Sample records for yoru suisan apatite

  1. Super water repellent finishing technology by simulating bio-structures. Improvement of chemical durability by super water repellent finishing of hydroxy- apatite/titan composite films prepared by high-frequency plasma arc spraying; Seibutsu no kozo wo mohoshita chohassuika gijutsu. Koshuha plasma yoshaho ni yori sakuseishita suisan apataito/chitan fukugo himaku no chohassuika ni yoru kagakuteki taikyusei no kojo

    Hozumi, A.; Inagaki, M.; Okuderaa, H.; Nishizawa, K.; Nagata, F.; Teraoka, H.; Yokogawa, Y.; Kameyama, T. [National Industrial Research Institute of Nagoya, Nagoya (Japan)


    Artificial joint and tooth root produced by coating hydroxy- apatite (HA) onto Ti alloy base surface by DC plasma torch arc spraying in commercially available in Europe, and have been used for persons not less than 100,000 since 1985. However, peeling and dissolution of coats after implant have been reported as a serious problem. The long-term stability of coats is dependent on the chemical durability of coats. Paying attention to physical structure of HA/Ti composite film surface. this study attempted super water repellent finishing of the surface through reduction of surface energy by chemical modification of the surface in a molecular level. Self-organization single-molecule film of organic silane compound with perfluoroalkyl group was formed by CVD on the HA/Ti composite film surface prepared on Ti alloy by high- frequency plasma arc spraying. The extremely hydrophobic HA/Ti composite film with a contact angle ranging 130-160 degrees was thus obtained from the highly hydrophilic coat. This sample showed a very high chemical durability as compared with conventional ones. (NEDO)

  2. Apatite Biominerals

    Christèle Combes


    Full Text Available Calcium phosphate apatites offer outstanding biological adaptability that can be attributed to their specific physico-chemical and structural properties. The aim of this review is to summarize and discuss the specific characteristics of calcium phosphate apatite biominerals in vertebrate hard tissues (bone, dentine and enamel. Firstly, the structural, elemental and chemical compositions of apatite biominerals will be summarized, followed by the presentation of the actual conception of the fine structure of synthetic and biological apatites, which is essentially based on the existence of a hydrated layer at the surface of the nanocrystals. The conditions of the formation of these biominerals and the hypothesis of the existence of apatite precursors will be discussed. Then, we will examine the evolution of apatite biominerals, especially during bone and enamel aging and also focus on the adaptability of apatite biominerals to the biological function of their related hard tissues. Finally, the diagenetic evolution of apatite fossils will be analyzed.

  3. Wrong Forms of some Yorùbá Personal Names: Some Phonological and Sociolinguistic Implications

    Reuben Olúwáfẹ́mi Ìkọ̀tún


    Full Text Available In this study, we examine the wrong forms of some Yorùbá sentences that have become personal names through compounding. The data were extracted from the Joint Admissions and Matriculation Board (JAMB lists of candidates that were considered for admission into three Nigerian Universities between the 2005 and 2010 academic sessions. The names extracted from that source were compared with names written in the staff lists of the three Universities in Nigeria. The wrongly written names were recorded on tapes and some native speakers were asked to listen to them to determine their correctness. We argue that wrong forms of some Yorùbá sentential/personal names are common occurrences and establish that they are traceable to the freedom granted by Yorùbá orthography developers. We also argue that, the confusion that results from the different spelling forms of some Yorùbá personal names is seriously observable in social interactions, labour market, schools or Colleges of Education/Universities, Embassies and Nigerian civil service both Federal and State and that court affidavits become imperative to authenticate or reconcile both the wrong and the correct forms for the purposes of admissions, appointments and overseas travelling documents. Similarly, we show that the position of the Yorùbá orthography developers has resulted in a loss of the actual pronunciation of some Yorùbá personal names which has severe implications for the semantic contents of the names as well as implications for the rich religious, cultural and philosophical heritage of the Yorùbá people.

  4. Hanford Apatite Treatability Test Report Errata: Apatite Mass Loading Calculation

    Szecsody, James E.; Vermeul, Vincent R.; Williams, Mark D.; Truex, Michael J.


    The objective of this errata report is to document an error in the apatite loading (i.e., treatment capacity) estimate reported in previous apatite treatability test reports and provide additional calculation details for estimating apatite loading and barrier longevity. The apatite treatability test final report (PNNL-19572; Vermeul et al. 2010) documents the results of the first field-scale evaluation of the injectable apatite PRB technology. The apatite loading value in units of milligram-apatite per gram-sediment is incorrect in this and some other previous reports. The apatite loading in units of milligram phosphate per gram-sediment, however, is correct, and this is the unit used for comparison to field core sample measurements.

  5. Effects of pH of the aqueous solutions on the growth of hydroxyapatite whiskers; Suisan apatite whisker no seicho ni oyobosu suiyoeki no pH no eikyo

    Iizuka, T.; Nozuma, A. [NICHIAS Corporation, Shizuoka (Japan)


    In this study, the synthesis of hydroxyapatite whiskers at 90degC using solution method is carried out, and the effects of pH, mole ration of blended Ca/P and solution concentration on the growth of the whiskers are examined thus obtaining the following findings. Hydroxyapatite whisker aggregates are synthesized by adjusting a mixed solution of calcium chloride dissolved in hydrochloride acid and dipotassium hydrogenphosphate to have a pH vale of 4.4. To 5.00 and heating the same at 90degC for 24 hours. But meanwhile, monetite crystal precipitates slightly. The form of the synthesized whisker aggregate changes from spherical form to arborescent form and cone-like form with the adjustment of pH to higher values. When P concentration is 0.012M and the ratio of blended Ca/P is increased from 1.67 to 5, the initial pH of the precipitation reaction becomes lower whereas the form of the precipitate and the precipitation amount are scarcely influenced by the mole ratio of blended Ca/P. 24 refs., 5 figs.

  6. Apatite glass-ceramics: a review

    Duminis, Tomas; Shahid, Saroash; Hill, Robert Graham


    This article is a review of the published literature on apatite glass-ceramics (GCs). Topics covered include crystallization mechanisms of the various families of the apatite GCs and an update on research and development on apatite GCs for applications in orthopedics, dentistry, optoelectronics and nuclear waste management. Most apatite GCs crystallize through a homogenous nucleation and crystallization mechanism, which is aided by a prior liquid-liquid phase separation. Careful control of the base glass composition and heat-treatment conditions, which determine the nature and morphology of the crystal phases in the GC can produce GC materials with exceptional thermal, mechanical, optical and biological properties. The GCs reviewed for orthopedic applications exhibit suitable mechanical properties and can chemically bond to bone and stimulate its regeneration. The most commercially successful apatite GCs are those developed for dental veneering. These materials exhibit excellent translucency and clinical esthetics, and mimic the natural tooth mineral. Due to the ease of solid solution of the apatite lattice, rare earth doped apatite GCs are discussed for potential applications in optoelectronics and nuclear waste management. One of the drawbacks of the commercial apatite GCs used in orthopedics is the lack of resorbability, therefore the review provides a direction for future research in the field.

  7. Bioactivity of mica/apatite glass ceramics


    The bioactivity of mica/apatite glass ceramic composites, including the in vitro behavior in simulated body fluid and the histological appearance of the interface between the mica/apatite glass ceramics and the rabbit mandible defect in vivo under a dynamic condition. The results show that biological apatite layer forms on the surface of the mica/apatite glass ceramics after 1 d of immersion in the simulated body fluid, and becomes dense after 14 d. In vivo tests indicate that bone formation occurs after implantation for 14 d, and strong bonding of bone to the implant occurs after 42 d. No aseptic loosening occurs during 42 d of implantation. The finding shows that mica/apatite glass ceramics have good bioactivity and osteoconductivity for constructing bone graft, and can be promising for biomedical application.

  8. U-Pb Ages of Lunar Apatites

    Vaughan, J.; Nemchin, A. A.; Pidgeon, R. T.; Meyer, Charles


    Apatite is one of the minerals that is rarely utilized in U-Pb geochronology, compared to some other U-rich accessory phases. Relatively low U concentration, commonly high proportion of common Pb and low closure temperature of U-Pb system of apatite inhibit its application as geochronological tool when other minerals such as zircon are widely available. However, zircon appear to be restricted to certain type of lunar rocks, carrying so called KREEP signature, whereas apatite (and whitlockite) is a common accessory mineral in the lunar samples. Therefore, utilizing apatite for lunar chronology may increase the pool of rocks that are available for U-Pb dating. The low stability of U-Pb systematics of apatite may also result in the resetting of the system during meteoritic bombardment, in which case apatite may provide an additional tool for the study of the impact history of the Moon. In order to investigate these possibilities, we have analysed apatites and zircons from two breccia samples collected during the Apollo 14 mission. Both samples were collected within the Fra Mauro formation, which is interpreted as a material ejected during the impact that formed the Imbrium Basin.

  9. Formation of Apatite in Simulated Body Fluid

    FAN Dong-hui; XU Zheng; LI Shi-pu; YAN Yu-hua


    It is confirmed that the essential condition for glasses and glass-ceramics to bond to living bone is the formation of an apatite layer on their surfaces in the body. It is proposed that a hydrated silica formed on the surfaces of these materials in the body plays an important role in forming the surface apatite layer, which has noi been proved yet. It is shown experimentally that a pure hydrated silica gel can induce the apatite formation on its surface in a simulated body fluid when its starting pH is increased from 7.2 to 7.4.

  10. Cell Interactions within Biomimetic Apatite Microenvironments

    Tsang, Eric


    Bioactive ceramics, such as calcium phosphate-based materials, have been studied extensively for the regeneration of bone tissue. Accelerated apatite coatings prepared from biomimetic methods is one approach that has had a history of success in both in vitro and in vivo studies for bone regeneration [1]-[4]. However, how cells interact within the apatite microenvironment remains largely unclear, despite the vast literature available today. In response, this thesis evaluates the in vitro i...

  11. Apatite Formation: Why It May Not Work as Planned, and How to Conclusively Identify Apatite Compounds

    Christophe Drouet


    Full Text Available Calcium phosphate apatites are inorganic compounds encountered in many different mineralized tissues. Bone mineral, for example, is constituted of nanocrystalline nonstoichiometric apatite, and the production of “analogs” through a variety of methods is frequently reported. In another context, the ability of solid surfaces to favor the nucleation and growth of “bone-like” apatite upon immersion in supersaturated fluids such as SFB is commonly used as one evaluation index of the “bioactivity” of such surfaces. Yet, the compounds or deposits obtained are not always thoroughly characterized, and their apatitic nature is sometimes not firmly assessed by appropriate physicochemical analyses. Of particular importance are the “actual” conditions in which the precipitation takes place. The precipitation of a white solid does not automatically indicate the formation of a “bone-like carbonate apatite layer” as is sometimes too hastily concluded: “all that glitters is not gold.” The identification of an apatite phase should be carefully demonstrated by appropriate characterization, preferably using complementary techniques. This review considers the fundamentals of calcium phosphate apatite characterization discussing several techniques: electron microscopy/EDX, XRD, FTIR/Raman spectroscopies, chemical analyses, and solid state NMR. It also underlines frequent problems that should be kept in mind when making “bone-like apatites.”

  12. Structural properties of apatites from Finland studied by FTIR spectroscopy

    Veiderma, M.


    Full Text Available Studies by XRD and FTIR analyses of the structure of Sokli and Siilinjärvi apatites and a comparison with the Kola and Kovdor apatites are presented. In the structure of apatites from Finland the occurrence of F...OH and F...OH...F bonds and the incorporation of (CO32- ions into A and B positions were established.

  13. RBS and RNRA studies on sorption of europium by apatite

    Ohnuki, Toshihiko; Kozai, Naofumi; Isobe, Hiroshi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Murakami, Takashi; Yamamoto, Shunya; Aoki, Yasushi; Naramoto, Hiroshi


    The sorption mechanism of europium, alternative of trivalent TRU has been studied based on the depth profiles of elements obtained by Rutherford Backscattering Spectroscopy (RBS) and Resonant Nuclear Reaction Analysis (RNRA). The positive peak for Eu and the negative peak for Ca were observed in the subtracted RBS spectra of the apatites on which Eu was sorbed from that of the fresh apatite. This indicates that Eu was sorbed on apatite, while a fraction of Ca was released from apatite. The peak height for Eu in the RBS spectrum of the apatite obtained at 75degC was higher than that of the apatite at 40degC. The depth profile of hydrogen of the apatite on which Eu was sorbed was similar to that of the fresh apatite. The concentration of Eu in the solution decreased with increasing temperature. On the contrary, the concentration of Ca increased with increasing temperature. Thus, it is concluded that a fraction of Eu is exchanged for Ca in the structure of apatite. (author)

  14. Geochemistry of Apatite from the Apatite-rich Iron Deposits in the Ningwu Region, East Central China


    Four types of apatite have been identified in the Ningwu region. The first type of apatite is widely distributed in the middle dark colored zones (i.e. iron ores) of individual deposits. The assemblage includes magnetite, apatite and actinolite (or diopside). The second type occurs within magnetite-apatite veins in the iron ores. The third type is seen in magnetite-apatite veins and (or)nodules in host rocks (i.e. gabbro-diorite porphyry or gabbro-diorite or pyroxene diorite).The fourth type occurs within apatite-pyrite-quartz veins filling fractures in the Xiangshan Group. Rare earth elements (REE) geochemistry of apatite of the four occurrences in porphyry iron deposits is presented. The REE distribution patterns of apatite are generally similar to those of apatites in the Kiruna-type iron ores, nelsonites. They are enriched in light REE, with pronounced negative Eu anomalies. The similarity of REE distribution patterns in apatites from various deposits in different locations in the world indicates a common process of formation for various ore types, e.g.immiscibility. Early magmatic apatites contain 3031.48-12080 ×10-6 REE. Later hydrothermal apatite contains 1958 ×10-6 REE, indicating that the later hydrothermai ore-forming solution contains lower REE. Although gabbro-diorite porphyry and apatite show similar REE patterns, gabbro-diorite porphyries have no europium anomalies or feeble positive or feeble negative europium anomalies,caused both by reduction environment of mantle source region and by fractionation and crystallization (immiscibility) under a high oxygen fugacity condition. Negative Eu anomalies of apatites were formed possibly due to acquisition of Eu2+ by earlier diopsite during ore magma cooling.The apatites in the Aoshan and Taishan iron deposits yield a narrow variation range of 87Sr/86Sr values from 0.7071 to 0.7073, similar to those of the volcanic and subvoicanic rocks, indicating that apatites were formed by liquid immiscibility and

  15. Analysis on the Difference between Synthetic Hydroxyapatite and Bone Apatite


    The composition and structure of bone apatite and synthetic hydroxyapatite powder prepared by precipitation method, sol-gel method was studied by FTIR, EMPA, AFM in this paper. The results showed that the composition and phase structure of apatite powder prepared by sol-gel method was most similar with that in the bone. The calcium phosphate ratios of apatite prepared by two kinds of wet precipitation was 1.69, and 1.73 respectively. The calcium phosphate ratio of apatite prepared by sol-gel methnd was 1.66. The apatite powder prepared by sol-gel method was hoped to be more bioactive and biocompatible compared with apatite powder prepared by wet precipitation method. The EMPA results proved that the bone consisted of Ca, P, O, Na, Mg, K, Cl,etc elements. The amount of apatite decreased while amount of collagen increased from the outer layer to inner layer of the bone. AFM results showed that HA particle, with the size about 150-450 nm in length, 100-150 nm in width, 15-40 nm in thickness, grown layer upon layer regularly. The long axis was not always parallel to the collagen fiber. The angle between collagen fiber and apatite lamellar was about 30-45 degree.

  16. Strongly bound citrate stabilizes the apatite nanocrystals in bone

    Hu, Y.-Y.; Rawal, A.; Schmidt-Rohr, K.


    Nanocrystals of apatitic calcium phosphate impart the organic-inorganic nanocomposite in bone with favorable mechanical properties. So far, the factors preventing crystal growth beyond the favorable thickness of ca. 3 nm have not been identified. Here we show that the apatite surfaces are studded with strongly bound citrate molecules, whose signals have been identified unambiguously by multinuclear magnetic resonance (NMR) analysis. NMR reveals that bound citrate accounts for 5.5 wt% of the organic matter in bone and covers apatite at a density of about 1 molecule per (2 nm){sup 2}, with its three carboxylate groups at distances of 0.3 to 0.45 nm from the apatite surface. Bound citrate is highly conserved, being found in fish, avian, and mammalian bone, which indicates its critical role in interfering with crystal thickening and stabilizing the apatite nanocrystals in bone


    T. Kaluđerović Radoičić


    Full Text Available In this work, mineral apatite was investigated for the remediation of lead contamination. Two different apatite minerals were used: synthetic apatite, Ca10(PO46(OH2 (hereafter denoted as HAP and natural apatite from Lisina, near Bosilegrad, Serbia (hereafter denoted as LA. Phosphate ore from Lisina deposit consists of 43.3 % apatite in the form of fluorapatite, Ca10(PO46(F2. Sorption properties of HAP and LA were investigated. The results show that both of these minerals are effective in lead removal from the water solution. Sorption capacity of HAP obtained in this experiment is 0.216 mmol Pb/g HAP, while the value for LA is 0.162 mmol Pb/g LA. Modeling of these systems was conducted using Visual Minteq computer program. The values obtained from the computer simulation were compared to experimental values.

  18. Apatite as a Tool for Tracking Magmatic CO2 Contents

    Riker, J.; Humphreys, M.; Brooker, R. A.


    CO2 plays a fundamental role in the evolution of magmatic and volcanic systems, but its low solubility in silicate melts means that direct records of magmatic CO2 concentrations remain elusive. The phosphate mineral apatite is unique among igneous minerals in its capacity to accommodate all major magmatic volatiles (H2O, F, Cl, CO2 and S). Although interest in apatite as a tool for tracking magmatic volatile contents (namely H2O, F, and Cl) has increased in recent years, its potential as a record of magmatic CO2contents remains untapped. We present the results of high-temperature, high-pressure experiments investigating the partitioning behaviour of CO2 between apatite and basaltic melt. Experiments were run in piston cylinder apparatus at 1 GPa and 1250 °C, with a slow initial cooling ramp employed to facilitate crystal growth. Each charge contained the starting basaltic powder doped with Ca-phosphate and variable proportions of H2O, CO2, and F. Run products are glass-rich charges containing 15-25 vol% large, euhedral apatite crystals (± cpx and minor biotite). Experimental apatites and glasses have been characterised by BSE imaging, electron microprobe, and ion microprobe. Apatites range in composition from near-endmember fluorapatite (3.0 wt% F), to near-endmember hydroxyapatite (1.7 wt% H2O), to carbon-rich apatite containing up to 1.6 wt% CO2. Apatite compositions are stoichiometric if all anions (F-, OH-, and CO32—) lie in the channel site, suggesting an "A-type" substitution under these conditions (i.e. CO32— + [] = 2X—, where X is another channel anion and [] is a vacancy; e.g. Fleet et al. 2004). Importantly, CO2 partitions readily into apatite at all fluid compositions considered here. CO2 is also more compatible in apatite than water at our run conditions, with calculated H2O-CO2 exchange coefficients close to or greater than 1. Our results indicate that when channel ions are primarily occupied by H2O and CO2 (i.e. F- and Cl-poor magmatic systems

  19. Development of Tributyl Phosphate Apatite for Uranium Removal

    Kim, HyunJu; Kang, Jaehyuk; Kim, Jungjin; Uma, Wooyong [POSTECH, Daejeon (Korea, Republic of)


    The FTIR results showed that main peaks were shown at 3570 cm-1 in all materials. The band around at 3570 cm-1 indicates the stretching hydroxyl group from HA. Phosphate functional group was observed around at 1040 cm-1. The C-H containing functional group (3000-2950 cm-1) was found only in the TBP-apatite prepared at pH=10 condition. Uranium removal was evaluated under different reaction times, initial U concentrations, and background solution using synthesized HA and TBP-apatite. As NaHCO{sub 3} concentration increased, U removal decreased. In the same condition, TBP-apatite showed better U removal than HA, which indicates TBP-apatite can be used as U removal sorbent.

  20. Acid Vapor Weathering of Apatite and Implications for Mars

    Hausrath, E. M.; Golden, D. C.; Morris, R. V.; Ming, D. W.


    Acid vapor experiments containing apatite, olivine, glass, and a mixture of these phases suggest that secondary phosphates brushite, strengite and others may have formed. Similar reactions may have formed similar minerals in Paso Robles.

  1. Observations on the Apparent Solubility of Carbonate-Apatites.

    Shellis; Lee; Wilson


    Previousreports indicating that the apparent solubilities of carbonate-apatites are low appear to conflict with findings that carbonate incorporation into the apatite structure tends to reduce stability. Carbonate-apatites were prepared by a precipitation method and by hydrolysis of monetite and brushite. Apparent solubility profiles were determined by measuring dissolution after exposure for 24 h to acetate buffers with known saturations with respect to hydroxyapatite. All preparations showed a range of apparent solubilities, in agreement with previous work. Precipitated samples had higher apparent solubilities than samples prepared by hydrolysis and this was correlated with differences in crystallinity. Further experiments showed that pyrophosphate ion reduced the apparent solubility, but it was concluded that pyrophosphate occurring naturally in synthetic apatites would be insufficient to cause low apparent solubilities. Microscopical observations showed that precipitated carbonate-apatites were composed of small crystals of uniform size, whereas carbonate-apatites prepared by hydrolysis consisted of both small crystals and very large crystals. The low apparent solubilities observed in the latter preparations are attributed to the large crystals. The surface phenomena possibly involved in apparent solubility behavior are discussed. Copyright 1999 Academic Press.

  2. The role of brushite and octacalcium phosphate in apatite formation.

    Johnsson, M S; Nancollas, G H


    Studies of apatite mineral formation are complicated by the possibility of forming several calcium phosphate phases. The least soluble, hydroxyapatite (HAP), is preferentially formed under neutral or basic conditions. In more acidic solutions phases such as dicalcium phosphate dihydrate (Brushite, DCPD) and octacalcium phosphate (OCP) are often found. Even under ideal HAP precipitation conditions the precipitates are generally nonstoichiometric, suggesting the formation of calcium-deficient apatites. Both DCPD and OCP have been implicated as possible precursors to the formation of apatite. This may occur by the initial precipitation of DCPD and/or OCP followed by transformation to a more apatitic phase. Although DCPD and OCP are often detected during in vitro crystallization, in vivo studies of bone formation rarely show the presence of these acidic calcium phosphate phases. In the latter case the situation is more complicated, since a large number of ions and molecules are present that can be incorporated into the crystal lattice or adsorbed at the crystallite surfaces. In biological apatite, DCPD and OCP are usually detected only during pathological calcification where the pH is often relatively low. In normal in vivo calcifications these phases have not been found, suggesting the involvement of other precursors or the formation of an initial amorphous calcium phosphate phase (ACP) followed by transformation to apatite.

  3. Insight into Biological Apatite: Physiochemical Properties and Preparation Approaches

    Quan Liu


    Full Text Available Biological apatite is an inorganic calcium phosphate salt in apatite form and nano size with a biological derivation. It is also the main inorganic component of biological hard tissues such as bones and teeth of vertebrates. Consequently, biological apatite has a wide application in dentistry and orthopedics by using as dental fillers and bone substitutes for bone reconstruction and regeneration. Given this, it is of great significance to obtain a comprehensive understanding of its physiochemical and biological properties. However, upon the previous studies, inconsistent and inadequate data of such basic properties as the morphology, crystal size, chemical compositions, and solubility of biological apatite were reported. This may be ascribed to the differences in the source of raw materials that biological apatite are made from, as well as the effect of the preparation approaches. Hence, this paper is to provide some insights rather than a thorough review of the physiochemical properties as well as the advantages and drawbacks of various preparation methods of biological apatite.

  4. Apatite at Olympic Dam, South Australia: A petrogenetic tool

    Krneta, Sasha; Ciobanu, Cristiana L.; Cook, Nigel J.; Ehrig, Kathy; Kontonikas-Charos, Alkis


    The > 10,000 million tonne Olympic Dam Cu-Au-U-Ag deposit, (eastern Gawler Craton, South Australia) is one of the largest orebodies in the World. The deposit is hosted within the Olympic Dam Breccia Complex, placed at the centre of, and resulting from multiple brecciation and Fe-metasomatism of the Roxby Downs Granite (RDG). The latter is part of a larger batholith emplaced at ~ 1.6 Ga. Apatite petrography and chemistry were studied in non-mineralised RDG and coeval granitoids and dolerites, as well as in mineralised RDG from deep (> 2 km) and distal (2.7 km to NE) locations. In both latter cases, although the mineralisation corresponds to the same, early chalcopyrite-pyrite-magnetite ± hematite stage identified in the outer and deeper zones of the deposit itself, the character of granite alteration differs: sericite-chlorite alteration with all feldspar replaced in the deep location; and red-stained K-feldspar on top of prevailing albitization in the distal location. Close-to end-member fluorapatite is a key accessory mineral in all igneous rocks and a common product of early hydrothermal alteration within mineralised granite. Variations in habit, morphology and textures correlate with chemical trends expressed as evolving Cl/F ratios, and concentrations of REE + Y (hereafter REY), Sr, Mn, S, Si and Na. Magmatic apatite is unzoned in the dolerite but features core to REY-enriched rim zonation in the granitoids. Increases in Cl- and Sr-contents correlate with rock basicity. Calculation of Cl in the vapour phase relative to melt at the apatite saturation temperature for zoned apatite in the RDG shows higher values for grains with inclusion-rich cores associated with mafic enclaves, concordant with assimilation of exotic material during magma crystallisation. Hydrothermal alteration of magmatic apatite is most varied in the dolerite where interaction with fluids is expressed as subtle changes in Cl- versus F- and REY-enrichment, and most importantly, S-enrichment in

  5. UV photofunctionalization promotes nano-biomimetic apatite deposition on titanium

    Saita M


    Full Text Available Makiko Saita,1 Takayuki Ikeda,1,2 Masahiro Yamada,1,3 Katsuhiko Kimoto,4 Masaichi Chang-Il Lee,5 Takahiro Ogawa1 1Division of Advanced Prosthodontics, Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA; 2Department of Complete Denture Prosthodontics, Nihon University School of Dentistry, Yokosuka, Japan; 3Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan; 4Department of Prosthodontics and Oral Rehabilitation, 5Yokosuka-Shonan Disaster Health Emergency Research Center and ESR Laboratories, Kanagawa Dental University Graduate School of Dentistry, Yokosuka, Japan Background: Although biomimetic apatite coating is a promising way to provide titanium with osteoconductivity, the efficiency and quality of deposition is often poor. Most titanium implants have microscale surface morphology, and an addition of nanoscale features while preserving the micromorphology may provide further biological benefit. Here, we examined the effect of ultraviolet (UV light treatment of titanium, or photofunctionalization, on the efficacy of biomimetic apatite deposition on titanium and its biological capability.Methods and results: Micro-roughed titanium disks were prepared by acid-etching with sulfuric acid. Micro-roughened disks with or without photofunctionalization (20-minute exposure to UV light were immersed in simulated body fluid (SBF for 1 or 5 days. Photofunctionalized titanium disks were superhydrophilic and did not form surface air bubbles when immersed in SBF, whereas non-photofunctionalized disks were hydrophobic and largely covered with air bubbles during immersion. An apatite-related signal was observed by X-ray diffraction on photofunctionalized titanium after 1 day of SBF immersion, which was equivalent to the one observed after 5 days of immersion of control titanium. Scanning electron microscopy revealed nodular apatite deposition

  6. Study on apatite compounds; Apataitokei kagobutsu ni kansuru kenkyu



    To clarify the material properties of apatite compounds, the synthesis method, and the evaluation of physical properties of material and elementary technology were investigated. For the study on synthesis and crystal growth, a method of precipitating calcium phosphate on the surface of metal was investigated by means of relatively mild electrolytic method using liquid phase system. A new molding method of Ca defective apatite was established. Composite similar to vital bone was prepared by means of a new low-temperature sintering. For the study on chemical properties, from the model experiments, it was found that the self-organizing phenomenon, which is observed in the composite of apatite and collagen, happened between the organic single molecular film and crystal of apatite. For the study on evaluation of physical properties and elementary technology, the surface and interface of ceramics such as apatite were investigated by means of spectroscopy, the electronic state was analyzed by the quantum chemical calculation, and the crystalline structure was analyzed using X-ray equipment. 270 refs., 102 figs., 10 tabs.

  7. Interaction between a bisphosphonate, tiludronate, and biomimetic nanocrystalline apatites.

    Pascaud, Patricia; Gras, Pierre; Coppel, Yannick; Rey, Christian; Sarda, Stéphanie


    Bisphosphonates (BPs) are well established as successful antiresorptive agents for the prevention and treatment of bone diseases such as osteoporosis and Paget's disease. The aim of this work was to clarify the reaction mechanisms between a BP molecule, tiludronate, and the nanocrystalline apatite surface. The adsorption of tiludronate on well-characterized synthetic biomimetic nanocrystalline apatites with homogeneous but different compositions and surface characteristics was investigated to determine the effect of the nanocrystalline apatite substrate on the adsorption behavior. The results show that the adsorption of tiludronate on nanocrystalline biomimetic apatite surfaces varies over a large range. The most immature apatitic samples exhibited the highest affinity and the greatest amount adsorbed at saturation. Maturation of the nanocrystals induces a decrease of these values. The amount of phosphate ion released per adsorbed BP molecule varied, depending on the nanocrystalline substrate considered. The adsorption mechanism, although associated with a release of phosphate ions, cannot be considered as a simple ion exchange process involving one or two phosphate ions on the surface. A two-step process is proposed consisting of a surface binding of BP groups to calcium ions associated with a proton release inducing the protonation of surface orthophosphate ions and their eventual solubilization.

  8. Isotropic radical CO{sub 2}{sup -} in biological apatites

    Rudko, V.V. [Institute of Semiconductor Physics of National Academy of Sciences of Ukraine, 45, pr. Nauky, Kiev 03028 (Ukraine)], E-mail:; Ishchenko, S.S.; Vorona, I.P.; Baran, N.P. [Institute of Semiconductor Physics of National Academy of Sciences of Ukraine, 45, pr. Nauky, Kiev 03028 (Ukraine)


    The isotropic CO{sub 2}{sup -} EPR spectrum at g{approx}2.0006 for {gamma}-irradiated powders of dental enamel annealed at different temperatures up to 320{sup 0}C is studied. The signal intensity is found to increase with the growth of annealing temperature up to 240{sup 0}C. This finding contradicts to the existing model of isotropic CO{sub 2}{sup -} radical in apatites. The possible models of the radical in biological apatite are analyzed and discussed. On the basis of the results obtained it is suggested that in tooth enamel apatite the isotropic CO{sub 2}{sup -} radical is the bulk radical localized in structural voids of hydroxyapatite lattice, which occur in the vicinity of a carbon radical in position B.

  9. Composition dependent thermal annealing behaviour of ion tracks in apatite

    Nadzri, A., E-mail: [Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601 (Australia); Schauries, D.; Mota-Santiago, P.; Muradoglu, S. [Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601 (Australia); Trautmann, C. [GSI Helmholtz Centre for Heavy Ion Research, Planckstrasse 1, 64291 Darmstadt (Germany); Technische Universität Darmstadt, 64287 Darmstadt (Germany); Gleadow, A.J.W. [School of Earth Science, University of Melbourne, Melbourne, VIC 3010 (Australia); Hawley, A. [Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168 (Australia); Kluth, P. [Department of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601 (Australia)


    Natural apatite samples with different F/Cl content from a variety of geological locations (Durango, Mexico; Mud Tank, Australia; and Snarum, Norway) were irradiated with swift heavy ions to simulate fission tracks. The annealing kinetics of the resulting ion tracks was investigated using synchrotron-based small-angle X-ray scattering (SAXS) combined with ex situ annealing. The activation energies for track recrystallization were extracted and consistent with previous studies using track-etching, tracks in the chlorine-rich Snarum apatite are more resistant to annealing than in the other compositions.

  10. Apatite crystal in hard tissue of conodont fossils


    The present study was aimed at examining the nature of apatite crystal in the tooth apparatus of a conodont fossil using transmission electron microscopy (TEM),scanning electron microscopy (SEM),laser Raman microprobe spectrometry and electron-probe microanalysis (EPMA).The hard tissue of the condont consisted of 2 layers and the organization varied with the size of the crystal.Higher magnification showed that the crystals were observed in the lattice of (100) and the central dark lines were not present.Ca,P,and F were detected in the crystal using EPMA.Our results indicate that the apatite crystal in conodont fossils is not hydroxyapatite but fluorapatite.

  11. Electrochemical Studies of Paraquat Adsorbed onto Crystalline Apatite

    Moulay Abderrahim EL MHAMMEDI


    Full Text Available The carbon paste electrode (CPE has been used to analyze the electrochemical behavior of paraquat (PQ adsorbed onto synthesized hydroxyapatite phosphocalcique (HAP in K2SO4 (0.1M. The cyclic voltammetry results obtained corrobate with square wave voltammetry. The influence of variables such as the concentration of paraquat adsorbed onto apatite (PQ/HAP, and the potential scan rate was tested.X-ray diffraction analysis (XRD, Fourier transformed infrared spectroscopy (FTIR analysis and inductively coupled plasma-atomic emission spectrometry (ICP, AES were used for characterization of the apatite.

  12. Depressing effect of sodium hexametaphosphate on apatite in flotation of rutile

    Hao Ding; Hai Lin; Yanxi Deng


    The separation of mtile from apatite by flotation and the mechanism of depressing the apatite of sodium hexametaphosphate were studied. The results showed that rutile and apatite could be separated by using alkyl-imino-bismethylene phosphoric acid and sodium hexametaphosphate as a collector and a regulator, respectively. Sodium hexametaphosphate could selectively dissolve calcium ions on the apatite surface, and make calcium ions break away from lattice binding through combining.

  13. An apatite for progress:inclusions in zircon and titanite constrain petrogenesis and provenance

    Bruand, Emilie; Storey, Craig Darryl; Fowler, Michael


    Apatite has recently gained considerable attention as a mineral with many uses within the Earth and planetary sciences. Apatite chemistry has recently given new insight into a wide range of geological processes and tools, for example, magmatism, metasomatism, planetary geochemistry, and geochronology. We expand the utility of apatite here by presenting a novel way to fingerprint magma chemistry and petrogenesis using apatite inclusions within robust titanite and zircon. We present trace eleme...

  14. Inverted Apatite (U-Th)/He and Fission-track Dates from the Rae craton, Baffin Island, Canada and Implications for Apatite Radiation Damage-He Diffusivity Models

    Ault, A. K.; Reiners, P. W.; Thomson, S. N.; Miller, G. H.


    Coupled apatite (U-Th)/He and fission-track (AFT) thermochronology data from the same sample can be used to decipher complex low temperature thermal histories and evaluate compatibility between these two methods. Existing apatite He damage-diffusivity models parameterize radiation damage annealing as fission-track annealing and yield inverted apatite He and AFT dates for samples with prolonged residence in the He partial retention zone. Apatite chemistry also impacts radiation damage and fission-track annealing, temperature sensitivity, and dates in both systems. We present inverted apatite He and AFT dates from the Rae craton, Baffin Island, Canada, that cannot be explained by apatite chemistry or existing damage-diffusivity and fission track models. Apatite He dates from 34 individual analyses from 6 samples range from 237 ± 44 Ma to 511 ± 25 Ma and collectively define a positive date-eU relationship. AFT dates from these same samples are 238 ± 15 Ma to 350 ± 20 Ma. These dates and associated track length data are inversely correlated and define the left segment of a boomerang diagram. Three of the six samples with 20-90 ppm eU apatite grains yield apatite He and AFT dates inverted by 300 million years. These samples have average apatite Cl chemistry of ≤0.02 wt.%, with no correlation between Cl content and Dpar. Thermal history simulations using geologic constraints, an apatite He radiation damage accumulation and annealing model, apatite He dates with the range of eU values, and AFT date and track length data, do not yield any viable time-temperature paths. Apatite He and AFT data modeled separately predict thermal histories with Paleozoic-Mesozoic peaks reheating temperatures differing by ≥15 °C. By modifying the parameter controlling damage annealing (Rmr0) from the canonical 0.83 to 0.5-0.6, forward models reproduce the apatite He date-eU correlation and AFT dates with a common thermal history. Results imply apatite radiation damage anneals at

  15. Biomimetic nanocrystalline apatites: Emerging perspectives in cancer diagnosis and treatment.

    Al-Kattan, Ahmed; Girod-Fullana, Sophie; Charvillat, Cédric; Ternet-Fontebasso, Hélène; Dufour, Pascal; Dexpert-Ghys, Jeannette; Santran, Véronique; Bordère, Julie; Pipy, Bernard; Bernad, José; Drouet, Christophe


    Nanocrystalline calcium phosphate apatites constitute the mineral part of hard tissues, and the synthesis of biomimetic analogs is now well-mastered at the lab-scale. Recent advances in the fine physico-chemical characterization of these phases enable one to envision original applications in the medical field along with a better understanding of the underlying chemistry and related pharmacological features. In this contribution, we specifically focused on applications of biomimetic apatites in the field of cancer diagnosis or treatment. We first report on the production and first biological evaluations (cytotoxicity, pro-inflammatory potential, internalization by ZR-75-1 breast cancer cells) of individualized luminescent nanoparticles based on Eu-doped apatites, eventually associated with folic acid, for medical imaging purposes. We then detail, in a first approach, the preparation of tridimensional constructs associating nanocrystalline apatite aqueous gels and drug-loaded pectin microspheres. Sustained releases of a fluorescein analog (erythrosin) used as model molecule were obtained over 7 days, in comparison with the ceramic or microsphere reference compounds. Such systems could constitute original bone-filling materials for in situ delivery of anticancer drugs.

  16. Lead Speciation and Bioavailability in Apatite-Amended Sediments

    Kirk G. Scheckel


    Full Text Available The in situ sequestration of lead (Pb in sediment with a phosphate amendment was investigated by Pb speciation and bioavailability. Sediment Pb in preamendment samples was identified as galena (PbS with trace amounts of absorbed Pb. Sediment exposed to atmospheric conditions underwent conversion to hydrocerussite and anglesite. Sediments mixed with apatite exhibited limited conversion to pyromorphite, the hypothesized end product. Conversion of PbS to pyromorphite is inhibited under reducing conditions, and pyromorphite formation appears limited to reaction with pore water Pb and PbS oxidation products. Porewater Pb values were decreased by 94% or more when sediment was amended with apatite. The acute toxicity of the sediment Pb was evaluated with Hyalella azteca and bioaccumulation of Pb with Lumbriculus variegatus. The growth of H. azteca may be mildly inhibited in contaminated sediment, with apatite-amended sediments exhibiting on average a higher growth weight by approximately 20%. The bioaccumulation of Pb in L. variegatus tissue decreased with increased phosphate loading in contaminated sediment. The study indicates limited effectiveness of apatite in sequestering Pb if present as PbS under reducing conditions, but sequestration of porewater Pb and stabilization of near-surface sediment may be a feasible and alternative approach to decreasing potential toxicity of Pb.

  17. Apatite accumulation enhances the mechanical property of anammox granules

    Lin, Y. M.; Lotti, T.; Sharma, P. K.; van Loosdrecht, M. C. M.


    The strength of granular sludge is essential for the mechanical stability of the granules. Inorganic precipitants form a major factor influencing the strength of the granules. To check the possibility of apatite accumulation in anammox granules, and study its contribution to the mechanical strength

  18. Thermodynamic basis for evolution of apatite in calcified tissues (Invited)

    Navrotsky, A.; Drouet, C.; Rollin-Martinet, S.; Champion, E.; Grossin, D.


    Bone remodeling and tooth enamel maturation are biological processes which alter the physico-chemical features of biominerals with time. However, although the ubiquity of bone remodeling is clear, why is well crystallized bone mineral systematically replaced by immature nanocrystalline inorganic material? In enamel, a clear evolution is also seen from the first mineral formed during the secretory stage to its mature well crystalline form, which then changes little in the adult tooth. This contribution provides the thermodynamic basis underlying these biological processes. We determined the energetics of biomimetic apatites corresponding to an increasing degree of maturation. Our data point out the progressive evolution of the enthalpy (ΔHf°) and free energy (ΔGf°) of formation toward more negative values upon maturation. Entropy contributions to ΔGf° values are small compared to enthalpy contributions. ΔHf° varies from -12058.9 × 12.2 to -12771.0 × 21.4 kJ/mol for maturation times increasing from 20 min to 3 weeks, approaching the value for stoichiometric hydroxyapatite, -13431.0 × 22.7 kJ/mol. Apatite thermodynamic stability increases as its composition moved toward stoichiometry. These findings imply diminishing aqueous solubility of calcium and phosphate ions as well as decreased surface reactivity. Such thermodynamically-driven maturation is favorable for enamel maturation since this biomineral must resist external aggressions such as contact with acids. In contrast, maintaining a metastable highly reactive and soluble form of apatite is essential to the effective participation of bone as a source of calcium and phosphate for homeostasis. Therefore our data strongly suggest that, far from being trivial, the intrinsic thermodynamic properties of apatite represent a critical driving force for continuous bone remodeling, in contrast to current views favoring a purely biologically driven cycle. These thermodynamic data may prove helpful in other domains

  19. Development of Biomimetic Needle-like Apatite Nanocrystals by a Simple New Method

    Jie WEI; Yubao LI; Yi ZUO; Xueling PENG; Li ZHANG


    A new method of calcium nitrate and sodium phosphate as reactants was employed to prepare biomimetic apatite nanocrystals by a simple heating treatment in water. The structure and properties of the apatite crystals were investigated by TEM, XRD, IR, ICP and TG. It is found that the apatite nanocrystals contain OH-, CO32-, Na+ and HPO~- ions in their crystal structure. The crystal water is removed during heating from 200℃ to 400℃. CO32-and HPO~- are decomposed at 600℃ to 800℃, also there is lattice water lost at this temperature stage. The morphology of the apatite nanocrystals is needle-like with a length less than 80 nm. The size and crystallinity of the apatite nanocrystals increase with water treatment temperature and time. Compared to the apatite crystals sintered at 800℃, water treated apatite nanocrystals are poorly crystallized apatite. The results indicate that the apatite nanocrystals have similarity in composition, structure, morphology and crystallinity to that of bone apatite crystals. It can be used to make apatite crystals/polymer biomimetic bone repair materials or for other biomedical applications.

  20. Dependence of ion concentration in simulated body fluid on apatite precipitation on titania surface

    Sakaguchi, Akira; Nakano, Masayuki; Hieda, Junko; Ohtake, Naoto; Akasaka, Hiroki


    Titanium and its alloys are used as biomaterials, because of their high biocompatibility. Apatite precipitates on a titania surface in vivo, and living bone and titanium alloy are coupled through the thin apatite layer. The initial precipitation behavior of apatite on titania in simulated body fluid (SBF) solutions was evaluated and the effect of inorganic ions in the SBF was investigated. Measurement using the SPR phenomenon was used to evaluate the initial apatite precipitation. An SBF containing approximately equal ion concentrations to those in blood plasma was added to a titania surface and the SPR profile was obtained, from which the initial apatite precipitation rate was found to be 1.14 nm/h. Furthermore, the relationship between the inorganic concentration and the precipitation rate was determined for SBFs with different Na+ and Ca2+ concentrations. Apatite precipitation did not occur in the SBF with a low Na+ concentration, whereas the initial apatite precipitation rate in the SBF that did not contain Ca2+ was 0.32 nm/h. According to these results, Ca2+ has little effect on the initial apatite precipitation. In the initial reaction of apatite precipitation, sodium titanate is formed by the absorption of Na+. Next, calcium titanate precipitates upon the substitution of Na+ with Ca2+. Finally, Na+, phosphate ions and hydroxyl ions are attracted to the surface and apatite is formed. Thus, the rate-limiting factor in the initial nucleation of apatite is the Na+ concentration.

  1. Modulation of nanotube formation in apatite single crystal via organic molecule incorporation

    Matsumoto, Takuya, E-mail: [Department of Oromaxillofacial Regeneration, Osaka University, 1-8 Yamada-Oka, Suita 565-0871 (Japan); Uddin, Mohammad Hafiz; An, Sang Hyun [Department of Oromaxillofacial Regeneration, Osaka University, 1-8 Yamada-Oka, Suita 565-0871 (Japan); Arakawa, Kazuto; Taguchi, Eiji [Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki 567-0047 (Japan); Nakahira, Atsushi [Department of Material Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531 (Japan); Okazaki, Masayuki [Department of Biomaterials Science, Hiroshima University Faculty of Dentistry, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553 (Japan)


    Highlights: {yields} Hydroxyapatite incorporating amino acid was fabricated. {yields} The synthesized crystals showed linearly aligned nano-pores in their structure after their EB irradiation or heating. {yields} Amino acid is considered as an effective porogen for the modulation of internal structure of apatite single crystal. - Abstract: Hydroxyapatite materials are potentially useful for biomedical application, especially as vehicles for functional molecules. Structural control of bulk apatite materials, such as in the fabrication of hollow microspheres or porous structures, has been studied for this purpose. However, control of the internal structure of the source apatite crystal itself is still a challenge. Here, we show that small organic molecules incorporated in apatite crystals act as porogens which control the porous structure of apatite single crystal. The presence of amino acid under apatite synthesis conditions leads to firm bindings and encapsulation of the amino acid in apatite single crystals. Amino acid elimination by heating or electron beam irradiation enhances the pore formation in apatite single crystal. Moreover, incorporation of an acidic amino acid in apatite induces peapod like nanotubes in apatite single crystals. This study suggests the potential of using small organics for nano-structural control of apatite single crystals which would be valuable for enhancing drug loadings or modulating material digestion in vivo.

  2. Biomimetic synthesis and biocompatibility evaluation of carbonated apatites template-mediated by heparin

    Deng, Yi [Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081 (China); Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Sun, Yuhua [Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081 (China); Chen, Xiaofang [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Zhu, Peizhi, E-mail: [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China); Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055 (United States); Wei, Shicheng, E-mail: [Department of Oral and Maxillofacial Surgery, Laboratory of Interdisciplinary Studies, School and Hospital of Stomatology, Peking University, Beijing 100081 (China); Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871 (China)


    Biomimetic synthesis of carbonated apatites with good biocompatibility is a promising strategy for the broadening application of apatites for bone tissue engineering. Most researchers were interested in collagen or gelatin-based templates for synthesis of apatite minerals. Inspired by recent findings about the important role of polysaccharides in bone biomineralization, here we reported that heparin, a mucopolysaccharide, was used to synthesize carbonated apatites in vitro. The results indicated that the Ca/P ratio, carbon content, crystallinity and morphology of the apatites varied depending on the heparin concentration and the initial pH value. The morphology of apatite changed from flake-shaped to needle-shaped, and the degree of crystallinity decreased with the increasing of heparin concentration. Biocompatibility of the apatites was tested by proliferation and alkaline phosphatase activity of MC3T3-E1 cells. The results suggested that carbonated apatites synthesized in the presence of heparin were more favorable to the proliferation and differentiation of MC3T3-E1 cells compared with traditional method. In summary, the heparin concentration and the initial pH value play a key role in the chemical constitution and morphology, as well as biological properties of apatites. These biocompatible nano-apatite crystals hold great potential to be applied as bioactive materials for bone tissue engineering. - Highlights: • Heparin was used as a template to synthesize needle-shaped nano-apatite. • Changing the pH value and concentration led to different properties of apatite. • Apatite prepared by heparin was more favorable to the osteogenic differentiation. • Possible synthesis mechanism of apatite templated by heparin was described.

  3. Removal of lead by apatite and its stability in the presence of organic acids.

    Katoh, Masahiko; Makimura, Akihiko; Sato, Takeshi


    In this study, lead sorption and desorption tests were conducted with apatite and organic acids (i.e. citric, malic, and formic acids) to understand lead removal by apatite in the presence of an organic acid and lead dissolution from the lead- and organic-acid-sorbed apatite by such organic acid exposure. The lead sorption test showed that the amount of lead removed by apatite in the presence of organic acid varied depending on the type of acid used. The molar amounts of calcium dissolved from apatite in the presence and absence of organic acid were exactly the same as those of lead removed even under different pH conditions as well as different organic acid concentrations, indicating that the varying amount of lead removal in the presence of different organic acids resulted from the magnitude of the dissolution of apatite and the precipitation of lead phosphate minerals. The percentages of lead dissolved from the organic-acid-sorbed and non-organic-acid-sorbed apatite by all the organic acid extractions were equal and higher than those by water extraction. In particular, the highest extractions were observed in the non-organic-acid-sorbed apatite by citric and malic acids. These results suggest that to immobilize lead by the use of apatite in the presence of organic acids, much more apatite must be added than in the absence of organic acid, and that measures must be taken to ensure that the immobilized lead is not dissolved.

  4. Synthesis and Sintering Character of Nanophase Calcium-deficient Apatite


    Nanophase calcium-deficient hydroxyapatite( CDHA ) with a Ca/P ratio about 1.5 synthesized by chemical wet method was sintered at different temperatures, and then its chemical composition, phase structure and morphology were analyzed with methods of FT- IR spectroscopy, X- ray diffraction (XRD) and field emission scanning microscopy (FESEM), respectively. Results shaw that when the sintering temperature is below 500 ℃ ,apatite crystal keeps a stable size with a diameter of 12-26 nm and a length of 30-66 nm. After being sintered at600 ℃ for 2 h, apatite crystal grows much larger with a diameter of 25-40 nm and a length of 75-100 nm. At the temperature of 700-800 ℃, this powder decomposes into Ca3 ( PO4 )2 - The crystal size of the Ca3 ( PO4 )2surpasses 200 nm in diameter and length. NH4+ ion can be removed at terrperature beyond 300 ℃ .

  5. Collagen-apatite nanocomposite membranes for guided bone regeneration.

    Song, Ju-Ha; Kim, Hyoun-Ee; Kim, Hae-Won


    Collagen-apatite nanocomposite is regarded as a potential biomaterial because of its composition and structure, which are similar to those of human hard tissues. However, there have been few investigations of its mechanical and biological benefits in direct comparison with a collagen equivalent. Herein, we successfully produced a biomedical membrane made of a nanocomposite, and systemically evaluated the mechanical, chemical, and biological properties of the nanocomposite in comparison with those of pure collagen. The results showed that significant improvements were achieved by the nanocomposite approach, particularly in terms of the mechanical strength and chemical stability. The present findings point to the potential usefulness of the collagen-apatite nanocomposite membrane in the field of guided bone regeneration (GBR).

  6. Adherent apatite coating on titanium substrate using chemical deposition.

    Rohanizadeh, R; LeGeros, R Z; Harsono, M; Bendavid, A


    Plasma-sprayed "HA" coatings on commercial orthopedic and dental implants consist of mixtures of calcium phosphate phases, predominantly a crystalline calcium phosphate phase, hydroxyapatite (HA) and an amorphous calcium phosphate (ACP) with varying HA/ACP ratios. Alternatives to the plasma-spray method are being explored because of some of its disadvantages. The purpose of this study was to deposit an adherent apatite coating on titanium substrate using a two-step method. First, titanium substrates were immersed in acidic solution of calcium phosphate resulting in the deposition of a monetite (CaHPO4) coating. Second, the monetite crystals were transformed to apatite by hydrolysis in NaOH solution. Composition and morphology of the initial and final coatings were identified using X-ray diffraction (XRD), Scanning Electron Microscopy, and Energy Dispersive Spectroscopy (EDS). The final coating was porous and the apatite crystals were agglomerated and followed the outline of the large monetite crystals. EDS revealed the presence of calcium and phosphorous elements on the titanium substrate after removing the coating using tensile or scratching tests. The average tensile bond of the coating was 5.2 MPa and cohesion failures were observed more frequently than adhesion failures. The coating adhesion measured using scratch test with a 200-microm-radius stylus was 13.1N. Images from the scratch tracks demonstrated that the coating materials were squashed without fracturing inside and/or at the border of the tracks until the failure point of the coating. In conclusion, this study showed the potential of a chemical deposition method for depositing a coating consisting of either monetite or apatite. This method has the advantage of producing a coating with homogenous composition on even implants of complex geometry or porosity. This method involves low temperatures and, therefore, can allow the incorporation of growth factors or biogenic molecules.

  7. Formation of Ultrafine Apatite Fibers by Sol-gel/Electrospinning

    DING Ya-mei; YUAN Xiao-yan; ZHAO Jin; GUO Wan-chun; WANG Xiu-kui


    Ultrafine apatite fibers were prepared by electrospinning of sol-gel precursor/poly(vinyl pyrrolidone)(PVP) solutions followed by subsequent calcination. The as-electrospun and calcinated fibers were observed under a scanning electron microscope and an optical polarizing microscope. Results show that the morphology and the diameter of as-electrospun fibers strongly depend on the viscosity and the surface tension of sol-gel precursor/PVP solutions. After calcination, the smooth as-electrospun fibers shrink and the fiber diameter decreases because of the removal of the polymer. The chemical evolution upon the transformation of the precursor from a gel to the final apatite fibers was investigated by thermogravimetric-differential thermal analysis, X-ray diffraction, and Fourier transform infrared spectroscopy. It is thus suggested that the crystalline structure of the calcined fibers is largely influenced by the calcination temperature. After being calcined at 600 ℃, the apatite fibers with a diameter of about 280 nm containing β-tricalcium phosphate were obtained.

  8. Field Emission Electron Microprobe Analysis of Halogens in Apatite

    Tacker, R. C.


    Field emission electron microprobe is capable of higher resolution and lower voltage than other microprobes, making it an ideal instrument for analysis of small accessory minerals in thin section such as apatite. In this study, the field emission electron microprobe was evaluated for analysis of fluorine and chlorine in apatite. Analysis was conducted on (001), (100) and an intermediate section of natural apatite crystals, using the JEOL JXA-8530F Hyperprobe, located at Fayetteville State University in Fayetteville, North Carolina. Conditions were beam current of 10 nanoamps, accelerating voltages from 5-20 kV, and spot sizes from 1-10 micrometers. Very short counting times were used, some as little as 2 seconds. Analytical strategies exploited the fact that excitation energies for fluorine Kα are much lower than for chlorine. Earlier studies (e.g. Stormer et al. 1993; Fialin and Chopin, 2006) documented the complex behavior of beam-driven migration, subsurface accumulation and desorption during fluorine analysis. The cumulative effect is increase and then fall of count rates with time and repeated analysis. The details of earlier studies were reproduced: (1) Apatite analysis by electron microprobe has two additional unknown variables, which are the crystallographic orientation of the unknown and of the standard. (2) The most reliable measure of fluorine cps is derived from a regression to zero time, accounting for crystal orientation; (3) Changing the analytical conditions (accelerating voltage, spot size, duration of analysis) changes only the time scale over which migration and desorption take place. New results from the JEOL Hyperprobe show that, for all crystal orientations, initial fluorine cps increase from 5 and 7 kV to 10 kV, but decrease systematically with further increases in kV, interpreted as loss of fluorine without concomitant excitation of X-rays. To date, fluorine analysis is routinely conducted at 15 and 20 kV. In contrast, chlorine initial

  9. Bone-like apatite layer formation on the new resin-modified glass-ionomer cement.

    Nourmohammadi, Jhamak; Sadrnezhaad, S K; Ghader, A Behnam


    In this study, the apatite-forming ability of the new resin-modified glass-ionomer cement was evaluated by soaking the cement in the simulated body fluid. The Fourier Transform Infrared (FTIR) spectrometer and X-Ray Diffraction (XRD) patterns of the soaked cement pointed to the creation of poorly crystalline carbonated apatite. It was found that the releasing of calcium ions from the soaked cement will dominate the undesirable effect of polyacrylic acid on apatite formation. Consequently, the ionic activity products (IAPs) of the apatite in the surrounding medium increased which accelerated apatite nucleation induced by the presence of the Si-OH and COOH groups. Accordingly, the apatite nuclei started to form via primary heterogeneous nucleation and continued by secondary nucleation. Therefore, nucleation and growth occurs as in the layer-by-layer mode so that finite numbers of monolayers are produced. Subsequent formation of film occurs by formation of discrete nuclei (layer-plus-island or SK growth).

  10. 10 Towards a Safer Environment:(7)How apatite minerals remediate Pb, Zn and Mn from wastewater?

    Samy Mohamed Abdallah


    To evaluate the effectiveness of apatite mineral in removing different contaminants from low quality water in the industrial city of abha,Asir region,southwestern of Saudi Arabia two phosphatic clay dominated by apatite mineral were selected.In situ remediation experiment proved that apatite mineral has the highest affinity for Pb and removed more than 94% from initial Pb concentration.The rest of contaminants followed the descending order of:Zn>Mn>Cu>Co>Ni.The sorption of Pb,Zn and Mn onto apatite mineral was well characterized by the Langmuir model.Ternary-metal addition induced competitive sorption among the three metals,with the interfering effect of Pb>Zn>Mn.Durlng metal retention by apatite mineral calcium and phosphate were determined in equilibrium solution.Calcium increased and phosphate decreased with increasing metal disappearance.The greatest increase of calcium and the largest phosphate reduction were found with Pb+2 sorption.This is suggested that Pb+2 retention by apatite was through the dissolution of apatite which mean release of Ca and P into solution and formation of pyromorphite(lead phosphate)as consuming of P.Obtained results suggested that there are two general mechanisms for the ability of apatite mineral to fake up Pb2+,Zn+2 and Mn+2.The first is(ion-ion exchange mechanism)concerned with adsorption of ions on the solid surface followed by their diffusion into apatite mineral and the release of cations originally contained within apatite.The second is(dissolution-precipitation mechanism)concerned to the dissolution of apatite in the aqueous solution containing Pb2+,Zn+2 and Mn+2 followed by the precipitation or coprecipitation.Pb+2 desorption responding to solution pH may indicate that not all the Pb+2 was chemisorbed and fraction of Pb+2 was weakly adsorbed or complexed on the surface of apatite mineral.

  11. Genesis of apatite in the phosphatized limestones of the western continental shelf of India

    Rao, V.P.; Lamboy, M.

    , rods and dumb-bell-shaped apatite microparticles or their coalesced/aggregate forms or microbial filaments. These apatite microparticles resemble fossilized bacteria and are often adhered to clays. SEM-coupled with EDS shows that the phosphate... to fossilized bacterial communities referred by numerous workers, ever since the early work of Cayeux (1939). For example, ovoid and rod- shaped apatite microparticles were reported by O’Brien et al. (1981), Mullins and Rasch (1985), Rao and Nair (1988...

  12. Determination of Uranium in Apatite Minerals by Solvent Extraction--Inductively Coupled Plasma Atomic Emission Spectrometry


    [Abstract] Solvent, extraction-ICP atomic emission spectrometry was applied to the determination of uranium in apatite minerals. Apatite minerals were treated with nitric acid. After removing a small quantity of insoluble residue, uranium was extracted with 0.05 mol/dm^3 1-phonyl-3-mcthyl-4-trifluoroacetyl-5-pyrazolonc-diisobutyl kctone at pH 0.8. The uranium content in the apatite was found to be (20.3〜132.9)×10^%.

  13. Biomimetic nanocrystalline apatite coatings synthesized by Matrix Assisted Pulsed Laser Evaporation for medical applications

    Visan, A. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania); Grossin, D. [CIRIMAT – Carnot Institute, University of Toulouse, ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4 (France); Stefan, N.; Duta, L.; Miroiu, F.M. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania); Stan, G.E. [National Institute of Materials Physics, RO-077125, Magurele-Ilfov (Romania); Sopronyi, M.; Luculescu, C. [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania); Freche, M.; Marsan, O.; Charvilat, C. [CIRIMAT – Carnot Institute, University of Toulouse, ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4 (France); Ciuca, S. [Politehnica University of Bucharest, Faculty of Materials Science and Engineering, Bucharest (Romania); Mihailescu, I.N., E-mail: [National Institute for Lasers, Plasma, and Radiation Physics, 409 Atomistilor Street, RO-77125, MG-36, Magurele-Ilfov (Romania)


    Highlights: • We report the deposition by MAPLE of biomimetic apatite coatings on Ti substrates. • This is the first report of MAPLE deposition of hydrated biomimetic apatite films. • Biomimetic apatite powder was synthesized by double decomposition process. • Non-apatitic environments, of high surface reactivity, are preserved post-deposition. • We got the MAPLE complete transfer as thin film of a hydrated, delicate material. -- Abstract: We report the deposition by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique of biomimetic nanocrystalline apatite coatings on titanium substrates, with potential application in tissue engineering. The targets were prepared from metastable, nanometric, poorly crystalline apatite powders, analogous to mineral bone, synthesized through a biomimetic approach by double decomposition process. For the deposition of thin films, a KrF* excimer laser source was used (λ = 248 nm, τ{sub FWHM} ≤ 25 ns). The analyses revealed the existence, in synthesized powders, of labile non-apatitic mineral ions, associated with the formation of a hydrated layer at the surface of the nanocrystals. The thin film analyses showed that the structural and chemical nature of the nanocrystalline apatite was prevalently preserved. The perpetuation of the non-apatitic environments was also observed. The study indicated that MAPLE is a suitable technique for the congruent transfer of a delicate material, such as the biomimetic hydrated nanohydroxyapatite.

  14. Molecular functionalization of tantalum oxide surface towards development of apatite growth

    Aubry, D.; Volcke, C.; Arnould, Ch.; Humbert, C.; Thiry, P. A.; Delhalle, J.; Mekhalif, Z.


    We have studied the apatite growth dynamics on tantalum oxide surfaces. This nucleation is obtained via an organosilane intermediate layer between the apatite and the substrate surface. Four organosilane layers (differing by their terminal functionality) were investigated. Their characterization with atomic force microscopy and other techniques such as X-ray photoelectron spectroscopy (XPS) and wetting measurements highlighted the influence of the organosilane terminal groups on the apatite growth rates. Results revealed that apatite is indeed growing faster on phosphate terminal groups than on the three other groups studied (vinyl, hydroxyl and carboxyl).

  15. Characterization of antiseptic apatite powders prepared at biomimetics temperature and pH

    Soumia Belouafa


    Full Text Available Antiseptic apatite-based calcium phosphates were prepared as the single-phase powders. Phosphocalcic oxygenated apatites were synthesized from calcium salts and orthophosphate dissolved in oxygenated water solution at 30%, under the biomimetic conditions of 37 °C and pH 7.4. The characterization and chemical analysis of the synthesized biomimetic apatite powders were performed by scanning electron microscopy (SEM, powder X ray diffraction (XRD, Fourier-transformed infrared spectroscopy (FT-IR and chemical analysis. The obtained materials are a calcium deficient apatites with different morphologies.

  16. Molecular functionalization of tantalum oxide surface towards development of apatite growth

    Aubry, D. [Laboratory of Chemistry and Electrochemistry of Surfaces (CES), University of Namur, FUNDP, Rue de Bruxelles 61, B-5000 Namur (Belgium); Volcke, C. [Research Center in Physics of Matter and Radiation (PMR), University of Namur, FUNDP, Rue de Bruxelles 61, B-5000 Namur (Belgium); Arnould, Ch. [Laboratory of Chemistry and Electrochemistry of Surfaces (CES), University of Namur, FUNDP, Rue de Bruxelles 61, B-5000 Namur (Belgium); Humbert, C.; Thiry, P.A. [Research Center in Physics of Matter and Radiation (PMR), University of Namur, FUNDP, Rue de Bruxelles 61, B-5000 Namur (Belgium); Delhalle, J. [Laboratory of Chemistry and Electrochemistry of Surfaces (CES), University of Namur, FUNDP, Rue de Bruxelles 61, B-5000 Namur (Belgium); Mekhalif, Z., E-mail: [Laboratory of Chemistry and Electrochemistry of Surfaces (CES), University of Namur, FUNDP, Rue de Bruxelles 61, B-5000 Namur (Belgium)


    We have studied the apatite growth dynamics on tantalum oxide surfaces. This nucleation is obtained via an organosilane intermediate layer between the apatite and the substrate surface. Four organosilane layers (differing by their terminal functionality) were investigated. Their characterization with atomic force microscopy and other techniques such as X-ray photoelectron spectroscopy (XPS) and wetting measurements highlighted the influence of the organosilane terminal groups on the apatite growth rates. Results revealed that apatite is indeed growing faster on phosphate terminal groups than on the three other groups studied (vinyl, hydroxyl and carboxyl).

  17. Evaluation of apatite silicates as solid oxide fuel cell electrolytes

    Marrero-Lopez, D. [Dpto. de Fisica Aplicada I, Laboratorio de Materiales y Superficies (Unidad Asociada al C.S.I.C.), Universidad de Malaga, 29071 Malaga (Spain); Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Martin-Sedeno, M.C.; Aranda, M.A.G. [Dpto. de Quimica Inorganica, Universidad Malaga, 29071 Malaga (Spain); Pena-Martinez, J. [Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Instituto de Energias Renovables, Parque Tecnologico, Universidad de Castilla La Mancha, 02006 Albacete (Spain); Ruiz-Morales, J.C.; Nunez, P. [Dpto. de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain); Ramos-Barrado, J.R. [Dpto. de Fisica Aplicada I, Laboratorio de Materiales y Superficies (Unidad Asociada al C.S.I.C.), Universidad de Malaga, 29071 Malaga (Spain)


    Apatite-type silicates have been considered as promising electrolytes for Solid Oxide Fuel Cells (SOFC); however studies on the potential use of these materials in SOFC devices have received relatively little attention. The lanthanum silicate with composition La{sub 10}Si{sub 5.5}Al{sub 0.5}O{sub 26.75} has been evaluated as electrolyte with the electrode materials commonly used in SOFC, i.e. manganite, ferrite and cobaltite as cathode materials and NiO-CGO composite, chromium-manganite and Sr{sub 2}MgMoO{sub 6} as anode materials. Chemical compatibility, area-specific resistance and fuel cell studies have been performed. X-ray powder diffraction (XRPD) analysis did not reveal any trace of reaction products between the apatite electrolyte and most of the aforementioned electrode materials. However, the area-specific polarisation resistance (ASR) of these electrodes in contact with apatite electrolyte increased significantly with the sintering temperature, indicating reactivity at the electrolyte/electrode interface. On the other hand, the ASR values are significantly improved using a ceria buffer layer between the electrolyte and electrode materials to prevent reactivity. Maximum power densities of 195 and 65 mWcm{sup -2} were obtained at 850 and 700 C, respectively in H{sub 2} fuel, using an 1 mm-thick electrolyte, a NiO-Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9} composite as anode and La{sub 0.6}Sr{sub 0.4}Co{sub 0.8}Fe{sub 0.2}O{sub 3-{delta}} as cathode materials. This fuel cell was tested for 100 h in 5%H{sub 2}-Ar atmosphere showing stable performance. (author)

  18. Heterotopic bone formation by nano-apatite conraining poly (D,L-lactide)composites

    Barbieri, D.; Renard, A.J.S.; Bruijn, de J.D.; Yuan, H.


    To render polymeric materials osteoinductive, nano-sized calcium phosphate apatite particles (CaP) were introduced into a low molecular weight poly(D,L-lactide). Homogenous composites were made with 10%, 20% and 40% by weight of apatite content while pure polylactide was used as control. Thereafter

  19. Influence of fluoride in poly(d,l-lactide)/apatite composites on bone formation

    Luo, Xiaoman; Barbieri, D.; Passanisi, G.; Yuan, Huipin; de Bruijn, Joost Dick


    The influence of fluoride in poly(d,l-lactide)/apatite composites on ectopic bone formation was evaluated in sheep. Nano-apatite powders with different replacement levels of OH groups by fluoride (F) (0% (F0), 50% (F50), 100% (F100), and excessive (F200)) were co-extruded with poly (d,l-lactide) at

  20. Behaviour of apatite during partial melting of metapelites and consequences for prograde suprasolidus monazite growth

    Yakymchuk, Chris


    The suprasolidus behaviour of apatite and monazite is examined for an average metapelite composition using phase equilibria modelling coupled with solubility equations of these minerals. Both closed- and open-system scenarios are considered. Partial melting above the solidus requires apatite and monazite breakdown in order to saturate the anatectic melt in phosphorus and the light rare earth elements. In general, melt loss is predicted to increase the stability of apatite and monazite at high temperature. Most apatite is predicted to survive up to ultrahigh temperature conditions except for rocks with low bulk phosphorus concentrations. By contrast, most monazite is expected to be consumed by UHT conditions. Thorium substitution in monazite is expected to increase the stability of monazite to higher temperatures. The presence of LREE-rich apatite decreases the stability of monazite above the solidus, but the breakdown of this apatite during anatexis may generate prograde monazite at the apatite-melt interface in local pockets of melt oversaturation. However, prograde suprasolidus monazite along grain boundaries is expected to be consumed during further partial melting or during melt homogenization when an interconnected melt network develops. Anatectic melts are predicted to be saturated with respect to apatite except at UHT conditions and for rocks with low initial P2O5 bulk concentrations.

  1. Study of Thermal Activated CO2 Extraction Processes from Carbonate Apatites Using Gas Chromatography

    V.N. Kuznetsov


    Full Text Available The study of carbonate in the structure of carbonate-containing apatites (CCA is an actual problem due to the similarity of such systems to natural apatites of mammalian bone tissue. The search of the optimal synthesis procedures was also carried out in order to obtain carbonate apatites with the highest rate of carbonate ions incorporation into the apatite structure. The analysis of carbonate-group temperature behavior in apatites of various origin helps to understand their structural and functional roles in biologically relevant apatite materials. The thermal extraction and accumulation of CO2 from biogenic and geological apatites is also of interest for the further carbon isotope analysis with accelerating mass-spectrometry. X-ray diffraction analysis, infrared spectroscopy and scanning electron microscopy as well as self-proposed gas chromatography method with thermo-programmed probe extraction were used for carbonate temperature behavior study. This new method allows determining CO2 concentration released from CCA during annealing. The defined changes in carbonate apatite structure depending on synthesis procedure were observed.

  2. Influence of local charge compensation on site occupation and luminescence of apatites

    Blasse, G.


    The apatite structure contains two different sites for the larger cations. It is shown that the principle of local charge compensation can predict the site occupation. This is especially important for an interpretation of the luminescence properties of a number of apatites. The predictions are compa

  3. Effects of apatite particle size in two apatite/collagen composites on the osteogenic differentiation profile of osteoblastic cells



    The development of new osteoconductive bone substitute materials is expected in medicine. In this study, we attempted to produce new hydroxylapatite (HAP)/collagen (Col) composites using two HAP particles of different sizes and porcine type I collagen. The two HAP particles were either nano-sized (40 nm in average diameter; n-HAP) or had macro-pore sizes of 0.5–1.0 mm in length with fully interconnected pores (m-HAP). The aim of this study was to investigate the effects of apatite particle si...


    Neal A. Yancey


    ABSTRACT. In 2000, a reactive barrier was installed on the East Fork of Ninemile Creek near Wallace, Idaho to treat acid mine discharge. The barrier was filled with fishbone derived Apatite IITM to remove the contaminants of concern (Zn, Pb, and Cd) and raise the pH of the acidic mine discharge. Metal removal has been achieved by a combination of chemical, biological, and physical precipitation. Flow for the water ranges from 5 to 35 gallons per minute. The water is successfully being treated, but the system experienced varying degrees of plugging. In 2002, gravel was mixed with the Apatite IITM to help control plugging. In 2003 the Idaho National Laboratory was ask to provide technical support to the Coeur d’Alene Basin Commission to help identify a remedy to the plugging issue. Air sparging was employed to treat the plugging issues. Plastic packing rings were added in the fall of 2005, which have increased the void space in the media and increased flows during the 10 months of operation since the improvements were made.

  5. Apatite bone cement reinforced with calcium silicate fibers.

    Motisuke, Mariana; Santos, Verônica R; Bazanini, Naiana C; Bertran, Celso A


    Several research efforts have been made in the attempt to reinforce calcium phosphate cements (CPCs) with polymeric and carbon fibers. Due to their low compatibility with the cement matrix, results were not satisfactory. In this context, calcium silicate fibers (CaSiO3) may be an alternative material to overcome the main drawback of reinforced CPCs since, despite of their good mechanical properties, they may interact chemically with the CPC matrix. In this work CaSiO3 fibers, with aspect ratio of 9.6, were synthesized by a reactive molten salt synthesis and used as reinforcement in apatite cement. 5 wt.% of reinforcement addition has increased the compressive strength of the CPC by 250% (from 14.5 to 50.4 MPa) without preventing the cement to set. Ca and Si release in samples containing fibers could be explained by CaSiO3 partial hydrolysis which leads to a quick increase in Ca concentration and in silica gel precipitation. The latter may be responsible for apatite precipitation in needle like form during cement setting reaction. The material developed presents potential properties to be employed in bone repair treatment.

  6. On the development of an apatitic calcium phosphate bone cement

    Manoj Komath; H K Varma; R Sivakumar


    Development of an apatitic calcium phosphate bone cement is reported. 100 Particles of tetracalcium phosphate (TTCP) and dicalcium phosphate dihydrate (DCPD) were mixed in equimolar ratio to form the cement powder. The wetting medium used was distilled water with Na2HPO4 as accelerator to manipulate the setting time. The cement powder, on wetting with the medium, formed a workable putty. The setting times of the putty were measured using a Vicat type apparatus and the compressive strength was determined with a Universal Testing Machine. The nature of the precipitated cement was analyzed through X-ray diffraction (XRD), fourier transform infrared spectrometry (FTIR) and energy dispersive electron microprobe (EDAX). The results showed the phase to be apatitic with a calcium–to–phosphorous ratio close to that of hydroxyapatite. The microstructure analysis using scanning electron microscopy (SEM) showed hydroxyapatite nanocrystallite growth over particulate matrix surface. The structure has an apparent porosity of ∼ 52%. There were no appreciable dimensional or thermal changes during setting. The cement passed the in vitro toxicological screening (cytotoxicity and haemolysis) tests. Optimization of the cement was done by manipulating the accelerator concentration so that the setting time, hardening time and the compressive strength had clinically relevant values.

  7. Incorporation of iodine into apatite structure: a crystal chemistry approach using Artificial Neural Network

    Jianwei eWang


    Full Text Available Materials with apatite crystal structure provide a great potential for incorporating the long-lived radioactive iodine isotope (129I in the form of iodide (I- from nuclear waste streams. Because of its durability and potentially high iodine content, the apatite waste form can reduce iodine release rate and minimize the waste volume. Crystal structure and composition of apatite was investigated for iodide incorporation into the channel of the structure using Artificial Neural Network. A total of 86 experimentally determined apatite crystal structures of different compositions were compiled from literature, and 46 of them were used to train the networks and 42 were used to test the performance of the trained networks. The results show that the performances of the networks are satisfactory for predictions of unit cell parameters a and c and channel size of the structure. The trained and tested networks were then used to predict unknown compositions of apatite that incorporates iodide. With a crystal chemistry consideration, chemical compositions that lead to matching the size of the structural channel to the size of iodide were then predicted to be able to incorporate iodide in the structural channel. The calculations suggest that combinations of A site cations of Ag+, K+, Sr2+, Pb2+, Ba2+, and Cs+, and X site cations, mostly formed tetrahedron, of Mn5+, As5+, Cr5+, V5+, Mo5+, Si4+, Ge4+, and Re7+ are possible apatite compositions that are able to incorporate iodide. The charge balance of different apatite compositions can be achieved by multiple substitutions at a single site or coupled substitutions at both A and X sites. The results give important clues for designing experiments to synthesize new apatite compositions and also provide a fundamental understanding how iodide is incorporated in the apatite structure. This understanding can provide important insights for apatite waste forms design by optimizing the chemical composition and synthesis

  8. Biomimetic magnesium–carbonate-apatite nanocrystals endowed with strontium ions as anti-osteoporotic trigger

    Iafisco, Michele, E-mail:; Ruffini, Andrea; Adamiano, Alessio; Sprio, Simone; Tampieri, Anna


    The present work investigates the preparation of biomimetic nanocrystalline apatites co-substituted with Mg, CO{sub 3} and Sr to be used as starting materials for the development of nanostructured bio-devices for regeneration of osteoporotic bone. Biological-like amounts of Mg and CO{sub 3} ions were inserted in the apatite structure to mimic the composition of bone apatite, whereas the addition of increasing quantities of Sr ions, from 0 up to 12 wt.%, as anti-osteoporotic agent, was evaluated. The chemical–physical features, the morphology, the degradation rates, the ion release kinetics as well as the in vitro bioactivity of the as-prepared apatites were fully evaluated. The results indicated that the incorporation of 12 wt.% of Sr can be viewed as a threshold for the structural stability of Mg–CO{sub 3}-apatite. Indeed, incorporation of lower quantity of Sr did not induce considerable variations in the chemical structure of Mg–CO{sub 3}-apatite, while when the Sr doping extent reached 12 wt.%, a dramatically destabilizing effect was detected on the crystal structure thus yielding alteration of the symmetry and distortion of the PO{sub 4}. As a consequence, this apatite exhibited the fastest degradation kinetic and the highest amount of Sr ions released when tested in physiological conditions. In this respect, the surface crystallization of new calcium phosphate phase when immersed in physiological-like solution occurred by different mechanisms and extents due to the different structural chemistry of the variously doped apatites. Nevertheless, all the apatites synthesized in this work exhibited in vitro bioactivity demonstrating their potential use to develop biomedical devices with anti-osteoporotic functionality. - Highlights: • Biomimetic nanocrystalline apatites co-substituted with Mg, CO{sub 3} and Sr were prepared. • Biological-like amounts of Mg and CO{sub 3} were inserted to mimic the composition of bone apatite. • The addition of increasing

  9. Biomimetic apatite-based composite materials obtained by spark plasma sintering (SPS): physicochemical and mechanical characterizations.

    Brouillet, Fabien; Laurencin, Danielle; Grossin, David; Drouet, Christophe; Estournes, Claude; Chevallier, Geoffroy; Rey, Christian


    Nanocrystalline calcium phosphate apatites are biomimetic compounds analogous to bone mineral and are at the origin of the bioactivity of most biomaterials used as bone substitutes. Their unique surface reactivity originates from the presence of a hydrated layer containing labile ions (mostly divalent ones). So the setup of 3D biocompatible apatite-based bioceramics exhibiting a high reactivity requests the development of «low» temperature consolidation processes such as spark plasma sintering (SPS), in order to preserve the characteristics of the hydrated nanocrystals. However, mechanical performances may still need to be improved for such nanocrystalline apatite bioceramics, especially in view of load-bearing applications. The reinforcement by association with biopolymers represents an appealing approach, while preserving the advantageous biological properties of biomimetic apatites. Herein, we report the preparation of composites based on biomimetic apatite associated with various quantities of microcrystalline cellulose (MCC, 1-20 wt%), a natural fibrous polymer. The SPS-consolidated composites were analyzed from both physicochemical (X-ray diffraction, Fourier transform infrared, solid state NMR) and mechanical (Brazilian test) viewpoints. The preservation of the physicochemical characteristics of apatite and cellulose in the final material was observed. Mechanical properties of the composite materials were found to be directly related to the polymer/apatite ratios and a maximum crushing strength was reached for 10 wt% of MCC.

  10. Apatite-forming ability of polymers with carboxy groups in simulated body fluid

    Kawashita, M.; Nakao, M.; Kim, H.M.; Kokubo, T. [Kyoto Univ. (Japan). Dept. of Material Chemistry; Minoda, M. [Kyoto Inst. of Tech. (Japan). Dept. of Chemistry and Materials Technology; Miyamoto, T. [Matsue National Coll. of Technology (Japan); Nakamura, T. [Kyoto Univ. (Japan). Dept. of Orthopaedic Surgery


    Apatite-polymer composites with analogous structure to that of the natural bone are desired to be developed, since such composites are believed to show biological and mechanical properties similar to those of the natural bone. In the present study, apatite-forming ability of various kinds of polymers with or without carboxy (COOH) groups in simulated body fluid (SBF) was investigated. Carboxymethyl- (CM)- chitin and gellan gum gels, which have COOH groups, formed apatite on their surfaces within 3 d, when they were previously treated with saturated Ca(OH){sub 2} solution. Calcium alginate gel with COOH groups formed apatite on its surface within 7 d without the Ca(OH){sub 2}-treatment, since calcium ions are previously incorporated into the gel structure in the gel-forming process. In contrast, curdlan gel without COOH groups did not form that the COOH groups on a polymer surface are effective for the apatite nucleation and the apatite-forming ability of the polymer can be improved by incorporation of the calcium ions. In conclusion, these types of polymers are promising candidates for obtaining apatite-polymer composites with bonelike structure by a biomimetic process. (orig.)

  11. Transformation of nacre coatings into apatite coatings in phosphate buffer solution at low temperature.

    Guo, Yaping; Zhou, Yu


    Nacre coatings were deposited on Ti6Al4V substrates by electrophoretic technique, and subsequently converted into apatite coatings with hierarchical porous structures by treatment with a phosphate buffer solution. The samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, inductively coupled plasma optical emission spectroscopy, X-ray photoelectron spectroscopy (XPS), and N(2) adsorption-desorption isotherms. The results show that the nacre coatings are converted into the plate-like apatite coatings via a dissolution-precipitation reaction, while the organic components of the nacre are reserved. The mesopores with pore size of 4.4 nm are formed within the plate-like structure, and the macropores are formed among the plate-like structure. Simulated body fluid (SBF) immersion tests reveal that the apatite coatings have a good in vitro bioactivity. Bone-like apatite crystals are formed on the surfaces of the apatite coatings after soaking in SBF for 12 h, and fill up the macropores on the coatings with increasing the soaking time. In addition, XPS indicates that a TiO(x) layer and PO(4) (3-) ions appear on the substrate surfaces by pretreatment with a H(3)PO(4)/HF solution. The TiO(x) layer and PO(4) (3-) ions can induce the formation of apatite crystals, resulting in a composition gradient from the oxide layer to the external apatite layer.

