simple to calculate using an available iOS application and is accurate in predicting the need for massive transfusion. Additional multicenter studies are needed to further validate this scoring system and further assess its utility. Prognostic study

  11. The physics of massive neutrinos

    CERN Document Server

    Kayser, Boris; Perrier, Frederic

    1989-01-01

    This book explains the physics and phenomenology of massive neutrinos. The authors argue that neutrino mass is not unlikely and consider briefly the search for evidence of this mass in decay processes before they examine the physics and phenomenology of neutrino oscillation. The physics of Majorana neutrinos (neutrinos which are their own antiparticles) is then discussed. This volume requires of the reader only a knowledge of quantum mechanics and of very elementary quantum field theory.

  12. Eruptive Massive Vector Particles of 5-Dimensional Kerr-Gödel Spacetime

    Science.gov (United States)

    Övgün, A.; Sakalli, I.

    2018-02-01

    In this paper, we investigate Hawking radiation of massive spin-1 particles from 5-dimensional Kerr-Gödel spacetime. By applying the WKB approximation and the Hamilton-Jacobi ansatz to the relativistic Proca equation, we obtain the quantum tunneling rate of the massive vector particles. Using the obtained tunneling rate, we show how one impeccably computes the Hawking temperature of the 5-dimensional Kerr-Gödel spacetime.

  13. Massive Thoracoabdominal Aortic Thrombosis in a Patient with Iatrogenic Cushing Syndrome

    International Nuclear Information System (INIS)

    Kim, Dong Hun; Choi, Dong Hyun; Lee, Young Min; Kim, Bo Bae; Ki, Young Jae; Kim, Jin Hwa; Chung, Joong Wha; Koh, Young Youp; Kang, Joon Tae; Chae, Seung Seok

    2014-01-01

    Massive thoracoabdominal aortic thrombosis is a rare finding in patients with iatrogenic Cushing syndrome in the absence of any coagulation abnormality. It frequently represents an urgent surgical situation. We report the case of an 82-year-old woman with massive aortic thrombosis secondary to iatrogenic Cushing syndrome. A follow-up computed tomography scan showed a decreased amount of thrombus in the aorta after anticoagulation therapy alone.

  14. Massive Open Online Courses (MOOCs): Insights and Challenges from a Psychological Perspective

    Science.gov (United States)

    Terras, Melody M.; Ramsay, Judith

    2015-01-01

    Massive open online courses (MOOCs) offer an exciting range of opportunities to widen access and participation in education. The massive and open nature of MOOCs places the control of learning at the discretion of the learner. Therefore, it is essential to understand learner behaviour. This paper examines the psychological considerations inherent…

  15. Massive and massless gauge fields of any spin and symmetry

    International Nuclear Information System (INIS)

    Hussain, F.; Jarvis, P.D.

    1988-05-01

    An analysis of the BRST approach to massive and massless gauge fields of any spin and symmetry is presented. Previous results on massless gauge fields are extended to totally antisymmetric massless tensors and Kaehler-Dirac particles. Two methods for arriving at a BRST invariant, massive theory from the corresponding massless one are discussed. The first allows for an interpretation in terms of dimensional reduction, while the second keeps the BRST operator of the massless theory, but employs gauge invariant fields. (author). 10 refs

  16. Massive splenic infarction in Saudi patients with sickle cell anemia: a unique manifestation.

    Science.gov (United States)

    Jama, Ali Hassan Al; Salem, Ahmed Hassan Al; Dabbous, Ibrahim Abdalla Al

    2002-03-01

    Splenic infarcts are common in patients with sickle cell anemia (SCA), but these are usually small and repetitive, leading ultimately to autosplenectomy. Massive splenic infarcts on the other hand are extremely rare. This is a report of our experience with 8 (4 males and 4 females) cases of massive splenic infarction in patients with SCA. Their ages ranged from 16 to 36 years (mean 22 years). Three presented with left upper quadrant abdominal pain and massive splenic infarction on admission, while the other 5 developed massive splenic infarction while in hospital. In 5 the precipitating factors were high altitude, postoperative, postpartum, salmonella septicemia, and strenuous exercise in one each, while the remaining 3 had severe generalized vasoocclusive crises. Although both ultrasound and CT scan of the abdomen were of diagnostic value, we found CT scan more accurate in delineating the size of infarction. All our patients were managed conservatively with I.V. fluids, analgesia, and blood transfusion when necessary. Diagnostic aspiration under ultrasound guidance was necessary in two patients to differentiate between massive splenic infarction and splenic abscess. Two patients required splenectomy during the same admission because of suspicion of secondary infection and abscess formation, while a third patient had splenectomy 2 months after the attack because of persistent left upper quadrant abdominal pain. In all the 3 histology of the spleen showed congestive splenomegaly with massive infarction. All of our patients survived. Two patients subsequently developed autosplenectomy while the remaining 3 continue to have persistent but asymptomatic splenomegaly. Massive splenic infarction is a rare and unique complication of SCA in the Eastern Province of Saudi Arabia, and for early diagnosis and treatment, physicians caring for these patients should be aware of such a complication.

  17. Circular symmetry in topologically massive gravity

    International Nuclear Information System (INIS)

    Deser, S; Franklin, J

    2010-01-01

    We re-derive, compactly, a topologically massive gravity (TMG) decoupling theorem: source-free TMG separates into its Einstein and Cotton sectors for spaces with a hypersurface-orthogonal Killing vector, here concretely for circular symmetry. We then generalize the theorem to include matter; surprisingly, the single Killing symmetry also forces conformal invariance, requiring the sources to be null. (note)

  18. Circular symmetry in topologically massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Deser, S [Physics Department, Brandeis University, Waltham, MA 02454 (United States); Franklin, J, E-mail: deser@brandeis.ed, E-mail: jfrankli@reed.ed [Reed College, Portland, OR 97202 (United States)

    2010-05-21

    We re-derive, compactly, a topologically massive gravity (TMG) decoupling theorem: source-free TMG separates into its Einstein and Cotton sectors for spaces with a hypersurface-orthogonal Killing vector, here concretely for circular symmetry. We then generalize the theorem to include matter; surprisingly, the single Killing symmetry also forces conformal invariance, requiring the sources to be null. (note)

  19. Massive hydraulic fracturing gas stimulation project

    International Nuclear Information System (INIS)

    Appledorn, C.R.; Mann, R.L.

