WorldWideScience

Sample records for young star disks

  1. Dusty disks around young stars

    NARCIS (Netherlands)

    Verhoeff, A.

    2009-01-01

    Stars are formed through the collapse of giant molecular clouds. During this contraction the matter spins up and naturally forms a circumstellar disk. Once accretion comes to a halt, these disks are relatively stable. Some disks are known to last up to 10 Myrs. Most disks however, dissipate on

  2. On Fallback Disks around Young Neutron Stars

    Science.gov (United States)

    Alpar, M. Ali; Ertan, Ü.; Erkut, M. H.

    2006-08-01

    Some bound matter in the form of a fallback disk may be an initial parameter of isolated neutron stars at birth, which, along with the initial rotation rate and dipole (and higher multipole) magnetic moments, determines the evolution of neutron stars and the categories into which they fall. This talk reviews the possibilities of fallback disk models in explaining properties of isolated neutron stars of different categories. Recent observations of a fallback disk and observational limits on fallback disks will also be discussed.

  3. A debris disk around an isolated young neutron star.

    Science.gov (United States)

    Wang, Zhongxiang; Chakrabarty, Deepto; Kaplan, David L

    2006-04-06

    Pulsars are rotating, magnetized neutron stars that are born in supernova explosions following the collapse of the cores of massive stars. If some of the explosion ejecta fails to escape, it may fall back onto the neutron star or it may possess sufficient angular momentum to form a disk. Such 'fallback' is both a general prediction of current supernova models and, if the material pushes the neutron star over its stability limit, a possible mode of black hole formation. Fallback disks could dramatically affect the early evolution of pulsars, yet there are few observational constraints on whether significant fallback occurs or even the actual existence of such disks. Here we report the discovery of mid-infrared emission from a cool disk around an isolated young X-ray pulsar. The disk does not power the pulsar's X-ray emission but is passively illuminated by these X-rays. The estimated mass of the disk is of the order of 10 Earth masses, and its lifetime (> or = 10(6) years) significantly exceeds the spin-down age of the pulsar, supporting a supernova fallback origin. The disk resembles protoplanetary disks seen around ordinary young stars, suggesting the possibility of planet formation around young neutron stars.

  4. Studies of Young, Star-forming Circumstellar Disks

    Science.gov (United States)

    Bae, Jaehan

    2017-08-01

    Disks of gas and dust around forming stars - circumstellar disks - last only a few million years. This is a very small fraction of the entire lifetime of Sun-like stars, several billion years. Nevertheless, by the time circumstellar disks dissipate stars complete building up their masses, giant planets finish accreting gas, and terrestrial bodies are nearly fully grown and ready for their final assembly to become planets. Understanding the evolution of circumstellar disks are thus crucial in many contexts. Using numerical simulations as the primary tool, my thesis has focused on the studies of various physical processes that can occur throughout the lifetime of circumstellar disks, from their formation to dispersal. Chapters 2, 3, and 4 emphasize the importance of early evolution, during which time a forming star-disk system obtains mass from its natal cloud: the infall phase. In Chapter 2 and 3, I have modeled episodic outbursts of accretion in protostellar systems resulting from disk instabilities - gravitational instability and magnetorotational instability. I showed that outbursts occur preferentially during the infall phase, because the mass addition provides more favorable conditions for gravitational instability to initiate the outburst cycle, and that forming stars build up a significant fraction of their masses through repeated short-lived, episodic outbursts. The infall phase can also be important for the formation of planets. Recent ALMA observations revealed sets of bright and dark rings in circumstellar disks of young, forming stars, potentially indicating early formation of planets. In Chapter 4, I showed that infall streams can create radial pressure bumps near the outer edge of the mass landing on the disk, from which vortices can form, collecting solid particles very efficiently to make initial seeds of planets. The next three chapters highlight the role of planets in setting the observational appearance and the evolution of circumstellar disks

  5. Infrared radiative transfer in dense disks around young stars

    International Nuclear Information System (INIS)

    Dent, W.R.F.

    1988-01-01

    A two-dimensional radiative transfer program has been used to determine the temperature distribution within cylindrically symmetric, centrally heated dust clouds. In particular, the disk-shaped structures observed around young luminous stars have been modeled. Changing the dust distribution in these disks primarily affected the observed morphology in the near-infrared and far-infrared, and at millimeter wavelengths. The overall cloud spectrum, however, was mainly determined by the characteristics of the grains themselves. Comparison with published far-infrared and molecular line data has indicated that the dust density can generally be modeled by a power-law distribution in r with index of -2 and an exponential in z with disk thickness proportional to 1/r. When observed nearly edge-on, scattered direct stellar radiation is observed in the polar regions in the form of comet-shaped lobes of emission. 26 references

  6. Physical processes in circumstellar disks around young stars

    CERN Document Server

    2011-01-01

    Circumstellar disks are vast expanses of dust that form around new stars in the earliest stages of their birth. Predicted by astronomers as early as the eighteenth century, they weren't observed until the late twentieth century, when interstellar imaging technology enabled us to see nascent stars hundreds of light years away. Since then, circumstellar disks have become an area of intense study among astrophysicists, largely because they are thought to be the forerunners of planetary systems like our own-the possible birthplaces of planets.            This volume brings

  7. Accretion Disks around Young Stars: An Observational Perspective

    Science.gov (United States)

    Ménard, F.; Bertout, C.

    Accretion disks are pivotal elements in the formation and early evolution of solar-like stars. On top of supplying the raw material, their internal conditions also regulate the formation of planets. Their study therefore holds the key to solve this long standing mystery: how did our Solar System form? This chapter focuses on observational studies of the circumstellar environment, and in particular of circumstellar disks, associated with pre-main sequence solar-like stars. The direct measurement of disk parameters poses an obvious challenge: at the distance of the typical star forming regions ( e.g. 140 pc for Taurus), a planetary system like ours (with diameter simeq50 AU out to Pluto, but excluding the Kuiper belt which could extend much farther out) subtends only 0.35''. Yet its surface brightness is low in comparison to the bright central star and high angular and high contrast imaging techniques are required if one hopes to resolve and measure these protoplanetary disks. Fortunately, capable instruments providing 0.1'' resolution or better and high contrast have been available for just about 10 years now. They are covering a large part of the electromagnetic spectrum, from the UV/Optical with HST and the near-infrared from ground-based adaptive optics systems, to the millimetric range with long-baseline radio interferometers. It is therefore not surprising that our knowledge of the structure of the disks surrounding low-mass stars has made a gigantic leap forward in the last decade. In the following pages we will attempt to describe, in a historical perpective, the road that led to the idea that most solar-like stars are surrounded by an accretion disk at one point in their early life and how, nowadays, their structural and physical parameters can be estimated from direct observations. We will follow by a short discussion of a few of the constraints available regarding the evolution and dissipation of these disks. This last topic is particularly relevant today

  8. Cold disks : Spitzer spectroscopy of disks around young stars with large gaps

    NARCIS (Netherlands)

    Blake, G. A.; Dullemond, C. P.; Merin, B.; Augereau, J. C.; Boogert, A. C. A.; Evans, N. J.; Geers, V. C.; Lahuis, F.; Kessler-Silacci, J. E.; Pontoppidan, K. M.; van Dishoeck, E. F.; Brown, J.M.

    2007-01-01

    We have identified four circumstellar disks with a deficit of dust emission from their inner 15-50 AU. All four stars have F-G spectral type and were uncovered as part of the Spitzer Space Telescope "Cores to Disks" Legacy Program Infrared Spectrograph (IRS) first-look survey of similar to 100 pre -

  9. SPECTRAL ENERGY DISTRIBUTIONS OF YOUNG STARS IN IC 348: THE ROLE OF DISKS IN ANGULAR MOMENTUM EVOLUTION OF YOUNG, LOW-MASS STARS

    International Nuclear Information System (INIS)

    Le Blanc, Thompson S.; Stassun, Keivan G.; Covey, Kevin R.

    2011-01-01

    Theoretical work suggests that a young star's angular momentum content and rotation rate may be strongly influenced by magnetic interactions with its circumstellar disk. A generic prediction of these 'disk-locking' theories is that a disk-locked star will be forced to co-rotate with the Keplerian angular velocity of the inner edge of the disk; that is, the disk's inner-truncation radius should equal its co-rotation radius. These theories have also been interpreted to suggest a gross correlation between young stars' rotation periods and the structural properties of their circumstellar disks, such that slowly rotating stars possess close-in disks that enforce the star's slow rotation, whereas rapidly rotating stars possess anemic or evacuated inner disks that are unable to brake the stars and instead the stars spin up as they contract. To test these expectations, we model the spectral energy distributions (SEDs) of 33 young stars in IC 348 with known rotation periods and infrared excesses indicating the presence of circumstellar disks. For each star, we match the observed SED, typically sampling 0.6-8.0 μm, to a grid of 200,000 pre-computed star+disk radiative transfer models, from which we infer the disk's inner-truncation radius. We then compare this truncation radius to the disk's co-rotation radius, calculated from the star's measured rotation period. We do not find obvious differences in the disk truncation radii of slow rotators versus rapid rotators. This holds true both at the level of whether close-in disk material is present at all, and in analyzing the precise location of the inner disk edge relative to the co-rotation radius among the subset of stars with close-in disk material. One interpretation is that disk locking is unimportant for the IC 348 stars in our sample. Alternatively, if disk locking does operate, then it must operate on both the slow and rapid rotators, potentially producing both spin-up and spin-down torques, and the transition from the

  10. DISK-RELATED BURSTS AND FADES IN YOUNG STARS

    International Nuclear Information System (INIS)

    Findeisen, Krzysztof; Hillenbrand, Lynne; Levitan, David; Sesar, Branimir; Ofek, Eran; Laher, Russ; Surace, Jason

    2013-01-01

    We present first results from a new, multiyear, time domain survey of young stars in the North America Nebula complex using the Palomar Transient Factory. Our survey is providing an unprecedented view of aperiodic variability in young stars on timescales of days to years. The analyzed sample covers R PTF ≈ 13.5-18 and spans a range of mid-infrared color, with larger-amplitude optical variables (exceeding 0.4 mag root mean squared) more likely to have mid-infrared evidence for circumstellar material. This paper characterizes infrared excess stars with distinct bursts above or fades below a baseline of lower-level variability, identifying 41 examples. The light curves exhibit a remarkable diversity of amplitudes, timescales, and morphologies, with a continuum of behaviors that cannot be classified into distinct groups. Among the bursters, we identify three particularly promising sources that may represent theoretically predicted short-timescale accretion instabilities. Finally, we find that fading behavior is approximately twice as common as bursting behavior on timescales of days to years, although the bursting and fading duty cycle for individual objects often varies from year to year.

  11. CN rings in full protoplanetary disks around young stars as probes of disk structure

    Science.gov (United States)

    Cazzoletti, P.; van Dishoeck, E. F.; Visser, R.; Facchini, S.; Bruderer, S.

    2018-01-01

    Aims: Bright ring-like structure emission of the CN molecule has been observed in protoplanetary disks. We investigate whether such structures are due to the morphology of the disk itself or if they are instead an intrinsic feature of CN emission. With the intention of using CN as a diagnostic, we also address to which physical and chemical parameters CN is most sensitive. Methods: A set of disk models were run for different stellar spectra, masses, and physical structures via the 2D thermochemical code DALI. An updated chemical network that accounts for the most relevant CN reactions was adopted. Results: Ring-shaped emission is found to be a common feature of all adopted models; the highest abundance is found in the upper outer regions of the disk, and the column density peaks at 30-100 AU for T Tauri stars with standard accretion rates. Higher mass disks generally show brighter CN. Higher UV fields, such as those appropriate for T Tauri stars with high accretion rates or for Herbig Ae stars or for higher disk flaring, generally result in brighter and larger rings. These trends are due to the main formation paths of CN, which all start with vibrationally excited H_2^* molecules, that are produced through far ultraviolet (FUV) pumping of H2. The model results compare well with observed disk-integrated CN fluxes and the observed location of the CN ring for the TW Hya disk. Conclusions: CN rings are produced naturally in protoplanetary disks and do not require a specific underlying disk structure such as a dust cavity or gap. The strong link between FUV flux and CN emission can provide critical information regarding the vertical structure of the disk and the distribution of dust grains which affects the UV penetration, and could help to break some degeneracies in the SED fitting. In contrast with C2H or c-C3H2, the CN flux is not very sensitive to carbon and oxygen depletion.

  12. Kinematics of the inner thousand AU region around the young massive star AFGL 2591-VLA3: a massive disk candidate?

    NARCIS (Netherlands)

    Wang, K. -S.; van der Tak, F. F. S.; Hogerheijde, M. R.

    Context. Recent detections of disks around young high-mass stars support the idea of massive star formation through accretion rather than coalescence, but the detailed kinematics in the equatorial region of the disk candidates is not well known, which limits our understanding of the accretion

  13. Angular Momentum in Disk Wind Revealed in the Young Star MWC 349A

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qizhou; Claus, Brian; Watson, Linda; Moran, James, E-mail: qzhang@cfa.harvard.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138 (United States)

    2017-03-01

    Disk winds are thought to play a critical role in star birth. As winds extract excess angular momentum from accretion disks, matter in the disk can be transported inward to the star to fuel mass growth. However, observational evidence of wind carrying angular momentum has been very limited. We present Submillimeter Array (SMA) observations of the young star MWC 349A in the H26 α and H30 α recombination lines. The high signal-to-noise ratios made possible by the maser emission process allow us to constrain the relative astrometry of the maser spots to milli-arcsecond precision. Previous observations of the H30 α line with the SMA and the Plateau de Bure interferometer (PdBI) showed that masers are distributed in the disk and wind. Our new high-resolution observations of the H26 α line reveal differences in spatial distribution from that of the H30 α line. H26 α line masers in the disk are excited in a thin annulus with a radius of about 25 au, while the H30 α line masers are formed in a slightly larger annulus with a radius of 30 au. This is consistent with expectations for maser excitation in the presence of an electron density variation of approximately R {sup −4}. In addition, the H30 α and H26 α line masers arise from different parts in the wind. This difference is also expected from maser theory. The wind component of both masers exhibits line-of-sight velocities that closely follow a Keplerian law. This result provides strong evidence that the disk wind extracts significant angular momentum, thereby facilitating mass accretion in the young star.

  14. DISK BRAKING IN YOUNG STARS: PROBING ROTATION IN CHAMAELEON I AND TAURUS-AURIGA

    International Nuclear Information System (INIS)

    Duy Cuong Nguyen; Jayawardhana, Ray; Van Kerkwijk, Marten H.; Damjanov, Ivana; Brandeker, Alexis; Scholz, Alexander

    2009-01-01

    We present a comprehensive study of rotation, disk, and accretion signatures for 144 T Tauri stars in the young (∼2 Myr old) Chamaeleon I and Taurus-Auriga star-forming regions based on multi-epoch high-resolution optical spectra from the Magellan Clay 6.5 m telescope supplemented by mid-infrared photometry from the Spitzer Space Telescope. In contrast to previous studies in the Orion Nebula Cluster and NGC 2264, we do not see a clear signature of disk braking in Tau-Aur and Cha I. We find that both accretors and non-accretors have similar distributions of vsin i. This result could be due to different initial conditions, insufficient time for disk braking, or a significant age spread within the regions. The rotational velocities in both regions show a clear mass dependence, with F-K stars rotating on average about twice as fast as M stars, consistent with results reported for other clusters of similar age. Similarly, we find the upper envelope of the observed values of specific angular momentum j varies as M 0.5 for our sample which spans a mass range of ∼0.16-3 M sun . This power law complements previous studies in Orion which estimated j ∝ M 0.25 for ∼ sun . Furthermore, the overall specific angular momentum of this ∼10 Myr population is five times lower than that of non-accretors in our sample, and implies a stellar braking mechanism other than disk braking could be at work. For a subsample of 67 objects with mid-infrared photometry, we examine the connection between accretion signatures and dusty disks: in the vast majority of cases (63/67), the two properties correlate well, which suggests that the timescale of gas accretion is similar to the lifetime of inner disks.

  15. A Study of Inner Disk Gas around Young Stars in the Lupus Complex

    Science.gov (United States)

    Arulanantham, Nicole Annemarie; France, Kevin; Hoadley, Keri

    2018-06-01

    We present a study of molecular hydrogen at the surfaces of the disks around five young stars in the Lupus complex: RY Lupi, RU Lupi, MY Lupi, Sz 68, and TYC 7851. Each system was observed with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST), and we detect a population of fluorescent H2 in all five sources. The temperatures required for LyA fluorescence to proceed (T ~ 1500-2500 K) place the gas within ~15 AU of the central stars. We have used these features to extract the radial distribution of H2 in the inner disk, where planet formation may already be taking place. The objects presented here have very different outer disk morphologies, as seen by ALMA via 890 micron dust continuum emission, ranging from full disks with no signs of cavities to systems with large regions that are clearly depleted (e.g. TYC 7851, with a cavity extending to 75 and 60 AU in dust and gas, respectively). Our results are interpreted in conjunction with sub-mm data from the five systems in an effort to piece together a more complete picture of the overall disk structure. We have previously applied this multi-wavelength approach to RY Lupi, including 4.7 micron IR-CO emission in our analysis. These IR-CO and UV-H2 observations were combined with 10 micron silicate emission, the 890 micron dust continuum, and 1.3 mm CO observations from the literature to infer a gapped structure in the inner disk. This single system has served as a testing ground for the larger Lupus complex sample, which we compare here to examine any trends between the outer disk morphology and inner disk gas distributions.

  16. Hot H2O Emission and Evidence for Turbulence in the Disk of a Young Star

    Science.gov (United States)

    2004-03-01

    matter — infrared: stars — planetary systems: protoplanetary disksstars: formation — stars: pre–main-sequence 1. INTRODUCTION The presence of hot...in disk gaps . Molecules other than CO are expected to exist at the temperatures and densities in the inner few AU of disks . Water should be very... protoplanetary disks . In addition, non-Gaussian line profiles might be ex- pected, given that a characteristic of turbulence seen in both laboratory experiments

  17. DM ORI: A YOUNG STAR OCCULTED BY A DISTURBANCE IN ITS PROTOPLANETARY DISK

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, Joseph E.; Stassun, Keivan G.; Lund, Michael B.; Weintraub, David A. [Department of Physics and Astronomy, Vanderbilt University, 6301 Stevenson Center, Nashville, TN 37235 (United States); Cargile, Phillip [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Shappee, Benjamin J. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Siverd, Robert J. [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Santa Barbara, CA 93117 (United States); Pepper, Joshua [Department of Physics, Lehigh University, 16 Memorial Drive East, Bethlehem, PA 18015 (United States); Kochanek, Christopher S.; Gaudi, B. Scott; Stanek, Krzysztof Z.; Holoien, Thomas W.-S. [Department of Astronomy, The Ohio State University, Columbus, OH 43210 (United States); James, David [Cerro Tololo InterAmerican Observatory, Casilla 603, La Serena (Chile); Kuhn, Rudolf B. [South African Astronomical Observatory, P.O. Box 9, Observatory 7935 (South Africa); Beatty, Thomas G. [Department of Astronomy and Astrophysics, The Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Prieto, Jose L. [Nucleo de Astronoma de la Facultad de Ingeniera, Universidad Diego Portales, Av. Ejercito 441, Santiago (Chile); Feldman, Daniel M.; Espaillat, Catherine C. [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States)

    2016-11-01

    In some planet formation theories, protoplanets grow gravitationally within a young star’s protoplanetary disk, a signature of which may be a localized disturbance in the disk’s radial and/or vertical structure. Using time-series photometric observations by the Kilodegree Extremely Little Telescope South project and the All-Sky Automated Survey for SuperNovae, combined with archival observations, we present the discovery of two extended dimming events of the young star, DM Ori. This young system faded by ∼1.5 mag from 2000 March to 2002 August and then again in 2013 January until 2014 September (depth ∼1.7 mag). We constrain the duration of the 2000–2002 dimming to be < 860 days, and the event in 2013–2014 to be < 585 days, separated by ∼12.5 years. A model of the spectral energy distribution indicates a large infrared excess consistent with an extensive circumstellar disk. Using basic kinematic arguments, we propose that DM Ori is likely being periodically occulted by a feature (possibly a warp or perturbation) in its circumstellar disk. In this scenario, the occulting feature is located >6 au from the host star, moving at ∼14.6 km s{sup −1} and is ∼4.9 au in width. This localized structure may indicate a disturbance such as that which may be caused by a protoplanet early in its formation.

  18. IDENTIFYING NEARBY, YOUNG, LATE-TYPE STARS BY MEANS OF THEIR CIRCUMSTELLAR DISKS

    International Nuclear Information System (INIS)

    Schneider, Adam; Song, Inseok; Melis, Carl; Zuckerman, B.; Bessell, Mike

    2012-01-01

    It has recently been shown that a significant fraction of late-type members of nearby, very young associations (age ∼<10 Myr) display excess emission at mid-IR wavelengths indicative of dusty circumstellar disks. We demonstrate that the detection of mid-IR excess emission can be utilized to identify new nearby, young, late-type stars including two definite new members ('TWA 33' and 'TWA 34') of the TW Hydrae Association (TWA). Both new TWA members display mid-IR excess emission in the Wide-field Infrared Survey Explorer catalog and they show proper motion and youthful spectroscopic characteristics—namely, Hα emission, strong lithium absorption, and low surface gravity features consistent with known TWA members. We also detect mid-IR excess—the first unambiguous evidence of a dusty circumstellar disk—around a previously identified UV-bright, young, accreting star (2M1337) that is a likely member of the Lower-Centaurus Crux region of the Scorpius-Centaurus Complex.

  19. Differences in the Gas and Dust Distribution in the Transitional Disk of a Sun-like Young Star, PDS 70

    Science.gov (United States)

    Long, Zachary C.; Akiyama, Eiji; Sitko, Michael; Fernandes, Rachel B.; Assani, Korash; Grady, Carol A.; Cure, Michel; Danchi, William C.; Dong, Ruobing; Fukagawa, Misato; Hasegawa, Yasuhiro; Hashimoto, Jun; Henning, Thomas; Inutsuka, Shu-Ichiro; Kraus, Stefan; Kwon, Jungmi; Lisse, Carey M.; Baobabu Liu, Hauyu; Mayama, Satoshi; Muto, Takayuki; Nakagawa, Takao; Takami, Michihiro; Tamura, Motohide; Currie, Thayne; Wisniewski, John P.; Yang, Yi

    2018-05-01

    We present ALMA 0.87 mm continuum, HCO+ J = 4–3 emission line, and CO J = 3–2 emission line data of the disk of material around the young, Sun-like star PDS 70. These data reveal the existence of a possible two-component transitional disk system with a radial dust gap of 0.″42 ± 0.″05, an azimuthal gap in the HCO+ J = 4–3 moment zero map, as well as two bridge-like features in the gas data. Interestingly these features in the gas disk have no analog in the dust disk making them of particular interest. We modeled the dust disk using the Monte Carlo radiative transfer code HOCHUNK3D using a two-disk component. We find that there is a radial gap that extends from 15 to 60 au in all grain sizes, which differs from previous work.

  20. The two young star disks in the central parsec of the Galaxy: properties, dynamics, and formation

    International Nuclear Information System (INIS)

    Paumard, T; Genzel, R; Martins, F; Nayakshin, S; Beloborodov, A M; Levin, Y; Trippe, S; Eisenhauer, F; Ott, T; Gillessen, S; Abuter, R; Cuadra, J; Alexander, T; Sternberg, A

    2006-01-01

    We report the definite spectroscopic identification of ≅ 40 OB supergiants, giants and main sequence stars in the central parsec of the Galaxy. Detection of their absorption lines have become possible with the high spatial and spectral resolution and sensitivity of the adaptive optics integral Held spectrometer SPIFFI/SINFONI on the ESO VLT. Several of these OB stars appear to be helium and nitrogen rich. Almost all of the ≅80 massive stars now known in the central parsec (central arcsecond excluded) reside in one of two somewhat thick ((|/R) ≅ 0.14) rotating disks. These stellar disks have fairly sharp inner edges (R ≅ 1'') and surface density profiles that scale as R -2 . We do not detect any OB stars outside the central 0.5 pc. The majority of the stars in the clockwise system appear to be on almost circular orbits, whereas most of those in the 'counter-clockwise' disk appear to be on eccentric orbits. Based on its stellar surface density distribution and dynamics we propose that IRS 13E is an extremely dense cluster (ρ core ∼> 3 x 10 8 M o-dot pc -3 ), which has formed in the counter-clockwise disk. The stellar contents of both systems are remarkably similar, indicating a common age of ≅ 6±2 Myr. The K-band luminosity function of the massive stars suggests a top-heavy mass function and limits the total stellar mass contained in both disks to ≅ 1.5 x 10 4 M o-dot . Our data strongly favor in situ star formation from dense gas accretion disks for the two stellar disks. This conclusion is very clear for the clockwise disk and highly plausible for the counter-clockwise system

  1. NEW DEBRIS DISKS AROUND YOUNG, LOW-MASS STARS DISCOVERED WITH THE SPITZER SPACE TELESCOPE

    International Nuclear Information System (INIS)

    Plavchan, Peter; Werner, M. W.; Stapelfeldt, K. R.; Chen, C. H.; Su, K. Y. L.; Stauffer, J. R.; Song, I.

    2009-01-01

    -Robertson (P-R) drag, stellar wind drag, and planet-dust dynamical interaction. We find that drag forces can be important for disk dynamics relative to grain-grain collisions for L IR /L * -4 , and that stellar wind drag is more important than P-R drag for K and M dwarfs, and possibly for young (<1 Gyr) G dwarfs as well.

  2. Dynamic Young Stars and their Disks: A Temporal View of NGC 2264 with Spitzer and CoRoT*

    Directory of Open Access Journals (Sweden)

    Cody Ann Marie

    2014-01-01

    Full Text Available Variability is a signature feature of young stars. Among the well known light curve phenomena are periodic variations attributed to surface spots and irregular changes associated with accretion or circumstellar disk material. While decades of photometric monitoring have provided a framework for classifying young star variability, we still know surprisingly little about its underlying mechanisms and connections to the surrounding disks. In the past few years, dedicated photometric monitoring campaigns from the ground and space have revolutionized our view of young stars in the time domain. We present a selection of optical and infrared time series from several recent campaigns, highlighting the Coordinated Synoptic Investigation of NGC 2264 (“CSI 2264”– a joint30-day effort with the Spitzer, CoRoT, and MOST telescopes. The extraordinary photometric precision, high cadence, and long time baseline of these observations is now enabling correlation of variability properties at very different wavelengths, corresponding to locations from the stellar surface to the inner 0.1 AU of the disk. We present some results of the CSI 2264 program, including new classes of optical/infrared behavior. Further efforts to tie observed variability features to physical models will provide insights into the inner disk environment at a time when planet formation may be underway.

  3. GRAIN GROWTH IN THE CIRCUMSTELLAR DISKS OF THE YOUNG STARS CY Tau AND DoAr 25

    Energy Technology Data Exchange (ETDEWEB)

    Pérez, Laura M.; Chandler, Claire J. [National Radio Astronomy Observatory, P.O. Box O, Socorro, NM 87801 (United States); Isella, Andrea [Rice University, 6100 Main Street, Houston, TX 77005 (United States); Carpenter, John M.; Sargent, Anneila I. [California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125 (United States); Andrews, Sean M.; Ricci, Luca [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Calvet, Nuria [University of Michigan, 830 Dennison Building, 500 Church Street, Ann Arbor, MI 48109 (United States); Corder, Stuartt A. [Joint ALMA Observatory, Av. Alonso de Córdova 3107, Vitacura, Santiago (Chile); Deller, Adam T. [The Netherlands Institute for Radio Astronomy (ASTRON), 7990-AA Dwingeloo (Netherlands); Dullemond, Cornelis P. [Heidelberg University, Center for Astronomy, Albert Ueberle Str 2, Heidelberg (Germany); Greaves, Jane S. [University of St. Andrews, Physics and Astronomy, North Haugh, St. Andrews KY16 9SS (United Kingdom); Harris, Robert J. [University of Illinois, 1002 West Green St., Urbana, IL 61801 (United States); Henning, Thomas; Linz, Hendrik [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Kwon, Woojin [Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon 34055 (Korea, Republic of); Lazio, Joseph [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr, Pasadena, CA 91106 (United States); Mundy, Lee G.; Storm, Shaye [University of Maryland, College Park, MD 20742 (United States); Tazzari, Marco [European Southern Observatory, Karl Schwarzschild str. 2, D-85748 Garching (Germany); and others

    2015-11-01

    We present new results from the Disks@EVLA program for two young stars: CY Tau and DoAr 25. We trace continuum emission arising from their circusmtellar disks from spatially resolved observations, down to tens of AU scales, at λ = 0.9, 2.8, 8.0, 9.8 mm for DoAr 25 and at λ = 1.3, 2.8, 7.1 mm for CY Tau. Additionally, we constrain the amount of emission whose origin is different from thermal dust emission from 5 cm observations. Directly from interferometric data, we find that observations at 7 mm and 1 cm trace emission from a compact disk while millimeter-wave observations trace an extended disk structure. From a physical disk model, where we characterize the disk structure of CY Tau and DoAr 25 at wavelengths shorter than 5 cm, we find that (1) dust continuum emission is optically thin at the observed wavelengths and over the spatial scales studied, (2) a constant value of the dust opacity is not warranted by our observations, and (3) a high-significance radial gradient of the dust opacity spectral index, β, is consistent with the observed dust emission in both disks, with low-β in the inner disk and high-β in the outer disk. Assuming that changes in dust properties arise solely due to changes in the maximum particle size (a{sub max}), we constrain radial variations of a{sub max} in both disks, from cm-sized particles in the inner disk (R < 40 AU) to millimeter sizes in the outer disk (R > 80 AU). These observational constraints agree with theoretical predictions of the radial-drift barrier, however, fragmentation of dust grains could explain our a{sub max}(R) constraints if these disks have lower turbulence and/or if dust can survive high-velocity collisions.

  4. Polycyclic aromatic hydrocarbons in disks around young solar-type stars

    NARCIS (Netherlands)

    Geers, Vincent Carlo

    2007-01-01

    In this thesis we study the dust around solar-type young stars. In particular, we focus on one specific species of dust, namely the Polycyclic Aromatic Hydrocarbons (PAHs), a family of large molecules, or small grains, that are widely observed in nearby star-forming regions. We address the following

  5. An infrared view of (candidate accretion) disks around massive young stars

    NARCIS (Netherlands)

    Bik, A.; Lenorzer, A.; Thi, W.F.; Puga Antolín, E.; Waters, L.B.F.M.; Kaper, L.; Martín-Hernández, L.N.

    2008-01-01

    Near-infrared surveys of high-mass star-forming regions start to shed light onto their stellar content. A particular class of objects found in these regions, the so-called massive Young Stellar Objects (YSOs) are surrounded by dense circumstellar material. Several near- and mid-infrared diagnostic

  6. The Gaia-ESO Survey and CSI 2264: Substructures, disks, and sequential star formation in the young open cluster NGC 2264

    Science.gov (United States)

    Venuti, L.; Prisinzano, L.; Sacco, G. G.; Flaccomio, E.; Bonito, R.; Damiani, F.; Micela, G.; Guarcello, M. G.; Randich, S.; Stauffer, J. R.; Cody, A. M.; Jeffries, R. D.; Alencar, S. H. P.; Alfaro, E. J.; Lanzafame, A. C.; Pancino, E.; Bayo, A.; Carraro, G.; Costado, M. T.; Frasca, A.; Jofré, P.; Morbidelli, L.; Sousa, S. G.; Zaggia, S.

    2018-01-01

    Context. Reconstructing the structure and history of young clusters is pivotal to understanding the mechanisms and timescales of early stellar evolution and planet formation. Recent studies suggest that star clusters often exhibit a hierarchical structure, possibly resulting from several star formation episodes occurring sequentially rather than a monolithic cloud collapse. Aims: We aim to explore the structure of the open cluster and star-forming region NGC 2264 ( 3 Myr), which is one of the youngest, richest and most accessible star clusters in the local spiral arm of our Galaxy; we link the spatial distribution of cluster members to other stellar properties such as age and evolutionary stage to probe the star formation history within the region. Methods: We combined spectroscopic data obtained as part of the Gaia-ESO Survey (GES) with multi-wavelength photometric data from the Coordinated Synoptic Investigation of NGC 2264 (CSI 2264) campaign. We examined a sample of 655 cluster members, with masses between 0.2 and 1.8 M⊙ and including both disk-bearing and disk-free young stars. We used Teff estimates from GES and g,r,i photometry from CSI 2264 to derive individual extinction and stellar parameters. Results: We find a significant age spread of 4-5 Myr among cluster members. Disk-bearing objects are statistically associated with younger isochronal ages than disk-free sources. The cluster has a hierarchical structure, with two main blocks along its latitudinal extension. The northern half develops around the O-type binary star S Mon; the southern half, close to the tip of the Cone Nebula, contains the most embedded regions of NGC 2264, populated mainly by objects with disks and ongoing accretion. The median ages of objects at different locations within the cluster, and the spatial distribution of disked and non-disked sources, suggest that star formation began in the north of the cluster, over 5 Myr ago, and was ignited in its southern region a few Myr later

  7. On the signatures of companion formation in the spectral energy distributions of Sz54 and Sz59—the young stars with protoplanetary disks

    Science.gov (United States)

    Zakhozhay, O. V.

    2017-07-01

    We study spectral energy distributions of two young systems Sz54 and Sz59, that belong to Chameleon II star forming region. The results of the modeling indicate that protoplanetary disks of these systems contain gaps in the dust component. These gaps could be a result of a planetary or brown dwarf companion formation, because the companion would accumulate a disk material, moving along its orbit. In a present work we have determined physical characteristics of the disks. We also discuss possible companion characteristics, based on the geometrical parameters of the gaps.

  8. Circumstellar disks around binary stars in Taurus

    International Nuclear Information System (INIS)

    Akeson, R. L.; Jensen, E. L. N.

    2014-01-01

    We have conducted a survey of 17 wide (>100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and 10 secondaries, with disk masses as low as 10 –4 M ☉ . We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of F mm ∝M ∗ 1.5--2.0 to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.

  9. Circumstellar disks around binary stars in Taurus

    Energy Technology Data Exchange (ETDEWEB)

    Akeson, R. L. [NASA Exoplanet Science Institute, IPAC/Caltech, Pasadena, CA 91125 (United States); Jensen, E. L. N. [Swarthmore College, Department of Physics and Astronomy, Swarthmore, PA 19081 (United States)

    2014-03-20

    We have conducted a survey of 17 wide (>100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and 10 secondaries, with disk masses as low as 10{sup –4} M {sub ☉}. We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of F{sub mm}∝M{sub ∗}{sup 1.5--2.0} to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.

  10. Circumstellar Gas in Young Planetary Debris Disks

    Science.gov (United States)

    Roberge, A.

    Circumstellar (CS) disks orbiting young stars fall into two categories: primordial disks, composed of unprocessed interstellar dust and gas, and debris disks, produced by the destruction of solid planetary bodies. In the first class, the most abundant gas is H_2; in the second, it appears that the H_2 gas has disappeared, possibly through incorporation into gas giant planets. The lifetime of H_2 gas in a CS disk is therefore of great importance, as it dictates the timescale for the formation of giant planets. FUSE observations of H_2 in CS disk systems have shown that FUV absorption spectroscopy may sensitively probe for small amounts of gas along the line of sight to the star. Most importantly, the FUSE non-detection of H_2 gas in the Beta Pictoris disk suggests that the primordial gas lifetime is less than about 12 Myr, and that gas giant planets must form very quickly. However, this suggestion is based on one system, and needs to be tested in additional systems with a range of ages, especially since there are indications that age is not the only factor in the evolution of a CS disk. We propose for FUSE observations of 3 additional debris disk systems, Fomalhaut, HD3003, and HD2884. Fomalhaut is an intermediate age debris disk, one of the Fabulous Four CS disks first discovered in 1984. The other two disks are younger, with ages similar to that of Beta Pic. All three stars are brighter in the FUV than Beta Pic, permitting us to sensitively probe for traces of H_2 gas. We will also measure the amount of secondary atomic gas produced from planetary bodies in these disks, in an effort to understand the entire evolution of CS gas in young planetary systems.

  11. Star formation rates and abundance gradients in disk galaxies

    International Nuclear Information System (INIS)

    Wyse, R.F.G.; Silk, J.

    1989-01-01

    Analytic models for the evolution of disk galaxies are presented, placing special emphasis on the radial properties. These models are straightforward extensions of the original Schmidt (1959, 1963) models, with a dependence of star formation rate on gas density. The models provide successful descriptions of several measures of galactic disk evolution, including solar neighborhood chemical evolution, the presence and amplitude of metallicity and color gradients in disk galaxies, and the global rates of star formation in disk galaxies, and aid in the understanding of the apparent connection between young and old stellar populations in spiral galaxies. 67 refs

  12. Theory of Disk Accretion onto Magnetic Stars

    Directory of Open Access Journals (Sweden)

    Lai Dong

    2014-01-01

    Full Text Available Disk accretion onto magnetic stars occurs in a variety of systems, including accreting neutron stars (with both high and low magnetic fields, white dwarfs, and protostars. We review some of the key physical processes in magnetosphere-disk interaction, highlighting the theoretical uncertainties. We also discuss some applications to the observations of accreting neutron star and protostellar systems, as well as possible connections to protoplanetary disks and exoplanets.

  13. MOLECULAR GAS IN YOUNG DEBRIS DISKS

    International Nuclear Information System (INIS)

    Moor, A.; Abraham, P.; Kiss, Cs.; Juhasz, A.; Kospal, A.; Pascucci, I.; Apai, D.; Henning, Th.; Csengeri, T.; Grady, C.

    2011-01-01

    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. Interestingly, the debris disk around the young main-sequence star 49 Ceti possesses a substantial amount of molecular gas and possibly represents the missing link between the two phases. Motivated to understand the evolution of the gas component in circumstellar disks via finding more 49 Ceti-like systems, we carried out a CO J = 3-2 survey with the Atacama Pathfinder EXperiment, targeting 20 infrared-luminous debris disks. These systems fill the gap between primordial and old tenuous debris disks in terms of fractional luminosity. Here we report on the discovery of a second 49 Ceti-like disk around the 30 Myr old A3-type star HD21997, a member of the Columba Association. This system was also detected in the CO(2-1) transition, and the reliable age determination makes it an even clearer example of an old gas-bearing disk than 49 Ceti. While the fractional luminosities of HD21997 and 49 Ceti are not particularly high, these objects seem to harbor the most extended disks within our sample. The double-peaked profiles of HD21997 were reproduced by a Keplerian disk model combined with the LIME radiative transfer code. Based on their similarities, 49 Ceti and HD21997 may be the first representatives of a so far undefined new class of relatively old (∼>8 Myr), gaseous dust disks. From our results, neither primordial origin nor steady secondary production from icy planetesimals can unequivocally explain the presence of CO gas in the disk of HD21997.

  14. ON THE TRANSITIONAL DISK CLASS: LINKING OBSERVATIONS OF T TAURI STARS AND PHYSICAL DISK MODELS

    International Nuclear Information System (INIS)

    Espaillat, C.; Andrews, S.; Qi, C.; Wilner, D.; Ingleby, L.; Calvet, N.; Hernández, J.; Furlan, E.; D'Alessio, P.; Muzerolle, J.

    2012-01-01

    Two decades ago 'transitional disks' (TDs) described spectral energy distributions (SEDs) of T Tauri stars with small near-IR excesses, but significant mid- and far-IR excesses. Many inferred this indicated dust-free holes in disks possibly cleared by planets. Recently, this term has been applied disparately to objects whose Spitzer SEDs diverge from the expectations for a typical full disk (FD). Here, we use irradiated accretion disk models to fit the SEDs of 15 such disks in NGC 2068 and IC 348. One group has a 'dip' in infrared emission while the others' continuum emission decreases steadily at all wavelengths. We find that the former have an inner disk hole or gap at intermediate radii in the disk and we call these objects 'transitional disks' and 'pre-transitional disks' (PTDs), respectively. For the latter group, we can fit these SEDs with FD models and find that millimeter data are necessary to break the degeneracy between dust settling and disk mass. We suggest that the term 'transitional' only be applied to objects that display evidence for a radical change in the disk's radial structure. Using this definition, we find that TDs and PTDs tend to have lower mass accretion rates than FDs and that TDs have lower accretion rates than PTDs. These reduced accretion rates onto the star could be linked to forming planets. Future observations of TDs and PTDs will allow us to better quantify the signatures of planet formation in young disks.

  15. POPULATION SYNTHESIS OF YOUNG ISOLATED NEUTRON STARS: THE EFFECT OF FALLBACK DISK ACCRETION AND MAGNETIC FIELD EVOLUTION

    International Nuclear Information System (INIS)

    Fu, Lei; Li, Xiang-Dong

    2013-01-01

    The spin evolution of isolated neutron stars (NSs) is dominated by their magnetic fields. The measured braking indices of young NSs show that the spin-down mechanism due to magnetic dipole radiation with constant magnetic fields is inadequate. Assuming that the NS magnetic field is buried by supernova fallback matter and re-emerges after accretion stops, we carry out a Monte Carlo simulation of the evolution of young NSs, and show that most of the pulsars have braking indices ranging from –1 to 3. The results are compatible with the observational data of NSs associated with supernova remnants. They also suggest that the initial spin periods of NSs might occupy a relatively wide range

  16. Symbiotic stars as an old disk population

    Energy Technology Data Exchange (ETDEWEB)

    Wallerstein, G [Joint Inst. for Lab. Astrophysics, Boulder, CO (USA)

    1981-10-01

    A table of all symbiotic stars in the General Catalogue of Variable Stars and its supplements has been assembled and their radial velocities have been discussed. A velocity dispersion of 63 +- 14 km/s is found for all the stars and a value of 58 +- 14 km/s is established if the probable halo star, AG Dra, is omitted. The space distribution is similar to that of an old disk population. Some implications of low masses for the symbiotic stars are discussed, and some suggestions are made regarding possibly useful observations.

  17. GAS SURFACE DENSITY, STAR FORMATION RATE SURFACE DENSITY, AND THE MAXIMUM MASS OF YOUNG STAR CLUSTERS IN A DISK GALAXY. II. THE GRAND-DESIGN GALAXY M51

    International Nuclear Information System (INIS)

    González-Lópezlira, Rosa A.; Pflamm-Altenburg, Jan; Kroupa, Pavel

    2013-01-01

    We analyze the relationship between maximum cluster mass and surface densities of total gas (Σ gas ), molecular gas (Σ H 2 ), neutral gas (Σ H I ), and star formation rate (Σ SFR ) in the grand-design galaxy M51, using published gas data and a catalog of masses, ages, and reddenings of more than 1800 star clusters in its disk, of which 223 are above the cluster mass distribution function completeness limit. By comparing the two-dimensional distribution of cluster masses and gas surface densities, we find for clusters older than 25 Myr that M 3rd ∝Σ H I 0.4±0.2 , whereM 3rd is the median of the five most massive clusters. There is no correlation withΣ gas ,Σ H2 , orΣ SFR . For clusters younger than 10 Myr, M 3rd ∝Σ H I 0.6±0.1 and M 3rd ∝Σ gas 0.5±0.2 ; there is no correlation with either Σ H 2 orΣ SFR . The results could hardly be more different from those found for clusters younger than 25 Myr in M33. For the flocculent galaxy M33, there is no correlation between maximum cluster mass and neutral gas, but we have determined M 3rd ∝Σ gas 3.8±0.3 , M 3rd ∝Σ H 2 1.2±0.1 , and M 3rd ∝Σ SFR 0.9±0.1 . For the older sample in M51, the lack of tight correlations is probably due to the combination of strong azimuthal variations in the surface densities of gas and star formation rate, and the cluster ages. These two facts mean that neither the azimuthal average of the surface densities at a given radius nor the surface densities at the present-day location of a stellar cluster represent the true surface densities at the place and time of cluster formation. In the case of the younger sample, even if the clusters have not yet traveled too far from their birth sites, the poor resolution of the radio data compared to the physical sizes of the clusters results in measuredΣ that are likely quite diluted compared to the actual densities relevant for the formation of the clusters.

  18. Local protoplanetary disk ionisation by T Tauri star energetic particles

    Science.gov (United States)

    Fraschetti, F.; Drake, J.; Cohen, O.; Garraffo, C.

    2017-10-01

    The evolution of protoplanetary disks is believed to be driven largely by viscosity. The ionization of the disk that gives rise to viscosity is caused by X-rays from the central star or by energetic particles released by shock waves travelling into the circumstellar medium. We have performed test-particle numerical simulations of GeV-scale protons traversing a realistic magnetised wind of a young solar mass star with a superposed small-scale turbulence. The large-scale field is generated via an MHD model of a T Tauri wind, whereas the isotropic (Kolmogorov power spectrum) turbulent component is synthesised along the particles' trajectories. We have combined Chandra observations of T Tauri flares with solar flare scaling for describing the energetic particle spectrum. In contrast with previous models, we find that the disk ionization is dominated by X-rays except within narrow regions where the energetic particles are channelled onto the disk by the strongly tangled and turbulent field lines; the radial thickness of such regions broadens with the distance from the central star (5 stellar radii or more). In those regions, the disk ionization due to energetic particles can locally dominate the stellar X-rays, arguably, out to large distances (10, 100 AU) from the star.

  19. Disk accretion onto magnetic T Tauri stars

    International Nuclear Information System (INIS)

    Koenigl, A.

    1991-01-01

    The dynamical and radiative consequences of disk accretion onto magnetic T Tauri stars (TTS) are examined using the Ghosh and Lamb model. It is shown that a prolonged disk accretion phase is compatible with the low rotation rates measured in these stars if they possess a kilogauss strength field that disrupts the disk at a distance of a few stellar radii from the center. It is estimated that a steady state in which the net torque exerted on the star is zero can be attained on a time scale that is shorter than the age of the youngest visible TTS. Although the disk does not develop an ordinary shear boundary layer in this case, one can account for the observed UV excess and Balmer emission in terms of the shocks that form at the bottom of the high-latitude magnetic accretion columns on the stellar surface. This picture also provides a natural explanation of some of the puzzling variability properties of stars like DF Tau and RY Lup. YY Ori stars are interpreted as magnetic TTS in which the observer's line of sight is roughly parallel to an accretion column. 37 refs

  20. Circumstellar Disk Lifetimes In Numerous Galactic Young Stellar Clusters

    Science.gov (United States)

    Richert, A. J. W.; Getman, K. V.; Feigelson, E. D.; Kuhn, M. A.; Broos, P. S.; Povich, M. S.; Bate, M. R.; Garmire, G. P.

    2018-04-01

    Photometric detections of dust circumstellar disks around pre-main sequence (PMS) stars, coupled with estimates of stellar ages, provide constraints on the time available for planet formation. Most previous studies on disk longevity, starting with Haisch, Lada & Lada (2001), use star samples from PMS clusters but do not consider datasets with homogeneous photometric sensitivities and/or ages placed on a uniform timescale. Here we conduct the largest study to date of the longevity of inner dust disks using X-ray and 1-8 {μ m} infrared photometry from the MYStIX and SFiNCs projects for 69 young clusters in 32 nearby star-forming regions with ages t ≤ 5 Myr. Cluster ages are derived by combining the empirical AgeJX method with PMS evolutionary models, which treat dynamo-generated magnetic fields in different ways. Leveraging X-ray data to identify disk-free objects, we impose similar stellar mass sensitivity limits for disk-bearing and disk-free YSOs while extending the analysis to stellar masses as low as M ˜ 0.1 M⊙. We find that the disk longevity estimates are strongly affected by the choice of PMS evolutionary model. Assuming a disk fraction of 100% at zero age, the inferred disk half-life changes significantly, from t1/2 ˜ 1.3 - 2 Myr to t1/2 ˜ 3.5 Myr when switching from non-magnetic to magnetic PMS models. In addition, we find no statistically significant evidence that disk fraction varies with stellar mass within the first few Myr of life for stars with masses <2 M⊙, but our samples may not be complete for more massive stars. The effects of initial disk fraction and star-forming environment are also explored.

  1. THE EDGE OF THE YOUNG GALACTIC DISK

    International Nuclear Information System (INIS)

    Carraro, Giovanni; Vazquez, Ruben A.; Costa, Edgardo; Perren, Gabriel; Moitinho, Andre

    2010-01-01

    In this work, we report and discuss the detection of two distant diffuse stellar groups in the third Galactic quadrant. They are composed of young stars, with spectral types ranging from late O to late B, and lie at galactocentric distances between 15 and 20 kpc. These groups are located in the area of two cataloged open clusters (VdB-Hagen 04 and Ruprecht 30), projected toward the Vela-Puppis constellations, and within the core of the Canis Major overdensity. Their reddening and distances have been estimated by analyzing their color-color and color-magnitude diagrams, derived from deep UBV photometry. The existence of young star aggregates at such extreme distances from the Galactic center challenges the commonly accepted scenario in which the Galactic disk has a sharp cutoff at about 14 kpc from the Galactic center and indicates that it extends to much greater distances (as also supported by the recent detection of CO molecular complexes well beyond this distance). While the groups we find in the area of Ruprecht 30 are compatible with the Orion and Norma-Cygnus spiral arms, respectively, the distant group we identify in the region of VdB-Hagen 04 lies in the external regions of the Norma-Cygnus arm, at a galactocentric distance (∼20 kpc) where no young stars have been detected so far in the optical.

  2. Young Stars with SALT

    Energy Technology Data Exchange (ETDEWEB)

    Riedel, Adric R. [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Alam, Munazza K.; Rice, Emily L.; Cruz, Kelle L. [Department of Astrophysics, The American Museum of Natural History, New York, NY 10024 (United States); Henry, Todd J., E-mail: arr@caltech.edu [RECONS Institute, Chambersburg, PA (United States)

    2017-05-10

    We present a spectroscopic and kinematic analysis of 79 nearby M dwarfs in 77 systems. All of these dwarfs are low-proper-motion southern hemisphere objects and were identified in a nearby star survey with a demonstrated sensitivity to young stars. Using low-resolution optical spectroscopy from the Red Side Spectrograph on the South African Large Telescope, we have determined radial velocities, H-alpha, lithium 6708 Å, and potassium 7699 Å equivalent widths linked to age and activity, and spectral types for all of our targets. Combined with astrometric information from literature sources, we identify 44 young stars. Eighteen are previously known members of moving groups within 100 pc of the Sun. Twelve are new members, including one member of the TW Hydra moving group, one member of the 32 Orionis moving group, 9 members of Tucana-Horologium, one member of Argus, and two new members of AB Doradus. We also find 14 young star systems that are not members of any known groups. The remaining 33 star systems do not appear to be young. This appears to be evidence of a new population of nearby young stars not related to the known nearby young moving groups.

  3. METALLICITY GRADIENTS OF THICK DISK DWARF STARS

    Energy Technology Data Exchange (ETDEWEB)

    Carrell, Kenneth; Chen Yuqin; Zhao Gang, E-mail: carrell@nao.cas.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2012-12-01

    We examine the metallicity distribution of the Galactic thick disk using F, G, and K dwarf stars selected from the Sloan Digital Sky Survey, Data Release 8. Using the large sample of dwarf stars with proper motions and spectroscopically determined stellar parameters, metallicity gradients in the radial direction for various heights above the Galactic plane and in the vertical direction for various radial distances from the Galaxy center have been found. In particular, we find a vertical metallicity gradient of -0.113 {+-} 0.010 (-0.125 {+-} 0.008) dex kpc{sup -1} using an isochrone (photometric) distance determination in the range 1 kpc <|Z| < 3 kpc, which is the vertical height range most consistent with the thick disk of our Galaxy. In the radial direction, we find metallicity gradients between +0.02 and +0.03 dex kpc{sup -1} for bins in the vertical direction between 1 kpc <|Z| < 3 kpc. Both of these results agree with similar values determined from other populations of stars, but this is the first time a radial metallicity gradient for the thick disk has been found at these vertical heights. We are also able to separate thin and thick disk stars based on kinematic and spatial probabilities in the vertical height range where there is significant overlap of these two populations. This should aid further studies of the metallicity gradients of the disk for vertical heights lower than those studied here but above the solar neighborhood. Metallicity gradients in the thin and thick disks are important probes into possible formation scenarios for our Galaxy and a consistent picture is beginning to emerge from results using large spectroscopic surveys, such as the ones presented here.

  4. Gas in the Terrestrial Planet Region of Disks: CO Fundamental Emission from T Tauri Stars

    Science.gov (United States)

    2003-06-01

    planetary systems: protoplanetary disksstars: variables: other 1. INTRODUCTION As the likely birthplaces of planets, the inner regions of young...both low column density regions, such as disk gaps , and temperature inversion regions in disk atmospheres can produce significant emission. The esti...which planetary systems form. The moti- vation to study inner disks is all the more intense today given the discovery of planets outside the solar system

  5. Characterizing Protoplanetary Disks in a Young Binary in Orion

    Science.gov (United States)

    Powell, Jonas; Hughes, A. Meredith; Mann, Rita; Flaherty, Kevin; Di Francesco, James; Williams, Jonathan

    2018-01-01

    Planetary systems form in circumstellar disks of gas and dust surrounding young stars. One open question in the study of planet formation involves understanding how different environments affect the properties of the disks and planets they generate. Understanding the properties of disks in high-mass star forming regions (SFRs) is critical since most stars - probably including our Sun - form in those regions. By comparing the disks in high-mass SFRs to those in better-studied low-mass SFRs we can learn about the role environment plays in planet formation. Here we present 0.5" resolution observations of the young two-disk binary system V2434 Ori in the Orion Nebula from the Atacama Large Millimeter/submillimeter Array (ALMA) in molecular line tracers of CO(3-2), HCN(4-3), HCO+(4-3) and CS(7-6). We model each disk’s mass, radius, temperature structure, and molecular abundances, by creating synthetic images using an LTE ray-tracing code and comparing simulated observations with the ALMA data in the visibility domain. We then compare our results to a previous study of molecular line emission from a single Orion proplyd, modeled using similar methods, and to previously characterized disks in low-mass SFRs to investigate the role of environment in disk chemistry and planetary system formation.

  6. NEW DEBRIS DISKS IN NEARBY YOUNG MOVING GROUPS

    Energy Technology Data Exchange (ETDEWEB)

    Moór, A.; Kóspál, Á.; Ábrahám, P.; Kiss, Cs. [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, P.O. Box 67, H-1525 Budapest (Hungary); Balog, Z.; Henning, Th. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Csengeri, T. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Juhász, A., E-mail: moor@konkoly.hu [Institute of Astronomy, Madingley Road, Cambridge CB3, OHA (United Kingdom)

    2016-08-01

    A significant fraction of nearby young moving group members harbor circumstellar debris dust disks. Due to their proximity and youth, these disks are attractive targets for studying the early evolution of debris dust and planetesimal belts. Here we present 70 and 160 μ m observations of 31 systems in the β Pic moving group, and in the Tucana–Horologium, Columba, Carina, and Argus associations, using the Herschel Space Observatory . None of these stars were observed at far-infrared wavelengths before. Our Herschel measurements were complemented by photometry from the WISE satellite for the whole sample, and by submillimeter/millimeter continuum data for one source, HD 48370. We identified six stars with infrared excess, four of them are new discoveries. By combining our new findings with results from the literature, we examined the incidence and general characteristics of debris disks around Sun-like members of the selected groups. With their dust temperatures of <45 K the newly identified disks around HD 38397, HD 48370, HD 160305, and BD-20 951 represent the coldest population within this sample. For HD 38397 and HD 48370, the emission is resolved in the 70 μ m Photodetector Array Camera and Spectrograph images, the estimated radius of these disks is ∼90 au. Together with the well-known disk around HD 61005, these three systems represent the highest mass end of the known debris disk population around young G-type members of the selected groups. In terms of dust content, they resemble the hypothesized debris disk of the ancient solar system.

  7. CSI 2264: simultaneous optical and infrared light curves of young disk-bearing stars in NGC 2264 with CoRoT and Spitzer—evidence for multiple origins of variability

    International Nuclear Information System (INIS)

    Cody, Ann Marie; Stauffer, John; Rebull, Luisa M.; Carey, Sean; Baglin, Annie; Micela, Giuseppina; Flaccomio, Ettore; Morales-Calderón, María; Aigrain, Suzanne; Bouvier, Jèrôme; Hillenbrand, Lynne A.; Carpenter, John; Findeisen, Krzysztof; Gutermuth, Robert; Song, Inseok; Turner, Neal; Alencar, Silvia H. P.; Zwintz, Konstanze; Plavchan, Peter; Terebey, Susan

    2014-01-01

    We present the Coordinated Synoptic Investigation of NGC 2264, a continuous 30 day multi-wavelength photometric monitoring campaign on more than 1000 young cluster members using 16 telescopes. The unprecedented combination of multi-wavelength, high-precision, high-cadence, and long-duration data opens a new window into the time domain behavior of young stellar objects. Here we provide an overview of the observations, focusing on results from Spitzer and CoRoT. The highlight of this work is detailed analysis of 162 classical T Tauri stars for which we can probe optical and mid-infrared flux variations to 1% amplitudes and sub-hour timescales. We present a morphological variability census and then use metrics of periodicity, stochasticity, and symmetry to statistically separate the light curves into seven distinct classes, which we suggest represent different physical processes and geometric effects. We provide distributions of the characteristic timescales and amplitudes and assess the fractional representation within each class. The largest category (>20%) are optical 'dippers' with discrete fading events lasting ∼1-5 days. The degree of correlation between the optical and infrared light curves is positive but weak; notably, the independently assigned optical and infrared morphology classes tend to be different for the same object. Assessment of flux variation behavior with respect to (circum)stellar properties reveals correlations of variability parameters with Hα emission and with effective temperature. Overall, our results point to multiple origins of young star variability, including circumstellar obscuration events, hot spots on the star and/or disk, accretion bursts, and rapid structural changes in the inner disk.

  8. New Insights into the Nature of Transition Disks from a Complete Disk Survey of the Lupus Star-forming Region

    Science.gov (United States)

    van der Marel, Nienke; Williams, Jonathan P.; Ansdell, M.; Manara, Carlo F.; Miotello, Anna; Tazzari, Marco; Testi, Leonardo; Hogerheijde, Michiel; Bruderer, Simon; van Terwisga, Sierk E.; van Dishoeck, Ewine F.

    2018-02-01

    Transition disks with large dust cavities around young stars are promising targets for studying planet formation. Previous studies have revealed the presence of gas cavities inside the dust cavities, hinting at recently formed, giant planets. However, many of these studies are biased toward the brightest disks in the nearby star-forming regions, and it is not possible to derive reliable statistics that can be compared with exoplanet populations. We present the analysis of 11 transition disks with large cavities (≥20 au radius) from a complete disk survey of the Lupus star-forming region, using ALMA Band 7 observations at 0.″3 (22–30 au radius) resolution of the 345 GHz continuum, 13CO and C18O 3–2 observations, and the spectral energy distribution of each source. Gas and dust surface density profiles are derived using the physical–chemical modeling code DALI. This is the first study of transition disks of large cavities within a complete disk survey within a star-forming region. The dust cavity sizes range from 20 to 90 au radius, and in three cases, a gas cavity is resolved as well. The deep drops in gas density and large dust cavity sizes are consistent with clearing by giant planets. The fraction of transition disks with large cavities in Lupus is ≳ 11 % , which is inconsistent with exoplanet population studies of giant planets at wide orbits. Furthermore, we present a hypothesis of an evolutionary path for large massive disks evolving into transition disks with large cavities.

  9. THE DIFFERENT EVOLUTION OF GAS AND DUST IN DISKS AROUND SUN-LIKE AND COOL STARS

    International Nuclear Information System (INIS)

    Pascucci, I.; Apai, D.; Luhman, K.; Henning, Th.; Bouwman, J.; Meyer, M. R.; Lahuis, F.; Natta, A.

    2009-01-01

    Planet formation is profoundly impacted by the properties of protoplanetary disks and their central star. However, how disk properties vary with stellar parameters remains poorly known. Here, we present the first comprehensive, comparative Spitzer/IRS study of the dust and gas properties of disks around young Sun-like stars (K1-M5) and cool stars/brown dwarfs (M5-M9). The comparison of these two large samples of over 60 sources reveal major differences in the evolution of both the dust and gas components. We report the first detection of organic molecules in disks around brown dwarfs. The detection rate statistics and the line flux ratios of HCN and C 2 H 2 show a striking difference between the two samples, demonstrating a significant underabundance of HCN relative to C 2 H 2 in the disk surface of cool stars. We propose this to originate from the large difference in the UV irradiation around the two types of sources. The statistical comparison of the 10 μm silicate emission features also reveals a difference between the two samples. Cool stars and brown dwarfs show weaker features arising from more processed silicate grains in the disk atmosphere. These findings complement previous indications of flatter disk structures and longer disk lifetimes around cool stars. Our results highlight important differences in the chemical and physical evolution of protoplanetary disks as a function of stellar mass, temperature, and radiation field which should be taken into account in planet formation models. We note that the different chemistry of preplanetary materials in the disk may also influence the bulk composition and volatile content of the forming planets. In particular, if exogenous HCN has played a key role in the synthesis of prebiotic molecules on Earth as proposed, then prebiotic chemistry may unfold differently on planets around cool stars.

  10. UV, X-ray, and Optical Variability of the Young Star T Cha Produced by Inner Disk Obscuration: Results from a Coordinated HST, XMM-Newton, LCOGT, and SMARTS Observing Campaign

    Science.gov (United States)

    Brown, Alexander; France, Kevin; Walter, Frederick M.; Schneider, P. Christian; Brown, Timothy M.; Andrews, Sean M.; Wilner, David J.

    2018-06-01

    The young (7 Myr) 1.5 solar mass T Tauri star T Chamaeleontis shows dramatic variability. The optical extinction varies by at least 3 magnitudes on few hour time-scales with no obvious periodicity. The obscuration is produced by material at the inner edge of the circumstellar disk and therefore characterizing the absorbing material can reveal important clues regarding the transport of gas and dust within such disks. The inner disk of T Cha is particularly interesting, because T Cha has a transitional disk with a large gap at 0.2-15 AU in the dust disk and allows study of the gas and dust structure in the terrestrial planet formation zone during this important rapid phase of protoplanetary disk evolution. For this reason we have conducted a major multi-spectral-region observing campaign to study the UV/X-ray/optical variability of T Cha. During 2018 February/March we monitored the optical photometric and spectral variability using LCOGT (Chile/South Africa/Australia) and the SMARTS telescopes in Chile. These optical data provide a broad context within which to interpret our shorter UV and X-ray observations. We observed T Cha during 3 coordinated observations (each 5 HST orbits + 25 ksec XMM; on 2018 Feb 22, Feb 26, Mar 2) using the HST COS/STIS spectrographs to measure the FUV/NUV spectra and XMM-Newton to measure the corresponding X-ray energy distribution. The observed spectral changes are well correlated and demonstrate the influence of the same absorbing material in all the spectral regions observed. By examining which spectral features change and by how much we can determine the location of different emitting regions relative to the absorbers along the line-of-sight to the star. In this poster we provide an overview of the variability seen in the different spectral regions and quantify the dust and gas content of T Cha's inner disk edge.(This work is supported by grant HST-GO-15128 and time awarded by HST, XMM-Newton, LCOGT, and SMARTS. We acknowledge the

  11. FORMING AN O STAR VIA DISK ACCRETION?

    International Nuclear Information System (INIS)

    Qiu Keping; Zhang Qizhou; Beuther, Henrik; Fallscheer, Cassandra

    2012-01-01

    We present a study of outflow, infall, and rotation in a ∼10 5 L ☉ star-forming region, IRAS 18360-0537, with Submillimeter Array and IRAM 30 m observations. The 1.3 mm continuum map shows a 0.5 pc dust ridge, of which the central compact part has a mass of ∼80 M ☉ and harbors two condensations, MM1 and MM2. The CO (2-1) and SiO (5-4) maps reveal a biconical outflow centered at MM1, which is a hot molecular core (HMC) with a gas temperature of 320 ± 50 K and a mass of ∼13 M ☉ . The outflow has a gas mass of 54 M ☉ and a dynamical timescale of 8 × 10 3 yr. The kinematics of the HMC are probed by high-excitation CH 3 OH and CH 3 CN lines, which are detected at subarcsecond resolution and unveil a velocity gradient perpendicular to the outflow axis, suggesting a disk-like rotation of the HMC. An infalling envelope around the HMC is evidenced by CN lines exhibiting a profound inverse P Cygni profile, and the estimated mass infall rate, 1.5 × 10 –3 M ☉ yr –1 , is well comparable to that inferred from the mass outflow rate. A more detailed investigation of the kinematics of the dense gas around the HMC is obtained from the 13 CO and C 18 O (2-1) lines; the position-velocity diagrams of the two lines are consistent with the model of a free-falling and Keplerian-like rotating envelope. The observations suggest that the protostar of a current mass ∼10 M ☉ embedded within MM1 will develop into an O star via disk accretion and envelope infall.

  12. PLANETARY CONSTRUCTION ZONES IN OCCULTATION: DISCOVERY OF AN EXTRASOLAR RING SYSTEM TRANSITING A YOUNG SUN-LIKE STAR AND FUTURE PROSPECTS FOR DETECTING ECLIPSES BY CIRCUMSECONDARY AND CIRCUMPLANETARY DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Mamajek, Eric E.; Quillen, Alice C.; Pecaut, Mark J.; Moolekamp, Fred; Scott, Erin L. [Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171 (United States); Kenworthy, Matthew A. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Cameron, Andrew Collier; Parley, Neil R. [School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom)

    2012-03-15

    The large relative sizes of circumstellar and circumplanetary disks imply that they might be seen in eclipse in stellar light curves. We estimate that a survey of {approx}10{sup 4} young ({approx}10 million year old) post-accretion pre-main-sequence stars monitored for {approx}10 years should yield at least a few deep eclipses from circumplanetary disks and disks surrounding low-mass companion stars. We present photometric and spectroscopic data for a pre-main-sequence K5 star (1SWASP J140747.93-394542.6 = ASAS J140748-3945.7), a newly discovered {approx}0.9 M{sub Sun} member of the {approx}16 Myr old Upper Centaurus-Lupus subgroup of Sco-Cen at a kinematic distance of 128 {+-} 13 pc. This star exhibited a remarkably long, deep, and complex eclipse event centered on 2007 April 29 (as discovered in Super Wide Angle Search for Planets (SuperWASP) photometry, and with portions of the dimming confirmed by All Sky Automated Survey (ASAS) data). At least five multi-day dimming events of >0.5 mag are identified, with a >3.3 mag deep eclipse bracketed by two pairs of {approx}1 mag eclipses symmetrically occurring {+-}12 days and {+-}26 days before and after. Hence, significant dimming of the star was taking place on and off over at least a {approx}54 day period in 2007, and a strong >1 mag dimming event occurring over a {approx}12 day span. We place a firm lower limit on the period of 850 days (i.e., the orbital radius of the eclipser must be >1.7 AU and orbital velocity must be <22 km s{sup -1}). The shape of the light curve is similar to the lopsided eclipses of the Be star EE Cep. We suspect that this new star is being eclipsed by a low-mass object orbited by a dense inner disk, further girded by at least three dusty rings of optical depths near unity. Between these rings are at least two annuli of near-zero optical depth (i.e., gaps), possibly cleared out by planets or moons, depending on the nature of the secondary. For possible periods in the range 2.33-200 yr, the

  13. PHOTO-REVERBERATION MAPPING OF A PROTOPLANETARY ACCRETION DISK AROUND A T TAURI STAR

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Huan Y. A.; Plavchan, Peter; Ciardi, David [Infrared Processing and Analysis Center, California Institute of Technology, MC 100-22, 770 S. Wilson Ave., Pasadena, CA 91125 (United States); Rieke, George H. [Lunar and Planetary Laboratory and Department of Planetary Sciences, University of Arizona, 1629 E. University Blvd., Tucson, AZ 85721 (United States); Cody, Ann Marie [NASA Ames Research Center, Moffett Field, CA 94035 (United States); Güth, Tina [Department of Physics, New Mexico Institute of Mining and Technology, 801 Leroy Pl., Socorro, NM 87801 (United States); Stauffer, John; Carey, Sean; Rebull, Luisa M. [Infrared Science Archive and Spitzer Science Center, Infrared Processing and Analysis Center, California Institute of Technology, MC 314-6, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Covey, Kevin [Department of Physics and Astronomy, MS-9164, Western Washington University, 516 High St., Bellingham, WA 98225 (United States); Duran-Rojas, Maria C. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 106, 22800, Ensenada, Baja California, México (Mexico); Gutermuth, Robert A. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Morales-Calderón, María, E-mail: hyameng@lpl.arizona.edu [Centro de Astrobiología, Departamento de Astrofísica, INTA-CSIC, P.O. Box 78, E-28691, ESAC Campus, Villanueva de la Cañada, Madrid (Spain); and others

    2016-05-20

    Theoretical models and spectroscopic observations of newborn stars suggest that protoplantary disks have an inner “wall” at a distance set by the disk interaction with the star. Around T Tauri stars, the size of this disk hole is expected to be on a 0.1 au scale that is unresolved by current adaptive optics imaging, though some model-dependent constraints have been obtained by near-infrared interferometry. Here we report the first measurement of the inner disk wall around a solar-mass young stellar object, YLW 16B in the ρ Ophiuchi star-forming region, by detecting the light-travel time of the variable radiation from the stellar surface to the disk. Consistent time lags were detected on two nights, when the time series in H (1.6 μ m) and K (2.2 μ m) bands were synchronized while the 4.5 μ m emission lagged by 74.5 ± 3.2 s. Considering the nearly edge-on geometry of the disk, the inner rim should be 0.084 au from the protostar on average, with an error of order 0.01 au. This size is likely larger than the range of magnetospheric truncations and consistent with an optically and geometrically thick disk front at the dust sublimation radius at ∼1500 K. The widths of the cross-correlation functions between the data in different wavebands place possible new constraints on the geometry of the disk.

  14. The Architecture of the GW Ori Young Triple-star System and Its Disk: Dynamical Masses, Mutual Inclinations, and Recurrent Eclipses

    Science.gov (United States)

    Czekala, Ian; Andrews, Sean M.; Torres, Guillermo; Rodriguez, Joseph E.; Jensen, Eric L. N.; Stassun, Keivan G.; Latham, David W.; Wilner, David J.; Gully-Santiago, Michael A.; Grankin, Konstantin N.; Lund, Michael B.; Kuhn, Rudolf B.; Stevens, Daniel J.; Siverd, Robert J.; James, David; Gaudi, B. Scott; Shappee, Benjamin J.; Holoien, Thomas W.-S.

    2017-12-01

    We present spatially and spectrally resolved Atacama Large Millimeter/submillimeter Array (ALMA) observations of gas and dust orbiting the pre-main-sequence hierarchical triple-star system GW Ori. A forward modeling of the 13CO and C18O J = 2–1 transitions permits a measurement of the total stellar mass in this system, 5.29+/- 0.09 {M}ȯ , and the circumtriple disk inclination, 137\\buildrel{\\circ}\\over{.} 6+/- 2\\buildrel{\\circ}\\over{.} 0. Optical spectra spanning a 35 yr period were used to derive new radial velocities and, coupled with a spectroscopic disentangling technique, revealed that the A and B components of GW Ori form a double-lined spectroscopic binary with a period of 241.50 ± 0.05 days; a tertiary companion orbits that inner pair with a period of 4218 ± 50 days. Combining the results from the ALMA data and the optical spectra with three epochs of astrometry in the literature, we constrain the individual stellar masses in the system ({M}{{A}}≈ 2.7 {M}ȯ , {M}{{B}}≈ 1.7 {M}ȯ , {M}{{C}}≈ 0.9 {M}ȯ ) and find strong evidence that at least one of the stellar orbital planes (and likely both) is misaligned with the disk plane by as much as 45°. A V-band light curve spanning 30 yr reveals several new ∼30-day eclipse events 0.1–0.7 mag in depth and a 0.2 mag sinusoidal oscillation that is clearly phased with the AB–C orbital period. Taken together, these features suggest that the A–B pair may be partially obscured by material in the inner disk as the pair approaches apoastron in the hierarchical orbit. Lastly, we conclude that stellar evolutionary models are consistent with our measurements of the masses and basic photospheric properties if the GW Ori system is ∼1 Myr old.

  15. THE DISK POPULATION OF THE TAURUS STAR-FORMING REGION

    International Nuclear Information System (INIS)

    Luhman, K. L.; Allen, P. R.; Espaillat, C.; Hartmann, L.; Calvet, N.

    2010-01-01

    We have analyzed nearly all images of the Taurus star-forming region at 3.6, 4.5, 5.8, 8.0, and 24 μm that were obtained during the cryogenic mission of the Spitzer Space Telescope (46 deg 2 ) and have measured photometry for all known members of the region that are within these data, corresponding to 348 sources, or 99% of the known stellar population. By combining these measurements with previous observations with the Spitzer Infrared Spectrograph and other facilities, we have classified the members of Taurus according to whether they show evidence of circumstellar disks and envelopes (classes I, II, and III). Through these classifications, we find that the disk fraction in Taurus, N(II)/N(II+III), is ∼75% for solar-mass stars and declines to ∼45% for low-mass stars and brown dwarfs (0.01-0.3 M sun ). This dependence on stellar mass is similar to that measured for Chamaeleon I, although the disk fraction in Taurus is slightly higher overall, probably because of its younger age (1 Myr versus 2-3 Myr). In comparison, the disk fraction for solar-mass stars is much lower (∼20%) in IC 348 and σ Ori, which are denser than Taurus and Chamaeleon I and are roughly coeval with the latter. These data indicate that disk lifetimes for solar-mass stars are longer in star-forming regions that have lower stellar densities. Through an analysis of multiple epochs of Spitzer photometry that are available for ∼200 Taurus members, we find that stars with disks exhibit significantly greater mid-infrared (mid-IR) variability than diskless stars, which agrees with the results of similar variability measurements for a smaller sample of stars in Chamaeleon I. The variability fraction for stars with disks is higher in Taurus than in Chamaeleon I, indicating that the IR variability of disks decreases with age. Finally, we have used our data in Taurus to refine the observational criteria for primordial, evolved, and transitional disks. The ratio of the number of evolved and

  16. Disks around Failed Stars - a Question of Age

    Science.gov (United States)

    2002-08-01

    compared to normal stars - even the most nearby Brown Dwarfs shine so faintly that they can only be observed with relatively large telescopes. As they are rather cool objects, they emit mostly in the infrared spectral region; hence they are best observed with astronomical instruments that operate at those wavelengths. With improved techniques, however, more and more Brown Dwarfs have been found and the count has now reached several hundred. Many of these are located in the well-known Orion Nebula. Others move through interstellar space, like the lonely KELU-1 first discovered in 1997 at the ESO La Silla Observatory by Chilean astronomers, cf. ESO PR 07/97.With a distance of only 33 light-years from the Sun, it was one of the closest Brown Dwarfs known at that time. Formation of Brown Dwarfs Astronomers are still doubtful about the way Brown Dwarfs form. Among the numerous suggestions are the star-like contraction from an interstellar cloud of gas and dust and also another based on "ejected stellar embryos" . This latter scenario says that very young stars that are still accreting material are "kicked out of the nest" by their more massive brothers in multiple stellar systems. In this dramatic process, the unlucky objects are stripped of their surrounding disks. This effectively halts their further growth by accretion and they end up as underweight Brown Dwarfs. Recent observations at ESO have shown that the Brown Dwarfs in the Orion Nebula most likely have formed as stars do, i.e. by contraction in a cloud of dust and gas, cf. ESO PR 14/01. The clue to this was the observation of an excess of near-infrared radiation from many of these objects, interpreted as the presence of dusty disks around them. The astronomers then argued that if the young Brown Dwarfs possess such disks exactly like real stars do, then they must also form in the same way. Infrared observations of Brown Dwarfs Those observations were carried out in the near-infrared spectral region (in the 1.2 - 2

  17. Young and Waltzing Binary Stars

    Science.gov (United States)

    2001-10-01

    ADONIS Observes Low-mass Eclipsing System in Orion Summary A series of very detailed images of a binary system of two young stars have been combined into a movie . In merely 3 days, the stars swing around each other. As seen from the earth, they pass in front of each other twice during a full revolution, producing eclipses during which their combined brightness diminishes . A careful analysis of the orbital motions has now made it possible to deduce the masses of the two dancing stars . Both turn out to be about as heavy as our Sun. But while the Sun is about 4500 million years old, these two stars are still in their infancy. They are located some 1500 light-years away in the Orion star-forming region and they probably formed just 10 million years ago . This is the first time such an accurate determination of the stellar masses could be achieved for a young binary system of low-mass stars . The new result provides an important piece of information for our current understanding of how young stars evolve. The observations were obtained by a team of astronomers from Italy and ESO [1] using the ADaptive Optics Near Infrared System (ADONIS) on the 3.6-m telescope at the ESO La Silla Observatory. PR Photo 29a/01 : The RXJ 0529.4+0041 system before primary eclipse PR Photo 29b/01 : The RXJ 0529.4+0041 system at mid-primary eclipse PR Photo 29c/01 : The RXJ 0529.4+0041 system after primary eclipse PR Photo 29d/01 : The RXJ 0529.4+0041 system before secondary eclipse PR Photo 29e/01 : The RXJ 0529.4+0041 system at mid-secondary eclipse PR Photo 29f/01 : The RXJ 0529.4+0041 system after secondary eclipse PR Video Clip 06/01 : Video of the RXJ 0529.4+0041 system Binary stars and stellar masses Since some time, astronomers have noted that most stars seem to form in binary or multiple systems. This is quite fortunate, as the study of binary stars is the only way in which it is possible to measure directly one of the most fundamental quantities of a star, its mass. The mass of a

  18. Young Debris Disks With Newly Discovered Emission Features

    Science.gov (United States)

    Ballering, N.

