WorldWideScience

Sample records for yielding circular dna

  1. Somatic DNA recombination yielding circular DNA and deletion of a genomic region in embryonic brain

    International Nuclear Information System (INIS)

    Maeda, Toyoki; Chijiiwa, Yoshiharu; Tsuji, Hideo; Sakoda, Saburo; Tani, Kenzaburo; Suzuki, Tomokazu

    2004-01-01

    In this study, a mouse genomic region is identified that undergoes DNA rearrangement and yields circular DNA in brain during embryogenesis. External region-directed inverse polymerase chain reaction on circular DNA extracted from late embryonic brain tissue repeatedly detected DNA of this region containing recombination joints. Wide-range genomic PCR and digestion-circularization PCR analysis showed this region underwent recombination accompanied with deletion of intervening sequences, including the circularized regions. This region was mapped by fluorescence in situ hybridization to C1 on mouse chromosome 16, where no gene and no physiological DNA rearrangement had been identified. DNA sequence in the region has segmental homology to an orthologous region on human chromosome 3q.13. These observations demonstrated somatic DNA recombination yielding genomic deletions in brain during embryogenesis

  2. Quantitative analysis of the flexibility effect of cisplatin on circular DNA

    Science.gov (United States)

    Ji, Chao; Zhang, Lingyun; Wang, Peng-Ye

    2013-10-01

    We study the effects of cisplatin on the circular configuration of DNA using atomic force microscopy (AFM) and observe that the DNA gradually transforms to a complex configuration with an intersection and interwound structures from a circlelike structure. An algorithm is developed to extract the configuration profiles of circular DNA from AFM images and the radius of gyration is used to describe the flexibility of circular DNA. The quantitative analysis of the circular DNA demonstrates that the radius of gyration gradually decreases and two processes on the change of flexibility of circular DNA are found as the cisplatin concentration increases. Furthermore, a model is proposed and discussed to explain the mechanism for understanding the complicated interaction between DNA and cisplatin.

  3. Effect of Temperature on Topological States of Circular DNA

    Science.gov (United States)

    Fan, Yang-Tao; Li, Xiu-Yan; Liu, Yan-Hui; Chen, Hu

    2017-07-01

    The different topological states of circular double-stranded DNA can be defined by their linking number. The equilibrium distribution of linking number can be obtained by circularizing a linear DNA into a circle by ligase. Based on the recent experimental results that the DNA bending rigidity and twist rigidity strongly depend on temperature, the reduced bending rigidity can be approximated by g=(3.19× {10}-19-T\\cdot 4.14× {10}-22) {erg}\\cdot {cm} over the temperature interval (5 ∼ 53) °C, and the temperature dependence of twist rigidity can be fitted by C(T)=(4588.89{exp} (-T/117.04)-251.33) nm. The temperature dependence of the linking number distribution of circular DNAs can be predicted by using Monte Carlo simulation. The variance of linking number distribution on temperature is in accordance with the previous experimental results. Compared with the temperature dependence of bending rigidity, the temperature dependence of twist rigidity causes a noticeable fluctuation in linking number distribution and mainly contribute towards the variance change of linking number distribution of circular DNA. The variance of the writhe number and twist number in the equation = + depends on the length of circular DNA. When the length of circular DNA is less than 230 nm, the variance of twist number is dominant over the variance of writhe number ( ), whereas for the condition that the length of the circular DNA is larger than 370 nm. Supported by the National Natural Science Foundation of China under Grant Nos. 11047022, 11204045, and 11464004, Guizhou Provincial Tracking Key Program of Social Development (SY20123089, SZ20113069), the General Financial Grant from the China Postdoctoral Science Foundation (2014M562341), the Research Foundation for Young University Teachers from Guizhou University (201311), and College Innovation Talent Team of Guizhou Province (2014)32

  4. Supercoiled circular DNA of an insect granulosis virus.

    Science.gov (United States)

    Tweeten, K A; Bulla, L A; Consigli, R A

    1977-08-01

    The DNA of the granulosis virus of the Indian meal moth, Plodia interpunctella, was characterized by physical chemical and electron microscopic techniques. Twenty-five percent of the DNA extracted from purified virus was isolated as supercoiled circular molecules. The remaining 75% consisted of relaxed circular molecules. These molecular forms were indicated by the production of two radioactive bands during sedimentation of (3)H-labeled granulosis virus DNA in alkaline sucrose gradients or in equilibrium density gradients of neutral cesium chloride/propidium iodide. Electron microscopic visualization of the DNA that banded at the higher density in the latter gradients revealed supercoiled structures whereas that of DNA that banded at the lower density demonstrated relaxed circular molecules. The superhelical molecules were converted to relaxed circles by treatment with pancreatic DNase. The molecular weight of the viral DNA was calculated to be 81 x 10(6) by sedimentation in neutral sucrose and 78 x 10(6) by sedimentation in alkaline sucrose. The molecular weight estimated from length measurements in electron micrographs was 76 x 10(6). The buoyant density of the granulosis virus DNA was 1.703 g/cm(3) and that of its insect host DNA was 1.697 g/cm(3). Equilibrium sedimentation in cesium chloride and thermal denaturation indicated G + C contents of 44% and 39% for the viral and host DNA, respectively.

  5. CSA: An efficient algorithm to improve circular DNA multiple alignment

    Directory of Open Access Journals (Sweden)

    Pereira Luísa

    2009-07-01

    Full Text Available Abstract Background The comparison of homologous sequences from different species is an essential approach to reconstruct the evolutionary history of species and of the genes they harbour in their genomes. Several complete mitochondrial and nuclear genomes are now available, increasing the importance of using multiple sequence alignment algorithms in comparative genomics. MtDNA has long been used in phylogenetic analysis and errors in the alignments can lead to errors in the interpretation of evolutionary information. Although a large number of multiple sequence alignment algorithms have been proposed to date, they all deal with linear DNA and cannot handle directly circular DNA. Researchers interested in aligning circular DNA sequences must first rotate them to the "right" place using an essentially manual process, before they can use multiple sequence alignment tools. Results In this paper we propose an efficient algorithm that identifies the most interesting region to cut circular genomes in order to improve phylogenetic analysis when using standard multiple sequence alignment algorithms. This algorithm identifies the largest chain of non-repeated longest subsequences common to a set of circular mitochondrial DNA sequences. All the sequences are then rotated and made linear for multiple alignment purposes. To evaluate the effectiveness of this new tool, three different sets of mitochondrial DNA sequences were considered. Other tests considering randomly rotated sequences were also performed. The software package Arlequin was used to evaluate the standard genetic measures of the alignments obtained with and without the use of the CSA algorithm with two well known multiple alignment algorithms, the CLUSTALW and the MAVID tools, and also the visualization tool SinicView. Conclusion The results show that a circularization and rotation pre-processing step significantly improves the efficiency of public available multiple sequence alignment

  6. DNA electronic circular dichroism on the inter-base pair scale

    DEFF Research Database (Denmark)

    Di Meo, Florent; Nørby, Morten Steen; Rubio-Magnieto, Jenifer

    2015-01-01

    A successful elucidation of the near-ultraviolet electronic circular dichroism spectrum of a short double-stranded DNA is reported. Time-dependent density functional theory methods are shown to accurately predict spectra and assign bands on the microscopic base-pair scale, a finding that opens...... the field for using circular dichroism spectroscopy as a sensitive nanoscale probe of DNA to reveal its complex interactions with the environment. (Chemical Equation Presented)....

  7. Detection of HBV Covalently Closed Circular DNA

    Directory of Open Access Journals (Sweden)

    Xiaoling Li

    2017-06-01

    Full Text Available Chronic hepatitis B virus (HBV infection affects approximately 240 million people worldwide and remains a serious public health concern because its complete cure is impossible with current treatments. Covalently closed circular DNA (cccDNA in the nucleus of infected cells cannot be eliminated by present therapeutics and may result in persistence and relapse. Drug development targeting cccDNA formation and maintenance is hindered by the lack of efficient cccDNA models and reliable cccDNA detection methods. Southern blotting is regarded as the gold standard for quantitative cccDNA detection, but it is complicated and not suitable for high-throughput drug screening, so more sensitive and simple methods, including polymerase chain reaction (PCR-based methods, Invader assays, in situ hybridization and surrogates, have been developed for cccDNA detection. However, most methods are not reliable enough, and there are no unified standards for these approaches. This review will summarize available methods for cccDNA detection. It is hoped that more robust methods for cccDNA monitoring will be developed and that standard operation procedures for routine cccDNA detection in scientific research and clinical monitoring will be established.

  8. The Infection Efficiency and Replication Ability of Circularized HBV DNA Optimized the Linear HBV DNA in Vitro and in Vivo

    Science.gov (United States)

    Li, Xiaosong; Zhu, Junke; Lai, Guoqi; Yan, Lei; Hu, Jieli; Chen, Juan; Tang, Ni; Huang, Ailong

    2015-01-01

    Studies on molecular mechanisms of the persist infection of hepatitis B virus have been hampered by a lack of a robust animal model. We successfully established a simple, versatile, and reproducible HBV persist infection model in vitro and in vivo with the circularized HBV DNA. The cells and mice were transfected or injected with circularized HBV DNA and pAAV/HBV1.2, respectively. At the indicated time, the cells, supernatants, serum samples, and liver tissues were collected for virological and serological detection. Both in vitro and in vivo, the circularized HBV DNA and pAAV/HBV1.2 could replicate and transcribe efficiently, but the infection effect of the former was superior to the latter (p HBV genome DNA into the mice robustly supported HBV infection and approximately 80% of HBV infected mice established persistent infection for at least 10 weeks. This study demonstrated that the infection efficiency and replication ability of the circularized structure of HBV DNA overmatched that of the expression plasmid containing the linear structure of HBV DNA in vitro and in vivo. Meanwhile, this research results could provide useful tools and methodology for further study of pathogenic mechanisms and potential antiviral treatments of human chronic HBV infection in vitro and in vivo. PMID:25751726

  9. Rapid purification of circular DNA by triplex-mediated affinity capture

    Science.gov (United States)

    Ji, H.; Smith, L.M.