    1977-01-01

    The Rio Blanco Massive Hydraulic Fracturing Project was fielded in 1974 as a joint Industry/ERDA demonstration to test the relative formations that were stimulated by the Rio Blanco Nuclear fracturing experiment. The project is a companion effort to and a continuation of the preceding nuclear stimulation project, which took place in May 1973. 8 figures

  20. Sinus Histiocytosis with Massive Lymphadenopathy | Sinclair-Smith ...

    African Journals Online (AJOL)

    Two cases of a recently described entity, 'sinus histiocytosis with massive lymphadenopathy,' occurring in Black males, are reported. Prominent cervical adenopathy was the main presenting feature in both. Histologically, these nodes were characterised by pronounced proliferation of sinus histiocytes which showed ...

  1. Massivizing multi-player online games on clouds

    NARCIS (Netherlands)

    Shen, S.; Iosup, A.; Epema, D.H.J.

    2013-01-01

    Massively Multiplayer Online Games (MMOGs) are an important type of distributed applications and have millions of users. Traditionally, MMOGs are hosted on dedicated clusters, distributed globally. With the advent of cloud computing, MMOGs such as Zynga's are increasingly run on cloud resources,

  2. Non-collider searches for stable massive particles

    Energy Technology Data Exchange (ETDEWEB)

    Burdin, S. [Department of Physics, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Fairbairn, M. [Department of Physics, King’s College London, London WC2R 2LS (United Kingdom); Mermod, P., E-mail: philippe.mermod@cern.ch [Particle Physics Department, University of Geneva, 1211 Geneva 4 (Switzerland); Milstead, D., E-mail: milstead@physto.se [Department of Physics, Stockholm University, 106 91 Stockholm (Sweden); Pinfold, J. [Physics Department, University of Alberta, Edmonton, Alberta, Canada T6G 0V1 (Canada); Sloan, T. [Department of Physics, Lancaster University, Lancaster LA1 4YB (United Kingdom); Taylor, W. [Department of Physics and Astronomy, York University, Toronto, ON, Canada M3J 1P3 (Canada)

    2015-06-26

    The theoretical motivation for exotic stable massive particles (SMPs) and the results of SMP searches at non-collider facilities are reviewed. SMPs are defined such that they would be sufficiently long-lived so as to still exist in the cosmos either as Big Bang relics or secondary collision products, and sufficiently massive such that they are typically beyond the reach of any conceivable accelerator-based experiment. The discovery of SMPs would address a number of important questions in modern physics, such as the origin and composition of dark matter and the unification of the fundamental forces. This review outlines the scenarios predicting SMPs and the techniques used at non-collider experiments to look for SMPs in cosmic rays and bound in matter. The limits so far obtained on the fluxes and matter densities of SMPs which possess various detection-relevant properties such as electric and magnetic charge are given.

  3. Massive Predictive Modeling using Oracle R Enterprise

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    R is fast becoming the lingua franca for analyzing data via statistics, visualization, and predictive analytics. For enterprise-scale data, R users have three main concerns: scalability, performance, and production deployment. Oracle's R-based technologies - Oracle R Distribution, Oracle R Enterprise, Oracle R Connector for Hadoop, and the R package ROracle - address these concerns. In this talk, we introduce Oracle's R technologies, highlighting how each enables R users to achieve scalability and performance while making production deployment of R results a natural outcome of the data analyst/scientist efforts. The focus then turns to Oracle R Enterprise with code examples using the transparency layer and embedded R execution, targeting massive predictive modeling. One goal behind massive predictive modeling is to build models per entity, such as customers, zip codes, simulations, in an effort to understand behavior and tailor predictions at the entity level. Predictions...

  4. Electromagnetic form factors of a massive neutrino

    International Nuclear Information System (INIS)

    Dvornikov, M.S.; Studenikin, A.I.

    2004-01-01

    Electromagnetic form factors of a massive neutrino are studied in a minimally extended standard model in an arbitrary R ξ gauge and taking into account the dependence on the masses of all interacting particles. The contribution from all Feynman diagrams to the electric, magnetic, and anapole form factors, in which the dependence of the masses of all particles as well as on gauge parameters is accounted for exactly, are obtained for the first time in explicit form. The asymptotic behavior of the magnetic form factor for large negative squares of the momentum of an external photon is analyzed and the expression for the anapole moment of a massive neutrino is derived. The results are generalized to the case of mixing between various flavors of the neutrino. Explicit expressions are obtained for the electric, magnetic, and electric dipole and anapole transitional form factors as well as for the transitional electric dipole moment

  5. A non-perturbative study of massive gauge theories

    DEFF Research Database (Denmark)

    Della Morte, Michele; Hernandez, Pilar

    2013-01-01

    and the lightest degrees of freedom are spin one vector particles with the same quantum numbers as the conserved current, we argue that the most general effective theory describing their low-energy dynamics must be a massive gauge theory. We present results of a exploratory numerical simulation of the model......We consider a non-perturbative formulation of an SU(2) massive gauge theory on a space-time lattice, which is also a discretised gauged non-linear chiral model. The lattice model is shown to have an exactly conserved global SU(2) symmetry. If a scaling region for the lattice model exists...... and find indications for the presence of a scaling region where both a triplet vector and a scalar remain light....

  6. Efficient Sphere Detector Algorithm for Massive MIMO using GPU Hardware Accelerator

    KAUST Repository

    Arfaoui, Mohamed-Amine

    2016-06-01

    To further enhance the capacity of next generation wireless communication systems, massive MIMO has recently appeared as a necessary enabling technology to achieve high performance signal processing for large-scale multiple antennas. However, massive MIMO systems inevitably generate signal processing overheads, which translate into ever-increasing rate of complexity, and therefore, such system may not maintain the inherent real-time requirement of wireless systems. We redesign the non-linear sphere decoder method to increase the performance of the system, cast most memory-bound computations into compute-bound operations to reduce the overall complexity, and maintain the real-time processing thanks to the GPU computational power. We show a comprehensive complexity and performance analysis on an unprecedented MIMO system scale, which can ease the design phase toward simulating future massive MIMO wireless systems.