    2014-04-01

    We analyzed the Spitzer/IRS spectra of young A and F stars that host debris disks with previously unidentified silicate emission features. Such features probe small, warm dust grains in the inner regions of these young systems where terrestrial planet formation may be proceeding (Lisse et al. 2009). For most systems, these regions are too near their host star to be directly seen with high-contrast imaging and too warm to be imaged with submillimeter interferometers. Mid-infrared excess spectra - originating from the thermal emission of the debris disk dust - remain the best data to constrain the properties of the debris in these regions. For each target, we fit physically-motivated model spectra to the data. Typical spectra of unresolved debris disks are featureless and suffer severe degeneracies between the dust location and the grain properties; however, spectra with solid-state emission features provide significantly more information, allowing for a more accurate determination of the dust size, composition, and location (e.g. Chen et al. 2006; Olofsson et al. 2012). Our results shed light on the dynamic properties occurring in the terrestrial regions of these systems. For instance, the sizes of the smallest grains and the nature of the grain size distribution reveal whether the dust originates from steady-state collisional cascades or from stochastic collisions. The properties of the dust grains - such as their crystalline or amorphous structure - can inform us of grain processing mechanisms in the disk. The location of this debris illuminates where terrestrial planet forming activity is occurring. We used results from the Beta Pictoris - which has a well-resolved debris disk with emission features (Li et al. 2012) - to place our results in context. References: Chen et al. 2006, ApJS, 166, 351 Li et al. 2012, ApJ, 759, 81 Lisse et al. 2009, ApJ, 701, 2019 Olofsson et al. 2012, A&A, 542, A90

  19. Protoplanetary disks around intermediate-mass stars: the asset of imaging in the mid-infrared

    International Nuclear Information System (INIS)

    Doucet, Coralie

    2006-01-01

    The accrued efficiency of the instruments in many wavelengths has allowed to show that most young stellar objects were surrounded by circumstellar matter distributed in a disk. Direct imaging of such systems is very difficult because of their narrow angular size and their weak luminosity in comparison with the star. Nowadays, 50 % of low-mass pre-main sequence stars, i.e. T Tauri stars, are surrounded by a disk. This proportion is less obvious for intermediate-mass stars, like Herbig Ae stars, that are less numerous and whose direct disk detection is more difficult. Until now, only the interpretation of the Spectral Energy Distribution (SED) of such objects allows to have access to the geometry of the disk. But the solutions are degenerated and several parameters fit the same SED. It is essential to have direct images of the objects, the only evidence of the presence of disks. This PhD allows to show that mid-infrared imaging could rise a part of the degeneracy of the disk's parameters linked to the fit of the SED for several objects and gives constraints on the minimum external radius and inclination of the disk. We present a new observation mode with VISIR, the mid-infrared imager and spectrometer on the VLT (ESO, Chile): the so-called BURST mode. This mode allows to reach the diffraction limit of the telescope. Thanks to mid-infrared imaging with this instrument, we were able, for the first time, to have access to the geometry of a disk (flared structure) around a massive star that was, until now, only deduced from the SED modelling. (author) [fr

  20. Star formation in the outskirts of disk galaxies

    NARCIS (Netherlands)

    Ferguson, AMN

    2002-01-01

    The far outer regions of galactic disks allow an important probe of both star formation and galaxy formation. I discuss how observations of HII regions in these low gas density, low metallicity environments can shed light on the physical processes which drive galactic star formation. The history of

  1. Thin accretion disks around cold Bose-Einstein condensate stars

    Energy Technology Data Exchange (ETDEWEB)

    Danila, Bogdan [Babes-Bolyai University, Department of Physics, Cluj-Napoca (Romania); Harko, Tiberiu [University College London, Department of Mathematics, London (United Kingdom); Kovacs, Zoltan

    2015-05-15

    Due to their superfluid properties some compact astrophysical objects, like neutron or quark stars, may contain a significant part of their matter in the form of a Bose-Einstein condensate (BEC). Observationally distinguishing between neutron/quark stars and BEC stars is a major challenge for this latter theoretical model. An observational possibility of indirectly distinguishing BEC stars from neutron/quark stars is through the study of the thin accretion disks around compact general relativistic objects. In the present paper, we perform a detailed comparative study of the electromagnetic and thermodynamic properties of the thin accretion disks around rapidly rotating BEC stars, neutron stars and quark stars, respectively. Due to the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution, equilibrium radiation spectrum, and efficiency of energy conversion) are different for these classes of compact objects. Hence in this preliminary study we have pointed out some astrophysical signatures that may allow one to observationally discriminate between BEC stars and neutron/quark stars. (orig.)

  2. SPITZER OBSERVATIONS OF THE λ ORIONIS CLUSTER. II. DISKS AROUND SOLAR-TYPE AND LOW-MASS STARS

    International Nuclear Information System (INIS)

    Hernandez, Jesus; Morales-Calderon, Maria; Calvet, Nuria; Hartmann, L.; Muzerolle, J.; Gutermuth, R.; Luhman, K. L.; Stauffer, J.

    2010-01-01

    We present IRAC/MIPS Spitzer Space Telescope observations of the solar-type and the low-mass stellar population of the young (∼5 Myr) λ Orionis cluster. Combining optical and Two Micron All Sky Survey photometry, we identify 436 stars as probable members of the cluster. Given the distance (450 pc) and the age of the cluster, our sample ranges in mass from 2 M sun to objects below the substellar limit. With the addition of the Spitzer mid-infrared data, we have identified 49 stars bearing disks in the stellar cluster. Using spectral energy distribution slopes, we place objects in several classes: non-excess stars (diskless), stars with optically thick disks, stars with 'evolved disks' (with smaller excesses than optically thick disk systems), and 'transitional disk' candidates (in which the inner disk is partially or fully cleared). The disk fraction depends on the stellar mass, ranging from ∼6% for K-type stars (R C - J C - J>4). We confirm the dependence of disk fraction on stellar mass in this age range found in other studies. Regarding clustering levels, the overall fraction of disks in the λ Orionis cluster is similar to those reported in other stellar groups with ages normally quoted as ∼5 Myr.

  3. Gauging the Galactic thick disk with RR Lyrae stars

    Directory of Open Access Journals (Sweden)

    Cruz G.

    2012-02-01

    Full Text Available In this contribution we present results from the QUEST RR Lyrae Survey of the thick disk. The survey spans ~480 sq. deg. at low latitude |b| < 30°, with multi-epoch VRI observations, obtained with the QUEST-I camera at the 1m Jürgen Stock Schmidt telescope located at the National Astronomical Observatory of Venezuela. This constitutes the first deep RR Lyrae survey of the Galactic thick disk conducted at low galactic latitudes, covering simultaneously a large range in radial (8disk structural parameters from in situ RR Lyrae stars having accurate distances (errors <7% and individual reddenings derived from each star’s color curve at minimum light. Moreover, the use of RR Lyrae stars as tracers ensures negligible contamination from the Galactic thin disk. We find a thick disk mean scale height hZ = 0.94 ± 0.11kpc and scale length hR = 3.2 ± 0.4kpc, derived from the vertical and radial mean density profiles of RR Lyrae stars. We also find evidence of thick disk flaring and results that may suggest the thick disk radial density profile shows signs of antitruncation. We discuss our findings in the context of recent thick disk formation models.

  4. The DiskMass Survey. VIII. On the Relationship between Disk Stability and Star Formation

    NARCIS (Netherlands)

    Westfall, Kyle B.; Andersen, David R.; Bershady, Matthew A.; Martinsson, Thomas P. K.; Swaters, Robert A.; Verheijen, Marc A. W.

    2014-01-01

    We study the relationship between the stability level of late-type galaxy disks and their star-formation activity using integral-field gaseous and stellar kinematic data. Specifically, we compare the two-component (gas+stars) stability parameter from Romeo & Wiegert (Q RW), incorporating stellar

  5. Self-regulating star formation and disk structure

    International Nuclear Information System (INIS)

    Dopita, M.A.

    1987-01-01

    Star formation processes determine the disk structure of galaxies. Stars heavier than about 1 solar mass determine the chemical evolution of the system and are produced at a rate which maintains (by the momentum input of the stars) the phase structure, pressure, and vertical velocity dispersion of the gas. Low mass stars are produced quiescently within molecular clouds, and their associated T-Tauri winds maintain the support of molecular clouds and regulate the star formation rate. Inefficient cooling suppresses this mode of star formation at low metallicity. Applied to the solar neighborhood, such a model can account for age/metallicity relationships, the increase in the O/Fe ratio at low metallicity, the paucity of metal-poor G and K dwarf stars, the missing mass in the disk and, possibly, the existence of a metal-poor thick disk. For other galaxies, it accounts for constant w-velocity dispersion of the gas, the relationship between gas content and specific rates of star formation, the surface brightness/metallicity relationship and for the shallow radial gradients in both star formation rates and HI content. 71 references

  6. Observational diagnostics of accretion on young stars and brown dwarfs

    Science.gov (United States)

    Stelzer, Beate; Argiroffi, Costanza

    I present a summary of recent observational constraints on the accretion properties of young stars and brown dwarfs with focus on the high-energy emission. In their T Tauri phase young stars assemble a few percent of their mass by accretion from a disk. Various observational signatures of disks around pre-main sequence stars and the ensuing accretion process are found in the IR and optical regime: e.g. excess emission above the stellar photosphere, strong and broad emission lines, optical veiling. At high energies evidence for accretion is less obvious, and the X-ray emission from stars has historically been ascribed to magnetically confined coronal plasmas. While being true for the bulk of the emission, new insight obtained from XMM-Newton and Chandra observations has unveiled contributions from accretion and outflow processes to the X-ray emission from young stars. Their smaller siblings, the brown dwarfs, have been shown to undergo a T Tauri phase on the basis of optical/IR observations of disks and measurements of accretion rates. Most re-cently, first evidence was found for X-rays produced by accretion in a young brown dwarf, complementing the suspected analogy between stars and substellar objects.

  7. C2D spitzer-IRS spectra of disks around T tauri stars : II. PAH emission features

    NARCIS (Netherlands)

    Geers, V. C.; Augereau, J. -C; Pontoppidan, K. M.; Dullemond, C. P.; Visser, R.; Kessler-Silacci, J. E.; Evans, N. J.; van Dishoeck, E. F.; Blake, G. A.; Boogert, A. C. A.; Lahuis, F.; Merin, B.

    Aims. We search for Polycyclic Aromatic Hydrocarbon (PAH) features towards young low-mass (T Tauri) stars and compare them with surveys of intermediate mass (Herbig Ae/Be) stars. The presence and strength of the PAH features are interpreted with disk radiative transfer models exploring the PAH

  8. OT2_amoor_4: A census of debris disks in nearby young moving groups with Herschel.

    Science.gov (United States)

    Moór, A.

    2011-09-01

    Nearly all young stars harbour circumstellar disks, that serve as the reservoir for mass accretion onto the star, and later become the birthplace of planetary systems. After the disappearance of the gas component from the disk a dusty debris disk is formed that is believed to mark the location of the planetesimal belt as well. For outlining the evolution of such debris disks traditionally open clusters and field stars were studied, however we argue that the recently discovered young moving groups are more suitable objects for such analyses, due to their proximity and good coverage of the first 50 Myr period of the planetary system evolution. In this proposal we request 70/160 um Herschel/PACS photometric observations for so-far unobserved moving group members. These observations will provide a complete coverage of all known members within 80 pc of five nearby young moving groups (beta Pic Moving Group, Tucana-Horologium, Carina, Columba, and Argus), in the A to K spectral range. Based on the new observations we will identify new debris disks, characterize the disk population within individual moving groups, and study disk evolution by comparing the groups of different ages. The results will be used to verify predictions of the self-stirring model of the evolution of planetesimal disks. We will also compare the properties of debris disks in groups of the same age, looking for additional 'environmental' parameters that affect disk structure over a whole moving group. Our study will be a significant contribution to the census of debris disks in young moving groups, increasing the number of observed sources by a factor of 1.5. Since Spitzer could perform only a limited census and the so-far approved Herschel programs added very few additional moving group obervations, our programme is expected to have a high legacy value.

  9. DYNAMICAL EVOLUTION OF VISCOUS DISKS AROUND Be STARS. I. PHOTOMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Haubois, X.; Carciofi, A. C. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, Sao Paulo, SP 05508-900 (Brazil); Rivinius, Th. [European Organisation for Astronomical Research in the Southern Hemisphere, Casilla 19001, Santiago 19 (Chile); Okazaki, A. T. [Faculty of Engineering, Hokkai-Gakuen University, Toyohira-ku, Sapporo 062-8605 (Japan); Bjorkman, J. E., E-mail: xhaubois@astro.iag.usp.br [Ritter Observatory, Department of Physics and Astronomy, University of Toledo, Toledo, OH 43606 (United States)

    2012-09-10

    Be stars possess gaseous circumstellar disks that modify in many ways the spectrum of the central B star. Furthermore, they exhibit variability at several timescales and for a large number of observables. Putting the pieces together of this dynamical behavior is not an easy task and requires a detailed understanding of the physical processes that control the temporal evolution of the observables. There is an increasing body of evidence that suggests that Be disks are well described by standard {alpha}-disk theory. This paper is the first of a series that aims at studying the possibility of inferring several disk and stellar parameters through the follow-up of various observables. Here we study the temporal evolution of the disk density for different dynamical scenarios, including the disk build-up as a result of a long and steady mass injection from the star, the disk dissipation that occurs after mass injection is turned off, as well as scenarios in which active periods are followed by periods of quiescence. For those scenarios, we investigate the temporal evolution of continuum photometric observables using a three-dimensional non-LTE radiative transfer code. We show that light curves for different wavelengths are specific of a mass loss history, inclination angle, and {alpha} viscosity parameter. The diagnostic potential of those light curves is also discussed.

  10. Evolution of rotating star clusters at the inelastic-collision stage. II. Dynamics of a disk of gas and stars

    International Nuclear Information System (INIS)

    Romanova, M.M.

    1985-01-01

    The dynamics of a gas--star disk embedded in a dense, mildly oblate (flattening epsilon-c or approx. =0.2--0.3 the stable disk will survive for at least half the cluster evolution time. The possibility of a thin disk of stars existing inside a dense star cluster is considered. For small epsilon-c and for disk member stars having > or approx. =0.04 the mass of the cluster members, collisions between cluster and disk stars will have no effect on the disk evolution prior to instability

  11. Mottled Protoplanetary Disk Ionization by Magnetically Channeled T Tauri Star Energetic Particles

    Science.gov (United States)

    Fraschetti, F.; Drake, J. J.; Cohen, O.; Garraffo, C.

    2018-02-01

    The evolution of protoplanetary disks is believed to be driven largely by angular momentum transport resulting from magnetized disk winds and turbulent viscosity. The ionization of the disk that is essential for these processes has been thought to be due to host star coronal X-rays but could also arise from energetic particles produced by coronal flares, or traveling shock waves, and advected by the stellar wind. We have performed test-particle numerical simulations of energetic protons propagating into a realistic T Tauri stellar wind, including a superposed small-scale magnetostatic turbulence. The isotropic (Kolmogorov power spectrum) turbulent component is synthesized along the individual particle trajectories. We have investigated the energy range [0.1–10] GeV, consistent with expectations from Chandra X-ray observations of large flares on T Tauri stars and recent indications by the Herschel Space Observatory of a significant contribution of energetic particles to the disk ionization of young stars. In contrast with a previous theoretical study finding a dominance of energetic particles over X-rays in the ionization throughout the disk, we find that the disk ionization is likely dominated by X-rays over much of its area, except within narrow regions where particles are channeled onto the disk by the strongly tangled and turbulent magnetic field. The radial thickness of such regions is 5 stellar radii close to the star and broadens with increasing radial distance. This likely continues out to large distances from the star (10 au or greater), where particles can be copiously advected and diffused by the turbulent wind.

  12. Photo-reverberation Mapping of a Protoplanetary Accretion Disk around a T Tauri Star

    Science.gov (United States)

    Meng, Huan Y. A.; Plavchan, Peter; Rieke, George H.; Cody, Ann Marie; Güth, Tina; Stauffer, John; Covey, Kevin; Carey, Sean; Ciardi, David; Duran-Rojas, Maria C.; Gutermuth, Robert A.; Morales-Calderón, María; Rebull, Luisa M.; Watson, Alan M.

    2016-05-01

    Theoretical models and spectroscopic observations of newborn stars suggest that protoplantary disks have an inner “wall” at a distance set by the disk interaction with the star. Around T Tauri stars, the size of this disk hole is expected to be on a 0.1 au scale that is unresolved by current adaptive optics imaging, though some model-dependent constraints have been obtained by near-infrared interferometry. Here we report the first measurement of the inner disk wall around a solar-mass young stellar object, YLW 16B in the ρ Ophiuchi star-forming region, by detecting the light-travel time of the variable radiation from the stellar surface to the disk. Consistent time lags were detected on two nights, when the time series in H (1.6 μm) and K (2.2 μm) bands were synchronized while the 4.5 μm emission lagged by 74.5 ± 3.2 s. Considering the nearly edge-on geometry of the disk, the inner rim should be 0.084 au from the protostar on average, with an error of order 0.01 au. This size is likely larger than the range of magnetospheric truncations and consistent with an optically and geometrically thick disk front at the dust sublimation radius at ˜1500 K. The widths of the cross-correlation functions between the data in different wavebands place possible new constraints on the geometry of the disk.

  13. Kiloparsec-scale Simulations of Star Formation in Disk Galaxies. IV. Regulation of Galactic Star Formation Rates by Stellar Feedback

    International Nuclear Information System (INIS)

    Butler, Michael J.; Tan, Jonathan C.; Teyssier, Romain; Nickerson, Sarah; Rosdahl, Joakim; Van Loo, Sven

    2017-01-01

    Star formation from the interstellar medium of galactic disks is a basic process controlling the evolution of galaxies. Understanding the star formation rate (SFR) in a local patch of a disk with a given gas mass is thus an important challenge for theoretical models. Here we simulate a kiloparsec region of a disk, following the evolution of self-gravitating molecular clouds down to subparsec scales, as they form stars that then inject feedback energy by dissociating and ionizing UV photons and supernova explosions. We assess the relative importance of each feedback mechanism. We find that H 2 -dissociating feedback results in the largest absolute reduction in star formation compared to the run with no feedback. Subsequently adding photoionization feedback produces a more modest reduction. Our fiducial models that combine all three feedback mechanisms yield, without fine-tuning, SFRs that are in excellent agreement with observations, with H 2 -dissociating photons playing a crucial role. Models that only include supernova feedback—a common method in galaxy evolution simulations—settle to similar SFRs, but with very different temperatures and chemical states of the gas, and with very different spatial distributions of young stars.

  14. Kiloparsec-scale Simulations of Star Formation in Disk Galaxies. IV. Regulation of Galactic Star Formation Rates by Stellar Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Butler, Michael J. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Tan, Jonathan C. [Departments of Astronomy and Physics, University of Florida, Gainesville, FL 32611 (United States); Teyssier, Romain; Nickerson, Sarah [Institute for Computational Science, University of Zurich, 8049 Zurich (Switzerland); Rosdahl, Joakim [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Van Loo, Sven [School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom)

    2017-06-01

    Star formation from the interstellar medium of galactic disks is a basic process controlling the evolution of galaxies. Understanding the star formation rate (SFR) in a local patch of a disk with a given gas mass is thus an important challenge for theoretical models. Here we simulate a kiloparsec region of a disk, following the evolution of self-gravitating molecular clouds down to subparsec scales, as they form stars that then inject feedback energy by dissociating and ionizing UV photons and supernova explosions. We assess the relative importance of each feedback mechanism. We find that H{sub 2}-dissociating feedback results in the largest absolute reduction in star formation compared to the run with no feedback. Subsequently adding photoionization feedback produces a more modest reduction. Our fiducial models that combine all three feedback mechanisms yield, without fine-tuning, SFRs that are in excellent agreement with observations, with H{sub 2}-dissociating photons playing a crucial role. Models that only include supernova feedback—a common method in galaxy evolution simulations—settle to similar SFRs, but with very different temperatures and chemical states of the gas, and with very different spatial distributions of young stars.

  15. Dusty disks around central stars of planetary nebulae

    Energy Technology Data Exchange (ETDEWEB)

    Clayton, Geoffrey C. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); De Marco, Orsola [Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Nordhaus, Jason [Center for Computational Relativity and Gravitation, and National Technical Institute for the Deaf, Rochester Institute of Technology, Rochester, NY 14623 (United States); Green, Joel [Department of Astronomy, The University of Texas, 1 University Station, C1400, Austin, TX 78712-0259 (United States); Rauch, Thomas; Werner, Klaus [Institute for Astronomy and Astrophysics, Kepler Center for Astro and Particle Physics, Eberhard Karls University, Sand 1, D-72076 Tübingen (Germany); Chu, You-Hua, E-mail: gclayton@fenway.phys.lsu.edu, E-mail: orsola@science.mq.edu.au, E-mail: nordhaus@astro.rit.edu, E-mail: joel@astro.as.utexas.edu, E-mail: rauch@astro.uni-tuebingen.de, E-mail: werner@astro.uni-tuebingen.de, E-mail: chu@astro.uiuc.edu [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States)

    2014-06-01

    Only a few percent of cool, old white dwarfs (WDs) have infrared excesses interpreted as originating in small hot disks due to the infall and destruction of single asteroids that come within the star's Roche limit. Infrared excesses at 24 μm were also found to derive from the immediate vicinity of younger, hot WDs, most of which are still central stars of planetary nebulae (CSPNe). The incidence of CSPNe with this excess is 18%. The Helix CSPN, with a 24 μm excess, has been suggested to have a disk formed from collisions of Kuiper belt-like objects (KBOs). In this paper, we have analyzed an additional sample of CSPNe to look for similar infrared excesses. These CSPNe are all members of the PG 1159 class and were chosen because their immediate progenitors are known to often have dusty environments consistent with large dusty disks. We find that, overall, PG 1159 stars do not present such disks more often than other CSPNe, although the statistics (five objects) are poor. We then consider the entire sample of CSPNe with infrared excesses and compare it to the infrared properties of old WDs, as well as cooler post-asymptotic giant branch (AGB) stars. We conclude with the suggestion that the infrared properties of CSPNe more plausibly derive from AGB-formed disks rather than disks formed via the collision of KBOs, although the latter scenario cannot be ruled out. Finally, there seems to be an association between CSPNe with a 24 μm excess and confirmed or possible binarity of the central star.

  16. RESOLVED MILLIMETER-WAVELENGTH OBSERVATIONS OF DEBRIS DISKS AROUND SOLAR-TYPE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Steele, Amy; Hughes, A. Meredith [Department of Astronomy, Van Vleck Observatory, Wesleyan University, 96 Foss Hill Drive, Middletown, CT, 06459 (United States); Carpenter, John [Division of Physics, Mathematics, and Astronomy, MC249-17, California Institute of Technology, Pasadena, CA 91125 (United States); Ricarte, Angelo [J. W. Gibbs Laboratory, Department of Astronomy, Yale University, 260 Whitney Avenue, New Haven, CT 06511 (United States); Andrews, Sean M.; Wilner, David J. [Harvard-Smithsonian Center for Astrophysics, MS-42, 60 Garden Street, Cambridge, MA 02138 (United States); Chiang, Eugene, E-mail: asteele@wesleyan.edu [Department of Astronomy, 501 Campbell Hall, University of California, Berkeley, CA 94720-3411 (United States)

    2016-01-01

    The presence of debris disks around young main-sequence stars hints at the existence and structure of planetary systems. Millimeter-wavelength observations probe large grains that trace the location of planetesimal belts. The Formation and Evolution of Planetary Systems Spitzer Legacy survey of nearby young solar analogues yielded a sample of five debris disk-hosting stars with millimeter flux suitable for interferometric follow-up. We present observations with the Submillimeter Array (SMA) and the Combined Array for Research in Millimeter-wave Astronomy at ∼2″ resolution that spatially resolve the debris disks around these nearby (d ∼ 50 pc) stars. Two of the five disks (HD 377, HD 8907) are spatially resolved for the first time and one (HD 104860) is resolved at millimeter wavelengths for the first time. We combine our new observations with archival SMA and Atacama Large Millimeter/Submillimeter Array data to enable a uniform analysis of the full five-object sample. We simultaneously model the broadband photometric data and resolved millimeter visibilities to constrain the dust temperatures and disk morphologies, and perform a Markov Chain Monte Carlo analysis to fit for basic structural parameters. We find that the radii and widths of the cold outer belts exhibit properties consistent with scaled-up versions of the Solar System's Kuiper Belt. All the disks exhibit characteristic grain sizes comparable to the blowout size, and all the resolved observations of emission from large dust grains are consistent with an axisymmetric dust distribution to within the uncertainties. These results are consistent with comparable studies carried out at infrared wavelengths.

  17. A deeply embedded young protoplanetary disk around L1489 IRS observed by the Submillimeter Array

    DEFF Research Database (Denmark)

    Brinch, C.; Crapsi, A.; Jørgensen, J. K.

    2007-01-01

    Context. Circumstellar disks are expected to form early in the process that leads to the formation of a young star, during the collapse of the dense molecular cloud core. Currently, it is not well understood at what stage of the collapse the disk is formed or how it subsequently evolves. Aims. We....... This misalignment of the angular momentum axes may be caused by a gradient within the angular momentum in the parental cloud, or if L1489 IRS is a binary system rather than just a single star. In the latter case, future observations looking for variability at sub-arcsecond scales may be able to constrain...

  18. Time-dependent Models of Magnetospheric Accretion onto Young Stars

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, C. E.; Espaillat, C. C. [Department of Astronomy, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Owen, J. E. [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Adams, F. C., E-mail: connorr@bu.edu [Physics Department, University of Michigan, Ann Arbor, MI 48109 (United States)

    2017-04-01

    Accretion onto Classical T Tauri stars is thought to take place through the action of magnetospheric processes, with gas in the inner disk being channeled onto the star’s surface by the stellar magnetic field lines. Young stars are known to accrete material in a time-variable manner, and the source of this variability remains an open problem, particularly on the shortest (∼day) timescales. Using one-dimensional time-dependent numerical simulations that follow the field line geometry, we find that for plausibly realistic young stars, steady-state transonic accretion occurs naturally in the absence of any other source of variability. However, we show that if the density in the inner disk varies smoothly in time with ∼day-long timescales (e.g., due to turbulence), this complication can lead to the development of shocks in the accretion column. These shocks propagate along the accretion column and ultimately hit the star, leading to rapid, large amplitude changes in the accretion rate. We argue that when these shocks hit the star, the observed time dependence will be a rapid increase in accretion luminosity, followed by a slower decline, and could be an explanation for some of the short-period variability observed in accreting young stars. Our one-dimensional approach bridges previous analytic work to more complicated multi-dimensional simulations and observations.

  19. Time-dependent Models of Magnetospheric Accretion onto Young Stars

    International Nuclear Information System (INIS)

    Robinson, C. E.; Espaillat, C. C.; Owen, J. E.; Adams, F. C.

    2017-01-01

    Accretion onto Classical T Tauri stars is thought to take place through the action of magnetospheric processes, with gas in the inner disk being channeled onto the star’s surface by the stellar magnetic field lines. Young stars are known to accrete material in a time-variable manner, and the source of this variability remains an open problem, particularly on the shortest (∼day) timescales. Using one-dimensional time-dependent numerical simulations that follow the field line geometry, we find that for plausibly realistic young stars, steady-state transonic accretion occurs naturally in the absence of any other source of variability. However, we show that if the density in the inner disk varies smoothly in time with ∼day-long timescales (e.g., due to turbulence), this complication can lead to the development of shocks in the accretion column. These shocks propagate along the accretion column and ultimately hit the star, leading to rapid, large amplitude changes in the accretion rate. We argue that when these shocks hit the star, the observed time dependence will be a rapid increase in accretion luminosity, followed by a slower decline, and could be an explanation for some of the short-period variability observed in accreting young stars. Our one-dimensional approach bridges previous analytic work to more complicated multi-dimensional simulations and observations.

  20. THE ADVANCED CAMERA FOR SURVEYS NEARBY GALAXY SURVEY TREASURY. VI. THE ANCIENT STAR-FORMING DISK OF NGC 404

    International Nuclear Information System (INIS)

    Williams, Benjamin F.; Dalcanton, Julianne J.; Gilbert, Karoline M.; Stilp, Adrienne; Dolphin, Andrew; Seth, Anil C.; Weisz, Daniel; Skillman, Evan

    2010-01-01

    We present HST/WFPC2 observations across the disk of the nearby isolated dwarf S0 galaxy NGC 404, which hosts an extended gas disk. The locations of our fields contain a roughly equal mixture of bulge and disk stars. All of our resolved stellar photometry reaches m F814W = 26 (M F814W = -1.4), which covers 2.5 mag of the red giant branch and main-sequence stars with ages F814W = 27.2 (M F814W = -0.2), sufficient to resolve the red clump and main-sequence stars with ages 10 Gyr) population. Detailed modeling of the color-magnitude diagram suggests that ∼70% of the stellar mass in the NGC 404 disk formed by z ∼ 2 (10 Gyr ago) and at least ∼90% formed prior to z ∼ 1 (8 Gyr ago). These results indicate that the stellar populations of the NGC 404 disk are on average significantly older than those of other nearby disk galaxies, suggesting that early- and late-type disks may have different long-term evolutionary histories, not simply differences in their recent star formation rates. Comparisons of the spatial distribution of the young stellar mass and FUV emission in Galaxy Evolution Explorer images show that the brightest FUV regions contain the youngest stars, but that some young stars (<160 Myr) lie outside of these regions. FUV luminosity appears to be strongly affected by both age and stellar mass within individual regions. Finally, we use our measurements to infer the relationship between the star formation rate and the gas density of the disk at previous epochs. We find that most of the history of the NGC 404 disk is consistent with star formation that has decreased with the gas density according to the Schmidt law. However, ∼ 0.5-1 Gyr ago, the star formation rate was unusually low for the inferred gas density, consistent with the possibility that there was a gas accretion event that reignited star formation ∼0.5 Gyr ago. Such an event could explain why this S0 galaxy hosts an extended gas disk.

  1. PROTOPLANETARY DISK MASSES FROM STARS TO BROWN DWARFS

    International Nuclear Information System (INIS)

    Mohanty, Subhanjoy; Mortlock, Daniel; Greaves, Jane; Pascucci, Ilaria; Apai, Daniel; Scholz, Aleks; Thompson, Mark; Lodato, Giuseppe; Looper, Dagny

    2013-01-01

    We present SCUBA-2 850 μm observations of seven very low mass stars (VLMS) and brown dwarfs (BDs). Three are in Taurus and four in the TW Hydrae Association (TWA), and all are classical T Tauri (cTT) analogs. We detect two of the three Taurus disks (one only marginally), but none of the TWA ones. For standard grains in cTT disks, our 3σ limits correspond to a dust mass of 1.2 M ⊕ in Taurus and a mere 0.2 M ⊕ in the TWA (3-10× deeper than previous work). We combine our data with other submillimeter/millimeter (sub-mm/mm) surveys of Taurus, ρ Oph, and the TWA to investigate the trends in disk mass and grain growth during the cTT phase. Assuming a gas-to-dust mass ratio of 100:1 and fiducial surface density and temperature profiles guided by current data, we find the following. (1) The minimum disk outer radius required to explain the upper envelope of sub-mm/mm fluxes is ∼100 AU for intermediate-mass stars, solar types, and VLMS, and ∼20 AU for BDs. (2) While the upper envelope of apparent disk masses increases with M * from BDs to VLMS to solar-type stars, no such increase is observed from solar-type to intermediate-mass stars. We propose this is due to enhanced photoevaporation around intermediate stellar masses. (3) Many of the disks around Taurus and ρ Oph intermediate-mass and solar-type stars evince an opacity index of β ∼ 0-1, indicating significant grain growth. Of the only four VLMS/BDs in these regions with multi-wavelength measurements, three are consistent with considerable grain growth, though optically thick disks are not ruled out. (4) For the TWA VLMS (TWA 30A and B), combining our 850 μm fluxes with the known accretion rates and ages suggests substantial grain growth by 10 Myr, comparable to that in the previously studied TWA cTTs Hen 3-600A and TW Hya. The degree of grain growth in the TWA BDs (2M1207A and SSPM1102) remains largely unknown. (5) A Bayesian analysis shows that the apparent disk-to-stellar mass ratio has a roughly

  2. White dwarf stars and the age of the Galactic disk

    Science.gov (United States)

    Wood, M. A.

    1990-01-01

    The history of the Galaxy is written in its oldest stars, the white dwarf (WD) stars. Significant limits can be placed on both the Galactic age and star formation history. A wide range of input WD model sequences is used to derive the current limits to the age estimates suggested by fitting to the observed falloff in the WD luminosity function. The results suggest that the star formation rate over the history of the Galaxy has been relatively constant, and that the disk age lies in the range 6-12 billion years, depending upon the assumed structure of WD stars, and in particular on the core composition and surface helium layer mass. Using plausible mixed C/O core input models, the estimates for the disk age range from 8-10.5 Gyr, i.e.,sustantially younger than most age estimates for the halo globular clusters. After speculating on the significance of the results, expected observational and theoretical refinements which will further enhance the reliability of the method are discussed.

  3. Featured Image: Stars from Broken Clouds and Disks

    Science.gov (United States)

    Kohler, Susanna

    2018-04-01

    This still from a simulation captures binary star formation in action. Researchers have long speculated on the processes that lead to clouds of gas and dust breaking up into smaller pieces to form multiple-star systems but these take place over a large range of scales, making them difficult to simulate. In a new study led by Leonardo Sigalotti (UAM Azcapotzalco, Mexico), researchers have used a smoothed-particle hydrodynamics code to model binary star formation on scales of thousands of AU down to scales as small as 0.1 AU. In the scene shown above, a collapsing cloud of gas and dust has recently fragmented into two pieces, forming a pair of disks separated by around 200 AU. In addition, we can see that smaller-scale fragmentation is just starting in one of these disks, Disk B. Here, one of the disks spiral arms has become unstable and is beginning to condense; it will eventually form another star, producing a hierarchical system: a close binary within the larger-scale binary. Check out the broaderprocessin the four panels below (which show the system as it evolves over time), or visitthe paper linked below for more information about what the authors learned.Evolution of a collapsed cloud after large-scale fragmentation into a binary protostar: (a) 44.14 kyr, (b) 44.39 kyr, (c) 44.43 kyr, and (d) 44.68 kyr. The insets show magnifications of the binary cores. [Adapted from Sigalotti et al. 2018]CitationLeonardo Di G. Sigalotti et al 2018 ApJ 857 40. doi:10.3847/1538-4357/aab619

  4. A New M Dwarf Debris Disk Candidate in a Young Moving Group Discovered with Disk Detective

    Science.gov (United States)

    Silverberg, Steven M.; Kuchner, Marc J.; Wisniewski, John P.; Gagne, Jonathan; Bans, Alissa S.; Bhattacharjee, Shambo; Currie, Thayne R.; Debes, John R.; Biggs, Joseph R; Bosch, Milton

    2016-01-01

    We used the Disk Detective citizen science project and the BANYAN II Bayesian analysis tool to identify a new candidate member of a nearby young association with infrared excess. WISE J080822.18-644357.3, an M5.5-type debris disk system with significant excess at both 12 and 22 microns, is a likely member (approx.90% BANYAN II probability) of the approx.45 Myr old Carina association. Since this would be the oldest M dwarf debris disk detected in a moving group, this discovery could be an important constraint on our understanding of M dwarf debris disk evolution.

  5. Gemini spectroscopy of the outer disk star cluster BH176

    Science.gov (United States)

    Sharina, M. E.; Donzelli, C. J.; Davoust, E.; Shimansky, V. V.; Charbonnel, C.

    2014-10-01

    Context. BH176 is an old metal-rich star cluster. It is spatially and kinematically consistent with belonging to the Monoceros Ring. It is larger in size and more distant from the Galactic plane than typical open clusters, and it does not belong to the Galactic bulge. Aims: Our aim is to determine the origin of this unique object by accurately determining its distance, metallicity, and age. The best way to reach this goal is to combine spectroscopic and photometric methods. Methods: We present medium-resolution observations of red clump and red giant branch stars in BH176 obtained with the Gemini South Multi-Object Spectrograph. We derive radial velocities, metallicities, effective temperatures, and surface gravities of the observed stars and use these parameters to distinguish member stars from field objects. Results: We determine the following parameters for BH176: Vh = 0 ± 15 km s-1, [Fe/H] = -0.1 ± 0.1, age 7 ± 0.5 Gyr, E(V - I) = 0.79 ± 0.03, distance 15.2 ± 0.2 kpc, α-element abundance [α/Fe] ~ 0.25 dex (the mean of [Mg/Fe], and [Ca/Fe]). Conclusions: BH176 is a member of old Galactic open clusters that presumably belong to the thick disk. It may have originated as a massive star cluster after the encounter of the forming thin disk with a high-velocity gas cloud or as a satellite dwarf galaxy. Appendix A is available in electronic form at http://www.aanda.org

  6. "Observing" the Circumnuclear Stars and Gas in Disk Galaxy Simulations

    Science.gov (United States)

    Cook, Angela; Hicks, Erin K. S.

    2018-06-01

    We present simulations based on theoretical models of common disk processes designed to represent potential inflow observed within the central 500 pc of local Seyfert galaxies. Mock observations of these n-body plus smoothed particle hydrodynamical simulations provide the conceptual framework in which to identify the driving inflow mechanism, for example nuclear bars, and to quantify to the inflow based on observable properties. From these mock observations the azimuthal average of the flux distribution, velocity dispersion, and velocity of both the stars and interstellar medium on scales of 50pc have been measured at a range of inclinations angles. A comparison of the simulated disk galaxies with these observed azimuthal averages in 40 Seyfert galaxies measured as part of the KONA (Keck OSIRIS Nearby AGN) survey will be presented.

  7. THE STAR FORMATION LAWS OF EDDINGTON-LIMITED STAR-FORMING DISKS

    International Nuclear Information System (INIS)

    Ballantyne, D. R.; Armour, J. N.; Indergaard, J.

    2013-01-01

    Two important avenues into understanding the formation and evolution of galaxies are the Kennicutt-Schmidt (K-S) and Elmegreen-Silk (E-S) laws. These relations connect the surface densities of gas and star formation (Σ gas and Σ-dot * , respectively) in a galaxy. To elucidate the K-S and E-S laws for disks where Σ gas ∼> 10 4 M ☉ pc –2 , we compute 132 Eddington-limited star-forming disk models with radii spanning tens to hundreds of parsecs. The theoretically expected slopes (≈1 for the K-S law and ≈0.5 for the E-S relation) are relatively robust to spatial averaging over the disks. However, the star formation laws exhibit a strong dependence on opacity that separates the models by the dust-to-gas ratio that may lead to the appearance of a erroneously large slope. The total infrared luminosity (L TIR ) and multiple carbon monoxide (CO) line intensities were computed for each model. While L TIR can yield an estimate of the average Σ-dot * that is correct to within a factor of two, the velocity-integrated CO line intensity is a poor proxy for the average Σ gas for these warm and dense disks, making the CO conversion factor (α CO ) all but useless. Thus, observationally derived K-S and E-S laws at these values of Σ gas that uses any transition of CO will provide a poor measurement of the underlying star formation relation. Studies of the star formation laws of Eddington-limited disks will require a high-J transition of a high density molecular tracer, as well as a sample of galaxies with known metallicity estimates.

  8. THE STAR FORMATION LAWS OF EDDINGTON-LIMITED STAR-FORMING DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Ballantyne, D. R.; Armour, J. N.; Indergaard, J., E-mail: david.ballantyne@physics.gatech.edu [Center for Relativistic Astrophysics, School of Physics, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2013-03-10

    Two important avenues into understanding the formation and evolution of galaxies are the Kennicutt-Schmidt (K-S) and Elmegreen-Silk (E-S) laws. These relations connect the surface densities of gas and star formation ({Sigma}{sub gas} and {Sigma}-dot{sub *}, respectively) in a galaxy. To elucidate the K-S and E-S laws for disks where {Sigma}{sub gas} {approx}> 10{sup 4} M{sub Sun} pc{sup -2}, we compute 132 Eddington-limited star-forming disk models with radii spanning tens to hundreds of parsecs. The theoretically expected slopes ( Almost-Equal-To 1 for the K-S law and Almost-Equal-To 0.5 for the E-S relation) are relatively robust to spatial averaging over the disks. However, the star formation laws exhibit a strong dependence on opacity that separates the models by the dust-to-gas ratio that may lead to the appearance of a erroneously large slope. The total infrared luminosity (L{sub TIR}) and multiple carbon monoxide (CO) line intensities were computed for each model. While L{sub TIR} can yield an estimate of the average {Sigma}-dot{sub *} that is correct to within a factor of two, the velocity-integrated CO line intensity is a poor proxy for the average {Sigma}{sub gas} for these warm and dense disks, making the CO conversion factor ({alpha}{sub CO}) all but useless. Thus, observationally derived K-S and E-S laws at these values of {Sigma}{sub gas} that uses any transition of CO will provide a poor measurement of the underlying star formation relation. Studies of the star formation laws of Eddington-limited disks will require a high-J transition of a high density molecular tracer, as well as a sample of galaxies with known metallicity estimates.

  9. A deep Spitzer survey of circumstellar disks in the young double cluster, h and χ Persei

    Energy Technology Data Exchange (ETDEWEB)

    Cloutier, Ryan; Currie, Thayne; Jayawardhana, Ray [University of Toronto, 50 St. George Street, Toronto, ON, M5S 2J7 (Canada); Rieke, George H. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065 (United States); Kenyon, Scott J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02140 (United States); Balog, Zoltan, E-mail: cloutier@cita.utoronto.ca, E-mail: currie@astro.utoronto.ca, E-mail: grieke@as.arizona.edu, E-mail: skenyon@cfa.harvard.edu [Max Planck Institute for Astrophysics, Königstuhl 17, D-69117 Heidelberg (Germany)

    2014-12-01

    We analyze very deep Infrared Array Camera and Multiband Imaging Photometer for Spitzer (MIPS) photometry of ∼12, 500 members of the 14 Myr old Double Cluster, h and χ Persei, building upon our earlier, shallower Spitzer Cycle 1 studies. Numerous likely members show infrared (IR) excesses at 8 μm and 24 μm, indicative of circumstellar dust. The frequency of stars with 8 μm excess is at least 2% for our entire sample, slightly lower (higher) for B/A stars (later type, lower mass stars). Optical spectroscopy also identifies gas in about 2% of systems, but with no clear trend between the presence of dust and gas. Spectral energy distribution modeling of 18 sources with detections at optical wavelengths through MIPS 24 μm reveals a diverse set of disk evolutionary states, including a high fraction of transitional disks, though similar data for all disk-bearing members would provide constraints. Using Monte Carlo simulations, we combine our results with those for other young clusters to study the global evolution of dust/gas disks. For nominal cluster ages, the e-folding times (τ{sub 0}) for the frequency of warm dust and gas are 2.75 Myr and 1.75 Myr, respectively. Assuming a revised set of ages for some clusters, these timescales increase to 5.75 and 3.75 Myr, respectively, implying a significantly longer typical protoplanetary disk lifetime than previously thought. In both cases, the transitional disk duration, averaged over multiple evolutionary pathways, is ≈1 Myr. Finally, 24 μm excess frequencies for 4-6 M {sub ☉} stars appear lower than for 1-2.5 M {sub ☉} stars in other 10-30 Myr old clusters.

  10. IMAGING THE DISK AND JET OF THE CLASSICAL T TAURI STAR AA TAU

    International Nuclear Information System (INIS)

    Cox, Andrew W.; Grady, Carol A.; Hammel, Heidi B.; Hornbeck, Jeremy; Russell, Ray W.; Sitko, Michael L.; Woodgate, Bruce E.

    2013-01-01

    Previous studies of the classical T Tauri star AA Tau have interpreted the UX-Orionis-like photo-polarimetric variability as being due to a warp in the inner disk caused by an inclined stellar magnetic dipole field. We test that these effects are macroscopically observable in the inclination and alignment of the disk. We use Hubble Space Telescope (HST)/STIS coronagraphic imagery to measure the V magnitude of the star for both STIS coronagraphic observations, compare these data with optical photometry in the literature, and find that, unlike other classical T Tauri stars observed in the same HST program, the disk is most robustly detected in scattered light at stellar optical minimum light. We measure the outer disk radius, 1.''15 ± 0.''10, major-axis position angle, and disk inclination and find that the inner disk, as reported in the literature, is both misinclined and misaligned with respect to the outer disk. AA Tau drives a faint jet, detected in both STIS observations and in follow-on Goddard Fabry-Perot imagery, which is also misaligned with respect to the projection of the outer disk minor axis and is poorly collimated near the star, but which can be traced 21'' from the star in data from 2005. The measured outer disk inclination, 71° ± 1°, is out of the range of inclinations suggested for stars with UX-Orionis-like variability when no grain growth has occurred in the disk. The faintness of the disk, small disk size, and detection of the star despite the high inclination all indicate that the dust disk must have experienced grain growth and settling toward the disk midplane, which we verify by comparing the observed disk with model imagery from the literature.

  11. THE ERUPTION OF THE CANDIDATE YOUNG STAR ASASSN-15QI

    Energy Technology Data Exchange (ETDEWEB)

    Herczeg, Gregory J.; Dong, Subo; Chen, Ping; Jose, Jessy; Gully-Santiago, Michael [Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Lu 5, Haidian Qu, 100871 Beijing (China); Shappee, Benjamin J. [Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Hillenbrand, Lynne A. [Caltech, MC 105-24, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Kochanek, Christopher S.; Stanek, K. Z.; Holoien, Thomas W.-S. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Prieto, Jose L. [Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército 441, Santiago (Chile); Kaplan, Kyle [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States); Mairs, Steve; Johnstone, Doug [Department of Physics and Astronomy, University of Victoria, Victoria, BC, V8P 1A1 (Canada); Zhu, Zhaohuan [Department of Astrophysical Sciences, 4 Ivy Lane, Peyton Hall, Princeton University, Princeton, NJ 08544 (United States); Smith, Martin C. [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai 200030 (China); Bersier, David [Astrophysics Research Institute, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF (United Kingdom); Mulders, Gijs D. [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Filippenko, Alexei V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Ayani, Kazuya, E-mail: gherczeg1@gmail.com [Bisei Astronomical Observatory, 1723-70 Okura, Bisei, Ibara, Okayama 714-1411 (Japan); and others

    2016-11-10

    Outbursts on young stars are usually interpreted as accretion bursts caused by instabilities in the disk or the star–disk connection. However, some protostellar outbursts may not fit into this framework. In this paper, we analyze optical and near-infrared spectra and photometry to characterize the 2015 outburst of the probable young star ASASSN-15qi. The ∼3.5 mag brightening in the V band was sudden, with an unresolved rise time of less than one day. The outburst decayed exponentially by 1 mag for 6 days and then gradually back to the pre-outburst level after 200 days. The outburst is dominated by emission from ∼10,000 K gas. An explosive release of energy accelerated matter from the star in all directions, seen in a spectacular cool, spherical wind with a maximum velocity of 1000 km s{sup −1}. The wind and hot gas both disappeared as the outburst faded and the source returned to its quiescent F-star spectrum. Nebulosity near the star brightened with a delay of 10–20 days. Fluorescent excitation of H{sub 2} is detected in emission from vibrational levels as high as v = 11, also with a possible time delay in flux increase. The mid-infrared spectral energy distribution does not indicate the presence of warm dust emission, though the optical photospheric absorption and CO overtone emission could be related to a gaseous disk. Archival photometry reveals a prior outburst in 1976. Although we speculate about possible causes for this outburst, none of the explanations are compelling.

  12. VLA Observations of the Disk around the Young Brown Dwarf 2MASS J044427+2512

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, L. [Department of Physics and Astronomy, Rice University, 6100 Main Street, Houston, TX 77005 (United States); Rome, H. [The Kinkaid School, 201 Kinkaid School Drive, Houston, TX 77024 (United States); Pinilla, P. [Department of Astronomy Steward Observatory, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Facchini, S. [Max-Planck-Institut fur Extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching (Germany); Birnstiel, T. [University Observatory, Faculty of Physics, Ludwig-Maximilians-Universität München, Scheinerstr. 1, D-81679 Munich (Germany); Testi, L., E-mail: luca.ricci@rice.edu [European Southern Observatory (ESO) Headquarters, Karl-Schwarzschild-Str. 2, D-85748 Garching (Germany)

    2017-09-01

    We present multi-wavelength radio observations obtained with the VLA of the protoplanetary disk surrounding the young brown dwarf 2MASS J04442713+2512164 (2M0444) in the Taurus star-forming region. 2M0444 is the brightest known brown dwarf disk at millimeter wavelengths, making this an ideal target to probe radio emission from a young brown dwarf. Thermal emission from dust in the disk is detected at 6.8 and 9.1 mm, whereas the 1.36 cm measured flux is dominated by ionized gas emission. We combine these data with previous observations at shorter sub-mm and mm wavelengths to test the predictions of dust evolution models in gas-rich disks after adapting their parameters to the case of 2M0444. These models show that the radial drift mechanism affecting solids in a gaseous environment has to be either completely made inefficient, or significantly slowed down by very strong gas pressure bumps in order to explain the presence of mm/cm-sized grains in the outer regions of the 2M0444 disk. We also discuss the possible mechanisms for the origin of the ionized gas emission detected at 1.36 cm. The inferred radio luminosity for this emission is in line with the relation between radio and bolometric luminosity valid for for more massive and luminous young stellar objects, and extrapolated down to the very low luminosity of the 2M0444 brown dwarf.

  13. WL 17: A Young Embedded Transition Disk

    OpenAIRE

    Sheehan, Patrick D.; Eisner, Josh A.

    2017-01-01

    We present the highest spatial resolution ALMA observations to date of the Class I protostar WL 17 in the $\\rho$ Ophiuchus L1688 molecular cloud complex, which show that it has a 12 AU hole in the center of its disk. We consider whether WL 17 is actually a Class II disk being extincted by foreground material, but find that such models do not provide a good fit to the broadband SED and also require such high extinction that it would presumably arise from dense material close to the source such...

  14. Water Depletion in the Disk Atmosphere of Herbig AeBe Stars

    NARCIS (Netherlands)

    Fedele, D.; Pascucci, I.; Brittain, S.; Kamp, I.; Woitke, P.; Williams, J. P.; Dent, W. R. F.; Thi, W. -F.

    2011-01-01

    We present high-resolution (R similar to 100,000) L-band spectroscopy of 11 Herbig AeBe stars with circumstellar disks. The observations were obtained with the VLT/CRIRES to detect hot water and hydroxyl radical emission lines previously detected in disks around T Tauri stars. OH emission lines are

  15. THE DIFFERENT EVOLUTION OF GAS AND DUST IN DISKS AROUND SUN-LIKE AND COOL STARS

    NARCIS (Netherlands)

    Pascucci, I.; Apai, D.; Luhman, K.; Henning, Th.; Bouwman, J.; Meyer, M. R.; Lahuis, F.; Natta, A.

    2009-01-01

    Planet formation is profoundly impacted by the properties of protoplanetary disks and their central star. However, how disk properties vary with stellar parameters remains poorly known. Here, we present the first comprehensive, comparative Spitzer/IRS study of the dust and gas properties of disks

  16. Alma Survey of Circumstellar Disks in the Young Stellar Cluster IC 348

    Science.gov (United States)

    Ruíz-Rodríguez, D.; Cieza, L. A.; Williams, J. P.; Andrews, S. M.; Principe, D. A.; Caceres, C.; Canovas, H.; Casassus, S.; Schreiber, M. R.; Kastner, J. H.

    2018-05-01

    We present a 1.3 mm continuum survey of the young (2-3 Myr) stellar cluster IC 348, which lies at a distance of 310 pc, and is dominated by low-mass stars (M⋆ ˜ 0.1-0.6 M⊙). We observed 136 Class II sources (disks that are optically thick in the infrared) at 0.8″ (200 au) resolution with a 3σ sensitivity of ˜ 0.45 mJy (Mdust ˜ 1.3 M⊕). We detect 40 of the targets and construct a mm-continuum luminosity function. We compare the disk mass distribution in IC 348 to those of younger and older regions, taking into account the dependence on stellar mass. We find a clear evolution in disk masses from 1 to 5-10 Myr. The disk masses in IC 348 are significantly lower than those in Taurus (1-3 Myr) and Lupus (1-3 Myr), similar to those of Chamaleon I, (2-3 Myr) and σ Ori (3-5 Myr) and significantly higher than in Upper Scorpius (5-10 Myr). About 20 disks in our sample (˜5% of the cluster members) have estimated masses (dust + gas) >1 MJup and hence might be the precursors of giant planets in the cluster. Some of the most massive disks include transition objects with inner opacity holes based on their infrared SEDs. From a stacking analysis of the 96 non-detections, we find that these disks have a typical dust mass of just ≲ 0.4 M⊕, even though the vast majority of their infrared SEDs remain optically thick and show little signs of evolution. Such low-mass disks may be the precursors of the small rocky planets found by Kepler around M-type stars.

  17. Gravitational Instabilities in a Young Protoplanetary Disk with Embedded Objects

    Science.gov (United States)

    Desai, Karna M.; Steiman-Cameron, Thomas Y.; Durisen, Richard H.

    2018-01-01

    Gravitational Instabilities (GIs), a mechanism for angular momentum transport, are more prominent during the early phases of protoplanetary disk evolution when the disk is relatively massive. In my dissertation work, I performed radiative 3D hydrodynamics simulations (by employing the code, CHYMERA) and extensively studied GIs by inserting different objects in the ‘control disk’ (a 0.14 M⊙ protoplanetary disk around a 1 M⊙ star).Studying planetary migration helps us better constrain planet formation models. To study the migration of Jovian planets, in 9 separate simulations, each of the 0.3 MJ, 1 MJ, and 3 MJ planets was inserted near the Inner and Outer Lindblad Resonances and the Corotation Radius (CR) of the dominant GI-induced two-armed spiral density wave in the disk. I found the migration timescales to be longer in a GI-active disk when compared to laminar disks. The 3 MJ planet controls its own orbital evolution, while the migration of a 0.3 MJ planet is stochastic in nature. I defined a ‘critical mass’ as the mass of an arm of the dominant two-armed spiral density wave within the planet’s Hill diameter. Planets above this mass control their own destiny, and planets below this mass are scattered by the disk. This critical mass could provide a recipe for predicting the migration behavior of planets in GI-active disks.To understand the stochastic migration of low-mass planets, I performed a simulation of 240 zero-mass planet-tracers (hereafter, planets) by inserting these at a range of locations in the control disk (an equivalent of 240 simulations of Saturn-mass or lower-mass objects). I calculated a Diffusion Coefficient (3.6 AU2/ 1000 yr) to characterize the stochastic migration of planets. I analyzed the increase in the eccentricity dispersion and compared it with the observed exoplanet eccentricities. The diffusion of planets can be a slow process, resulting in the survival of small planetary cores. Stochastic migration of planets is

  18. Transitional Disks Associated with Intermediate-Mass Stars: Results of the SEEDS YSO Survey

    Science.gov (United States)

    Grady, C.; Fukagawa, M.; Maruta, Y.; Ohta, Y.; Wisniewski, J.; Hashimoto, J.; Okamoto, Y.; Momose, M.; Currie, T.; McElwain, M.; hide

    2014-01-01

    Protoplanetary disks are where planets form, grow, and migrate to produce the diversity of exoplanet systems we observe in mature systems. Disks where this process has advanced to the stage of gap opening, and in some cases central cavity formation, have been termed pre-transitional and transitional disks in the hope that they represent intermediate steps toward planetary system formation. Recent reviews have focussed on disks where the star is of solar or sub-solar mass. In contrast to the sub-millimeter where cleared central cavities predominate, at H-band some T Tauri star transitional disks resemble primordial disks in having no indication of clearing, some show a break in the radial surface brightness profile at the inner edge of the outer disk, while others have partially to fully cleared gaps or central cavities. Recently, the Meeus Group I Herbig stars, intermediate-mass PMS stars with IR spectral energy distributions often interpreted as flared disks, have been proposed to have transitional and pre-transitional disks similar to those associated with solar-mass PMS stars, based on thermal-IR imaging, and sub-millimeter interferometry. We have investigated their appearance in scattered light as part of the Strategic Exploration of Exoplanets and Disks with Subaru (SEEDS), obtaining H-band polarimetric imagery of 10 intermediate-mass stars with Meeus Group I disks. Augmented by other disks with imagery in the literature, the sample is now sufficiently large to explore how these disks are similar to and differ from T Tauri star disks. The disk morphologies seen in the Tauri disks are also found for the intermediate-mass star disks, but additional phenomena are found; a hallmark of these disks is remarkable individuality and diversity which does not simply correlate with disk mass or stellar properties, including age, including spiral arms in remnant envelopes, arms in the disk, asymmetrically and potentially variably shadowed outer disks, gaps, and one disk

  19. TRANSITIONAL DISKS AS SIGNPOSTS OF YOUNG, MULTIPLANET SYSTEMS

    International Nuclear Information System (INIS)

    Dodson-Robinson, Sarah E.; Salyk, Colette

    2011-01-01

    Although there has yet been no undisputed discovery of a still-forming planet embedded in a gaseous protoplanetary disk, the cleared inner holes of transitional disks may be signposts of young planets. Here, we show that the subset of accreting transitional disks with wide, optically thin inner holes of 15 AU or more can only be sculpted by multiple planets orbiting inside each hole. Multiplanet systems provide two key ingredients for explaining the origins of transitional disks. First, multiple planets can clear wide inner holes where single planets open only narrow gaps. Second, the confined, non-axisymmetric accretion flows produced by multiple planets provide a way for an arbitrary amount of mass transfer to occur through an apparently optically thin hole without overproducing infrared excess flux. Rather than assuming that the gas and dust in the hole are evenly and axisymmetrically distributed, one can construct an inner hole with apparently optically thin infrared fluxes by covering a macroscopic fraction of the hole's surface area with locally optically thick tidal tails. We also establish that other clearing mechanisms, such as photoevaporation, cannot explain our subset of accreting transitional disks with wide holes. Transitional disks are therefore high-value targets for observational searches for young planetary systems.

  20. EMBEDDED PROTOSTELLAR DISKS AROUND (SUB-)SOLAR STARS. II. DISK MASSES, SIZES, DENSITIES, TEMPERATURES, AND THE PLANET FORMATION PERSPECTIVE

    International Nuclear Information System (INIS)

    Vorobyov, Eduard I.

    2011-01-01

    We present basic properties of protostellar disks in the embedded phase of star formation (EPSF), which is difficult to probe observationally using available observational facilities. We use numerical hydrodynamics simulations of cloud core collapse and focus on disks formed around stars in the 0.03-1.0 M sun mass range. Our obtained disk masses scale near-linearly with the stellar mass. The mean and median disk masses in the Class 0 and I phases (M mean d,C0 = 0.12 M sun , M mdn d,C0 = 0.09 M sun and M mean d,CI = 0.18 M sun , M mdn d,CI = 0.15 M sun , respectively) are greater than those inferred from observations by (at least) a factor of 2-3. We demonstrate that this disagreement may (in part) be caused by the optically thick inner regions of protostellar disks, which do not contribute to millimeter dust flux. We find that disk masses and surface densities start to systematically exceed that of the minimum mass solar nebular for objects with stellar mass as low as M * = 0.05-0.1 M sun . Concurrently, disk radii start to grow beyond 100 AU, making gravitational fragmentation in the disk outer regions possible. Large disk masses, surface densities, and sizes suggest that giant planets may start forming as early as in the EPSF, either by means of core accretion (inner disk regions) or direct gravitational instability (outer disk regions), thus breaking a longstanding stereotype that the planet formation process begins in the Class II phase.

  1. Spectral energy distributions of T Tauri stars - disk flaring and limits on accretion

    International Nuclear Information System (INIS)

    Kenyon, S.J.; Hartmann, L.

    1987-01-01

    The Adams et al. (1987) conclusion that much of the IR excess emission in the spectral energy distribution of T Tauri stars arises from reprocessing of stellar radiation by a dusty circumstellar disk is presently supported by analyses conducted in light of various models of these stars' spectra. A low mass reprocessing disk can, however, produce these spectra as well as a massive accretion disk. The detection of possible boundary layer radiation in the optical and near-UV regions poses the strongest limits on accretion rates. Disk accretion in the T Tauri phase does not significantly modify stellar evolution. 85 references

  2. Fractional Yields Inferred from Halo and Thick Disk Stars

    Science.gov (United States)

    Caimmi, R.

    2013-12-01

    Linear [Q/H]-[O/H] relations, Q = Na, Mg, Si, Ca, Ti, Cr, Fe, Ni, are inferred from a sample (N=67) of recently studied FGK-type dwarf stars in the solar neighbourhood including different populations (Nissen and Schuster 2010, Ramirez et al. 2012), namely LH (N=24, low-α halo), HH (N=25, high-α halo), KD (N=16, thick disk), and OL (N=2, globular cluster outliers). Regression line slope and intercept estimators and related variance estimators are determined. With regard to the straight line, [Q/H]=a_{Q}[O/H]+b_{Q}, sample stars are displayed along a "main sequence", [Q,O] = [a_{Q},b_{Q},Δ b_{Q}], leaving aside the two OL stars, which, in most cases (e.g. Na), lie outside. The unit slope, a_{Q}=1, implies Q is a primary element synthesised via SNII progenitors in the presence of a universal stellar initial mass function (defined as simple primary element). In this respect, Mg, Si, Ti, show hat a_{Q}=1 within ∓2hatσ_ {hat a_{Q}}; Cr, Fe, Ni, within ∓3hatσ_{hat a_{Q}}; Na, Ca, within ∓ rhatσ_{hat a_{Q}}, r>3. The empirical, differential element abundance distributions are inferred from LH, HH, KD, HA = HH + KD subsamples, where related regression lines represent their theoretical counterparts within the framework of simple MCBR (multistage closed box + reservoir) chemical evolution models. Hence, the fractional yields, hat{p}_{Q}/hat{p}_{O}, are determined and (as an example) a comparison is shown with their theoretical counterparts inferred from SNII progenitor nucleosynthesis under the assumption of a power-law stellar initial mass function. The generalized fractional yields, C_{Q}=Z_{Q}/Z_{O}^{a_{Q}}, are determined regardless of the chemical evolution model. The ratio of outflow to star formation rate is compared for different populations in the framework of simple MCBR models. The opposite situation of element abundance variation entirely due to cosmic scatter is also considered under reasonable assumptions. The related differential element abundance

  3. MOLECULAR GAS AND STAR FORMATION IN NEARBY DISK GALAXIES

    International Nuclear Information System (INIS)

    Leroy, Adam K.; Munoz-Mateos, Juan-Carlos; Walter, Fabian; Sandstrom, Karin; Meidt, Sharon; Rix, Hans-Walter; Schinnerer, Eva; Schruba, Andreas; Bigiel, Frank; Bolatto, Alberto; Brinks, Elias; De Blok, W. J. G.; Rosolowsky, Erik; Schuster, Karl-Friedrich; Usero, Antonio

    2013-01-01

    We compare molecular gas traced by 12 CO (2-1) maps from the HERACLES survey, with tracers of the recent star formation rate (SFR) across 30 nearby disk galaxies. We demonstrate a first-order linear correspondence between Σ mol and Σ SFR but also find important second-order systematic variations in the apparent molecular gas depletion time, τ dep mol =Σ mol /Σ SFR . At the 1 kpc common resolution of HERACLES, CO emission correlates closely with many tracers of the recent SFR. Weighting each line of sight equally, using a fixed α CO equivalent to the Milky Way value, our data yield a molecular gas depletion time, τ dep mol =Σ mol /Σ SFR ∼2.2 Gyr with 0.3 dex 1σ scatter, in very good agreement with recent literature data. We apply a forward-modeling approach to constrain the power-law index, N, that relates the SFR surface density and the molecular gas surface density, Σ SFR ∝Σ mol N . We find N = 1 ± 0.15 for our full data set with some scatter from galaxy to galaxy. This also agrees with recent work, but we caution that a power-law treatment oversimplifies the topic given that we observe correlations between τ dep mol and other local and global quantities. The strongest of these are a decreased τ dep mol in low-mass, low-metallicity galaxies and a correlation of the kpc-scale τ dep mol with dust-to-gas ratio, D/G. These correlations can be explained by a CO-to-H 2 conversion factor (α CO ) that depends on dust shielding, and thus D/G, in the theoretically expected way. This is not a unique interpretation, but external evidence of conversion factor variations makes this the most conservative explanation of the strongest observed τ dep mol trends. After applying a D/G-dependent α CO , some weak correlations between τ dep mol and local conditions persist. In particular, we observe lower τ dep mol and enhanced CO excitation associated with nuclear gas concentrations in a subset of our targets. These appear to reflect real enhancements in the

  4. PANCHROMATIC HUBBLE ANDROMEDA TREASURY. XVI. STAR CLUSTER FORMATION EFFICIENCY AND THE CLUSTERED FRACTION OF YOUNG STARS

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, L. Clifton; Sandstrom, Karin [Center for Astrophysics and Space Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Seth, Anil C. [Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112 (United States); Dalcanton, Julianne J.; Beerman, Lori C.; Lewis, Alexia R.; Weisz, Daniel R.; Williams, Benjamin F. [Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195 (United States); Fouesneau, Morgan [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany); Bell, Eric F. [Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, MI 48109 (United States); Dolphin, Andrew E. [Raytheon Company, 1151 East Hermans Road, Tucson, AZ 85756 (United States); Larsen, Søren S. [Department of Astrophysics, IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen (Netherlands); Skillman, Evan D., E-mail: lcj@ucsd.edu [Minnesota Institute for Astrophysics, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455 (United States)

    2016-08-10

    We use the Panchromatic Hubble Andromeda Treasury survey data set to perform spatially resolved measurements of star cluster formation efficiency (Γ), the fraction of stellar mass formed in long-lived star clusters. We use robust star formation history and cluster parameter constraints, obtained through color–magnitude diagram analysis of resolved stellar populations, to study Andromeda’s cluster and field populations over the last ∼300 Myr. We measure Γ of 4%–8% for young, 10–100 Myr-old populations in M31. We find that cluster formation efficiency varies systematically across the M31 disk, consistent with variations in mid-plane pressure. These Γ measurements expand the range of well-studied galactic environments, providing precise constraints in an H i-dominated, low-intensity star formation environment. Spatially resolved results from M31 are broadly consistent with previous trends observed on galaxy-integrated scales, where Γ increases with increasing star formation rate surface density (Σ{sub SFR}). However, we can explain observed scatter in the relation and attain better agreement between observations and theoretical models if we account for environmental variations in gas depletion time ( τ {sub dep}) when modeling Γ, accounting for the qualitative shift in star formation behavior when transitioning from a H{sub 2}-dominated to a H i-dominated interstellar medium. We also demonstrate that Γ measurements in high Σ{sub SFR} starburst systems are well-explained by τ {sub dep}-dependent fiducial Γ models.

  5. Veiling and Accretion Around the Young Binary Stars S and VV Corona Australis

    Science.gov (United States)

    Sullivan, Kendall; Prato, Lisa; Avilez, Ian

    2018-01-01

    S CrA and VV CrA are two young binary star systems with separations of 170 AU and 250 AU, respectively, in the southern star-forming region Corona Australis. The spectral types of the four stars in these two systems are similar, approximately K7 to M1, hence the stellar masses are also similar. The study of young stars just emerging from their natal cloud cores at the very limits of observability allows us to probe the extreme environments in which planet formation begins to occur. Stars in this early evolutionary stage can have circumstellar or circumbinary disks, and sometimes remnants of the envelopes which surrounded them during the protostellar stage. Envelopes accrete onto disks and disks in turn accrete onto the central stars, triggering elevated continuum emission, line emission, outflows, and stellar winds. This violent stage marks the onset of the epoch of planet formation. Using high-resolution near-infrared, H-band spectroscopy from the Keck II telescope using the NIRSPEC instrument over 4-6 epochs, we are probing the chaotic environment surrounding the four stars in these systems. We determine the spectral types for VV CrA A and B for the first time, and examine the variable veiling and emission occurring around each of these stars. This research was supported in part by NSF grants AST-1461200 and AST-1313399.

  6. YOUNG STARS IN AN OLD BULGE: A NATURAL OUTCOME OF INTERNAL EVOLUTION IN THE MILKY WAY

    International Nuclear Information System (INIS)

    Ness, M.; Debattista, Victor P.; Cole, D. R.; Bensby, T.; Feltzing, S.; Roškar, R.; Johnson, J. A.; Freeman, K.

    2014-01-01

    The center of our disk galaxy, the Milky Way, is dominated by a boxy/peanut-shaped bulge. Numerous studies of the bulge based on stellar photometry have concluded that the bulge stars are exclusively old. The perceived lack of young stars in the bulge strongly constrains its likely formation scenarios, providing evidence that the bulge is a unique population that formed early and separately from the disk. However, recent studies of individual bulge stars using the microlensing technique have reported that they span a range of ages, emphasizing that the bulge may not be a monolithic structure. In this Letter we demonstrate that the presence of young stars that are located predominantly nearer to the plane is expected for a bulge that has formed from the disk via dynamical instabilities. Using an N-body+ smoothed particle hydrodynamics simulation of a disk galaxy forming out of gas cooling inside a dark matter halo and forming stars, we find a qualitative agreement between our model and the observations of younger metal-rich stars in the bulge. We are also able to partially resolve the apparent contradiction in the literature between results that argue for a purely old bulge population and those that show a population comprised of a range in ages; the key is where to look

  7. Formation of Neutral Disk-Like Zone Around the Active Hot Stars in Symbiotic Binaries

    Directory of Open Access Journals (Sweden)

    Cariková Z.

    2012-06-01

    Full Text Available In this contribution we present the ionization structure in the enhanced wind from the hot star in symbiotic binaries during active phases. Rotation of the hot star leads to the compression of the outflowing material towards its equatorial plane. As a result, a neutral disk-like zone around the active hot star near the orbital plane is created. We modeled the compression of the wind and calculated the neutral disk-like zone in the enhanced wind from the hot star using the equation of the photoionization equilibrium. the presence of such neutral disk-like zones was also suggested on the basis of the modeling the spectral energy distribution of symbiotic binaries. We confront the calculated ionization structures in the enhanced wind from the hot star with the observations. the calculated column density of the neutral hydrogen atoms in the neutral disk-like zone and the emission measure of the ionized part of the wind from the hot star are in a good agreement with the quantities derived from observations during active phases. the presence of such neutral disk-like zones is transient, being connected with the active phases of symbiotic binaries. During quiescent phases, such neutral disk-like zones cannot be created because of insufficient mass-loss rate from the hot star.

  8. Hints for Small Disks around Very Low Mass Stars and Brown Dwarfs

    International Nuclear Information System (INIS)

    Hendler, Nathanial P.; Mulders, Gijs D.; Pascucci, Ilaria; Greenwood, Aaron; Kamp, Inga; Henning, Thomas; Ménard, François; Dent, William R. F.; II, Neal J. Evans

    2017-01-01

    The properties of disks around brown dwarfs and very low mass stars (hereafter VLMOs) provide important boundary conditions on the process of planet formation and inform us about the numbers and masses of planets than can form in this regime. We use the Herschel Space Observatory PACS spectrometer to measure the continuum and [O i] 63 μ m line emission toward 11 VLMOs with known disks in the Taurus and Chamaeleon I star-forming regions. We fit radiative transfer models to the spectral energy distributions of these sources. Additionally, we carry out a grid of radiative transfer models run in a regime that connects the luminosity of our sources with brighter T Tauri stars. We find that VLMO disks with sizes 1.3–78 au, smaller than typical T Tauri disks, fit well the spectral energy distributions assuming that disk geometry and dust properties are stellar mass independent. Reducing the disk size increases the disk temperature, and we show that VLMOs do not follow previously derived disk temperature–stellar luminosity relationships if the disk outer radius scales with stellar mass. Only 2 out of 11 sources are detected in [O i] despite a better sensitivity than was achieved for T Tauri stars, suggesting that VLMO disks are underluminous. Using thermochemical models, we show that smaller disks can lead to the unexpected [O i] 63 μ m nondetections in our sample. The disk outer radius is an important factor in determining the gas and dust observables. Hence, spatially resolved observations with ALMA—to establish if and how disk radii scale with stellar mass—should be pursued further.