    1997-01-07

    A single-step capture of a target supercoiled double-stranded DNA molecule is accomplished by forming a local triple-helix among two strands of the supercoiled circular DNA and an oligonucleotide probe. The oligonucleotide is bound to an immobilizing support which facilitates the immobilization and purification of target DNA molecules. Non-target DNA molecules and other contaminating cellular material are easily removed by washing. The triple-helical structure is destabilized by raising the pH, leaving purified target DNA in the supernatant and reusable affinity capture oligonucleotide secured to the immobilizing support. 3 figs.

  10. Antiviral strategies to eliminate hepatitis B virus covalently closed circular DNA (cccDNA).

    Science.gov (United States)

    Revill, Peter; Locarnini, Stephen

    2016-10-01

    It has been over 50 years since the discovery of hepatitis B virus (HBV), yet 240 million people worldwide live with chronic HBV, resulting in up to 800000 deaths per year. A cure is yet to be achieved, due largely to a viral nuclear reservoir of transcriptionally active covalently closed circular DNA (cccDNA). While current antiviral therapies are effective at reducing viral replication, they have no impact on the existing cccDNA reservoir. Identifying mechanisms to either eliminate (complete cure) or inactivate (functional cure) HBV cccDNA are a major focus of HBV research worldwide. This review discusses recent advances in efforts to eliminate and/or regulate cccDNA, as well as future directions that may be considered in efforts to cure chronic HBV. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  11. Validation of DNA probes for molecular cytogenetics by mapping onto immobilized circular DNA

    Energy Technology Data Exchange (ETDEWEB)

    Greulich-Bode, Karin; Wang, Mei; Rhein, Andreas; Weier, Jingly; Weier, Heinz-Ulli

    2008-12-16

    Fluorescence in situ hybridization (FISH) is a sensitive and rapid procedure to detect gene rearrangements in tumor cells using non-isotopically labeled DNA probes. Large insert recombinant DNA clones such as bacterial artificial chromosome (BAC) or P1/PAC clones have established themselves in recent years as preferred starting material for probe preparations due to their low rates of chimerism and ease of use. However, when developing probes for the quantitative analysis of rearrangements involving genomic intervals of less than 100kb, careful probe selection and characterization are of paramount importance. We describe a sensitive approach to quality control probe clones suspected of carrying deletions or for measuring clone overlap with near kilobase resolution. The method takes advantage of the fact that P1/PAC/BAC's can be isolated as circular DNA molecules, stretched out on glass slides and fine-mapped by multicolor hybridization with smaller probe molecules. Two examples demonstrate the application of this technique: mapping of a gene-specific {approx}6kb plasmid onto an unusually small, {approx}55kb circular P1 molecule and the determination of the extent of overlap between P1 molecules homologous to the human NF-?B2 locus. The relatively simple method presented here does not require specialized equipment and may thus find widespread applications in DNA probe preparation and characterization, the assembly of physical maps for model organisms or in studies on gene rearrangements.

  12. Validation of DNA probes for molecular cytogenetics by mapping onto immobilized circular DNA

    Energy Technology Data Exchange (ETDEWEB)

    Greulich-Bode, Karin M.; Wang, Mei; Rhein, Andreas P.; Weier, Jingly F.; Weier, Heinz-Ulli G.

    2008-12-04

    Fluorescence in situ hybridization (FISH) is a sensitive and rapid procedure to detect gene rearrangements in tumor cells using non-isotopically labeled DNA probes. Large insert recombinant DNA clones such as bacterial artificial chromosome (BAC) or P1/PAC clones have established themselves in recent years as preferred starting material for probe preparations due to their low rates of chimerism and ease of use. However, when developing probes for the quantitative analysis of rearrangements involving genomic intervals of less than 100kb, careful probe selection and characterization are of paramount importance. We describe a sensitive approach to quality control probe clones suspected of carrying deletions or for measuring clone overlap with near kilobase resolution. The method takes advantage of the fact that P1/PAC/BAC's can be isolated as circular DNA molecules, stretched out on glass slides and fine-mapped by multicolor hybridization with smaller probe molecules. Two examples demonstrate the application of this technique: mapping of a gene-specific {approx}6kb plasmid onto an unusually small, {approx}55kb circular P1 molecule and the determination of the extent of overlap between P1 molecules homologous to the human NF-{kappa}B2 locus. The relatively simple method presented here does not require specialized equipment and may thus find widespread applications in DNA probe preparation and characterization, the assembly of physical maps for model organisms or in studies on gene rearrangements.

  13. Intricate and Cell Type-Specific Populations of Endogenous Circular DNA (eccDNA) in Caenorhabditis elegans and Homo sapiens.

    Science.gov (United States)

    Shoura, Massa J; Gabdank, Idan; Hansen, Loren; Merker, Jason; Gotlib, Jason; Levene, Stephen D; Fire, Andrew Z

    2017-10-05

    Investigations aimed at defining the 3D configuration of eukaryotic chromosomes have consistently encountered an endogenous population of chromosome-derived circular genomic DNA, referred to as extrachromosomal circular DNA (eccDNA). While the production, distribution, and activities of eccDNAs remain understudied, eccDNA formation from specific regions of the linear genome has profound consequences on the regulatory and coding capabilities for these regions. Here, we define eccDNA distributions in Caenorhabditis elegans and in three human cell types, utilizing a set of DNA topology-dependent approaches for enrichment and characterization. The use of parallel biophysical, enzymatic, and informatic approaches provides a comprehensive profiling of eccDNA robust to isolation and analysis methodology. Results in human and nematode systems provide quantitative analysis of the eccDNA loci at both unique and repetitive regions. Our studies converge on and support a consistent picture, in which endogenous genomic DNA circles are present in normal physiological states, and in which the circles come from both coding and noncoding genomic regions. Prominent among the coding regions generating DNA circles are several genes known to produce a diversity of protein isoforms, with mucin proteins and titin as specific examples. Copyright © 2017 Shoura et al.

  14. Detection of circular telomeric DNA without 2D gel electrophoresis.

    Science.gov (United States)

    Dlaska, Margit; Anderl, Conrad; Eisterer, Wolfgang; Bechter, Oliver E

    2008-09-01

    The end of linear chromosomes forms a lasso-like structure called the t-loop. Such t-loops resemble a DNA recombination intermediate, where the single-stranded 3' overhang is arrested in a stretch of duplex DNA. Presumably, such a t-loop can also be deleted via a recombination process. This would result in the occurrence of circular extrachromosomal telomeric DNA (t-circles), which are known to be abundantly present in immortal cells engaging the recombination-based alternative lengthening of telomeres pathway (ALT pathway). Little is known about the basic mechanism of telomeric recombination in these cells and what ultimately causes the generation of such t-circles. Current standard procedures for detecting these molecules involve 2D gel electrophoresis or electron microscopy. However, both methods are labor intense and sophisticated to perform. Here, we present a simpler, faster, and equally sensitive method for detecting t-circles. Our approach is a telomere restriction fragment assay that involves the enzymatic preservation of circular DNA with Klenow enzyme followed by Bal31 degradation of the remaining linear DNA molecules. We show that with this approach t-circles can be detected in ALT cell lines, whereas no t-circles are present in telomerase-positive cell lines. We consider our approach a valid method in which t-circle generation is the experimental readout.

  15. HBV-Specific shRNA is Capable of Reducing the Formation of Hepatitis B Virus Covalently Closed Circular DNA, but has No Effect on Established Covalently Closed Circular DNA in vitro

    OpenAIRE

    Starkey, Jason L.; Chiari, Estelle F.; Isom, Harriet C.

    2009-01-01

    Hepatitis B virus (HBV) covalently closed circular DNA (CCC DNA) is the source of HBV transcripts and persistence in chronically infected patients. The novel aspect of this study was to determine the effect of RNA interference (RNAi) on HBV CCC DNA when administered prior to establishment of HBV replication or during chronic HBV infection. HBV replication was initiated in HepG2 cells by transduction with HBV baculovirus. Subculture of HBV expressing HepG2 cells at 10 days post-transduction ge...