  12. In vitro growth of bioactive nanostructured apatites via agar-gelatin hybrid hydrogel.

    Deng, Yi; Zhao, Xianghui; Zhou, Yongsheng; Zhu, Peizhi; Zhang, Li; Wei, Shicheng


    Biomimetic synthesis of bone-like carbonated apatite with good biocompatibility is a promising strategy for the development of novel biomaterials for bone engineering applications. Most research efforts have been focused on only protein-based or only polysaccharide-based template for synthesis of apatite minerals. To understand the cooperative roles of gelatin and polysaccharide playing in the biomineralization, agar hydrogel, gelatin and agar-gelatin hybrid hydrogel were respectively introduced as mineralization matrix for the in vitro growth of apatite in the study. It was shown that bundle-like carbonated apatite was successfully prepared in agar-gelatin hybrid hydrogel for the first time, through the interaction between apatite and matrix macromolecule under physiological temperature. Moreover, the in vitro biocompatibility of the prepared nanostructured apatite crystals was investigated using CCK-8 assay and alkaline phosphatase activity of osteoblast-like MC3T3-E1. Compared with HA synthesized by traditional method, the obtained apatite in agar-gelatin hybrid hydrogel could provide significantly higher cell viability and alkaline phosphatase activity. Through the study, we could better understand the role of gelatin and polysaccharide in bone formation process, and the product is a promising candidate to be used in bone tissue engineering.

  13. Biomimetic synthesis of calcium-strontium apatite hollow nanospheres


    In this work,calcium-strontium apatite (Sr-HA) hollow nanospheres were synthesized by a facile biomimetic method.The structure and property of Sr-HA were characterized by FESEM,TEM,HRTEM,XRD and FT-IR spectroscopy.The influences of different ratios of calcium and strontium on the morphologies of the Sr-HA products were investigated.The experimental results revealed that the hollow spherical Sr-HA,with a size of 30-120 nm in diameter,could be synthesized when the molar ratio of Ca/Sr was 1:1.The possible formation mechanism of the hollow Sr-HA was proposed.The drug release experiments indicated that the hollow spherical Sr-HA had the property of sustained release.

  14. Nano-apatite/Polymer Biocomposite for Tissue Engineering


    A new kind of tissue engineering scaffold materials of nano-apatite ( NA ) and polyamide6( PA6) biocomposite was prepared by means of the co-solution method. The NA crystals uniformly distribute in the composite with a size of 10- 30 nm in diameter by 50- 90 nm in length. The NA/ PA6 composite has good homogeneity and high NA content, and excellent mechanical properties close to those of natural bone. The porous 3-D scaffold has not only macropores, but also micropores on the walls of macropores with porosity of about 80% and the size of pore diameter of about 300μm made by injection foam. The biocomposite can be used for bone repair and as scaffolds in tissue engineering.

  15. Radionuclide Incorporation and Long Term Performance of Apatite Waste Forms

    Wang, Jianwei [Louisiana State Univ., Baton Rouge, LA (United States); Lian, Jie [Rensselaer Polytechnic Inst., Troy, NY (United States); Gao, Fei [Univ. of Michigan, Ann Arbor, MI (United States)


    This project aims to combines state-of-the-art experimental and characterization techniques with atomistic simulations based on density functional theory (DFT) and molecular dynamics (MD) simulations. With an initial focus on long-lived I-129 and other radionuclides such as Cs, Sr in apatite structure, specific research objectives include the atomic scale understanding of: (1) incorporation behavior of the radionuclides and their effects on the crystal chemistry and phase stability; (2) stability and microstructure evolution of designed waste forms under coupled temperature and radiation environments; (3) incorporation and migration energetics of radionuclides and release behaviors as probed by DFT and molecular dynamics (MD) simulations; and (4) chemical durability as measured in dissolution experiments for long term performance evaluation and model validation.

  16. Magnetic apatite for structural insights on the plasma membrane.

    Stanca, Sarmiza E; Müller, Robert; Dellith, Jan; Nietzsche, Sandor; Stöckel, Stephan; Biskup, Christoph; Deckert, Volker; Krafft, Christoph; Popp, Jürgen; Fritzsche, Wolfgang


    The iron oxide-hydroxyapatite (FeOxHA) nanoparticles reported here differ from those reported before by their advantage of homogeneity and simple preparation; moreover, the presence of carboxymethyldextran (CMD), together with hydroxyapatite (HA), allows access to the cellular membrane, which makes our magnetic apatite unique. These nanoparticles combine magnetic behavior, Raman label ability and the property of interaction with the cellular membrane; they therefore represent an interesting material for structural differentiation of the cell membrane. It was observed by Raman spectroscopy, scanning electron microscopy (SEM) and fluorescence microscopy that FeOxHA adheres to the plasma membrane and does not penetrate the membrane. These insights make the nanoparticles a promising material for magnetic cell sorting, e.g. in microfluidic device applications.

  17. Magnetic apatite for structural insights on the plasma membrane

    Stanca, Sarmiza E.; Müller, Robert; Dellith, Jan; Nietzsche, Sandor; Stöckel, Stephan; Biskup, Christoph; Deckert, Volker; Krafft, Christoph; Popp, Jürgen; Fritzsche, Wolfgang


    The iron oxide-hydroxyapatite (FeOxHA) nanoparticles reported here differ from those reported before by their advantage of homogeneity and simple preparation; moreover, the presence of carboxymethyldextran (CMD), together with hydroxyapatite (HA), allows access to the cellular membrane, which makes our magnetic apatite unique. These nanoparticles combine magnetic behavior, Raman label ability and the property of interaction with the cellular membrane; they therefore represent an interesting material for structural differentiation of the cell membrane. It was observed by Raman spectroscopy, scanning electron microscopy (SEM) and fluorescence microscopy that FeOxHA adheres to the plasma membrane and does not penetrate the membrane. These insights make the nanoparticles a promising material for magnetic cell sorting, e.g. in microfluidic device applications.

  18. Calcium Solubility In Zeolite Synthetic-Apatite Mixtures

    Beiersdorfer, R.; Ming, D. W.


    Life support systems at a lunar or martian outpost will require the ability to produce food growing in 1) treated lunar or martian regolith; 2) a synthetic soil, or 3) some combination of both. Zeoponic soil, composed of NH4 (-) and K-exchanged clinoptilolite (Cp) and synthetic apatite (Ap), can provide slow-release fertilization via dissolution and ion-exchange. Equilibrium studies indicate that KNH4, P, and Mg are available to plants at sufficient levels, however, Ca is deficient. Ca availability can be increased by adding a second Ca-bearing mineral: calcite (Cal); dolomite (Dol); or wollastonite (Wol). Additions of Cal, Dol, and Wol systematically change the concentrations of Ca and P in solution. Cal has the greatest effect, Dol the least, and Wol is intermediate.

  19. Mineralogical and geochemical studies on apatites and phosphate host rocks of Esfordi deposit, Yazd province, to determine the origin and geological setting of the apatite

    Mohammad Ali Rajabzadeh


    Full Text Available Introduction Iron-apatite ore deposits well known as Kiruna iron type formed in association with calc-alkaline volcanism from Proterozoic to Tertiary (Hitzman et al., 1992. Liquid immiscibility in an igneous system was proposed to explain the formation of the iron oxides accompanying apatite in mineralized zones (Förster and Jafarzadeh, 1994; Daliran, 1999. The mode of ore formation however, is a matter in debate. Bafq region in Central Iran is one of the greatest iron mining regions in Iran with 750 million tons of reservoir. The majority of the iron deposits contains apatite as minor mineral and underwent metamorphism-alteration in varying degrees. The mode of formation and geological setting of Esfordi iron-apatite deposit in this region with an average of 13.9 wt% apatite are discussed using geochemical and mineralogical data along with field description. Materials and methods Fifty-three samples of mineralized zones and host rocks collected from 7 cross sections were studied by conventional microscopic methods. Seven representative samples were determined by XRD at Department of Physics, Shiraz University. Fifteen and six samples were also analyzed for major and trace elements using XRF at Binaloud Co. Iran, and ICP-MS at Labwest Minerals Analysis, Australia, respectively. Microprobe analyses were carried out on apatite in Geo Forschungs Zentrum Telegrafenberg at Potsdam University, Germany. Results Field observation shows that igneous host rocks in Esfordi were intensively altered by hydrothermal fluids. The ores are surrounded by wide altered halos. Petrographic investigation indicated that the most important alterations are of potassic, carbonatitic and silicification types. Magnetite and apatite occur as major minerals, accompanied by minor hematite and goethite in the mineralized zones. Rare Earth Element (REE minerals are present as minor phases in the ores. Three apatite mineralization types (vein, massive, and disseminated were

  20. Adsorption of nucleotides on biomimetic apatite: The case of adenosine 5‧ monophosphate (AMP)

    Hammami, K.; Feki, H. El; Marsan, O.; Drouet, C.


    This work investigates the interaction between the nucleotide adenosine 5‧ monophosphate molecule (AMP) and a biomimetic nanocrystalline carbonated apatite as a model for bone mineral. The analogy of the apatite phase used in this work with biological apatite was first pointed out by complementary techniques. AMP adsorption isotherms were then investigated. Obtained data were fitted to a Sips isotherm with an exponent greater than one suggesting positive cooperativity among adsorbed molecules. The data were compared to a previous study relative to the adsorption of another nucleotide, cytidine monophosphate (CMP) onto a similar substrate, evidencing some effect of the chemical nature of the nucleic base. An enhanced adsorption was observed under acidic (pH 6) conditions as opposed to pH 7.4, which parallels the case of DNA adsorption on biomimetic apatite. An estimated standard Gibbs free energy associated to the adsorption process (ΔG°ads ≅ -22 kJ/mol) intermediate between "physisorption" and "chemisorption" was found. The analysis of the solids after adsorption pointed to the preservation of the main characteristics of the apatite substrate but shifts or enhancements of Raman bands attributed to AMP showed the existence of chemical interactions involving both the phosphate and adenine parts of AMP. This contribution adds to the works conducted in view of better understanding the interaction of DNA/RNA and their constitutive nucleotides and the surface of biomimetic apatites. It could prove helpful in disciplines such as bone diagenesis (DNA/apatite interface in aged bones) or nanomedicine (setup of DNA- or RNA-loaded apatite systems). Also, the adsorption of nucleic acids on minerals like apatites could have played a role in the preservation of such biomolecules in the varying conditions known to exist at the origin of life on Earth, underlining the importance of dedicated adsorption studies.

  1. Structure and Phase State of Bone Apatite of Calcified Aortic Fragments with Osteoporosis

    Ya.V. Khyzhnya


    Full Text Available The paper represents the results of the study on the structure and phase composition of bone apatite and fragments of calcified aorta of the same experimental animal with model osteoporosis. Examination by the X-ray and electron diffraction, electron microscopy and infrared spectroscopy reveals that pathological calcification of rabbit aorta with model osteoporosis in crystal-chemical terms is the imperfect calcium apatite Ca10(PO46(OH2. Temperature growth of ectopic apatite crystals during annealing at 900C is similar to bioapatite of bone.

  2. Rare Earth Element Behaviour in Apatite from the Olympic Dam Cu–U–Au–Ag Deposit, South Australia

    Sasha Krneta


    Full Text Available Apatite is a common magmatic accessory in the intrusive rocks hosting the giant ~1590 Ma Olympic Dam (OD iron-oxide copper gold (IOCG ore system, South Australia. Moreover, hydrothermal apatite is a locally abundant mineral throughout the altered and mineralized rocks within and enclosing the deposit. Based on compositional data for zoned apatite, we evaluate whether changes in the morphology and the rare earth element and Y (REY chemistry of apatite can be used to constrain the fluid evolution from early to late hydrothermal stages at OD. The ~1.6 Ga Roxby Downs granite (RDG, host to the OD deposit, contains apatite as a magmatic accessory, locally in the high concentrations associated with mafic enclaves. Magmatic apatite commonly contains REY-poor cores and REY-enriched margins. The cores display a light rare earth element (LREE-enriched chondrite-normalized fractionation pattern with a strong negative Eu anomaly. In contrast, later hydrothermal apatite, confined to samples where magmatic apatite has been obliterated due to advanced hematite-sericite alteration, displays a conspicuous, convex, middle rare earth element (MREE-enriched pattern with a weak negative Eu anomaly. Such grains contain abundant inclusions of florencite and sericite. Within high-grade bornite ores from the deposit, apatite displays an extremely highly MREE-enriched chondrite-normalized fractionation trend with a positive Eu anomaly. Concentrations of U and Th in apatite mimic the behaviour of ∑REY and are richest in magmatic apatite hosted by RDG and the hydrothermal rims surrounding them. The shift from characteristic LREE-enriched magmatic and early hydrothermal apatite to later hydrothermal apatite displaying marked MREE-enriched trends (with lower U, Th, Pb and ∑REY concentrations reflects the magmatic to hydrothermal transition. Additionally, the strong positive Eu anomaly in the MREE-enriched trends of apatite in high-grade bornite ores are attributable to

  3. Characterization by infrared spectrometry of chlorine and fluorine ions in apatites. Detection des ions chlore et fluor dans les apatites par spectrometrie infrarouge

    Baumer, A. (Nice Univ., 06 (France)); Guilhot, B.; Gibert, R.; Vernay, A.M. (Ecole Nationale Superieure des Mines, 42 - Saint-Etienne (France)); Ohnenstetter, D. (Centre National de la Recherche Scientifique (CNRS), 45 - Orleans-la-Source (France))


    Synthetic hydroxyapatites with low chlorine and fluorine contents have been prepared hydrothermally according to the reaction: Ca[sub 5] (PO[sub 4])[sub 3] OH + xNH[sub 4]Cl or + xNH[sub 4]F. The infrared spectra of these samples show that the 3,498 cm[sup -1] band of OH, CI apatites and 3,545 cm[sup -1] band of OH, F apatites make it possible to detect respectively 350 ppm of chlorine and 150 ppm of fluorine. A comparative infrared study of natural apatites confirms that the 3,485 and 3,480 cm[sup -1] bands must be attributed to the O-H...CI hydrogen bond. (authors). 3 tabs., 2 figs., 16 refs.

  4. Bioceramics of apatites: an option for bone regeneration; Bioceramica de apatitas: uma opcao para regeneracao ossea

    Arxer, Eliana Alves; Almeida Filho, Edson de; Guastaldi, Antonio Carlos, E-mail: [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Instituto de Quimica


    The bioceramics of calcium phosphate called apatite, are widely used as material for bone replacement and regeneration, due to its similarity to the mineral component of bones and teeth. The apatites are biocompatible, bioactive and integrate with living tissue by the same active process of physiological bone remodeling. These bioceramics may be used in medical, dental and orthopedic applications. In this research, it was used the wet method for the synthesis of the powder and biomimetic method for coating the surface. The Solubility study was performed in the layer deposited, apatite, for possible application as a platform for inorganic drug delivery. The bioceramics were characterized by MEV, DRX, and EDS. The curves of solubility of apatite in coatings showed that the OCP phase had a higher rate of release in the short term (4 days) while the HA phase showed a gradual release throughout the experiment (16 days). (author)

  5. U-Th-Pb Systematics in Zircon and Apatite from the Chicxulub Crater, Mexico

    Kring, D. A.; Shaulis, B. J.; Schmieder, M.; Lapen, T. J.


    We probe the U-Th-Pb systematics in zircon and apatite to determine if post-impact hydrothermal activity produced discernible effects that are related to the duration, thermal evolution, and chemistry of the hydrothermal system.

  6. REE Geochemical Characteristics of Apatite,Sphene and Zircon from Alkaline Rocks

    周玲棣; 王杨传


    The accessory minerals apatite and sphene are the main carriers of REE in alkaline rocks.Their chondrite-normalized REE patterns decline sharply to the right as those of the host rocks,In the patterns an obvious negative Eu anomaly and a positive Ce anomaly can be seen in apatite and sphene,respectively.Zircon from alkaline rocks is different in REE pattern,I,e,. a nearly symmetric"V"-shaped pattern with a maximum negative Eu anomaly.Compared with the equivalents from granites,apatite,sphene and zircon from alkaline rocks are all characterized by higher (La/Yb)N ratio and less Eu depletion,As to the relative contents of REE in minerals,apatite,sphene and zircon are enriched in LREE,MREE and HREE respectively,depending on their crystallochemical properties.

  7. Preparation of Laminin-apatite-polymer Composites Using Metastable Calcium Phosphate Solutions


    A synthetic polymer with a laminin-apatite composite layer on its surface would be useful as a percutaneous device. The preparation of such a composite was attempted in the present study using poly ( ethylene terephthalate ) (PET) and polyethylene ( PE ) as the synthetic polymer. PET and PE plates and those pretreated with an oxygen plasma were alternately dipped in calcium and phosphate ion solutions, and then immersed in a metastable ealcium phosphate solution supplemented with laminin ( LCP solution ). The PET and PE plates pretreated with an oxygen plasma formed a uniform and continuous layer of a laminin- apatite composite on their surfaces. In contrast, the PET and PE plates that had not been pretreated with an oxygen plasma did not form a continuous layer of a laminin-apatite composite on their surfaces. The hydrophilic functional groups on the PET and PE surfaces introduced by the plasma treatment were responsible for the successful laminin-apatite composite coating.

  8. Preparation of low-crystalline apatite nanoparticles and their coating onto quartz substrates.

    Kawashita, Masakazu; Taninai, Koji; Li, Zhixia; Ishikawa, Kunio; Yoshida, Yasuhiro


    We prepared low-crystalline apatite nanoparticles and coated them onto a surface of a Au/Cr-plated quartz substrate by the electrophoretic deposition (EPD) method or by using a self-assembled monolayer of 11-mercaptoundecanoic acid (SAM method). Low-crystalline apatite nanoparticles around 10 nm in size with extremely low contents of undesirable residual products were obtained by adding (NH(4))(2)HPO(4) aqueous droplets into a modified synthetic body fluid solution that contained Ca(CH(3)COO)(2). The apatite nanoparticles were successfully coated by either the EPD method or the SAM method; the nanoparticle coating achieved by the SAM method was more uniform than that achieved by the EPD method. The present SAM method is expected to be a promising technique for obtaining a quartz substrate coated with apatite nanoparticles, which can be used as a quartz crystal microbalance device.

  9. Improvement of RVNRL film properties by adding fumed silica and hydroxy apatite

    Adul Thiangchanya


    Full Text Available The effect of adding fumed silica and hydroxy apatite to Radiation Vulcanized Natural Rubber Latex (RVNRL for improving tear strength, aging properties, degradability and water-soluble protein content of rubber films has been investigated. The addition of fumed silica and hydroxy apatite in RVNRL improves tear strength and aging properties of rubber films, whereas tensile strength and degradability of rubber films were unchanged during storage at room temperature. The water-soluble protein content in rubber films was reduced by immobilization of the fumed silica and hydroxy apatite and enhanced by addition of ZnO. This may reduce allergy problems of natural rubber latex products caused by water-soluble protein. The MST of the RVNRL with fumed silica and hydroxy apatite indicated that the latex must be used within two months after mixing because of its stability.

  10. A hybrid sponge of poly(DL-lactic-Co-glycolic acid), collagen and apatite

    Chen, G. [National Inst. for Advanced Interdisciplinary Research, Tsukuba, Ibaraki (Japan). 3D Tissue Engineering Group; Ushida, T.; Tateishi, T. [National Inst. for Advanced Interdisciplinary Research, Tsukuba, Ibaraki (Japan). 3D Tissue Engineering Group; Tokyo Univ. (Japan). Tissue Engineering Lab.


    Biodegradable poly(DL-lactic-co-glycolic acid), collagen and apatite have been hybridized to prepare a three-dimensional porous scaffold for hard tissue engineering. Collagen microsponges were first nested in the pores of a PLGA sponge to prepare PLGA-collagen sponge. And then the surfaces of collagen microsponges were deposited with apatite particulates by alternate immersion of PLGA-collagen sponge in CaCl{sub 2} and Na{sub 2}HPO{sub 4} aqueous solutions to prepare the PLGA-collagen-apatite hybrid sponge. Observation of the hybrid sponge by scanning electron microscopy showed that collagen microsponges with interconnected pore structures were formed in the pores of PLGA sponge and that the pore surfaces were also covered with collagen. The deposited apatite particulates were flake-like and became denser and grew larger with repeated alternate immersion cycles. Energy-dispersive spectroscopy analysis and X-ray diffraction demonstrated that the deposited particulates were hydroxyapatite. (orig.)

  11. Synthesis and characterization of nanocrystalline apatites from eggshells at different Ca/P ratios

    Siddharthan, A; Sampath Kumar, T S; Seshadri, S K, E-mail: [Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai-600 036 (India)


    Nanocrystalline apatites with different Ca/P ratios were synthesized using eggshell as a calcium source by microwave processing. The apatites were found to have a minor amount of Mg, Sr, Si and Na ions inherited from the eggshells. The presence of several foreign ions results in a perturbed lattice structure indicated by an increase in lattice constants and shift in vibrational frequencies of the functional groups. The apatites were heat treated to investigate the influence of foreign ions on thermal stability. The minor amounts of ions do not affect the thermal stability. The differences in thermal behaviour of these apatites were due to the presence of HPO{sup 2-}{sub 4} ions only and not due to other ions because of their low content.

  12. Geochemistry and genesis of apatite bearing Fe oxide Dizdaj deposit, SE Zanjan

    Ghasem Nabatian


    Full Text Available Sorkheh-Dizaj apatite-iron oxide deposit is located 32 km southeast of Zanjan. The area is situated within the Tarom subzone of Western Alborz-Azarbaijan structural zone. The oldest units at the Sorkheh-Dizaj area are Eocene trachyte, trachyandesite, olivine basalt and volcanoclastic brecciate tuff and lapilli tuff which intruded by a quartz-monzonite, monzonite and granite subvolcanic pluton of Upper Eocene- Early Oligocene age. Subvolcanic plutonic rocks in the area show characteristics of the I-type granites. Magmatism of the area is of synorogenic to postorogenic related to magmatic arc environments. Mineralization at the area is divided into three main zones (A, B and C that all of which are located in the host subvolcanic pluton. These three zones are similar in terms of host rock, mineralogy, alteration, structure, texture and metal content. Mineralization in the volcanic rocks occurs as veins similar to those in three main zones, but less abundant. Geometry of the ore bodies is of vein type and their textures are stockwork, massive, banded, brecciate and vein-veinlet. The most important minerals at Sorkheh-Dizaj deposit are magnetite (low Ti and apatite that associated with them minor sulfide minerals such as chalcopyrite, bornite and pyrite. Minerals such as ilmenite, spinel (titanium magnetite, galena and sphalerite occur in low contents. The supergene minerals like chalcocite, malachite, azurite, covellite, hematite and goethite have been formed due to weathering and supergene processes. The main alterations at the deposit are K-feldspar metasomatism, actinolitization, argillic, sericitization, silicification, tourmalinization, and chlorite-epidotic. Rare earth elements (REE studies demonstrate that the deposit is more enriched in LREE than in HREE. The REE patterns in the apatite, magnetite and host rocks are similar suggesting a magmatic relationship. The REE contents of the apatites are higher than those of the host rocks and

  13. Influence of Microstructure and Sintering Routes on Transport Properties of Apatite Materials for Fuel Cells

    A.Chesnaud; C.Estournes; G.Dezannau


    1 Results Oxy-apatite materials are thought as zirconia-substitutes in Solid Oxide Fuel Cells due to their fast ionic conduction. However, the well known difficulties related to their densification prevent them from being used as such. This study presents strategies to obtain oxy-apatite dense materials and the influence of elaboration route on transport properties. Particular emphasis is put on the microstructure effect on ion conduction. By the combined use of freeze-drying and conventional or spark p...

  14. Fluoride enhances transfection activity of carbonate apatite by increasing cytoplasmic stability of plasmid DNA

    Chowdhury, E.H., E-mail: [Jeffrey Cheah School of Medicine and Health Sciences, Monash University Sunway Campus, Jalan Lagoon Selatan, Bandar Sunway, Selangor Darul Ehsan (Malaysia)


    Highlights: {yields} Cytoplasmic stability of plasmid DNA is enhanced by fluoride incorporation into carbonate apatite carrier. {yields} Fluoridated carbonate apatite promotes a robust increase in transgene expression. {yields} Controlled dissolution of fluoridated carbonate apatite in endosomal acidic environment might buffer the endosomes and prevent degradation of the released DNA. -- Abstract: Intracellular delivery of a functional gene or a nucleic acid sequence to specifically knockdown a harmful gene is a potential approach to precisely treat a critical human disease. The intensive efforts in the last few decades led to the development of a number of viral and non-viral synthetic vectors. However, an ideal delivery tool in terms of the safety and efficacy has yet to be established. Recently, we have developed pH-sensing inorganic nanocrystals of carbonate apatite for efficient and cell-targeted delivery of gene and gene-silencing RNA. Here we show that addition of very low level of fluoride to the particle-forming medium facilitates a robust increase in transgene expression following post-incubation of the particles with HeLa cells. Confocal microscopic observation and Southern blotting prove the cytoplasmic existence of plasmid DNA delivered by likely formed fluoridated carbonate apatite particles while degradation of plasmid DNA presumably by cytoplasmic nucleases was noticed following delivery with apatite particles alone. The beneficial role of fluoride in enhancing carbonate apatite-mediated gene expression might be due to the buffering potential of generated fluoridated apatite in endosomal acidic environment, thereby increasing the half-life of delivered plasmid DNA.

  15. Remediation of copper contaminated soil by using different particle sizes of apatite: a field experiment.

    Xing, Jinfeng; Hu, Tiantian; Cang, Long; Zhou, Dongmei


    The particle size of apatite is one of the critical factors that influence the adsorption of heavy metals on apatite in the remediation of heavy metal contaminated soils using apatite. However, little research has been done evaluating the impact of different particle sizes of apatite on immobilization remediation of heavy metal polluted soils in field. In this study, the adsorption isothermal experiments of copper on three kinds of apatite was tested, and the field experiment by using different particle sizes apatite [nano-hydroxyapatite (NAP), micro-hydroxyapatite (MAP), ordinary particle apatite (OAP)] at a same dosage of 25.8 t/ha (1.16 %, W/W) was also conducted. Ryegrass was chosen as the test plant. The ryegrass biomass, the copper contents in ryegrass and the copper fractionations in soil were determined after field experiments. Results of adsorption experiments showed that the adsorption amounts of copper on OAP was the lowest among different particles. The adsorption amounts of copper on MAP was higher than NAP at high copper equilibrium concentration (>1 mmol L(-1)), an opposite trend was obtained at low copper concentration (soil pH, decrease the available copper concentration in soil, provide more nutrient phosphate and promote the growth of ryegrass. The ryegrass biomass and the copper accumulation in ryegrass were the highest in MAP among all treatments. The effective order of apatite in phytoremediation of copper contaminated field soil was MAP > NAP > OAP, which was attributed to the high adsorption capacity of copper and the strong releasing of phosphate by MAP.

  16. Diagenetic uptake of rare earth elements by conodont apatite

    Zhang, L.; Algeo, T. J.; Cao, L.; Zhao, L.; Chen, Z. Q.; Li, Z.


    The rare earth element (REE) composition of bioapatite has long been used as a proxy for ancient seawater chemistry and paleomarine environmental reconstruction, based on the assumption of preservation of a hydrogenous (seawater-derived) REE signal. Recent work, however, has begun to question the provenance of REEs in conodonts, emphasizing the importance of REEs released by the lithogenous fraction of the sediment and subsequently adsorbed onto conodont apatite in the burial environment. Here, we investigate patterns of REE and trace-element abundance in conodonts and their host sediments from the Early to Late Ordovician Huanghuachang and Chenjiahe sections of Hubei Province, South China. Several lines of evidence indicate that REEs in the conodont samples were acquired mainly from clay minerals in the host sediment during burial diagenesis: (1) REEs in conodonts show a strong positive correlation to Th and other lithogenic elements; (2) conodonts and whole-rock samples show general patterns of REE and trace-element enrichment that are highly similar to each other and bear no resemblance to seawater elemental concentrations; (3) similar patterns are observed in Triassic conodonts and whole-rock samples; and (4) Y/Ho ratios in conodonts are mostly 90% of REEs from lithogenous sources. Conodonts show pronounced middle rare earth element (MREE) enrichment, a pattern that is unambiguously of diagenetic origin owing to its association with lower Y/Ho ratios. With increasing MREE enrichment of conodont samples, U concentrations and LaN/YbN ratios shift from high to low, and Mn concentrations from low to high. These patterns suggest that conodont diagenesis was initiated at shallow burial depths under suboxic conditions (i.e., in the zone of Mn(IV) and Fe(III) reduction) but continued at greater burial depths, with most acquisition of secondary REEs at later diagenetic stages. Our findings indicate that (1) conodont apatite frequently does not preserve a recognizable

  17. Cosmogenic and nucleogenic 3He in apatite, titanite, and zircon

    Farley, K. A.; Libarkin, J.; Mukhopadhyay, S.; Amidon, W.


    Cosmogenic 3He was measured in apatite, titanite, and zircon and cosmogenic 21Ne in quartz at 13 depth intervals in a 2.7-m long drill core in a Miocene ignimbrite from the Altiplano of Bolivia. All three 3He depth profiles as well as the 21Ne profile attenuate exponentially with depth, indicating that both of these isotopes are cosmogenic in origin with no significant contribution from other sources. The attenuation lengthscale for 3He production of Λ = 180 ± 11 g/cm 2 is consistent with expectations for neutron spallation, and is identical to that found for the cosmogenic 21Ne in quartz. By normalizing the measured 3He concentrations to 21Ne and using the independently known cosmogenic 21Ne production rate, the apparent cosmogenic 3He production rates in apatite, titanite, and zircon were respectively found to be 112, 97, and 87 atoms/g/yr at sea-level and high latitude. The formal uncertainty on these estimates is ˜ 20% (2 σ), and arises in equal parts from uncertainties in the measured 3He/ 21Ne ratios and the uncertainty in the 21Ne production rate. However an additional factor affecting the apparent 3He production rate in these phases arises from the long stopping range of spalled 3He and tritium (which decays to 3He). Because all three accessory phases have higher mean atomic number than major rock-forming minerals, they will have lower 3He production rates than their surroundings. As a consequence the long stopping ranges will cause a net implantation of 3He and therefore higher apparent production rates than would apply for purely in-situ production. Thus these apparent production rates apply only to the specific grain sizes analyzed. Analysis of sieved zircon aliquots suggests that a factor of 2 increase in grain size (from ˜ 50 to ˜ 100 μm cross-section) yields a 10% decrease in apparent production rate. While this effect warrants further study, the grain sizes analyzed here are typical of the accessory phases commonly encountered, so the apparent

  18. Apatite as an interesting seed to remove phosphorus from wastewater in constructed wetlands.

    Molle, P; Liénard, A; Grasmick, A; Iwema, A; Kabbabi, A


    Intensive use of phosphates has resulted in high P levels in surface waters and therefore eutrophication problems. Over the last decade many studies have revealed the advantage of using specific materials with efficient phosphorus retention capacities. Recent studies state that Ca materials are of particular interest for long-term retention of P, but can induce negative effects. To improve P retention and avoid negative counter-effects we tested the potential of natural apatites. Apatite sorption was evaluated using batch and open reactor experiments. Batch experiments identify sorption mechanisms and the influence of the ionic characteristics of the solution; open reactor experiments evaluate sorption capacities in relation to the ionic composition of the solution and biomass development. In parallel, observation of the material by electron microscopy was used to give more precision information about the mechanisms involved. This work reveals the strong chemical affinity between apatites and phosphorus. Compared to other calcareous materials apatite is better able to maintain low outlet P levels. After more than 550 days feeding, sorption was still present and low P outlet levels were still being obtained when sufficient contact time and calcium content in the solution were ensured. This work demonstrates the advantages of using apatites for phosphorus removal in constructed wetlands. The behaviour of apatite in phosphorus retention is explained and its suitability for use in such extensive systems defined.

  19. Protein content of human apatite and brushite kidney stones: significant correlation with morphologic measures.

    Pramanik, Rocky; Asplin, John R; Jackson, Molly E; Williams, James C


    Apatite and brushite kidney stones share calcium and phosphate as their main inorganic components. We tested the hypothesis that these stone types differ in the amount of proteins present in the stones. Intact stones were intensively analyzed by microcomputed tomography (micro CT) for both morphology (including the volume of voids, i.e., space devoid of X-ray dense material) and mineral type. To extract all proteins present in kidney stones in soluble form we developed a three-step extraction procedure using the ground stone powder. Apatite stones had significantly higher levels of total protein content and void volume compared to brushite stones. The void volume was highly correlated with the total protein contents in all stones (r2 = 0.61, P brushite stones contained significantly fewer void regions and proteins than did apatite stones (3.2 +/- 4.5% voids for brushite vs. 10.8 +/- 11.2% for apatite, P brushite vs. 6.0 +/- 2.4% for apatite, P brushite and apatite stones is higher than that was previously thought, and also suggest that micro CT-visible void regions are related to the presence of protein.

  20. Apatite deposition on titanium surfaces--the role of albumin adsorption.

    Serro, A P; Fernandes, A C; Saramago, B; Lima, J; Barbosa, M A


    Titanium implant surfaces are known to spontaneously nucleate apatite layers when in contact with simulated body fluids. However, adsorption of proteins may influence the process of apatite layer formation. In this study the role of bovine serum albumin (BSA) adsorption in the process of apatite deposition on titanium substrates is investigated. Deposition of calcium phosphate was induced by immersing titanium substrates in a Hank's balanced salt solution (HBSS) for times ranging from 1 to 23 days. The resulting substrates were studied by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), wettability measurements and electrochemical impedance determinations. All these methods indicate the presence of a calcium phosphate layer. The same procedure was repeated substituting HBSS with a solution of BSA in HBSS. Although SEM, EDS and electrochemical impedance spectra do not reveal the presence of an apatite layer, XPS analysis strongly indicates that the inhibition of apatite formation by BSA is only partial. The competition between BSA adsorption and apatite deposition seems to lead to a mixed film where the protein co-exists with calcium phosphate. Wettability studies suggest that this surface film is heterogeneous and porous, similar to the thicker films formed in albumin-free HBSS.

  1. Genesis of iron-apatite ores in Posht-e-Badam Block (Central Iran) using REE geochemistry

    Mokhtari, Mir Ali Asghar; Zadeh, Ghader Hossein; Emami, Mohamad Hashem


    Rare earth elements in apatites of different ore types show characteristic patterns which are related to different modes of formation of the ores. Most of the apatite-bearing iron ores are associated with alkaline magmas with LREE/HREE fractionation varying from moderate to steep. Iron-apatite deposits in Posht-e-Badam Block (Central Iran) have a high concentration of REE (more than 1000 ppm up to 2.5%), and show a strong LREE/HREE ratio with a pronounced negative Eu anomaly. This REE pattern is typical of magmatic apatite and quiet distinct from sedimentary apatites (phosphorites) which have a low REE contents and Ce negative anomalies. On the other hand, they are comparable to the REE patterns of apatites in Kiruna-type iron ores in different parts of the world. The REE patterns of apatites, iron-apatite ores and iron ores are similar and only have different REE contents. This similarity indicates a genetic relation for these rocks. Most of the iron-apatite deposits in Central Iran have similar REE patterns too, which in turn show a genetic relation for all of these deposits. This similarity indicates a similar origin and processes in their genesis. There are some small intrusions around some of the iron-apatite deposits that are petrographically identified as syenite and gabbro. These intrusions also have REE patterns similar to that of iron-apatite ores. This demonstrates a genetic relation between these intrusions and iron-apatite ores. The REE patterns of apatites in different deposits of Posht-e-Badam Block iron-apatite ores show an affinity to alkaline to sub-alkaline magmas and rifting environment. The alkaline host rocks of Central Iran iron-apatite ores are clearly related to an extensional setting where rifting was important (SSE-NNW fault lines). A probable source for this large scale ore forming processes is relatively low partial melting of mantle rocks. The ores have originated by magmatic differentiation as a late phase in the volcanic cycle

  2. Genesis of iron-apatite ores in Posht-e-Badam Block (central Iran) using REE geochemistry

    Mir Ali Asghar Mokhtari; Ghader Hossein Zadeh; Mohamad Hashem Emami


    Rare earth elements in apatites of different ore types show characteristic patterns which are related to different modes of formation of the ores. Most of the apatite-bearing iron ores are associated with alkaline magmas with LREE/HREE fractionation varying from moderate to steep. Iron-apatite deposits in Posht-e-Badam Block (Central Iran) have a high concentration of REE (more than 1000 ppm up to 2.5%), and show a strong LREE/HREE ratio with a pronounced negative Eu anomaly. This REE pattern is typical of magmatic apatite and quiet distinct from sedimentary apatites (phosphorites) which have a low REE contents and Ce negative anomalies. On the other hand, they are comparable to the REE patterns of apatites in Kiruna-type iron ores in different parts of the world. The REE patterns of apatites, iron-apatite ores and iron ores are similar and only have different REE contents. This similarity indicates a genetic relation for these rocks. Most of the iron-apatite deposits in Central Iran have similar REE patterns too, which in turn show a genetic relation for all of these deposits. This similarity indicates a similar origin and processes in their genesis. There are some small intrusions around some of the iron-apatite deposits that are petrographically identified as syenite and gabbro. These intrusions also have REE patterns similar to that of iron-apatite ores. This demonstrates a genetic relation between these intrusions and iron-apatite ores. The REE patterns of apatites in different deposits of Posht-e-Badam Block iron-apatite ores show an affinity to alkaline to sub-alkaline magmas and rifting environment. The alkaline host rocks of Central Iran iron-apatite ores are clearly related to an extensional setting where rifting was important (SSE–NNW fault lines). A probable source for this large scale ore forming processes is relatively low partial melting of mantle rocks. The ores have originated by magmatic differentiation as a late phase in the volcanic cycle

  3. Constant composition kinetics study of carbonated apatite dissolution

    Tang, Ruikang; Henneman, Zachary J.; Nancollas, George H.


    The carbonated apatites (CAP) may be more suitable models for biominerals such as bone and dental hard tissues than is pure hydroxyapatite (HAP) since they have similar chemical compositions. Although they contain only a relatively small amount of carbonate, the solubility and dissolution properties are different. The solubility product of the CAP particles used in this dissolution study, 2.88×10 -112 mol 18 l -18, was significantly greater than that of HAP, 5.52×10 -118 mol 18 l -18. The kinetics of dissolution of CAP has been studied using the constant composition (CC) method. At low undersaturations, the dissolution reaction appeared to be controlled mainly by surface diffusion with an effective reaction order of 1.9±0.1 with respect to the relative undersaturation. These results together with those obtained by scanning electron microscopy (SEM) suggest a dissolution model. Based on the surface diffusion theory of Burton, Cabrera and Frank (BCF). The interfacial tension between CAP and the aqueous phase calculated from this dissolution model, 9.0 m J m -2, was consistent with its relatively low solubility. An abnormal but interesting dissolution behavior is that the CAP dissolution rate was relatively insensitive to changes in calcium and phosphate concentrations at higher undersaturations, suggesting the importance of the carbonate component under these conditions.

  4. Electrical properties of iron doped apatite-type lanthanum silicates

    SHI Qingle; ZHANG Hua


    The effect of Fe doping on the electrical properties of lanthanum silicates was investigated.The apatite-type lanthanum silicates La10Si6-xFexO27-x/2 (x=0.2,0.4,0.6,0.8,1.0) were synthesized via sol-gel process.The unit cell volume increased with Fe doping because the ionic radius of Fe3+ ion is larger than that of Si4+ ion.The conductivities of La10Si6-xFexO27 x/2 first increased and then decreased with the increasing of Fe content.The increase of the conductivity might be attributed to the distortion of the cell lattice,which assisted the migration of the interstitial oxygen ions.The decrease of the conductivity might be caused by the lower concentration of interstitial oxygen ions.The optimum Fe doping content in lanthanum silicates was 0.6.La10Si5.4Fe0.6O26.7 exhibited the highest ionic conductivity of 2.712× 10-2 S/cm at 800 ℃.The dependence of conductivity on oxygen partial pressure p(O2) suggested that the conductivity of La10Si6-xFexO27-x/2 was mainly contributed by ionic conductivity.

  5. Lanthanum germanate-based apatites as electrolyte for SOFCs

    Marrero-Lopez, D.; Diaz-Carrasco, P.; Ramos-Barrado, J.R. [Departamento de Fisica Aplicada I, Laboratorio de Materiales y Superficies (Unidad Asociada al C.S.I.C.), Universidad de Malaga, 29071 Malaga (Spain); Pena-Martinez, J. [Instituto de Energias Renovables, Parque Tecnologico, Universidad de Castilla La Mancha, 02006 Albacete (Spain); Ruiz-Morales, J.C. [Departamento de Quimica Inorganica, Universidad de La Laguna, 38200 La Laguna, Tenerife (Spain)


    Germanate apatites with composition La{sub 10-x}Ge{sub 5.5}Al{sub 0.5}O{sub 26.75-3x/2} have been evaluated for the first time as possible electrolytes for solid oxide fuel cells (SOFCs). Different electrode materials have been considered in this study, i.e. manganite, ferrite, nickelates and cobaltite as cathode materials; and NiO-CGO composite and chromium-manganite as anodes. The chemical compatibility and electrochemical performance of these electrodes with La{sub 9.8}Ge{sub 5.5}Al{sub 0.5}O{sub 26.45} have been studied by X-ray powder diffraction (XRPD) and impedance spectroscopy. The XRPD analysis did not reveal appreciable bulk reactivity with the formation of reaction products between the germanate electrolyte and these electrodes up to 1,200 C. However, a significant cation interdiffusion was observed by energy dispersive spectroscopy (EDS) at the electrode/electrolyte interface, which leads to a significant decrease of the performance of these electrodes. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. New ytterbium-doped apatite crystals for flexible laser design

    Payne, S.A.; DeLoach, L.D.; Smith, L.K.; Krupke, W.F. [Lawrence Livermore National Lab., CA (United States); Chai, B.H.T.; Loutts, G. [Univ. of Central Florida, Orlando, FL (United States). Center for Research and Education in Optics and Lasers


    A new class of Yb-lasers is summarized in this article. The apatite family of crystals has been found to impose favorable spectroscopic and laser properties on the Yb{sup 3+} activator ion. Crystals of Yb-doped Ca{sub 5}(PO{sub 4}){sub 3}F, Sr{sub 5}(PO{sub 4}){sub 3}F, Ca{sub x}Sr{sub 5{minus}x}(PO{sub 4}){sub 3}F, and Sr{sub 5}(VO{sub 4}){sub 3}F have been grown and investigated. Several useful laser crystals have been identified which offer a variety of fundamental laser parameters for designing diode-pumped systems. In general, this class of materials is characterized by high emission cross sections (3.6--13.1 {times} 10{sup {minus}20} cm{sup 2}), useful emission lifetimes (0.59--1.26 msec), a strong pump band ({sigma}{sub abs} = 2.0--10.0 {times} 10{sup {minus}20} cm{sup 2}) and pump and extraction wavelengths near 900 and 1,045 nm, respectively. Efficient lasing has been demonstrated for several of the members of this class of materials, and high optical quality crystals have been grown by the Czochralski method.

  7. Karakteristik dan Aktivitas Antibakteri Scaffold Membran Cangkang Telur yang Diaktivasi Karbonat Apatit

    Mirantini Aprilisna


    membran cangkang telur + karbonat apatit + SBF selama 7 hari, sampel D membran cangkang telur + karbonat apatit + SBF selama 14 hari, dan sampel E membran cangkang telur + karbonat apatit + SBF selama 21 hari. Uji sampel yaitu karakterisasi menggunakan ATR FTIR dan SEM, serta uji aktivitas antibakteri menggunakan metode difusi. Hasil karakterisasi SEM menunjukkan pori-pori serat 10-20μm pada semua sampel, ATR FTIR sampel B, C, D, E menunjukkan peningkatan gugus apatit dibanding sampel A. Pengujian antibakteri terhadap Staphylococcus aureus menunjukkan zona bening pada setiap sampel. Perhitungan jumlah koloni setiap sampel yaitu terbanyak koloninya sampel A ±78x105 CFU/ml, dan paling sedikit koloninya sampel B ±14x105 CFU/ml. Kesimpulan penelitian ini yaitu karakteristik dan aktivitas antibakteri scaffold membran cangkang telur yang diaktivasi karbonat apatit mengandung bahan bioaktif, bersifat biodegradasi dan menunjukkan aktivitas antibakteri.   Characteristic And Antibacterial Activity Of Egg-Shell Membrane Scaffold Activated By Carbonate Apatite. The loss of bone structure that can be caused by periodontal disease and trauma can be treated by installation of graft. The installation of graft is vulnerable to bacterial invasion, so that the alternative is to make a scaffold with antibacterial activity. Scaffold manufacturing in engineering system must have biocompatible, biodegradable, and bioactive properties. This research used egg-shell membrane (ESM as scaffold template, alginate, chitosan, carbonate apatite, and SBF solution. The purpose of this research is to know the characteristics, and antibacterial activity of eggshell membrane scaffold which is activated by carbonate apatite. This research used laboratory experimental method by dividing the samples into five groups that were ESM as sample A, ESM with carbonate apatite as sample B, ESM with carbonate apatite soaked in SBF sol for 7days as sample C, ESM with carbonate apatite soaked in

  8. BMP-2 gene-fibronectin-apatite composite layer enhances bone formation

    Sogo Yu


    Full Text Available Abstract Background Safe and efficient gene transfer systems are needed for tissue engineering. We have developed an apatite composite layer including the bone morphogenetic protein-2 (BMP-2 gene and fibronectin (FB, and we evaluated its ability to induce bone formation. Methods An apatite composite layer was evaluated to determine the efficiency of gene transfer to cells cultured on it. Cells were cultured on a composite layer including the BMP-2 gene and FB, and BMP-2 gene expression, BMP-2 protein concentrations, alkaline phosphatase (ALP activity, and osteocalcin (OC concentrations were measured. A bone defect on the cranium of rats was treated with hydroxyapatite (HAP-coated ceramic buttons with the apatite composite layer including the BMP-2 gene and FB (HAP-BMP-FB. The tissue concentration of BMP-2, bone formation, and the expression levels of the BMP-2, ALP, and OC genes were all quantified. Results The apatite composite layer provided more efficient gene transfer for the cultured cells than an apatite composite layer without FB. The BMP-2 concentration was approximately 100~600 pg/mL in the cell-culture medium. Culturing the cells on the apatite composite layer for 27 days increased ALP activity and OC concentrations. In animal experiments, the tissue concentrations of BMP-2 were over 100 pg/mg in the HAP-BMP-FB group and approximately 50 pg/mg in the control groups. Eight weeks later, bone formation was more enhanced in the HAP-BMP-FB group than in the control groups. In the tissues surrounding the HAP button, the gene expression levels of ALP and OC increased. Conclusion The BMP-2 gene-FB-apatite composite layer might be useful for bone engineering.

  9. Amelogenin as a promoter of nucleation and crystal growth of apatite

    Uskoković, Vuk; Li, Wu; Habelitz, Stefan


    Human dental enamel forms over a period of 2-4 years by substituting the enamel matrix, a protein gel mostly composed of a single protein, amelogenin with fibrous apatite nanocrystals. Self-assembly of amelogenin and the products of its selective proteolytic digestion are presumed to direct the growth of apatite fibers and their organization into bundles that eventually comprise the mature enamel, the hardest tissue in the mammalian body. This work aimed to establish the physicochemical and biochemical conditions for the growth of apatite crystals under the control of a recombinant amelogenin matrix (rH174) in combination with a programmable titration system. The growth of apatite substrates was initiated in the presence of self-assembling amelogenin particles. A series of constant titration rate experiments was performed that allowed for a gradual increase of the calcium and/or phosphate concentrations in the protein suspensions. We observed a significant amount of apatite crystals formed on the substrates following the titration of rH174 sols that comprised the initial supersaturation ratio equal to zero. The protein layers adsorbed onto the substrate apatite crystals were shown to act as promoters of nucleation and growth of calcium phosphates subsequently formed on the substrate surface. Nucleation lag time experiments have showed that rH174 tends to accelerate precipitation from metastable calcium phosphate solutions in proportion to its concentration. Despite their mainly hydrophobic nature, amelogenin nanospheres, the size and surface charge properties of which were analyzed using dynamic light scattering, acted as a nucleating agent for the crystallization of apatite. The biomimetic experimental setting applied in this study proves as convenient for gaining insight into the fundamental nature of the process of amelogenesis.

  10. The Identification and Synthesis of Lead Apatite Minerals Formed in Lead Water Pipes

    Jeremy D. Hopwood


    Full Text Available Phosphate is added to drinking water in the UK to minimise the release of lead from lead water pipes. The phosphate encourages the formation of insoluble lead apatites on the walls of the pipe. Hydroxylpyromorphite Pb5(PO43OH is the lead apatite that is most often used to model lead levels in tap water; however, its presence has not been confirmed. Our aims were to identify the lead pipe apatite and synthesise it. The synthetic mineral would then be used in future solubility studies to produce better predictions of lead levels in tap water. XRD and FTIR were used to characterise the minerals on a range of lead pipes. Pyromorphite and hydroxylpyromorphite were absent and instead a range of mixed calcium lead apatites were present. For every five lead ions in the general formula Pb5(PO43X between one and two ions were replaced with calcium and there was evidence of substitution of PO43- by either CO32- or HPO42-. Calcium lead apatites with similar unit cell dimensions to those found on lead water pipes were then synthesised. The calcium : lead ratio in these reaction mixtures was in excess of 500 : 1 and the resulting crystals were shown by TEM to be nanosized rods and flakes. The synthetic apatites that most closely resembled the unit cell dimensions of the apatites on lead water pipes were shown to be Pb3.4Ca1.3(PO43Cl0.03OH0.97, Pb3.6Ca1.2(PO43Cl0.07OH0.93, and Pb3.6Ca1.2(PO43Cl0.27OH0.73.

  11. Fabrication and in vitro characterization of magnetic hydroxycarbonate apatite coatings with hierarchically porous structures.

    Guo, Yaping; Zhou, Yu; Jia, Dechang; Meng, Qingchang


    Hydroxycarbonate apatite/Fe(3)O(4) composite coatings (MHACs) with hierarchically porous structures were fabricated by electrophoretic deposition of CaCO(3)/Fe(3)O(4) particles on Ti6Al4V substrates followed by treatment with phosphate buffer solution (PBS) at 37 degrees C. The effects of Fe(3)O(4) on the conversion rate of calcium carbonate to hydroxycarbonate apatite and the porous structures and in vitro bioactivity of MHACs were investigated. After soaking CaCO(3)/Fe(3)O(4) coatings in PBS, hydroxycarbonate apatite nucleates heterogeneously on the surfaces of CaCO(3)/Fe(3)O(4) particles and forms a plate-like structure. Fe(3)O(4) increases the velocity of nucleus formation of hydroxycarbonate apatite. After soaking for 1day, the percentage of unreacted calcium carbonate for MHACs is approximately 9.1%, lower than the approximately 41.0% for hydroxycarbonate apatite coatings (HCACs). As the CaCO(3)/Fe(3)O(4) coatings are converted to MHACs, macropores with a pore size of approximately 4mum on the coatings and mesopores with a pore size of approximately 3.9nm within the hydroxycarbonate apatite plates are formed. The mesopores remain in the MHACs after treatment with PBS for 9 days, while they disappear in the HCACs. Simulated body fluid immersion tests reveal that Fe(3)O(4) improves the in vitro bioactivity of biocoatings. The amount of bone-like apatite precipitated on the surfaces of MHACs is greater than that on the surfaces of HCACs.

  12. Magnetite-apatite mineralization in Khanlogh iron deposit, northwest of Neyshaboor, NE Iran

    Najafzadeh Tehrani, Parvin; Asghar Calagari, Ali; Velasco Roldan, Francisco; Simmonds, Vartan; Siahcheshm, Kamal


    Khanlogh iron deposit lies on Sabzehvar-Ghoochan Cenozoic magmatic belt in northwest of Neyshaboor, NE Iran. The lithologic units in this area include a series of sub-volcanic intrusive rocks like diorite porphyry, quartz-diorite porphyry, and micro-granodiorite of Oligocene age. Mineralization in this area occurred as veins, dissemination, and open space filling in brecciated zones within the host sub-volcanic intrusive bodies. Three distinct types of mineral associations can be distinguished, (1) diopside-magnetite, (2) magnetite-apatite, and (3) apatite-calcite. Microscopic examinations along with SEM and EPMA studies demonstrated that magnetite is the most common ore mineral occurring as solitary crystals. The euhedral magnetite crystals are accompanied by lamellar destabilized ilmenite and granular fluorapatite in magnetite-apatite ores. The results of EPMA revealed that the lamellar ilmenite, relative to host magnetite crystal, is notably enriched in MgO and MnO (average of 3.3 and 2.6 wt%, respectively; n=5), whereas magnetite is slighter enriched in Ti (TiO2 around 1.8 wt%) being average of MgO, MnO and V2O3 of 0.6wt%, 0.2wt%, and 0.6 wt% (respectively; n=20). Minerals such as chlorapatite, calcite, and chalcedony are also present in the magnetite-apatite ores. The samples from apatite-calcite ores contain coarse crystals of apatite and rhomboedral calcite. The plot of the EPMA data of Khanlogh iron ore samples on diagram of TiO2-V2O5 (Hou et al, 2011) illustrated that the data points lies between the well-known Kiruna and El Laco (Chile) iron deposits. The magnetite crystals in the sub-volcanic host rocks were possibly formed by immiscible iron oxide fluids during magmatic stage. However, the magnetite and apatite existing in the veins and breccia zones may have developed by high temperature hydrothermal fluids. Studies done by Purtov and Kotelnikova (1993) proved that the proportion of Ti in magnetite is related to fluoride complex in the hydrothermal

  13. Apatite formation behaviour during metasomatism in the Bathtub Intrusion (Babbitt deposit, Duluth Complex, USA)

    Raič, Sara; Mogessie, Aberra; Krenn, Kurt; Hauzenberger, Christoph A.; Tropper, Peter


    The mineralized troctolitic Bathtub intrusion (Duluth Complex, NE-Minnesota) is known for its famous Cu-Ni-Sulfide±PGM Babbitt deposit, where platinum group minerals (PGMs) are either hosted by primary magmatic sulfides (base metal sulfides) or associated with hydrothermally altered portions. This secondary generation of PGMs is present in alteration patches and suggests the involvement of hydrothermal fluids in the mobilization of platinum-group elements (PGEs). Accessory fluorapatite in these samples reveals besides H2O- and CO2-rich primary fluid inclusions, textural and compositional variations that also record magmatic and metasomatic events. Based on detailed back-scattered electron imaging (BSE) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICPMS), a primary magmatic origin is reflected by homogeneous or zoned grains, where zoning patterns are either concentric or oscillatory, with respect to LREE. Late magmatic to hydrothermal processes are indicated by grains with bright LREE-enriched rims or conversion textures with REE-enriched patches in the interior of the apatite. A metasomatic formation of monazite from apatite is documented by the presence of monazite inclusions in apatite and newly grown monazite at altered apatite rims. They formed by the release of REEs from the apatite during a fluid-induced alteration, based on the coupled substitution Ca2+ + P5+ = REE3+ + Si4+ (Rønsbo 1989; Rønsbo 2008). Samples with monazite inclusions in apatite further display occurrences of PGMs associated with hydrothermal alteration patches (chlorite + amphibole). The presence of H2O- and CO2-rich fluid inclusions in apatite, the metasomatically induced monazite growth, as well as the occurrence of PGMs in hydrothermally alteration zones, also suggest the involvement of aqueous chloride complexes in a H2O dominated fluid in the transportation of LREE and redistribution of the second generation of PGEs. Rønsbo, J.G. (1989): Coupled substitutions

  14. High carbonate level of apatite in kidney stones implies infection, but is it predictive?

    Englert, Kate M; McAteer, James A; Lingeman, James E; Williams, James C


    The presence of infectious microorganisms in urinary stones is commonly inferred from stone composition, especially by the presence of struvite in a stone. The presence of highly carbonated apatite has also been proposed as a marker of the presence of bacteria within a stone. We retrospectively studied 368 patients who had undergone percutaneous nephrolithotomy (PCNL), and who also had culture results for both stone and urine. Urine culture showed no association with stone mineral content, but stone culture was more often positive in struvite-containing stones (73 % positive) and majority apatite stones (65 %) than in other stone types (54 %, lower than the others, P carbonate content of apatite could be measured, carbonate in the apatite was weakly predictive of positive stone culture with an optimal cutoff value of 13.5 % carbonate (sensitivity 0.61, specificity 0.80). In positive cultures of stones (all mineral types combined), organisms that characteristically produce urease were present in 71 % of the cases, with no difference in this proportion among different types of stone. In summary, the type of mineral in the stone was predictive of positive stone culture, but this correlation is imperfect, as over half of non-struvite, non-apatite stones were found to harbor culturable organisms. We conclude that mineral type is an inadequate predictor of whether a stone contains infectious organisms, and that stone culture is more likely to provide information useful to the management of patients undergoing PCNL.

  15. Study of thermoluminescence properties of Eppawala apatite mineral and its suitability as a dosimetric material

    Jayalath, A


    This study reports TL properties and the dosimetric properties of natural apatite mineral obtained from Eppawala Apatite ore in Sri Lanka. This mineral was used to study glow curve characteristics by using (a) the powder form of the raw mineral (b) sieved raw mineral and (c) the magnetically separated mineral. The glow curves of magnetically separated apatite showed two peaks. Low temperature peak at 120C, and a high temperature peak at 240C. The emission wavelength of the glow curve is 360 nm. The intensity of the 240C peak become stronger after annealing the mineral to about 180C. Apatite has glow peaks similar to other commonly used TL materials, such as synthetically prepared calcium sulphate:Dy and calcium sulphate:Tm show high intensity peak at 220C and low intensity peaks at 80C and 120C. However, the emission wavelengths of the main peaks are at 428nm and 452 nm for calcium sulphate:Dy and calcium sulphate: Tm respectively. Eppawala apatite mineral showed a linear response to both gamma and beta radia...

  16. Formate incorporation in the structure of Ca-deficient apatite: Rietveld structure refinement

    Wilson, R. M.; Elliott, J. C.; Dowker, S. E. P.


    Two sets of non-stoichiometric apatites (Ca-deficient apatites) were prepared from calcium phosphate solutions by homogeneous precipitation through the hydrolysis of formamide at 95°C. One set of products contained monetite (CaHPO 4) and apatite, whilst the second, with more formamide, contained only apatite. Rietveld whole pattern fitting structure refinements were undertaken on all samples, and chemical analyses, IR and NMR spectroscopy, on the second set of samples. The Ca/P mol ratio was 1.596. Rietveld analysis gave lattice parameters a=9.4729(20) and c=6.8855(9) Å and showed that Ca 2+ ions were lost exclusively from Ca2 sites, and that the PO 4 tetrahedron volume and P-O bonds were 4.4% and 1.4% smaller, respectively, than in hydroxyapatite (OHAp). Formate, HCO 2-, was clearly visible in the IR and NMR spectra, but the diffraction studies showed it was not present as a separate crystalline phase. Chemical analysis gave 5.8 wt % formate. We propose that the enlarged a-axis compared with OHAp ( a=9.4243(55) Å) and reduced PO 4 dimensions and P occupancy are, respectively, caused by the partial replacement of OH - and PO 43- ions in the structure by HCO 2- ions. These substitutions would parallel the similar known substitutions of CO 32- ions in precipitated carbonate apatites.

  17. Simultaneous incorporation of magnesium and carbonate in apatite: effect on physico-chemical properties

    Marcia S. Sader


    Full Text Available Synthetic apatites are widely used both in the dental and the orthopaedic fields due to their similarity in composition with the inorganic phase of hard tissues. Biologic apatites are not pure hydroxyapatite (HA, but are calcium-deficient apatites with magnesium and carbonate as minor but important substituents. The aim of the present study was to produce a more soluble biomaterial through the simultaneous substitution of magnesium and carbonate in the apatite structure to accelerate the degradation time in the body. The physico-chemical and dissolution properties of unsintered magnesium and carbonate-substituted apatite (MCAp with similar Mg/Ca molar ratio (0.03 and varying C/P molar ratio were evaluated. The resultant powders were characterised using several techniques, such as FTIR, TGA, XRD, ICP and SEM, while the release of calcium ions in a pH 6 solution was monitored using a Ca-ion selective electrode. The results showed a decrease of crystallite size and an increase in the release of calcium to the medium as the carbonate content in the samples increased.

  18. Bio-inspired citrate functionalized apatite coating on rapid prototyped titanium scaffold

    Yu, Peng [National engineering research center for tissue restoration and reconstruction, South China University of Technology, Guangzhou 510641 (China); Lu, Fang [School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006 (China); Zhu, Wenjun [Department of Prosthodontics, Guanghua School of Stomatology, Guang Dong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Wang, Di [National engineering research center for tissue restoration and reconstruction, South China University of Technology, Guangzhou 510641 (China); Zhu, Xiaojing [Department of Prosthodontics, Guanghua School of Stomatology, Guang Dong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou 510055 (China); Tan, Guoxin, E-mail: [Institute of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006 (China); Wang, Xiaolan [National engineering research center for tissue restoration and reconstruction, South China University of Technology, Guangzhou 510641 (China); Zhang, Yu; Li, Lihua [General Hospital of Guangzhou Military Command of PLA, Guangzhou 510010 (China); Ning, Chengyun, E-mail: [National engineering research center for tissue restoration and reconstruction, South China University of Technology, Guangzhou 510641 (China)


    Highlights: • Designed and reproducible porous titanium scaffolds were produced. • Hydrophilic nanoporous film was built on scaffold. • Apatite coating was deposited on scaffold under the modulation of citrate ions. • Citrate ions could affect CO{sub 3}{sup 2−} incorporation in apatite coatings. - Abstract: Scaffold functionalized with appropriate osteogenic coatings can significantly improve implant-bone response. In this study, with designed model and optimized manufacture parameters, reproducible and precise titanium scaffolds were produced. Reconstructed three-dimensional image and sectional structure of the scaffold were examined by micro-computed tomography and relative software. Alkali treatment was carried out on these manufactured porous scaffolds to produce nanoporous hydrophilic film. After 6 days deposition in simulated body fluid (SBF) containing sodium citrate (SC-SBF), plate-like amorphous calcium phosphate (ACP) coating was deposited on scaffold surface. Ultrasonication tests qualitatively indicated an enhanced adhesion force of apatite coatings deposited in SC-SBF compared to that deposited in SBF. And the effect of citrate ions on the CO{sub 3}{sup 2−} incorporation rate in apatite coating was quantitatively examined by bending vibration of CO{sub 3}{sup 2−} at ∼874 cm{sup −1}. Results indicated the highest carbonate content was obtained at the citrate ion concentration of 6 × 10{sup −5} mol/L in SC-SBF. These three-dimensional porous titanium-apatite hybrid scaffolds are expected to find application in bone tissue regeneration.

  19. Laser depth profiling of diffusion and alpha ejection profiles in Durango apatite: testing the fundamental parameters of apatite (U-Th)/He dating

    van Soest, M. C.; Monteleone, B. D.; Boyce, J. W.; Hodges, K.


    Since its development (e.g. Zeitler et al., 1987, Lippolt et al., 1994, Farley et al., 1996, Wolf et al., 1996) as a viable low temperature thermochronological method (U-Th)/He dating of apatite has become a popular and widely applied low temperature thermochronometer. The method has been applied with success to a great variety of geological problems, and the fundamental parameters of the method: the bulk diffusion parameters of helium in apatite, and the calculated theoretical helium stopping distance in apatite used to correct the ages for the effects of alpha ejection appear sound. However, the development of the UV laser microprobe technique for the (U-Th)/He method (Boyce et al., 2006) allows for in-situ testing of the helium bulk diffusion parameters (Farley, 2000) and can provide a direct measurement of the alpha ejection distance in apatite. So, with the ultimate goal of further developing the in-situ (U-Th)/He dating method and micro-analytical depth profiling techniques to constrain cooling histories in natural grains, we conducted a helium depth profiling study of induced diffusion and natural alpha ejection profiles in Durango apatite. For the diffusion depth profiling, a Durango crystal was cut in slabs oriented parallel and perpendicular to the crystal c-axis. The slabs were polished and heated using different temperature and time schedules to induce predictable diffusion profiles based on the bulk helium diffusion parameters in apatite. Depth profiling of the 4He diffusion profiles was done using an ArF excimer laser. The measured diffusion depth profiles at 350°, 400°, and 450° C coincide well with the predicted bulk diffusion curves, independent of slab orientation, but the 300° C profiles consistently deviate significantly. The possible cause for this deviation is currently being investigated. Alpha ejection profiling was carried out on crystal margins from two different Durango apatite crystals, several faces from each crystal were analyzed

  20. Experimental effects of pressure and fluorine on apatite saturation in mafic magmas, with reference to layered intrusions and massif anorthosites

    Tollari, N.; Baker, D. R.; Barnes, S.-J.


    Apatite is a cumulate phase in the upper parts of some mafic layered intrusions and anorthositic complexes. We investigated the effect of pressure and fluorine on apatite saturation in mafic magmas to better understand under which conditions this mineral crystallizes. Apatite saturation gives information about the formation of silicate rocks, and is of interest in explaining the formation of apatite-oxide-rich rocks (e.g. nelsonites comprising approximately, one-third apatite and two-third Fe-Ti oxide). Two models of formation are proposed for this rock type: crystal fractionation followed by accumulation of apatite and Fe-Ti oxides and liquid immiscibility. New experiments carried out with mafic compositions at 500 MPa confirm that the most important variables on phosphate saturation are SiO2 and CaO. Fluorine addition leads to apatite saturation at lower SiO2 and higher CaO concentrations. Comparison of our results with those of previous experimental studies on liquid-liquid immiscibility at upper-to-mid-crustal conditions allows us to investigate the relative importance of apatite saturation versus liquid-liquid immiscibility in the petrogenesis of nelsonites and similar rocks. The liquid line of descent of three natural examples studied (the Sept-Îles intrusive suite, the anorthositic Complex of the Lac-St-Jean and the Skaergaard layered intrusion) do not cross the liquid-liquid immiscibility field before they reach apatite saturation. Thus, the apatite-oxide-rich rock associated with these three intrusive suites are best explained by crystal fractionation followed by accumulation of apatite and Fe-Ti oxides.

  1. Carbon isotopes in eclogite and apatite separate from Huangzhen and Shima in SE Dabie

    李一良; 郑永飞; 龚冰; 傅斌


    The carbon isotope compositions of high- and ultrahigh-pressure eclogite and apatite separate from Huangzhen and Shima in SE Dabie Mountains were analyzed by EA-MS online technique. The δ13C values of the eclogites cover a wide range of -30.7‰ - +1.5‰, whereasthose of apatites only have a small range of -28.1‰- -21.0‰. Some of the eclogites with thehigh δ13C values suffered retrogressive alteration by CO2-bearing fluids. The low δ13C values of the apatites indicate that the eclogites contain surficial carbon of organic origin. It is concluded that protoliths of the eclogites were exposed to the surface of the Earth, and that the carbon-bearing fluid was depleted in 13C during the eclogite-facies metamorphism.

  2. Carbon isotopes in eclogite and apatite separate from Huangzhen and Shima in SE Dabie


    The carbon isotope compositions of high- and ultrahigh-pressure eclogite and apatite separate from Huangzhen and Shima in SE Dabie Mountains were analyzed by EA-MS online technique. The δ13C values of the eclogites cover a wide range of -30.7‰ - +1.5‰, whereas those of apatites only have a small range of -28.1‰--21.0‰. Some of the eclogites with the high δ13C values suffered retrogressive alteration by CO2-bearing fluids. The low δ13C values of the apatites indicate that the eclogites contain surficial carbon of organic origin. It is concluded that protoliths of the eclogites were exposed to the surface of the Earth, and that the carbon-bearing fluid was depleted in 13C during the eclogite-facies metamorphism.

  3. Échange terres rares légères Ca dans l'apatite

    Iqdari, Abderrahmane; Velde, Bruce; Benalioulhaj, Noureddine; Dujon, Saint-Clair; El Yamine, Nacer


    Diffusion experiments were carried out on natural apatite crystals that were immersed in molten light rare earth element (REE) chloride salt at temperatures between 900 and 1150 °C for periods up to 35 days. Electron microprobe analysis of the crystals showed that light REEs replaced Ca according to electronic balance, i.e. 2 REE3+ for 3 Ca2+. These diffusion profiles indicate that a maximum amount of substitution in the structure occurs when two of the ten Ca ions in apatite are replaced by the REE diffusing elements. Anisotropic diffusion is observed between a and c crystallographic directions. Comparison of maximum distance indicates that the larger ions move more easily in the apatite structure. We conclude that the light REEs diffuse within the channel structures of the mineral, and that this diffusion is controlled by the substitution type of elements in the calcium sites. To cite this article: A. Iqdari et al., C. R. Geoscience 335 (2003).

  4. Solid state 31NMR studies of the conversion of amorphous tricalcium phosphate to apatitic tricalcium phosphate.

    Roberts, J E; Heughebaert, M; Heughebaert, J C; Bonar, L C; Glimcher, M J; Griffin, R G


    The hydrolytic conversion of a solid amorphous calcium phosphate of empirical formula Ca9 (PO4)6 to a poorly crystalline apatitic phase, under conditions where Ca2+ and PO4(3-) were conserved, was studied by means of solid-state magic-angle sample spinning 31P-NMR (nuclear magnetic resonance). Results showed a gradual decrease in hydrated amorphous calcium phosphate and the formation of two new PO4(3-)-containing components: an apatitic component similar to poorly crystalline hydroxyapatite and a protonated PO4(3-), probably HPO4(2-) in a dicalcium phosphate dihydrate (DCPD) brushite-like configuration. This latter component resembles the brushite-like HPO4(2-) component previously observed by 31P-NMR in apatitic calcium phosphates of biological origin. Results were consistent with previous studies by Heughebaert and Montel [18] of the kinetics of the conversion of amorphous calcium phosphate to hydroxyapatite under the same conditions.

  5. PNNL Apatite Investigation at 100-NR-2 Quality Assurance Project Plan

    Fix, N. J.


    In 2004, the U.S. Department of Energy, Fluor Hanford, Inc., Pacific Northwest National Laboratory (PNNL), and the Washington Department of Ecology agreed that the long-term strategy for groundwater remediation at the 100-N Area would include apatite sequestration as the primary treatment, followed by a secondary treatment if necessary. Since then, the agencies have worked together to agree on which apatite sequestration technology has the greatest chance of reducing strontium-90 flux to the Columbia River. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by staff working on the PNNL Apatite Investigation at 100-NR-2 Project. The plan is designed to be used exclusively by project staff.

  6. Apatite in carbonatitic rocks: Compositional variation, zoning, element partitioning and petrogenetic significance

    Chakhmouradian, Anton R.; Reguir, Ekaterina P.; Zaitsev, Anatoly N.; Couëslan, Christopher; Xu, Cheng; Kynický, Jindřich; Mumin, A. Hamid; Yang, Panseok


    Apatite-group phosphates are nearly ubiquitous in carbonatites, but our understanding of these minerals is inadequate, particularly in the areas of element partitioning and petrogenetic interpretation of their compositional variation among spatially associated rocks and within individual crystals. In the present work, the mode of occurrence, and major- and trace-element chemistry of apatite (sensu lato) from calcite and dolomite carbonatites, their associated cumulate rocks (including phoscorites) and hydrothermal parageneses were studied using a set of 80 samples from 50 localities worldwide. The majority of this set represents material for which no analytical data are available in the literature. Electron-microprobe and laser-ablation mass-spectrometry data ( 600 and 400 analyses, respectively), accompanied by back-scattered-electron and cathodoluminescence images and Raman spectra, were used to identify the key compositional characteristics and zoning patterns of carbonatitic apatite. These data are placed in the context of phosphorus geochemistry in carbonatitic systems and carbonatite evolution, and compared to the models proposed by previous workers. The documented variations in apatite morphology and zoning represent a detailed record of a wide range of evolutionary processes, both magmatic and fluid-driven. The majority of igneous apatite from the examined rocks is Cl-poor fluorapatite or F-rich hydroxylapatite (≥ 0.3 apfu F) with 0.2-2.7 wt.% SrO, 0-4.5 wt.% LREE2O3, 0-0.8 wt.% Na2O, and low levels of other cations accommodated in the Ca site (up to 1000 ppm Mn, 2300 ppm Fe, 200 ppm Ba, 150 ppm Pb, 700 ppm Th and 150 ppm U), none of which show meaningful correlation with the host-rock type. Silicate, (SO4)2 - and (VO4)3 - anions, substituting for (PO4)3 -, tend to occur in greater abundance in crystals from calcite carbonatites (up to 4.2 wt.% SiO2, 1.5 wt.% SO3 and 660 ppm V). Although (CO3)2 - groups are very likely present in some samples, Raman micro

  7. A new glance at ruthenium sorption mechanism on hydroxy, carbonate, and fluor apatites: Analytical and structural studies.

    Tõnsuaadu, K; Gruselle, M; Villain, F; Thouvenot, R; Peld, M; Mikli, V; Traksmaa, R; Gredin, P; Carrier, X; Salles, L


    The sorption mechanism of Ru3+ ions on hydroxy (HAp), carbonate (CO3HAp), and fluor apatites (FAp) has been studied in detail. Ru apatites were obtained by reaction of the apatites with RuCl3 in aqueous solution. The structure and composition of the ruthenium-modified apatites were studied by several techniques: elemental analysis, XRD, EXAFS, IR, NMR, SEM-EDS, TEM, and thermal analysis. The amount of Ru in the modified apatite varies from 7.8 to 10.5 wt% and is not related to the initial composition or the specific surface area of the apatite. The different characterization techniques show that in the Ru-modified apatites Ru is surrounded by six oxygen atoms and do not contain any chlorine. For Ru-HAp and Ru-CO3HAp the new phase is amorphous whereas it is crystalline for FAp. The catalytic oxidation ability is higher for Ru-HAp and Ru-CO3HAp compared to Ru-FAp apatite in the oxidation of benzylic alcohol.

  8. Theoretical stability assessment of uranyl phosphates and apatites: Selection of amendments for in situ remediation of uranium

    Raicevic, S. [Institute of Nuclear Sciences VINCA, Radiation and Environmental Protection Laboratory, P.O.Box 522, 11001 Belgrade (Serbia and Montenegro)]. E-mail: raich@beotel.yu; Wright, J.V. [PIMS NW, Inc., 201 North Edison, Suite 226, Richland, WA 99336 (United States); Veljkovic, V. [Institute of Nuclear Sciences VINCA, Center for Multidisciplinary Research and Engineering, P.O.Box 522, 11001 Belgrade (Serbia and Montenegro); Conca, J.L. [Los Alamos National Laboratory, 115 North Main Street, Carlsbad, NM 88220 (United States)


    Addition of an amendment or reagent to soil/sediment is a technique that can decrease mobility and reduce bioavailability of uranium (U) and other heavy metals in the contaminated site. According to data from literature and results obtained in field studies, the general mineral class of apatites was selected as a most promising amendment for in situ immobilization/remediation of U. In this work we presented theoretical assessment of stability of U(VI) in four apatite systems (hydroxyapatite (HAP), North Carolina Apatite (NCA), Lisina Apatite (LA), and Apatite II) in order to determine an optimal apatite soil amendment which could be used for in situ remediation of uranium. In this analysis we used a theoretical criterion which is based on calculation of the ion-ion interaction potential, representing the main term of the cohesive energy of the matrix/pollutant system. The presented results of this analysis indicate (i) that the mechanism of immobilization of U by natural apatites depends on their chemical composition and (ii) that all analyzed apatites represent, from the point of view of stability, promising materials which could be used in field remediation of U-contaminated sites.

  9. Theoretical stability assessment of uranyl phosphates and apatites: selection of amendments for in situ remediation of uranium.

    Raicevic, S; Wright, J V; Veljkovic, V; Conca, J L


    Addition of an amendment or reagent to soil/sediment is a technique that can decrease mobility and reduce bioavailability of uranium (U) and other heavy metals in the contaminated site. According to data from literature and results obtained in field studies, the general mineral class of apatites was selected as a most promising amendment for in situ immobilization/remediation of U. In this work we presented theoretical assessment of stability of U(VI) in four apatite systems (hydroxyapatite (HAP), North Carolina Apatite (NCA), Lisina Apatite (LA), and Apatite II) in order to determine an optimal apatite soil amendment which could be used for in situ remediation of uranium. In this analysis we used a theoretical criterion which is based on calculation of the ion-ion interaction potential, representing the main term of the cohesive energy of the matrix/pollutant system. The presented results of this analysis indicate (i) that the mechanism of immobilization of U by natural apatites depends on their chemical composition and (ii) that all analyzed apatites represent, from the point of view of stability, promising materials which could be used in field remediation of U-contaminated sites.

  10. The study of geochemical behavior of rare earth elements in apatites from the Hormoz Island, Persian Gulf

    Ali Rostami


    Full Text Available The study area is located about 3 km southwest of the Hormoz Island in the Hormozgan province, in the Persian Gulf. The main rock units in the region consist of a highly altered acidic pluton cratophyre, which is responsible for apatite formation, diabasic dike, marl and altered basalt. Apatite is the only phosphate mineral in the Hormoz Island, which has accumulated REE in its crystal structure. The amount of Na2O and SiO2 oxides in apatite are high and the average content of the main elements Fe, Mg, Al, Ca are 7.5 ppm, 365 ppm, 2880 ppm and 27.8%, respectively. The Y, Mn, Rb contents increase and Sr decreases with increasing magmatic differentiation. It shows that a moderate magmatic differentiation occurred during the crystallization of apatite. The total REE content in the Hormoz apatite is high (1.22-2.25%. LREE/HREE ratio is also high. This means that Hormoz apatites are enriched in light rare earth elements. The REE normalized pattern shows a negative slope with a negative Eu anomaly. According to various diagrams based on apatite composition, it is deduced that the Hormoz apatites belong to mafic I-type granitoids with high oxidation state (Fe2O3/FeO>1.

  11. Growth of apatite on chitosan-multiwall carbon nanotube composite membranes

    Yang, Jun; Yao, Zhiwen; Tang, Changyu; Darvell, B. W.; Zhang, Hualin; Pan, Lingzhan; Liu, Jingsong; Chen, Zhiqing


    Bioactive membranes for guided tissue regeneration would be of value for periodontal therapy. Chitosan-multiwall carbon nanotube (CS-MWNT) composites were treated to deposit nanoscopic apatite for MWNT proportions of 0-4 mass%. Fourier-transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, and X-ray diffraction were used for characterization. Apatite was formed on the CS-MWNT composites at low MWNT concentrations, but the dispersion of the MWNT affects the crystallite size and the Ca/P molar ratio of the composite. The smallest crystallite size was 9 nm at 1 mass% MWNT.

  12. Growth of apatite on chitosan-multiwall carbon nanotube composite membranes

    Yang Jun; Yao Zhiwen [State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, No 14, 3rd Section South People' s Road, Chengdu 610041 (China); Tang Changyu [Department of Polymer Science and Materials, Sichuan University (China); Darvell, B.W. [Dental Materials Science, Faculty of Dentistry, University of Hong Kong (Hong Kong); Zhang Hualin; Pan Lingzhan; Liu Jingsong [State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, No 14, 3rd Section South People' s Road, Chengdu 610041 (China); Chen Zhiqing, E-mail: [State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, No 14, 3rd Section South People' s Road, Chengdu 610041 (China)


    Bioactive membranes for guided tissue regeneration would be of value for periodontal therapy. Chitosan-multiwall carbon nanotube (CS-MWNT) composites were treated to deposit nanoscopic apatite for MWNT proportions of 0-4 mass%. Fourier-transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, and X-ray diffraction were used for characterization. Apatite was formed on the CS-MWNT composites at low MWNT concentrations, but the dispersion of the MWNT affects the crystallite size and the Ca/P molar ratio of the composite. The smallest crystallite size was 9 nm at 1 mass% MWNT.

  13. Pacific Northwest National Laboratory Apatite Investigation at the 100-NR-2 Quality Assurance Project Plan

    Fix, N. J.


    This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by staff working on the 100-NR-2 Apatite Project. The U.S. Department of Energy, Fluor Hanford, Inc., Pacific Northwest National Laboratory, and the Washington Department of Ecology agreed that the long-term strategy for groundwater remediation at 100-N would include apatite sequestration as the primary treatment, followed by a secondary treatment. The scope of this project covers the technical support needed before, during, and after treatment of the targeted subsurface environment using a new high-concentration formulation.

  14. In Vitro Biocompability/Osteogenesis and In Vivo Bone Formation Evalution of Peptide-Decorated Apatite Nanocomposites Assisted via Polydopamine.

    Deng, Yi; Sun, Yuhua; Bai, Yanjie; Gao, Xiang; Zhang, Huan; Xu, Anxiu; Huang, Enyi; Deng, Feng; Wei, Shicheng


    Enhancing the biocompatibility and osteogenic activity of nano-apatite for applications in bone graft substitutes and bone tissue engineering have been the current challenge in regeneration of lost bone. Inspired by mussels, here we have developed facile biomimetic approaches for preparation of two types of peptide-conjugated apatite nanocompsoties assisted by polydopamine (pDA). We exploited polydopamine chemistry for the modification of nano-apatite crystals: polydopamine coated apatite (HA-c-pDA) and polydopamine template-mediated apatite (HA-t-pDA), on which bone forming peptide was subsequently immobilized under weakly basic conditions to obtain peptide-conjugated apatite nanocomposites (HA-c-pep and HA-t-pep, respectively). TEM images revealed that HA-c-pDA displayed typically rod-like morphology, while HA-t-pDA was sponge-like structure where pDA sheets were decorated by needle-like apatite crystals with low degree of crystallinity. In the cell culture experiments, HA-t-pep nanocomposite exhibited higher cell proliferation, spreading, and alkaline phosphatase activity as well as calcium nodule-formation, compared with pristine nano-HA and HA-c-pep nanocomposite. We then implanted the peptide-decorated apatite into rabbit calvarial defects and analyzed bone formation after 2 months. The data revealed that HA-t-pep group exhibited remarkably enhanced bioactivity and bone formation in vivo. Based on these results, our biomimetic approach could be a promising tool to develop peptide-conjugated apatites for bone regeneration. Meanwhile, the excellent biocompatibility and high osteogenesis of the peptide-conjugated apatite nanocomposite might confer its great potentials in bone repair, bone augmentation, as well as coating of biomedical implants.