  7. Holographic thermalization and generalized Vaidya-AdS solutions in massive gravity

    International Nuclear Information System (INIS)

    Hu, Ya-Peng; Zeng, Xiao-Xiong; Zhang, Hai-Qing

    2017-01-01

    We investigate the effect of massive graviton on the holographic thermalization process. Before doing this, we first find out the generalized Vaidya-AdS solutions in the de Rham–Gabadadze–Tolley (dRGT) massive gravity by directly solving the gravitational equations. Then, we study the thermodynamics of these Vaidya-AdS solutions by using the Misner–Sharp energy and unified first law, which also shows that the massive gravity is in a thermodynamic equilibrium state. Moreover, we adopt the two-point correlation function at equal time to explore the thermalization process in the dual field theory, and to see how the graviton mass parameter affects this process from the viewpoint of AdS/CFT correspondence. Our results show that the graviton mass parameter will increase the holographic thermalization process.

  8. Efficient Sphere Detector Algorithm for Massive MIMO using GPU Hardware Accelerator

    KAUST Repository

    Arfaoui, Mohamed-Amine; Ltaief, Hatem; Rezki, Zouheir; Alouini, Mohamed-Slim; Keyes, David E.

    2016-01-01

    To further enhance the capacity of next generation wireless communication systems, massive MIMO has recently appeared as a necessary enabling technology to achieve high performance signal processing for large-scale multiple antennas. However, massive MIMO systems inevitably generate signal processing overheads, which translate into ever-increasing rate of complexity, and therefore, such system may not maintain the inherent real-time requirement of wireless systems. We redesign the non-linear sphere decoder method to increase the performance of the system, cast most memory-bound computations into compute-bound operations to reduce the overall complexity, and maintain the real-time processing thanks to the GPU computational power. We show a comprehensive complexity and performance analysis on an unprecedented MIMO system scale, which can ease the design phase toward simulating future massive MIMO wireless systems.

  9. Topologically massive gauge theories and their dual factorized gauge-invariant formulation

    International Nuclear Information System (INIS)

    Bertrand, Bruno; Govaerts, Jan

    2007-01-01

    There exists a well-known duality between the Maxwell-Chern-Simons theory and the 'self-dual' massive model in (2 + 1) dimensions. This dual description may be extended to topologically massive gauge theories (TMGT) for forms of arbitrary rank and in any dimension. This communication introduces the construction of this type of duality through a reparametrization of the 'master' theory action. The dual action thereby obtained preserves the full gauge symmetry structure of the original theory. Furthermore, the dual action is factorized into a propagating sector of massive gauge-invariant variables and a decoupled sector of gauge-variant variables defining a pure topological field theory. Combining the results obtained within the Lagrangian and Hamiltonian formulations, a completed structure for a gauge-invariant dual factorization of TMGT is thus achieved. (fast track communication)

  10. Holographic thermalization and generalized Vaidya-AdS solutions in massive gravity

    Science.gov (United States)

    Hu, Ya-Peng; Zeng, Xiao-Xiong; Zhang, Hai-Qing

    2017-02-01

    We investigate the effect of massive graviton on the holographic thermalization process. Before doing this, we first find out the generalized Vaidya-AdS solutions in the de Rham-Gabadadze-Tolley (dRGT) massive gravity by directly solving the gravitational equations. Then, we study the thermodynamics of these Vaidya-AdS solutions by using the Misner-Sharp energy and unified first law, which also shows that the massive gravity is in a thermodynamic equilibrium state. Moreover, we adopt the two-point correlation function at equal time to explore the thermalization process in the dual field theory, and to see how the graviton mass parameter affects this process from the viewpoint of AdS/CFT correspondence. Our results show that the graviton mass parameter will increase the holographic thermalization process.

  11. Holographic thermalization and generalized Vaidya-AdS solutions in massive gravity

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Ya-Peng, E-mail: huyp@nuaa.edu.cn [College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Instituut-Lorentz for Theoretical Physics, Leiden University, Niels Bohrweg 2, Leiden 2333 CA (Netherlands); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190 (China); Zeng, Xiao-Xiong, E-mail: xxzengphysics@163.com [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190 (China); School of Science, Chongqing Jiaotong University, Chongqing 400074 (China); Zhang, Hai-Qing, E-mail: H.Q.Zhang@uu.nl [Institute for Theoretical Physics, Center for Extreme Matter and Emergent Phenomena, Utrecht University, Princetonplein 5, 3584 CC Utrecht (Netherlands)

    2017-02-10

    We investigate the effect of massive graviton on the holographic thermalization process. Before doing this, we first find out the generalized Vaidya-AdS solutions in the de Rham–Gabadadze–Tolley (dRGT) massive gravity by directly solving the gravitational equations. Then, we study the thermodynamics of these Vaidya-AdS solutions by using the Misner–Sharp energy and unified first law, which also shows that the massive gravity is in a thermodynamic equilibrium state. Moreover, we adopt the two-point correlation function at equal time to explore the thermalization process in the dual field theory, and to see how the graviton mass parameter affects this process from the viewpoint of AdS/CFT correspondence. Our results show that the graviton mass parameter will increase the holographic thermalization process.

  12. Massive pericardial effusion and rhabdomyolysis secondary to untreated severe hypothyroidism: the first report.

    Science.gov (United States)

    Zare-Khormizi, M R; Rahmanian, M; Pourrajab, F; Akbarnia, S

    2014-10-01

    Hypothyroidism is an endocrine disease with various clinical manifestations. It is a rare cause for rhabdomyolysis and massive pericardial effusion. We describe a case of severe hypothyroidism secondary to autoimmune hashimoto thyroiditis with massive pericardial effusion and rhabdomyolysis. Improvement of mentioned complications after hypothyroidism treatment and rule out of other possible causes are supportive clues that hypothyroidism is the main cause of patient's rare presentation. With the best of our knowledge, it is the first report of rhabdomyolysis and massive pericardial effusion coincidence in a patient of adult population with primary uncontrolled hypothyroidism for years.

  13. Quasi-local conserved charges of spin-3 topologically massive gravity

    Directory of Open Access Journals (Sweden)

    M.R. Setare

    2016-08-01

    Full Text Available In this paper we obtain conserved charges of spin-3 topologically massive gravity by using a quasi-local formalism. We find a general formula to calculate conserved charge of the spin-3 topologically massive gravity which corresponds to a Killing vector field ξ. We show that this general formula reduces to the previous one for the ordinary spin-3 gravity presented in [18] when we take into account only transformation under diffeomorphism, without considering generalized Lorentz gauge transformation (i.e. λξ=0, and by taking 1μ→0. Then we obtain a general formula for the entropy of black hole solutions of the spin-3 topologically massive gravity. Finally we apply our formalism to calculate energy, angular momentum and entropy of a special black hole solution and we find that obtained results are consistent with previous results in the limiting cases. Moreover our results for energy, angular momentum and entropy are consistent with the first law of black hole mechanics.