  16. DNA Polymerase κ Is a Key Cellular Factor for the Formation of Covalently Closed Circular DNA of Hepatitis B Virus.

    Directory of Open Access Journals (Sweden)

    Yonghe Qi

    2016-10-01

    Full Text Available Hepatitis B virus (HBV infection of hepatocytes begins by binding to its cellular receptor sodium taurocholate cotransporting polypeptide (NTCP, followed by the internalization of viral nucleocapsid into the cytoplasm. The viral relaxed circular (rc DNA genome in nucleocapsid is transported into the nucleus and converted into covalently closed circular (ccc DNA to serve as a viral persistence reservoir that is refractory to current antiviral therapies. Host DNA repair enzymes have been speculated to catalyze the conversion of rcDNA to cccDNA, however, the DNA polymerase(s that fills the gap in the plus strand of rcDNA remains to be determined. Here we conducted targeted genetic screening in combination with chemical inhibition to identify the cellular DNA polymerase(s responsible for cccDNA formation, and exploited recombinant HBV with capsid coding deficiency which infects HepG2-NTCP cells with similar efficiency of wild-type HBV to assure cccDNA synthesis is exclusively from de novo HBV infection. We found that DNA polymerase κ (POLK, a Y-family DNA polymerase with maximum activity in non-dividing cells, substantially contributes to cccDNA formation during de novo HBV infection. Depleting gene expression of POLK in HepG2-NTCP cells by either siRNA knockdown or CRISPR/Cas9 knockout inhibited the conversion of rcDNA into cccDNA, while the diminished cccDNA formation in, and hence the viral infection of, the knockout cells could be effectively rescued by ectopic expression of POLK. These studies revealed that POLK is a crucial host factor required for cccDNA formation during a de novo HBV infection and suggest that POLK may be a potential target for developing antivirals against HBV.

  17. Origin of DNA-Induced Circular Dichroism in a Minor-Groove Binder.

    Science.gov (United States)

    Holmgaard List, Nanna; Knoops, Jérémie; Rubio-Magnieto, Jenifer; Idé, Julien; Beljonne, David; Norman, Patrick; Surin, Mathieu; Linares, Mathieu

    2017-10-25

    Induced circular dichroism (ICD) of DNA-binding ligands is well known to be strongly influenced by the specific mode of binding, but the relative importance of the possible mechanisms has remained undetermined. With a combination of molecular dynamics simulations, CD response calculations, and experiments on an AT-sequence, we show that the ICD of minor-groove-bound 4',6-diamidino-2-phenylindole (DAPI) originates from an intricate interplay between the chiral imprint of DNA, off-resonant excitonic coupling to nucleobases, charge-transfer, and resonant excitonic coupling between DAPIs. The significant contributions from charge-transfer and the chiral imprint to the ICD demonstrate the inadequacy of a standard Frenkel exciton theory of the DAPI-DNA interactions.

  18. Circular RNA (circRNA) was an important bridge in the switch from the RNA world to the DNA world.

    Science.gov (United States)

    Soslau, Gerald

    2018-06-14

    osmolarity. Circular RNA, circRNA, is proposed as a critical stable RNA molecule that served as the genetic precursor for the switch to DNA and the replication of circRNA by a rolling circle mechanism gave rise to the RNA complexity required for the genetic functions of the cell. The replicating ribocyte would have required protein synthesis as well as RNA replication and a model for non-coded and primordial coded protein synthesis is proposed. Finally, the switch from the RNA to the DNA world would have involved the synthesis of an RNA:DNA hybrid prior to the formation of dsDNA. If the hybrid was a circular molecule that ultimately yielded a circular dsDNA molecule, it could predict that the primordial DNA cell would evolve into a bacterial cell with a single circular chromosome. One would hope that continued speculation of the origin of life will spur new directions of research that may never fully answer the questions of the past but add to our ability to regulate potentially harmful biological events in the present and in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Production of DNA minicircles less than 250 base pairs through a novel concentrated DNA circularization assay enabling minicircle design with NF-κB inhibition activity

    Science.gov (United States)

    Thibault, Thomas; Degrouard, Jeril; Baril, Patrick; Pichon, Chantal; Midoux, Patrick

    2017-01-01

    Abstract Double-stranded DNA minicircles of less than 1000 bp in length have great interest in both fundamental research and therapeutic applications. Although minicircles have shown promising activity in gene therapy thanks to their good biostability and better intracellular trafficking, minicircles down to 250 bp in size have not yet been investigated from the test tube to the cell for lack of an efficient production method. Herein, we report a novel versatile plasmid-free method for the production of DNA minicircles comprising fewer than 250 bp. We designed a linear nicked DNA double-stranded oligonucleotide blunt-ended substrate for efficient minicircle production in a ligase-mediated and bending protein-assisted circularization reaction at high DNA concentration of 2 μM. This one pot multi-step reaction based-method yields hundreds of micrograms of minicircle with sequences of any base composition and position and containing or not a variety of site-specifically chemical modifications or physiological supercoiling. Biochemical and cellular studies were then conducted to design a 95 bp minicircle capable of binding in vitro two NF-κB transcription factors per minicircle and to efficiently inhibiting NF-κB-dependent transcriptional activity in human cells. Therefore, our production method could pave the way for the design of minicircles as new decoy nucleic acids. PMID:27899652

  20. Duck hepatitis B virus covalently closed circular DNA appears to survive hepatocyte mitosis in the growing liver

    International Nuclear Information System (INIS)

    Reaiche-Miller, Georget Y.; Thorpe, Michael; Low, Huey Chi; Qiao, Qiao; Scougall, Catherine A.; Mason, William S.; Litwin, Samuel; Jilbert, Allison R.

    2013-01-01

    Nucleos(t)ide analogues that inhibit hepatitis B virus (HBV) DNA replication are typically used as monotherapy for chronically infected patients. Treatment with a nucleos(t)ide analogue eliminates most HBV DNA replication intermediates and produces a gradual decline in levels of covalently closed circular DNA (cccDNA), the template for viral RNA synthesis. It remains uncertain if levels of cccDNA decline primarily through hepatocyte death, or if loss also occurs during hepatocyte mitosis. To determine if cccDNA survives mitosis, growing ducklings infected with duck hepatitis B virus (DHBV) were treated with the nucleoside analogue, Entecavir. Viremia was suppressed at least 10 5 -fold, during a period when average liver mass increased 23-fold. Analysis of the data suggested that if cccDNA synthesis was completely inhibited, at least 49% of cccDNA survived hepatocyte mitosis. However, there was a large duck-to-duck variation in cccDNA levels, suggesting that low level cccDNA synthesis may contribute to this apparent survival through mitosis. - Highlights: • The hepatitis B virus nuclear template is covalently closed circular DNA (cccDNA). • cccDNA was studied during liver growth in duck hepatitis B virus infected ducks. • Virus DNA replication and new cccDNA synthesis were inhibited with Entecavir. • At least 49% of cccDNA appeared to survive hepatocyte mitosis. • Low level virus DNA synthesis may contribute to survival of cccDNA through mitosis

  1. Duck hepatitis B virus covalently closed circular DNA appears to survive hepatocyte mitosis in the growing liver

    Energy Technology Data Exchange (ETDEWEB)

    Reaiche-Miller, Georget Y.; Thorpe, Michael; Low, Huey Chi; Qiao, Qiao; Scougall, Catherine A. [School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005 (Australia); Mason, William S.; Litwin, Samuel [Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111 (United States); Jilbert, Allison R., E-mail: allison.jilbert@adelaide.edu.au [School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA 5005 (Australia)

    2013-11-15

    Nucleos(t)ide analogues that inhibit hepatitis B virus (HBV) DNA replication are typically used as monotherapy for chronically infected patients. Treatment with a nucleos(t)ide analogue eliminates most HBV DNA replication intermediates and produces a gradual decline in levels of covalently closed circular DNA (cccDNA), the template for viral RNA synthesis. It remains uncertain if levels of cccDNA decline primarily through hepatocyte death, or if loss also occurs during hepatocyte mitosis. To determine if cccDNA survives mitosis, growing ducklings infected with duck hepatitis B virus (DHBV) were treated with the nucleoside analogue, Entecavir. Viremia was suppressed at least 10{sup 5}-fold, during a period when average liver mass increased 23-fold. Analysis of the data suggested that if cccDNA synthesis was completely inhibited, at least 49% of cccDNA survived hepatocyte mitosis. However, there was a large duck-to-duck variation in cccDNA levels, suggesting that low level cccDNA synthesis may contribute to this apparent survival through mitosis. - Highlights: • The hepatitis B virus nuclear template is covalently closed circular DNA (cccDNA). • cccDNA was studied during liver growth in duck hepatitis B virus infected ducks. • Virus DNA replication and new cccDNA synthesis were inhibited with Entecavir. • At least 49% of cccDNA appeared to survive hepatocyte mitosis. • Low level virus DNA synthesis may contribute to survival of cccDNA through mitosis.

  2. A high throughput DNA extraction method with high yield and quality

    Directory of Open Access Journals (Sweden)

    Xin Zhanguo

    2012-07-01

    Full Text Available Abstract Background Preparation of large quantity and high quality genomic DNA from a large number of plant samples is a major bottleneck for most genetic and genomic analyses, such as, genetic mapping, TILLING (Targeting Induced Local Lesion IN Genome, and next-generation sequencing directly from sheared genomic DNA. A variety of DNA preparation methods and commercial kits are available. However, they are either low throughput, low yield, or costly. Here, we describe a method for high throughput genomic DNA isolation from sorghum [Sorghum bicolor (L. Moench] leaves and dry seeds with high yield, high quality, and affordable cost. Results We developed a high throughput DNA isolation method by combining a high yield CTAB extraction method with an improved cleanup procedure based on MagAttract kit. The method yielded large quantity and high quality DNA from both lyophilized sorghum leaves and dry seeds. The DNA yield was improved by nearly 30 fold with 4 times less consumption of MagAttract beads. The method can also be used in other plant species, including cotton leaves and pine needles. Conclusion A high throughput system for DNA extraction from sorghum leaves and seeds was developed and validated. The main advantages of the method are low cost, high yield, high quality, and high throughput. One person can process two 96-well plates in a working day at a cost of $0.10 per sample of magnetic beads plus other consumables that other methods will also need.