  15. Effects of apatite particle size in two apatite/collagen composites on the osteogenic differentiation profile of osteoblastic cells.

    Hatakeyama, Wataru; Taira, Masayuki; Chosa, Naoyuki; Kihara, Hidemichi; Ishisaki, Akira; Kondo, Hisatomo


    The development of new osteoconductive bone substitute materials is expected in medicine. In this study, we attempted to produce new hydroxylapatite (HAP)/collagen (Col) composites using two HAP particles of different sizes and porcine type I collagen. The two HAP particles were either nano-sized (40 nm in average diameter; n-HAP) or had macro-pore sizes of 0.5‑1.0 mm in length with fully interconnected pores (m-HAP). The aim of this study was to investigate the effects of apatite particle size in two HAP/Col composites on the osteogenic differentiation profile in osteoblast-like cells (SaOS-2). We created a collagen control sponge (Col) and two HAP/Col composite sponges (n-HAP/Col and m-HAP/Col) using freeze-drying and dehydrothermal cross-linking techniques, and then punched out samples of 6 mm in diameter and 1 mm in height. The SaOS-2 cells were cultured on three test materials for 1, 2, 3 and 4 weeks. Total RNA was extracted from the cultured cells and the expression of osteogenic differentiation-related genes was evaluated by reverse transcription PCR (RT-PCR) using primer sets of alkaline phosphatase (ALP), type 1 collagen (COL1), bone sialoprotein (BSP) and osteocalcin precursor [bone gamma-carboxyglutamate (gla) protein (BGLAP)] genes, as well as the β-actin gene. The cells were also cultured on Col, n-HAP/Col and m-HAP/Col specimens for 1 and 4 weeks, and were then observed under a scanning electron microscope (SEM). The experimental results were as follows: RT-PCR indicated that osteogenic differentiation, particularly the gene expression of BSP, was most accelerated when the cells were cultured on n-HAP/Col specimens, followed by m-HAP/Col, whilst the weakest accelaeration was observed when the cells were cultured on Col specimens. As shown by the SEM images, the SaOS-2 cells were fibroblastic when cultured on Col specimens for up to 4 weeks; they were fibroblastic when cultured on n-HAP/Col specimens for 1 week, but appeared as spheroids

  16. Compositional Variation of Terrestrial Mantle Apatites and Implications for the Halogen and Water Budgets of the Terrestrial Mantle

    Roden, M.; Patino Douce, A. E.; Chaumba, J. B.; Fleisher, C.; Yogodzinski, G. M.


    Apatite in ultramafic xenoliths from various tectonic enviroments including arc (Kamchatka), plume (Hawaii), and intraplate (Lunar Crater, Nunivak, Colorado Plateau) were analyzed by electron microprobe with the aim of characterizing the Cl and F contents, and from these measured compositions to infer the nature of fluids/melts that the apatites equilibrated with. The impetus for the study derived from the generalization of O'Reilly and Griffin (1) that mantle-derived metasomatic apatites tend to be Cl-rich and mantle-derived igneous apatites tend to be F-rich. Our work largely corroborates their generalization with Cl- and/or H2O-rich compositions characterizing the apatites from Nunivak and Kamchatka while apatites from igneous or Group II xenoliths tend to be Cl-poor and be either nearly pure fluorapatite or a mix of hydroxylapatite and fluorapatite. We attribute the Cl-rich nature of the Kamchatka apatites to formation from Cl-rich fluids generated from subducted lithosphere; however the Nunivak occurrence is far removed from subducted lithosphere and may reflect a deep seated source for Cl as also indicated by brine inclusions in diamonds, Cl-rich apatites in carbonate-bearing xenoliths and a Cl-rich signature in some plumes such as Iceland, Azores and Samoa. One curious aspect of mantle-derived apatite compositions is that xenoliths with evidence of carbonatitic metasomatism commonly have Cl-rich apatites while apatites from carbonatites are invariably Cl-poor - perhaps reflecting loss of Cl in fluids evolved from the carbonatitic magma. Apatites from Group II xenoliths at Hawaii are solid solutions between fluorapatite and hydroxylapatite and show no evidence for deep-seated Cl at Hawaii. Samples of the terrestrial mantle are almost uniformly characterized by mineral assemblages with a single Ca-rich phosphate phase but the mantles of Mars, Vesta and the Moon have two Ca-rich phosphates, apatite and volatile-poor merrillite - apatite compositions existing

  17. Synthesis and Characterization of Tb-incorporated Apatite Nano-scale Powders

    L.J. Sun; P.F. Ni; D.G. Guo; C.Q. Fang; J. Wang; F. Yang; X.F. Huang; Y.Z. Hao; H. Zhu; K.W. Xu


    Nano-scale Tb-incorporated apatite (nano-Tb-AP) particles with different Tb contents (Tb/(Tb+Ca)) of 0%, 5%, 10% and 20% were synthesized through a simple wet chemical method in this study. The crystal structure, thermal stabilities, chemical groups, crystal morphologies and crystal sizes of the nano--Tb-AP particles were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM), respectively. It was found that lattice constants, particle sizes, crystalline and thermal stability varied with the doped Tb contents. With the increasing of Tb content, the lattice constants, particle size, length/diameter ratio, crystalline and thermal stability of nano-Tb-AP gradually decrease. Especially, almost all the 20%Tb-AP nano particles had been decomposed at 1200 ℃ while only a few of the decomposed products (β-TCP) were detected in the Tb-free nano apatite powders: This kind of nano-scale Tb-incorporated apatite exhibits an extremely potential clinic application because it integrates both the excellent biological functions of Tb element and apatite in human body.

  18. From supernova to Solar System: Few years only; first Solar System components apatite and spinel determined

    Jungck, Matthias H. A.; Niederer, Franz R.


    We show data for the very first years of our Solar System development after an interaction between undisturbed, cold interstellar dust and supernova type II explosion gases. All manual work was done in 1976-1982 as part of 3 theses works but fundamentally new data interpretation was reached within the last three years. From the CI1 meteorite Orgueil, we are able to separate 1.4 per mill of material containing supernova related noble gases He, Ne and Ar as well as P. We separate minerals using essentially density gradient centrifugation followed by stepwise heating noble gas analysis. Our procedure loses nearly no material and is in sharp contrast to the otherwise used dissolution of >99% of material to obtain single presolar grains (Anders and Zinner, 1993). Our method safeguards minerals considerably more fragile than SiC or TiC presolar grains, such as apatite, Mg-Al-spinel, graphite clusters and even apatite coated graphite clusters. We find graphite, apatite and Mg-Al-spinel containing highly anomalous noble gases. For the first time, apatite, containing anomalous Ar with an isotope ratio for 38Ar/36Ar of 0.35, twice the normal ratio, is reported. Such a ratio is produced by a 20 solar mass type II supernova in the C-O-Ne-burning shell. Unmatched pure Ne-E from 22Na measured in the same samples sets the timeframe for this interaction to a maximum of only a few years.

  19. Osteointegration of biomimetic apatite coating applied onto dense and porous metal implants in femurs of goats

    Barrère, F.; van der Valk, C.M.; Meijer, G.; Dalmeijer, R.A.J.; de Groot, K.; Layrolle, P.


    Biomimetic calcium phosphate (Ca-P) coatings were applied onto dense titanium alloy (Ti6Al4V) and porous tantalum (Ta) cylinders by immersion into simulated body fluid at 37 °C and then at 50 °C for 24 h. As a result, a homogeneous bone-like carbonated apatitic (BCA) coating, 30 m thick was deposite

  20. Bone tissue engineering on amorphous carbonated apatite and crystalline octacalcium phosphate-coated titanium discs

    Dekker, Robert J.; de Bruijn, Joost Dick; Stigter, Martin; Barrère, F.; Layrolle, Pierre; van Blitterswijk, Clemens


    Poor fixation of bone replacement implants, e.g. the artificial hip, in implantation sites with inferior bone quality and quantity may be overcome by the use of implants coated with a cultured living bone equivalent. In this study, we tested, respectively, amorphous carbonated apatite (CA)- and crys

  1. Naturally etched tracks in apatites and the correction of fission track dating

    Tien, J L


    Naturally etched tracks have been found in apatites from the rapid cooled, high-level Kunon pluton in the Zhangzhou Igneous Complex, SE China. This is manifested by the fact that the apatite fission track (FT) age derived from conventional counting of spontaneous and induced tracks yields a result of 140.6+-6.5 Ma, which is much older than the ages determined using other methods on different minerals from the same rock. When tracks are observed after etching the polished inner sections of the apatite grains, the naturally etched tracks characterized by having hazy boundaries can be distinguished from the normal tracks with sharp boundaries. The age obtained by omitting these fading-resistant hazy tracks, 76.5+-4.0 Ma, indicates the time of the Kunon pluton cooling down to approx 100 deg. C. The corrected peak age (73.8 Ma) is consistent with the other apatite FT peak ages (79.2 to 70.2 Ma) of the nearly contemporaneous plutons in the same igneous complex.

  2. Adsorption/desorption of Direct Yellow 28 on apatitic phosphate: Mechanism, kinetic and thermodynamic studies

    H. El Boujaady


    Full Text Available In this study, the adsorption potential of apatitic tricalcium phosphate for the removal of Direct Yellow 28 (DY28 from aqueous solution has been investigated by using batch mode experiments. The effects of different parameters such as pH, adsorbent dosage, initial dye concentration, contact time, addition of ions and temperature have been studied to understand the adsorption behavior of the adsorbent under various conditions. The adsorbent has been characterized by pHzpc measurement, chemical analyses, FTIR, XRD and TEM. The Langmuir and Freundlich models are found to be the best to describe the equilibrium isotherm data, with a maximum monolayer adsorption capacity of 67.02 mg g−1. Thermodynamic parameters including the Gibbs free energy ΔG, enthalpy ΔH, and entropy ΔS have revealed that the adsorption of DY28 on the apatitic tricalcium phosphate is feasible, spontaneous and endothermic. Among the kinetic models tested for apatitic tricalcium phosphate, the pseudo-second-order model fits the kinetic data well. The introduction of orthophosphate ions in the medium causes a decrease of adsorption. The addition of Ca2+ ions favors the adsorption. The results of this study have demonstrated the effectiveness and feasibility of the apatitic tricalcium phosphate for the removal of DY28 from aqueous solution.

  3. Preparation of fluoride substituted apatite cements as the building blocks for tooth enamel restoration

    Wei Jie [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Inter-disciplinary Studies, Peking University, Beijing 100871 (China); Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Wang Jiecheng; Liu Xiaochen [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Inter-disciplinary Studies, Peking University, Beijing 100871 (China); Ma Jian [Hospital of Stomatology, Tongji University, Shanghai 200072 (China); Liu Changsheng [Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai 200237 (China); Fang Jing, E-mail: [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Inter-disciplinary Studies, Peking University, Beijing 100871 (China); Wei Shicheng, E-mail: [Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Inter-disciplinary Studies, Peking University, Beijing 100871 (China) and School and Hospital of Stomatology, Peking University, Beijing 100081 (China)


    Fluoride substituted apatite cement (fs-AC) was synthesized by using the cement powders of tetracalcium phosphate (TTCP) and sodium fluoride (NaF), and the cement powders were mixed with diluted phosphoric acid (H{sub 3}PO{sub 4}) as cement liquid to form fs-AC paste. The fs-AC paste could be directly filled into the carious cavities to repair damaged dental enamel. The results indicated that the fs-AC paste was changed into fluorapatite crystals with the atom molar ratio for calcium to phosphorus of 1.66 and the F ion amount of 3 wt% after self-hardening for 2 days. The solubility of fs-AC in Tris-HCl solution (pH 6) was slightly lower than hydroxyapatite cement (HAC) that was similar to the apatite in enamel, indicating the fs-AC was much insensitive to the weakly acidic solution than the apatite in enamel. The fs-AC was tightly combined with the enamel surface because of the chemical reaction between the fs-AC and the apatite in enamel after the caries cavities was filled with fs-AC. The extracts of fs-AC caused no cytotoxicity on L929 cells, which satisfied the relevant criterion on dental biomaterials, revealing good cytocompatibility. The fs-AC had potential prospect for the reconstitution of carious lesion of dental enamel.

  4. Chemical, physical, and histologic studies on four commercial apatites used for alveolar ridge augmentation

    Pinholt, E M; Ruyter, I E; Haanaes, H R


    The purpose of this study was to evaluate four commercial apatite products. Subperiosteal alveolar ridge augmentation was performed on the maxilla of rats by implantation of granules of two dense products and of two porous products, and the tissue response was compared with the material character...

  5. Apatite coating of electrospun PLGA fibers using a PVA vehicle system carrying calcium ions.

    Kim, In Ae; Rhee, Sang-Hoon


    A novel method to coat electrospun poly(D,L-lactic-co-glycolic acid) (PLGA) fiber surfaces evenly and efficiently with low-crystalline carbonate apatite crystals using a poly(vinyl alcohol) (PVA) vehicle system carrying calcium ions was presented. A non-woven PLGA fabric was prepared by electrospinning: a 10 wt% PLGA solution was prepared using 1,1,3,3-hexafluoro-2-propanol as a solvent and electrospun under a electrical field of 1 kV/cm using a syringe pump with a flowing rate of 3 ml/h. The non-woven PLGA fabric, 12 mm in diameter and 1 mm in thickness, was cut and then coated with a PVA solution containing calcium chloride dihydrate (specimen PPC). As controls, pure non-woven PLGA fabric (specimen P) and fabric coated with a calcium chloride dihydrate solution without PVA (specimen PC) were also prepared. Three specimens were exposed to simulated body fluid for 1 week and this exposure led to form uniform and complete apatite coating layer on the fiber surfaces of specimen PPC. However, no apatite had formed to the fiber surfaces of specimen P and only inhomogeneous coating occurred on the fiber surfaces of specimen PC. These results were explained in terms of the calcium chelating and adhesive properties of PVA vehicle system. The practical implication of the results is that this method provides a simple but efficient technique for coating the fiber surface of an initially non-bioactive material with low-crystalline carbonate apatite.

  6. Preparation of fluoride substituted apatite cements as the building blocks for tooth enamel restoration

    Wei, Jie; Wang, Jiecheng; Liu, Xiaochen; Ma, Jian; Liu, Changsheng; Fang, Jing; Wei, Shicheng


    Fluoride substituted apatite cement (fs-AC) was synthesized by using the cement powders of tetracalcium phosphate (TTCP) and sodium fluoride (NaF), and the cement powders were mixed with diluted phosphoric acid (H 3PO 4) as cement liquid to form fs-AC paste. The fs-AC paste could be directly filled into the carious cavities to repair damaged dental enamel. The results indicated that the fs-AC paste was changed into fluorapatite crystals with the atom molar ratio for calcium to phosphorus of 1.66 and the F ion amount of 3 wt% after self-hardening for 2 days. The solubility of fs-AC in Tris-HCl solution (pH 6) was slightly lower than hydroxyapatite cement (HAC) that was similar to the apatite in enamel, indicating the fs-AC was much insensitive to the weakly acidic solution than the apatite in enamel. The fs-AC was tightly combined with the enamel surface because of the chemical reaction between the fs-AC and the apatite in enamel after the caries cavities was filled with fs-AC. The extracts of fs-AC caused no cytotoxicity on L929 cells, which satisfied the relevant criterion on dental biomaterials, revealing good cytocompatibility. The fs-AC had potential prospect for the reconstitution of carious lesion of dental enamel.

  7. Water in the Early Differentiated Asteroids: Insight from Apatite in Basaltic Eucrites

    Koike, M.; Iizuka, T.; Takahata, N.; Sano, Y.; Haba, M. K.


    To understand the water history in early differentiated bodies, we analyze H2O contents and U-Pb ages in apatites from several basaltic eucrites. Our results indicate that at least some part of the Vesta’s crust was anhydrous at 4.5Ga.

  8. The formation of Luoboling porphyry Cu-Mo deposit: Constraints from zircon and apatite

    Li, Cong-ying; Hao, Xi-luo; Liu, Ji-qiang; Ling, Ming-xing; Ding, Xing; Zhang, Hong; Sun, Wei-dong


    The Luobuling porphyry Cu-Mo deposit belongs to the Late Cretaceous Zijinshan Cu-Au-Mo mineralization field in southeastern China. Due to intensive hydrothermal alteration and weathering, it is very difficult to collect fresh whole rock samples for geochemical and isotopic studies in Luobuling. Zircon and apatite are accessory minerals that are resistant to hydrothermal alterations. In this study, we compared the trace element and isotope compositions of zircon and apatite from ore-bearing and barren samples to understand the formation of the Luoboling Cu-Mo deposit. Zircon U-Pb LA-ICP-MS dating shows that the Luoboling porphyries formed at 100 Ma (100.3 ± 1.2 Ma, 100.6 ± 1.5 Ma and 98.6 ± 1.2 Ma), which belongs to the late stage mineralization of the Zijinshan mineralization field. Zhongliao porphyritic granodiorite has the same age as the deposit (99.5 ± 1.6 Ma). The age of barren Sifang granodiorite is slightly older (109.7 ± 0.8 Ma). All these zircon grains have high Ce4+/Ce3+ ratios, indicating high oxygen fugacities. The ore-bearing samples show variable εHf(t) of - 7.3 to 0.2, suggesting either heterogeneous sources or mixing of two different magmas. Interestingly, the Hf isotope composition of barren samples is systematically higher (εHf(t) of - 3.6 to 5.5), implying a lower contribution of crustal materials. The OH mole percent of apatite grains from barren samples (LBL22-03 and SF09-05) is 0.5, which is higher than that of apatite from the ore-bearing samples (LBL20-01 LBL20-02 and LBL22-02), indicating lower F, Cl contents or higher water contents in the magma. In apatite from the ore-bearing samples, Sr is high, indicating the absence of plagioclase crystallization. In contrast, barren samples have varied and lower Sr, indicating that apatite crystallization was accompanied by plagioclase. These patterns were controlled by water contents because the crystallization of plagioclase is suppressed by high water contents in magmas. It also suggests

  9. In-situ time resolved studies of apatite formation pathways - implications for biological and environmental systems

    Borkiewicz, O.; Rakovan, J.; Cahill, C. L.


    The mineral apatite, Ca5(PO4)3(F,OH,Cl), is of great significance in a variety of fields including life and environmental sciences. Apatite is the main constituent of almost all hard tissues of human body and plays major role in the metabolic processes. Recently, it has gained a considerable amount of attention as a promising candidate for the use in the in-situ metal sequestration of metal ions for environmental remediation, sometimes called phosphate induced metal stabilization (PIMS). We report preliminary results of in-situ time resolved X-ray diffraction studies of apatite formation pathways from aqueous solutions, performed at the X7B beamline of the National Synchrotron Light Source at Brookhaven National Laboratory, Upton, NY. A series of experiments with different Ca/P and liquid/solid ratios in the starting material, and range of temperatures were performed. In the first stage of the experiment, calcium acetate and ammonium phosphate solutions are mixed at room temperature, resulting in the formation of an initial precipitate. The solution is then press-filtered and the remaining slurry, of the desired liquid/solid ratio, is placed inside a heating cell and analyzed within 10 min. of the initial precipitation. The initial precipitate was identified as brushite (CaHPO4 - 2H2O) in all experiments, independent of the initial Ca/P ratio in solution). In the experiment conducted at ambient temperature brushite was the only phase present in the solution/slurry throughout the duration of the analysis. Under the conditions of elevated temperature, however, a sequence of phase transitions, from brushite to apatite with intermediate monetite (CaHPO4) was observed. The pathway of the transitions and the final product was independent of both the Ca/P ratio and the temperature of the reaction. The rate of the transformation, however, increased with increasing temperature. Numerous studies of apatite formation from solution using standard X-ray diffraction experiments

  10. Cd2+ and Zn2+ sorption on apatite in the presence of EDTA and humic substance

    Viipsi K.


    Full Text Available The sorption of Cd2+ and Zn2+ on hydroxyapatite [HAP- Ca10(PO46(OH2] and fluorapatite [FAP- Ca10( PO46(F2] with different specific surface area and stoichiometry was investigated in batch experiments in the pH range 4 to 11 (25 ◦C; 0.1 M KNO3. The impact of different conditions was concerned: solution pH, the presence of complexing ligands (EDTA and humic substance and competing metal ions, as well as reaction kinetic and equilibrium conditions. To evaluate the reversibility of Cd2+ sorption onto HAP, desorption characteristics in water, Ca, EDTA, and HUM-solutions were determined. Additionally to solution analysis the surface composition of solid phases was analysed by X-Ray Photoelectron Spectroscopy XPS. The information from the chemical analyses was used to design an equilibration model that takes into account dissolution, surface potential, solution and surface complexation, as well as possible phase transformations. It was revealed that apatites effectively sorb Cd2+ and Zn2+ by ion exchange reactions on surface by formation of new surface phases. Using XPS the formation of a Me-enriched HAP surface was found, which was interpreted as the formation of a solid solution with the general formula: Ca8.4-xMex(HPO41.6(PO44.4(OH0.4. In a binary solution (Cd+Zn the competition of metals reduced individual sorbed amount compared with the single component solutions but the total adsorption maximum was approximately constant. The presence of EDTA reduces the metal sorption on apatite due to [CdEDTA]2- and [ZnEDTA]2- complexes and increases apatite solubility due to [CaEDTA]2- complex formation. The dissolved humic substance was bound on apatite in suspensions but the amount of Cd2+ bound was not changed. The results showed that the solution pH and the presence of complexing ligands have a significant effect on heavy metal sorption on apatite and must be considered if apatites are used as remediation agent. The proposed model can be used to predict

  11. Atomic substitutions in synthetic apatite; Insights from solid-state NMR spectroscopy

    Vaughn, John S.

    Apatite, Ca5(PO4)3X (where X = F, Cl, or OH), is a unique mineral group capable of atomic substitutions for cations and anions of varied size and charge. Accommodation of differing substituents requires some kind of structural adaptation, e.g. new atomic positions, vacancies, or coupled substitutions. These structural adaptations often give rise to important physicochemical properties relevant to a range of scientific disciplines. Examples include volatile trapping during apatite crystallization, substitution for large radionuclides for long-term storage of nuclear fission waste, substitution for fluoride to improve acid resistivity in dental enamel composed dominantly of hydroxylapatite, and the development of novel biomaterials with enhanced biocompatibility. Despite the importance and ubiquity of atomic substitutions in apatite materials, many of the mechanisms by which these reactions occur are poorly understood. Presence of substituents at dilute concentration and occupancy of disordered atomic positions hinder detection by bulk characterization methods such as X-ray diffraction (XRD) and infrared (IR) spectroscopy. Solid-state nuclear magnetic resonance (NMR) spectroscopy is an isotope-specific structural characterization technique that does not require ordered atomic arrangements, and is therefore well suited to investigate atomic substitutions and structural adaptations in apatite. In the present work, solid-state NMR is utilized to investigate structural adaptations in three different types of apatite materials; a series of near-binary F, Cl apatite, carbonate-hydroxylapatite compositions prepared under various synthesis conditions, and a heat-treated hydroxylapatite enriched in 17O. The results indicate that hydroxyl groups in low-H, near binary F,Cl apatite facilitate solid-solution between F and Cl via column reversals, which result in average hexagonal symmetry despite very dilute OH concentration ( 2 mol percent). In addition, 19F NMR spectra indicate

  12. Bone-like apatite coating on functionalized poly(etheretherketone) surface via tailored silanization layers technique

    Zheng, Yanyan [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xiong, Chengdong; Zhang, Shenglan [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China); Li, Xiaoyu [State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Zhang, Lifang, E-mail: [Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041 (China)


    Poly(etheretherketone) (PEEK) is a rigid semi-crystalline polymer with outstanding mechanical properties, bone-like stiffness and suitable biocompatibility that has attracted much interest as a biomaterial for orthopedic and dental implants. However, the bio-inert surface of PEEK limits its biomedical applications when direct osteointegration between the implants and the host tissue is desired. In this work, –PO{sub 4}H{sub 2}, –COOH and –OH groups were introduced on the PEEK surface by further chemical treatments of the vinyl-terminated silanization layers formed on the hydroxylation-pretreated PEEK surface. Both the surface-functionalized and pristine specimens were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and water contact angle measurements. When placed in 1.5 strength simulated body fluid (SBF) solution, apatite was observed to form uniformly on the functionalized PEEK surface and firmly attach to the substrate. The characterized results demonstrated that the coating was constituted by poorly crystallized bone-like apatite and the effect of surface functional groups on coating formation was also discussed in detail. In addition, in vitro biocompatibility of PEEK, in terms of pre-osteoblast cell (MC3T3-E1) attachment, spreading and proliferation, was remarkably enhanced by the bone-like apatite coating. Thus, this study provides a method to enhance the bioactivity of PEEK and expand its applications in orthopedic and dental implants. - Highlights: • –PO{sub 4}H{sub 2}, –COOH and –OH groups were successfully introduced onto PEEK surface via tailored silanization layer technique. • Bone-like apatite formed uniformly on surface-functionalized PEEK after immersion in SBF, and tightly adhered to the PEEK. • SEM, EDS, FTIR, XPS and XRD results showed that apatite layer is composed of low-crystalline bone-like apatite. • Bone-like apatite coating

  13. Arsenic in hydrothermal apatite: Oxidation state, mechanism of uptake, and comparison between experiments and nature

    Liu, Weihua; Mei, Yuan; Etschmann, Barbara; Brugger, Joël; Pearce, Mark; Ryan, Chris G.; Borg, Stacey; Wykes, Jeremey; Kappen, Peter; Paterson, David; Boesenberg, Ulrike; Garrevoet, Jan; Moorhead, Gareth; Falkenberg, Gerald


    Element substitution that occurs during fluid-rock interaction permits assessment of fluid composition and interaction conditions in ancient geological systems, and provides a way to fix contaminants from aqueous solutions. We conducted a series of hydrothermal mineral replacement experiments to determine whether a relationship can be established between arsenic (As) distribution in apatite and fluid chemistry. Calcite crystals were reacted with phosphate solutions spiked with As(V), As(III), and mixed As(III)/As(V) species at 250 °C and water-saturated pressure. Arsenic-bearing apatite rims formed in several hours, and within 48 h the calcite grains were fully replaced. X-ray Absorption Near-edge Spectroscopy (XANES) data show that As retained the trivalent oxidation state in the fully-reacted apatite grown from solutions containing only As(III). Extended X-ray Fine Spectroscopy (EXAFS) data reveal that these As(III) ions are surrounded by about three oxygen atoms at an Assbnd O bond length close to that of an arsenate group (AsO43-), indicating that they occupy tetrahedral phosphate sites. The three-coordinated As(III)-O3 structure, with three oxygen atoms and one lone electron pair around As(III), was confirmed by geometry optimization using ab initio molecular simulations. The micro-XANES imaging data show that apatite formed from solutions spiked with mixed As(III) and As(V) retained only As(V) after completion of the replacement reaction; in contrast, partially reacted samples revealed a complex distribution of As(V)/As(III) ratios, with As(V) concentrated in the center of the grain and As(III) towards the rim. Most natural apatites from the Ernest Henry iron oxide copper gold deposit, Australia, show predominantly As(V), but two grains retained some As(III) in their core. The As-anomalous amphibolite-facies gneiss from Binntal, Switzerland, only revealed As(V), despite the fact that these apatites in both cases formed under conditions where As(III) is

  14. Sulfur isotopic zoning in apatite crystals: A new record of dynamic sulfur behavior in magmas

    Economos, Rita; Boehnke, Patrick; Burgisser, Alain


    The mobility and geochemical behavior of sulfur in magmas is complex due to its multi-phase (solid, immiscible liquid, gaseous, dissolved ions) and multi-valent (from S2- to S6+) nature. Sulfur behavior is closely linked with the evolution of oxygen fugacity (fO2) in magmas; the record of fO2 evolution is often enigmatic to extract from rock records, particularly for intrusive systems. We apply a novel method of measuring S isotopic ratios in zoned apatite crystals that we interpret as a record of open-system magmatic processes. We interrogate the S concentration and isotopic variations preserved in multiple apatite crystals from single hand specimens from the Cadiz Valley Batholith, CA via electron microprobe and ion microprobe. Isotopic variations in single apatite crystals ranged from 0 to 3.8‰ δ34S and total variation within a single hand sample was 6.1‰ δ34S. High S concentration cores yielded high isotopic ratios while low S concentration rims yielded low isotopic ratios. We discuss a range of possible natural scenarios and favor an explanation of a combination of magma mixing and open-system, ascent-driven degassing under moderately reduced conditions: fO2 at or below NNO+1, although the synchronous crystallization of apatite and anhydrite is also a viable scenario. Our conclusions have implications for the coupled S and fO2 evolution of granitic plutons and suggest that in-situ apatite S isotopic measurements could be a powerful new tool for evaluating redox and S systematics in magmatic systems.

  15. An empirical test of helium diffusion in apatite: borehole data from the Otway basin, Australia

    House, Martha A.; Farley, Kenneth A.; Kohn, Barry P.


    We have analyzed helium ages of apatites from several boreholes in the Otway basin, Australia, to evaluate whether laboratory helium diffusivity can be accurately extrapolated to conditions relevant in nature. Downhole apatite helium ages define a broad swath of values from 78-71 Ma at the surface (15°C) to nearly zero at depths corresponding to ambient temperatures of ˜80°C. The width of the swath results from uncertainties in corrected borehole temperatures, differences in the thermal history experienced by the various boreholes, and possibly from slightly different helium diffusivities among the detrital apatite grains studied. In the eastern Otway basin, the shape and position of the helium age profile is in good agreement with predictions based on the extrapolation of laboratory diffusivity data for Durango apatite coupled with published thermal histories for this part of the basin. In contrast, helium ages are much younger than predicted in the western Otway basin. Based on measured ages from Otway sediments, which have been essentially isothermal over the last few million years, an empirical diffusivity ( D/ a2) of 2×10 -15 s -1 can be assigned to apatites residing at downhole temperatures of 67-97°C. This empirical diffusivity is consistent with laboratory diffusion measurements, demonstrating that such measurements are reasonably accurate and can be applied with confidence to natural geologic settings. Given this confirmation of the laboratory diffusivity data, the discrepancy between the observed and modeled helium age profiles in the western Otway basin suggests that these sediments recently experienced higher temperatures than presently supposed.

  16. Carbonate-containing apatite (CAP) synthesis under moderate conditions starting from calcium carbonate and orthophosphoric acid

    Pham Minh, Doan, E-mail: [Université de Toulouse, Mines Albi, CNRS, Centre RAPSODEE, Campus Jarlard, F-81013 Albi cedex 09 (France); Tran, Ngoc Dung; Nzihou, Ange [Université de Toulouse, Mines Albi, CNRS, Centre RAPSODEE, Campus Jarlard, F-81013 Albi cedex 09 (France); Sharrock, Patrick [Université de Toulouse, SIMAD, IUT Paul Sabatier, Avenue Georges Pompidou, 81104 Castres (France)


    The synthesis of carbonate-containing apatite (CAP) from calcium carbonate and orthophosphoric acid under moderate conditions was investigated. In all cases, complete precipitation of orthophosphate species was observed. The reaction temperature influenced strongly the decomposition of calcium carbonate and therefore the composition of formed products. The reaction temperature of 80 °C was found to be effective for the complete decomposition of calcium carbonate particles after 48 h of reaction. Infra-red spectroscopy (IR), nuclear magnetic resonance (NMR), thermogravimetry/mass spectroscopy (TG–MS) coupling, and X-ray diffraction (XRD) characterizations allowed the identification of the composition of formed products. By increasing the reaction temperature from 20 °C to 80 °C, the content of A-type CAP increased and that of B-type CAP decreased, according to the favorable effect of temperature on the formation of A-type CAP. The total amount of carbonate content incorporated in CAP's structure, which was determined by TG–MS analysis, increased with the reaction temperature and reached up to 4.1% at 80 °C. At this temperature, the solid product was mainly composed of apatitic components and showed the typical flat-needle-like structure of CAP particles obtained in hydrothermal conditions. These results show an interesting one-step synthesis of CAP from calcium carbonate and orthophosphoric acid as low cost but high purity starting materials. Highlights: • The synthesis of carbonate-containing apatites from CaCO{sub 3} and H{sub 3}PO{sub 4} was studied. • The decomposition of CaCO{sub 3} particles was complete at 80 °C, 13.2 bar for 48 h. • The transformation of CaCO{sub 3} and H{sub 3}PO{sub 4} into apatitic products was also complete. • Pure carbonate-containing apatite was directly obtained without water-rising step.

  17. Adsorption of nucleotides on biomimetic apatite: The case of adenosine 5⿲ triphosphate (ATP)

    Hammami, Khaled; El-Feki, Hafed; Marsan, Olivier; Drouet, Christophe


    ATP is a well-known energy supplier in cells. The idea to associate ATP to pharmaceutical formulations/biotechnological devices to promote cells activity by potentially modulating their microenvironment thus appears as an appealing novel approach. Since biomimetic nanocrystalline apatites have shown great promise for biomedical applications (bone regeneration, cells diagnostics/therapeutics, ⿦), thanks to a high surface reactivity and an intrinsically high biocompatibility, the present contribution was aimed at exploring ATP/apatite interactions. ATP adsorption on a synthetic carbonated nanocrystalline apatite preliminarily characterized (by XRD, FTIR, Raman, TG-DTA and SEM-EDX) was investigated in detail, pointing out a good agreement with Sips isothermal features. Adsorption characteristics were compared to those previously obtained on monophosphate nucleotides (AMP, CMP), unveiling some specificities. ATP was found to adsorb effectively onto biomimetic apatite: despite smaller values of the affinity constant KS and the exponential factor m, larger adsorbed amounts were reached for ATP as compared to AMP for any given concentration in solution. m guided by direct surface bonding rather than through stabilizing intermolecular interactions. Although standard οGads ° was estimated to only ⿿4 kJ/mol, the large value of Nmax led to significantly negative effective οGads values down to ⿿33 kJ/mol, reflecting the spontaneous character of adsorption process. Vibrational spectroscopy data (FTIR and Raman) pointed out spectral modifications upon adsorption, confirming chemical-like interactions where both the triphosphate group of ATP and its nucleic base were involved. The present study is intended to serve as a basis for future research works involving ATP and apatite nanocrystals/nanoparticles in view of biomedical applications (e.g. bone tissue engineering, intracellular drug delivery, ⿦).

  18. The status of strontium in biological apatites: an XANES investigation.

    Bazin, D; Daudon, M; Chappard, Ch; Rehr, J J; Thiaudière, D; Reguer, S


    Osteoporosis represents a major public health problem and increases patient morbidity through its association with fragility fractures. Among the different treatments proposed, strontium-based drugs have been shown to increase bone mass in postmenopausal osteoporosis patients and to reduce fracture risk. While the localization of Sr(2+) cations in the bone matrix has been extensively studied, little is known regarding the status of Sr(2+) cations in natural biological apatite. In this investigation the local environment of Sr(2+) cations has been investigated through XANES (X-ray absorption near-edge structure) spectroscopy in a set of pathological and physiological apatites. To assess the localization of Sr(2+) cations in these biological apatites, numerical simulations using the ab initio FEFF9 X-ray spectroscopy program have been performed. The complete set of data show that the XANES part of the absorption spectra may be used as a fingerprint to determine the localization of Sr(2+) cations versus the mineral part of calcifications. More precisely, it appears that a relationship exists between some features present in the XANES part and a Sr(2+)/Ca(2+) substitution process in site (I) of crystal apatite. Regarding the data, further experiments are needed to confirm a possible link between the relationship between the preparation mode of the calcification (cellular activity for physiological calcification and precipitation for the pathological one) and the adsorption mode of Sr(2+) cations (simple adsorption or insertion). Is it possible to draw a line between life and chemistry through the localization of Sr in apatite? The question is open for discussion. A better structural description of these physiological and pathological calcifications will help to develop specific therapies targeting the demineralization process in the case of osteoporosis.

  19. Isotope dilution analysis of Ca and Zr in apatite and zircon (U-Th)/He chronometry

    Guenthner, William R.; Reiners, Peter W.; Chowdhury, Uttam


    Because radiation damage influences He diffusivity, correlations between (U-Th)/He ages and effective uranium (eU, eU = U + 0.235 × Th) concentrations of single apatite and zircon grains are important for understanding thermal histories. Here we describe a method for quantifying eU concentrations in apatite and zircon grains using isotope dilution ICP-MS measurements of Zr and Ca and stoichiometry of zircon (ZrSiO4) and apatite (Ca5(PO4)3F) to obtain grain masses. Combined with independent U and Th measurements, these yield eU concentrations not based on the traditional morphologic measurements and assumptions. Additional benefits of this method include correct identification of an apatite or zircon and volume estimates for crystal shards. In some cases, this method gives eU concentrations consistent with those calculated with the morphologic approach, but often significant differences are observed between concentrations calculated from the two methods. Differences in eU concentrations for our apatite grains are greater and less than morphology estimates, and the majority are between 0.7 and 31%. With the exception of two grains, all of our zircon grains have differences between 3 and 34% less than morphology estimates. These differences could result from incorrect grain width measurements, mischaracterized grain shape, or incorrect volume calculations of the pure mineral phase due to inclusions. These morphologic errors—combined with evidence for the accuracy of our isotope dilution method from analyses of reference materials—suggest that eU concentrations calculated from morphology may often be significantly inaccurate. Finally, we demonstrate that differences between the two measurements of eU cause age-eU correlation variations for representative thermal histories.

  20. Reduction And Stabilization (Immobilization) Of Pertechnetate To An Immobile Reduced Technetium Species Using Tin(II) Apatite

    Duncan, J. B.


    Synthetic tin(II)apatite reduces pertechnetate from the mobile +7 to a non-mobile oxidation state and sequesters the technetium, preventing re-oxidization to mobile +7 state under acidic or oxygenated conditions. Previous work indicated technetium reacted Sn(II)apatite can achieve an ANSI leachability index of 12.8 in Cast Stone. An effect by pH is observed on the distribution coefficient, the highest distribution coefficient being l70,900 observed at pH levels of 2.5 to 10.2. The tin apatite was resistant to releasing technetium under test conditions.

  1. Partitioning of F and Cl Between Apatite and a Synthetic Shergottite Liquid (QUE 94201) at 4 Gpa from 1300 TO 1500 C

    McCubbin, F. M.; Barnes, J. J.; Vander Kaaden, K. E.; Boyce, J. W.


    Apatite [Ca5(PO4)3(F,Cl,OH)] is present in a wide range of planetary materials. Due to the presence of volatiles within its crystal structure (Xsite), many recent studies have attempted to use apatite to constrain the volatile contents of planetary magmas and mantle sources. In order to use the volatile contents of apatite to accurately determine the abundances of volatiles in coexisting silicate melt or fluids, thermodynamic models for the apatite solid solution and for the apatite components in multicomponent silicate melts and fluids are required. Although some thermodynamic models for apatite have been developed, they are incomplete. Furthermore, no mixing model is available for all of the apatite components in silicate melts or fluids, especially for F and Cl components. Several experimental studies have investigated the apatite-melt and apatite-fluid partitioning behavior of F, Cl, and OH in terrestrial and planetary systems, which have determined that apatite-melt partitioning of volatiles are best described as exchange equilibria similar to Fe-Mg partitioning between olivine and silicate melt. However, McCubbin et al., recently reported that the exchange coefficients vary in portions of apatite compositional space where F, Cl, and OH do not mix ideally in apatite. In particular, solution calorimetry data of apatite compositions along the F-Cl join exhibit substantial excess enthalpies of mixing, and McCubbin et al. reported substantial deviations in the Cl-F exchange Kd along the F-Cl apatite join that could be explained by the preferential incorporation of F into apatite. In the present study, we assess the effect of apatite crystal chemistry on F-Cl exchange equilibria between apatite and melt at 4 GPa over the temperature range of 1300-1500 C. The goal of these experiments is to assess the variation in the Ap-melt Cl-F exchange Kd over a broad range of F:Cl ratios in apatite. The results of these experiments could be used to understand at what

  2. Stable isotope record of coexisting apatite and dolomite in Early Cambrian phosphorites, Meishucun section, South China

    Wegwerth, Antje; Struck, Ulrich; Segl, Monika; Vennemann, Torsten W.; Gehlken, Peer-L.; Heubeck, Christoph; Böttcher, Michael E.


    The Precambrian-Cambrian transition forms one of the most dramatic time periods in Earth's history, as global changes in tectonics, climate and chemistry in the atmosphere and oceans favoured the worldwide Cambrian Radiation and a concomitant ecosphere revolution. This time interval is paralleled by the first appearance of the widespread giant phosphorites. The well-known Meishucun section (South China), a former candidate section for the Pc-C boundary, documents phosphorite genesis amongst a rapid biodiversification, immediately following the end of the Precambrian in a low-latitude, shallow-water carbonate shelf. This contribution aims to elucidate the relation between simultaneous phosphorite deposition and global environmental conditions at the Pc-C boundary by using stable carbon and oxygen isotope analyses. Accurate determinations of d13C and d18O values may allow conclusions about ancient ocean circulation, paleo-productivity, paleo-temperatures, and most prominently diagenetic processes. The investigated samples from the Meishucun section basically consist of apatite, dolomite, and quartz that may be further devided into a lower and upper phosphorite as well as an overlying dolostone intervall. Additionally, calcite and siderite occur as minor compounds in some samples. Bulk d13C values of the carbonate fraction correlate with dolomite abundance throughout the section ranging from -4 to 1 per mil. Furthermore, several horizons suggest a relation between d13C values and apatite content, implying lower d13C values in apatites compared to coexisting dolomite. A slight negative d13C excursion at the top of the lower phosphorite coincides with the first appearance of small shelly fossils. Corresponding bulk d18O values generally show a stratigraphic-upward trend towards lower values throughout the record with slightly higher values in dolomite-rich sections. This may either indicate a warming trend during deposition, an isotopic shift in sea water composition

  3. Valorization of apatites and phospho gypsum's residues procured by treatment of wastewater's textile; Valorisation des residus d'apatites et du phosphogypse obtenus apres traitement des eaux textiles

    Rais, Z.; Chaqroune, A.; Madji, M. [Faculte des Sciences Dhar El Mehrez, Lab. de Chimie Physique, Fes (Morocco); Maghnouj, J.; Hassani, E. [Centre de Recherches et d' Etudes des Phosphates, CERPHOS, Casablanca (Morocco); Nejjar, R. [Laboratoire de Controle Qualite CIOR, Fes (Morocco); Kherbeche, A. [Laboratoire de Catalyse et d' Environnement, Fes (Morocco)


    This work concerns the study of different methods of enrichment of apatite and phosphogypsum's residues gotten after treatment of the textile wastewater. The survey based on chemical composition properties, has been directed into three axis. The first one is the utilisation of apatite's residues as secondary constituent into cement whether substituting a part of clinker for an Artificial Portland Cement CPA or a part of limestone for a Portland Cement with Additions CPJ. The second one, is the substitution of the natural gypsum, used by the cement factory, by phosphogypsum's residues as cement's hold up. Finally the mixture of apatite and phosphogypsum's residues in the optimal conditions procured into cement. The results show that the use of apatite's residues and those of the phosphogypsum in cement industry has a good income and improves important physics and mechanical properties by report to the witness cement. (author)

  4. Human Dental Pulp Cells Responses to Apatite Precipitation from Dicalcium Silicates

    Wei-Yun Lai


    Full Text Available Unraveling the mechanisms behind the processes of cell attachment and the enhanced proliferation that occurs as a response to the presence of calcium silicate-based materials needs to be better understood so as to expand the applications of silicate-based materials. Ions in the environment may influence apatite precipitation and affect silicate ion release from silicate-based materials. Thus, the involvement of apatite precipitate in the regulation of cell behavior of human dental pulp cells (hDPCs is also investigated in the present study, along with an investigation of the specific role of cell morphology and osteocalcin protein expression cultured on calcium silicate (CS with different Dulbecco’s modified Eagle’s medium (DMEM. The microstructure and component of CS cement immersion in DMEM and P-free DMEM are analyzed. In addition, when hDPCs are cultured on CS with two DMEMs, we evaluate fibronectin (FN and collagen type I (COL secretion during the cell attachment stage. The facilitation of cell adhesion on CS has been confirmed and observed both by scanning with an electron microscope and using immunofluorescence imaging. The results indicate that CS is completely covered by an apatite layer with tiny spherical shapes on the surface in the DMEM, but not in the P-free DMEM. Compared to the P-free DMEM, the lower Ca ion in the DMEM may be attributed to the formation of the apatite on the surfaces of specimens as a result of consumption of the Ca ion from the DMEM. Similarly, the lower Si ion in the CS-soaked DMEM is attributed to the shielding effect of the apatite layer. The P-free DMEM group releases more Si ion increased COL and FN secretion, which promotes cell attachment more effectively than DMEM. This study provides new and important clues regarding the major effects of Si-induced cell behavior as well as the precipitated apatite-inhibited hDPC behavior on these materials.

  5. The Effect of Nano-apatite on the Expression of Telomerase Gene of Human Hepatocellular Carcinoma Cells


    To investigate the effect of nano- apatite on the expression of the telomerase gene of human hepatocellular carcinoma cell lines and further explore the mechanism of the nano-apatite inhibiting cancer cells. Using the hybridization in situ method to detect the expression of the telomerase gene of human hepatocellular carcinoma cells treated with the nano- apatite for 4 h at 37 ℃. The hybridization in situ showed that the cytoplasm of the positive cells was stained in nigger-brown. The positive cell rate of the control group was 88.49% , the cisplatin group was 25.6% , the nano-apatite group was 63.6% . The activity oftelomerase gene was both obviously declined comparing with the control group and the difference had significance (p < 0.05, p < 0.01 ). The nanoapatite obviously inhabit the expression of the telomerase gene of human hepatocellular carcinoma cells.

  6. Effect of surface silanol groups on the deposition of apatite onto silica surfaces: a computer simulation study

    Mkhonto, D


    Full Text Available . The researchers’ simulations support the suggestion, that in vivo surface hydroxy groups are first condensed to form O–Si–O bridges before deposition and growth of apatite...

  7. Meso-Cenozoic tectonics of the Central Kyrgyz Tien Shan (Central Asia), based on apatite fission track thermochronology.

    Glorie, Stijn


    Apatite fission track thermochronology on the Kyrgyz Tien Shan basement revealed a polyphased thermal history of the study-area. We interpret the Mesozoic and Cenozoic cooling-events as periods of tectonic reactivation.

  8. A temporal record of pre-eruptive magmatic volatile contents at Campi Flegrei: Insights from texturally-constrained apatite analyses

    Stock, Michael J.; Isaia, Roberto; Humphreys, Madeleine C. S.; Smith, Victoria C.; Pyle, David M.


    Apatite is capable of incorporating all major magmatic volatile species (H2O, CO2, S, Cl and F) into its crystal structure. Analysis of apatite volatile contents can be related to parental magma compositions through the application of pressure and temperature-dependent exchange reactions (Piccoli and Candela, 1994). Once included within phenocrysts, apatite inclusions are isolated from the melt and preserve a temporal record of magmatic volatile contents in the build-up to eruption. In this work, we measured the volatile compositions of apatite inclusions, apatite microphenocrysts and pyroxene-hosted melt inclusions from the Astroni 1 eruption of Campi Flegrei, Italy (Stock et al. 2016). These data are coupled with magmatic differentiation models (Gualda et al., 2012), experimental volatile solubility data (Webster et al., 2014) and thermodynamic models of apatite compositional variations (Piccoli and Candela, 1994) to decipher pre-eruptive magmatic processes. We find that apatite halogen/OH ratios decreased through magmatic differentiation, while melt inclusion F and Cl concentrations increased. Melt inclusion H2O contents are constant at ~2.5 wt%. These data are best explained by volatile-undersaturated differentiation over most of the crystallisation history of the Astroni 1 melt, with melt inclusion H2O contents reset at shallow levels during ascent. Given the high diffusivity of volatiles in apatite (Brenan, 1993), the preservation of volatile-undersaturated melt compositions in microphenocrysts suggests that saturation was only achieved 10 - 103 days before eruption. We suggest that late-stage transition into a volatile-saturated state caused an increase in magma chamber overpressure, which ultimately triggered the Astroni 1 eruption. This has major implications for monitoring of Campi Flegrei and other similar volcanic systems. Piccoli and Candela, 1994. Am. J. of Sc., 294, 92-135. Stock et al., 2016, Nat. Geosci. Gualda et al., 2012. J. Pet., 53, 875

  9. Damage morphology of Kr ion tracks in apatite: Dependence on dE/dX

    Villa, F; Rebetez, M; Dubois, C; Chambaudet, A; Chevarier, A; Martin, P; Brossard, F; Blondiaux, G; Sauvage, T; Toulemonde, M


    With the aim of characterizing damage along nuclear tracks in apatite, Durango fluoroapatite monocrystals were irradiated under a high fluence sup 8 sup 6 Kr ion beam at the G.A.N.I.L. (Grand Accelerateur National d'Ions Lourds, Caen, France). The resulting irradiation damage was studied by associating CRBS spectrometry and chemical etching. By applying Poisson's law to the backscattering results, the nuclear track average effective radius R sub e was calculated for different steps along the ion path. On the other hand, the chemical etching experiments allowed us to deduce three different damaging morphologies in correspondence to the R sub e values. For the first time in apatite, it has been shown that a defect fragmentation produced along the ion paths may be detected by chemical etching. These results were also applied to fission tracks in order to quantify the damage rate and to describe the damage morphology evolution along fission fragment paths.

  10. [A study on the formation of apatite crystallized with gel method].

    Endo, T; Amano, N; Yoshida, M; Murakami, H; Kosuge, N; Ohmi, Y; Kameda, A


    About apatite produced with a silicahydro gel method using calcium nitrate (group I) or calcium chloride (group II) and a gelatin gel method by use of calcium nitrate (group III) or calcium chloride (group IV), the formative volume as well as the formative condition of a periodic-layered precipitate (Liesegang ring), the pH measurement, calculation of Ca/P ratio, an estimation of the chlorine ion, morphological observation with a scanning electron microscope, qualitative analyses by X-ray diffraction (identification, crystallite size, lattice imperfections, lattice constants) and the composition analysis by infrared absorption spectroscopy were carried out to elucidate the formation of apatite using the gel method. The result showed that there were no distinct differences between group I-II and group III-IV, and it is suggested that it is possible to form satisfact fluorapatite with a gel method using calcium chloride as well as calcium nitrate.

  11. Incorporation of uranium into a biomimetic apatite: physicochemical and biological aspects.

    Chatelain, Grégory; Bourgeois, Damien; Ravaux, Johann; Averseng, Olivier; Vidaud, Claude; Meyer, Daniel


    Bone is the main target organ for the storage of several toxic metals, including uranium. But the mode of action of uranium on bones remains poorly understood. To better assess the impact of uranium on bone cells, synthetic biomimetic apatites encompassing a controlled amount of uranium were prepared and analyzed. This study revealed the physicochemical impact of uranium on apatite mineralization: the presence of the metal induces a loss of crystallinity and a lower mineralization rate. The prepared samples were then used as substrates for bone cell culture. Osteoblasts were not sensitive to the presence of uranium in the support, whereas previous results showed a deleterious effect of uranium introduced into a cell culture solution. This work should therefore have some original prospects within the context of toxicological studies concerning the effect of metallic cations on bone cell systems.

  12. Crystal Structure Studies of Human Dental Apatite as a Function of Age

    Th. Leventouri


    Full Text Available Studies of the average crystal structure properties of human dental apatite as a function of age in the range of 5–87 years are reported. The crystallinity of the dental hydroxyapatite decreases with the age. The a-lattice constant that is associated with the carbonate content in carbonate apatite decreases with age in a systematic way, whereas the c-lattice constant does not change significantly. Thermogravimetric measurements demonstrate an increase of the carbonate content with the age. FTIR spectroscopy reveals both B and A-type carbonate substitutions with the B-type greater than the A-type substitution by a factor up to ~5. An increase of the carbonate content as a function of age can be deduced from the ratio of the 2CO3 to the 1PO4 IR modes.

  13. Apatite 4He/3He and (U-Th)/He evidence for an ancient Grand Canyon.

    Flowers, R M; Farley, K A


    The Grand Canyon is one of the most dramatic features on Earth, yet when and why it was carved have been controversial topics for more than 150 years. Here, we present apatite (4)He/(3)He thermochronometry data from the Grand Canyon basement that tightly constrain the near-surface cooling history associated with canyon incision. (4)He/(3)He spectra for eastern Grand Canyon apatites of differing He date, radiation damage, and U-Th zonation yield a self-consistent cooling history that substantially validates the He diffusion kinetic model applied here. Similar data for the western Grand Canyon provide evidence that it was excavated to within a few hundred meters of modern depths by ~70 million years ago (Ma), in contrast to the conventional model in which the entire canyon was carved since 5 to 6 Ma.

  14. Isotopic evidence for trapped fissiogenic REE and nucleogenic Pu in apatite and Pb evolution at the Oklo natural reactor

    Horie, Kenji; Hidaka, Hiroshi; Gauthier-Lafaye, François


    A part of the boundary layer of reactor zone 10 at the Oklo natural reactor shows a unique petrologic texture, which contains high-grade uraninite and massive apatite concretions. In order to study distribution behavior of fission products around the boundary between the reactor zone and the wall rock and to clarify the relation of migration mechanisms of fission products with geochemical factors, in-situ isotopic analyses of Nd, Sm, Gd, Pb and U in uraninite and apatite from the sample were performed by Sensitive High Resolution Ion Microprobe (SHRIMP). Sm and Gd isotopic ratios of uraninite and apatite show evidence of neutron irradiation with fluence between 4.4-6.8×10 19 n/cm 2. Judging from the isotopic anomalies of Nd and U, the apatite coexisting with the uraninite plays an important role in trapping fissiogenic LREE and nucleogenic 239Pu into the structure. Systematic Pb isotopic data from apatite, uraninite, galena and minium suggest the following chronological interpretations. The apatite formed 1.92±0.01 Ga ago and trapped fissiogenic light REE and nucleogenic 239Pu that migrated from the reactor during the criticality. The uraninite around the boundary between reactor and sandstone dissolved once 1.1˜1.2 Ga ago. Galena grains were formed by U-Pb mobilization in association with the intrusion of dolerite dyke 0.45˜0.83 Ga ago. Minium was derived from recent dissolution of galena under locally oxidizing conditions.

  15. Formation of Apatite Coatings on an Artificial Ligament Using a Plasma- and Precursor-Assisted Biomimetic Process

    Ayako Oyane


    Full Text Available A plasma- and precursor-assisted biomimetic process utilizing plasma and alternate dipping treatments was applied to a Leed-Keio artificial ligament to produce a thin coating of apatite in a supersaturated calcium phosphate solution. Following plasma surface modification, the specimen was alternately dipped in calcium and phosphate ion solutions three times (alternate dipping treatment to create a precoating containing amorphous calcium phosphate (ACP which is an apatite precursor. To grow an apatite layer on the ACP precoating, the ACP-precoated specimen was immersed for 24 h in a simulated body fluid with ion concentrations approximately equal to those in human blood plasma. The plasma surface modification was necessary to create an adequate apatite coating and to improve the coating adhesion depending on the plasma power density. The apatite coating prepared using the optimized conditions formed a thin-film that covered the entire surface of the artificial ligament. The resulting apatite-coated artificial ligament should exhibit improved osseointegration within the bone tunnel and possesses great potential for use in ligament reconstructions.

  16. Improvement in endothelial cell adhesion and retention under physiological shear stress using a laminin-apatite composite layer on titanium.

    He, Fupo; Wang, Xiupeng; Maruyama, Osamu; Kosaka, Ryo; Sogo, Yu; Ito, Atsuo; Ye, Jiandong


    Apatite (Ap), laminin-apatite composite (L5Ap, L10Ap, L20Ap and L40Ap) and albumin-apatite (AlbAp) composite layers were prepared on titanium (Ti) using a supersaturated calcium phosphate solution supplemented with laminin (0, 5, 10, 20 and 40 μg ml(-1)) or albumin (800 μg ml(-1)). With an increase in the concentrations of laminin in the supersaturated calcium phosphate solutions, the amounts of laminin immobilized on the Ti increased. The number of human umbilical vein endothelial cells (HUVECs) adhered to the laminin-apatite composite layers were remarkably higher than those to the untreated Ti, Ap layer and AlbAp composite layer. The number of cells adhered to the L40Ap was 4.3 times the untreated Ti. Moreover, cells adhered to the laminin-apatite composite layers showed significantly higher cell retention under the physiological shear stress for 1 h and 2 h than those to the untreated Ti, Ap layer and AlbAp composite layer. The number of cells remaining on the L40Ap under the physiological shear stress for 2 h was 9.5 times that of the untreated Ti. The laminin-apatite composite layer is a promising interfacial layer for endothelialization of blood-contacting materials.

  17. Biological evaluation of an apatite-mullite glass-ceramic produced via selective laser sintering.

    Goodridge, Ruth D; Wood, David J; Ohtsuki, Chikara; Dalgarno, Kenneth W


    The biological performance of a porous apatite-mullite glass-ceramic, manufactured via a selective laser sintering (SLS) method, was evaluated to determine its potential as a bone replacement material. Direct contact and extract assays were used to assess the cytotoxicity of the material. A pilot animal study, implanting the material into rabbit tibiae for 4 weeks, was also carried out to assess in vivo bioactivity. The material produced by SLS did not show any acute cytotoxic effects by either contact or extract methods. There was no evidence of an apatite layer forming on the surface of the material when soaked in SBF for 30 days, suggesting that the material was unlikely to exhibit bioactive behaviour in vivo. It is hypothesized that the material was unable to form an apatite layer in SBF due to the fact that this glass-ceramic was highly crystalline and the fluorapatite crystal phase was relatively stable in SBF, as were the two aluminosilicate crystal phases. There was thus no release of calcium and phosphorus and no formation of silanol groups to trigger apatite deposition from solution within the test time period. Following implantation in rabbit tibiae for 4 weeks, bone was seen to have grown into the porous structure of the laser-sintered parts, and appeared to be very close to, or directly contacting, the material surface. This result may reflect the local environment in vivo compared to that artificially found with the in vitro SBF test and, furthermore, confirms previous in vivo data on these glass-ceramics.

  18. An evaluation of the reactivity of synthetic and natural apatites in the presence of aqueous metals.

    Dybowska, Agnieszka; Manning, David A C; Collins, Matthew J; Wess, Timothy; Woodgate, Stephen; Valsami-Jones, Eugenia


    Metal removal from contaminated effluents was examined following reaction with natural apatites of biological and geological origin or a synthetic hydroxylapatite (HAP). Mammalian meat and bone meal (MBM), a by-product from meat industry, was the biological apatite source. The effect of incineration on metal removal capacity of MBM and HAP was also examined. The reactivity of apatites for all tested metals (Pb, Cd, Cu and Zn) followed the general order: synthetic > biological > mineral. For all apatites tested, Pb was removed best and preferentially from multi-metal solutions. MBM and HAP (0.5 g solid) removed Pb completely from both highly concentrated single metal solutions (50 ml, 1000 mg/L Pb) and from multi-metal solutions (50 ml) with 100 mg/L each of Cd, Cu and Zn in addition to Pb. The incineration of MBM (725 degrees C and 850 degrees C) reduced significantly its capacity for removal of Zn (by 47%, from 56 mg/g to 9 mg/g) and Cd (by 38%, from 53 mg/g to 13 mg/g) in particular and to a lesser extent for Cu (by 14%, from 61 mg/g to 46 mg/g) while the removal of Pb was not affected (100 mg/g). The same pattern was observed for incinerated HAP. SEM and XRD analysis indicated that HAP reacted with the metals by precipitation of pure metal phosphates--Pb hydroxylapatite, Zn phosphate (hopeite), a Cd phosphate (identified only by ED-SEM) and Cu phosphate (libenthenite).

  19. Effect of strontium ions on the early formation of biomimetic apatite on single crystalline rutile

    Lindahl, Carl; Engqvist, Håkan; Xia, Wei


    Single crystalline rutile is a good model to investigate the growth mechanism of hydroxyapatite on bioactive Ti surfaces. Previous studies have shown the difference on different crystalline rutile faces in the early stage and during the growth of HAp crystals from simulated body fluids. It is known that the biological apatite crystal is an ion-substituted apatite. Ion substitution will influence the HAp crystal growth and morphology. In the present study, the effect of strontium ions on the adsorption of Ca and phosphate ions on three different faces of single crystalline rutile substrates has been investigated. The ion adsorption is the crucial step in the nucleation of HAp crystals on specific surfaces. Single crystalline rutile surfaces ((1 1 0), (1 0 0) and (0 0 1)) were soaked in phosphate buffer solutions containing calcium and strontium ions for different time periods. The results showed that the adsorption of Sr, Ca and P is faster on the (1 1 0) surface than on the (1 0 0) and (0 0 1) surfaces. Almost same amount of Sr ion was adsorbed on the surfaces compared to the adsorption of Ca ion. Strontium ion influenced the biological apatite formation in the early stage in this study.

  20. Effect of Apatite Nanoparticles on DNA and AgNOR of Bel-7402 Hepatocellular Carcinoma


    The effect of apatite nanoparticles on proliferation potential and biological behaviour of the human hepatocellular carcinoma in vitro were investigated. After the treatment of Bel- 7402 hepatocellular carcinoma cells with apatite nanoparticles at a concentration of 5 × 10-4 mmol/ L for 4days, Feulgen and AgNOR stain were conducted and the specimens were observed by microscope. The DNA and AgNOR were quantified with image analysis techniques. It was found that there was a significant decrease of the DNA content (58.62 ± 6.52) in the nanoparticles treated group compared to the control (78.21 ± 4.17). It was further found that there was a decrease in the number of AgNOR granules in the nanoparticle treated group (7.41 ± 1.02) compared to the control group (9.95± 0.28). The experimental results showed that apatite nanoparticles could decrease the DNA reproductive activity and the rRNA synthesis in Bel-7402 hepatocellular carcinoma cells.

  1. Search for stable energy levels in materials exhibiting strong anomalous fading: The case of apatites

    Polymeris, George S., E-mail: [Laboratory of Radiation Applications and Archaeological Dating, Department of Archaeometry and Physicochemical Measurements, ‘Athena’—Research and Innovation Center in Information, Communication and Knowledge Technologies, Kimmeria University Campus, GR-67100 Xanthi (Greece); Solid State Physics Section, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Giannoulatou, Valeria; Sfampa, Ioanna K. [Nuclear Physics Laboratory, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece); Tsirliganis, Nestor C. [Laboratory of Radiation Applications and Archaeological Dating, Department of Archaeometry and Physicochemical Measurements, ‘Athena’—Research and Innovation Center in Information, Communication and Knowledge Technologies, Kimmeria University Campus, GR-67100 Xanthi (Greece); Kitis, George [Nuclear Physics Laboratory, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)


    The thermally assisted OSL signal resulting from very deep traps was studied in the case of three fluorapatite samples, one chlorapatite as well as one collophanite cryptocrystalline carbonite phosphorite sample of various origins. Intense thermally assisted OSL signal was monitored while stimulating at 200 °C in all samples subjected to the present study, indicating the prevalence of the existence of these very deep traps. Anomalous fading effect is ubiquitous for all TL and OSL signals of all apatite samples subjected to the present study. The anomalous fading of the thermally assisted OSL signal arising from very deep traps is strongly differentiated from the anomalous fading of electron trap excited at temperatures below 500 °C. The thermally assisted OSL signal arising from very deep traps was found to clearly be more stable, showing much less anomalous fading over time. The possible implications of this finding in dating of both apatites and feldspars are also briefly discussed. - Highlights: • All apatite samples of the present study yield strong thermally assisted OSL (TA-OSL) signal. • In all cases, TA-OSL signal is much more stable compared to TL and conventional OSL, based on the corresponding anomalous fading rates. • This experimental feature could be extremely beneficial for luminescence dating.

  2. Shear-mediated crystallization from amorphous calcium phosphate to bone apatite.

    Niu, Xufeng; Wang, Liyang; Tian, Feng; Wang, Lizhen; Li, Ping; Feng, Qingling; Fan, Yubo


    The contribution of fluid shear stress (FSS) on the conversion of amorphous calcium phosphate (ACP) to bone apatite is investigated. The ACP precursors are prepared by using a wet-chemistry method and further exposed to the constant FSS environment with values of 0.5, 1.0, 1.5, and 2.0Pa. At the designated time points, the apatites are characterized by transmission electron microscopy, X-ray diffraction, and inductively coupled plasma-mass spectroscopy. The results show that, the low FSS (≤1.0Pa) has positive effects on the transition of ACP, characterized by the accelerated crystallization velocity and the well-organized calcium-deficient hydroxyapatite (CDHA) structure, whereas the high FSS (>1.0Pa) has negative effects on this conversion process, characterized by the poor CDHA crystal morphologies and the destroyed structures. The bioactivity evaluations further reveal that, compared with the FSS-free group, the CDHA prepared under 1.0Pa FSS for 9h presents the more biocompatible features with pre-osteoblast cells. These results are helpful for understanding the mechanism of apatite deposition in natural bone tissue.

  3. Bioactive coatings on Portland cement substrates: Surface precipitation of apatite-like crystals

    Gallego, Daniel [Biomedical Engineering Department, Ohio State University, 1080 Carmack Road, 270 Bevis Hall, Columbus (OH) - 43210 (United States); Higuita, Natalia [Biomedical Engineering Department, Ohio State University, 1080 Carmack Road, 270 Bevis Hall, Columbus (OH) - 43210 (United States); Grupo de Investigacion en Ingenieria Biomedica CES-EIA (GIBEC), Carrera 43 A No. 52 Sur - 99, Sabaneta (Colombia); Garcia, Felipe [Grupo de Investigacion en Ingenieria Biomedica CES-EIA (GIBEC), Carrera 43 A No. 52 Sur - 99, Sabaneta (Colombia); Ferrell, Nicholas [Biomedical Engineering Department, Ohio State University, 1080 Carmack Road, 270 Bevis Hall, Columbus (OH) - 43210 (United States); Hansford, Derek J. [Biomedical Engineering Department, Ohio State University, 1080 Carmack Road, 270 Bevis Hall, Columbus (OH) - 43210 (United States)], E-mail:


    We report a method for depositing bioactive coatings onto cement materials for bone tissue engineering applications. White Portland cement substrates were hydrated under a 20% CO{sub 2} atmosphere, allowing the formation of CaCO{sub 3}. The substrates were incubated in a calcium phosphate solution for 1, 3, and 6 days (CPI, CPII, and CPIII respectively) at 37 deg. C to induce the formation of carbonated apatite. Cement controls were prepared and hydrated with and without CO{sub 2} atmosphere (C+ and C- respectively). The presence of apatite-like crystals was verified by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). The substrate cytocompatibility was evaluated via SEM after 24 hour cell cultures. SEM revealed the presence Ca(OH){sub 2} on C-, and CaCO{sub 3} on C+. Apatite-like crystals were detected only on CPIII, confirmed by phosphorus EDS peaks only for CPIII. Cells attached and proliferated similarly well on all the substrates except C-. These results prove the feasibility of obtaining biocompatible and bioactive coatings on Portland cement for bone tissue engineering applications.

  4. Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max)

    Liu, Ruiqiang; Lal, Rattan


    Some soluble phosphate salts, heavily used in agriculture as highly effective phosphorus (P) fertilizers, cause surface water eutrophication, while solid phosphates are less effective in supplying the nutrient P. In contrast, synthetic apatite nanoparticles could hypothetically supply sufficient P nutrients to crops but with less mobility in the environment and with less bioavailable P to algae in comparison to the soluble counterparts. Thus, a greenhouse experiment was conducted to assess the fertilizing effect of synthetic apatite nanoparticles on soybean (Glycine max). The particles, prepared using one-step wet chemical method, were spherical in shape with diameters of 15.8 +/- 7.4 nm and the chemical composition was pure hydroxyapatite. The data show that application of the nanoparticles increased the growth rate and seed yield by 32.6% and 20.4%, respectively, compared to those of soybeans treated with a regular P fertilizer (Ca(H2PO4)2). Biomass productions were enhanced by 18.2% (above-ground) and 41.2% (below-ground). Using apatite nanoparticles as a new class of P fertilizer can potentially enhance agronomical yield and reduce risks of water eutrophication.

  5. Removal of cadmium, copper, nickel, cobalt and mercury from water by Apatite II™: column experiments.

    Oliva, Josep; De Pablo, Joan; Cortina, José-Luis; Cama, Jordi; Ayora, Carlos


    Apatite II™, a biogenic hydroxyapatite, was evaluated as a reactive material for heavy metal (Cd, Cu, Co, Ni and Hg) removal in passive treatments. Apatite II™ reacts with acid water by releasing phosphates that increase the pH up to 6.5-7.5, complexing and inducing metals to precipitate as metal phosphates. The evolution of the solution concentration of calcium, phosphate and metals together with SEM-EDS and XRD examinations were used to identify the retention mechanisms. SEM observation shows low-crystalline precipitate layers composed of P, O and M. Only in the case of Hg and Co were small amounts of crystalline phases detected. Solubility data values were used to predict the measured column experiment values and to support the removal process based on the dissolution of hydroxyapatite, the formation of metal-phosphate species in solution and the precipitation of metal phosphate. Cd(5)(PO(4))(3)OH(s), Cu(2)(PO(4))OH(s), Ni(3)(PO(4))(2)(s), Co(3)(PO(4))(2)8H(2)O(s) and Hg(3)(PO(4))(2)(s) are proposed as the possible mineral phases responsible for the removal processes. The results of the column experiments show that Apatite II™ is a suitable filling for permeable reactive barriers.

  6. Influence of fluoride in poly(d,l-lactide)/apatite composites on bone formation.

    Luo, X; Barbieri, D; Passanisi, G; Yuan, H; de Bruijn, J D


    The influence of fluoride in poly(d,l-lactide)/apatite composites on ectopic bone formation was evaluated in sheep. Nano-apatite powders with different replacement levels of OH groups by fluoride (F) (0% (F0), 50% (F50), 100% (F100), and excessive (F200)) were co-extruded with poly (d,l-lactide) at a weight ratio of 1:1. Fluoride release from the composites (CF0, CF50, CF100, and CF200) was evaluated in vitro and bone formation was assessed after intramuscular implantation in sheep. After 24 weeks in simulated physiological solution, CF0 and CF50 showed negligible fluoride release, whereas it was considerable from the CF100 and CF200 composites. Histology showed that the incidence of de novo bone formation decreased in implants with increasing fluoride content indicating a negative influence of fluoride on ectopic bone formation. Furthermore, a significant decrease in resorption of the high fluoride-content composites and a reduction in the number of multinucleated giant cells were seen. These results show that instead of promoting, the presence of fluoride in poly(d,l-lactide)/apatite composites seemed to suppresses their resorption and osteoinductive potential in non-osseous sites. © 2014 Wiley Periodicals, Inc.

  7. A study of apatite formation on natural nano-hydroxyapatite/ chitosan composite in simulated body fluid

    Yong-bin FAN; Xiao-ying L(U)


    This study is focused on the ability of apatite formation on the surface of nano-hydroxyapatite (HA)/chitosan (CH) composite in simulated body fluid (SBF) in vitro. At first, natural nano-HA was prepared according to a wet-bailing method and the composite was prepared by combining the natural nano-hydroxyapatite and chit-osan, and then in vitro biomineralization test of natural nano-HA/CH composite was carried out in standard SBF. Subsequently, the quantity of the weight of the particles formed on the composite surface in SBF was measured by analytical balance, and the morphology change on the surface of the composite was observed by a scanning elec-tron microscope (SEM). Lastly, a Fourier transform infrared spectroscope (FTIR) was used to investigate the chemical components of the particles formed on the nat-ural nano-HA/CH composite surface in SBF. The result of quantity assessment shows that the weight of the com-posite increased with the increase of soaking time. The SEM image shows that the particles were gradually formed on natural nano-HA/CH composite surface, and the FTIR spectrum of the particles on composite surface confirms that these particles were carbonate apatite. This study indicates that the nano-HA/CH composite has a good ability for apatite formation in SBF, which predicts the bone-inducing ability of natural nano-HA/CH com-posite in vivo.

  8. Bone-like apatite coating on functionalized poly(etheretherketone) surface via tailored silanization layers technique.

    Zheng, Yanyan; Xiong, Chengdong; Zhang, Shenglan; Li, Xiaoyu; Zhang, Lifang


    Poly(etheretherketone) (PEEK) is a rigid semi-crystalline polymer with outstanding mechanical properties, bone-like stiffness and suitable biocompatibility that has attracted much interest as a biomaterial for orthopedic and dental implants. However, the bio-inert surface of PEEK limits its biomedical applications when direct osteointegration between the implants and the host tissue is desired. In this work, -PO4H2, -COOH and -OH groups were introduced on the PEEK surface by further chemical treatments of the vinyl-terminated silanization layers formed on the hydroxylation-pretreated PEEK surface. Both the surface-functionalized and pristine specimens were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and water contact angle measurements. When placed in 1.5 strength simulated body fluid (SBF) solution, apatite was observed to form uniformly on the functionalized PEEK surface and firmly attach to the substrate. The characterized results demonstrated that the coating was constituted by poorly crystallized bone-like apatite and the effect of surface functional groups on coating formation was also discussed in detail. In addition, in vitro biocompatibility of PEEK, in terms of pre-osteoblast cell (MC3T3-E1) attachment, spreading and proliferation, was remarkably enhanced by the bone-like apatite coating. Thus, this study provides a method to enhance the bioactivity of PEEK and expand its applications in orthopedic and dental implants.

  9. Formation of Porous Apatite Layer during In Vitro Study of Hydroxyapatite-AW Based Glass Composites

    Pat Sooksaen


    Full Text Available This research discussed the fabrication, characterization, and in vitro study of composites based on the mixture of hydroxyapatite powder and apatite-wollastonite (AW based glass. AW based glass was prepared from the SiO2-CaO-MgO-P2O5-CaF2 glass system. This study focuses on the effect of composition and sintering temperature that influences the properties of these composites. Microstructural study revealed the formation of apatite layer on the composite surfaces when immersed in simulated body fluid (SBF solution at 37°C. Composites containing ≥50 wt% AW based glass showed good bioactivity after 7 days of immersion in the SBF. A porous calcium phosphate (potentially hydroxycarbonate apatite, HCA layer formed at the SBF-composite interface and the layer became denser at longer soaking period, for periods ranging from 7 to 28 days. Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES analysis showed that early stage of soaking occurred with the release of Ca and Si ions from the composites and the decrease of P ions with slow exchange rate.

  10. Apatite Formation from Amorphous Calcium Phosphate and Mixed Amorphous Calcium Phosphate/Amorphous Calcium Carbonate.

    Ibsen, Casper J S; Chernyshov, Dmitry; Birkedal, Henrik


    Crystallization from amorphous phases is an emerging pathway for making advanced materials. Biology has made use of amorphous precursor phases for eons and used them to produce structures with remarkable properties. Herein, we show how the design of the amorphous phase greatly influences the nanocrystals formed therefrom. We investigate the transformation of mixed amorphous calcium phosphate/amorphous calcium carbonate phases into bone-like nanocrystalline apatite using in situ synchrotron X-ray diffraction and IR spectroscopy. The speciation of phosphate was controlled by pH to favor HPO4 (2-) . In a carbonate free system, the reaction produces anisotropic apatite crystallites with large aspect ratios. The first formed crystallites are highly calcium deficient and hydrogen phosphate rich, consistent with thin octacalcium phosphate (OCP)-like needles. During growth, the crystallites become increasingly stoichiometric, which indicates that the crystallites grow through addition of near-stoichiometric apatite to the OCP-like initial crystals through a process that involves either crystallite fusion/aggregation or Ostwald ripening. The mixed amorphous phases were found to be more stable against phase transformations, hence, the crystallization was inhibited. The resulting crystallites were smaller and less anisotropic. This is rationalized by the idea that a local phosphate-depletion zone formed around the growing crystal until it was surrounded by amorphous calcium carbonate, which stopped the crystallization.

  11. Long-term evaluation of the degradation behavior of three apatite-forming calcium phosphate cements.

    An, Jie; Liao, Hongbing; Kucko, Nathan W; Herber, Ralf-Peter; Wolke, Joop G C; van den Beucken, Jeroen J J P; Jansen, John A; Leeuwenburgh, Sander C G


    Calcium phosphate cements (CPCs) are injectable bone substitutes with a long clinical history because of their biocompatibility and osteoconductivity. Nevertheless, their cohesion upon injection into perfused bone defects as well as their long-term degradation behavior remain major clinical challenges. Therefore, the long-term degradation behavior of two types of α-tricalcium phosphate-based, apatite-forming CPCs was compared to a commercially available apatite-forming cement, that is HydroSet™ . Carboxyl methylcellulose (CMC) was used as cohesion promotor to improve handling properties of the two experimental cements, whereas poly (d, l-lactic-co-glycolic) acid (PLGA) microparticles were added to introduce macroporosity and stimulate CPC degradation. All three CPCs were injected into defects drilled into rabbit femoral condyles and explanted after 4, 12, or 26 weeks, after which the bone response was assessed both qualitatively and quantitatively. CPCs without PLGA microparticles degraded only at the periphery of the implants, while the residual CPC volume was close to 90%. On the contrary, bone ingrowth was observed not only at the periphery of the CPC, but also throughout the center of the implants after 26 weeks of implantation for the PLGA-containing CPCs with a residual CPC volume of approximately 55%. In conclusion, it was shown that CPC containing CMC and PLGA was able to induce partial degradation of apatite-forming CPCs and concomitant replacement by bone tissue.

  12. Deposition of substituted apatites with anticolonizing properties onto titanium surfaces using a novel blasting process.

    O'Sullivan, C; O'Hare, P; O'Leary, N D; Crean, A M; Ryan, K; Dobson, A D W; O'Neill, L


    A series of doped apatites have been deposited onto titanium (V) substrates using a novel ambient temperature blasting process. The potential of these deposited doped apatites as non-colonizing osteoconductive coatings has been evaluated in vitro. XPS, EDX, and gravimetric analysis demonstrated that a high degree of coating incorporation was observed for each material. The modified surfaces were found to produce osteoblast proliferation comparable to, or better than, a hydroxyapatite finish. Promising levels of initial microbial inhibition were observed from the Sr- and Ag-doped surfaces, with the strontium showing prolonged ability to reduce bacteria numbers over a 30-day period. Ion elution profiles have been characterized and linked to the microbial response and based on the results obtained, mechanisms of kill have been suggested. In this study, the direct contact of coated substrate surfaces with microbes was observed to be a significant contributing factor to the antimicrobial performance and the anticolonizing activity. The silver substituted apatite was observed to out-perform both the SrA and ZnA in terms of biofilm inhibition.

  13. Stability and mutual conversion of enamel apatite and brushite at 20 degrees C as a function of pH of the aqueous phase.

    Larsen, M J; Jensen, S J


    By calculation, apatite is more soluble than brushite at low pH and less soluble at high pH. Apatite, therefore should be able to transform spontaneously to brushite at low pH and brushite to apatite at high pH. The aim was to describe this mutual conversion as related to the aqueous phase composition. Powdered enamel, brushite or 1:1 mixtures of the two salts were suspended in distilled water for up to 12 weeks at 20 degrees C, pH was adjusted to 4, 5, 6, 7, 8, 9 or 10 by drops of perchloric acid or potassium hydroxide. The calcium and the phosphate concentrations and pH were determined, and the nature of the calcium phosphate powder was examined by X-ray diffraction. At pH 8 and above, brushite was invariably converted to apatite, whilst it was transformed to octacalcium phosphate at pH 7. In the pH range 6-4 brushite was not converted to apatite and enamel apatite was not transformed to brushite spontaneously within 2 months. In the enamel apatite suspensions, the apatite ion product altered with pH, which explained why apatite did not transform to brushite at pH 5-4. At pH 3.7, however, the enamel apatite was converted to brushite. No transformation of apatite to brushite was identified in apatite-brushite mixtures at pH 6-4. Supplementary experiments showed that ethanol, used as an agent for removal of water, salted out the water-free dicalcium phosphate, monetite.

  14. He, U, and Th Depth Profiling of Apatite and Zircon Using Laser Ablation Noble Gas Mass Spectrometry and SIMS

    Monteleone, B. D.; van Soest, M. C.; Hodges, K. V.; Hervig, R.; Boyce, J. W.


    Conventional (U-Th)/He thermochronology utilizes single or multiple grain analyses of U- and Th-bearing minerals such as apatite and zircon and does not allow for assessment of spatial variation in concentration of He, U, or Th within individual crystals. As such, age calculation and interpretation require assumptions regarding 4He loss through alpha ejection, diffusive redistribution of 4He, and U and Th distribution as an initial condition for these processes. Although models have been developed to predict 4He diffusion parameters, correct for the effect of alpha ejection on calculated cooling ages, and account for the effect of U and Th zonation within apatite and zircon, measurements of 4He, U, and Th distribution have not been combined within a single crystal. We apply ArF excimer laser ablation, combined with noble gas mass spectrometry, to obtain depth profiles within apatite and zircon crystals in order to assess variations in 4He concentration with depth. Our initial results from pre-cut, pre-heated slabs of Durango apatite, each subjected to different T-t schedules, suggest a general agreement of 4He profiles with those predicted by theoretical diffusion models (Farley, 2000). Depth profiles through unpolished grains give reproducible alpha ejection profiles in Durango apatite that deviate from alpha ejection profiles predicted for ideal, homogenous crystals. SIMS depth profiling utilizes an O2 primary beam capable of sputtering tens of microns and measuring sub-micron resolution variation in [U], [Th], and [Sm]. Preliminary results suggest that sufficient [U] and [Th] zonation is present in Durango apatite to influence the form of the 4He alpha ejection profile. Future work will assess the influence of measured [U] and [Th] zonation on previously measured 4He depth profiles. Farley, K.A., 2000. Helium diffusion from apatite; general behavior as illustrated by Durango fluorapatite. J. Geophys. Res., B Solid Earth Planets 105 (2), 2903-2914.