  14. International Conference on Instability and Control of Massively Separated Flows

    CERN Document Server

    Soria, Julio

    2015-01-01

    This book contains the outcome of the international meeting on instability, control and noise generated by massive flow separation that was organized at the Monash Center, in Prato, Italy, September 4-6, 2013. The meeting served as the final review of the EU-FP7 Instability and Control of Massively Separated Flows Marie Curie travel grant and was supported by the European Office of Aerospace Research and Development. Fifty leading specialists from twelve countries reviewed the progress made since the 50s of the last century and discussed modern analysis techniques, advanced experimental flow diagnostics, and recent developments in active flow control techniques from the incompressible to the hypersonic regime. Applications involving massive flow separation and associated instability and noise generation mechanisms of interest to the aeronautical, naval and automotive industries have been addressed from a theoretical, numerical or experimental point of view, making this book a unique source containing the stat...

  15. Unilateral post-tuberculosis lung destruction and massive ...

    African Journals Online (AJOL)

    Abiodun S. Adeniran

    2015-04-29

    Apr 29, 2015 ... tion, the features on evaluation suggested bronchiectasis and she improved with antibiotics therapy. The pregnancy was terminated via an emergency abdominal delivery due to maternal compromise from the massive haemoptysis but she and her babies had remained well post-delivery. Pneumonectomy ...

  16. Anaesthetic management of a child with massive extracranial arteriovenous malformation

    Directory of Open Access Journals (Sweden)

    Faisal Shamim

    2012-01-01

    Full Text Available Vascular tumors affect the head and neck commonly but arteriovenous malformations are rare. Vascular malformations are often present at birth and grow with the patient, usually only becoming significant later in childhood. Embolization has been the mainstay of treatment in massive and complex arteriovenous malformations. We present a case of massive extracranial arteriovenous malformation in a 7-year-old boy causing significant workload on right heart and respiratory distress. The management of angioembolization under general anaesthesia and anaesthetic concerns are presented.

  17. Outcomes from massive paracetamol overdose: a retrospective observational study.

    Science.gov (United States)

    Marks, Daniel J B; Dargan, Paul I; Archer, John R H; Davies, Charlotte L; Dines, Alison M; Wood, David M; Greene, Shaun L

    2017-06-01

    This article is commented on by Bateman DN and Dear JW. Should we treat very large paracetamol overdose differently? Br J Clin Pharmacol 2017; 83: 1163-5. https://doi.org/10.1111/bcp.13279 AIMS: Treatment of paracetamol (acetaminophen) overdose with acetylcysteine is standardized, with dose determined only by patient weight. The validity of this approach for massive overdoses has been questioned. We systematically compared outcomes in massive and non-massive overdoses, to guide whether alternative treatment strategies should be considered, and whether the ratio between measured timed paracetamol concentrations (APAP pl ) and treatment nomogram thresholds at those time points (APAP t ) provides a useful assessment tool. This is a retrospective observational study of all patients (n = 545) between 2005 and 2013 admitted to a tertiary care toxicology service with acute non-staggered paracetamol overdose. Massive overdoses were defined as extrapolated 4-h plasma paracetamol concentrations >250 mg l -1 , or reported ingestions ≥30 g. Outcomes (liver injury, coagulopathy and kidney injury) were assessed in relation to reported dose and APAP pl :APAP t ratio (based on a treatment line through 100 mg l -1 at 4 h), and time to acetylcysteine. Ingestions of ≥30 g paracetamol correlated with higher peak serum aminotransferase (r = 0.212, P paracetamol overdose are at higher risk of organ injury, even when acetylcysteine is administered early. Enhanced therapeutic strategies should be considered in those who have an APAP pl :APAP t  ≥ 3. Novel biomarkers of incipient liver injury and abbreviated acetylcysteine regimens require validation in this patient cohort. © 2016 The British Pharmacological Society.

  18. Spitzer view of massive star formation in the tidally stripped Magellanic Bridge

    International Nuclear Information System (INIS)

    Chen, C.-H. Rosie; Indebetouw, Remy; Muller, Erik; Kawamura, Akiko; Gordon, Karl D.; Meixner, Margaret; Seale, Jonathan P.; Shiao, Bernie; Sewiło, Marta; Whitney, Barbara A.; Meade, Marilyn R.; Fukui, Yasuo; Madden, Suzanne C.; Oliveira, Joana M.; Van Loon, Jacco Th.; Robitaille, Thomas P.

    2014-01-01

    The Magellanic Bridge is the nearest low-metallicity, tidally stripped environment, offering a unique high-resolution view of physical conditions in merging and forming galaxies. In this paper, we present an analysis of candidate massive young stellar objects (YSOs), i.e., in situ, current massive star formation (MSF) in the Bridge using Spitzer mid-IR and complementary optical and near-IR photometry. While we definitely find YSOs in the Bridge, the most massive are ∼10 M ☉ , <<45 M ☉ found in the LMC. The intensity of MSF in the Bridge also appears to be decreasing, as the most massive YSOs are less massive than those formed in the past. To investigate environmental effects on MSF, we have compared properties of massive YSOs in the Bridge to those in the LMC. First, YSOs in the Bridge are apparently less embedded than in the LMC: 81% of Bridge YSOs show optical counterparts, compared to only 56% of LMC sources with the same range of mass, circumstellar dust mass, and line-of-sight extinction. Circumstellar envelopes are evidently more porous or clumpy in the Bridge's low-metallicity environment. Second, we have used whole samples of YSOs in the LMC and the Bridge to estimate the probability of finding YSOs at a given H I column density, N(H I). We found that the LMC has ∼3 × higher probability than the Bridge for N(H I) >12 × 10 20 cm –2 , but the trend reverses at lower N(H I). Investigating whether this lower efficiency relative to H I is due to less efficient molecular cloud formation or to less efficient cloud collapse, or to both, will require sensitive molecular gas observations.