  3. Circular dichroism as a means to follow DNA gymnastics: on the shoulders of giants

    Directory of Open Access Journals (Sweden)

    H.H. Klump

    2010-01-01

    Full Text Available This is the first report of DNA stem-loops self-assembled by ‘foot-loop’ interactions into either two-dimensional strings or three-dimensional spirals, distinguished by circular dichroism spectroscopy. All subunits are linked by cooperative Watson-Crick hydrogen bonds.

  4. Production of DNA minicircles less than 250 base pairs through a novel concentrated DNA circularization assay enabling minicircle design with NF-κB inhibition activity.

    Science.gov (United States)

    Thibault, Thomas; Degrouard, Jeril; Baril, Patrick; Pichon, Chantal; Midoux, Patrick; Malinge, Jean-Marc

    2017-03-17

    Double-stranded DNA minicircles of less than 1000 bp in length have great interest in both fundamental research and therapeutic applications. Although minicircles have shown promising activity in gene therapy thanks to their good biostability and better intracellular trafficking, minicircles down to 250 bp in size have not yet been investigated from the test tube to the cell for lack of an efficient production method. Herein, we report a novel versatile plasmid-free method for the production of DNA minicircles comprising fewer than 250 bp. We designed a linear nicked DNA double-stranded oligonucleotide blunt-ended substrate for efficient minicircle production in a ligase-mediated and bending protein-assisted circularization reaction at high DNA concentration of 2 μM. This one pot multi-step reaction based-method yields hundreds of micrograms of minicircle with sequences of any base composition and position and containing or not a variety of site-specifically chemical modifications or physiological supercoiling. Biochemical and cellular studies were then conducted to design a 95 bp minicircle capable of binding in vitro two NF-κB transcription factors per minicircle and to efficiently inhibiting NF-κB-dependent transcriptional activity in human cells. Therefore, our production method could pave the way for the design of minicircles as new decoy nucleic acids. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  5. Production of highly knotted DNA by means of cosmid circularization inside phage capsids

    Directory of Open Access Journals (Sweden)

    Trigueros Sonia

    2007-12-01

    Full Text Available Abstract Background The formation of DNA knots is common during biological transactions. Yet, functional implications of knotted DNA are not fully understood. Moreover, potential applications of DNA molecules condensed by means of knotting remain to be explored. A convenient method to produce abundant highly knotted DNA would be highly valuable for these studies. Results We had previously shown that circularization of the 11.2 kb linear DNA of phage P4 inside its viral capsid generates complex knots by the effect of confinement. We demonstrate here that this mechanism is not restricted to the viral genome. We constructed DNA cosmids as small as 5 kb and introduced them inside P4 capsids. Such cosmids were then recovered as a complex mixture of highly knotted DNA circles. Over 250 μg of knotted cosmid were typically obtained from 1 liter of bacterial culture. Conclusion With this biological system, DNA molecules of varying length and sequence can be shaped into very complex and heterogeneous knotted forms. These molecules can be produced in preparative amounts suitable for systematic studies and applications.

  6. Tethered particle analysis of supercoiled circular DNA using peptide nucleic acid handles

    DEFF Research Database (Denmark)

    Norregaard, Kamilla; Andersson, Magnus; Nielsen, Peter Eigil

    2014-01-01

    This protocol describes how to monitor individual naturally supercoiled circular DNA plasmids bound via peptide nucleic acid (PNA) handles between a bead and a surface. The protocol was developed for single-molecule investigation of the dynamics of supercoiled DNA, and it allows the investigation...... of both the dynamics of the molecule itself and of its interactions with a regulatory protein. Two bis-PNA clamps designed to bind with extremely high affinity to predetermined homopurine sequence sites in supercoiled DNA are prepared: one conjugated with digoxigenin for attachment to an anti......-digoxigenin-coated glass cover slide, and one conjugated with biotin for attachment to a submicron-sized streptavidin-coated polystyrene bead. Plasmids are constructed, purified and incubated with the PNA handles. The dynamics of the construct is analyzed by tracking the tethered bead using video microscopy: less...

  7. Improving the yield and quality of DNA isolated from white-rot fungi.

    Science.gov (United States)

    Kuhad, R C; Kapoor, R K; Lal, R

    2004-01-01

    A new simple method used to eliminate polysaccharides that cause problems during DNA isolation was established for 6 different white-rot fungi using 1% hexadecyltrimethylammonium bromide (CTAB) as wash buffer and followed by centrifugation. Variation in the DNA yield and quality was ascertained using precipitating agents, detergents and cell-wall-hydrolyzing chitinase. Considerable amount of exopolysaccharides from fungal biomass was removed with the use of 1% CTAB wash buffer followed by centrifugation. The DNA varied in terms of yield and quality. For the DNA extraction use of 2% SDS in extraction buffer worked best for Pycnoporus cinnabarinus, Cyathus bulleri, Cyathus striatus and Cyathus stercoreus, while 2% CTAB worked best for Phanerochaete chrysosporium and Pleurotus ostreatus. Elimination of phenol and use of absolute ethanol for precipitating DNA resulted in good yield and quality of DNA. This DNA was amenable to restriction endonuclease digestion.

  8. Nanofabrication Yields. Hybridization and Click-Fixation of Polycyclic DNA Nanoassemblies

    KAUST Repository

    Lundberg, Erik P.

    2011-09-27

    We demonstrate the stepwise assembly of a fully addressable polycyclic DNA hexagon nanonetwork for the preparation of a four-ring system, one of the biggest networks yet constructed from tripodal building blocks. We find that the yield exhibits a distinct upper level <100%, a fundamental problem of thermodynamic DNA assembly that appears to have been overlooked in the DNA nanotechnology literature. A simplistic model based on a single step-yield parameter y can quantitatively describe the total yield of DNA assemblies in one-pot reactions as Y = yduplex n, with n the number of hybridization steps. Experimental errors introducing deviations from perfect stoichiometry and the thermodynamics of hybridization equilibria contribute to decreasing the value of yduplex (on average y = 0.96 for our 10 base pair hybridization). For the four-ring system (n = 31), the total yield is thus less than 30%, which is clearly unsatisfactory if bigger nanoconstructs of this class are to be designed. Therefore, we introduced site-specific click chemistry for making and purifying robust building blocks for future modular constructs of larger assemblies. Although the present yield of this robust module was only about 10%, it demonstrates a first step toward a general fabrication approach. Interestingly, we find that the click yields follow quantitatively a binomial distribution, the predictability of which indicates the usefulness of preparing pools of pure and robust building blocks in this way. The binomial behavior indicates that there is no interference between the six simultaneous click reactions but that step-yield limiting factors such as topological constraints and Cu(I) catalyst concentration are local and independent. © 2011 American Chemical Society.

  9. Preparation of DNA from cytological material: effects of fixation, staining, and mounting medium on DNA yield and quality.

    Science.gov (United States)

    Dejmek, Annika; Zendehrokh, Nooreldin; Tomaszewska, Malgorzata; Edsjö, Anders

    2013-07-01

    Personalized oncology requires molecular analysis of tumor cells. Several studies have demonstrated that cytological material is suitable for DNA analysis, but to the authors' knowledge there are no systematic studies comparing how the yield and quality of extracted DNA is affected by the various techniques used for the preparation of cytological material. DNA yield and quality were compared using cultured human lung cancer cells subjected to different preparation techniques used in routine cytology, including fixation, mounting medium, and staining. The results were compared with the outcome of epidermal growth factor receptor (EGFR) genotyping of 66 clinical cytological samples using the same DNA preparation protocol. All tested protocol combinations resulted in fragment lengths of at least 388 base pairs. The mounting agent EcoMount resulted in higher yields than traditional xylene-based medium. Spray and ethanol fixation resulted in both a higher yield and better DNA quality than air drying. In liquid-based cytology (LBC) methods, CytoLyt solution resulted in a 5-fold higher yield than CytoRich Red. Papanicolaou staining provided twice the yield of hematoxylin and eosin staining in both liquid-based preparations. Genotyping outcome and quality control values from the clinical EGFR genotyping demonstrated a sufficient amount and amplifiability of DNA in both spray-fixed and air-dried cytological samples. Reliable clinical genotyping can be performed using all tested methods. However, in the cell line experiments, spray- or ethanol-fixed, Papanicolaou-stained slides provided the best results in terms of yield and fragment length. In LBC, the DNA recovery efficiency of the preserving medium may differ considerably, which should be taken into consideration when introducing LBC. Cancer (Cancer Cytopathol) 2013;121:344-353. © 2013 American Cancer Society. © 2013 American Cancer Society.