  9. Hints for Small Disks around Very Low Mass Stars and Brown Dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Hendler, Nathanial P.; Mulders, Gijs D.; Pascucci, Ilaria [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Greenwood, Aaron; Kamp, Inga [Kapteyn Astronomical Institute, University of Groningen, Postbus 800, 9700 AV Groningen (Netherlands); Henning, Thomas [Max Planck Institute for Astronomy, Konigstuhl 17, D-69117 Heidelberg (Germany); Ménard, François [Univ. Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble (France); Dent, William R. F. [Department of Engineering, Atacama Large Millimeter/submillimeter Array (ALMA) Santiago Central Offices, Alonso de Córdova 3107, Vitacura, Casilla 763 0355, Santiago (Chile); II, Neal J. Evans, E-mail: equant@lpl.arizona.edu [Department of Astronomy, The University of Texas at Austin, Austin, TX 78712 (United States)

    2017-06-01

    The properties of disks around brown dwarfs and very low mass stars (hereafter VLMOs) provide important boundary conditions on the process of planet formation and inform us about the numbers and masses of planets than can form in this regime. We use the Herschel Space Observatory PACS spectrometer to measure the continuum and [O i] 63 μ m line emission toward 11 VLMOs with known disks in the Taurus and Chamaeleon I star-forming regions. We fit radiative transfer models to the spectral energy distributions of these sources. Additionally, we carry out a grid of radiative transfer models run in a regime that connects the luminosity of our sources with brighter T Tauri stars. We find that VLMO disks with sizes 1.3–78 au, smaller than typical T Tauri disks, fit well the spectral energy distributions assuming that disk geometry and dust properties are stellar mass independent. Reducing the disk size increases the disk temperature, and we show that VLMOs do not follow previously derived disk temperature–stellar luminosity relationships if the disk outer radius scales with stellar mass. Only 2 out of 11 sources are detected in [O i] despite a better sensitivity than was achieved for T Tauri stars, suggesting that VLMO disks are underluminous. Using thermochemical models, we show that smaller disks can lead to the unexpected [O i] 63 μ m nondetections in our sample. The disk outer radius is an important factor in determining the gas and dust observables. Hence, spatially resolved observations with ALMA—to establish if and how disk radii scale with stellar mass—should be pursued further.

  10. Star Formation of Merging Disk Galaxies with AGN Feedback Effects

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jongwon; Smith, Rory; Yi, Sukyoung K., E-mail: jw.park@yonsei.ac.kr [Department of Astronomy and Yonsei University Observatory, Yonsei University, Seoul 03722 (Korea, Republic of)

    2017-08-20

    Using a numerical hydrodynamics code, we perform various idealized galaxy merger simulations to study the star formation (SF) of two merging disk galaxies. Our simulations include gas accretion onto supermassive black holes and active galactic nucleus (AGN) feedback. By comparing AGN simulations with those without AGNs, we attempt to understand when the AGN feedback effect is significant. Using ∼70 simulations, we investigate SF with the AGN effect in mergers with a variety of mass ratios, inclinations, orbits, galaxy structures, and morphologies. Using these merger simulations with AGN feedback, we measure merger-driven SF using the burst efficiency parameter introduced by Cox et al. We confirm previous studies which demonstrated that, in galaxy mergers, AGN suppresses SF more efficiently than in isolated galaxies. However, we also find that the effect of AGNs on SF is larger in major than in minor mergers. In minor merger simulations with different primary bulge-to-total ratios, the effect of bulge fraction on the merger-driven SF decreases due to AGN feedback. We create models of Sa-, Sb-, and Sc-type galaxies and compare their SF properties while undergoing mergers. With the current AGN prescriptions, the difference in merger-driven SF is not as pronounced as in the recent observational study of Kaviraj. We discuss the implications of this discrepancy.

  11. Star Formation of Merging Disk Galaxies with AGN Feedback Effects

    International Nuclear Information System (INIS)

    Park, Jongwon; Smith, Rory; Yi, Sukyoung K.

    2017-01-01

    Using a numerical hydrodynamics code, we perform various idealized galaxy merger simulations to study the star formation (SF) of two merging disk galaxies. Our simulations include gas accretion onto supermassive black holes and active galactic nucleus (AGN) feedback. By comparing AGN simulations with those without AGNs, we attempt to understand when the AGN feedback effect is significant. Using ∼70 simulations, we investigate SF with the AGN effect in mergers with a variety of mass ratios, inclinations, orbits, galaxy structures, and morphologies. Using these merger simulations with AGN feedback, we measure merger-driven SF using the burst efficiency parameter introduced by Cox et al. We confirm previous studies which demonstrated that, in galaxy mergers, AGN suppresses SF more efficiently than in isolated galaxies. However, we also find that the effect of AGNs on SF is larger in major than in minor mergers. In minor merger simulations with different primary bulge-to-total ratios, the effect of bulge fraction on the merger-driven SF decreases due to AGN feedback. We create models of Sa-, Sb-, and Sc-type galaxies and compare their SF properties while undergoing mergers. With the current AGN prescriptions, the difference in merger-driven SF is not as pronounced as in the recent observational study of Kaviraj. We discuss the implications of this discrepancy.

  12. Metallicity Distribution of Disk Stars and the Formation History of the Milky Way

    Science.gov (United States)

    Toyouchi, Daisuke; Chiba, Masashi

    2018-03-01

    We investigate the formation history of the stellar disk component in the Milky Way (MW) based on our new chemical evolution model. Our model considers several fundamental baryonic processes, including gas infall, reaccretion of outflowing gas, and radial migration of disk stars. Each of these baryonic processes in the disk evolution is characterized by model parameters that are determined by fitting to various observational data of the stellar disk in the MW, including the radial dependence of the metallicity distribution function (MDF) of the disk stars, which has recently been derived in the APOGEE survey. We succeeded to obtain the best set of model parameters that well reproduces the observed radial dependences of the mean, standard deviation, skewness, and kurtosis of the MDFs for the disk stars. We analyze the basic properties of our model results in detail to gain new insights into the important baryonic processes in the formation history of the MW. One of the remarkable findings is that outflowing gas, containing many heavy elements, preferentially reaccretes onto the outer disk parts, and this recycling process of metal-enriched gas is a key ingredient for reproducing the observed narrower MDFs at larger radii. Moreover, important implications for the radial dependence of gas infall and the influence of radial migration on the MDFs are also inferred from our model calculation. Thus, the MDF of disk stars is a useful clue for studying the formation history of the MW.

  13. A CHARA ARRAY SURVEY OF CIRCUMSTELLAR DISKS AROUND NEARBY Be-TYPE STARS

    International Nuclear Information System (INIS)

    Touhami, Y.; Gies, D. R.; McAlister, H. A.; Matson, R.

    2013-01-01

    We report on a high angular resolution survey of circumstellar disks around 24 northern sky Be stars. The K-band continuum survey was made using the CHARA Array long baseline interferometer (baselines of 30-331 m). The interferometric visibilities were corrected for the flux contribution of stellar companions in those cases where the Be star is a member of a known binary or multiple system. For those targets with good (u, v) coverage, we used a four-parameter Gaussian elliptical disk model to fit the visibilities and to determine the axial ratio, position angle, K-band photospheric flux contribution, and angular diameter of the disk's major axis. For the other targets with relatively limited (u, v) coverage, we constrained the axial ratio, inclination angle, and/or disk position angle where necessary in order to resolve the degeneracy between possible model solutions. We also made fits of the ultraviolet and infrared spectral energy distributions (SEDs) to estimate the stellar angular diameter and infrared flux excess of each target. The mean ratio of the disk diameter (measured in K-band emission) to stellar diameter (from SED modeling) is 4.4 among the 14 cases where we reliably resolved the disk emission, a value which is generally lower than the disk size ratio measured in the higher opacity Hα emission line. We estimated the equatorial rotational velocity from the projected rotational velocity and disk inclination for 12 stars, and most of these stars rotate close to or at the critical rotational velocity.

  14. SPIN EVOLUTION OF ACCRETING YOUNG STARS. II. EFFECT OF ACCRETION-POWERED STELLAR WINDS

    International Nuclear Information System (INIS)

    Matt, Sean P.; Pinzón, Giovanni; Greene, Thomas P.; Pudritz, Ralph E.

    2012-01-01

    We present a model for the rotational evolution of a young, solar-mass star interacting magnetically with an accretion disk. As in a previous paper (Paper I), the model includes changes in the star's mass and radius as it descends the Hayashi track, a decreasing accretion rate, and a prescription for the angular momentum transfer between the star and disk. Paper I concluded that, for the relatively strong magnetic coupling expected in real systems, additional processes are necessary to explain the existence of slowly rotating pre-main-sequence stars. In the present paper, we extend the stellar spin model to include the effect of a spin-down torque that arises from an accretion-powered stellar wind (APSW). For a range of magnetic field strengths, accretion rates, initial spin rates, and mass outflow rates, the modeled stars exhibit rotation periods within the range of 1-10 days in the age range of 1-3 Myr. This range coincides with the bulk of the observed rotation periods, with the slow rotators corresponding to stars with the lowest accretion rates, strongest magnetic fields, and/or highest stellar wind mass outflow rates. We also make a direct, quantitative comparison between the APSW scenario and the two types of disk-locking models (namely, the X-wind and Ghosh and Lamb type models) and identify some remaining theoretical issues for understanding young star spins.

  15. MASS TRANSPORT AND TURBULENCE IN GRAVITATIONALLY UNSTABLE DISK GALAXIES. II. THE EFFECTS OF STAR FORMATION FEEDBACK

    Energy Technology Data Exchange (ETDEWEB)

    Goldbaum, Nathan J. [National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, 1205 W. Clark St., Urbana, IL 61801 (United States); Krumholz, Mark R. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2601 (Australia); Forbes, John C., E-mail: ngoldbau@illinois.edu [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2016-08-10

    Self-gravity and stellar feedback are capable of driving turbulence and transporting mass and angular momentum in disk galaxies, but the balance between them is not well understood. In the previous paper in this series, we showed that gravity alone can drive turbulence in galactic disks, regulate their Toomre Q parameters to ∼1, and transport mass inwards at a rate sufficient to fuel star formation in the centers of present-day galaxies. In this paper we extend our models to include the effects of star formation feedback. We show that feedback suppresses galaxies’ star formation rates by a factor of ∼5 and leads to the formation of a multi-phase atomic and molecular interstellar medium. Both the star formation rate and the phase balance produced in our simulations agree well with observations of nearby spirals. After our galaxies reach steady state, we find that the inclusion of feedback actually lowers the gas velocity dispersion slightly compared to the case of pure self-gravity, and also slightly reduces the rate of inward mass transport. Nevertheless, we find that, even with feedback included, our galactic disks self-regulate to Q ∼ 1, and transport mass inwards at a rate sufficient to supply a substantial fraction of the inner disk star formation. We argue that gravitational instability is therefore likely to be the dominant source of turbulence and transport in galactic disks, and that it is responsible for fueling star formation in the inner parts of galactic disks over cosmological times.

  16. Subaru/SCExAO First-light Direct Imaging of a Young Debris Disk around HD 36546

    International Nuclear Information System (INIS)

    Currie, Thayne; Guyon, Olivier; Kudo, Tomoyuki; Jovanovic, Nemanja; Lozi, Julien; Tamura, Motohide; Kuzuhara, Masayuki; Schlieder, Joshua E.; Brandt, Timothy D.; Kuhn, Jonas; Serabyn, Eugene; Singh, Garima; Janson, Markus; Carson, Joseph; Groff, Tyler; Kasdin, N. Jeremy; McElwain, Michael W.; Grady, Carol; Uyama, Taichi; Akiyama, Eiji

    2017-01-01

    We present H -band scattered light imaging of a bright debris disk around the A0 star HD 36546 obtained from the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system with data recorded by the HiCIAO camera using the vector vortex coronagraph. SCExAO traces the disk from r ∼ 0.″3 to r ∼1″ (34–114 au). The disk is oriented in a near east–west direction (PA ∼ 75°), is inclined by i ∼ 70°–75°, and is strongly forward-scattering (g > 0.5). It is an extended disk rather than a sharp ring; a second, diffuse dust population extends from the disk’s eastern side. While HD 36546 intrinsic properties are consistent with a wide age range (t ∼ 1–250 Myr), its kinematics and analysis of coeval stars suggest a young age (3–10 Myr) and a possible connection to Taurus-Auriga’s star formation history. SCExAO’s planet-to-star contrast ratios are comparable to the first-light Gemini Planet Imager contrasts; for an age of 10 Myr, we rule out planets with masses comparable to HR 8799 b beyond a projected separation of 23 au. A massive icy planetesimal disk or an unseen super-Jovian planet at r > 20 au may explain the disk’s visibility. The HD 36546 debris disk may be the youngest debris disk yet imaged, is the first newly identified object from the now-operational SCExAO extreme AO system, is ideally suited for spectroscopic follow-up with SCExAO/CHARIS in 2017, and may be a key probe of icy planet formation and planet–disk interactions.

  17. Subaru/SCExAO First-light Direct Imaging of a Young Debris Disk around HD 36546

    Energy Technology Data Exchange (ETDEWEB)

    Currie, Thayne; Guyon, Olivier; Kudo, Tomoyuki; Jovanovic, Nemanja; Lozi, Julien [National Astronomical Observatory of Japan, Subaru Telescope, National Institutes of Natural Sciences, Hilo, HI 96720 (United States); Tamura, Motohide; Kuzuhara, Masayuki [Astrobiology Center, National Institutes of Natural Sciences, 2-21-1 Osawa, Mitaka, Tokyo (Japan); Schlieder, Joshua E. [IPAC-NExScI, Mail Code 100-22, Caltech, 1200 E. California Boulevard, Pasadena, CA 91125 (United States); Brandt, Timothy D. [Astrophysics Department, Institute for Advanced Study, Princeton, NJ (United States); Kuhn, Jonas [Institute for Astronomy, ETH-Zurich, Wolfgang-Pauli-Str. 27, 8093 Zurich (Switzerland); Serabyn, Eugene; Singh, Garima [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA (United States); Janson, Markus [Department of Astronomy, Stockholm University, AlbaNova University Center, SE-106 91 Stockholm (Sweden); Carson, Joseph [Department of Physics and Astronomy, College of Charleston, 66 George Street, Charleston, SC (United States); Groff, Tyler; Kasdin, N. Jeremy [Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ (United States); McElwain, Michael W.; Grady, Carol [Exoplanets and Stellar Astrophysics Laboratory, Code 667, NASA-Goddard Space Flight Center, Greenbelt, MD (United States); Uyama, Taichi [Department of Astronomy, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo (Japan); Akiyama, Eiji [Chile Observatory, National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo (Japan); and others

    2017-02-10

    We present H -band scattered light imaging of a bright debris disk around the A0 star HD 36546 obtained from the Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system with data recorded by the HiCIAO camera using the vector vortex coronagraph. SCExAO traces the disk from r ∼ 0.″3 to r ∼1″ (34–114 au). The disk is oriented in a near east–west direction (PA ∼ 75°), is inclined by i ∼ 70°–75°, and is strongly forward-scattering (g > 0.5). It is an extended disk rather than a sharp ring; a second, diffuse dust population extends from the disk’s eastern side. While HD 36546 intrinsic properties are consistent with a wide age range (t ∼ 1–250 Myr), its kinematics and analysis of coeval stars suggest a young age (3–10 Myr) and a possible connection to Taurus-Auriga’s star formation history. SCExAO’s planet-to-star contrast ratios are comparable to the first-light Gemini Planet Imager contrasts; for an age of 10 Myr, we rule out planets with masses comparable to HR 8799 b beyond a projected separation of 23 au. A massive icy planetesimal disk or an unseen super-Jovian planet at r > 20 au may explain the disk’s visibility. The HD 36546 debris disk may be the youngest debris disk yet imaged, is the first newly identified object from the now-operational SCExAO extreme AO system, is ideally suited for spectroscopic follow-up with SCExAO/CHARIS in 2017, and may be a key probe of icy planet formation and planet–disk interactions.

  18. Milky Way Tomography with K and M Dwarf Stars: The Vertical Structure of the Galactic Disk

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, Deborah; Gardner, Susan [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055 (United States); Yanny, Brian [Fermi National Accelerator Laboratory, Batavia, IL 60510 (United States)

    2017-07-10

    We use the number density distributions of K and M dwarf stars with vertical height from the Galactic disk, determined using observations from the Sloan Digital Sky Survey, to probe the structure of the Milky Way disk across the survey’s footprint. Using photometric parallax as a distance estimator we analyze a sample of several million disk stars in matching footprints above and below the Galactic plane, and we determine the location and extent of vertical asymmetries in the number counts in a variety of thin- and thick-disk subsamples in regions of some 200 square degrees within 2 kpc in vertical distance from the Galactic disk. These disk asymmetries present wave-like features as previously observed on other scales and at other distances from the Sun. We additionally explore the scale height of the disk and the implied offset of the Sun from the Galactic plane at different locations, noting that the scale height of the disk can differ significantly when measured using stars only above or only below the plane. Moreover, we compare the shape of the number density distribution in the north for different latitude ranges with a fixed range in longitude and find the shape to be sensitive to the selected latitude window. We explain why this may be indicative of a change in stellar populations in the latitude regions compared, possibly allowing access to the systematic metallicity difference between thin- and thick-disk populations through photometry.

  19. A parsec-scale optical jet from a massive young star in the Large Magellanic Cloud

    Science.gov (United States)

    McLeod, Anna F.; Reiter, Megan; Kuiper, Rolf; Klaassen, Pamela D.; Evans, Christopher J.

    2018-02-01

    Highly collimated parsec-scale jets, which are generally linked to the presence of an accretion disk, are commonly observed in low-mass young stellar objects. In the past two decades, a few of these jets have been directly (or indirectly) observed from higher-mass (larger than eight solar masses) young stellar objects, adding to the growing evidence that disk-mediated accretion also occurs in high-mass stars, the formation mechanism of which is still poorly understood. Of the observed jets from massive young stars, none is in the optical regime (massive young stars are typically highly obscured by their natal material), and none is found outside of the Milky Way. Here we report observations of HH 1177, an optical ionized jet that originates from a massive young stellar object located in the Large Magellanic Cloud. The jet is highly collimated over its entire measured length of at least ten parsecs and has a bipolar geometry. The presence of a jet indicates ongoing, disk-mediated accretion and, together with the high degree of collimation, implies that this system is probably formed through a scaled-up version of the formation mechanism of low-mass stars. We conclude that the physics that govern jet launching and collimation is independent of stellar mass.

  20. A parsec-scale optical jet from a massive young star in the Large Magellanic Cloud.

    Science.gov (United States)

    McLeod, Anna F; Reiter, Megan; Kuiper, Rolf; Klaassen, Pamela D; Evans, Christopher J

    2018-02-15

    Highly collimated parsec-scale jets, which are generally linked to the presence of an accretion disk, are commonly observed in low-mass young stellar objects. In the past two decades, a few of these jets have been directly (or indirectly) observed from higher-mass (larger than eight solar masses) young stellar objects, adding to the growing evidence that disk-mediated accretion also occurs in high-mass stars, the formation mechanism of which is still poorly understood. Of the observed jets from massive young stars, none is in the optical regime (massive young stars are typically highly obscured by their natal material), and none is found outside of the Milky Way. Here we report observations of HH 1177, an optical ionized jet that originates from a massive young stellar object located in the Large Magellanic Cloud. The jet is highly collimated over its entire measured length of at least ten parsecs and has a bipolar geometry. The presence of a jet indicates ongoing, disk-mediated accretion and, together with the high degree of collimation, implies that this system is probably formed through a scaled-up version of the formation mechanism of low-mass stars. We conclude that the physics that govern jet launching and collimation is independent of stellar mass.

  1. The Star Formation Histories of Disk Galaxies: The Live, the Dead, and the Undead

    Energy Technology Data Exchange (ETDEWEB)

    Oemler, Augustus Jr; Dressler, Alan [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101-1292 (United States); Abramson, Louis E. [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Los Angeles CA 90095-1547 (United States); Gladders, Michael D. [Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637 (United States); Poggianti, Bianca M. [INAF-Osservatorio Astronomico di Padova, vicolo dell’Osservatorio 5, I-35122 Padova (Italy); Vulcani, Benedetta [School of Physics, The University of Melbourne, VIC 3010 (Australia)

    2017-07-20

    We reexamine the properties of local galaxy populations using published surveys of star formation, structure, and gas content. After recalibrating star formation measures, we are able to reliably measure specific star formation rates well below that of the so-called “main sequence” of star formation versus mass. We find an unexpectedly large population of quiescent galaxies with star formation rates intermediate between the main sequence and passive populations and with disproportionately high star formation rates. We demonstrate that a tight main sequence is a natural outcome of most histories of star formation and has little astrophysical significance but that the quiescent population requires additional astrophysics to explain its properties. Using a simple model for disk evolution based on the observed dependence of star formation on gas content in local galaxies, and assuming simple histories of cold gas inflow, we show that the evolution of galaxies away from the main sequence can be attributed to the depletion of gas due to star formation after a cutoff of gas inflow. The quiescent population is composed of galaxies in which the density of disk gas has fallen below a threshold for star formation probably set by disk stability. The evolution of galaxies beyond the quiescent state to gas exhaustion and the end of star formation requires another process, probably wind-driven mass loss. The environmental dependence of the three galaxy populations is consistent with recent numerical modeling, which indicates that cold gas inflows into galaxies are truncated at earlier epochs in denser environments.

  2. Understanding young stars - A history

    International Nuclear Information System (INIS)

    Stahler, S.W.

    1988-01-01

    The history of pre-main-sequence theory is briefly reviewed. The paper of Henyey et al. (1955) is seen as an important transitional work, one which abandoned previous simplifying assumptions yet failed to incorporate newer insights into the surface structure of late-type stars. The subsequent work of Hayashi and his contemporaries is outlined, with an emphasis on the underlying physical principles. Finally, the recent impact of protostar theory is discussed, and speculations are offered on future developments. 56 references

  3. MOLECULAR GAS AND STAR FORMATION IN NEARBY DISK GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Leroy, Adam K.; Munoz-Mateos, Juan-Carlos [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Walter, Fabian; Sandstrom, Karin; Meidt, Sharon; Rix, Hans-Walter; Schinnerer, Eva [Max Planck Institute fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Schruba, Andreas [California Institute for Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Bigiel, Frank [Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Bolatto, Alberto [Department of Astronomy, University of Maryland, College Park, MD (United States); Brinks, Elias [Centre for Astrophysics Research, University of Hertfordshire, Hatfield AL10 9AB (United Kingdom); De Blok, W. J. G. [Astrophysics, Cosmology and Gravity Centre, Department of Astronomy, University of Cape Town, Private Bag X3, Rondebosch 7701 (South Africa); Rosolowsky, Erik [University of British Columbia, Okanagan Campus, Kelowna, BC (Canada); Schuster, Karl-Friedrich [IRAM, 300 rue de la Piscine, F-38406 St. Martin d' Heres (France); Usero, Antonio [Observatorio Astronomico Nacional, C/ Alfonso XII, 3, E-28014 Madrid (Spain)

    2013-08-01

    We compare molecular gas traced by {sup 12}CO (2-1) maps from the HERACLES survey, with tracers of the recent star formation rate (SFR) across 30 nearby disk galaxies. We demonstrate a first-order linear correspondence between {Sigma}{sub mol} and {Sigma}{sub SFR} but also find important second-order systematic variations in the apparent molecular gas depletion time, {tau}{sub dep}{sup mol}={Sigma}{sub mol}/{Sigma}{sub SFR}. At the 1 kpc common resolution of HERACLES, CO emission correlates closely with many tracers of the recent SFR. Weighting each line of sight equally, using a fixed {alpha}{sub CO} equivalent to the Milky Way value, our data yield a molecular gas depletion time, {tau}{sub dep}{sup mol}={Sigma}{sub mol}/{Sigma}{sub SFR}{approx}2.2 Gyr with 0.3 dex 1{sigma} scatter, in very good agreement with recent literature data. We apply a forward-modeling approach to constrain the power-law index, N, that relates the SFR surface density and the molecular gas surface density, {Sigma}{sub SFR}{proportional_to}{Sigma}{sub mol}{sup N}. We find N = 1 {+-} 0.15 for our full data set with some scatter from galaxy to galaxy. This also agrees with recent work, but we caution that a power-law treatment oversimplifies the topic given that we observe correlations between {tau}{sub dep}{sup mol} and other local and global quantities. The strongest of these are a decreased {tau}{sub dep}{sup mol} in low-mass, low-metallicity galaxies and a correlation of the kpc-scale {tau}{sub dep}{sup mol} with dust-to-gas ratio, D/G. These correlations can be explained by a CO-to-H{sub 2} conversion factor ({alpha}{sub CO}) that depends on dust shielding, and thus D/G, in the theoretically expected way. This is not a unique interpretation, but external evidence of conversion factor variations makes this the most conservative explanation of the strongest observed {tau}{sub dep}{sup mol} trends. After applying a D/G-dependent {alpha}{sub CO}, some weak correlations between {tau}{sub dep

  4. Abundances of Copper and Zinc in Stars of the Galactic Thin and Thick Disks

    Science.gov (United States)

    Gorbaneva, T. I.; Mishenina, T. V.; Basak, N. Yu.; Soubiran, C.; Kovtyukh, V. V.

    The spectra of studied stars were obtained with the ELODIE spectrograph at the 1.93-m telescope of the Observatoire de Haute Provence (France). The determination of Cu and Zn abundances was carried out in LTE assumption by model atmosphere method, for Cu the hyperfine structure was taken into account. Cu and Zn abundance trends for thin and thick disk's stars are presented.

  5. An Unbiased Survey of 500 Nearby Stars for Debris Disks: A JCMT Legacy Program

    NARCIS (Netherlands)

    Matthews, B.C.; Greaves, J.S.; Holland, W.S.; Wyatt, M.C.; Barlow, M.J.; Bastien, P.; Beichman, C.A.; Biggs, A.; Butner, H.M.; Dent, W.R.F.; Francesco, J. Di; Dominik, C.; Fissel, L.; Friberg, P.; Gibb, A.G.; Halpern, M.; Ivison, R.J.; Jayawardhana, R.; Jenness, T.; Johnstone, D.; Kavelaars, J.J.; Marshall, J.L.; Phillips, N.; Schieven, G.; Snellen, I.A.G.; Walker, H.J.; Ward-Thompson, D.; Weferling, B.; White, G.J.; Yates, J.; Zhu, M.; Craigon, A.

    2007-01-01

    We present the scientific motivation and observing plan for an upcoming detection survey for debris disks using the James Clerk Maxwell Telescope. The SCUBA-2 Unbiased Nearby Stars (SUNS) survey will observe 500 nearby main-sequence and subgiant stars (100 of each of the A, F, G, K, and M spectral

  6. DISK EVOLUTION IN THE THREE NEARBY STAR-FORMING REGIONS OF TAURUS, CHAMAELEON, AND OPHIUCHUS

    International Nuclear Information System (INIS)

    Furlan, E.; Watson, Dan M.; McClure, M. K.

    2009-01-01

    We analyze samples of Spitzer Infrared Spectrograph spectra of T Tauri stars in the Ophiuchus, Taurus, and Chamaeleon I star-forming regions, whose median ages lie in the <1-2 Myr range. The median mid-infrared spectra of objects in these three regions are similar in shape, suggesting, on average, similar disk structures. When normalized to the same stellar luminosity, the medians follow each other closely, implying comparable mid-infrared excess emission from the circumstellar disks. We use the spectral index between 13 and 31 μm and the equivalent width of the 10 μm silicate emission feature to identify objects whose disk configuration departs from that of a continuous, optically thick accretion disk. Transitional disks, whose steep 13-31 μm spectral slope and near-IR flux deficit reveal inner disk clearing, occur with about the same frequency of a few percent in all three regions. Objects with unusually large 10 μm equivalent widths are more common (20%-30%); they could reveal the presence of disk gaps filled with optically thin dust. Based on their medians and fraction of evolved disks, T Tauri stars in Taurus and Chamaeleon I are very alike. Disk evolution sets in early, since already the youngest region, the Ophiuchus core (L1688), has more settled disks with larger grains. Our results indicate that protoplanetary disks show clear signs of dust evolution at an age of a few Myr, even as early as ∼1 Myr, but age is not the only factor determining the degree of evolution during the first few million years of a disk's lifetime.

  7. Maser Emission Associated with Young High Mass Stars

    Science.gov (United States)

    Mahmoud, Khaled Abdalla Edris

    In this work the maser emission has been used to study the very early stage evolution of the young stars. The maser emission of OH molecule was searched for towards a sample of high mass protostellar objects using the Nançay and GBT telescopes. The sample of objects searched was selected to contain very young forming high mass stars. The results of this survey have been compared with previous H2O and CH3OH masers observations. Then MERLIN has been used to map the OH as well as H2O and CH3OH masers towards one of these sources in high angular resolution. The survey detected OH maser emission towards 63 objects with 37 new detections. There are 56 star forming regions and 7 OH/IR candidates. The detection of OH masers towards 26% of a sample of 217 sources should remove any doubt about the existence of OH maser emission towards these objects of this early evolutionary stage. Nearly half of the detected sources have OH fluxes rates and velocity range support the spatial association of OH and class II CH3OH masers as suggested by Caswell et al. [1995] and modelled by Cragg et al. [2002]. IRAS20126+4104 was mapped in the OH, water and methanol masers using MERLIN. The 1665-MHz OH, 22-GHz H2O and 6.7-GHz CH3OH masers are detected and all originate very close to the central source. The OH and methanol masers appear to trace part of the circumstellar disk around the central source. The positions and velocities of the OH masers are consistent with Keplerian rotation around a central mass of ˜5Msun. The water masers are offset from the OH and CH3OH masers and have significantly changed since they were last observed, but still appear to be associated outflow from the source. All the OH masers components are circular polarized, in some cases reaching 100 percent while some OH components also have low levels of linear polarization. We identified one Zeeman pair and the splitting of this pair indicate the presence of a magnetic field of strength ˜11 mG within ˜0.5" (850 AU

  8. A mysterious dust clump in a disk around an evolved binary star system.

    Science.gov (United States)

    Jura, M; Turner, J

    1998-09-10

    The discovery of planets in orbit around the pulsar PSR1257+12 shows that planets may form around post-main-sequence stars. Other evolved stars, such as HD44179 (an evolved star which is part of the binary system that has expelled the gas and dust that make the Red Rectangle nebula), possess gravitationally bound orbiting dust disks. It is possible that planets might form from gravitational collapse in such disks. Here we report high-angular-resolution observations at millimetre and submillimetre wavelengths of the dusk disk associated with the Red Rectangle. We find a dust clump with an estimated mass near that of Jupiter in the outer region of the disk. The clump is larger than our Solar System, and far beyond where planet formation would normally be expected, so its nature is at present unclear.

  9. MODELING CIRCUMSTELLAR DISKS OF B-TYPE STARS WITH OBSERVATIONS FROM THE PALOMAR TESTBED INTERFEROMETER

    International Nuclear Information System (INIS)

    Grzenia, B. J.; Tycner, C.; Jones, C. E.; Sigut, T. A. A.; Rinehart, S. A.; Van Belle, G. T.

    2013-01-01

    Geometrical (uniform disk) and numerical models were calculated for a set of B-emission (Be) stars observed with the Palomar Testbed Interferometer (PTI). Physical extents have been estimated for the disks of a total of 15 stars via uniform disk models. Our numerical non-LTE models used parameters for the B0, B2, B5, and B8 spectral classes and following the framework laid by previous studies, we have compared them to infrared K-band interferometric observations taken at PTI. This is the first time such an extensive set of Be stars observed with long-baseline interferometry has been analyzed with self-consistent non-LTE numerical disk models.

  10. NGC 1980 Is Not a Foreground Population of Orion: Spectroscopic Survey of Young Stars with Low Extinction in Orion A

    International Nuclear Information System (INIS)

    Fang, Min; Kim, Jinyoung Serena; Apai, Dániel; Pascucci, Ilaria; Zhang, Lan; Sicilia-Aguilar, Aurora; Alonso-Martínez, Miguel; Eiroa, Carlos; Wang, Hongchi

    2017-01-01

    We perform a spectroscopic survey of the foreground population in Orion A with MMT/Hectospec. We use these data, along with archival spectroscopic data and photometric data, to derive spectral types, extinction values, and masses for 691 stars. Using the Spitzer Space Telescope data, we characterize the disk properties of these sources. We identify 37 new transition disk (TD) objects, 1 globally depleted disk candidate, and 7 probable young debris disks. We discover an object with a mass of less than 0.018–0.030 M ⊙ , which harbors a flaring disk. Using the H α emission line, we characterize the accretion activity of the sources with disks, and confirm that the fraction of accreting TDs is lower than that of optically thick disks (46% ± 7% versus 73% ± 9%, respectively). Using kinematic data from the Sloan Digital Sky Survey and APOGEE INfrared Spectroscopy of the Young Nebulous Clusters program (IN-SYNC), we confirm that the foreground population shows similar kinematics to their local molecular clouds and other young stars in the same regions. Using the isochronal ages, we find that the foreground population has a median age of around 1–2 Myr, which is similar to that of other young stars in Orion A. Therefore, our results argue against the presence of a large and old foreground cluster in front of Orion A.

  11. NGC 1980 Is Not a Foreground Population of Orion: Spectroscopic Survey of Young Stars with Low Extinction in Orion A

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Min; Kim, Jinyoung Serena; Apai, Dániel [Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Pascucci, Ilaria [Department of Planetary Sciences, University of Arizona, 1629 East University Boulevard, Tucson, AZ 85721 (United States); Zhang, Lan [Key Lab of Optical Astronomy, National Astronomical Observatories, CAS, 20A Datun Road, Chaoyang District, 100012 Beijing (China); Sicilia-Aguilar, Aurora [SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, St. Andrews KY16 9SS (United Kingdom); Alonso-Martínez, Miguel; Eiroa, Carlos [Departamento de Fisica Teorica, Facultad de Ciencias, Universidad Autonoma de Madrid, E-28049 Cantoblanco, Madrid (Spain); Wang, Hongchi [Purple Mountain Observatory and Key Laboratory of Radio Astronomy, Chinese Academy of Sciences, 2 West Beijing Road, 210008 Nanjing (China)

    2017-04-01

    We perform a spectroscopic survey of the foreground population in Orion A with MMT/Hectospec. We use these data, along with archival spectroscopic data and photometric data, to derive spectral types, extinction values, and masses for 691 stars. Using the Spitzer Space Telescope data, we characterize the disk properties of these sources. We identify 37 new transition disk (TD) objects, 1 globally depleted disk candidate, and 7 probable young debris disks. We discover an object with a mass of less than 0.018–0.030 M {sub ⊙}, which harbors a flaring disk. Using the H α emission line, we characterize the accretion activity of the sources with disks, and confirm that the fraction of accreting TDs is lower than that of optically thick disks (46% ± 7% versus 73% ± 9%, respectively). Using kinematic data from the Sloan Digital Sky Survey and APOGEE INfrared Spectroscopy of the Young Nebulous Clusters program (IN-SYNC), we confirm that the foreground population shows similar kinematics to their local molecular clouds and other young stars in the same regions. Using the isochronal ages, we find that the foreground population has a median age of around 1–2 Myr, which is similar to that of other young stars in Orion A. Therefore, our results argue against the presence of a large and old foreground cluster in front of Orion A.

  12. Young stellar population and star formation history ofW4 HII region/Cluster Complex

    Science.gov (United States)

    Panwar, Neelam

    2018-04-01

    The HII region/cluster complex has been a subject of numerous investigations to study the feedback effect of massive stars on their surroundings. Massive stars not only alter the morphology of the parental molecular clouds, but also influence star formation, circumstellar disks and the mass function of low-mass stars in their vicinity. However, most of the studies of low-mass stellar content of the HII regions are limited only to the nearby regions. We study the star formation in the W4 HII region using deep optical observations obtained with the archival data from Canada - France - Hawaii Telescope, Two-Micron All Sky Survey, Spitzer, Herschel and Chandra. We investigate the spatial distribution of young stellar objects in the region, their association with the remnant molecular clouds, and search for the clustering to establish the sites of recent star formation. Our analysis suggests that the influence of massive stars on circumstellar disks is significant only to thei! r immediate neighborhood. The spatial correlation of the young stars with the distribution of gas and dust of the complex indicate that the clusters would have formed in a large filamentary cloud. The observing facilities at the 3.6-m Devasthal Optical Telescope (DOT), providing high-resolution spectral and imaging capabilities, will fulfill the major objectives in the study of HII regions.

  13. THE EFFECTS OF EPISODIC STAR FORMATION ON THE FUV-NUV COLORS OF STAR FORMING REGIONS IN OUTER DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, Kate L.; Van Zee, Liese [Department of Astronomy, Indiana University, Bloomington, IN 47405 (United States); Dowell, Jayce D., E-mail: barneskl@astro.indiana.edu, E-mail: vanzee@astro.indiana.edu, E-mail: jdowell@unm.edu [Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131 (United States)

    2013-09-20

    We run stellar population synthesis models to examine the effects of a recently episodic star formation history (SFH) on UV and Hα colors of star forming regions. Specifically, the SFHs we use are an episodic sampling of an exponentially declining star formation rate (SFR; τ model) and are intended to simulate the SFHs in the outer disks of spiral galaxies. To enable comparison between our models and observational studies of star forming regions in outer disks, we include in our models sensitivity limits that are based on recent deep UV and Hα observations in the literature. We find significant dispersion in the FUV-NUV colors of simulated star forming regions with frequencies of star formation episodes of 1 × 10{sup –8} to 4 × 10{sup –9} yr{sup –1}. The dispersion in UV colors is similar to that found in the outer disk of nearby spiral galaxies. As expected, we also find large variations in L{sub H{sub α}}/L{sub FUV}. We interpret our models within the context of inside-out disk growth, and find that a radially increasing τ and decreasing metallicity with an increasing radius will only produce modest FUV-NUV color gradients, which are significantly smaller than what is found for some nearby spiral galaxies. However, including moderate extinction gradients with our models can better match the observations with steeper UV color gradients. We estimate that the SFR at which the number of stars emitting FUV light becomes stochastic is ∼2 × 10{sup –6} M{sub ☉} yr{sup –1}, which is substantially lower than the SFR of many star forming regions in outer disks. Therefore, we conclude that stochasticity in the upper end of the initial mass function is not likely to be the dominant cause of dispersion in the FUV-NUV colors of star forming regions in outer disks. Finally, we note that if outer disks have had an episodic SFH similar to that used in this study, this should be taken into account when estimating gas depletion timescales and modeling chemical

  14. NEAR-INFRARED VARIABILITY IN YOUNG STARS IN CYGNUS OB7

    Energy Technology Data Exchange (ETDEWEB)

    Rice, Thomas S. [Department of Astronomy, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States); Wolk, Scott J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Aspin, Colin [Institute for Astronomy, University of Hawaii at Manoa, 640 N Aohoku Pl, Hilo, HI 96720 (United States)

    2012-08-10

    We present the first results from a 124 night J, H, K near-infrared monitoring campaign of the dark cloud L 1003 in Cygnus OB7, an active star-forming region. Using three seasons of UKIRT observations spanning 1.5 years, we obtained high-quality photometry on 9200 stars down to J = 17 mag, with photometric uncertainty better than 0.04 mag. On the basis of near-infrared excesses from disks, we identify 30 pre-main-sequence stars, including 24 which are newly discovered. We analyze those stars and find that the NIR excesses are significantly variable. All 9200 stars were monitored for photometric variability; among the field star population, {approx}160 exhibited near-infrared variability (1.7% of the sample). Of the 30 young stellar objects (YSOs), 28 of them (93%) are variable at a significant level. Of the 30 YSOs, twenty-five have near-infrared excess consistent with simple disk-plus-star classical T Tauri models. Nine of these (36%) drift in color space over the course of these observations and/or since Two Micron All Sky Survey observations such that they cross the boundary defining the NIR excess criteria; effectively, they have a transient near-infrared excess. Thus, time-series JHK observations can be used to obtain a more complete sample of disk-bearing stars than single-epoch JHK observations. About half of the YSOs have color-space variations parallel to either the classical T Tauri star locus or a hybrid track which includes the dust reddening trajectory. This indicates that the NIR variability in YSOs that possess accretion disks arises from a combination of variable extinction and changes in the inner accretion disk: either in accretion rate, central hole size, and/or the inclination of the inner disk. While some variability may be due to stellar rotation, the level of variability on the individual stars can exceed a magnitude. This is a strong empirical suggestion that protoplanetary disks are quite dynamic and exhibit more complex activity on short

  15. PROPERTIES OF BULGELESS DISK GALAXIES. II. STAR FORMATION AS A FUNCTION OF CIRCULAR VELOCITY

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Linda C. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Martini, Paul; Wong, Man-Hong [Department of Astronomy, Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Lisenfeld, Ute [Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, 18071 Granada (Spain); Boeker, Torsten [European Space Agency, Keplerlaan 1, 2200 AG Noordwijk (Netherlands); Schinnerer, Eva, E-mail: lwatson@cfa.harvard.edu [Max-Planck-Institut fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany)

    2012-06-01

    We study the relation between the surface density of gas and star formation rate in 20 moderately inclined, bulgeless disk galaxies (Sd-Sdm Hubble types) using CO(1-0) data from the IRAM 30 m telescope, H I emission line data from the VLA/EVLA, H{alpha} data from the MDM Observatory, and polycyclic aromatic hydrocarbon emission data derived from Spitzer IRAC observations. We specifically investigate the efficiency of star formation as a function of circular velocity (v{sub circ}). Previous work found that the vertical dust structure and disk stability of edge-on, bulgeless disk galaxies transition from diffuse dust lanes with large scale heights and gravitationally stable disks at v{sub circ} < 120 km s{sup -1} (M{sub *} {approx}< 10{sup 10} M{sub Sun }) to narrow dust lanes with small scale heights and gravitationally unstable disks at v{sub circ} > 120 km s{sup -1}. We find no transition in star formation efficiency ({Sigma}{sub SFR}/{Sigma}{sub Hi+H{sub 2}}) at v{sub circ} = 120 km s{sup -1} or at any other circular velocity probed by our sample (v{sub circ} = 46-190 km s{sup -1}). Contrary to previous work, we find no transition in disk stability at any circular velocity in our sample. Assuming our sample has the same dust structure transition as the edge-on sample, our results demonstrate that scale height differences in the cold interstellar medium of bulgeless disk galaxies do not significantly affect the molecular fraction or star formation efficiency. This may indicate that star formation is primarily affected by physical processes that act on smaller scales than the dust scale height, which lends support to local star formation models.

  16. Young star clusters in nearby molecular clouds

    Science.gov (United States)

    Getman, K. V.; Kuhn, M. A.; Feigelson, E. D.; Broos, P. S.; Bate, M. R.; Garmire, G. P.

    2018-06-01

    The SFiNCs (Star Formation in Nearby Clouds) project is an X-ray/infrared study of the young stellar populations in 22 star-forming regions with distances ≲ 1 kpc designed to extend our earlier MYStIX (Massive Young Star-Forming Complex Study in Infrared and X-ray) survey of more distant clusters. Our central goal is to give empirical constraints on cluster formation mechanisms. Using parametric mixture models applied homogeneously to the catalogue of SFiNCs young stars, we identify 52 SFiNCs clusters and 19 unclustered stellar structures. The procedure gives cluster properties including location, population, morphology, association with molecular clouds, absorption, age (AgeJX), and infrared spectral energy distribution (SED) slope. Absorption, SED slope, and AgeJX are age indicators. SFiNCs clusters are examined individually, and collectively with MYStIX clusters, to give the following results. (1) SFiNCs is dominated by smaller, younger, and more heavily obscured clusters than MYStIX. (2) SFiNCs cloud-associated clusters have the high ellipticities aligned with their host molecular filaments indicating morphology inherited from their parental clouds. (3) The effect of cluster expansion is evident from the radius-age, radius-absorption, and radius-SED correlations. Core radii increase dramatically from ˜0.08 to ˜0.9 pc over the age range 1-3.5 Myr. Inferred gas removal time-scales are longer than 1 Myr. (4) Rich, spatially distributed stellar populations are present in SFiNCs clouds representing early generations of star formation. An appendix compares the performance of the mixture models and non-parametric minimum spanning tree to identify clusters. This work is a foundation for future SFiNCs/MYStIX studies including disc longevity, age gradients, and dynamical modelling.

  17. A LARGE, MASSIVE, ROTATING DISK AROUND AN ISOLATED YOUNG STELLAR OBJECT

    International Nuclear Information System (INIS)

    Quanz, Sascha P.; Beuther, Henrik; Steinacker, Juergen; Linz, Hendrik; Krause, Oliver; Henning, Thomas; Birkmann, Stephan M.; Zhang Qizhou

    2010-01-01

    and the molecules' abundances are similar to those found in other circumstellar disks. We furthermore detected C 2 H toward the objects and discuss this finding in the context of star formation. Finally, we have performed radiative transfer modeling of the K-band scattered light image varying a disk plus outflow two-dimensional density profile and the stellar properties. The model approximately reproduces extent and location of the dark lane, and the basic appearance of the outflow. We discuss our findings in the context of circumstellar disks across all mass regimes and conclude that our discovery is an ideal laboratory to study the early phases in the evolution of massive circumstellar disks surrounding young stellar objects.

  18. CHEMICAL COMPOSITIONS OF THIN-DISK, HIGH-METALLICITY RED HORIZONTAL-BRANCH FIELD STARS

    International Nuclear Information System (INIS)

    Afşar, M.; Sneden, C.; For, B.-Q.

    2012-01-01

    We present a detailed abundance analysis and atmospheric parameters of 76 stars from a survey to identify field Galactic red horizontal-branch (RHB) stars. High-resolution echelle spectra (R ≅ 60,000, S/N ≥ 100) were obtained with the 2.7 m Harlan J. Smith Telescope at McDonald Observatory. The target stars were selected only by color and parallax information. Overall metallicities and relative abundances of proton-capture elements (C, N, O, Li), α-elements (Ca and Si), and neutron-capture elements (Eu and La) were determined by either equivalent width or synthetic spectrum analyses. We used CN features at the λλ7995-8040 region in order to determine the 12 C/ 13 C ratios of our targets. Investigation of the evolutionary stages, using spectroscopic T eff and log g values along with derived 12 C/ 13 C ratios, revealed the presence of 18 probable RHB stars in our sample. We also derived kinematics of the stars with available distance information. Taking into account both the kinematics and probable evolutionary stages, we conclude that our sample contains 5 thick-disk and 13 thin-disk RHB stars. Up until now, RHB stars have been considered as members of the thick disk, and were expected to have large space velocities and sub-solar metallicities. However, our sample is dominated by low-velocity solar-metallicity RHB stars; their existence cannot be easily explained with standard stellar evolution.

  19. The excess infrared emission of Herbig Ae/Be stars - Disks or envelopes?

    Science.gov (United States)

    Hartmann, Lee; Kenyon, Scott J.; Calvet, Nuria

    1993-01-01

    It is suggested that the near-IR emission in many Herbig Ae/Be stars arises in surrounding dusty envelopes, rather than circumstellar disks. It is shown that disks around Ae/Be stars are likely to remain optically thick at the required accretion rates. It is proposed that the IR excesses of many Ae/Be stars originate in surrounding dust nebulae instead of circumstellar disks. It is suggested that the near-IR emission of the envelope is enhanced by the same processes that produce anomalous strong continuum emission at temperatures of about 1000 K in reflection nebulae surrounding hot stars. This near-IR emission could be due to small grains transiently heated by UV photons. The dust envelopes could be associated with the primary star or a nearby companion star. Some Ae/Be stars show evidence for the 3.3-6.3-micron emission features seen in reflection nebulae around hot stars, which lends further support to this suggestion.

  20. DYNAMICAL CONSTRAINTS ON THE ORIGIN OF THE YOUNG B-STARS IN THE GALACTIC CENTER

    International Nuclear Information System (INIS)

    Perets, Hagai B.; Gualandris, Alessia

    2010-01-01

    Regular star formation is thought to be inhibited close to the massive black hole (MBH) in the Galactic center. Nevertheless, tens of young main-sequence B-stars have been observed in an isotropic distribution close to it. These stars are observed to have an apparently continuous distribution from very close to the MBH (<0.01 pc) and up to at least ∼0.5 pc, suggesting a common origin. Various models have been suggested for the formation of the B-stars closest to the MBH (<0.05 pc; the S-stars), typically involving the migration of these stars from their original birthplace to their currently observed position. Here, we explore the orbital phase space distribution of the B-stars throughout the central parsec expected from the various suggested models for the origin of the B-stars. We find that most of these models have difficulties in explaining, by themselves, both the population of the S-stars (<0.05 pc) and the population of the young B-stars further away (up to 0.5 pc). Most models grossly overpredict the number of B-stars up to 0.5 pc, given the observed number of S-stars. Such models include the intermediate-mass black hole assisted cluster inspiral scenario, Kozai-like perturbations by two disks, spiral density waves migration in a gaseous disk, and some of the eccentric disk instability models. We focus on one of the other models, the massive perturbers induced binary disruption, which is consistent with both the S-stars and the extended population of B-stars further away. For this model, we use analytical arguments and N-body simulations to provide further observational predictions. These could be compared with future observations to further support this model, constrain it, or refute it. These predictions include the radial distribution of the young B-stars, their eccentricity distribution, and its dependence on distance from the MBH (higher eccentricities at larger distances from the MBH), as well as less specific expectations regarding their mass

  1. THE VVV SURVEY REVEALS CLASSICAL CEPHEIDS TRACING A YOUNG AND THIN STELLAR DISK ACROSS THE GALAXY’S BULGE

    Energy Technology Data Exchange (ETDEWEB)

    Dékány, I. [Instituto Milenio de Astrofísica, Santiago (Chile); Minniti, D. [Departamento de Física, Facultad de Ciencias Exactas, Universidad Andres Bello, República 220, Santiago (Chile); Majaess, D. [Saint Mary’s University, Halifax, Nova Scotia (Canada); Zoccali, M.; Hajdu, G.; Catelan, M. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago (Chile); Alonso-García, J. [Unidad de Astronomía, Fac. Cs. Básicas, Universidad de Antofagasta, Avda. U. de Antofagasta 02800, Antofagasta (Chile); Gieren, W. [Departamento de Astronomía, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Borissova, J., E-mail: idekany@astro.puc.cl [Instituto de Física y Astronomía, Universidad de Valparaíso, Av. Gran Bretaña 1111, Valparaso (Chile)

    2015-10-20

    Solid insight into the physics of the inner Milky Way is key to understanding our Galaxy’s evolution, but extreme dust obscuration has historically hindered efforts to map the area along the Galactic mid-plane. New comprehensive near-infrared time-series photometry from the VVV Survey has revealed 35 classical Cepheids, tracing a previously unobserved component of the inner Galaxy, namely a ubiquitous inner thin disk of young stars along the Galactic mid-plane, traversing across the bulge. The discovered period (age) spread of these classical Cepheids implies a continuous supply of newly formed stars in the central region of the Galaxy over the last 100 million years.

  2. The atomic and molecular content of disks around very low-mass stars and brown dwarfs

    Energy Technology Data Exchange (ETDEWEB)

    Pascucci, I. [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Herczeg, G. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Carr, J. S. [Naval Research Laboratory, Code 7211, Washington, DC 20375 (United States); Bruderer, S., E-mail: pascucci@lpl.arizona.edu [Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse 1, D-85748 Garching (Germany)

    2013-12-20

    There is growing observational evidence that disk evolution is stellar-mass-dependent. Here, we show that these dependencies extend to the atomic and molecular content of disk atmospheres. We analyze a unique dataset of high-resolution Spitzer/IRS spectra from eight very low mass star and brown dwarf disks. We report the first detections of Ne{sup +}, H{sub 2}, CO{sub 2}, and tentative detections of H{sub 2}O toward these faint and low-mass disks. Two of our [Ne II] 12.81 μm emission lines likely trace the hot (≥5000 K) disk surface irradiated by X-ray photons from the central stellar/sub-stellar object. The H{sub 2} S(2) and S(1) fluxes are consistent with arising below the fully or partially ionized surface traced by the [Ne II] emission in gas at ∼600 K. We confirm the higher C{sub 2}H{sub 2}/HCN flux and column density ratio in brown dwarf disks previously noted from low-resolution IRS spectra. Our high-resolution spectra also show that the HCN/H{sub 2}O fluxes of brown dwarf disks are on average higher than those of T Tauri disks. Our LTE modeling hints that this difference extends to column density ratios if H{sub 2}O lines trace warm ≥600 K disk gas. These trends suggest that the inner regions of brown dwarf disks have a lower O/C ratio than those of T Tauri disks, which may result from a more efficient formation of non-migrating icy planetesimals. An O/C = 1, as inferred from our analysis, would have profound implications on the bulk composition of rocky planets that can form around very low mass stars and brown dwarfs.

  3. Disk

    NARCIS (Netherlands)

    P.A. Boncz (Peter); L. Liu (Lei); M. Tamer Özsu

    2008-01-01

    htmlabstractIn disk storage, data is recorded on planar, round and rotating surfaces (disks, discs, or platters). A disk drive is a peripheral device of a computer system, connected by some communication medium to a disk controller. The disk controller is a chip, typically connected to the CPU of

  4. The effect of an accretion disk on coherent pulsed emission from weakly magnetized neutron stars

    International Nuclear Information System (INIS)

    Asaoka, Ikuko; Hoshi, Reiun.

    1989-01-01

    Using a simple model for hot spots formed on the magnetic polar regions we calculate the X-ray pulse profiles expected from bright low-mass X-ray binaries. We assume that neutron stars in close binary systems are surrounded by accretion disks extending down in the vicinity of their surfaces. Even partial eclipses of a hot spot by the accretion disk change the coherent pulsed fraction and, in some cases, the phase of pulsations by almost 180deg. Coherent pulsations are clearly seen even for sufficiently compact model neutron stars, if the hot spots emit isotropic or fan-beam radiation. In the case of pencil-beam radiation, coherent pulsations are also seen if the cap-opening angle is less than ∼60deg, while the inclination angle is larger than 68deg. Gravitational lensing alone does not smear coherent pulsations in moderately weak magnetized neutron stars in the presence of an absorbing accretion disk. (author)

  5. Discussing the low fraction of disk-bearing T Tauri stars discovered near to the Sh2-296 nebula

    Science.gov (United States)

    Gregorio-Hetem, Jane

    2015-08-01

    A multiband study has been developed by our team in the direction of young star clusters associated to the Sh2-296 nebula aiming to unveil the star formation history of this galactic molecular cloud that shows a mixing of different age stellar groups. A sample of 58 pre-main sequence stars has been recently discovered by us in this region (Fernandes et al. 2015, MNRAS in press), based on optical spectral features. Only 41% of the sample shows evidence of IR excess revealing the presence of circumstellar disks. It is interesting to note that the targets were revealed by their strong X-ray emission, typically found in T Tauri stars (TTs) (Santos-Silva et al. 2015, in preparation) . In this case, it would be expected a larger number of disk-bearing stars and also the fraction of circumstellar emission (fc = Ldisk/Ltotal ) should be more significant in these objects. However, we verified that only 12% of the sample has fc > 30%. This low fraction is quite rare compared to most young star-forming regions, suggesting that some external factor has accelerated the disc dissipation. In the present work we explore the circumstellar structure of a subsample of 8 TTs associated to Sh2-296. The TTs were selected on the basis of their high circumstellar emission, which is estimated by SED fitting that uses near- to mid-IR data extracted from available catalogues (WISE, AKARI, MSX). The circumstellar characteristics are confronted to interstellar environment by comparing the stellar spatial distribution with 12CO maps (Nanten Survey, Fukui et al. ). Most of the TTs are projected against moderate molecular emission (33 Jy), but some of them are found in regions of lower levels of gas distribution (3.8 Jy). The similarities and differences found among the studied objects are discussed in order to better understand the formation and evolution of protostellar disks of the selected sample and their role in the star formation scenario nearby Sh2-296

  6. X-Ray Outburst from Young Star in McNeil's Nebula

    Science.gov (United States)

    2004-07-01

    Observations with NASA's Chandra X-ray Observatory captured an X-ray outburst from a young star, revealing a probable scenario for the intermittent brightening of the recently discovered McNeil's Nebula. It appears the interaction between the young star's magnetic field and an orbiting disk of gas can cause dramatic, episodic increases in the light from the star and disk, illuminating the surrounding gas. "The story of McNeil's Nebula is a wonderful example of the importance of serendipity in science," said Joel Kastner of the Rochester Institute of Technology in Rochester, New York, lead author of a paper in the July 22 issue of Nature describing the X-ray results. "Visible-light images were made of this region several months before Jay McNeil made his discovery, so it could be determined approximately when and by how much the star flared up to produce McNeil's Nebula." The small nebula, which lies in the constellation Orion about 1300 light years from Earth, was discovered with a 3-inch telescope by McNeil, an amateur astronomer from Paducah, Kentucky, in January 2004. In November 2002, a team led by Ted Simon of the Institute for Astronomy in Hawaii had observed the star-rich region with Chandra in search of young, X-ray emitting stars, and had detected several objects. Optical and infrared astronomers had, as part of independent surveys, also observed the region about a year later, in 2003. After the announcement of McNeil's discovery, optical, infrared and X-ray astronomers rushed to observe the region again. They found that a young star buried in the nebula had flared up, and was illuminating the nebula. This star was coincident with one of the X-ray sources discovered earlier by Simon. Chandra observations obtained by Kastner's group just after the optical outburst showed that the source had brightened fifty-fold in X-rays when compared to Simon's earlier observation. The visible-light eruption provides evidence that the cause of the X-ray outburst is the

  7. Photoionization Models for the Inner Gaseous Disks of Herbig Be Stars: Evidence against Magnetospheric Accretion?

    Energy Technology Data Exchange (ETDEWEB)

    Patel, P.; Sigut, T. A. A.; Landstreet, J. D., E-mail: ppatel54@uwo.ca [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada)

    2017-02-20

    We investigate the physical properties of the inner gaseous disks of three hot Herbig B2e stars, HD 76534, HD 114981, and HD 216629, by modeling CFHT-ESPaDOns spectra using non-LTE radiative transfer codes. We assume that the emission lines are produced in a circumstellar disk heated solely by photospheric radiation from the central star in order to test whether the optical and near-infrared emission lines can be reproduced without invoking magnetospheric accretion. The inner gaseous disk density was assumed to follow a simple power-law in the equatorial plane, and we searched for models that could reproduce observed lines of H i (H α and H β ), He i, Ca ii, and Fe ii. For the three stars, good matches were found for all emission line profiles individually; however, no density model based on a single power-law was able to reproduce all of the observed emission lines. Among the single power-law models, the one with the gas density varying as ∼10{sup −10}( R {sub *}/ R ){sup 3} g cm{sup −3} in the equatorial plane of a 25 R {sub *} (0.78 au) disk did the best overall job of representing the optical emission lines of the three stars. This model implies a mass for the H α -emitting portion of the inner gaseous disk of ∼10{sup −9} M {sub *}. We conclude that the optical emission line spectra of these HBe stars can be qualitatively reproduced by a ≈1 au, geometrically thin, circumstellar disk of negligible mass compared to the central star in Keplerian rotation and radiative equilibrium.

  8. Photoionization Models for the Inner Gaseous Disks of Herbig Be Stars: Evidence against Magnetospheric Accretion?

    International Nuclear Information System (INIS)

    Patel, P.; Sigut, T. A. A.; Landstreet, J. D.

    2017-01-01

    We investigate the physical properties of the inner gaseous disks of three hot Herbig B2e stars, HD 76534, HD 114981, and HD 216629, by modeling CFHT-ESPaDOns spectra using non-LTE radiative transfer codes. We assume that the emission lines are produced in a circumstellar disk heated solely by photospheric radiation from the central star in order to test whether the optical and near-infrared emission lines can be reproduced without invoking magnetospheric accretion. The inner gaseous disk density was assumed to follow a simple power-law in the equatorial plane, and we searched for models that could reproduce observed lines of H i (H α and H β ), He i, Ca ii, and Fe ii. For the three stars, good matches were found for all emission line profiles individually; however, no density model based on a single power-law was able to reproduce all of the observed emission lines. Among the single power-law models, the one with the gas density varying as ∼10 −10 ( R * / R ) 3 g cm −3 in the equatorial plane of a 25 R * (0.78 au) disk did the best overall job of representing the optical emission lines of the three stars. This model implies a mass for the H α -emitting portion of the inner gaseous disk of ∼10 −9 M * . We conclude that the optical emission line spectra of these HBe stars can be qualitatively reproduced by a ≈1 au, geometrically thin, circumstellar disk of negligible mass compared to the central star in Keplerian rotation and radiative equilibrium.

  9. THE MASS-INDEPENDENCE OF SPECIFIC STAR FORMATION RATES IN GALACTIC DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Abramson, Louis E.; Gladders, Michael D. [Department of Astronomy and Astrophysics and Kavli Institute for Cosmological Physics, The University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Kelson, Daniel D.; Dressler, Alan; Oemler, Augustus Jr. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Poggianti, Bianca [INAF-Osservatorio Astronomico di Padova, Vicolo Osservatorio 5, I-35122 Padova (Italy); Vulcani, Benedetta, E-mail: labramson@uchicago.edu [Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study, University of Tokyo, Kashiwa 277-8582 (Japan)

    2014-04-20

    The slope of the star formation rate/stellar mass relation (the SFR {sup M}ain Sequence{sup ;} SFR-M {sub *}) is not quite unity: specific star formation rates (SFR/M {sub *}) are weakly but significantly anti-correlated with M {sub *}. Here we demonstrate that this trend may simply reflect the well-known increase in bulge mass-fractions—portions of a galaxy not forming stars—with M {sub *}. Using a large set of bulge/disk decompositions and SFR estimates derived from the Sloan Digital Sky Survey, we show that re-normalizing SFR by disk stellar mass (sSFR{sub disk} ≡ SFR/M {sub *,} {sub disk}) reduces the M {sub *} dependence of SF efficiency by ∼0.25 dex per dex, erasing it entirely in some subsamples. Quantitatively, we find log sSFR{sub disk}-log M {sub *} to have a slope β{sub disk} in [ – 0.20, 0.00] ± 0.02 (depending on the SFR estimator and Main Sequence definition) for star-forming galaxies with M {sub *} ≥ 10{sup 10} M {sub ☉} and bulge mass-fractions B/T ≲ 0.6, generally consistent with a pure-disk control sample (β{sub control} = –0.05 ± 0.04). That (SFR/M {sub *,} {sub disk}) is (largely) independent of host mass for star-forming disks has strong implications for aspects of galaxy evolution inferred from any SFR-M {sub *} relation, including manifestations of ''mass quenching'' (bulge growth), factors shaping the star-forming stellar mass function (uniform dlog M {sub *}/dt for low-mass, disk-dominated galaxies), and diversity in star formation histories (dispersion in SFR(M {sub *}, t)). Our results emphasize the need to treat galaxies as composite systems—not integrated masses—in observational and theoretical work.

  10. PHOTOIONIZATION MODELS OF THE INNER GASEOUS DISK OF THE HERBIG BE STAR BD+65 1637

    Energy Technology Data Exchange (ETDEWEB)

    Patel, P.; Sigut, T. A. A.; Landstreet, J. D., E-mail: ppatel54@uwo.ca [Department of Physics and Astronomy, The University of Western Ontario, London, Ontario Canada N6A 3K7 (Canada)

    2016-01-20

    We attempt to constrain the physical properties of the inner, gaseous disk of the Herbig Be star BD+65 1637 using non-LTE, circumstellar disk codes and observed spectra (3700–10500 Å) from the ESPaDOnS instrument on the Canada–France–Hawaii Telescope. The photoionizing radiation of the central star is assumed to be the sole source of input energy for the disk. We model optical and near-infrared emission lines that are thought to form in this region using standard techniques that have been successful in modeling the spectra of classical Be stars. By comparing synthetic line profiles of hydrogen, helium, iron, and calcium with the observed line profiles, we try to constrain the geometry, density structure, and kinematics of the gaseous disk. Reasonable matches have been found for all line profiles individually; however, no disk density model based on a single power law for the equatorial density was able to simultaneously fit all of the observed emission lines. Among the emission lines, the metal lines, especially the Ca ii IR triplet, seem to require higher disk densities than the other lines. Excluding the Ca ii lines, a model in which the equatorial disk density falls as 10{sup −10} (R{sub *}/R){sup 3} g cm{sup −3} seen at an inclination of 45° for a 50 R{sub *} disk provides reasonable matches to the overall line shapes and strengths. The Ca ii lines seem to require a shallower drop-off as 10{sup −10} (R{sub *}/R){sup 2} g cm{sup −3} to match their strength. More complex disk density models are likely required to refine the match to the BD+65 1637 spectrum.

  11. The low-mass stellar population in the young cluster Tr 37. Disk evolution, accretion, and environment

    Science.gov (United States)

    Sicilia-Aguilar, Aurora; Kim, Jinyoung Serena; Sobolev, Andrej; Getman, Konstantin; Henning, Thomas; Fang, Min

    2013-11-01

    Aims: We present a study of accretion and protoplanetary disks around M-type stars in the 4 Myr-old cluster Tr 37. With a well-studied solar-type population, Tr 37 is a benchmark for disk evolution. Methods: We used low-resolution spectroscopy to identify and classify 141 members (78 new ones) and 64 probable members, mostly M-type stars. Hα emission provides information about accretion. Optical, 2MASS, Spitzer, and WISE data are used to trace the spectral energy distributions (SEDs) and search for disks. We construct radiative transfer models to explore the structures of full-disks, pre-transition, transition, and dust-depleted disks. Results: Including the new members and the known solar-type stars, we confirm that a substantial fraction (~2/5) of disks show signs of evolution, either as radial dust evolution (transition/pre-transition disks) or as a more global evolution (with low small-dust masses, dust settling, and weak/absent accretion signatures). Accretion is strongly dependent on the SED type. About half of the transition objects are consistent with no accretion, and dust-depleted disks have weak (or undetectable) accretion signatures, especially among M-type stars. Conclusions: The analysis of accretion and disk structure suggests a parallel evolution of dust and gas. We find several distinct classes of evolved disks, based on SED type and accretion status, pointing to different disk dispersal mechanisms and probably different evolutionary paths. Dust depletion and opening of inner holes appear to be independent processes: most transition disks are not dust-depleted, and most dust-depleted disks do not require inner holes. The differences in disk structure between M-type and solar-type stars in Tr 37 (4 Myr old) are not as remarkable as in the young, sparse, Coronet cluster (1-2 Myr old), suggesting that other factors, like the environment/interactions in each cluster, are likely to play an important role in the disk evolution and dispersal. Finally, we

  12. Jets from Young Stars in Cygnus-X

    Science.gov (United States)

    Kohler, Susanna

    2018-03-01

    How do you spot very young, newly formed stars? One giveaway is the presence of jets and outflows that interact with the stars environments. In a new study, scientists have now discovered an unprecedented number of these outflows in a nearby star-forming region of our galaxy.Young Stars Hard at WorkCO map of the Cygnus-X region of the galactic plane, with the grid showing the UWISH2 coverage and the black triangles showing the positions of the detected outflows. [Makin Froebrich 2018]The birth and evolution of young stars is a dynamic, energetic process. As new stars form, material falls inward from the accretion disks surrounding young stellar objects, or YSOs. This material can power collimated streams of gas and dust that flow out along the stars rotation axes, plowing through the surrounding material. Where the outflows collide with the outside environment, shocks form that can be spotted in near-infrared hydrogen emission.Though weve learned a lot about these outflows, there remain a number of open questions. What factors govern their properties, such as their lengths, luminosities, and orientations? What is the origin of the emission features we see within the jets, known as knots? What roles do the driving sources and the environments play in the behavior and appearance of the jets?A selection of previously unknown outflows discovered as a result of this survey. Click for a closer look. [Makin Froebrich 2018]To answer these questions, we need to build a large, unbiased statistical sample of YSOs from across the galactic plane. Now, a large infrared survey known as the UKIRT Widefield Infrared Survey for H2 (UWISH2) is working toward that goal.Jackpot in Cygnus-XIn a recent publication, Sally Makin and Dirk Froebrich (University of Kent, UK), present results from UWISH2s latest release: a survey segment targeting a 42-square-degree region in the galactic plane known as the Cygnus-X star-forming region.The teams search for shock-excited emission in Cygnus

  13. Brown dwarf disks with ALMA

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, L.; Isella, A. [Department of Astronomy, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Testi, L.; De Gregorio-Monsalvo, I. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Natta, A. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Scholz, A., E-mail: lricci@astro.caltech.edu [School of Cosmic Physics, Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland)

    2014-08-10

    We present Atacama Large Millimeter/submillimeter Array continuum and spectral line data at 0.89 mm and 3.2 mm for three disks surrounding young brown dwarfs and very low mass stars in the Taurus star forming region. Dust thermal emission is detected and spatially resolved for all the three disks, while CO(J = 3-2) emission is seen in two disks. We analyze the continuum visibilities and constrain the disks' physical structure in dust. The results of our analysis show that the disks are relatively large; the smallest one has an outer radius of about 70 AU. The inferred disk radii, radial profiles of the dust surface density, and disk to central object mass ratios lie within the ranges found for disks around more massive young stars. We derive from our observations the wavelength dependence of the millimeter dust opacity. In all the three disks, data are consistent with the presence of grains with at least millimeter sizes, as also found for disks around young stars, and confirm that the early stages of the solid growth toward planetesimals occur also around very low-mass objects. We discuss the implications of our findings on models of solids evolution in protoplanetary disks, the main mechanisms proposed for the formation of brown dwarfs and very low-mass stars, as well as the potential of finding rocky and giant planets around very low-mass objects.

  14. Cold CO Gas in the Envelopes of FU Orionis-type Young Eruptive Stars

    Energy Technology Data Exchange (ETDEWEB)

    Kóspál, Á.; Ábrahám, P.; Moór, A. [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, Konkoly-Thege Miklós út 15-17, 1121 Budapest (Hungary); Csengeri, T.; Güsten, R. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Henning, Th. [Max-Planck-Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg (Germany)

    2017-02-20

    FU Orionis-type objects (FUors) are young stellar objects experiencing large optical outbursts due to highly enhanced accretion from the circumstellar disk onto the star. FUors are often surrounded by massive envelopes, which play a significant role in the outburst mechanism. Conversely, the subsequent eruptions might gradually clear up the obscuring envelope material and drive the protostar on its way to become a disk-only T Tauri star. Here we present an APEX {sup 12}CO and {sup 13}CO survey of eight southern and equatorial FUors. We measure the mass of the gaseous material surrounding our targets, locate the source of the CO emission, and derive physical parameters for the envelopes and outflows, where detected. Our results support the evolutionary scenario where FUors represent a transition phase from envelope-surrounded protostars to classical T Tauri stars.

  15. A Multi-Fiber Spectroscopic Search for Low-mass Young Stars in Orion OB1

    Science.gov (United States)

    Loerincs, Jacqueline; Briceno, Cesar; Calvet, Nuria; Mateo, Mario L.; Hernandez, Jesus

    2017-01-01

    We present here results of a low resolution spectroscopic followup of candidate low-mass pre-main sequence stars in the Orion OB1 association. Our targets were selected from the CIDA Variability Survey of Orion (CVSO), and we used the Michigan/Magellan Fiber Spectrograph (M2FS) on the Magellan Clay 6.5m telescope to obtain spectra of 500 candidate T Tauri stars distributed in seven 0.5 deg diameter fields, adding to a total area of ~5.5 deg2. We identify young stars by looking at the distinctive Hα 6563 Å emission and Lithium Li I 6707 Å absorption features characteristic of young low mass pre-main sequence stars. Furthermore, by measuring the strength of their Hα emission lines, confirmed T Tauri stars can be classified as either Classical T Tauris (CTTS) or Weak-line T Tauris (WTTS), which give indication of whether the star is actively accreting material from a gas and dust disk surrounding the star, which may be the precursor of a planetary system. We confirm a total of 90 T Tauri stars, of which 50% are newly identified young members of Orion; out of the 49 new detections,15 are accreting CTTS, and of these all but one are found in the OB1b sub-region. This result is in line with our previous findings that this region is much younger than the more extended Orion OB1a sub-association. The M2FS results add to our growing census of young stars in Orion, that is allowing us to characterize in a systematic and consistent way the distribution of stellar ages across the entire complex, in order to building a complete picture of star formation in this, one of nearest most active sites of star birth.

  16. A disk asymmetry in motion around the B[e] star MWC158

    Science.gov (United States)

    Kluska, J.; Benisty, M.; Soulez, F.; Berger, J.-P.; Le Bouquin, J.-B.; Malbet, F.; Lazareff, B.; Thiébaut, E.

    2016-06-01

    Context. MWC158 is a star with the B[e] phenomenon that shows strong spectrophotometric variability (in lines and in UV and visible continuum) attributed to phases of shell ejection. The evolutionary stage of this star was never clearly determined. Previous interferometric, spectropolarimetric and spectro-interferometric studies suggest a disk morphology for its environment. Aims: We investigate the origin of the variability within the inner astronomical unit of the central star using near-infrared interferometric observations with PIONIER at the VLTI over a two-year period. Methods: We performed an image reconstruction of the circumstellar environment using the SPARCO method. We discovered that the morphology of the circumstellar environment could vary on timescales of weeks or days. We carried out a parametric fit of the data with a model consisting of a star, a disk and a bright spot that represents a brighter emission in the disk. Results: We detect strong morphological changes in the first astronomical unit around the star, that happen on a timescale of few months. We cannot account for such variability well with a binary model. Our parametric model fits the data well and allows us to extract the location of the asymmetry for different epochs. Conclusions: For the first time, we detect a morphological variability in the environment of MWC158. This variability is reproduced by a model of a disk and a bright spot. The locations of the bright spot suggest that it is located in the disk, but its precise motion is not determined. The origin of the asymmetry in the disk is complex and may be related to asymmetric shell ejections. Based on observations performed with PIONIER mounted on the ESO Very Large Telescope interferometer (programmes: 089.C-0211, 190.C-0963).

  17. MULTIPLICITY, DISKS, AND JETS IN THE NGC 2071 STAR-FORMING REGION

    Energy Technology Data Exchange (ETDEWEB)

    Carrasco-Gonzalez, Carlos [Max-Planck-Institut fuer Radioastronomie (MPIfR), Auf dem Huegel 69, 53121 Bonn (Germany); Osorio, Mayra; Anglada, Guillem; Gomez, Jose F. [Instituto de Astrofisica de Andalucia, CSIC, Camino Bajo de Huetor 50, E-18008 Granada (Spain); D' Alessio, Paola; Rodriguez, Luis F. [Centro de Radioastronomia y Astrofisica UNAM, Apartado Postal 3-72 (Xangari), 58089 Morelia, Michoacan (Mexico); Torrelles, Jose M., E-mail: carrasco@mpifr-bonn.mpg.de [Instituto de Ciencias del Espacio (CSIC)-UB/IEEC, Universitat de Barcelona, Marti i Franques 1, E-08028 Barcelona (Spain)

    2012-02-10

    We present centimeter (cm) and millimeter (mm) observations of the NGC 2071 star-forming region performed with the Very Large Array (VLA) and Combined Array for Research in Millimeter-wave Astronomy (CARMA). We detected counterparts at 3.6 cm and 3 mm for the previously known sources IRS 1, IRS 2, IRS 3, and VLA 1. All these sources show spectral energy distributions (SEDs) dominated by free-free thermal emission at cm wavelengths and thermal dust emission at mm wavelengths, suggesting that all of them are associated with young stellar objects (YSOs). IRS 1 shows a complex morphology at 3.6 cm, with changes in the direction of its elongation. We discuss two possible explanations to this morphology: the result of changes in the direction of a jet due to interactions with a dense ambient medium, or that we are actually observing the superposition of two jets arising from two components of a binary system. Higher angular resolution observations at 1.3 cm support the second possibility, since a double source is inferred at this wavelength. IRS 3 shows a clear jet-like morphology at 3.6 cm. Over a timespan of four years, we observed changes in the morphology of this source that we interpret as due to ejection of ionized material in a jet. The emission at 3 mm of IRS 3 is angularly resolved, with a deconvolved size (FWHM) of {approx}120 AU, and seems to be tracing a dusty circumstellar disk perpendicular to the radio jet. An irradiated accretion disk model around an intermediate-mass YSO can account for the observed SED and spatial intensity profile at 3 mm, supporting this interpretation.

  18. MULTIPLICITY, DISKS, AND JETS IN THE NGC 2071 STAR-FORMING REGION

    International Nuclear Information System (INIS)

    Carrasco-González, Carlos; Osorio, Mayra; Anglada, Guillem; Gómez, José F.; D'Alessio, Paola; Rodríguez, Luis F.; Torrelles, José M.