  19. Spitzer view of massive star formation in the tidally stripped Magellanic Bridge

    Energy Technology Data Exchange (ETDEWEB)

    Chen, C.-H. Rosie; Indebetouw, Remy [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Muller, Erik; Kawamura, Akiko [National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Gordon, Karl D.; Meixner, Margaret; Seale, Jonathan P.; Shiao, Bernie [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Sewiło, Marta [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Whitney, Barbara A.; Meade, Marilyn R. [Department of Astronomy, University of Wisconsin-Madison, Madison, WI 53706 (United States); Fukui, Yasuo [Department of Astrophysics, Nagoya University, Furocho, Chikusaku, Nagoya 464-8602 (Japan); Madden, Suzanne C. [CEA, Laboratoire AIM, Irfu/SAp, Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Oliveira, Joana M.; Van Loon, Jacco Th. [Astrophysics Group, Lennard-Jones Laboratories, Keele University, Keele, Staffordshire ST5 5BG (United Kingdom); Robitaille, Thomas P., E-mail: rchen@mpifr-bonn.mpg.de [Max Planck Institute for Astronomy, D-69117 Heidelberg (Germany)

    2014-04-20

    The Magellanic Bridge is the nearest low-metallicity, tidally stripped environment, offering a unique high-resolution view of physical conditions in merging and forming galaxies. In this paper, we present an analysis of candidate massive young stellar objects (YSOs), i.e., in situ, current massive star formation (MSF) in the Bridge using Spitzer mid-IR and complementary optical and near-IR photometry. While we definitely find YSOs in the Bridge, the most massive are ∼10 M {sub ☉}, <<45 M {sub ☉} found in the LMC. The intensity of MSF in the Bridge also appears to be decreasing, as the most massive YSOs are less massive than those formed in the past. To investigate environmental effects on MSF, we have compared properties of massive YSOs in the Bridge to those in the LMC. First, YSOs in the Bridge are apparently less embedded than in the LMC: 81% of Bridge YSOs show optical counterparts, compared to only 56% of LMC sources with the same range of mass, circumstellar dust mass, and line-of-sight extinction. Circumstellar envelopes are evidently more porous or clumpy in the Bridge's low-metallicity environment. Second, we have used whole samples of YSOs in the LMC and the Bridge to estimate the probability of finding YSOs at a given H I column density, N(H I). We found that the LMC has ∼3 × higher probability than the Bridge for N(H I) >12 × 10{sup 20} cm{sup –2}, but the trend reverses at lower N(H I). Investigating whether this lower efficiency relative to H I is due to less efficient molecular cloud formation or to less efficient cloud collapse, or to both, will require sensitive molecular gas observations.

  20. The youngest trigonotarbid Permotarbus schuberti n. gen., n. sp. from the Permian Petrified Forest of Chemnitz in Germany

    Directory of Open Access Journals (Sweden)

    J. A. Dunlop

    2013-08-01

    Full Text Available A new trigonotarbid (Arachnida: Trigonotarbida is described as Permotarbus schuberti n. gen., n. sp. from the Early Permian Petrified Forest (Rotliegend of Chemnitz in Saxony (Germany. At ca. 290 Ma it represents the youngest record of this extinct arachnid order discovered to date. Its familial affinities are uncertain, but may lie close to the Aphantomartidae. The distribution of the trigonotarbid genera through time is summarised, together with a list of their seventy-seven fossil-yielding localities. Together they offer a broad overview of the group's fossil record, which is heavily biased towards the Moscovian Stage (ca. 307–312 Ma of the Late Carboniferous in Europe and North America. This is due in no small part to numerous localities associated with coal mining districts, and trigonotarbids are found less frequently after this stage. While it is tempting to associate this with biological events – such as a putative "Carboniferous Rainforest Collapse" dating to ca. 305 Ma – it is difficult to differentiate the effects of genuine extinction patterns from artefacts caused by fewer appropriate localities in the economically less relevant latest Carboniferous and Early Permian strata. Nevertheless, trigonotarbids became extinct at some point after the Early Permian and loss of the Coal Measures forests remains one of the most likely possible causes. doi:10.1002/mmng.201300012

  1. Non Pauli-Fierz Massive Gravitons

    CERN Document Server

    Dvali, Gia; Redi, Michele

    2008-01-01

    We study general Lorentz invariant theories of massive gravitons. We show that, contrary to the standard lore, there exist consistent theories where the graviton mass term violates Pauli-Fierz structure. For theories where the graviton is a resonance this does not imply the existence of a scalar ghost if the deviation from Pauli-Fierz becomes sufficiently small at high energies. These types of mass terms are required by any consistent realization of the DGP model in higher dimension.

  2. MASSIVE PROTOPLANETARY DISKS IN ORION BEYOND THE TRAPEZIUM CLUSTER

    International Nuclear Information System (INIS)

    Mann, Rita K.; Williams, Jonathan P.

    2009-01-01

    We present Submillimeter Array 1 The Submillimeter Array is a joint project between the Submillimeter Astrophysical Observatory and the Academica Sinica Institute of Astronomy and Astrophysics and is funded by the Smithsonian Institution and the Academica Sinica. observations of the 880 μm continuum emission from three circumstellar disks around young stars in Orion that lie several arcminutes (∼> 1 pc) north of the Trapezium cluster. Two of the three disks are in the binary system 253-1536. Silhouette disks 216-0939 and 253-1536a are found to be more massive than any previously observed Orion disks, with dust masses derived from their submillimeter emission of 0.045 M sun and 0.066 M sun , respectively. The existence of these massive disks reveals that the disk mass distribution in Orion does extend to high masses, and that the truncation observed in the central Trapezium cluster is a result of photoevaporation due to the proximity of O-stars. 253-1536b has a disk mass of 0.018 M sun , making the 253-1536 system the first optical binary in which each protoplanetary disk is massive enough to potentially form solar systems.

  3. D2-D8 system with massive strings and the Lifshitz spacetimes

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Harvendra [Theory Division, Saha Institute of Nuclear Physics,1/AF, Bidhannagar, Kolkata 700064 (India); Homi Bhabha National Institute,Anushakti Nagar, Mumbai 400094 (India)

    2017-04-04

    The Romans’ type IIA supergravity allows fundamental strings to have explicit mass term at the tree level. We show that there exists a (F1,D2,D8) brane configuration which gives rise to Lif{sub 4}{sup (2)}×R{sup 1}×S{sup 5} vacua supported by the massive strings. The presence of D8-branes naturally excites massive fundamental strings. A compactification on circle relates these Lifshitz massive type-IIA background with the axion-flux Lif{sub 4}{sup (2)}×S{sup 1}×S{sup 5} vacua in ordinary type-IIB theory. The massive T-duality in eight dimensions further relates them to yet another (Lif)-tilde {sub 4}{sup (2)}×S{sup 1}×S{sup 5} vacua constituted by (F1,D0,D6) system in ordinary type IIA theory. The latter vacua after compactification to four dimensions generate two ‘distinct’ electric charges and a constant magnetic field, all living over 2-dimensional plane. This somewhat reminds us of a similar set up in quantum Hall systems.