  15. The status of strontium in biological apatites: an XANES/EXAFS investigation.

    Bazin, Dominique; Dessombz, Arnaud; Nguyen, Christelle; Ea, Hang Korng; Lioté, Frédéric; Rehr, John; Chappard, Christine; Rouzière, Stephan; Thiaudière, Dominique; Reguer, Solen; Daudon, Michel


    Osteoporosis represents a major public health problem through its association with fragility fractures. The public health burden of osteoporotic fractures will rise in future generations, due in part to an increase in life expectancy. Strontium-based drugs have been shown to increase bone mass in postmenopausal osteoporosis patients and to reduce fracture risk but the molecular mechanisms of the action of these Sr-based drugs are not totally elucidated. The local environment of Sr(2+) cations in biological apatites present in pathological and physiological calcifications in patients without such Sr-based drugs has been assessed. In this investigation, X-ray absorption spectra have been collected for 17 pathological and physiological calcifications. These experimental data have been combined with a set of numerical simulations using the ab initio FEFF9 X-ray spectroscopy program which takes into account possible distortion and Ca/Sr substitution in the environment of the Sr(2+) cations. For selected samples, Fourier transforms of the EXAFS modulations have been performed. The complete set of experimental data collected on 17 samples indicates that there is no relationship between the nature of the calcification (physiological and pathological) and the adsorption mode of Sr(2+) cations (simple adsorption or insertion). Such structural considerations have medical implications. Pathological and physiological calcifications correspond to two very different preparation procedures but are associated with the same localization of Sr(2+) versus apatite crystals. Based on this study, it seems that for supplementation of Sr at low concentration, Sr(2+) cations will be localized into the apatite network.

  16. Thermodynamic Properties of Sulfatian Apatite: Constraints on the Behavior of Sulfur in Calc-Alkaline Magmas

    Core, D.; Essene, E. J.; Luhr, J. F.; Kesler, S. E.


    The Gibbs free energy of hydroxyellestadite [Ca10(SiO4)3(SO4)3(OH)2] was estimated using mineral equilibria applied to analyzed assemblages from the experimental charges of Luhr (1990). The apatite analyses of Peng et al. (1997) were used in conjunction with new analyses of the oxides and silicates in this study. An ideal mixing model was employed for apatite combined with mixing models from MELTS (Ghiorso & Sack, 1994) and Gibbs free energy data from Robie & Hemingway (1995) for the other crystalline phases. The resultant equation of the Gibbs free energy vs. T for hydroxyellestadite is as follows: DG°T(elem) = [2.817(T - 273) - 11831]/1000 kJ/mol, T in K. The calculated entropy for hydroxyellestadite is 1944 J/mol.K at 1073 K and 2151 J/mol.K at 1227 K. Independent estimates of the entropy of hydroxyellestadite obtained with the method of Robinson & Haas (1983) are within 5% of these values. The thermodynamic data on hydroxyellestadite were used to calculate the locus of the reactions: 2Ca10(SiO4)3(SO4)3(OH)2 + 7S2 + 21O2 = 20CaSO4 + 6SiO2 + 2H2O 6Ca10(SiO4)3(SO4)3(OH)2 + 102SiO2 + 20Fe3O4 = 60CaFeSi2O6 + 6H2O + 9S2 + 37O2 2Ca10(SiO4)3(SO4)3(OH)2 + 10Mg2Si2O6 + 14SiO2 = 20CaMgSi2O6 + 2H2O + 3S2 + 9O2 in fO2-fS2 space at fixed P-T. Application of these equilibria to apatite zoned in sulfate from oxidized granitoids reflects a drop in fS2 by more than 1 log unit during its growth. The zoning is interpreted to represent the removal of a magmatic vapor phase during crystallization of these plutons. Removal of sulfur from magmas by hydrothermal fluids is important to the ore-forming process and to the production of acid sulfate aerosols during eruption of oxidized magmas. Preservation of sulfatian apatite may yield data on the sulfidation states of ancient flood basalts such as the Deccan Traps of India and the Parana basalts of Brazil to address the environmental impact of these giant eruptions.

  17. In-Situ Apatite Laser Ablation U-Th-Sm/He Dating, Methods and Challenges

    Pickering, J. E.; Matthews, W.; Guest, B.; Hamilton, B.; Sykes, C.


    In-situ, laser ablation U-Th-Sm/He dating is an emerging technique in thermochronology that has been proven as a means to date zircon and monzonite1-5. In-situ U-Th-Sm/He thermochronology eliminates many of the problems and inconveniences associated with traditional, whole grain methods, including; reducing bias in grain selection based on size, shape and clarity; allowing for the use of broken grains and grains with inclusions; avoiding bad neighbour effects; and eliminating safety hazards associated with dissolution. In-situ apatite laser ablation is challenging due to low concentrations of U and Th and thus a low abundance of radiogenic He. For apatite laser ablation to be effective the ultra-high-vacuum (UHV) line must have very low and consistent background levels of He. To reduce He background, samples are mounted in a UHV stable medium. Our mounting process uses a MicroHePP (Microscope Mounted Heated Platen Press) to press samples into FEP (fluorinated ethylene propylene) bonded to an aluminum backing plate. Samples are ablated using a Resonetics 193 nm excimer laser and liberated He is measured using a quadrupole mass spectrometer on the ASI Alphachron noble gas line; collectively this system is known as the Resochron. The ablated sites are imaged using a Zygo Zescope optical profilometer and ablated pit volume measured using PitVol, a custom MatLab algorithm developed to enable precise and unbiased measurement of the ablated pit geometry. We use the well-characterized Durango apatite to demonstrate the accuracy and precision of the method. He liberated from forty-two pits, having volumes between 1700 and 9000 um3, were measured using the Resochron. The ablated sites were imaged using a Zygo Zescope optical profilometer and ablated pit volume measured using PitVol. U, Th and Sm concentrations were measured by laser ablation and the U-Th-Sm/He age calculated by standard age equation. An age of 33.8±0.31 Ma was determined and compares well with conventional

  18. Study on surface modification of porous apatite-wollastonite bioactive glass ceramic scaffold

    Cao, Bin; Zhou, Dali; Xue, Ming; Li, Guangda; Yang, Weizhong; Long, Qin; Ji, Li


    Chitosan (CS) was used to modify the surface of apatite-wollastonite bioactive glass ceramic (AW GC) scaffold to prepare AW/CS composite scaffold. The in vitro bioactivity of the AW/CS composite scaffold was investigated by simulated body fluid (SBF) soaking experiment. Cell growth on the surface of the material was evaluated by co-culturing osteogenic marrow stromal cells (MSCs) of rabbits with the scaffold. The results showed that the compressive strength of AW GC scaffold was improved dramatically after being modified by CS, whereas the mineralization rate was delayed. MSCs can attach well on the surface of the composite scaffold.

  19. Extraction of rare earth elements from hydrate-phosphate precipitates of apatite processing

    Andropov, M. O.; Anufrieva, A. V.; Buynovskiy, A. S.; Makaseev, Y. N.; Mazov, I. N.; Nefedov, R. A.; Sachkov, V. I.; Stepanova, O. B.; Valkov, AV


    The features of extraction of rare earth elements (REE) were considered from hydrate-phosphate precipitates of REE of apatite processing by nitric acid technology. The preliminary purification of nitrate solution of REE from impurities of titanium, aluminum, iron, uranium and thorium was suggested to obtain stable solutions not forming precipitates. Washing the extract was recommended with the evaporated reextract that allows to obtain directly on the cascade of REE extraction the concentrated solutions suitable for the separation into groups by the extraction method. Technical decisions were suggested for the separation of REE in groups without the use of salting-out agent.

  20. EPR dating CO2- sites in tooth enamel apatites by ENDOR and triple resonance.

    Vugman, N V; Rossi, A M; Rigby, S E


    In this work we combine electron paramagnetic resonance (EPR), high-resolution electron nucleus double resonance (ENDOR) and general triple resonance (GTR) spectroscopies, to study the local environment of the CO2- groups created by ionizing radiation in fossil tooth enamel. We demonstrate that the CO2- groups occupy slightly modified phosphate sites in the hydroxyapatite lattice. In quaternary shark enamel we found these groups to be interacting with water molecules in the apatite channels. The absence of water molecules as first neighbors in mammalian samples indicate, however, that these molecules are not significantly responsible for the stabilization of CO2- dating centers in enamel.

  1. Measurement of solid state nuclear tracks in apatite by thermal analysis method

    HE ShaoRong; YANG TongSuo; LI TianXiang; LU BaiZuo; JI ShuLi; HENG ShuYun


    A new measurement method of thermal analysis for solid state nuclear tracks is proposed. The an-nealing heat emitted by the unit mass of solid state nuclear tracks in heavy particles of the sample is determined via micro-thermal analysis method. Hence, the number of solid state nuclear tracks in the unit mass of sample is determined. In particular, this paper introduces the method and its significance to measure the number of a-particles nuclear tracks in apatite by measuring the annealing heat of a-particles nuclear tracks. In addition, the mechanism of the measurement and potential applications are discussed.

  2. High spatial resolution U-Pb geochronology and Pb isotope geochemistry of magnetite-apatite ore from the Pea Ridge iron oxide-apatite deposit, St. Francois Mountains, southeast Missouri, USA

    Neymark, Leonid; Holm-Denoma, Christopher S.; Pietruszka, Aaron; Aleinikoff, John N.; Fanning, C. Mark; Pillers, Renee M.; Moscati, Richard J.


    The Pea Ridge iron oxide-apatite (IOA) deposit is one of the major rhyolite-hosted magnetite deposits of the St. Francois Mountains terrane, which is located within the Mesoproterozoic (1.5–1.3 Ga) Granite-Rhyolite province in the U.S. Midcontinent. Precise and accurate determination of the timing and duration of oreforming processes in this deposit is crucial for understanding its origin and placing it within a deposit-scale and regional geologic context. Apatite and monazite, well-established U-Pb mineral geochronometers, are abundant in the Pea Ridge orebody. However, the potential presence of multiple generations of dateable minerals, processes of dissolution-reprecipitation, and occurrence of micrometer-sized intergrowths and inclusions complicate measurements and interpretations of the geochronological results. Here, we employ a combination of several techniques, including ID-TIMS and high spatial resolution geochronology of apatite and monazite using LA-SC-ICPMS and SHRIMP, and Pb isotope geochemistry of pyrite and magnetite to obtain the first direct age constraints on the formation and alteration history of the Pea Ridge IOA deposit. The oldest apatite TIMS 207Pb*/206Pb* dates are 1471 ± 1 and 1468 ± 1 Ma, slightly younger than (but within error of) the ~1474 to ~1473 Ma U-Pb zircon ages of the host rhyolites. Dating of apatite and monazite inclusions within apatite provides evidence for at least one younger metasomatic event at ~1.44 Ga, and possibly multiple superimposed metasomatic events between 1.47 and 1.44 Ga. Lead isotop analyses of pyrite show extremely radiogenic 206Pb/204Pb ratios up to ~80 unsupported by in situ U decay. This excess radiogenic Pb in pyrite may have been derived from the spatially associated apatite as apatite recrystallized several tens of million years after its formation. The low initial 206Pb/204Pb ratio of ~16.5 and 207Pb/204Pb ratio of ~15.4 for individual magnetite grains indicate closed U-Pb system behavior in

  3. Bone-like apatite formation on HA/316L stainless steel composite surface in simulated body fluid

    FAN Xin; CHEN Jian; ZOU Jian-peng; WAN Qian; ZHOU Zhong-cheng; RUAN Jian-ming


    HA/316L stainless steel(316L SS) biocomposites were prepared by hot-pressing technique. The formation of bone-like apatite on the biocomposite surfaces in simulated body fluid(SBF) was analyzed by digital pH meter, plasma emission spectrometer, scanning electron microscope(SEM) and energy dispersive X-ray energy spectrometer(EDX). The results indicate that the pH value in SBF varies slightly during the immersion. It is a dynamic process of dissolution-precipitation for the formation of apatite on the surface. With prolonging immersion time, Ca and P ion concentrations increase gradually, and then approach equilibrium. The bone-like apatite layer forms on the composites surface, which possesses benign bioactivity and favorable biocompatibility and achieves osseointegration, and can provide firm fixation between HA60/316L SS composite implants and human body bone.

  4. In situ Sr/Sr investigation of igneous apatites and carbonates using laser-ablation MC-ICP-MS

    Bizzarro, Martin; Simonetti, A.; Stevenson, R.K.;


    In situ Sr isotopic compositions of coexisting apatite and carbonate for carbonatites from the Sarfartoq alkaline complex, Greenland, have been determined by laser-ablation multicollector inductively coupled plasma mass spectrometry. This study is the first to examine the extent of Sr isotopic...... spectrometry but in a much shorter interval of time (100 s vs.>1 h, respectively). The combined total analyses (n = 107) of apatite and carbonate yield Sr/Sr compositions ranging from ~ 0.7025 to ~ 0.7031. This relatively large variation in Sr isotopic compositions (~ 0.0006) is ~ 1 order of magnitude larger...... than the estimated external reproducibility (~ 0.00005,2s) of the method. The large range in Sr/Sr values suggests that apatite and carbonate precipitated predominantly under nonequilibrium conditions. The isotopic variations observed within individual hand specimens may therefore reflect larger...

  5. Lattice energies of apatites and the estimation of DeltaH f degrees (PO 4 3-, g).

    Flora, Natalie J; Yoder, Claude H; Jenkins, H Donald Brooke


    Experimentally based lattice energies are calculated for the apatite family of double salts M(5)(PO(4))(3)X, where M is a divalent metal cation (Ca, Sr, Ba) and X is hydroxide or a halide. These values are also shown to be estimable, generally to within 4%, using the recently derived Glasser-Jenkins equation, U(POT) = AI(2I/V(m))(1/3), where A = 121.39 kJ mol(-)(1). The apatites exhibiting greater covalent character (e.g., M = Pb, Cd, etc.) are less well reproduced but are within 8% of the experimentally based value. The lattice energy for ionic apatites (having identical lattice ionic strengths, I) takes the particularly simple form U(POT)/kJ mol(-)(1) = 26680/(V(m)/nm(3))(1/3), reproducing cycle values of U(POT) well when V(m) is estimated by ion volume summation and employing a volume for the PO(4)(3)(-) ion (not previously quantified with an associated error) of 0.063 +/- 0.003 nm(3). A value for the enthalpy of formation of the gaseous phosphate ion, DeltaH(f)( ) degrees (PO(4)(3)(-), g), is absent from current thermochemical tabulations. Examination of solution and solid state thermochemical cycles for apatites, however, leads us to a remarkably consistent value of 321.8 +/- 1.2 kJ mol(-)(1). Experimental and estimated lattice energies were used along with other thermodynamic data to determine enthalpies, entropies, and free energies of dissolution for apatites of uncertain stabilities. These dissolution values are compared with the corresponding values for stable apatites and are used to rationalize the relative instability of certain derivatives.

  6. In vitro Cytotoxicity Comparison of MTA Fillapex, AH-26 and Apatite Root Canal Sealer at Different Setting Times.

    Jafari, Farnaz; Aghazadeh, Marzieh; Jafari, Sanaz; Khaki, Faraz; Kabiri, Fahime


    This study aimed to compare the cytotoxicity of MTA Fillapex, AH-26 and Apatite root canal sealers at different times after mixing. In this in vitro study, MTA Fillapex, AH-26 and Apatite root canal sealer were spilled uniformly by 40 µm mesh in a 96-well plate. Then, human fetal foreskin fibroblast cell line (HFFF2) were added to each sealer cell culture medium. Cytotoxicity was measured using MTT assay after 24, 48 and 72 h and seven days. Multiple comparisons were done using analysis of variances (ANOVA) and Scheffe's post hoc test. All studied sealers exhibited severe cytotoxicity (more than 70%) except for Apatite sealer (95%) at 48 h after mixing. Cytotoxicity of MTA Fillapex and AH-26 were similar (P>0.05) at 24, 48 and 72 h and 7 days after mixing of sealers. Cytotoxicity of MTA Fillapex and Apatite root canal sealer, at 24 and 48 h, were significantly different (P=0.003 and P=0.000, respectively); MTA Fillapex was more cytotoxic. However in 72 h and 7 days after mixing, the difference was not significant (P>0.05). At 24 and 48 h after mixing, AH-26 was more cytotoxic (P=0.002 and P=0.000, respectively). Same as above at 72 h and 7 days after mixing, their cytotoxicity were similar (P>0.05). Overall cytotoxicity of all studied materials were severe. However, it was observed that the cytotoxicity of MTA Fillapex, AH-26 and Apatite root canal sealer decreased over time. Apatite root canal sealer exhibited the least cytotoxicity. Cytotoxicity of MTA Fillapex and AH-26 were similar at different time intervals.

  7. Effect of solid/solution ratio on apatite formation from CaSiO3 ceramics in simulated body fluid.

    Iimori, Yusuke; Kameshima, Yoshikazu; Yasumori, Atsuo; Okada, Kiyoshi


    The effect of the solid/solution (S/S) ratio on apatite formation from CaSiO3 ceramics in simulated body fluid (SBF) was investigated. CaSiO3 ceramics with a Ca/Si ratio of 0.91 were prepared by sintering CaSiO3 powder coprecipitated from ethanol solutions of Ca(NO3)2. 4H2O and Si(OC2H5)4 using NH4OH as the precipitant. These ceramics were reacted with SBF at S/S ratios of 1.0, 2.5 and 8.3 mg/ml at 36.5 degrees C for various times. Formation of apatite was observed at all the S/S ratios after soaking for 1 day. The amount and microstructure of the apatite obtained at a S/S ratio of 8.3 mg/ml, however, differed largely from the product formed at the other two S/S ratios. The apatite formed at S/S = 8.3 mg/ml was of smaller particle size, formed in smaller amount and with less preferred orientation of the (001) of apatite crystals compared with those formed at S/S = 1.0 and 2.5 mg/ml. An increase of Ca and decrease of the P components occurred in the soaked SBF at S/S = 8.3 mg/ml, the changes being much more marked than with the other two S/S ratios. These differences in the concentration changes in SBF at different S/S ratios are attributed to the difference in the apatite formation from the CaSiO3 ceramics.

  8. Comparative study of apatite formation on CaSiO3 ceramics in simulated body fluids with different carbonate concentrations.

    Iimori, Yusuke; Kameshima, Yoshikazu; Okada, Kiyoshi; Hayashi, Shigeo


    Apatite formation on CaSiO3 ceramics was investigated using two different simulated body fluids (SBF) proposed by Kokubo (1990) and Tas (2000) and three sample/SBF (S/S) ratios (1.0, 2.5 and 8.3 mg/ml) at 36.5 degrees C for 1-25 days. The CaSiO3 ceramic was prepared by firing coprecipitated gel with Ca/Si = 0.91 at 1400 degrees C. The bulk density was 2.14 g/cm3 and the relative density about 76%. The two SBF solutions contain different concentrations of HCO3- and Cl- ions, the concentrations of which are closer to human blood plasma in the Tas SBF formulation than in the Kokubo formulation. The pH values in the former solution are also more realistic. The CaSiO3 ceramics show apatite formation in SBF (Kokubo) after soaking for only 1 day at all S/S ratios whereas different phases were formed at each S/S ratio in SBF (Tas). The crystalline phases formed were mainly apatite at S/S = 1.0 mg/ml, carbonate-type apatite at 2.5 mg/ml and calcite at 8.3 mg/ml. At higher S/S ratios the increase in the Ca concentration became higher while the P concentration became lower in the reacted SBF. These changes in SBF concentrations and increasing pH occurred at higher S/S ratios, producing more favorable conditions in the SBF for the formation of carbonate bearing phases, finally leading to the formation of calcite instead of apatite in the higher HCO3- ion concentration SBF (Tas). Apatite is, however, formed in the lower HCO3- ion concentration SBF (Kokubo) even though the Ca and P concentrations change in a similar manner to SBF (Tas).

  9. Biomimetic growth and substrate dependent mechanical properties of bone like apatite nucleated on Ti and magnetron sputtered TiO2 nanostructure

    Sarma, Bimal K.; Das, Apurba; Barman, Pintu; Pal, Arup R.


    This report presents findings on biomimetic growth of hydroxyapatite (HAp) nanocrystals on Ti and sputtered TiO2 substrates. The possibility of TiO2 nanostructure as candidate materials for future biomedical applications has been explored through the comparison of microstructural and mechanical properties of bone like apatite grown on Ti and nano-TiO2 surfaces. Raman spectroscopy and x-ray diffraction studies reveal formation of carbonate apatite with apparent domain size in the nanoscale range. A better interaction at the nano-TiO2/nano-HAp interface due to higher interfacial area could promote the growth of bone like apatite. The crystal phases, crystallinity, and surface morphology of nano-TiO2 are considered as parameters to understand the nucleation and growth of apatite with different mechanical properties at the nanoscale. The methodology of x-ray line profile analysis encompasses deconvolution of merged peaks by preserving broadening due to nanosized HAp aggregates. The Young’s modulus of bone like apatite exhibits crystallographic directional dependence which suggests the presence of elastic anisotropy in bone like apatite. The lattice contraction in the c-direction is associated with the degree of carbonate substitution in the apatite lattice. The role of residual stress is critical for the lattice distortion of HAp deposited at physiological conditions of temperature and pH of human blood plasma. The ion concentration is crucial for the uniformity, crystallinity, and mechanical behaviour of the apatite.

  10. The role of the counter-ions present in syntheses on the thermal stabilization of strontium and/or calcium apatites

    Melo da Silva, Leila; Santos Menezes, Daniela dos; Almeida, Luis Eduardo [Laboratório de Biomateriais – P" 2CEM, Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, São Cristóvão, 49100-000 Sergipe (Brazil); Anselme, Karine; Dentzer, Joseph [Institut de Science des Matériaux de Mulhouse (IS2M), CNRS UMR7361, Université de Haute-Alsace, 15, rue Jean Starcky, BP 2488, 68057 Mulhouse (France); Araujo dos Santos, Euler, E-mail: [Laboratório de Biomateriais – P" 2CEM, Universidade Federal de Sergipe, Av. Marechal Rondon, s/n, São Cristóvão, 49100-000 Sergipe (Brazil)


    Highlights: • Counter-ions present in syntheses can affect thermal stabilization of apatites. • Ions with different charges and sizes can stabilize the apatite structure. • Co-substitution is an important way to design biomimetic hydroxyapatites. - Abstract: The goal of this work was to study the thermal stabilization of calcium apatites in which the Ca{sup 2+} ions were substituted for Sr{sup 2+} in increasing concentrations via ionic co-substitutions. Two distinct standard syntheses were proposed for comparative purposes: one using counter-ions that were not easily incorporated into the apatite structure (NH{sub 4}{sup +}/NO{sub 3}{sup −}) and one using counter-ions that can be easily incorporated into the structure (Na{sup +}/Cl{sup −}). After calcination, only the apatites synthesized in the presence of NH{sub 4}{sup +}/NO{sub 3}{sup −} presented phase transformation. In contrast, the apatites synthesized in the presence of Na{sup +}/Cl{sup −} formed a solid solution after calcination, with Na{sup +}, Ca{sup 2+}, Sr{sup 2+} and Cl{sup −} sharing the same apatite lattice. Wavelength dispersive X-ray fluorescence spectroscopy (WDXRF), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and temperature-programmed desorption (TPD) techniques showed that the counter-ions present during the syntheses that are associated with CO{sub 3}{sup 2−} play an important role in the thermal stabilization of the apatites.

  11. Calibration of the Fluorine, Chlorine and Hydrogen Content of Apatites With the ChemCam LIBS Instrument

    Meslin, P.-Y.; Cicutto, L.; Forni, O.; Drouet, C.; Rapin, W.; Nachon, M.; Cousin, A.; Blank, J. G.; McCubbin, F. M.; Gasnault, O.; Newsom, H.; Mangold, N.; Schroeder, S.; Sautter, V.; Maurice, S.; Wiens, R. C.


    Determining the composition of apatites is important to understand the behavior of volatiles during planetary differentiation. Apatite is an ubiquitous magmatic mineral in the SNC meteorites. It is a significant reservoir of halogens in these meteorites and has been used to estimate the halogen budget of Mars. Apatites have been identified in sandstones and pebbles at Gale crater by ChemCam, a Laser-Induced Breakdown Spectroscometer (LIBS) instrument onboard the Curiosity rover. Their presence was inferred from correlations between calcium, fluorine (using the CaF molecular band centered near 603 nm, whose detection limit is much lower that atomic or ionic lines and, in some cases, phosphorus (whose detection limit is much larger). An initial quantification of fluorine, based on fluorite (CaF2)/basalt mixtures and obtained at the LANL laboratory, indicated that the excess of F/Ca (compared to the stoichiometry of pure fluorapatites) found on Mars in some cases could be explained by the presence of fluorite. Chlorine was not detected in these targets, at least above a detection limit of 0.6 wt% estimated from. Fluorapatite was later also detected by X-ray diffraction (with CheMin) at a level of approx.1wt% in the Windjana drill sample (Kimberley area), and several points analyzed by ChemCam in this area also revealed a correlation between Ca and F. The in situ detection of F-rich, Cl-poor apatites contrasts with the Cl-rich, F-poor compositions of apatites found in basaltic shergottites and in gabbroic clasts from the martian meteorite NWA 7034, which were also found to be more Cl-rich than apatites from basalts on Earth, the Moon, or Vesta. The in situ observations could call into question one of the few possible explanations brought forward to explain the SNC results, namely that Mars may be highly depleted in fluorine. The purpose of the present study is to refine the calibration of the F, Cl, OH and P signals measured by the ChemCam LIBS instrument, initiated

  12. Synthesis and post-treatments of biomimetic apatites: How working conditions may configure final physico-chemical features

    Drouet Christophe


    Full Text Available Nanocrystalline apatites constitute the mineral part of hard tissues, and can be reproduced synthetically. Nonetheless, the impact of synthesis/post-synthesis parameters is often disregarded. Based on actualized knowledge on their physico-chemical features, we investigated these aspects on a systematic experimental basis. The apatite maturation state has a direct effect on the surface and core of the nanocrystals. Drying and re-immersion aspects were also examined in view of applications as implantable biomaterials: an equilibration of the samples surface is proposed to avoid acidification phenomena after re-immersion of dried samples.

  13. Effect of Artificial Saliva on the Apatite Structure of Eroded Enamel

    Xiaojie Wang


    Full Text Available Citric acid-induced changes in the structure of the mineral component of enamel stored in artificial saliva were studied by attenuated total reflectance infrared spectroscopy as well as complementary electron probe microanalysis and scanning electron microscopy. The results indicate that the application of artificial saliva for several hours (the minimum time period proved is 4 h leads to slight, partial recovering of the local structure of eroded enamel apatite. However, artificial saliva surrounding cannot stop the process of loosening and breaking of P–O–Ca atomic linkages in enamel subjected to multiple citric acid treatments. Irreversible changes in the atomic bonding within 700 nm thick enamel surface layer are observed after three times exposure for 1 min to aqueous solution of citric acid having a pH value of 2.23, with a 24-hour interval between the individual treatments. The additional treatment with basic fluoride-containing solutions (1.0% NaF did not demonstrate a protective effect on the enamel apatite structure per se.

  14. Histological Comparison in Rats between Carbonate Apatite Fabricated from Gypsum and Sintered Hydroxyapatite on Bone Remodeling

    Yasunori Ayukawa


    Full Text Available Carbonate apatite (CO3Ap, the form of apatite found in bone, has recently attracted attention. The purpose of the present study was to histologically evaluate the tissue/cellular response toward the low-crystalline CO3Ap fabricated using a dissolution-precipitation reaction with set gypsum as a precursor. When set gypsum was immersed in a 100°C 1 mol/L Na3PO4 aqueous solution for 24 h, the set gypsum transformed into CO3Ap. Both CO3Ap and sintered hydroxyapatite (s-HAp, which was used as a control, were implanted into surgically created tibial bone defects of rats for histological evaluation. Two and 4 weeks after the implantation, histological sections were created and observed using light microscopy. The CO3Ap granules revealed both direct apposition of the bone matrix by osteoblasts and osteoclastic resorption. In contrast, the s-HAp granules maintained their contour even after 4 weeks following implantation which implied that there was a lack of replacement into the bone. The s-HAp granules were sometimes encapsulated with fibrous tissue, and macrophage polykaryon was occasionally observed directly apposed to the implanted granules. From the viewpoint of bone remodeling, the CO3Ap granules mimicked the bone matrix, suggesting that CO3Ap may be an appropriate bone substitute.

  15. Coupled isomorphic substitution and exsolution of pyroxene, rutile, apatite and quartz in supersilicic garnet

    YANG Jiaxi; LIU Liang


    Dissolution of pyroxene in garnet at ultrahigh pressures produces supersilicic garnet with the coupled substitutions of SiⅥ + MⅥ= AlⅥ + AlⅥ and SiⅥ + NaⅧ=AlⅥ + MⅧ, which are enhanced by rising pressure. The supersilicic garnet and exsolution of pyroxene, rutile, apatite and quartz in garnet during decompression were found in natural rocks, pointing to the importance in studying mantle-derived rocks and ultrahigh pressure metamorphism related to plate deep subduction. Ti, P, K and H2O enters garnet via the substitutions of Ti = Si, PⅣ+NaⅧ = SiⅣ+ CaⅧ, SiⅥ+KⅧ = AlⅥ+MⅧ, and [(OH)4]4- = [SiO4]4- or [4H]4+ = Si4+ respectively. The possible entering of Eskola pyroxene component M0.5AlSi2O6 in clinopyroxene, together with the common pyroxene component M2Si2O6, into garnet can lead to the presence of the substitution of SiⅥ + 0.5□Ⅷ= AlⅥ + 0.5MⅧ in garnet structure, which plays a key role in the exsolution of rutile, apatite and quartz in garnet. Two new breakdown reactions are thus proposed on the basis of the new coupled substitution, which can be regarded as a theoretical model for the exsolution of the 3 minerals in garnet. The real exsolution may be a combination of several breakdown reactions.

  16. Synthesis and characterization of nanocrystalline apatites from solution modeling human blood

    Solodyankina, Anna; Nikolaev, Anton; Frank-Kamenetskaya, Olga; Golovanova, Olga


    Present paper is devoted to the research of the calcification processes in the blood plasma of human body. Spontaneous crystallization from the solution modeling the inorganic part of the blood plasma has been carried out. Obtained precipitates were studied by the various instrumental methods (X-ray powder diffraction, Fourier-transformed infrared spectroscopy, scanning electron microscopy, electron probe microanalysis and gas-volumetric method). All gathered data allow to summarize that nonstoichiometric carbonated hydroxyapatite with low crystallinity (CSD lengths 18-28 nm), high water content and small amount of chlorine ion was obtained throughout the syntheses. Part of vacancies at the Ca sites varies from 0.17 to 0.87; the value of the Cat/(P + C) ratio-from 1.52 to 1.64 (where Cat = Ca2+ + Na+ + K+ + Mg2+). The poor crystallized synthetic apatites with high carbonate ion content (from 4.34 to 5.54 wt%) and c parameter (6.888-6.894 Å) are analogues of the apatites of the pathological cardiovascular deposits. They can be obtained from the solution modeling human blood plasma by the inorganic components with calcium phosphate supersaturation 25 and 50 and with 10 and 12 weeks experiment time.

  17. Seawater rare-earth element patterns preserved in apatite of Pennsylvanian conodonts?

    Bright, Camomilia A.; Cruse, Anna M.; Lyons, Timothy W.; MacLeod, Kenneth G.; Glascock, Michael D.; Ethington, Raymond L.


    Past workers have used rare-earth element patterns recorded in biogenic apatite as proxies for original seawater chemistry. To explore the potency of this approach, we analyzed Pennsylvanian conodonts from limestones, gray shales, and black shales of the Fort Scott and Pawnee formations (Desmoinesian) and Swope and Dennis formations (Missourian) in Kansas, Missouri, and Iowa, U.S.A. Analysis of individual platform conodonts from seven taxa using laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) revealed a consistent enrichment in the middle rare-earth elements (MREE). Analogous MREE enrichment has been observed in authigenic apatite and bulk samples of phosphate-rich black shales from the same formations. Importantly, however, phosphate-depleted shales intimately associated with the P-rich intervals are relatively depleted in MREE. These antithetic patterns argue convincingly for secondary migration from the bulk sediment into the phosphate, and the extent of MREE enrichment in the conodonts is correlated positively with the total REE content. MREE enrichment in conodonts does not vary systematically as a function of lithology, stratigraphic level, conodont genus, geographic location, or with independent estimates of paleoredox conditions in the bottom waters. Collectively, these results argue for postmortem (diagenetic) REE uptake resulting in a pronounced (and progressive) MREE enrichment. Any cerium anomalies, if initially present, were masked by diagenetic uptake of REE. Paleoenvironmental interpretations of conodont REE, particularly for samples exhibiting MREE enrichment, should therefore be viewed with caution.

  18. Projected length annealing of etched {sup 152}Sm ion tracks in apatite

    Alencar, I., E-mail: [Departamento de Raios Cosmicos e Cronologia, Instituto de Fisica ' Gleb Wataghin' , UNICAMP, Rua Sergio Buarque de Holanda 777, CEP 13083-859 Campinas-SP (Brazil); Guedes, S. [Departamento de Raios Cosmicos e Cronologia, Instituto de Fisica ' Gleb Wataghin' , UNICAMP, Rua Sergio Buarque de Holanda 777, CEP 13083-859 Campinas-SP (Brazil); Jonckheere, R. [Geologisches Institut, Technische Universitaet Bergakademie Freiberg, Bernhard-von-Cotta-Strasse 2, Freiberg (Sachsen) 09599 (Germany); Trautmann, C. [Gesselschaft fuer Schwerionenforschung, GSI, Planckstrasse 1, Darmstadt 64291 (Germany); Soares, C.J.; Moreira, P.A.F.P. [Departamento de Raios Cosmicos e Cronologia, Instituto de Fisica ' Gleb Wataghin' , UNICAMP, Rua Sergio Buarque de Holanda 777, CEP 13083-859 Campinas-SP (Brazil); Curvo, E.A.C. [Instituto de Fisica, UFMT, Av. Fernando Correa da Costa, S/N, CEP 78060-900 Cuiaba-MT (Brazil); Tello, C.A.; Nakasuga, W.M. [Departamento de Fisica, Quimica e Biologia, Faculdade de Ciencia e Tecnologia, UNESP, Rua Roberto Simonsen 305, CEP 19060-900 Presidente Prudente-SP (Brazil); and others


    Slices of apatite (cut {approx}45 Degree-Sign apart from c-axis) were irradiated with {sup 152}Sm ions and heated at different steps in order to investigate the thermal annealing property of tracks generated by these ions. The ions were impinged with 45 Degree-Sign and {approx}150 MeV at apatite surface. Samples were etched with diluted nitric acid. Results of annealed projected lengths are presented for isochronal 10, 100 and 1000 h thermal treatments (runs) for samples with and without pre-annealing preparation. For low annealing temperatures, a distinct behavior of these samples was observed: pre-annealed samples presented a faster annealing rate. At elevated temperatures, the behavior seems to be equal. A single activation energy model was fitted to data and the energy obtained is in agreement with literature. Finally, despite the different trend in comparison with annealing rates of confined fission tracks, extrapolation to geological timescales presents reasonable estimates, indicating small influence of surface effects and, in principle, the possibility to employ ion tracks as proxies for annealing kinetics.

  19. Electrodeposited apatite coating for solid-phase microextraction and sensitive indirect voltammetric determination of fluoride ions.

    Mao, Yuehong; Chen, Yufei; Chu, Lin; Zhang, Xiaoli


    Electrodeposition was used to prepare a new solid phase microextraction (SPME) coatings. Two apatite SPME coatings, dicalcium phosphate dihydrate (DCPD or brushite) and hydroxyapatite (HAP) were validly and homogeneously one-step electrodeposited on glassy carbon electrode (GCE) under different conditions. The coatings were characterized by XRD, FTIR, SEM, CV and EIS. The apatite SPME coatings showed excellent and selective adsorbability to fluoride ions. A novel indirect voltammetric strategy for sensitive detection of fluoride was proposed using K3Fe(CN)6 as indicating probe. The detection principle of fluoride ions was based on the increment of steric hindrance after fluoride adsorption, which resulting in the decrease of the amperometric signal to Fe(CN)6(3-). The liner ranges were 0.5-20.0 μmol/L for n-DCPD/GCE with the limit of detection of 0.14 μmol/L and 0.1-50.0 μmol/L for n-HAP/GCE with the limit of detection of 0.069 μmol/L, respectively. The developed method was applied to the analysis of water samples (lake, spring and tap water) and the recovery values were found to be in the range of 90-106%.

  20. Multi-scale simulations of apatite-collagen composites: from molecules to materials

    Zahn, Dirk


    We review scale-bridging simulation studies for the exploration of atomicto-meso scale processes that account for the unique structure and mechanic properties of apatite-protein composites. As the atomic structure and composition of such complex biocomposites only partially is known, the first part (i) of our modelling studies is dedicated to realistic crystal nucleation scenarios of inorganic-organic composites. Starting from the association of single ions, recent insights range from the mechanisms of motif formation, ripening reactions and the self-organization of nanocrystals, including their interplay with growth-controlling molecular moieties. On this basis, (ii) reliable building rules for unprejudiced scale-up models can be derived to model bulk materials. This is exemplified for (enamel-like) apatite-protein composites, encompassing up to 106 atom models to provide a realistic account of the 10 nm length scale, whilst model coarsening is used to reach μm length scales. On this basis, a series of deformation and fracture simulation studies were performed and helped to rationalize biocomposite hardness, plasticity, toughness, self-healing and fracture mechanisms. Complementing experimental work, these modelling studies provide particularly detailed insights into the relation of hierarchical composite structure and favorable mechanical properties.

  1. A first report of hydroxylated apatite as structural biomineral in Loasaceae – plants’ teeth against herbivores

    Ensikat, Hans-Jürgen; Geisler, Thorsten; Weigend, Maximilian


    Biomineralization provides living organisms with various materials for the formation of resilient structures. Calcium phosphate is the main component of teeth and bones in vertebrates, whereas especially silica serves for the protection against herbivores on many plant surfaces. Functional calcium phosphate structures are well-known from the animal kingdom, but had not so far been reported from higher plants. Here, we document the occurrence of calcium phosphate biomineralization in the South-American plant group Loasaceae (rock nettle family), which have stinging trichomes similar to those of the well-known stinging nettles (Urtica). Stinging hairs and the smaller, glochidiate trichomes contained nanocrystalline hydroxylated apatite, especially in their distal portions, replacing the silica found in analogous structures of other flowering plants. This could be demonstrated by chemical, spectroscopic, and diffraction analyses. Some species of Loasaceae contained both calcium phosphate and silica in addition to calcium carbonate. The intriguing discovery of structural hydroxylated apatite in plants invites further studies, e.g., on its systematic distribution across the family, the genetic and cellular control of plant biomineralization, the properties and ultrastructure of calcium phosphate. It may prove the starting point for the development of biomimetic calcium phosphate composites based on a cellulose matrix.

  2. Apatite fission track dating evidence for tectonic move-ment of Yarlung Zangbo Thrust Zone


    Fission track geological chronology is an effective method of study on tectonic movement of fault zone.Apatite fission track (AFT) dating analyses of 9-apatite and 4-zircon samples collected from Lhasa to Langkazi,-70-kin-long in SN provide an understanding of the age and the uplifting of both sides of the Yarlung Zangbo Thrust Zone (YZTZ) in this work. The AFT ages range from -37 to 14 Ma, indicating the time of major tectono-thermal events,i.e. the continent-continent collision along the YZTZ. Based on the relationship between the AFT ages and the sample elevations, there were two tectonic active periods: -37-20Ma and 20}-14 Ma. In the first period the tectonic event did not bring on differential uplifting. Rapid differential uplifting with rapid cooling, resulting from thrusting, took place in the second period. The vertical displacement was -1020 m and total -2.9 km of overburden has been removed from the present-day surface since cooling below -ll0℃ began. The maximum cooling and denudation occurred at a rate of -7℃/Ma and -207 m/Ma respectively since -14 Ma. The zircon fission track analysis demonstrates that the temperature of tectono-thermal events did not exceed 310℃.``

  3. Preparation and preliminary cytocompatibility of magnesium doped apatite cement with degradability for bone regeneration.

    Lu, Jingxiong; Wei, Jie; Yan, Yonggang; Li, Hong; Jia, Junfeng; Wei, Shicheng; Guo, Han; Xiao, Tiqiao; Liu, Changsheng


    In the present study, we fabricated magnesium doped apatite cement (md-AC) with rapid self-setting characteristic by adding the mixed powders of magnesium oxide and calcium dihydrogen phosphate (MO-CDP) into hydroxyapatite cement (HAC). The results revealed that the md-AC with 50 wt% MO-CDP could set within 6 min and the compression strength could reach 51 MPa after setting for 1 h, indicating that the md-AC had highly initial mechanical strength. The degradability of the md-AC in Tris-HCl solution increased with the increase of MO-CDP amount, and the weight loss ratio of md-AC with 50 wt% MO-CDP was 57.5 wt% after soaked for 12 weeks. Newly flake-like apatite could be deposited on the md-AC surfaces after soaked in simulated body fluid (SBF) for 7 days. Cell proliferation ratio of MG(63) cells on md-AC was obviously higher than that of HAC on days 4 and 7. The cells with normal phenotype spread well on the md-AC surfaces and attached intimately with the substrate, and alkaline phosphatase (ALP) activity of the cells on md-AC significantly improved compared with HAC on day 7. The results demonstrate that the md-AC has a good ability to support cell proliferation and differentiation, and indicate a good cytocompatibility.

  4. Ionic conductivity of apatite-type rare-earth silicates prepared by mechanical milling

    Martinez-Gonzalez, L.G.; Rodriguez-Reyna, E.; Moreno, K.J.; Escalante-Garcia, J.I. [Cinvestav-Saltillo, Apartado Postal 663, 25000-Saltillo, Coahuila (Mexico); Fuentes, A.F. [Cinvestav-Saltillo, Apartado Postal 663, 25000-Saltillo, Coahuila (Mexico)], E-mail:


    Apatite-type silicates, RE{sub 10-x}(SiO{sub 4}){sub 6}O{sup '}{sub 2+y} (RE = La, Nd, Gd and Dy), were prepared by mechanical milling (MM) starting from stoichiometric mixtures of the constituent oxides, RE{sub 2}O{sub 3} and SiO{sub 2}. XRD patterns collected after grinding the starting mixtures in a planetary ball mill for 9 h contain only the characteristic reflections of the target materials. The electrical properties were analyzed on sintered pellets by using impedance spectroscopy and the isothermal conductivity data were successfully fitted to a Jonscher-type empirical expression {sigma}'({omega}) {proportional_to} {omega}{sup n} with a decreasing fractional exponent n as the RE{sup 3+} cation size increases. Activation energies for oxygen migration were found to decrease and conductivity to increase as the size of the RE{sup 3+} cation increases with the highest conductivity values obtained for the apatite-type lanthanum silicate. In addition, we also show that the electrical properties of the as-prepared materials are influenced by the silicon source used in their synthesis.

  5. Fabrication of Flexible Porous Calcium-Deficient Apatite-Alginate Composite and Its Evaluation

    Tsukuda, Souichirou; Umeda, Tomohiro; Koda, Seiichiro; Itatani, Kiyoshi, E-mail: [Sophia University, Tokyo (Japan)


    The calcium-deficient apatite (Ca{sub 9.36}(HPO{sub 4}){sub 0.74}(PO{sub 4}){sub 5.26}(OH){sub 1.26{center_dot}}nH{sub 2}O (Ca/P ratio=1.56): DAp) - alginate (AG) composite was fabricated by the ice crystal sublimation technique. The starting whisker-like calcium-deficient apatite (w-DAp) powder with long-axis length of 62.6 {mu}m and short-axis length of 2.85 {mu}m was prepared by the homogeneous precipitation technique. After mixing the w-DAp with AG paste (DAp/AG ratio: 10), the mixture was flash frozen at a temperature between -5 and -196 deg. C. The frozen materials were further lyophilized at -50 deg. C for 24 h under reduced pressure and put into 1 mol-dm{sup -3} CaCl{sub 2} solution at room temperature for 24 h The microscopic observation showed that the pore size of w-DAp-AG composite increased from {approx}20 to {approx}100 {mu}m with decreasing concentration of starting AG paste from 7.5 to 2.5 mass% and with decreasing freezing temperature from -196 deg. C down to -5 deg. C. The maximum porosity of w-DAp-AG composite, which was fabricated using 2.5 mass% AG at the freezing temperature of -5 deg. C, attained 92.3%.

  6. Manufacture of nanosized apatite coatings on titanium with different surface treatments using a supersaturated calcification solution

    Adrian Paz Ramos

    Full Text Available The biomimetic method is used for the deposition of calcium phosphate coatings (Ca - P on the surface of different biomaterials. However, the application of this method requires long exposure times in order to obtain a suitable layer thickness for its use in medical devices. In this paper, we present a fast approach to obtain apatite coatings on titanium, using a combination of supersaturated calcification solution (SCS with chemical modification of the titanium surface. Also, it was evaluated the effect of four different surface treatments on the apatite deposition rate. Commercially pure titanium plates were activated by chemical or thermochemical treatments. Then, the activated samples were immersed in a solution with high content of calcium and phosphate ions at 37 ºC for 24 h, mimicking the physiological conditions. The coatings were studied by Fourier transform infrared spectroscopy (FTIR, X-ray diffraction (XRD, scanning electron microscopy (SEM and energy dispersive X-ray spectroscopy (EDX. The use of SCS solutions allowed the formation of crystalline hydroxyapatite coatings within a period of 24 h with a thickness between 1 and 5.3 µm. Besides, precipitates of hydroxyapatite nanoparticles with a globular configuration, forming aggregates with submicrometer size, were found in SCS solutions.

  7. Cellular Adaptation: Culture conditions of R. opacus and bioflotation of apatite and quartz

    Antonio Gutiérrez Merma

    Full Text Available Abstract It is well known that the culture conditions of microorganisms may affect their surface properties, zeta potential and hydrophobicity via the modification of the cell wall functional groups or metabolic products. The R. opacus bacteria strain was separately adapted to the presence of apatite and quartz, after which a cellular adaptation procedure was developed by repeated sub-culturing with a successive increase in the mineral content. Zeta potential, surface tension, FTIR and microflotation studies were used to evaluate the behavior of the cells that were developed under defined culture conditions. The cellular adaptation induced a modification of the bacterial surface charge. The FTIR results showed a modification of its functional groups. The surface tension results suggested that longer growing time promoted a higher production of metabolites. The use of mineral-adapted cells promoted an improvement in the flotability of both minerals, but it was more significant for apatite flotation. Additionally, the mineral flotability remained unchanged when the cells developed under a longer culture time. Nevertheless, there was a reduction in the surface tension.

  8. Nanodimensional and Nanocrystalline Apatites and Other Calcium Orthophosphates in Biomedical Engineering, Biology and Medicine

    Sergey V. Dorozhkin


    Full Text Available Recent developments in biomineralization have already demonstrated that nanosized particles play an important role in the formation of hard tissues of animals. Namely, the basic inorganic building blocks of bones and teeth of mammals are nanodimensional and nanocrystalline calcium orthophosphates (in the form of apatites of a biological origin. In mammals, tens to hundreds nanocrystals of a biological apatite were found to be combined into self-assembled structures under the control of various bioorganic matrixes. In addition, the structures of both dental enamel and bones could be mimicked by an oriented aggregation of nanosized calcium orthophosphates, determined by the biomolecules. The application and prospective use of nanodimensional and nanocrystalline calcium orthophosphates for a clinical repair of damaged bones and teeth are also known. For example, a greater viability and a better proliferation of various types of cells were detected on smaller crystals of calcium orthophosphates. Thus, the nanodimensional and nanocrystalline forms of calcium orthophosphates have a great potential to revolutionize the field of hard tissue engineering starting from bone repair and augmentation to the controlled drug delivery devices. This paper reviews current state of knowledge and recent developments of this subject starting from the synthesis and characterization to biomedical and clinical applications. More to the point, this review provides possible directions of future research and development.

  9. The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation.

    Boonrungsiman, Suwimon; Gentleman, Eileen; Carzaniga, Raffaella; Evans, Nicholas D; McComb, David W; Porter, Alexandra E; Stevens, Molly M


    Mineralization is a ubiquitous process in the animal kingdom and is fundamental to human development and health. Dysfunctional or aberrant mineralization leads to a variety of medical problems, and so an understanding of these processes is essential to their mitigation. Osteoblasts create the nano-composite structure of bone by secreting a collagenous extracellular matrix (ECM) on which apatite crystals subsequently form. However, despite their requisite function in building bone and decades of observations describing intracellular calcium phosphate, the precise role osteoblasts play in mediating bone apatite formation remains largely unknown. To better understand the relationship between intracellular and extracellular mineralization, we combined a sample-preparation method that simultaneously preserved mineral, ions, and ECM with nano-analytical electron microscopy techniques to examine osteoblasts in an in vitro model of bone formation. We identified calcium phosphate both within osteoblast mitochondrial granules and intracellular vesicles that transported material to the ECM. Moreover, we observed calcium-containing vesicles conjoining mitochondria, which also contained calcium, suggesting a storage and transport mechanism. Our observations further highlight the important relationship between intracellular calcium phosphate in osteoblasts and their role in mineralizing the ECM. These observations may have important implications in deciphering both how normal bone forms and in understanding pathological mineralization.

  10. Highly porous polymer-derived wollastonite-hydroxycarbonate apatite ceramics for bone regeneration.

    Fiocco, L; Li, S; Bernardo, E; Stevens, M M; Jones, J R


    A novel strategy was employed to synthesize highly porous wollastonite-hydroxycarbonate apatite ceramic scaffolds for bone regeneration. A commercial liquid preceramic polymer filled with micro-CaCO3 powders was foamed at low temperature (at 350 °C), using the decomposition of a hydrazine additive, and then converted into ceramic by a treatment at 700 °C. Hydroxycarbonate apatite was later developed by a phosphatization treatment of ceramized foams, in a P-rich solution, while wollastonite was obtained by a second firing, at 900 °C. The effectiveness of the method was proven by x-ray diffraction analysis, showing the presence of the two expected crystalline phases. Porosity, interconnect size distribution and mechanical strength were in the range that is thought to be suitable for bone regeneration in non-load bearing sites (compressive strength ≈ 3 MPa, porosity ≈ 90%, modal interconnect diameter ≈ 130-160 μm). In addition, bioactivity and ion release rate were assessed in simulated body fluid (SBF). MC3T3 osteoblast precursor cells were able to colonize the material in vitro through the pore architecture and expressed osteogenic markers.

  11. Synthesis of functionally graded bioactive glass-apatite multistructures on Ti substrates by pulsed laser deposition

    Tanaskovic, D.; Jokic, B.; Socol, G.; Popescu, A.; Mihailescu, I. N.; Petrovic, R.; Janackovic, Dj.


    Functionally graded glass-apatite multistructures were synthesized by pulsed laser deposition on Ti substrates. We used sintered targets of hydroxyapatite Ca 10(PO 4) 6(OH) 2, or bioglasses in the system SiO 2-Na 2O-K 2O-CaO-MgO-P 2O 5 with SiO 2 content of either 57 wt.% (6P57) or 61 wt.% (6P61). A UV KrF* ( λ = 248 nm, τ > 7 ns) excimer laser source was used for the multipulse laser ablation of the targets. The hydroxyapatite thin films were obtained in H 2O vapors, while the bioglass layers were deposited in O 2. Thin films of 6P61 were deposited in direct contact with Ti, because Ti and this glass have similar thermal expansion behaviors, which ensure good bioglass adhesion to the substrate. This glass, however, is not bioactive, so yet more depositions of 6P57 bioglass and/or hydroxyapatite thin films were performed. All structures with hydroxyapatite overcoating were post-treated in a flux of water vapors. The obtained multistructures were characterized by various techniques. X-ray investigations of the coatings found small amounts of crystalline hydroxyapatite in the outer layers. The scanning electron microscopy analyses revealed homogeneous coatings with good adhesion to the Ti substrate. Our studies showed that the multistructures we had obtained were compatible with further use in biomimetic metallic implants with glass-apatite coating applications.

  12. Microwave assisted apatite coating deposition on Ti6Al4V implants.

    Zhou, Huan; Nabiyouni, Maryam; Bhaduri, Sarit B


    In this work we report a novel microwave assisted technology to deposit a uniform, ultra-thin apatite coating without any cracks on titanium implants in minutes. This method comprises of conventional biomimetic coating in synergism with microwave irradiation to result in alkaline earth phosphate nucleation. The microwave assisted coating process mainly follows the initial stages of biomimetic coating until the step of the Ca-P nuclei formation. After that, due to microwave irradiation more Ca-P nuclei are formed to cover the whole surface of the implant instead of the growth of deposited Ca-P nuclei to Ca-P globules and coatings. It is interesting to note the doping of Mg(2+) to Ca-P apatite coating can significantly change the properties and performances of as-deposited coatings. The hydrophilicity, physical properties, bioactivity, cell adhesion, and growth capability of as-deposited microwave assisted coatings were investigated. The study shows that this coating technology has great potential in biomedical applications. Additionally, since biomimetic coating can be applied to series of implant materials such as polymer, metals and glass, it is expected this microwave assisted coating technology can also be applied to these materials if they can remains stable at 100 °C, the boiling point of water.

  13. Production of cerium-apatite in sound and carious dental enamel under in vitro conditions.

    Kiss, J; Bánóczy, J; Fehérváry, E; Gintner, Z; Albrecht, M


    Incipient dental caries--according to up-to-date concepts in dental research--means a demineralization without cavity formation. At this stage the carious process is reversible, and remineralization can be achieved in the presence of locally applied fluorides. In chrystalchemical experiments, however, by treating natural apatites with lanthanides, [Ce, La, Pr, Nd, Sm, Eu, Tb ... Y, Sc] a more resistant complex could be developed. In this study extracted human molar teeth were kept for 60 days in Cerium (III)-nitrate solution, in order to investigate the incorporation of Ce3+ into human sound and carious enamel by light-microscopic-, and electron microprobe methods. Ce3+ was incorporated in sound enamel as well as into the incipient carious lesion, showing the histological characteristics of a remineralizing lesion. The mean values of the microprobe analysis data showed an increase in Ce3+ changing place with the Ca2+ the developing cerium-apatite being more hard and resistant from a mineralophysical point of view.

  14. Mechanism and Kinetics for the Dissolution of Apatitic Materials in Acid Solutions

    Calmanovici C.E.


    Full Text Available Abstract - This work concerns the study of the digestion step in the production process of phosphoric acid. Some qualitative experiments indicate that the difference between the pH at the surface of the phosphate and that in the bulk of the solution is negligible and that the dissolution is controlled by diffusion of products away from the phosphate particle. In further experiments, to isolate the dissolution phenomenon from the formation of calcium sulfate, the sulfuric acid normally used industrially is replaced by hydrochloric acid. The phosphate material used in our experiments is a model apatitic material: synthetic hydroxyapatite (HAP. The dissolution of calcium hydroxyapatite was studied with increasing amounts of calcium and phosphate at different temperatures. A simple method was developed for this observation based on the time required for complete dissolution of the HAP powder. The results confirm that the dissolution is controlled by a diffusional process through an interface of calcium and phosphate ions released from the solid surface. A kinetic model for the dissolution of apatitic materials is proposed which assumes a shrinking particle behaviour controlled by diffusion of calcium ions. The experimental results are fitted to this model to determine the mass transfer constant for HAP dissolution in acid solutions. The activation energy of the reaction is about 14kJ/mol. This study was carried on in conditions similar to the industrial ones for the production of phosphoric acid by the dihydrate-process

  15. Development of nanosized silver-substituted apatite for biomedical applications: A review.

    Lim, Poon Nian; Chang, Lei; Thian, Eng San


    The favorable biocompatibility of hydroxyapatite (HA) makes it a popular bone graft material as well as a coating layer on metallic implant. To reduce implant-related infections, silver ions were either incorporated into the apatite during co-precipitation process (AgHA-CP) or underwent ion-exchange with the calcium ions in the apatite (AgHA-IE). However, the distribution of silver ions in AgHA-CP and AgHA-IE was different, thus affecting the antibacterial action. Several studies reported that nanosized AgHA-CP containing 0.5 wt.% of silver provided an optimal trade-off between antibacterial properties and cytotoxicity. Nevertheless, nanosized AgHA and AgHA nanocoatings could not function ideally due to the compromise in the bone differentiation of mesenchymal stem cells, as evidenced in the reduced alkaline phosphatase, type I collagen and osteocalcin. Preliminary studies showed that biological responses of nanosized AgHA and AgHA nanocoatings could be improved with the addition of silicon. This review will discuss on nanosized AgHA and AgHA nanocoatings. In many patients needing bone graft material, hydroxyapatite (HA) has proven to be a popular choice. Nonetheless, implant-related infections remain a major concern. Hence, effective preventive measures are needed. In this review article, the authors discussed the application of incorporating silver nanoparticles in HA and its use as bone graft biomaterials together with the addition of silica. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Structural, microstructural and vibrational characterization of apatite-type lanthanum silicates prepared by mechanical milling

    Rodríguez-Reyna, E.; Fuentes, A. F.; Maczka, M.; Hanuza, J.; Boulahya, K.; Amador, U.


    Apatite-type lanthanum silicates have been successfully prepared at room temperature by dry milling hexagonal A-La 2O 3 and either amorphous or low cristobalite SiO 2. Milling a stochiometric mixture of these chemicals in a planetary ball mill with a moderate rotating disc speed (350 rpm), allows the formation of the target phase after only 3 h although longer milling times are needed to eliminate all SiO 2 and La 2O 3 traces. Thus, the mechanically activated chemical reaction proceeds faster when using amorphous silica instead of low cristobalite as silicon source and pure phases are obtained after only 9 and 18 h, respectively. As obtained powder phases are not amorphous and show an XRD pattern as well as IR and Raman bands characteristic of the lanthanum silicate. The domain size of the as-prepared phases varies gradually with the temperature of post-milling thermal treatment with activation energies of about 26(8) and 52(10) kJ mol -1 K -1 for the apatites obtained from amorphous silica and low-cristobalite, respectively. These values suggest crystallite growth to be favored when using amorphous silica as reactant.

  17. Combined apatite fission-track and single grain apatite (U Th)/He ages from basement rocks of central Dronning Maud Land (East Antarctica) — Possible identification of thermally overprinted crustal segments?

    Emmel, B.; Jacobs, J.; Crowhurst, P.; Daszinnies, M. C.


    Apatite fission-track (FT) and single grain (U-Th)/He ages from four vertical profiles in central Dronning Maud Land (East Antarctica) range from 312 ± 20 Ma to 135 ± 11 Ma and 304 ± 28 Ma to 104 ± 8 Ma, respectively. The combined age data allows to discriminate between undisturbed cooled (due to exhumation) and thermally overprinted crustal blocks. Profiles at the Zwieselhöhe and the Conradgebirge revealed unusual apatite FT vs. elevation relationships and (U-Th)/He ages older than the corresponding central apatite FT ages, possibly providing evidence for a Jurassic thermal overprint. Most probably Jurassic magmatism and associated advective heating led to total annealing of the apatite fission-tracks but helium only partially diffused. The model developed in this paper suggests that the (U-Th)/He ages from the Zwieselhöhe and Conradgebirge profiles are in part relicts of the pre-Jurassic cooling history. Two thermally undisturbed vertical profiles are used to record the long-term cooling history of central Dronning Maud Land. Time-temperature paths derived from modelled apatite FT data of these profiles revealed two phases of accelerated cooling during the Late Carboniferous and the Early Jurassic. Both phases are followed by slow cooling which is also documented by the spread in apatite (U-Th)/He single grain ages. The cooling at the end of the Carboniferous is most probably related to far field effects associated to the prevailing convergent tectonics. During the initial separation between East Antarctica and Mozambique erosion along an evolving rift shoulder caused the Jurassic cooling. Denudation of the basement was simultaneous with volcanism with both pre-dating (c. 20-10 Ma) sea-floor spreading in the Riser Larsen Sea (c. 155 Ma). Post Jurassic cooling was restricted to the lowest temperature sensitivity of both methods. Combined inverse modelled apatite FT data and forward modelled (U-Th)/He data suggest an Eocene/Oligocene cooling step, possibly

  18. Biocompatibility and mineralization activity of fresh or set white mineral trioxide aggregate, biomimetic carbonated apatite, and synthetic hydroxyapatite.

    Danesh, Farzad; Tootian, Zahra; Jahanbani, Jahanfar; Rabiee, Mahmood; Fazelipour, Simin; Taghva, Orod; Shabaninia, Shahryar


    The purpose of this study was to evaluate the effect of apatite formation on tissue contact with white mineral trioxide aggregate (WMTA) and compare this apatite with a synthetic hydroxyapatite (SHAp) in subcutaneous connective tissue of rats. Thirty-three Wistar rats were used in this study. Polyethylene tubes filled with WMTA, apatite formed by WMTA (BCAp), and an SHAp along with empty tubes were implanted into dorsal connective tissue of rats for 15, 30, and 60 days. Set MTA covered with BCAp (set MTA/BCAp) was implanted as well. The specimens were stained with hematoxylin and eosin and von Kossa and evaluated for inflammatory reactions and mineralization through a light microscope. All groups evoked a moderate chronic inflammatory reaction at 15 days, which subsided with time. No statistically significant difference was found among the groups (p >.05). BCAp did not stimulate mineralization. WMTA, SHAp, and set MTA/BCAp induced significantly more dystrophic calcification than BCAp (p .05). Our results suggested a possible role of apatite formation on the mineralization induction characteristics of WMTA, which indicated a definite effect on biocompatibility. BCAp produced by WMTA differed from SHAp in mineralization activity. Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  19. The geology, geochemistry and magnetite-apatite mineralization of the Avnik area, Genç-Bingöl, SE Turkey

    Aral, H.


    In this thesis the results of a study on the geology, geochemistry and magnetite-apatite mineralization of the Avnik area, southeast Turkey, are presented. Conclusions are drawn with respect to the origin and the way of emplacement of the mineralization. The study area is part of the Bitlis Massif

  20. The geology, geochemistry and magnetite-apatite mineralization of the Avnik area, Genç-Bingöl, SE Turkey

    Aral, H.


    In this thesis the results of a study on the geology, geochemistry and magnetite-apatite mineralization of the Avnik area, southeast Turkey, are presented. Conclusions are drawn with respect to the origin and the way of emplacement of the mineralization. The study area is part of the Bitlis

  1. Removal of fluoride from aqueous solution by adsorption on Apatitic tricalcium phosphate using Box-Behnken design and desirability function

    Mourabet, M.; El Rhilassi, A.; El Boujaady, H.; Bennani-Ziatni, M.; El Hamri, R.; Taitai, A.


    The adsorption method was used for fluoride removal from aqueous solution by Apatitic tricalcium phosphate. In this study, response surface methodology was employed for the removal of fluoride. Experiments were carried out as per Box-Behnken surface statistical design with four input parameters namely adsorbent dose (0.1-0.3 g), initial concentration (30-60 mg L-1), temperature (20-40 °C) and pH (4-11). Contact time (90 min) was taken as a fixed input parameter. Regression analysis showed good fit of the experimental data to the second-order polynomial model with coefficient of determination (R2) value of 0.966 and Fisher F-value of 10.28. Applying the method of the desirability function, optimization of adsorbent dose (29 g), initial concentration (60 mg L-1), T (40 °C) and pH (4) gave a maximum of 82.34% fluoride removal white desirability of 0.916 by Apatitic tricalcium phosphate. Dynamic adsorption data were applied to pseudo-first-order and pseudo-second-order rate equations. Pseudo-second-order kinetic model well expressed fluoride adsorption onto Apatitic tricalcium phosphate. According to the correlation coefficients, the adsorption of fluoride on the Apatitic tricalcium phosphate was correlated well with the Langmuir and Freundlich models.

  2. The geology, geochemistry and magnetite-apatite mineralization of the Avnik area, Genç-Bingöl, SE Turkey

    Aral, H.


    In this thesis the results of a study on the geology, geochemistry and magnetite-apatite mineralization of the Avnik area, southeast Turkey, are presented. Conclusions are drawn with respect to the origin and the way of emplacement of the mineralization. The study area is part of the Bitlis Massif w

  3. The Influence of Nano-apatite on c-myc and p53 Gene in the Hepatocellular Carcinoma

    CHEN Jun; CAO Xianying; LI Shipu; HAN Yingchao; ZHANG Ran


    The influence mechanism of the nano-apatite on the human hepatocellular carcinoma in vitro was investigated. Using the homogeneous precipitation method, the nano-apatite was synthesized at room temperature, and it was characterized with transmission electron microscopy (TEM) and the Zataplus. The influence on the expression of the c-myc and p53 gene in the human hepatocellular carcinoma cell lines were tested with the TEM and hybridization in situ. The TEM and the Zataplus analyses show that the nano-apatite is distributed homogenously in size and needle-shaped sizes, which ranges from 67.5 nm to 88.3 nm. It is found that the nano-apatitet increases the volume of the human hepatocellular carcinoma cells, makes extensive cytoplasmic vacuolization, the mitochondria swelling, chromatin in nucleus dispersed partially and condensed around the nuclear membranes.The interspace in nuclear membranes were separated and even the cytoplasm dissolved. It is also found that the expression of the c-myc gene is inhibited, but the p53 is enhanced. The experimental results demonstrate that the nano-apatite enables the oncosis of the human hepatocellular carcinoma cells by down-regulation of the expression of the c-myc and up-regulation of the expression of the p53 in vitro.

  4. Characterization of mesostasis regions in lunar basalts: Understanding late-stage melt evolution and its influence on apatite formation

    Potts, Nicola J.; TartèSe, Romain; Anand, Mahesh; Westrenen, Wim; Griffiths, Alexandra A.; Barrett, Thomas J.; Franchi, Ian A.


    Recent studies geared toward understanding the volatile abundances of the lunar interior have focused on the volatile-bearing accessory mineral apatite. Translating measurements of volatile abundances in lunar apatite into the volatile inventory of the silicate melts from which they crystallized, and ultimately of the mantle source regions of lunar magmas, however, has proved more difficult than initially thought. In this contribution, we report a detailed characterization of mesostasis regions in four Apollo mare basalts (10044, 12064, 15058, and 70035) in order to ascertain the compositions of the melts from which apatite crystallized. The texture, modal mineralogy, and reconstructed bulk composition of these mesostasis regions vary greatly within and between samples. There is no clear relationship between bulk-rock basaltic composition and that of bulk-mesostasis regions, indicating that bulk-rock composition may have little influence on mesostasis compositions. The development of individual melt pockets, combined with the occurrence of silicate liquid immiscibility, exerts greater control on the composition and texture of mesostasis regions. In general, the reconstructed late-stage lunar melts have roughly andesitic to dacitic compositions with low alkali contents, displaying much higher SiO2 abundances than the bulk compositions of their host magmatic rocks. Relevant partition coefficients for apatite-melt volatile partitioning under lunar conditions should, therefore, be derived from experiments conducted using intermediate compositions instead of compositions representing mare basalts.

  5. Thermal and exhumation history of Sakhalin Island (Russia) constrained by apatite U-Pb and fission track thermochronology

    Glorie, Stijn; Alexandrov, Igor; Nixon, Angus; Jepson, Gilby; Gillespie, Jack; Jahn, Bor-Ming


    Sakhalin Island represents a key locality to study the tectonic evolution of the western Pacific. The island is located at the Amur-Okhotsk plate margin and records a complex thermotectonic history. Apatite double dating (U-Pb and fission track) and thermal history modelling were applied to three late Eocene granitoid massifs within central and southern Sakhalin: the Aniva, Okhotsk and Langeri complexes. Apatite U-Pb results yield consistent late Eocene (∼40-37 Ma) ages, suggesting rapid post-magmatic cooling. Apatite fission track results reveal bimodal age distributions with late Eocene - early Oligocene (∼38-33 Ma) and early Miocene (∼20-17 Ma) age populations that can be correlated with variations in Uranium and Chlorine concentrations. Thermal history modelling translates the AFT age bimodality into two-phase cooling histories. The timing of the early cooling phase (∼38-33 Ma) corresponds with the apatite U-Pb ages, indicating rapid cooling to at least ∼100 °C during the late Oligocene. The second cooling phase at ∼20-17 Ma cooled the samples to near-surface temperatures. Both cooling phases correspond with regional unconformities and subsequent accelerations in sedimentation rate, suggesting that cooling was a response to rapid exhumation. In addition, our data suggests that the studied terranes record differential exhumation with respect to the structural architecture. The Miocene exhumation pulse is coeval with the timing of transpressional fault displacement and the subsequent opening of the Kuril Basin.

  6. Kinetics of 1H --> 31P NMR cross-polarization in bone apatite and its mineral standards.

    Kaflak, Agnieszka; Kolodziejski, Waclaw


    Kinetics of NMR cross-polarization (CP) from protons to phosphorus-31 nuclei was studied in the following samples: mineral of whole human bone, apatite prepared from bone, natural brushite, synthetic hydroxyapatite (hydrated and calcined), and synthetic carbonatoapatite of type B with 9 wt% of CO(3) (2-). In order to avoid an effect of magic angle spinning on CP and relaxation, the experiments were carried out on static samples. Parameters of the CP kinetics were discussed for trabecular and cortical bone tissue from adult subjects in comparison to the synthetic mineral standards. It was found that carbonatoapatite shows similar CP behavior to the bone mineral. Both materials undergo two-component CP kinetics. The fast-relaxing classical component is from the surface of apatite crystals and the slow-relaxing nonclassical component comes from the crystal interior. The components have been unambiguously assigned using inverse CP from phosphorus-31 to protons. The study provides information on a structured water layer, which covers crystal surface of carbonato- and bone apatite. The layer encompasses ca 40% of apatite phosphorus and its thickness is more than ca 2 nm.

  7. The geology, geochemistry and magnetite-apatite mineralization of the Avnik area, Genç-Bingöl, SE Turkey

    Aral, H.


    In this thesis the results of a study on the geology, geochemistry and magnetite-apatite mineralization of the Avnik area, southeast Turkey, are presented. Conclusions are drawn with respect to the origin and the way of emplacement of the mineralization. The study area is part of the Bitlis Massif w

  8. Detection of trace elements in apatite crystals from Panasqueira, Portugal, by non-destructive optical methods, especially polarospectrography

    Lagerwey, A.A.F.


    A selection of well developed apatite crystals of different habit and colour, originating from the tungsten-tin deposits of Panasqueira in Portugal, were analyzed by means of non-destructive optical methods. Phenomena of pleochroism, absorption and luminescence line-spectra, broadband-spectra and ph

  9. Biomimetic synthesis of poly(lactic-co-glycolic acid/multi-walled carbon nanotubes/apatite composite membranes

    H. L. Zhang


    Full Text Available Bioactive guided tissue regeneration (GTR membrane has had some success for periodontal therapy. In this study, poly(lactic-co-glycolic acid (PLGA/multi-walled carbon nanotubes (MWNTs composite membranes were incubated in three supersaturated calcification solutions (SCS of different pH values for 21 days to prepare a PLGA/MWNTs/apatite composite. Scanning electron microscope (SEM, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR, energy dispersive spectroscopy (EDS, water contact angle measurement and mechanical testing were used for characterization. It was found that after 21 days incubation, apatite with low crystallite size and crystallinity was formed on the PLGA/MWNTs composite membranes. The Ca-poor carbapatite was similar in morphology and composition to that of natural bone. The size and shape of the apatite crystals immersed in three SCS were different from each other. The hydrophilicity and mechanical properties of the PLGA/MWNTs composite membranes were significantly enhanced after mineralization. This indicated that biomimetic mineralization may be an effective method to improve the biocompatibility and bone inductivity of certain materials. The PLGA/MWNTs/apatite composites may be potentially useful in GTR applications, particularly as GTR membranes for periodontal tissue regeneration.

  10. REE Mineralization in Kiruna-type Magnetite-Apatite Ore Deposits: Magmatism and Metasomatism

    Harlov, D. E.


    Magnetite-apatite ore bodies of the Kiruna type occur worldwide and are generally associated with volcanic rocks or volcanism. They also show strong evidence of extensive metasomatism over a wide P-T range. Notable examples include the Kiirunavaara ore body, northern Sweden (Harlov et al., 2002, Chem. Geol., 191, 47-72); the Grängesberg ore body, central Sweden (Jonsson et al., 2010, NGF abstracts, vol 1, 88-89); the Mineville ore body, Adirondacks, New York, USA (McKeown and Klemc, 1956, U.S. Geol Sur Bull (1956), pp. 9-23); the Pea Ridge ore body, SE Missouri, USA (Kerr, 1998, MS Thesis, Univ. Windsor, Windsor, Ontario, Canada 113 pp); the Jurassic Marcona ore body in south-central Peru (Chen et al., 2010, Econ Geol, 105, 1441-1456); and a collection of ore bodies from the Bafq Region, central Iran (Daliran et al., 2010, Geol. Assoc. Canada, Short Course Notes, v. 20, p.147-159). In these ore bodies, low Th and U monazite, xenotime, allanite, REE carbonates, and/or REE fluorides are commonly associated with the apatite as inclusions, rim grains, or as independent grains in the surrounding mineral matrix. High contrast BSE imaging, coupled with EMPA and LA-ICPMS, indicates that the apatite has experienced fluid-induced alteration in the form of (Y+REE) + Na + Si + Cl depletion implying that it served as the source for the (Y+REE) (e.g. Kiirunavaara, northern Sweden; Harlov et al., 2002). Formation of monazite and xenotime associated with fluorapatite, as inclusions or rim grains, has experimentally been demonstrated to originate from the fluorapatite as the result of fluid-aided, coupled dissolution-reprecipitation processes (Harlov et al., 2005, Contrib. Mineral. Petrol. 150, 268-286). This is explains the low Th and U content of the monazite and xenotime. Fluid sources could range from 700-900 °C, residual, acidic (HCl, H2HSO4) grain boundary fluids, remaining after the last stages of ore body crystallization, to later stage, cooler (< 600 °C) (H2O-CO2-(Na

  11. Strontium-containing apatite/polylactide composites enhance bone formation in osteopenic rabbits.

    Luo, Xiaoman; Barbieri, Davide; Duan, Rongquan; Yuan, Huipin; Bruijn, Joost D


    Strontium (Sr) has been shown to favor bone formation and is used clinically to treat osteoporosis. We have previously reported that Sr addition in apatite/polylactide composites could enhance the BMP-induced bone formation around implants at ectopic site in healthy animals. In this study we aimed to investigate the effectiveness of Sr addition on the local bone formation in osteoporosis. Apatite/polylactide composite granules with different Sr content were loaded with equal amount of rhBMP-2 and implanted intramuscularly in healthy rabbits (Con) and rabbits that received bilateral ovariectomy and daily injection of glucocorticoid (OP) for 12 weeks. The potential effect of Sr on the final volume of BMP-induced bone in both groups was investigated histologically and histomorphometrically. The de novo bone formed in OP implants was significantly less than in Con group when the implants contained no Sr, indicating that the BMP-induced osteogenesis was impaired in OP animals. Sr substitution as low as 0.5 mol% in apatite increased the bone volume in OP implants to levels comparable to that in the Con group, indicating a positive effect of Sr addition on the local bone formation in OP animals. In addition, more adipose tissue formed in parallel with the appearance of cartilage tissue in OP implants, suggesting that the differentiation potential of stem cell in OP animals may have shifted towards adipogenesis and chondrogenesis. From these results, we conclude that the use of Sr addition to enhance the bone growth surrounding implants in osteoporosis merits further study. The impaired bone healing capacity of osteoporotic patients might result in poor osteointegration and surgical failure in case implants are placed. In this study we aimed to enhance the bone formation around implants under such scenario by adding strontium as the stimulus. Different from other studies, the samples were loaded with rhBMP-2 and implanted at an ectopic site (spinal muscles of New Zealand

  12. Determination of Sr and Ba partition coefficients between apatite from fish ( Sparus aurata) and seawater: The influence of temperature

    Balter, Vincent; Lécuyer, Christophe


    The Sr/Ca and Ba/Ca ratios in inorganic apatite are strongly dependent on the temperature of the aqueous medium during precipitation. If valid in biogenic apatite, these thermometers would offer the advantage of being more resistant to diagenesis than those calibrated on biogenic calcite and aragonite. We have reared seabreams ( Sparus aurata) in tanks with controlled conditions during experiments lasting for more than 2 years at 13, 17, 23 and 27 °C, in order to determine the variations in Sr and Ba partitioning relative to Ca ( DSr and DBa, respectively) between seawater and fish apatitic hard tissues (i.e. teeth and bones), as a function of temperature. The sensitivity of the Sr and Ba thermometers (i.e. ∂ DSr/∂ T and ∂ DBa/∂ T, respectively), are similar in bone ( ∂Db-wSr/∂ T = 0.0036 ± 0.0003 and ∂Db-wBa/∂ T = 0.0134 ± 0.0026, respectively) and enamel ( ∂De-wSr/∂ T = 0.0037 ± 0.0005 and ∂De-wBa/∂ T = 0.0107 ± 0.0026, respectively). The positive values of ∂ DSr/∂ T and ∂ DBa/∂ T in bone and enamel indicate that DSr and DBa increase with increasing temperature, a pattern opposite to that observed for inorganic apatite. This distinct thermodependent trace element partitioning between inorganic and organic apatite and water highlights the contradictory effects of the crystal-chemical and biological controls on the partitioning of Ca, Sr and Ba in vertebrate organisms. Taking into account the diet Sr/Ca and Ba/Ca values, it is shown that the bone Ba/Ca signature of fish can be explained by Ca-biopurification and inorganic apatite precipitation, whereas both of these processes fail to predict the bone Sr/Ca values. Therefore, the metabolism of Ca as a function of temperature still needs to be fully understood. However, the biogenic Sr thermometer is used to calculate an average seawater temperature of 30.6 °C using the Sr/Ca compositions of fossil shark teeth at the Cretaceous/Tertiary boundary, and a typical seawater Sr

  13. The influence of burial heating on the (U-Th)/He system in apatite: Grand Canyon case study

    Fox, Matthew; Shuster, David L.


    Thermochronological data can constrain the cooling paths of rocks exhumed through the uppermost 1-2 km of earth's crust, and have thus been pivotal in illuminating topographic development over timescales >0.1 Ma. However, in some cases, different methods have led to conflicting conclusions about timing of valley-scale exhumation. Here, we investigate the case of Western Grand Canyon, USA, where different thermochronological datasets have been interpreted to record very different timings of canyon incision (∼70 Ma versus ∼5 Ma). We present a method to assess key assumptions in these constraints and demonstrate that burial heating conditions of basement rocks in the Mesozoic can result in incomplete annealing of radiation damage in apatite. In turn, this has a dramatic effect on the temperature sensitivity of the apatite (U-Th)/He system and its ability to record post-burial exhumation. The possibility of incomplete annealing resolves the apparent conflict in time-temperature paths inferred over the last 70 Ma, although it requires temperatures during burial that are lower than predicted by apatite fission track data. A refinement of parameters that prescribe the kinetics of damage annealing and related control on 4He diffusivity in apatite would account for this discrepancy, specifically if alpha recoil damage anneals at a lower rate than fission tracks at a given temperature. These effects will be important for any application of the apatite (U-Th)/He system in geologic settings that experienced prolonged residence (>10 Ma) between 50-150 °C; the approaches developed here provide means to assess these effects.

  14. Combination of Slag, Limestone and Sedimentary Apatite in Columns for Phosphorus Removal from Sludge Fish Farm Effluents

    Florent Chazarenc


    Full Text Available Laboratory scale studies have repeatedly reported high P-retention in slag, a by-product of the steel manufacturing industry. Thus, it has emerged as a potential material to increase P-removal from constructed wetlands (CWs. However, several limitations were highlighted by field experiments, including the high pH of treated water and clogging. We hypothesized that the addition of sedimentary rocks to slag would preserve P-removal properties while reducing the pH of treated water. Four 2.5 L-columns were filled with 100% apatite (column A; a 50% weight each mixture of limestone with apatite (column B; 10% steel slag located at the inlet, plus 45% limestone mixed with 45% apatite (column C; and a mixture of steel slag (10%, limestone (45% apatite (45% (column D. A synthetic effluent (26 mg P/L and a reconstituted sludge fish farm effluent containing 97 mg/L total suspended solids (TSS, 220 mg/L chemical oxygen demand (COD and 23.5 mg P/L phosphorus (P were applied sequentially during 373 and 176 days, under saturated flow conditions and 12–24 hours hydraulic residence time (HRT, respectively. Treatment performance, P-removal, pH and calcium (Ca2+ were monitored. Results indicated that columns that contained 10% weight steel slag resulted in a higher P retention capacity than the columns without steel slag. The highest P removal was achieved in column C, containing a layer of slag in the inlet zone, 45% apatite and 45% limestone. Feeding the columns with a reconstituted fish farm effluent led to biofilm development, but this had little effect on the P-removal. A combination of slag and sedimentary rocks represents a promising filtration material that could be useful downstream of CWs to further increase P-removal.

  15. Structural, morphological and surface characteristics of two types of octacalcium phosphate-derived fluoride-containing apatitic calcium phosphates.