    2012-01-01

    We present centimeter (cm) and millimeter (mm) observations of the NGC 2071 star-forming region performed with the Very Large Array (VLA) and Combined Array for Research in Millimeter-wave Astronomy (CARMA). We detected counterparts at 3.6 cm and 3 mm for the previously known sources IRS 1, IRS 2, IRS 3, and VLA 1. All these sources show spectral energy distributions (SEDs) dominated by free-free thermal emission at cm wavelengths and thermal dust emission at mm wavelengths, suggesting that all of them are associated with young stellar objects (YSOs). IRS 1 shows a complex morphology at 3.6 cm, with changes in the direction of its elongation. We discuss two possible explanations to this morphology: the result of changes in the direction of a jet due to interactions with a dense ambient medium, or that we are actually observing the superposition of two jets arising from two components of a binary system. Higher angular resolution observations at 1.3 cm support the second possibility, since a double source is inferred at this wavelength. IRS 3 shows a clear jet-like morphology at 3.6 cm. Over a timespan of four years, we observed changes in the morphology of this source that we interpret as due to ejection of ionized material in a jet. The emission at 3 mm of IRS 3 is angularly resolved, with a deconvolved size (FWHM) of ∼120 AU, and seems to be tracing a dusty circumstellar disk perpendicular to the radio jet. An irradiated accretion disk model around an intermediate-mass YSO can account for the observed SED and spatial intensity profile at 3 mm, supporting this interpretation.

  19. The diskmass survey. VIII. On the relationship between disk stability and star formation

    Energy Technology Data Exchange (ETDEWEB)

    Westfall, Kyle B.; Verheijen, Marc A. W. [Kapteyn Astronomical Institute, University of Groningen, Landleven 12, 9747 AD Groningen (Netherlands); Andersen, David R. [NRC Herzberg Institute of Astrophysics, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Bershady, Matthew A. [Department of Astronomy, University of Wisconsin-Madison, 475 North Charter Street, Madison, WI 53706 (United States); Martinsson, Thomas P. K. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Swaters, Robert A., E-mail: westfall@astro.rug.nl [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States)

    2014-04-10

    We study the relationship between the stability level of late-type galaxy disks and their star-formation activity using integral-field gaseous and stellar kinematic data. Specifically, we compare the two-component (gas+stars) stability parameter from Romeo and Wiegert (Q {sub RW}), incorporating stellar kinematic data for the first time, and the star-formation rate estimated from 21 cm continuum emission. We determine the stability level of each disk probabilistically using a Bayesian analysis of our data and a simple dynamical model. Our method incorporates the shape of the stellar velocity ellipsoid (SVE) and yields robust SVE measurements for over 90% of our sample. Averaging over this subsample, we find a meridional shape of σ{sub z}/σ{sub R}=0.51{sub −0.25}{sup +0.36} for the SVE and, at 1.5 disk scale lengths, a stability parameter of Q {sub RW} = 2.0 ± 0.9. We also find that the disk-averaged star-formation-rate surface density ( Σ-dot {sub e,∗}) is correlated with the disk-averaged gas and stellar mass surface densities (Σ {sub e,} {sub g} and Σ {sub e,} {sub *}) and anti-correlated with Q {sub RW}. We show that an anti-correlation between Σ-dot {sub e,∗} and Q {sub RW} can be predicted using empirical scaling relations, such that this outcome is consistent with well-established statistical properties of star-forming galaxies. Interestingly, Σ-dot {sub e,∗} is not correlated with the gas-only or star-only Toomre parameters, demonstrating the merit of calculating a multi-component stability parameter when comparing to star-formation activity. Finally, our results are consistent with the Ostriker et al. model of self-regulated star-formation, which predicts Σ-dot {sub e,∗}/Σ{sub e,g}∝Σ{sub e,∗}{sup 1/2}. Based on this and other theoretical expectations, we discuss the possibility of a physical link between disk stability level and star-formation rate in light of our empirical results.

  20. HERSCHEL OBSERVATIONS AND UPDATED SPECTRAL ENERGY DISTRIBUTIONS OF FIVE SUNLIKE STARS WITH DEBRIS DISKS

    International Nuclear Information System (INIS)

    Dodson-Robinson, Sarah E.; Su, Kate Y. L.; Bryden, Geoff; Harvey, Paul; Green, Joel D.

    2016-01-01

    Observations from the Herschel Space Observatory have more than doubled the number of wide debris disks orbiting Sunlike stars to include over 30 systems with R  > 100 AU. Here, we present new Herschel PACS and reanalyzed Spitzer MIPS photometry of five Sunlike stars with wide debris disks, from Kuiper Belt size to R  > 150 AU. The disk surrounding HD 105211 is well resolved, with an angular extent of >14″ along the major axis, and the disks of HD 33636, HD 50554, and HD 52265 are extended beyond the PACS point-spread function size (50% of energy enclosed within radius 4.″23). HD 105211 also has a 24 μ m infrared excess, which was previously overlooked, because of a poorly constrained photospheric model. Archival Spitzer IRS observations indicate that the disks have small grains of minimum radius a min  ∼ 3 μ m, although a min is larger than the radiation-pressure blowout size in all systems. If modeled as single-temperature blackbodies, the disk temperatures would all be <60 K. Our radiative transfer models predict actual disk radii approximately twice the radius of a model blackbody disk. We find that the Herschel photometry traces dust near the source population of planetesimals. The disk luminosities are in the range 2 × 10 −5  ⩽  L / L ⊙  ⩽ 2 × 10 −4 , consistent with collisions in icy planetesimal belts stirred by Pluto-size dwarf planets.

  1. HERSCHEL OBSERVATIONS AND UPDATED SPECTRAL ENERGY DISTRIBUTIONS OF FIVE SUNLIKE STARS WITH DEBRIS DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Dodson-Robinson, Sarah E. [Department of Physics and Astronomy, University of Delaware, 217 Sharp Lab, Newark, DE 19716 (United States); Su, Kate Y. L. [Steward Observatory, Department of Astronomy, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Bryden, Geoff [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Harvey, Paul; Green, Joel D., E-mail: sdr@udel.edu [Astronomy Department, University of Texas, 2515 Speedway Drive C1400, Austin, TX 78712 (United States)

    2016-12-20

    Observations from the Herschel Space Observatory have more than doubled the number of wide debris disks orbiting Sunlike stars to include over 30 systems with R  > 100 AU. Here, we present new Herschel PACS and reanalyzed Spitzer MIPS photometry of five Sunlike stars with wide debris disks, from Kuiper Belt size to R  > 150 AU. The disk surrounding HD 105211 is well resolved, with an angular extent of >14″ along the major axis, and the disks of HD 33636, HD 50554, and HD 52265 are extended beyond the PACS point-spread function size (50% of energy enclosed within radius 4.″23). HD 105211 also has a 24 μ m infrared excess, which was previously overlooked, because of a poorly constrained photospheric model. Archival Spitzer IRS observations indicate that the disks have small grains of minimum radius a {sub min} ∼ 3 μ m, although a {sub min} is larger than the radiation-pressure blowout size in all systems. If modeled as single-temperature blackbodies, the disk temperatures would all be <60 K. Our radiative transfer models predict actual disk radii approximately twice the radius of a model blackbody disk. We find that the Herschel photometry traces dust near the source population of planetesimals. The disk luminosities are in the range 2 × 10{sup −5} ⩽  L / L {sub ⊙} ⩽ 2 × 10{sup −4}, consistent with collisions in icy planetesimal belts stirred by Pluto-size dwarf planets.

  2. Young Star May Be Belching Spheres of Gas, Astronomers Say

    Science.gov (United States)

    2001-05-01

    A young star more than 2,000 light-years away in the constellation Cepheus may be belching out spheres of gas, say astronomers who observed it with the National Science Foundation's Very Long Baseline Array (VLBA) radio telescope. Not only is the star ejecting spheres of gas, the researchers say, but it also may be ejecting them repeatedly, phenomena not predicted by current theories of how young stars shed matter. Cepheus A star-forming region with blowups of detail In order to remain stable while accumulating matter, young stars have to throw off some of the infalling material to avoid "spinning up" so fast they would break apart, according to current theories. Infalling matter forms a thin spinning disk around the core of the new star, and material is ejected in twin "jets" perpendicular to the plane of the disk. "Twin jets have been seen emerging from many young stars, so we are quite surprised to see evidence that this object may be ejecting not jets, but spheres of gas," said Paul T.P. Ho, an astronomer at the Harvard-Smithsonian Center for Astrophysics. The research is reported in the May 17 edition of the scientific journal Nature. The astronomers observed a complex star-forming region in Cepheus and found an arc of water molecules that act like giant celestial amplifiers to boost the strength of radio signals at a frequency of 22 GHz. Such radio-wave amplifiers, called masers, show up as bright spots readily observed with radio telescopes. "With the great ability of the VLBA to show fine detail, we could track the motions of these maser spots over a period of weeks, and saw that this arc of water molecules is expanding at nearly 20,000 miles per hour," said Ho. "This was possible because we could detect detail equivalent to seeing Lincoln's nose on a penny in Los Angeles from the distance of New York," Ho added. "These observations pushed the tremendous capabilities of the VLBA and of modern computing power to their limits. This is an extremely complex

  3. Hydrodynamic ejection of bipolar flows from objects undergoing disk accretion: T Tauri stars, massive pre-main-sequence objects, and cataclysmic variables

    International Nuclear Information System (INIS)

    Torbett, M.V.

    1984-01-01

    A general mechanism is presented for generating pressure-driven winds that are intrinsically bipolar from objects undergoing disk accretion. The energy librated in a boundary layer shock as the disk matter impacts the central object is shown to be sufficient to eject a fraction βapprox.10 -2 to 10 -3 of the accreted mass. These winds are driven by a mechanism that accelerates the flow perpendicular to the plane of the disk and can therefore account for the bipolar geometry of the mass loss observed near young stars. The mass loss contained in these winds is comparable to that inferred for young stars. Thus, disk accretion-driven winds may constitute the T Tauri phase of stellar evolution. This mechanism is generally applicable, and thus massive pre-main-sequence objects as well as cataclysmic variables at times of enhanced accretion are predicted to eject bipolar outflows as well. Unmagnetized accreting neutron stas are also expected to eject bipolar flows. Since this mechanism requires stellar surfaces, however, it will not operate in disk accretion onto black holes

  4. THE HERSCHEL DIGIT SURVEY OF WEAK-LINE T TAURI STARS: IMPLICATIONS FOR DISK EVOLUTION AND DISSIPATION

    International Nuclear Information System (INIS)

    Cieza, Lucas A.; Olofsson, Johan; Henning, Thomas; Harvey, Paul M.; Evans, Neal J. II; Najita, Joan; Merín, Bruno; Liebhart, Armin; Güdel, Manuel; Augereau, Jean-Charles; Pinte, Christophe

    2013-01-01

    As part of the 'Dust, Ice, and Gas In Time (DIGIT)' Herschel Open Time Key Program, we present Herschel photometry (at 70, 160, 250, 350, and 500 μm) of 31 weak-line T Tauri star (WTTS) candidates in order to investigate the evolutionary status of their circumstellar disks. Of the stars in our sample, 13 had circumstellar disks previously known from infrared observations at shorter wavelengths, while 18 of them had no previous evidence for a disk. We detect a total of 15 disks as all previously known disks are detected at one or more Herschel wavelengths and two additional disks are identified for the first time. The spectral energy distributions (SEDs) of our targets seem to trace the dissipation of the primordial disk and the transition to the debris disk regime. Of the 15 disks, 7 appear to be optically thick primordial disks, including 2 objects with SEDs indistinguishable from those of typical Classical T Tauri stars, 4 objects that have significant deficit of excess emission at all IR wavelengths, and 1 'pre-transitional' object with a known gap in the disk. Despite their previous WTTS classification, we find that the seven targets in our sample with optically thick disks show evidence for accretion. The remaining eight disks have weaker IR excesses similar to those of optically thin debris disks. Six of them are warm and show significant 24 μm Spitzer excesses, while the last two are newly identified cold debris-like disks with photospheric 24 μm fluxes, but significant excess emission at longer wavelengths. The Herschel photometry also places strong constraints on the non-detections, where systems with F 70 /F 70,* ∼> 5-15 and L disk /L * ∼> 10 –3 to 10 –4 can be ruled out. We present preliminary models for both the optically thick and optically thin disks and discuss our results in the context of the evolution and dissipation of circumstellar disks.

  5. Evidence for Different Disk Mass Distributions between Early- and Late-type Be Stars in the BeSOS Survey

    Energy Technology Data Exchange (ETDEWEB)

    Arcos, C.; Kanaan, S.; Curé, M. [Instituto de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso. Av. Gran Bretana 1111, Valparaíso (Chile); Jones, C. E.; Sigut, T. A. A. [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada)

    2017-06-10

    The circumstellar disk density distributions for a sample of 63 Be southern stars from the BeSOS survey were found by modeling their H α emission line profiles. These disk densities were used to compute disk masses and disk angular momenta for the sample. Average values for the disk mass are 3.4 × 10{sup −9} and 9.5 × 10{sup −10} M {sub ⋆} for early (B0–B3) and late (B4–B9) spectral types, respectively. We also find that the range of disk angular momentum relative to the star is (150–200) J {sub ⋆}/ M {sub ⋆} and (100–150) J {sub ⋆}/ M {sub ⋆}, again for early- and late-type Be stars, respectively. The distributions of the disk mass and disk angular momentum are different between early- and late-type Be stars at a 1% level of significance. Finally, we construct the disk mass distribution for the BeSOS sample as a function of spectral type and compare it to the predictions of stellar evolutionary models with rapid rotation. The observed disk masses are typically larger than the theoretical predictions, although the observed spread in disk masses is typically large.

  6. INVESTIGATING THE CIRCUMSTELLAR DISK OF THE Be SHELL STAR 48 LIBRAE

    Energy Technology Data Exchange (ETDEWEB)

    Silaj, J.; Jones, C. E. [Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario, N6A 3K7 (Canada); Carciofi, A. C.; Escolano, C.; Bednarski, D. [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universitária de São Paulo, Rua do Matão 1226, Cidade Universitária, 05508-900 São Paulo, SP Brazil (Brazil); Okazaki, A. T. [Faculty of Engineering, Hokkai-Gakuen University, Toyohira-ku, Sapporo 062-8605 (Japan); Tycner, C. [Department of Physics, Central Michigan University, Mt. Pleasant, MI 48859 (United States); Rivinius, T.; Klement, R. [European Organisation for Astronomical Research in the Southern Hemisphere, Casilla 19001, Santiago 19 (Chile)

    2016-07-20

    A global disk oscillation implemented in the viscous decretion disk (VDD) model has been used to reproduce most of the observed properties of the well known Be star ζ Tau. 48 Librae shares several similarities with ζ Tau—they are both early-type Be stars, display shell characteristics in their spectra, and exhibit cyclic V / R variations—but has some marked differences as well, such as a much denser and more extended disk, a much longer V / R cycle, and the absence of the so-called triple-peak features. We aim to reproduce the photometric, polarimetric, and spectroscopic observables of 48 Librae with a self-consistent model, and to test the global oscillation scenario for this target. Our calculations are carried out with the three-dimensional NLTE radiative transfer code HDUST. We employ a rotationally deformed, gravity-darkened central star surrounded by a disk whose unperturbed state is given by the VDD model. A two-dimensional global oscillation code is then used to calculate the disk perturbation and superimpose it on the unperturbed disk. A very good, self-consistent fit to the time-averaged properties of the disk is obtained with the VDD. The calculated perturbation has a period P = 12 years, which agrees with the observed period, and the behavior of the V / R cycle is well reproduced by the perturbed model. The perturbed model improves the fit to the photometric data and reproduces some features of the observed spectroscopic data. Some suggestions to improve the synthesized spectroscopy in a future work are given.

  7. DEBRIS DISKS AROUND SOLAR-TYPE STARS: OBSERVATIONS OF THE PLEIADES WITH THE SPITZER SPACE TELESCOPE

    International Nuclear Information System (INIS)

    Sierchio, J. M.; Rieke, G. H.; Su, K. Y. L.; Plavchan, P.; Stauffer, J. R.; Gorlova, N. I.

    2010-01-01

    We present Spitzer MIPS observations at 24 μm of 37 solar-type stars in the Pleiades and combine them with previous observations to obtain a sample of 71 stars. We report that 23 stars, or 32% ± 6.8%, have excesses at 24 μm at least 10% above their photospheric emission. We compare our results with studies of debris disks in other open clusters and with a study of A stars to show that debris disks around solar-type stars at 115 Myr occur at nearly the same rate as around A-type stars. We analyze the effects of binarity and X-ray activity on the excess flux. Stars with warm excesses tend not to be in equal-mass binary systems, possibly due to clearing of planetesimals by binary companions in similar orbits. We find that the apparent anti-correlations in the incidence of excess and both the rate of stellar rotation and also the level of activity as judged by X-ray emission are statistically weak.

  8. The Nearby, Young, Argus Association: Membership, Age, and Dusty Debris Disks

    Science.gov (United States)

    Zuckerman, Ben

    2018-01-01

    The Argus Association (AA) defined by Torres et al. (2008) is distinguished from other nearby young moving groups by virtue of its unusual Galactic U-velocity. As defined by Torres et al, their initial AA consisted of 35 members of the IC 2391 open cluster (~135 pc from Earth) and 29 “field members”, 15 of which are within 100 pc of Earth. The spectral types range from F through K with the exception of two M-type members of IC 2391. Zuckerman et al. (2011 & 2012) proposed 13 additional field members – 12 A-type and one F-type -- all of which lie within 80 pc of Earth. Additional AA members have been proposed, typically a few at a time, by other researchers. Deduced ages of the AA (via various techniques) lie, typically, between 40 and 60 Myr. Bell et al (2015) consider the membership and age of a subset of proposed AA stars via color-magnitude diagrams combined with a Bayesian analysis (following Malo et al 2013 & 2014). For the sample of AA stars that they considered, the group age, membership status of individual stars, and even the reality of a coeval moving group were in some doubt. The purpose of the present communication is to consider all proposed AA members – including the frequency of dusty debris disks -- in an attempt to bring some clarity to what is going on.

  9. Disk Masses around Solar-mass Stars are Underestimated by CO Observations

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Mo; Evans II, Neal J. [Astronomy Department, University of Texas, 2515 Speedway, Stop C1400, Austin, TX 78712 (United States); Dodson-Robinson, Sarah E. [University of Delaware, Department of Physics and Astronomy, 217 Sharp Lab, Newark, DE 19716 (United States); Willacy, Karen; Turner, Neal J. [Mail Stop 169-506, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2017-05-20

    Gas in protostellar disks provides the raw material for giant planet formation and controls the dynamics of the planetesimal-building dust grains. Accurate gas mass measurements help map the observed properties of planet-forming disks onto the formation environments of known exoplanets. Rare isotopologues of carbon monoxide (CO) have been used as gas mass tracers for disks in the Lupus star-forming region, with an assumed interstellar CO/H{sub 2} abundance ratio. Unfortunately, observations of T-Tauri disks show that CO abundance is not interstellar, a finding reproduced by models that show CO abundance decreasing both with distance from the star and as a function of time. Here, we present radiative transfer simulations that assess the accuracy of CO-based disk mass measurements. We find that the combination of CO chemical depletion in the outer disk and optically thick emission from the inner disk leads observers to underestimate gas mass by more than an order of magnitude if they use the standard assumptions of interstellar CO/H{sub 2} ratio and optically thin emission. Furthermore, CO abundance changes on million-year timescales, introducing an age/mass degeneracy into observations. To reach a factor of a few accuracy for CO-based disk mass measurements, we suggest that observers and modelers adopt the following strategies: (1) select low- J transitions; (2) observe multiple CO isotopologues and use either intensity ratios or normalized line profiles to diagnose CO chemical depletion; and (3) use spatially resolved observations to measure the CO-abundance distribution.

  10. Finding evolved stars in the inner Galactic disk with Gaia

    Science.gov (United States)

    Quiroga-Nuñez, L. H.; van Langevelde, H. J.; Pihlström, Y. M.; Sjouwerman, L. O.; Brown, A. G. A.

    2018-04-01

    The Bulge Asymmetries and Dynamical Evolution (BAaDE) survey will provide positions and line-of-sight velocities of ~20, 000 evolved, maser bearing stars in the Galactic plane. Although this Galactic region is affected by optical extinction, BAaDE targets may have Gaia cross-matches, eventually providing additional stellar information. In an initial attempt to cross-match BAaDE targets with Gaia, we have found more than 5,000 candidates. Of these, we may expect half to show SiO emission, which will allow us to obtain velocity information. The cross-match is being refined to avoid false positives using different criteria based on distance analysis, flux variability, and color assessment in the mid- and near-IR. Once the cross-matches can be confirmed, we will have a unique sample to characterize the stellar population of evolved stars in the Galactic bulge, which can be considered fossils of the Milky Way formation.

  11. Disk Evolution, Element Abundances and Cloud Properties of Young Gas Giant Planets

    Directory of Open Access Journals (Sweden)

    Christiane Helling

    2014-04-01

    Full Text Available We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the effects of unusual, non-solar carbon and oxygen abundances. Large deviations between the abundances of the host star and its gas giants seem likely to occur if the planet formation follows the core-accretion scenario. These deviations stem from the separate evolution of gas and dust in the disk, where the dust forms the planet cores, followed by the final run-away accretion of the left-over gas. This gas will contain only traces of elements like C, N and O, because those elements have frozen out as ices. PRODIMO protoplanetary disk models are used to predict the chemical evolution of gas and ice in the midplane. We find that cosmic rays play a crucial role in slowly un-blocking the CO, where the liberated oxygen forms water, which then freezes out quickly. Therefore, the C/O ratio in the gas phase is found to gradually increase with time, in a region bracketed by the water and CO ice-lines. In this regions, C/O is found to approach unity after about 5 Myrs, scaling with the cosmic ray ionization rate assumed. We then explore how the atmospheric chemistry and cloud properties in young gas giants are affected when the non-solar C/O ratios predicted by the disk models are assumed. The DRIFT cloud formation model is applied to study the formation of atmospheric clouds under the influence of varying premordial element abundances and its feedback onto the local gas. We demonstrate that element depletion by cloud formation plays a crucial role in converting an oxygen-rich atmosphere gas into carbon-rich gas when non-solar, premordial element abundances are considered as suggested by disk models.

  12. UV Spectroscopy of Star-Grazing Comets Within the 49 Ceti Debris Disk

    Science.gov (United States)

    Miles, Brittany E.; Roberge, Aki; Welsh, Barry

    2016-01-01

    We present the analysis of time-variable Doppler-shifted absorption features in far-UV spectra of the unusual 49 Ceti debris disk. This nearly edge-on disk is one of the brightest known and is one of the very few containing detectable amounts of circumstellar (CS) gas as well as dust. In our two visits of Hubble Space Telescope STIS spectra, variable absorption features are seen on the wings of lines arising from CII and CIV but not for any of the other CS absorption lines. Similar variable features have long been seen in spectra of the well-studied Beta Pictoris debris disk and attributed to the transits of star-grazing comets. We calculated the velocity ranges and apparent column densities of the 49 Cet variable gas, which appears to have been moving at velocities of tens to hundreds of kms(-1) relative to the central star. The velocities in the redshifted variable event seen in the second visit show that the maximum distances of the in falling gas at the time of transit were about 0.050.2 au from the central star. A preliminary attempt at a composition analysis of the redshifted event suggests that the C/O ratio in the in falling gas is super-solar, as it is in the bulk of the stable disk gas.

  13. NGC 1866: First Spectroscopic Detection of Fast-rotating Stars in a Young LMC Cluster

    Energy Technology Data Exchange (ETDEWEB)

    Dupree, A. K.; Dotter, A.; Johnson, C. I. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Marino, A. F.; Milone, A. P. [Australian National University, The Research School of Astronomy and Astrophysics, Mount Stromlo Observatory, Weston Creek, ACT 2611 (Australia); Bailey, J. I. III [Leiden Observatory, Niels Bohrweg 2, NL-2333 CA Leiden (Netherlands); Crane, J. D. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Mateo, M. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109 (United States); Olszewski, E. W. [The University of Arizona, 933 N. Cherry Avenue, Tucson, AZ 85721 (United States)

    2017-09-01

    High-resolution spectroscopic observations were taken of 29 extended main-sequence turnoff (eMSTO) stars in the young (∼200 Myr) Large Magellanic Cloud (LMC) cluster, NGC 1866, using the Michigan/ Magellan Fiber System and MSpec spectrograph on the Magellan -Clay 6.5 m telescope. These spectra reveal the first direct detection of rapidly rotating stars whose presence has only been inferred from photometric studies. The eMSTO stars exhibit H α emission (indicative of Be-star decretion disks), others have shallow broad H α absorption (consistent with rotation ≳150 km s{sup −1}), or deep H α core absorption signaling lower rotation velocities (≲150 km s{sup −1}). The spectra appear consistent with two populations of stars—one rapidly rotating, and the other, younger and slowly rotating.

  14. THE FIRST DETERMINATION OF THE VISCOSITY PARAMETER IN THE CIRCUMSTELLAR DISK OF A Be STAR

    Energy Technology Data Exchange (ETDEWEB)

    Carciofi, Alex C.; Bjorkman, Jon E.; Haubois, Xavier [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, Rua do Matao 1226, Cidade Universitaria, 05508-900, Sao Paulo, SP (Brazil); Otero, Sebastian A. [American Association of Variable Star Observers, 49 Bay State Road, Cambridge, MA 02138 (United States); Okazaki, Atsuo T. [Faculty of Engineering, Hokkai-Gakuen University, Toyohira-ku, Sapporo 062-8605 (Japan); Stefl, Stanislav; Rivinius, Thomas [European Organisation for Astronomical Research in the Southern Hemisphere, Casilla 19001, Santiago 19 (Chile); Baade, Dietrich, E-mail: carciofi@usp.br, E-mail: jon@physics.utoledo.edu [European Organisation for Astronomical Research in the Southern Hemisphere, Karl-Schwarzschild-Str. 2, 85748 Garching bei Muenchen (Germany)

    2012-01-15

    Be stars possess gaseous circumstellar decretion disks, which are well described using standard {alpha}-disk theory. The Be star 28 CMa recently underwent a long outburst followed by a long period of quiescence, during which the disk dissipated. Here we present the first time-dependent models of the dissipation of a viscous decretion disk. By modeling the rate of decline of the V-band excess, we determine that the viscosity parameter {alpha} = 1.0 {+-} 0.2, corresponding to a mass injection rate M-dot =(3.5{+-}1.3) Multiplication-Sign 10{sup -8} M{sub Sun} yr{sup -1}. Such a large value of {alpha} suggests that the origin of the turbulent viscosity is an instability in the disk whose growth is limited by shock dissipation. The mass injection rate is more than an order of magnitude larger than the wind mass-loss rate inferred from UV observations, implying that the mass injection mechanism most likely is not the stellar wind, but some other mechanism.

  15. Chemical Compositions of Young Stars in the Leading Arm of the Magellanic System

    Science.gov (United States)

    Zhang, L.; Moni Bidin, C.; Casetti-Dinescu, D. I.; Mendez, R. A.; Girard, T. M.; Korchagin, V. I.; Vieira, K.; van Altena, W. F.; Zhao, G.

    2017-07-01

    Seven element abundances (He, C, N, O, Mg, Si, and S) and kinematics were determined for eight O-/B- type stars, based on high resolution spectra taken with the MIKE instrument on the Magellan 6.5m Clay telescope (program ID: CN2014A-057). The sample is selected from 42 candidates Casetti-Dinescu et al.(2014, ApJL, 784, L37) of membership in the Leading Arm (LA) of the Magellanic System. After investigating the relationship between abundances and kinematics parameters, we found that five stars have kinematics compatible with LA membership, i.e. RV>100kms-1. For the five possible LA member stars, Mg abundance is significantly lower than that of the remaining two that are kinematical members of the Galactic disk, and is more close to the LMC values. Distances to the LA members indicate that they are at the edge of the Galactic disk, while ages are of the order of ˜ 50-70 Myr, lower than the dynamical age of the LA, suggesting a single star-forming episode in the LA. VLSR of the LA members decreases with decreasing Magellanic longitude, confirming the results of previous LA gas studies (McClure-Griffiths et al.2008, ApJ, 673, L143). Our abundance and kinematic results for the LA member stars demonstrate that parts of the LA are hydrodynamically interacting with the gaseous Galactic disk, forming young stars that are chemically distinct from those in the Galactic disk. These results can provide constraints to future models for the Magellanic leading material.

  16. SECOND-GENERATION STELLAR DISKS IN DENSE STAR CLUSTERS AND CLUSTER ELLIPTICITIES

    International Nuclear Information System (INIS)

    Mastrobuono-Battisti, Alessandra; Perets, Hagai B.

    2016-01-01

    Globular clusters (GCs) and nuclear star clusters (NSCs) are typically composed of several stellar populations, characterized by different chemical compositions. Different populations show different ages in NSCs, but not necessarily in GCs. The youngest populations in NSCs appear to reside in disk-like structures as observed in our Galaxy and in M31. Gas infall followed by formation of second-generation (SG) stars in GCs may similarly form disk-like structures in the clusters nuclei. Here we explore this possibility and follow the long-term evolution of stellar disks embedded in GCs, and study their effects on the evolution of the clusters. We study disks with different masses by means of detailed N-body simulations and explore their morphological and kinematic signatures on the GC structures. We find that as a SG disk relaxes, the old, first-generation stellar population flattens and becomes more radially anisotropic, making the GC structure become more elliptical. The SG stellar population is characterized by a lower velocity dispersion and a higher rotational velocity compared with the primordial older population. The strength of these kinematic signatures depends both on the relaxation time of the system and on the fractional mass of the SG disk. We therefore conclude that SG populations formed in flattened configurations will give rise to two systematic trends: (1) a positive correlation between GC ellipticity and fraction of SG population and (2) a positive correlation between GC relaxation time and ellipticity. Therefore, GC ellipticities and rotation could be related to the formation of SG stars and their initial configuration.

  17. A RING/DISK/OUTFLOW SYSTEM ASSOCIATED WITH W51 NORTH: A VERY MASSIVE STAR IN THE MAKING

    International Nuclear Information System (INIS)

    Zapata, Luis A.; Schilke, Peter; Menten, Karl; Ho, Paul T. P.; Rodriguez, Luis F.; Palau, Aina; Garrod, Robin T.

    2009-01-01

    Sensitive and high angular resolution (∼0.''4) SO 2 [22 2,20 → 22 1,21 ] and SiO[5 → 4] line and 1.3 and 7 mm continuum observations made with the Submillimeter Array (SMA) and the Very Large Array (VLA) toward the young massive cluster W51 IRS2 are presented. We report the presence of a large (of about 3000 AU) and massive (40 M sun ) dusty circumstellar disk and a hot gas molecular ring around a high-mass protostar or a compact small stellar system associated with W51 North. The simultaneous observations of the silicon monoxide molecule, an outflow gas tracer, further revealed a massive (200 M sun ) and collimated (∼14 0 ) outflow nearly perpendicular to the dusty and molecular structures suggesting thus the presence of a single very massive protostar with a bolometric luminosity on the order of 10 5 L sun . A molecular hybrid local thermodynamic equilibrium model of a Keplerian and infalling disk with an inner cavity and a central stellar mass of more than 60 M sun agrees well with the SO 2 [22 2,20 → 22 1,21 ] line observations. Finally, these results suggest that mechanisms, such as mergers of low- and intermediate-mass stars, might not be necessary for forming very massive stars.

  18. Searching for Young Stars in Cepheus C

    Science.gov (United States)

    Evans, Sam; Rebull, Luisa; Rutherford, Thomas; Stalnaker, Olivia; Taylor, John; Efsits, Gabriel; Harl, Linda; Keil, Shayna; Learman, Duncan; Leonard, Liam; Russell, Aaron

    2018-01-01

    We used archival Herschel Space Observatory data to search for young stellar objects (YSOs) in the Cepheus C region of the molecular cloud Cepheus OB3. Previous work by Gutermuth et al. (2009) identified 114 YSO candidates in this region based on Spitzer/IRAC data. Work by Orr et al. (2016) refined a list of approximately 300 young star candidates to 245 likely YSOs. Our initial search focused on longer infrared wavelength data – Herschel (70, 160, 250, 350, 500 μm) archival data and SCUBA (450, 850 μm) data from the literature (DiFrancesco et al. 2008). Through image inspection and catalog matching, we assembled a list of 54 candidate YSOs detected at wavelengths longer than 22 μm. For each source, we constructed a spectral energy distribution (SED) by aggregating available shorter wavelength data from the literature and assembling photometry from released PACS catalogs, preliminary SPIRE catalogs, and our own photometric measurements. We also created color-color and color-magnitude diagrams to see how these sources compared to each other, other populations of YSOs, and objects in extragalactic regions. Each source was then classified based on its SED shape and its locations on color-color and color-magnitude diagrams. From the initial list of 54 candidates, we suspect all are likely YSOs, some of which are very embedded; ~40% are likely SED Class I or 0. Approximately 20% of the 54 sources have not been previously identified. By beginning the investigation of YSOs in this region, we are adding to the body of YSO knowledge which can be used to understand the process of star formation. This research was made possible through the NASA/IPAC Teacher Archive Research Program (NITARP) and was funded by NASA Astrophysics Data Program.

  19. A YOUNG ECLIPSING BINARY AND ITS LUMINOUS NEIGHBORS IN THE EMBEDDED STAR CLUSTER Sh 2-252E

    Energy Technology Data Exchange (ETDEWEB)

    Lester, Kathryn V.; Gies, Douglas R.; Guo, Zhao, E-mail: lester@chara.gsu.edu, E-mail: gies@chara.gsu.edu, E-mail: guo@chara.gsu.edu [Center for High Angular Resolution Astronomy and Department of Physics and Astronomy, Georgia State University, P.O. Box 5060, Atlanta, GA 30302-5060 (United States)

    2016-12-01

    We present a photometric and light curve analysis of an eccentric eclipsing binary in the K2 Campaign 0 field, which resides in Sh 2-252E, a young star cluster embedded in an H ii region. We describe a spectroscopic investigation of the three brightest stars in the crowded aperture to identify which is the binary system. We find that none of these stars are components of the eclipsing binary system, which must be one of the fainter nearby stars. These bright cluster members all have remarkable spectra: Sh 2-252a (EPIC 202062176) is a B0.5 V star with razor sharp absorption lines, Sh 2-252b is a Herbig A0 star with disk-like emission lines, and Sh 2-252c is a pre-main-sequence star with very red color.

  20. A circumstellar molecular gas structure associated with the massive young star Cepheus A-HW 2

    Science.gov (United States)

    Torrelles, Jose M.; Rodriguez, Luis F.; Canto, Jorge; Ho, Paul T. P.

    1993-01-01

    We report the detection via VLA-D observations of ammonia of a circumstellar high-density molecular gas structure toward the massive young star related to the object Cepheus A-HW 2, a firm candidate for the powering source of the high-velocity molecular outflow in the region. We suggest that the circumstellar molecular gas structure could be related to the circumstellar disk previously suggested from infrared, H2O, and OH maser observations. We consider as a plausible scenario that the double radio continuum source of HW 2 could represent the ionized inner part of the circumstellar disk, in the same way as proposed to explain the double radio source in L1551. The observed motions in the circumstellar molecular gas can be produced by bound motions (e.g., infall or rotation) around a central mass of about 10-20 solar masses (B0.5 V star or earlier).

  1. Chemical Evolution and Star Formation History of the Disks of Spirals in Local Group

    Science.gov (United States)

    Yin, J.

    2011-05-01

    Milky Way (MW), M31 and M33 are the only three spiral galaxies in our Local group. MW and M31 have similar mass, luminosity and morphology, while M33 is only about one tenth of MW in terms of its baryonic mass. Detailed theoretical researches on these three spirals will help us to understand the formation and evolution history of both spiral galaxies and Local group. Referring to the phenomenological chemical evolution model adopted in MW disk, a similar model is established to investigate the star formation and chemical enrichment history of these three local spirals. Firstly, the properties of M31 disk are studied by building a similar chemical evolution model which is able to successfully describe the MW disk. It is expected that a simple unified phenomenological chemical evolution model could successfully describe the radial and global properties of both disks. Comparing with the former work, we adopt an extensive data set as model constraints, including the star formation profile of M31 disk derived from the recent UV data of GALEX. The comparison among the observed properties of these two disks displays very interesting similarities in their radial profiles when the distance from the galactic center is expressed in terms of the corresponding scale length. This implies some common processes in their formation and evolution history. Based on the observed data of the gas mass surface density and SFR surface density, the SFR radial profile of MW can be well described by Kennicutt-Schmidt star formation law (K-S law) or modified K-S law (SFR is inversely proportional to the distance from the galactic center), but this is not applicable to the M31 disk. Detailed calculations show that our unified model describes fairly well all the main properties of the MW disk and most properties of M31 disk, provided that the star formation efficiency of M31 disk is adjusted to be twice as large as that of MW disk (as anticipated from the lower gas fraction of M31). However, the

  2. Newly Discovered Silicate Features in the Spectra of Young Warm Debris Disks: Probing Terrestrial Regions of Planetary Systems

    Science.gov (United States)

    Ballering, N.; Rieke, G.

    2014-03-01

    Terrestrial planets form by the collisional accretion of planetesimals during the first 100 Myr of a system’s lifetime. For most systems, the terrestrial regions are too near their host star to be directly seen with high-contrast imaging (e.g. with HST, MagAO, or LBTI) and too warm to be imaged with submillimeter interferometers (e.g. ALMA). Mid-infrared excess spectra—originating from the thermal emission of the circumstellar dust leftover from these collisions—remain the best data to constrain the properties of the debris in these regions. The spectra of most debris disks are featureless, taking the shape of (modified) blackbodies. Determining the properties of debris disks with featureless spectra is complicated by a degeneracy between the grain size and location (large grains near the star and small grains farther from the star may be indistinguishable). Debris disk spectra that exhibit solid state emission features allow for a more accurate determination of the dust size and location (e.g. Chen et al. 2006; Olofsson et al. 2012). Such features probe small, warm dust grains in the inner regions of these systems where terrestrial planet formation may be proceeding (Lisse et al. 2009). We report here a successful search for such features. We identified our targets with a preliminary search for signs of emission features in the Spitzer IRS spectra of a number of young early type stars known to harbor warm debris disks. We fit to each target a physically-motivated model spectrum consisting of the sum of the stellar photosphere (modeled as a blackbody) and thermal emission from two dust belts. Each belt was defined by 6 parameters: the inner and outer orbital radii (rin and rout), the index of the radial surface density power law (rexp), the minimum and maximum grain sizes (amin and amax), and the index of the grain size distribution power law (aexp). aexp was fixed to -3.65 and amax was fixed to 1000 μm for all models; all other parameters were allowed to

  3. An X-ray outburst from the rapidly accreting young star that illuminates McNeil's nebula.

    Science.gov (United States)

    Kastner, J H; Richmond, M; Grosso, N; Weintraub, D A; Simon, T; Frank, A; Hamaguchi, K; Ozawa, H; Henden, A

    2004-07-22

    Young, low-mass stars are luminous X-ray sources whose powerful X-ray flares may exert a profound influence over the process of planet formation. The origin of the X-ray emission is uncertain. Although many (or perhaps most) recently formed, low-mass stars emit X-rays as a consequence of solar-like coronal activity, it has also been suggested that X-ray emission may be a direct result of mass accretion onto the forming star. Here we report X-ray imaging spectroscopy observations which reveal a factor approximately 50 increase in the X-ray flux from a young star that is at present undergoing a spectacular optical/infrared outburst (this star illuminates McNeil's nebula). The outburst seems to be due to the sudden onset of a phase of rapid accretion. The coincidence of a surge in X-ray brightness with the optical/infrared eruption demonstrates that strongly enhanced high-energy emission from young stars can occur as a consequence of high accretion rates. We suggest that such accretion-enhanced X-ray emission from erupting young stars may be short-lived, because intense star-disk magnetospheric interactions are quenched rapidly by the subsequent flood of new material onto the star.

  4. STAR FORMATION IN DISK GALAXIES. III. DOES STELLAR FEEDBACK RESULT IN CLOUD DEATH?

    Energy Technology Data Exchange (ETDEWEB)

    Tasker, Elizabeth J.; Wadsley, James; Pudritz, Ralph [Department of Physics and Astronomy, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4M1 (Canada)

    2015-03-01

    Stellar feedback, star formation, and gravitational interactions are major controlling forces in the evolution of giant molecular clouds (GMCs). To explore their relative roles, we examine the properties and evolution of GMCs forming in an isolated galactic disk simulation that includes both localized thermal feedback and photoelectric heating. The results are compared with the three previous simulations in this series, which consists of a model with no star formation, star formation but no form of feedback, and star formation with photoelectric heating in a set with steadily increasing physical effects. We find that the addition of localized thermal feedback greatly suppresses star formation but does not destroy the surrounding GMC, giving cloud properties closely resembling the run in which no stellar physics is included. The outflows from the feedback reduce the mass of the cloud but do not destroy it, allowing the cloud to survive its stellar children. This suggests that weak thermal feedback such as the lower bound expected for a supernova may play a relatively minor role in the galactic structure of quiescent Milky-Way-type galaxies, compared to gravitational interactions and disk shear.

  5. Stochastic self-propagating star formation in three-dimensional disk galaxy simulations

    International Nuclear Information System (INIS)

    Statler, T.; Comins, N.; Smith, B.F.

    1983-01-01

    Stochastic self-propagating star formation (SSPSF) is a process of forming new stars through the compression of the interstellar medium by supernova shock waves. Coupling this activity with galactic differential rotation produces spiral structure in two-dimensional disk galaxy simulations. In this paper the first results of a three-dimensional SSPSF simulation of disk galaxies are reported. Our model generates less impressive spirals than do the two-dimensional simulations. Although some spirals do appear in equilibrium, more frequently we observe spirals as non-equilibrium states of the models: as the spiral arms evolve, they widen until the spiral structure is no longer discernible. The two free parameters that we vary in this study are the probability of star formation due to a recent, nearby explosion, and the relaxation time for the interstellar medium to return to a condition of maximum star formation after it has been cleared out by an explosion and subsequent star formation. We find that equilibrium spiral structure is formed over a much smaller range of these parameters in our three-dimensional SSPSF models than in similar two-dimensional models. We discuss possible reasons for these results as well as improvements on the model which are being explored

  6. STAR FORMATION IN DISK GALAXIES. III. DOES STELLAR FEEDBACK RESULT IN CLOUD DEATH?

    International Nuclear Information System (INIS)

    Tasker, Elizabeth J.; Wadsley, James; Pudritz, Ralph

    2015-01-01

    Stellar feedback, star formation, and gravitational interactions are major controlling forces in the evolution of giant molecular clouds (GMCs). To explore their relative roles, we examine the properties and evolution of GMCs forming in an isolated galactic disk simulation that includes both localized thermal feedback and photoelectric heating. The results are compared with the three previous simulations in this series, which consists of a model with no star formation, star formation but no form of feedback, and star formation with photoelectric heating in a set with steadily increasing physical effects. We find that the addition of localized thermal feedback greatly suppresses star formation but does not destroy the surrounding GMC, giving cloud properties closely resembling the run in which no stellar physics is included. The outflows from the feedback reduce the mass of the cloud but do not destroy it, allowing the cloud to survive its stellar children. This suggests that weak thermal feedback such as the lower bound expected for a supernova may play a relatively minor role in the galactic structure of quiescent Milky-Way-type galaxies, compared to gravitational interactions and disk shear

  7. On a simple model for self-regulating star formation in the galactic disk

    International Nuclear Information System (INIS)

    Meusinger, H.

    1989-01-01

    Star formation in galaxies is a process with feedback to the interstellar medium (ISM) and possibly it is part of a self-regulating cycle. Dopita (1985) proposed a model in which star formation in spiral and irregular galaxies is self-regulated by the pressure in the ISM. In the present paper it is shown that available data for radial distributions of gas, total mass and the flux of Lyman continuum photons in the disk of our galaxy do not support such a simple model. Several possible causes are discussed. (author)

  8. High-resolution observations of IRAS 08544-4431. Detection of a disk orbiting a post-AGB star and of a slow disk wind

    Science.gov (United States)

    Bujarrabal, V.; Castro-Carrizo, A.; Winckel, H. Van; Alcolea, J.; Contreras, C. Sánchez; Santander-García, M.; Hillen, M.

    2018-06-01

    Context. Aims: In order to study the effects of rotating disks in the post-asymptotic giant branch (post-AGB) evolution, we observe a class of binary post-AGB stars that seem to be systematically surrounded by equatorial disks and slow outflows. Although the rotating dynamics had only been well identified in three cases, the study of such structures is thought to be fundamental to the understanding of the formation of disks in various phases of the late evolution of binary stars and the ejection of planetary nebulae from evolved stars. Methods: We present ALMA maps of 12CO and 13CO J = 3-2 lines in the source IRAS 08544-4431, which belongs to the above mentioned class of objects. We analyzed the data by means of nebula models, which account for the expectedly composite source and can reproduce the data. From our modeling, we estimated the main nebula parameters, including the structure and dynamics and the density and temperature distributions. We discuss the uncertainties of the derived values and, in particular, their dependence on the distance. Results: Our observations reveal the presence of an equatorial disk in rotation; a low-velocity outflow is also found, probably formed of gas expelled from the disk. The main characteristics of our observations and modeling of IRAS 08544-4431 are similar to those of better studied objects, confirming our interpretation. The disk rotation indicates a total central mass of about 1.8 M⊙, for a distance of 1100 pc. The disk is found to be relatively extended and has a typical diameter of 4 × 1016 cm. The total nebular mass is 2 × 10-2 M⊙, of which 90% corresponds to the disk. Assuming that the outflow is due to mass loss from the disk, we derive a disk lifetime of 10 000 yr. The disk angular momentum is found to be comparable to that of the binary system at present. Assuming that the disk angular momentum was transferred from the binary system, as expected, the high values of the disk angular momentum in this and other

  9. Optical veiling, disk accretion, and the evolution of T Tauri stars

    International Nuclear Information System (INIS)

    Hartmann, L.W.; Kenyon, S.J.

    1990-01-01

    High-resolution spectra of 31 K7-M1 T Tauri stars (TTs) in the Taurus-Auriga molecular cloud demonstrate that most of these objects exhibit substantial excess emission at 5200 A. Extrapolations of these data consistent with low-resolution spectrophotometry indicate that the extra emission is comparable to the stellar luminosity in many cases. If this continuum emission arises in the boundary layers of accreting disks, more than about 30 percent of all TTs may be accreting material at a rate which is sufficiently rapid to alter their evolution from standard Hayashi tracks. It is estimated that roughly 10 percent of the final stellar mass is accreted in the TT phase. This amount of material is comparable to the minimum gravitationally unstable disk mass estimated by Larson and it is speculated that the TT phase represents the final stages of disk accretion driven by gravitational instabilities. 40 refs

  10. Resonance line-profiles in galactic disk UV-bright stars

    International Nuclear Information System (INIS)

    Carrasco, L.; Costero, R.

    1987-01-01

    We have made a comparative analysis of UV resonance line-profiles in O-type stars members of young clusters and OB associations, with those of hot stars located away from sites of recent star formation (including ''runaway'' stars). The resonance line-profiles are found to be generally dominated by stellar winds that appear to depend mainly on the surface gravity and temperature of the star, and not on its mass. We also present the C IV, Si IV and N V resonance line-profiles for eleven stars not published in the previous two papers. The use of only the largest stellar wind velocity detectable in the resonance lines as a stellar population indicator, is disputed. (author)

  11. Formation of new stellar populations from gas accreted by massive young star clusters.

    Science.gov (United States)

    Li, Chengyuan; de Grijs, Richard; Deng, Licai; Geller, Aaron M; Xin, Yu; Hu, Yi; Faucher-Giguère, Claude-André

    2016-01-28

    Stars in clusters are thought to form in a single burst from a common progenitor cloud of molecular gas. However, massive, old 'globular' clusters--those with ages greater than ten billion years and masses several hundred thousand times that of the Sun--often harbour multiple stellar populations, indicating that more than one star-forming event occurred during their lifetimes. Colliding stellar winds from late-stage, asymptotic-giant-branch stars are often suggested to be triggers of second-generation star formation. For this to occur, the initial cluster masses need to be greater than a few million solar masses. Here we report observations of three massive relatively young star clusters (1-2 billion years old) in the Magellanic Clouds that show clear evidence of burst-like star formation that occurred a few hundred million years after their initial formation era. We show that such clusters could have accreted sufficient gas to form new stars if they had orbited in their host galaxies' gaseous disks throughout the period between their initial formation and the more recent bursts of star formation. This process may eventually give rise to the ubiquitous multiple stellar populations in globular clusters.

  12. Relations between age, metallicity and kinematics of F-G stars of the Galactic disk

    International Nuclear Information System (INIS)

    Shevelev, Yu.G.; Marsakov, V.A.; Suchkov, A.A.

    1989-01-01

    The data for ∼ 5500 F-G stars are used to study their kinematics, metal abindance and HR diagram in terms of uvby photometry. The age-metallicity, velocity-metallicity, and age-velocity relations are derived. An estimate for the age of the galactic disk is obtained. The following is shown: 1) At[Fe/H] -0.1, turn out to be kinematically younger than these G dwarfs. The same paradox is revealed by G and K giants

  13. AN IONIZED OUTFLOW FROM AB AUR, A HERBIG AE STAR WITH A TRANSITIONAL DISK

    Energy Technology Data Exchange (ETDEWEB)

    Rodríguez, Luis F.; Zapata, Luis A.; Ortiz-León, Gisela N.; Loinard, Laurent [Centro de Radioastronomía y Astrofísica, UNAM, Apdo. Postal 3-72 (Xangari), 58089 Morelia, Michoacán (Mexico); Dzib, Sergio A. [Max Planck Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn (Germany); Macías, Enrique; Anglada, Guillem, E-mail: l.rodriguez@crya.unam.mx [Instituto de Astrofísica de Andalucía (CSIC), Apartado 3004, E-18080 Granada (Spain)

    2014-09-20

    AB Aur is a Herbig Ae star with a transitional disk. Transitional disks present substantial dust clearing in their inner regions, most probably because of the formation of one or more planets, although other explanations are still viable. In transitional objects, accretion is found to be about an order of magnitude smaller than in classical full disks. Since accretion is believed to be correlated with outflow activity, centimeter free-free jets are expected to be present in association with these systems, at weaker levels than in classical protoplanetary (full) systems. We present new observations of the centimeter radio emission associated with the inner regions of AB Aur and conclude that the morphology, orientation, spectral index, and lack of temporal variability of the centimeter source imply the presence of a collimated, ionized outflow. The radio luminosity of this radio jet is, however, about 20 times smaller than that expected for a classical system of similar bolometric luminosity. We conclude that centimeter continuum emission is present in association with stars with transitional disks, but at levels than are becoming detectable only with the upgraded radio arrays. On the other hand, assuming that the jet velocity is 300 km s{sup –1}, we find that the ratio of mass loss rate to accretion rate in AB Aur is ∼0.1, similar to that found for less evolved systems.

  14. A SPITZER SURVEY OF PROTOPLANETARY DISK DUST IN THE YOUNG SERPENS CLOUD: HOW DO DUST CHARACTERISTICS EVOLVE WITH TIME?

    International Nuclear Information System (INIS)

    Oliveira, Isa; Van Dishoeck, Ewine F.; Lahuis, Fred; Pontoppidan, Klaus M.; MerIn, Bruno; Geers, Vincent C.; Joergensen, Jes K.; Olofsson, Johan; Augereau, Jean-Charles; Brown, Joanna M.

    2010-01-01

    We present Spitzer InfraRed Spectrograph (IRS) mid-infrared (5-35 μm) spectra of a complete flux-limited sample (≥3 mJy at 8 μm) of young stellar object (YSO) candidates selected on the basis of their infrared colors in the Serpens Molecular Cloud. Spectra of 147 sources are presented and classified. Background stars (with slope consistent with a reddened stellar spectrum and silicate features in absorption), galaxies (with redshifted polycyclic aromatic hydrocarbon (PAH) features), and a planetary nebula (with high ionization lines) amount to 22% of contamination in this sample, leaving 115 true YSOs. Sources with rising spectra and ice absorption features, classified as embedded Stage I protostars, amount to 18% of the sample. The remaining 82% (94) of the disk sources are analyzed in terms of spectral energy distribution shapes, PAHs, and silicate features. The presence, strength, and shape of these silicate features are used to infer disk properties for these systems. About 8% of the disks have 30/13 μm flux ratios consistent with cold disks with inner holes or gaps, and 3% of the disks show PAH emission. Comparison with models indicates that dust grains in the surface of these disks have sizes of at least a few μm. The 20 μm silicate feature is sometimes seen in the absence of the 10 μm feature, which may be indicative of very small holes in these disks. No significant difference is found in the distribution of silicate feature shapes and strengths between sources in clusters and in the field. Moreover, the results in Serpens are compared with other well-studied samples: the c2d IRS sample distributed over five clouds and a large sample of disks in the Taurus star-forming region. The remarkably similar distributions of silicate feature characteristics in samples with different environment and median ages-if significant-imply that the dust population in the disk surface results from an equilibrium between dust growth and destructive collision processes

  15. PROBING THE GALACTIC POTENTIAL WITH NEXT-GENERATION OBSERVATIONS OF DISK STARS

    International Nuclear Information System (INIS)

    Sumi, T.; Johnston, K. V.; Tremaine, S.; Spergel, D. N.; Majewski, S. R.

    2009-01-01

    Our current knowledge of the rotation curve of the Milky Way is remarkably poor compared to other galaxies, limited by the combined effects of extinction and the lack of large samples of stars with good distance estimates and proper motions. Near-future surveys promise a dramatic improvement in the number and precision of astrometric, photometric, and spectroscopic measurements of stars in the Milky Way's disk. We examine the impact of such surveys on our understanding of the Galaxy by 'observing' particle realizations of nonaxisymmetric disk distributions orbiting in an axisymmetric halo with appropriate errors and then attempting to recover the underlying potential using a Markov Chain Monte Carlo approach. We demonstrate that the azimuthally averaged gravitational force field in the Galactic plane-and hence, to a lesser extent, the Galactic mass distribution-can be tightly constrained over a large range of radii using a variety of types of surveys so long as the error distribution of the measurements of the parallax, proper motion, and radial velocity are well understood and the disk is surveyed globally. One advantage of our method is that the target stars can be selected nonrandomly in real or apparent-magnitude space to ensure just such a global sample without biasing the results. Assuming that we can always measure the line-of-sight velocity of a star with at least 1 km s -1 precision, we demonstrate that the force field can be determined to better than ∼1% for Galactocentric radii in the range R = 4-20 kpc using either: (1) small samples (a few hundred stars) with very accurate trigonometric parallaxes and good proper-motion measurements (uncertainties δ p,tri ∼ μ ∼ -1 respectively); (2) modest samples (∼1000 stars) with good indirect parallax estimates (e.g., uncertainty in photometric parallax δ p,phot ∼ 10%-20%) and good proper-motion measurements (δ μ ∼ 100 μas yr -1 ); or (3) large samples (∼10 4 stars) with good indirect parallax

  16. YOUNG STELLAR OBJECTS IN THE MASSIVE STAR-FORMING REGION W49

    Energy Technology Data Exchange (ETDEWEB)

    Saral, G.; Hora, J. L.; Willis, S. E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Koenig, X. P. [Yale University, Department of Astronomy, 208101, New Haven, CT 06520-8101 (United States); Gutermuth, R. A. [University of Massachusetts, Department of Astronomy, Amherst, MA 01003 (United States); Saygac, A. T., E-mail: gsaral@cfa.harvard.edu [Istanbul University, Faculty of Science, Astronomy and Space Sciences Department, Istanbul-Turkey (Turkey)

    2015-11-01

    We present the initial results of our investigation of the star-forming complex W49, one of the youngest and most luminous massive star-forming regions in our Galaxy. We used Spitzer/Infrared Array Camera (IRAC) data to investigate massive star formation with the primary objective of locating a representative set of protostars and the clusters of young stars that are forming around them. We present our source catalog with the mosaics from the IRAC data. In this study we used a combination of IRAC, MIPS, Two Micron All Sky Survey, and UKIRT Deep Infrared Sky Survey (UKIDSS) data to identify and classify the young stellar objects (YSOs). We identified 232 Class 0/I YSOs, 907 Class II YSOs, and 74 transition disk candidate objects using color–color and color–magnitude diagrams. In addition, to understand the evolution of star formation in W49, we analyzed the distribution of YSOs in the region to identify clusters using a minimal spanning tree method. The fraction of YSOs that belong to clusters with ≥7 members is found to be 52% for a cutoff distance of 96″, and the ratio of Class II/I objects is 2.1. We compared the W49 region to the G305 and G333 star-forming regions and concluded that W49 has the richest population, with seven subclusters of YSOs.

  17. Observational constraints for the circumstellar disk of the B[e] star CPD-52 9243

    Science.gov (United States)

    Cidale, L. S.; Borges Fernandes, M.; Andruchow, I.; Arias, M. L.; Kraus, M.; Chesneau, O.; Kanaan, S.; Curé, M.; de Wit, W. J.; Muratore, M. F.

    2012-12-01

    Context. The formation and evolution of gas and dust environments around B[e] supergiants are still open issues. Aims: We intend to study the geometry, kinematics and physical structure of the circumstellar environment (CE) of the B[e] supergiant CPD-52 9243 to provide further insights into the underlying mechanism causing the B[e] phenomenon. Methods: The influence of the different physical mechanisms acting on the CE (radiation pressure, rotation, bi-stability or tidal forces) is somehow reflected in the shape and kinematic properties of the gas and dust regions (flaring, Keplerian, accretion or outflowing disks). To investigate these processes we mainly used quasi-simultaneous observations taken with high spatial resolution optical long-baseline interferometry (VLTI/MIDI), near-IR spectroscopy of CO bandhead features (Gemini/Phoenix and VLT/CRIRES) and optical spectra (CASLEO/REOSC). Results: High angular resolution interferometric measurements obtained with VLTI/MIDI provide strong support for the presence of a dusty disk(ring)-like structure around CPD-52 9243, with an upper limit for its inner edge of ~8 mas (~27.5 AU, considering a distance of 3.44 kpc to the star). The disk has an inclination angle with respect to the line of sight of 46 ± 7°. The study of CO first overtone bandhead evidences a disk structure in Keplerian rotation. The optical spectrum indicates a rapid outflow in the polar direction. Conclusions: The IR emission (CO and warm dust) indicates Keplerian rotation in a circumstellar disk while the optical line transitions of various species are consistent with a polar wind. Both structures appear simultaneously and provide further evidence for the proposed paradigms of the mass-loss in supergiant B[e] stars. The presence of a detached cold CO ring around CPD-52 9243 could be due to a truncation of the inner disk caused by a companion, located possibly interior to the disk rim, clearing the center of the system. More spectroscopic and

  18. EVOLUTION OF GASEOUS DISK VISCOSITY DRIVEN BY SUPERNOVA EXPLOSION. II. STRUCTURE AND EMISSIONS FROM STAR-FORMING GALAXIES AT HIGH REDSHIFT

    International Nuclear Information System (INIS)

    Yan Changshuo; Wang Jianmin

    2010-01-01

    High spatial resolution observations show that high-redshift galaxies are undergoing intensive evolution of dynamical structure and morphologies displayed by the Hα, Hβ, [O III], and [N II] images. It has been shown that supernova explosion (SNexp) of young massive stars during the star formation epoch, as kinetic feedback to host galaxies, can efficiently excite the turbulent viscosity. We incorporate the feedback into the dynamical equations through mass dropout and angular momentum transportation driven by the SNexp-excited turbulent viscosity. The empirical Kennicutt-Schmidt law is used for star formation rates (SFRs). We numerically solve the equations and show that there can be intensive evolution of structure of the gaseous disk. Secular evolution of the disk shows interesting characteristics: (1) high viscosity excited by SNexp can efficiently transport the gas from 10 kpc to ∼1 kpc forming a stellar disk whereas a stellar ring forms for the case with low viscosity; (2) starbursts trigger SMBH activity with a lag of ∼10 8 yr depending on SFRs, prompting the joint evolution of SMBHs and bulges; and (3) the velocity dispersion is as high as ∼100 km s -1 in the gaseous disk. These results are likely to vary with the initial mass function (IMF) that the SNexp rates rely on. Given the IMF, we use the GALAXEV code to compute the spectral evolution of stellar populations based on the dynamical structure. In order to compare the present models with the observed dynamical structure and images, we use the incident continuum from the simple stellar synthesis and CLOUDY to calculate emission line ratios of Hα, Hβ, [O III], and [N II], and Hα brightness of gas photoionized by young massive stars formed on the disks. The models can produce the main features of emission from star-forming galaxies. We apply the present model to two galaxies, BX 389 and BX 482 observed in the SINS high-z sample, which are bulge and disk-dominated, respectively. Two successive

  19. NuSTAR SPECTROSCOPY OF GRS 1915+105: DISK REFLECTION, SPIN, AND CONNECTIONS TO JETS

    Energy Technology Data Exchange (ETDEWEB)

    Miller, J. M.; King, A. L. [Department of Astronomy, The University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1046 (United States); Parker, M. L.; Fabian, A. C. [Institute of Astronomy, The University of Cambridge, Madingley Road, Cambridge CB3 OHA (United Kingdom); Fuerst, F.; Walton, D. J. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA, 91125 (United States); Bachetti, M.; Harrison, F. A.; Barret, D.; Grefenstette, B. W. [Universite de Toulouse, UPS-OMP, F-31400 Toulouse (France); Boggs, S. E.; Tomsick, J. A. [Space Sciences Laboratory, University of California, Berkeley, 7 Gauss Way, Berkeley, CA 94720-7450 (United States); Chakrabarty, D. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 70 Vassar Street, Cambridge, MA 02139 (United States); Christensen, F. E. [Danish Technical University, DK-2800 Lyngby (Denmark); Craig, W. W. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Hailey, C. J. [Columbia University, New York, NY 10027 (United States); Stern, D. K. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Zhang, W. W., E-mail: jonmm@umich.edu [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-10-01

    We report on the results of spectral fits made to a NuSTAR observation of the black hole GRS 1915+105 in a 'plateau' state. This state is of special interest because it is similar to the 'low/hard' state seen in other black holes, especially in that compact, steady jets are launched in this phase. The 3-79 keV bandpass of NuSTAR, and its ability to obtain moderate-resolution spectra free from distortions such as photon pile-up, are extremely well suited to studies of disk reflection in X-ray binaries. In only 15 ks of net exposure, an extraordinarily sensitive spectrum of GRS 1915+105 was measured across the full bandpass. Ionized reflection from a disk around a rapidly spinning black hole is clearly required to fit the spectra; even hybrid Comptonization models including ionized reflection from a disk around a Schwarzschild black hole proved inadequate. A spin parameter of a = 0.98 ± 0.01 (1σ statistical error) is measured via the best-fit model; low spins are ruled out at a high level of confidence. This result suggests that jets can be launched from a disk extending to the innermost stable circular orbit. A very steep inner disk emissivity profile is also measured, consistent with models of compact coronae above Kerr black holes. These results support an emerging association between the hard X-ray corona and the base of the relativistic jet.

  20. A Search for Circumstellar Gas-Disk Variability in F-type Stars

    Science.gov (United States)

    Adkins, Ally; Montgomery, Sharon Lynn; Welsh, Barry

    2018-01-01

    Over the past six years, short-term (night-to-night) variability in the CaII K-line (3933Å) absorption has been detected towards 22 rapidly-rotating A-type stars, all but four of them discovered by us. Most of these stars are young (age McDonald Observatory) during June 2017. The appearance or absence of similar short-lived, Doppler-shifted absorption in F-type stars serves as a test of our understanding of the underlying phenomena.

  1. Grand-design Spiral Arms in a Young Forming Circumstellar Disk

    Energy Technology Data Exchange (ETDEWEB)

    Tomida, Kengo; Lin, Chia Hui [Department of Earth and Space Science, Osaka University, Toyonaka, Osaka 560-0043 (Japan); Machida, Masahiro N. [Department of Earth and Planetary Sciences, Faculty of Sciences, Kyushu University, Nishi-ku, Fukuoka 819-0395 (Japan); Hosokawa, Takashi [Department of Physics, Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Sakurai, Yuya, E-mail: tomida@vega.ess.sci.osaka-u.ac.jp [Department of Physics, The University of Tokyo, Tokyo 113-0033 (Japan)

    2017-01-20

    We study formation and long-term evolution of a circumstellar disk in a collapsing molecular cloud core using a resistive magnetohydrodynamic simulation. While the formed circumstellar disk is initially small, it grows as accretion continues, and its radius becomes as large as 200 au toward the end of the Class-I phase. A pair of grand-design spiral arms form due to gravitational instability in the disk, and they transfer angular momentum in the highly resistive disk. Although the spiral arms disappear in a few rotations as expected in a classical theory, new spiral arms form recurrently as the disk, soon becoming unstable again by gas accretion. Such recurrent spiral arms persist throughout the Class-0 and I phases. We then perform synthetic observations and compare our model with a recent high-resolution observation of a young stellar object Elias 2–27, whose circumstellar disk has grand-design spiral arms. We find good agreement between our theoretical model and the observation. Our model suggests that the grand-design spiral arms around Elias 2–27 are consistent with material arms formed by gravitational instability. If such spiral arms commonly exist in young circumstellar disks, it implies that young circumstellar disks are considerably massive and gravitational instability is the key process of angular momentum transport.

  2. Grand-design Spiral Arms in a Young Forming Circumstellar Disk

    International Nuclear Information System (INIS)

    Tomida, Kengo; Lin, Chia Hui; Machida, Masahiro N.; Hosokawa, Takashi; Sakurai, Yuya

    2017-01-01

    We study formation and long-term evolution of a circumstellar disk in a collapsing molecular cloud core using a resistive magnetohydrodynamic simulation. While the formed circumstellar disk is initially small, it grows as accretion continues, and its radius becomes as large as 200 au toward the end of the Class-I phase. A pair of grand-design spiral arms form due to gravitational instability in the disk, and they transfer angular momentum in the highly resistive disk. Although the spiral arms disappear in a few rotations as expected in a classical theory, new spiral arms form recurrently as the disk, soon becoming unstable again by gas accretion. Such recurrent spiral arms persist throughout the Class-0 and I phases. We then perform synthetic observations and compare our model with a recent high-resolution observation of a young stellar object Elias 2–27, whose circumstellar disk has grand-design spiral arms. We find good agreement between our theoretical model and the observation. Our model suggests that the grand-design spiral arms around Elias 2–27 are consistent with material arms formed by gravitational instability. If such spiral arms commonly exist in young circumstellar disks, it implies that young circumstellar disks are considerably massive and gravitational instability is the key process of angular momentum transport.

  3. THE DYNAMICAL EVOLUTION OF LOW-MASS HYDROGEN-BURNING STARS, BROWN DWARFS, AND PLANETARY-MASS OBJECTS FORMED THROUGH DISK FRAGMENTATION

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yun; Kouwenhoven, M. B. N. [Department of Astronomy, School of Physics, Peking University, Yiheyuan Lu 5, Haidian Qu, Beijing 100871 (China); Stamatellos, D. [Jeremiah Horrocks Institute for Mathematics, Physics and Astronomy, University of Central Lancashire, Preston, PR1 2HE (United Kingdom); Goodwin, S. P., E-mail: yunli@pku.edu.cn [Department of Physics and Astronomy, The University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2015-06-01

    Theory and simulations suggest that it is possible to form low-mass hydrogen-burning stars, brown dwarfs (BDs), and planetary-mass objects (PMOs) via disk fragmentation. As disk fragmentation results in the formation of several bodies at comparable distances to the host star, their orbits are generally unstable. Here, we study the dynamical evolution of these objects. We set up the initial conditions based on the outcomes of the smoothed-particle hydrodynamics simulations of Stamatellos and Whitworth, and for comparison we also study the evolution of systems resulting from lower-mass fragmenting disks. We refer to these two sets of simulations as set 1 and set 2, respectively. At 10 Myr, approximately half of the host stars have one companion left, and approximately 22% (set 1) to 9.8% (set 2) of the host stars are single. Systems with multiple secondaries in relatively stable configurations are common (about 30% and 44%, respectively). The majority of the companions are ejected within 1 Myr with velocities mostly below 5 km s{sup −1}, with some runaway escapers with velocities over 30 km s{sup −1}. Roughly 6% (set 1) and 2% (set 2) of the companions pair up into very low-mass binary systems, resulting in respective binary fractions of 3.2% and 1.2%. The majority of these pairs escape as very low-mass binaries, while others remain bound to the host star in hierarchical configurations (often with retrograde inner orbits). Physical collisions with the host star (0.43 and 0.18 events per host star for set 1 and set 2, respectively) and between companions (0.08 and 0.04 events per host star for set 1 and set 2, respectively) are relatively common and their frequency increases with increasing disk mass. Our study predicts observable properties of very low-mass binaries, low-mass hierarchical systems, the BD desert, and free-floating BDs and PMOs in and near young stellar groupings, which can be used to distinguish between different formation scenarios of very low

  4. CSI 2264: characterizing accretion-burst dominated light curves for young stars in NGC 2264

    International Nuclear Information System (INIS)

    Stauffer, John; Cody, Ann Marie; Rebull, Luisa; Carey, Sean; Baglin, Annie; Alencar, Silvia; Hillenbrand, Lynne A.; Carpenter, John; Findeisen, Krzysztof; Venuti, Laura; Bouvier, Jerome; Turner, Neal J.; Plavchan, Peter; Terebey, Susan; Morales-Calderón, María; Micela, Giusi; Flaccomio, Ettore; Song, Inseok; Gutermuth, Rob; Hartmann, Lee

    2014-01-01

    Based on more than four weeks of continuous high-cadence photometric monitoring of several hundred members of the young cluster NGC 2264 with two space telescopes, NASA's Spitzer and the CNES CoRoT (Convection, Rotation, and planetary Transits), we provide high-quality, multi-wavelength light curves for young stellar objects whose optical variability is dominated by short-duration flux bursts, which we infer are due to enhanced mass accretion rates. These light curves show many brief—several hours to one day—brightenings at optical and near-infrared wavelengths with amplitudes generally in the range of 5%-50% of the quiescent value. Typically, a dozen or more of these bursts occur in a 30 day period. We demonstrate that stars exhibiting this type of variability have large ultraviolet (UV) excesses and dominate the portion of the u – g versus g – r color-color diagram with the largest UV excesses. These stars also have large Hα equivalent widths, and either centrally peaked, lumpy Hα emission profiles or profiles with blueshifted absorption dips associated with disk or stellar winds. Light curves of this type have been predicted for stars whose accretion is dominated by Rayleigh-Taylor instabilities at the boundary between their magnetosphere and inner circumstellar disk, or where magneto-rotational instabilities modulate the accretion rate from the inner disk. Among the stars with the largest UV excesses or largest Hα equivalent widths, light curves with this type of variability greatly outnumber light curves with relatively smooth sinusoidal variations associated with long-lived hot spots. We provide quantitative statistics for the average duration and strength of the accretion bursts and for the fraction of the accretion luminosity associated with these bursts.

  5. THE HERSCHEL DIGIT SURVEY OF WEAK-LINE T TAURI STARS: IMPLICATIONS FOR DISK EVOLUTION AND DISSIPATION

    Energy Technology Data Exchange (ETDEWEB)

    Cieza, Lucas A. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, HI 96822 (United States); Olofsson, Johan; Henning, Thomas [Max Planck Institute fuer Astronomie, Koenigstuhl 17, D-69117 Heidelberg (Germany); Harvey, Paul M.; Evans, Neal J. II [Department of Astronomy, University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712-1205 (United States); Najita, Joan [National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 86719 (United States); Merin, Bruno [Herschel Science Centre, European Space Astronomy Centre, ESA, P.O. Box 78, E-28691 Villanueva de la Canada, Madrid (Spain); Liebhart, Armin; Guedel, Manuel [Department of Astronomy, University of Vienna, Tuerkenschanzstr. 17, A-1180 Vienna (Austria); Augereau, Jean-Charles; Pinte, Christophe, E-mail: lcieza@ifa.hawaii.edu [UJF-Grenoble 1/CNRS-INSU, Institut de Planetologie et d' Astrophysique (IPAG) UMR 5274, BP 53, F-38041 Grenoble cedex 9 (France)

    2013-01-10

    As part of the 'Dust, Ice, and Gas In Time (DIGIT)' Herschel Open Time Key Program, we present Herschel photometry (at 70, 160, 250, 350, and 500 {mu}m) of 31 weak-line T Tauri star (WTTS) candidates in order to investigate the evolutionary status of their circumstellar disks. Of the stars in our sample, 13 had circumstellar disks previously known from infrared observations at shorter wavelengths, while 18 of them had no previous evidence for a disk. We detect a total of 15 disks as all previously known disks are detected at one or more Herschel wavelengths and two additional disks are identified for the first time. The spectral energy distributions (SEDs) of our targets seem to trace the dissipation of the primordial disk and the transition to the debris disk regime. Of the 15 disks, 7 appear to be optically thick primordial disks, including 2 objects with SEDs indistinguishable from those of typical Classical T Tauri stars, 4 objects that have significant deficit of excess emission at all IR wavelengths, and 1 'pre-transitional' object with a known gap in the disk. Despite their previous WTTS classification, we find that the seven targets in our sample with optically thick disks show evidence for accretion. The remaining eight disks have weaker IR excesses similar to those of optically thin debris disks. Six of them are warm and show significant 24 {mu}m Spitzer excesses, while the last two are newly identified cold debris-like disks with photospheric 24 {mu}m fluxes, but significant excess emission at longer wavelengths. The Herschel photometry also places strong constraints on the non-detections, where systems with F {sub 70}/F {sub 70,*} {approx}> 5-15 and L {sub disk}/L {sub *} {approx}> 10{sup -3} to 10{sup -4} can be ruled out. We present preliminary models for both the optically thick and optically thin disks and discuss our results in the context of the evolution and dissipation of circumstellar disks.

  6. Direct measurement of interstellar extinction toward young stars using atomic hydrogen Lyα absorption

    Energy Technology Data Exchange (ETDEWEB)

    McJunkin, Matthew; France, Kevin; Brown, Alexander [Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309 (United States); Schneider, P. C. [Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany); Herczeg, Gregory J. [Kavli Institute for Astronomy and Astrophysics, Peking University, Beijing 100871 (China); Hillenbrand, Lynne [California Institute of Technology, Department of Astrophysics, MC105-24, 1200 E. California Blvd., Pasadena, CA 91125 (United States); Schindhelm, Eric [Southwest Research Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302 (United States); Edwards, Suzan, E-mail: matthew.mcjunkin@colorado.edu [Five College Astronomy Department, Smith College, Northampton, MA 01063 (United States)

    2014-01-10

    Interstellar reddening corrections are necessary to reconstruct the intrinsic spectral energy distributions (SEDs) of accreting protostellar systems. The stellar SED determines the heating and chemical processes that can occur in circumstellar disks. Measurement of neutral hydrogen absorption against broad Lyα emission profiles in young stars can be used to obtain the total H I column density (N(H I)) along the line of sight. We measure N(H I) with new and archival ultraviolet observations from the Hubble Space Telescope (HST) of 31 classical T Tauri and Herbig Ae/Be stars. The H I column densities range from log{sub 10}(N(H I)) ≈19.6-21.1, with corresponding visual extinctions of A{sub V} =0.02-0.72 mag, assuming an R{sub V} of 3.1. We find that the majority of the H I absorption along the line of sight likely comes from interstellar rather than circumstellar material. Extinctions derived from new HST blue-optical spectral analyses, previous IR and optical measurements, and new X-ray column densities on average overestimate the interstellar extinction toward young stars compared to the N(H I) values by ∼0.6 mag. We discuss possible explanations for this discrepancy in the context of a protoplanetary disk geometry.