  4. Age of blood and survival after massive transfusion.

    Science.gov (United States)

    Sanz, C C; Pereira, A

    2017-11-01

    Massive transfusion is the clinical scenario where the presumed adverse effects of stored blood are expected to be more evident because the whole patient's blood volume is replaced by stored blood. To analyse the association between age of transfused red blood cells (RBC) and survival in massively transfused patients. In this retrospective study, clinical and transfusion data of all consecutive patients massively transfused between 2008 and 2014 in a large, tertiary-care hospital were electronically extracted from the Transfusion Service database and the patients' electronic medical records. Prognostic factors for in-hospital mortality were investigated by multivariate logistic regression. A total of 689 consecutive patients were analysed (median age: 61 years; 65% males) and 272 died in-hospital. Projected mortality at 2, 30, and 90 days was 21%, 35% and 45%, respectively. The odds ratio (OR) for in-hospital mortality among patients who survived after the 2nd day increased with patient age (OR: 1.037, 95% CI: 1.021-1.054; per year Ptransfused in the first 48hours (OR: 1.060; 95% CI: 1.038-1.020 per unit; Ptransfusion was associated with a higher proportion of old RBCs transfused in the first 48hours. Other factors associated with poor prognosis were older patient's age and larger volumes of transfused RBCs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. EARLY RADIO AND X-RAY OBSERVATIONS OF THE YOUNGEST NEARBY TYPE Ia SUPERNOVA PTF 11kly (SN 2011fe)

    International Nuclear Information System (INIS)

    Horesh, Assaf; Kulkarni, S. R.; Carpenter, John; Kasliwal, Mansi M.; Ofek, Eran O.; Fox, Derek B.; Quimby, Robert; Gal-Yam, Avishay; Cenko, S. Bradley; De Bruyn, A. G.; Kamble, Atish; Wijers, Ralph A. M. J.; Van der Horst, Alexander J.; Kouveliotou, Chryssa; Podsiadlowski, Philipp; Sullivan, Mark; Maguire, Kate; Howell, D. Andrew; Nugent, Peter E.; Gehrels, Neil

    2012-01-01

    On 2011 August 24 (UT) the Palomar Transient Factory (PTF) discovered PTF11kly (SN 2011fe), the youngest and most nearby Type Ia supernova (SN Ia) in decades. We followed this event up in the radio (centimeter and millimeter bands) and X-ray bands, starting about a day after the estimated explosion time. We present our analysis of the radio and X-ray observations, yielding the tightest constraints yet placed on the pre-explosion mass-loss rate from the progenitor system of this supernova. We find a robust limit of M-dot ∼ -8 (w/100 km s -1 ) M sun yr -1 from sensitive X-ray non-detections, as well as a similar limit from radio data, which depends, however, on assumptions about microphysical parameters. We discuss our results in the context of single-degenerate models for SNe Ia and find that our observations modestly disfavor symbiotic progenitor models involving a red giant donor, but cannot constrain systems accreting from main-sequence or sub-giant stars, including the popular supersoft channel. In view of the proximity of PTF11kly and the sensitivity of our prompt observations, we would have to wait for a long time (a decade or longer) in order to more meaningfully probe the circumstellar matter of SNe Ia.

  6. The dynamical fingerprint of core scouring in massive elliptical galaxies

    International Nuclear Information System (INIS)

    Thomas, J.; Saglia, R. P.; Bender, R.; Erwin, P.; Fabricius, M.

    2014-01-01

    The most massive elliptical galaxies have low-density centers or cores that differ dramatically from the high-density centers of less massive ellipticals and bulges of disk galaxies. These cores have been interpreted as the result of mergers of supermassive black hole binaries, which depopulate galaxy centers by gravitationally slingshotting central stars toward large radii. Such binaries naturally form in mergers of luminous galaxies. Here, we analyze the population of central stellar orbits in 11 massive elliptical galaxies that we observed with the integral field spectrograph SINFONI at the European Southern Observatory Very Large Telescope. Our dynamical analysis is orbit-based and includes the effects of a central black hole, the mass distribution of the stars, and a dark matter halo. We show that the use of integral field kinematics and the inclusion of dark matter is important to conclude on the distribution of stellar orbits in galaxy centers. Six of our galaxies are core galaxies. In these six galaxies, but not in the galaxies without cores, we detect a coherent lack of stars on radial orbits in the core region and a uniform excess of radial orbits outside of it: when scaled by the core radius r b , the radial profiles of the classical anisotropy parameter β(r) are nearly identical in core galaxies. Moreover, they quantitatively match the predictions of black hole binary simulations, providing the first convincing dynamical evidence for core scouring in the most massive elliptical galaxies.

  7. Two-Dimensional DOA Estimation Using Arbitrary Arrays for Massive MIMO Systems

    Directory of Open Access Journals (Sweden)

    Alban Doumtsop Lonkeng

    2017-01-01

    Full Text Available With the quick advancement of wireless communication networks, the need for massive multiple-input-multiple-output (MIMO to offer adequate network capacity has turned out to be apparent. As a portion of array signal processing, direction-of-arrival (DOA estimation is of indispensable significance to acquire directional data of sources and to empower the 3D beamforming. In this paper, the performance of DOA estimation for massive MIMO systems is analyzed and compared using a low-complexity algorithm. To be exact, the 2D Fourier domain line search (FDLS MUSIC algorithm is studied to mutually estimate elevation and azimuth angle, and arbitrary array geometry is utilized to represent massive MIMO systems. To avoid the computational burden in estimating the data covariance matrix and its eigenvalue decomposition (EVD due to the large-scale sensors involved in massive MIMO systems, the reduced-dimension data matrix is applied on the signals received by the array. The performance is examined and contrasted with the 2D MUSIC algorithm for different types of antenna configuration. Finally, the array resolution is selected to investigate the performance of elevation and azimuth estimation. The effectiveness and advantage of the proposed technique have been proven by detailed simulations for different types of MIMO array configuration.