  10. Predicting near-UV electronic circular dichroism in nucleosomal DNA by means of DFT response theory.

    Science.gov (United States)

    Norman, Patrick; Parello, Joseph; Polavarapu, Prasad L; Linares, Mathieu

    2015-09-14

    It is demonstrated that time-dependent density functional theory (DFT) calculations can accurately predict changes in near-UV electronic circular dichroism (ECD) spectra of DNA as the structure is altered from the linear (free) B-DNA form to the supercoiled N-DNA form found in nucleosome core particles. At the DFT/B3LYP level of theory, the ECD signal response is reduced by a factor of 6.7 in going from the B-DNA to the N-DNA form, and it is illustrated how more than 90% of the individual base-pair dimers contribute to this strong hypochromic effect. Of the several inter-base pair parameters, an increase in twist angles is identified as to strongly contribute to a reduced ellipticity. The present work provides first evidence that first-principles calculations can elucidate changes in DNA dichroism due to the supramolecular organization of the nucleoprotein particle and associates these changes with the local structural features of nucleosomal DNA.

  11. Tethered particle analysis of supercoiled circular DNA using peptide nucleic acid handles.

    Science.gov (United States)

    Norregaard, Kamilla; Andersson, Magnus; Nielsen, Peter Eigil; Brown, Stanley; Oddershede, Lene B

    2014-09-01

    This protocol describes how to monitor individual naturally supercoiled circular DNA plasmids bound via peptide nucleic acid (PNA) handles between a bead and a surface. The protocol was developed for single-molecule investigation of the dynamics of supercoiled DNA, and it allows the investigation of both the dynamics of the molecule itself and of its interactions with a regulatory protein. Two bis-PNA clamps designed to bind with extremely high affinity to predetermined homopurine sequence sites in supercoiled DNA are prepared: one conjugated with digoxigenin for attachment to an anti-digoxigenin-coated glass cover slide, and one conjugated with biotin for attachment to a submicron-sized streptavidin-coated polystyrene bead. Plasmids are constructed, purified and incubated with the PNA handles. The dynamics of the construct is analyzed by tracking the tethered bead using video microscopy: less supercoiling results in more movement, and more supercoiling results in less movement. In contrast to other single-molecule methodologies, the current methodology allows for studying DNA in its naturally supercoiled state with constant linking number and constant writhe. The protocol has potential for use in studying the influence of supercoils on the dynamics of DNA and its associated proteins, e.g., topoisomerase. The procedure takes ~4 weeks.

  12. Transposable elements and circular DNAs

    KAUST Repository

    Mourier, Tobias

    2016-09-26

    Circular DNAs are extra-chromosomal fragments that become circularized by genomic recombination events. We have recently shown that yeast LTR elements generate circular DNAs through recombination events between their flanking long terminal repeats (LTRs). Similarly, circular DNAs can be generated by recombination between LTRs residing at different genomic loci, in which case the circular DNA will contain the intervening sequence. In yeast, this can result in gene copy number variations when circles contain genes and origins of replication. Here, I speculate on the potential and implications of circular DNAs generated through recombination between human transposable elements.

  13. Transposable elements and circular DNAs

    KAUST Repository

    Mourier, Tobias

    2016-01-01

    Circular DNAs are extra-chromosomal fragments that become circularized by genomic recombination events. We have recently shown that yeast LTR elements generate circular DNAs through recombination events between their flanking long terminal repeats (LTRs). Similarly, circular DNAs can be generated by recombination between LTRs residing at different genomic loci, in which case the circular DNA will contain the intervening sequence. In yeast, this can result in gene copy number variations when circles contain genes and origins of replication. Here, I speculate on the potential and implications of circular DNAs generated through recombination between human transposable elements.

  14. Three methods to determine the yields of DNA double-strand breaks

    International Nuclear Information System (INIS)

    Erzgraeber, G.; Lapidus, I.L.

    1985-01-01

    A possibility of determining the yield of DNA double-strand breaks in cells of the Chinese hamster (V79-4) by finding the amount of DNA released as a result of breaks and by determining the relative sedimentation velocity of DNA-membrane complexes affected by ionizing radiations with different physical characteristics is discussed. Results of the analysis are compared with the data obtained by a traditional method of sedimentation in the neutral sucrose density gradient. Comparative characterization of the methods is discussed. The yields of DNA double-strand breaks determined by the suggested independent methods are in good agreement, which opens possibilities of studying induction and repair of double-strand breaks by means of simpler and more reliable methods

  15. Construction of a Holliday Junction in Small Circular DNA Molecules for Stable Motifs and Two-Dimensional Lattices.

    Science.gov (United States)

    Guo, Xin; Wang, Xue-Mei; Wei, Shuai; Xiao, Shou-Jun

    2018-04-12

    Design rules for DNA nanotechnology have been mostly learnt from using linear single-stranded (ss) DNA as the source material. For example, the core structure of a typical DAO (double crossover, antiparallel, odd half-turns) tile for assembling 2D lattices is constructed from only two linear ss-oligonucleotide scaffold strands, similar to two ropes making a square knot. Herein, a new type of coupled DAO (cDAO) tile and 2D lattices of small circular ss-oligonucleotides as scaffold strands and linear ss-oligonucleotides as staple strands are reported. A cDAO tile of cDAO-c64nt (c64nt: circular 64 nucleotides), shaped as a solid parallelogram, is constructed with a Holliday junction (HJ) at the center and two HJs at both poles of a c64nt; similarly, cDAO-c84nt, shaped as a crossed quadrilateral composed of two congruent triangles, is formed with a HJ at the center and four three-way junctions at the corners of a c84nt. Perfect 2D lattices were assembled from cDAO tiles: infinite nanostructures of nanoribbons, nanotubes, and nanorings, and finite nanostructures. The structural relationship between the visible lattices imaged by AFM and the corresponding invisible secondary and tertiary molecular structures of HJs, inclination angle of hydrogen bonds against the double-helix axis, and the chirality of the tile can be interpreted very well. This work could shed new light on DNA nanotechnology with unique circular tiles. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Generation of covalently closed circular DNA of hepatitis B viruses via intracellular recycling is regulated in a virus specific manner.

    Directory of Open Access Journals (Sweden)

    Josef Köck

    Full Text Available Persistence of hepatitis B virus (HBV infection requires covalently closed circular (cccDNA formation and amplification, which can occur via intracellular recycling of the viral polymerase-linked relaxed circular (rc DNA genomes present in virions. Here we reveal a fundamental difference between HBV and the related duck hepatitis B virus (DHBV in the recycling mechanism. Direct comparison of HBV and DHBV cccDNA amplification in cross-species transfection experiments showed that, in the same human cell background, DHBV but not HBV rcDNA converts efficiently into cccDNA. By characterizing the distinct forms of HBV and DHBV rcDNA accumulating in the cells we find that nuclear import, complete versus partial release from the capsid and complete versus partial removal of the covalently bound polymerase contribute to limiting HBV cccDNA formation; particularly, we identify genome region-selectively opened nuclear capsids as a putative novel HBV uncoating intermediate. However, the presence in the nucleus of around 40% of completely uncoated rcDNA that lacks most if not all of the covalently bound protein strongly suggests a major block further downstream that operates in the HBV but not DHBV recycling pathway. In summary, our results uncover an unexpected contribution of the virus to cccDNA formation that might help to better understand the persistence of HBV infection. Moreover, efficient DHBV cccDNA formation in human hepatoma cells should greatly facilitate experimental identification, and possibly inhibition, of the human cell factors involved in the process.

  17. Expression, purification, and DNA-binding activity of the Herbaspirillum seropedicae RecX protein.

    Science.gov (United States)

    Galvão, Carolina W; Pedrosa, Fábio O; Souza, Emanuel M; Yates, M Geoffrey; Chubatsu, Leda S; Steffens, Maria Berenice R

    2004-06-01

    The Herbaspirillum seropedicae RecX protein participates in the SOS response: a process in which the RecA protein plays a central role. The RecX protein of the H. seropedicae, fused to a His-tag sequence (RecX His-tagged), was over-expressed in Escherichia coli and purified by metal-affinity chromatography to yield a highly purified and active protein. DNA band-shift assays showed that the RecX His-tagged protein bound to both circular and linear double-stranded DNA and also to circular single-stranded DNA. The apparent affinity of RecX for DNA decreased in the presence of Mg(2+) ions. The ability of RecX to bind DNA may be relevant to its function in the SOS response.

  18. Effect of gamma-irradiation on rice seed DNA. Pt. 1. Yield and molecular size of DNA extracted from irradiated rice seeds

    International Nuclear Information System (INIS)

    Kawamura, Yoko; Konishi, Akihiro; Yamada, Takashi; Saito, Yukio

    1995-01-01

    The effect of gamma-irradiation on the DNA of hulled rice seeds was investigated. The cetyltrimethylammonium bromide (CTAB) method was preferred for the extraction of DNA from rice seeds because of its high quality and good yield. The yield of DNA that was determined by gel electrophoresis, decreased as the irradiation dose increased from 1 kGy. DNA extracted from rice seeds irradiated with a 30 kGy dose showed a molecular size of less than 20 kb, while that from unirradiated rice showed more than 100 kb in electrophoretic profiles. It can be assumed that the decrease in yield was mainly induced by the crosslinking between protein and DNA, and the reduction in molecular size was induced by double-strand breaks. (J.P.N.)