  7. Three-dimensional GRMHD Simulations of Neutrino-cooled Accretion Disks from Neutron Star Mergers

    Science.gov (United States)

    Siegel, Daniel M.; Metzger, Brian D.

    2018-05-01

    Merging binaries consisting of two neutron stars (NSs) or an NS and a stellar-mass black hole typically form a massive accretion torus around the remnant black hole or long-lived NS. Outflows from these neutrino-cooled accretion disks represent an important site for r-process nucleosynthesis and the generation of kilonovae. We present the first three-dimensional, general-relativistic magnetohydrodynamic (GRMHD) simulations including weak interactions and a realistic equation of state of such accretion disks over viscous timescales (380 ms). We witness the emergence of steady-state MHD turbulence, a magnetic dynamo with an ∼20 ms cycle, and the generation of a “hot” disk corona that launches powerful thermal outflows aided by the energy released as free nucleons recombine into α-particles. We identify a self-regulation mechanism that keeps the midplane electron fraction low (Y e ∼ 0.1) over viscous timescales. This neutron-rich reservoir, in turn, feeds outflows that retain a sufficiently low value of Y e ≈ 0.2 to robustly synthesize third-peak r-process elements. The quasi-spherical outflows are projected to unbind 40% of the initial disk mass with typical asymptotic escape velocities of 0.1c and may thus represent the dominant mass ejection mechanism in NS–NS mergers. Including neutrino absorption, our findings agree with previous hydrodynamical α-disk simulations that the entire range of r-process nuclei from the first to the third r-process peak can be synthesized in the outflows, in good agreement with observed solar system abundances. The asymptotic escape velocities and quantity of ejecta, when extrapolated to moderately higher disk masses, are consistent with those needed to explain the red kilonova emission following the NS merger GW170817.

  8. Hot stars in young massive clusters: Mapping the current Galactic metallicity

    Science.gov (United States)

    de la Fuente, Diego; Najarro, Francisco; Davies, Ben; Trombley, Christine; Figer, Donald F.; Herrero, Artemio

    2013-06-01

    Young Massive Clusters (YMCs) with ages guarantee that these objects present the same chemical composition than the surrounding environment where they are recently born. Finally, the YMCs host very massive stars whose extreme luminosities allow to accomplish detailed spectroscopic analyses even in the most distant regions of the Milky Way. Our group has carried out ISAAC/VLT spectroscopic observations of hot massive stars belonging to several YMCs in different locations around the Galactic disk. As a result, high signal-to-noise, near-infrared spectra of dozens of blue massive stars (including many OB supergiants, Wolf-Rayet stars and a B hypergiant) have been obtained. These data are fully reduced, and NLTE spherical atmosphere modeling is in process. Several line diagnostics will be combined in order to calculate metal abundances accurately for each cluster. The diverse locations of the clusters will allow us to draw a two-dimensional chemical map of the Galactic disk for the first time. The study of the radial and azimuthal variations of elemental abundances will be crucial for understanding the chemical evolution of the Milky Way. Particularly, the ratio between Fe-peak and alpha elements will constitute a powerful tool to investigate the past stellar populations that originated the current Galactic chemistry.

  9. The Mass-dependent Star Formation Histories of Disk Galaxies: Infall Model Versus Observations

    Science.gov (United States)

    Chang, R. X.; Hou, J. L.; Shen, S. Y.; Shu, C. G.

    2010-10-01

    We introduce a simple model to explore the star formation histories of disk galaxies. We assume that the disk originate and grows by continuous gas infall. The gas infall rate is parameterized by the Gaussian formula with one free parameter: the infall-peak time tp . The Kennicutt star formation law is adopted to describe how much cold gas turns into stars. The gas outflow process is also considered in our model. We find that, at a given galactic stellar mass M *, the model adopting a late infall-peak time tp results in blue colors, low-metallicity, high specific star formation rate (SFR), and high gas fraction, while the gas outflow rate mainly influences the gas-phase metallicity and star formation efficiency mainly influences the gas fraction. Motivated by the local observed scaling relations, we "construct" a mass-dependent model by assuming that the low-mass galaxy has a later infall-peak time tp and a larger gas outflow rate than massive systems. It is shown that this model can be in agreement with not only the local observations, but also with the observed correlations between specific SFR and galactic stellar mass SFR/M * ~ M * at intermediate redshifts z < 1. Comparison between the Gaussian-infall model and the exponential-infall model is also presented. It shows that the exponential-infall model predicts a higher SFR at early stage and a lower SFR later than that of Gaussian infall. Our results suggest that the Gaussian infall rate may be more reasonable in describing the gas cooling process than the exponential infall rate, especially for low-mass systems.

  10. Variability of Disk Emission in Pre-Main Sequence and Related Stars. II. Variability in the Gas and Dust Emission of the Herbig Fe Star SAO 206462

    Science.gov (United States)

    Sitko, Michael L.; Day, Amanda N.; Kimes, Robin L.; Beerman, Lori C.; Martus, Cameron; Lynch, David K.; Russell, Ray W.; Grady, Carol A.; Schneider, Glenn; Lisse, Carey M.; hide

    2011-01-01

    We present thirteen epochs of near-infrared (0.8-5 microns) spectroscopic observations of the pre-transitional, "gapped" disk system in SAO 206462 (=HD 135344B). In all, six gas emission lines (Br(alpha) , Br(gamma), Pa(beta), Pa(delta), Pa(epsilon), and the 0.8446 microns line of O I) along with continuum measurements made near the standard J, H, K, and L photometric bands were measured. A mass accretion rate of approximately 2 x 10(exp 8)Solar Mass/yr was derived from the Br(gamma) and Pa(beta) lines. However, the fluxes of these lines varied by a factor of over two during the course of a few months. The continuum also varied, but by only approx.30%, and even decreased at a time when the gas emission was increasing. The H I line at 1.083 microns was also found to vary in a manner inconsistent with that of either the hydrogen lines or the dust. Both the gas and dust variabilities indicate significant changes in the region of the inner gas and the inner dust belt that may be common to many young disk systems. If planets are responsible for defining the inner edge of the gap, they could interact with the material on time scales commensurate with what is observed for the variations in the dust, while other disk instabilities (thermal, magneto-rotational) would operate there on longer time scales than we observe for the inner dust belt. For SAO 206462, the orbital period would likely be 1-3 years. If the changes are being induced in the disk material closer to the star than the gap, a variety of mechanisms (disk instabilities, interactions via planets) might be responsible for the changes seen. The He I feature is most likely due to a wind whose orientation changes with respect to the observer on time scales of a day or less. To further constrain the origin of the gas and dust emission will require multiple spectroscopic and interferometric observations on both shorter and longer time scales that have been sampled so far.

  11. Variable Stars Observed in the Galactic Disk by AST3-1 from Dome A, Antarctica

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lingzhi; Ma, Bin; Hu, Yi; Liu, Qiang; Shang, Zhaohui [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Li, Gang; Fu, Jianning [Department of Astronomy, Beijing Normal University, Beijing, 100875 (China); Wang, Lifan; Cui, Xiangqun; Du, Fujia; Gong, Xuefei; Li, Xiaoyan; Li, Zhengyang; Yuan, Xiangyan; Zhou, Jilin [Chinese Center for Antarctic Astronomy, Nanjing 210008 (China); Ashley, Michael C. B. [School of Physics, University of New South Wales, NSW 2052 (Australia); Pennypacker, Carl R. [Center for Astrophysics, Lawrence Berkeley National Laboratory, Berkeley, CA (United States); York, Donald G., E-mail: wanglingzhi@bao.ac.cn [Department of Astronomy and Astrophysics and Enrico Fermi Institute, University of Chicago, Chicago, IL 60637 (United States)

    2017-03-01

    AST3-1 is the second-generation wide-field optical photometric telescope dedicated to time-domain astronomy at Dome A, Antarctica. Here, we present the results of an i -band images survey from AST3-1 toward one Galactic disk field. Based on time-series photometry of 92,583 stars, 560 variable stars were detected with i magnitude ≤16.5 mag during eight days of observations; 339 of these are previously unknown variables. We tentatively classify the 560 variables as 285 eclipsing binaries (EW, EB, and EA), 27 pulsating variable stars ( δ Scuti, γ Doradus, δ Cephei variable, and RR Lyrae stars), and 248 other types of variables (unclassified periodic, multiperiodic, and aperiodic variable stars). Of the eclipsing binaries, 34 show O’Connell effects. One of the aperiodic variables shows a plateau light curve and another variable shows a secondary maximum after peak brightness. We also detected a complex binary system with an RS CVn-like light-curve morphology; this object is being followed-up spectroscopically using the Gemini South telescope.

  12. THE SPITZER c2d SURVEY OF WEAK-LINE T TAURI STARS. III. THE TRANSITION FROM PRIMORDIAL DISKS TO DEBRIS DISKS

    International Nuclear Information System (INIS)

    Wahhaj, Zahed; Cieza, Lucas; Koerner, David W.; Case, April; Stapelfeldt, Karl R.; Chapman, Nicholas; Padgett, Deborah L.; Brooke, Tim; Keller, James R.; MerIn, Bruno; Evans, Neal J.; Harvey, Paul; Sargent, Anneila; Van Dishoeck, Ewine F.; Allen, Lori; Blake, Geoff; Mundy, Lee; Myers, Philip C.

    2010-01-01

    We present 3.6 to 70 μm Spitzer photometry of 154 weak-line T Tauri stars (WTTSs) in the Chamaeleon, Lupus, Ophiuchus, and Taurus star formation regions, all of which are within 200 pc of the Sun. For a comparative study, we also include 33 classical T Tauri stars which are located in the same star-forming regions. Spitzer sensitivities allow us to robustly detect the photosphere in the IRAC bands (3.6 to 8 μm) and the 24 μm MIPS band. In the 70 μm MIPS band, we are able to detect dust emission brighter than roughly 40 times the photosphere. These observations represent the most sensitive WTTSs survey in the mid- to far-infrared to date and reveal the frequency of outer disks (r = 3-50 AU) around WTTSs. The 70 μm photometry for half the c2d WTTSs sample (the on-cloud objects), which were not included in the earlier papers in this series, those of Padgett et al. and Cieza et al., are presented here for the first time. We find a disk frequency of 19% for on-cloud WTTSs, but just 5% for off-cloud WTTSs, similar to the value reported in the earlier works. WTTSs exhibit spectral energy distributions that are quite diverse, spanning the range from optically thick to optically thin disks. Most disks become more tenuous than L disk /L * = 2 x 10 -3 in 2 Myr and more tenuous than L disk /L * = 5 x 10 -4 in 4 Myr.

  13. Anomalous Eclipses of the Young Star RW Aur A

    Science.gov (United States)

    Lamzin, S.; Cheryasov, D.; Chuntonov, G.; Dodin, A.; Grankin, K.; Malanchev, K.; Nadzhip, A.; Safonov, B.; Shakhovskoy, D.; Shenavrin, V.; Tatarnikov, A.; Vozyakova, O.

    2017-06-01

    Results of UBVRIJHKLM photometry, VRI polarimetry and optical spectroscopy of a young star RW Aur A obtained during 2010-11 and 2014-16 dimming events are presented. During the second dimming the star decreased its brightness to ΔV >4.5 mag, polarization of its light in I-band was up to 30 %, and color-magnitude diagramm was similar to that of UX Ori type stars. We conclude that the reason of both dimmings is an eclipses of the star by dust screen, but the size of the screen is much larger than in the case of UXORs.

  14. Hypervelocity stars from young stellar clusters in the Galactic Centre

    Science.gov (United States)

    Fragione, G.; Capuzzo-Dolcetta, R.; Kroupa, P.

    2017-05-01

    The enormous velocities of the so-called hypervelocity stars (HVSs) derive, likely, from close interactions with massive black holes, binary stars encounters or supernova explosions. In this paper, we investigate the origin of HVSs as consequence of the close interaction between the Milky Way central massive black hole and a passing-by young stellar cluster. We found that both single and binary HVSs may be generated in a burst-like event, as the cluster passes near the orbital pericentre. High-velocity stars will move close to the initial cluster orbital plane and in the direction of the cluster orbital motion at the pericentre. The binary fraction of these HVS jets depends on the primordial binary fraction in the young cluster. The level of initial mass segregation determines the value of the average mass of the ejected stars. Some binary stars will merge, continuing their travel across and out of the Galaxy as blue stragglers.

  15. MONTE CARLO NEUTRINO TRANSPORT THROUGH REMNANT DISKS FROM NEUTRON STAR MERGERS

    Energy Technology Data Exchange (ETDEWEB)

    Richers, Sherwood; Ott, Christian D. [TAPIR, Mailcode 350-17, Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125 (United States); Kasen, Daniel; Fernández, Rodrigo [Department of Astronomy and Theoretical Astrophysics Center, University of California, Berkeley, CA 94720 (United States); O’Connor, Evan [Department of Physics, Campus Code 8202, North Carolina State University, Raleigh, NC 27695 (United States)

    2015-11-01

    We present Sedonu, a new open source, steady-state, special relativistic Monte Carlo (MC) neutrino transport code, available at bitbucket.org/srichers/sedonu. The code calculates the energy- and angle-dependent neutrino distribution function on fluid backgrounds of any number of spatial dimensions, calculates the rates of change of fluid internal energy and electron fraction, and solves for the equilibrium fluid temperature and electron fraction. We apply this method to snapshots from two-dimensional simulations of accretion disks left behind by binary neutron star mergers, varying the input physics and comparing to the results obtained with a leakage scheme for the cases of a central black hole and a central hypermassive neutron star. Neutrinos are guided away from the densest regions of the disk and escape preferentially around 45° from the equatorial plane. Neutrino heating is strengthened by MC transport a few scale heights above the disk midplane near the innermost stable circular orbit, potentially leading to a stronger neutrino-driven wind. Neutrino cooling in the dense midplane of the disk is stronger when using MC transport, leading to a globally higher cooling rate by a factor of a few and a larger leptonization rate by an order of magnitude. We calculate neutrino pair annihilation rates and estimate that an energy of 2.8 × 10{sup 46} erg is deposited within 45° of the symmetry axis over 300 ms when a central BH is present. Similarly, 1.9 × 10{sup 48} erg is deposited over 3 s when an HMNS sits at the center, but neither estimate is likely to be sufficient to drive a gamma-ray burst jet.

  16. MONTE CARLO NEUTRINO TRANSPORT THROUGH REMNANT DISKS FROM NEUTRON STAR MERGERS

    International Nuclear Information System (INIS)

    Richers, Sherwood; Ott, Christian D.; Kasen, Daniel; Fernández, Rodrigo; O’Connor, Evan

    2015-01-01

    We present Sedonu, a new open source, steady-state, special relativistic Monte Carlo (MC) neutrino transport code, available at bitbucket.org/srichers/sedonu. The code calculates the energy- and angle-dependent neutrino distribution function on fluid backgrounds of any number of spatial dimensions, calculates the rates of change of fluid internal energy and electron fraction, and solves for the equilibrium fluid temperature and electron fraction. We apply this method to snapshots from two-dimensional simulations of accretion disks left behind by binary neutron star mergers, varying the input physics and comparing to the results obtained with a leakage scheme for the cases of a central black hole and a central hypermassive neutron star. Neutrinos are guided away from the densest regions of the disk and escape preferentially around 45° from the equatorial plane. Neutrino heating is strengthened by MC transport a few scale heights above the disk midplane near the innermost stable circular orbit, potentially leading to a stronger neutrino-driven wind. Neutrino cooling in the dense midplane of the disk is stronger when using MC transport, leading to a globally higher cooling rate by a factor of a few and a larger leptonization rate by an order of magnitude. We calculate neutrino pair annihilation rates and estimate that an energy of 2.8 × 10 46 erg is deposited within 45° of the symmetry axis over 300 ms when a central BH is present. Similarly, 1.9 × 10 48 erg is deposited over 3 s when an HMNS sits at the center, but neither estimate is likely to be sufficient to drive a gamma-ray burst jet

  17. HIGH-RESOLUTION 25 μM IMAGING OF THE DISKS AROUND HERBIG AE/BE STARS

    Energy Technology Data Exchange (ETDEWEB)

    Honda, M. [Department of Mathematics and Physics, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293 (Japan); Maaskant, K. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Okamoto, Y. K. [Institute of Astrophysics and Planetary Sciences, Faculty of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512 (Japan); Kataza, H. [Department of Infrared Astrophysics, Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Yamashita, T. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Miyata, T.; Sako, S.; Kamizuka, T. [Institute of Astronomy, School of Science, University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Fujiyoshi, T.; Fujiwara, H. [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, Hawaii 96720 (United States); Sakon, I.; Onaka, T. [Department of Astronomy, School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Mulders, G. D. [Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721 (United States); Lopez-Rodriguez, E.; Packham, C. [Department of Physics and Astronomy, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249 (United States)

    2015-05-10

    We imaged circumstellar disks around 22 Herbig Ae/Be stars at 25 μm using Subaru/COMICS and Gemini/T-ReCS. Our sample consists of an equal number of objects from each of the two categories defined by Meeus et al.; 11 group I (flaring disk) and II (flat disk) sources. We find that group I sources tend to show more extended emission than group II sources. Previous studies have shown that the continuous disk is difficult to resolve with 8 m class telescopes in the Q band due to the strong emission from the unresolved innermost region of the disk. This indicates that the resolved Q-band sources require a hole or gap in the disk material distribution to suppress the contribution from the innermost region of the disk. As many group I sources are resolved at 25 μm, we suggest that many, but not all, group I Herbig Ae/Be disks have a hole or gap and are (pre-)transitional disks. On the other hand, the unresolved nature of many group II sources at 25 μm supports the idea that group II disks have a continuous flat disk geometry. It has been inferred that group I disks may evolve into group II through the settling of dust grains into the mid-plane of the protoplanetary disk. However, considering the growing evidence for the presence of a hole or gap in the disk of group I sources, such an evolutionary scenario is unlikely. The difference between groups I and II may reflect different evolutionary pathways of protoplanetary disks.

  18. HIGH-RESOLUTION 25 μM IMAGING OF THE DISKS AROUND HERBIG AE/BE STARS

    International Nuclear Information System (INIS)

    Honda, M.; Maaskant, K.; Okamoto, Y. K.; Kataza, H.; Yamashita, T.; Miyata, T.; Sako, S.; Kamizuka, T.; Fujiyoshi, T.; Fujiwara, H.; Sakon, I.; Onaka, T.; Mulders, G. D.; Lopez-Rodriguez, E.; Packham, C.

    2015-01-01

    We imaged circumstellar disks around 22 Herbig Ae/Be stars at 25 μm using Subaru/COMICS and Gemini/T-ReCS. Our sample consists of an equal number of objects from each of the two categories defined by Meeus et al.; 11 group I (flaring disk) and II (flat disk) sources. We find that group I sources tend to show more extended emission than group II sources. Previous studies have shown that the continuous disk is difficult to resolve with 8 m class telescopes in the Q band due to the strong emission from the unresolved innermost region of the disk. This indicates that the resolved Q-band sources require a hole or gap in the disk material distribution to suppress the contribution from the innermost region of the disk. As many group I sources are resolved at 25 μm, we suggest that many, but not all, group I Herbig Ae/Be disks have a hole or gap and are (pre-)transitional disks. On the other hand, the unresolved nature of many group II sources at 25 μm supports the idea that group II disks have a continuous flat disk geometry. It has been inferred that group I disks may evolve into group II through the settling of dust grains into the mid-plane of the protoplanetary disk. However, considering the growing evidence for the presence of a hole or gap in the disk of group I sources, such an evolutionary scenario is unlikely. The difference between groups I and II may reflect different evolutionary pathways of protoplanetary disks

  19. The evolution of stellar metallicity gradients of the Milky Way disk from LSS-GAC main sequence turn-off stars: a two-phase disk formation history?

    International Nuclear Information System (INIS)

    Xiang, Mao-Sheng; Liu, Xiao-Wei; Huang, Yang; Wang, Chun; Ren, Juan-Juan; Chen, Bing-Qiu; Sun, Ning-Chen; Zhang, Hua-Wei; Yuan, Hai-Bo; Rebassa-Mansergas, Alberto; Huo, Zhi-Ying

    2015-01-01

    Accurate measurements of stellar metallicity gradients in the radial and vertical directions of the disk and their temporal variations provide important constraints on the formation and evolution of the Milky Way disk. We use 297 042 main sequence turn-off stars selected from the LAMOST Spectroscopic Survey of the Galactic Anti-center (LSS-GAC) to determine the radial and vertical gradients of stellar metallicity, Δ[Fe/H]/ΔR and Δ[Fe/H]/Δ|Z| of the Milky Way disk in the direction of the anticenter. We determine ages of those turn-off stars by isochrone fitting and measure the temporal variations of metallicity gradients. We have carried out a detailed analysis of the selection effects resulting from the selection, observation and data reduction of LSS-GAC targets and the potential biases of a magnitude limited sample on the determinations of metallicity gradients. Our results show that the gradients, both in the radial and vertical directions, exhibit significant spatial and temporal variations. The radial gradients yielded by stars with the oldest ages (≳ 11 Gyr) are essentially zero at all heights from the disk midplane, while those given by younger stars are always negative. The vertical gradients deduced from stars with the oldest ages (≳ 11 Gyr) are negative and only show very weak variations with Galactocentric distance in the disk plane, R, while those yielded by younger stars show strong variations with R. After being essentially flat at the earliest epochs of disk formation, the radial gradients steepen as age decreases, reaching a maximum (steepest) at age 7–8 Gyr, and then they flatten again. Similar temporal trends are also found for the vertical gradients. We infer that the assembly of the Milky Way disk may have experienced at least two distinct phases. The earlier phase is probably related to a slow, pressure-supported collapse of gas, when the gas settles down to the disk mainly in the vertical direction. In the later phase, there are

  20. Chemical composition of stars in kinematical substructures of the galactic disk

    Directory of Open Access Journals (Sweden)

    Gorbaneva T.I.

    2012-02-01

    Full Text Available The Y, Zr, La, Ce, Nd , Sm and Eu abundances were found in LTE approach, and the abundance of Ba was computed in NLTE approximation for 280 FGK dwarfs in the region of metallicity of − 1<[Fe]< + 0.3. The selection of stars belonging to thin and thick disks and the stream Hercules was made on kinematic criteria. The analysis of enrichment of the different substructures of the Galaxy with α-element (Mg, Si, the iron peak (Ni and neutron-capture elements was carried out.

  1. Search for OB stars running away from young star clusters. II. The NGC 6357 star-forming region

    Science.gov (United States)

    Gvaramadze, V. V.; Kniazev, A. Y.; Kroupa, P.; Oh, S.

    2011-11-01

    Dynamical few-body encounters in the dense cores of young massive star clusters are responsible for the loss of a significant fraction of their massive stellar content. Some of the escaping (runaway) stars move through the ambient medium supersonically and can be revealed via detection of their bow shocks (visible in the infrared, optical or radio). In this paper, which is the second of a series of papers devoted to the search for OB stars running away from young ( ≲ several Myr) Galactic clusters and OB associations, we present the results of the search for bow shocks around the star-forming region NGC 6357. Using the archival data of the Midcourse Space Experiment (MSX) satellite and the Spitzer Space Telescope, and the preliminary data release of the Wide-Field Infrared Survey Explorer (WISE), we discovered seven bow shocks, whose geometry is consistent with the possibility that they are generated by stars expelled from the young (~1-2 Myr) star clusters, Pismis 24 and AH03 J1725-34.4, associated with NGC 6357. Two of the seven bow shocks are driven by the already known OB stars, HD 319881 and [N78] 34. Follow-up spectroscopy of three other bow-shock-producing stars showed that they are massive (O-type) stars as well, while the 2MASS photometry of the remaining two stars suggests that they could be B0 V stars, provided that both are located at the same distance as NGC 6357. Detection of numerous massive stars ejected from the very young clusters is consistent with the theoretical expectation that star clusters can effectively lose massive stars at the very beginning of their dynamical evolution (long before the second mechanism for production of runaway stars, based on a supernova explosion in a massive tight binary system, begins to operate) and lends strong support to the idea that probably all field OB stars have been dynamically ejected from their birth clusters. A by-product of our search for bow shocks around NGC 6357 is the detection of three circular

  2. Computer experiments on the effect of retrograde stars in disk galaxies

    International Nuclear Information System (INIS)

    Zang, T.A.; Hohl, F.

    1978-01-01

    Using large-scale N-body calculations for flat disk galaxies, we examine the effect of reversing the angular momentum for various fractions of the stars upon the global bar-forming mode. The initial conditions for these simulations are based on stationary states of two classes of models: the isochrones studied recently by Kalnajs by means of linear theory, and a model resembling the Schmidt model of our own Galaxy. In both cases, as the fraction of retrograde stars is increased, the growth of the bar-forming mode is inhibited (although not eliminated). These N-body results for the isochrones agree with the predictions of linear theory, quantitatively as well as qualitatively

  3. Hyperfast pulsars as the remnants of massive stars ejected from young star clusters

    Science.gov (United States)

    Gvaramadze, Vasilii V.; Gualandris, Alessia; Portegies Zwart, Simon

    2008-04-01

    Recent proper motion and parallax measurements for the pulsar PSR B1508+55 indicate a transverse velocity of ~1100kms-1, which exceeds earlier measurements for any neutron star. The spin-down characteristics of PSR B1508+55 are typical for a non-recycled pulsar, which implies that the velocity of the pulsar cannot have originated from the second supernova disruption of a massive binary system. The high velocity of PSR B1508+55 can be accounted for by assuming that it received a kick at birth or that the neutron star was accelerated after its formation in the supernova explosion. We propose an explanation for the origin of hyperfast neutron stars based on the hypothesis that they could be the remnants of a symmetric supernova explosion of a high-velocity massive star which attained its peculiar velocity (similar to that of the pulsar) in the course of a strong dynamical three- or four-body encounter in the core of dense young star cluster. To check this hypothesis, we investigated three dynamical processes involving close encounters between: (i) two hard massive binaries, (ii) a hard binary and an intermediate-mass black hole (IMBH) and (iii) a single stars and a hard binary IMBH. We find that main-sequence O-type stars cannot be ejected from young massive star clusters with peculiar velocities high enough to explain the origin of hyperfast neutron stars, but lower mass main-sequence stars or the stripped helium cores of massive stars could be accelerated to hypervelocities. Our explanation for the origin of hyperfast pulsars requires a very dense stellar environment of the order of 106- 107starspc-3. Although such high densities may exist during the core collapse of young massive star clusters, we caution that they have never been observed.

  4. Interactions between exoplanets and the winds of young stars

    Directory of Open Access Journals (Sweden)

    Vidotto A. A.

    2014-01-01

    Full Text Available The topology of the magnetic field of young stars is important not only for the investigation of magnetospheric accretion, but also responsible in shaping the large-scale structure of stellar winds, which are crucial for regulating the rotation evolution of stars. Because winds of young stars are believed to have enhanced mass-loss rates compared to those of cool, main-sequence stars, the interaction of winds with newborn exoplanets might affect the early evolution of planetary systems. This interaction can also give rise to observational signatures which could be used as a way to detect young planets, while simultaneously probing for the presence of their still elusive magnetic fields. Here, we investigate the interaction between winds of young stars and hypothetical planets. For that, we model the stellar winds by means of 3D numerical magnetohydrodynamic simulations. Although these models adopt simplified topologies of the stellar magnetic field (dipolar fields that are misaligned with the rotation axis of the star, we show that asymmetric field topologies can lead to an enhancement of the stellar wind power, resulting not only in an enhancement of angular momentum losses, but also intensifying and rotationally modulating the wind interactions with exoplanets.

  5. On the metallicity gradients of the Galactic disk as revealed by LSS-GAC red clump stars

    Science.gov (United States)

    Huang, Yang; Liu, Xiao-Wei; Zhang, Hua-Wei; Yuan, Hai-Bo; Xiang, Mao-Sheng; Chen, Bing-Qiu; Ren, Juan-Juan; Sun, Ning-Chen; Wang, Chun; Zhang, Yong; Hou, Yong-Hui; Wang, Yue-Fei; Yang, Ming

    2015-08-01

    Using a sample of over 70 000 red clump (RC) stars with 5%-10% distance accuracy selected from the LAMOST Spectroscopic Survey of the Galactic Anti-center (LSS-GAC), we study the radial and vertical gradients of the Galactic disk(s) mainly in the anti-center direction, covering a significant volume of the disk in the range of projected Galactocentric radius 7 ≤ RGC ≤ 14 kpc and height from the Galactic midplane 0 ≤ |Z| ≤ 3 kpc. Our analysis shows that both the radial and vertical metallicity gradients are negative across much of the volume of the disk that is probed, and they exhibit significant spatial variations. Near the solar circle (7 ≤ RGC ≤ 115 kpc), the radial gradient has a moderately steep, negative slope of -0.08 dex kpc-1 near the midplane (|Z| plane, suggesting that the outer disk may have experienced an evolutionary path different from that of the inner disk. The vertical gradients are found to flatten largely with increasing RGC. However, the vertical gradient of the lower disk (0 ≤ |Z| ≤ 1 kpc) is found to flatten with RGC quicker than that of the upper disk (1 < |Z| ≤ 3 kpc). Our results should provide strong constraints on the theory of disk formation and evolution, as well as the underlying physical processes that shape the disk (e.g. gas flows, radial migration, and internal and external perturbations).

  6. Search for OB stars running away from young star clusters. I. NGC 6611

    Science.gov (United States)

    Gvaramadze, V. V.; Bomans, D. J.

    2008-11-01

    N-body simulations have shown that the dynamical decay of the young (~1 Myr) Orion Nebula cluster could be responsible for the loss of at least half of its initial content of OB stars. This result suggests that other young stellar systems could also lose a significant fraction of their massive stars at the very beginning of their evolution. To confirm this expectation, we used the Mid-Infrared Galactic Plane Survey (completed by the Midcourse Space Experiment satellite) to search for bow shocks around a number of young (⪉several Myr) clusters and OB associations. We discovered dozens of bow shocks generated by OB stars running away from these stellar systems, supporting the idea of significant dynamical loss of OB stars. In this paper, we report the discovery of three bow shocks produced by O-type stars ejected from the open cluster NGC 6611 (M16). One of the bow shocks is associated with the O9.5Iab star HD165319, which was suggested to be one of “the best examples for isolated Galactic high-mass star formation” (de Wit et al. 2005, A&A, 437, 247). Possible implications of our results for the origin of field OB stars are discussed.

  7. X-rays from HD 100546- A Young Herbig Star Orbited by Giant Protoplanets

    Science.gov (United States)

    Skinner, Stephen

    A protoplanetary system consisting of at least two giant planets has beendetected orbiting the young nearby Herbig Be star HD 100546. The inner protoplanet orbits inside a gap within 14 AU of the star and is exposed to strong stellar UV and X-ray radiation. The detection of very warm disk gas provides evidence that stellar heating is affecting physical conditions in the planet-forming environment. We obtained a deep 74 ksec X-ray observation of HD 100546 in 2015 with XMM-Newton yielding an excellent-quality spectrum. We propose here to analyze the XMM-Newton data to determine the X-ray ionization and heating rates in the disk. X-ray ionization and heating affect the thermal and chemical structure of the disk and are key parameters for constructing realistic planet formation models. We are requesting ADAP funding to support the analysis and publication of this valuable XMM-Newton data set, which is now in the public archive.

  8. CO Gas Inside the Protoplanetary Disk Cavity in HD 142527: Disk Structure from ALMA

    OpenAIRE

    Perez, S.; Casassus, S.; Ménard, F.; Roman, P.; van der Plas, G.; Cieza, L.; Pinte, C.; Christiaens, Valentin; Hales, A. S.

    2014-01-01

    Inner cavities and annular gaps in circumstellar disks are possible signposts of giant planet formation. The young star HD 142527 hosts a massive protoplanetary disk with a large cavity that extends up to 140 AU from the central star, as seen in continuum images at infrared and millimeter wavelengths. Estimates of the survival of gas inside disk cavities are needed to discriminate between clearing scenarios. We present a spatially and spectrally resolved carbon monoxide isotopologue 2-1 line ...

  9. Chemo-orbital evidence from SDSS/SEGUE G dwarf stars for a mixed origin of the Galactic thick disk

    Directory of Open Access Journals (Sweden)

    van de Ven G.

    2012-02-01

    Full Text Available About 13,000 G dwarf within 7disk. Combining [α/Fe] and [Fe/H] measurements with six-dimensional position-velocity parameters, we find that the sample is composed of two distinct stellar populations. The metal-rich population encompasses the thin disk with α-deficient stars and smoothly extends into a thick disk with α-enhanced stars, consistent with an in-situ formation through radial migration. On the other hand, the metal-poor population with enhanced α-abundance, higher scale height, and disperse kinematical properties, is difficult to explain with radial migration but might have originated from gas-rich mergers. The thick disk of the Milky Way seems to have a mixed origin.

  10. A M2FS Spectroscopic Study of Low-mass Young Stars in Orion OB1

    Science.gov (United States)

    Kaleida, Catherine C.; Briceno, Cesar; Calvet, Nuria; Mateo, Mario L.; Hernandez, Jesus

    2015-01-01

    Surveys of pre-main sequence stars in the ~4-10 Myr range provide a window into the decline of the accretion phase of stars and the formation of planets. Nearby star clusters and stellar associations allow for the study of these young stellar populations all the way down to the lowest mass members. One of the best examples of nearby 4-10 Myr old stellar populations is the Orion OB1 association. The CIDA Variability Survey of Orion OB1 (CVSO - Briceño et al. 2001) has used the variability properties of low-mass pre-main-sequence (PMS) stars to identify hundreds of K and M-type stellar members of the Orion OB1 association, a number of them displaying IR-excess emission and thought to be representative of more evolved disk-bearing young stars. Characterizing these young, low-mass objects using spectroscopy is integral to understanding the accretion phase in young stars. We present preliminary results of a spectroscopic survey of candidate and confirmed Orion OB1 low-mass members taken during November 2014 and February 2014 using the Michigan/Magellan Fiber Spectrograph (M2FS), a PI instrument on the Magellan Clay Telescope (PI: M. Matteo). Target fields located in the off-cloud regions of Orion were identified in the CVSO, and observed using the low and high-resolution modes of M2FS. Both low and high-resolution spectra are needed in order to confirm membership and derive masses, ages, kinematics and accretion properties. Initial analysis of these spectra reveal many new K and M-type members of the Orion OB1 association in these low extinction, off-cloud areas. These are the more evolved siblings of the youngest stars still embedded in the molecular clouds, like those in the Orion Nebula Cluster. With membership and spectroscopic indicators of accretion we are building the most comprehensive stellar census of this association, enabling us to derive a robust estimate of the fraction of young stars still accreting at a various ages, a key constraint for the end of

  11. MAXIMALLY STAR-FORMING GALACTIC DISKS. II. VERTICALLY RESOLVED HYDRODYNAMIC SIMULATIONS OF STARBURST REGULATION

    Energy Technology Data Exchange (ETDEWEB)

    Shetty, Rahul [Zentrum fuer Astronomie der Universitaet Heidelberg, Institut fuer Theoretische Astrophysik, Albert-Ueberle-Str. 2, 69120 Heidelberg (Germany); Ostriker, Eve C., E-mail: R.Shetty@.uni-heidelberg.de, E-mail: ostriker@astro.umd.edu [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2012-07-20

    We explore the self-regulation of star formation using a large suite of high-resolution hydrodynamic simulations, focusing on molecule-dominated regions (galactic centers and [U]LIRGS) where feedback from star formation drives highly supersonic turbulence. In equilibrium, the total midplane pressure, dominated by turbulence, must balance the vertical weight of the interstellar medium. Under self-regulation, the momentum flux injected by feedback evolves until it matches the vertical weight. We test this flux balance in simulations spanning a wide range of parameters, including surface density {Sigma}, momentum injected per stellar mass formed (p{sub *}/m{sub *}), and angular velocity. The simulations are two-dimensional radial-vertical slices, and include both self-gravity and an external potential that helps to confine gas to the disk midplane. After the simulations reach a steady state in all relevant quantities, including the star formation rate {Sigma}{sub SFR}, there is remarkably good agreement between the vertical weight, the turbulent pressure, and the momentum injection rate from supernovae. Gas velocity dispersions and disk thicknesses increase with p{sub *}/m{sub *}. The efficiency of star formation per free-fall time at the midplane density, {epsilon}{sub ff}(n{sub 0}), is insensitive to the local conditions and to the star formation prescription in very dense gas. We measure {epsilon}{sub ff}(n{sub 0}) {approx} 0.004-0.01, consistent with low and approximately constant efficiencies inferred from observations. For {Sigma} in (100-1000) M{sub Sun} pc{sup -2}, we find {Sigma}{sub SFR} in (0.1-4) M{sub Sun} kpc{sup -2} yr{sup -1}, generally following a {Sigma}{sub SFR} {proportional_to} {Sigma}{sup 2} relationship. The measured relationships agree very well with vertical equilibrium and with turbulent energy replenishment by feedback within a vertical crossing time. These results, along with the observed {Sigma}-{Sigma}{sub SFR} relation in high

  12. SPATIALLY EXTENDED BRACKETT GAMMA EMISSION IN THE ENVIRONMENTS OF YOUNG STARS

    International Nuclear Information System (INIS)

    Beck, Tracy L.; Bary, Jeffery S.; McGregor, Peter J.

    2010-01-01

    The majority of atomic hydrogen Brγ emission detected in the spectra of young stellar objects is believed to arise from the recombination regions associated with the magnetospheric accretion of circumstellar disk material onto the forming star. In this paper, we present the results of a K-band integral field unit spectroscopic study of Brγ emission in eight young protostars: CW Tau, DG Tau, Haro 6-10, HL Tau, HV Tau C, RW Aur, T Tau, and XZ Tau. We spatially resolve Brγ emission structures in half of these young stars and find that most of the extended emission is consistent with the location and velocities of the known Herbig-Haro flows associated with these systems. At some velocities through the Brγ line profile, the spatially extended emission comprises 20% or more of the integrated flux in that spectral channel. However, the total spatially extended Brγ is typically less than ∼10% of the flux integrated over the full emission profile. For DG Tau and Haro 6-10 S, we estimate the mass outflow rate using simple assumptions about the hydrogen emission region and compare this to the derived mass accretion rate. We detect extended Brγ in the vicinity of the more obscured targets in our sample and conclude that spatially extended Brγ emission may exist toward other stars, but unattenuated photospheric flux probably limits its detectability.

  13. EXTINCTION IN STAR-FORMING DISK GALAXIES FROM INCLINATION-DEPENDENT COMPOSITE SPECTRA

    International Nuclear Information System (INIS)

    Yip, Ching-Wa; Szalay, Alex S.; Wyse, Rosemary F. G.; Budavari, Tamas; Dobos, Laszlo; Csabai, Istvan

    2010-01-01

    Extinction in galaxies affects their observed properties. In scenarios describing the distribution of dust and stars in individual disk galaxies, the amplitude of the extinction can be modulated by the inclination of the galaxies. In this work, we investigate the inclination dependency in composite spectra of star-forming disk galaxies from the Sloan Digital Sky Survey Data Release 5. In a volume-limited sample within a redshift range 0.065-0.075 and a r-band Petrosian absolute magnitude range -19.5 to -22 mag which exhibits a flat distribution of inclination, the inclined relative to face-on extinction in the stellar continuum is found empirically to increase with inclination in the g, r, and i bands. Within the central 0.5 intrinsic half-light radius of the galaxies, the g-band relative extinction in the stellar continuum for the highly inclined objects (axis ratio b/a = 0.1) is 1.2 mag, agreeing with previous studies. The extinction curve of the disk galaxies is given in the rest-frame wavelengths 3700-8000 A, identified with major optical emission and absorption lines in diagnostics. The Balmer decrement, Hα/Hβ, remains constant with inclination, suggesting a different kind of dust configuration and/or reddening mechanism in the H II region from that in the stellar continuum. One factor is shown to be the presence of spatially non-uniform interstellar extinction, presumably caused by clumped dust in the vicinity of the H II region.

  14. Three-dimensional simulations of the interaction between the nova ejecta, accretion disk, and companion star

    Science.gov (United States)

    Figueira, Joana; José, Jordi; García-Berro, Enrique; Campbell, Simon W.; García-Senz, Domingo; Mohamed, Shazrene

    2018-05-01

    Context. Classical novae are thermonuclear explosions hosted by accreting white dwarfs in stellar binary systems. Material piles up on top of the white dwarf star under mildly degenerate conditions, driving a thermonuclear runaway. The energy released by the suite of nuclear processes operating at the envelope, mostly proton-capture reactions and β+-decays, heats the material up to peak temperatures ranging from 100 to 400 MK. In these events, about 10-3-10-7 M⊙, enriched in CNO and, sometimes, other intermediate-mass elements (e.g., Ne, Na, Mg, and Al) are ejected into the interstellar medium. Aims: To date, most of the efforts undertaken in the modeling of classical nova outbursts have focused on the early stages of the explosion and ejection, ignoring the interaction of the ejecta, first with the accretion disk orbiting the white dwarf and ultimately with the secondary star. Methods: A suite of 3D, smoothed-particle hydrodynamics (SPH) simulations of the interaction between the nova ejecta, accretion disk, and stellar companion were performed to fill this gap; these simulations were aimed at testing the influence of the model parameters—that is, the mass and velocity of the ejecta, mass and the geometry of the accretion disk—on the dynamical and chemical properties of the system. Results: We discuss the conditions that lead to the disruption of the accretion disk and to mass loss from the binary system. In addition, we discuss the likelihood of chemical contamination of the stellar secondary induced by the impact with the nova ejecta and its potential effect on the next nova cycle. Movies showing the full evolution of several models are available online at http://https://www.aanda.org and at http://www.fen.upc.edu/users/jjose/Downloads.html

  15. A Young Star Cluster in the Leo a Galaxy

    Directory of Open Access Journals (Sweden)

    Stonkutė R.

    2015-09-01

    Full Text Available We report a serendipitous discovery of a star cluster in the dwarf irregular galaxy Leo A. Young age (~28 Myr and low mass (~510 M⊙ estimates are based on the isochrone fit assuming a metallicity derived for HII regions (Z = 0.0007. The color-magnitude diagrams of the stars, located in and around the cluster area, and the results of aperture photometry of the cluster itself are presented.

  16. ALMA Dust Polarization Observations of Two Young Edge-on Protostellar Disks

    Science.gov (United States)

    Lee, Chin-Fei; Li, Zhi-Yun; Ching, Tao-Chung; Lai, Shih-Ping; Yang, Haifeng

    2018-02-01

    Polarized emission is detected in two young nearly edge-on protostellar disks in 343 GHz continuum at ∼50 au (∼0.″12) resolution with Atacama Large Millimeter/submillimeter Array. One disk is in HH 212 (Class 0) and the other in the HH 111 (early Class I) protostellar system. The polarization fraction is ∼1%. The disk in HH 212 has a radius of ∼60 au. The emission is mainly detected from the nearside of the disk. The polarization orientations are almost perpendicular to the disk major axis, consistent with either self-scattering or emission by grains aligned with a poloidal field around the outer edge of the disk because of the optical depth effect and temperature gradient; the presence of a poloidal field would facilitate the launching of a disk wind, for which there is already tentative evidence in the same source. The disk of HH 111 VLA 1 has a larger radius of ∼220 au and is thus more resolved. The polarization orientations are almost perpendicular to the disk major axis in the nearside, but more along the major axis in the farside, forming roughly half of an elliptical pattern there. It appears that toroidal and poloidal magnetic field may explain the polarization on the near and far sides of the disk, respectively. However, it is also possible that the polarization is due to self-scattering. In addition, alignment of dust grains by radiation flux may play a role in the farside. Our observations reveal a diversity of disk polarization patterns that should be taken into account in future modeling efforts.

  17. A Transient Transit Signature Associated with the Young Star RIK-210

    Energy Technology Data Exchange (ETDEWEB)

    David, Trevor J.; Hillenbrand, Lynne A.; Howard, Andrew W.; Wang, Ji [Department of Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Petigura, Erik A.; Benneke, Björn [Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125 (United States); Cody, Ann Marie; Howell, Steve B. [NASA Ames Research Center, Mountain View, California 94035 (United States); Cameron, Andrew Collier [SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS (United Kingdom); Stauffer, John R. [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); Fulton, B. J. [Institute for Astronomy, University of Hawaii at Manoa, Honolulu, Hawaii 96822 (United States); Isaacson, Howard T. [Department of Astronomy, University of California, Berkeley, California 94720 (United States); Everett, Mark E. [National Optical Astronomy Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Hellier, Coel; Anderson, David R. [Astrophysics Group, Keele University, Staffordshire, ST5 5BG (United Kingdom); West, Richard G.; Pollacco, Don, E-mail: tjd@astro.caltech.edu [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)

    2017-02-01

    We find transient transit-like dimming events within the K2 time series photometry of the young star RIK-210 in the Upper Scorpius OB association. These dimming events are variable in depth, duration, and morphology. High spatial resolution imaging revealed that the star is single and radial velocity monitoring indicated that the dimming events cannot be due to an eclipsing stellar or brown dwarf companion. Archival and follow-up photometry suggest the dimming events are transient in nature. The variable morphology of the dimming events suggests they are not due to a single spherical body. The ingress of each dimming event is always shallower than egress, as one would expect for an orbiting body with a leading tail. The dimming events are periodic and synchronous with the stellar rotation. However, we argue it is unlikely the dimming events could be attributed to anything on the stellar surface based on the observed depths and durations. Variable obscuration by a protoplanetary disk is unlikely on the basis that the star is not actively accreting and lacks the infrared excess associated with an inner disk. Rather, we explore the possibilities that the dimming events are due to magnetospheric clouds, a transiting protoplanet surrounded by circumplanetary dust and debris, eccentric orbiting bodies undergoing periodic tidal disruption, or an extended field of dust or debris near the corotation radius.

  18. YOUNG STELLAR POPULATIONS IN MYStIX STAR-FORMING REGIONS: CANDIDATE PROTOSTARS

    Energy Technology Data Exchange (ETDEWEB)

    Romine, Gregory; Feigelson, Eric D.; Getman, Konstantin V. [Department of Astronomy and Astrophysics, Pennsylvania State University, 525 Davey Lab, University Park, PA 16802 (United States); Kuhn, Michael A. [Millennium Institute of Astrophysics, Camino El Observatorio 1515, Las Condes, Santiago (Chile); Povich, Matthew S., E-mail: edf@astro.psu.edu [Department of Physics and Astronomy, California State Polytechnic University, 3801 West Temple Ave., Pomona, CA 91768 (United States)

    2016-12-20

    The Massive Young Star-Forming Complex in Infrared and X-ray (MYStIX) project provides a new census on stellar members of massive star-forming regions within 4 kpc. Here the MYStIX Infrared Excess catalog and Chandra -based X-ray photometric catalogs are mined to obtain high-quality samples of Class I protostars using criteria designed to reduce extragalactic and Galactic field star contamination. A total of 1109 MYStIX Candidate Protostars (MCPs) are found in 14 star-forming regions. Most are selected from protoplanetary disk infrared excess emission, but 20% are found from their ultrahard X-ray spectra from heavily absorbed magnetospheric flare emission. Two-thirds of the MCP sample is newly reported here. The resulting samples are strongly spatially associated with molecular cores and filaments on Herschel far-infrared maps. This spatial agreement and other evidence indicate that the MCP sample has high reliability with relatively few “false positives” from contaminating populations. But the limited sensitivity and sparse overlap among the infrared and X-ray subsamples indicate that the sample is very incomplete with many “false negatives.” Maps, tables, and source descriptions are provided to guide further study of star formation in these regions. In particular, the nature of ultrahard X-ray protostellar candidates without known infrared counterparts needs to be elucidated.

  19. YOUNG STELLAR POPULATIONS IN MYStIX STAR-FORMING REGIONS: CANDIDATE PROTOSTARS

    International Nuclear Information System (INIS)

    Romine, Gregory; Feigelson, Eric D.; Getman, Konstantin V.; Kuhn, Michael A.; Povich, Matthew S.

    2016-01-01

    The Massive Young Star-Forming Complex in Infrared and X-ray (MYStIX) project provides a new census on stellar members of massive star-forming regions within 4 kpc. Here the MYStIX Infrared Excess catalog and Chandra -based X-ray photometric catalogs are mined to obtain high-quality samples of Class I protostars using criteria designed to reduce extragalactic and Galactic field star contamination. A total of 1109 MYStIX Candidate Protostars (MCPs) are found in 14 star-forming regions. Most are selected from protoplanetary disk infrared excess emission, but 20% are found from their ultrahard X-ray spectra from heavily absorbed magnetospheric flare emission. Two-thirds of the MCP sample is newly reported here. The resulting samples are strongly spatially associated with molecular cores and filaments on Herschel far-infrared maps. This spatial agreement and other evidence indicate that the MCP sample has high reliability with relatively few “false positives” from contaminating populations. But the limited sensitivity and sparse overlap among the infrared and X-ray subsamples indicate that the sample is very incomplete with many “false negatives.” Maps, tables, and source descriptions are provided to guide further study of star formation in these regions. In particular, the nature of ultrahard X-ray protostellar candidates without known infrared counterparts needs to be elucidated.

  20. NEW CANDIDATE ERUPTIVE YOUNG STARS IN LYNDS 1340

    Energy Technology Data Exchange (ETDEWEB)

    Kun, M.; Moór, A.; Szegedi-Elek, E. [Konkoly Observatory, H-1121 Budapest, Konkoly Thege út 15-17 (Hungary); Apai, D. [Department of Astronomy and Department of Planetary Sciences, The University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); O' Linger-Luscusk, J. [California Institute of Technology, 1200 East California Avenue, Pasadena, CA 91125 (United States); Stecklum, B. [Thüringer Landessternwarte Tautenburg, Sternwarte 5, D-07778 Tautenburg (Germany); Wolf-Chase, G., E-mail: kun@konkoly.hu [Astronomy Department, Adler Planetarium, 1300 South Lake Shore Drive, Chicago, IL 60605 (United States)

    2014-11-10

    We report on the discovery of three candidate eruptive young stars, found during our comprehensive multi-wavelength study of the young stellar population of the dark cloud L1340. These stars are as follows. (1) IRAS 02224+7227 (2MASS 02270555+7241167, HH 487S) exhibited FUor-like spectrum in our low-resolution optical spectra. The available photometric data restrict its luminosity to 23 L {sub ☉} < L {sub bol} < 59 L {sub ☉}. (2) 2MASS 02263797+7304575, identified as a classical T Tauri star during our Hα survey, exhibited an EXor-type brightening in 2005 November at the time of the Sloan Digital Sky Survey observations of the region. (3) 2MASS 02325605+7246055, a low-mass embedded young star, associated with a fan-shaped infrared nebula, underwent an outburst between the DSS 1 and DSS 2 surveys, leading to the appearance of a faint optical nebula. Our [S II] and Hα images, as well as the Spitzer Infrared Array Camera 4.5 μm images, revealed Herbig-Haro objects associated with this star. Our results suggest that amplitudes and timescales of outbursts do not necessarily correlate with the evolutionary stage of the stars.

  1. CSI 2264: CHARACTERIZING YOUNG STARS IN NGC 2264 WITH SHORT-DURATION PERIODIC FLUX DIPS IN THEIR LIGHT CURVES

    Energy Technology Data Exchange (ETDEWEB)

    Stauffer, John; Cody, Ann Marie; Rebull, Luisa; Plavchan, Peter; Carey, Sean [Spitzer Science Center, California Institute of Technology, Pasadena, CA 91125 (United States); McGinnis, Pauline; Alencar, Silvia H. P. [Departamento de Física—ICEx—UFMG, Av. Antônio Carlos, 6627, 30270-901, Belo Horizonte, MG (Brazil); Hillenbrand, Lynne A.; Carpenter, John [Astronomy Department, California Institute of Technology, Pasadena, CA 91125 (United States); Turner, Neal J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Terebey, Susan [Department of Physics and Astronomy, 5151 State University Drive, California State University at Los Angeles, Los Angeles, CA 90032 (United States); Morales-Calderón, María [Centro de Astrobiología, Dpto. de Astrofísica, INTA-CSIC, PO BOX 78, E-28691, ESAC Campus, Villanueva de la Cañada, Madrid (Spain); Bouvier, Jerome; Venuti, Laura [Université de Grenoble, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), F-38000 Grenoble (France); CNRS, IPAG, F-38000 Grenoble (France); Hartmann, Lee; Calvet, Nuria [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48105 (United States); Micela, Giusi; Flaccomio, Ettore [INAF—Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90134, Palermo (Italy); Song, Inseok [Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602–2451 (United States); Gutermuth, Rob, E-mail: stauffer@ipac.caltech.edu [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); and others

    2015-04-15

    We identify nine young stellar objects (YSOs) in the NGC 2264 star-forming region with optical CoRoT light curves exhibiting short-duration, shallow periodic flux dips. All of these stars have infrared excesses that are consistent with their having inner disk walls near the Keplerian co-rotation radius. The repeating photometric dips have FWHMs generally less than 1 day, depths almost always less than 15%, and periods (3 < P < 11 days) consistent with dust near the Keplerian co-rotation period. The flux dips vary considerably in their depth from epoch to epoch, but usually persist for several weeks and, in two cases, were present in data collected in successive years. For several of these stars, we also measure the photospheric rotation period and find that the rotation and dip periods are the same, as predicted by standard “disk-locking” models. We attribute these flux dips to clumps of material in or near the inner disk wall, passing through our line of sight to the stellar photosphere. In some cases, these dips are also present in simultaneous Spitzer IRAC light curves at 3.6 and 4.5 microns. We characterize the properties of these dips, and compare the stars with light curves exhibiting this behavior to other classes of YSOs in NGC 2264. A number of physical mechanisms could locally increase the dust scale height near the inner disk wall, and we discuss several of those mechanisms; the most plausible mechanisms are either a disk warp due to interaction with the stellar magnetic field or dust entrained in funnel-flow accretion columns arising near the inner disk wall.

  2. CSI 2264: CHARACTERIZING YOUNG STARS IN NGC 2264 WITH SHORT-DURATION PERIODIC FLUX DIPS IN THEIR LIGHT CURVES

    International Nuclear Information System (INIS)

    Stauffer, John; Cody, Ann Marie; Rebull, Luisa; Plavchan, Peter; Carey, Sean; McGinnis, Pauline; Alencar, Silvia H. P.; Hillenbrand, Lynne A.; Carpenter, John; Turner, Neal J.; Terebey, Susan; Morales-Calderón, María; Bouvier, Jerome; Venuti, Laura; Hartmann, Lee; Calvet, Nuria; Micela, Giusi; Flaccomio, Ettore; Song, Inseok; Gutermuth, Rob

    2015-01-01

    We identify nine young stellar objects (YSOs) in the NGC 2264 star-forming region with optical CoRoT light curves exhibiting short-duration, shallow periodic flux dips. All of these stars have infrared excesses that are consistent with their having inner disk walls near the Keplerian co-rotation radius. The repeating photometric dips have FWHMs generally less than 1 day, depths almost always less than 15%, and periods (3 < P < 11 days) consistent with dust near the Keplerian co-rotation period. The flux dips vary considerably in their depth from epoch to epoch, but usually persist for several weeks and, in two cases, were present in data collected in successive years. For several of these stars, we also measure the photospheric rotation period and find that the rotation and dip periods are the same, as predicted by standard “disk-locking” models. We attribute these flux dips to clumps of material in or near the inner disk wall, passing through our line of sight to the stellar photosphere. In some cases, these dips are also present in simultaneous Spitzer IRAC light curves at 3.6 and 4.5 microns. We characterize the properties of these dips, and compare the stars with light curves exhibiting this behavior to other classes of YSOs in NGC 2264. A number of physical mechanisms could locally increase the dust scale height near the inner disk wall, and we discuss several of those mechanisms; the most plausible mechanisms are either a disk warp due to interaction with the stellar magnetic field or dust entrained in funnel-flow accretion columns arising near the inner disk wall

  3. SUPERMASSIVE BLACK HOLES IN A STAR-FORMING GASEOUS CIRCUMNUCLEAR DISK

    Energy Technology Data Exchange (ETDEWEB)

    Del Valle, L.; Escala, A.; Molina, J. [Departamento de Astronomía, Universidad de Chile (Chile); Maureira-Fredes, C.; Amaro-Seoane, P. [Max Planck Institut fur Gravitationsphysik (Albert-Einstein-Institut), D-14476 Potsdam (Germany); Cuadra, J., E-mail: ldelvalleb@gmail.com [Instituto de Astrofísica, Pontificia Universidad Catolica de Chile (Chile)

    2015-09-20

    Using N-body/smoothed particle hydrodynamics simulations we study the evolution of the separation of a pair of supermassive black holes (SMBHs) embedded in a star-forming circumnuclear disk (CND). This type of disk is expected to be formed in the central kiloparsec of the remnant of gas-rich galaxy mergers. Our simulations indicate that orbital decay of the SMBHs occurs more quickly when the mean density of the CND is higher, due to increased dynamical friction. However, in simulations where the CND is fragmented in high-density gaseous clumps (clumpy CND), the orbits of the SMBHs are erratically perturbed by the gravitational interaction with these clumps, delaying, in some cases, the orbital decay of the SMBHs. The densities of these gaseous clumps in our simulations and in recent studies of clumpy CNDs are two orders of magnitude higher than the observed density of molecular clouds in isolated galaxies or ultraluminous infrared galaxies (ULIRGs), thus, we expect that SMBH orbits are perturbed less in real CNDs than in the simulated CNDs of this study and other recent studies. We also find that the migration timescale has a weak dependence on the star formation rate of the CND. Furthermore, the migration timescale of an SMBH pair in a star-forming clumpy CND is at most a factor of three longer than the migration timescale of a pair of SMBHs in a CND modeled with more simple gas physics. Therefore, we estimate that the migration timescale of the SMBHs in a clumpy CND is on the order of 10{sup 7} years.

  4. Evolution of massive stars in very young clusters and associations

    International Nuclear Information System (INIS)

    Stothers, R.B.

    1985-01-01

    The stellar content of very young galactic clusters and associations with well-determined ages has been analyzed statistically to derive information about stellar evolution at high masses. The adopted approach is semiempirical and uses natural spectroscopic groups of stars on the H-R diagram, together with the stars' apparent magnitudes. Cluster distance moduli are not used. Only the most basic elements of stellar evolution theory are required as input. For stellar aggregates with main-sequence turnups at spectral types between O9 and B2, the following conclusions have emerged: (1) O-type main-sequence stars evolve to a spectral type of B1 during core hydrogen burning; (2) most of the O-type blue stragglers are newly formed massive stars, burning core hydrogen; (3) supergiants lying redward of the turnup, as well as most, or all, of the Wolf-Rayet stars, are burning core helium; (4) Wolf-Rayet stars originally had masses greater than 30--40 M/sub sun/, while known M-type supergiants evolved from star less massive than approx.30 M/sub sun/; (5) phases of evolution following core helium burning are unobservably rapid, presumably on account of copious neutrino emission; and (6) formation of stars of high mass continues vigorously in most young clusters and association for approx.8 x 10 6 yr. The important result concerning the evolutionary status of the supergiants depends only on the total number of these stars and not on how they are distributed between blue and red types; the result, however, may be sensitive to the assumed amount of convective core overshooting. Conclusions in the present work refer chiefly to luminous stars in the mass range 10--40 M/sub sun/, belonging to aggregates in the age range (6--25) x 10 6 yr

  5. Chandra Detection of an Evolved Population of Young Stars in Serpens South

    Science.gov (United States)

    Winston, E.; Wolk, S. J.; Gutermuth, R.; Bourke, T. L.

    2018-06-01

    We present a Chandra study of the deeply embedded Serpens South star-forming region, examining cluster structure and disk properties at the earliest stages. In total, 152 X-ray sources are detected. Combined with Spitzer and 2MASS photometry, 66 X-ray sources are reliably matched to an IR counterpart. We identify 21 class I, 6 flat spectrum, 16 class II, and 18 class III young stars; 5 were unclassified. Eighteen sources were variable in X-rays, 8 exhibiting flare-like emission and one source being periodic. The cluster’s X-ray luminosity distance was estimated: the best match was to the nearer distance of 260 pc for the front of the Aquila Rift complex. The ratio of N H to A K is found to be ∼0.68 × 1022, similar to that measured in other young low-mass regions, but lower than that measured in the interstellar medium and high-mass clusters (∼(1.6–2) × 1022). We find that the spatial distribution closely follows that of the dense filament from which the stars have formed, with the class II population still strongly associated with the filament. There are four subclusters in the field, with three forming knots in the filament, and a fourth to the west, which may not be associated but may be contributing to the distributed class III population. A high percentage of diskless class IIIs (upper limit 30% of classified X-ray sources) in such a young cluster could indicate that processing of disks is influenced by the cluster environment and is not solely dependent on timescale.

  6. From circumstellar disks to planetary systems: observation and modeling of protoplanetary disks

    OpenAIRE

    Macías Quevedo, Enrique

    2016-01-01

    The existence of exoplanetary systems was first predicted after the discovery of accretion disks around young stars. Nowadays, with nearly 3500 exoplanets discovered, and almost 5000 more candidates identified by the Kepler space mission, planetary systems are now known to be ubiquitous around low-mass stars. The formation of these systems takes place during the stellar formation itself, from the dust and gas orbiting around the star in the protoplanetary disks. However, the process that lead...

  7. The gravitational interaction between N-body (star clusters) and hydrodynamic (ISM) codes in disk galaxy simulations

    International Nuclear Information System (INIS)

    Schroeder, M.C.; Comins, N.F.

    1986-01-01

    During the past twenty years, three approaches to numerical simulations of the evolution of galaxies have been developed. The first approach, N-body programs, models the motion of clusters of stars as point particles which interact via their gravitational potentials to determine the system dynamics. Some N-body codes model molecular clouds as colliding, inelastic particles. The second approach, hydrodynamic models of galactic dynamics, simulates the activity of the interstellar medium as a compressible gas. These models presently do not include stars, the effect of gravitational fields, or allow for stellar evolution and exchange of mass or angular momentum between stars and the interstellar medium. The third approach, stochastic star formation simulations of disk galaxies, allows for the interaction between stars and interstellar gas, but does not allow the star particles to move under the influence of gravity

  8. Realistic limitations of detecting planets around young active stars

    Directory of Open Access Journals (Sweden)

    Pinfield D.

    2013-04-01

    Full Text Available Current planet hunting methods using the radial velocity method are limited to observing middle-aged main-sequence stars where the signatures of stellar activity are much less than on young stars that have just arrived on the main-sequence. In this work we apply our knowledge from the surface imaging of these young stars to place realistic limitations on the possibility of detecting orbiting planets. In general we find that the magnitude of the stellar jitter is directly proportional to the stellar vsini. For G and K dwarfs, we find that it is possible, for models with high stellar activity and low stellar vsini, to be able to detect a 1 MJupiter mass planet within 50 epochs of observations and for the M dwarfs it is possible to detect a habitable zone Earth-like planet in 10s of observational epochs.

  9. Disk Evolution, Element Abundances and Cloud Properties of Young Gas Giant Planets

    NARCIS (Netherlands)

    Helling, Christiane; Woitke, Peter; Rimmer, Paul B.; Kamp, Inga; Thi, Wing-Fai; Meijerink, Rowin

    We discuss the chemical pre-conditions for planet formation, in terms of gas and ice abundances in a protoplanetary disk, as function of time and position, and the resulting chemical composition and cloud properties in the atmosphere when young gas giant planets form, in particular discussing the

  10. Gas Content and Kinematics in Clumpy, Turbulent Star-forming Disks

    International Nuclear Information System (INIS)

    White, Heidi A.; Abraham, Roberto G.; Fisher, David B.; Glazebrook, Karl; Murray, Norman; Bolatto, Alberto D.; Green, Andrew W.; Mentuch Cooper, Erin; Obreschkow, Danail

    2017-01-01

    We present molecular gas-mass estimates for a sample of 13 local galaxies whose kinematic and star-forming properties closely resemble those observed in z ≈ 1.5 main-sequence galaxies. Plateau de Bure observations of the CO[1-0] emission line and Herschel Space Observatory observations of the dust emission both suggest molecular gas-mass fractions of ∼20%. Moreover, dust emission modeling finds T dust < 30 K, suggesting a cold dust distribution compared to their high infrared luminosity. The gas-mass estimates argue that z ∼ 0.1 DYNAMO galaxies not only share similar kinematic properties with high- z disks, but they are also similarly rich in molecular material. Pairing the gas-mass fractions with existing kinematics reveals a linear relationship between f gas and σ / v c , consistent with predictions from stability theory of a self-gravitating disk. It thus follows that high gas-velocity dispersions are a natural consequence of large gas fractions. We also find that the systems with the lowest t dep (∼0.5 Gyr) have the highest ratios of σ / v c and more pronounced clumps, even at the same high molecular gas fraction.

  11. Gas Content and Kinematics in Clumpy, Turbulent Star-forming Disks

    Energy Technology Data Exchange (ETDEWEB)

    White, Heidi A.; Abraham, Roberto G. [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street, Toronto, ON, M5S 3H8 (Canada); Fisher, David B.; Glazebrook, Karl [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Hawthorn, VIC 3122 (Australia); Murray, Norman [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, University of Toronto, Toronto ON M5S 3H8 (Canada); Bolatto, Alberto D. [Department of Astronomy and Joint Space Institute, University of Maryland, College Park, MD 20642 (United States); Green, Andrew W. [Australian Astronomical Observatory, P.O. Box 970, North Ryde, NSW 1670 (Australia); Mentuch Cooper, Erin [Astronomy Department, University of Texas at Austin, Austin, TX 78712 (United States); Obreschkow, Danail [International Centre for Radio Astronomy Research (ICRAR), University of Western Australia, M468, Crawley, WA 6009 (Australia)

    2017-09-01

    We present molecular gas-mass estimates for a sample of 13 local galaxies whose kinematic and star-forming properties closely resemble those observed in z ≈ 1.5 main-sequence galaxies. Plateau de Bure observations of the CO[1-0] emission line and Herschel Space Observatory observations of the dust emission both suggest molecular gas-mass fractions of ∼20%. Moreover, dust emission modeling finds T {sub dust} < 30 K, suggesting a cold dust distribution compared to their high infrared luminosity. The gas-mass estimates argue that z ∼ 0.1 DYNAMO galaxies not only share similar kinematic properties with high- z disks, but they are also similarly rich in molecular material. Pairing the gas-mass fractions with existing kinematics reveals a linear relationship between f {sub gas} and σ / v {sub c}, consistent with predictions from stability theory of a self-gravitating disk. It thus follows that high gas-velocity dispersions are a natural consequence of large gas fractions. We also find that the systems with the lowest t {sub dep} (∼0.5 Gyr) have the highest ratios of σ / v{sub c} and more pronounced clumps, even at the same high molecular gas fraction.

  12. SPATIALLY RESOLVED STAR FORMATION HISTORY ALONG THE DISK OF M82 USING MULTI-BAND PHOTOMETRIC DATA

    International Nuclear Information System (INIS)

    Rodriguez-Merino, L. H.; Rosa-Gonzalez, D.; Mayya, Y. D.

    2011-01-01

    We present results on the star formation history and extinction in the disk of M82 over spatial scales of 10'' (∼180 pc). Multi-band photometric data covering the far-ultraviolet to the near-infrared bands were fitted to a grid of synthetic spectral energy distributions. We obtained distribution functions of age and extinction for each of the 117 apertures analyzed, taking into account observational errors through Monte Carlo simulations. These distribution functions were fitted with Gaussian functions to obtain the mean ages and extinctions together with their errors. The zones analyzed include the high surface brightness complexes defined by O'Connell and Mangano. We found that these complexes share the same star formation history and extinction as the field stellar populations in the disk. There is an indication that the stellar populations are marginally older at the outer disk (450 Myr at ∼3 kpc) as compared to the inner disk (100 Myr at 0.5 kpc). For the nuclear region (radius less than 500 pc), we obtained an age of less than 10 Myr. The results obtained in this work are consistent with the idea that the 0.5-3 kpc part of the disk of M82 formed around 90% of the stellar mass in a star-forming episode that started around 450 Myr ago and lasted for about 350 Myr. We found that field stars are the major contributors to the flux over the spatial scales analyzed in this study, with the stellar cluster contribution being 7% in the nucleus and 0.7% in the disk.

  13. The TWA 3 Young Triple System: Orbits, Disks, Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Kellogg, Kendra [Department of Physics and Astronomy, The University of Western Ontario, London, ON N6A 3K7 (Canada); Prato, L.; Avilez, I.; Wasserman, L. H.; Levine, S. E.; Bosh, A. S. [Lowell Observatory, 1400 West Mars Hill Road, Flagstaff, AZ 86001 (United States); Torres, Guillermo [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Schaefer, G. H. [The CHARA Array of Georgia State University, Mount Wilson Observatory, Mount Wilson, CA 91023 (United States); Ruíz-Rodríguez, D. [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia); Bonanos, Alceste Z. [IAASARS, National Observatory of Athens, 15236 Penteli (Greece); Guenther, E. W. [Thüringer Landessternwarte Tautenburg, D-07778 Tautenburg (Germany); Neuhäuser, R. [Astrophysikalisches Institut und Universitäts-Sternwarte, FSU Jena, Schillergäßchen 2-3, D-07745 Jena (Germany); Morzinski, Katie M.; Close, Laird; Hinz, Phil; Males, Jared R. [Steward Observatory, University of Arizona, 933 N. Cherry Ave, Tucson, AZ 85721 (United States); Bailey, Vanessa, E-mail: kkellogg@uwo.ca, E-mail: lprato@lowell.edu [Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics, Stanford University, Stanford, CA, 94305 (United States)

    2017-08-01

    We have characterized the spectroscopic orbit of the TWA 3A binary and provide preliminary families of probable solutions for the TWA 3A visual orbit, as well as for the wide TWA 3A–B orbit. TWA 3 is a hierarchical triple located at 34 pc in the ∼10 Myr old TW Hya association. The wide component separation is 1.″55; the close pair was first identified as a possible binary almost 20 years ago. We initially identified the 35-day period orbital solution using high-resolution infrared spectroscopy that angularly resolved the A and B components. We then refined the preliminary orbit by combining the infrared data with a reanalysis of our high-resolution optical spectroscopy. The orbital period from the combined spectroscopic solution is ∼35 days, the eccentricity is ∼0.63, and the mass ratio is ∼0.84; although this high mass ratio would suggest that optical spectroscopy alone should be sufficient to identify the orbital solution, the presence of the tertiary B component likely introduced confusion in the blended optical spectra. Using millimeter imaging from the literature, we also estimate the inclinations of the stellar orbital planes with respect to the TWA 3A circumbinary disk inclination and find that all three planes are likely misaligned by at least ∼30°. The TWA 3A spectroscopic binary components have spectral types of M4.0 and M4.5; TWA 3B is an M3. We speculate that the system formed as a triple, is bound, and that its properties were shaped by dynamical interactions between the inclined orbits and disk.

  14. A test of star formation laws in disk galaxies. II. Dependence on dynamical properties

    International Nuclear Information System (INIS)

    Suwannajak, Chutipong; Tan, Jonathan C.; Leroy, Adam K.

    2014-01-01

    We use the observed radial profiles of the mass surface densities of total, Σ g , and molecular, Σ H2 , gas, rotation velocity, and star formation rate (SFR) surface density, Σ sfr , of the molecular-rich (Σ H2 ≥ Σ HI /2) regions of 16 nearby disk galaxies to test several star formation (SF) laws: a 'Kennicutt-Schmidt (K-S)' law, Σ sfr =A g Σ g,2 1.5 ; a 'Constant Molecular' law, Σ sfr = A H2 Σ H2,2 ; the turbulence-regulated laws of Krumholz and McKee (KM05) and Krumholz, McKee, and Tumlinson (KMT09); a 'Gas-Ω' law, Σ sfr =B Ω Σ g Ω; and a shear-driven 'giant molecular cloud (GMC) Collision' law, Σ sfr = B CC Σ g Ω(1-0.7β), where β ≡ d ln v circ /d ln r. If allowed one free normalization parameter for each galaxy, these laws predict the SFR with rms errors of factors of 1.4-1.8. If a single normalization parameter is used by each law for the entire galaxy sample, then rms errors range from factors of 1.5-2.1. Although the Constant Molecular law gives the smallest rms errors, the improvement over the KMT, K-S, and GMC Collision laws is not especially significant, particularly given the different observational inputs that the laws utilize and the scope of included physics, which ranges from empirical relations to detailed treatment of interstellar medium processes. We next search for systematic variation of SF law parameters with local and global galactic dynamical properties of disk shear rate (related to β), rotation speed, and presence of a bar. We demonstrate with high significance that higher shear rates enhance SF efficiency per local orbital time. Such a trend is expected if GMC collisions play an important role in SF, while an opposite trend would be expected if the development of disk gravitational instabilities is the controlling physics.

  15. Young Stellar Objects in the Massive Star-forming Regions W51 and W43

    Energy Technology Data Exchange (ETDEWEB)

    Saral, G.; Audard, M. [Department of Astronomy, University of Geneva, Ch. d’Ecogia 16, 1290 Versoix (Switzerland); Hora, J. L.; Martínez-Galarza, J. R.; Smith, H. A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Koenig, X. P. [Yale University, Department of Astronomy, 208101, New Haven, CT 06520-8101 (United States); Motte, F. [Institut de Plantologie et d’Astrophysique de Grenoble, Univ. Grenoble Alpes—CNRS-INSU, BP 53, F-38041 Grenoble Cedex 9 (France); Nguyen-Luong, Q. [National Astronomical Observatory of Japan, Chile Observatory, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Saygac, A. T. [Istanbul University, Faculty of Science, Astronomy and Space Sciences Department, Istanbul-Turkey (Turkey)

    2017-04-20

    We present the results of our investigation of the star-forming complexes W51 and W43, two of the brightest in the first Galactic quadrant. In order to determine the young stellar object (YSO) populations in W51 and W43 we used color–magnitude relations based on Spitzer mid-infrared and 2MASS/UKIDSS near-infrared data. We identified 302 Class I YSOs and 1178 Class II/transition disk candidates in W51, and 917 Class I YSOs and 5187 Class II/transition disk candidates in W43. We also identified tens of groups of YSOs in both regions using the Minimal Spanning Tree (MST) method. We found similar cluster densities in both regions, even though Spitzer was not able to probe the densest part of W43. By using the Class II/I ratios, we traced the relative ages within the regions and, based on the morphology of the clusters, we argue that several sites of star formation are independent of one another in terms of their ages and physical conditions. We used spectral energy distribution-fitting to identify the massive YSO (MYSO) candidates since they play a vital role in the star formation process, and then examined them to see if they are related to any massive star formation tracers such as UCH ii regions, masers, or dense fragments. We identified 17 MYSO candidates in W51, and 14 in W43, respectively, and found that groups of YSOs hosting MYSO candidates are positionally associated with H ii regions in W51, though we do not see any MYSO candidates associated with previously identified massive dense fragments in W43.

  16. Unveiling hidden properties of young star clusters: differential reddening, star-formation spread, and binary fraction

    Science.gov (United States)

    Bonatto, C.; Lima, E. F.; Bica, E.