    Shiwaku, Y; Anada, T; Yamazaki, H; Honda, Y; Morimoto, S; Sasaki, K; Suzuki, O


    Octacalcium phosphate (OCP) has been reported to stimulate bone regeneration during hydrolysis into hydroxyapatite (HA). The present study was designed to characterize structural, morphological and surface properties of fluoride-containing apatitic calcium phosphates (CaP) obtained through OCP hydrolysis or direct precipitation of OCP in the presence of 12-230ppm of fluoride (F). The products were characterized by chemical analysis, X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and Fourier transform infrared spectroscopy (FTIR) as well as measurements of surface area, solubility, osteoblastic activities and bovine serum albumin (BSA) adsorption. XRD analysis re-confirmed that both preparations yielded more apatitic CaP with a higher concentration of F. However, the co-precipitated products (CF-CaP) maintained the properties of OCP, in particular the solubility, whereas the hydrolysis products (HF-CaP) had the characteristics of fluoridated apatite. The crystals of plate-like OCP were changed to the crystals of rod-like CF-CaP and small irregular HF-CaP with the advance of the hydrolysis. The SAED analysis detected both OCP and apatite crystals even in the most hydrolyzed CF-CaP. Mouse bone marrow stromal ST-2 cells grew better on CF-CaP compared with HF-CaP. BSA adsorption was inhibited on HF-CaP more than on CF-CaP. These results show that OCP produces physicochemically distinct apatitic fluoridated CaP during hydrolysis, regarding the structure, the crystal morphology and the protein adsorption, depending on the fluoride introduction route, which provides biologically interesting material. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  16. A re-evaluation of geological timescale benchmarks and temperature sensitivity of fission-track annealing in apatites

    Luijendijk, Elco; Andriessen, Paul


    Current models of the temperature sensitivity of fission track annealing in apatites have been calibrated using fission track data from boreholes, with the assumption that these samples are currently at maximum burial depth and temperatures. The most detailed data-set comes from boreholes located in the Otway basin, Australia. However, several lines of evidence suggest that these samples are not at their maximum burial depth and temperature and consequently the cooling temperature of the apatite fission track thermochronometer would then be higher than previously assumed. Significant late Cenozoic exhumation in the Otway Basin was suggested by earlier studies that document a major late-Miocene erosional unconformity, folding and trusting of underlying sediments and elevated strandlines along the coast. In addition, anomalously young apatite (U-Th)/He ages in several boreholes in the basin suggest that the basin's sediments have been exhumed and cooled in the late Cenozoic. We explore the effects of late Cenozoic exhumation on fission track data in the Otway basin using a 1D model of burial and thermal history. We show that simulating several 100s of meters of exhumation in the basin results in significant misfit between current annealing models and observed fission track data. The additional exhumation reconciles the Otway basin data with a second detailed fission track dataset from boreholes in Southern Texas with a well-constrained thermal and burial history. We combine vitrinite reflectance data and U-Th/He data from the Otway basin to recalibrate the burial history of the Otway basin. Subsequently we combine the new thermal history of the Otway basin with the Southern Texas dataset to recalibrate the fission track annealing algorithm. The results suggest that fission-track annealing in apatites is underestimated by approximately 20°C by current annealing models, with significant implications for studies that use apatite fission track thermochronology to

  17. Quantitative regulation of bone-mimetic, oriented collagen/apatite matrix structure depends on the degree of osteoblast alignment on oriented collagen substrates.

    Matsugaki, Aira; Isobe, Yoshihiro; Saku, Taro; Nakano, Takayoshi


    Bone tissue has a specific anisotropic morphology derived from collagen fiber alignment and the related apatite crystal orientation as a bone quality index. However, the precise mechanism of cellular regulation of the crystallographic orientation of apatite has not been clarified. In this study, anisotropic construction of cell-produced mineralized matrix in vitro was established by initiating organized cellular alignment and subsequent oriented bone-like matrix (collagen/apatite) production. The oriented collagen substrates with three anisotropic levels were prepared by a hydrodynamic method. Primary osteoblasts were cultured on the fabricated substrates until mineralized matrix formation is confirmed. Osteoblast alignment was successfully regulated by the level of substrate collagen orientation, with preferential alignment along the direction of the collagen fibers. Notably, both fibrous orientation of newly synthesized collagen matrix and c-axis of produced apatite crystals showed preferential orientation along the cell direction. Because the degree of anisotropy of the deposited apatite crystals showed dependency on the directional distribution of osteoblasts cultured on the oriented collagen substrates, the cell orientation determines the crystallographic anisotropy of produced apatite crystals. To the best of our knowledge, this is the first report demonstrating that bone tissue anisotropy, even the alignment of apatite crystals, is controllable by varying the degree of osteoblast alignment via regulating the level of substrate orientation.

  18. Mesozoic-Cenozoic thermal history of Turpan-Hami Basin: apatite fission track constraints

    ZHU Wenbin; WAN Jinglin; SHU Liangshu; SUN Yan; GUO Jichun; WANG Feng


    Apatite fission track dating is carried out on nine samples collected from the central part (Lianmuqin section) and from both northern and southern margins of Turpan-Hami Basin. The fission-track ages of seven Jurassic samples are distinctly younger than depositional ages. In contrast, the fission-track ages of two Cretaceous samples are older than, or as old as depositional ages. These observations indicate that the Jurassic samples have been annealed or partially annealed, whereas the Cretaceous samples have not been annealed.The further thermal modelling results show that Turpan-Hami Basin experienced a Late Cretaceous period (120-100 Ma) of tectonic uplift with rapid cooling and exhumation of sediments. The samples underwent a Cenozoic period of reburial and re-heating and were exhumed again at 10-8 Ma.

  19. Effects of added ZnTCP on mechanical and biological properties of apatite cement

    Ishikawa, K.; Suzuki, K. [Okayama Univ. Dental School (Japan). Dept. of Biomaterials; Miyamoto, Y.; Toh, T.; Yuasa, T.; Nagayama, M. [Tokushima Univ. (Japan). First Dept. of Oral and Maxillofacial Surgery; Ito, A. [National Inst. for Advanced Interdisciplinary Research, MITT, Ibaragi (Japan)


    Effects of added Zn doped {beta}-tricalcium phosphate (ZnTCP) on mechanical and biological properties of apatite cement (AC) was studied. Powder X-ray diffractometer revealed that ZnTCP shows no reactivity with AC. The mechanical strength of AC decreased increasing amounts of added ZnTCP. We observed no effect on the setting time of AC when the amount of ZnTCP was 10% or less. Proliferation of the osteoblastic cells was significantly increased on the surface of AC containing 5% ZnTCP when compared with that containing no ZnTCP. In contrast, proliferation of the cells decreased on the surface of AC containing 10% ZnTCP when compared with that free from ZnTCP; indicating cytotoxity. We concluded therefore, that addition of ZnTCP to AC might be useful to enhance the osteoconductivity of AC when release of Zn{sup 2+} can be carefully regulated. (orig.)

  20. Nanomedicine: Interaction of biomimetic apatite colloidal nanoparticles with human blood components.

    Choimet, Maëla; Hyoung-Mi, Kim; Jae-Min, Oh; Tourrette, Audrey; Drouet, Christophe


    This contribution investigates the interaction of two types of biomimetic-apatite colloidal nanoparticles (negatively-charged 47nm, and positively-charged 190nm NPs) with blood components, namely red blood cells (RBC) and plasma proteins, with the view to inspect their hemocompatibility. The NPs, preliminarily characterized by XRD, FTIR and DLS, showed low hemolysis ratio (typically lower than 5%) illustrating the high compatibility of such NPs with respect to RBC, even at high concentration (up to 10mg/ml). The presence of glucose as water-soluble matrix for freeze-dried and re-dispersed colloids led to slightly increased hemolysis as compared to glucose-free formulations. NPs/plasma protein interaction was then followed, via non-specific protein fluorescence quenching assays, by contact with whole human blood plasma. The amount of plasma proteins in interaction with the NPs was evaluated experimentally, and the data were fitted with the Hill plot and Stern-Volmer models. In all cases, binding constants of the order of 10(1)-10(2) were found. These values, significantly lower than those reported for other types of nanoparticles or molecular interactions, illustrate the fairly inert character of these colloidal NPs with respect to plasma proteins, which is desirable for circulating injectable suspensions. Results were discussed in relation with particle surface charge and mean particle hydrodynamic diameter (HD). On the basis of these hemocompatibility data, this study significantly complements previous results relative to the development and nontoxicity of biomimetic-apatite-based colloids stabilized by non-drug biocompatible organic molecules, intended for use in nanomedicine.

  1. Ion microprobe U-Pb dating and REE abundance of biogenic apatite

    Sano, Y.; Terada, K.; Ueki, S.


    If the direct U-Pb dating of a fossil itself is possible, the method could have great impact on stratigraphic studies in establishing the absolute chronology of sedimentary sequences. Micro fossil ?conodont? are candidates for this purpose since they consist of apatite (Ca2(PO5)3 (F,Cl,OH)), which would uptake U, Th and Pb after sedimentation no longer than a few million years and is supposed to remain closed to U and Pb under relatively low effective closure temperature. We report here results of direct ion microprobe U-Th-Pb dating of two conodonts; Trichognathus from Kinderhookian stage of Mississippian sedimentary sequence from Illinois Basin region in North America and Panderodus from a Llandoverian sedimentary sequence on Langkawi Island, northern Malaysia. Secondary purpose of the study is to indicate in situ analysis of all REE on the same spots of U-Pb measurements. Samples were cast into epoxy resin discs with a few grains of standard apatite, PRAP, derived from an alkaline rock of Prairie Lake circular complex in the Canadian Shield and polished until they were exposed through their mid-sections. U, Th and REE abundances, and Pb isotopic compositions were measured by using SHRIMP installed at Hiroshima University. Thirteen spots on Trichognathus yield a 238U/206Pb isochron age of 323+/-36 Ma, which is consistent with the depositional and early diagenetic ages. Fifteen spots on Panderodus give 232Th/208Pb isochron age of 429+/-50 Ma, which is again comparable to an early Silurian. Shale-normalized REE of Trichognathus shows a broadly flat pattern from light to middle REE and a decrease from middle to heavy REE with negative anomalies of Ce and Eu. In contrast Panderodus indicates a concave-shape pattern with middle REE enrichment. These characteristics are probably due to a different formation environment as suggested by other workers.

  2. In-situ Strontium Isotopes Analysis on Single Conodont Apatite by LA-MC-ICP-MS

    Zhao, L.; Zhang, L.; Chen, Z. Q.; Ma, D.; Qiu, H.; Lv, Z.; Hu, Z.; Wang, F.


    Strontium isotope played an important role in stratigraphic chronology and sedimentary geochemistry research (McArthur et al., 2001). Conodonts is a kind of extinct species of marine animals and widely distributed in marine sediments all over the world. Rich in radiogenic Sr contents and difficulty to be affected during diagenesis alteration makes conodonts a good choice in seawater Sr isotope composition studies (John et al., 2008). Conodont samples were collected from 24th to 39th layer across Permian-Triassic boundary at Meishan D section (GSSP), Zhejiang Province, South China (Yin et al., 2001). Conodonts was originated from fresh limestone and only conodont elements with CAIPermian-Triassic transition. 87Sr/ 86Sr ratio kept a relatively high value (0.70752) in the middle part of the Clarkina yini zone and a lower value (0.70634) in the upperpart of Clarkina taylorae zone. Of which, 87Sr/ 86Sr ratio emerged a rapid decrease within the Clarkina taylorae zone. After a subsequent increase, 87Sr/ 86Sr ratio dropped to 0.70777 in the Isarcicella staeschei zone. These results helps providing reference data for the biological mass extinction events during the Permian-Triassic transition. Our study also makes is possible for high resolution 87Sr/ 86Sr ratio testing on the single conodont apatite and riched the in-situ studies on the conodont apatite, which of great significance for the future conodont Sr isotope research (Zhao et al., 2009; Zhao et al., 2013). Keywords: Conodonts, Strontium isotope, LA-MC-ICP-MS, Permian-Triassic transition, Meishan D section [1] John et al., 2008 3P[2] McArthur et al., 2001 J. of Geology [3] Yin et al., 2001 Episodes [4] Zhao et al., 2009 Earth Science J. of CUG [5] Zhao et al., 2013 GPC.

  3. Extraction and characterisation of apatite- and tricalcium phosphate-based materials from cod fish bones

    Piccirillo, C.; Silva, M.F. [CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, Porto (Portugal); Pullar, R.C. [Dept. Engenharia de Materiais e Ceramica/CICECO, Universidade de Aveiro, Aveiro (Portugal); Braga da Cruz, I. [CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, Porto (Portugal); WeDoTech, CiDEB/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, Porto (Portugal); Jorge, R. [WeDoTech, CiDEB/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, Porto (Portugal); Pintado, M.M.E. [CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, Porto (Portugal); Castro, P.M.L., E-mail: [CBQF/Escola Superior de Biotecnologia, Universidade Catolica Portuguesa, Porto (Portugal)


    Apatite- and tricalcium phosphate-based materials were produced from codfish bones, thus converting a waste by-product from the food industry into high added-valued compounds. The bones were annealed at temperatures between 900 and 1200 Degree-Sign C, giving a biphasic material of hydroxyapatite and tricalcium phosphate (Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2} and {beta}-Ca(PO{sub 4}){sub 3}) with a molar proportion of 75:25, a material widely used in biomedical implants. The treatment of the bones in solution prior to their annealing changed the composition of the material. Single phase hydroxyapatite, chlorapatite (Ca{sub 10}(PO{sub 4}){sub 6}Cl{sub 2}) and fluorapatite (Ca{sub 10}(PO{sub 4}){sub 6}F{sub 2}) were obtained using CaCl{sub 2} and NaF solutions, respectively. The samples were analysed by several techniques (X-ray diffraction, infrared spectroscopy, scanning electron microscopy and differential thermal/thermogravimetric analysis) and by elemental analyses, to have a more complete understanding of the conversion process. Such compositional modifications have never been performed before for these materials of natural origin to tailor the relative concentrations of elements. This paper shows the great potential for the conversion of this by-product into highly valuable compounds for biomedical applications, using a simple and effective valorisation process. - Highlights: Black-Right-Pointing-Pointer Apatite and calcium phosphate compounds extraction from cod fish bones Black-Right-Pointing-Pointer Bone calcination: biphasic material hydroxyapatite-calcium phosphate production Black-Right-Pointing-Pointer Bone pre-treatments in solution change the material composition. Black-Right-Pointing-Pointer Single phase materials (hydroxy-, chloro- or fluoroapatite) are obtained. Black-Right-Pointing-Pointer Concentration of other elements (Na, F, Cl) suitable for biomedical applications.

  4. Synchrotron Microanalytical Methods in the Study of Trace and Minor Elements in Apatite

    Rakovan,J.; Luo, Y.; Borkiewicz, O.


    Synchrotron X-ray facilities have the capability for numerous microanalytical methods with spatial resolutions in the micron to submicron range and sensitivities as low as ppm to ppb. These capabilities are the result of a high X-ray brilliance (many orders of magnitude greater than standard tube and rotating anode sources); a continuous, or white, spectrum through the hard X-ray region; high degrees of X-ray columniation and polarization; and new developments in X-ray focusing methods. The high photon flux and pulsed nature of the source also allow for rapid data collection and high temporal resolution in certain experiments. Of particular interest to geoscientists are X-ray fluorescence microprobes which allow for numerous analytical techniques including X-ray fluorescence (XRF) analysis of trace element concentrations and distributions; X-ray absorption spectroscopy (XAS) for chemical speciation, structural and oxidation state information; X-ray diffraction (XRD) for phase identification; and fluorescence microtomography (CMT) for mapping the internal structure of porous or composite materials as well as elemental distributions. We have employed several synchrotron based microanalytical methods including XRF, microEXAFS (Extended X-ray Absorption Fine Structure), microXANES (X-ray Absorption Near Edge Structure) and CMT for the study of minor and trace elements in apatite (and other minerals). We have also been conducting time resolved X-ray diffraction to study nucleation of and phase transformations among precursor phases in the formation of apatite from solution at earth surface conditions. Summaries of these studies are given to exemplify the capabilities of synchrotron microanalytical techniques.

  5. Compositional variation in apatite, phlogopite and other accessory minerals of the ultramafic Delitzsch complex, Germany: implication for cooling history of carbonatites

    Seifert, W.; Horst Kämpf; J. Wasternack;  ,


    A representative suite of samples from the ultramafic lamprophyre–carbonatite (UML–CR) complex of Delitzsch, Germany, shows significant variations in mineral composition and geothermobarometry. Petrographically distinct carbonatites of intrusive dolomitic and subvolcanic dolomitic and subvolcanic calcitic types clearly show marked compositional differences in such minerals as apatite, phlogopite and pyrochlore. Increasing concentrations are established for S, Cl, Si in apatite, and Ti, Al, Cr...

  6. The Calcium Phosphate Matrix of FGF-2-Apatite Composite Layers Contributes to Their Biological Effects

    Hirotaka Mutsuzaki


    Full Text Available The purpose of the present study was to fabricate fibroblast growth factor (FGF-2-apatite composite layers on titanium (Ti pins in one step at 25 °C using a supersaturated calcium phosphate (CaP solution, and to evaluate the physicochemical characteristics and biological effects of the coated Ti pins compared with coated Ti pins fabricated at 37 °C. Ti pins were immersed in a supersaturated CaP solution containing 0.5, 1.0, or 2.0 µg/mL FGF-2 at 25 °C for 24 h (25F0.5, 25F1.0, and 25F2.0 or containing 4.0 µg/mL FGF-2 at 37 °C for 48 h (37F4.0. Except for the 25F0.5, the chemical compositions and the mitogenic activity levels of FGF-2 of the composite layers formed by these two methods were similar, except for the Ca/P molar ratio, which was markedly smaller at 25 °C (1.55–1.56 ± 0.01–0.02, p = 0.0008–0.0045 than at 37 °C (1.67 ± 0.11. Thus, either the apatite was less mature or the amount of amorphous calcium phosphate was higher in the composite layer formed at 25 °C. In vivo, the pin tract infection rate by visual inspection for 37F4.0 (45% was lower than that for 25F1.0 (80%, p = 0.0213, and the rate of osteomyelitis for 37F4.0 (35% was lower than that for 25F0.5 (75%, p = 0.0341. The extraction torque for 37F4.0 (0.276 ± 0.117 Nm was higher than that for 25F0.5 (0.192 ± 0.117 Nm, p = 0.0142 and that for 25F1.0 (0.176 ± 0.133 Nm, p = 0.0079. The invasion rate of S. aureus for 37F4.0 (35% was lower than that for 25F0.5 (75%, p = 0.0110. On the whole, the FGF-2-apatite composite layer formed at 25 °C tended to be less effective at improving fixation strength in the bone-pin interface and resisting pin tract infections. These results suggest that the chemistry of the calcium phosphate matrix that embeds FGF-2, in addition to FGF-2 content and activity, has a significant impact on composite infection resistance and fixation strength.

  7. Raman spectral, elemental, crystallinity, and oxygen-isotope variations in conodont apatite during diagenesis

    Zhang, Lei; Cao, Ling; Zhao, Laishi; Algeo, Thomas J.; Chen, Zhong-Qiang; Li, Zhihong; Lv, Zhengyi; Wang, Xiangdong


    Conodont apatite has long been used in paleoenvironmental studies, often with minimal evaluation of the influence of diagenesis on measured elemental and isotopic signals. In this study, we evaluate diagenetic influences on conodonts using an integrated set of analytical techniques. A total of 92 points in 19 coniform conodonts from Ordovician marine units of South China were analyzed by micro-laser Raman spectroscopy (M-LRS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), high-resolution X-ray microdiffraction (HXRD), and secondary ion mass spectrometry (SIMS). Each conodont element was analyzed along its full length, including the albid crown, hyaline crown, and basal body, in either a whole specimen (i.e., reflecting the composition of its outer layer) or a split specimen (i.e., reflecting the composition of its interior). In the conodonts of this study, the outer surfaces consist of hydroxyfluorapatite and the interiors of strontian hydroxyfluorapatite. Ionic substitutions resulted in characteristic Raman spectral shifts in the position (SS1) and width (SS2) of the ν1-PO43- stretching band. Although multiple elements were enriched (Sr2+, Mg2+) and depleted (Fe3+, Mn2+, Ca2+) during diagenesis, geochemical modeling constraints and known Raman spectral patterns suggest that Sr uptake was the dominant influence on diagenetic redshifts of SS1. All study specimens show lower SS2 values than modern bioapatite and synthetic apatite, suggesting that band width decreases with time in ancient bioapatite, possibly through an annealing process that produces larger, more uniform crystal domains. Most specimens consist mainly of amorphous or poorly crystalline apatite, which is inferred to represent the original microstructure of conodonts. In a subset of specimens, some tissues (especially albid crown) exhibit an increased degree of crystallinity developed through aggrading neomorphism. However, no systematic relationship was observed between

  8. Rietveld refinements and spectroscopic studies of the structure of Ca-deficient apatite.

    Wilson, Rory M; Elliott, James C; Dowker, Stephanie E P; Rodriguez-Lorenzo, Luis M


    Nine samples of Ca-deficient apatite (Ca-def Ap) were prepared from suspensions of CaHPO4 (monetite) at 90 degrees C by raising the pH from approximately 4 through release of NH3 produced by the hydrolysis of urea. Products were dried at 100 degrees C for 24h and studied by chemical analyses, X-ray powder diffraction (XRPD) (and Rietveld analysis of this data), Ca/P ratio determination (quantitative phase analysis of samples after heating to 900 degrees C from Rietveld analysis of XRPD data), scanning electron microscopy, He pycknometry, 1H and 31P MAS NMR spectrometry and Fourier transform infrared and Raman spectroscopy. All samples contained apatite, but three also contained monetite. Infrared and Raman spectroscopy confirmed the presence of HPO4(2-) and absence of carbonate ions in the six monetite-free samples. Mean results for the six samples were: a = 9.4320(40), c = 6.8751(31) A; unit cell formula from chemical analysis neglecting protonation of phosphate ion, Ca(9.303(50))(PO4)6(OH)(0.606(99)).1.97(12)H2O; theoretical density 3.10 g cm(-3); experimental density (mean for three samples) 3.15 g cm(-3); and Ca/P mole ratio from chemical analysis and phase analysis after heating to 900 degrees C, 1.550(8) and 1.550(2), respectively. An earlier assignment of a line at 6 ppm in the 1H NMR spectrum of similar samples to HPO4(2-) ions could not be confirmed; hence no information about the HPO4(2-) ion content could be derived, in disagreement with the previous NMR study. A shoulder at approximately 0.9 ppm relative to 85 wt% H3PO4 in the 31P NMR spectrum was assigned to HPO4(2-) ions. Occupancies from the Rietveld structure refinements indicated preferential loss of Ca from Ca2 sites compared with Ca1, but the loss was substantially smaller than expected from chemical analyses. It is suggested that imperfect modelling of the structure in the refinement, particularly disorder associated with the Ca2 site, resulted in errors in Ca2 occupancies. The P-O bonds were

  9. Vacuum-sintered body of a novel apatite for artificial bone

    Tamura, Kenichi; Fujita, Tatsushi; Morisaki, Yuriko


    We produced regenerative artificial bone material and bone parts using vacuum-sintered bodies of a novel apatite called "Titanium medical apatite (TMA®)" for biomedical applications. TMA was formed by chemically connecting a Ti oxide molecule with the reactive [Ca10(PO4)6] group of Hydroxyapatite (HAp). The TMA powders were kneaded with distilled water, and solid cylinders of compacted TMA were made by compression molding at 10 MPa using a stainless-steel vessel. The TMA compacts were dried and then sintered in vacuum (about 10-3 Pa) or in air using a resistance heating furnace in the temperature range 1073-1773 K. TMA compacts were sintered at temperatures greater than 1073 K, thus resulting in recrystallization. The TMA compact bodies sintered in the range 1273-1773 K were converted into mixtures composed of three crystalline materials: α-TCP (tricalcium phosphate), β-TCP, and Perovskite-CaTiO3. The Perovskite crystals were stable and hard. In vacuum-sintering, the Perovskite crystals were transformed into fibers (approximately 1 µm in diameter × 8 µm in length), and the fiber distribution was uniform in various directions. We refer to the TMA vacuum-sintered bodies as a "reinforced composite material with Perovskite crystal fibers." However, in atmospheric sintering, the Perovskite crystals were of various sizes and were irregularly distributed as a result of the effect of oxygen. After sintering temperature at 1573 K, the following results were obtained: the obtained TMA vacuum-sintered bodies (1) were white, (2) had a density of approximately 2300 kg/m3 (corresponding to that of a compact bone or a tooth), and had a thermal conductivity of approximately 31.3 W/(m·K) (corresponding to those of metal or ceramic implants). Further, it was possible to cut the TMA bodies into various forms with a cutting machine. An implant made of TMA and inserted into a rabbit jaw bone was covered by new bone tissues after just one month because of the high

  10. The possible contribution of a mantle-derived fluid to the Ningwu porphyry iron deposits- Evidence from carbon and strontium isotopes of apatites

    Jinjie Yu; Jingwen Mao; Changqing Zhang


    Apatite is a characteristic mineral for the iron deposits in the Ningwu region. Apatite shows a range of δ13CPDB values from -9.6‰ to-0.6‰, and most of them with the δ13CPDB values distributed in a range of mantle carbon (I.e., -2%0 to -9%0), except for samples T-06-1and J-06-3. Apatites in the Ningwu porphyry iron deposits yield a narrow variation range of 87Sr/86Sr values from 0.706326 to 0.707577,similar to those of the volcanic and subvolcanic rocks and higher than that of a typical mantle-derived magmatic apatite (I.e., about0.7040), indicating that formation of the apatites was involved with crust material contamination. δ13CPDB and 87Sr/86Sr values of the apatite indicate a possible contribution of mantle-derived fluid and material to formation of the Ningwu porphyry iron deposits,supported by regional geology, regional gravities and geochemistry of the volcanic and subvolcanic rocks in the Ningwu region.

  11. Effect of Mn-Zn ferrite on apatite-wollastonite glass-ceramic (A-W GC).

    Da Li, Guang; Zhou, Da Li; Pan, Tao Hua; Chen, Guo Sheng; Lin, Yun; Mao, Mao; Yan, Guo


    Magnetic bioactive glass-ceramics (M GC) were prepared by doping apatite-wollastonite glass-ceramic (A-W GC) with Mn-Zn ferrite. The effect of different contents of Mn-Zn ferrite on the phase structure, magnetic property and bioactivity of A-W GC was investigated. X-ray powder diffraction results showed that A-W GC exhibited apatite, fluorapatite and wollastonite as the main phases. The doping of Mn-Zn ferrite caused the formation of a new phase Zn(0.75)Mn(0.75)Fe(1.5)O(4) in M GC. The amount of this new phase increased with increasing content of Mn-Zn ferrite. Under a magnetic field of 7.96 x 10(5) A m(-1), the saturation magnetization of M GC increased from 4.63 to 9.7 A m(2) kg(-1), but the coercive forces of M GC decreased from 2.39 x 10(4) to 7.56 x 10(3) A m(-1) as the Mn-Zn ferrite content increased from 5% to 20% in the material. The bioactivity of samples was evaluated by soaking in simulated body fluid (SBF). The results showed that the doping of Mn-Zn ferrite decreased the bioactivity of A-W GC dramatically. It took 7 days for an apatite layer to form on the surface of A-W GC, while at least 30 days was needed for an apatite layer forming on the surface of M GC.

  12. Revisiting the localization of Zn2+ cations sorbed on pathological apatite calcifications made through X-ray absorption spectroscopy

    Bazin, D.; Carpentier, X.; Brocheriou, I.; Dorfmuller, P.; Aubert, S.; Chappard, C.; Thiaudiere, D.; Reguer, S.; Waychunas, G.; Jungers, P.; Daudon, M.


    The role of oligo-elements such as Zn in the genesis of pathological calcifications is widely debated in the literature. An essential element of discussion is given by their localization either at the surface or within the Ca apatite crystalline network. To determine the localization, X-ray absorption experiments have been performed at SOLEIL. The Exafs results suggest that Zn atoms, present in the Zn{sup 2+} form, are bound to about 4 O atoms at a distance of 2.00{angstrom}, while the interatomic distance R{sub CaO} ranges between 2.35 {angstrom} and 2.71 {angstrom}. Taking into account the content of Zn (around 1000 ppm) and the difference in ionic radius between Zn{sup 2+} (0.074 nm) and Ca{sup 2+} (0.099 nm), a significant longer interatomic distance would be expected in the case of Zn replacing Ca within the apatite crystalline network. We thus conclude that Zn atoms are localized at the surface and not in the apatite nanocrystal structure. Such structural result has essential biological implications for at least two reasons. Some oligoelements have a marked effect on the transformation of chemical phases, and may modify the morphology of crystals. These are both major issues because, in the case of kidney stones, the medical treatment depends strongly on the precise chemical phase and on the morphology of the biological entities at both macroscopic and mesoscopic scales.

  13. Ca L2,3-edge XANES and Sr K-edge EXAFS study of hydroxyapatite and fossil bone apatite.

    Zougrou, I M; Katsikini, M; Brzhezinskaya, M; Pinakidou, F; Papadopoulou, L; Tsoukala, E; Paloura, E C


    Upon burial, the organic and inorganic components of hard tissues such as bone, teeth, and tusks are subjected to various alterations as a result of interactions with the chemical milieu of soil, groundwater, and presence of microorganisms. In this study, simulation of the Ca L 2,3-edge X-ray absorption near edge structure (XANES) spectrum of hydroxyapatite, using the CTM4XAS code, reveals that the different symmetry of the two nonequivalent Ca(1) and Ca(2) sites in the unit cell gives rise to specific spectral features. Moreover, Ca L 2,3-edge XANES spectroscopy is applied in order to assess variations in fossil bone apatite crystallinity due to heavy bacterial alteration and catastrophic mineral dissolution, compared to well-preserved fossil apatite, fresh bone, and geologic apatite reference samples. Fossilization-induced chemical alterations are investigated by means of Ca L 2,3-edge XANES and scanning electron microscopy (SEM) and are related to histological evaluation using optical microscopy images. Finally, the variations in the bonding environment of Sr and its preference for substitution in the Ca(1) or Ca(2) sites upon increasing the Sr/Ca ratio is assessed by Sr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy.

  14. Quinone-rich polydopamine functionalization of yttria stabilized zirconia for apatite biomineralization: The effects of coating temperature

    Zain, Norhidayu Muhamad; Hussain, Rafaqat; Abdul Kadir, Mohammed Rafiq


    The use of yttria stabilized zirconia (YSZ) as biomedical implants is often offset by its bioinert nature that prevents its osseointegration to occur. Therefore, the functionalization of YSZ surface by polydopamine to facilitate the biomineralization of apatite layer on top of the coated film has incessantly been studied. In this study YSZ discs were first immersed in 2 mg/mL of stirred dopamine solution at coating temperatures between 25 and 80 °C. The specimens were then incubated for 7d in 1.5 SBF. The effect of coating temperature on the properties (chemical compositions and wettability) and the apatite mineralization on top of the generated films was investigated. It was found that at 50 °C, the specimen displayed the highest intensity of Ca 2p peak (1.55 ± 0.42 cps) with Ca/P ratio of 1.67 due to the presence of abundant quinone groups (Cdbnd O). However, the hydrophilicity (40.9 ± 01.7°) was greatly improved at 60 °C accompanied by the highest film thickness of 306 nm. Therefore, it was concluded that the presence of high intensity of quinone groups (Cdbnd O) in polydopamine film at elevated temperature affects the chelation of Ca2+ ions and thus enhance the growth of apatite layer on top of the functionalized YSZ surface.

  15. The Influence of Surface Morphology of Dense Ca-P Ceramics on Apatite Formation in Dynamic SBF


    This study aimed at exploring the effect of surface morphology of dense phosphate calcium (Ca-P) ceramics upon the formation of bone-like apatite in static or dynamic simulated body fluid (SBF). Dense and sandblasted calcium phosphate ceramics were immersed into dynamic SBF flowing at normal physiological speed of body fluid of skeletal muscle.The changes were characterized using SEM, XPS, IR and XRD. Changes can be observed after the sandblasted surface of dense calcium phosphate ceramics had been immersed in SBF for 14 days. XPS analysis results showed that the flake-like structure was composed of Ca, P, C, O; IR analysis result of surface structure of samples showed that there were specific peaks for CO2-3; XRD results indicated the decrease in crystallinity and the increase in amorphous structure. The rough surface was advantageous for the formation of bone-like apatite. Increasing the Ca2+, HPO2-4 concentration of SBF could also enhance the bone like apatite formation. All the results demonstrated that local concentration is a key factor affecting nucleation.

  16. The chitosan prepared from crab tendons: II. The chitosan/apatite composites and their application to nerve regeneration.

    Yamaguchi, Isamu; Itoh, Soichiro; Suzuki, Masumi; Osaka, Akiyoshi; Tanaka, Junzo


    The chitosan tubes derived from crab tendons form a hollow tube structure, which is useful for nerve regeneration. However, in order to use the chitosan tubes effectively for nerve regeneration, there remain two problems to be solved. First, the mechanical strength of the tubes is quite high along the longitudinal axis, but is somewhat low for a pressure from side. Second, the chitosan tube walls swell to reduce the inner space of the tubes in vivo. These two problems limit the clinical use of the chitosan tubes. In this study, to solve the problems, apatite was made to react with the chitosan tubes to enhance the mechanical strength of the tube walls. Transmission electron microscopy showed that apatite crystals were formed in the walls of the chitosan tubes. The c-axis of the crystals aligned well in parallel with chitosan molecules. These results indicate that the apatite crystals grow in the tubes starting from the nucleation sites of the chitosan molecules, probably by forming complexes with amino groups of chitosan and calcium ions. Further, the tubes were thermally annealed at 120 degrees C to prevent from swelling, and simultaneously formed into a triangular shape to enhance the stabilization of the tube structure. By these treatments, the hollow tubes could keep their shape even in vivo after implantation. Animal tests using SD rats further showed that the chitosan tubes effectively induced the regeneration of nerve tissue, and were gradually degraded and absorbed in vivo.

  17. Ca L2,3-edge XANES and Sr K-edge EXAFS study of hydroxyapatite and fossil bone apatite

    Zougrou, I. M.; Katsikini, M.; Brzhezinskaya, M.; Pinakidou, F.; Papadopoulou, L.; Tsoukala, E.; Paloura, E. C.


    Upon burial, the organic and inorganic components of hard tissues such as bone, teeth, and tusks are subjected to various alterations as a result of interactions with the chemical milieu of soil, groundwater, and presence of microorganisms. In this study, simulation of the Ca L 2,3-edge X-ray absorption near edge structure (XANES) spectrum of hydroxyapatite, using the CTM4XAS code, reveals that the different symmetry of the two nonequivalent Ca(1) and Ca(2) sites in the unit cell gives rise to specific spectral features. Moreover, Ca L 2,3-edge XANES spectroscopy is applied in order to assess variations in fossil bone apatite crystallinity due to heavy bacterial alteration and catastrophic mineral dissolution, compared to well-preserved fossil apatite, fresh bone, and geologic apatite reference samples. Fossilization-induced chemical alterations are investigated by means of Ca L 2,3-edge XANES and scanning electron microscopy (SEM) and are related to histological evaluation using optical microscopy images. Finally, the variations in the bonding environment of Sr and its preference for substitution in the Ca(1) or Ca(2) sites upon increasing the Sr/Ca ratio is assessed by Sr K-edge extended X-ray absorption fine structure (EXAFS) spectroscopy.

  18. Bisphosphonate binding affinity as assessed by inhibition of carbonated apatite dissolution in vitro

    Henneman, Zachary J.; Nancollas, George H.; Ebetino, F. Hal; Russell, R. Graham G.; Phipps, Roger J.


    Bisphosphonates (BPs), which display a high affinity for calcium phosphate surfaces, are able to selectively target bone mineral, where they are potent inhibitors of osteoclast-mediated bone resorption. The dissolution of synthetic hydroxyapatite (HAP) has been used previously as a model for BP effects on natural bone mineral. The present work examines the influence of BPs on carbonated apatite (CAP), which mimics natural bone more closely than does HAP. Constant composition dissolution experiments were performed at pH 5.50, physiological ionic strength (0.15M) and temperature (37°C). Selected BPs were added at (0.5 × 10−6) to (50.0 × 10−6)M, and adsorption affinity constants, KL, were calculated from the kinetics data. The BPs showed concentration-dependent inhibition of CAP dissolution, with significant differences in rank order zoledronate > alendronate > risedronate. In contrast, for HAP dissolution at pH 5.50, the differences between the individual BPs were considerably smaller. The extent of CAP dissolution was also dependent on the relative undersaturation, σ, and CAP dissolution rates increased with increasing carbonate content. These results demonstrate the importance of the presence of carbonate in mediating the dissolution of CAP, and the possible involvement of bone mineral carbonate in observed differences in bone affinities of BPs in clinical use. PMID:17907244

  19. Fabrication and Physical Evaluation of Gelatin-Coated Carbonate Apatite Foam

    Kanae Hara


    Full Text Available Carbonate apatite (CO3Ap foam has gained much attention in recent years because of its ability to rapidly replace bone. However, its mechanical strength is extremely low for clinical use. In this study, to understand the potential of gelatin-reinforced CO3Ap foam for bone replacement, CO3Ap foam was reinforced with gelatin and the resulting physical characteristics were evaluated. The mechanical strength increased significantly with the gelatin reinforcement. The compressive strength of gelatin-free CO3Ap foam was 74 kPa whereas that of the gelatin-reinforced CO3Ap foam, fabricated using 30 mass % gelatin solution, was approximately 3 MPa. Heat treatment for crosslinking gelatin had little effect on the mechanical strength of the foam. The gelatin-reinforced foam did not maintain its shape when immersed in a saline solution as this promoted swelling of the gelatin; however, in the same conditions, the heat-treated gelatin-reinforced foam proved to be stable. It is concluded, therefore, that heat treatment is the key to the fabrication of stable gelatin-reinforced CO3Ap foam.

  20. Surface Structure Study of Crystal Hydroxy-Apatite from Fluorosis Enamels

    Abdillah Imron Nasution


    Full Text Available Fluorosis is a condition due to ingestion of excessive amounts of fluor which can cause the change in tooth structure and strength. However, there is still lack of explanation on the surface structure of crystal hydroxyapatite that influences the microscopic characteristic of fluorosis enamel. Objectives: To investigate the surface structure of crystal hydroxy-apatite in fluorosis enamel. Materials and Methods: Determination of fluor concentration and the surface structure of normal and fluorosis enamel specimen were carried out by using Scanning Electron Microscopy/Energy Disperse X-Ray (SEM/EDX. Results: Fluor concentration of fluorosis enamel was significantly higher with increased surface roughness and porosity than normal enamel. SEM observation also showed gaps areas between enamel rods and visible aprismatic zone in some regions. Conclusion: High level of fluor concentration on fluorosis enamel indicated the subtitution of OH- by F- increasing the surface roughness of enamel surface.DOI: 10.14693/jdi.v16i3.100

  1. The function of Sn(II)-apatite as a Tc immobilizing agent

    Asmussen, R. Matthew; Neeway, James J.; Lawter, Amanda R.; Levitskaia, Tatiana G.; Lukens, Wayne W.; Qafoku, Nikolla P.


    Technetium-99 is a radioactive contaminant of high concern at many nuclear waste storage sites. At the U.S. Department of Energy Hanford Site, 99Tc is a component of low-activity waste (LAW) fractions of the nuclear tank waste, which are highly caustic, high ionic strength and have high concentrations of chromate. Removal of 99Tc from LAW streams would greatly benefit the site remediation process. In this study, we investigated the removal of 99Tc(VII), as pertechnetate, from deionized water (DIW) and a LAW simulant using two solid sorbents, tin (II) apatite (Sn-A) and SnCl2 through batch sorption testing and solid phase characterization. Sn-A showed higher levels of removal of Tc from both DIW and LAW simulant compared with the SnCl2. Scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/XEDS) and X-ray adsorption spectroscopy (XAS) of Sn-A following batch experiments in DIW showed that TcO4- is reduced to Tc(IV) on the Sn-A surface with no incorporation into the lattice structure of Sn-A. The performance of Sn-A in the LAW simulant was lowered due to a combined effect of the high alkalinity, which lead to an increased dissolution of Sn from the Sn-A, and a preference for the reduction of Cr(VI) over Tc(VII).

  2. Phase Composition of Sputtered Film from a Mixture Target of Hydroxyapatite and Strontium-apatite

    K. Ozeki; T. Hoshino; H. Aoki; T. Masuzawa


    To obtain an Sr-substituted hydroxyapatite thin film,sputter-coating was performed on a cellulose filter acting as a substrate from the mixture target of hydroxyapatite (HA) and strontium-apatite (SrAp) at an Ar pressure of 0.5-5.0 Pa.The ratio of the SrAp in the mixture target was varied from 25% to 100%.After coating,the films were heated at 700 ℃ to remove the cellulose filter substrate,and the crystalline phases were identified by X-ray diffraction (XRD).The sputter-coated film was identified as the Sr-substituted β-tri-calcium phosphate (TCP) and the Sr-substituted/β-calcium pyrophosphate (CPP) as well as the Sr-substituted HA.The weight ratio of the Sr-substituted HA decreased with increasing Ar pressure or with an increasing ratio of SrAp to HA in the target.The average Sr/(Ca + Sr) molar ratio in the film was 1.9%-3.5% slightly lower than the initial SrAp ratio of the target,and the ratio was not influenced by the Ar pressure.In the (Sr + Ca)/P ratio,the ratio decreased while increasing the SrAp ratio in the target.

  3. Apatite fission track dating evidence on the tectonization of Gangdese block, south Qinghai-Tibetan Plateau


    This work makes the quantitative constrain on tectonizations of the Gangdese block, south Qinghai-Tibetan Plateau. Apatite fission track (AFT) dating analyses of 15 samples collected across the Gangdese block show that the Gangdese block went through two periods of tectonizations, during ~37.2 - 18.5 Ma and 18.5 - 8.0 Ma in the south Gangdese block, and during ~47.6 - 5.3 Ma and 5.3 - 0 Ma in the middle Gangdese block. Different upliftings did not take place in the first period and rapid uplifting occurred in the late period. Meantime, there are some differences between the south and middle Gangdese block. Their uplifting rate is 180 m/Ma and 70 m/Ma respectively. The rapid uplifting time in the middle Gangdese block lagged behind the time in the south Gangdese block. It is Chala-Jiacuo-Riduo fault zone that is similar to the Yarlung Zangbo fault zone in control of the tectonization.

  4. Improved Bonding of Partially Osteomyelitic Bone to Titanium Pins Owing to Biomimetic Coating of Apatite

    Hirotaka Mutsuzaki


    Full Text Available Increased fixation strength of the bone-pin interface is important for inhibiting pin loosening after external fixation. In a previous study, an apatite (Ap layer was formed on anodically oxidized titanium (Ti pins by immersing them in an infusion fluid-based supersaturated calcium phosphate solution at 37 °C for 48 h. In the present study, an Ap layer was also successfully formed using a one-step method at 25 °C for 48 h in an infusion fluid-based supersaturated calcium phosphate solution, which is clinically useful due to the immersion temperature. After percutaneous implantation in a proximal tibial metaphysis for four weeks in rabbits (n = 20, the Ti pin coated with the Ap layer showed significantly increased extraction torque compared with that of an uncoated Ti screw even with partial osteomyelitis present, owing to dense bone formation on the Ap layer in the cortical and medullary cavity regions. When the infection status was changed from “no osteomyelitis” to “partial osteomyelitis,” the extraction torque in the Ap group with “partial osteomyelitis” was almost identical to that for “no osteomyelitis” cases. These results suggest that the Ap layer formed by the room temperature process could effectively improve the fixation strength of the Ti pin for external fixation clinically even with partial osteomyelitis present.

  5. Biomimetic formation of apatite on the surface of porous gelatin/bioactive glass nanocomposite scaffolds

    Mozafari, Masoud; Rabiee, Mohammad; Azami, Mahmoud; Maleknia, Saied


    There have been several attempts to combine bioactive glasses (BaGs) with biodegradable polymers to create a scaffold material with excellent biocompatibility, bioactivity, biodegradability and toughness. In the present study, the nanocomposite scaffolds with compositions based on gelatin (Gel) and BaG nanoparticles in the ternary SiO 2-CaO-P 2O 5 system were prepared. In vitro evaluations of the nanocomposite scaffolds were performed, and for investigating their bioactive capacity these scaffolds were soaked in a simulated body fluid (SBF) at different time intervals. The scaffolds showed significant enhancement in bioactivity within few days of immersion in SBF solution. The apatite formation at the surface of the nanocomposite samples confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray powder diffraction (XRD) analyses. In vitro experiments with osteoblast cells indicated an appropriate penetration of the cells into the scaffold's pores, and also the continuous increase in cell aggregation on the bioactive scaffolds with increase in the incubation time demonstrated the ability of the scaffolds to support cell growth. The SEM observations revealed that the prepared scaffolds were porous with three dimensional (3D) and interconnected microstructure, pore size was 200-500 μm and the porosity was 72-86%. The nanocomposite scaffold made from Gel and BaG nanoparticles could be considered as a highly bioactive and potential bone tissue engineering implant.

  6. Biomimetic formation of apatite on the surface of porous gelatin/bioactive glass nanocomposite scaffolds

    Mozafari, Masoud, E-mail: [Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, PO Box 15875-4413, Tehran (Iran, Islamic Republic of); Rabiee, Mohammad; Azami, Mahmoud; Maleknia, Saied [Biomaterials Group, Faculty of Biomedical Engineering (Center of Excellence), Amirkabir University of Technology, PO Box 15875-4413, Tehran (Iran, Islamic Republic of)


    There have been several attempts to combine bioactive glasses (BaGs) with biodegradable polymers to create a scaffold material with excellent biocompatibility, bioactivity, biodegradability and toughness. In the present study, the nanocomposite scaffolds with compositions based on gelatin (Gel) and BaG nanoparticles in the ternary SiO{sub 2}-CaO-P{sub 2}O{sub 5} system were prepared. In vitro evaluations of the nanocomposite scaffolds were performed, and for investigating their bioactive capacity these scaffolds were soaked in a simulated body fluid (SBF) at different time intervals. The scaffolds showed significant enhancement in bioactivity within few days of immersion in SBF solution. The apatite formation at the surface of the nanocomposite samples confirmed by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX) and X-ray powder diffraction (XRD) analyses. In vitro experiments with osteoblast cells indicated an appropriate penetration of the cells into the scaffold's pores, and also the continuous increase in cell aggregation on the bioactive scaffolds with increase in the incubation time demonstrated the ability of the scaffolds to support cell growth. The SEM observations revealed that the prepared scaffolds were porous with three dimensional (3D) and interconnected microstructure, pore size was 200-500 {mu}m and the porosity was 72-86%. The nanocomposite scaffold made from Gel and BaG nanoparticles could be considered as a highly bioactive and potential bone tissue engineering implant.

  7. Ni(II immobilization by bio-apatite materials: Appraisal of chemical, thermal and combined treatments

    Šljivić-Ivanović Marija


    Full Text Available Animal bones are natural and rich source of calcium hydroxyapatite (HAP, which was found to be a good sorbent material for heavy metals and radionuclides. Various treatments can reduce the content of bone organic phase and improve sorption properties. In this study, sorption capacities of raw bovine bones (B and samples obtained by chemical treatment with NaOH (BNaOH, by heating at 400 oC (B400 and by combined chemical and thermal treatment (BNaOH+400, were compared, using Ni(II ions as sorbates. Maximum sorption capacities increased in the order Bapatite based material with low organic content and high efficiency for Ni(II sorption, it is also a good candidate for in-situ soil remediation, particularly at lower contamination levels. [Projekat Ministarstva nauke Republike Srbije, br. III 43009

  8. The function of Sn(II)-apatite as a Tc immobilizing agent

    Asmussen, R. Matthew; Neeway, James J.; Lawter, Amanda R.; Levitskaia, Tatiana G.; Lukens, Wayne W.; Qafoku, Nikolla P.


    At the U.S. Department of Energy Hanford Site, Tc-99 is a component of low-activity waste (LAW) fractions of the nuclear tank waste and removal of Tc from LAW streams would greatly benefit the site remediation process. In this study, we investigated the removal of Tc(VII), as pertechnetate, from deionized water (DIW) and a LAW simulant through batch sorption testing and solid phase characterization using tin (II) apatite (Sn-A) and SnCl2. Sn-A showed higher levels of Tc removal from both DIW and LAW simulant. Scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM/XEDS) and X-ray absorption spectroscopy (XAS) of reacted Sn-A in DIW showed that TcO4- is reduced to Tc(IV) on the Sn-A surface. The performance of Sn-A in the LAW simulant was lowered due to a combined effect of the high alkalinity, which lead to an increased dissolution of Sn from the Sn-A, and a preference for the reduction of Cr(VI).

  9. Prompt isothermal decay of thermoluminescence in an apatite exhibiting strong anomalous fading

    Sfampa, I.K. [Aristotle University of Thessaloniki, Nuclear Physics Laboratory, 54124 Thessaloniki (Greece); Polymeris, G.S. [Aristotle University of Thessaloniki, Solid State Physics Section, 54124 Thessaloniki (Greece); Laboratory of Radiation Applications and Archaeological Dating, Department of Archaeometry and Physicochemical Measurements, ‘Athena’ R. and I. Center, Kimmeria University Campus, GR67100 Xanthi (Greece); Tsirliganis, N.C. [Laboratory of Radiation Applications and Archaeological Dating, Department of Archaeometry and Physicochemical Measurements, ‘Athena’ R. and I. Center, Kimmeria University Campus, GR67100 Xanthi (Greece); Pagonis, V. [McDaniel College, Physics Department, Westminster, MD 21157 (United States); Kitis, G., E-mail: [Aristotle University of Thessaloniki, Nuclear Physics Laboratory, 54124 Thessaloniki (Greece)


    Highlights: • The Isothermal TL of a material exhibiting strong AF is very peculiar. • The Isothermal TL curves are very well fitted using a newly proposed tunneling model. • The decay constants are found to be independent on temperature. • The explanation requires tunneling recombination from different excited energy levels. -- Abstract: Anomalous fading (AF) is one of the most serious drawbacks in thermoluminescence (TL) and optically stimulated luminescence (OSL) dating. In the present work the isothermal decay of TL signals from Durango apatite is studied for temperatures located on the rising part of the main TL peak. This material is known to exhibit strong AF phenomena, and its isothermal TL decay properties have not been studied previously. The experimental results show that the characteristic decay time of the isothermal signal does not depend of the temperature, and that this signal does not exhibit the strong temperature dependence expected from conventional TL kinetic theories. This is further direct experimental evidence for the possible presence of tunneling phenomena in this material. The isothermal decay curves are analyzed and discussed within the framework of conventional theories of TL, as well as within the context of a recently developed tunneling kinetic model for random distributions of electron-hole pairs in luminescent materials.

  10. Prediction of yttrium, lanthanum, cerium, and neodymium leaching recovery from apatite concentrate using artificial neural networks

    E. Jorjani; A.H. Bagherieh; Sh. Mesroghli; S. Chehreh Chelgani


    The assay and recovery of rare earth elements (REEs) in the leaching process is being determined using expensive analytical methods: inductively coupled plasma atomic emission spectroscopy (ICP-AES) and inductively coupled plasma mass spectroscopy (ICP-MS). A neural network model to predict the effects of operational variables on the lanthanum, cerium, yttrium, and neodymium recovery in the leaching of apatite concentrate is presented in this article. The effects of leaching time (10 to 40 min),pulp densities (30% to 50%), acid concentrations (20% to 60%), and agitation rates (100 to 200 r/min), were investigated and optimized on the recovery of REEs in the laboratory at a leaching temperature of 60οC. The obtained data in the laboratory optimization process were used for training and testing the neural network. The feed-forward artificial neural network with a 4-5-5-1 arrangement was capable of estimating the leaching recovery of REEs. The neural network predicted values were in good agreement with the experimental results. The correlations of R=1 in training stages, and R=0.971, 0.952, 0.985, and 0.98 in testing stages were a result of Ce, Nd, La, and Y recovery prediction respectively, and these values were usually acceptable. It was shown that the proposed neural network model accurately reproduced all the effects of the operation variables, and could be used in the simulation of a leaching plant for REEs.

  11. Apatite formation on active nanostructured coating based on functionalized gold nanoparticles

    Vasile, Eugeniu [METAV Research and Development (Romania); Serafim, Andrada; Dragusin, Diana-Maria; Petrea, Celina; Iovu, Horia; Stancu, Izabela-Cristina, E-mail: [University Politehnica of Bucharest, Advanced Polymer Materials Group (Romania)


    In this work, we developed a simple method of surface functionalization of polymer substrates to provide them with the ability to form biomimetic hydroxyapatite (HA) when incubated in synthetic body fluids (SBF). In a first step, gold nanoparticles (AuNPs) were used as surface nanostructuring units for a biocompatible polymer, poly(2-hydroxyethyl methacrylate), known to not promote biomineralization in SBF, and under physiological conditions. The treatment of AuNPs-modified substrate with mercaptosuccinic acid leads to brushes of carboxyl-ended chains self-assembled onto the gold-polymer hybrid nanosurface. The main aim of this work was to demonstrate that these multianionic nanosurfaces would induce HA formation when incubated in solutions mimicking physiologic conditions. The formation of apatite and its morphology and composition were successfully investigated by means of high resolution scanning and transmission electron microscopy with energy dispersive X-ray microanalysis, infrared spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. Emphasis was put on the nucleation of HA in areas with agglomerated carboxyl-ended functionalized nanoparticles. The results obtained in this study may unlock new applications for smart active coatings based on functionalized AuNPs, such as the induction of biomineralization.

  12. Biodegradation and bioabsorption innovation of the functionally graded bovine bone-originated apatite with blood permeability.

    Akazawa, Toshiyuki; Murata, Masaru; Sasaki, Tomoya; Tazaki, Junichi; Kobayashi, Masayoshi; Kanno, Tohru; Nakamura, Katsuo; Arisue, Makoto


    Bioabsorbable and functionally graded apatite (fg-HAp) ceramics were designed using bovine bone by the calcination and partial dissolution-precipitation methods. The fg-HAp ceramics that were developed had gradual distributions of the degree of crystallinity and the grain size of single-phase hydroxyapatite from the surface layer of the pore wall to the bulk structure region. Calcination at 1073 K gave a specific surface area of 30 m2 x g-1 and porosities of 60-80%. The pore structure of the fg-HAp was classified into two regions: a macro-pore region (100-600 microm) originating from spongy bone and a micro-pore region (10-160 nm) related to body fluid permeation and blood permeability. By implantation in subcutaneous tissue of rat, it was confirmed that body fluid permeated the bulk region of the fg-HAp ceramics through the micro-pores. The volumetric populations occupied by body fluid were 60% at 4 weeks and 68% at 8 weeks in the ceramics explants, indicating drastic bioabsorption, although the body fluid was found to be immunopositive for an albumin as the main serum protein in blood. On the fg-HAp ceramics developed here, the bioabsorption rate could be controlled by careful selection of the calcination temperature. These ceramics can be applied as new biomimetic ceramics exhibiting surface and bulk degradations and cellular absorption by giant cells.

  13. Novel development of carbonate apatite-chitosan scaffolds based on lyophilization technique for bone tissue engineering

    Maretaningtias Dwi Ariani


    Full Text Available Background: The natural biopolymer chitosan (Ch is currently regarded as a candidate for bone tissue engineering. However, Ch is poor for cell adhesion and low bone formation ability. In order to enhance cell adhesion and bone formation ability, combination of Ch with carbonate apatite (CA was developed. Purpose: The aim of this study was to make carbonate apatite-chitosan scaffolds (CAChSs and evaluate its osteoconductivity in terms of cell proliferation. Methods: Chitosan scaffolds (ChSs were made by the following procedure. Twenty-five, 50, 100, 200 and 400 mg Ch was dissolved into 5 ml of 2% acetic acid (CH3COOH, shaked for 15 min and neutralized with 15 ml of 0.1 M sodium hydroxide (NaOH solution. After centrifugation, Ch gel was packed into the molds then frozen at -80°C for 2h and dried in a freeze dry machine for 24h. The sponges were subjected to UV radiation for 2h. To make CA-ChSs, 200 mg Ch was selected. After neutralization, 50 mg of 0.06 M CA were added into the 200 mg Ch gel. The structure of CA-ChSs was observed by scanning electron microscope (SEM. Mouse osteoblast-like cell (MC3T3-E1 proliferation in these scaffolds was investigated at 1, 7, 14 and 21 days. Results: Three dimensional porous structures of CA-ChSs were clearly observed by SEM. Proliferated cell numbers in CA-ChSs was significantly higher than those in ChSs (control at each stage (p<0.05. Conclusion: It can be concluded that newly developed CA-ChSs had three-dimensional interconnected porous structure, good handling property and supporting ability of proliferation of osteoblasts. It is suggested that newly developed CA-ChSs could be considered as a scaffolds material for bone tissue enginearing.Latar belakang: Kitosan yang merupakan biopolimer alami dianggap sebagai salah satu kandidat untuk rekayasa jaringan tulang. Namun, kitosan memiliki kelemahan terhadap adhesi sel dan kurang mampu membentuk tulang yang cukup. Untuk meningkatkan adhesi sel dan kemampuan

  14. [A novel europium doped apatite/wollastonite porous magnetic bioactive glass ceramic].

    Zhang, Wangzhi; Zhou, Dali; Yang, Weizhong; Yin, Guangfu; Ou, Jun


    A new biocompatible apatite-wollastonite magnetic glass ceramic has been synthesized via sol-gel process. Characteristics of the materials were determined with differential thermal analysis (DTA), X-ray diffraction (XRD), scan electron microscopy (SEM), energy dispersive spectrum (EDS), inductively couple plasma atomic emission spectroscopy (ICP-AES), vibrating sample magnetometer (VSM) and so on. Results showed that the main crystalline phases of the material were hydroxyapatite/fluoroapatite [Ca10(PO4)6(OH, F)), beta-wollastonite[beta-CaSiO3] and calcium europium oxide silicate Ca2Eu8[(SiO4)6O2]. The magnetization of the sample contanining 2% Eu2O3 in weight reached 2.18 emu/g for an applied field of 10 000Oe. Hydroxyapatite layer could form on the surface of the sample while soaking for 14 days in simulated body fluid. Good bioactivity was demonstrated. So it is a potential bone repairing material as well as a hyperthemia treatment material for pateints with cancer.

  15. Chemometric evaluation of physicochemical properties of carbonated-apatitic preparations by Fourier transform infrared spectroscopy.

    Otsuka, Makoto; Papangkorn, Kongnara; Baig, Arif A; Higuchi, William I


    The purpose of this study was to develop a simple and quick method of evaluating the physicochemical properties of carbonated apatite preparations (CAP) as an index of the bioaffinity of implantable materials based on Fourier-transformed-infrared (IR) spectra by chemometrics. The wet-synthesized CAPs contained various levels of carbonate content (CO(3)), and were analyzed microstrain parameter (MS), crystallite size parameter (CP), specific surface area (Sw), CO(3), and solubility parameter (pK(HAP)) using by X-ray powder diffraction, nitrogen gas adsorption, IR, and UV absorption. The IR spectral results of CAPs suggested that the peak intensities of CAP reflected the physicochemical properties of the samples. The IR data sets were calculated to obtain calibration models evaluating the physicochemical properties of CAPs by a partial least squares regression analysis (PLS). As validation of the calibration model, physicochemical properties of CAP could be evaluated based on validation IR data sets of independent samples, and those values had sufficient accuracy. The regression vector of each calibration model suggested that the physicochemical properties of CAP, such as CO(3), Sw, MS, CP, and pK(HAP), were affected by phosphate, hydroxyl, and carbonate groups.

  16. Long-term exhumation history of the Inner Mongolian Plateau constrained by apatite fission track analysis

    Li, Ke; Jolivet, Marc; Zhang, Zhicheng; Li, Jianfeng; Tang, Wenhao


    The Inner Mongolian Plateau, along the southeastern flank of the wider Mongolian Plateau, is a vast undulating surface ranging in elevation between 900 and 1500 m above sea level. The peculiar topography of this area is assumed to be closely related to its complex tectono-thermal evolution since Late Paleozoic. The lithospheric structure of the Plateau includes three continental blocks: the Mandula and the Bart Obo blocks form the southern margin of the Central Asian Orogenic Belt in that area, and to the south, the Plateau includes the northern margin of the North China Craton. Apatite fission track (AFT) ages and track length distributions from 13 basement outcrops situated in the main tectonic blocks forming the Inner Mongolian Plateau were determined in order to reconstruct its denudation history. The thermal histories inferred from these data imply multi-phased, differential exhumation/burying processes from the Late Paleozoic to the Early Cretaceous. This complex thermal history is largely related to the Early/Middle Triassic closure of the Paleo-Asian Ocean, the Jurassic closure of the Mongol-Okhotsk Ocean, and the Early Cretaceous orogenic collapse of the Mongol-Okhotsk belt. Finally, since Late Cretaceous, no further major tectonic movement occurred and the Inner Mongolian Plateau has been largely peneplained.

  17. Constraining the stepwise migration of the eastern Tibetan Plateau margin by apatite fission track thermochronology


    Granites sampled from Garzê-Litang thrust, Longmen Shan thrust, Garzê and Litang strike-slip faults in the eastern Tibetan Plateau have been analyzed with apatite fission track thermochronological method in this study. The measured fission track apparent ages, combined with the simulated annealing mod- eling of the thermal history, have been used to reconstruct the thermal evolutionary histories of the samples and interpret the active history of the thrusts and faults in these areas. Thermal history mod- eling shows that earlier tectonic cooling occurred in the Garzê-Litang thrust in Miocene (~20―16 Ma) whereas the later cooling occurred mainly in the Longmen Shan thrust since ~5 Ma. Our study sug- gests that the margin of eastern Tibetan Plateau was extended by stages: through strike-slip faults deformations and related thrusts, the upper crust formed the Garzê-Litang margin in the Miocene epoch and then moved to the Longmen Shan margin since ~5 Ma. During this process, the deformations of different phases in the eastern Tibetan Plateau were absorbed by the thrusts within them and conse- quently the tectonic events of long-distance slip and extrusion up to hundreds of kilometers have not been found.

  18. Constraining the stepwise migration of the eastern Tibetan Plateau margin by apatite fission track thermochronology

    LAI QingZhou; DING Lin; WANG HongWei; YUE YaHui; CAI FuLong


    Granites sampled from Garzê-Litang thrust, Longmen Shan thrust, Garzê and Litang strike-slip faults in the eastern Tibetan Plateau have been analyzed with apatite fission track thermochronological method in this study. The measured fission track apparent ages, combined with the simulated annealing modeling of the thermal history, have been used to reconstruct the thermal evolutionary histories of the samples and interpret the active history of the thrusts and faults in these areas. Thermal history modeling shows that earlier tectonic cooling occurred in the Garzê-Litang thrust in Miocene (~20―16 Ma) whereas the later cooling occurred mainly in the Longmen Shan thrust since ~5 Ma. Our study suggests that the margin of eastern Tibetan Plateau was extended by stages: through strike-slip faults deformations and related thrusts, the upper crust formed the Garzê-Litang margin in the Miocene epoch and then moved to the Longmen Shan margin since ~5 Ma. During this process, the deformations of different phases in the eastern Tibetan Plateau were absorbed by the thrusts within them and consequently the tectonic events of long-distance slip and extrusion up to hundreds of kilometers have not been found.

  19. Apatite (U-Th)/He Date Dispersion Due to Secondary Grain Boundary Phases: An Example from the Henry Mountains, Utah

    Murray, K. E.; Orme, D. A.; Reiners, P. W.


    Well-recognized (non-analytical) sources of variation in apatite (U-Th)/He dates include effects of variable: 1) radiation damage, 2) crystal size, and 3) parent zonation. The first two can be used advantageously to constrain thermal histories, and the third can often be characterized to recognize and quantify its effects. A more insidious and potentially widespread potential source of age dispersion, however, is U-Th located outside but within ~15-20 microns of dated apatites. Spiegel et al. (2009) documented the effects of He implantation from primary "bad-neighbour" grains. Secondary U-Th-bearing phases may have more complex effects. The effect of extragranular U-Th-bearing phases can make He dates too old or too young, depending on 1) when it forms, relative to the grain's cooling date, 2) whether it is recovered and analyzed with the grain, and 3) the relative U-Th content of the apatite and extragranular phase. Here we document the effects of external secondary phases on apatite He dates from samples from the Henry Mountains, Utah, where magmas intruded sedimentary rocks at 26-28 Ma. Detrital apatites from sedimentary rocks surrounding the laccoliths show positive date-eU correlations consistent with residence at ~1.5-km depths from ~27 to less than 5 Ma, when they were exhumed rapidly to near surface temperatures. Some apatite from igneous samples yield similar correlations, or uniform ~27 Ma ages regardless of eU, consistent with rapid cooling at this time. However, apatite from many igneous rocks show distinctive concave-up trends in date-eU plots. Grains with relatively high eU (~25-85 ppm) show positive date-eU correlations with maximum dates of ~27 Ma. But grains with low eU (~2-25 ppm) show inverse correlations that extend to dates as old as ~120 Ma. Many of the grains in these samples have extensive thin red-brown coatings that are likely mixtures of secondary clays and Fe-oxides. These coatings are easily removed by gentle physical abrasion, so it is

  20. Inhibition of precipitation of carbonate apatite by trisodium citrate analysed in base of the formation of chemical complexes in growth solution

    Prywer, Jolanta, E-mail: [Institute of Physics, Lodz University of Technology, ul. Wólczańska 219, 93-005 Łódź (Poland); Olszynski, Marcin [Institute of Physics, Lodz University of Technology, ul. Wólczańska 219, 93-005 Łódź (Poland); Mielniczek-Brzóska, Ewa [Institute of Chemistry, Environment Protection and Biotechnology, Jan Długosz University of Częstochowa, ul. Armii Krajowej 13/15, 42-200 Częstochowa (Poland)


    Effect of trisodium citrate on the precipitation of carbonate apatite is studied. The experimental series are performed in the solution of artificial urine. The investigations are related to infectious urinary stones formation as carbonate apatite is one of the main components of this kind of stones. To mimic a real infection in urinary tract the aqueous ammonia solution was added to the solution of artificial urine. The spectrophotometric results demonstrate that trisodium citrate increases induction time with respect to carbonate apatite formation and decreases the efficiency of carbonate apatite precipitation. The inhibitory effect of trisodium citrate on the precipitation of carbonate apatite is explained in base of chemical speciation analysis. Such an analysis demonstrates that the inhibitory effect is mainly related with the fact that trisodium citrate binds Ca{sup 2+} ions and causes the formation of CaCit{sup −} and Ca{sub 10}(PO{sub 4}){sub 6}CO{sub 3} complexes. Trisodium citrate binds Ca{sup 2+} ions in the range of pH from 6 to 9.5 for which carbonate apatite is favored to be formed. - Highlights: • Trisodium citrate (TC) increases induction time of carbonate apatite (CA) formation. • TC decreases the efficiency of CA precipitation. • The inhibitory effect of TC is explained in base of chemical speciation analysis. • The inhibitory effect is mainly related with the fact that TC binds Ca{sup 2+} ions. • TC binds Ca{sup 2+} ions in the range of pH from 6 to 9.5 for which CA is formed.

  1. Co-variability of S 6+ , S 4+ , and S 2- in apatite as a function of oxidation state: Implications for a new oxybarometer

    Konecke, Brian A.; Fiege, Adrian; Simon, Adam C.; Parat, Fleurice; Stechern, André


    In this study, we use micro-X-ray absorption near-edge structures (μ-XANES) spectroscopy at the S K-edge to investigate the oxidation state of S in natural magmatic-hydrothermal apatite (Durango, Mexico, and Mina Carmen, Chile) and experimental apatites crystallized from volatile-saturated lamproitic melts at 1000 °C and 300 MPa over a broad range of oxygen fugacities [( Embedded Image , FMQ+1.2, FMQ+3; FMQ = fayalite-magnetite-quartz solid buffer]. The data are used to test the hypothesis that S oxidation states other than S6+ may substitute into the apatite structure. Peak energies corresponding to sulfate S6+ (~2482 eV), sulfite S4+ (~2478 eV), and sulfide S2- (~2470 eV) were observed in apatite, and the integrated areas of the different sulfur peaks correspond to changes in Embedded Image and bulk S content. Here, multiple tests confirmed that the S oxidation state in apatite remains constant when exposed to the synchrotron beam, at least for up to 1 h exposure (i.e., no irradiation damages). To our knowledge, this observation makes apatite the first mineral to incorporate reduced (S2-), intermediate (S4+), and oxidized (S6+) S in variable proportions as a function of the prevailing Embedded Image of the system. Apatites crystallized under oxidizing conditions (FMQ+1.2 and FMQ+3), where the S6+/STotal peak area ratio in the coexisting glass (i.e., quenched melt) is ~1, are dominated by S6+ with a small contribution of S4+, whereas apatites crystallizing at reduced conditions (FMQ) contain predominantly S2-, lesser amounts of S6+, and possibly traces of S4+. A sulfur oxidation state vs. S concentration analytical line transect across hydrothermally altered apatite from the Mina Carmen iron oxide-apatite (IOA) deposit (Chile) demonstrates that apatite can become enriched in S4+ relative to S6+, indicating metasomatic overprinting via a SO2-bearing fluid or vapor phase. This XANES study demonstrates that as the Embedded Image increases from FQM to FMQ+1.2 to FMQ

  2. Exhumation history of the southern Altiplano plateau (southern Bolivia) constrained by apatite fission track thermochronology

    Ege, H.; Sobel, E. R.; Scheuber, E.; Jacobshagen, V.


    Although the structural geometry of the Cenozoic Altiplano-Puna plateau in the central Andes is well defined, the temporal evolution of this contractile deformation is poorly constrained. To address this shortcoming, we used apatite fission track thermochronology (AFT) to quantify the cooling and exhumation history along a transect at 21°S in southern Bolivia, through the deformed intermontane Altiplano basin, the doubly vergent thrust belt of the Eastern Cordillera and the inner foreland thrust belt east of the plateau (Interandean Zone). Thermal history modeling combined with published balanced cross sections and stratigraphic data constrain exhumation histories. Exhumation started during the late Eocene (40-36 Ma) in the central Eastern Cordillera, possibly due to bivergent thrusting and Cretaceous rift structure inversion. During the early Oligocene (33-27 Ma), exhumation spread across the study area as the current boundary thrusts of the Eastern Cordillera were activated. The inner west vergent thrust system became active in irregular order until circa 20 Ma, whereas the east vergent Interandean thrust belt formed by eastward propagating deformation since circa 30 Ma. Plateau exhumation continued at ˜0.2 mm/yr until shortening terminated by 11-7 Ma. Shortening within the plateau since circa 30 Ma did not evolve by lateral accretion of thrust wedges; the propagating deformation style is spatially confined to the foreland thrust belt, which initiated coeval to plateau deformation (Interandean Zone) but propagated mainly after circa 10 Ma (Subandean Zone). Early Oligocene plateau-wide tectonically driven exhumation suggests that subduction-related processes had already thermally weakened the continental lithosphere prior to the 27-25 Ma onset of volcanic activity.

  3. Stability and heavy metal distribution of soil aggregates affected by application of apatite, lime, and charcoal.

    Cui, Hongbiao; Ma, Kaiqiang; Fan, Yuchao; Peng, Xinhua; Mao, Jingdong; Zhou, Dongmei; Zhang, Zhongbin; Zhou, Jing


    Only a few studies have been reported on the stability and heavy metal distribution of soil aggregates after soil treatments to reduce the availability of heavy metals. In this study, apatite (22.3 t ha(-1)), lime (4.45 t ha(-1)), and charcoal (66.8 t ha(-1)) were applied to a heavy metal-contaminated soil for 4 years. The stability and heavy metal distribution of soil aggregates were investigated by dry and wet sieving. No significant change in the dry mean weight diameter was observed in any treatments. Compared with the control, three-amendment treatments significantly increased the wet mean weight diameter, but only charcoal treatment significantly increased the wet aggregate stability. The soil treatments increased the content of soil organic carbon, and the fraction 0.25-2 mm contained the highest content of soil organic carbon. Amendments' application slightly increased soil total Cu and Cd, but decreased the concentrations of CaCl2 -extractable Cu and Cd except for the fraction 2 and 0.25-2 mm contained the highest concentrations of CaCl2-extractable Cu and Cd, accounted for about 74.5-86.8 % of CaCl2-extractable Cu and Cd in soil. The results indicated that amendments' application increased the wet soil aggregate stability and decreased the available Cu and Cd. The distribution of available heavy metals in wet soil aggregates was not controlled by soil aggregate stability, but possibly by soil organic carbon.

  4. Tribological Properties of Polyvinyl Alcohol Hydrogel Reinforced with Nanometer Hydroxy Apatite

    WU Gang; ZHANG Wenguang; WANG Chengtao


    As a potential artificial cartilage material,the friction and wear properties of nano-hydroxy apatite(HA)particles filled poly(vinyl alcohol)hydrogel(PVA-H)composites sliding against stainless steel disk under water lubrication condition were studied by using a four bali tester.The worn surfaces were investigated by using a scanning electron microscope(SEM)to determine the wear mechanisms.Experimental results show that filling HA to PVA-H will slightly increase the friction coefficient of composites with the increasing of HA content under water lubrication condition.Meanwhile,HA particles can greatly reduce the wear mass loss of the PVA-H composites and enhance the load carrying capacity,the wear loss of the 1 wt% HA reinforced PVA-H composites can be decreased by 30 percent under 2.0 MPa to 50 percent under 0.5 MPa contact pressure.We also found that 2 wt% HA content of composites increase the wear mass loss under the same condition.SEM examination shows that the worn surface of low HA containing(1 wt%)composites are much smoother than that of pure PVA-H or high HA containing(2 wt%)composites under 1.5 MPa contact pressure.It is also found that there are big hole and big reunited HA particles in the surface of 2 wt% HA containing composites,which leads to deterioration of the surface of samples under higher loads in water lubrication.These results may be useful in the tribological design of artificial articular cartilage material.

  5. Application of carbonated apatite coating on a Ti substrate by aqueous spray method.

    Mochizuki, Chihiro; Hara, Hiroki; Takano, Ichiro; Hayakawa, Tohru; Sato, Mitsunobu


    The fabrication and characterization of a carbonate-containing apatite film deposited on a Ti plate via an aqueous spray method is described. The mist of the spray solution emitted from a perpendicularly oriented airbrush was made to strike a warmed Ti substrate. The thicknesses of the sprayed film and those heat-treated at 400 °C-700 °C under Ar gas flow were in the range 1.21-1.40 μm. The results of elemental analyses and Fourier transform infrared spectroscopy of the powders that were mechanically collected from the surface of the sprayed film suggest that the film was Ca(10)(PO4)6(CO3) · 2CO2 · 3H2O. The presence of the carbonate ion and the lattice CO2 molecule was confirmed via the aforementioned analyses; the finding was also consistent with the X-ray diffraction patterns of the films and the chemical identity of the sprayed and heat-treated films that were measured using X-ray photoelectron spectroscopy. The sprayed film comprises a characteristic network structure, which contains round particles within the networks, as was observed by field-emission scanning electron microscopy. A scratch test indicated that the shear stress of the sprayed film (21 MPa) significantly improved to 40 and >133 MPa after heat-treatment at 600 °C and 700 °C, respectively, under Ar gas flow for 10 min. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Increase of apatite dissolution rate by Scots pine roots associated or not with Burkholderia glathei PML1(12)Rp in open-system flow microcosms

    Calvaruso, Christophe; Turpault, Marie-Pierre; Frey-Klett, Pascale; Uroz, Stéphane; Pierret, Marie-Claire; Tosheva, Zornitza; Kies, Antoine


    The release of nutritive elements through apatite dissolution represents the main source of phosphorus, calcium, and several micronutrients (e.g., Zn, Cu) for organisms in non-fertilized forest ecosystems. The aim of this study was to quantify, for the first time, the dissolution rate of apatite grains by tree roots that were or were not associated with a mineral weathering bacterial strain, and by various acids known to be produced by tree roots and soil bacterial strains in open-system flow microcosms. In addition, we explored whether the mobilization of trace elements (including rare earth elements) upon apatite dissolution was affected by the presence of trees and associated microorganisms. The dissolution rate of apatite by Scots pine plants that were or were not inoculated with the strain Burkholderia glathei PML1(12)Rp, and by inorganic (nitric) and organic (citric, oxalic and gluconic) acids at pH 5.5, 4.8, 3.8, 3.5, 3.0, and 2.0 was monitored in two controlled experiments: "plant-bacteria interaction" and "inorganic and organic acids". Analyses of the outlet solutions in the "plant-bacteria interaction" experiment showed that Scots pine roots and B. glathei PML1(12)Rp produced protons and organic acids such as gluconate, oxalate, acetate, and lactate. The weathering budget calculation revealed that Scots pines (with or without PML1(12)Rp) significantly increased (factor > 10) the release of Ca, P, As, Sr, Zn, U, Y, and rare earth elements such as Ce, La, Nd from apatite, compared to control abiotic treatment. Scanning electron microscopy observation confirmed traces of apatite dissolution in contact of roots. Most dissolved elements were taken up by Scots pine roots, i.e., approximately 50% of Ca, 70% of P, 30% of As, 70% of Sr, 90% of Zn, and 100% of U, Y, and rare earth elements. Interestingly, no significant additional effect due to the bacterial strain PML1(12)Rp on apatite dissolution and Scots pine nutrition and growth was observed. The "inorganic

  7. Study of the auto-irradiation effects in apatites structure materials; Etude des effets d'auto-irradiation dans des materiaux a structure apatitique

    Soulet, St


    The incorporation of an actinide in a material puts it to the action of an alpha particle, of some MeV always followed by the recoil of the residual nucleus. This last ones, with an energy of about a hundred of keV produces the greatest part of the irradiation damages. The study of the natural analogues has allowed to identify the fluoro-apatites which have a high amount of phosphates groups, as potential actinides conditioning matrices. Former works, simulating the alpha decay in the monocrystalline phospho-calcic fluoro-apatite have revealed an exfoliation phenomenon and an annealing of the defects which are formed by the recoil nuclei by the helium ions. This work has shown that the exfoliation can not be produced on polycrystalline apatitic materials (phospho-calcic fluoro-apatite and fluoro-apatite with one silicate) probably on account of the removal of helium outside the grains and by the diffusion of helium inside the grain boundaries. On the other hand, these helium removal ways decrease the chemical resistance of the fluoro-apatite. In the same way, the dissolution velocity of the apatite is strongly increased above the damage threshold corresponding to the percolation of the isolated defects and especially in the case of total amorphization. Concerning the effect of the recoil and annealing nuclei by the alpha particles, an original study method including the use of a transmission electron microscope coupled with a ions implanter has been carried out. This device has allowed to make irradiations simulating the alpha decay and to follow in situ the evolution of polycrystalline samples disorder. It has been shown that for all the solid solution of phospho-silicated fluoro-apatites, the amorphization is produced directly in series. In the same way, on account of this technique, the efficiency of the annealing by alpha has been measured on different apatite compositions. The main result shows that the efficiency of the annealing by alpha in the fluoro-apatite

  8. Apatite trace element and halogen compositions as petrogenetic-metallogenic indicators: Examples from four granite plutons in the Sanjiang region, SW China

    Pan, Li-Chuan; Hu, Rui-Zhong; Wang, Xin-Song; Bi, Xian-Wu; Zhu, Jing-Jing; Li, Chusi


    The abundances of trace elements including Sr, Ga and rare earth elements (REE) and halogens in apatite crystals from four intermediate-felsic plutons in the Zhongdian terrane in the Sanjiang region have been determined using electron microprobe and laser ablation inductively coupled plasma mass spectrometry to evaluate the potential of apatite as a petrogenic-metallogenic indicator. The selected plutons include one that is not mineralized (the Triassic Xiuwacu pluton, or the TXWC pluton), one that hosts a porphyry-type Cu deposit (the Pulang pluton, or the PL pluton), one that hosts a porphyry-type Mo deposit (the Tongchanggou pluton, or the TCG pluton), and one that hosts a vein-type Mo deposit (the Cretaceous Xiuwacu pluton, or the CXWC pluton). Except for the CXWC pluton, the other three plutons have adakite-like trace element signatures in whole rocks. The results from this study show that REE, Sr and halogens in apatite can be used to track magma compositions, oxidation states and crystallization history. Apatite crystals from the adakite-like plutons are characterized by much higher Sr/Y and δEu than the non-adakite-type pluton. This means that apatite, which is not susceptible to alteration, is a useful tool for identifying the adakite-like plutons that no longer preserve the initial Sr/Y ratios in whole rocks due to weathering and hydrothermal alteration. Based on apatite Ga contents and δEu values, it is inferred that the parental magmas for the two adakite-like plutons containing porphyry-type Cu and Mo mineralization are more oxidized than that for the non-adakite-type pluton containing vein-type Mo mineralization. Apatite crystals from the vein-type Mo deposit have much lower Cl/F ratios than those from the porphyry-type Cu and Mo deposits. Apatite crystals from the adakite-like pluton without Cu or Mo mineralization is characterized by much lower Cl/F ratios than those from the adakite-like plutons that host the porphyry-type Cu and Mo deposits. The

  9. Répartition de l'uranium et du thorium dans les apatites : implications pour la thermochronologie U_Th/HeDistribution of U and Th in apatites: implications for U_Th/He thermochronology

    Jolivet, Marc; Dempster, Tim; Cox, Richard


    The UTh/He thermochronology technique assumes a homogeneous distribution of U and Th within the analysed crystals. Cathodoluminescence imaging reveals a strong chemical heterogeneity within apatite a mineral widely used for UTh/He dating. This heterogeneity is then susceptible to induce large errors when calculating the UTh/He age. Chemical analysis using laser ablation ICP-MS of the various zones shown by cathodoluminescence display a link between the Ce, U and Th concentration and the luminescence intensity allowing the UTh/He age to be corrected for zonation. To cite this article: M. Jolivet et al., C. R. Geoscience 335 (2003).