  19. SU-E-T-05: Comparing DNA Strand Break Yields for Photons under Different Irradiation Conditions with Geant4-DNA.

    Science.gov (United States)

    Pater, P; Bernal, M; Naqa, I El; Seuntjens, J

    2012-06-01

    To validate and scrutinize published DNA strand break data with Geant4-DNA and a probabilistic model. To study the impact of source size, electronic equilibrium and secondary electron tracking cutoff on direct relative biological effectiveness (DRBE). Geant4 (v4.9.5) was used to simulate a cylindrical region of interest (ROI) with r = 15 nm and length = 1.05 mm, in a slab of liquid water of 1.06 g/cm 3 density. The ROI was irradiated with mono-energetic photons, with a uniformly distributed volumetric isotropic source (0.28, 1.5 keV) or a plane beam (0.662, 1.25 MeV), of variable size. Electrons were tracked down to 50 or 10 eV, with G4-DNA processes and energy transfer greater than 10.79 eV was scored. Based on volume ratios, each scored event had a 0.0388 probability of happening on either DNA helix (break). Clusters of at least one break on each DNA helix within 3.4 nm were found using a DBSCAN algorithm and categorized as double strand breaks (DSB). All other events were categorized as single strand breaks (SSB). Geant4-DNA is able to reproduce strand break yields previously published. Homogeneous irradiation conditions should be present throughout the ROI for DRBE comparisons. SSB yields seem slightly dependent on the primary photon energy. DRBEs show a significant increasing trend for lower energy incident photons. A lower electron cutoff produces higher SSB yields, but decreases the SSB/DSB yields ratio. The probabilistic and geometrical DNA models can predict equivalent results. Using Geant4, we were able to reproduce previously published results on the direct strand break yields of photon and study the importance of irradiation conditions. We also show an ascending trend for DRBE with lower incident photon energies. A probabilistic model coupled with track structure analysis can be used to simulate strand break yields. NSERC, CIHR. © 2012 American Association of Physicists in Medicine.

  20. Sedimentation properties of DNA-membrane complexes and yield of DNA breaks at irradiation of mammalian cells

    International Nuclear Information System (INIS)

    Erzgraber, G.; Kozubek, S.; Lapidus, I.L.

    1985-01-01

    The dependence of the relative sedimentation velocity of DNA-membrane complexes on the dose of irradiation and time of incubation of Chinese Hamster cells is analysed. It is concluded that the initial part of the curve provides the information on the occurrence of single strand breaks in DNA; the position of the local maximum allows us to calculate the yield of DNA double strand breaks. The reparation decay constant can be estimated as well

  1. Effects of Circular DNA Length on Transfection Efficiency by Electroporation into HeLa Cells.

    Science.gov (United States)

    Hornstein, Benjamin D; Roman, Dany; Arévalo-Soliz, Lirio M; Engevik, Melinda A; Zechiedrich, Lynn

    2016-01-01

    The ability to produce extremely small and circular supercoiled vectors has opened new territory for improving non-viral gene therapy vectors. In this work, we compared transfection of supercoiled DNA vectors ranging from 383 to 4,548 bp, each encoding shRNA against GFP under control of the H1 promoter. We assessed knockdown of GFP by electroporation into HeLa cells. All of our vectors entered cells in comparable numbers when electroporated with equal moles of DNA. Despite similar cell entry, we found length-dependent differences in how efficiently the vectors knocked down GFP. As vector length increased up to 1,869 bp, GFP knockdown efficiency per mole of transfected DNA increased. From 1,869 to 4,257 bp, GFP knockdown efficiency per mole was steady, then decreased with increasing vector length. In comparing GFP knockdown with equal masses of vectors, we found that the shorter vectors transfect more efficiently per nanogram of DNA transfected. Our results rule out cell entry and DNA mass as determining factors for gene knockdown efficiency via electroporation. The length-dependent effects we have uncovered are likely explained by differences in nuclear translocation or transcription. These data add an important step towards clinical applications of non-viral vector delivery.

  2. Yields of clustered DNA damage induced by charged-particle radiations of similar kinetic energy per nucleon: LET dependence in different DNA microenvironments

    International Nuclear Information System (INIS)

    Keszenman, D.J.; Sutherland, B.M.

    2010-01-01

    To determine the linear energy transfer (LET) dependence of the biological effects of densely ionizing radiation in relation to changes in the ionization density along the track, we measured the yields and spectrum of clustered DNA damages induced by charged particles of different atomic number but similar kinetic energy per nucleon in different DNA microenvironments. Yeast DNA embedded in agarose in solutions of different free radical scavenging capacity was irradiated with 1 GeV protons, 1 GeV/nucleon oxygen ions, 980 MeV/nucleon titanium ions or 968 MeV/nucleon iron ions. The frequencies of double-strand breaks (DSBs), abasic sites and oxypurine clusters were quantified. The total DNA damage yields per absorbed dose induced in non-radioquenching solution decreased with LET, with minor variations in radioquenching conditions being detected. However, the total damage yields per particle fluence increased with LET in both conditions, indicating a higher efficiency per particle to induce clustered DNA damages. The yields of DSBs and non-DSB clusters as well as the damage spectra varied with LET and DNA milieu, suggesting the involvement of more than one mechanism in the formation of the different types of clustered damages.

  3. Topological and metric properties of linear and circular DNA chains in nano-slits and nano-channels

    Science.gov (United States)

    Orlandini, Enzo; Micheletti, Cristian

    2014-03-01

    Motivated by recent advancements in single DNA molecule experiments, based on nanofluidic devices, we investigate numerically the metric and topological properties of a modelof open and circular DNA chains confined inside nano-slits and nano-channles. The results reveal an interesting characterization of the metric crossover behaviour in terms of the abundance, type and length of occuring knots. In particular we find that the knotting probability is nonmonotonic for increasing confinement and can be largely enhanced or suppressed, compared to the bulk case, by simply varying the slit or channel trasversal dimension. The observed knot population consists of knots that are far simpler than for DNA chains in spherical (i.e. cavities or capsids) confinement. These results suggest that nanoslits and nanochannels can be properly designed to produce open DNA chains hosting simple knots or to sieve DNA rings according to their knotted state. Finally we discuss the implications that the presence of knots may have on the dynamical properties of confined DNA chains such as chain elongation, injection/ejection processes and entanglement relaxation. We acknowledge financial support from the Italian ministry of education, grant PRIN 2010HXAW77.

  4. A Role for the Host DNA Damage Response in Hepatitis B Virus cccDNA Formation—and Beyond?

    Directory of Open Access Journals (Sweden)

    Sabrina Schreiner

    2017-05-01

    Full Text Available Chronic hepatitis B virus (HBV infection puts more than 250 million people at a greatly increased risk to develop end-stage liver disease. Like all hepadnaviruses, HBV replicates via protein-primed reverse transcription of a pregenomic (pg RNA, yielding an unusually structured, viral polymerase-linked relaxed-circular (RC DNA as genome in infectious particles. Upon infection, RC-DNA is converted into nuclear covalently closed circular (ccc DNA. Associating with cellular proteins into an episomal minichromosome, cccDNA acts as template for new viral RNAs, ensuring formation of progeny virions. Hence, cccDNA represents the viral persistence reservoir that is not directly targeted by current anti-HBV therapeutics. Eliminating cccDNA will thus be at the heart of a cure for chronic hepatitis B. The low production of HBV cccDNA in most experimental models and the associated problems in reliable cccDNA quantitation have long hampered a deeper understanding of cccDNA molecular biology. Recent advancements including cccDNA-dependent cell culture systems have begun to identify select host DNA repair enzymes that HBV usurps for RC-DNA to cccDNA conversion. While this list is bound to grow, it may represent just one facet of a broader interaction with the cellular DNA damage response (DDR, a network of pathways that sense and repair aberrant DNA structures and in the process profoundly affect the cell cycle, up to inducing cell death if repair fails. Given the divergent interactions between other viruses and the DDR it will be intriguing to see how HBV copes with this multipronged host system.

  5. Circularly polarized luminescence of helically assembled pyrene π-stacks on RNA and DNA duplexes.

    Science.gov (United States)

    Nakamura, Mitsunobu; Ota, Fuyuki; Takada, Tadao; Akagi, Kazuo; Yamana, Kazushige

    2018-05-01

    In this report, we describe the circularly polarized luminescence (CPL) of the RNA duplexes having one to four 2'-O-pyrene modified uridines (Upy) and the DNA duplexes having two, four, and six pyrene modified non-nucleosidic linkers (Py). Both the pyrene π-stack arrays formed on the RNA and DNA double helical structures exhibited pyrene excimer fluorescence. In the pyrene-modified RNA systems, the RNA duplex having four Upys gives CPL emission with g lum value of <0.01 at 480 nm. The structure of pyrene stacks on the RNA duplex may be rigidly regulated with increase in the Upy domains, which resulted in the CPL emission. In the DNA systems, the pyrene-modified duplexes containing two and four Pys exhibited CPL emission with g lum values of <0.001 at 505 nm. The pyrene π-stack arrays presented here show CPL emission. However, the g lum values are relatively small when compared with our previous system consisting of the pyrene-zipper arrays on RNA. © 2018 Wiley Periodicals, Inc.

  6. Uracil DNA glycosylase counteracts APOBEC3G-induced hypermutation of hepatitis B viral genomes: excision repair of covalently closed circular DNA.