    2012-04-01

    Context. Usually, important parameters of young, low-mass star clusters are very difficult to obtain by means of photometry, especially when differential reddening and/or binaries occur in large amounts. Aims: We present a semi-analytical approach (ASAmin) that, when applied to the Hess diagram of a young star cluster, is able to retrieve the values of mass, age, star-formation spread, distance modulus, foreground and differential reddening, and binary fraction. Methods: The global optimisation method known as adaptive simulated annealing (ASA) is used to minimise the residuals between the observed and simulated Hess diagrams of a star cluster. The simulations are realistic and take the most relevant parameters of young clusters into account. Important features of the simulations are a normal (Gaussian) differential reddening distribution, a time-decreasing star-formation rate, the unresolved binaries, and the smearing effect produced by photometric uncertainties on Hess diagrams. Free parameters are cluster mass, age, distance modulus, star-formation spread, foreground and differential reddening, and binary fraction. Results: Tests with model clusters built with parameters spanning a broad range of values show that ASAmin retrieves the input values with a high precision for cluster mass, distance modulus, and foreground reddening, but they are somewhat lower for the remaining parameters. Given the statistical nature of the simulations, several runs should be performed to obtain significant convergence patterns. Specifically, we find that the retrieved (absolute minimum) parameters converge to mean values with a low dispersion as the Hess residuals decrease. When applied to actual young clusters, the retrieved parameters follow convergence patterns similar to the models. We show how the stochasticity associated with the early phases may affect the results, especially in low-mass clusters. This effect can be minimised by averaging out several twin clusters in the

  17. Young Star Cluster Found Aglow With Mysterious X-Ray Cloud

    Science.gov (United States)

    2002-12-01

    A mysterious cloud of high-energy electrons enveloping a young cluster of stars has been discovered by astronomers using NASA's Chandra X-ray Observatory. These extremely high-energy particles could cause dramatic changes in the chemistry of the disks that will eventually form planets around stars in the cluster. Known as RCW 38, the star cluster covers a region about 5 light years across. It contains thousands of stars formed less than a million years ago and appears to be forming new stars even today. The crowded environment of a star cluster is thought to be conducive to the production of hot gas, but not high-energy particles. Such particles are typically produced by exploding stars, or in the strong magnetic fields around neutron stars or black holes, none of which is evident in RCW 38. "The RCW 38 observation doesn't agree with the conventional picture," said Scott Wolk of the Harvard-Smithsonian Center for Astrophysics in Cambridge, MA, lead author of an Astrophysical Journal Letters paper describing the Chandra observation. "The data show that somehow extremely high-energy electrons are being produced there, although it is not clear how." RCW 38 RCW 38 X-ray, Radio, Infrared Composite Electrons accelerated to energies of trillions of volts are required to account for the observed X-ray spectrum of the gas cloud surrounding the ensemble of stars, which shows an excess of high-energy X-rays. As these electrons move in the magnetic field that threads the cluster, they produce X-rays. One possible origin for the high-energy electrons is a previously undetected supernova that occurred in the cluster. Although direct evidence for the supernova could have faded away thousands of years ago, a shock wave or a rapidly rotating neutron star produced by the outburst could be acting in concert with stellar winds to produce the high-energy electrons. "Regardless of the origin of the energetic electrons," said Wolk, "their presence would change the chemistry of proto

  18. A survey for variable young stars with small telescopes: First results from HOYS-CAPS

    Science.gov (United States)

    Froebrich, D.; Campbell-White, J.; Scholz, A.; Eislöffel, J.; Zegmott, T.; Billington, S. J.; Donohoe, J.; Makin, S. V.; Hibbert, R.; Newport, R. J.; Pickard, R.; Quinn, N.; Rodda, T.; Piehler, G.; Shelley, M.; Parkinson, S.; Wiersema, K.; Walton, I.

    2018-05-01

    Variability in Young Stellar Objects (YSOs) is one of their primary characteristics. Long-term, multi-filter, high-cadence monitoring of large YSO samples is the key to understand the partly unusual light-curves that many of these objects show. Here we introduce and present the first results of the HOYS-CAPScitizen science project which aims to perform such monitoring for nearby (d < 1 kpc) and young (age < 10 Myr) clusters and star forming regions, visible from the northern hemisphere, with small telescopes. We have identified and characterised 466 variable (413 confirmed young) stars in 8 young, nearby clusters. All sources vary by at least 0.2 mag in V, have been observed at least 15 times in V, R and I in the same night over a period of about 2 yrs and have a Stetson index of larger than 1. This is one of the largest samples of variable YSOs observed over such a time-span and cadence in multiple filters. About two thirds of our sample are classical T-Tauri stars, while the rest are objects with depleted or transition disks. Objects characterised as bursters show by far the highest variability. Dippers and objects whose variability is dominated by occultations from normal interstellar dust or dust with larger grains (or opaque material) have smaller amplitudes. We have established a hierarchical clustering algorithm based on the light-curve properties which allows the identification of the YSOs with the most unusual behaviour, and to group sources with similar properties. We discuss in detail the light-curves of the unusual objects V2492 Cyg, V350 Cep and 2MASS J21383981+5708470.

  19. Variability of Disk Emission in Pre-main-sequence and Related Stars. IV. Investigating the Structural Changes in the Inner Disk Region of MWC 480

    Science.gov (United States)

    Fernandes, Rachel B.; Long, Zachary C.; Pikhartova, Monika; Sitko, Michael L.; Grady, Carol A.; Russell, Ray W.; Luria, David M.; Tyler, Dakotah B.; Bayyari, Ammar; Danchi, William; Wisniewski, John P.

    2018-04-01

    We present five epochs of near-IR observations of the protoplanetary disk around MWC 480 (HD 31648) obtained with the SpeX spectrograph on NASA’s Infrared Telescope Facility between 2007 and 2013, inclusive. Using the measured line fluxes in the Pa β and Br γ lines, we found the mass accretion rates to be (1.26–2.30) × 10‑7 M ⊙ yr‑1 and (1.4–2.01) × 10‑7 M ⊙ yr‑1, respectively, but which varied by more than 50% from epoch to epoch. The spectral energy distribution reveals a variability of about 30% between 1.5 and 10 μm during this same period of time. We investigated the variability using of the continuum emission of the disk in using the Monte-Carlo Radiative Transfer Code HOCHUNK3D. We find that varying the height of the inner rim successfully produces a change in the NIR flux but lowers the far-IR emission to levels below all measured fluxes. Because the star exhibits bipolar flows, we utilized a structure that simulates an inner disk wind to model the variability in the near-IR, without producing flux levels in the far-IR that are inconsistent with existing data. For this object, variable near-IR emission due to such an outflow is more consistent with the data than changing the scale height of the inner rim of the disk.

  20. ALMA OBSERVATIONS OF THE DEBRIS DISK AROUND THE YOUNG SOLAR ANALOG HD 107146

    Energy Technology Data Exchange (ETDEWEB)

    Ricci, L.; Carpenter, J. M.; Fu, B. [Department of Astronomy, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Hughes, A. M. [Department of Astronomy, Wesleyan University, Van Vleck Observatory, 96 Foss Hill Drive, Midletown, CT 06457 (United States); Corder, S. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Isella, A., E-mail: lricci@astro.caltech.edu [Department of Physics and Astronomy, Rice University, 6100 South Main, Houston, TX 77521-1892 (United States)

    2015-01-10

    We present the Atacama Large Millimeter/submillimeter Array (ALMA) continuum observations at a wavelength of 1.25 mm of the debris disk surrounding the ∼100 Myr old solar analog HD 107146. The continuum emission extends from about 30 to 150 AU from the central star with a decrease in the surface brightness at intermediate radii. We analyze the ALMA interferometric visibilities using debris disk models with radial profiles for the dust surface density parameterized as (1) a single power law, (2) a single power law with a gap, and (3) a double power law. We find that models with a gap of radial width ∼8 AU at a distance of ∼80 AU from the central star, as well as double power-law models with a dip in the dust surface density at ∼70 AU provide significantly better fits to the ALMA data than single power-law models. We discuss possible scenarios for the origin of the HD 107146 debris disk using models of planetesimal belts in which the formation of Pluto-sized objects trigger disruptive collisions of large bodies, as well as models that consider the interaction of a planetary system with a planetesimal belt and spatial variation of the dust opacity across the disk. If future observations with higher angular resolution and sensitivity confirm the fully depleted gap structure discussed here, a planet with a mass of approximately a few Earth masses in a nearly circular orbit at ∼80 AU from the central star would be a possible explanation for the presence of the gap.

  1. ALMA OBSERVATIONS OF THE DEBRIS DISK AROUND THE YOUNG SOLAR ANALOG HD 107146

    International Nuclear Information System (INIS)

    Ricci, L.; Carpenter, J. M.; Fu, B.; Hughes, A. M.; Corder, S.; Isella, A.

    2015-01-01

    We present the Atacama Large Millimeter/submillimeter Array (ALMA) continuum observations at a wavelength of 1.25 mm of the debris disk surrounding the ∼100 Myr old solar analog HD 107146. The continuum emission extends from about 30 to 150 AU from the central star with a decrease in the surface brightness at intermediate radii. We analyze the ALMA interferometric visibilities using debris disk models with radial profiles for the dust surface density parameterized as (1) a single power law, (2) a single power law with a gap, and (3) a double power law. We find that models with a gap of radial width ∼8 AU at a distance of ∼80 AU from the central star, as well as double power-law models with a dip in the dust surface density at ∼70 AU provide significantly better fits to the ALMA data than single power-law models. We discuss possible scenarios for the origin of the HD 107146 debris disk using models of planetesimal belts in which the formation of Pluto-sized objects trigger disruptive collisions of large bodies, as well as models that consider the interaction of a planetary system with a planetesimal belt and spatial variation of the dust opacity across the disk. If future observations with higher angular resolution and sensitivity confirm the fully depleted gap structure discussed here, a planet with a mass of approximately a few Earth masses in a nearly circular orbit at ∼80 AU from the central star would be a possible explanation for the presence of the gap

  2. STELLAR MASS DEPENDENT DISK DISPERSAL

    International Nuclear Information System (INIS)

    Kennedy, Grant M.; Kenyon, Scott J.

    2009-01-01

    We use published optical spectral and infrared (IR) excess data from nine young clusters and associations to study the stellar mass dependent dispersal of circumstellar disks. All clusters older than ∼3 Myr show a decrease in disk fraction with increasing stellar mass for solar to higher mass stars. This result is significant at about the 1σ level in each cluster. For the complete set of clusters we reject the null hypothesis-that solar and intermediate-mass stars lose their disks at the same rate-with 95%-99.9% confidence. To interpret this behavior, we investigate the impact of grain growth, binary companions, and photoevaporation on the evolution of disk signatures. Changes in grain growth timescales at fixed disk temperature may explain why early-type stars with IR excesses appear to evolve faster than their later-type counterparts. Little evidence that binary companions affect disk evolution suggests that photoevaporation is the more likely mechanism for disk dispersal. A simple photoevaporation model provides a good fit to the observed disk fractions for solar and intermediate-mass stars. Although the current mass-dependent disk dispersal signal is not strong, larger and more complete samples of clusters with ages of 3-5 Myr can improve the significance and provide better tests of theoretical models. In addition, the orbits of extra-solar planets can constrain models of disk dispersal and migration. We suggest that the signature of stellar mass dependent disk dispersal due to photoevaporation may be present in the orbits of observed extra-solar planets. Planets orbiting hosts more massive than ∼1.6 M sun may have larger orbits because the disks in which they formed were dispersed before they could migrate.

  3. A SPITZER IRS STUDY OF INFRARED VARIABILITY IN TRANSITIONAL AND PRE-TRANSITIONAL DISKS AROUND T TAURI STARS

    International Nuclear Information System (INIS)

    Espaillat, C.; Furlan, E.; D'Alessio, P.; Sargent, B.; Muzerolle, J.; Nagel, E.; Calvet, N.; Watson, Dan M.

    2011-01-01

    We present a Spitzer IRS study of variability in 14 T Tauri stars in the Taurus and Chamaeleon star-forming regions. The sample is composed of transitional and pre-transitional objects which contain holes and gaps in their disks. We detect variability between 5 and 38 μm in all but two of our objects on timescales of 2-3 years. Most of the variability observed can be classified as seesaw behavior, whereby the emission at shorter wavelengths varies inversely with the emission at longer wavelengths. For many of the objects we can reasonably reproduce the observed variability using irradiated disk models, particularly by changing the height of the inner disk wall by ∼20%. When the inner wall is taller, the emission at the shorter wavelengths is higher since the inner wall dominates the emission at 2-8 μm. The taller inner wall casts a larger shadow on the outer disk wall, leading to less emission at wavelengths beyond 20 μm where the outer wall dominates. We discuss how the possible presence of planets in these disks could lead to warps that cause changes in the height of the inner wall. We also find that crystalline silicates are common in the outer disks of our objects and that in the four disks in the sample with the most crystalline silicates, variability on timescales of 1 week is present. In addition to explaining the infrared variability described above, planets can create shocks and collisions which can crystallize the dust and lead to short timescale variability.

  4. The embedded young stars in the Taurus-Auriga molecular cloud. I - Models for spectral energy distributions

    Science.gov (United States)

    Kenyon, Scott J.; Calvet, Nuria; Hartmann, Lee

    1993-01-01

    We describe radiative transfer calculations of infalling, dusty envelopes surrounding pre-main-sequence stars and use these models to derive physical properties for a sample of 21 heavily reddened young stars in the Taurus-Auriga molecular cloud. The density distributions needed to match the FIR peaks in the spectral energy distributions of these embedded sources suggest mass infall rates similar to those predicted for simple thermally supported clouds with temperatures about 10 K. Unless the dust opacities are badly in error, our models require substantial departures from spherical symmetry in the envelopes of all sources. These flattened envelopes may be produced by a combination of rotation and cavities excavated by bipolar flows. The rotating infall models of Terebey et al. (1984) models indicate a centrifugal radius of about 70 AU for many objects if rotation is the only important physical effect, and this radius is reasonably consistent with typical estimates for the sizes of circumstellar disks around T Tauri stars.

  5. FIRST DETECTION OF NEAR-INFRARED LINE EMISSION FROM ORGANICS IN YOUNG CIRCUMSTELLAR DISKS

    Energy Technology Data Exchange (ETDEWEB)

    Mandell, Avi M.; Mumma, Michael J.; Villanueva, Geronimo [Solar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Bast, Jeanette; Van Dishoeck, Ewine F. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands); Blake, Geoffrey A. [California Institute of Technology, Division of Geological and Planetary Sciences, MS 150-21, Pasadena, CA 91125 (United States); Salyk, Colette, E-mail: Avi.Mandell@nasa.gov [Department of Astronomy, University of Texas, Austin, TX 78712 (United States)

    2012-03-10

    We present an analysis of high-resolution spectroscopy of several bright T Tauri stars using the CRIRES spectrograph on the Very Large Telescope and NIRSPEC spectrograph on the Keck Telescope, revealing the first detections of emission from HCN and C{sub 2}H{sub 2} in circumstellar disks at near-infrared wavelengths. Using advanced data reduction techniques, we achieve a dynamic range with respect to the disk continuum of {approx}500 at 3 {mu}m, revealing multiple emission features of H{sub 2}O, OH, HCN, and C{sub 2}H{sub 2}. We also present stringent upper limits for two other molecules thought to be abundant in the inner disk, CH{sub 4} and NH{sub 3}. Line profiles for the different detected molecules are broad but centrally peaked in most cases, even for disks with previously determined inclinations of greater than 20 Degree-Sign , suggesting that the emission has both a Keplerian and non-Keplerian component as observed previously for CO emission. We apply two different modeling strategies to constrain the molecular abundances and temperatures: we use a simplified single-temperature local thermal equilibrium (LTE) slab model with a Gaussian line profile to make line identifications and determine a best-fit temperature and initial abundance ratios, and we compare these values with constraints derived from a detailed disk radiative transfer model assuming LTE excitation but utilizing a realistic temperature and density structure. Abundance ratios from both sets of models are consistent with each other and consistent with expected values from theoretical chemical models, and analysis of the line shapes suggests that the molecular emission originates from within a narrow region in the inner disk (R < 1 AU).

  6. An UXor among FUors: Extinction-related Brightness Variations of the Young Eruptive Star V582 Aur

    Science.gov (United States)

    Ábrahám, P.; Kóspál, Á.; Kun, M.; Fehér, O.; Zsidi, G.; Acosta-Pulido, J. A.; Carnerero, M. I.; García-Álvarez, D.; Moór, A.; Cseh, B.; Hajdu, G.; Hanyecz, O.; Kelemen, J.; Kriskovics, L.; Marton, G.; Mező, Gy.; Molnár, L.; Ordasi, A.; Rodríguez-Coira, G.; Sárneczky, K.; Sódor, Á.; Szakáts, R.; Szegedi-Elek, E.; Szing, A.; Farkas-Takács, A.; Vida, K.; Vinkó, J.

    2018-01-01

    V582 Aur is an FU Ori-type young eruptive star in outburst since ∼1985. The eruption is currently in a relatively constant plateau phase, with photometric and spectroscopic variability superimposed. Here we will characterize the progenitor of the outbursting object, explore its environment, and analyze the temporal evolution of the eruption. We are particularly interested in the physical origin of the two deep photometric dips, one that occurred in 2012 and one that is ongoing since 2016. We collected archival photographic plates and carried out new optical, infrared, and millimeter-wave photometric and spectroscopic observations between 2010 and 2018, with a high sampling rate during the current minimum. Besides analyzing the color changes during fading, we compiled multiepoch spectral energy distributions and fitted them with a simple accretion disk model. Based on pre-outburst data and a millimeter continuum measurement, we suggest that the progenitor of the V582 Aur outburst is a low-mass T Tauri star with average properties. The mass of an unresolved circumstellar structure, probably a disk, is 0.04 M ⊙. The optical and near-infrared spectra demonstrate the presence of hydrogen and metallic lines, show the CO band head in absorption, and exhibit a variable Hα profile. The color variations strongly indicate that both the ∼1 yr long brightness dip in 2012 and the current minimum since 2016 are caused by increased extinction along the line of sight. According to our accretion disk models, the reddening changed from A V = 4.5 to 12.5 mag, while the accretion rate remained practically constant. Similarly to the models of the UXor phenomenon of intermediate- and low-mass young stars, orbiting disk structures could be responsible for the eclipses.

  7. Herschel Studies of the Evolution and Environs of Young Stars in the DIGIT, WISH, and FOOSH Programs

    Science.gov (United States)

    Green, Joel D.; DIGIT OT Key Project Team; WISH GT Key Project Team; FOOSH OT1 Team

    2012-01-01

    The Herschel Space Observatory has enabled us to probe the physical conditions of outer disks, envelopes, and outflows of young stellar objects, including embedded objects, Herbig Ae/Be disks, and T Tauri disks. We will report on results from three projects, DIGIT, WISH, and FOOSH. The DIGIT (Dust, Ice, and Gas in Time) program (PI: Neal Evans) utilizes the full spectral range of the PACS instrument to explore simultaneously the solid and gas-phase chemistry around sources in all of these stages. WISH (Water in Star Forming Regions with Herschel, PI Ewine van Dishoeck) focuses on observations of key lines with HIFI and line scans of selected spectral regions with PACS. FOOSH (FU Orionis Objects Surveyed with Herschel, PI Joel Green) studies FU Orionis objects with full range PACS and SPIRE scans. DIGIT includes examples of low luminosity protostars, while FOOSH studies the high luminosity objects during outburst states. Rotational ladders of highly excited CO and OH emission are detected in both disks and protostars. The highly excited lines are more commonly seen in the embedded phases, where there appear to be two temperature components. Intriguingly, water is frequently detected in spectra of embedded sources, but not in the disk spectra. In addition to gas features, we explore the extent of the newly detected 69 um forsterite dust feature in both T Tauri and Herbig Ae/Be stars. When analyzed along with the Spitzer-detected dust features, these provide constraints on a population of colder crystalline material. We will present some models of individual sources, as well as some broad statistics of the emission from these stages of star and planet formation.

  8. The disk averaged star formation relation for Local Volume dwarf galaxies

    Science.gov (United States)

    López-Sánchez, Á. R.; Lagos, C. D. P.; Young, T.; Jerjen, H.

    2018-05-01

    Spatially resolved H I studies of dwarf galaxies have provided a wealth of precision data. However these high-quality, resolved observations are only possible for handful of dwarf galaxies in the Local Volume. Future H I surveys are unlikely to improve the current situation. We therefore explore a method for estimating the surface density of the atomic gas from global H I parameters, which are conversely widely available. We perform empirical tests using galaxies with resolved H I maps, and find that our approximation produces values for the surface density of atomic hydrogen within typically 0.5 dex of the true value. We apply this method to a sample of 147 galaxies drawn from modern near-infrared stellar photometric surveys. With this sample we confirm a strict correlation between the atomic gas surface density and the star formation rate surface density, that is vertically offset from the Kennicutt-Schmidt relation by a factor of 10 - 30, and significantly steeper than the classical N = 1.4 of Kennicutt (1998). We further infer the molecular fraction in the sample of low surface brightness, predominantly dwarf galaxies by assuming that the star formation relationship with molecular gas observed for spiral galaxies also holds in these galaxies, finding a molecular-to-atomic gas mass fraction within the range of 5-15%. Comparison of the data to available models shows that a model in which the thermal pressure balances the vertical gravitational field captures better the shape of the ΣSFR-Σgas relationship. However, such models fail to reproduce the data completely, suggesting that thermal pressure plays an important role in the disks of dwarf galaxies.

  9. A new method for measuring metallicities of young super star clusters

    International Nuclear Information System (INIS)

    Gazak, J. Zachary; Kudritzki, Rolf; Bresolin, Fabio; Davies, Ben; Bastian, Nate; Bergemann, Maria; Plez, Bertrand; Evans, Chris; Patrick, Lee; Schinnerer, Eva

    2014-01-01

    We demonstrate how the metallicities of young super star clusters (SSC) can be measured using novel spectroscopic techniques in the J-band. The near-infrared flux of SSCs older than ∼6 Myr is dominated by tens to hundreds of red supergiant stars. Our technique is designed to harness the integrated light of that population and produces accurate metallicities for new observations in galaxies above (M83) and below (NGC 6946) solar metallicity. In M83 we find [Z] = +0.28 ± 0.14 dex using a moderate resolution (R ∼ 3500) J-band spectrum and in NGC 6496 we report [Z] = -0.32 ± 0.20 dex from a low resolution spectrum of R ∼ 1800. Recently commissioned low resolution multiplexed spectrographs on the Very Large Telescope (KMOS) and Keck (MOSFIRE) will allow accurate measurements of SSC metallicities across the disks of star-forming galaxies up to distances of 70 Mpc with single night observation campaigns using the method presented in this paper.

  10. CLOSE STELLAR ENCOUNTERS IN YOUNG, SUBSTRUCTURED, DISSOLVING STAR CLUSTERS: STATISTICS AND EFFECTS ON PLANETARY SYSTEMS

    International Nuclear Information System (INIS)

    Craig, Jonathan; Krumholz, Mark R.

    2013-01-01

    Both simulations and observations indicate that stars form in filamentary, hierarchically clustered associations, most of which disperse into their galactic field once feedback destroys their parent clouds. However, during their early evolution in these substructured environments, stars can undergo close encounters with one another that might have significant impacts on their protoplanetary disks or young planetary systems. We perform N-body simulations of the early evolution of dissolving, substructured clusters with a wide range of properties, with the aim of quantifying the expected number and orbital element distributions of encounters as a function of cluster properties. We show that the presence of substructure both boosts the encounter rate and modifies the distribution of encounter velocities compared to what would be expected for a dynamically relaxed cluster. However, the boost only lasts for a dynamical time, and as a result the overall number of encounters expected remains low enough that gravitational stripping is unlikely to be a significant effect for the vast majority of star-forming environments in the Galaxy. We briefly discuss the implications of this result for models of the origin of the solar system, and of free-floating planets. We also provide tabulated encounter rates and orbital element distributions suitable for inclusion in population synthesis models of planet formation in a clustered environment.

  11. CLOSE STELLAR ENCOUNTERS IN YOUNG, SUBSTRUCTURED, DISSOLVING STAR CLUSTERS: STATISTICS AND EFFECTS ON PLANETARY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Jonathan; Krumholz, Mark R., E-mail: krumholz@ucolick.org [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States)

    2013-06-01

    Both simulations and observations indicate that stars form in filamentary, hierarchically clustered associations, most of which disperse into their galactic field once feedback destroys their parent clouds. However, during their early evolution in these substructured environments, stars can undergo close encounters with one another that might have significant impacts on their protoplanetary disks or young planetary systems. We perform N-body simulations of the early evolution of dissolving, substructured clusters with a wide range of properties, with the aim of quantifying the expected number and orbital element distributions of encounters as a function of cluster properties. We show that the presence of substructure both boosts the encounter rate and modifies the distribution of encounter velocities compared to what would be expected for a dynamically relaxed cluster. However, the boost only lasts for a dynamical time, and as a result the overall number of encounters expected remains low enough that gravitational stripping is unlikely to be a significant effect for the vast majority of star-forming environments in the Galaxy. We briefly discuss the implications of this result for models of the origin of the solar system, and of free-floating planets. We also provide tabulated encounter rates and orbital element distributions suitable for inclusion in population synthesis models of planet formation in a clustered environment.

  12. Close Stellar Encounters in Young, Substructured, Dissolving Star Clusters: Statistics and Effects on Planetary Systems

    Science.gov (United States)

    Craig, Jonathan; Krumholz, Mark R.

    2013-06-01

    Both simulations and observations indicate that stars form in filamentary, hierarchically clustered associations, most of which disperse into their galactic field once feedback destroys their parent clouds. However, during their early evolution in these substructured environments, stars can undergo close encounters with one another that might have significant impacts on their protoplanetary disks or young planetary systems. We perform N-body simulations of the early evolution of dissolving, substructured clusters with a wide range of properties, with the aim of quantifying the expected number and orbital element distributions of encounters as a function of cluster properties. We show that the presence of substructure both boosts the encounter rate and modifies the distribution of encounter velocities compared to what would be expected for a dynamically relaxed cluster. However, the boost only lasts for a dynamical time, and as a result the overall number of encounters expected remains low enough that gravitational stripping is unlikely to be a significant effect for the vast majority of star-forming environments in the Galaxy. We briefly discuss the implications of this result for models of the origin of the solar system, and of free-floating planets. We also provide tabulated encounter rates and orbital element distributions suitable for inclusion in population synthesis models of planet formation in a clustered environment.

  13. YOUNG STELLAR OBJECTS IN THE LARGE MAGELLANIC CLOUD STAR-FORMING REGION N206

    International Nuclear Information System (INIS)

    Romita, Krista Alexandra; Meixner, M.; Sewilo, M.; Shiao, B.; Carlson, Lynn Redding; Whitney, B.; Babler, B.; Meade, M.; Indebetouw, R.; Hora, J. L.

    2010-01-01

    We present analysis of the energetic star-forming region Henize 206 (N206) located near the southern edge of the Large Magellanic Cloud (LMC) based on photometric data from the Spitzer Surveying the Agents of Galaxy Evolution (SAGE-LMC; IRAC 3.6, 4.5, 5.8, 8.0 μm and MIPS 24 μm), Infrared Survey Facility near-infrared survey (J, H, K s ), and the Magellanic Clouds Photometric Survey (MCPS UBVI) covering a wavelength range of 0.36-24 μm. Young stellar object (YSO) candidates are identified based upon their location in infrared color-magnitude space and classified by the shapes of their spectral energy distributions in comparison with a pre-computed grid of YSO models. We identify 116 YSO candidates: 102 are well characterized by the YSO models, predominately Stage I, and 14 may be multiple sources or young sources with transition disks. Careful examination of the individual sources and their surrounding environment allows us to identify a factor of ∼14.5 more YSO candidates than have already been identified. The total mass of these well-fit YSO candidates is ∼520 M sun . We calculate a current star formation rate of 0.27 x 10 -1 M sun yr -1 kpc -2 . The distribution of YSO candidates appears to follow shells of neutral material in the interstellar medium.

  14. FROM THE CONVERGENCE OF FILAMENTS TO DISK-OUTFLOW ACCRETION: MASSIVE STAR FORMATION IN W33A

    International Nuclear Information System (INIS)

    Galvan-Madrid, Roberto; Zhang Qizhou; Keto, Eric; Ho, Paul T. P.; Pineda, Jaime E.; Zapata, Luis A.; RodrIguez, Luis F.; Vazquez-Semadeni, Enrique

    2010-01-01

    Interferometric observations of the W33A massive star formation region, performed with the Submillimeter Array and the Very Large Array at resolutions from 5'' (0.1 pc) to 0.''5 (0.01 pc), are presented. Our three main findings are: (1) parsec-scale, filamentary structures of cold molecular gas are detected. Two filaments at different velocities intersect in the zone where the star formation is occurring. This is consistent with triggering of the star formation activity by the convergence of such filaments, as predicted by numerical simulations of star formation initiated by converging flows. (2) The two dusty cores (MM1 and MM2) at the intersection of the filaments are found to be at different evolutionary stages, and each of them is resolved into multiple condensations. MM1 and MM2 have markedly different temperatures, continuum spectral indices, molecular-line spectra, and masses of both stars and gas. (3) The dynamics of the 'hot-core' MM1 indicates the presence of a rotating disk in its center (MM1-Main) around a faint free-free source. The stellar mass is estimated to be ∼10 M sun . A massive molecular outflow is observed along the rotation axis of the disk.

  15. Near Infrared High Resolution Spectroscopy and Spectro-astrometry of Gas in Disks around Herbig Ae/Be Stars

    OpenAIRE

    Brittain, Sean D.; Najita, Joan R.; Carr, John S.

    2015-01-01

    In this review, we describe how high resolution near infrared spectroscopy and spectro-astrometry have been used to study the disks around Herbig~Ae/Be stars. We show how these tools can be used to identify signposts of planet formation and elucidate the mechanism by which Herbig Ae/Be stars accrete. We also highlight some of the artifacts that can complicate the interpretation of spectro-astrometric measurements and discuss best practices for mitigating these effects. We conclude with a brie...

  16. Polarized Disk Emission from Herbig Ae/Be Stars Observed Using Gemini Planet Imager: HD 144432, HD 150193, HD 163296, and HD 169142

    Energy Technology Data Exchange (ETDEWEB)

    Monnier, John D.; Aarnio, Alicia; Adams, Fred C.; Calvet, Nuria; Hartmann, Lee [Astronomy Department, University of Michigan, Ann Arbor, MI 48109 (United States); Harries, Tim J.; Hinkley, Sasha; Kraus, Stefan [University of Exeter, Exeter (United Kingdom); Andrews, Sean; Wilner, David [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 91023 (United States); Espaillat, Catherine [Boston University, Boston, MA (United States); McClure, Melissa [European Southern Observatory, Garching (Germany); Oppenheimer, Rebecca [American Museum of Natural History, New York (United States); Perrin, Marshall [Space Telescope Science Institute, Baltimore, MD (United States)

    2017-03-20

    In order to look for signs of ongoing planet formation in young disks, we carried out the first J -band polarized emission imaging of the Herbig Ae/Be stars HD 150193, HD 163296, and HD 169142 using the Gemini Planet Imager, along with new H band observations of HD 144432. We confirm the complex “double ring” structure for the nearly face-on system HD 169142 first seen in H -band, finding the outer ring to be substantially redder than the inner one in polarized intensity. Using radiative transfer modeling, we developed a physical model that explains the full spectral energy distribution and J - and H -band surface brightness profiles, suggesting that the differential color of the two rings could come from reddened starlight traversing the inner wall and may not require differences in grain properties. In addition, we clearly detect an elongated, off-center ring in HD 163296 (MWC 275), locating the scattering surface to be 18 au above the midplane at a radial distance of 77 au, co-spatial with a ring seen at 1.3 mm by ALMA linked to the CO snow line. Lastly, we report a weak tentative detection of scattered light for HD 150193 (MWC 863) and a non-detection for HD 144432; the stellar companion known for each of these targets has likely disrupted the material in the outer disk of the primary star. For HD 163296 and HD 169142, the prominent outer rings we detect could be evidence for giant planet formation in the outer disk or a manifestation of large-scale dust growth processes possibly related to snow-line chemistry.

  17. Polarized Disk Emission from Herbig Ae/Be Stars Observed Using Gemini Planet Imager: HD 144432, HD 150193, HD 163296, and HD 169142

    International Nuclear Information System (INIS)

    Monnier, John D.; Aarnio, Alicia; Adams, Fred C.; Calvet, Nuria; Hartmann, Lee; Harries, Tim J.; Hinkley, Sasha; Kraus, Stefan; Andrews, Sean; Wilner, David; Espaillat, Catherine; McClure, Melissa; Oppenheimer, Rebecca; Perrin, Marshall

    2017-01-01

    In order to look for signs of ongoing planet formation in young disks, we carried out the first J -band polarized emission imaging of the Herbig Ae/Be stars HD 150193, HD 163296, and HD 169142 using the Gemini Planet Imager, along with new H band observations of HD 144432. We confirm the complex “double ring” structure for the nearly face-on system HD 169142 first seen in H -band, finding the outer ring to be substantially redder than the inner one in polarized intensity. Using radiative transfer modeling, we developed a physical model that explains the full spectral energy distribution and J - and H -band surface brightness profiles, suggesting that the differential color of the two rings could come from reddened starlight traversing the inner wall and may not require differences in grain properties. In addition, we clearly detect an elongated, off-center ring in HD 163296 (MWC 275), locating the scattering surface to be 18 au above the midplane at a radial distance of 77 au, co-spatial with a ring seen at 1.3 mm by ALMA linked to the CO snow line. Lastly, we report a weak tentative detection of scattered light for HD 150193 (MWC 863) and a non-detection for HD 144432; the stellar companion known for each of these targets has likely disrupted the material in the outer disk of the primary star. For HD 163296 and HD 169142, the prominent outer rings we detect could be evidence for giant planet formation in the outer disk or a manifestation of large-scale dust growth processes possibly related to snow-line chemistry.

  18. A LIKELY CLOSE-IN LOW-MASS STELLAR COMPANION TO THE TRANSITIONAL DISK STAR HD 142527

    International Nuclear Information System (INIS)

    Biller, Beth; Benisty, Myriam; Chauvin, Gael; Olofsson, Johan; Pott, Jörg-Uwe; Müller, André; Bonnefoy, Mickaël; Henning, Thomas; Lacour, Sylvestre; Thebault, Philippe; Juhász, Attila; Sicilia-Aguilar, Aurora; Tuthill, Peter; Crida, Aurelien

    2012-01-01

    With the uniquely high contrast within 0.''1 (Δmag(L') = 5-6.5 mag) available using Sparse Aperture Masking with NACO at Very Large Telescope, we detected asymmetry in the flux from the Herbig Fe star HD 142527 with a barycenter emission situated at a projected separation of 88 ± 5 mas (12.8 ± 1.5 AU at 145 pc) and flux ratios in H, K, and L' of 0.016 ± 0.007, 0.012 ± 0.008, and 0.0086 ± 0.0011, respectively (3σ errors), relative to the primary star and disk. After extensive closure-phase modeling, we interpret this detection as a close-in, low-mass stellar companion with an estimated mass of ∼0.1-0.4 M ☉ . HD 142527 has a complex disk structure, with an inner gap imaged in both the near and mid-IR as well as a spiral feature in the outer disk in the near-IR. This newly detected low-mass stellar companion may provide a critical explanation of the observed disk structure.

  19. Dissecting the assembly and star formation history of disks and bulges in nearby spirals using the VENGA IFU survey

    Science.gov (United States)

    Carrillo, Andreia Jessica; Jogee, Shardha; Kaplan, Kyle; Weinzirl, Tim; Blanc, Guillermo A.

    2017-06-01

    Integral field spectroscopy of nearby galaxies provides a powerful and unparalleled tool for studying how galaxies assemble the different components -- the bulge, bar, and disk-- that define the Hubble sequence. We explore the assembly and star formation history of these components using galaxies in the VIRUS-P Exploration of Nearby Galaxies (VENGA) survey of 30 nearby spiral galaxies. Compared to other integral field spectroscopy studies of spirals, our study benefits from high spatial sampling and resolution (typically a few 100 pc), large coverage from the bulge to the outer disk, broad wavelength range (3600-6800 A), and medium spectral resolution (120 km/s at 5000 A). In this poster, we present the methodology and data illustrating the exquisite, high-quality, spatially-resolved spectra out to large radii, and the distribution, kinematics, and metallicity of stars and ionized gas. We discuss the next steps in deriving the star formation history (SFH) of bulge, bar, and disk components, and elucidating their assembly pathway by comparing their SFH and structural properties to theoretical models of galaxy evolution. This project is supported by the NSF grants AST-1614798 and AST-1413652.

  20. YOUNG, ULTRAVIOLET-BRIGHT STARS DOMINATE DUST HEATING IN STAR-FORMING GALAXIES

    International Nuclear Information System (INIS)

    Law, Ka-Hei; Gordon, Karl D.; Misselt, K. A.

    2011-01-01

    In star-forming galaxies, dust plays a significant role in shaping the ultraviolet (UV) through infrared (IR) spectrum. Dust attenuates the radiation from stars, and re-radiates the energy through equilibrium and non-equilibrium emission. Polycyclic aromatic hydrocarbons (PAHs), graphite, and silicates contribute to different features in the spectral energy distribution; however, they are all highly opaque in the same spectral region-the UV. Compared to old stellar populations, young populations release a higher fraction of their total luminosity in the UV, making them a good source of the energetic UV photons that can power dust emission. However, given their relative abundance, the question of whether young or old stellar populations provide most of these photons that power the IR emission is an interesting question. Using three samples of galaxies observed with the Spitzer Space Telescope and our dusty radiative transfer model, we find that young stellar populations (on the order of 100 million years old) dominate the dust heating in star-forming galaxies, and old stellar populations (13 billion years old) generally contribute less than 20% of the far-IR luminosity.

  1. OT1_ipascucc_1: Understanding the Origin of Transition Disks via Disk Mass Measurements

    Science.gov (United States)

    Pascucci, I.

    2010-07-01

    Transition disks are a distinguished group of few Myr-old systems caught in the phase of dispersing their inner dust disk. Three different processes have been proposed to explain this inside-out clearing: grain growth, photoevaporation driven by the central star, and dynamical clearing by a forming giant planet. Which of these processes lead to a transition disk? Distinguishing between them requires the combined knowledge of stellar accretion rates and disk masses. We propose here to use 43.8 hours of PACS spectroscopy to detect the [OI] 63 micron emission line from a sample of 21 well-known transition disks with measured mass accretion rates. We will use this line, in combination with ancillary CO millimeter lines, to measure their gas disk mass. Because gas dominates the mass of protoplanetary disks our approach and choice of lines will enable us to trace the bulk of the disk mass that resides beyond tens of AU from young stars. Our program will quadruple the number of transition disks currently observed with Herschel in this setting and for which disk masses can be measured. We will then place the transition and the ~100 classical/non-transition disks of similar age (from the Herschel KP "Gas in Protoplanetary Systems") in the mass accretion rate-disk mass diagram with two main goals: 1) reveal which gaps have been created by grain growth, photoevaporation, or giant planet formation and 2) from the statistics, determine the main disk dispersal mechanism leading to a transition disk.

  2. Hierarchical Star Formation in Turbulent Media: Evidence from Young Star Clusters

    Energy Technology Data Exchange (ETDEWEB)

    Grasha, K.; Calzetti, D. [Astronomy Department, University of Massachusetts, Amherst, MA 01003 (United States); Elmegreen, B. G. [IBM Research Division, T.J. Watson Research Center, Yorktown Heights, NY (United States); Adamo, A.; Messa, M. [Department of Astronomy, The Oskar Klein Centre, Stockholm University, Stockholm (Sweden); Aloisi, A.; Bright, S. N.; Lee, J. C.; Ryon, J. E.; Ubeda, L. [Space Telescope Science Institute, Baltimore, MD (United States); Cook, D. O. [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA (United States); Dale, D. A. [Department of Physics and Astronomy, University of Wyoming, Laramie, WY (United States); Fumagalli, M. [Institute for Computational Cosmology and Centre for Extragalactic Astronomy, Department of Physics, Durham University, Durham (United Kingdom); Gallagher III, J. S. [Department of Astronomy, University of Wisconsin–Madison, Madison, WI (United States); Gouliermis, D. A. [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Grebel, E. K. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120, Heidelberg (Germany); Kahre, L. [Department of Astronomy, New Mexico State University, Las Cruces, NM (United States); Kim, H. [Gemini Observatory, La Serena (Chile); Krumholz, M. R., E-mail: kgrasha@astro.umass.edu [Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2611 (Australia)

    2017-06-10

    We present an analysis of the positions and ages of young star clusters in eight local galaxies to investigate the connection between the age difference and separation of cluster pairs. We find that star clusters do not form uniformly but instead are distributed so that the age difference increases with the cluster pair separation to the 0.25–0.6 power, and that the maximum size over which star formation is physically correlated ranges from ∼200 pc to ∼1 kpc. The observed trends between age difference and separation suggest that cluster formation is hierarchical both in space and time: clusters that are close to each other are more similar in age than clusters born further apart. The temporal correlations between stellar aggregates have slopes that are consistent with predictions of turbulence acting as the primary driver of star formation. The velocity associated with the maximum size is proportional to the galaxy’s shear, suggesting that the galactic environment influences the maximum size of the star-forming structures.

  3. A UNIVERSAL, LOCAL STAR FORMATION LAW IN GALACTIC CLOUDS, NEARBY GALAXIES, HIGH-REDSHIFT DISKS, AND STARBURSTS

    International Nuclear Information System (INIS)

    Krumholz, Mark R.; Dekel, Avishai; McKee, Christopher F.

    2012-01-01

    Star formation laws are rules that relate the rate of star formation in a particular region, either an entire galaxy or some portion of it, to the properties of the gas, or other galactic properties, in that region. While observations of Local Group galaxies show a very simple, local star formation law in which the star formation rate per unit area in each patch of a galaxy scales linearly with the molecular gas surface density in that patch, recent observations of both Milky Way molecular clouds and high-redshift galaxies apparently show a more complicated relationship in which regions of equal molecular gas surface density can form stars at quite different rates. These data have been interpreted as implying either that different star formation laws may apply in different circumstances, that the star formation law is sensitive to large-scale galaxy properties rather than local properties, or that there are high-density thresholds for star formation. Here we collate observations of the relationship between gas and star formation rate from resolved observations of Milky Way molecular clouds, from kpc-scale observations of Local Group galaxies, and from unresolved observations of both disk and starburst galaxies in the local universe and at high redshift. We show that all of these data are in fact consistent with a simple, local, volumetric star formation law. The apparent variations stem from the fact that the observed objects have a wide variety of three-dimensional size scales and degrees of internal clumping, so even at fixed gas column density the regions being observed can have wildly varying volume densities. We provide a simple theoretical framework to remove this projection effect, and we use it to show that all the data, from small solar neighborhood clouds with masses ∼10 3 M ☉ to submillimeter galaxies with masses ∼10 11 M ☉ , fall on a single star formation law in which the star formation rate is simply ∼1% of the molecular gas mass per local

  4. VARIABILITY OF DISK EMISSION IN PRE-MAIN SEQUENCE AND RELATED STARS. III. EXPLORING STRUCTURAL CHANGES IN THE PRE-TRANSITIONAL DISK IN HD 169142

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, Kevin R.; Sitko, Michael L.; Swearingen, Jeremy R.; Champney, Elizabeth H.; Johnson, Alexa N.; Werren, Chelsea [Department of Physics, University of Cincinnati, Cincinnati, OH 45221 (United States); Grady, Carol A. [Eureka Scientific, 2452 Delmer, Suite 100, Oakland, CA 96002 (United States); Whitney, Barbara A. [Department of Astronomy, University of Wisconsin, 475 North CharterStreet, Madison, WI 53706-1582 (United States); Russell, Ray W. [The Aerospace Corporation, Los Angeles, CA 90009 (United States); Schneider, Glenn H. [Steward Observatory, 933 North Cherry Avenue, University of Arizona, Tucson, AZ 85721 (United States); Momose, Munetake [Ibaraki University, 310-0056 Ibaraki, Mito, Bunkyo, 11 (Japan); Muto, Takayuki [Kogakuin University, 1-24-2 Nishishinjuku, Shinjuku, Tokyo 163-8677 (Japan); Inoue, Akio K. [Osaka Sangyo University, College of General Education, 3-1-1 Nakagaito, Daito, Osaka 574-8530 (Japan); Lauroesch, James T.; Hornbeck, Jeremy [University of Louisville Research Foundation, Inc., 2301 South 3rd Street, Louisville, KY 40292 (United States); Brown, Alexander [Center for Astrophysics and Space Astronomy, Astrophysics Research Laboratory, 593 UCB, University of Colorado, Boulder, CO 80309-0593 (United States); Fukagawa, Misato [Department of Earth and Space Science, Graduate School of Science, Osaka University, 1-1, Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Currie, Thayne M. [Oak Ridge Associated Universities, 100 ORAU Way, Oak Ridge, TN 37830-6218 (United States); Wisniewski, John P. [University of Oklahoma, 660 Parrington Oval, Norman, OK 73019 (United States); Woodgate, Bruce E., E-mail: wagnekr@mail.uc.edu, E-mail: sitkoml@ucmail.uc.edu, E-mail: swearijr@mail.uc.edu, E-mail: ehchampney@gmail.com, E-mail: astefank@andrew.cmu.edu, E-mail: ccwerren@yahoo.com, E-mail: carol.a.grady@nasa.gov, E-mail: bwhitney@astro.wisc.edu, E-mail: Ray.W.Russell@aero.org [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States)

    2015-01-10

    We present near-IR (NIR) and far-UV observations of the pre-transitional (gapped) disk in HD 169142 using NASA's Infrared Telescope Facility and Hubble Space Telescope. The combination of our data along with existing data sets into the broadband spectral energy distribution reveals variability of up to 45% between ∼1.5-10 μm over a maximum timescale of 10 yr. All observations known to us separate into two distinct states corresponding to a high near-IR state in the pre-2000 epoch and a low state in the post-2000 epoch, indicating activity within the ≲1 AU region of the disk. Through analysis of the Pa β and Br γ lines in our data we derive a mass accretion rate in 2013 May of M-dot ≈ (1.5-2.7) × 10{sup –9} M {sub ☉} yr{sup –1}. We present a theoretical modeling analysis of the disk in HD 169142 using Monte-Carlo radiative transfer simulation software to explore the conditions and perhaps signs of planetary formation in our collection of 24 yr of observations. We find that shifting the outer edge (r ≈ 0.3 AU) of the inner disk by 0.05 AU toward the star (in simulation of accretion and/or sculpting by forming planets) successfully reproduces the shift in NIR flux. We establish that the ∼40-70 AU dark ring imaged in the NIR by Quanz et al. and Momose et al. and at 7 mm by Osorio et al. may be reproduced with a 30% scaled density profile throughout the region, strengthening the link to this structure being dynamically cleared by one or more planetary mass bodies.

  5. VARIABILITY OF DISK EMISSION IN PRE-MAIN SEQUENCE AND RELATED STARS. III. EXPLORING STRUCTURAL CHANGES IN THE PRE-TRANSITIONAL DISK IN HD 169142

    International Nuclear Information System (INIS)

    Wagner, Kevin R.; Sitko, Michael L.; Swearingen, Jeremy R.; Champney, Elizabeth H.; Johnson, Alexa N.; Werren, Chelsea; Grady, Carol A.; Whitney, Barbara A.; Russell, Ray W.; Schneider, Glenn H.; Momose, Munetake; Muto, Takayuki; Inoue, Akio K.; Lauroesch, James T.; Hornbeck, Jeremy; Brown, Alexander; Fukagawa, Misato; Currie, Thayne M.; Wisniewski, John P.; Woodgate, Bruce E.

    2015-01-01

    We present near-IR (NIR) and far-UV observations of the pre-transitional (gapped) disk in HD 169142 using NASA's Infrared Telescope Facility and Hubble Space Telescope. The combination of our data along with existing data sets into the broadband spectral energy distribution reveals variability of up to 45% between ∼1.5-10 μm over a maximum timescale of 10 yr. All observations known to us separate into two distinct states corresponding to a high near-IR state in the pre-2000 epoch and a low state in the post-2000 epoch, indicating activity within the ≲1 AU region of the disk. Through analysis of the Pa β and Br γ lines in our data we derive a mass accretion rate in 2013 May of M-dot ≈ (1.5-2.7) × 10 –9 M ☉ yr –1 . We present a theoretical modeling analysis of the disk in HD 169142 using Monte-Carlo radiative transfer simulation software to explore the conditions and perhaps signs of planetary formation in our collection of 24 yr of observations. We find that shifting the outer edge (r ≈ 0.3 AU) of the inner disk by 0.05 AU toward the star (in simulation of accretion and/or sculpting by forming planets) successfully reproduces the shift in NIR flux. We establish that the ∼40-70 AU dark ring imaged in the NIR by Quanz et al. and Momose et al. and at 7 mm by Osorio et al. may be reproduced with a 30% scaled density profile throughout the region, strengthening the link to this structure being dynamically cleared by one or more planetary mass bodies

  6. A Resolved and Asymmetric Ring of PAHs within the Young Circumstellar Disk of IRS 48

    Energy Technology Data Exchange (ETDEWEB)

    Schworer, Guillaume; Lacour, Sylvestre; Du Foresto, Vincent Coudé [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universits, UPMC Univ. Paris 06, Univ. Paris Diderot, Sorbonne Paris Cité (France); Huélamo, Nuria [Dpto. Astrofísica, Centro de Astrobiología (INTA-CSIC), ESAC Campus, P.O. Box 78, E-28691, Villanueva de la Cañada (Spain); Pinte, Christophe; Chauvin, Gaël [Univ. Grenoble Alpes, IPAG, F-38000 Grenoble, France CNRS, IPAG, F-38000 Grenoble (France); Ehrenreich, David [Observatoire de l’Université de Genève, 51 chemin des Maillettes, 1290 Versoix (Switzerland); Girard, Julien [European Southern Observatory, Alonso de Cordova 3107, Casilla 19001 Vitacura, Santiago 19 (Chile); Tuthill, Peter [Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006 (Australia)

    2017-06-20

    For one decade, the spectral type and age of the ρ Oph object IRS-48 were subject to debate and mystery. Modeling its disk with mid-infrared to millimeter observations led to various explanations to account for the complex intricacy of dust holes and gas-depleted regions. We present multi-epoch high-angular-resolution interferometric near-infrared data of spatially resolved emissions in the first 15 au of IRS-48, known to have very strong polycyclic aromatic hydrocarbon (PAH) emissions within this dust-depleted region. We make use of new Sparse-Aperture-Masking data to instruct a revised radiative-transfer model, where spectral energy distribution fluxes and interferometry are jointly fitted. Neutral and ionized PAH, very small grains (VSG), and classical silicates are incorporated into the model; new stellar parameters and extinction laws are explored. A bright (42 L {sub ⊙}) and hence large (2.5 R {sub ⊙}) central star with A {sub v} = 12.5 mag and R {sub v} = 6.5 requires less near-infrared excess: the inner-most disk at ≈1 au is incompatible with the interferometric data. The revised stellar parameters place this system on a 4 Myr evolutionary track, four times younger than the previous estimations, which is in better agreement with the surrounding ρ Oph region and disk-lifetime observations. The disk-structure solution converges to a classical-grain outer disk from 55 au combined with an unsettled and fully resolved VSG and PAH ring, between 11 and 26 au. We find two overluminosities in the PAH ring at color-temperatures consistent with the radiative transfer simulations; one follows a Keplerian circular orbit at 14 au. We show a depletion of a factor of ≈5 of classical dust grains up to 0.3 mm compared to very small particles: the IRS-48 disk is nearly void of dust grains in the first 55 au. A 3.5 M {sub Jup} planet on a 40 au orbit can qualitatively explain the new disk structure.

  7. THE CIRCUMSTELLAR DISK OF THE Be STAR o AQUARII AS CONSTRAINED BY SIMULTANEOUS SPECTROSCOPY AND OPTICAL INTERFEROMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Sigut, T. A. A. [Department of Physics and Astronomy, The University of Western Ontario, London, Ontario, N6A 3K7 (Canada); Tycner, C.; Jansen, B. [Department of Physics, Central Michigan University, Mount Pleasant, MI 48859 (United States); Zavala, R. T. [US Naval Observatory, Flagstaff Station, 10391 W. Naval Observatory Rd, Flagstaff, AZ 86001 (United States)

    2015-12-01

    Omicron Aquarii is a late-type, Be shell star with a stable and nearly symmetric Hα emission line. We combine Hα interferometric observations obtained with the Navy Precision Optical Interferometer covering 2007 through 2014 with Hα spectroscopic observations over the same period and a 2008 observation of the system's near-infrared spectral energy distribution to constrain the properties of o Aqr's circumstellar disk. All observations are consistent with a circumstellar disk seen at an inclination of 75° ±  3° with a position angle on the sky of 110° ±  8° measured East from North. From the best-fit disk density model, we find that 90% of the Hα emission arises from within 9.5 stellar radii, and the mass associated with this Hα disk is ∼1.8 × 10{sup −10} of the stellar mass, and that the associated angular momentum, assuming Keplerian rotation for the disk, is ∼1.6 × 10{sup −8} of the total stellar angular momentum. The occurrence of a central quasi-emission feature in Mg ii λ4481 is also predicted by this best-fit disk model and the computed profile compares successfully with observations from 1999. To obtain consistency between the Hα line profile modeling and the other constraints, it was necessary in the profile fitting to weight the line core (emission peaks and central depression) more heavily than the line wings, which were not well reproduced by our models. This may reflect the limitation of assuming a single power law for the disk's variation in equatorial density. The best-fit disk density model for o Aqr predicts that Hα is near its maximum strength as a function of disk density, and hence the Hα equivalent width and line profile change only weakly in response to large (factor of ∼5) changes in the disk density. This may in part explain the remarkable observed stability of o Aqr's Hα emission line profile.

  8. Far-IR Observations of Gas and Dust in the Unusual 49 Ceti Disk

    NARCIS (Netherlands)

    Roberge, Aki; Kamp, I.; Augereau, J.; Montesinos, B.; Meeus, G.; Olofsson, J.; Donaldson, J.; Howard, C. D.; Eiroa, C.; Dent, B.

    We present Herschel Space Observatory far-IR imaging and spectroscopy of 49 Cet, an unusual circumstellar disk around a nearby young A1V star. The system is famous for showing the dust properties of a debris disk, but the gas properties of a low-mass protoplanetary disk. Photometry was obtained at

  9. Herschel Observations of Gas and Dust in the Unusual 49 Ceti Debris Disk

    NARCIS (Netherlands)

    Roberge, A.; Kamp, I.; Montesinos, B.; Dent, W. R. F.; Meeus, G.; Donaldson, J. K.; Olofsson, J.; Moor, A.; Augereau, J. -C.; Howard, C.; Eiroa, C.; Thi, W. -F.; Ardila, D. R.; Sandell, G.; Woitke, P.

    2013-01-01

    We present far-IR/sub-mm imaging and spectroscopy of 49 Ceti, an unusual circumstellar disk around a nearby young A1V star. The system is famous for showing the dust properties of a debris disk, but the gas properties of a low-mass protoplanetary disk. The data were acquired with the Herschel Space

  10. Spectral Evidence for an Inner Carbon-rich Circumstellar Belt in the Young HD 36546 A-star System

    Energy Technology Data Exchange (ETDEWEB)

    Lisse, C. M. [JHU-APL, 11100 Johns Hopkins Road, Laurel, MD 20723 (United States); Sitko, M. L. [Department of Physics, University of Cincinnati, Cincinnati, OH 45221-0011 and Space Science Institute, Boulder, CO 80301 (United States); Russell, R. W. [The Aerospace Corporation, Los Angeles, CA 90009 (United States); Marengo, M. [Department of Physics and Astronomy, 12 Physics Hall, Iowa State University, Ames, IA 50010 (United States); Currie, T. [Subaru Telescope, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, Hilo, HI 96720 (United States); Melis, C. [Center for Astrophysics and Space Sciences, University of California, San Diego, CA 92093-0424 (United States); Mittal, T. [Department of Earth and Planetary Sciences, McCone Hall, University of California at Berkeley, Berkeley, CA 94720 (United States); Song, I., E-mail: carey.lisse@jhuapl.edu, E-mail: ron.vervack@jhuapl.edu, E-mail: sitkoml@ucmail.uc.edu, E-mail: ray.russell@aero.org, E-mail: mmarengo@iastate.edu, E-mail: currie@naoj.org, E-mail: cmelis@ucsd.edu, E-mail: tmittal2@berkeley.edu, E-mail: song@physast.uga.edu [Department of Physics and Astronomy, University of Georgia, Athens, GA 30602-2451 (United States)

    2017-05-10

    Using the NASA/IRTF SpeX and BASS spectrometers we have obtained 0.7–13 μ m observations of the newly imaged 3–10 Myr old HD 36546 disk system. The SpeX spectrum is most consistent with the photospheric emission expected from an L {sub *} ∼ 20 L {sub ⊙}, solar abundance A1.5V star with little to no extinction, and excess emission from circumstellar dust detectable beyond 4.5 μ m. Non-detections of CO emission lines and accretion signatures point to the gas-poor circumstellar environment of a very old transition disk. Combining the SpeX + BASS spectra with archival WISE / AKARI / IRAS / Herschel photometry, we find an outer cold dust belt at ∼135 K and 20–40 au from the primary, likely coincident with the disk imaged by Subaru, and a new second inner belt with a temperature ∼570 K and an unusual, broad SED maximum in the 6–9 μ m region, tracing dust at 1.1–2.2 au. An SED maximum at 6–9 μ m has been reported in just two other A-star systems, HD 131488 and HD 121191, both of ∼10 Myr age. From Spitzer , we have also identified the ∼12 Myr old A7V HD 148657 system as having similar 5–35 μ m excess spectral features. The Spitzer data allows us to rule out water emission and rule in carbonaceous materials—organics, carbonates, SiC—as the source of the 6–9 μ m excess. Assuming a common origin for the four young A-star systems’ disks, we suggest they are experiencing an early era of carbon-rich planetesimal processing.

  11. Exploring Disks Around Planets

    Science.gov (United States)

    Kohler, Susanna

    2017-07-01

    Giant planets are thought to form in circumstellar disks surrounding young stars, but material may also accrete into a smaller disk around the planet. Weve never detected one of these circumplanetary disks before but thanks to new simulations, we now have a better idea of what to look for.Image from previous work simulating a Jupiter-mass planet forming inside a circumstellar disk. The planet has its own circumplanetary disk of accreted material. [Frdric Masset]Elusive DisksIn the formation of giant planets, we think the final phase consists of accretion onto the planet from a disk that surrounds it. This circumplanetary disk is important to understand, since it both regulates the late gas accretion and forms the birthplace of future satellites of the planet.Weve yet to detect a circumplanetary disk thus far, because the resolution needed to spot one has been out of reach. Now, however, were entering an era where the disk and its kinematics may be observable with high-powered telescopes (like the Atacama Large Millimeter Array).To prepare for such observations, we need models that predict the basic characteristics of these disks like the mass, temperature, and kinematic properties. Now a researcher at the ETH Zrich Institute for Astronomy in Switzerland, Judit Szulgyi, has worked toward this goal.Simulating CoolingSzulgyi performs a series of 3D global radiative hydrodynamic simulations of 1, 3, 5, and 10 Jupiter-mass (MJ) giant planets and their surrounding circumplanetary disks, embedded within the larger circumstellar disk around the central star.Density (left column), temperature (center), and normalized angular momentum (right) for a 1 MJ planet over temperatures cooling from 10,000 K (top) to 1,000 K (bottom). At high temperatures, a spherical circumplanetary envelope surrounds the planet, but as the planet cools, the envelope transitions around 64,000 K to a flattened disk. [Szulgyi 2017]This work explores the effects of different planet temperatures and

  12. MAPPING THE RECENT STAR FORMATION HISTORY OF THE DISK OF M51

    International Nuclear Information System (INIS)

    Kaleida, Catherine; Scowen, Paul A.

    2010-01-01

    Using data acquired as part of a unique Hubble Heritage imaging program of broadband colors of the interacting spiral system M51/NGC 5195, we have conducted a photometric study of the stellar associations across the entire disk of the galaxy in order to assess trends in size, luminosity, and local environment associated with the recent star formation (SF) activity in the system. Starting with a sample of over 900 potential associations, we have produced color-magnitude and color-color diagrams for the 120 associations that were deemed to be single-aged. It has been found that main-sequence (MS) turnoffs are not evident for the vast majority of the stellar associations in our set, potentially due to the overlap of isochronal tracks at the high mass end of the MS, and the limited depth of our images at the distance of M51. In order to obtain ages for more of our sample, we produced model spectral energy distributions (SEDs) to fit to the data from the GALEXEV simple stellar population models of Bruzual and Charlot. These SEDs can be used to determine age, size, mass, metallicity, and dust content of each association via a simple χ 2 minimization to each association's B-, V-, and I-band fluxes. The derived association properties are mapped as a function of location, and recent trends in SF history of the galaxy are explored in light of these results. This work is the first phase in a program that will compare these stellar systems with their environments using ultraviolet data from the Galaxy Evolution Explorer and infrared data from Spitzer, and ultimately we plan to apply the same stellar population mapping methodology to other nearby face-on spiral galaxies.

  13. Sporadic mass loss, spin-down, and element redistribution in young disk galaxies

    International Nuclear Information System (INIS)

    Charlton, J.C.; Salpeter, E.E.

    1989-01-01

    Violent conditions in young spiral disks may be conducive to the high-velocity ejection of large blobs of material powered by the concerted action of supernovae. Using explicit numerical Monte Carlo models, treating ejected bobs as galactic cannonballs traveling with little interaction through the corona, several important consequences for galactic evolution are found. Preferential escape from the galaxy or objects with high specific angular momenta lead to a significant spin-down of the disk. In addition, this process may contribute to the production of an exponential column density distribution, and a metallicity gradient. The models predict a reversal in the sign of the metallicity gradient at large radii because the metal-rich objects that return to such a low column density region suffer relatively little dilution. 39 refs

  14. NEAR-INFRARED VARIABILITY AMONG YOUNG STELLAR OBJECTS IN THE STAR FORMATION REGION CYGNUS OB7

    Energy Technology Data Exchange (ETDEWEB)

    Wolk, Scott J.; Rice, Thomas S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Aspin, Colin [Institute for Astronomy, University of Hawaii at Manoa, 640 North Aohoku Place, Hilo, HI 96720 (United States)

    2013-08-20

    We present an analysis of near-infrared time-series photometry in J, H, and K bands for about 100 epochs of a 1 Degree-Sign Multiplication-Sign 1 Degree-Sign region of the Lynds 1003/1004 dark cloud in the Cygnus OB7 region. Augmented by data from the Wide-field Infrared Survey Explorer, we identify 96 candidate disk bearing young stellar objects (YSOs) in the region. Of these, 30 are clearly Class I or earlier. Using the Wide-Field Imaging Camera on the United Kingdom Infrared Telescope, we were able to obtain photometry over three observing seasons, with photometric uncertainty better than 0.05 mag down to J Almost-Equal-To 17. We study detailed light curves and color trajectories of {approx}50 of the YSOs in the monitored field. We investigate the variability and periodicity of the YSOs and find the data are consistent with all YSOs being variable in these wavelengths on timescales of a few years. We divide the variability into four observational classes: (1) stars with periodic variability stable over long timescales, (2) variables which exhibit short-lived cyclic behavior, (3) long-duration variables, and (4) stochastic variables. Some YSO variability defies simple classification. We can explain much of the observed variability as being due to dynamic and rotational changes in the disk, including an asymmetric or changing blocking fraction, changes to the inner disk hole size, as well as changes to the accretion rate. Overall, we find that the Class I:Class II ratio of the cluster is consistent with an age of <1 Myr, with at least one individual, wildly varying source {approx}100, 000 yr old. We have also discovered a Class II eclipsing binary system with a period of 17.87 days.

  15. Rings of Molecular Line Emission in the Disk Orbiting the Young, Close Binary V4046 Sgr

    Science.gov (United States)

    Dickson-Vandervelde, Dorothy; Kastner, Joel H.; Qi, C.; Forveille, Thierry; Hily-Blant, Pierre; Oberg, Karin; Wilner, David; Andrews, Sean; Gorti, Uma; Rapson, Valerie; Sacco, Germano; Principe, David

    2018-01-01

    We present analysis of a suite of subarcsecond ALMA Band 6 (1.1 - 1.4 mm) molecular line images of the circumbinary, protoplanetary disk orbiting V4046 Sgr. The ~20 Myr-old V4046 Sgr system, which lies a mere ~73 pc from Earth, consists of a close (separation ~10 Rsun) pair of roughly solar-mass stars that are orbited by a gas-rich crcumbinary disk extending to ~350 AU in radius. The ALMA images reveal that the molecules CO and HCN and their isotopologues display centrally peaked surface brightness morphologies, whereas the cyanide group molecules (HC3N, CH3CN), deuterated molecules (DCN, DCO+), hydrocarbons (as traced by C2H), and potential CO ice line tracers (N2H+, and H2CO) appear as a sequence of sharp and diffuse rings of increasing radii. The characteristic sizes of these molecular emission rings, which range from ~25 to >100 AU in radius, are evident in radial emission-line surface brightness profiles extracted from the deprojected disk images. We find that emission from 13CO emission transitions from optically thin to thick within ~50 AU, whereas C18O emission remains optically thin within this radius. We summarize the insight into the physical and chemical processes within this evolved protoplanetary disk that can be obtained from comparisons of the various emission-line morphologies with each other and with that of the continuum (large-grain) emission on size scales of tens of AU.This research is supported by NASA Exoplanets program grant NNX16AB43G to RIT

  16. NuSTAR AND SUZAKU OBSERVATIONS OF THE HARD STATE IN CYGNUS X-1: LOCATING THE INNER ACCRETION DISK

    International Nuclear Information System (INIS)

    Parker, M. L.; Lohfink, A.; Fabian, A. C.; Alston, W. N.; Kara, E.; Tomsick, J. A.; Boggs, S. E.; Craig, W. W.; Miller, J. M.; Yamaoka, K.; Nowak, M.; Grinberg, V.; Christensen, F. E.; Fürst, F.; Grefenstette, B. W.; Harrison, F. A.; Gandhi, P.; Hailey, C. J.; King, A. L.; Stern, D.

    2015-01-01

    We present simultaneous Nuclear Spectroscopic Telescope Array (NuSTAR ) and Suzaku observations of the X-ray binary Cygnus X-1 in the hard state. This is the first time this state has been observed in Cyg X-1 with NuSTAR, which enables us to study the reflection and broadband spectra in unprecedented detail. We confirm that the iron line cannot be fit with a combination of narrow lines and absorption features, instead requiring a relativistically blurred profile in combination with a narrow line and absorption from the companion wind. We use the reflection models of García et al. to simultaneously measure the black hole spin, disk inner radius, and coronal height in a self-consistent manner. Detailed fits to the iron line profile indicate a high level of relativistic blurring, indicative of reflection from the inner accretion disk. We find a high spin, a small inner disk radius, and a low source height and rule out truncation to greater than three gravitational radii at the 3σ confidence level. In addition, we find that the line profile has not changed greatly in the switch from soft to hard states, and that the differences are consistent with changes in the underlying reflection spectrum rather than the relativistic blurring. We find that the blurring parameters are consistent when fitting either just the iron line or the entire broadband spectrum, which is well modeled with a Comptonized continuum plus reflection model

  17. Star-formation history of very young clusters

    International Nuclear Information System (INIS)

    Stahler, S.W.

    1985-01-01

    The popular idea that star formation has proceeded sequentially from lowest to highest mass members in open clusters is examined critically. For extremely young clusters, such as NGC 2264 and NGC 6530, this sequential hypothesis is a consequence of the assignment of pre-main-sequence contraction ages to all member stars. However, such ages yield a formation history which is implausible from a physical point of view, since the critical time for the onset of formation at any stellar mass is equal to the pre-main-sequence contraction time for that mass. Moreover, these ages are in conflict with the strong observational evidence that a substantial fraction of cluster members have already reached the main sequence. After reconsideration of the probable main-sequence members, the stellar ages in NGC 2264 and NGC 6530 are consistent with a variety of formation histories, and, in particular, with the view that all stellar masses form in approximately the same interval of time within a given cluster, i.e., that there is no mass-age correlation. A notion closely related to the sequential hypothesis, that the total star-formation rate increases exponentially with time, is subject to the same criticism

  18. Gemini Spectroscopic Survey of Young Intermediate-Mass Star-Forming Regions

    Science.gov (United States)

    Lundquist, Michael; Kobulnicky, Henry

    2018-01-01

    The majority of stars form in embedded clusters. Current research into star formation has focused on either high-mass star-forming regions or low-mass star-forming regions. We present the results from a Gemini spectroscopic survey of young intermediate-mass star-forming regions. These are star forming regions selected to produce stars up to but not exceeding 8 solar masses. We obtained spectra of these regions with GNIRS on Gemini North and Flamingos-2 on Gemini South. We also combine this with near-infrared imaging from 2MASS, UKIDSS, and VVV to study the stellar content.

  19. Tracing chemical evolution over the extent of the Milky Way's disk with apogee red clump stars

    International Nuclear Information System (INIS)

    Nidever, David L.; Bovy, Jo; Bird, Jonathan C.; Andrews, Brett H.; Johnson, Jennifer A.; Weinberg, David H.; Hayden, Michael; Holtzman, Jon; Feuillet, Diane; Majewski, Steven R.; García Pérez, Ana E.; Smith, Verne; Robin, Annie C.; Sobeck, Jennifer; Cunha, Katia; Allende Prieto, Carlos; Zasowski, Gail; Schiavon, Ricardo P.; Schneider, Donald P.; Shetrone, Matthew

    2014-01-01

    We employ the first two years of data from the near-infrared, high-resolution SDSS-III/APOGEE spectroscopic survey to investigate the distribution of metallicity and α-element abundances of stars over a large part of the Milky Way disk. Using a sample of ≈10, 000 kinematically unbiased red-clump stars with ∼5% distance accuracy as tracers, the [α/Fe] versus [Fe/H] distribution of this sample exhibits a bimodality in [α/Fe] at intermediate metallicities, –0.9 < [Fe/H] <–0.2, but at higher metallicities ([Fe/H] ∼+0.2) the two sequences smoothly merge. We investigate the effects of the APOGEE selection function and volume filling fraction and find that these have little qualitative impact on the α-element abundance patterns. The described abundance pattern is found throughout the range 5 < R < 11 kpc and 0 < |Z| < 2 kpc across the Galaxy. The [α/Fe] trend of the high-α sequence is surprisingly constant throughout the Galaxy, with little variation from region to region (∼10%). Using simple galactic chemical evolution models, we derive an average star-formation efficiency (SFE) in the high-α sequence of ∼4.5 × 10 –10 yr –1 , which is quite close to the nearly constant value found in molecular-gas-dominated regions of nearby spirals. This result suggests that the early evolution of the Milky Way disk was characterized by stars that shared a similar star-formation history and were formed in a well-mixed, turbulent, and molecular-dominated ISM with a gas consumption timescale (SFE –1 ) of ∼2 Gyr. Finally, while the two α-element sequences in the inner Galaxy can be explained by a single chemical evolutionary track, this cannot hold in the outer Galaxy, requiring, instead, a mix of two or more populations with distinct enrichment histories.

  20. ALMA Shows that Gas Reservoirs of Star-forming Disks over the Past 3 Billion Years Are Not Predominantly Molecular

    Energy Technology Data Exchange (ETDEWEB)

    Cortese, Luca; Catinella, Barbara; Janowiecki, Steven, E-mail: luca.cortese@uwa.edu.au [International Centre for Radio Astronomy Research, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009 (Australia)

    2017-10-10

    Cold hydrogen gas is the raw fuel for star formation in galaxies, and its partition into atomic and molecular phases is a key quantity for galaxy evolution. In this Letter, we combine Atacama Large Millimeter/submillimeter Array and Arecibo single-dish observations to estimate the molecular-to-atomic hydrogen mass ratio for massive star-forming galaxies at z ∼ 0.2 extracted from the HIGHz survey, i.e., some of the most massive gas-rich systems currently known. We show that the balance between atomic and molecular hydrogen in these galaxies is similar to that of local main-sequence disks, implying that atomic hydrogen has been dominating the cold gas mass budget of star-forming galaxies for at least the past three billion years. In addition, despite harboring gas reservoirs that are more typical of objects at the cosmic noon, HIGHz galaxies host regular rotating disks with low gas velocity dispersions suggesting that high total gas fractions do not necessarily drive high turbulence in the interstellar medium.

  1. THE BRIGHTEST YOUNG STAR CLUSTERS IN NGC 5253

    Energy Technology Data Exchange (ETDEWEB)

    Calzetti, D. [Department of Astronomy, University of Massachusetts—Amherst, Amherst, MA 01003 (United States); Johnson, K. E. [Department of Astronomy, University of Virginia, Charlottesville, VA (United States); Adamo, A. [Department of Astronomy, The Oskar Klein Centre, Stockholm University, Stockholm (Sweden); Gallagher III, J. S.; Ryon, J. E. [Department of Astronomy, University of Wisconsin–Madison, Madison, WI (United States); Andrews, J. E. [Department of Astronomy, University of Arizona, Tucson, AZ (United States); Smith, L. J. [European Space Agency/Space Telescope Science Institute, Baltimore, MD (United States); Clayton, G. C. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA (United States); Lee, J. C.; Sabbi, E.; Ubeda, L.; Bright, S. N.; Whitmore, B. C.; Aloisi, A. [Space Telescope Science Institute, Baltimore, MD (United States); Kim, H. [Department of Astronomy, The University of Texas at Austin, Austin, TX (United States); Thilker, D. [Department of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD (United States); Zackrisson, E. [Department of Physics and Astronomy, Uppsala University, Uppsala (Sweden); Kennicutt, R. C. [Institute of Astronomy, University of Cambridge, Cambridge (United Kingdom); Mink, S. E. de [Anton Pannekoek Institute for Astronomy, University of Amsterdam, Amsterdam (Netherlands); Chandar, R., E-mail: calzetti@astro.umass.edu [Department of Physics and Astronomy, University of Toledo, Toledo, OH (United States); and others

    2015-10-01

    The nearby dwarf starburst galaxy NGC 5253 hosts a number of young, massive star clusters, the two youngest of which are centrally concentrated and surrounded by thermal radio emission (the “radio nebula”). To investigate the role of these clusters in the starburst energetics, we combine new and archival Hubble Space Telescope images of NGC 5253 with wavelength coverage from 1500 Å to 1.9 μm in 13 filters. These include Hα, Pβ, and Pα, and the imaging from the Hubble Treasury Program LEGUS (Legacy Extragalactic UV Survey). The extraordinarily well-sampled spectral energy distributions enable modeling with unprecedented accuracy the ages, masses, and extinctions of the nine optically brightest clusters (M{sub V} < −8.8) and the two young radio nebula clusters. The clusters have ages ∼1–15 Myr and masses ∼1 × 10{sup 4}–2.5 × 10{sup 5} M{sub ⊙}. The clusters’ spatial location and ages indicate that star formation has become more concentrated toward the radio nebula over the last ∼15 Myr. The most massive cluster is in the radio nebula; with a mass ∼2.5 × 10{sup 5} M{sub ⊙} and an age ∼1 Myr, it is 2–4 times less massive and younger than previously estimated. It is within a dust cloud with A{sub V} ∼ 50 mag, and shows a clear near-IR excess, likely from hot dust. The second radio nebula cluster is also ∼1 Myr old, confirming the extreme youth of the starburst region. These two clusters account for about half of the ionizing photon rate in the radio nebula, and will eventually supply about 2/3 of the mechanical energy in present-day shocks. Additional sources are required to supply the remaining ionizing radiation, and may include very massive stars.