  10. Effect of white mineral trioxide aggregate compared with biomimetic carbonated apatite on dentine bridge formation and inflammatory response in a dental pulp model.

    Danesh, F; Vahid, A; Jahanbani, J; Mashhadiabbas, F; Arman, E


      To evaluate the effects of apatite precipitation on the biocompatibility and hard tissue induction properties of white mineral trioxide aggregate (WMTA) in a dental pulp model.   Pulp exposures were created on the axial walls of 32 sound canine teeth of eight dogs. Four additional sound teeth served as controls. The pulps were capped either with WMTA or apatite derivatives [biomimetic carbonated apatite (BCAp)] in the interaction of WMTA with a synthetic tissue fluid and restored with zinc oxide-eugenol cement. After 7 and 70 days, the animals were killed, and the histological specimens taken from the teeth were stained with haematoxylin and eosin for histomorphological evaluation. The Brown and Brenn technique was employed to stain bacteria. The data were subjected to nonparametric Kruskall-Wallis analysis and Mann-Whitney U_tests.   Biomimetic carbonated apatite did not induce hard tissue bridge formation. WMTA performed significantly better than BCAp in this respect at both periods (P 0.05).   White mineral trioxide aggregate induced hard tissue formation via a mechanism other than that postulated via apatite formation. © 2011 International Endodontic Journal.

  11. Formation of bone-like apatite on poly(L-lactide) to improve osteoblast-like compatibility in vitro and in vivo

    JIAO Yanpeng; LIU Zongbua; ZHOU Changren; CUI Fuzhai


    The biomimetic apatite coating process was adopted to modify poly(L-lactide) (PLLA) surfaces with osteoblasts-like cell compatibility. The apatite coating was formed on the pre-hydrolyzed PLLA film and scaffold surfaces by incubating in simulated body fluid (SBF). Scanning electron microscopy and energy dispersive X-ray analyzer were utilized to characterize the composition and the structure of the apatite coating. The cytocompatibility of the modified PLLA films was investigated by testing osteoblast-like attachment, proliferation, alkaline phosphatase (ALP) activity, and cell cycle. Subsequently, the modified PLLA scaffolds were co-cultured with the osteoblasts-like in vitro and subcutaneously implanted into nude mice. The experi-mental results showed that the formed apatite had a nano-sized particle and matrix configuration. The surface modification of PLLA with apatite coating significantly pro-moted osteoblast-like compatibility. After a four-week culture in vivo, no significant in flammatory signs were observed in the implanted regions and osteoblast-like congeries with bone-like structure began to form in the scaffolds. The positive results of this study suggest a good way to produce desirable PLLA biomaterials for bone tissue engineering.

  12. Effect of hot water and heat treatment on the apatite-forming ability of titania films formed on titanium metal via anodic oxidation in acetic acid solutions.

    Cui, Xinyu; Kim, Hyun-Min; Kawashita, Masakazu; Wang, Longbao; Xiong, Tianying; Kokubo, Tadashi; Nakamura, Takashi


    Titanium and its alloys have been widely used for orthopedic implants because of their good biocompatibility. We have previously shown that the crystalline titania layers formed on the surface of titanium metal via anodic oxidation can induce apatite formation in simulated body fluid, whereas amorphous titania layers do not possess apatite-forming ability. In this study, hot water and heat treatments were applied to transform the titania layers from an amorphous structure into a crystalline structure after titanium metal had been anodized in acetic acid solution. The apatite-forming ability of titania layers subjected to the above treatments in simulated body fluid was investigated. The XRD and SEM results indicated hot water and/or heat treatment could greatly transform the crystal structure of titania layers from an amorphous structure into anatase, or a mixture of anatase and rutile. The abundance of Ti-OH groups formed by hot water treatment could contribute to apatite formation on the surface of titanium metals, and subsequent heat treatment would enhance the bond strength between the apatite layers and the titanium substrates. Thus, bioactive titanium metals could be prepared via anodic oxidation and subsequent hot water and heat treatment that would be suitable for applications under load-bearing conditions.

  13. Behaviors of MC3T3-E1 cells on carbonated apatite films, with a characteristic network structure, fabricated on a titanium plate by aqueous spray coating

    Mochizuki, Chihiro; Hara, Hiroki [Division of Liberal Arts, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan); Oya, Kei [Research Institute for Science and Technology, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan); School of Engineering, Tokai University, 4-1-1 Kitakanane, Hiratsuka, Kanagawa 259-1292 (Japan); Aoki, Shun [Faculty of System Design, Tokyo Metropolitan University, 6-6 Asahigaoka, Hino, Tokyo 191-0065 (Japan); Hayakawa, Tohru [Department of Dental Engineering, Tsurumi University School of Dental Medicine, 2-1-3 Tsurumi, Yokohama City, Kanagawa 230-8501 (Japan); Fujie, Hiromichi [Faculty of System Design, Tokyo Metropolitan University, 6-6 Asahigaoka, Hino, Tokyo 191-0065 (Japan); Sato, Mitsunobu, E-mail: [Division of Liberal Arts, Kogakuin University, 2665-1 Nakano, Hachioji, Tokyo 192-0015 (Japan)


    Four carbonated apatite films having average thicknesses of 1.3–0.11 μm, proportions of network sizes above 10 μm of 41–68%, and average border heights of the characteristic network structure of 0.98–0.29 μm were fabricated on a titanium plate by aqueous spray coating. These carbonated apatite films after heat treatment showed good mineralization ability in Hanks' balanced salt solution. Assessment of initial cell attachment and calcination on these films and on the Ti plate using osteoblastic MC3T3-E1 indicated that the carbonated apatite film heat treated at 600 °C, whose film thickness, proportion of network sizes above 10 μm, and border height were 0.11 μm, 61%, and 0.31 μm, respectively, was most preferred by osteoblastic cells. Field emission scanning electron microscopic observation of the cells attached to the films showed that the wide network and low border height of the network structure on the carbonated apatite film play an important role in the development of the filopodia of the osteoblastic cells. - Highlights: • Osteoblastic MC3T3-E1 behaviors on aqueous spray coating-derived carbonated apatite (CA) films • The network size of CA films is important. • CA films having a low network border height are better for cell proliferation.

  14. Project Work Plan: Sequestration of Strontium-90 Subsurface Contamination in the Hanford 100-N Area by Surface Infiltration of an Apatite Solution

    Szecsody, Jim E.


    We propose to develop an infiltration strategy that defines the precipitation rate of an apatite-forming solution and Sr-90 sequestration processes under variably saturated (low water content) conditions. We will develop this understanding through small-scale column studies, intermediate-scale two-dimensional (2-D) experiments, and numerical modeling to quantify individual and coupled processes associated with apatite formation and Sr-90 transport during and after infiltration of the Ca-citrate-PO4 solution. Development of capabilities to simulate these coupled biogeochemical processes during both injection and infiltration will be used to determine the most cost-effective means to emplace an in situ apatite barrier with a longevity of 300 years to permanently sequester Sr-90 until it decays. Biogeochemical processes that will be investigated are citrate biodegradation and apatite precipitation rates at varying water contents as a function of water content. Coupled processes that will be investigated include the influence of apatite precipitation (which occupies pore space) on the hydraulic and transport properties of the porous media during infiltration.

  15. Probing the limit of magnesium uptake by β-tricalcium phosphate in biphasic mixtures formed from calcium deficient apatites

    Kumar, P. Nandha; Mishra, Sandeep K.; Kannan, S., E-mail:


    A series of magnesium doped non-stoichiometric calcium deficient apatites were synthesized through an aqueous precipitation route. The resultant structural changes during heat treatment were investigated by X-ray diffraction, Raman and FT-IR spectroscopy and Rietveld refinement. The results confirmed the formation of biphasic mixtures comprising Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2} and β-Ca{sub 3}(PO{sub 4}){sub 2} after heat treatment at 1000 °C with the preferential occupancy of Mg{sup 2+} at the crystal lattice of β-Ca{sub 3}(PO{sub 4}){sub 2}. The concentration of Mg{sup 2+} uptake in β-Ca{sub 3}(PO{sub 4}){sub 2} is limited till reaching the stoichiometric ratio of (Ca+Mg)/P=1.67 and beyond this stoichiometric value [(Ca+Mg)/P>1.67], Mg{sup 2+} precipitates as Mg(OH){sub 2} and thereafter gets converted to MgO during heat treatment. Any kind of Mg{sup 2+} uptake in the crystal lattice of Ca{sub 10}(PO{sub 4}){sub 6}(OH){sub 2} is discarded from the investigation. - Highlights: • Aqueous co-precipitation of calcium deficient apatites with excess magnesium (Mg{sup 2+}) additions. • Heat treatments beyond 800 °C results in the formation of biphasic apatite mixtures. • Mg{sup 2+} gets accommodated at the β-Ca{sub 3}(PO{sub 4}){sub 2} lattice of biphasic mixtures. • Mg{sup 2+} additions exceeding stoichiometric value (Ca/P>1.67) results in its formation as MgO. • Mg{sup 2+} occupancy at β-Ca{sub 3}(PO{sub 4}){sub 2} lattice delays its allotropic conversion α-Ca{sub 3}(PO{sub 4}){sub 2} till 1350 °C.

  16. Enhanced ionic conductivity of apatite-type lanthanum silicate electrolyte for IT-SOFCs through copper doping

    Ding, Xifeng; Hua, Guixiang; Ding, Dong; Zhu, Wenliang; Wang, Hongjin


    Apatite-type Lanthanum silicate (LSO) is among the most promising electrolyte for intermediate temperature solid oxide fuel cells (IT-SOFCs) owing to the high conductivity and low activation energy at lower temperature than traditional doped-zirconia electrolyte. The ionic conductivity as well as the sintering density of lanthanum silicate oxy-apatite, La10Si6-xCuxO27-δ (LSCO, 0 ≤ x ≤ 2), was effectively enhanced through a small amount of doped copper. The phase composition, relative density, ionic conductivity and thermal expansion behavior of La10Si6-xCuxO27-δ was systematically investigated by X-ray diffraction (XRD), Archimedes' drainage method, scanning electron microscope (SEM), electrochemical impedance spectra (EIS) and thermal dilatometer techniques. With increasing copper doping content, the ionic conductivity of La10Si6-xCuxO27-δincreased, reaching a maximum of 4.8 × 10-2 S cm-1 at 800 °C for x = 1.5. The improved ionic conductivity could be primarily associated with the enhanced grain conductivity. The power output performance of NiO-LSCO/LSCO/LSCF single cell was superior to that obtained on NiO-LSO/LSO/LSCF at different temperatures using hydrogen as fuel and oxygen as oxidant, which could be attributed to the enhanced oxygen ionic conductivity as well as the sintering density for the copped doped lanthanum silicate. In conclusion, the apatite La10Si4.5Cu1.5O25.5 is a promising candidate electrolyte for IT-SOFCs.

  17. Evaluation of calcium-releasing and apatite-forming abilities of fast-setting calcium silicate-based endodontic materials.

    Han, L; Kodama, S; Okiji, T


    To evaluate two fast-setting calcium silicate-based endodontic materials (Endocem mineral trioxide aggregate (MTA) and Endocem Zr) with regard to their ability to release calcium ions (Ca(2+)) and produce apatite-like precipitates after immersion in phosphate-buffered saline (PBS). Endocem MTA, Endocem Zr and white ProRoot MTA (WMTA) were used. Chemical composition of the powder of each material was analysed with a wavelength-dispersive X-ray spectroscopy electron probe microanalyser with image observation function (SEM-EPMA). The amount of Ca(2+) released from water-immersed set cements was measured with an EDTA titration method. Morphology and chemical composition of surface precipitates formed on the surface of PBS-immersed cements were analysed with the SEM-EPMA. Data obtained were analysed using one-way analysis of variance and Tukey's honestly significant difference test with a significance level of 5%. Endocem MTA and WMTA contained calcium (Ca), silicon (Si) and bismuth as the major elemental constituents, whereas Endocem Zr contained zirconium as the most abundant element, followed by Ca and Si. The amount of Ca(2+) release was WMTA >Endocem MTA ≥Endocem Zr. After immersion in PBS for 14 days, the three materials produced Ca- and phosphorus (P)-containing apatite-like surface precipitates. WMTA showed higher Ca/P ratio of the precipitates compared with the other cements, with statistical significance between WMTA and Endocem Zr (P < 0.05). Compared with WMTA, Endocem MTA and Endocem Zr were associated with significantly less Ca ions release and, when immersed in PBS, produced apatite-like crystalline precipitates of significantly lower Ca/P ratios. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  18. Evidence of Thermal Evolution History of Northeast Sichuan Basin (U-Th)/He Low Temperature Thermochronometry of Apatite and Zircon

    Qin Jianzhong; Wang Jie; Qiu Nansheng


    (U-Th)/He dating is a newly developed low temperature thermochronometry,and it elaborately reflects cooling history of geologic body under low temperature.It can be applied to analyze thermal evolution of the sedimentary basin,combining with vitrinite reflectance and fission track.(U-Th)/He dating of apatite and zircon from drilling cores in Puguang (普光)-Maoba (毛坝) area and outcrops in Tongjiang (通江) area indicates that the Northeast Sichuan (四川) basin underwent great uplift and denudation during the Tertiary and the Quaternary.During the period,denudation rates changed from 74.8 to 172.5 m/Ma and denudation thickness was between 2 800 and 3 000 m,geotemperature gradually declined into the current temperature,passing through helium closure temperature of apatite.The uplift and denudation relate to new tectonic movement response in the Sichuan basin aroused by the Qinghai (青海)-Tibet plateau.Drilling samples above 4 000 m did not undergo closure temperature of zircon,but the samples nearly 4 000 m might approach closure temperature of zircon and all the samples underwent closure temperature of apatite.According to (U-Th)/He ages of zircon,it is concluded that the Northeast Sichuan basin began to uplift in the Late Jurassic.From the Late Jurassic to the Paleogene,Northeast Sichuan basin was in slow uplift and denudation,but the denudation of Puguang-Maoba area was earlier than that of Tongjiang area.(U-Th)/He ages of zircon indicate the denudation time of provenance areas.On the basis of paleodrainage characteristics,provenance transport and other related data,provenance areas of the clastic rocks are decided,which is worthy to be investigated further.

  19. Preparation of a non-woven poly(ε-caprolactone) fabric with partially embedded apatite surface for bone tissue engineering applications by partial surface melting of poly(ε-caprolactone) fibers.

    Kim, In Ae; Rhee, Sang-Hoon


    This article describes a novel method for the preparation of a biodegradable non-woven poly(ε-caprolactone) fabric with a partially embedded apatite surface designed for application as a scaffold material for bone tissue engineering. The non-woven poly(ε-caprolactone) fabric was generated by the electro-spinning technique and then apatite was coated in simulated body fluid after coating the PVA solution containing CaCl2 ·2H2 O. The apatite crystals were partially embedded or fully embedded into the thermoplastic poly(ε-caprolactone) fibers by controlling the degree of poly(ε-caprolactone) fiber surface melting in a convection oven. Identical apatite-coated poly(ε-caprolactone) fabric that did not undergo heat-treatment was used as a control. The features of the embedded apatite crystals were evaluated by FE-SEM, AFM, EDS, and XRD. The adhesion strengths of the coated apatite layers and the tensile strengths of the apatite coated fabrics with and without heat-treatment were assessed by the tape-test and a universal testing machine, respectively. The degree of water absorbance was assessed by adding a DMEM droplet onto the fabrics. Moreover, cell penetrability was assessed by seeding preosteoblastic MC3T3-E1 cells onto the fabrics and observing the degrees of cell penetration after 1 and 4 weeks by staining nuclei with DAPI. The non-woven poly(ε-caprolactone) fabric with a partially embedded apatite surface showed good water absorbance, cell penetrability, higher apatite adhesion strength, and higher tensile strength compared with the control fabric. These results show that the non-woven poly(ε-caprolactone) fabric with a partially embedded apatite surface is a potential candidate scaffold for bone tissue engineering due to its strong apatite adhesion strength and excellent cell penetrability. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A, 2017.

  20. Cretaceous Cu-Au, pyrite, and Fe-oxide-apatite deposits in the Ningwu basin, Lower Yangtze Area, Eastern China

    Yu, Jin-Jie; Lu, Bang-Cheng; Wang, Tie-Zhu; Che, Lin-Rui


    The Cretaceous Ningwu volcanic basin of the Middle and Lower Yangtze River Valley metallogenic belt of eastern China hosts numerous Fe-oxide-apatite, Cu-Au, and pyrite deposits. The mineralization in the Ningwu basin is associated with subvolcanic rocks, consisting of gabbro-diorite porphyry and/or pyroxene diorite. However, the mineralization is associated with subvolcanic and volcanic rock suite belonging to the Niangniangshan Formation in the Tongjing Cu-Au deposit, including nosean-bearing aegirine-augite syenites, quartz syenites, and quartz monzonites. The zoning displayed by the alteration and mineralization comprises: (1) an upper light-colored zone of argillic, carbonate, and pyrite alteration and silicification that is locally associated with pyrite and gold mineralization, (2) a central dark-colored zone of diopside, fluorapatite-magnetite, phlogopite, and garnet alteration associated with fluorapatite-magnetite mineralization, and (3) a lowermost light-colored zone of extensive albite alteration. The Cu-Au and pyrite orebodies are peripheral to the Fe-oxide-apatite deposits in this area and overlie the iron orebodies, including the Meishan Cu-Au deposit in the northern Ningwu basin and the pyrite deposits in the central Ningwu basin. The δ34S values of sulfides from the Fe-oxide-apatite, Cu-Au, and pyrite deposits in the Ningwu basin show large variation, with a mixed sulfur source, including magmatic sulfur and/or a mixture of sulfur derived from a magmatic component, country rock, and thermochemical reduction of sulfate at 200-300 °C. The ore-forming fluids associated with iron mineralization were derived mainly from magmatic fluids, and the late-stage ore-forming fluids related to Cu-Au and pyrite mineralization may have formed by the introduction of cooler meteoric water to the system. The Fe-oxide-apatite, Cu-Au, and pyrite deposits of the Ningwu basin formed in an extensional environment and are associated with a large-scale magmatic

  1. Apatite- and monazite-bearing glass-crystal composites for the immobilization of low-level nuclear and hazardous wastes

    Wronkiewicz, D.J.; Wolf, S.F.; DiSanto, T.S.


    This study demonstrates that glass-crystal composite waste forms can be produced from waste streams containing high proportions of phosphorus, transition metals, and/or halides. The crystalline phases produced in crucible-scale melts include apatite, monazite, spinels, and a Zr-Si-Fe-Ti phase. These phases readily incorporated radionuclide and toxic metals into their crystal structures, while corrosion tests have demonstrated that glass-crystal composites can be up to 300-fold more durable than simulated high-level nuclear waste glasses, such as SRL 202U.

  2. [Practical experiences with antegrade local chemolysis of struvite/apatite, uric acid and cystine calculi in the kidney].

    Weirich, W; Frohneberg, D; Ackermann, D; Alken, P


    In 18 patients (20 kidneys) with struvite/apatite-, uric acid- and cystine stones antegrade local chemolysis was performed via percutaneous or operative nephrostomy. Complete stone dissolution was achieved in 11 kidneys, while in six kidneys partial dissolution of stones was performed. In these six cases added instrumental manipulations shortened the time of therapy. In three cases chemolysis was unsuccessful. Average irrigation time was 21 days per renal unit. Only minor complications like dysuria and skin rashes were seen. Due to long time of irrigation we recommend chemolitholysis mainly as an additional form of therapy in case of residual stones after operative or percutaneous nephrolithotomy.

  3. Study of damage and helium diffusion in fluoro-apatites; Etude de l'endommagement et de la diffusion de l'helium dans des fluoroapatites

    Miro, S


    This work lies within the scope of the study of the radionuclides containment matrices. The choice of the fluoro-apatites as potential matrices of containment was suggested by the notable properties of these latter (thermal and chemical stability even under radioactive radiation). By irradiations with heavy ions and a helium implantation we simulated the effects related to the alpha radioactivity and to the spontaneous nuclear fission of the radionuclides. Thanks to the study of Durango fluoro-apatite single crystals and fluoro-apatite sintered ceramics, we evidenced that the damage fraction as well as the unit cell deformations increase with the electronic energy loss and with the substitution. These effects are followed at high fluences by a phenomenon of re-crystallization. The study of the helium diffusion points out that the thermal diffusion process improves with the substitution and strongly increases with heavy ions irradiation. (author)

  4. Model Evaluation the Effect of Size, Shape and Surface Condition of Apatite Nanocrystals on the Deviation of Ca / P ratio from stoichiometric

    S.N. Danilchenko


    Full Text Available The causes of Са / Р ratio deviation in biological apatites from stoichiometric one were discussed. By the simple model evaluation Са / Р ratio was shown to deviate from stoichiometric one because of small sizes of crystals, and peculiarities in chemical composition of their facets. Also size effect is noted to be unsufficient for explanation of wide variations of Са / Р ratio in biological apatites. It proves the significant contribution of lattice isovalent and heterovalent substitution into variability of Са / Р ratio. The problem of revealing the predominant causes of Са / Р deviation from stoichiometric one and estimation of their relative contribution is related to determination of the functional role of the structural imperfections in biological apatites of different origin.

  5. Development and functioning of microorganisms in concentration cycles of sulfide copper-nickel and non-sulfide apatite-nepheline ores

    Fokina N. V.


    Full Text Available The number and trophic diversity of bacteria in flotation samples of apatite-nepheline and sulfide copper-nickel ores at the concentration plants of JSC "Apatite" and Kola Mining and Metallurgical Company have been determined. The study of the size and diversity of the microbiota has been conducted by culture on selective nutrient media. The total number and biomass of bacteria have been considered by fluorescence microscopy using Cyclopore polycarbonate membrane filters. Bacteria have been identified by molecular genetic methods. The least amount of both saprotrophic and other trophic groups of bacteria has been observed in the samples of ore and recycled water as at the concentrating factory of Apatit JSC, and also at the plant "Pechenganikel". It has been found out that the bacteria contained in the ore and recycling water flowing from the tailings increased their number during the flotation process due to coming of the nutrients with the flotation reagents, aeration and increased temperature. Strains which occurrence is more than 60 % have been extracted from recycled water and basic flotation products and classified as Pseudomonas. Two strains with occurrence of more than 60 % have been discovered at Apatit JSC and classified as Stenotrophomonas and Acinetobacter. The number of fungi in the cycle of apatite-nepheline ore enrichment at the factories is very low (1 to 24 CFU / 1 ml or 1 g of ore. Fungi of the genus Penicillium have been dominated, fungi of the genera Acremonium, Aureobasidium, Alternaria, Chaetomium have also been detected. At the plant "Pechenganikel" species Aspergillus fumigatus, Penicillium aurantiogriseum and P. glabrum have been extracted. It has been shown that the bacteria deteriorate the apatite flotation as a result of their interaction with active centers of calcium-containing minerals and intensive flocculation decreasing the floatation selectivity. Also some trend of copper and nickel recovery change has been

  6. The thermal history of the Miocene Ibar Basin (Southern Serbia: new constraints from apatite and zircon fission track and vitrinite reflectance data

    Andrić Nevena


    Full Text Available The Ibar Basin was formed during Miocene large scale extension in the NE Dinaride segment of the Alpine- Carpathian-Dinaride system. The Miocene extension led to exhumation of deep seated core-complexes (e.g. Studenica and Kopaonik core-complex as well as to the formation of extensional basins in the hanging wall (Ibar Basin. Sediments of the Ibar Basin were studied by apatite and zircon fission track and vitrinite reflectance in order to define thermal events during basin evolution. Vitrinite reflectance (VR data (0.63-0.90 %Rr indicate a bituminous stage for the organic matter that experienced maximal temperatures of around 120-130 °C. Zircon fission track (ZFT ages indicate provenance ages. The apatite fission track (AFT single grain ages (45-6.7 Ma and bimodal track lengths distribution indicate partial annealing of the detrital apatites. Both vitrinite reflectance and apatite fission track data of the studied sediments imply post-depositional thermal overprint in the Ibar Basin. Thermal history models of the detritial apatites reveal a heating episode prior to cooling that began at around 10 Ma. The heating episode started around 17 Ma and lasted 10-8 Ma reaching the maximum temperatures between 100-130 °C. We correlate this event with the domal uplift of the Studenica and Kopaonik cores where heat was transferred from the rising warm footwall to the adjacent colder hanging wall. The cooling episode is related to basin inversion and erosion. The apatite fission track data indicate local thermal perturbations, detected in the SE part of the Ibar basin (Piskanja deposit with the time frame ~7.1 Ma, which may correspond to the youngest volcanic phase in the region.

  7. Characteristics estimation of coal liquefaction residue; Sekitan ekika zansa seijo no suisan ni kansuru kento

    Itonaga, M.; Imada, K. [Nippon Steel Corp., Tokyo (Japan); Okada, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan)


    The paper studied a possibility of estimating characteristics of coal liquefaction residue from liquefaction conditions in the case of fixing coal kind in the NEDOL process coal liquefaction PSU. Wyoming coal was used for the study, and the already proposed simplified liquefaction reaction models were used. Among material balances explained by the models, those of asphaltene, preasphaltene, THF insoluble matters are concerned with residue composition. Ash content is separately calculated from ash balance. Reaction velocity constants of simplified liquefaction reaction models which influence the residue composition were obtained by the multiple regression method from experimental results in the past. The estimation expression of residue viscosity was introduced from residue ash/composition. When the residue composition is estimated by the model from liquefaction conditions, and the residue viscosity is obtained using it, the higher the liquefaction temperature is, the higher the residue viscosity is. The result obtained well agreed the measuring result. The simplified liquefaction model of a certain coal kind has been established, and characteristics of residue can be estimated even at liquefaction conditions which have never been experienced before if there is a certain amount of the accumulated data on residue composition/characteristics. 4 refs., 4 figs., 4 tabs.

  8. H10306: NOS Hydrographic Survey , Suisan Bay, Honker Bay, California, 1989-09-06

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Oceanic and Atmospheric Administration (NOAA) has the statutory mandate to collect hydrographic data in support of nautical chart compilation for safe...

  9. H10303: NOS Hydrographic Survey , Suisan Bay, Honker Bay, California, 1989-07-05

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Oceanic and Atmospheric Administration (NOAA) has the statutory mandate to collect hydrographic data in support of nautical chart compilation for safe...

  10. Apatite Fission-Track Analysis of the Middle Jurassic Todos Santos Formation from Chiapas, Mexico.

    Abdullin, Fanis; Solé, Jesús; Shchepetilnikova, Valentina; Solari, Luigi; Ortega-Obregón, Carlos


    The Sierra de Chiapas (SCH), located in the south of Mexico, is a complex geological province that can be divided on four different lithological or tectonic areas: (1) the Chiapas Massif Complex (CMC); (2) the Central Depression; (3) the Strike-slip Fault Province, and (4) the Chiapas Fold-and-thrust Belt. The CMC mostly consists of Permian granitoids and meta-granitoids, and represents the basement of the SCH. During the Jurassic period red beds and salt were deposited on this territory, related to the main pulse of rifting and opening of the Gulf of Mexico. Most of the Cretaceous stratigraphy contains limestones and dolomites deposited on a marine platform setting during the postrift stage of the Gulf of Mexico rift. During the Cenozoic Era took place the major clastic sedimentation along the SCH. According the published low-temperature geochronology data (Witt et al., 2012), SCH has three main phases of thermo-tectonic history: (1) slow exhumation between 35 and 25 Ma, that affected mainly the basement (CMC) and is probably related to the migration of the Chortís block; (2) fast exhumation during the Middle-Late Miocene caused by strike-slip deformation that affects almost all Chiapas territory; (3) period of rapid cooling from 6 to 5 Ma, that affects the Chiapas Fold-and-thrust Belt, coincident with the landward migration of the Caribbean-North America plate boundaries. The two last events were the most significant on the formation of the present-day topography of the SCH. However, the stratigraphy of the SCH shows traces of the existence of earlier tectonic events. This study presents preliminary results of apatite fission-track (AFT) dating of sandstones from the Todos Santos Formation (Middle Jurassic). The analyses are performed with in situ uranium determination using LA-ICP-MS (e.g., Hasebe et al., 2004). The AFT data indicate that this Formation has suffered high-grade diagenesis (probably over 150 ºC) and the obtained cooling ages, about 70-60 Ma

  11. Thermotectonic evolution of the Ukrainian Donbas Foldbelt: evidence from zircon and apatite fission track data

    Spiegel, C.; Sachsenhofer, R. F.; Privalov, V. A.; Zhykalyak, M. V.; Panova, E. A.


    The Donbas Foldbelt forms part of a large Devonian rift cross-cutting the southern part of the Eastern European Craton. It comprises a 20-km-thick Devonian and Carboniferous sedimentary succession. Maximum burial occurred during early Permian time and was followed by a major exhumation phase. In this study we use zircon and apatite fission track dating to reconstruct the post-depositional thermal evolution of the inverted basin. Modelling of the fission track data, combined with modelling of vitrinite reflectance data, reveals that large parts of the basin were affected by a Permo-Triassic (˜250 Ma) heat flow event, which was presumably related to Permo-Triassic andesitic magmatism. This Permo-Triassic thermal event was predicted by previous modelling of vitrinite reflectance data, but only the fission track data indicates its wide areal distribution. Probably large parts of the southern margin of the Eastern European Craton were affected by this event. Whereas rocks west of the city of Donetsk (Krasnoarmeisk Monocline) experienced Permo-Triassic temperatures in the range of 90-105 °C, rocks northwest of Donetsk were heated to up to more than 240 °C. Jurassic temperatures northeast of Donetsk were in the order of 90-100 °C. These relatively high temperatures imply that a significant part of the Carboniferous sequence became eroded only during early Cretaceous times and/or that the Jurassic heat flow was significantly increased (˜90 mW/m 2). Elevated heat flows may be related to Jurassic magmatic activity. Sediments in the southern Donbas Foldbelt (Yuzhno-Donbassky region) and the westernmost Krasnoarmeisk Monocline record cooling below 60 °C during Jurassic times, whereas samples northeast of Donetsk cooled below 60 °C during Cretaceous times. A correlation between this last cooling and the present-day depths of the samples suggests that the main episode of folding along the South Syncline and the South Anticline pre-dates Cretaceous cooling.

  12. Surface characteristics of nanocrystalline apatites: effect of mg surface enrichment on morphology, surface hydration species, and cationic environments.

    Bertinetti, Luca; Drouet, Christophe; Combes, Christele; Rey, Christian; Tampieri, Anna; Coluccia, Salvatore; Martra, Gianmario


    The incorporation of foreign ions, such as Mg2+, exhibiting a biological activity for bone regeneration is presently considered as a promising route for increasing the bioactivity of bone-engineering scaffolds. In this work, the morphology, structure, and surface hydration of biomimetic nanocrystalline apatites were investigated before and after surface exchange with such Mg2+ ions, by combining chemical alterations (ion exchange, H2O-D2O exchanges) and physical examinations (Fourier transform infrared spectroscopy (FTIR) and high-resolution transmission electron microscopy (HRTEM)). HRTEM data suggested that the Mg2+/Ca2+ exchange process did not affect the morphology and surface topology of the apatite nanocrystals significantly, while a new phase, likely a hydrated calcium and/or magnesium phosphate, was formed in small amount for high Mg concentrations. Near-infrared (NIR) and medium-infrared (MIR) spectroscopies indicated that the samples enriched with Mg2+ were found to retain more water at their surface than the Mg-free sample, both at the level of H2O coordinated to cations and adsorbed in the form of multilayers. Additionally, the H-bonding network in defective subsurface layers was also noticeably modified, indicating that the Mg2+/Ca2+ exchange involved was not limited to the surface. This work is intended to widen the present knowledge on Mg-enriched calcium phosphate-based bioactive materials intended for bone repair applications.

  13. Electronic Properties of TiO2 Nanoparticles Films and the Effect on Apatite-Forming Ability

    Johanna Löberg


    Full Text Available Nanoparticle-covered electrodes have altered properties as compared to conventional electrodes with same chemical composition. The changes originate from the large surface area and enhanced conduction. To test the mineralization capacity of such materials, TiO2 nanoparticles were deposited on titanium and gold substrates. The electrochemical properties were investigated using cyclic voltammetry and impedance spectroscopy while the mineralization was tested by immersion in simulated body fluid. Two types of nucleation and growth behaviours were observed. For smooth nanoparticle surfaces, the initial nucleation is fast with the formation of few small nuclei of hydroxyapatite. With time, an amorphous 2D film develops with a Ca/P ratio close to 1.5. For the rougher surfaces, the nucleation is delayed but once it starts, thick layers are formed. Also the electronic properties of the oxides were shown to be important. Both density of states (DOS in the bandgap of TiO2 and the active area were determined. The maximum in DOS was found to correlate with the donor density (Nd and the active surface area. The results clearly show that a rough surface with high conductivity is beneficial for formation of thick apatite layers, while the nanoparticle covered electrodes show early nucleation but limited apatite formation.

  14. Preparation of Bone-Like Apatite Coating on Surface of Ti-25Nb-2Zr Alloy by Biomimetic Growth Method

    ZHOU Yu; HUANG Runmin; CUI Zhenduo; YANG Xianjin


    A bone-like apatite layer consisting of nano-crystals of apatite phase was prepared on the surface of Ti-25Nb-2Zr alloy by chemical biomimetic growth method. TiNbZr alloy specimens were first oxidized at 500℃ for 2 h in the air. Then, they were immersed in 40℃ saturated Na2HPO4 solution for 15 h and 25 ℃ saturated Ca(OH)2 solution for 8 h in turn for pre-calcification. The pre-calcified specimens were immersed in modified simulated body fluid up to 15 d for biomimetic growth. After common oxidization, amorphous titania and anatase were detected on the specimen surface. Except for the substantial amount of calcium and phosphorus, no new phase appeared on the pre-calcified specimens. After the coating process, it was found that the (002) orientation was the preferred orientation during the growing period of hydroxyapatite. The inorganic composition and structure of the coating are very similar to those of human thigh bone, which will be advantageous for its application as biomedical material.

  15. Hydrothermal calcium modification of 316L stainless steel and its apatite forming ability in simulated body fluid.

    Valanezahad, Alireza; Ishikawa, Kunio; Tsuru, Kanji; Maruta, Michito; Matsuya, Shigeki


    To understand the feasibility of calcium (Ca) modification of type 316L stainless steel (316L SS) surface using hydrothermal treatment, 316L SS plates were treated hydrothermally in calcium chloride (CaCl(2)) solution. X-ray photoelectron spectroscopic analysis revealed that the surface of 316L SS plate was modified with Ca after hydrothermal treatment at 200°C. And the immobilized Ca increased with CaCl(2) concentration. However no Ca-modification was occurred for 316L SS plates treated at 100°C. When Ca-modified 316L SS plate was immersed in simulated body fluid (SBF) with ion concentrations nearly equal to those of human blood plasma, low crystalline apatite was precipitated on its surface whereas no precipitate was observed on non Ca-modified 316L SS. The results obtained in the present study indicated that hydrothermal treatment at 200°C in CaCl(2) solution is useful for Ca-modification of 316L SS, and Ca-modification plays important role for apatite precipitation in SBF.

  16. In vitro evaluation for apatite-forming ability of cellulose-based nanocomposite scaffolds for bone tissue engineering.

    Saber-Samandari, Samaneh; Saber-Samandari, Saeed; Kiyazar, Shiva; Aghazadeh, Jamshid; Sadeghi, Ali


    Research on synthetic bioactive bone graft materials has significantly expanded in the past decade. In this study, the nanocomposite scaffold of semi-interpenetrating networks (semi-IPN) cellulose-graft-polyacrylamide/nano-hydroxyapatite was synthesized through free radical polymerization. The scaffolds were fabricated by the freeze-drying technique. The prepared semi-IPN nanocomposite scaffolds were characterized by Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) analysis. In addition, the mechanical properties (i.e., elastic modulus and compressive strength) of the scaffolds were investigated. The SEM images showed that the pores of the scaffolds were interconnected, and their sizes ranged from 120 μm to 190 μm. Under optimum conditions, the prepared scaffolds had a compressive strength of 4.80 MPa, an elastic modulus of 0.29 GPa and a value of 47.37% porosity. Furthermore, the apatite-forming ability of the scaffolds was determined using simulated body fluid (SBF) for 28 days. The results revealed that the new apatite particles could grow on the surface of the scaffolds after a 14-day immersion in SBF. Finally, this study suggests that the prepared semi-IPN nanocomposites that closely mimic the properties of bone tissue could be a promising scaffold for bone tissue engineering.

  17. Influence of pH on the Property of Apatite-type Lanthanum Silicates Prepared by Sol-gel Process

    SHI Qingle; LU Lihua; ZENG Yanwei; ZHANG Hua


    The apatite-type lanthanum silicates with formula La9.33Si6O26 are prepared by sol-gel process.The homogeneity of the sol affected by pH value of the solution is investigated.The viscosity of the sols slightly increases first and then increases abruptly because the predominant reaction mechanism changes from hydrolysis reaction to condensation reaction.In addition,the onset time of the increase for the viscosity shortens from pH1 to pH 4.The gelation time decreases with increasing pH of the solution.Therefore,the pH of the sols should be less than 4 to form gel.The sol with initial pH 2 shows maximum value of zeta potential and maximum stability.For the sample with initial pH 2,pure apatite-type lanthanum silicates La9.33Si6O26 have been successfully prepared after the dried gel is calcined at 1 000 ℃.In addition,this sample sintered at 1 550 ℃exhibits the highest ionic conductivity.The activation energies are all less than 0.90 eV.

  18. Composites of Eu(3+)-doped calcium apatite nanoparticles and silica particles: comparative study of two preparation methods.

    Isobe, Ayumu; Takeshita, Satoru; Isobe, Tetsuhiko


    We synthesized composites of Eu(3+)-doped calcium apatite (CaAp:Eu(3+)) nanoparticles and silica particles via two methods: (i) in situ synthesis of CaAp:Eu(3+) in the presence of silica particles and (ii) electrostatic adsorption of CaAp:Eu(3+) nanoparticles on silica particle surfaces. In both methods, submicrometer spherical silica particles were covered with CaAp:Eu(3+) nanoparticles without forming any impurity phases, as confirmed by X-ray diffractometry, Fourier-transform infrared spectroscopy, and scanning electron microscopy. In method i, part of the silica surface acted as a nucleation site for apatite crystals and silica particles were inhomogeneously covered with CaAp:Eu(3+) nanoparticles. In method ii, positively charged CaAp:Eu(3+) nanoparticles were homogeneously adsorbed on the negatively charged silica surface through electrostatic interactions. The bonds between the silica surface and CaAp:Eu(3+) nanoparticles are strong enough not to break under ultrasonic irradiation, irrespective of the synthetic method used. The composite particles showed red photoluminescence corresponding to 4f → 4f transitions of Eu(3+) under near-UV irradiation. Although the absorption coefficient of the forbidden 4f → 4f transitions of Eu(3+) was small, the red emission was detectable with a commercial fluorescence microscope because the CaAp:Eu(3+) nanoparticles accumulated on the silica particle surfaces.

  19. Fabrication of macroporous carbonate apatite foam by hydrothermal conversion of alpha-tricalcium phosphate in carbonate solutions.

    Wakae, H; Takeuchi, A; Udoh, K; Matsuya, S; Munar, M L; LeGeros, R Z; Nakasima, A; Ishikawa, K


    Bone consists of a mineral phase (carbonate apatite) and an organic phase (principally collagen). Cancellous bone is characterized by interconnecting porosity necessary for tissue ingrowth and nourishment of bone cells. The purpose of the present study was to fabricate macroporous carbonate apatite (CAP) blocks with interconnecting porosity as potential bone substitute biomaterials by hydrothermal conversion of alpha-TCP foam in carbonate solution. The fabrication of the macroporous CAP was accomplished in two steps: (1) preparation of alpha-TCP foams using polyurethane foams as templates, and (2) hydrothermal conversion at 200 degrees C of alpha-TCP foam in the presence of ammonium carbonate solutions of different concentrations. The maximum carbonate content of the resultant CAP foam was approximately 7.4 wt %. The mean porosity of the CAP foam was as high as 93 vol %. The macroporous CAP blocks or granules prepared in this manner has properties similar to that of bone in mineral composition and in having interconnecting macroporosity necessary for osteoconductivity and tissue ingrowth. On the basis of composition and interconnecting macroporosity, the CAP foam materials could be ideal biomaterials for bone repair and as scaffolds for tissue engineering.

  20. Cretaceous reactivation and intensified erosion in the Archean-Proterozoic Limpopo Belt, demonstrated by apatite fission track thermochronology

    Belton, David X.; Raab, Matthias J.


    Cratons are generally assumed to be regions of long-lasting tectonic stability. In particular the study of the Phanerozoic exhumation history of cratons has been largely hampered by the scarcity of suitable stratigraphic controls onshore. This fact is even more pronounced in terranes lacking Mesozoic or younger penetrative structural fabrics and metamorphic overprinting. Our study in the Limpopo belt shows that modern apatite fission track thermochronology provides a hitherto unavailable perspective in the study of these rocks, and has profound implications for the crustal evolution of the Zimbabwe Craton. Apatite fission track data from 35 samples taken along two transects, in the southern edge of the Zimbabwe Craton and in the Central Zone of the Limpopo Belt, suggest that extensive regions experienced kilometer-scale exhumation in two discrete events, as recently as the Cretaceous. The first occurred at around 130 Ma, and the second at around 90 Ma. Basin subsidence and sedimentation loads on the Mozambique margin support the timing of these events and provide strong indications of the source and pathways for the eroded material. Further, the results indicate that young and old "surfaces" (in a geomorphological sense) may be structurally juxtaposed in regions of high elevation in Zimbabwe. This is contrary to early ideas of surface chronologies based on summit accordances or invoking pediplanation.

  1. Ionic conductivity and fuel cell properties of apatite-type lanthanum silicates doped with Mg and containing excess oxide ions

    Yoshioka, Hideki [Hyogo Prefectural Institute of Technology, 3-1-12 Yukihira-cho, Suma-ku, Kobe 654-0037 (Japan); Nojiri, Yoshihiro [Kyushu University, Department of Mechanical Engineering Science, Faculty of Engineering, Motooka 744, Nishi-ku, Fukuoka 819-0935 (Japan); Tanase, Shigeo [National Institute of Advanced Industrial Science and Technology, 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577 (Japan)


    Enhancement of the ionic conductivity of lanthanum silicate-based apatites is examined with emphasis on optimizing the La composition and the Mg doping level at the same time. La{sub 10}Si{sub 5.8}Mg{sub 0.2}O{sub 26.8} and La{sub 9.8}Si{sub 5.7}Mg{sub 0.3}O{sub 26.4} show the highest level of the ionic conductivities among apatite silicates, 8.8 and 7.4 x 10{sup -} {sup 2} S cm{sup -} {sup 1} at 800 C, respectively, with a very low level of activation energy (0.42-0.43 eV). Their conductivities are higher than yttria stabilized zirconia (YSZ) below 900 C and even comparable to Sr and Mg doped lanthanum gallate (LSGM) below 550 C. A solid oxide fuel cell using La{sub 9.8}Si{sub 5.7}Mg{sub 0.3}O{sub 26.4} as an electrolyte with Ni-ceria cermet anode and Sr doped lanthanum cobaltite cathode exhibits a remarkable improvement in power generation compared to previous data using Pt electrodes. Structural investigation by the Rietveld analysis on the powder X-ray diffraction pattern shows significant enlargement of the bottleneck triangle sizes of the conduction channel with the Mg doping. (author)

  2. In vitro biomimetic deposition of apatite on alkaline and heat treated Ti6Al4V alloy surface

    K Fatehi; F Moztarzadeh; M Solati-Hashjin; M Tahriri; M Rezvannia; R Ravarian


    Titanium alloy (Ti6Al4V) substrates, having the ability of biomimetic calcium phosphate-based materials, especially hydroxyapatite deposition in a simulated body fluid (SBF) means of chemical treatment (alkaline treatment) and subsequent heat treatment, was studied. The effects of alkaline treatment time, concentration and heat treatment temperature on the formation of calcium phosphate (carbonate–hydroxyapatite) on Ti6Al4V surface were examined. For this purpose, the metallic substrates were treated in 0, 5 and 10 M NaOH solutions at a temperature of 60 or 80°C for 1 and 3 days. Subsequently the substrate was heat-treated at 500, 600 and 700°C for 1 h for consolidation of the sodium titanate hydrogel layer. Finally, they were soaked in SBF for 1 and 3 days. The substrate surfaces were characterized by the techniques commonly used for bulk material such as scanning electron microscopy (SEM) and thin film X-ray diffraction (TF–XRD). With regard to the SEM and TF–XRD results, the optimum process consists of 3 days soaking in 5 M NaOH in 80°C and subsequent heat treatment at 600°C for 1h. It is worth mentioning that the results showed that the apatite formed within 3 days on the specimen surfaces, however, there was no sign of apatite formation in the control samples (without alkaline and heat treatment) which was treated for up to 3 days immersion in SBF.

  3. In-Situ U-Pb Dating of Apatite by Hiroshima-SHRIMP: Contributions to Earth and Planetary Science.

    Terada, Kentaro; Sano, Yuji


    The Sensitive High Resolution Ion MicroProbe (SHRIMP) is the first ion microprobe dedicated to geological isotopic analyses, especially in-situ analyses related to the geochronology of zircon. Such a sophisticated ion probe, which can attain a high sensitivity at a high mass resolution, based on a double focusing high mass-resolution spectrometer, designed by Matsuda (1974), was constructed at the Australian National University. In 1996, such an instrument was installed at Hiroshima University and was the first SHRIMP to be installed in Japan. Since its installation, our focus has been on the in-situ U-Pb dating of the mineral apatite, as well as zircon, which is a more common U-bearing mineral. This provides the possibility for extending the use of in-situ U-Pb dating from determining the age of formation of volcanic, granitic, sedimentary and metamorphic minerals to the direct determination of the diagenetic age of fossils and/or the crystallization age of various meteorites, which can provide new insights into the thermal history on the Earth and/or the Solar System. In this paper, we review the methodology associated with in-situ apatite dating and our contribution to Earth and Planetary Science over the past 16 years.

  4. Multiple cooling episodes in the Central Tarim (Northwest China) revealed by apatite fission track analysis and vitrinite reflectance data

    Chang, Jian; Qiu, Nansheng; Song, Xinying; Li, Huili


    Apatite fission track and vitrinite reflectance are integrated for the first time to study the cooling history in the Central Tarim, northwest China. The paleo-temperature profiles from vitrinite reflectance data of the Z1 and Z11 wells showed a linear relationship with depth, suggesting an approximately 24.8 °C/km paleo-geothermal gradient and 2700-3900 m of erosion during the Early Mesozoic. The measured apatite fission track ages from well Z2 in the Central Tarim range from 39 to 159 Ma and effectively record the Meso-Cenozoic cooling events that occurred in Central Tarim. Moreover, two cooling events at 190-140 Ma in the Early Jurassic-Early Cretaceous and 80-45 Ma in the Late Cretaceous-Paleocene revealed by measured AFT data and thermal modeling results are related to the collisions of the Qiangtang-Lhasa terranes and the Greater India Plate with the southern margin of the Eurasian Plate, respectively. This study provides new insights into the tectonic evolution of the Tarim Basin (and more broadly Central Asia) and for hydrocarbon generation and exploration in the Central Tarim.

  5. Detrital zircon and apatite (U-Th)/He thermochronology of intercalated baked sediments: a new approach to dating young basalts

    Cooper, F. J.; van Soest, M. C.; Hodges, K.


    Placing accurate age constraints on young volcanic eruptions, particularly in populated areas such as New Mexico, is important for not only tectonic and climate studies, but also for geohazard analysis. A primary lack of zircon and apatite crystals in basaltic rocks leaves K/Ar and 40Ar/39Ar dating as the most favored methods, though extraneous Ar and low K contents can often reduce precision. Alternative techniques suggested in recent years include (U-Th)/He dating of U and Th rich inclusions in olivine phenocrysts and other phenocrysts (Min et al., 2006; Aciego et al., 2007), (U-Th)/He dating of zircon xenocrysts (Blondes et al., 2007), and (U-Th)/He dating of magnetite phenocrysts (Blackburn et al., 2007). Unfortunately, zircon xenocrysts are not very abundant in basalts, and not all basalts contain suitably sized olivine, magnetite, or other phenocrysts. Here, we present a new application of the (U-Th)/He method to dating young volcanic eruptions in an area where the emplacement of basalt flows has reset the (U-Th)/He systematics of zircons and apatites in intercalated baked sediments. The Taos Plateau volcanic field (TPVF) in New Mexico formed in Middle to Late Miocene time in association with extensional processes in the Rio Grande Rift. The voluminous (>200 km3) basalt flows of the TPVF have been carefully dated with 40Ar/39Ar (Appelt, 1998) and therefore provide a sound basis for comparison with the (U-Th)/He results. Two fluvial sand and gravel samples were collected from directly beneath the Upper member of the Servilleta Basalt (40Ar/39Ar age: 3.57 ± 0.19 Ma [2 S.E., n = 3]; Appelt, 1998) in the Rio Grande River Gorge just west of Taos. These two samples yielded a distinct population of single-crystal (U-Th)/He zircon and apatite ages of 3.54 ± 0.11 Ma [2 S.E., n = 4] and 3.44 ± 0.25 Ma [2 S.E., n = 2] respectively. Sixteen additional grains (6 zircons and 10 apatites) gave significantly older dates (~ 9 to 27 Ma). We interpret the older dates as

  6. Atomistic modelling study of lanthanide incorporation in the crystal lattice of an apatite; Etude par modelisation atomistique de l'incorporation de lanthanides dans le reseau cristallin d'une apatite phosphocalcique

    Louis-Achille, V


    Studies of natural and synthetic apatites allow to propose such crystals as matrix for nuclear waste storage. The neodymium substituted britholite, Ca{sub 9}Nd(PO{sub 4}){sub 5}(SiO{sub 4})F{sub 2}. is a model for the trivalent actinide storage Neodymium can be substituted in two types of sites. The aim of this thesis is to compare the chemical nature of this two sites in fluoro-apatite Ca{sub 9}(PO{sub 4}){sub 6}F{sub 2} and then in britholite, using ab initio atomistic modeling. Two approaches are used: one considers the infinite crystals and the second considers clusters. The calculations of the electronic structure for both were performed using Kohn and Sham density functional theory in the local approximation. For solids, pseudopotentials were used, and wave functions are expanded in plane waves. For clusters, a frozen core approximation was used, and the wave functions are expanded in a linear combination of Slater type atomic orbitals. The pseudopotential is semi-relativistic for neodymium, and the Hamiltonian is scalar relativistic for the clusters. The validation of the solid approach is performed using two test cases: YPO{sub 4} and ScPO{sub 4}. Two numerical tools were developed to compute electronic deformation density map, and calculate partial density of stases. A full optimisation of the lattice parameters with a relaxation of the atomic coordinates leads to correct structural and thermodynamic properties for the fluoro-apatite, compared to experience. The electronic deformation density maps do not show any significant differences. between the two calcium sites. but Mulliken analysis on the solid and on the clusters point out the more ionic behavior of the calcium in site 2. A neodymium substituted britholite is then studied. Neodymium location only induces local modifications in; the crystalline structure and few changes in the formation enthalpy. The electronic study points out an increase of the covalent character the bonding involving neodymium

  7. Disposable competitive-type immunoassay for determination of aflatoxin B1 via detection of copper ions released from Cu-apatite.

    Wang, Huan; Zhang, Yihe; Chu, Yanguang; Ma, Hongmin; Li, Yan; Wu, Dan; Du, Bin; Wei, Qin


    A disposable electrochemical immunosensor was developed for detection of aflatoxin B1 (AFB1) based on stripping voltammetric detection of copper ions released from Cu-apatite. AFB1 antibody (Ab) was firstly fixed on the gold nanoparticle (Au NPs) modified screen-printed carbon electrode (SPCE). AFB1-bovine serum albumin (AFB1-BSA) conjugate was labeled with Cu-apatite, and then competed with AFB1 for binding to the Ab. Copper ions were released from Cu-apatite through acidolysis and stripping voltammetry signal of the copper ions was used for the detection. The Cu-apatite increased the amount of loaded copper ions, and the anodic stripping strategy performed in the micro electrolytic cell of the SPCE simplified the detection procedure and further amplified the electrochemical signal. This immunosensor could detect AFB1 over a wide concentration range from 0.001 to 100ng mL(-1) with a detection limit of 0.2pg mL(-1). The low cost, high sensitive, rapid and accurate method may find widely potential application in the detection of other toxic or harmful substances.

  8. Interim Report: 100-NR-2 Apatite Treatability Test: Low Concentration Calcium Citrate-Phosphate Solution Injection for In Situ Strontium-90 Immobilization

    Williams, Mark D.; Fritz, Brad G.; Mendoza, Donaldo P.; Rockhold, Mark L.; Thorne, Paul D.; Xie, YuLong; Bjornstad, Bruce N.; Mackley, Rob D.; Newcomer, Darrell R.; Szecsody, James E.; Vermeul, Vincent R.


    Following an evaluation of potential Sr-90 treatment technologies and their applicability under 100-NR-2 hydrogeologic conditions, U.S. Department of Energy, Fluor Hanford, Inc., Pacific Northwest National Laboratory, and the Washington Department of Ecology agreed that the long-term strategy for groundwater remediation at 100-N Area will include apatite sequestration as the primary treatment, followed by a secondary treatment if necessary (most likely phytoremediation). Since then, the agencies have worked together to agree on which apatite sequestration technology has the greatest chance of reducing Sr-90 flux to the river at a reasonable cost. In July 2005, aqueous injection, (i.e., the introduction of apatite-forming chemicals into the subsurface) was endorsed as the interim remedy and selected for field testing. Studies are in progress to assess the efficacy of in situ apatite formation by aqueous solution injection to address both the vadose zone and the shallow aquifer along the 300 ft of shoreline where Sr-90 concentrations are highest. This report describes the field testing of the shallow aquifer treatment.

  9. A novel simple strategy for in situ deposition of apatite layer on AZ31B magnesium alloy for bone tissue regeneration

    Mousa, Hamouda M. [Department of Bionanosystem Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Department of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley University, Qena 83523 (Egypt); Lee, Do Hee [Department of Bionanosystem Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Park, Chan Hee, E-mail: [Department of Bionanosystem Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Division of Mechanical Design Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Kim, Cheol Sang, E-mail: [Department of Bionanosystem Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Division of Mechanical Design Engineering, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of)


    Graphical abstract: - Highlights: • Anodizing process was used for the surface modification of AZ31B magnesium alloy. • An appetite-like film was deposited on the surface of AZ31B magnesium alloy. • Ceramic film was investigated by XRD and XPS. • Nano-plates growth are observed though the implemented experimental design. • Significant increase in the substrate hardness and surface roughness was observed. - Abstract: In this study, for the first time, the degradation performance of AZ31B Mg alloy was tuned by an in situ deposition of apatite thin layer within a short time in one step. Using Taguchi method for experimental design, anodization process was designed under control conditions (time and voltage), and simulated body fluid (SBF) was used as the electrolyte to nucleate apatite-like compounds. The coated alloy was characterized through field emission scanning electron microscopy (FE-SEM), EDS, X-ray diffraction and XPS analysis. The results show that the applied voltage has a significant effect on the formation of apatite-like layers. Compared to the uncoated samples, microhardness and surface roughness of the coated samples showed remarkably different values. The potentiodynamic polarization results demonstrate that the polarization resistance of the anodized samples is higher than the substrate polarization resistance, thus improving the alloy corrosion resistant. Based on the experimental results, the proposed nanostructure apatite-like coating can offer a promising way to improve the biocompatibility and degradability properties of the Mg alloy for bone tissue regeneration.

  10. Comparison of the compression strength of human vertebral bodies with the mass and density of apatite: a study by 31P NMR spectroscopy.

    Brown, C E; Srinivasan, R; Sigmann, P; Myklebust, J B; Battocletti, J H


    The force needed to fracture individual human thoracic and lumbar vertebral bodies is compared with the mass and density of apatite. 31P NMR spectrometry was used to quantify the apatite, because it permits the mineral content of bone to be determined noninvasively with minimal nonspecific interference from the organic matrix or from variations in composition of the marrow. Experiments were performed with bones of similar structure and function from a single individual with no history of trabecular fractures, to compensate for the effects of the other variables that affect bone strength. The coefficient of correlation between compression strength and the volume density (i.e., g/cm3) of apatite was 0.95. The correlation of strength with the mass (i.e., grams) of apatite in a vertebral body also was reasonably good, r = 0.82, but correlations with areal density (i.e., g/cm2) and linear density (i.e., g/cm) were much poorer.

  11. Behaviors of MC3T3-E1 cells on carbonated apatite films, with a characteristic network structure, fabricated on a titanium plate by aqueous spray coating.

    Mochizuki, Chihiro; Hara, Hiroki; Oya, Kei; Aoki, Shun; Hayakawa, Tohru; Fujie, Hiromichi; Sato, Mitsunobu


    Four carbonated apatite films having average thicknesses of 1.3-0.11μm, proportions of network sizes above 10μm of 41-68%, and average border heights of the characteristic network structure of 0.98-0.29μm were fabricated on a titanium plate by aqueous spray coating. These carbonated apatite films after heat treatment showed good mineralization ability in Hanks' balanced salt solution. Assessment of initial cell attachment and calcination on these films and on the Ti plate using osteoblastic MC3T3-E1 indicated that the carbonated apatite film heat treated at 600°C, whose film thickness, proportion of network sizes above 10μm, and border height were 0.11μm, 61%, and 0.31μm, respectively, was most preferred by osteoblastic cells. Field emission scanning electron microscopic observation of the cells attached to the films showed that the wide network and low border height of the network structure on the carbonated apatite film play an important role in the development of the filopodia of the osteoblastic cells. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Phosphorus burial in sediments of the sulfidic deep Black Sea: Key roles for adsorption by calcium carbonate and apatite authigenesis

    Kraal, Peter; Dijkstra, Nikki; Behrends, Thilo; Slomp, Caroline P.


    Sedimentary burial of the essential nutrient phosphorus (P) under anoxic and sulfidic conditions is incompletely understood. Here, we use chemical and micro-scale spectroscopic methods to characterize sedimentary P burial along a water column redox transect (six stations, 78-2107 m water depth) in the Black Sea from the shelf with its oxygenated waters to the anoxic and sulfidic deep basin. Organic P is an important P pool under all redox regimes, accounting for up to 60% of P burial. We find a general down-core increase in the relative importance of organic P, especially on the shelf where P bound to iron (Fe) and manganese (Mn) (oxyhydr)oxides is abundant in the uppermost sediment but rapidly declines in concentration with sediment depth. Our chemical and spectroscopic data indicate that the carbonate-rich sediments (Unit I, ∼3000 years, ∼0-30 cm depth) of the sulfidic deep Black Sea contain three major P pools: calcium phosphate (apatite), organic P and P that is strongly associated with CaCO3 and possibly clay surfaces. Apatite concentrations increase from 5% to 25% of total P in the uppermost centimeters of the deep basin sediments, highlighting the importance of apatite formation for long-term P burial. Iron(II)-associated P (ludlamite) was detected with X-ray absorption spectroscopy but was shown to be a minor P pool (∼5%), indicating that lateral Fe-P transport from the shelf ("shuttling") likely occurs but does not impact the P burial budget of the deep Black Sea. The CaCO3-P pool was relatively constant throughout the Unit I sediment interval and accounted for up to 55% of total P. Our results highlight that carbonate-bound P can be an important sink for P in CaCO3-rich sediments of anoxic, sulfidic basins and should also be considered as a potential P sink (and P source in case of CaCO3 dissolution) when reconstructing past ocean P dynamics from geological records.

  13. Evidence for Rapid Post-Pliocene Exhumation of the Santa Monica Mountains, California, from Apatite (U-Th)/He Thermochronometry

    Niemi, N. A.; Clark, M. K.; Yakovlev, P. V.


    Potential losses related to large earthquakes on blind or previously unrecognized thrust faults is of significant concern to southern California, where numerous individual mountain ranges are underlain by active faults. Some of the most hazardous thrust fault systems in Southern California are associated with high-slip-rate faults in the northern portion of the western Transverse Ranges, while the southern region is generally considered to be less seismically active. Determining slip rates on faults bounding the Santa Monica Mountains has been challenging, in part because many of the faults that underlie the range have submarine surface traces. Existing geologic studies predict that these faults slip relatively slowly; however, recent GPS models predict a band of relatively fast contraction on faults that lie beneath the Santa Monica Mountains (Marshall et al., 2013). These geodetic models suggest unrecognized hazard associated with shortening and vertical uplift of this range. Late Cenozoic strata in the central Santa Monica Mountains are of sufficient thickness to bury Cretaceous and Paleocene strata above the closure temperature for apatite (U-Th)/He thermochronometry (~70°C). As a result, these older rocks, now exposed in the southern Santa Monica Mountains, may record exhumation associated with fault slip and associated structural deformation of the range. Preliminary apatite (U-Th)/He ages near Las Flores Canyon span from 3.5 to 6.5 Ma, and are the youngest apatite (U-Th)/He ages we are aware of in southern California outside of the transpressional San Andreas system. When plotted as depth beneath the base of the marine Modelo Formation, an inflection in age/depth gradient at 4 Ma is inferred to reflect the onset of fault motion and is consistent with the late Miocene age of the Modelo Formation. Based on average geothermal gradients for the Ventura and Los Angeles basins and an assumed thrust fault dip of 20°, observed apparent exhumation rates are

  14. The Volatile Element Evolution of Intra-plate Alkaline Rocks as Recorded by Apatite: An Example from the Hegau Volcanic Field (Southwest Germany)

    Von Der Handt, A.; Rahn, M. K. W.; Wang, L. X.; Marks, M. A. W.


    The role of volatiles in the petrogenesis of alkaline intra-plate magmas has been the subject of an increasing number of experimental studies. The study of naturally occurring rocks and their volatile contents is often complicated by syn- and post-eruptive degassing and alteration processes. Minerals that incorporate volatiles into their structure such as apatites are often more faithful recorders of the pre-eruptive volatile budget. The Hegau volcanic field in Southwest Germany is part of the Central European Volcanic Province, lies around 60-70 km to the east of the Upper Rhine graben and of Miocene age. Three main lithological units can be distinguished (1) olivine melilites (2) phonolites and (3) the "Deckentuff" series referring to a series of diatreme-filling pipe breccias and lapilli tuff layers. Carbonatites occur subordinately in the Hegau province. Earlier radiometric age dating suggested distinct phases of volcanic activity of Deckentuffs, melilites and phonolites with little overlap, but new apatite fission-track and (U-Th)/He age data suggest a synchronous activity. Apatite is an abundant accessory phase in the Deckentuff and phonolite series and we investigated its major, trace and volatile element composition by EPMA, SIMS and cathodoluminescence imaging. Pronounced core-rim zoning of apatite in places attests that diffusional equilibration was very limited and they likely retained their primary compositions. This allows us to trace the entire magmatic evolution of the Hegau province from its most primitive to most evolved products as well as resolve it in time by combining age dating with compositional analysis. Apatite compositions fall along the OH-F join with low Cl-contents (<0.5 wt%). Volatile contents (Cl, OH, S) are highest in most primitive compositions and decrease with further evolution while F increases. Multiple magmatic cycles can be discerned with a general trend to the more evolved phonolite compositions toward the end of volcanic

  15. Apatite formation on alkaline-treated dense TiO2 coatings deposited using the solution precursor plasma spray process.

    Chen, Dianying; Jordan, Eric H; Gell, Maurice; Wei, Mei


    A dense titania (TiO2) coating was deposited from an ethanol-based solution containing titanium isopropoxide using the solution precursor plasma spray (SPPS) process. XRD and Raman spectrum analyses confirmed that the coating is exclusively composed of rutile TiO2. SEM micrographs show the as-sprayed coating is dense with a uniform thickness and there are no coarse splat boundaries. The as-sprayed coating was chemically treated in 5M NaOH solution at 80 degrees C for 48 h. The bioactivity of as-sprayed and alkaline-treated coatings was investigated by immersing the coatings in simulated body fluid (SBF) for 14-28 days, respectively. After 28 days immersion, there is a complete layer of carbonate-containing apatite formed on the alkaline-treated TiO2 coating surface, but none formed on the as-sprayed coating.

  16. Partial melting of apatite-bearing charnockite, granulite, and diorite: Melt compositions, restite mineralogy, and petrologic implications

    Beard, James S.; Lofgren, Gary E.; Sinha, A. Krishna; Tollo, Richard P.


    Melting experiments (P = 6.9 kbar, T = 850-950 deg C, NNO is less than fO2 is less than HM) were done on mafic to felsic charnockites, a dioritic gneiss, and a felsic garnet granulite, all common rock types in the Grenville basement of eastern North America. A graphite-bearing granulite gneiss did not melt. Water (H2O(+) = 0.60 to 2.0 wt %) is bound in low-grade, retrograde metamorphic minerals and is consumed during the earliest stages of melting. Most melts are water-undersaturated. Melt compositions range from metaluminous, silicic granodiorite (diorite starting composition) to peraluminous or weakly metaluminous granites (all others). In general, liquids become more feldspathic, less silicic, and less peraluminous and are enriched in FeO, MgO, and TiO2 with increasing temperature. Residual feldspar mineralogy controls the CaO, K2O, and Na2O contents of the partial melts and the behavior of these elements can be used, particularly if the degree of source melting can be ascertained, to infer some aspects of the feldspar mineralogy of the source. K-feldspar, a common restite phase in the charnockite and granulite (but not the diorite) should control the behavior of Ba and, possibly, Eu in these systems and yield signatures of these elements that can distinguish source regions and, in some cases, bulk versus melt assimilation. Apatite, a common restite phase, is enriched in rare earth elements (REE), especially middle REE. Retention of apatite in the restite will result in steep, light REE-enriched patterns for melts derived from the diorite and charnockites.

  17. Relation between denudation history and sediment supply from apatite fission track thermochronology in the northeast Brazilian Margin

    Jelinek, Andrea; Chemale, Farid; Bueno, Gilmar


    The aim of this study is to provide a quantitative overview of Mesozoic-Cenozoic morphotectonic evolution and sediment supply to the northeast Brazilian margin. Landscape evolution and denudation histories for the northeastern Brazilian continental margin (Sergipe, Alagoas, Bahia, and Espírito Santo states) were detailed by apatite fission track thermochronology and thermal-history modeling and related with the sedimentological record of the offshore basins of the passive margin for a comparison with their denudational history. Approximately one hundred basement samples were analyzed from the coast to the inland of the Brazilian margin. The apparent fission track ages vary from 360 to 61 Ma and confined fission track lengths vary between 10 and 14.6 µm, indicating that not all of the samples recorded the same cooling events. The results of apatite fission track ages indicate that the area has been eroded regionally since the Mesozoic (Conquista and Borborema Plateaus, and Mantiqueira Range record a Cretaceous-Paleogene onset of exhumation. This timing is consistent with the offshore sedimentary record, wherein a large clastic wedge started forming in the northeastern Sergipe-Alagoas basin, which suggests Sergipe-Alagoas basin records drainage reorganization and extension of the São Francisco River catchment. Interestingly, the Camamu basin, adjacent to the section of the margin does not record syn/post-rift exhumation, does contain a 6-km thick sedimentary succession, which should thus have been derived from more distal sources. The Neogene final denudation is observed throughout the study area and show conspicuous recent exhumation. The post-rift (<40 Ma) offshore sedimentation rates are generally lower than during preceding phases. This final sedimentary succession is thinner in all basins, consistent with limited onshore erosion during this time.

  18. Surface chemistry and flotation behavior of monazite, apatite, ilmenite, quartz, rutile, and zircon using octanohydroxamic acid collector

    Nduwa Mushidi, Josue

    Global increase in rare earth demand and consumption has led to further understanding their beneficiation and recovery. Monazite is the second most important rare earth mineral that can be further exploited. In this study, the surface chemistry of monazite in terms of zeta potential, adsorption density, and flotation response by microflotation using octanohydroxamic acid is determined. Apatite, ilmenite, quartz, rutile, and zircon are minerals that frequently occur with monazite among other minerals. Hence they were chosen as gangue minerals in this study. The Iso Electric Point (IEP) of monazite, apatite, ilmenite, quartz, rutile, and zircon are 5.3, 8.7, 3.8, 3.4, 6.3, and 5.1 respectively. The thermodynamic parameters of adsorption were also evaluated. Ilmenite, rutile and zircon have high driving forces for adsorption with DeltaGads. = 20.48, 22.10, and 22.4 kJ/mol respectively. The free energy of adsorption is 14.87 kJ/mol for monazite. Adsorption density testing shows that octanohydroxamic acid adsorbs on negatively charged surfaces of monazite and its gangue minerals which indicates chemisorption. This observation was further confirmed by microflotation experiments. Increasing the temperature to 80°C raises the adsorption and flotability of monazite and gangue minerals. This does not allow for effective separation. Sodium silicate appeared to be most effective to depress associated gangue minerals. Finally, the fundamentals learned were applied to the flotation of monazite ore from Mt. Weld. However, these results showed no selectivity due to the presence of goethite as fine particles and due to a low degree of liberation of monazite in the ore sample.

  19. Effect of Alkali-Acid-Heat Chemical Surface Treatment on Electron Beam Melted Porous Titanium and Its Apatite Forming Ability

    Suzan Bsat


    Full Text Available Advanced additive manufacturing techniques such as electron beam melting (EBM, can produce highly porous structures that resemble the mechanical properties and structure of native bone. However, for orthopaedic applications, such as joint prostheses or bone substitution, the surface must also be bio-functionalized to promote bone growth. In the current work, EBM porous Ti6Al4V alloy was exposed to an alkali acid heat (AlAcH treatment to bio-functionalize the surface of the porous structure. Various molar concentrations (3, 5, 10M and immersion times (6, 24 h of the alkali treatment were used to determine optimal parameters. The apatite forming ability of the samples was evaluated using simulated body fluid (SBF immersion testing. The micro-topography and surface chemistry of AlAcH treated samples were evaluated before and after SBF testing using scanning electron microscopy and energy dispersive X-ray spectroscopy. The AlAcH treatment successfully modified the topographical and chemical characteristics of EBM porous titanium surface creating nano-topographical features ranging from 200–300 nm in size with a titania layer ideal for apatite formation. After 1 and 3 week immersion in SBF, there was no Ca or P present on the surface of as manufactured porous titanium while both elements were present on all AlAcH treated samples except those exposed to 3M, 6 h alkali treatment. An increase in molar concentration and/or immersion time of alkali treatment resulted in an increase in the number of nano-topographical features per unit area as well as the amount of titania on the surface.

  20. Stable isotope (C, O) and monovalent cation fractionation upon synthesis of carbonate-bearing hydroxyl apatite (CHAP) via calcite transformation

    Böttcher, Michael E.; Schmiedinger, Iris; Wacker, Ulrike; Conrad, Anika C.; Grathoff, Georg; Schmidt, Burkhard; Bahlo, Rainer; Gehlken, Peer-L.; Fiebig, Jens


    Carbonate-bearing hydroxyl-apatite (CHAP) is of fundamental and applied interest to the (bio)geochemical, paleontological, medical and material science communities, since it forms the basic mineral phase in human and animal teeth and bones. In addition, it is found in non-biogenic phosphate deposits. The stable isotope and foreign element composition of biogenic CHAP is widely used to estimate the formation conditions. This requires careful experimental calibration under well-defined boundary conditions. Within the DFG project EXCALIBOR, synthesis of carbonate-bearing hydroxyapatite was conducted via the transformation of synthetic calcite powder in aqueous solution as a function of time, pH, and temperature using batch-type experiments. The aqueous solution was analyzed for the carbon isotope composition of dissolved inorganic carbonate (gas irmMS), the oxygen isotope composition of water (LCRDS), and the cationic composition. The solid was characterized by powder X-ray diffraction, micro Raman and FTIR spectroscopy, SEM-EDX, elemental analysis (EA, ICP-OES) and gas irmMS. Temperature was found to significantly impact the transformation rate of calcite to CHAP. Upon complete transformation, CHAP was found to contain up to 5% dwt carbonate, depending on the solution composition (e.g., pH), both incorporated on the A and B type position of the crystal lattice. The oxygen isotope fractionation between water and CHAP decreased with increasing temperature with a tentative slope shallower than those reported in the literature for apatite, calcite or aragonite. In addition, the presence of dissolved NH4+, K+ or Na+ in aqueous solution led to partial incorporation into the CHAP lattice. How these distortions of the crystal lattice may impact stable isotope discrimination is subject of future investigations.

  1. Evidence of post-Gondwana breakup in Southern Brazilian Shield: Insights from apatite and zircon fission track thermochronology

    Oliveira, Christie Helouise Engelmann de; Jelinek, Andréa Ritter; Chemale, Farid; Bernet, Matthias


    Apatite and zircon fission track thermochronology studies are applied to basement and sedimentary rocks from the Sul-Rio-Grandense Shield to unravel the tectonic history of the onshore southernmost Brazilian margin. The Sul-Rio-Grandense Shield is a major geotectonic feature of southernmost Brazil that includes Paleoproterozoic basement areas and Neoproterozoic fold belts linked to the Brasiliano/Pan-African orogeny. Crustal reworking and juvenile accretion events related to this cycle were dated in the region between 900 and 500 Ma and were responsible for the assembly of southwestern Gondwana in southeastern South America. Apatite fission track (AFT) ages range from 340 ± 33 to 77 ± 6 Ma and zircon fission track (ZFT) ages range from ca. 386 to 210 Ma. Based on thermal history modeling, the most part of the samples record an early cooling event during the Carboniferous, which reflect the main tectonic activity of the final stages of the Gondwanides at the Pacific margin of West Gondwana. Subsequently, the Permo-Triassic cooling event is related to the last stages of the Gondwanides, with convergence along the southern border of Western Gondwana and consequent reactivation of N-S and NE-SW trending basement structures. The onset of initial breakup of southwestern Gondwana with opening of the South Atlantic Ocean is mostly recorded in the eastern terrain and ZFT ages show that the temperature during this period was high enough for total or at least partial resetting of fission tracks in zircon. The last cooling event of the Sul-Rio-Grandense Shield records the final breakup between South America and Africa, which began during the Late Cretaceous. However, the Cenozoic rapid cooling episode probably is a result of plate adjustment after breakup and neotectonic reactivation of faults associated with South Atlantic rift evolution.

  2. Fluids in the Siilinjärvi carbonatite complex, eastern Finland: Fluid inclusion evidence for the formation conditions of zircon and apatite

    Poutiainen, M.


    Full Text Available In the studied zircon and apatite crystals, data recorded two different compositional types of fluid inclusions: Type 1 H2O-CO2, low salinity inclusions (XCO2 = 0.42 to 0.87; XNaCl = 0.001 to 0.005 with bulk densities of 0.73 to 0.87 g/cm3, and Type 2 H2O moderate salinity (XNaCl = 0.03 to 0.06 inclusions with densities of 0.83 to 1.02 g/cm3. The Type 1 inclusions are not present in apatite. In zircon, the observed fluid inclusion types occur in separate domains: around (Type 1 and outside (Type 2 the apparent core. Fluid inclusions are further subdivided into pseudosecondary and secondary inclusions. Using a combination of SEM-EDS, optical characteristics and crushing-stage, various daughter and captive minerals were identified. The fluid inclusion data suggest that the pseudosecondary Type 1 and Type 2 inclusions in zircon and apatite were trapped during the pre-emplacement evolution of the carbonatite at mid-crustal conditions (P≥4 kbar, T≥625°C. The Type 1 fluid was depleted in CO2, during crystal fractionation and cooling leading to a fluid phase enriched in water and alkalies. Fenitization was obviously induced by these saline aqueous fluids. During emplacement of the carbonatite to the present level, zircon phenocrysts were intensively fractured, some Type 1 inclusions were re-equilibrated, and multiphase Type 2 inclusions were trapped. It is assumed that all these inclusions in zircon and the pseudosecondary Type 2 inclusions in apatite have a magmatic origin. In apatite, calcite inclusions occur side-by-side with the secondary Type 2 inclusions. These calcites co-existed with the aqueous fluid during fracturing and metamorphic re-crystallization of apatites. Probably, this metamorphic fluid also is responsible for the transport and deposition of at least some of the calcite at low temperatures (200-350°C.

  3. Using apatite fission track and an innovative approach to apatite (U-Th)/He thermochronometry to study the tectonic-geomorphic history of The Grampian Highland area-Scotland.

    Amin, Awara M.; Brown, Roderick; Brown, David


    Problems of the relief development of the Scottish Highlands have received much attention in recent years. Over last 30 years low temperature thermochronology methods including fission track and (U-Th)/He analysis have been utilized to quantify the surface uplift and denudation of rocks, as well as history of re-deposition across parts of Scotland (Hurford 1977, Lewis et al. 1992, Thomson et al. 1999, Persano et al. 2007, Holford et al. 2010). The landscape evolution of the Scottish Highlands is traced over the last 400 Ma. The Caledonian Orogeny and its second stage including the Grampian and Scandian orogenic events mark the starting point for the evolution of the present relief. Although there is considerable evidence that the current topography of Scotland has been affected by tectonic uplift that started during Late Mesozoic to Early Cenozoic, it remains unclear to what degree the present topography of Scottish Highlands has retained remnant features of the topography from Caledonian Orogeny c. 400 Ma. Low temperature thermochronology provides meaningful estimates of the thermal history, rate of exhumation and denudation on a time scale of millions of years to better understand landscape evolution, as well as modelling of sedimentary basins. The NW of Scotland has been broadly concentrated on over last three decades to constrain the timing of Early Cenozoic magmatic activity and its effects on the surrounding rocks. However, the history of the unroofing of the late Caledonian new granites and earlier Granites (generally post_Devonian erosion) of the Grampian region still is unclear. In this study, apatite fission tracks and (U-Th)/He dating systems are applied for the collected samples from a profile of Ben Nevis in the Grampian area to constrain the timing and magnitude of denudation of the older and earlier granitic intrusions emplaced during and late Caledonian Orogeny. Apatite fission track ages of Ben Nevis rock samples yielded ages between 208 ± 18 Ma

  4. 仿生法沉积磷灰石层的研究进展%Progress in the Study of Biomimetic Process for Depositing Apatite Coatings

    付涛; 徐可为


    仿生法沉积磷灰石层模仿了自然界磷灰石的 沉积过程,为生物材料的研制开辟了新途径。本文对生物模仿沉积磷灰石方法的过程、机制 以及涂层的力学和生物学性能作了介绍。%The biomimetic method, which mimics the natural dep osition of biologic apatite, has opened up a new way to develop biomaterials. Th is paper gives a brief introduction of various biomimetic methods to deposit apatite coatings, and the mechanical and biological properties of the coatings.

  5. 100-NR-2 Apatite Treatability Test: High-Concentration Calcium-Citrate-Phosphate Solution Injection for In Situ Strontium-90 Immobilization

    Vermeul, Vincent R.; Fritz, Brad G.; Fruchter, Jonathan S.; Szecsody, James E.; Williams, Mark D.


    Following an evaluation of potential strontium-90 (90Sr) treatment technologies and their applicability under 100-NR-2 hydrogeologic conditions, the U.S. Department of Energy (DOE), Fluor Hanford, Inc. (now CH2M Hill Plateau Remediation Company [CHPRC]), Pacific Northwest National Laboratory, and the Washington State Department of Ecology agreed that the long-term strategy for groundwater remediation at the 100-N Area should include apatite as the primary treatment technology. This agreement was based on results from an evaluation of remedial alternatives that identified the apatite permeable reactive barrier (PRB) technology as the approach showing the greatest promise for reducing 90Sr flux to the Columbia River at a reasonable cost. This letter report documents work completed to date on development of a high-concentration amendment formulation and initial field-scale testing of this amendment solution.

  6. Multifunctional porous titanium oxide coating with apatite forming ability and photocatalytic activity on a titanium substrate formed by plasma electrolytic oxidation.

    Akatsu, T; Yamada, Y; Hoshikawa, Y; Onoki, T; Shinoda, Y; Wakai, F


    Plasma electrolytic oxidation (PEO) was used to make a multifunctional porous titanium oxide (TiO2) coating on a titanium substrate. The key finding of this study is that a highly crystalline TiO2 coating can be made by performing the PEO in an ammonium acetate (CH3COONH4) solution; the PEO coating was formed by alternating between rapid heating by spark discharges and quenching in the solution. The high crystallinity of the TiO2 led to the surface having multiple functions, including apatite forming ability and photocatalytic activity. Hydroxyapatite formed on the PEO coating when it was soaked in simulated body fluid. The good apatite forming ability can be attributed to the high density of hydroxyl groups on the anatase and rutile phases in the coating. The degradation of methylene blue under ultraviolet radiation indicated that the coating had high photocatalytic activity.

  7. Characterization and potential application of pataua vegetable oil in apatite flotation; Caracterizacao e potencial aplicacao do oleo vegetal de pataua na floracao de apatita

    Oliveira, P.S. de; Mansur, H.S.; Peres, A.E.C., E-mail: [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)


    The present research characterizes the Pataua palm (Oenocarpus bataua) oil regarding to its fatty acids profile and acidity index, and evaluates its use for apatite flotation. The Pataua oil evaluated is unsaturated e predominantly composed of cis-9-octadecenoic acid (oleic acid). The mineral sample characterization revealed a material composed by a fluoroapatite deficient in fluorine, a possibly result of isomorphic substitution, and with quartz and monazite inclusions. The analysis of the mineral after reagent conditioning, by Fourier Transform Infrared Spectroscopy (FTIR), pointed to the presence of characteristic bands of carbon chains and carboxylate group, suggesting the collector adsorption through the mechanisms of chemisorption and insoluble calcium salts precipitation. Thus, it is proposed the Pataua oil potential use in flotation systems aiming apatite recovery. (author)

  8. Microbial weathering of apatite and wollastonite in a forest soil: Evidence from minerals buried in a root-free zone

    Nezat, C. A.