    Directory of Open Access Journals (Sweden)

    Kouichi Kitamura

    Full Text Available The covalently closed circular DNA (cccDNA of the hepatitis B virus (HBV plays an essential role in chronic hepatitis. The cellular repair system is proposed to convert cytoplasmic nucleocapsid (NC DNA (partially double-stranded DNA into cccDNA in the nucleus. Recently, antiviral cytidine deaminases, AID/APOBEC proteins, were shown to generate uracil residues in the NC-DNA through deamination, resulting in cytidine-to-uracil (C-to-U hypermutation of the viral genome. We investigated whether uracil residues in hepadnavirus DNA were excised by uracil-DNA glycosylase (UNG, a host factor for base excision repair (BER. When UNG activity was inhibited by the expression of the UNG inhibitory protein (UGI, hypermutation of NC-DNA induced by either APOBEC3G or interferon treatment was enhanced in a human hepatocyte cell line. To assess the effect of UNG on the cccDNA viral intermediate, we used the duck HBV (DHBV replication model. Sequence analyses of DHBV DNAs showed that cccDNA accumulated G-to-A or C-to-T mutations in APOBEC3G-expressing cells, and this was extensively enhanced by UNG inhibition. The cccDNA hypermutation generated many premature stop codons in the P gene. UNG inhibition also enhanced the APOBEC3G-mediated suppression of viral replication, including reduction of NC-DNA, pre-C mRNA, and secreted viral particle-associated DNA in prolonged culture. Enhancement of APOBEC3G-mediated suppression by UNG inhibition was not observed when the catalytic site of APOBEC3G was mutated. Transfection experiments of recloned cccDNAs revealed that the combination of UNG inhibition and APOBEC3G expression reduced the replication ability of cccDNA. Taken together, these data indicate that UNG excises uracil residues from the viral genome during or after cccDNA formation in the nucleus and imply that BER pathway activities decrease the antiviral effect of APOBEC3-mediated hypermutation.

  7. THE YIELD OF DNA IN THERMAL TERATED DEER MEAT

    Directory of Open Access Journals (Sweden)

    Jozef Golian

    2011-07-01

    Full Text Available Residuals of DNA are one of the most important factors for detection, traceability and reverse authentication of deer meat. In this project we isolated DNA from deer processed meat and analysed by electrophoresis. Goal of the study was compute ratio between raw meat and several heat processed deer meat. Samples were prepared by five heat treatment techniques (pan roasted with temperature 180-240°C, fried with 156°C, braised with temperature 100-150°C, boiled in 100.2°C water and autoclaved in different time intervals. The highest amount of residual DNA 1927ng was obtained with two hours boiled sample. The lowest value 89.89ng was obtained with one hour braised sample. In technological adjustments highest amount of DNA and 1927ng, so the total yield of 192.7ng.-l was observed in the sample we cooked for two hours at boiling temperature.   doi:10.5219/153 

  8. Extracting DNA from 'jaws': High yield and quality from archived tiger shark (Galeocerdo cuvier) skeletal material

    DEFF Research Database (Denmark)

    Eg Nielsen, Einar; Morgan, J. A T; Maher, S. L.

    2017-01-01

    of tiger sharks (Galeocerdo cuvier). Protocols were compared for DNA yield and quality using a qPCR approach. For jaw swarf, all methods provided relatively high DNA yield and quality, while large differences in yield between protocols were observed for vertebrae. Similar results were obtained from samples...... observed, likely reflecting different preparation and storage methods for the trophies. Trial sequencing of DNA capture genomic libraries using 20 000 baits revealed that a significant proportion of captured sequences were derived from tiger sharks. This study demonstrates that archived shark jaws...

  9. Sources of pre-analytical variations in yield of DNA extracted from blood samples: analysis of 50,000 DNA samples in EPIC.

    Directory of Open Access Journals (Sweden)

    Elodie Caboux

    Full Text Available The European Prospective Investigation into Cancer and nutrition (EPIC is a long-term, multi-centric prospective study in Europe investigating the relationships between cancer and nutrition. This study has served as a basis for a number of Genome-Wide Association Studies (GWAS and other types of genetic analyses. Over a period of 5 years, 52,256 EPIC DNA samples have been extracted using an automated DNA extraction platform. Here we have evaluated the pre-analytical factors affecting DNA yield, including anthropometric, epidemiological and technical factors such as center of subject recruitment, age, gender, body-mass index, disease case or control status, tobacco consumption, number of aliquots of buffy coat used for DNA extraction, extraction machine or procedure, DNA quantification method, degree of haemolysis and variations in the timing of sample processing. We show that the largest significant variations in DNA yield were observed with degree of haemolysis and with center of subject recruitment. Age, gender, body-mass index, cancer case or control status and tobacco consumption also significantly impacted DNA yield. Feedback from laboratories which have analyzed DNA with different SNP genotyping technologies demonstrate that the vast majority of samples (approximately 88% performed adequately in different types of assays. To our knowledge this study is the largest to date to evaluate the sources of pre-analytical variations in DNA extracted from peripheral leucocytes. The results provide a strong evidence-based rationale for standardized recommendations on blood collection and processing protocols for large-scale genetic studies.

  10. Reverse transcription using random pentadecamer primers increases yield and quality of resulting cDNA

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Dufva, I.H.; Dufva, Hans Martin

    2006-01-01

    oligonucleotides (pentadecamers) consistently, yielded at least 2 fold as much cDNA as did random hexamers using either-poly(A) RNA or an amplified version of messenger RNA (aRNA) as a template. The cDNA generated using pentadecamers did not differ in size distribution or the amount of incorporated label compared...... with cDNA generated with random hexamers. The increased efficiency of priming using random pentadecamers resulted in reverse transcription of > 80% of the template aRNA, while random hexamers induced reverse transcription of only 40% of the template aRNA. This suggests a better coverage...... that random pentadecamers can replace random hexamers in reverse transcription reactions on both poly(A) RNA and amplified RNA, resulting in higher cDNA yields and quality....

  11. A new model mimicking persistent HBV e antigen-negative infection using covalently closed circular DNA in immunocompetent mice.

    Directory of Open Access Journals (Sweden)

    Lei Wang

    Full Text Available Despite the availability of an effective vaccine, hepatitis B virus (HBV infection remains a major health problem. HBV e antigen (HBeAg-negative strains have become prevalent. Previously, no animal model mimicked the clinical course of HBeAg-negative HBV infection. To establish an HBeAg-negative HBV infection model, the 3.2-kb full-length genome of HBeAg-negative HBV was cloned from a clinical sample and then circularized to form covalently closed circular (cccDNA. The resulting cccDNA was introduced into the liver of C57BL/6J mice through hydrodynamic injection. Persistence of the HBeAg-negative infection was monitored at predetermined time points using HBV-specific markers including HBV surface antigen (HBsAg, HBeAg, and HBV core antigen (HBcAg as well as DNA copies. Throughout the study, pAAV-HBV1.2 was used as a control. In mice injected with HBeAg-negative cccDNA, the HBV infection rate was 100% at the initial stage. HBsAg levels increased up to 1 week, at which point levels peaked and dropped quickly thereafter. In 60% of injected mice, HBsAg and HBcAg persisted for more than 10 weeks. High numbers of HBV DNA copies were detected in the serum and liver. Moreover, cccDNA persisted in the liver tissue of HBeAg-negative mice. In contrast to the pAAV-HBV 1.2 injected mice, no HBeAg was found in mice injected with HBeAg-negative HBV throughout the study period. These results demonstrate the first successful establishment of a model of HBeAg-negative HBV-persistent infection in immunocompetent mice. Compared to pAAV-HBV1.2-injected mice, the infection persistence and levels of serum virological and biochemical markers were approximately equal in the model mice. This model will be useful for mechanistic studies on HBeAg-negative HBV infection and will facilitate the evaluation of new antiviral drugs.

  12. Normal-Mode Analysis of Circular DNA at the Base-Pair Level. 2. Large-Scale Configurational Transformation of a Naturally Curved Molecule.

    Science.gov (United States)

    Matsumoto, Atsushi; Tobias, Irwin; Olson, Wilma K

    2005-01-01

    Fine structural and energetic details embedded in the DNA base sequence, such as intrinsic curvature, are important to the packaging and processing of the genetic material. Here we investigate the internal dynamics of a 200 bp closed circular molecule with natural curvature using a newly developed normal-mode treatment of DNA in terms of neighboring base-pair "step" parameters. The intrinsic curvature of the DNA is described by a 10 bp repeating pattern of bending distortions at successive base-pair steps. We vary the degree of intrinsic curvature and the superhelical stress on the molecule and consider the normal-mode fluctuations of both the circle and the stable figure-8 configuration under conditions where the energies of the two states are similar. To extract the properties due solely to curvature, we ignore other important features of the double helix, such as the extensibility of the chain, the anisotropy of local bending, and the coupling of step parameters. We compare the computed normal modes of the curved DNA model with the corresponding dynamical features of a covalently closed duplex of the same chain length constructed from naturally straight DNA and with the theoretically predicted dynamical properties of a naturally circular, inextensible elastic rod, i.e., an O-ring. The cyclic molecules with intrinsic curvature are found to be more deformable under superhelical stress than rings formed from naturally straight DNA. As superhelical stress is accumulated in the DNA, the frequency, i.e., energy, of the dominant bending mode decreases in value, and if the imposed stress is sufficiently large, a global configurational rearrangement of the circle to the figure-8 form takes place. We combine energy minimization with normal-mode calculations of the two states to decipher the configurational pathway between the two states. We also describe and make use of a general analytical treatment of the thermal fluctuations of an elastic rod to characterize the

  13. Strand breaks in plasmid DNA following positional changes of Auger-electron-emitting radionuclides

    International Nuclear Information System (INIS)

    Adelstein, S.J.; Kassis, A.I.