  2. [O I] disk emission in the Taurus star-forming region

    NARCIS (Netherlands)

    Aresu, G.; Kamp, I.; Meijerink, R.; Spaans, M.; Vicente, S.; Podio, L.; Woitke, P.; Menard, F.; Thi, W.-F.; Güdel, M.; Liebhart, A.

    2014-01-01

    Context. The structure of protoplanetary disks is thought to be linked to the temperature and chemistry of their dust and gas. Whether the disk is flat or flaring depends on the amount of radiation that it absorbs at a given radius and on the efficiency with which this is converted into thermal

  3. ABSENCE OF SIGNIFICANT COOL DISKS IN YOUNG STELLAR OBJECTS EXHIBITING REPETITIVE OPTICAL OUTBURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hauyu Baobab; Hirano, Naomi; Takami, Michihiro; Dong, Ruobing [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 106, Taiwan (China); Galván-Madrid, Roberto; Rodríguez, Luis F.; Carrasco-González, Carlos [Instituto de Radioastronomía y Astrofísica, UNAM, A.P. 3-72, Xangari, Morelia, 58089 (Mexico); Vorobyov, Eduard I. [Department of Astrophysics, University of Vienna, Tuerkenschanzstrasse 17, A-1180, Vienna (Austria); Kóspál, Ágnes [Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, P.O. Box 67, 1525 Budapest (Hungary); Dunham, Michael M. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS 78, Cambridge, MA 02138 (United States); Henning, Thomas [Max-Planck-Institut für Astronomie Königstuhl, 17 D-69117 Heidelberg (Germany); Hashimoto, Jun [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 Japan (Japan); Hasegawa, Yasuhiro, E-mail: baobabyoo@gmail.com [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States)

    2016-01-10

    We report Submillimeter Array 1.3 mm high angular resolution observations toward the four EXor-type outbursting young stellar objects VY Tau, V1118 Ori, V1143 Ori, and NY Ori. The data mostly show low dust masses M{sub dust} in the associated circumstellar disks. Among the sources, NY Ori possesses a relatively massive disk with M{sub dust} ∼ 9 × 10{sup −4}M{sub ⊙}. V1118 Ori has a marginal detection equivalent to M{sub dust} ∼ 6 × 10{sup −5}M{sub ⊙}. V1143 Ori has a non-detection also equivalent to M{sub dust} < 6 × 10{sup −5}M{sub ⊙}. For the nearest source, VY Tau, we get a surprising non-detection that provides a stringent upper limit M{sub dust} < 6 × 10{sup −6}M{sub ⊙}. We interpret our findings as suggesting that the gas and dust reservoirs that feed the short-duration, repetitive optical outbursts seen in some EXors may be limited to the small-scale, innermost region of their circumstellar disks. This hot dust may have escaped our detection limits. Follow-up, more sensitive millimeter observations are needed to improve our understanding of the triggering mechanisms of EXor-type outbursts.

  4. ALMA Survey of Lupus Protoplanetary Disks. II. Gas Disk Radii

    Science.gov (United States)

    Ansdell, M.; Williams, J. P.; Trapman, L.; van Terwisga, S. E.; Facchini, S.; Manara, C. F.; van der Marel, N.; Miotello, A.; Tazzari, M.; Hogerheijde, M.; Guidi, G.; Testi, L.; van Dishoeck, E. F.

    2018-05-01

    We present Atacama Large Millimeter/Sub-Millimeter Array (ALMA) Band 6 observations of a complete sample of protoplanetary disks in the young (∼1–3 Myr) Lupus star-forming region, covering the 1.33 mm continuum and the 12CO, 13CO, and C18O J = 2–1 lines. The spatial resolution is ∼0.″25 with a medium 3σ continuum sensitivity of 0.30 mJy, corresponding to M dust ∼ 0.2 M ⊕. We apply Keplerian masking to enhance the signal-to-noise ratios of our 12CO zero-moment maps, enabling measurements of gas disk radii for 22 Lupus disks; we find that gas disks are universally larger than millimeter dust disks by a factor of two on average, likely due to a combination of the optically thick gas emission and the growth and inward drift of the dust. Using the gas disk radii, we calculate the dimensionless viscosity parameter, α visc, finding a broad distribution and no correlations with other disk or stellar parameters, suggesting that viscous processes have not yet established quasi-steady states in Lupus disks. By combining our 1.33 mm continuum fluxes with our previous 890 μm continuum observations, we also calculate the millimeter spectral index, α mm, for 70 Lupus disks; we find an anticorrelation between α mm and millimeter flux for low-mass disks (M dust ≲ 5), followed by a flattening as disks approach α mm ≈ 2, which could indicate faster grain growth in higher-mass disks, but may also reflect their larger optically thick components. In sum, this work demonstrates the continuous stream of new insights into disk evolution and planet formation that can be gleaned from unbiased ALMA disk surveys.

  5. ELEMENTAL ABUNDANCE RATIOS IN STARS OF THE OUTER GALACTIC DISK. IV. A NEW SAMPLE OF OPEN CLUSTERS

    International Nuclear Information System (INIS)

    Yong, David; Carney, Bruce W.; Friel, Eileen D.

    2012-01-01

    We present radial velocities and chemical abundances for nine stars in the old, distant open clusters Be18, Be21, Be22, Be32, and PWM4. For Be18 and PWM4, these are the first chemical abundance measurements. Combining our data with literature results produces a compilation of some 68 chemical abundance measurements in 49 unique clusters. For this combined sample, we study the chemical abundances of open clusters as a function of distance, age, and metallicity. We confirm that the metallicity gradient in the outer disk is flatter than the gradient in the vicinity of the solar neighborhood. We also confirm that the open clusters in the outer disk are metal-poor with enhancements in the ratios [α/Fe] and perhaps [Eu/Fe]. All elements show negligible or small trends between [X/Fe] and distance ( –1 ), but for some elements, there is a hint that the local (R GC GC > 13 kpc) samples may have different trends with distance. There is no evidence for significant abundance trends versus age ( –1 ). We measure the linear relation between [X/Fe] and metallicity, [Fe/H], and find that the scatter about the mean trend is comparable to the measurement uncertainties. Comparison with solar neighborhood field giants shows that the open clusters share similar abundance ratios [X/Fe] at a given metallicity. While the flattening of the metallicity gradient and enhanced [α/Fe] ratios in the outer disk suggest a chemical enrichment history different from that of the solar neighborhood, we echo the sentiments expressed by Friel et al. that definitive conclusions await homogeneous analyses of larger samples of stars in larger numbers of clusters. Arguably, our understanding of the evolution of the outer disk from open clusters is currently limited by systematic abundance differences between various studies.

  6. Gas dynamics in the inner few AU around the Herbig B[e] star MWC297. Indications of a disk wind from kinematic modeling and velocity-resolved interferometric imaging

    Science.gov (United States)

    Hone, Edward; Kraus, Stefan; Kreplin, Alexander; Hofmann, Karl-Heinz; Weigelt, Gerd; Harries, Tim; Kluska, Jacques

    2017-10-01

    Aims: Circumstellar accretion disks and outflows play an important role in star formation. By studying the continuum and Brγ-emitting region of the Herbig B[e] star MWC297 with high-spectral and high-spatial resolution we aim to gain insight into the wind-launching mechanisms in young stars. Methods: We present near-infrared AMBER (R = 12 000) and CRIRES (R = 100 000) observations of the Herbig B[e] star MWC297 in the hydrogen Brγ-line. Using the VLTI unit telescopes, we obtained a uv-coverage suitable for aperture synthesis imaging. We interpret our velocity-resolved images as well as the derived two-dimensional photocenter displacement vectors, and fit kinematic models to our visibility and phase data in order to constrain the gas velocity field on sub-AU scales. Results: The measured continuum visibilities constrain the orientation of the near-infrared-emitting dust disk, where we determine that the disk major axis is oriented along a position angle of 99.6 ± 4.8°. The near-infrared continuum emission is 3.6 × more compact than the expected dust-sublimation radius, possibly indicating the presence of highly refractory dust grains or optically thick gas emission in the inner disk. Our velocity-resolved channel maps and moment maps reveal the motion of the Brγ-emitting gas in six velocity channels, marking the first time that kinematic effects in the sub-AU inner regions of a protoplanetary disk could be directly imaged. We find a rotation-dominated velocity field, where the blue- and red-shifted emissions are displaced along a position angle of 24° ± 3° and the approaching part of the disk is offset west of the star. The visibility drop in the line as well as the strong non-zero phase signals can be modeled reasonably well assuming a Keplerian velocity field, although this model is not able to explain the 3σ difference that we measure between the position angle of the line photocenters and the position angle of the dust disk. We find that the fit can be

  7. STAR FORMATION IN SELF-GRAVITATING DISKS IN ACTIVE GALACTIC NUCLEI. II. EPISODIC FORMATION OF BROAD-LINE REGIONS

    International Nuclear Information System (INIS)

    WangJianmin; Du Pu; Ge Junqiang; Hu Chen; Baldwin, Jack A.; Ferland, Gary J.

    2012-01-01

    This is the second in a series of papers discussing the process and effects of star formation in the self-gravitating disk around the supermassive black holes in active galactic nuclei (AGNs). We have previously suggested that warm skins are formed above the star-forming (SF) disk through the diffusion of warm gas driven by supernova explosions. Here we study the evolution of the warm skins when they are exposed to the powerful radiation from the inner part of the accretion disk. The skins initially are heated to the Compton temperature, forming a Compton atmosphere (CAS) whose subsequent evolution is divided into four phases. Phase I is the duration of pure accumulation supplied by the SF disk. During phase II clouds begin to form due to line cooling and sink to the SF disk. Phase III is a period of preventing clouds from sinking to the SF disk through dynamic interaction between clouds and the CAS because of the CAS overdensity driven by continuous injection of warm gas from the SF disk. Finally, phase IV is an inevitable collapse of the entire CAS through line cooling. This CAS evolution drives the episodic appearance of broad-line regions (BLRs). We follow the formation of cold clouds through the thermal instability of the CAS during phases II and III, using linear analysis. Since the clouds are produced inside the CAS, the initial spatial distribution of newly formed clouds and angular momentum naturally follow the CAS dynamics, producing a flattened disk of clouds. The number of clouds in phases II and III can be estimated, as well as the filling factor of clouds in the BLR. Since the cooling function depends on the metallicity, the metallicity gradients that originate in the SF disk give rise to different properties of clouds in different radial regions. We find from the instability analysis that clouds have column density N H ∼ 22 cm –2 in the metal-rich regions whereas they have N H ∼> 10 22 cm –2 in the metal-poor regions. The metal-rich clouds

  8. Warm Debris Disks from WISE

    Science.gov (United States)

    Padgett, Deborah L.

    2011-01-01

    "The Wide Field Infrared Survey Explorer (WISE) has just completed a sensitive all-sky survey in photometric bands at 3.4, 4.6, 12, and 22 microns. We report on a preliminary investigation of main sequence Hipparcos and Tycho catalog stars with 22 micron emission in excess of photospheric levels. This warm excess emission traces material in the circumstellar region likely to host terrestrial planets and is preferentially found in young systems with ages warm debris disk candidates are detected among FGK stars and a similar number of A stars within 120 pc. We are in the process of obtaining spectra to determine spectral types and activity level of these stars and are using HST, Herschel and Keck to characterize the dust, multiplicity, and substellar companions of these systems. In this contribution, we will discuss source selection methods and individual examples from among the WISE debris disk candidates. "

  9. X-Ray Flare Oscillations Track Plasma Sloshing along Star-disk Magnetic Tubes in the Orion Star-forming Region

    Science.gov (United States)

    Reale, Fabio; Lopez-Santiago, Javier; Flaccomio, Ettore; Petralia, Antonino; Sciortino, Salvatore

    2018-03-01

    Pulsing X-ray emission tracks the plasma “echo” traveling in an extremely long magnetic tube that flares in an Orion pre-main sequence (PMS) star. On the Sun, flares last from minutes to a few hours and the longest-lasting ones typically involve arcades of closed magnetic tubes. Long-lasting X-ray flares are observed in PMS stars. Large-amplitude (∼20%), long-period (∼3 hr) pulsations are detected in the light curve of day-long flares observed by the Advanced CCD Imaging Spectrometer on-board Chandra from PMS stars in the Orion cluster. Detailed hydrodynamic modeling of two flares observed on V772 Ori and OW Ori shows that these pulsations may track the sloshing of plasma along a single long magnetic tube, triggered by a sufficiently short (∼1 hr) heat pulse. These magnetic tubes are ≥20 solar radii long, enough to connect the star with the surrounding disk.

  10. Modeling Protoplanetary Disks to Characterize the Evolution of their Structure

    Science.gov (United States)

    Allen, Magdelena; van der Marel, Nienke; Williams, Jonathan

    2018-01-01

    Stars form from gravitationally collapsing clouds of gas and dust. Most young stars retain a protoplanetary disk for a few million years. This disk’s dust reemits stellar flux in the infrared, producing a spectral energy distribution (SED) observable by Spitzer and other telescopes. To understand the inner clearing of dust cavities and evolution in the SED, we used the Chiang & Goldreich two-layer approximation. We first wrote a python script based on refinements by Dullemond that includes a hot, puffed inner rim, shadowed mid region, flaring outer disk, and a variable inner cavity. This was then coupled with a Markov Chain Monte Carlo procedure to fit the observed SEDs of disks in the star forming Lupus region. The fitting procedure recovers physical characteristics of the disk including temperature, size, mass, and surface density. We compare the characteristics of circumstellar disks without holes and more evolved transition disks with cleared inner regions.

  11. A Close-up View of the Young Circumbinary Disk HD 142527

    Energy Technology Data Exchange (ETDEWEB)

    Boehler, Y.; Weaver, E.; Isella, A.; Ricci, L. [Rice University, Department of Physics and Astronomy, Main Street, Houston, TX 77005 (United States); Grady, C. [Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Carpenter, J. [Joint ALMA Observatory (JAO), Alonso de Cordova 3107 Vitacura—Santiago de Chile (Chile); Perez, L. [Max-Planck-Institute for Astronomy, Bonn (Germany)

    2017-05-01

    We present ALMA observations of the 0.88 millimeter dust continuum and the {sup 13}CO and C{sup 18}O J = 3-2 line emission of the circumbinary disk HD 142527 at a spatial resolution of ∼0.″25. This system is characterized by a large central cavity of roughly 120 au in radius, and asymmetric dust and gas emission. By comparing the observations with theoretical models, we find that the azimuthal variations in gas and dust density reach a contrast of 54 for dust grains and 3.75 for CO molecules, with an extreme gas-to-dust ratio of 1.7 on the dust crescent. We point out that caution is required in interpreting continuum-subtracted maps of the line emission, as this process might result in removing a large fraction of the line emission. Radially, we find that both the gas and dust surface densities can be described by Gaussians, centered at the same disk radius, and with gas profiles wider than those for dust. These results strongly support a scenario in which millimeter dust grains are radially and azimuthally trapped toward the center of a gas pressure bump. Finally, our observations reveal a compact source of continuum and CO emission inside the dust-depleted cavity ∼50 au from the primary star. The kinematics of the CO emission from this region is different from that expected from material in Keplerian rotation around the binary system, and might instead trace a compact disk around a third companion. Higher angular resolution observations are required to investigate the nature of this source.

  12. VizieR Online Data Catalog: Young star groups in NGC 300 (Rodriguez+, 2016)

    Science.gov (United States)

    Rodriguez, M. J.; Baume, G.; Feinstein, C.

    2016-08-01

    Fundamental characteristics of 1147 young star groups identified in 6 ACS/WFC fields of the galaxy NGC 300. For each group: field of the ACS/WFC, equatorial coordinates, radius, number of stars (the suffix bri indicates bright stars with F555W<25, the suffix dct indicate stars belonging to the decontaminated region, the suffixes blue and red refer to blue and red stars respectively), the magnitude of the brightest star in the group, PDMF slope with its error, and galactocentric distance. (1 data file).

  13. Relative Age Dating of Young Star Clusters from YSOVAR

    Science.gov (United States)

    Johnson, Chelen H.; Gibbs, John C.; Linahan, Marcella; Rebull, Luisa; Bernstein, Alexandra E.; Child, Sierra; Eakins, Emma; Elert, Julia T.; Frey, Grace; Gong, Nathaniel; Hedlund, Audrey R.; Karos, Alexandra D.; Medeiros, Emma M.; Moradi, Madeline; Myers, Keenan; Packer, Benjamin M.; Reader, Livia K.; Sorenson, Benjamin; Stefo, James S.; Strid, Grace; Sumner, Joy; Sundeen, Kiera A.; Taylor, Meghan; Ujjainwala, Zakir L.

    2018-01-01

    The YSOVAR (Young Stellar Object VARiability; Rebull et al. 2014) Spitzer Space Telescope observing program monitored a dozen star forming cores in the mid-infrared (3.6 and 4.5 microns). Rebull et al. (2014) placed these cores in relative age order based on numbers of YSO candidates in SED class bins (I, flat, II, III), which is based on the slope of the SED between 2 and 25 microns. PanSTARRS data have recently been released (Chambers et al. 2016); deep optical data are now available over all the YSOVAR clusters. We worked with eight of the YSOVAR targets (IC1396-N, AFGL 490, NGC 1333, Mon R2, GGD 12-15, L 1688, IRAS 20050+2720, and Ceph C) and the YSO candidates identified therein as part of YSOVAR (through their infrared colors or X-ray detections plus a star-like SED; see Rebull et al. 2014). We created and examined optical and NIR color-magnitude diagrams and color-color diagrams of these YSO candidates to determine if the addition of optical data contradicted or reinforced the relative age dating of the clusters obtained with SED class ratios.This project is a collaborative effort of high school students and teachers from three states. We analyzed data individually and later collaborated online to compare results. This project is the result of many years of work with the NASA/IPAC Teacher Archive Research Program (NITARP).

  14. Metallicity of Young and Old Stars in Irregular Galaxies

    Science.gov (United States)

    Tikhonov, N. A.

    2018-01-01

    Based on archived images obtained with the Hubble Space Telescope, stellar photometry for 105 irregular galaxies has been conducted. We have shown the red supergiant and giant branches in the obtained Hertzsprung-Russel diagrams. Using the TRGB method, distances to galaxies and metallicity of red giants have been determined. The color index ( V - I) of the supergiant branch at the luminosity level M I = -7 was chosen as the metallicity index of red supergiants. For the galaxies under study, the diagrams have been built, in which the correlation can be seen between the luminosity of galaxies ( M B ) and metallicity of red giants and supergiants. The main source of variance of the results in the obtained diagrams is, in our opinion, uncertainty inmeasurements of galaxy luminosities and star-forming outburst. The relation between metallicity of young and old stars shows that main enrichment of galaxies with metals has taken place in the remote past. Deviations of some galaxies in the obtained relation can possibly be explained with the fall of the intergalactic gas on them, although, this inconsiderably affects metallicities of the stellar content.

  15. FAKE STAR FORMATION BURSTS: BLUE HORIZONTAL BRANCH STARS MASQUERADE AS YOUNG MASSIVE STARS IN OPTICAL INTEGRATED LIGHT SPECTROSCOPY

    International Nuclear Information System (INIS)

    Ocvirk, P.

    2010-01-01

    Model color-magnitude diagrams of low-metallicity globular clusters (GCs) usually show a deficit of hot evolved stars with respect to observations. We investigate quantitatively the impact of such modeling inaccuracies on the significance of star formation history reconstructions obtained from optical integrated spectra. To do so, we analyze the sample of spectra of galactic globular clusters of Schiavon et al. with STECKMAP (Ocvirk et al.), and the stellar population models of Vazdekis et al. and Bruzual and Charlot, and focus on the reconstructed stellar age distributions. First, we show that background/foreground contamination correlates with E(B - V), which allows us to define a clean subsample of uncontaminated GCs, on the basis of an E(B - V) filtering. We then identify a 'confusion zone' where fake young bursts of star formation pop up in the star formation history although the observed population is genuinely old. These artifacts appear for 70%-100% of cases depending on the population model used, and contribute up to 12% of the light in the optical. Their correlation with the horizontal branch (HB) ratio indicates that the confusion is driven by HB morphology: red HB clusters are well fitted by old stellar population models while those with a blue HB require an additional hot component. The confusion zone extends over [Fe/H] = [ - 2, - 1.2], although we lack the data to probe extreme high and low metallicity regimes. As a consequence, any young starburst superimposed on an old stellar population in this metallicity range could be regarded as a modeling artifact, if it weighs less than 12% of the optical light, and if no emission lines typical of an H II region are present. This work also provides a practical method for constraining HB morphology from high signal to noise integrated light spectroscopy in the optical. This will allow post-asymptotic giant branch evolution studies in a range of environments and at distances where resolving stellar populations

  16. Probing Signatures of a Distant Planet around the Young T-Tauri Star CI Tau Hosting a Possible Hot Jupiter

    Science.gov (United States)

    Konishi, Mihoko; Hashimoto, Jun; Hori, Yasunori

    2018-06-01

    We search for signatures of a distant planet around the two million-year-old classical T-Tauri star CI Tau hosting a hot-Jupiter candidate ({M}{{p}}\\sin i∼ 8.1 {M}Jupiter}) in an eccentric orbit (e ∼ 0.3). To probe the existence of an outer perturber, we reanalyzed 1.3 mm dust continuum observations of the protoplanetary disk around CI Tau obtained by the Atacama Large Millimeter/submillimeter Array (ALMA). We found a gap structure at ∼0.″8 in CI Tau’s disk. Our visibility fitting assuming an axisymmetric surface brightness profile suggested that the gap is located at a deprojected radius of 104.5 ± 1.6 au and has a width of 36.9 ± 2.9 au. The brightness temperature around the gap was calculated to be ∼2.3 K lower than that of the ambient disk. Gap-opening mechanisms such as secular gravitational instability (GI) and dust trapping can explain the gap morphology in the CI Tau disk. The scenario that an unseen planet created the observed gap structure cannot be ruled out, although the coexistence of an eccentric hot Jupiter and a distant planet around the young CI Tau would be challenging for gravitational scattering scenarios. The mass of the planet was estimated to be between ∼0.25 M Jupiter and ∼0.8 M Jupiter from the gap width and depth ({0.41}-0.06+0.04) in the modeled surface brightness image, which is lower than the current detection limits of high-contrast direct imaging. The young classical T-Tauri CI Tau may be a unique system for exploring the existence of a potential distant planet as well as the origin of an eccentric hot Jupiter.

  17. An oxygen-rich dust disk surrounding an evolved star in the Red Rectangle

    NARCIS (Netherlands)

    Waters, LBFM; Waelkens, C; van Winckel, H; Molster, FJ; Tielens, AGGM; van Loon, JT; Morris, PW; Cami, J; Bouwman, J; de Koter, A; de Jong, T; de Graauw, T

    1998-01-01

    The Red Rectangle(1) is the prototype of a class of carbon-rich reflection nebulae surrounding low-mass stars in the final stages of evolution. The central star of this nebula has ejected most of its layers (during the red-giant phase), which now form the surrounding cloud, and is rapidly evolving

  18. PHASE COHERENT STAR FORMATION PROCESSES IN THE DISKS OF GRAND DESIGN SPIRALS

    NARCIS (Netherlands)

    BECKMAN, JE; CEPA, J; KNAPEN, JH

    1991-01-01

    We show examples of a new technique we have devised to compare star formation efficiencies in the arms and discs of spirals. First results show striking evidence of the presence and influence of density wave systems of star formation in grand design galaxies.

  19. LP 543-25: A Rare Low-mass Runaway Disk Star

    Science.gov (United States)

    de la Fuente Marcos, Raúl; de la Fuente Marcos, Carlos

    2018-05-01

    LP 543-25 or PSS 544-7 is a high proper-motion star located 458 pc from the Sun in the constellation of Canis Minor; it has been argued that it could be a candidate cannonball star ejected by a star cluster. Here, we revisit the issue of the kinematics of this interesting star using Gaia DR2. The heliocentric Galactic velocity components are (U, V, W) = (206, -289, 30) km/s; the corresponding Galactocentric Galactic velocity components show that LP 543-25 is moving in the Galactic plane and away from the Galactic Center at a rate of nearly 200 km/s, which is compatible with an origin in one of the multiple star clusters that inhabit the inner regions of the Milky Way. LP 543-25 appears to be a member of an elusive class of stars, the low-mass runaway stars. It is perhaps one of the closest and less massive runaway stars identified so far.

  20. Playing with Positive Feedback: External Pressure-triggering of a Star-forming Disk Galaxy

    Science.gov (United States)

    Bieri, Rebekka; Dubois, Yohan; Silk, Joseph; Mamon, Gary A.

    2015-10-01

    In massive galaxies, the currently favored method for quenching star formation is via active galactic nuclei (AGN) feedback, which ejects gas from the galaxy using a central supermassive black hole. At high redshifts however, explanation of the huge rates of star formation often found in galaxies containing AGNs may require a more vigorous mode of star formation than is attainable by simply enriching the gas content of galaxies in the usual gravitationally driven mode that is associated with the nearby universe. Using idealized hydrodynamical simulations, we show that AGN-pressure-driven star formation potentially provides the positive feedback that may be required to generate the accelerated star formation rates observed in the distant universe.

  1. PROJECTED ROTATIONAL VELOCITIES OF 136 EARLY B-TYPE STARS IN THE OUTER GALACTIC DISK

    Energy Technology Data Exchange (ETDEWEB)

    Garmany, C. D.; Glaspey, J. W. [National Optical Astronomy Observatory, 950 N. Cherry Ave., Tucson, AZ 85719 (United States); Bragança, G. A.; Daflon, S.; Fernandes, M. Borges; Cunha, K. [Observatório Nacional-MCTI, Rua José Cristino, 77. CEP: 20921-400, Rio de Janeiro, RJ (Brazil); Oey, M. S. [University of Michigan, Department of Astronomy, 311 West Hall, 1085 S. University Ave., Ann Arbor, MI: 48109-1107 (United States); Bensby, T., E-mail: garmany@noao.edu [Lund Observatory, Department of Astronomy and Theoretical Physics, Box 43, SE-22100, Lund (Sweden)

    2015-08-15

    We have determined projected rotational velocities, v sin i, from Magellan/MIKE echelle spectra for a sample of 136 early B-type stars having large Galactocentric distances. The target selection was done independently of their possible membership in clusters, associations or field stars. We subsequently examined the literature and assigned each star as Field, Association, or Cluster. Our v sin i results are consistent with a difference in aggregate v sin i with stellar density. We fit bimodal Maxwellian distributions to the Field, Association, and Cluster subsamples representing sharp-lined and broad-lined components. The first two distributions, in particular, for the Field and Association are consistent with strong bimodality in v sin i. Radial velocities are also presented, which are useful for further studies of binarity in B-type stars, and we also identify a sample of possible new double-lined spectroscopic binaries. In addition, we find 18 candidate Be stars showing emission at Hα.

  2. EFFECT OF PHOTODESORPTION ON THE SNOW LINES AT THE SURFACE OF OPTICALLY THICK CIRCUMSTELLAR DISKS AROUND HERBIG Ae/Be STARS

    International Nuclear Information System (INIS)

    Oka, Akinori; Nakamoto, Taishi; Inoue, Akio K.; Honda, Mitsuhiko

    2012-01-01

    We investigate the effect of photodesorption on the snow line position at the surface of a protoplanetary disk around a Herbig Ae/Be star, motivated by the detection of water ice particles at the surface of the disk around HD142527 by Honda et al. For this aim, we obtain the density and temperature structure in the disk with a 1+1D radiative transfer and determine the distribution of water ice particles in the disk by the balance between condensation, sublimation, and photodesorption. We find that photodesorption induced by far-ultraviolet radiation from the central star depresses the ice-condensation front toward the mid-plane and pushes the surface snow line significantly outward when the stellar effective temperature exceeds a certain critical value. This critical effective temperature depends on the stellar luminosity and mass, the water abundance in the disk, and the yield of photodesorption. We present an approximate analytic formula for the critical temperature. We separate Herbig Ae/Be stars into two groups on the HR diagram according to the critical temperature: one is the disks where photodesorption is effective and from which we may not find ice particles at the surface, and the other is the disks where photodesorption is not effective. We estimate the snow line position at the surface of the disk around HD142527 to be 100-300 AU, which is consistent with the water ice detection at >140 AU in the disk. All the results depend on the dust grain size in a complex way, and this point requires more work in the future.

  3. AN EXPANDED VERY LARGE ARRAY AND CARMA STUDY OF DUSTY DISKS AND TORII WITH LARGE GRAINS IN DYING STARS

    International Nuclear Information System (INIS)

    Sahai, R.; Claussen, M. J.; Schnee, S.; Morris, M. R.; Sanchez Contreras, C.

    2011-01-01

    We report the results of a pilot multiwavelength survey in the radio continuum (X, Ka, and Q bands, i.e., from 3.6 cm to 7 mm) carried out with the Expanded Very Large Array (EVLA) in order to confirm the presence of very large dust grains in dusty disks and torii around the central stars in a small sample of post-asymptotic giant branch (pAGB) objects, as inferred from millimeter (mm) and submillimeter (submm) observations. Supporting mm-wave observations were also obtained with the Combined Array for Research in Millimeter-wave Astronomy toward three of our sources. Our EVLA survey has resulted in a robust detection of our most prominent submm emission source, the pre-planetary nebula (PPN) IRAS 22036+5306, in all three bands, and the disk-prominent pAGB object, RV Tau, in one band. The observed fluxes are consistent with optically thin free-free emission, and since they are insignificant compared to their submm/mm fluxes, we conclude that the latter must come from substantial masses of cool, large (mm-sized) grains. We find that the power-law emissivity in the cm-to-submm range for the large grains in IRAS22036 is ν β , with β = 1-1.3. Furthermore, the value of β in the 3-0.85 mm range for the three disk-prominent pAGB sources (β ≤ 0.4) is significantly lower than that of IRAS22036, suggesting that the grains in pAGB objects with circumbinary disks are likely larger than those in the dusty waists of pre-planetary nebulae.

  4. Very Low-mass Stars and Brown Dwarfs in Upper Scorpius Using Gaia DR1: Mass Function, Disks, and Kinematics

    Science.gov (United States)

    Cook, Neil J.; Scholz, Aleks; Jayawardhana, Ray

    2017-12-01

    Our understanding of the brown dwarf population in star-forming regions is dependent on knowing distances and proper motions and therefore will be improved through the Gaia space mission. In this paper, we select new samples of very low-mass objects (VLMOs) in Upper Scorpius using UKIDSS colors and optimized proper motions calculated using Gaia DR1. The scatter in proper motions from VLMOs in Upper Scorpius is now (for the first time) dominated by the kinematic spread of the region itself, not by the positional uncertainties. With age and mass estimates updated using Gaia parallaxes for early-type stars in the same region, we determine masses for all VLMOs. Our final most complete sample includes 453 VLMOs of which ˜125 are expected to be brown dwarfs. The cleanest sample is comprised of 131 VLMOs, with ˜105 brown dwarfs. We also compile a joint sample from the literature that includes 415 VLMOs, out of which 152 are likely brown dwarfs. The disk fraction among low-mass brown dwarfs (M< 0.05 {M}⊙ ) is substantially higher than in more massive objects, indicating that disks around low-mass brown dwarfs survive longer than in low-mass stars overall. The mass function for 0.01< M< 0.1 {M}⊙ is consistent with the Kroupa Initial Mass Function. We investigate the possibility that some “proper motion outliers” have undergone a dynamical ejection early in their evolution. Our analysis shows that the color-magnitude cuts used when selecting samples introduce strong bias into the population statistics due to varying levels of contamination and completeness.

  5. Numerical Simulations of Multiphase Winds and Fountains from Star-forming Galactic Disks. I. Solar Neighborhood TIGRESS Model

    Science.gov (United States)

    Kim, Chang-Goo; Ostriker, Eve C.

    2018-02-01

    Gas blown away from galactic disks by supernova (SN) feedback plays a key role in galaxy evolution. We investigate outflows utilizing the solar neighborhood model of our high-resolution, local galactic disk simulation suite, TIGRESS. In our numerical implementation, star formation and SN feedback are self-consistently treated and well resolved in the multiphase, turbulent, magnetized interstellar medium. Bursts of star formation produce spatially and temporally correlated SNe that drive strong outflows, consisting of hot (T> 5× {10}5 {{K}}) winds and warm (5050 {{K}} 1 {kpc} from the midplane has mass and energy fluxes nearly constant with d. The hot flow escapes our local Cartesian box barely affected by gravity, and is expected to accelerate up to terminal velocity of {v}{wind}∼ 350{--}500 {km} {{{s}}}-1. The mean mass and energy loading factors of the hot wind are 0.1 and 0.02, respectively. For warm gas, the mean outward mass flux through d=1 {kpc} is comparable to the mean star formation rate, but only a small fraction of this gas is at velocity > 50 {km} {{{s}}}-1. Thus, the warm outflows eventually fall back as inflows. The warm fountain flows are created by expanding hot superbubbles at d< 1 {kpc}; at larger d neither ram pressure acceleration nor cooling transfers significant momentum or energy flux from the hot wind to the warm outflow. The velocity distribution at launching near d∼ 1 {kpc} is a better representation of warm outflows than a single mass loading factor, potentially enabling development of subgrid models for warm galactic winds in arbitrary large-scale galactic potentials.

  6. Far-infrared to Millimeter Data of Protoplanetary Disks: Dust Growth in the Taurus, Ophiuchus, and Chamaeleon I Star-forming Regions

    Energy Technology Data Exchange (ETDEWEB)

    Ribas, Álvaro; Espaillat, Catherine C.; Macías, Enrique [Department of Astronomy, Boston University, Boston, MA 02215 (United States); Bouy, Hervé [Laboratoire d’Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, F-33615 Pessac (France); Andrews, Sean; Wilner, David [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 91023 (United States); Calvet, Nuria [Astronomy Department, University of Michigan, Ann Arbor, MI 48109 (United States); Naylor, David A.; Van der Wiel, Matthijs H. D. [Institute for Space Imaging Science, Department of Physics and Astronomy, University of Lethbridge (Canada); Riviere-Marichalar, Pablo, E-mail: aribas@bu.edu [Instituto de Ciencia de Materiales de Madrid (CSIC). Calle Sor Juana Inés de la Cruz 3, E-28049 Cantoblanco, Madrid (Spain)

    2017-11-01

    Far-infrared and (sub)millimeter fluxes can be used to study dust in protoplanetary disks, the building blocks of planets. Here, we combine observations from the Herschel Space Observatory with ancillary data of 284 protoplanetary disks in the Taurus, Chamaeleon I, and Ophiuchus star-forming regions, covering from the optical to mm/cm wavelengths. We analyze their spectral indices as a function of wavelength and determine their (sub)millimeter slopes when possible. Most disks display observational evidence of grain growth, in agreement with previous studies. No correlation is found between other tracers of disk evolution and the millimeter spectral indices. A simple disk model is used to fit these sources, and we derive posterior distributions for the optical depth at 1.3 mm and 10 au, the disk temperature at this same radius, and the dust opacity spectral index β . We find the fluxes at 70 μ m to correlate strongly with disk temperatures at 10 au, as derived from these simple models. We find tentative evidence for spectral indices in Chamaeleon I being steeper than those of disks in Taurus/Ophiuchus, although more millimeter observations are needed to confirm this trend and identify its possible origin. Additionally, we determine the median spectral energy distribution of each region and find them to be similar across the entire wavelength range studied, possibly due to the large scatter in disk properties and morphologies.

  7. ACCRETION-INHIBITED STAR FORMATION IN THE WARM MOLECULAR DISK OF THE GREEN-VALLEY ELLIPTICAL GALAXY NGC 3226?

    International Nuclear Information System (INIS)

    Appleton, P. N.; Bitsakis, T.; Alatalo, K.; Mundell, C.; Lacy, M.; Armus, L.; Charmandaris, V.; Duc, P.-A.; Lisenfeld, U.; Ogle, P.

    2014-01-01

    We present archival Spitzer photometry and spectroscopy and Herschel photometry of the peculiar ''Green Valley'' elliptical galaxy NGC 3226. The galaxy, which contains a low-luminosity active galactic nucleus (AGN), forms a pair with NGC 3227 and is shown to lie in a complex web of stellar and H I filaments. Imaging at 8 and 16 μm reveals a curved plume structure 3 kpc in extent, embedded within the core of the galaxy and coincident with the termination of a 30 kpc long H I tail. In situ star formation associated with the infrared (IR) plume is identified from narrowband Hubble Space Telescope (HST) imaging. The end of the IR plume coincides with a warm molecular hydrogen disk and dusty ring containing 0.7-1.1 × 10 7 M ☉ detected within the central kiloparsec. Sensitive upper limits to the detection of cold molecular gas may indicate that a large fraction of the H 2 is in a warm state. Photometry derived from the ultraviolet (UV) to the far-IR shows evidence for a low star-formation rate of ∼0.04 M ☉ yr –1 averaged over the last 100 Myr. A mid-IR component to the spectral energy distribution (SED) contributes ∼20% of the IR luminosity of the galaxy, and is consistent with emission associated with the AGN. The current measured star formation rate is insufficient to explain NGC 3226's global UV-optical ''green'' colors via the resurgence of star formation in a ''red and dead'' galaxy. This form of ''cold accretion'' from a tidal stream would appear to be an inefficient way to rejuvenate early-type galaxies and may actually inhibit star formation

  8. Tracing chemical evolution over the extent of the Milky Way's disk with apogee red clump stars

    Energy Technology Data Exchange (ETDEWEB)

    Nidever, David L. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48104 (United States); Bovy, Jo [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States); Bird, Jonathan C. [Physics and Astronomy Department, Vanderbilt University, 1807 Station B, Nashville, TN 37235 (United States); Andrews, Brett H.; Johnson, Jennifer A.; Weinberg, David H. [Department of Astronomy and the Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210 (United States); Hayden, Michael; Holtzman, Jon; Feuillet, Diane [New Mexico State University, Las Cruces, NM 88003 (United States); Majewski, Steven R.; García Pérez, Ana E. [Department of Astronomy, University of Virginia, Charlottesville, VA, 22904 (United States); Smith, Verne [National Optical Astronomy Observatory, Tucson, AZ 85719 (United States); Robin, Annie C.; Sobeck, Jennifer [Institut Utinam, CNRS UMR 6213, OSU THETA, Université de Franche-Comté, 41bis avenue de l' Observatoire, F-25000 Besançon (France); Cunha, Katia [Observatorio Nacional, Rio de Janeiro (Brazil); Allende Prieto, Carlos [Instituto de Astrofsica de Canarias, E-38205 La Laguna, Tenerife (Spain); Zasowski, Gail [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Schiavon, Ricardo P. [Astrophysics Research Institute, IC2, Liverpool Science Park, Liverpool John Moores University, 146 Brownlow Hill, Liverpool, L3 5RF (United Kingdom); Schneider, Donald P. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Shetrone, Matthew, E-mail: dnidever@umich.edu [University of Texas at Austin, McDonald Observatory, 32 Fowlkes Road, McDonald Observatory, TX 79734-3005 (United States); and others

    2014-11-20

    We employ the first two years of data from the near-infrared, high-resolution SDSS-III/APOGEE spectroscopic survey to investigate the distribution of metallicity and α-element abundances of stars over a large part of the Milky Way disk. Using a sample of ≈10, 000 kinematically unbiased red-clump stars with ∼5% distance accuracy as tracers, the [α/Fe] versus [Fe/H] distribution of this sample exhibits a bimodality in [α/Fe] at intermediate metallicities, –0.9 < [Fe/H] <–0.2, but at higher metallicities ([Fe/H] ∼+0.2) the two sequences smoothly merge. We investigate the effects of the APOGEE selection function and volume filling fraction and find that these have little qualitative impact on the α-element abundance patterns. The described abundance pattern is found throughout the range 5 < R < 11 kpc and 0 < |Z| < 2 kpc across the Galaxy. The [α/Fe] trend of the high-α sequence is surprisingly constant throughout the Galaxy, with little variation from region to region (∼10%). Using simple galactic chemical evolution models, we derive an average star-formation efficiency (SFE) in the high-α sequence of ∼4.5 × 10{sup –10} yr{sup –1}, which is quite close to the nearly constant value found in molecular-gas-dominated regions of nearby spirals. This result suggests that the early evolution of the Milky Way disk was characterized by stars that shared a similar star-formation history and were formed in a well-mixed, turbulent, and molecular-dominated ISM with a gas consumption timescale (SFE{sup –1}) of ∼2 Gyr. Finally, while the two α-element sequences in the inner Galaxy can be explained by a single chemical evolutionary track, this cannot hold in the outer Galaxy, requiring, instead, a mix of two or more populations with distinct enrichment histories.

  9. Carrying a Torch for Dust in Binary Star Systems

    OpenAIRE

    Cotton, Daniel V.; Marshall, Jonathan P.; Bott, Kimberly; Kedziora-Chudczer, Lucyna; Bailey, Jeremy

    2016-01-01

    Young stars are frequently observed to host circumstellar disks, within which their attendant planetary systems are formed. Scattered light imaging of these proto-planetary disks reveals a rich variety of structures including spirals, gaps and clumps. Self-consistent modelling of both imaging and multi-wavelength photometry enables the best interpretation of the location and size distribution of disks' dust. Epsilon Sagittarii is an unusual star system. It is a binary system with a B9.5III pr...

  10. Angular momentum transport in accretion disk boundary layers around weakly magnetized stars

    DEFF Research Database (Denmark)

    Pessah, M.E.; Chan, C.-K.

    2013-01-01

    ) is inefficient in disk regions where, as expected in boundary layers, the angular frequency increases with radius. Motivated by the need of a deeper understanding of the behavior of an MHD fluid in a differentially rotating background that deviates from a Keplerian profile, we study the dynamics of MHD waves...

  11. The Stars and Gas in Outer Parts of Galaxy Disks : Extended or Truncated, Flat or Warped?

    NARCIS (Netherlands)

    van der Kruit, P. C.; Funes, JG; Corsini, EM

    2008-01-01

    I review observations of truncations of stellar disks and models for their origin, compare observations of truncations in moderately inclined galaxies to those in edge-on systems and discuss the relation between truncations and H I-warps and their systematics and origin. Truncations are a common

  12. Imaging the Oxygen-Rich Disk Toward the Silicate Carbon Star EU Andromedae

    National Research Council Canada - National Science Library

    Ohnaka, K; Boboltz, D. A

    2007-01-01

    .... We present multi-epoch, high-angular resolution observations of 22 GHz H2O masers toward the silicate carbon star EU And to probe the spatio-kinematic distribution of oxygen-rich material. Methods...

  13. On the Observability of Individual Population III Stars and Their Stellar-mass Black Hole Accretion Disks through Cluster Caustic Transits

    Science.gov (United States)

    Windhorst, Rogier A.; Timmes, F. X.; Wyithe, J. Stuart B.; Alpaslan, Mehmet; Andrews, Stephen K.; Coe, Daniel; Diego, Jose M.; Dijkstra, Mark; Driver, Simon P.; Kelly, Patrick L.; Kim, Duho

    2018-02-01

    We summarize panchromatic Extragalactic Background Light data to place upper limits on the integrated near-infrared surface brightness (SB) that may come from Population III stars and possible accretion disks around their stellar-mass black holes (BHs) in the epoch of First Light, broadly taken from z ≃ 7–17. Theoretical predictions and recent near-infrared power spectra provide tighter constraints on their sky signal. We outline the physical properties of zero-metallicity Population III stars from MESA stellar evolution models through helium depletion and of BH accretion disks at z≳ 7. We assume that second-generation non-zero-metallicity stars can form at higher multiplicity, so that BH accretion disks may be fed by Roche-lobe overflow from lower-mass companions. We use these near-infrared SB constraints to calculate the number of caustic transits behind lensing clusters that the James Webb Space Telescope and the next-generation ground-based telescopes may observe for both Population III stars and their BH accretion disks. Typical caustic magnifications can be μ ≃ {10}4{--}{10}5, with rise times of hours and decline times of ≲ 1 year for cluster transverse velocities of {v}T≲ 1000 km s‑1. Microlensing by intracluster-medium objects can modify transit magnifications but lengthen visibility times. Depending on BH masses, accretion-disk radii, and feeding efficiencies, stellar-mass BH accretion-disk caustic transits could outnumber those from Population III stars. To observe Population III caustic transits directly may require monitoring 3–30 lensing clusters to {AB}≲ 29 mag over a decade.

  14. Zodiacal Exoplanets in Time: Searching for Young Stars in K2

    Science.gov (United States)

    Morris, Nathan Ryan; Mann, Andrew; Rizzuto, Aaron

    2018-01-01

    Observations of planetary systems around young stars provide insight into the early stages of planetary system formation. Nearby young open clusters such as the Hyades, Pleiades, and Praesepe provide important benchmarks for the properties of stellar systems in general. These clusters are all known to be less than 1 Gyr old, making them ideal targets for a survey of young planetary systems. Few transiting planets have been detected around clusters stars, however, so this alone is too small of a sample. K2, the revived Kepler mission, has provided a vast number of light curves for young stars in clusters and elsewhere in the K2 field. This provides us with the opportunity to extend the sample of young systems to field stars while calibrating with cluster stars. We compute rotational periods from starspot patterns for ~36,000 K2 targets and use gyrochronological relationships derived from cluster stars to determine their ages. From there, we have begun searching for planets around young stars outside the clusters with the ultimate goal of shedding light on how planets and planetary systems evolve in their early, most formative years.

  15. Orbit elements and kinematics of the halo stars and the old disk population: evidence for active phases in the evolution of the Galaxy

    International Nuclear Information System (INIS)

    Marsakov, V.A.; Suchkov, A.A.

    1978-01-01

    The distributions of orbits eccentricities and of angular momenta for the halo stars and for the old disk population are considered. The distributions have gaps separating the halo from the disk and diving the halo population into three groups. From the point of view of star formation during the collapse at the earliy stages of evolution the gaps evidence that threre were in the Galaxy long periods of suppression of star formation. The kinematics and the orbit elements of the halo stars and of the old disk population allow to conclude that there was no significant relaxation in the halo; the halo subsystems are not stationary, they perform radial oscillations with respect to the galactic centre; the velocity dispersion in the galactic rotation direction for the halo stars having the same age does not exceed 20-40 km/s; the dispersion of the velocity component along the galactic radius is symmetrically higher for the subsystems with a greater eccentrically and reaches 215 km/s for the stars with the greatest eccentricaities; the sing of the angular momentum in the protogalactic gas cloud probably changed at some distance form the galactic centre

  16. Young Cluster Berkeley 59: Properties, Evolution, and Star Formation

    Science.gov (United States)

    Panwar, Neelam; Pandey, A. K.; Samal, Manash R.; Battinelli, Paolo; Ogura, K.; Ojha, D. K.; Chen, W. P.; Singh, H. P.

    2018-01-01

    Berkeley 59 is a nearby (∼1 kpc) young cluster associated with the Sh2-171 H II region. We present deep optical observations of the central ∼2.5 × 2.5 pc2 area of the cluster, obtained with the 3.58 m Telescopio Nazionale Galileo. The V/(V–I) color–magnitude diagram manifests a clear pre-main-sequence (PMS) population down to ∼0.2 M ⊙. Using the near-infrared and optical colors of the low-mass PMS members, we derive a global extinction of A V = 4 mag and a mean age of ∼1.8 Myr, respectively, for the cluster. We constructed the initial mass function and found that its global slopes in the mass ranges of 0.2–28 M ⊙ and 0.2–1.5 M ⊙ are ‑1.33 and ‑1.23, respectively, in good agreement with the Salpeter value in the solar neighborhood. We looked for the radial variation of the mass function and found that the slope is flatter in the inner region than in the outer region, indicating mass segregation. The dynamical status of the cluster suggests that the mass segregation is likely primordial. The age distribution of the PMS sources reveals that the younger sources appear to concentrate close to the inner region compared to the outer region of the cluster, a phenomenon possibly linked to the time evolution of star-forming clouds. Within the observed area, we derive a total mass of ∼103 M ⊙ for the cluster. Comparing the properties of Berkeley 59 with other young clusters, we suggest it resembles more closely the Trapezium cluster.

  17. KILOPARSEC-SCALE SIMULATIONS OF STAR FORMATION IN DISK GALAXIES. I. THE UNMAGNETIZED AND ZERO-FEEDBACK LIMIT

    International Nuclear Information System (INIS)

    Van Loo, Sven; Butler, Michael J.; Tan, Jonathan C.

    2013-01-01

    We present hydrodynamic simulations of the evolution of self-gravitating dense gas on scales of 1 kpc down to ∼< parsec in a galactic disk, designed to study dense clump formation from giant molecular clouds (GMCs). These structures are expected to be the precursors to star clusters and this process may be the rate limiting step controlling star formation rates in galactic systems as described by the Kennicutt-Schmidt relation. We follow the thermal evolution of the gas down to ∼5 K using extinction-dependent heating and cooling functions. We do not yet include magnetic fields or localized stellar feedback, so the evolution of the GMCs and clumps is determined solely by self-gravity balanced by thermal and turbulent pressure support and the large-scale galactic shear. While cloud structures and densities change significantly during the simulation, GMC virial parameters remain mostly above unity for timescales exceeding the free-fall time of GMCs indicating that energy from galactic shear and large-scale cloud motions continuously cascades down to and within the GMCs. We implement star formation at a slow, inefficient rate of 2% per local free-fall time, but even this yields global star formation rates that are about two orders of magnitude larger than the observed Kennicutt-Schmidt relation due to overproduction of dense gas clumps. We expect a combination of magnetic support and localized stellar feedback is required to inhibit dense clump formation to ∼1% of the rate that results from the nonmagnetic, zero-feedback limit.

  18. Gravitational Instabilities in Circumstellar Disks

    Science.gov (United States)

    Kratter, Kaitlin; Lodato, Giuseppe

    2016-09-01

    Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review, we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small-scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability supplemented with a survey of numerical simulations that aim to capture the nonlinear evolution. We emphasize the role of thermodynamics and large-scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predictions and numerical results. In the next part of our review, we focus on the astrophysical consequences of the instability. We show that the disks most likely to be gravitationally unstable are young and relatively massive compared with their host star, Md/M*≥0.1. They will develop quasi-stable spiral arms that process infall from the background cloud. Although instability is less likely at later times, once infall becomes less important, the manifestations of the instability are more varied. In this regime, the disk thermodynamics, often regulated by stellar irradiation, dictates the development and evolution of the instability. In some cases the instability may lead to fragmentation into bound companions. These companions are more likely to be brown dwarfs or stars than planetary mass objects. Finally, we highlight open questions related to the development of a turbulent cascade in thin disks and the role of mode-mode coupling in setting the maximum angular

  19. SHORT DISSIPATION TIMES OF PROTO-PLANETARY DISKS: AN ARTIFACT OF SELECTION EFFECTS?

    International Nuclear Information System (INIS)

    Pfalzner, Susanne; Steinhausen, Manuel; Menten, Karl

    2014-01-01

    The frequency of disks around young stars, a key parameter for understanding planet formation, is most readily determined in young stellar clusters where many relatively coeval stars are located in close proximity. Observational studies seem to show that the disk frequency decreases rapidly with cluster age with <10% of cluster stars retaining their disks for longer than 2-6 Myr. Given that at least half of all stars in the field seem to harbor one or more planets, this would imply extremely fast disk dispersal and rapid planet growth. Here we question the validity of this constraint by demonstrating that the short disk dissipation times inferred to date might have been heavily underestimated by selection effects. Critically, for ages >3 Myr only stars that originally populated the densest areas of very populous clusters, which are prone to disk erosion, are actually considered. This tiny sample may not be representative of the majority of stars. In fact, the higher disk fractions in co-moving groups indicate that it is likely that over 30% of all field stars retain their disks well beyond 10 Myr, leaving ample time for planet growth. Equally, our solar system, with a likely formation time >10 Myr, need no longer be an exception but in fact typical of planetary systems

  20. On the Observability of Individual Population III Stars and Their Stellar-mass Black Hole Accretion Disks through Cluster Caustic Transits

    Science.gov (United States)

    Windhorst, Rogier A.; Wyithe, Stuart; Alpaslan, Mehmet; Timmes, F. X.; Andrews, Stephen K.; Kim, Duho; Kelly, Patrick; Coe, Dan A.; Diego, Jose M.; Driver, Simon P.; Dijkstra, Mark

    2018-06-01

    We summarize panchromatic Extragalactic Background Light data to place upper limits on the integrated near-IR surface brightness (SB) that may come from Population III stars and possible accretion disks around their stellar-mass black holes (BHs) in the epoch of First Light, broadly taken from z=7-17.We outline the physical properties of zero-metallicity Population III stars from MESA stellar evolution models through helium depletion and of BH accretion disks at z>7. We assume that second-generation non-zero-metallicity stars can form at higher multiplicity, so that BH accretion disks may be fed by Roche-lobe overflow from lower-mass companions.We use these near-infrared SB constraints to calculate the number of caustic transits behind lensing clusters that the James Webb Space Telescope and the next-generation ground-based telescopes may observe for both Population III stars and their BH accretion disks. Typical caustic magnifications can be 10^4-10^5x, with rise times of hours and decline times of z~Economia y Competitividad of Spain Consolider Project CSD2010-00064.

  1. BLACK HOLE-NEUTRON STAR MERGERS WITH A HOT NUCLEAR EQUATION OF STATE: OUTFLOW AND NEUTRINO-COOLED DISK FOR A LOW-MASS, HIGH-SPIN CASE

    International Nuclear Information System (INIS)

    Deaton, M. Brett; Duez, Matthew D.; Foucart, Francois; O'Connor, Evan; Ott, Christian D.; Scheel, Mark A.; Szilagyi, Bela; Kidder, Lawrence E.; Muhlberger, Curran D.

    2013-01-01

    Neutrino emission significantly affects the evolution of the accretion tori formed in black hole-neutron star mergers. It removes energy from the disk, alters its composition, and provides a potential power source for a gamma-ray burst. To study these effects, simulations in general relativity with a hot microphysical equation of state (EOS) and neutrino feedback are needed. We present the first such simulation, using a neutrino leakage scheme for cooling to capture the most essential effects and considering a moderate mass (1.4 M ☉ neutron star, 5.6 M ☉ black hole), high-spin (black hole J/M 2 = 0.9) system with the K 0 = 220 MeV Lattimer-Swesty EOS. We find that about 0.08 M ☉ of nuclear matter is ejected from the system, while another 0.3 M ☉ forms a hot, compact accretion disk. The primary effects of the escaping neutrinos are (1) to make the disk much denser and more compact, (2) to cause the average electron fraction Y e of the disk to rise to about 0.2 and then gradually decrease again, and (3) to gradually cool the disk. The disk is initially hot (T ∼ 6 MeV) and luminous in neutrinos (L ν ∼ 10 54 erg s –1 ), but the neutrino luminosity decreases by an order of magnitude over 50 ms of post-merger evolution

  2. Water Formation and Destruction by 'Super' X-ray Flares from a T-Tauri Star in a Protoplanetary Disk

    Science.gov (United States)

    Waggoner, Abygail R.; Cleeves, L. Ilsedore

    2018-01-01

    We present models of H2O chemistry is protoplanetary disks in the presence of 'super' X-ray flares emitted by a T-Tauri star. We examine the time-evolving chemistry of H2O at radial locations from 1 to 20 AU at various vertical heights from the mid-plane to the surface of the disk. We find the gas-phase H2O abundance can be enhanced in the surface (Z/R ≥ 0.3) by more than a factor of approximately 3 - 5 by strong flares, i.e., those that increase the ionization rate by a factor of 100. Dissociative recombination of H3O+ , H2O adsorption onto grain, and photolysis of H2O are found to be the three dominant processes leading to a change in H2O abundance. We find X-ray flares have predominantly short- term (days) effects on gaseous H2O abundance, but some regions show a long-term (for the duration of the test about 15 days) decrease in gaseous H2O due to adsorption onto grains, which results in an increase (up to 200%) in ice H2O in regions where ice H2O is 10-8 abundance no are response in the ice is observed.Thanks to the National Science Foundation for funding this research as a part of the Smithsonian Astrophysical Observatory Research Experience for Undergraduates (SAO REU).

  3. Nature vs. Nurture: The influence of OB star environments on proto-planetary disk evolution

    Science.gov (United States)

    Bouwman, Jeroen

    2006-09-01

    We propose a combined IRAC/IRS study of a large, well-defined and unbiased X-ray selected sample of pre-main-sequence stars in three OB associations: Pismis 24 in NGC 6357, NGC 2244 in the Rosette Nebula, and IC 1795 in the W3 complex. The samples are based on recent Chandra X-ray Observatory studies which reliably identify hundreds of cluster members and were carefully chosen to avoid high infrared nebular background. A new Chandra exposure of IC 1795 is requested, and an optical followup to characterise the host stars is planned.

  4. Identifying gaps in flaring Herbig Ae/Be disks using spatially resolved mid-infrared imaging. Are all group I disks transitional?

    NARCIS (Netherlands)

    Maaskant, K.M.; Honda, M.; Waters, L.; Tielens, A.G.G.M.; Dominik, C.; Min, M.; Verhoeff, A.; Meeus, G.; Ancker, van den M.

    2013-01-01

    Context. The evolution of young massive protoplanetary disks toward planetary systems is expected to correspond to structural changes in observational appearance, which includes the formation of gaps and the depletion of dust and gas. Aims: A special group of disks around Herbig Ae/Be stars do not

  5. Identifying gaps in flaring Herbig Ae/Be disks using spatially resolved mid-infrared imaging. Are all group I disks transitional?

    NARCIS (Netherlands)

    Maaskant, K.M.; Honda, M.; Waters, L.B.F.M.; Tielens, A.G.G.M.; Dominik, C.; Min, M.; Verhoeff, A.; Meeus, G.; van den Ancker, M.

    2013-01-01

    Context. The evolution of young massive protoplanetary disks toward planetary systems is expected to correspond to structural changes in observational appearance, which includes the formation of gaps and the depletion of dust and gas. Aims. A special group of disks around Herbig Ae/Be stars do not

  6. NuSTAR spectroscopy of GRS 1915+105: Disk reflection, spin, and connections to jets

    DEFF Research Database (Denmark)

    Miller, J. M.; Parker, M. L.; Fuerst, F.

    2013-01-01

    We report on the results of spectral fits made to a NuSTAR observation of the black hole GRS 1915+105 in a “plateau” state. This state is of special interest because it is similar to the “low/hard” state seen in other black holes, especially in that compact, steady jets are launched in this phase...

  7. Observational constraints for the circumstellar disk of the B[e] star CPD-52 9243

    Czech Academy of Sciences Publication Activity Database

    Cidale, L.S.; Borges Fernandes, M.; Andruchow, I.; Arias, M.L.; Kraus, Michaela; Chesneau, O.; Kanaan, S.; Curé, M.; de Wit, W.J.; Muratore, M.F.

    2012-01-01

    Roč. 548, November (2012), A72/1-A72/9 ISSN 0004-6361 R&D Projects: GA ČR(CZ) GAP209/11/1198 Institutional support: RVO:67985815 Keywords : supergiants * stars * winds Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.084, year: 2012

  8. ALMA Studies of the Disk-Jet-Outflow Connection

    Science.gov (United States)

    Dougados, Catherine; Louvet, F.; Mardones, D.; Cabrit, S.

    2017-06-01

    I will describe in this contribution recent results obtained with ALMA on the origin of the disk/jet/outflow connexion in T Tauri stars. I will first present ALMA observations of the disk associated with the jet source Th 28, which question previous jet rotation measurements in this source and the implications drawn from them. I will then discuss Cycle 2 ALMA observations of the disk and small scale CO outflow associated with the prototypical edge-on HH 30 source. The unprecedented angular resolution of this dataset brings new constraints on the origin of the CO outflows in young stars.

  9. The Structure of the Young Star Cluster NGC 6231. II. Structure, Formation, and Fate

    Science.gov (United States)

    Kuhn, Michael A.; Getman, Konstantin V.; Feigelson, Eric D.; Sills, Alison; Gromadzki, Mariusz; Medina, Nicolás; Borissova, Jordanka; Kurtev, Radostin

    2017-12-01

    The young cluster NGC 6231 (stellar ages ˜2-7 Myr) is observed shortly after star formation activity has ceased. Using the catalog of 2148 probable cluster members obtained from Chandra, VVV, and optical surveys (Paper I), we examine the cluster’s spatial structure and dynamical state. The spatial distribution of stars is remarkably well fit by an isothermal sphere with moderate elongation, while other commonly used models like Plummer spheres, multivariate normal distributions, or power-law models are poor fits. The cluster has a core radius of 1.2 ± 0.1 pc and a central density of ˜200 stars pc-3. The distribution of stars is mildly mass segregated. However, there is no radial stratification of the stars by age. Although most of the stars belong to a single cluster, a small subcluster of stars is found superimposed on the main cluster, and there are clumpy non-isotropic distributions of stars outside ˜4 core radii. When the size, mass, and age of NGC 6231 are compared to other young star clusters and subclusters in nearby active star-forming regions, it lies at the high-mass end of the distribution but along the same trend line. This could result from similar formation processes, possibly hierarchical cluster assembly. We argue that NGC 6231 has expanded from its initial size but that it remains gravitationally bound.

  10. From clouds to cores to envelopes to disks: a multi-scale view of magnetized star formation

    Science.gov (United States)

    Hull, Charles; Plambeck, R. L.; TADPOL survey Team

    2014-01-01

    Magnetic fields are thought to play an important role in the formation of stars. However, that importance has been called into question by previous observations showing misalignment between protostellar outflows and magnetic fields (B-fields), as well as inconsistency in field morphology between 10,000 and 1000 AU scales. To investigate these inconsistencies, we used the 1.3 mm full-Stokes polarimeter — which I tested, installed, and calibrated for CARMA, a mm-wave interferometer — to map dust polarization with ~2.5" resolution toward 29 star-forming cores and 8 star-forming regions as part of the TADPOL survey. We find that a subset of the sources have consistent B-field orientations between the large 20") scales measured by single-dish submm bolometers and the small scales measured by CARMA. Those same sources also tend to have higher fractional polarizations (measured by CARMA), presumably because the B-fields are less twisted by dynamic effects. However, even in these sources, which seem to have retained the memory of the global B-field direction, the fields in the cores are misaligned with the disks and outflows in the central protostars — a key result of the TADPOL survey. Furthermore, the cores with lower polarization fractions tend to have B-fields that are perpendicular to outflows, which suggests that in these sources the B-fields have lost the memory of the larger-scale global field, and have been wrapped up by core rotation. This is an important result for disk formation theory, as it suggests that field misalignment may indeed be the solution to the magnetic braking catastrophe. Finally, we find that all sources exhibit the so-called “polarization hole” effect, where the polarization drops significantly near the total intensity peak. When this effect was seen in low-resolution single-dish maps, it was attributed to the averaging of unresolved structure in the plane of the sky. However, the higher resolution maps we present here resolve these

  11. Periodic light variations of young stars U X Orion and S U Auriga

    International Nuclear Information System (INIS)

    Minikulov, N.Kh.; Abdulloev, S.Kh.

    2007-01-01

    The light curves of young variable stars U X Orion and S U Auriga are created from archive data of Institute of Astrophysics of the Academy of Sciences of the Republic of Tajikistan and other sources. It is established that periodic light variations of young stars U X Orion and S U Auriga occurs to duration of 36.4 and 29.8 years, accordingly. It is supposed that such periodic light variations are connected with existence a planetary system around these stars

  12. The pathways of C: from AGB stars, to the Interstellar Medium, and finally into the protoplanetary disk

    Science.gov (United States)

    Trigo-Rodriguez, J. M.; Garcia-Hernandez, D. A.

    2011-05-01

    The origin, and role of C in the formation of first solar system aggregates is described. Stellar grains evidence demonstrates that Asymptotic Giant Branch (AGB) stars were nearby to the solar nebula at the time of solar system formation. Such stars continue to burn H and He in shells that surround the C-O core. During their evolution, flashes occur in the He shell and the C, and O produced are eventually dredged up into the star's envelop and then to the stellar surface, and finally masively ejected to the interstellar medium (IM). Once in a molecular cloud, the electrophilicity of C makes this element reactable with the surrounding gas to produce different molecular species. Primitive meteorites, particularly these known as chondrites, preserved primeval materials of the disk. The abundances of short-lived radionuclides (SLN), inferred to have been present in the early solar system (ESS), are a constraint on the birth and early evolution of the solar system as their relatively short half lives do not allow the observed abundances to be explained by galactic chemical evolution processes. We present a model of a 6.5 solar masses star of solar metallicity that simultaneously match the abundances of SLNs inferred to have been present in the ESS by using a dilution factor of 1 part of AGB material per 300 parts of original solar nebula material, and taking into account a time interval between injection of SLNs and consolidation of chondrites equal to 0.53 Myr [2]. Such a polluting source does not overproduce 53Mn, as supernova models do, and only marginally affects isotopic ratios of stable elements. The AGB stars released O- and C-rich gas with important oxidizing implications to first solar system materials as recently detected in circumstellar environments [3]. REF: [1] Lada C.J. and Lada E.A. 2003. Ann. Rev. A&A. 41: 57; [2] Trigo-Rodriguez J.M. et al. 2009. MAPS 44: 627; [3] Decin L. et al. 2010. Nature 467: 64.

  13. Probing the structure and dynamics of B[e] supergiant stars' disks

    Czech Academy of Sciences Publication Activity Database

    Kraus, Michaela

    2016-01-01

    Roč. 58, č. 1 (2016), s. 70-76 E-ISSN 1669-9521 R&D Projects: GA ČR(CZ) GA14-21373S Institutional support: RVO:67985815 Keywords : circumstellar matter * infrared * stars Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics http://www. astronomia argentina.org.ar/b58/2016baaa...58...70K.pdf

  14. A Herschel-Resolved Debris Disk Around the Nearby G Star HIP 32480

    Science.gov (United States)

    Stapelfeldt, K.

    2011-01-01

    The Herschel Space Observatory is providing unprecedented sensitivity and angular resolution in the far-infrared. The DUNES Key Project (DUst around NEarby Stars, PI Carlos Eiroa) has finished its survey of 133 FGK stars within 25 pc of the Sun using the PACS photometer at 100 and 160 microns. We report the detection of a resolved debris ring around HIP 32480, a G0 star 16.5 parsecs distant. The ring is almost 300 AU in diameter and inclined 30 degrees from edge-on. We present a thermal emission model for the system that fits the Spitzer spectroscopy and Herschel images of the system. We find a minimum grainsize of approximately 4 microns in the main ring and a distinct warm dust population interior to it. Faint detached emission features just outside the ring may trace a separate, more distant ring in the system. The non-detection of the ring in archival HST/ACS coronagraphic images limits the dust grain albedo in the ring to be no more than 10%.

  15. A Resolved Debris Disk Around the Nearby G Star HIP 32480

    Science.gov (United States)

    Stapelfeldt, K. R.; Bryden, G. C.; Marshall, J.; Eiroa, C.; Absil, O.; Mora, A.; Krist, J. E.; Su, K. Y. L.

    2012-01-01

    The Herschel Space Observatory is providing unprecedented sensitivity and angular resolution in the far-infrared. The DUNES Key Project (DUst around NEarby Stars, PI Carlos Eiroa) has finished its survey of 133 FGK stars within 25 pc of the Sun using the PACS photometer at 100 and 160 microns. We report the detection of a resolved debris ring around HIP 32480, a GO star 16.5 parsecs distant. The ring is almost 300 AU in diameter and inclined 30 degrees from edge-on. We present a thermal emission model for the system that fits the Spitzer spectroscopy and Herschel images of the system. We find a minimum grain-size of 4 microns in the main ring and a distinct warm dust population interior to it. Faint detached emission features just outside the ring may trace a separate, more distant ring in the system. The non-detection of the ring in archival HST/ACS coronagraphic images limits the dust grain albedo in the ring to be no more than 10%.

  16. The SEEDS Direct Imaging Survey for Planets and Scattered Dust Emission in Debris Disk Systems

    NARCIS (Netherlands)

    Janson, M.; et al., [Unknown; Thalmann, C.

    2013-01-01

    Debris disks around young main-sequence stars often have gaps and cavities which for a long time have been interpreted as possibly being caused by planets. In recent years, several giant planet discoveries have been made in systems hosting disks of precisely this nature, further implying that

  17. Absence of young white dwarf companions to five technetium stars

    Energy Technology Data Exchange (ETDEWEB)

    Smith, V.V.; Lambert, D.L.

    1987-10-01

    A search for hot companions to five stars of type MS and S has been carried out using the IUE satellite. No hot companions were detected for the MS stars HR 85, 4647, 6702, and 8062, and the S star HR 8714. Limits on the luminosities of possible white dwarf companions provide lower limits of 2-5x10 to the 8th yr to the ages of any degenerate companions. All five stars exhibit strong Tc I lines, and the presence of technetium, with a half-life of 2.1x10 to the 5th yr, signifies recent nucleosynthesis. The limits on the ages of possible white dwarf companions that are equal to or greater than 1000 half-lives of Tc exclude the possibility that the s-process elemental enhancement seen in these MS and S stars resulted from mass transfer from a more highly evolved companion (as is probably the mechanism by which barium stars are created). These MS and S stars represent a sample of true thermally pulsing asymptotic giant-branch stars. 41 references.

  18. X-ray Observations of Eight Young Open Star Clusters: I ...

    Indian Academy of Sciences (India)

    XMM-Newton View of Eight Young Open Star Clusters. 395 ... Multi-wavelength surveys of young open clusters provide an effective way to iden- tify young cluster .... First, the input images were built in two energy ranges, a soft band (0.3–2.0 keV) and ..... 3.2 Color-magnitude diagram of X-ray sources with NIR counterparts.

  19. A KINEMATIC AND PHOTOMETRIC STUDY OF THE GALACTIC YOUNG STAR CLUSTER NGC 7380

    International Nuclear Information System (INIS)

    Chen, W. P.; Chen, C. W.; Pandey, A. K.; Sharma, Saurabh; Chen Li; Sperauskas, J.; Ogura, K.; Chuang, R. J.; Boyle, R. P.

    2011-01-01

    We present proper motions, radial velocities, and a photometric study of the Galactic open cluster NGC 7380, which is associated with prominent emission nebulosity and dark molecular clouds. On the basis of the sample of highly probable member stars, the star cluster is found to be at a distance of 2.6 ± 0.4 kpc, has an age of around 4 Myr, and a physical size of ∼6 pc across with a tidal structure. The binary O-type star DH Cep is a member of the cluster in its late stage of clearing the surrounding material, and may have triggered the ongoing star formation in neighboring molecular clouds which harbor young stars that are coeval and comoving with, but not gravitationally bound by, the star cluster.

  20. Observations of Hα-emission stars in the young cluster NGC 2264

    International Nuclear Information System (INIS)

    Rydgren, A.E.

    1979-01-01

    UBVRI photometry is given for a sample of 25 late-type Hα-emission stars in the young cluster NGC 2264. The stars are in the magnitude range 12< or =V<16. Some but not all appear to be T Tauri stars. The color--color diagrams support the view that the deviations from normal photospheric colors (due to ''spectral veiling'' and line emission) decrease with increasing wavelength between the U and I filters. In the (V, V-R) diagram, the Hα-emission stars lie in a well-defined pre-main-sequence band. Within this sample, there is a trend toward stronger line emission and spectral veiling with later spectral type. All of the likely legitimate T Tauri stars have inferred spectral types later than about K3. The question of cluster membership for stars in the cluster field with very small proper motions is considered

  1. AN INITIAL MASS FUNCTION FOR INDIVIDUAL STARS IN GALACTIC DISKS. I. CONSTRAINING THE SHAPE OF THE INITIAL MASS FUNCTION

    International Nuclear Information System (INIS)

    Parravano, Antonio; McKee, Christopher F.; Hollenbach, David J.

    2011-01-01

    We derive a semi-empirical galactic initial mass function (IMF) from observational constraints. We assume that the IMF, ψ(m), is a smooth function of the stellar mass m. The mass dependence of the proposed IMF is determined by five parameters: the low-mass slope γ, the high-mass slope -Γ (taken to be -1.35), the characteristic mass m ch (∼ the peak mass of the IMF), and the lower and upper limits on the mass, m l and m u (taken to be 0.004 and 120 M sun , respectively): ψ(m)dln m ∝ m -Γ {1 - exp [- (m/m ch ) γ+Γ ]}dln m. The values of γ and m ch are derived from two integral constraints: (1) the ratio of the number density of stars in the range m = 0.1-0.6 M sun to that in the range m = 0.6-0.8 M sun as inferred from the mass distribution of field stars in the local neighborhood and (2) the ratio of the number of stars in the range m = 0.08-1 M sun to the number of brown dwarfs in the range m = 0.03-0.08 M sun in young clusters. The IMF satisfying the above constraints is characterized by the parameters γ = 0.51 and m ch = 0.35 M sun (which corresponds to a peak mass of 0.27 M sun ). This IMF agrees quite well with the Chabrier IMF for the entire mass range over which we have compared with data, but predicts significantly more stars with masses sun ; we also compare with other IMFs in current use and give a number of important parameters implied by the IMFs.

  2. Warm Debris Disk Candidates from WISE

    Science.gov (United States)

    Padgett, Deborah; Stapelfeldt, Karl; Liu, Wilson; Leisawitz, David

    2011-01-01

    The Wide Field Infrared Survey Explorer (WISE) has just completed a sensitive all-sky survey in photometric bands at 3.4, 4.6, 12, and 22 microns. We report on a preliminary investigation of main sequence Hipparcos and Tycho catalog stars with 22 micron emission in excess of photospheric levels. This warm excess emission traces material in the circumstellar region likely to host terrestrial planets and is preferentially found in young systems with ages warm debris disk candidates are detected among FGK stars and 150 A stars within 120 pc. We are in the process of obtaining spectra to determine spectral types and activity level of these stars and are using HST, Herschel and Keck to characterize the dust, multiplicity, and substellar companions of these systems. In this contribution, we will discuss source selection methods and individual examples from among the WISE debris disk candidates.

  3. Intermediate-mass Elements in Young Supernova Remnants Reveal Neutron Star Kicks by Asymmetric Explosions

    Science.gov (United States)

    Katsuda, Satoru; Morii, Mikio; Janka, Hans-Thomas; Wongwathanarat, Annop; Nakamura, Ko; Kotake, Kei; Mori, Koji; Müller, Ewald; Takiwaki, Tomoya; Tanaka, Masaomi; Tominaga, Nozomu; Tsunemi, Hiroshi

    2018-03-01

    The birth properties of neutron stars (NSs) yield important information about the still-debated physical processes that trigger the explosion as well as on intrinsic neutron-star physics. These properties include the high space velocities of young neutron stars with average values of several 100 km s‑1, with an underlying “kick” mechanism that is not fully clarified. There are two competing possibilities that could accelerate NSs during their birth: anisotropic ejection of either stellar debris or neutrinos. Here we present new evidence from X-ray measurements that chemical elements between silicon and calcium in six young gaseous supernova remnants are preferentially expelled opposite to the direction of neutron star motion. There is no correlation between the kick velocities and magnetic field strengths of these neutron stars. Our results support a hydrodynamic origin of neutron-star kicks connected to asymmetric explosive mass ejection, and they conflict with neutron-star acceleration scenarios that invoke anisotropic neutrino emission caused by particle and nuclear physics in combination with very strong neutron-star magnetic fields.