    Mineral weathering is an important process in biogeochemical cycling because it releases nutrients from less labile pools (e.g., rocks) to the food chain. A field experiment was undertaken to determine the degree to which microbes - both fungi and bacteria - are responsible for weathering of Ca-bearing minerals. The experiment was performed at the Hubbard Brook Experimental Forest (HBEF) in the northeastern USA, where acid deposition has leached plant-available calcium from soils for decades. Trees obtain soil nutrients through root uptake as well as through mycorrhizal fungi with which they are symbiotically associated. These fungi extend their hyphae from the tree roots into the soil and exude organic acids that may enhance mineral dissolution. The two most common types of symbiotic fungal-tree associations are ectomycorrhizae, which are associated with spruce (Picea), fir (Abies), and beech (Fagus); and arbuscular mycorrhizae which are commonly associated with angiosperms, such as maples (Acer). To examine the role of fungi and bacteria in weathering of Ca- and/or P-bearing minerals, mesh bags containing sand-sized grains of quartz (as a control), quartz plus 1% wollastonite (CaSiO3), or quartz plus 1% apatite (Ca5(PO4)3F) were buried ~15 cm deep in mineral soil beneath American beech, sugar maple, and mixed spruce and balsam fir stands at the HBEF. Half of the bags were constructed of 50-μm mesh to exclude roots but allow fungal hyphae and bacteria to enter the bags; the remaining bags had 1-μm mesh to exclude fungi and roots but allow bacteria to enter. The bags were retrieved ~ 1, 2 or 4 years after burial. Microbial community composition and biomass in the mesh bags and surrounding soil were characterized and quantified using phospholipid fatty acid (PLFA) analysis. Fungal biomass in the soil and control bags did not differ significantly among stand types. In contrast, the degree of fungal colonization in apatite- and wollastonite-amended bags varied

  9. Apatite fission track thermochronology of Khibina Massif (Kola Peninsula, Russia): Implications for post-Devonian Tectonics of the NE Fennoscandia

    Veselovskiy, Roman V.; Thomson, Stuart N.; Arzamastsev, Andrey A.; Zakharov, Vladimir S.


    The thermal history of the Kola Peninsula area of NE Fennoscandia remains almost fully unknown because of the absence of any thermochronological data such as apatite and/or zircon fission track or (Usbnd Th)/He ages. In order to fill this gap and to constrain the post-Devonian erosion and exhumation history of this region, we present the results of apatite fission track (AFT) dating of eleven samples selected from the cores taken from different depths of the northern part of the Khibina intrusive massif. The Rbsbnd Sr isochron age of this alkaline magmatic complex which is located at the center of Kola Peninsula is 368 + 6 Ma (Kramm and Kogarko, 1994). Samples were analyzed from depths between + 520 and - 950 m and yielded AFT ages between 290 and 268 Ma with an age uncertainty (1σ) of between ± 19 Ma (7%) and ± 42 Ma (15%). Mean track lengths (MTL) lie between 12.5 and 14.4 μm. Inverse time-temperature modeling was conducted on the age and track length data from seven samples of the Khibina massif. Thermal histories that best predict the measured data from three samples with the most reliable data show three stages: (1) 290-250 Ma-rapid cooling from > 110 °C to 70 °C/50 °C for lower/upper sample correspondingly; (2) 250-50 Ma-a stable temperature stage; (3) 50-0 Ma-slightly increased cooling rates down to modern temperatures. We propose that the first cooling stage is related to late-Hercynian orogenesis; the second cooling stage may be associated with tectonics accompanying with opening of Arctic oceanic basin. The obtained data show that geothermal gradient at the center of Kola Peninsula has remained close to the modern value of 20 °C/km for at least the last 250 Myr. AFT data show that the Khibina massif has been exhumed not more then 5-6 km in the last 290 Myr.

  10. Apatite (U-Th)/He dating: A Review%磷灰石(U-Th)/He定年方法综述

    蒋毅; 常宏


    磷灰石He封闭温度是目前已知定年体系中最低的,能够反映低温价段(40~90℃)的热历史信息,该方法现已成为低温热年代学领域研究的重要手段.本文概述了磷灰石(U-Th)/He定年方法的原理、校正、实验流程、应用以及存在的问题.其中,重点介绍了近几年国内外(U-Th)/He定年中辐射损伤研究的进展,主要包括以下几个方面:①辐射损伤的原理:捕获模型的提出及应用;②辐射损伤对磷灰石(U-Th)/He定年的影响;③新模型的提出:辐射损伤累积-退火模型;④辐射损伤的实际应用.%The apatite (U-Th)/He dating method has been proved to be a powerful and useful tool in the field of low-temperature thermochronology, because it has the lowest available He closure temperature and can reflect the information of the thermal histories at low temperature (40~90℃ ). This review gives a brief account of the principles, calibrations, laboratory procedures, applications and existing problems of the method, highlighting the progress of the study of radiation damage in recent years. The main content of this paper includes: ① the principle of the radiation damage and the development of the "trapping model"; ② the effect of the radiation damage on apatite (U-Th)/He dating; ③ the development of the new model, i. e. , the Radiation Damage Accumulation and Annealing Model; ④ the Applications of the radiation damage.

  11. Fabrication of apatite-type La(9.33)(SiO4)6O2 hollow nanoshells as energy-saving oxidative catalysts.

    Zhang, Xian-Hua; Yi, Xiaodong; Zhang, Jiawei; Xie, Zhaoxiong; Kang, Junyong; Zheng, Lansun


    Apatite-type La(9.33)(SiO(4))(6)O(2) hollow nanoshells were successfully synthesized by a controlled route. These oxide-ion-conducting hollow nanoshells were used to catalyze oxidative coupling of methane, and an enhanced catalytic performance at relatively low temperature was realized. The high-activity and energy-saving features were attributed to their hollow nanostructures and oxide ion conductivity.

  12. Apatite Formation and Biocompatibility of a Low Young's Modulus Ti-Nb-Sn Alloy Treated with Anodic Oxidation and Hot Water.

    Hidetatsu Tanaka

    Full Text Available Ti-6Al-4V alloy is widely prevalent as a material for orthopaedic implants because of its good corrosion resistance and biocompatibility. However, the discrepancy in Young's modulus between metal prosthesis and human cortical bone sometimes induces clinical problems, thigh pain and bone atrophy due to stress shielding. We designed a Ti-Nb-Sn alloy with a low Young's modulus to address problems of stress disproportion. In this study, we assessed effects of anodic oxidation with or without hot water treatment on the bone-bonding characteristics of a Ti-Nb-Sn alloy. We examined surface analyses and apatite formation by SEM micrographs, XPS and XRD analyses. We also evaluated biocompatibility in experimental animal models by measuring failure loads with a pull-out test and by quantitative histomorphometric analyses. By SEM, abundant apatite formation was observed on the surface of Ti-Nb-Sn alloy discs treated with anodic oxidation and hot water after incubation in Hank's solution. A strong peak of apatite formation was detected on the surface using XRD analyses. XPS analysis revealed an increase of the H2O fraction in O 1s XPS. Results of the pull-out test showed that the failure loads of Ti-Nb-Sn alloy rods treated with anodic oxidation and hot water was greater than those of untreated rods. Quantitative histomorphometric analyses indicated that anodic oxidation and hot water treatment induced higher new bone formation around the rods. Our findings indicate that Ti-Nb-Sn alloy treated with anodic oxidation and hot water showed greater capacity for apatite formation, stronger bone bonding and higher biocompatibility for osteosynthesis. Ti-Nb-Sn alloy treated with anodic oxidation and hot water treatment is a promising material for orthopaedic implants enabling higher osteosynthesis and lower stress disproportion.

  13. Comparison of the effect of resin infiltrant, fluoride varnish, and nano-hydroxy apatite paste on surface hardness and streptococcus mutans adhesion to artificial enamel lesions

    Aziznezhad, Mahdiye; Alaghemand, Homayoon; Shahande, Zahra; Pasdar, Nilgoon; Bijani, Ali; Eslami, Abdolreza; Dastan, Zohre


    Introduction Dental caries is a major public health problem, and Streptococcus mutans is considered the main causal agent of dental caries. This study aimed to compare the effect of three re-mineralizing materials: resin infiltrant, fluoride varnish, and nano-hydroxy apatite paste on the surface hardness and adhesion of Streptococcus mutans as noninvasive treatments for initial enamel lesions. Methods This experimental study was conducted from December 2015 through March 2016 in Babol, Iran. ...

  14. Apatite Formation and Biocompatibility of a Low Young's Modulus Ti-Nb-Sn Alloy Treated with Anodic Oxidation and Hot Water.

    Tanaka, Hidetatsu; Mori, Yu; Noro, Atsushi; Kogure, Atsushi; Kamimura, Masayuki; Yamada, Norikazu; Hanada, Shuji; Masahashi, Naoya; Itoi, Eiji


    Ti-6Al-4V alloy is widely prevalent as a material for orthopaedic implants because of its good corrosion resistance and biocompatibility. However, the discrepancy in Young's modulus between metal prosthesis and human cortical bone sometimes induces clinical problems, thigh pain and bone atrophy due to stress shielding. We designed a Ti-Nb-Sn alloy with a low Young's modulus to address problems of stress disproportion. In this study, we assessed effects of anodic oxidation with or without hot water treatment on the bone-bonding characteristics of a Ti-Nb-Sn alloy. We examined surface analyses and apatite formation by SEM micrographs, XPS and XRD analyses. We also evaluated biocompatibility in experimental animal models by measuring failure loads with a pull-out test and by quantitative histomorphometric analyses. By SEM, abundant apatite formation was observed on the surface of Ti-Nb-Sn alloy discs treated with anodic oxidation and hot water after incubation in Hank's solution. A strong peak of apatite formation was detected on the surface using XRD analyses. XPS analysis revealed an increase of the H2O fraction in O 1s XPS. Results of the pull-out test showed that the failure loads of Ti-Nb-Sn alloy rods treated with anodic oxidation and hot water was greater than those of untreated rods. Quantitative histomorphometric analyses indicated that anodic oxidation and hot water treatment induced higher new bone formation around the rods. Our findings indicate that Ti-Nb-Sn alloy treated with anodic oxidation and hot water showed greater capacity for apatite formation, stronger bone bonding and higher biocompatibility for osteosynthesis. Ti-Nb-Sn alloy treated with anodic oxidation and hot water treatment is a promising material for orthopaedic implants enabling higher osteosynthesis and lower stress disproportion.

  15. Apatite Formation and Biocompatibility of a Low Young’s Modulus Ti-Nb-Sn Alloy Treated with Anodic Oxidation and Hot Water

    Tanaka, Hidetatsu; Mori, Yu; Noro, Atsushi; Kogure, Atsushi; Kamimura, Masayuki; Yamada, Norikazu; Hanada, Shuji; Masahashi, Naoya; Itoi, Eiji


    Ti-6Al-4V alloy is widely prevalent as a material for orthopaedic implants because of its good corrosion resistance and biocompatibility. However, the discrepancy in Young’s modulus between metal prosthesis and human cortical bone sometimes induces clinical problems, thigh pain and bone atrophy due to stress shielding. We designed a Ti-Nb-Sn alloy with a low Young’s modulus to address problems of stress disproportion. In this study, we assessed effects of anodic oxidation with or without hot water treatment on the bone-bonding characteristics of a Ti-Nb-Sn alloy. We examined surface analyses and apatite formation by SEM micrographs, XPS and XRD analyses. We also evaluated biocompatibility in experimental animal models by measuring failure loads with a pull-out test and by quantitative histomorphometric analyses. By SEM, abundant apatite formation was observed on the surface of Ti-Nb-Sn alloy discs treated with anodic oxidation and hot water after incubation in Hank’s solution. A strong peak of apatite formation was detected on the surface using XRD analyses. XPS analysis revealed an increase of the H2O fraction in O 1s XPS. Results of the pull-out test showed that the failure loads of Ti-Nb-Sn alloy rods treated with anodic oxidation and hot water was greater than those of untreated rods. Quantitative histomorphometric analyses indicated that anodic oxidation and hot water treatment induced higher new bone formation around the rods. Our findings indicate that Ti-Nb-Sn alloy treated with anodic oxidation and hot water showed greater capacity for apatite formation, stronger bone bonding and higher biocompatibility for osteosynthesis. Ti-Nb-Sn alloy treated with anodic oxidation and hot water treatment is a promising material for orthopaedic implants enabling higher osteosynthesis and lower stress disproportion. PMID:26914329

  16. In Vitro Screening of the Apatite-Forming Ability, Biointeractivity and Physical Properties of a Tricalcium Silicate Material for Endodontics and Restorative Dentistry

    Maria Giovanna Gandolfi; Francesco Siboni; Antonella Polimeni; Maurizio Bossù; Francesco Riccitiello; Sandro Rengo; Carlo Prati


    Aim: Calcium silicate-based materials are hydraulic self-setting materials with physico-chemical properties suitable for endodontic surgery and good biological/clinical outcomes. The study aim was to evaluate the bio-properties (biointeractivity and apatite-forming ability) and selected physical properties (porosity, water sorption, solubility, and setting time) of Biodentine, a tricalcium silicate material for endodontics and restorative dentistry, compared to that of ProRoot MTA (Mineral ...

  17. Production and in vitro characterization of 3D porous scaffolds made of magnesium carbonate apatite (MCA)/anionic collagen using a biomimetic approach

    Sader, Marcia S., E-mail: [Prog. Engenharia Metalúrgica e Materiais, COPPE/UFRJ, RJ (Brazil); Martins, Virginia C.A. [Depto. de Química e Física Molecular, IQSC/USP, SP (Brazil); Gomez, Santiago [Dept. Anatomía Patológica, Universidad de Cádiz, Cadiz (Spain); LeGeros, Racquel Z. [Department of Biomaterials and Biomimetics, New York University College of Dentistry, NY (United States); Soares, Gloria A. [Prog. Engenharia Metalúrgica e Materiais, COPPE/UFRJ, RJ (Brazil)


    3D porous scaffolds are relevant biomaterials to bone engineering as they can be used as templates to tissue reconstruction. The aim of the present study was to produce and characterize in vitro 3D magnesium-carbonate apatite/collagen (MCA/col) scaffolds. They were prepared by using biomimetic approach, followed by cross-linking with 0.25% glutaraldehyde solution (GA) and liofilization. Results obtained with Fourier-transform infrared spectroscopy (FT-IR) confirmed the type-B carbonate substitution, while by X-ray diffraction (XRD), a crystallite size of ∼ 10 nm was obtained. Optical and electron microscopy showed that the cylindrical samples exhibited an open-porous morphology, with apatite nanocrystals precipitated on collagen fibrils. The cross-linked 3D scaffolds showed integrity when immersed in culture medium up to 14 days. Also, the immersion of such samples into an acid buffer solution, to mimic the osteoclastic resorption environment, promotes the release of important ions for bone repair, such as calcium, phosphorus and magnesium. Bone cells (SaOs2) adhered, and proliferated on the 3D composite scaffolds, showing that synthesis and the cross-linking processes did not induce cytotoxicity. Highlights: • 3D scaffolds of Mg-carbonate–apatite and anionic-collagen were produced. • The biomimetic approach and the cross-linking with 0.25% GA solution were employed. • The scaffolds showed open-porous structure and apatite crystals on collagen fibrils. • The cross-linked scaffolds exhibited integrity when immersed in culture medium. • SaOs2 cells adhered and proliferated on the cross-linked scaffolds confirming no cytotoxicity.

  18. Radiation-induced amorphization of Ce-doped Mg2Y8(SiO4)6O2 silicate apatite

    Zhou, Jianren; Yao, Tiankai; Lian, Jie; Shen, Yiqiang; Dong, Zhili; Lu, Fengyuan


    Ce-doped Mg2Y8(SiO4)6O2 silicate apatite (Ce = 0.05 and 0.5) were irradiated with 1 MeV Kr2+ ion beam irradiation at different temperatures and their radiation response and the cation composition dependence of the radiation-induced amorphization were studied by in situ TEM. The two Ce-doped Mg2Y8(SiO4)6O2 silicate apatites are sensitive to ion beam induced amorphization with a low critical dose (0.096 dpa) at room temperature, and exhibits significantly different radiation tolerance at elevated temperatures. Ce concentration at the apatite AI site plays a critical role in determining the radiation response of this silicate apatite, in which the Ce3+ rich Mg2Y7.5Ce0.5(SiO4)6O2 displays lower amorphization susceptibility than Mg2Y7.95Ce0.05(SiO4)6O2 with a lower Ce3+ occupancy at the AI sites. The critical temperature (Tc) and activation energy (Ea) change from 667.5 ± 33 K and 0.162 eV of Mg2Y7.5Ce0.5(SiO4)6O2 to 963.6 ± 64 K and 0.206 eV of Mg2Y7.95Ce0.05(SiO4)6O2. We demonstrate that the radiation tolerance can be controlled by varying the chemical composition, and enhanced radiation tolerance is achieved by increasing the Ce concentration at the AI site.

  19. Evidence for the Multi-Stage Petrogenetic History of the Oka Carbonatite Complex (Québec, Canada) as Recorded by Perovskite and Apatite

    Wei Chen; Antonio Simonetti


    The Oka complex is amongst the youngest carbonatite occurrences in North America and is associated with the Monteregian Igneous Province (MIP; Québec, Canada). The complex consists of both carbonatite and undersaturated silicate rocks (e.g., ijolite, alnöite), and their relative emplacement history is uncertain. The aim of this study is to decipher the petrogenetic history of Oka via the compositional, isotopic and geochronological investigation of accessory minerals, perovskite and apatite, ...

  20. [The effect of a simulated inflammation procedure in simulated body fluid on bone-like apatite formation on porous HA/beta-TCP bioceramics].

    Ji, Jingou; Ran, Junguo; Gou, Li; Wang, Fangfu; Sun, Luwei


    The formation of bone-like apatite on porous HA/beta-TCP bioceramics in dynamic simulated body fluid (SBF) undergoing a simulated inflammation procedure (pH = 6.5) was investigated in order to study the mechanism of osteoinduction and build a new method to choose biomaterials with better bioactivity. The results showed that the surface of porous HA/beta-TCP bioceramics which underwent a simulated inflammation procedure in dynamic SBF was more smooth. The light acidity in the simulated inflammation procedure would dissolve the fine grains and the parts possessing smaller curvature radius on the surface of porous HA/beta-TCP bioceramics, which would reduce the bioceramics solubility. Followed in normal SBF (pH = 7.4), the amount of bone-like apatite formed on the porous HA/beta-TCP bioceramics was less than that of porous HA/beta-TCP bioceramics incubation in normal SBF all along. The results also showed that the amount of bone-like apatite formed on the porous HA/beta-TCP bioceramics sintered by a microwave plasma was more than that of porous HA/beta-TCP bioceramics sintered by a conventional furnace.

  1. Hanford 100N Area Apatite Emplacement: Laboratory Results of Ca-Citrate-PO4 Solution Injection and Sr-90 Immobilization in 100N Sediments

    Szecsody, James E.; Burns, Carolyn A.; Moore, Robert C.; Fruchter, Jonathan S.; Vermeul, Vincent R.; Williams, Mark D.; Girvin, Donald C.; McKinley, James P.; Truex, Michael J.; Phillips, Jerry L.


    This report summarizes laboratory scale studies investigating the remediation of Sr-90 by Ca-citrate-PO4 solution injection/infiltration to support field injection activities in the Hanford 100N area. This study is focused on experimentally testing whether this remediation technology can be effective under field scale conditions to mitigate Sr-90 migration 100N area sediments into the Columbia River. Sr-90 is found primarily adsorbed to sediments by ion exchange (99% adsorbed, < 1% in groundwater) in the upper portion of the unconfined aquifer and lower vadose zone. Although primarily adsorbed, Sr-90 is still considered a high mobility risk as it is mobilized by seasonal river stage increases and by plumes of higher ionic strength relative to groundwater. This remediation technology relies upon the Ca-citrate-PO4 solution forming apatite precipitate [Ca6(PO4)10(OH)2], which incorporates some Sr-90 during initial precipitation and additionally slowly incorporates Sr-90 by solid phase substitution for Ca. Sr substitution occurs because Sr-apatite is thermodynamically more stable than Ca-apatite. Once the Sr-90 is in the apatite structure, Sr-90 will decay to Y-90 (29.1 y half-life) then Zr-90 (64.1 h half-life) without the potential for migration into the Columbia River. For this technology to be effective, sufficient apatite needs to be emplaced in sediments to incorporate Sr and Sr-90 for 300 years (~10 half-lives of Sr-90), and the rate of incorporation needs to exceed the natural groundwater flux rate of Sr in the 100N area. A primary objective of this study is to supply an injection sequence to deliver sufficient apatite into subsurface sediments that minimizes initial mobility of Sr-90, which occurs because the injection solution has a higher ionic strength compared to groundwater. This can be accomplished by sequential injections of low, then high concentration injection of Ca-citrate-PO4 solutions. Assessment of low concentration Ca-citrate-PO4, citrate-PO4

  2. Abnormal arrangement of a collagen/apatite extracellular matrix orthogonal to osteoblast alignment is constructed by a nanoscale periodic surface structure.

    Matsugaki, Aira; Aramoto, Gento; Ninomiya, Takafumi; Sawada, Hiroshi; Hata, Satoshi; Nakano, Takayoshi


    Morphological and directional alteration of cells is essential for structurally appropriate construction of tissues and organs. In particular, osteoblast alignment is crucial for the realization of anisotropic bone tissue microstructure. In this article, the orientation of a collagen/apatite extracellular matrix (ECM) was established by controlling osteoblast alignment using a surface geometry with nanometer-sized periodicity induced by laser ablation. Laser irradiation induced self-organized periodic structures (laser-induced periodic surface structures; LIPSS) with a spatial period equal to the wavelength of the incident laser on the surface of biomedical alloys of Ti-6Al-4V and Co-Cr-Mo. Osteoblast orientation was successfully induced parallel to the grating structure. Notably, both the fibrous orientation of the secreted collagen matrix and the c-axis of the produced apatite crystals were orientated orthogonal to the cell direction. To the best of our knowledge, this is the first report demonstrating that bone tissue anisotropy is controllable, including the characteristic organization of a collagen/apatite composite orthogonal to the osteoblast orientation, by controlling the cell alignment using periodic surface geometry.

  3. Nd isotope composition and rare earth element distribution in early Paleozoic biogenic apatite from Baltoscandia: A signature of Iapetus ocean water

    Felitsyn, Sergei; Sturesson, Ulf; Popov, Leonid; Holmer, Lars


    Analyses of the Nd isotopic composition and REE distribution in biogenic apatite (organophosphatic brachiopods and conodont elements) from the Cambrian and Ordovician sequences of the Baltic plate give new insights into the development of the southeastern segment of the continental margin bounding the Iapetus ocean. The Nd isotope analyses show ɛNd(t) of ˜-8.0 for the Cambrian, indicating that the main source of the sedimentary deposition came from weathered sedimentary rocks of Vendian and Cambrian age. The increase of ɛNd(t) to ˜-5.0 for the Early Ordovician indicates the appearance of a new source of radiogenic Nd in the surrounding area—most likely a volcanic arc along the western borderland of Baltic plate from Arenigian time. Samples of Cambrian biogenic apatite show significantly lower total amounts of REE than do the Ordovician samples, and this is probably due to a shorter exposure to seawater before burial during Ordovician sedimentary accumulation in Baltoscandia. These preliminary results suggest that biogenic apatite from the Baltoscandian basin preserves geochemical signatures of the water masses that will be important for understanding the evolution of the Iapetus ocean during the early Paleozoic.

  4. Carbonated apatites obtained by the hydrolysis of monetite: influence of carbonate content on adhesion and proliferation of MC3T3-E1 osteoblastic cells.

    Pieters, Ilse Y; Van den Vreken, Natasja M F; Declercq, Heidi A; Cornelissen, Maria J; Verbeeck, Ronald M H


    The influence of the carbonate content in apatites on the adhesion and the proliferation of MC3T3-E1 osteoblastic cells was investigated. B-type carbonated apatites (DCAps) were prepared by the hydrolysis of monetite (CaHPO(4), DCP) in solutions with a carbonate concentration ranging from 0.001 to 0.075 mol l(-1). Stoichiometric hydroxyapatite (DCAp0) was synthesized in carbonate-free solution. MC3T3-E1 cells were seeded on the compacted DCAps and cell adhesion and proliferation were analysed after 24h and 7 days, respectively, using a MTS assay and fluorescence microscopy. Cell adhesion tends to increase with increasing carbonate content for carbonate contents between 0 and 6.9 wt.% and levels out to an acceptable value (+ or - 50% compared to the control) for carbonate contents between 6.9 and 16.1 wt.%. Only DCAps with a carbonate content equal to or higher than 11% support high cell proliferation comparable to the control. On the latter DCAps, the cells have a spread morphology and form a near-confluent layer. A decrease in charge density and crystallinity at the apatite surface, as well as the formation of more spheroidal crystals with increasing carbonate content, might attribute to changes in composition and three-dimensional structure of the protein adsorption layer and hence to the observed cell behaviour. Consequently, only DCAps with a high carbonate content, mimicking early in vivo mineralization, are possible candidates for bone regeneration.

  5. Zircon and apatite fission track analyses on mineralization ages and tectonic activities of Tuwu-Yandong porphyry copper deposit in northern Xinjiang, China


    The mineralization ages reported in the past in the Tuwu-Yandong copper district not only are different, but also fall into the Hercynian epoch. This study has achieved 9 zircon and 7 apatite fission track analysis results. The zircon fission track ages range from 158 Ma to 289 Ma and the apatite ages are between 64 Ma and 140 Ma. The mineralization accords with the regional tectonics in the copper district. We consider that the zircon fission track age could reveal the mineralization age based on annealing zone temperature of 140-300℃ and retention temperature of ~250℃ for zircon fission track, and metallogenetic temperature of 120-350℃ in this ore district. Total three mineralization epochs have been identified, i.e., 289-276 Ma,232-200 Ma and 165-158 Ma, and indicate occurrence of the mineralization in the Indosinian and Yanshan epochs. Corresponding to apatite fission track ages, the three tectonic-mineralizing epochs are 140-132 Ma, 109-97 Ma and 64 Ma, which means age at about 100℃ after the mineralization. The three epochs lasted 146 Ma, 108 Ma and about 100 Ma from ~250℃ to ~100℃ and trend decrease from early to late. It is shown by the fission track modeling that this district underwent three stages of geological thermal histories, stable in Cretaceous and cooling both before Cretaceous and after 20 Ma.

  6. Evidence for the Multi-Stage Petrogenetic History of the Oka Carbonatite Complex (Québec, Canada as Recorded by Perovskite and Apatite

    Wei Chen


    Full Text Available The Oka complex is amongst the youngest carbonatite occurrences in North America and is associated with the Monteregian Igneous Province (MIP; Québec, Canada. The complex consists of both carbonatite and undersaturated silicate rocks (e.g., ijolite, alnöite, and their relative emplacement history is uncertain. The aim of this study is to decipher the petrogenetic history of Oka via the compositional, isotopic and geochronological investigation of accessory minerals, perovskite and apatite, using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS. The new compositional data for individual perovskite and apatite grains from both carbonatite and associated alkaline silicate rocks are highly variable and indicative of open system behavior. In situ Sr and Nd isotopic compositions for these two minerals are also variable and support the involvement of several mantle sources. U-Pb ages for both perovskite and apatite define a bimodal distribution, and range between 113 and 135 Ma, which overlaps the range of ages reported previously for Oka and the entire MIP. The overall distribution of ages indicates that alnöite was intruded first, followed by okaite and carbonatite, whereas ijolite defines a bimodal emplacement history. The combined chemical, isotopic, and geochronological data is best explained by invoking the periodic generation of small volume, partial melts generated from heterogeneous mantle.

  7. Roundness of heavy minerals (zircon and apatite) as a provenance tool for unraveling recycling: A case study from the Sefidrud and Sarbaz rivers in N and SE Iran

    Zoleikhaei, Yousef; Frei, Dirk; Morton, Andrew; Zamanzadeh, S. Mohammad


    In order to improve techniques for provenance studies, and especially to address the question of sediment recycling, morphological changes of two minerals with contrasting durability (zircon and apatite) were tracked during both fluvial transport and littoral reworking. The Sefidrud river system in northern Iran, which drains the Alborz volcano-sedimentary range into the Caspian Sea, and the Sarbaz river system in southeastern Iran, which drains the Makran Accretionary Prism into the Oman Sea, were chosen for this study. To determine source rocks of the grains, and thus their nature in terms of sedimentary cycles, zircon geochronology was conducted on both rivers. The zircon data indicate that most of the Sefidrud sediments are first cycle, derived from crystalline rocks, and the Sarbaz sediments are generally recycled from older wedges of the Makran. Results from SEM analysis show significant differences between the roundness of associated zircon and apatite grains. Zircon grains remain unrounded through several cycles, while apatite grains show abrasion from the early stages of their first cycle.

  8. Contribution to the study of sorption mechanisms at solid-liquid interfaces: application to the cases of apatites and oxy-hydroxides; Contribution a l'etude des mecanismes de sorption aux interfaces solide-liquide: application aux cas des apatites et des oxy-hydroxydes

    Duc, M


    Sorption-desorption phenomena play an important role in the transport of toxic and radioactive elements in surface and underground water in contact with solid matter. Selenium, which is one of the long-lived radionuclides present in radioactive waste, is characterized by several oxidation states and by anionic species in aqueous solutions. In order to predict its transport, we need a good knowledge of its sorption processes. We have studied the sorption of Se(IV) and Se(VI) on two types of solids present in natural media or which have been proposed as additives to active barriers: hydroxy-apatites, fluoro-apatite and iron oxi-hydroxides (goethite and hematite). Sorption mechanisms have been studied through an approach including several different and complementary methods: titrimetry, zeta-metry, scanning and transmission electron microscopy, infrared spectroscopy, X-ray diffraction, X-ray photo electron spectroscopy, etc... Results showed that Se(VI) is much less sorbed than Se(VI) on both types of solids. For Se(IV) the sorption mechanisms are different for iron oxides and apatites. On oxides, sorption increases when pH decreases. It can be interpreted by a surface complexation model, essentially through an inner sphere complex (monodentate or bidentate). Modelling of Se sorption curves was performed after the determination of acido-basic properties of oxides. However, the determination of the intrinsic properties of oxides is disturbed by several parameters identified as impurities, evolution of the solid in solution, kinetic and solubility of the solid. For apatites, selenium sorption proceeds by exchange with superficial groups, with a maximum of fixation at approximately pH 8. Thanks to XPS measurements and the elaboration of a mathematical model, we could determine the depth of penetration of both selenium and cadmium on apatites. (author)

  9. Preparation of core-shell poly(L-lactic) acid-nanocrystalline apatite hollow microspheres for bone repairing applications.

    Iafisco, Michele; Palazzo, Barbara; Ito, Tomoko; Otsuka, Makoto; Senna, Mamoru; Delgado-Lopez, Josè Manuel; Gomez-Morales, Jaime; Tampieri, Anna; Prat, Maria; Rimondini, Lia


    In this paper, hybrid inorganic-organic core-shell hollow microspheres, made of poly(L-lactic acid) (PLLA) and biomimetic nano apatites (HA), were prepared from biodegradable and biocompatible substances, suitable for bone tissue applications. Preparation is started from Pickering emulsification, i.e., solid particle-stabilized emulsions in the absence of any molecular surfactant, where solid particles adsorbed to an oil-water interface. Stable oil-in-water emulsions were produced using biomimetic 20 nm sized HA nanocrystals as particulate emulsifier and a dichloromethane (CH(2)Cl(2)) solution of PLLA as oil phase. Hybrid hollow PLLA microspheres at three different HA nanocrystals surface coverage, ranging from 10 to 50 μm, were produced. The resulting materials were completely characterized with spectroscopic, calorimetric and microscopic techniques and the cytocompatibility was established by indirect contact tests with both fibroblasts and osteoblasts and direct contact with these latter. They displayed a high level of cytocompatibility and thus represent promising materials for drug delivery systems, cell carriers and scaffolds for regeneration of bone useful in the treatment of orthopaedic, maxillofacial and dental fields.

  10. Thermal History of Rocks in the Shiwandashan Basin, Southern China: Evidence from Apatite Fission-Track Analysis

    Wang Xinwei; Wang Xinwen; Ma Yongsheng


    Based on interpretations of the apatite fission-track analysis data for 10 outcrop samples and forward modeling of confined fission-track length distributions, the thermal history of rocks in the Shiwandashan basin and its adjacent area, southern China, has been qualitatively and semi-quantitatively studied. The results reflect several features of the thermal history. Firstly, all the samples have experienced temperatures higher than 60-70 ℃. Secondly, the time that the basement strata (T1b) on the northwestern side of the Shiwandashan basin were uplifted and exhumed to the unannealed upper crust (with a paleogeotemperature of below 60-70 ℃) is much earlier than the basement rocks (γ15) on the southeastern side of the basin. Thirdly, the thermal history of samples from the basin can be divided into six stages, I.e., the fast burial and heating stage (220-145 Ma), the transient cooling stage (145-135 Ma), the burial and heating stage (135-70 Ma), the rapid cooling stage (70-50 Ma), the relatively stable stage (50-20 Ma) and another rapid cooling stage (20 Ma to present).

  11. Area-Specific Cell Stimulation via Surface-Mediated Gene Transfer Using Apatite-Based Composite Layers

    Yushin Yazaki


    Full Text Available Surface-mediated gene transfer systems using biocompatible calcium phosphate (CaP-based composite layers have attracted attention as a tool for controlling cell behaviors. In the present study we aimed to demonstrate the potential of CaP-based composite layers to mediate area-specific dual gene transfer and to stimulate cells on an area-by-area basis in the same well. For this purpose we prepared two pairs of DNA–fibronectin–apatite composite (DF-Ap layers using a pair of reporter genes and pair of differentiation factor genes. The results of the area-specific dual gene transfer successfully demonstrated that the cells cultured on a pair of DF-Ap layers that were adjacently placed in the same well showed specific gene expression patterns depending on the gene that was immobilized in theunderlying layer. Moreover, preliminary real-time PCR results indicated that multipotential C3H10T1/2 cells may have a potential to change into different types of cells depending on the differentiation factor gene that was immobilized in the underlying layer, even in the same well. Because DF-Ap layers have a potential to mediate area-specific cell stimulation on their surfaces, they could be useful in tissue engineering applications.


    Seyed Mohsen Latifi


    Full Text Available Ca ion release from bioactive biomaterials could play an important role in their bioactivity and osteoconductivity properties. In order to improve hydroxyapatite (HA dissolution rate, in situ apatite-silica nanocomposite powders with various silica contents were synthesized via sol-gel method and mechanisms controlling the Ca ion release from them were investigated. Obtained powders were characterized by X-ray diffraction (XRD and transmission electron spectroscopy (TEM techniques, acid dissolution test, and spectroscopy by atomic absorption spectrometer (AAS. Results indicated the possible incorporation of (SiO44- into the HA structure and tendency of amorphous silica to cover the surface of HA particles. However, 20 wt. % silica was the lowest amount that fully covered HA particles. All of the nanocomposite powders showed more Ca ion release compared with pure HA, and HA - 10 wt. % silica had the highest Ca ion release. The crystallinity, the crystallite size, and the content of HA, along with the integrity, thickness, and ion diffusion possibility through the amorphous silica layer on the surface of HA, were factors that varied due to changes in the silica content and were affected the Ca ion release from nanocomposite powders.

  13. Fabrication of Carbonate Apatite Block through a Dissolution–Precipitation Reaction Using Calcium Hydrogen Phosphate Dihydrate Block as a Precursor

    Kanji Tsuru


    Full Text Available Carbonate apatite (CO3Ap block, which is a bone replacement used to repair defects, was fabricated through a dissolution–precipitation reaction using a calcium hydrogen phosphate dihydrate (DCPD block as a precursor. When the DCPD block was immersed in NaHCO3 or Na2CO3 solution at 80 °C, DCPD converted to CO3Ap within 3 days. β-Tricalcium phosphate was formed as an intermediate phase, and it was completely converted to CO3Ap within 2 weeks when the DCPD block was immersed in Na2CO3 solution. Although the crystal structures of the DCPD and CO3Ap blocks were different, the macroscopic structure was maintained during the compositional transformation through the dissolution–precipitation reaction. CO3Ap block fabricated in NaHCO3 or Na2CO3 solution contained 12.9 and 15.8 wt % carbonate, respectively. The diametral tensile strength of the CO3Ap block was 2 MPa, and the porosity was approximately 57% regardless of the carbonate solution. DCPD is a useful precursor for the fabrication of CO3Ap block.

  14. Lead bioaccumulation in Opuntia ficus-indica following foliar or root exposure to lead-bearing apatite.

    El Hayek, Eliane; El Samrani, Antoine; Lartiges, Bruno; Kazpard, Veronique; Aigouy, Thierry


    The contamination of edible leafy vegetables by atmospheric heavy metal-bearing particles is a major issue in environmental toxicology. In this study, the uptake of lead by cladodes of Opuntia ficus-indica (Ofi), traditionally used in Mexican cuisine and in livestock fodder, is investigated after a 4-months exposure of either cladodes or roots to synthetic Pb-fluorapatite particles. Atomic Absorption Spectroscopy (AAS) for the quantitative analysis of Pb levels, Scanning Electron Microscopy coupled with Energy Dispersive X-Ray Spectroscopy (SEM-EDX) for the examination of the cladode surface and fate of particles, and Micro-X-ray fluorescence (μXRF) measurements for elemental mapping of Pb in cladodes, were used. The results evidence that foliar contamination may be a major pathway for the transfer of Pb within Ofi cladodes. The stomata, areoles, and cuticle of cladode surface, play an obvious role in the retention and the incorporation of lead-bearing apatite, thus revealing the hazard of eating contaminated cladodes. The possibility of using series of successive cladodes for biomonitoring the atmospheric pollution in arid and semi-arid regions is also rapidly discussed.

  15. Phase conversion of tricalcium phosphate into Ca-deficient apatite during sintering of hydroxyapatite-tricalcium phosphate biphasic ceramics.

    Kong, Young-Min; Kim, Hyoun-Ee; Kim, Hae-Won


    In this study, we report a new observation on the phase conversion that occurs during the sintering of hydroxyapatite (HA)-tricalcium phosphate (TCP) biphasic ceramics. During the sintering of the HA-TCP mixture powders, a large amount of TCP was converted into HA, as detected by X-ray diffraction. The amount of TCP transformed into HA was approximately 10-90% of that initially added. From the electron probe microscopy analysis, the HA transformed from TCP was found to be Ca-deficient with Ca/P ratios of 1.62-1.64. The dissolution behavior and osteoblastic responses in a series of HA-TCP biphasic ceramics (10-90% TCP) were assessed. The solubility of the HA-TCP biphasic ceramics was intermediate between that of the HA and TCP pure ceramics. However, in the case of the HA-90% TCP biphasic ceramic, the solubility was even higher than that of pure TCP. The cell proliferation and alkaline phosphatase activity of the cells on the biphasic ceramics were lower than those on pure HA, but higher than those on pure TCP. However, particularly in the HA-50% TCP biphasic composition, the cellular responses were significantly higher than those on pure HA. It is considered that the Ca-deficient apatite newly formed from the TCP may affect in some way the solubility and biological properties of the HA-TCP biphasic ceramics.

  16. Late Mesozoic Thermotectonic Evolution of the Jueluotage Range,Eastern Xinjiang, Northwest China: Evidence from Apatite Fission Track Data

    ZHU Wenbin; WAN Jinglin; SHU Liangshu; ZHANG Zhiyong; SU Jinbao; SUN Yan; GUO Jichun; ZHANG Xueyun


    Although many authors have emphasized the Cenozoic history of deformation, exhumation and cooling in the Tiaushan area related to the India-Asia collision, very little is known about the Mesozoic history of compression and uplift within the Tianshan. In order to obtain information about the Mesozoic exhumation history and processes of cooling in eastern Tianshan, fission track methods on apatite were used. Sampling was made in the Jueluotage Range. Three samples (Z001-Z003) were taken from granite in borehole ZK6301 of Yandong pluton; the ages range from 97.0 to 87.6 Ma that are much younger than the pluton age which was dated by U-Pb zircon at 334±2 Ma. Two samples in northern piedmont of the Jueluotage Range were collected from Jurassic strata in Dikaner (DK001) and Dananhu (D001) whose ages are 91.5 and 93.4 Ma respectively. The average apparent exhumation rate is 0.039 mm/a calculated by extrapolation on the basis of Yandong samples, indicating an extremely slow exhumation in the Jueluotage Range since the Late Cretaceous. Two Jurassic samples reached the maximum depths after deposition and experienced the maximum temperatures of ca. 105 and 108℃ until the late Early Cretaceous before a period of cooling and exhumation occurred at 114 and 106 Ma.

  17. Apatite fission track thermochronology in the Kuluketage and Aksu areas, NW China: Implication for tectonic evolution of the northern Tarim

    Zhiyong Zhang


    Full Text Available Tarim Precambrian bedrocks are well exposed in the Kuluketage and Aksu areas, where twenty four samples were taken to reveal the denudation history of the northern Tarim Craton. Apatite fission track dating and thermal history modeling suggest that the northern Tarim experienced multi-stage cooling events which were assumed to be associated with the distant effects of the Cimmerian orogeny and India-Eurasia collision in the past. But the first episode of exhumation in the northern Tarim, occurring in the mid-Permian to Triassic, is here suggested to be induced by docking of the Tarim Craton and final amalgamation of the Central Asian Orogenic Belt. The cooling event at ca. 170 Ma may be triggered by the Qiangtang-Eurasia collision. Widespread Cretaceous exhumation could be linked with docking of the Lhasa terrane in the late Jurassic. Cenozoic reheating and recooling likely occurred because of the north-propagating stress, however, this has not affected the northern Tarim much because the Tarim is characterized by rigid block-like motion.

  18. Induction of antigen-specific immunity by pH-sensitive carbonate apatite as a potent vaccine carrier.

    Hebishima, Takehisa; Tada, Seiichi; Takeshima, Shin-nosuke; Akaike, Toshihiro; Ito, Yoshihiro; Aida, Yoko


    The ability of carbonate apatite (CO(3)Ap) to enhance antigen-specific immunity was examined in vitro and in vivo to investigate its utility as a vaccine carrier. Murine bone marrow-derived dendritic cells took up ovalbumin (OVA) containing CO(3)Ap more effectively than free OVA. Interestingly, mice immunized with OVA-containing CO(3)Ap produced OVA-specific antibodies more effectively than mice immunized with free OVA. Furthermore, immunization of C57BL/6 mice with OVA-containing CO(3)Ap induced the proliferation and antigen-specific production of IFN-γ by splenocytes more strongly than immunization with free OVA. Moreover, no significant differences were detected in the induction of delayed-type hypersensitivity responses, an immune reaction involving an antigen-specific, cell-mediated immune response between OVA-containing CO(3)Ap and OVA-containing alumina salt (Alum), suggesting that CO(3)Ap induced cell-mediated immune response to the same degree as Alum, which is commonly used for clinical applications. This study is the first to demonstrate the induction of antigen-specific immune responses in vivo by CO(3)Ap. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. New Apatite and Zircon (U-Th)/He Constraints on the Timing of Thrust-Related Exhumation in the Southern Bolivian (21˚S) Andes

    Anderson, R. B.; Long, S. P.; Horton, B. K.; Calle, A.; Stockli, D. F.


    Data suggesting rapid middle Miocene uplift of the southern Altiplano prompts resolving disagreements over the geometry, magnitude, and timing of Andean deformation in southern Bolivia (21°S) in order to test geodynamic responses of the thrust belt predicted by the Cordilleran cyclicity model. New apatite and zircon (U-Th)/He data combined with published apatite fission track data (AFT), new 1:50:000-scale mapping, and in-progress drafting of a balanced cross-section provide new insight into the geometry and timing of deformation, and the timing and rates of exhumation. Mapping was focused along an east-west transect through the Subandean Zone (SAZ), Interandean Zone (IAZ), and Eastern Cordillera (EC). Regional-scale folds (~10-20 km wavelength, ~4-6 km amplitude) in the SAZ exhume rocks as deep as Carboniferous above a 10-12 km deep decollemont in Silurian rocks. In the IAZ, thinner (~1-4 km), closely-spaced thrust sheets exhume Devonian and Silurian rocks, and a regional-scale anticlinorium in the easternmost EC exhumes rocks as deep as Cambrian and Ordovician. 11 new apatite and 5 new zircon (U-Th)/He cooling ages provide timing constraints on the initiation of thrust-related exhumation. Zircon cooling ages (32.8±1.4 to 25.4±1.2 Ma) reveal initiation of exhumation in the easternmost EC as early as ~32 Ma, and an exhumed partial retention zone at the EC-IAZ boundary. Apatite ages in the IAZ range from 21.71±0.77 to 7.45±0.20 Ma, and consistently young to the east. Exhumation was previously thought to have begun in the IAZ at ~10 Ma, but our results show thrust-related exhumation as early as ~22 Ma, in agreement with published AFT data that show that deformation had propagated eastward into the IAZ by at least ~18 Ma. In the western SAZ, apatite cooling ages of 6.10±0.17 and 4.84±0.14 Ma demonstrate that thrust-related uplift and exhumation in the western SAZ had begun by at least the late Miocene. These new data show a consistent eastward propagation of

  20. Hydrogen Isotopic Composition of Apatite in Northwest Africa 7034: A Record of the "Intermediate" H-Isotopic Reservoir in the Martian Crust?

    McCubbin, F. M.; Barnes, J. J.; Santos, A. R.; Boyce, J. W.; Anand, M.; Franchi, I. A.; Agee, C. B.


    Northwest Africa (NWA) 7034 and its pairings comprise a regolith breccia with a basaltic bulk composition [1] that yields a better match than any other martian meteorite to visible-infrared reflectance spectra of the martian surface measured from orbit [2]. The composition of the fine-grained matrix within NWA 7034 bears a striking resemblance to the major element composition estimated for the martian crust, with several exceptions. The NWA 7034 matrix is depleted in Fe, Ti, and Cr and enriched in Al, Na, and P [3]. The differences in Al and Fe are the most substantial, but the Fe content of NWA 7034 matrix falls within the range reported for the southern highlands crust [6]. It was previously suggested by [4] that NWA 7034 was sourced from the southern highlands based on the ancient 4.4 Ga ages recorded in NWA 7034/7533 zircons [4, 5]. In addition, the NWA 7034 matrix material is enriched in incompatible trace elements by a factor of 1.2-1.5 [7] relative to estimates of the bulk martian crust. The La/Yb ratio of the bulk martian crust is estimated to be approximately 3 [7], and the La/Yb of the NWA 7034 matrix materials ranges from approximately 3.9 to 4.4 [3, 8], indicating a higher degree of LREE enrichment in the NWA 7034 matrix materials. This elevated La/Yb ratio and enrichment in incompatible lithophile trace elements is consistent with NWA 7034 representing a more geochemically enriched crustal terrain than is represented by the bulk martian crust, which would be expected if NWA 7034 represents the bulk crust from the southern highlands. Given the similarities between NWA 7034 and the martian crust, NWA 7034 may represent an important sample for constraining the composition of the martian crust, particularly the ancient highlands. In the present study, we seek to constrain the H isotopic composition of the martian crust using Cl-rich apatite in NWA 7034. Usui et al., [9] recently proposed that a H isotopic reservoir exists within the martian crust that has


    Restrepo-Moreno, S. A.; Foster, D. A.; O'Sullivan, P. B.; Donelick, R.; Stockli, D. F.


    The Antioqueño plateau (AP), in the northernmost Cordillera Central, Colombia, is the most extensive and best preserved relict surface in the Northern Andes. Apatite (U-Th)/He (AHe) and fission track (AFT) results from twenty two samples, collected from paleocrustal depths along two vertical profiles in canyons dissecting the AP, constrain Cenozoic erosional exhumation of this segment of the Andean range. The two profiles exhibit excellent reproducibility of AHe and AFT data. Helium ages increase with elevation from ~22-49 Ma. A marked inflection point in the AHe age-elevation plots at 25 Ma defines the bottom of the post-Oligocene He partial retention zone (PRZ). Virtually invariant ages at ~25 Ma record onset of rapid exhumation in the AP. A more subtle slope change in the PRZ at ~43 Ma is interpreted as a minor exhumation pulse. AFT better defines timing and intensity of Eocene exhumation. AFT ages for both profiles vary from ~30-49 Ma and are consistently older than AHe ages. AFT data display invariant ages (±2σ) between 1500-2400 m elevations while confined track length data exhibit uni-modal distributions with a mean track length of ~14.2 μm. Both facts indicate rapid cooling. This is further supported by virtually concordant AFT and AHe ages for both profiles between 1500 to 2200 m implying that rocks were exhumed from temperatures >120°C to below AHe closure temperature 60°C. Assuming a geothermal gradient of ~25°C/km this corresponds to exhumation rates in the order of 0.5 mm/y, comparable in intensity to the Miocene pulse defined by AHe. Integrated thermal modeling show an episode of rapid cooling at ~43-49 Ma. AFT profiles show an apparent inflection point at ~1400 m, which defines the upper boundary of an apatite partial annealing zone (PAZ) exhumed during the 43-49 Ma cooling event. The position of the PAZ and PRZ relative to the present erosional surface point to average erosion rates of ~0.03 mm/yr, which constitute very low denudation rates

  2. Rietveld refinements and spectroscopic structural studies of a Na-free carbonate apatite made by hydrolysis of monetite.

    Wilson, Rory M; Dowker, Stephanie E P; Elliott, James C


    Seven nominally identical samples of Na-free carbonate apatite (CO(3)Ap) were prepared by reaction of CaHPO(4) with ammonium carbonate solution at 70 degrees C over 3 days. They were studied by chemical analysis, Rietveld analysis of powder X-ray diffraction (XRD) data, Ca/P ratio determinations (quantitative phase analysis of CaO, Ca(OH)(2) and hydroxyapatite formed after heating to 900 degrees C from Rietveld analysis of XRD data), He pycknometry, (1)H, (13)C and (31)P MAS NMR spectrometry and Fourier transform infrared and Raman spectroscopy. Spectroscopy showed the apatite products were B-type CO(3)Aps (CO(3)(2-) replacing PO(4)(3-)) and XRD that one sample contained 1.6 wt% calcite with a trace in another. Mean results of the six essentially calcite-free samples were: a=9.405(5)A, c=6.896(2)A; 11.2 wt% CO(3); unit cell contents, Ca(8.241)(PO(4))(4.344)(CO(3))(1.656)(OH)(0.139) x 2.29H(2)O; mole Ca/P ratio from chemical analyses, 1.897(22) and from powder XRD phase analysis of samples decarbonated at 900 degrees C, 1.892(25). Density determinations indicated that the 2.29mol of H(2)O were in the unit cell. Rietveld refinements were undertaken without and with explicit modelling of the CO(3)(2-) ion. The latter used constraints to maintain the CO(3)(2-) ion in its known geometry and the total of PO(4)(3-) and CO(3)(2-) ions per unit cell at six. Without the CO(3)(2-) ion in the model, PO(4) volume, P-O bond lengths and P occupancy were apparently reduced, consistent with CO(3)(2-) replacing PO(4)(3-) ions. With the CO(3)(2-) ion modelled, the reductions were less and the CO(3)(2-) ion occupied the "sloping" face of the replaced PO(4)(3-) ion in two-fold disorder about the mirror plane. The angle between the normal to the plane of the ion and the c-axis was 34 degrees , close to 35.3 degrees , the equivalent angle for the PO(4)(3-) ion. When modelled, the CO(3)(2-) ion occupancy was 1.81 ions per unit cell, in reasonable agreement with unit cell contents

  3. Phanerozoic burial and exhumation history of southernmost Norway estimated from apatite fission-track analysis data and geological observations

    Japsen, Peter; Green, Paul F.; Bonow, Johan M.; Chalmers, James A.; Rasmussen, Erik S.


    We present new apatite fission-track analysis (AFTA) data from 27 basement samples from Norway south of ~60°N. The data define three events of cooling and exhumation that overlap in time with events defined from AFTA in southern Sweden (Japsen et al. 2015). The samples cooled below palaeotemperatures of >100°C in a major episode of Triassic cooling as also reported by previous studies (Rohrman et al. 1995). Our study area is just south of the Hardangervidda where Cambrian sediments and Caledonian nappes are present. We thus infer that these palaeotemperatures reflect heating below a cover that accumulated during the Palaeozoic and Triassic. By Late Triassic, this cover had been removed from the Utsira High, off SW Norway, resulting in deep weathering of a granitic landscape (Fredin et al. 2014). Our samples were therefore at or close to the surface at this time. Palaeotemperatures reached ~80°C prior to a second phase of cooling and exhumation in the Jurassic, following a phase of Late Triassic - Jurassic burial. Upper Jurassic sandstones rest on basement near Bergen, NW of our study area (Fossen et al. 1997), and we infer that the Jurassic event led to complete removal of any remaining Phanerozoic cover in the region adjacent to the evolving rift system prior to Late Jurassic subsidence and burial. The data reveal a third phase of cooling in the early Miocene when samples that are now near sea level cooled below palaeotemperatures of ~60°C. For likely values of the palaeogeothermal gradient, such palaeotemperatures correspond to burial below rock columns that reach well above the present-day landscape where elevations rarely exceed 1 km above sea level. This implies that the present-day landscape was shaped by Neogene erosion. This is in agreement with the suggestion of Lidmar-Bergström et al. (2013) that the near-horizontal Palaeic surfaces of southern Norway are the result of Cenozoic erosion to sea level followed by uplift to their present elevations in a

  4. Mesozoic and Cenozoic uplift and exhumation of the Bogda Mountain, NW China: Evidence from apatite fission track analysis

    Wenhao Tang


    Full Text Available Apatite fission track (AFT analysis on samples collected from a Paleozoic series is used to constrain the cooling history of the Bogda Mountain, northwest China. AFT ages range from 136.2 to 85.6 Ma and are younger than rock depositional ages and the mean confined track lengths (11.0–13.2 μm mostly showing unimodal distribution are shorten, indicating significant track-annealing. Thermal histories modeling based on the distribution of fission-track lengths combined with the regional geological data show that two rapid cooling phases occurred in the latest Jurassic–early Cretaceous and the Oligocene–Miocene. Those new data together with previous published data show that the AFT ages become younger from the southwest to northeast in the western Bogda Mountain and its adjacent areas. The fission-track ages of the southwest area are relatively older (>100 Ma, recording the earlier rapid uplift phase during the late Jurassic–Cretaceous, while the ages in the north piedmont of the Bogda Mountain (namely the northeast part are younger (<60 Ma, mainly reflecting the later rapid uplift phase in the Oligocene–Miocene. The trend of younger AFT ages towards the northeast might be explained by post-Cretaceous large-scale crustal tilting towards the southwest. In the thrust fault-dominated northern limbs of the Bogda Mountain, AFT ages reveal a discontinuous pattern with age-jumps across the major fault zones, showing a possible strata tilting across each thrust faults due to the thrust ramps during the Cenozoic. The two rapid uplift stages might be related to the accretion and collision in the southern margin of the Asian continent during the late Jurassic and late Cenozoic, respectively.

  5. Biphasic silica/apatite co-mineralized collagen scaffolds stimulate osteogenesis and inhibit RANKL-mediated osteoclastogenesis

    Kai, Jiao; Niu, Li-na; Li, Qi-hong; Chen, Fa-ming; Zhao, Wei; Li, Jun-jie; Chen, Ji-hua; Cutler, Christopher W; Pashley, David H; Tay, Franklin R


    The effects of a biphasic mineralized collagen scaffold (BCS) containing intrafibrillar silica and apatite on osteogenesis of mouse mesenchymal stem cells (mMSCs) and inhibition of receptor activator of nuclear factor κB ligand (RANKL)-mediated osteoclastogenesis were investigated in the present study. mMSCs were cultured by exposing to BCS for 7 days for cell proliferation/viability examination, and stimulated to differentiate in osteogenic medium for 7–21 days for evaluation of alkaline phosphatase activity, secretion of osteogenic deposits and expression of osteoblast lineage-specific phenotypic markers. The effect of BCS-conditioned mMSCs on osteoclastogenesis of RAW 264.7 cells was evaluated by tartrate-resistant acid phosphatase staining and resorption pit analysis. The contributions of mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3 kinase (PI3K) signal transduction pathways to osteogenesis of mMSCs and their osteoprotegerin (OPG) and RANKL expressions were also evaluated. Compared with unmineralized, intrafibrillarly-silicified or intrafibrillarly-calcified collagen scaffolds, BCS enhanced osteogenic differentiation of mMSCs by activation of the extracellular signal regulated kinases (ERK)/MAPK and p38/MAPK signaling pathways. After mMSCs were exposed to BCS, they up-regulated OPG expression and down-regulated RANKL expression through activation of the p38/MAPK and PI3K/ protein kinase B (Akt) pathways, resulting in inhibition of the differentiation of RAW 264.7 cells into multinucleated osteoclasts and reduction in osteoclast function. These observations collectively suggest that BCS has the potential to be used in bone tissue engineering when the demand for anabolic activities is higher than catabolic metabolism during the initial stage of wound rehabilitation. PMID:25792280

  6. Optimization of a Biomimetic Apatite Nanoparticle Delivery System for Non-viral Gene Transfection---a Simulated Body Fluid Approach

    Das, Debobrato

    Current methods for gene delivery utilize nanocarriers such as liposomes and viral vectors that may produce in vivo toxicity, immunogenicity, or mutagenesis. Moreover, these common high-cost systems have a low efficacy of gene-vehicle transport across the cell plasma membrane followed by inadequate release and weak intracellular stability of the genetic sequence. Thus, this study aims to maximize gene transfection while minimizing cytotoxicity by utilizing supersaturated blood-plasma ions derived from simulated body fluids (SBF). With favorable electrostatic interactions to create biocompatible calcium-phosphate nanoparticles (NPs) derived from biomimetic apatite (BA), results suggest that the SBF system, though naturally sensitive to reaction conditions, after optimization can serve as a tunable and versatile platform for the delivery of various types of nucleic acids. From a systematic exploration of the effects of nucleation pH, incubation temperature, and time on transfection efficiency, the study proposes distinct characteristic trends in SBF BA-NP morphology, cellular uptake, cell viability, and gene modulation. Specifically, with aggressive nucleation and growth of BA-NPs in solution (observed via scanning electron microscopy), the ensuing microenvironment imposes a more toxic cellular interaction (indicated by alamarBlue and BCA assays), limiting particle uptake (fluorescence experiments) and subsequent gene knockdown (quantitative loss of function assays). Controlled precipitation of BA-NPs function to increase particle accessibility by surrounding cells, and subsequently enhance uptake and transfection efficiency. By closely examining such trends, an optimal fabrication condition of pH 6.5-37C can be observed where particle growth is more tamed and less chaotic, providing improved, favorable cellular interactions that increase cell uptake and consequently maximize gene transfection, without compromising cellular viability.

  7. Late Cenozoic Vertical Motions of the Coachella Valley Using Apatite U-Th/He and 4/3He Thermochronometry

    Mason, C. C.; Spotila, J. A.; Fame, M. L.; Dorsey, R. J.; Shuster, D. L.


    The Coachella Valley of southern California (USA) is a late Cenozoic transform-related sedimentary basin created by top-to-the-east extension on the West Salton detachment fault and dextral strike-slip offset on the San Andreas fault (Axen and Fletcher, 1998), which has continued to subside as a result of northeastward tilting since initiation of the San Jacinto fault ca. 1.2 Ma. Though it is generally agreed that these large regional faults are responsible for creation of high relief and deep subsidence in the Coachella Valley, the timing, magnitude, and geometries of fault offsets on these structures are still debated. This project applies an integrated source-to-sink approach to investigate tectonic models for evolution of the Pacific-North American plate boundary as recorded in the world-class natural laboratory of the Coachella Valley. In this study we integrate new thermochronometry-constrained kinematic models with tectonostratigraphic interpretations to help quantify the timing, rates, and magnitudes of tectonically driven vertical crustal motions and resulting mass fluxes. We sampled bedrock for U-Th/He (A-He) thermochronometry in the Mecca Hills, Santa Rosa, San Jacinto, and Little San Bernardino Mountains in both spatially focused and widely distributed areas. We also present new results from apatite 4/3He thermochronometry to help constrain the most recent exhumation histories. A-He results reveal spatially variable exhumation ages. The southwest Santa Rosa Mountains experienced late Miocene-early Pliocene exhumation along their southwest flank, while new A-He ages from ranges bounding Coachella Valley reveal complex uplift histories. We integrate our data set with previously published thermochronometric data to improve a regional synthesis of late Cenozoic vertical motions of the Coachella Valley.

  8. Mesozoic and Cenozoic uplift and exhumation of the Bogda Mountain, NW China:Evidence from apatite fission track analysis

    Wenhao Tang; Zhicheng Zhang; Jianfeng Li; Ke Li; Zhiwen Luo; Yan Chen


    Apatite fission track (AFT) analysis on samples collected from a Paleozoic series is used to constrain the cooling history of the Bogda Mountain, northwest China. AFT ages range from 136.2 to 85.6 Ma and are younger than rock depositional ages and the mean confined track lengths (11.0e13.2 mm) mostly showing unimodal distribution are shorten, indicating significant track-annealing. Thermal histories modeling based on the distribution of fission-track lengths combined with the regional geological data show that two rapid cooling phases occurred in the latest Jurassiceearly Cretaceous and the OligoceneeMiocene. Those new data together with previous published data show that the AFT ages become younger from the southwest to northeast in the western Bogda Mountain and its adjacent areas. The fission-track ages of the southwest area are relatively older (>100 Ma), recording the earlier rapid uplift phase during the late JurassiceCretaceous, while the ages in the north pied-mont of the Bogda Mountain (namely the northeast part) are younger (<60 Ma), mainly reflecting the later rapid uplift phase in the OligoceneeMiocene. The trend of younger AFT ages towards the northeast might be explained by post-Cretaceous large-scale crustal tilting towards the southwest. In the thrust fault-dominated northern limbs of the Bogda Mountain, AFT ages reveal a discontinuous pattern with age-jumps across the major fault zones, showing a possible strata tilting across each thrust faults due to the thrust ramps during the Cenozoic. The two rapid uplift stages might be related to the accretion and collision in the southern margin of the Asian continent during the late Jurassic and late Cenozoic, respectively.

  9. Cenozoic burial and exhumation history of the Kangerlussuaq area, East Greenland, revealed by new apatite fission-track data

    Japsen, Peter; Green, Paul F.; Bonow, Johan M.; Nielsen, Troels F.


    The Kangerlussuaq area in East Greenland (c. 68°N) has witnessed a complex geological development during the Cenozoic. The Skaergaard intrusion and the up to 5 km thick flood basalts formed during a short period around 55 Ma, and subsequently numerous intrusive bodies were emplaced, primarily during the Eocene. Relatively little is known about the geological history over the last 35 Myr, other than that an outlier of Middle Miocene lavas is located in the area at an elevation of c. 2.7 km. At the present-day, the area is deeply eroded and magmatic bodies that were emplaced deeply in the crust, are now exposed at the surface, but at the same time, the area has a significant elevation and even hosts the highest peak in Greenland, Gunbjørn Fjeld, 3.7 km above sea level. To unravel the history of burial and exhumation in the Kangerlussuaq area, new apatite fission-track analysis (AFTA) data has been acquired for 75 rock samples. Preliminary results show that the area has been subject to several phases of cooling since burial under the Palaeogene flood basalts. Phases of regional cooling along the coast that occurred at the Eocene-Oligocene transition and in the late Neogene are interpreted to be due to uplift and exhumation. Cooling events of local extent that occurred in the Eocene, Oligocene and Miocene are interpreted to be related to both exhumation and to circulating hot fluids. Results from samples along vertical transects reveal details of the protracted exhumation history, and that the present topography was formed during the late Neogene.

  10. Quantitative Determination of Lattice Fluoride Effects on the Solubility and Crystallinity of Carbonated Apatites with Incorporated Fluoride

    Yan, Guang; Moribe, Kunikazu; Otsuka, Makoto; Papangkorn, Kongnara; Higuchi, William I.


    The purpose of this study was to evaluate quantitatively the effects of fluoride on the solubility and crystallinity of carbonated apatites (CAPs) after its incorporation into the crystal lattice using the metastable equilibrium solubility (MES) distribution method. Fluoride incorporated CAPs (F-CAPs) of two different carbonate levels (3% and 5%) and fluoride contents from 0 to 20,000 μg/g were synthesized. X-ray diffraction experiments and Rietveld analysis were conducted to obtain crystallite microstrain and unit cell parameters. Acetate buffer MES solution media were prepared at two solution fluoride concentrations (0.2 mg/L and 2.0 mg/L) and at two pHs (5.0 and 5.7). The unit cell a-axis values of the F-CAPs were found to decrease as the fluoride content increased; consistent with the fluoride being incorporated into the crystal lattice. The fluoride concentrations in the MES solution media were high enough to provide a “swamping” effect such that the fluoride released from the F-CAPs during dissolution was minimal in changing the solution fluoride concentration. Employing the MES distribution superposition method, it was shown that the surface complex possessing the fluorapatite (FAP) stoichiometry (Ca10(PO4)6F2) accounted for the MES distribution behavior of all experiments. In addition, the mean pIFAP [the value of −log(aca 10PO46aF2) calculated from ionic activity product based on FAP stoichiometry of the MES dissolution media in which 50% of the F-CAP had dissolved] correlated well with the crystallite microstrain parameters of the F-CAPs. The incorporated fluoride in the F-CAPs showed only modest effects on F-CAP crystallinity and solubility. PMID:23235353

  11. Induction of antigen-specific immunity by pH-sensitive carbonate apatite as a potent vaccine carrier

    Hebishima, Takehisa [Viral Infectious Diseases Unit, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tada, Seiichi [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Takeshima, Shin-nosuke [Viral Infectious Diseases Unit, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Akaike, Toshihiro [Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501 (Japan); Ito, Yoshihiro [Nano Medical Engineering Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Aida, Yoko, E-mail: [Viral Infectious Diseases Unit, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)


    Highlights: Black-Right-Pointing-Pointer To develop effective vaccine, we examined the effects of CO{sub 3}Ap as an antigen carrier. Black-Right-Pointing-Pointer OVA contained in CO{sub 3}Ap was taken up by BMDCs more effectively than free OVA. Black-Right-Pointing-Pointer OVA-immunized splenocytes was activated by OVA contained in CO{sub 3}Ap effectively. Black-Right-Pointing-Pointer OVA contained in CO{sub 3}Ap induced strong OVA-specific immune responses to C57BL/6 mice. Black-Right-Pointing-Pointer CO{sub 3}Ap is promising antigen carrier for the achievement of effective vaccine. -- Abstract: The ability of carbonate apatite (CO{sub 3}Ap) to enhance antigen-specific immunity was examined in vitro and in vivo to investigate its utility as a vaccine carrier. Murine bone marrow-derived dendritic cells took up ovalbumin (OVA) containing CO{sub 3}Ap more effectively than free OVA. Interestingly, mice immunized with OVA-containing CO{sub 3}Ap produced OVA-specific antibodies more effectively than mice immunized with free OVA. Furthermore, immunization of C57BL/6 mice with OVA-containing CO{sub 3}Ap induced the proliferation and antigen-specific production of IFN-{gamma} by splenocytes more strongly than immunization with free OVA. Moreover, no significant differences were detected in the induction of delayed-type hypersensitivity responses, an immune reaction involving an antigen-specific, cell-mediated immune response between OVA-containing CO{sub 3}Ap and OVA-containing alumina salt (Alum), suggesting that CO{sub 3}Ap induced cell-mediated immune response to the same degree as Alum, which is commonly used for clinical applications. This study is the first to demonstrate the induction of antigen-specific immune responses in vivo by CO{sub 3}Ap.

  12. Environment and ecology of East Asian dinosaurs during the Early Cretaceous inferred from stable oxygen and carbon isotopes in apatite

    Amiot, Romain; Wang, Xu; Zhou, Zhonghe; Wang, Xiaolin; Lécuyer, Christophe; Buffetaut, Eric; Fluteau, Frédéric; Ding, Zhongli; Kusuhashi, Nao; Mo, Jinyou; Philippe, Marc; Suteethorn, Varavudh; Wang, Yuanqing; Xu, Xing


    During the cold Late Barremian-Early Albian interval, terrestrial environments in East Asia were populated by rich and diverse vertebrate faunas characterized by a strong provincialism. The latitudinal gradient of temperature and the existence of geographic barriers likely accounted for some aspects of this heterogeneous distribution of faunas. Other factors, however, such as local environmental conditions and interactions within vertebrate communities, which could have influenced their distribution, have not yet been fully identified and understood. Therefore, new and published oxygen and carbon isotope compositions of apatite from Chinese and Thai reptiles (dinosaurs, crocodilians and turtles) have been analyzed and interpreted in terms of ecology, local air temperature and precipitation amounts. Differences in carbon and oxygen isotope compositions between various groups of sympatric plant-eating dinosaurs (sauropods, ornithopods and ceratopsians) indicate food resources partitioning among them most likely to avoid competition. Mid-latitude environments, where the Jehol Biota flourished, were submitted to cool temperate climatic conditions with Mean Air Temperature (MAT) of 10 ± 4 °C and Mean Annual Precipitations (MAP) of about 600 mm/yr compatible with the existence of forest environments. By contrast, sub-tropical regions, characterized by MAT of about 20-25 °C were either submitted to high amounts of seasonal precipitations (of about 1200 mm/yr in Thailand) or to significant aridity (MAP of about 400 mm/yr in South China). This difference in precipitation regime between Thailand and South China may be attributed to the occurrence of the Coastal Cordillera extending along the East margin of the South China block. These mountain ranges likely prevented humid air masses from the Pacific to penetrate some parts of South China, thus generating a "rain shadow effect". Mosaic environments characterizing East Asia during the Late Early Cretaceous may have acted

  13. Phanerozoic polycyclic evolution of the southwestern Angola margin: New insights for apatite fission track and (U-Th)/He methodologies

    Venancio da Silva, Bruno; Hackspacher, Peter; Carina Siqueira Ribeiro, Marli; Glasmacher, Ulrich Anton


    The low-temperature thermochronology has been an important tool to quantify geological process in passive continental margins. In this context, the Angolan margin shows evidence of a polycyclic post-rift evolution marked by different events of uplift, basin inversion and changes in sedimentation rates to the marginal basins, which have controlled the salt tectonics and the hydrocarbon deposits (1,2,3,4). To understand the post break-up evolution of the southwestern Angola margin, it were collected outcrop samples for apatite fission track (AFT) and (U-Th)/He analysis ranging in elevation from 79 m to 1675 m from the coast toward the interior plateau in a profile between Namibe and Lubango cities. The area lies on the edge of Central and Southern Atlantic segments a few kilometers northward the Walvis ridge and encompasses the Archean and Proterozoic basement rocks of the Congo craton. The AFT ages ranging from 120.6 ± 8.9 Ma to 328.8 ± 28.5 Ma and they show a trend of increasing age toward the Great Escarpment with some exceptions. The partial mean track lengths (MTLs) vary between 11.77 ± 1.82 μm to 12.34 ± 1.13 μm with unimodal track length distributions (TDLs). The partial (U-Th)/He ages ranging from 104.85 ± 3.15 Ma to 146.95 ± 4.41 Ma and show the same trend of increasing ages landward, little younger than the AFT ages, which could be interpreted as a fast exhumation episode in Late Jurassic - Early Cretaceous times. The thermal histories modelling has been constrained with the kinetic parameters Dpar (5) and c-axis angle (6) by the software Hefty (7). Both AFT and (U-Th)/He thermal histories modelling indicate three episodes of denudation/uplift driven cooling: (a) from Late Jurassic to Early Cretaceous, (b) a smallest one in the Late Cretaceous and (c) from Oligocene-Miocene to recent, which are compatible with geophysical data of the offshore Namibe basin that estimate the greater thickness of sediments formed in the first and third episodes

  14. In situ Sr isotope analysis of apatite by LA-MC-ICPMS: constraints on the evolution of ore fluids of the Yinachang Fe-Cu-REE deposit, Southwest China

    Zhao, Xin-Fu; Zhou, Mei-Fu; Gao, Jian-Feng; Li, Xiao-Chun; Li, Jian-Wei


    Apatite is a ubiquitous accessory mineral in a variety of rocks and hydrothermal ores. Strontium isotopes of apatite are well known to retain petrogenetic information and have been widely used to investigate the origin of igneous rocks, but such attempts have rarely been made to constrain ore-forming processes of hydrothermal systems. We here report in situ LA-MC-ICPMS Sr isotope data of apatite from the ~1660-Ma Yinachang Fe-Cu-REE deposit, Southwest China. The formation of this deposit was coeval to the emplacement of regionally distributed doleritic intrusions within a continental-rift setting. The deposit has a paragenetic sequence consisting of sodic alteration (stage I), magnetite mineralization (stage II), Cu sulfide and REE mineralization (stage III), and final barren calcite veining (stage IV). The stage II and III assemblages contain abundant apatite, allowing to investigate the temporal evolution of the Sr isotopic composition of the ore fluids. Apatite of stage II (Apt II) is associated with fluorite, magnetite, and siderite, whereas apatite from stage III (Apt III) occurs intimately intergrown with ankerite and Cu sulfides. Apt II has 87Sr/86Sr ratios varying from 0.70377 to 0.71074, broadly compatible with the coeval doleritic intrusions (0.70592 to 0.70692), indicating that ore-forming fluids responsible for stage II magnetite mineralization were largely equilibrated with mantle-derived mafic rocks. In contrast, Apt III has distinctly higher 87Sr/86Sr ratios from 0.71021 to 0.72114, which are interpreted to reflect external radiogenic Sr, likely derived from the Paleoproterozoic strata. Some Apt III crystals have undergone extensive metasomatism indicated by abundant monazite inclusions. The metasomatized apatite has much higher 87Sr/86Sr ratios up to 0.73721, which is consistent with bulk-rock Rb-Sr isotope analyses of Cu ores with 87Sr/86Sri from 0.71906 to 0.74632. The elevated 87Sr/86Sr values of metasomatized apatite and bulk Cu ores indicate

  15. Insights into the patterns and locations of erosion in the Himalaya — A combined fission-track and in situ Sm Nd isotopic study of detrital apatite

    Foster, G. L.; Carter, A.


    Understanding the role that climate, erosion and tectonics play in determining the mean relief, elevation and general form of a mountain range over time has become the focus of much recent research in the field of tectonic geomorphology. A crucial constraint in these studies is the long-term exhumation rate, which is increasingly being examined using detrital minerals from the sedimentary rock record that represent the eroded remnants of the orogen. A classic field area of such studies is the Himalayan orogen — the Earth's largest mountain range. We describe here a novel approach that uses the in situ analysis of Nd isotopes by laser ablation multicollector inductively coupled plasma mass spectrometry of fission-track dated apatite grains to unambiguously tie them to their source regions. We demonstrate the capability of this new approach on several modern and Holocene river sand samples from the Himalayan orogen and determine, because of the large isotopic differences in the constituent tectonostratigraphic units, both the location and magnitude of long-term erosion. In agreement with previous studies we are able to show that in the Central and Eastern Himalaya long-term denudation is focussed within the High Himalayan Crystalline Series (HHCS) at average rates of ˜ 2 mm/yr. Average long-term rates are similar in the Western Himalaya sampled by the Indus River and largely reflect erosional denudation of the Western Indian Himalaya and the Western Syntaxis (the Nanga Parbat Haramosh Massif and South Karakoram Metamorphic Complex). Notably, the Asian continent supplies significantly more apatites to the mouth of the Indus than they do to the Bengal delta. The ability to reconstruct the patterns of long-term erosion in the Himalaya using detrital apatites from a few samples collected from major transverse drainages provides confidence in the utility of this approach to examine the locations and magnitude of long-term erosion in the past.

  16. LA-ICP-MS U-Pb apatite dating of Lower Cretaceous rocks from teschenite-picrite association in the Silesian Unit (southern Poland

    Szopa Krzysztof


    Full Text Available The main products of volcanic activity in the teschenite-picrite association (TPA are shallow, sub-volcanic intrusions, which predominate over extrusive volcanic rocks. They comprise a wide range of intrusive rocks which fall into two main groups: alkaline (teschenite, picrite, syenite, lamprophyre and subalkaline (dolerite. Previous 40Ar/39Ar and 40K/40Ar dating of these rocks in the Polish Outer Western Carpathians, performed on kaersutite, sub-silicic diopside, phlogopite/biotite as well as on whole rock samples has yielded Early Cretaceous ages. Fluorapatite crystals were dated by the U-Pb LA-ICP-MS method to obtain the age of selected magmatic rocks (teschenite, lamprophyre from the Cieszyn igneous province. Apatite-bearing samples from Boguszowice, Puńców and Lipowa yield U-Pb ages of 103± 20 Ma, 119.6 ± 3.2 Ma and 126.5 ± 8.8 Ma, respectively. The weighted average age for all three samples is 117.8 ± 7.3 Ma (MSWD = 2.7. The considerably smaller dispersion in the apatite ages compared to the published amphibole and biotite ages is probably caused by the U-Pb system in apatite being less susceptible to the effects of hydrothermal alternation than the 40Ar/39Ar or 40K/40Ar system in amphibole and/or biotite. Available data suggest that volcanic activity in the Silesian Basin took place from 128 to 103 Ma with the the main magmatic phase constrained to 128-120 Ma.

  17. Trace element and isotopic composition of apatite in carbonatites from the Blue River area (British Columbia, Canada) and mineralogy of associated silicate rocks

    Mitchell, Roger; Chudy, Thomas; McFarlane, Christopher R. M.; Wu, Fu-Yuan


    Apatites from the Verity, Fir, Gum, Howard Creek and Felix carbonatites of the Blue River (British Columbia, Canada) area have been investigated with respect to their paragenesis, cathodoluminescence, trace element and Sr-Nd isotopic composition. Although all of the Blue River carbonatites were emplaced as sills prior to amphibolite grade metamorphism and have undergone deformation, in many instances magmatic textures and mineralogy are retained. Attempts to constrain the U-Pb age of the carbonatites by SIMS, TIMS and LA-ICP-MS studies of zircon and titanite were inconclusive as all samples investigated have experienced significant Pb loss during metamorphism. The carbonatites are associated with undersaturated calcite-titanite amphibole nepheline syenite only at Howard Creek although most contain clasts of disaggregated phoscorite-like rocks. Apatite from each intrusion is characterized by distinct, but wide ranges, in trace element composition. The Sr and Nd isotopic compositions define an array on a 87Sr/86Sr vs²Nd diagram at 350 Ma indicating derivation from depleted sub-lithospheric mantle. This array could reflect mixing of Sr and Nd derived from HIMU and EM1 mantle sources, and implies that depleted mantle underlies the Canadian Cordillera. Although individual occurrences of carbonatites in the Blue River region are mineralogically and geochemically similar they are not identical and thus cannot be considered as rocks formed from a single batch of parental magma at the same stage of magmatic evolution. However, a common origin is highly probable. The variations in the trace element content and isotopic composition of apatite from each occurrence suggest that each carbonatite represents a combination of derivation of the parental magma(s) from mineralogically and isotopically heterogeneous depleted mantle sources coupled with different stages of limited differentiation and mixing of these magmas. We do not consider these carbonatites as primary direct




    Full Text Available INTRODUCTION: In recent years there has been an increasing interest in biologically active calcium phosphate ceramic materials for orthopaedic application. A number of materials from human, animal or non - biological sources have been used to fill defects with or without additional autogenus bone. It would be ideal to have bone substitute w hich is easily fabricated and preserved, is biocompatible with bone, and is biodegradable. The calcium phosphate system, and in particular hydroxyappatite (HA, has long been the subject of intensive investigation. MATERIAL AND METHODS: This observational two year study was undertaken at S.N. Medical College and Hospital, Agra (U.P.. The patients having the comminuted fracture of the long bone of lower limbs were treated with autogenus bone graft and calcium hydroxy Apatite bone block. Functional results w ere presented according to Klemm and Borner (1986 criteria. RESULTS: The total cases studied were 25 out of which 21 cases had fracture of both bones of leg and 4 were of fracture femur. The patients were aged between 15 to 70 years. Most of the patients were males and the common mode of injury was road traffic accident. An excellent result were seen in the majority 9(36% of patients while 8(32% patients showed a good result and 6(24% showed a fair result. 17(68% patients had compound fracture while 8( 32% patients were having closed fracture. CONCLUSION: Calcium Hydroxy Apatite is a suitable alternative to bone graft. There was no evidence of any foreign body reaction and infection at the Calcium Hydroxy Apatite implanted site. There was satisfactory h ealing of all the comminuted fractures. The movement of adjacent joints was nearly normal. No refracture was observed on follow up.

  19. Enhanced apatite-forming ability and antibacterial activity of porous anodic alumina embedded with CaO-SiO2-Ag2O bioactive materials.

    Ni, Siyu; Li, Xiaohong; Yang, Pengan; Ni, Shirong; Hong, Feng; Webster, Thomas J


    In this study, to provide porous anodic alumina (PAA) with bioactivity and anti-bacterial properties, sol-gel derived bioactive CaO-SiO2-Ag2O materials were loaded onto and into PAA nano-pores (termed CaO-SiO2-Ag2O/PAA) by a sol-dipping method and subsequent calcination of the gel-glasses. The in vitro apatite-forming ability of the CaO-SiO2-Ag2O/PAA specimens was evaluated by soaking them in simulated body fluid (SBF). The surface microstructure and chemical property before and after soaking in SBF were characterized. Release of ions into the SBF was also measured. In addition, the antibacterial properties of the samples were tested against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The results showed that CaO-SiO2-Ag2O bioactive materials were successfully decorated onto and into PAA nano-pores. In vitro SBF experiments revealed that the CaO-SiO2-Ag2O/PAA specimens dramatically enhanced the apatite-forming ability of PAA in SBF and Ca, Si and Ag ions were released from the samples in a sustained and slow manner. Importantly, E. coli and S. aureus were both killed on the CaO-SiO2-Ag2O/PAA (by 100%) samples compared to PAA controls after 3 days of culture. In summary, this study demonstrated that the CaO-SiO2-Ag2O/PAA samples possess good apatite-forming ability and high antibacterial activity causing it to be a promising bioactive coating candidate for implant materials for orthopedic applications.