  8. Hot stars in young massive clusters: Mapping the current Galactic metallicity

    Science.gov (United States)

    de la Fuente, Diego; Najarro, Francisco; Davies, Ben; Trombley, Christine; Figer, Donald F.; Herrero, Artemio

    2013-06-01

    Young Massive Clusters (YMCs) with ages guarantee that these objects present the same chemical composition than the surrounding environment where they are recently born. Finally, the YMCs host very massive stars whose extreme luminosities allow to accomplish detailed spectroscopic analyses even in the most distant regions of the Milky Way. Our group has carried out ISAAC/VLT spectroscopic observations of hot massive stars belonging to several YMCs in different locations around the Galactic disk. As a result, high signal-to-noise, near-infrared spectra of dozens of blue massive stars (including many OB supergiants, Wolf-Rayet stars and a B hypergiant) have been obtained. These data are fully reduced, and NLTE spherical atmosphere modeling is in process. Several line diagnostics will be combined in order to calculate metal abundances accurately for each cluster. The diverse locations of the clusters will allow us to draw a two-dimensional chemical map of the Galactic disk for the first time. The study of the radial and azimuthal variations of elemental abundances will be crucial for understanding the chemical evolution of the Milky Way. Particularly, the ratio between Fe-peak and alpha elements will constitute a powerful tool to investigate the past stellar populations that originated the current Galactic chemistry.

  9. Removal of excess skin after massive weight loss: challenges and solutions

    Directory of Open Access Journals (Sweden)

    Giordano S

    2015-06-01

    Full Text Available Salvatore Giordano Department of Plastic and General Surgery, Turku University Hospital, Turku, Finland Abstract: The advent of bariatric surgery has led to a subspecialty in plastic surgery for skin and fat contouring which remain after massive weight loss. The author discusses the preoperative assessment, surgical treatment plan, postoperative management, possible complications, and benefits of postbariatric surgery. Preoperative planning includes medical history and patient assessment. Surgical procedures for brachioplasty, upper back lift, breast reshaping, abdominoplasty, panniculectomy, lower back lift, and thigh lift are discussed. Indications, postoperative complications, and benefits are also discussed. The best candidates for postbariatric plastic surgery are those who have achieved weight loss stability with a BMI of 32 or less and who have adequate nutrition in order to heal the surgical excisions. Abdominal and truncal deformity are the most common presenting complaints in massive weight loss patients, and the procedure of choice to address this region is a body lift. Postoperative care focuses on patient safety, prioritizing in deep venous thrombosis (DVT prophylaxis and seroma prevention. Postbariatric body contouring aims to correct the deformity due to the excess of skin after massive weight loss and to restore a sense of normalcy. Keywords: morbid obesity, bariatric surgery, weight loss, massive weight loss, body contouring, panniculectomy

  10. A massively parallel discrete ordinates response matrix method for neutron transport

    International Nuclear Information System (INIS)

    Hanebutte, U.R.; Lewis, E.E.

    1992-01-01

    In this paper a discrete ordinates response matrix method is formulated with anisotropic scattering for the solution of neutron transport problems on massively parallel computers. The response matrix formulation eliminates iteration on the scattering source. The nodal matrices that result from the diamond-differenced equations are utilized in a factored form that minimizes memory requirements and significantly reduces the number of arithmetic operations required per node. The red-black solution algorithm utilizes massive parallelism by assigning each spatial node to one or more processors. The algorithm is accelerated by a synthetic method in which the low-order diffusion equations are also solved by massively parallel red-black iterations. The method is implemented on a 16K Connection Machine-2, and S 8 and S 16 solutions are obtained for fixed-source benchmark problems in x-y geometry

  11. Bronchial artery embolisation for the treatment of massive ...

    African Journals Online (AJOL)

    tion and circulatory collapse or, more often, aspiration and consequent asphyxiation. ... be considered early in the evolution of massive haemoptysis. BAE for the ... Traitement des hemoptysies par embolization de la circulation system-. Fig. 7.

  12. Molecular line study of massive star-forming regions from the Red MSX Source survey

    Science.gov (United States)

    Yu, Naiping; Wang, Jun-Jie

    2014-05-01

    In this paper, we have selected a sample of massive star-forming regions from the Red MSX Source survey, in order to study star formation activities (mainly outflow and inflow signatures). We have focused on three molecular lines from the Millimeter Astronomy Legacy Team Survey at 90 GHz: HCO+(1-0), H13CO+(1-0) and SiO(2-1). According to previous observations, our sources can be divided into two groups: nine massive young stellar object candidates (radio-quiet) and 10 H II regions (which have spherical or unresolved radio emissions). Outflow activities have been found in 11 sources, while only three show inflow signatures in all. The high outflow detection rate means that outflows are common in massive star-forming regions. The inflow detection rate was relatively low. We suggest that this was because of the beam dilution of the telescope. All three inflow candidates have outflow(s). The outward radiation and thermal pressure from the central massive star(s) do not seem to be strong enough to halt accretion in G345.0034-00.2240. Our simple model of G318.9480-00.1969 shows that it has an infall velocity of about 1.8 km s-1. The spectral energy distribution analysis agrees our sources are massive and intermediate-massive star formation regions.

  13. Color Magnitude Diagrams of Old, Massive GCs in M31

    Science.gov (United States)

    Caldwell, Nelson; Williams, B.; Dolphin, A. E.; Johnson, L. C.; Weisz, D. R.

    2013-01-01

    Multicolor stellar photometry of HST data of M31 collected as part of the PHAT project has been performed using the DOLPHOT suite of programs. We present results of color-magnitude diagrams created in F475W and F814W (BI) of more than 50 massive, old clusters. These are clusters in or projected on the disk. We compare the metallicities derived from the color of the giant branch stars with that derived from integrated light spectroscopy. As well, we compare the ages of massive, young clusters with those found from spectra.

  14. The Evolution of Massive Stars: a Selection of Facts and Questions

    Science.gov (United States)

    Vanbeveren, D.

    In the present paper we discuss a selection of facts and questions related to observations and evolutionary calculations of massive single stars and massive stars in interacting binaries. We focus on the surface chemical abundances, the role of stellar winds, the early Be-stars, the high mass X-ray binaries and the effects of rotation on stellar evolution. Finally, we present an unconventionally formed object scenario (UFO-scenario) of WR binaries in dense stellar environments.