  4. Dynamical evolution of stars and gas of young embedded stellar sub-clusters

    Science.gov (United States)

    Sills, Alison; Rieder, Steven; Scora, Jennifer; McCloskey, Jessica; Jaffa, Sarah

    2018-03-01

    We present simulations of the dynamical evolution of young embedded star clusters. Our initial conditions are directly derived from X-ray, infrared, and radio observations of local systems, and our models evolve both gas and stars simultaneously. Our regions begin with both clustered and extended distributions of stars, and a gas distribution which can include a filamentary structure in addition to gas surrounding the stellar subclusters. We find that the regions become spherical, monolithic, and smooth quite quickly, and that the dynamical evolution is dominated by the gravitational interactions between the stars. In the absence of stellar feedback, the gas moves gently out of the centre of our regions but does not have a significant impact on the motions of the stars at the earliest stages of cluster formation. Our models at later times are consistent with observations of similar regions in the local neighbourhood. We conclude that the evolution of young proto-star clusters is relatively insensitive to reasonable choices of initial conditions. Models with more realism, such as an initial population of binary and multiple stars and ongoing star formation, are the next step needed to confirm these findings.

  5. The disk wind in the rapidly spinning stellar-mass black hole 4U 1630-472 observed with NuSTAR

    DEFF Research Database (Denmark)

    King, Ashley L.; Walton, Dominic J.; Miller, Jon M.

    2014-01-01

    We present an analysis of a short NuSTAR observation of the stellar-mass black hole and low-mass X-ray binary 4U 1630-472. Reflection from the inner accretion disk is clearly detected for the first time in this source, owing to the sensitivity of NuSTAR. With fits to the reflection spectrum, we...... find evidence for a rapidly spinning black hole, (1σ statistical errors). However, archival data show that the source has relatively low radio luminosity. Recently claimed relationships between jet power and black hole spin would predict either a lower spin or a higher peak radio luminosity. We also...

  6. COMPARING THE ACCRETION DISK EVOLUTION OF BLACK HOLE AND NEUTRON STAR X-RAY BINARIES FROM LOW TO SUPER-EDDINGTON LUMINOSITY

    International Nuclear Information System (INIS)

    Weng Shanshan; Zhang Shuangnan

    2011-01-01

    Low-mass X-ray binaries (LMXBs) are systems in which a low-mass companion transfers mass via Roche-lobe overflow onto a black hole (BH) or a weakly magnetized neutron star (NS). It is believed that both the solid surface and the magnetic field of an NS can affect the accretion flow and show some observable effects. Using the disk emission dominant data, we compare the disk evolution of the two types of systems from low luminosity to super-Eddington luminosity. As the luminosity decreases the disk in the NS LMXB 4U1608-522 begins to leave the innermost stable circular orbit (ISCO) at much higher luminosity (∼0.1 L Edd ), compared with BH LMXBs at much lower luminosity (∼0.03 L Edd ), due to the interaction between the NS magnetosphere and accretion flow. However, as the luminosity increases above a critical luminosity, the disks in BH and NS LMXBs trace the same evolutionary pattern, because the magnetosphere is restricted inside ISCO, and then both the NS surface emission and (dipole) magnetic field do not significantly affect the secular evolution of the accretion disk, which is driven by the increased radiation pressure in the inner region. We further suggest that the NS surface emission provides additional information about the accretion disk not available in BH systems. Through the observed NS surface emission, we argue that the disk thickness H/R is less than 0.3-0.4, and that the significant outflow from the inner disk edge exists at a luminosity close to Eddington luminosity.

  7. PROGRESSIVE STAR FORMATION IN THE YOUNG GALACTIC SUPER STAR CLUSTER NGC 3603

    International Nuclear Information System (INIS)

    Beccari, Giacomo; Spezzi, Loredana; De Marchi, Guido; Andersen, Morten; Paresce, Francesco; Young, Erick; Panagia, Nino; Bond, Howard; Balick, Bruce; Calzetti, Daniela; Carollo, C. Marcella; Disney, Michael J.; Dopita, Michael A.; Frogel, Jay A.; Hall, Donald N. B.; Holtzman, Jon A.; Kimble, Randy A.; McCarthy, Patrick J.; O'Connell, Robert W.; Saha, Abhijit

    2010-01-01

    Early Release Science observations of the cluster NGC 3603 with the WFC3 on the refurbished Hubble Space Telescope allow us to study its recent star formation history. Our analysis focuses on stars with Hα excess emission, a robust indicator of their pre-main sequence (PMS) accreting status. The comparison with theoretical PMS isochrones shows that 2/3 of the objects with Hα excess emission have ages from 1 to 10 Myr, with a median value of 3 Myr, while a surprising 1/3 of them are older than 10 Myr. The study of the spatial distribution of these PMS stars allows us to confirm their cluster membership and to statistically separate them from field stars. This result establishes unambiguously for the first time that star formation in and around the cluster has been ongoing for at least 10-20 Myr, at an apparently increasing rate.

  8. M-dwarf rapid rotators and the detection of relatively young multiple M-star systems

    International Nuclear Information System (INIS)

    Rappaport, S.; Joss, M.; Sanchis-Ojeda, R.

    2014-01-01

    We have searched the Kepler light curves of ∼3900 M-star targets for evidence of periodicities that indicate, by means of the effects of starspots, rapid stellar rotation. Several analysis techniques, including Fourier transforms, inspection of folded light curves, 'sonograms', and phase tracking of individual modulation cycles, were applied in order to distinguish the periodicities due to rapid rotation from those due to stellar pulsations, eclipsing binaries, or transiting planets. We find 178 Kepler M-star targets with rotation periods, P rot , of <2 days, and 110 with P rot < 1 day. Some 30 of the 178 systems exhibit two or more independent short periods within the same Kepler photometric aperture, while several have 3 or more short periods. Adaptive optics imaging and modeling of the Kepler pixel response function for a subset of our sample support the conclusion that the targets with multiple periods are highly likely to be relatively young physical binary, triple, and even quadruple M star systems. We explore in detail the one object with four incommensurate periods all less than 1.2 days, and show that two of the periods arise from one of a close pair of stars, while the other two arise from the second star, which itself is probably a visual binary. If most of these M-star systems with multiple periods turn out to be bound M stars, this could prove a valuable way discovering young hierarchical M-star systems; the same approach may also be applicable to G and K stars. The ∼5% occurrence rate of rapid rotation among the ∼3900 M star targets is consistent with spin evolution models that include an initial contraction phase followed by magnetic braking, wherein a typical M star can spend several hundred Myr before spinning down to periods longer than 2 days.

  9. Three-Dimensional General-Relativistic Magnetohydrodynamic Simulations of Remnant Accretion Disks from Neutron Star Mergers: Outflows and r-Process Nucleosynthesis.

    Science.gov (United States)

    Siegel, Daniel M; Metzger, Brian D

    2017-12-08

    The merger of binary neutron stars, or of a neutron star and a stellar-mass black hole, can result in the formation of a massive rotating torus around a spinning black hole. In addition to providing collimating media for γ-ray burst jets, unbound outflows from these disks are an important source of mass ejection and rapid neutron capture (r-process) nucleosynthesis. We present the first three-dimensional general-relativistic magnetohydrodynamic (GRMHD) simulations of neutrino-cooled accretion disks in neutron star mergers, including a realistic equation of state valid at low densities and temperatures, self-consistent evolution of the electron fraction, and neutrino cooling through an approximate leakage scheme. After initial magnetic field amplification by magnetic winding, we witness the vigorous onset of turbulence driven by the magnetorotational instability (MRI). The disk quickly reaches a balance between heating from MRI-driven turbulence and neutrino cooling, which regulates the midplane electron fraction to a low equilibrium value Y_{e}≈0.1. Over the 380-ms duration of the simulation, we find that a fraction ≈20% of the initial torus mass is unbound in powerful outflows with asymptotic velocities v≈0.1c and electron fractions Y_{e}≈0.1-0.25. Postprocessing the outflows through a nuclear reaction network shows the production of a robust second- and third-peak r process. Though broadly consistent with the results of previous axisymmetric hydrodynamical simulations, extrapolation of our results to late times suggests that the total ejecta mass from GRMHD disks is significantly higher. Our results provide strong evidence that postmerger disk outflows are an important site for the r process.

  10. Star-forming galaxy models: Blending star formation into TREESPH

    Science.gov (United States)

    Mihos, J. Christopher; Hernquist, Lars

    1994-01-01

    We have incorporated star-formation algorithms into a hybrid N-body/smoothed particle hydrodynamics code (TREESPH) in order to describe the star forming properties of disk galaxies over timescales of a few billion years. The models employ a Schmidt law of index n approximately 1.5 to calculate star-formation rates, and explicitly include the energy and metallicity feedback into the Interstellar Medium (ISM). Modeling the newly formed stellar population is achieved through the use of hybrid SPH/young star particles which gradually convert from gaseous to collisionless particles, avoiding the computational difficulties involved in creating new particles. The models are shown to reproduce well the star-forming properties of disk galaxies, such as the morphology, rate of star formation, and evolution of the global star-formation rate and disk gas content. As an example of the technique, we model an encounter between a disk galaxy and a small companion which gives rise to a ring galaxy reminiscent of the Cartwheel (AM 0035-35). The primary galaxy in this encounter experiences two phases of star forming activity: an initial period during the expansion of the ring, and a delayed phase as shocked material in the ring falls back into the central regions.

  11. Detection of X-ray emission from the young low-mass star Rossiter 137B

    Science.gov (United States)

    Vilhu, O.; Linsky, J. L.

    1987-01-01

    Rst 137B, a close M-dwarf companion to the active K-star HD 36705, has been detected in a High Resolution Image in the Einstein Observatory Archive. The X-ray surface fluxes (0.2-4 keV) from both stars are close to the empirical saturation level, F(x)/F(bol) of about 0.001, defined by rapid rotators and very young stars. This supports the earlier results of the youthfulness of the system. This young couple is an excellent subject for studies of dependence of early evolution on stellar mass. Rst 137B is one of the latest spectral types and thus lowest-mass premain-sequence stars yet detected as an X-ray source.

  12. BLACK HOLE-NEUTRON STAR MERGERS WITH A HOT NUCLEAR EQUATION OF STATE: OUTFLOW AND NEUTRINO-COOLED DISK FOR A LOW-MASS, HIGH-SPIN CASE

    Energy Technology Data Exchange (ETDEWEB)

    Deaton, M. Brett; Duez, Matthew D. [Department of Physics and Astronomy, Washington State University, Pullman, WA 99164 (United States); Foucart, Francois; O' Connor, Evan [Canadian Institute for Theoretical Astrophysics, University of Toronto, Toronto, Ontario M5S 3H8 (Canada); Ott, Christian D.; Scheel, Mark A.; Szilagyi, Bela [TAPIR, MC 350-17, California Institute of Technology, Pasadena, CA 91125 (United States); Kidder, Lawrence E.; Muhlberger, Curran D., E-mail: mbdeaton@wsu.edu, E-mail: m.duez@wsu.edu [Center for Radiophysics and Space Research, Cornell University, Ithaca, NY 14853 (United States)

    2013-10-10

    Neutrino emission significantly affects the evolution of the accretion tori formed in black hole-neutron star mergers. It removes energy from the disk, alters its composition, and provides a potential power source for a gamma-ray burst. To study these effects, simulations in general relativity with a hot microphysical equation of state (EOS) and neutrino feedback are needed. We present the first such simulation, using a neutrino leakage scheme for cooling to capture the most essential effects and considering a moderate mass (1.4 M{sub ☉} neutron star, 5.6 M{sub ☉} black hole), high-spin (black hole J/M {sup 2} = 0.9) system with the K{sub 0} = 220 MeV Lattimer-Swesty EOS. We find that about 0.08 M{sub ☉} of nuclear matter is ejected from the system, while another 0.3 M{sub ☉} forms a hot, compact accretion disk. The primary effects of the escaping neutrinos are (1) to make the disk much denser and more compact, (2) to cause the average electron fraction Y{sub e} of the disk to rise to about 0.2 and then gradually decrease again, and (3) to gradually cool the disk. The disk is initially hot (T ∼ 6 MeV) and luminous in neutrinos (L{sub ν} ∼ 10{sup 54} erg s{sup –1}), but the neutrino luminosity decreases by an order of magnitude over 50 ms of post-merger evolution.

  13. IDENTIFYING THE YOUNG LOW-MASS STARS WITHIN 25 pc. II. DISTANCES, KINEMATICS, AND GROUP MEMBERSHIP

    Energy Technology Data Exchange (ETDEWEB)

    Shkolnik, Evgenya L. [Lowell Observatory, 1400 W. Mars Hill Road, Flagstaff, AZ 86001 (United States); Anglada-Escude, Guillem [Institut fuer Astrophysik, Universitaet Goettingen, Friedrich-Hund-Platz 1, D-37077 Goettingen (Germany); Liu, Michael C.; Bowler, Brendan P. [Institute for Astronomy, University of Hawaii at Manoa 2680 Woodlawn Drive, Honolulu, HI 96822 (United States); Weinberger, Alycia J.; Boss, Alan P. [Department of Terrestrial Magnetism, Carnegie Institution for Science, 5241 Broad Branch Road, NW, Washington, DC 20015 (United States); Reid, I. Neill [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Tamura, Motohide, E-mail: shkolnik@lowell.edu [National Astronomical Observatory of Japan, Tokyo (Japan)

    2012-10-10

    We have conducted a kinematic study of 165 young M dwarfs with ages of {approx}<300 Myr. Our sample is composed of stars and brown dwarfs with spectral types ranging from K7 to L0, detected by ROSAT and with photometric distances of {approx}<25 pc assuming that the stars are single and on the main sequence. In order to find stars kinematically linked to known young moving groups (YMGs), we measured radial velocities for the complete sample with Keck and CFHT optical spectroscopy and trigonometric parallaxes for 75 of the M dwarfs with the CAPSCam instrument on the du Pont 2.5 m Telescope. Due to their youthful overluminosity and unresolved binarity, the original photometric distances for our sample underestimated the distances by 70% on average, excluding two extremely young ({approx}<3 Myr) objects found to have distances beyond a few hundred parsecs. We searched for kinematic matches to 14 reported YMGs and identified 10 new members of the AB Dor YMG and 2 of the Ursa Majoris group. Additional possible candidates include six Castor, four Ursa Majoris, two AB Dor members, and one member each of the Her-Lyr and {beta} Pic groups. Our sample also contains 27 young low-mass stars and 4 brown dwarfs with ages {approx}<150 Myr that are not associated with any known YMG. We identified an additional 15 stars that are kinematic matches to one of the YMGs, but the ages from spectroscopic diagnostics and/or the positions on the sky do not match. These warn against grouping stars together based only on kinematics and that a confluence of evidence is required to claim that a group of stars originated from the same star-forming event.

  14. A high spatial resolution X-ray and Hα study of hot gas in the halos of star-forming disk galaxies -- testing feedback models

    Science.gov (United States)

    Strickland, D. K.; Heckman, T. M.; Colbert, E. J. M.; Hoopes, C. G.; Weaver, K. A.

    2002-12-01

    We present arcsecond resolution Chandra X-ray and ground-based optical Hα imaging of a sample of ten edge-on star-forming disk galaxies (seven starburst and three ``normal'' spiral galaxies), a sample which covers the full range of star-formation intensity found in disk galaxies. The X-ray observations make use of the unprecented spatial resolution of the Chandra X-ray observatory to robustly remove X-ray emission from point sources, and hence obtain the X-ray properties of the diffuse thermal emission alone. This data has been combined with existing, comparable-resolution, ground-based Hα imaging. We compare these empirically-derived diffuse X-ray properties with various models for the generation of hot gas in the halos of star-forming galaxies: supernova feedback-based models (starburst-driven winds, galactic fountains), cosmologically-motivated accretion of the IGM and AGN-driven winds. SN feedback models best explain the observed diffuse X-ray emission. We then use the data to test basic, but fundamental, aspects of wind and fountain theories, e.g. the critical energy required for disk "break-out." DKS is supported by NASA through Chandra Postdoctoral Fellowship Award Number PF0-10012.

  15. Dust in protoplanetary disks: observations*

    Directory of Open Access Journals (Sweden)

    Waters L.B.F.M.

    2015-01-01

    Full Text Available Solid particles, usually referred to as dust, are a crucial component of interstellar matter and of planet forming disks surrounding young stars. Despite the relatively small mass fraction of ≈1% (in the solar neighborhood of our galaxy; this number may differ substantially in other galaxies that interstellar grains represent of the total mass budget of interstellar matter, dust grains play an important role in the physics and chemistry of interstellar matter. This is because of the opacity dust grains at short (optical, UV wavelengths, and the surface they provide for chemical reactions. In addition, dust grains play a pivotal role in the planet formation process: in the core accretion model of planet formation, the growth of dust grains from the microscopic size range to large, cm-sized or larger grains is the first step in planet formation. Not only the grain size distribution is affected by planet formation. Chemical and physical processes alter the structure and chemical composition of dust grains as they enter the protoplanetary disk and move closer to the forming star. Therefore, a lot can be learned about the way stars and planets are formed by observations of dust in protoplanetary disks. Ideally, one would like to measure the dust mass, the grain size distribution, grain structure (porosity, fluffiness, the chemical composition, and all of these as a function of position in the disk. Fortunately, several observational diagnostics are available to derive constrains on these quantities. In combination with rapidly increasing quality of the data (spatial and spectral resolution, a lot of progress has been made in our understanding of dust evolution in protoplanetary disks. An excellent review of dust evolution in protoplanetary disks can be found in Testi et al. (2014.

  16. The Hierarchical Distribution of the Young Stellar Clusters in Six Local Star-forming Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Grasha, K.; Calzetti, D. [Astronomy Department, University of Massachusetts, Amherst, MA 01003 (United States); Adamo, A.; Messa, M. [Dept. of Astronomy, The Oskar Klein Centre, Stockholm University, Stockholm (Sweden); Kim, H. [Gemini Observatory, La Serena (Chile); Elmegreen, B. G. [IBM Research Division, T.J. Watson Research Center, Yorktown Hts., NY (United States); Gouliermis, D. A. [Zentrum für Astronomie der Universität Heidelberg, Institut für Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Dale, D. A. [Dept. of Physics and Astronomy, University of Wyoming, Laramie, WY (United States); Fumagalli, M. [Institute for Computational Cosmology and Centre for Extragalactic Astronomy, Durham University, Durham (United Kingdom); Grebel, E. K.; Shabani, F. [Astronomisches Rechen-Institut, Zentrum für Astronomie der Universität Heidelberg, Mönchhofstr. 12-14, D-69120 Heidelberg (Germany); Johnson, K. E. [Dept. of Astronomy, University of Virginia, Charlottesville, VA (United States); Kahre, L. [Dept. of Astronomy, New Mexico State University, Las Cruces, NM (United States); Kennicutt, R. C. [Institute of Astronomy, University of Cambridge, Cambridge (United Kingdom); Pellerin, A. [Dept. of Physics and Astronomy, State University of New York at Geneseo, Geneseo NY (United States); Ryon, J. E.; Ubeda, L. [Space Telescope Science Institute, Baltimore, MD (United States); Smith, L. J. [European Space Agency/Space Telescope Science Institute, Baltimore, MD (United States); Thilker, D., E-mail: kgrasha@astro.umass.edu [Dept. of Physics and Astronomy, The Johns Hopkins University, Baltimore, MD (United States)

    2017-05-10

    We present a study of the hierarchical clustering of the young stellar clusters in six local (3–15 Mpc) star-forming galaxies using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey). We identified 3685 likely clusters and associations, each visually classified by their morphology, and we use the angular two-point correlation function to study the clustering of these stellar systems. We find that the spatial distribution of the young clusters and associations are clustered with respect to each other, forming large, unbound hierarchical star-forming complexes that are in general very young. The strength of the clustering decreases with increasing age of the star clusters and stellar associations, becoming more homogeneously distributed after ∼40–60 Myr and on scales larger than a few hundred parsecs. In all galaxies, the associations exhibit a global behavior that is distinct and more strongly correlated from compact clusters. Thus, populations of clusters are more evolved than associations in terms of their spatial distribution, traveling significantly from their birth site within a few tens of Myr, whereas associations show evidence of disruption occurring very quickly after their formation. The clustering of the stellar systems resembles that of a turbulent interstellar medium that drives the star formation process, correlating the components in unbound star-forming complexes in a hierarchical manner, dispersing shortly after formation, suggestive of a single, continuous mode of star formation across all galaxies.

  17. The Hierarchical Distribution of the Young Stellar Clusters in Six Local Star-forming Galaxies

    Science.gov (United States)

    Grasha, K.; Calzetti, D.; Adamo, A.; Kim, H.; Elmegreen, B. G.; Gouliermis, D. A.; Dale, D. A.; Fumagalli, M.; Grebel, E. K.; Johnson, K. E.; Kahre, L.; Kennicutt, R. C.; Messa, M.; Pellerin, A.; Ryon, J. E.; Smith, L. J.; Shabani, F.; Thilker, D.; Ubeda, L.

    2017-05-01

    We present a study of the hierarchical clustering of the young stellar clusters in six local (3-15 Mpc) star-forming galaxies using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey). We identified 3685 likely clusters and associations, each visually classified by their morphology, and we use the angular two-point correlation function to study the clustering of these stellar systems. We find that the spatial distribution of the young clusters and associations are clustered with respect to each other, forming large, unbound hierarchical star-forming complexes that are in general very young. The strength of the clustering decreases with increasing age of the star clusters and stellar associations, becoming more homogeneously distributed after ˜40-60 Myr and on scales larger than a few hundred parsecs. In all galaxies, the associations exhibit a global behavior that is distinct and more strongly correlated from compact clusters. Thus, populations of clusters are more evolved than associations in terms of their spatial distribution, traveling significantly from their birth site within a few tens of Myr, whereas associations show evidence of disruption occurring very quickly after their formation. The clustering of the stellar systems resembles that of a turbulent interstellar medium that drives the star formation process, correlating the components in unbound star-forming complexes in a hierarchical manner, dispersing shortly after formation, suggestive of a single, continuous mode of star formation across all galaxies.

  18. The Hierarchical Distribution of the Young Stellar Clusters in Six Local Star-forming Galaxies

    International Nuclear Information System (INIS)

    Grasha, K.; Calzetti, D.; Adamo, A.; Messa, M.; Kim, H.; Elmegreen, B. G.; Gouliermis, D. A.; Dale, D. A.; Fumagalli, M.; Grebel, E. K.; Shabani, F.; Johnson, K. E.; Kahre, L.; Kennicutt, R. C.; Pellerin, A.; Ryon, J. E.; Ubeda, L.; Smith, L. J.; Thilker, D.

    2017-01-01

    We present a study of the hierarchical clustering of the young stellar clusters in six local (3–15 Mpc) star-forming galaxies using Hubble Space Telescope broadband WFC3/UVIS UV and optical images from the Treasury Program LEGUS (Legacy ExtraGalactic UV Survey). We identified 3685 likely clusters and associations, each visually classified by their morphology, and we use the angular two-point correlation function to study the clustering of these stellar systems. We find that the spatial distribution of the young clusters and associations are clustered with respect to each other, forming large, unbound hierarchical star-forming complexes that are in general very young. The strength of the clustering decreases with increasing age of the star clusters and stellar associations, becoming more homogeneously distributed after ∼40–60 Myr and on scales larger than a few hundred parsecs. In all galaxies, the associations exhibit a global behavior that is distinct and more strongly correlated from compact clusters. Thus, populations of clusters are more evolved than associations in terms of their spatial distribution, traveling significantly from their birth site within a few tens of Myr, whereas associations show evidence of disruption occurring very quickly after their formation. The clustering of the stellar systems resembles that of a turbulent interstellar medium that drives the star formation process, correlating the components in unbound star-forming complexes in a hierarchical manner, dispersing shortly after formation, suggestive of a single, continuous mode of star formation across all galaxies.

  19. Identifying the Young Low-mass Stars within 25 pc. I. Spectroscopic Observations

    Science.gov (United States)

    Shkolnik, Evgenya; Liu, Michael C.; Reid, I. Neill

    2009-07-01

    We have completed a high-resolution (R ≈ 60,000) optical spectroscopic survey of 185 nearby M dwarfs identified using ROSAT data to select active, young objects with fractional X-ray luminosities comparable to or greater than Pleiades members. Our targets are drawn from the NStars 20 pc census and the Moving-M sample with distances determined from parallaxes or spectrophotometric relations. We limited our sample to 25 pc from the Sun, prior to correcting for pre-main-sequence overluminosity or binarity. Nearly half of the resulting M dwarfs are not present in the Gliese catalog and have no previously published spectral types. We identified 30 spectroscopic binaries (SBs) from the sample, which have strong X-ray emission due to tidal spin-up rather than youth. This is equivalent to a 16% SB fraction, with at most a handful of undiscovered SBs. We estimate upper limits on the age of the remaining M dwarfs using spectroscopic youth indicators such as surface gravity-sensitive indices (CaH and K I). We find that for a sample of field stars with no metallicity measurements, a single CaH gravity index may not be sufficient, as higher metallicities mimic lower gravity. This is demonstrated in a subsample of metal-rich radial velocity (RV) standards, which appear to have low surface gravity as measured by the CaH index, yet show no other evidence of youth. We also use additional youth diagnostics such as lithium absorption and strong Hα emission to set more stringent age limits. Eleven M dwarfs with no Hα emission or absorption are likely old (>400 Myr) and were caught during an X-ray flare. We estimate that our final sample of the 144 youngest and nearest low-mass objects in the field is less than 300 Myr old, with 30% of them being younger than 150 Myr and four very young (lap10 Myr), representing a generally untapped and well-characterized resource of M dwarfs for intensive planet and disk searches. Based on observations collected at the W. M. Keck Observatory and

  20. Optical High-resolution Spectroscopy of 14 Young α-rich Stars

    Science.gov (United States)

    Matsuno, Tadafumi; Yong, David; Aoki, Wako; Ishigaki, Miho N.

    2018-06-01

    We report chemical abundances of 14 young α-rich stars including neutron-capture elements based on high-quality optical spectra from HIRES/Keck I and differential line-by-line analysis. From a comparison of the abundance patterns of young α-rich stars to those of nearby bright red giants with a similar metallicity range (‑0.7 branch stars plays an important role in the formation of young α-rich stars. The high frequency of radial velocity variation (more than 50%) is also confirmed. We argue that mass transfer from low-mass red giants is the likely dominant formation mechanism for young α-rich stars. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  1. Chemical Composition of Young Stars in the Leading Arm of the Magellanic System

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lan; Zhao, Gang [Key Lab. of Optical Astronomy, National Astronomical Observatories, CAS, 20A Datun Road, Chaoyang District, 100012 Beijing (China); Moni Bidin, Christian [Instituto de Astronomía, Universidad Católica del Norte, Av. Angomos 0610, Antofagasta (Chile); Casetti-Dinescu, Dana I. [Department of Physics, Southern Connecticut State University, 501 Crescent Street, New Haven, CT 06515 (United States); Méndez, Réne A. [Departamento de Astronomia Universidad de Chile, Camino El Observatorio #1515, Las Condes, Santiago (Chile); Girard, Terrence M. [14 Dunn Rd, Hamden, Connecticut, CT 06518 (United States); Korchagin, Vladimir I. [Institute of Physics, Southern Federal University, Stachki st/194, 344090, Rostov-on-Don (Russian Federation); Vieira, Katherine; Van Altena, William F. [Centro de Investigaciones de Astronomiá, Apartado Postal 264, Mérida 5101-A (Venezuela, Bolivarian Republic of)

    2017-02-01

    Chemical abundances of eight O- and B-type stars are determined from high-resolution spectra obtained with the MIKE instrument on the Magellan 6.5 m Clay telescope. The sample is selected from 42 candidates for membership in the Leading Arm (LA) of the Magellanic System. Stellar parameters are measured by two independent grids of model atmospheres and analysis procedures, confirming the consistency of the stellar parameter results. Abundances of seven elements (He, C, N, O, Mg, Si, and S) are determined for the stars, as are their radial velocities and estimates of distances and ages. Among the seven B-type stars analyzed, the five that have radial velocities compatible with membership of the LA have an average [Mg/H] of −0.42 ± 0.16, significantly lower than the average of the remaining two, [Mg/H] = −0.07±0.06, which are kinematical members of the Galactic disk. Among the five LA members, four have individual [Mg/H] abundance compatible with that in the LMC. Within errors, we cannot exclude the possibility that one of these stars has an [Mg/H] consistent with the more metal-poor, SMC-like material. The remaining fifth star has an [Mg/H] close to Milky Way values. Distances to the LA members indicate that they are at the edge of the Galactic disk, while ages are of the order of ∼50–70 Myr, lower than the dynamical age of the LA, suggesting a single star-forming episode in the LA. V {sub LSR} of the LA members decreases with decreasing Magellanic longitude, confirming the results of previous LA gas studies.

  2. GRAVITATIONAL SLINGSHOT OF YOUNG MASSIVE STARS IN ORION

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Sourav; Tan, Jonathan C., E-mail: s.chatterjee@astro.ufl.edu, E-mail: jt@astro.ufl.edu [Department of Astronomy, University of Florida, Gainesville, FL 32611 (United States)

    2012-08-01

    The Orion Nebula Cluster (ONC) is the nearest region of massive star formation and thus a crucial testing ground for theoretical models. Of particular interest among the ONC's {approx}1000 members are: {theta}{sup 1} Ori C, the most massive binary in the cluster with stars of masses 38 and 9 M{sub Sun }; the Becklin-Neugebauer (BN) object, a 30 km s{sup -1} runaway star of {approx}8 M{sub Sun }; and the Kleinmann-Low (KL) nebula protostar, a highly obscured, {approx}15 M{sub Sun} object still accreting gas while also driving a powerful, apparently 'explosive' outflow. The unusual behavior of BN and KL is much debated: How did BN acquire its high velocity? How is this related to massive star formation in the KL nebula? Here, we report the results of a systematic survey using {approx}10{sup 7} numerical experiments of gravitational interactions of the {theta}{sup 1}C and BN stars. We show that dynamical ejection of BN from this triple system at its observed velocity leaves behind a binary with total energy and eccentricity matching those observed for {theta}{sup 1}C. Five other observed properties of {theta}{sup 1}C are also consistent with it having ejected BN and altogether we estimate that there is only a {approx}< 10{sup -5} probability that {theta}{sup 1}C has these properties by chance. We conclude that BN was dynamically ejected from the {theta}{sup 1}C system about 4500 years ago. BN then plowed through the KL massive star-forming core within the last 1000 years causing its recently enhanced accretion and outflow activity.

  3. Spectral Characteristics of Young Stars Associated with the Sh2-296 Nebula

    Science.gov (United States)

    Fernandes, Beatriz; Gregorio-Hetem, Jane

    Aiming to contribute to the understanding of star formation and evolution in the Canis Major (CMa R1) Molecular Clouds Complex, we analyze the spectral characteristics of a population of young stars associated with the arc-shaped nebula Sh2-296. Our XMM/Newton observations detected 109 X-ray sources in the region and optical spectroscopy was performed with Gemini telescope for 85 optical counterparts. We identified and characterized 51 objects that present features typically found in young objects, such as Hα emission and strong absorption on the Li I line.

  4. High molecular gas fractions in normal massive star-forming galaxies in the young Universe.

    Science.gov (United States)

    Tacconi, L J; Genzel, R; Neri, R; Cox, P; Cooper, M C; Shapiro, K; Bolatto, A; Bouché, N; Bournaud, F; Burkert, A; Combes, F; Comerford, J; Davis, M; Schreiber, N M Förster; Garcia-Burillo, S; Gracia-Carpio, J; Lutz, D; Naab, T; Omont, A; Shapley, A; Sternberg, A; Weiner, B

    2010-02-11

    Stars form from cold molecular interstellar gas. As this is relatively rare in the local Universe, galaxies like the Milky Way form only a few new stars per year. Typical massive galaxies in the distant Universe formed stars an order of magnitude more rapidly. Unless star formation was significantly more efficient, this difference suggests that young galaxies were much more molecular-gas rich. Molecular gas observations in the distant Universe have so far largely been restricted to very luminous, rare objects, including mergers and quasars, and accordingly we do not yet have a clear idea about the gas content of more normal (albeit massive) galaxies. Here we report the results of a survey of molecular gas in samples of typical massive-star-forming galaxies at mean redshifts of about 1.2 and 2.3, when the Universe was respectively 40% and 24% of its current age. Our measurements reveal that distant star forming galaxies were indeed gas rich, and that the star formation efficiency is not strongly dependent on cosmic epoch. The average fraction of cold gas relative to total galaxy baryonic mass at z = 2.3 and z = 1.2 is respectively about 44% and 34%, three to ten times higher than in today's massive spiral galaxies. The slow decrease between z approximately 2 and z approximately 1 probably requires a mechanism of semi-continuous replenishment of fresh gas to the young galaxies.

  5. Young stars in the old galactic cluster NGC 188

    International Nuclear Information System (INIS)

    Veer, F. van 't

    1984-01-01

    We first briefly discuss the age of the oldest known galactic clusters, according to recently published determinations. The now definitely established membership of our W UMa type contact binaries in this cluster is difficult to understand if the age of these stars is that of the cluster. It appears therefore that these binaries are much younger and that the several episodes of star formation took place in NGC 188. This conclusion is reached after a new study of the mean density of the four contact binaries and a critical discussion of the chemical composition and the mixing length parameter. (orig.)

  6. Signatures of Young Planets in the Continuum Emission from Protostellar Disks

    Science.gov (United States)

    Isella, Andrea; Turner, Neal J.

    2018-06-01

    Many protostellar disks show central cavities, rings, or spiral arms likely caused by low-mass stellar or planetary companions, yet few such features are conclusively tied to bodies embedded in the disks. We note that even small features on the disk surface cast shadows, because the starlight grazes the surface. We therefore focus on accurately computing the disk thickness, which depends on its temperature. We present models with temperatures set by the balance between starlight heating and radiative cooling, which are also in vertical hydrostatic equilibrium. The planet has 20, 100, or 1000 M ⊕, ranging from barely enough to perturb the disk significantly, to clearing a deep tidal gap. The hydrostatic balance strikingly alters the appearance of the model disk. The outer walls of the planet-carved gap puff up under starlight heating, throwing a shadow across the disk beyond. The shadow appears in scattered light as a dark ring that could be mistaken for a gap opened by another more distant planet. The surface brightness contrast between outer wall and shadow for the 1000 M ⊕ planet is an order of magnitude greater than a model neglecting the temperature disturbances. The shadow is so deep that it largely hides the planet-launched outer arm of the spiral wave. Temperature gradients are such that outer low-mass planets undergoing orbital migration will converge within the shadow. Furthermore, the temperature perturbations affect the shape, size, and contrast of features at millimeter and centimeter wavelengths. Thus radiative heating and cooling are key to the appearance of protostellar disks with embedded planets.

  7. Roche-lobe overflow systems powered by black holes in young star clusters: the importance of dynamical exchanges

    Energy Technology Data Exchange (ETDEWEB)

    Mapelli, Michela; Zampieri, Luca, E-mail: michela.mapelli@oapd.inaf.it [INAF-Osservatorio Astronomico di Padova, Vicolo dell' Osservatorio 5, I-35122, Padova (Italy)

    2014-10-10

    We have run 600 N-body simulations of intermediate-mass (∼3500 M {sub ☉}) young star clusters (SCs; with three different metallicities (Z = 0.01, 0.1, and 1 Z {sub ☉}). The simulations include the dependence of stellar properties and stellar winds on metallicity. Massive stellar black holes (MSBHs) with mass >25 M {sub ☉} are allowed to form through direct collapse of very massive metal-poor stars (Z < 0.3 Z {sub ☉}). We focus on the demographics of black hole (BH) binaries that undergo mass transfer via Roche lobe overflow (RLO). We find that 44% of all binaries that undergo an RLO phase (RLO binaries) formed through dynamical exchange. RLO binaries that formed via exchange (RLO-EBs) are powered by more massive BHs than RLO primordial binaries (RLO-PBs). Furthermore, the RLO-EBs tend to start the RLO phase later than the RLO-PBs. In metal-poor SCs (0.01-0.1 Z {sub ☉}), >20% of all RLO binaries are powered by MSBHs. The vast majority of RLO binaries powered by MSBHs are RLO-EBs. We have produced optical color-magnitude diagrams of the simulated RLO binaries, accounting for the emission of both the donor star and the irradiated accretion disk. We find that RLO-PBs are generally associated with bluer counterparts than RLO-EBs. We compare the simulated counterparts with the observed counterparts of nine ultraluminous X-ray sources. We discuss the possibility that IC 342 X-1, Ho IX X-1, NGC 1313 X-2, and NGC 5204 X-1 are powered by an MSBH.

  8. Evidence for Companion-induced Secular Changes in the Turbulent Disk of a Be Star in the Large Magellanic Cloud MACHO Database

    Science.gov (United States)

    Struble, Mitchell F.; Galatola, Anthony; Faccioli, Lorenzo; Alcock, Charles; Cruz, Kelle

    2006-04-01

    The light curve of a blue variable in the MACHO LMC database (FTS ID 78.5979.72) appeared nearly unvarying for about 4 yr (the quasi-flat segment) but then rapidly changed to become periodic with noisy minima for the remaining 4 yr (the periodic segment); there are no antecedent indications of a gradual approach to this change. Lomb periodogram analyses indicate the presence of two distinct periods of ~61 and 8 days in both the quasi-flat and the periodic segments. Minima of the periodic segment cover at least 50% of the orbital period and contain spikes of light with the 8 day period; maxima do not show this short period. The system typically shows maxima to be redder than minima. The most recent OGLE-III light curve shows only a 30 day periodicity. The variable's V and R magnitudes and color are those of a Be star, and recent sets of near-infrared spectra 4 days apart, secured during the time of the OGLE-III data, show Hα emission near and at a maximum, confirming its Be star characteristics. The model that best fits the photometric behavior consists of a thin ringlike circumstellar disk of low mass with four obscuring sectors orbiting the central B star in unison at the 61 day period. The central star peers through the three equispaced separations between the four sectors producing the 8 day period. These sectors could be dusty vortices comprised of particles larger than typical interstellar dust grains that dim but selectively scatter the central star's light, while the remainder of the disk contains hydrogen in emission, making maxima appear redder. A companion star of lower mass in an inclined and highly eccentric orbit produces an impulsive perturbation near its periastron to change the disk's orientation, changing eclipses from partial to complete within ~10 days. The most recent change to a 30 day period observed in the OGLE-III data may be caused by obscuring sectors that have coalesced into larger ones and spread out along the disk.

  9. A Detached Protostellar Disk around a ˜0.2 M ⊙ Protostar in a Possible Site of a Multiple Star Formation in a Dynamical Environment in Taurus

    Science.gov (United States)

    Tokuda, Kazuki; Onishi, Toshikazu; Saigo, Kazuya; Hosokawa, Takashi; Matsumoto, Tomoaki; Inutsuka, Shu-ichiro; Machida, Masahiro N.; Tomida, Kengo; Kunitomo, Masanobu; Kawamura, Akiko; Fukui, Yasuo; Tachihara, Kengo

    2017-11-01

    We report ALMA observations in 0.87 mm continuum and 12CO (J = 3-2) toward a very low-luminosity (<0.1 L ⊙) protostar, which is deeply embedded in one of the densest cores, MC27/L1521F, in Taurus with an indication of multiple star formation in a highly dynamical environment. The beam size corresponds to ˜20 au, and we have clearly detected blueshifted/redshifted gas in 12CO associated with the protostar. The spatial/velocity distributions of the gas show there is a rotating disk with a size scale of ˜10 au, a disk mass of ˜10-4 M ⊙, and a central stellar mass of ˜0.2 M ⊙. The observed disk seems to be detached from the surrounding dense gas, although it is still embedded at the center of the core whose density is ˜106 cm-3. The current low-outflow activity and the very low luminosity indicate that the mass accretion rate onto the protostar is extremely low in spite of a very early stage of star formation. We may be witnessing the final stage of the formation of ˜0.2 M ⊙ protostar. However, we cannot explain the observed low luminosity with the standard pre-main-sequence evolutionary track unless we assume cold accretion with an extremely small initial radius of the protostar (˜0.65 {R}⊙ ). These facts may challenge our current understanding of the low mass star formation, in particular the mass accretion process onto the protostar and the circumstellar disk.

  10. IRAS 06562-0337, The Ironclad Nebula: A New Young Star Cluster

    International Nuclear Information System (INIS)

    Alves, D.R.; Hoard, D.W.; Rodgers, B.

    1998-01-01

    IRAS 06562-0337 has been the recent subject of a classic debate: is it a proto endash planetary nebula or a young stellar object? We present the first 2 μm image of IRAS 06562-0337, which reveals an extended diffuse nebula containing approximately 70 stars inside a 30 double-prime radius around a bright, possibly resolved, central object. The derived stellar luminosity function is consistent with that expected from a single coeval population, and the brightness of the nebulosity is consistent with the predicted flux of unresolved low-mass stars. The stars and nebulosity are spatially coincident with strong CO line emission. We therefore identify IRAS 06562-0337 as a new young star cluster embedded in its placental molecular cloud. The central object is likely a Herbig Be star, M ∼ 20 M circle-dot , which may be seen in reflection. We present medium-resolution high signal-to-noise ratio 1997 epoch optical spectra of the central object. Comparison with previously published spectra shows new evidence for time-variable permitted and forbidden line emission, including Si ii, Fe ii, [Fe ii], and [O i]. We suggest that the origin is a dynamic stellar wind in the extended stratified atmosphere of the massive central star in IRAS 06562-0337. copyright copyright 1998. The American Astronomical Society

  11. Modeling tracers of young stellar population age in star-forming galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Levesque, Emily M. [CASA, Department of Astrophysical and Planetary Sciences, University of Colorado 389-UCB, Boulder, CO 80309 (United States); Leitherer, Claus, E-mail: Emily.Levesque@colorado.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2013-12-20

    The young stellar population of a star-forming galaxy is the primary engine driving its radiative properties. As a result, the age of a galaxy's youngest generation of stars is critical for a detailed understanding of its star formation history, stellar content, and evolutionary state. Here we present predicted equivalent widths for the Hβ, Hα, and Brγ recombination lines as a function of stellar population age. The equivalent widths are produced by the latest generations of stellar evolutionary tracks and the Starburst99 stellar population synthesis code, and are the first to fully account for the combined effects of both nebular emission and continuum absorption produced by the synthetic stellar population. Our grid of model stellar populations spans six metallicities (0.001 < Z < 0.04), two treatments of star formation history (a 10{sup 6} M {sub ☉} instantaneous burst and a continuous star formation rate of 1 M {sub ☉} yr{sup –1}), and two different treatments of initial rotation rate (v {sub rot} = 0.0v {sub crit} and 0.4v {sub crit}). We also investigate the effects of varying the initial mass function. Given constraints on galaxy metallicity, our predicted equivalent widths can be applied to observations of star-forming galaxies to approximate the age of their young stellar populations.

  12. Mass distributions in disk galaxies

    NARCIS (Netherlands)

    Martinsson, Thomas; Verheijen, Marc; Bershady, Matthew; Westfall, Kyle; Andersen, David; Swaters, Rob

    We present results on luminous and dark matter mass distributions in disk galaxies from the DiskMass Survey. As expected for normal disk galaxies, stars dominate the baryonic mass budget in the inner region of the disk; however, at about four optical scale lengths (hR ) the atomic gas starts to

  13. X-ray Observations of Eight Young Open Star Clusters: I ...

    Indian Academy of Sciences (India)

    X-ray Observations of Eight Young Open Star Clusters: I. Membership and X-ray Luminosity. Himali Bhatt, J. C. Pandey, K. P. Singh, Ram Sagar & Brijesh Kumar. J. Astrophys. Astr. 34(4), December 2013, pp. 393–429, c Indian Academy of Sciences. Supplementary Material. Supplementary Table 3 follows.

  14. Childhood to adolescence: dust and gas clearing in protoplanetary disks

    Science.gov (United States)

    Brown, Joanna Margaret

    Disks are ubiquitous around young stars. Over time, disks dissipate, revealing planets that formed hidden by their natal dust. Since direct detection of young planets at small orbital radii is currently impossible, other tracers of planet formation must be found. One sign of disk evolution, potentially linked to planet formation, is the opening of a gap or inner hole in the disk. In this thesis, I have identified and characterized several cold disks with large inner gaps but retaining massive primordial outer disks. While cold disks are not common, with ~5% of disks showing signs of inner gaps, they provide proof that at least some disks evolve from the inside-out. These large gaps are equivalent to dust clearing from inside the Earth's orbit to Neptune's orbit or even the inner Kuiper belt. Unlike more evolved systems like our own, the central star is often still accreting and a large outer disk remains. I identified four cold disks in Spitzer 5-40 μm spectra and modeled these disks using a 2-D radiative transfer code to determine the gap properties. Outer gap radii of 20-45 AU were derived. However, spectrophotometric identification is indirect and model-dependent. To validate this interpretation, I observed three disks with a submillimeter interferometer and obtained the first direct images of the central holes. The images agree well with the gap sizes derived from the spectrophotometry. One system, LkH&alpha 330, has a very steep outer gap edge which seems more consistent with gravitational perturbation rather than gradual processes, such as grain growth and settling. Roughly 70% of cold disks show CO v=1&rarr 0 gas emission from the inner 1 AU and therefore are unlikely to have evolved due to photoevaporation. The derived rotation temperatures are significantly lower for the cold disks than disks without gaps. Unresolved (sub)millimeter photometry shows that cold disks have steeper colors, indicating that they are optically thin at these wavelengths, unlike

  15. BAYESIAN ANALYSIS TO IDENTIFY NEW STAR CANDIDATES IN NEARBY YOUNG STELLAR KINEMATIC GROUPS

    International Nuclear Information System (INIS)

    Malo, Lison; Doyon, René; Lafrenière, David; Artigau, Étienne; Gagné, Jonathan; Baron, Frédérique; Riedel, Adric

    2013-01-01

    We present a new method based on a Bayesian analysis to identify new members of nearby young kinematic groups. The analysis minimally takes into account the position, proper motion, magnitude, and color of a star, but other observables can be readily added (e.g., radial velocity, distance). We use this method to find new young low-mass stars in the β Pictoris and AB Doradus moving groups and in the TW Hydrae, Tucana-Horologium, Columba, Carina, and Argus associations. Starting from a sample of 758 mid-K to mid-M (K5V-M5V) stars showing youth indicators such as Hα and X-ray emission, our analysis yields 214 new highly probable low-mass members of the kinematic groups analyzed. One is in TW Hydrae, 37 in β Pictoris, 17 in Tucana-Horologium, 20 in Columba, 6 in Carina, 50 in Argus, 32 in AB Doradus, and the remaining 51 candidates are likely young but have an ambiguous membership to more than one association. The false alarm rate for new candidates is estimated to be 5% for β Pictoris and TW Hydrae, 10% for Tucana-Horologium, Columba, Carina, and Argus, and 14% for AB Doradus. Our analysis confirms the membership of 58 stars proposed in the literature. Firm membership confirmation of our new candidates will require measurement of their radial velocity (predicted by our analysis), parallax, and lithium 6708 Å equivalent width. We have initiated these follow-up observations for a number of candidates, and we have identified two stars (2MASSJ01112542+1526214, 2MASSJ05241914-1601153) as very strong candidate members of the β Pictoris moving group and one strong candidate member (2MASSJ05332558-5117131) of the Tucana-Horologium association; these three stars have radial velocity measurements confirming their membership and lithium detections consistent with young age.

  16. Are superluminous supernovae and long GRBs the products of dynamical processes in young dense star clusters?

    Energy Technology Data Exchange (ETDEWEB)

    Van den Heuvel, E. P. J. [Astronomical Institute Anton Pannekoek, University of Amsterdam, P.O. Box 94249, 1090 GE Amsterdam (Netherlands); Portegies Zwart, S. F. [Leiden Observatory, Leiden University, P.O. Box 9513, 2300 RA Leiden (Netherlands)

    2013-12-20

    Superluminous supernovae (SLSNe) occur almost exclusively in small galaxies (Small/Large Magellanic Cloud (SMC/LMC)-like or smaller), and the few SLSNe observed in larger star-forming galaxies always occur close to the nuclei of their hosts. Another type of peculiar and highly energetic supernovae are the broad-line Type Ic SNe (SN Ic-BL) that are associated with long-duration gamma-ray bursts (LGRBs). Also these have a strong preference for occurring in small (SMC/LMC-like or smaller) star-forming galaxies, and in these galaxies LGRBs always occur in the brightest spots. Studies of nearby star-forming galaxies that are similar to the hosts of LGRBs show that these brightest spots are giant H II regions produced by massive dense young star clusters with many hundreds of O- and Wolf-Rayet-type stars. Such dense young clusters are also found in abundance within a few hundred parsecs from the nucleus of larger galaxies like our own. We argue that the SLSNe and the SNe Ic-BL/LGRBs are exclusive products of two types of dynamical interactions in dense young star clusters. In our model the high angular momentum of the collapsing stellar cores required for the engines of an SN Ic-BL results from the post-main-sequence mergers of dynamically produced cluster binaries with almost equal-mass components. The merger produces a critically rotating single helium star with sufficient angular momentum to produce an LGRB; the observed 'metal aversion' of LGRBs is a natural consequence of the model. We argue that, on the other hand, SLSNe could be the products of runaway multiple collisions in dense clusters, and we present (and quantize) plausible scenarios of how the different types of SLSNe can be produced.

  17. Is the Young Star RZ Piscium Consuming Its Own (Planetary) Offspring?

    Science.gov (United States)

    Punzi, K. M.; Kastner, J. H.; Melis, C.; Zuckerman, B.; Pilachowski, C.; Gingerich, L.; Knapp, T.

    2018-01-01

    The erratically variable star RZ Piscium (RZ Psc) displays extreme optical dropout events and strikingly large excess infrared emission. To ascertain the evolutionary status of this intriguing star, we obtained observations of RZ Psc with the European Space Agency’s X-ray Multi-Mirror Mission (XMM-Newton), as well as high-resolution optical spectroscopy with the Hamilton Echelle on the Lick Shane 3 m telescope and with HIRES on the Keck I 10 m telescope. The optical spectroscopy data demonstrate that RZ Psc is a pre-main sequence star with an effective temperature of 5600 ± 75 K and log g of 4.35 ± 0.10. The ratio of X-ray to bolometric luminosity, {log}{L}X/{L}{bol}, lies in the range ‑3.7 to ‑3.2, consistent with ratios typical of young, solar-mass stars, thereby providing strong support for the young star status of RZ Psc. The Li absorption line strength of RZ Psc suggests an age in the range 30–50 Myr, which in turn implies that RZ Psc lies at a distance of ∼170 pc. Adopting this estimated distance, we find the Galactic space velocity of RZ Psc to be similar to the space velocities of stars in young moving groups near the Sun. Optical spectral features indicative of activity and/or circumstellar material are present in our spectra over multiple epochs, which provide evidence for the presence of a significant mass of circumstellar gas associated with RZ Psc. We suggest that the destruction of one or more massive orbiting bodies has recently occurred within 1 au of the star, and we are viewing the aftermath of such an event along the plane of the orbiting debris.

  18. INFRARED OBSERVATIONAL MANIFESTATIONS OF YOUNG DUSTY SUPER STAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-González, Sergio; Tenorio-Tagle, Guillermo; Silich, Sergiy, E-mail: sergiomtz@inaoep.mx [Instituto Nacional de Astrofísica Óptica y Electrónica, AP 51, 72000 Puebla (Mexico)

    2016-01-01

    The growing evidence pointing at core-collapse supernovae as large dust producers makes young massive stellar clusters ideal laboratories to study the evolution of dust immersed in a hot plasma. Here we address the stochastic injection of dust by supernovae, and follow its evolution due to thermal sputtering within the hot and dense plasma generated by young stellar clusters. Under these considerations, dust grains are heated by means of random collisions with gas particles which result in the appearance of  infrared spectral signatures. We present time-dependent infrared spectral energy distributions that are to be expected from young stellar clusters. Our results are based on hydrodynamic calculations that account for the stochastic injection of dust by supernovae. These also consider gas and dust radiative cooling, stochastic dust temperature fluctuations, the exit of dust grains out of the cluster volume due to the cluster wind, and a time-dependent grain size distribution.

  19. INFRARED OBSERVATIONAL MANIFESTATIONS OF YOUNG DUSTY SUPER STAR CLUSTERS

    International Nuclear Information System (INIS)

    Martínez-González, Sergio; Tenorio-Tagle, Guillermo; Silich, Sergiy

    2016-01-01

    The growing evidence pointing at core-collapse supernovae as large dust producers makes young massive stellar clusters ideal laboratories to study the evolution of dust immersed in a hot plasma. Here we address the stochastic injection of dust by supernovae, and follow its evolution due to thermal sputtering within the hot and dense plasma generated by young stellar clusters. Under these considerations, dust grains are heated by means of random collisions with gas particles which result in the appearance of  infrared spectral signatures. We present time-dependent infrared spectral energy distributions that are to be expected from young stellar clusters. Our results are based on hydrodynamic calculations that account for the stochastic injection of dust by supernovae. These also consider gas and dust radiative cooling, stochastic dust temperature fluctuations, the exit of dust grains out of the cluster volume due to the cluster wind, and a time-dependent grain size distribution

  20. DD 13 - A very young and heavily reddened early O star in the Large Magellanic Cloud

    Science.gov (United States)

    Conti, Peter S.; Fitzpatrick, Edward L.

    1991-01-01

    This paper investigates the Large Magellanic Cloud star DD 13, which is likely the major ionizing source of the nebula N159A. New optical spectroscopy and new estimates of the broadband photometric properties of DD 13 are obtained. A spectral type of O3-O6 V, E(B-V) = 0.64, and M(V) = -6.93 is found. The spectral type cannot be more precisely defined due to contamination of the spectral data by nebular emission, obliterating the important He I classification lines. These results, plus a published estimate of the Lyman continuum photon injection rate into N159A, suggest that DD 13 actually consists of about 2-4 young, early O stars still enshrouded by their natal dust cloud. The star DD 13 may be a younger example of the type of tight cluster represented by the LMC 'star' Sk-66 deg 41, recently revealed to be composed of six or more components.

  1. Hyperfast pulsars as the remnants of massive stars ejected from young star clusters

    NARCIS (Netherlands)

    Gvaramadze, V.V.; Gualandris, A.; Portegies Zwart, S.

    2008-01-01

    Recent proper motion and parallax measurements for the pulsar PSR B1508+55 indicate a transverse velocity of similar to 1100 km s(-1), which exceeds earlier measurements for any neutron star. The spin-down characteristics of PSR B1508+55 are typical for a non-recycled pulsar, which implies that the

  2. Circumstellar and circumplanetary disks

    Science.gov (United States)

    Chiang, Eugene

    2000-11-01

    This thesis studies disks in three astrophysical contexts: (1)protoplanetary disks; (2)the Edgeworth-Kuiper Belt; and (3)planetary rings. We derive hydrostatic, radiative equilibrium models of passive protoplanetary disks surrounding T Tauri and Herbig Ae/Be stars. Each disk is encased by an optically thin layer of superheated dust grains. This layer is responsible for up to ~70% of the disk luminosity at wavelengths between ~5 and 60 μm. The heated disk flares and absorbs more stellar radiation at a given stellocentric distance than a flat disk would. Spectral energy distributions are computed and found to compare favorably with the observed flattish infrared excesses of several young stellar objects. Spectral features from dust grains in the superheated layer appear in emission if the disk is viewed nearly face-on. We present the results of a pencil-beam survey of the Kuiper Belt using the Keck 10-m telescope. Two new objects are discovered. Data from all surveys are pooled to construct the luminosity function from mR = 20 to 27. The cumulative number of objects per square degree, Σ(surface area but the largest bodies contain most of the mass. To order-of-magnitude, 0.2 M⊕ and 1 × 1010 comet progenitors lie between 30 and 50 AU. The classical Kuiper Belt appears truncated at a distance of 50 AU. We propose that rigid precession of narrow eccentric planetary rings surrounding Uranus and Saturn is maintained by a balance of forces due to ring self- gravity, planetary oblateness, and interparticle collisions. Collisional impulses play an especially dramatic role near ring edges. Pressure-induced accelerations are maximal near edges because there (1)velocity dispersions are enhanced by resonant satellite perturbations, and (2)the surface density declines steeply. Remarkably, collisional forces felt by material in the last ~100 m of a ~10 km wide ring can increase equilibrium masses up to a factor of ~100. New ring surface densities are derived which accord with

  3. COOL YOUNG STARS IN THE NORTHERN HEMISPHERE: β PICTORIS AND AB DORADUS MOVING GROUP CANDIDATES

    International Nuclear Information System (INIS)

    Schlieder, Joshua E.; Simon, Michal; Lépine, Sébastien

    2012-01-01

    As part of our continuing effort to identify new, low-mass members of nearby, young moving groups (NYMGs), we present a list of young, low-mass candidates in the northern hemisphere. We used our proven proper-motion selection procedure and ROSAT X-ray and GALEX-UV activity indicators to identify 204 young stars as candidate members of the β Pictoris and AB Doradus NYMGs. Definitive membership assignment of a given candidate will require a measurement of its radial velocity and distance. We present a simple system of indices to characterize the young candidates and help prioritize follow-up observations. New group members identified in this candidate list will be high priority targets for (1) exoplanet direct imaging searches, (2) the study of post-T-Tauri astrophysics, (3) understanding recent local star formation, and (4) the study of local galactic kinematics. Information available now allows us to identify eight likely new members in the list. Two of these, a late-K and an early-M dwarf, we find to be likely members of the β Pic group. The other six stars are likely members of the AB Dor moving group. These include an M dwarf triple system, and three very cool objects that may be young brown dwarfs, making them the lowest-mass, isolated objects proposed in the AB Dor moving group to date.

  4. Photometric search for variable stars in the young open cluster Berkeley 59

    Science.gov (United States)

    Lata, Sneh; Pandey, A. K.; Maheswar, G.; Mondal, Soumen; Kumar, Brijesh

    2011-12-01

    We present the time series photometry of stars located in the extremely young open cluster Berkeley 59. Using the 1.04-m telescope at Aryabhatta Research Institute of Observational Sciences (ARIES), Nainital, we have identified 42 variables in a field of ˜13 × 13 arcmin2 around the cluster. The probable members of the cluster have been identified using a (V, V-I) colour-magnitude diagram and a (J-H, H-K) colour-colour diagram. 31 variables have been found to be pre-main-sequence stars associated with the cluster. The ages and masses of the pre-main-sequence stars have been derived from the colour-magnitude diagram by fitting theoretical models to the observed data points. The ages of the majority of the probable pre-main-sequence variable candidates range from 1 to 5 Myr. The masses of these pre-main-sequence variable stars have been found to be in the range of ˜0.3 to ˜3.5 M⊙, and these could be T Tauri stars. The present statistics reveal that about 90 per cent T Tauri stars have period dispersal of the discs of relatively massive stars.

  5. Accretion Processes in Star Formation

    DEFF Research Database (Denmark)

    Küffmeier, Michael

    for short-lived radionuclides that enrich the cloud as a result of supernova explosions of the massive stars allows us to analyze the distribution of the short-lived radionuclides around young forming stars. In contradiction to results from highly-idealized models, we find that the discrepancy in 26 Al...... that the accretion process of stars is heterogeneous in space, time and among different protostars. In some cases, disks form a few thousand years after stellar birth, whereas in other cases disk formation is suppressed due to efficient removal of angular momentum. Angular momentum is mainly transported outward...... with potentially observable fluctuations in the luminosity profile that are induced by variations in the accretion rate. Considering that gas inside protoplanetary disks is not fully ionized, I implemented a solver that accounts for nonideal MHD effects into a newly developed code framework called dispatch...

  6. The interstellar medium and star formation of galactic disks. I. Interstellar medium and giant molecular cloud properties with diffuse far-ultraviolet and cosmic-ray backgrounds

    Science.gov (United States)

    Li, Qi; Tan, Jonathan C.; Christie, Duncan; Bisbas, Thomas G.; Wu, Benjamin

    2018-01-01

    We present a series of adaptive mesh refinement hydrodynamic simulations of flat rotation curve galactic gas disks, with a detailed treatment of the interstellar medium (ISM) physics of the atomic to molecular phase transition under the influence of diffuse far-ultraviolet (FUV) radiation fields and cosmic-ray backgrounds. We explore the effects of different FUV intensities, including a model with a radial gradient designed to mimic the Milky Way. The effects of cosmic rays, including radial gradients in their heating and ionization rates, are also explored. The final simulations in this series achieve 4 pc resolution across the ˜20 kpc global disk diameter, with heating and cooling followed down to temperatures of ˜10 K. The disks are evolved for 300 Myr, which is enough time for the ISM to achieve a quasi-statistical equilibrium. In particular, the mass fraction of molecular gas is stabilized by ˜200 Myr. Additional global ISM properties are analyzed. Giant molecular clouds (GMCs) are also identified and the statistical properties of their populations are examined. GMCs are tracked as the disks evolve. GMC collisions, which may be a means of triggering star cluster formation, are counted and their rates are compared with analytic models. Relatively frequent GMC collision rates are seen in these simulations, and their implications for understanding GMC properties, including the driving of internal turbulence, are discussed.

  7. The interstellar medium and star formation of galactic disks. I. Interstellar medium and giant molecular cloud properties with diffuse far-ultraviolet and cosmic-ray backgrounds

    Science.gov (United States)

    Li, Qi; Tan, Jonathan C.; Christie, Duncan; Bisbas, Thomas G.; Wu, Benjamin

    2018-05-01

    We present a series of adaptive mesh refinement hydrodynamic simulations of flat rotation curve galactic gas disks, with a detailed treatment of the interstellar medium (ISM) physics of the atomic to molecular phase transition under the influence of diffuse far-ultraviolet (FUV) radiation fields and cosmic-ray backgrounds. We explore the effects of different FUV intensities, including a model with a radial gradient designed to mimic the Milky Way. The effects of cosmic rays, including radial gradients in their heating and ionization rates, are also explored. The final simulations in this series achieve 4 pc resolution across the ˜20 kpc global disk diameter, with heating and cooling followed down to temperatures of ˜10 K. The disks are evolved for 300 Myr, which is enough time for the ISM to achieve a quasi-statistical equilibrium. In particular, the mass fraction of molecular gas is stabilized by ˜200 Myr. Additional global ISM properties are analyzed. Giant molecular clouds (GMCs) are also identified and the statistical properties of their populations are examined. GMCs are tracked as the disks evolve. GMC collisions, which may be a means of triggering star cluster formation, are counted and their rates are compared with analytic models. Relatively frequent GMC collision rates are seen in these simulations, and their implications for understanding GMC properties, including the driving of internal turbulence, are discussed.

  8. Star formation: Cosmic feast

    Science.gov (United States)

    Scaringi, Simone

    2017-03-01

    Low-mass stars form through a process known as disk accretion, eating up material that orbits in a disk around them. It turns out that the same mechanism also describes the formation of more massive stars.

  9. Fallback disks & magnetars: prospects & possibilities

    Science.gov (United States)

    Alpar, M. A.

    Some bound matter in the form of a fallback disk may be an initial parameter of isolated neutron stars at birth which along with the initial rotation rate and dipole and higher multipole magnetic moments determines the evolution of neutron stars and the categories into which they fall This talk reviews the strengths and difficulties of fallback disk models in explaining properties of isolated neutron stars of different categories Evidence for and observational limits on fallback disks will also be discussed

  10. The Building History of XUV disks of M83& NGC2403 with TRGB Archaeology

    Science.gov (United States)

    Koda, Jin

    2015-06-01

    We propose deep HSC g & i-band imaging of two extended ultraviolet (XUV) disks of M83 and NGC2403. These galaxies have the prototype XUV disks with the largest size ( 1 deg and 30 arcmin). The Subaru HSC permits unprecedentedly deep imaging over these gigantic XUV disks, including sufficient surrounding areas which are used for sky subtraction and statistical estimation of background contamination. This project probes the building history of the XUV disks using archeological stellar populations, especially the tip of red giant branch (TRGB) stars (age 2-14 Gyr). Their presence and distribution over the XUV disks will reveal any star formation (SF) occurring over the past 2 Gyr, 4-6 Gyr, and beyond - i.e., the epochs preceding the recent (UV-traced) state of SF. Their color depends strongly on metallicity, thus providing an additional measure of star-gas recycling during the evolution of the XUV disks. In addition, we will detect young & massive main sequence stars (<100 Myr) and He-burning stars (100-500 Myr). Comparing various generations of stars, in terms of number densities and spatial distributions, will reveal the much-unexplored SF history in the XUV disks.

  11. Identifying the Young Low-mass Stars within 25 pc. II. Distances, Kinematics, and Group Membership

    Science.gov (United States)

    Shkolnik, Evgenya L.; Anglada-Escudé, Guillem; Liu, Michael C.; Bowler, Brendan P.; Weinberger, Alycia J.; Boss, Alan P.; Reid, I. Neill; Tamura, Motohide

    2012-10-01

    We have conducted a kinematic study of 165 young M dwarfs with ages of lsim300 Myr. Our sample is composed of stars and brown dwarfs with spectral types ranging from K7 to L0, detected by ROSAT and with photometric distances of lsim25 pc assuming that the stars are single and on the main sequence. In order to find stars kinematically linked to known young moving groups (YMGs), we measured radial velocities for the complete sample with Keck and CFHT optical spectroscopy and trigonometric parallaxes for 75 of the M dwarfs with the CAPSCam instrument on the du Pont 2.5 m Telescope. Due to their youthful overluminosity and unresolved binarity, the original photometric distances for our sample underestimated the distances by 70% on average, excluding two extremely young (lsim3 Myr) objects found to have distances beyond a few hundred parsecs. We searched for kinematic matches to 14 reported YMGs and identified 10 new members of the AB Dor YMG and 2 of the Ursa Majoris group. Additional possible candidates include six Castor, four Ursa Majoris, two AB Dor members, and one member each of the Her-Lyr and β Pic groups. Our sample also contains 27 young low-mass stars and 4 brown dwarfs with ages lsim150 Myr that are not associated with any known YMG. We identified an additional 15 stars that are kinematic matches to one of the YMGs, but the ages from spectroscopic diagnostics and/or the positions on the sky do not match. These warn against grouping stars together based only on kinematics and that a confluence of evidence is required to claim that a group of stars originated from the same star-forming event. Based on observations collected at the W. M. Keck Observatory, the Canada-France-Hawaii Telescope, the du Pont Telescope at Las Campanas Observatory, and the Subaru Telescope. The Keck Observatory is operated as a scientific partnership between the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial

  12. A dearth of short-period massive binaries in the young massive star forming region M 17. Evidence for a large orbital separation at birth?

    Science.gov (United States)

    Sana, H.; Ramírez-Tannus, M. C.; de Koter, A.; Kaper, L.; Tramper, F.; Bik, A.

    2017-03-01

    Aims: The formation of massive stars remains poorly understood and little is known about their birth multiplicity properties. Here, we aim to quantitatively investigate the strikingly low radial-velocity dispersion measured for a sample of 11 massive pre- and near-main-sequence stars (σ1D= 5.6 ± 0.2 km s-1) in the very young massive star forming region M 17, in order to obtain first constraints on the multiplicity properties of young massive stellar objects. Methods: We compute the radial-velocity dispersion of synthetic populations of massive stars for various multiplicity properties and we compare the obtained σ1D distributions to the observed value. We specifically investigate two scenarios: a low binary fraction and a dearth of short-period binary systems. Results: Simulated populations with low binary fractions () or with truncated period distributions (Pcutoff > 9 months) are able to reproduce the low σ1D observed within their 68%-confidence intervals. Furthermore, parent populations with fbin > 0.42 or Pcutoff < 47 d can be rejected at the 5%-significance level. Both constraints are in stark contrast with the high binary fraction and plethora of short-period systems in few Myr-old, well characterized OB-type populations. To explain the difference in the context of the first scenario would require a variation of the outcome of the massive star formation process. In the context of the second scenario, compact binaries must form later on, and the cut-off period may be related to physical length-scales representative of the bloated pre-main-sequence stellar radii or of their accretion disks. Conclusions: If the obtained constraints for the M 17's massive-star population are representative of the multiplicity properties of massive young stellar objects, our results may provide support to a massive star formation process in which binaries are initially formed at larger separations, then harden or migrate to produce the typical (untruncated) power-law period

  13. Chemical Soups Around Cool Stars

    Science.gov (United States)

    2009-01-01

    This artist's conception shows a young, hypothetical planet around a cool star. A soupy mix of potentially life-forming chemicals can be seen pooling around the base of the jagged rocks. Observations from NASA's Spitzer Space Telescope hint that planets around cool stars the so-called M-dwarfs and brown dwarfs that are widespread throughout our galaxy might possess a different mix of life-forming, or prebiotic, chemicals than our young Earth. Life on our planet is thought to have arisen out of a pond-scum-like mix of chemicals. Some of these chemicals are thought to have come from a planet-forming disk of gas and dust that swirled around our young sun. Meteorites carrying the chemicals might have crash-landed on Earth. Astronomers don't know if these same life-generating processes are taking place around stars that are cooler than our sun, but the Spitzer observations show their disk chemistry is different. Spitzer detected a prebiotic molecule, called hydrogen cyanide, in the disks around yellow stars like our sun, but found none around cooler, less massive, reddish stars. Hydrogen cyanide is a carbon-containing, or organic compound. Five hydrogen cyanide molecules can join up to make adenine a chemical element of the DNA molecule found in all living organisms on Earth.

  14. NIRCam Coronagraphic Observations of Disks and Planetary Systems

    Science.gov (United States)

    Beichman, Charles A.; Ygouf, Marie; Gaspar, Andras; NIRCam Science Team

    2017-06-01

    The NIRCam coronagraph offers a dramatic increase in sensitivity at wavelengths of 3-5 um where young planets are brightest. While large ground-based telescopes with Extreme Adaptive Optics have an advantage in inner working angle, NIRCam's sensitivity will allow high precision photometry for known planets and searches for planets with masses below that of Saturn. For debris disk science NIRCam observations will address the scattering properties of dust, look for evidence of ices and tholins, and search for planets which affect the structure of the disk itself.The NIRCam team's GTO program includes medium-band filter observations of known young planets having 1-5 Jupiter masses. A collaborative program with the MIRI team will provide coronagraphic observations at longer wavelengths. The combined dataset will yield the exoplanet’s total luminosity and effective temperature, an estimate of the initial entropy of the newly-formed planet, and the retrieval of atmospheric properties.The program will also make deep searches for lower mass planets toward known planetary systems, nearby young M stars and debris disk systems. Achievable mass limits range from ~1 Jupiter mass beyond 20 AU for the brightest A stars to perhaps a Uranus mass within 10 AU for the closest M stars.We will discuss details of the coronagraphic program for both the exoplanet and debris disk cases with an emphasis on using APT to optimize the observations of target and reference stars.

  15. Understanding Gas-Phase Ammonia Chemistry in Protoplanetary Disks

    Science.gov (United States)

    Chambers, Lauren; Oberg, Karin I.; Cleeves, Lauren Ilsedore

    2017-01-01

    Protoplanetary disks are dynamic regions of gas and dust around young stars, the remnants of star formation, that evolve and coagulate over millions of years in order to ultimately form planets. The chemical composition of protoplanetary disks is affected by both the chemical and physical conditions in which they develop, including the initial molecular abundances in the birth cloud, the spectrum and intensity of radiation from the host star and nearby systems, and mixing and turbulence within the disk. A more complete understanding of the chemical evolution of disks enables a more complete understanding of the chemical composition of planets that may form within them, and of their capability to support life. One element known to be essential for life on Earth is nitrogen, which often is present in the form of ammonia (NH3). Recent observations by Salinas et al. (2016) reveal a theoretical discrepancy in the gas-phase and ice-phase ammonia abundances in protoplanetary disks; while observations of comets and protostars estimate the ice-phase NH3/H2O ratio in disks to be 5%, Salinas reports a gas-phase NH3/H2O ratio of ~7-84% in the disk surrounding TW Hydra, a young nearby star. Through computational chemical modeling of the TW Hydra disk using a reaction network of over 5000 chemical reactions, I am investigating the possible sources of excess gas-phase NH3 by determining the primary reaction pathways of NH3 production; the downstream chemical effects of ionization by ultraviolet photons, X-rays, and cosmic rays; and the effects of altering the initial abundances of key molecules such as N and N2. Beyond providing a theoretical explanation for the NH3 ice/gas discrepancy, this new model may lead to fuller understanding of the gas-phase formation processes of all nitrogen hydrides (NHx), and thus fuller understanding of the nitrogen-bearing molecules that are fundamental for life as we know it.

  16. Discovery of a point-like source and a third spiral arm in the transition disk around the Herbig Ae star MWC 758

    Science.gov (United States)

    Reggiani, M.; Christiaens, V.; Absil, O.; Mawet, D.; Huby, E.; Choquet, E.; Gomez Gonzalez, C. A.; Ruane, G.; Femenia, B.; Serabyn, E.; Matthews, K.; Barraza, M.; Carlomagno, B.; Defrère, D.; Delacroix, C.; Habraken, S.; Jolivet, A.; Karlsson, M.; Orban de Xivry, G.; Piron, P.; Surdej, J.; Vargas Catalan, E.; Wertz, O.

    2018-03-01

    Context. Transition disks offer the extraordinary opportunity to look for newly born planets and to investigate the early stages of planet formation. Aim. In this context we observed the Herbig A5 star MWC 758 with the L'-band vector vortex coronagraph installed in the near-infrared camera and spectrograph NIRC2 at the Keck II telescope, with the aim of unveiling the nature of the spiral structure by constraining the presence of planetary companions in the system. Methods: Our high-contrast imaging observations show a bright (ΔL' = 7.0 ± 0.3 mag) point-like emission south of MWC 758 at a deprojected separation of 20 au (r = 0.''111 ± 0.''004) from the central star. We also recover the two spiral arms (southeast and northwest), already imaged by previous studies in polarized light, and discover a third arm to the southwest of the star. No additional companions were detected in the system down to 5 Jupiter masses beyond 0.''6 from the star. Results: We propose that the bright L'-band emission could be caused by the presence of an embedded and accreting protoplanet, although the possibility of it being an asymmetric disk feature cannot be excluded. The spiral structure is probably not related to the protoplanet candidate, unless on an inclined and eccentric orbit, and it could be due to one (or more) yet undetected planetary companions at the edge of or outside the spiral pattern. Future observations and additional simulations will be needed to shed light on the true nature of the point-like source and its link with the spiral arms. The reduced images (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/611/A74

  17. Debris Disks: Probing Planet Formation

    OpenAIRE

    Wyatt, Mark C.

    2018-01-01

    Debris disks are the dust disks found around ~20% of nearby main sequence stars in far-IR surveys. They can be considered as descendants of protoplanetary disks or components of planetary systems, providing valuable information on circumstellar disk evolution and the outcome of planet formation. The debris disk population can be explained by the steady collisional erosion of planetesimal belts; population models constrain where (10-100au) and in what quantity (>1Mearth) planetesimals (>10km i...

  18. StarPals International Young Astronomers' Network Collaborative Projects for IYA

    Science.gov (United States)

    Kingan, Jessi

    2008-09-01

    StarPals is a nascent non-profit organization with the goal of providing opportunities for international collaboration between students of all ages within space science research. We believe that by encouraging an interest in the cosmos, the one thing that is truly Universal, from a young age, students will not only further their knowledge of and interest in science but will learn valuable teamwork and life skills. The goal is to foster respect, understanding and appreciation of cultural diversity among all StarPals participants, whether students, teachers, or mentors. StarPals aims to inspire students by providing opportunities i