  20. Enhanced apatite-forming ability and cytocompatibility of porous and nanostructured TiO2/CaSiO3 coating on titanium.

    Hu, Hongjie; Qiao, Yuqin; Meng, Fanhao; Liu, Xuanyong; Ding, Chuanxian


    To improve the bioactivity and cytocompatibility of biomedical titanium dioxide coating, many efforts have been made to modify its surface composition and topography. Meanwhile, CaSiO(3) was commonly investigated as coating material on titanium implants for fast fixation and firm implant-bone attachment due to its demonstrated bioactivity and osteointegration. In this work, gradient TiO(2)/CaSiO(3) coating on titanium was prepared by a two-step procedure, in which porous and nanostructured TiO(2) coating on titanium was prepared by plasma electrolytic oxidation in advance, and then needle and flake-like CaSiO(3) nanocrystals were deposited on the TiO(2) coating surface by electron beam evaporation. In view of the potential clinical applications, apatite-forming ability of the TiO(2)/CaSiO(3) coating was evaluated by simulated body fluid (SBF) immersion tests, and MG63 cells were cultured on the surface of the coating to investigate its cytocompatibility. The results show that deposition of CaSiO(3) significantly enhanced the apatite-forming ability of nanostructured TiO(2) coating in SBF. Meanwhile, the MG63 cells on TiO(2)/CaSiO(3) coating show higher proliferation rate and vitality than that on TiO(2) coating. In conclusion, the porous and nanostructured TiO(2)/CaSiO(3) coating on titanium substrate with good apatite-forming ability and cytocompatibility is a potential candidate for bone tissue engineering and implant coating. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Conventional and microwave-assisted multicomponent reaction of alkyne, halide and sodium azide catalyzed by copper apatite as heterogeneous base and catalyst in water

    Sandip Kale


    Full Text Available The conventional and microwave assisted multicomponent synthesis of disubstituted 1,2,3-triazoles from terminal alkynes and in situ generated organic azide using copper apatite catalyst in water is reported. The catalytic activity is intimately connected to the basicity of the catalyst. The best activities were observed with the copper hydroxyapatite. The catalyst could be used ten times without further treatment and activation under controlled microwave heating. The protocol was also applicable for various alkynes and halides which affords desired product in good to excellent yield.

  2. Characterization of granulations of calcium and apatite in serum as pleomorphic mineralo-protein complexes and as precursors of putative nanobacteria.

    John D Young

    Full Text Available Calcium and apatite granulations are demonstrated here to form in both human and fetal bovine serum in response to the simple addition of either calcium or phosphate, or a combination of both. These granulations are shown to represent precipitating complexes of protein and hydroxyapatite (HAP that display marked pleomorphism, appearing as round, laminated particles, spindles, and films. These same complexes can be found in normal untreated serum, albeit at much lower amounts, and appear to result from the progressive binding of serum proteins with apatite until reaching saturation, upon which the mineralo-protein complexes precipitate. Chemically and morphologically, these complexes are virtually identical to the so-called nanobacteria (NB implicated in numerous diseases and considered unusual for their small size, pleomorphism, and the presence of HAP. Like NB, serum granulations can seed particles upon transfer to serum-free medium, and their main protein constituents include albumin, complement components 3 and 4A, fetuin-A, and apolipoproteins A1 and B100, as well as other calcium and apatite binding proteins found in the serum. However, these serum mineralo-protein complexes are formed from the direct chemical binding of inorganic and organic phases, bypassing the need for any biological processes, including the long cultivation in cell culture conditions deemed necessary for the demonstration of NB. Thus, these serum granulations may result from physiologically inherent processes that become amplified with calcium phosphate loading or when subjected to culturing in medium. They may be viewed as simple mineralo-protein complexes formed from the deployment of calcification-inhibitory pathways used by the body to cope with excess calcium phosphate so as to prevent unwarranted calcification. Rather than representing novel pathophysiological mechanisms or exotic lifeforms, these results indicate that the entities described earlier as NB most

  3. Zircon-apatite U-Pb geochronology, zircon Hf isotope composition and geochemistry of granite batholith in the northern Mexico: Implications for Tectonomagmatic evolution of southern Cordillera.

    Mahar, M. A.; Goodell, P.


    We present the zircon-apatite U-Pb ages and zircon Hf isotope composition of the granite batholith exposed at the western boundary of Chihuahua. Granidiorite samples were analyzed from both, north and south of the Rio El Fuerte and Sinforosa Lineament. Based on previous studies, the WWN-EES trending Sinforosa Lineament is proposed as the manifestation of a terrane boundary between Seri in the north and Tahue terrane in the south. Zircon U-Pb data indicate that the magmatism spans a time period of 36 Ma from 89 to 53 Ma to the north of the Sinforosa Lineament while granodiorites in the south of the Sinforosa Lineament are dated at 59 Ma. The U-Pb apatite ages are variable in the north of the Sinforosa Lineament and range from 86-51 Ma. These apatite dates are 1-28 Ma younger than the corresponding zircon U-Pb crystallization ages. This indicates variable cooling rates and moderate to shallow emplacement. In contrast, in the south of the Sinforosa Lineament, the U-Pb apatite ages (64-59 Ma) are indistinguishable from the zircon U-Pb age (59 Ma), indicating rapid cooling and shallow emplacement. Zircon morphology and U-Pb dating revealed the absence of inherited component in the zircon ages, as no inheritance of any age has been observed. Most of the northwestern Mexico is underlain by Precambrian-Paleozoic-Jurassic basement. However, in the study area, U-Pb dating does not support the involvement of the older basement in generating the granite magmas. The weighted mean initial ɛHf (t) isotope composition of granodiorites on both sides of the Sinforosa Lineament varies from +2 to +5. However, Hf isotope composition in the south of the Sinforosa Lineament is more heterogeneous and relatively evolved with weighted Mean ɛHf (t) = +1.45. The Hf isotope composition is consistent with the previously reported near bulk silicate Sr-Nd isotope values. We suggest that the magmatic rocks in this region are not derived from melting of a felsic older crust beneath the batholith

  4. Hematite (U-Th)/He and Apatite Fission-track Dating Constrain Paleofluid Circulation in Faults: An Example from Gower Peninsula Fissure Fills, Wales

    Ault, A. K.; Frenzel, M.; Reiners, P. W.; Woodcock, N. H.; Thomson, S. N.


    Hematite-calcite fissure fills on the Gower Peninsula, Wales, preserve evidence of faulting, mineralization, and multiple fluid flow events. Fissures are associated with dilational strike-slip faults in early Carboniferous limestone and contain locally brecciated hematite, calcite, and red sediment. Hematite is macroscopically botryoidal, but lobes comprise an intricate aggregate of 0.15-0.5 μm-thick plates with high aspect ratios. Prior work suggests mineralization occurred in either late Carboniferous or late Triassic time. We combine hematite (U-Th)/He dating with apatite (U-Th)/He, apatite fission-track (AFT), and zircon (U-Th)/He thermochronology of fill materials to evaluate the timing and thermal effects of fluid circulation in these structures. Hematite He data from four fissures yield reproducible dates of 141.0 ± 5.1 Ma to 119.9 ± 5.0 Ma. Individual zircon He dates from a sandstone infill sample are ~402-260 Ma, reflecting erosion of source material, and imply a maximum late Permian depositional age. The sandstone AFT date of 131.4 ± 20.1 Ma overlaps with the hematite He results and the apatite He date is ~50 Ma. Reconstruction of the regional burial history from independent geologic constraints reveals modern exposures were not buried and reheated to temperatures hot enough to reset the AFT or hematite He systems in the Triassic-Early Cretaceous. Thus, these data do not simply record ambient cooling from erosion. Hot fluids (~100-150 °C) circulating through fissures in the Early Cretaceous reset the AFT system. Hematite either formed in the Triassic and was also reset by fluids or formed from these fluids. Similar hematite He dates from fault-related mineralization in adjacent south Glamorgan and Cumbria, England, imply concomitant regional hot fluid effects. Our data document hydrothermal fluid circulation, coeval with opening of the North Atlantic Ocean, in these higher permeability fissures and fault veins long after they initially formed

  5. Fabrication of nanotube arrays on commercially pure titanium and their apatite-forming ability in a simulated body fluid

    Hsu, Hsueh-Chuan; Wu, Shih-Ching; Hsu, Shih-Kuang [Department of Dental Technology and Materials Science, Central Taiwan University of Science and Technology, Taiwan, ROC (China); Institute of Biomedical Engineering and Materials Science, Central Taiwan University of Science and Technology, Taiwan, ROC (China); Chang, Yu-Chen [Department of Mechanical and Automation Engineering, Da-Yeh University, Taiwan, ROC (China); Ho, Wen-Fu, E-mail: [Department of Chemical and Materials Engineering, National University of Kaohsiung, Kaohsiung, Taiwan, ROC (China)


    In this study, we investigated self-organized TiO{sub 2} nanotubes that were grown using anodization of commercially pure titanium at 5 V or 10 V in NH{sub 4}F/NaCl electrolyte. The nanotube arrays were annealed at 450 °C for 3 h to convert the amorphous nanotubes to anatase and then they were immersed in simulated body fluid at 37 °C for 0.5, 1, and 14 days. The purpose of this experiment was to evaluate the apatite-formation abilities of anodized Ti nanotubes with different tube diameters and lengths. The nanotubes that formed on the surfaces of Ti were examined using a field emission scanning electron microscope, X-ray diffraction, and X-ray photoelectron spectroscope. When the anodizing potential was increased from 5 V to 10 V, the pore diameter of the nanotube increased from approximately 24–30 nm to 35–53 nm, and the tube length increased from approximately 590 nm to 730 nm. In vitro testing of the heat-treated nanotube arrays indicated that Ca-P formation occurred after only 1 day of immersion in simulated body fluid. This result was particularly apparent in the samples that were anodized at 10 V. It was also found that the thickness of the Ca-P layer increases as the applied potential for anodized c.p. Ti increases. The average thickness of the Ca-P layer on Ti that was anodized at 5 V and 10 V was approximately 170 nm and 190 nm, respectively, after immersion in simulated body fluid for 14 days. - Highlights: • TiO{sub 2} nanotube on Ti surface was formed by anodic oxidation in a NaCl/NH{sub 4}F solution. • TiO{sub 2} layers show a tube length of 590 nm and 730 nm at 5 V and 10 V, respectively. • After soaking in SBF, Ca-P layer completely covered the entire nanotubular surfaces. • The Ca-P layer was thicker on the Ti surface anodized at 10 V.

  6. Links between tectonism and exhumation in the Spanish Pyrenees: Evidence from apatite fission track analysis and Ar fault dating

    Rahl, J. M.; Haines, S. H.; van der Pluijm, B. A.


    Analytical, numerical, and mechanical models of orogenic wedges suggest that the structural and erosional evolution of mountain belts are tightly linked. For example, erosion in the core of a mountain belt may thin a wedge and drive out-of-sequence faulting to reestablish critical taper. To provide a field-based test of these ideas, we present new geochronologic constraints on the deformational and erosional history of the orogenic wedge exposed in the south-central Spanish Pyrenees. Apatite fission-track data from the syn-orogenic sediments of the Sierra de Sis conglomerate reveal generally invariant ages in strata deposited between about 42 and 27 Ma. These data, as well as track-length distributions indicative of rapid cooling, imply the bedrock in the core of the wedge that produced the sediment experienced fast exhumation that began by at least 48 Ma and continued until 42 Ma. Numerical modeling of the detrital data suggests the source region experienced a deceleration in erosion rate from about 1.0 mm/yr to less than 0.5 to 0.2 mm/yr. Published bedrock thermochronometric data collected from the interior of the belt indicate a renewed period of rapid erosional exhumation culminating around 32 Ma. The temporal changes in erosion recorded by thermochronology are correlated with the deformational history of the Pyrenean fold-thrust belt. We present new constraints on fault activity in the Pyrenean foreland through the direct dating of fault gouge by illite age analysis. New fault dates show that tectonic activity youngs towards the interior of the mountain belt, with fault slip correlating to periods of rapid erosion. The relatively outboard Boixols fault has an age of 71 ± 6.4 Ma, reflecting Cretaceous convergence that marks the onset of Pyrenean deformation. Slip on the more inboard Nogueres fault occurred later, at 56 ± 1.4 Ma, consistent with a period of rapid erosion that continued through about 45 Ma inferred from detrital fission-track data. After a long

  7. Cenozoic denudation of the Wichita Mountains, Oklahoma, and southern mid-continent: apatite fission-track thermochronology constraints

    Winkler, Jennifer E.; Kelley, Shari A.; Bergman, Steven C.


    Eight new apatite fission-track (AFT) analyses of igneous rocks constrain the low-temperature thermal history of the Wichita Mountains in southwestern Oklahoma. The apparent AFT ages for Mount Scott, which range from 101±14 to 146±45 Ma, display no systematic variation as a function of elevation. AFT age ranges for the rhyolite at Bally Mountain and Mount Sheridan Gabbro are 136±36 to 160±25 Ma and 209±26 to 222±36 Ma, respectively. The mean track lengths for the Wichita Mountain samples range from 11.8 to 13.4 μm with standard deviations of 1.8-3.4 μm, and the track-length distributions are broad with relatively few tracks longer than 14 μm. The AFT age and length data are best fit by a thermal history involving heating of the basement rocks to temperatures of at least 115°C prior to Late Jurassic time, denudation and associated cooling between Late Jurassic and Albian in response to the opening of the Gulf of Mexico, burial by 0.5-1.5 km of Cretaceous sedimentary rocks, and finally cooling due to denudation starting 55-25 Ma and continuing to the present. The thermal history recorded in the AFT data from the Wichita Mountains is similar to thermal histories derived from AFT thermochronology studies along the Ouachita Trend and in the Anadarko Basin. The new data, when combined with AFT data from the Ouachita Deformation Belt, the Anadarko Basin, the eastern Sangre de Cristo Mountains in New Mexico, and the eastern margins of the Wet Mountain and Front Range in Colorado, reveal an interesting pattern of post-Cretaceous denudation in the mid-continent. The amount of Neogene denudation increases westward from about 1 km to 3 km between southwestern Oklahoma and the eastern Sangre de Cristo Mountains in east-central New Mexico, and the timing of onset of denudation decreases from 55-25 Ma in the east to 35-12 Ma toward the west. Along the Southern Rocky Mountains-High Plains boundary, the amount of denudation decreases northward from about 3 km in the

  8. Late stage thermal history of the Songliao Basin and its tectonic implications: Evidence from apatite fission track (AFT) analyses


    Apatite Fission Track (AFT) data from the Songliao Basin indicates that the late stage tectonic movements in the Songliao Basin have zoning in space and episodes in time. The late stage tectonic movements started from the east part of the basin and migrated westward. AFT ages in the east part of the basin are older than those in the west part of the basin, suggesting that the uplift occurred earlier in the east than in the west. The denudation thickness in the east part of the basin is significantly greater than that in the centre and west. The thermal history evolved two episodes of rapid cooling and subsequent slow cooling processes. Age-depth relationship derived from the AFT data indicates a four-episode denudation history. Further Monte Carlo random simulation of the AFT data reveals the four changing points of the thermal evolution at 65 Ma, 43.5 Ma, 28 Ma and 15 Ma, respectively. The uplifting and denudation rates from different episodes of evolution are proportional to the plate convergence rate. Based on the above analyses and the regional geologic background, it is concluded that the late stage thermal events in the Songliao Basin are the far field response to the subduction of the Pacific Plate under the Eurasian Plate. The first episode of the rapid cooling probably started at the end of the Nenjiang Formation, climaxed at the end of the Cretaceous and ceased at the Late Eocene. The subsequent slow cooling lasts another 15 Ma. The first episode of the evolution is the far field response to the major episode of the Yanshan Movement and subsequent series of the tectonic reorganization, especially the directional change of the Pacific Movement and also the subduction of the Indian Plate underneath the Eurasian Plate. While the second episode of the evolution is the far field response to the extension and closure of the Sea of Japan. Extension led to the migration and converging of the mantle heat flow to the Sea of Japan and resulted in the rapid cooling

  9. Apatite layer growth on glassy Zr{sub 48}Cu{sub 36}Al{sub 8}Ag{sub 8} sputtered titanium for potential biomedical applications

    Thanka Rajan, S.; Karthika, M. [Electrochemical Materials Science Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003 (India); Bendavid, Avi [Plasma Processing & Deposition Team, CSIRO Manufacturing Flagship, LindField, 2070, Sydney (Australia); Subramanian, B., E-mail: [Plasma Processing & Deposition Team, CSIRO Manufacturing Flagship, LindField, 2070, Sydney (Australia); Electrochemical Materials Science Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630003 (India)


    Graphical abstract: - Highlights: • Metallic biomaterials are surface modified by Zr based TFMGs. • A bone-like apatite layer was grown on a Ni-free Zr-based TFMG in vitro. • Apatite layer growth confirmed by XRD and XPS analysis indicates its bioactivity. • Electrochemical response of the TFMGs in SBF possesses good corrosion resistance. - Abstract: The bioactivity of magnetron sputtered thin film metallic glasses (TFMGs) of Zr{sub 48}Cu{sub 36}Al{sub 8}Ag{sub 8} (at.%) on titanium substrates was tested for bio implant applications. The structural and elemental compositions of TFMGs were analyzed by XRD, XPS and EDAX. X-ray diffraction analysis displayed a broad hump around the incident angle of 30–50°, suggesting that the coatings possess a glassy structure. An in situ crystal growth of hydroxyapatite was observed by soaking the sputtered specimen in simulated body fluid (SBF). The nucleation and growth of a calcium phosphate (Ca–P) bone-like hydroxyapatite on Zr{sub 48}Cu{sub 36}Al{sub 8}Ag{sub 8} (at.%) TFMG from SBF was investigated by using XRD, AFM and SEM. The presence of calcium and phosphorus elements was confirmed by EDAX and XPS. In vitro electrochemical corrosion studies indicated that the Zr-based TFMG coating sustain in the stimulated body-fluid (SBF), exhibiting superior corrosion resistance with a lower corrosion penetration rate and electrochemical stability than the bare crystalline titanium substrate.

  10. Carbonate apatite formation on novel multiphase CaO-SiO2-P2O5-MgO glass-ceramics in TRIS-HCl buffer

    Lachezar Radev


    Full Text Available The main purpose of the presented article is the preparation of novel glass-ceramics in CaO-SiO2-P2O5-MgO system and evaluation of carbonate apatite formation after soaking in TRIS-HCl buffer solution for 14 days. The investigated samples were prepared via sol-gel method and structure of the obtained samples was studied using XRD, FTIR, SEM, XPS and ICP-AES. XRD of the thermally treated samples showed that the presence of some crystalline phases is depended on the gel composition. FTIR revealed the existence of all characteristic bands for the observed crystalline phases. SEM monitored the presence of particles with different morphology. After soaking in TRIS-HCl solution, FTIR confirmed that carbonate apatite was formed on the soaked surface. The obtained data are in a good agreement with XPS analysis. The change of ions concentrations in TRIS-HCl buffer solution after immersion of the prepared glass-ceramics was recorded by ICP-AES measurements.

  11. Influence of the solution composition on the stoichiometry of Na +- and of K +-containing carbonated apatites obtained by the hydrolysis of monetite

    De Maeyer, Erna A. P.; Verbeeck, Ronald M. H.; Pieters, Ilse Y.


    In this study, Na +- and CO 2-3-containing hydroxyapatites (NCAps) and K +- and CO 2-3-containing hydroxyapatites (KCAps) were prepared by the hydrolysis of monetite in solutions with independently varied CO 2-3 and alkalimetal (M +) concentration. The chemical and physical analysis results show that both the CO 2-3 and the M + incorporation in apatite can affect the dimensions of the hexagonal lattice. From the composition of the unit cell of these apatites, the contributions of the substitution mechanisms for the incorporation of CO 2-3 and M + could be calculated. Generally, the contributions of the predominant mechanisms, (Ca 2+ + PO 3-4 + OH - ↔ V Ca + CO 2-3 + V OH) and (Ca 2+ + PO 3-4 ↔ M + + CO 2-3) with V X a vacancy on a regular X lattice site, vary as can be expected on the basis of the variation of the driving force in the hydrolysis solution. Their behavior seems to suppress the appearance of the less stable mechanisms: (Ca 2+ + OH - ↔ M + + V OH) for the NCAps and (Ca 2+ + 2PO 3-4 ↔ V Ca + 2CO 2-3) for the KCAps. This suggests that, although there is no intrinsic coupling between the fundamental substitution mechanisms, an indirect correlation can occur.

  12. Biomagnetic of Apatite-Coated Cobalt Ferrite: A Core-Shell Particle for Protein Adsorption and pH-Controlled Release.

    Tang, I-Ming; Krishnamra, Nateetip; Charoenphandhu, Narattaphol; Hoonsawat, Rassmidara; Pon-On, Weeraphat


    Magnetic nanoparticle composite with a cobalt ferrite (CoFe2O4, (CF)) core and an apatite (Ap) coating was synthesized using a biomineralization process in which a modified simulated body fluid (1.5SBF) solution is the source of the calcium phosphate for the apatite formation. The core-shell structure formed after the citric acid-stabilized cobalt ferrite (CFCA) particles were incubated in the 1.5 SBF solution for 1 week. The mean particle size of CFCA-Ap is about 750 nm. A saturation magnetization of 15.56 emug(-1) and a coercivity of 1808.5 Oe were observed for the CFCA-Ap obtained. Bovine serum albumin (BSA) was used as the model protein to study the adsorption and release of the proteins by the CFCA-Ap particles. The protein adsorption by the CFCA-Ap particles followed a more typical Freundlich than Langmuir adsorption isotherm. The BSA release as a function of time became less rapid as the CFCA-Ap particles were immersed in higher pH solution, thus indicating that the BSA release is dependent on the local pH.

  13. Biomagnetic of Apatite-Coated Cobalt Ferrite: A Core–Shell Particle for Protein Adsorption and pH-Controlled Release


    Magnetic nanoparticle composite with a cobalt ferrite (CoFe2O4, (CF)) core and an apatite (Ap) coating was synthesized using a biomineralization process in which a modified simulated body fluid (1.5SBF) solution is the source of the calcium phosphate for the apatite formation. The core–shell structure formed after the citric acid–stabilized cobalt ferrite (CFCA) particles were incubated in the 1.5 SBF solution for 1 week. The mean particle size of CFCA-Ap is about 750 nm. A saturation magnetization of 15.56 emug-1 and a coercivity of 1808.5 Oe were observed for the CFCA-Ap obtained. Bovine serum albumin (BSA) was used as the model protein to study the adsorption and release of the proteins by the CFCA-Ap particles. The protein adsorption by the CFCA-Ap particles followed a more typical Freundlich than Langmuir adsorption isotherm. The BSA release as a function of time became less rapid as the CFCA-Ap particles were immersed in higher pH solution, thus indicating that the BSA release is dependent on the local pH. PMID:27502643

  14. Biomagnetic of Apatite-Coated Cobalt Ferrite: A Core–Shell Particle for Protein Adsorption and pH-Controlled Release

    Krishnamra Nateetip


    Full Text Available Abstract Magnetic nanoparticle composite with a cobalt ferrite (CoFe2O4, (CF core and an apatite (Ap coating was synthesized using a biomineralization process in which a modified simulated body fluid (1.5SBF solution is the source of the calcium phosphate for the apatite formation. The core–shell structure formed after the citric acid–stabilized cobalt ferrite (CFCA particles were incubated in the 1.5 SBF solution for 1 week. The mean particle size of CFCA-Ap is about 750 nm. A saturation magnetization of 15.56 emug-1 and a coercivity of 1808.5 Oe were observed for the CFCA-Ap obtained. Bovine serum albumin (BSA was used as the model protein to study the adsorption and release of the proteins by the CFCA-Ap particles. The protein adsorption by the CFCA-Ap particles followed a more typical Freundlich than Langmuir adsorption isotherm. The BSA release as a function of time became less rapid as the CFCA-Ap particles were immersed in higher pH solution, thus indicating that the BSA release is dependent on the local pH.

  15. Porous SiO{sub 2} nanofiber grafted novel bioactive glass–ceramic coating: A structural scaffold for uniform apatite precipitation and oriented cell proliferation on inert implant

    Das, Indranee [Nano-Structured Materials Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032 (India); De, Goutam, E-mail: [Nano-Structured Materials Division, CSIR-Central Glass and Ceramic Research Institute, Kolkata 700032 (India); Hupa, Leena [Johan Gadolin Process Chemistry Centre, Åbo Akademi University, FI-20500 Åbo (Finland); Vallittu, Pekka K. [Turku Clinical Biomaterials Centre—TCBC, University of Turku, FI-20520 Turku (Finland); Institute of Dentistry, University of Turku, Department of Biomaterials Science and City of Turku, Welfare Division, Turku (Finland)


    A composite bioactive glass–ceramic coating grafted with porous silica nanofibers was fabricated on inert glass to provide a structural scaffold favoring uniform apatite precipitation and oriented cell proliferation. The coating surfaces were investigated thoroughly before and after immersion in simulated body fluid. In addition, the proliferation behavior of fibroblast cells on the surface was observed for several culture times. The nanofibrous exterior of this composite bioactive coating facilitated homogeneous growth of flake-like carbonated hydroxyapatite layer within a short period of immersion. Moreover, the embedded porous silica nanofibers enhanced hydrophilicity which is required for proper cell adhesion on the surface. The cells proliferated well following a particular orientation on the entire coating by the assistance of nanofibrous scaffold-like structural matrix. This newly engineered composite coating was effective in creating a biological structural matrix favorable for homogeneous precipitation of calcium phosphate, and organized cell growth on the inert glass surface. - Highlights: • Fabricated porous SiO{sub 2} nanofibers grafted composite bioactive glass–ceramic coating on inert glass. • The newly engineered coating facilitates uniformly dense apatite precipitation. • Embedded porous silica nanofibers enhance hydrophilicity of the coated surface. • Cells proliferate well on the entire coating following a particular orientation by the assistance of nanofibers. • The coatings have potential to be used as biological scaffold on the surface of implants.

  16. Albumin-mediated deposition of bone-like apatite onto nano-sized surfaces: Effect of surface reactivity and interfacial hydration.

    D'Elia, Noelia L; Gravina, Noel; Ruso, Juan M; Marco-Brown, Jose L; Sieben, Juan M; Messina, Paula V


    The bioactivity of an implant is displayed on its ability to induce heterogeneous nucleation of biogenic apatite onto its surface upon immersion in body fluids; forming, through this layer, a stable bond with the host tissue. The present article evaluates the bioactivity of different nanostructured substrates based on synthetic hydroxyapatite (HA) and titania (TiO2) nanoparticles, where we extend the debate regarding the selective roles played by the presence of albumin on the biogenic apatite coating evolution. The substrates bone-bonding potential was evaluated by keeping the materials in contact with Simulated Body Fluid, while the influence of the presence of Bovine Serum Albumin in bioactivity was analyzed by a spectrophotometric technique. Our results show that materials' surface reactivity and their interfacial hydration are responsible for the bonding-site alteration and surface charge density distribution, which in turn, regulate the protein adsorption process. As a matter of fact, variations on the protein adsorbed density have a directly proportional impact on calcium binding sites, which should be responsible for the initiation of the mineralization process, disturbing the deposition of the interfacial calcium phosphate (Ca-P) mineralized coating. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Spatial variation in exhumation rates across Ladakh and the Karakoram: New apatite fission track data from the Eastern Karakoram, NW India

    Wallis, David; Carter, Andrew; Phillips, Richard J.; Parsons, Andrew J.; Searle, Michael P.


    Characterization of low-temperature cooling histories and associated exhumation rates is critical for deciphering the recent evolution of orogenic regions. However, these may vary significantly over relatively short distances within orogens. It is pertinent therefore to constrain cooling histories and hence exhumation rates across major tectonic boundaries. We report the first apatite fission track ages from the Karakoram Fault Zone in the Eastern Karakoram range, which forms part of the western margin of the Tibetan Plateau. Ten samples, from elevations of 3477-4875 m, have apatite fission track dates from 3.3 ± 0.3 Ma to 7.4 ± 1.1 Ma. The ages correspond to modeled average erosional exhumation rates of 0.67 + 0.27/-0.18 mm/yr across the Eastern Karakoram. The results are consistent with a trend northward from the Indus suture zone, across the Ladakh terrane and into the Karakoram, in which tectonic uplift associated with crustal thickening increases toward the north, raising elevation and promoting glaciation and generation of extreme relief. As a result, erosion and exhumation rates increase south to north. Present-day precipitation on the other hand varies little within the study area and on a larger scale decreases southwest to northeast across this portion of the orogen. The Eastern Karakoram results highlight the diverse patterns of exhumation driven by regional variations in tectonic response to collision along the western margin of Tibet.

  18. Thermotectonic history of the southeastern Brazilian margin: Evidence from apatite fission track data of the offshore Santos Basin and continental basement

    Engelmann de Oliveira, Christie Helouise; Jelinek, Andréa Ritter; Chemale, Farid; Cupertino, José Antônio


    The Santos Basin is the largest offshore sedimentary basin in the southeastern Brazilian margin and originated by breakup of West Gondwana in the Early Cretaceous. We carried out a new thermochronological study by apatite fission track analysis from borehole samples of the Santos Basin and its continental basement to constrain the tectonic history of the southeastern Brazilian margin. Apatite fission track central ages of the basement and borehole samples vary from 21.0 ± 1.8 to 157.0 ± 35.0 Ma and from 6.5 ± 1.1 to 208.0 ± 11.0 Ma, respectively. From thermal modeling, the basement samples reached the maximum paleotemperatures during the final breakup of South America and Africa. The onshore basement and offshore basin record an early thermotectonic event during the Late Cretaceous linked to the uplift and denudation of the Serra do Mar and Serra da Mantiqueira. Maturation of the organic matter in the offshore basin is related with the progressive increase of the geothermal gradient due to burial. The thermal modeling indicates that the oil generation window started at 55-25 Ma. The basement samples experienced the final cooling during the Cenozoic, with an estimated amount of denudation linked to the sedimentary influx in the offshore basin. A rapid cooling during the Neogene becomes evident and it is linked to the reactivation along Precambrian shear zones and change of the Paraíba do Sul drainage system.

  19. Mesozoic and Cenozoic Cooling History of the Qiangtang Block, Northern Tibet, China: New Constraints from Apatite and Zircon Fission Track Data

    Chunyan Song


    Full Text Available This study used a new set of zircon and apatite fission track ages to quantitatively document the tectonic evolution and cooling histories of the Qiangtang block of the central Tibetan Plateau. The results indicate that the Qiangtang block underwent three cooling stages at ~148 - 73, ~50 - 20, and ~20 - 0 Ma. The three-stage cooling history and tectonic exhumation were controlled by the closure of the Bangong-Nujiang Suture during the Late Jurassic-Late Cretaceous, the India-Asia collision in the Paleogene, and the underthrusting of the India Plate during the Late Cenozoic. In addition to revealing the Late Jurassic-Late Cretaceous cooling events, the annealing patterns of the zircon fission track samples indicate different burial depths, which may help identify the Jurassic basin characteristics of the Qiangtang block. The apatite fission track (AFT ages range from 60 ¡_ 5 Ma to 26 ¡_ 3 Ma, with a mean age of 44 Ma. These ages indicate that the Cenozoic exhumation of the Qiangtang block may have started in the Eocene. Inverse modeling of the AFT data shows that the Qiangtang block had a relatively slow cooling rate of approximately 0.5 - 1¢XC Myr-1 from 50 to 20 Ma. After ~20 Ma, most of the samples show evidence for a rapid cooling stage with a cooling rate of 4 - 6¢XC Myr-1.

  20. Bio-inspired citrate-functionalized apatite thin films crystallized on Ti-6Al-4V implants pre-coated with corrosion resistant layers.

    Delgado-López, José Manuel; Iafisco, Michele; Rodríguez-Ruiz, Isaac; Gómez-Morales, Jaime


    In this paper the crystallization of a bioinspired citrate-functionalized apatite (cit-Ap) thin film (thickness about 2μm) on Ti-6Al-4V supports pre-coated with bioactive and corrosion resistant buffer layer of silicon nitride (Si3N4), silicon carbide (SiC) or titanium nitride (TiN) is reported. The apatitic coatings were produced by a new coating technique based on the induction heating of the implants immersed in a flowing calcium-citrate-phosphate solution at pH11. The influence of the buffer layers and the surface roughness of the substrate on the chemical-physical features and adhesion of the cit-Ap films were investigated. The best plasticity, compactness and adherence properties have been found in the Ap layer grown on Si3N4, followed by the Ap grown on SiC and TiN, respectively. The adhesion property was likely related to the roughness of the buffered substrates, whereas the compactness and plasticity were closely related to the operating conditions during the Ap crystallization (flow rate of the solution and increase of temperature) rather than to the nature of the buffer layer.

  1. Determining the origin of enigmatic bedrock structures using apatite (U-Th)/He thermochronology: Alabama and Poverty Hills, Owens Valley, California

    Ali, G. A.; Reiners, P. W.; Ducea, M.


    The Alabama and Poverty Hills are enigmatic, topographic highs of crystalline basement surrounded by Neogene sediments in Owens Valley, California. The 150-km long Owens Valley, the westernmost graben of the Basin and Range Province, initiated at about 3 Ma, creating ~2-4 km of vertical relief from the Sierra Nevada and White/Inyos crests to the valley floor. Along the valley, the active right-lateral Owens Valley Fault Zone (OVFZ) accommodates a significant portion of Pacific-North American plate motion, creating an oblique dextral fault zone, with localized transpression along minor left-stepovers. The dominantly granitic Mesozoic rocks of the Alabama Hills are bounded by the OVFZ to the east, and the granitic and metavolcanic Mesozoic rocks of the Poverty Hills are located along an apparent 3-km left stepover of the OVFZ. The tectonic origin and geodynamic significance of both these structures are not known, but previously published hypotheses include: 1) transpressional uplifts as OVFZ-related flower structures; 2) down-dropped normal fault blocks; and 3) giant landslides from adjacent ranges. We measured apatite (U-Th)/He ages on 15 samples from the Alabama and Poverty Hills to understand the history of shallow crustal exhumation of these structures, and to potentially correlate them to rocks from adjacent ranges. Apatite He dating typically yields cooling ages corresponding to closure temperatures of ~55-65 °C, corresponding roughly to depths of ~2-3 km in the crust. The majority of apatite He ages from the Alabama Hills ranged from 58-70 Ma, but the far eastern, and lowest elevation sample showed ages of 51-55 Ma. The Poverty Hills shows younger ages of 40-65 Ma and no recognizable spatial pattern. Although the data do not conclusively rule out a transpressional uplift origin of the Poverty Hills, the rocks within them could not have been exhumed from depths greater than ~2-3 km in Owens Valley. Data from both structures are most consistent with down

  2. Crystallization of Apatites

    Ibsen, Casper Jon Steenberg


    , samt hvordan en række af faktorer kan påvirke forskellige stadier af krystallisationsprocessen. I den sidste del af denne afhandling ser vi på krystallisation ved grænsefladen mellem en gel og en væske. Vi gror cm-lange selvsamlede rør med vægge bestående af komplekse mineraliserede strukturer. Vi...

  3. Crystallization of Apatites

    Ibsen, Casper Jon Steenberg


    Biologien har altid været en kilde til inspiration for menneskeheden i jagten på nye og forbedrede materialer. En af grundende er, at naturen er god til at bygge stærke og specialiserede materialer ud fra simple udgangsstoffer. Mange af disse materialer er såkaldte kompositmaterialer, dvs. at de ...

  4. Fe-O stable isotope pairs elucidate a high-temperature origin of Chilean iron oxide-apatite deposits

    Bilenker, Laura D.; Simon, Adam C.; Reich, Martin; Lundstrom, Craig C.; Gajos, Norbert; Bindeman, Ilya; Barra, Fernando; Munizaga, Rodrigo


    Iron oxide-apatite (IOA) ore deposits occur globally and can host millions to billions of tons of Fe in addition to economic reserves of other metals such as rare earth elements, which are critical for the expected growth of technology and renewable energy resources. In this study, we pair the stable Fe and O isotope compositions of magnetite samples from several IOA deposits to constrain the source reservoir of these elements in IOAs. Since magnetite constitutes up to 90 modal% of many IOAs, identifying the source of Fe and O within the magnetite may elucidate high-temperature and/or lower-temperature processes responsible for their formation. Here, we focus on the world-class Los Colorados IOA in the Chilean iron belt (CIB), and present data for magnetite from other Fe oxide deposits in the CIB (El Laco, Mariela). We also report Fe and O isotopic values for other IOA deposits, including Mineville, New York (USA) and the type locale, Kiruna (Sweden). The ranges of Fe isotopic composition (δ56Fe, 56Fe/54Fe relative to IRMM-14) of magnetite from the Chilean deposits are: Los Colorados, δ56Fe (±2σ) = 0.08 ± 0.03‰ to 0.24 ± 0.08‰; El Laco, δ56Fe = 0.20 ± 0.03‰ to 0.53 ± 0.03‰; Mariela, δ56Fe = 0.13 ± 0.03‰. The O isotopic composition (δ18O, 18O/16O relative to VSMOW) of the same Chilean magnetite samples are: Los Colorados, δ18O (±2σ) = 1.92 ± 0.08‰ to 3.17 ± 0.03‰; El Laco, δ18O = 4.00 ± 0.10‰ to 4.34 ± 0.10‰; Mariela, δ18O = (1.48 ± 0.04‰). The δ18O and δ56Fe values for Kiruna magnetite yield an average of 1.76 ± 0.25‰ and 0.16 ± 0.07‰, respectively. The Fe and O isotope data from the Chilean IOAs fit unequivocally within the range of magnetite formed by high-temperature magmatic or magmatic-hydrothermal processes (i.e., δ56Fe 0.06-0.49‰ and δ18O = 1.0-4.5‰), consistent with a high-temperature origin for Chilean IOA deposits. Additionally, minimum formation temperatures calculated by using the measured Δ18O

  5. Integrated Vitrinite Reflectance and Apatite Fission Track Thermocronology of the Lower Karoo rocks in the Moatize Basin, Tete Province, Mozambique.

    Fernandes, Paulo; Cogné, Nathan; Rodrigues, Bruno; Jorge, Raul; Marques, João


    The Karoo in Mozambique is represented by Late Carboniferous to Late Triassic sediments that were deposited in rift basins that fringe or developed between Proterozoic cratons. In Tete Province, central-west Mozambique, the Karoo is well represented along the Zambezi river valley forming several intra-cratonic basins separated by horsts consisting of igneous and high grade metamorphic Proterozoic rocks. One of the main horst blocks is located between the Cahora Bassa region and Tete city, separating the Middle Zambezi Basin and the Lower Zambezi Basin. The area of study is located in the Moatize Basin, one of many small basins that form the Lower Zambezi Basin. The stratigraphy of this basin consists of several sedimentary formations that record changes in depositional environment and palaeoclimate from glacial (Vúzi Formation - Lower Permian) at the base, through wet to temperate in the middle (Moatize Formation - Lower Permian), to warm arid at the top of the succession (Matinde and Cádzi formations - Middle to Upper Permian). The Upper Karoo volcanics of Early Jurassic age do not crop out in the Moatize Basin. One of the most remarkable characteristics of the Moatize Basin is the richness of coal deposits present in the Lower Permian Moatize Formation. Two coal exploration boreholes (DW123 - T.D. 489 m and DW132 - T.D. 516 m) drilled in the Moatize Basin were studied by means of vitrinite reflectance (VR) and apatite fission track analysis (AFTA), in order to assess their burial and uplift histories. The two boreholes intersected only Moatize Formation lithologies. VR increases in the two borehole sections from ca. 1.30-1.32 % Ro at the top to ca. 1.52-1.69 % Ro at the bottom, indicating medium to low volatile coal rank. Modelled VR data from the two boreholes indicate palaeogeothermal gradients between 40 and 56ºC/km, possible related to basin forming processes. Fission track ages increase from 84 Ma and 102 Ma at the bottom to 138 Ma and 146 Ma at the top

  6. Preparation of an apatite-based matrix for the confinement of iodine 129; Mise au point d`une matrice apatitique pour le confinement de l`iode 129

    Audubert, F.


    The aim of this thesis is the study of the conditioning of iodine 129 from the reprocessing of nuclear wastes. Because of its long half life (1.57 10{sup 7} years), the conditioning of iodine 129 requires a matrix stable during several thousands of years. The study of natural minerals allows the selection of mineral phases having a good long term behaviour. In the first part the policy of nuclear wastes management, and in particular of iodine, is recalled. A naturalistic approach is used to define the best conditioning material and the remarkable properties of apatite in this way are described. In the second part, the preparation and physical-chemical characterization of iodo-apatites are described. A demonstration is made that iodine can penetrate inside vanadate or lead phospho-vanadate apatite-based compounds. The third part deals with the preparation of the conditioning material. The sintering reaction under pressure allows the preparation of composite ceramics including iodo-apatite. A multi-layer coating process is defined: coating of PbI{sub 2} with a Pb{sub 3}(VO{sub 4}){sub 1.6}(PO{sub 4}){sub 0.4} layer and a Ca{sub 10}(PO{sub 4}){sub 6}F{sub 2} layer. Sintering is performed at 700 deg. celsius under a 25 MPa pressure. (J.S.). 131 refs.

  7. Cenozoic evolution of tectono-fluid and metallogenic process in Lanping Basin,western Yunnan Province, Southwest China: Constraints from apatite fission track data

    LI Xiaoming; SONG Yougui


    Since the Mesozoic, abundant metal and salt deposits have been formed in the Lanping Basin, western Yunnan Province, Southwest China, constituting a well-known hydrothermal ore belt in China. Most of the deposits are meso-epithermal hydrothermal deposits. This paper preliminarily deals with the mineralization ages of hydrothermal deposits in the Lanping Basin by using the apatite fission track method, and integrates the spatial distribution of the deposits and their regional geological backgrounds, to give the preliminary viewpoints as follows: (1) the apatite fission track ages acquired range from 19.9 Ma to 52.8 Ma, much younger than those of their host strata, so they may be considered to be mineralization ages, which represent the late mineralization period; (2) the apatite fission track ages tend to become younger from the west to the middle of the basin, indicating that the latest evolution of tectono-fluid and/or metallogenic processes of the middle basin ended later than that in the west; (3) in the Paleogene, most of the Cu deposits were formed in the western part of the basin; (4) the major metallogenic processes occur between the Paleogene and the Neogene, because the eastern and western edges of the basin were subducted into and collided with its bilateral continental blocks, respectively, and the central fault was strongly activated, which led to the processes of large-scale ore-forming fluids, and their differentiation and transport because of the variation of their physical and chemical properties. Having been squeezed and uplifted, the Lanping Basin became an intermontane basin that contains many kinds of fluid traps resulting in the formation of different types of ore deposits (for example, Pb-Zn, Cu, Ag) of different scales in the middle of the basin. Simultaneously, the fluids with volatile elements such as Hg, Sb and As were transported upwards along the central fault system and diffused into its subordinate fractures, thus leading to the

  8. High precision dating of mass extinction events: a combined zircon geochronology, apatite tephrochronology, and Bayesian age modelling approach of the Permian-Triassic boundary extinction

    Baresel, Björn; Bucher, Hugo; Brosse, Morgane; Bagherpour, Borhan; Schaltegger, Urs


    Chemical abrasion isotope dilution thermal ionization mass spectrometry (CA-ID-TIMS) U-Pb dating of single-zircon crystals is preferably applied to tephra beds intercalated in sedimentary sequences. By assuming that the zircon crystallization age closely approximate that of the volcanic eruption and ash deposition, U-Pb zircon geochronology is the preferred approach for dating mass extinction events (such as the Permian-Triassic boundary mass extinction) in the sedimentary record. As tephra from large volcanic eruptions is often transported over long distances, it additionally provide an invaluable tool for stratigraphic correlation across distant geologic sections. Therefore, the combination of high-precision zircon geochronology with apatite chemistry of the same tephra bed (so called apatite tephrochronology) provides a robust fingerprint of one particular volcanic eruption. In addition we provide coherent Bayesian model ages for the Permian-Triassic boundary (PTB) mass extinction, then compare it with PTB model ages at Meishan after Burgess et al. (2014). We will present new high-precision U-Pb zircon dates for a series of volcanic ash beds in deep- and shallow-marine Permian-Triassic sections in the Nanpanjiang Basin, South China. In addition, apatite crystals out of the same ash beds were analysed focusing on their halogen (F, Cl) and trace-element (e.g. Fe, Mg, REE) chemistry. We also show that Bayesian age models produce reproducible results from different geologic sections. On the basis of these data, including litho- and biostratigraphic correlations, we can precisely and accurately constrain the Permian-Triassic boundary in an equatorial marine setting, and correlate tephra beds over different sections and facies in the Nanpanjiang Basin independently from litho-, bio- or chemostratigraphic criteria. The results evidence that data produced in laboratories associated to the global EARTHTIME consortium can provide age information at the 0.05% level of 206

  9. The geomorphic development of the escarpment of the Eritrean rift flank (southern Red Sea): combined use of apatite fission-track and (U-Th)/He thermochronometry

    Balestrieri, M. L.; Stuart, F. M.


    The Eritrean continental margin along the southern Red Sea has a morphology typical of high-elevation rifted margins. A steeply rising escarpment separates a low relief coastal plain from a high plateau that reaches altitudes of more than 2,500 m. Escarpments at high-elevation rifted margins are salient morphological features, and how they evolve through time gives clues on the respective roles of tectonics and erosion in the formation of passive margins. Apatite fission-track (AFT) analysis was applied along four transects stretching from the high plateau to the coastal lowlands. AFT ages increase from 10-16 Ma at the coast to 300-400 Ma on the plateau. The ages from the coast imply continental break-up occurred at 10-16 Ma and coincided with rapid erosion of more than 3.5-4 km. This is incompatible with formation of the escarpment by erosion of a downwarped rifted margin and points to escarpment retreat or downwearing of an elevated rift shoulder. Apatite (U-Th)/He thermochronology provides a more sensitive tool to evaluate the amount and speed of post-break-up erosion. (U-Th)/He analysis has been applied to apatites from the Asmara Massawa road transect (A-M) and the Dandero River course (D) from the southeastern border of the Eritrean plateau to the border of the Danakil depression. Along both transects He ages are consistently younger than AFT ages. In the A-M transect He ages increase systematically from 8 to 55 Ma across the coastal plain and the lowest part of the escarpment, up to 170 Ma on the plateau. In the D transect, along the plain and the lowest part of the escarpment, He ages span a narrow range (9 to 13 Ma) and do not correlate with elevation or distance from the border of the Danakil depression. A sample from the high plateau has an apparently young He age (48 Ma) which requires 1 km of post-break-up erosion of the plateau in this region. In both transects samples with AFT age <32 Ma yield He ages of 8-10 Ma, providing a strong constraint on the

  10. Laser Ablation in situ (U-Th-Sm)/He and U-Pb Double-Dating of Apatite and Zircon: Techniques and Applications

    McInnes, B.; Danišík, M.; Evans, N.; McDonald, B.; Becker, T.; Vermeesch, P.


    We present a new laser-based technique for rapid, quantitative and automated in situ microanalysis of U, Th, Sm, Pb and He for applications in geochronology, thermochronometry and geochemistry (Evans et al., 2015). This novel capability permits a detailed interrogation of the time-temperature history of rocks containing apatite, zircon and other accessory phases by providing both (U-Th-Sm)/He and U-Pb ages (+trace element analysis) on single crystals. In situ laser microanalysis offers several advantages over conventional bulk crystal methods in terms of safety, cost, productivity and spatial resolution. We developed and integrated a suite of analytical instruments including a 193 nm ArF excimer laser system (RESOlution M-50A-LR), a quadrupole ICP-MS (Agilent 7700s), an Alphachron helium mass spectrometry system and swappable flow-through and ultra-high vacuum analytical chambers. The analytical protocols include the following steps: mounting/polishing in PFA Teflon using methods similar to those adopted for fission track etching; laser He extraction and analysis using a 2 s ablation at 5 Hz and 2-3 J/cm2fluence; He pit volume measurement using atomic force microscopy, and U-Th-Sm-Pb (plus optional trace element) analysis using traditional laser ablation methods. The major analytical challenges for apatite include the low U, Th and He contents relative to zircon and the elevated common Pb content. On the other hand, apatite typically has less extreme and less complex zoning of parent isotopes (primarily U and Th). A freeware application has been developed for determining (U-Th-Sm)/He ages from the raw analytical data and Iolite software was used for U-Pb age and trace element determination. In situ double-dating has successfully replicated conventional U-Pb and (U-Th)/He age variations in xenocrystic zircon from the diamondiferous Ellendale lamproite pipe, Western Australia and increased zircon analytical throughput by a factor of 50 over conventional methods

  11. Using the chemical analysis of magnetite to constrain various stages in the formation and genesis of the Kiruna-type chadormalu magnetite-apatite deposit, Bafq district, Central Iran

    Heidarian, Hassan; Lentz, David; Alirezaei, Saeed; Peighambari, Sima; Hall, Douglas


    Textural and compositional data are presented for different types of magnetite in the Chadormalu iron deposit to discern the genesis of various styles of mineralization. Samples were chosen according to their paragenetic relations to apatite and their host setting: magnetite-apatite veins in the altered host rocks, disseminated magnetite-apatite assemblages in the marginal parts of the main ore body, and massive magnetite associated with irregular apatite veinlets from internal part of the main ore body. Scanning electron microscopy - back scatter electron (SEM-BSE) images reveal that there are three main generations of magnetite in each of the different magnetite-apatite assemblages. Primary magnetite (Mag1) features abundant porosity and a dark appearance. A second generation of magnetite (Mag2) replacing Mag1 shows a lighter appearance with both sharp and gradational contacts with the primary magnetite crystals. The two magnetite types are related to dissolution-precipitation processes due to changing physico-chemical parameters of the ore fluids. A third type of magnetite (Mag3) with a recrystallized appearance and foam-like triple junctions was mostly observed in magnetite-apatite veins in the main ore body and in veins hosted by altered rocks. Electron probe microanalyses (EPMA) were utilized to discriminate the various magnetite generations in the different magnetite-apatite assemblages. Applying published elemental discrimination diagrams shows that most primary magnetites fall into the hydrothermal- and Kiruna-type fields. Primary magnetite contains lower FeO (88.77-93.65 wt.%; average 91.5 wt.%), and higher SiO2 (0.21-2.26 wt.%; ave. 0.32 wt.%), Al2O3 (0.001-0.45 wt.%; ave. 0.053 wt.%), and CaO (0.002-0.48 wt.%; ave. 0.078 wt.%) contents, which might be related to magmatically derived fluids. Secondary magnetites have higher FeO (89.23-93.49 wt.%; ave. 92.11 wt.%), lower SiO2 (0.037-0.189 wt.%; ave. 0.072 wt.%), Al2O3 (0.004-0.072 wt.%; ave. 0.019 wt

  12. Long-term landscape evolution of the South Atlantic "passive" continental margin in Eastern Argentina using apatite fission-track thermochronology

    Pfister, Sabrina; Kollenz, Sebastian; Glasmacher, Ulrich A.


    To understand the evolution of the "passive" continental margin in Argentina low temperature thermochronology is an appropriate method, which might lead to new insights in this area. The Tandilia System, also called Sierras Septentrionales, is located south of the Río de la Plato Craton in eastern Argentina in the state of Buenos Aires. North of the hills the Salado basin is located whereas the Claromecó basin is situated south of the mountain range. In contrary to most basins along the South American "passive" continental margin, the Tandilia-System and the neighbouring basins trend perpendicular to the coast line. The topography is fairly flat with altitudes up to 350 m. The igneous-metamorphic basement is pre-Proterozoic in age and build up of mainly granitic-tonalitic gneisses, migmatites, amphibolites, some ultramafic rocks and granitoid plutons. It is overlain by a series of Neoproterozoic to early Paleozoic sedimentary rocks (Cingolani 2011), like siliciclastic rocks, dolostones, shales and limestones (Demoulin 2005). The aim of the study is to quantify the long-term landscape evolution of the "passive" continental margin in eastern Argentina in terms of thermal, exhumation and tectonic evolution. For that purpose, samples were taken from the basement of the Sierra Septentrionales and analyzed with the apatite fission-track method. Further 2-D thermokinematic modeling was conducted with the computer code HeFTy (Ketcham 2005; Ketcham 2007; Ketcham et al. 2009). Because there are different hypotheses in literature regarding the geological evolution of this area two different models were generated, one after Demoulin et al. (2005) and another after Zalba et al.(2007). All samples were taken from the Neoproterozoic igneous-metamorphic basement. Apatite fission-track ages range from 101.6 (9.4) to 228.9 (22.3) Ma, and, therefore, are younger than their formation age, indicating all samples have been thermally reset. Six samples accomplished enough confined

  13. The formation of phosphoran olivine and stanfieldite from the pyrometamorphic breakdown of apatite in slags from a prehistoric ritual immolation site (Goldbichl, Igls, Tyrol, Austria)

    Schneider, Philipp; Tropper, Peter; Kaindl, Reinhard


    In this study we report P-rich olivine and the tric-calcium phosphate (TCP) stanfieldite in partially molten quartzphyllites from the ritual immolation site at the Goldbichl, near Innsbruck in the Tyrol, Austria. During partial melting, foamy patches of dark glassy material formed at the surface of the rocks and also as layers within the rocks. The pyrometamorphic rocks contain mostly the mineral assemblage olivine + orthopyroxene + plagioclase + spinel + glass. During the investigation of slag samples from this prehistoric ritual immolation site, extremely P-rich, apatite-bearing micro-domains were found. In these domains phosphoran olivine was found whose P contents are approaching the maximum P contents in olivine according to the experimental investigations of Boesenberg and Hewins (Geochim Cosmochim Acta 74:1923-1941, 2010). The textures within these domains indicate strongly disequilibrium conditions. The phosphoran olivines formed due to reactions involving apatite and the mineral assemblage of the quartzphyllites, and coexist with plagioclase and a tri-calcium phosphate phase (TCP) showing stanfieldite Ca4(Mg, Fe2+, Mn2+)5(PO4)6 composition. In terms of its chemical composition, olivine shows a wide range in composition with P ranging from 0.3 to 0.54 a.p.f.u, which corresponds to maximal 23 wt.% P2O5. These are the highest P-contents in olivine reported from rocks so far. The incorporation of P correlates with decreasing Si contents according to the charge balancing scheme 2{{P}^{5+ }}+□{{M}_{1,2 }}=2S{{i}^{4+ }}+{{( {Mg,Fe} )}^{2+ }}{{M}_{1,2 }} . Therefore P can only be incorporated in combination with a vacancy on the M1,2 position. Micro-Raman spectroscopy of phosphoran olivines indicates that these olivines can easily be identified with this method due to the strong signals of the SiO4 and PO4 vibrations. The external vibrations of the M1,2 sites at low wave-numbers are more complex than for P-free olivine. This might be due to the effect of P5+ on




    The objective of this field test instruction is to provide technical guidance for aqueous injection emplacement of an extension apatite permeable reactive barrier (PRE) for the sequestration of strontium-90 (Sr-90) using a high concentration amendment formulation. These field activities will be conducted according to the guidelines established in DOE/RL-2010-29, 100-NR-2 Design Optimization Study, hereafter referred to as the DOS. The DOS supports the Federal Facility Agreement Consent Order (EPA et al., 1989), Milestone M-16-06-01, and 'Complete Construction of a Permeable Reactive Barrier at 100-N.' Injections of apatite precursor chemicals will occur at an equal distance intervals on each end of the existing PRE to extend the PRB from the existing 91 m (300 ft) to at least 274 m (900 ft). Field testing at the 100-N Area Apatite Treatability Test Site, as depicted on Figure 1, shows that the barrier is categorized by two general hydrologic conceptual models based on overall well capacity and contrast between the Hanford and Ringold hydraulic conductivities. The upstream portion of the original barrier, shown on Figure 1, is characterized by relatively low overall well specific capacity. This is estimated from well development data and a lower contrast in hydraulic conductivity between the Hanford formation and Ringold Formations. Comparison of test results from these two locations indicate that permeability contrast between the Hanford formation and Ringold Formation is significantly less over the upstream one-third of the barrier. The estimated hydraulic conductivity for the Hanford formation and Ringold Formation over the upstream portion of the barrier based on observations during emplacement of the existing 91 m (300 ft) PRB is approximately 12 and 10 m/day (39 and 32 ft/day), respectively (PNNL-17429). However, these estimates should be used as a rough guideline only, as significant variability in hydraulic conductivity is likely to be observed in

  15. Apatite (U-Th-Sm)/He age dispersion arising from analysis of variable grain sizes and broken crystals - examples from the Scottish Southern Uplands

    Łuszczak, Katarzyna; Persano, Cristina; Stuart, Finlay; Brown, Roderick


    Apatite (U-Th-Sm)/He (AHe) thermochronometry is a powerful technique for deciphering denudation of the uppermost crust. However, the age dispersion of single grains from the same rock is typical, and this hampers establishing accurate thermal histories when low grain numbers are analysed. Dispersion arising from the analysis of broken crystal fragments[1] has been proposed as an important cause of age dispersion, along with grain size and radiation damage. A new tool, Helfrag[2], allows constraints to be placed on the low temperature history derived from the analysis of apatite crystal fragments. However, the age dispersion model has not been fully tested on natural samples yet. We have performed AHe analysis of multiple (n = 20-25) grains from four rock samples from the Scottish Southern Uplands, which were subjected to the same exhumation episodes, although, the amount of exhumation varied between the localities. This is evident from the range of AFT ages (˜60 to ˜200 Ma) and variable thermal histories showing either strong, moderate and no support for a rapid cooling event at ˜60 Ma. Different apatite size and fragment geometry were analysed in order to maximise age dispersion. In general, the age dispersion increases with increasing AFT age (from 47% to 127%), consistent with the prediction from the fragmentation model. Thermal histories obtained using Helfrag were compared with those obtained by standard codes based on the spherical approximation. In one case, the Helfrag model was capable of resolving the higher complexity of the thermal history of the rock, constraining several heating/cooling events that are not predicted by the standard models, but are in good agreement with the regional geology. In other cases, the thermal histories are similar for both Helfrag and standard models and the age predictions for the Helfrag are only slightly better than for standard model, implying that the grain size has the dominant role in generating the age dispersion

  16. 1, 6-diisocyanatohexane-extended poly (1, 4-butylene succinate / hydroxyl apatite nano particle scaffolds: Potential materials for bone regeneration applications

    Kaur, Kulwinder; Singh, K. J.; Anand, Vikas; Bhatia, Gaurav; Nim, Lovedeep; Kaur, Manpreet; Arora, Daljit Singh


    Bioresorbable and bioactive scaffolds are promising materials for various biomedical applications including bone regeneration and drug delievrery. Authors present bioactive scaffolds prepared from 1, 6-diisocyanatohexane-extended poly (1, 4-butylene succinate) (PBSu-DCH) with different amount of hydroxyl apatite nanoparticles (nHAp) by solvent casting and particulate leaching techniques. Different weight ratios of nHAp (i.e. 0, 5 and 10 wt %) with fixed weight ratio (i.e. 10 wt %) of PBSu-DCH polymer have been prepared. Scaffolds have been assessed for their morphology, bioactivity, degradation, drug release and biological properties including cytotoxicity, cell attachment using MG-63 cell line and antimicrobial activity. Effectual drug release has been measured by incorporating gentamycin as an antibiotic in the scaffolds. The study is aimed at developing new biodegradable scaffolds to be used in skull, jaw and tooth socket for preserving bone mass.

  17. Mineral chemistry of monazite-(Nd, xenotime-(Y, apatite, fluorite and zircon hosting in lamprophyre dyke in Abu Rusheid area, South Eastern Desert, Egypt

    Mohamed A. Ali


    Full Text Available The studied mineralized lamprophyre dyke in Abu Rusheid area is trending NNW-SSE, and occurs withinAbu Rusheid mineralized shear zone, measuring 0.2 - 1.0 m in width and 0.5 - 1.0 km in length. It was emplacedparallel with the Abu Rusheid shear zone. The dyke is mainly composed of plagioclases, amphiboles, mica (musco-vite and biotite, relics of pyroxenes with K-feldspars and quartz derived from surrounding country rocks asphenocrysts embedded in fine-grained groundmass. The lamprophyre dyke hosts REE-minerals monazite-(Nd,xenotime-(Y, and REE-bearing minerals apatite, fluorite, zircon-(Hf, rutile with inclusions of xenotime and ironoxides. The emplacement of lamprophyre dyke caused heating in the mineralized shear zone of Abu Rusheid area.The lamprophyre dyke was subsequently affected by hydrothermal alterations (e.g. chlorite-carbonate, muscovitization,fluoritization.The REE were remobilized from the mineralized shear zones by hydrothermal solutionsand re-precipitatedas REE-minerals xenotime-(Y and monazite-(Nd around flourapatite, fluorite, zircon andrutile. The solid solutions between monazite-(Nd and xenotime-(Y were formed as a product precipitation fromhydrothermal solutions. Also, the apatite mineral in the lamprophyre dyke was subjected to the heating duringthe emplacement, which lead to its alteration and breakdown with concominant precipitation of xenotime-(Yand monazite-(Nd. The chemistry of monazite-(Nd and xenotime-(Y obtained by scanning electron microscopy(SEM, and electron probe microanalysis (EPMA, showed that these minerals are enriched in U and Th. Themonazite-(Nd associated with fluorapatite in the studied dyke is poor in Th (0.02 ≤ Th ≤ 0.81 wt%, but usuallyrich in U (0.92 ≤ U ≤ 2.91 wt%, which indicates that monazite formed as a result of flourapatite metasomatism.

  18. Biomimetically Ornamented Rapid Prototyping Fabrication of an Apatite-Collagen-Polycaprolactone Composite Construct with Nano-Micro-Macro Hierarchical Structure for Large Bone Defect Treatment.

    Wang, Jinbing; Wu, Dingyu; Zhang, Zhanzhao; Li, Jun; Shen, Yi; Wang, Zhenxing; Li, Yu; Zhang, Zhi-Yong; Sun, Jian


    Biomaterial-based bone graft substitute with favorable mechanical and biological properties could be used as an alternative to autograft for large defect treatment. Here, an apatite-collagen-polycaprolactone (Ap-Col-PCL) composite construct was developed with unique nano-micro-macro hierarchical architectures by combining rapid prototyping (RP) fabrication technology and a 3D functionalization strategy. Macroporous PCL framework was fabricated using RP technology, then functionalized by collagen incorporation and biomimetic deposition. Ap-Col-PCL composite construct was characterized with hierarchical architectures of a nanoscale (∼100 nm thickness and ∼1 μm length) platelike apatite coating on the microporous (126 ± 18 μm) collagen networks, which homogeneously filled the macroporous (∼1000 μm) PCL frameworks and possessed a favorable hydrophilic property and compressive modulus (68.75 ± 3.39 MPa) similar to that of cancellous bone. Moreover, in vitro cell culture assay and in vivo critical-sized bone defect implantation demonstrated that the Ap-Col-PCL construct could not only significantly increase the cell adhesion capability (2.0-fold) and promote faster cell proliferation but also successfully bridge the segmental long bone defect within 12 weeks with much more bone regeneration (5.2-fold), better osteointegration (7.2-fold), and a faster new bone deposition rate (2.9-fold). Our study demonstrated that biomimetically ornamented Ap-Col-PCL constructs exhibit a favorable mechanical property, more bone tissue ingrowth, and better osteointegration capability as an effective bone graft substitute for critical-sized bone defect treatment; meanwhile, it can also harness the advantages of RP technology, in particular, facilitating the customization of the shape and size of implants according to medical images during clinical application.

  19. Apatite (U-Th)/He Thermochronometry as an innovative Geothermal Exploration Tool - A case study from the Wassuk Range, Hawthorne, Nevada

    Gorynski, K. E.; Stockli, D. F.; Walker, J. D.


    A utility-grade geothermal system requires increased, near-surface temperatures (>120°C), water to transfer heat, and structural or sedimentological fluid conduits. In extensional tectonic settings, geothermal anomalies often occur in areas with recent, high strain accumulation and complex faulting (i.e., cross-faults, accommodation zones) where exhumation and uplift of footwall rocks transfer heat, via advection, to the near-surface which is further carried by water through structural fluid conduits. Apatite helium (AHe) thermochronometric footwall age mapping can be used in conjunction with these genetic occurrence models to further focus regional-scale geothermal exploration efforts to areas of probabilistic increased fracture permeability and most recent, rapid footwall exhumation. Furthermore, partially reset apatites resulting from interaction with hydrothermal fluids (>40°C) will show which areas have been hottest most recently. This case study in the Wassuk Range, Hawthrone, NV confirms the utility of AHe thermochronometry as a geothermal exploration tool. A dense grid of footwall samples were collected adjacent to the Hawthorne geothermal anomaly (>85°C BHT) located in the hanging wall of the Wassuk Range block. Our data show that the location of the present-day geothermal anomaly correlates with the location of 1) the most recent episode of rapid footwall exhumation at 3.5-4 Ma, 2) km scale accommodation zones between differentially tilted Wassuk Range blocks, and 3) an elevated Miocene geothermal gradient. Furthermore, anomalously young AHe ages (Hawthorne geothermal anomaly and likely resulted from interaction with a deep-seated geothermal cell or hot hydrothermal fluids.

  20. Mineral chemistry of magnetite from magnetite-apatite mineralization and their host rocks: examples from Kiruna, Sweden, and El Laco, Chile

    Broughm, Shannon G.; Hanchar, John M.; Tornos, Fernando; Westhues, Anne; Attersley, Samuel


    Interpretation of the mineralizing environment of magnetite-apatite deposits remains controversial with theories that include a hydrothermal or magmatic origin or a combination of those two processes. To address this controversy, we have analyzed the trace element content of magnetite from precisely known geographic locations and geologic environments from the Precambrian magnetite-apatite ore and host rocks in Kiruna, Sweden, and the Pliocene-Holocene El Laco volcano in the Atacama desert of Chile. Magnetite samples from Kiruna have low trace element concentrations with little chemical variation between the ore, host, and related intrusive rocks. Magnetite from andesite at El Laco, and dacite from the nearby Láscar volcano, has high trace element concentrations typical of magmatic magnetite. El Laco ore magnetite have low trace element concentrations and displays growth zoning in incompatible elements (Si, Ca, and Ce), compatible elements (Mg, Al, and Mn), large-ion lithophile element (Sr), and high field strength element (Y, Nb, and Th). The El Laco ore magnetite are similar in composition to magnetite that has been previously interpreted to have crystallized from hydrothermal fluids; however, there is a significant difference in the internal zoning patterns. At El Laco, each zoned element is either enriched or depleted in the same layers, suggesting the magnetite crystallized from a volatile-rich, iron-oxide melt. In general, the compositions of magnetite from these two deposits plot in very wide fields that are not restricted to the proposed fields in published discriminant diagrams. This suggests that the use of these diagrams and genetic models based on them should be used with caution.

  1. In Vitro Screening of the Apatite-Forming Ability, Biointeractivity and Physical Properties of a Tricalcium Silicate Material for Endodontics and Restorative Dentistry

    Maria Giovanna Gandolfi


    Full Text Available Aim: Calcium silicate-based materials are hydraulic self-setting materials with physico-chemical properties suitable for endodontic surgery and good biological/clinical outcomes. The study aim was to evaluate the bio-properties (biointeractivity and apatite-forming ability and selected physical properties (porosity, water sorption, solubility, and setting time of Biodentine, a tricalcium silicate material for endodontics and restorative dentistry, compared to that of ProRoot MTA (Mineral Trioxide Aggregate as gold standard material. Methods: Biodentine and ProRoot MTA pastes were prepared and analyzed for calcium release and alkalinizing activity (3 h–28 days, setting time, water sorption, porosity, solubility, surface microstructure and composition, and apatite-forming ability in simulated body fluid. Results: Biodentine showed higher calcium release, alkalinizing activity, and solubility but higher open and apparent porosity, water sorption, and a markedly shorter setting time. Calcium phosphate (CaP deposits were noted on material surfaces after short ageing times. A CaP coating composed of spherulites was detected after 28 days. The thickness, continuity, and Ca/P ratio of the coating differed markedly between the materials. Biodentine showed a coating composed by denser but smaller spherulites, while ProRoot MTA showed large but less dense aggregates of spherulitic deposits. Conclusions: Biodentine showed a pronounced ability to release calcium and extended alkalinizing activity interlinked with its noticeable porosity, water sorption, and solubility: open porosities provide a broad wet biointeractive surface for the release of the calcium and hydroxyl ions involved in the formation of a CaP mineral. Biodentine is a biointeractive tricalcium silicate material with interesting chemical-physical properties and represents a fast-setting alternative to the conventional calcium silicate MTA-like cements.

  2. Leachability, availability and bioaccessibility of Cu and Cd in a contaminated soil treated with apatite, lime and charcoal: A five-year field experiment.

    Cui, Hongbiao; Fan, Yuchao; Fang, Guodong; Zhang, Houxi; Su, Binbin; Zhou, Jing


    This study evaluated the efficiency of apatite, lime and charcoal in regulating Cu and Cd leachability (toxicity characteristic leaching and synthetic precipitation leaching procedures), availability (CaCl2 and MgCl2) and bioaccessibility (simplified bioaccessibility extraction test) in a heavy metal-contaminated soil. Both soil pH and soil organic carbon content were investigated during the five-year field study. The results showed that soil pH and soil organic carbon content increased with application of amendments, but decreased with time in both the control and amended plots. Moreover, the leachability, availability and bioaccessibility of Cu and Cd in amended soils all significantly decreased compared with the control, but increased over time. Pearson's correlation analysis showed that soil pH was significantly negatively correlated with the concentrations of available, leachable and bioaccessible Cu and Cd. Bioaccessible Cu and Cd were positively correlated with the concentrations of available and leachable Cu and Cd, but they were not significantly correlated with soil total Cu and total Cd. Stepwise multiple regression analysis indicated that the variability in bioaccessible Cu and Cd was well explained by MgCl2-extractable Cu, CaCl2-extractable Cd and pH, respectively. Although the longevity of amendments decreased with time, apatite was the most effective in decreasing the availability of Cu, compared with lime and charcoal. These findings provide valuable insights for risk management during long-term in situ immobilization of heavy metals in contaminated soils. Copyright © 2016. Published by Elsevier Inc.

  3. Post-Triassic thermal history of the Tazhong Uplift Zone in the Tarim Basin, Northwest China: Evidence from apatite fission-track thermochronology

    Caifu Xiang


    Full Text Available The Tarim Basin is a representative example of the basins developed in the northwest China that are characterized by multiple stages of heating and cooling. In order to better understand its complex thermal history, apatite fission track (AFT thermochronology was applied to borehole samples from the Tazhong Uplift Zone (TUZ. Twelve sedimentary samples of Silurian to Triassic depositional ages were analyzed from depths coinciding with the apatite partial annealing zone (∼60–120 °C. The AFT ages, ranging from 132 ± 7 Ma (from a Triassic sample to 25 ± 2 Ma (from a Carboniferous sample, are clearly younger than their depositional ages and demonstrate a total resetting of the AFT thermometer after deposition. The AFT ages vary among different tectonic belts and decrease from the No. Ten Faulted Zone (133–105 Ma in the northwest, the Central Horst Zone in the middle (108–37 Ma, to the East Buried Hill Zone in the south (51–25 Ma. Given the low magnitude of post-Triassic burial heating evidenced by low vitrinite reflectance values (Ro < 0.7%, the total resetting of the AFT system is speculated to result from the hot fluid flow along the faults. Thermal effects along the faults are well documented by younger AFT ages and unimodal single grain age distributions in the vicinity of the faults. Permian–early Triassic basaltic volcanism may be responsible for the early Triassic total annealing of those samples lacking connectivity with the fault. The above arguments are supported by thermal modeling results.

  4. The effect of ZrO2 and TiO 2 on solubility and strength of apatite-mullite glass-ceramics for dental applications.

    Fathi, Hawa M; Miller, Cheryl; Stokes, Christopher; Johnson, Anthony


    The effect of ZrO2 and TiO2 on the chemical and mechanical properties of apatite-mullite glass-ceramics was investigated after sample preparation according to the ISO (2768:2008) recommendations for dental ceramics. All materials were characterized using differential thermal analysis, X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. X-ray fluorescence spectroscopy was used to determine the concentrations of elements present in all materials produced. The chemical solubility test and the biaxial flexural strength (BFS) test were then carried out on all the samples. The best solubility value of 242 ± 61 μg/cm(2) was obtained when HG1T was heat-treated for 1 h at the glass transition temperature plus 20 °C (Tg + 20 °C) followed by 5 h at 1200 °C. The highest BFS value of 174 ± 38 MPa was achieved when HG1Z and HG1Z+T were heat-treated for 1 h at the Tg + 20 °C followed by 7 h at 1200 °C. The present study has demonstrated that the addition of TiO2 to the reference composition showed promise in both the glass and heat-treated samples. However, ZrO2 is an effective agent for developing the solubility or the mechanical properties of an apatite-mullite glass-ceramic separately but does not improve the solubility and the BFS simultaneously.

  5. 交替循环浸泡在TiO2纳米管管内填充类骨磷灰石%Filling TiO2 Nanotubes with Biological Apatite by Alternative Loop Immersion Method

    俞佳; 肖秀峰; 梁建鹤; 刘榕芳; 王春燕; 毛丹


    A vertically aligned TiO2 nanotube array was fabricated on the surface of titanium substrate in fluoridecontaining electrolyes by anodization. Alternative Loop Immersion Method (ALIM) was investigated to fill TiO2 nanotubes with the biological apatite in the saturated solution of Ca(OH)2 and 0.02 mol/L (NH4)2HPO4. In this way, the structure of the apatite-coating on the Ti substrate was changed for solving the problem of coating shedding well. And the amount of synthetic apatite formed by ALIM was quantified according to key tube properties such as the tube diameter,the layer thickness, the crystal structure (amorphous or anatase), etc. The effect of filling biological apatite of TiO2 nanotubes fabricated in glycerol-based electrolyte at 60V is the best. And the rate of inducing biological apatite on amorphous TiO2 nanotubes with the treatment of ALIM is better than that of anatase TiO2 nanotubes. Mineralization in vitro experiments indicates that TiO2 nanotubes after ALIM treatment promote natural apatite formation significantly in a simulated body fluid (SBF). Such TiO2 nanotube arrays with ALIM treatment, are useful as a well-adhered bioactive surface layer on Ti implant metals for orthopaedic and dental implants.%采用"交替循环浸泡法(ALIM)"在TiO2纳米管管内填充类骨磷灰石,使磷灰石涂层由层状结构变为嵌入式结构,并考察填充量与TiO2纳米管结构间的关系,通过模拟体液浸泡实验评价其生物活性.结果表明,甘油体系(60V电压)中制备的纳米管填充效果最好;无定型的TiO2纳米管相比锐钛矿相的TiO2纳米管更能诱导类骨磷灰石的填充;采用ALIM于TiO2纳米管上填充类骨磷灰石可大大提高其生物活性.

  6. Experimental study of kinetic and mechanism of dissolution of apatite structured minerals. Application to the prediction of the long term behavior of an actinides storage host matrix; Etude experimentale de la cinetique et des mecanismes d'alteration de mineraux apatitiques. Application au comportement d'une ceramique de confinement d'actinides mineurs

    Chairat, C


    The motivation for this study is to assess the potential of using apatite structured ceramics as long-lived actinide storage hosts. To assess their ability to resist aqueous corrosion, the dissolution of natural fluoro-apatite and synthetic Nd-britholite (neodymium is a proxy for the trivalent actinides) was studied. Mineral surfaces were characterized using a combined spectrometric, electrokinetic and potentiometric approach and dissolution rates were measured in closed and open system reactors as a function of solution composition. Experimental results suggest apatitic minerals dissolve via distinct step sequence: 1) fluoride release, 2) release of the calcium situated in the M1, and 3) the simultaneous removal of phosphate and calcium II via the breaking of only Ca-O bonds. TST based rate equations based in this mechanism accurately describe fluoro-apatite and synthetic britholite dissolution rates as a function of solution composition. Nd release rates are limited by precipitation of Nd-rhabdophane. (author)

  7. Deciphering Past and Present Tectonics of the Rio Grande Rift in New Mexico Utilizing Apatite Fission Track Thermochronology, Geochronology, Quaternary Faulting, and Cross-Section Restoration

    Ricketts, J. W.; Karlstrom, K. E.; Kelley, S. A.; Priewisch, A.; Crossey, L. J.; Asmerom, Y.; Polyak, V.; Selmi, M.


    The Rio Grande rift provides an excellent laboratory for understanding styles and processes of extensional tectonics, and their driving forces. We apply apatite fission track (AFT) thermochronology, geochronology, fracture analysis, and cross-section restoration to decipher past and present tectonics of the Rio Grande rift. AFT data has been compiled from rift flank uplifts along the Rio Grande rift in an attempt to recognize long wavelength spatial and temporal patterns. AFT ages record time of cooling of rocks below ~110°C and, when cooling is due to exhumation, age elevation traverses can record upward advection of rocks through paleo 110°C isotherms. The relatively passive sides of half-grabens (e.g. Manzanos and Santa Fe Range) preserve Laramide AFT ages ranging from 45-70 Ma, indicating they were cooled during the Laramide Orogeny and have remained cooler than 110°C since then. Rift flanks on the tectonically active sides of half-grabens, (e.g. Sierra Ladrones, Sandias, Taos Range, and Sierra Blanca) have AFT ages that range from 35 Ma to <10 Ma, and record cooling that initiated with the Oligocene ignimbrite flare-up and continues through the Neogene. Our analysis tracks the approximate elevation of paleo 110°C isotherms in 10 Ma intervals from the Laramide to the present and shows that reconstructed paleoisotherms have been differentially uplifted, warped, and faulted since their time of formation, and hence serve as markers of uplift history and its mechanisms. AFT data at Ladron Peak, an active rift flank along the western margin of the Rio Grande rift in central New Mexico, indicates that it was rapidly unroofed between 20-10 Ma. Preliminary apatite helium data gives a similar age vs. elevation trend, but apatites have highly radiogenically damaged lattices and hence have corrected closure temperatures tens of degrees higher than AFT ages. The style of faulting at Ladron Peak is unusual because it is bounded by the anomalously low-angle (~15°) Jeter

  8. New constraints on paleo-denudation history of the Ladakh Batholith - applying bedrock and detrital apatite (U-Th-Sm)/He thermochronology

    Sahragard Sohi, Mohammad; Rosenkranz, Ruben; Spiegel, Cornelia


    The Ladakh Batholith is part of the Transhimalayan Plutonic Belt and records the early exhumation history of the Himalayan orogen. The evolution of the Ladakh Batholith is complex and was controversially discussed in the literature (see Kirstein, 2011 for details). Recent data by Kirstein et al. (2006 & 2009) suggest a trend of exhumation rates across the batholith, with earlier exhumation along its southern margin and later exhumation in the north. Apart from methodological purpose aimed at refining the apatite (U-Th-Sm)/He technique, the goal of our study is to investigate the earliest denudation history of the Ladakh Pluton and thereby that of the Himalayan orogen, using apatite (U-Th-Sm)/He thermochronology (i) applied to bedrocks from the southern margin of the batholith, and (ii) to sediments from the adjacent Upper Indian Group sediments such as Nurla, Choksti, and Nimu Formations with Early Eocene to Late Miocene in age (Henderson et al., 2010). These sediments are thought to be sourced from the Ladakh Batholith (Henderson et al., 2011). Apatite (U-Th-Sm)/He dating is sensitive to temperatures between ~85 and 40°C and thus to geodynamic movements of the upper ~1.5 to 3 km of the earth's crust. While thermochronology data from present-day bedrock exposures provides denudation rates integrated over the time between cooling age and the present, the earlier denudation history is eroded away from the present exposures and stored in the syn-tectonic sediments. Thus, dating sediments of the Indian Group will yield the paleo-denudation history of the (southern) Ladakh area, including changes of denudation rates back through time. This will reveal new insights into the relation between tectonics, climate, and erosion. References Henderson, A. L., Y. Najman, R. Parrish, M. BouDagher - Fadel, D. Barford, E. Garzanti, and S. Andò (2010), Geology of the Cenozoic Indus Basin sedimentary rocks: Paleoenvironmental interpretation of sedimentation from the western Himalaya

  9. Using apatite fission track thermochronology to document the deformation sequence in an exhumed foreland basin: an example from the southern Pyrenees.

    Meresse, F.; Labaume, P.; Jolivet, M.; Teixell, A.


    Université Montpellier 2, INSU-CNRS, Laboratoire Géosciences Montpellier, cc060, 34095 Montpellier Cedex 5, France The study of foreland basins provides important constraints on the evolution of orogenic wedges. In particular, the study of tectonics-sedimentation relationships is essential to date the tectonic activity. However, processes linked to wedge growth are not always completely recorded by the tecto-sedimentary markers, and thermochronological study of the basin-fill can provide further insights. In this work, we have combined apatite fission track analysis (apatite FTA) with structural analysis to precise the timing of the deformation sequence and to characterise the coupling between thrust activity, burial and denudation in the south-Pyrenean foreland basin, a proximal foredeep of the Pyrenees that has been incorporated in the Pyrenean thrust wedge. We have focused the study on a NNE-SSW cross-section of the south-vergent thrust system from the southern flank of the Axial Zone to the South-Pyrenean Frontal Thrust (SPFT), in the west-central part of the belt. This section provide