  15. THE MASSIVE SATELLITE POPULATION OF MILKY-WAY-SIZED GALAXIES

    International Nuclear Information System (INIS)

    Rodríguez-Puebla, Aldo; Avila-Reese, Vladimir; Drory, Niv

    2013-01-01

    Several occupational distributions for satellite galaxies more massive than m * ≈ 4 × 10 7 M ☉ around Milky-Way (MW)-sized hosts are presented and used to predict the internal dynamics of these satellites as a function of m * . For the analysis, a large galaxy group mock catalog is constructed on the basis of (sub)halo-to-stellar mass relations fully constrained with currently available observations, namely the galaxy stellar mass function decomposed into centrals and satellites, and the two-point correlation functions at different masses. We find that 6.6% of MW-sized galaxies host two satellites in the mass range of the Small and Large Magellanic Clouds (SMC and LMC, respectively). The probabilities of the MW-sized galaxies having one satellite equal to or larger than the LMC, two satellites equal to or larger than the SMC, or three satellites equal to or larger than Sagittarius (Sgr) are ≈0.26, 0.14, and 0.14, respectively. The cumulative satellite mass function of the MW, N s (≥m * ) , down to the mass of the Fornax dwarf is within the 1σ distribution of all the MW-sized galaxies. We find that MW-sized hosts with three satellites more massive than Sgr (as the MW) are among the most common cases. However, the most and second most massive satellites in these systems are smaller than the LMC and SMC by roughly 0.7 and 0.8 dex, respectively. We conclude that the distribution N s (≥m * ) for MW-sized galaxies is quite broad, the particular case of the MW being of low frequency but not an outlier. The halo mass of MW-sized galaxies correlates only weakly with N s (≥m * ). Then, it is not possible to accurately determine the MW halo mass by means of its N s (≥m * ); from our catalog, we constrain a lower limit of 1.38 × 10 12 M ☉ at the 1σ level. Our analysis strongly suggests that the abundance of massive subhalos should agree with the abundance of massive satellites in all MW-sized hosts, i.e., there is not a missing (massive) satellite problem

  16. One of the most massive stars in the Galaxy may have formed in isolation

    OpenAIRE

    Oskinova, L. M.; Steinke, M.; Hamann, W. -R.; Sander, A.; Todt, H.; Liermann, A.

    2013-01-01

    Very massive stars, 100 times heavier than the sun, are rare. It is not yet known whether such stars can form in isolation or only in star clusters. The answer to this question is of fundamental importance. The central region of our Galaxy is ideal for investigating very massive stars and clusters located in the same environment. We used archival infrared images to investigate the surroundings of apparently isolated massive stars presently known in the Galactic Center. We find that two such i...

  17. A NEW CLASS OF LUMINOUS TRANSIENTS AND A FIRST CENSUS OF THEIR MASSIVE STELLAR PROGENITORS

    International Nuclear Information System (INIS)

    Thompson, Todd A.; Prieto, Jose L.; Stanek, K. Z.; Beacom, John F.; Kochanek, Christopher S.; Kistler, Matthew D.

    2009-01-01

    The progenitors of SN 2008S and the 2008 luminous transient in NGC 300 were deeply dust-enshrouded massive stars, with extremely red mid-infrared (MIR) colors and relatively low bolometric luminosities (∼5 x 10 4 L sun ). The transients were optically faint compared to normal core-collapse supernovae (ccSNe), with peak absolute visual magnitudes of -13 ∼> M V ∼> -15, and their spectra exhibit narrow Balmer and [Ca II] emission lines. These events are unique among transient-progenitor pairs and hence constitute a new class. Additional members of this class may include the M85 transient, SN 1999bw, 2002bu, and others. Whether they are true supernovae or bright massive-star eruptions, we argue that their rate is of order ∼20% of the ccSN rate in star-forming galaxies. This fact is remarkable in light of the observation that a very small fraction of all massive stars in any one galaxy, at any moment, have the infrared colors of the progenitors of SN 2008S and the NGC 300 transient. We show this by extracting MIR and optical luminosity, color, and variability properties of massive stars in M33 using archival imaging. We find that the fraction of massive stars with colors consistent with the progenitors of SN 2008S and the NGC 300 transient is ∼ -4 . In fact, only ∼ 4 yr before explosion, be it death or merely eruption. We discuss the implications of this finding for the evolution and census of 'low-mass' massive stars (i.e., ∼8-12 M sun ), and we connect it with theoretical discussions of electron-capture supernovae (ecSNe) near this mass range. Other potential mechanisms, including the explosive birth of massive white dwarfs and massive star outbursts, are also discussed. A systematic census with (warm) Spitzer of galaxies in the local universe (D ∼< 10 Mpc) for analogous progenitors would significantly improve our knowledge of this channel to massive stellar explosions, and potentially to others with obscured progenitors.

  18. Evolution of massive close binary stars

    International Nuclear Information System (INIS)

    Masevich, A.G.; Tutukov, A.V.

    1982-01-01

    Some problems of the evolution of massive close binary stars are discussed. Most of them are nonevolutionized stars with close masses of components. After filling the Roche cavity and exchange of matter between the components the Wolf-Rayet star is formed. As a result of the supernovae explosion a neutron star or a black hole is formed in the system. The system does not disintegrate but obtains high space velocity owing to the loss of the supernovae envelope. The satellite of the neutron star or black hole - the star of the O or B spectral class loses about 10 -6 of the solar mass for a year. Around the neighbouring component a disc of this matter is formed the incidence of which on a compact star leads to X radiation appearance. The neutron star cannot absorb the whole matter of the widening component and the binary system submerges into the common envelope. As a result of the evolution of massive close binary systems single neutron stars can appear which after the lapse of some time become radiopulsars. Radiopulsars with such high space velocities have been found in our Galaxy [ru

  19. Non-Pauli-Fierz Massive Gravitons

    International Nuclear Information System (INIS)

    Dvali, Gia; Pujolas, Oriol; Redi, Michele

    2008-01-01

    We study general Lorentz invariant theories of massive gravitons. We show that, contrary to the standard lore, there exist consistent theories where the graviton mass term violates Pauli-Fierz structure. For theories where the graviton is a resonance, this does not imply the existence of a scalar ghost if the deviation from a Pauli-Fierz structure becomes sufficiently small at high energies. These types of mass terms are required by any consistent realization of the Dvali-Gabadadze-Porrati model in higher dimension

  20. Massive Yang-Mills theory: Renormalizability versus unitarity

    International Nuclear Information System (INIS)

    Delbourgo, R.; Twisk, S.; Thompson, G.

    1987-06-01

    Various massive Yang-Mills theories not based on the Higgs mechanism are investigated. They are subject to conflicting demands in the twin requirements of unitarity and perturbative renormalizability. Either one or other of these requirements is violated. Unitarity is considered in some detail. (author). 18 refs, 5 figs