    1996-01-01

    The purpose of our studies is to elucidate the kinetics of DNA strand breaks caused by low-energy Auger electron emitters in close proximity to DNA. Previously we have studied the DNA break yields in plasmids after the decay of indium-111 bound to DNA or free in solution. In this work, we compare the DNA break yields in supercoiled DNA of iodine-125 decaying close to DNA following DNA intercalation, minor-groove binding, or surface binding, and at a distance form DNA. Supercoiled DNA, stored at 4 C to accumulate radiation dose from the decay of 125 I, was then resolved by gel electrophoresis into supercoiled, nicked circular, and linear forms, representing undamaged DNA, single-strand breaks, and double-strand breaks respectively. DNA-intercalated or groove-bound 125 I is more effective than surface-bound radionuclide or 125 I free in solution. The hydroxyl radical scavenger DMSO protects against damage by 125 I free in solution but has minimal effect on damage by groove-bound 125 I. (orig.)

  14. Core nucleosomes by digestion of reconstructed histone-DNA complexes

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, P N; Wright, E B; Olins, D E

    1979-04-01

    Reconstructed complexes of the inner histones (H2A, H2B, H3, H4) and a variety of DNAs were digested with micrococcal nuclease to yield very homogeneous populations of core nucleosomes (..nu../sub 1/). Nucleosomes containing Micrococcus luteus DNA (72% G+C); chicken DNA (43% G+C), Clostridium perfringens DNA (29% G+C); or poly(dA-dT).poly(dA-dT) have been examined by circular dichroism, thermal denaturation, electron microscopy, and DNAse I digestion. Circular dichroism spectra of all particles show a typically suppressed ellipticity at 260 to 280 nm and a prominent ..cap alpha..-helix signal at 222 nm. All particles show biphasic melting except ..nu../sub 1/(dA-dT), which show three prominent melting transitions at ionic strength less than or equal to 1 mM. DNAse I digestion of ..nu../sub 1/ (dA-dT) produces a ladder of DNA fragments differing in length by one base residue. ..nu../sub 1/ (dA-dT) contain 146 base pairs of DNA and exhibit an average DNA helix pitch of 10.4 to 10.5 bases per turn. There appear to be two regions of different DNA pitch within ..nu../sub 1/ (dA-dT). It is suggested that the two regions of DNA pitch might correspond to the two regions of the melting profiles.

  15. Circular DNA Intermediate in the Duplication of Nile Tilapia vasa Genes

    Science.gov (United States)

    Fujimura, Koji; Conte, Matthew A.; Kocher, Thomas D.

    2011-01-01

    vasa is a highly conserved RNA helicase involved in animal germ cell development. Among vertebrate species, it is typically present as a single copy per genome. Here we report the isolation and sequencing of BAC clones for Nile tilapia vasa genes. Contrary to a previous report that Nile tilapia have a single copy of the vasa gene, we find evidence for at least three vasa gene loci. The vasa gene locus was duplicated from the original site and integrated into two distant novel sites. For one of these insertions we find evidence that the duplication was mediated by a circular DNA intermediate. This mechanism of gene duplication may explain the origin of isolated gene duplicates during the evolution of fish genomes. These data provide a foundation for studying the role of multiple vasa genes in the development of tilapia gonads, and will contribute to investigations of the molecular mechanisms of sex determination and evolution in cichlid fishes. PMID:22216289

  16. Replication of UV-irradiated single-stranded DNA by DNA polymerase III holoenzyme of Escherichia coli: evidence for bypass of pyrimidine photodimers

    International Nuclear Information System (INIS)

    Livneh, Z.

    1986-01-01

    Replication of UV-irradiated circular single-stranded phage M13 DNA by Escherichia coli RNA polymerase (EC 2.7.7.6) and DNA polymerase III holoenzyme (EC 2.7.7.7) in the presence of single-stranded DNA binding protein yielded full-length as well as partially replicated products. A similar result was obtained with phage G4 DNA primed with E. coli DNA primase, and phage phi X174 DNA primed with a synthetic oligonucleotide. The fraction of full-length DNA was several orders of magnitude higher than predicted if pyrimidine photodimers were to constitute absolute blocks to DNA replication. Recent models have suggested that pyrimidine photodimers are absolute blocks to DNA replication and that SOS-induced proteins are required to allow their bypass. Our results demonstrate that, under in vitro replication conditions, E. coli DNA polymerase III holoenzyme can insert nucleotides opposite pyrimidine dimers to a significant extent, even in the absence of SOS-induced proteins

  17. Transcription of hepatitis B virus covalently closed circular DNA is regulated by CpG methylation during chronic infection.

    Directory of Open Access Journals (Sweden)

    Yongmei Zhang

    Full Text Available The persistence of hepatitis B virus (HBV infection is maintained by the nuclear viral covalently closed circular DNA (cccDNA, which serves as transcription template for viral mRNAs. Previous studies suggested that cccDNA contains methylation-prone CpG islands, and that the minichromosome structure of cccDNA is epigenetically regulated by DNA methylation. However, the regulatory effect of each CpG island methylation on cccDNA activity remains elusive. In the present study, we analyzed the distribution of CpG methylation within cccDNA in patient samples and investigated the impact of CpG island methylation on cccDNA-driven virus replication. Our study revealed the following observations: 1 Bisulfite sequencing of cccDNA from chronic hepatitis B patients indicated that CpG island I was seldom methylated, 2 CpG island II methylation was correlated to the low level of serum HBV DNA in patients, and in vitro methylation studies confirmed that CpG island II methylation markedly reduced cccDNA transcription and subsequent viral core DNA replication, 3 CpG island III methylation was associated with low serum HBsAg titers, and 4 Furthermore, we found that HBV genotype, HBeAg positivity, and patient age and liver fibrosis stage were also relevant to cccDNA CpG methylation status. Therefore, we clearly demonstrated that the status of cccDNA methylation is connected to the biological behavior of HBV. Taken together, our study provides a complete profile of CpG island methylation within HBV cccDNA and new insights for the function of CpG methylation in regulating HBV cccDNA transcription.

  18. Effect of serotonin on the yield of UV-induced thymine dimers in DNA

    International Nuclear Information System (INIS)

    Frajkin, G.Ya.; Strakhovskaya, M.G.; Ivanova, Eh.V.

    1985-01-01

    Using fluorescence method serotonin interaction with DNA is studied and bond constant Ksub(c)=4.2x10 4 M -1 is defined. It is shown that bound serotonin reduces yield of UV-induced thymine dimers. Value of efficient distance of protective serotonin effect constituting part of DNA chain of 4 base pairs, is determined

  19. Some properties of circular proteins

    International Nuclear Information System (INIS)

    Prosselkov, P.; John, P.; Dixon, N.E.; Liepinsh, E.; Williams, N.K.; University of Sydney, NSW; Matthews, J.M.; Otting, G.; Karolinska Institutet, Stockholm,

    2002-01-01

    Full text: Protein backbone cyclization can be achieved by use of a circularly-permuted split mini-intein. We have used the small N-terminal domain of the E coli DnaB helicase (DnaB-N, residues 24-136) as a model protein for cyclization because its structure has been determined both by NMR spectroscopy and X-ray crystallography, and its ends are close together. Joining of the ends of DnaB-N' via a 9-amino acid linker occurs efficiently in vivo, and the circular (cz-) protein is stabilized in comparison to the linear (Hn-) protein against thermal denaturation (ΔΔG ∼2 kcal/mol). DnaB-N exists as a dimer in the crystalline state and in solution at high concentrations. To produce linear and cyclized versions that could not dimerize, Phe102 (at the dimer interface) was changed to Glu. NMR spectra showed that the F102E mutants remained monomeric at high concentrations but otherwise had essentially the same structures as the wild-type domains. Individual rate constants for proton exchange at the amide groups in lin- and cz-DnaB-N were determined at 10 C. Although they varied as expected depending on exposure to solvent, the ratios of rates between corresponding amides in the two proteins were constant. In the same buffer, lin- and cz-DnaB-N both unfolded reversibly, with transition temperatures of 37.9 and 48.5 deg C, respectively. Correlation of the (constant) ratio of amide exchange rates with measured thermodynamic parameters suggests that amide exchange in DnaB-N occurs predominantly in a globally unfolded state. Similar studies with other proteins are underway

  20. Qualitative and quantitative assessment of DNA quality of frozen beef based on DNA yield, gel electrophoresis and PCR amplification and their correlations to beef quality.

    Science.gov (United States)

    Zhao, Jing; Zhang, Ting; Liu, Yongfeng; Wang, Xingyu; Zhang, Lan; Ku, Ting; Quek, Siew Young

    2018-09-15

    Freezing is a practical method for meat preservation but the quality of frozen meat can deteriorate with storage time. This research investigated the effect of frozen storage time (up to 66 months) on changes in DNA yield, purity and integrity in beef, and further analyzed the correlation between beef quality (moisture content, protein content, TVB-N value and pH value) and DNA quality in an attempt to establish a reliable, high-throughput method for meat quality control. Results showed that frozen storage time influenced the yield and integrity of DNA significantly (p quality degraded dramatically with the increased storage time based on gel electrophoresis results. Polymerase chain reaction (PCR) products from both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) were observed in all frozen beef samples. Using real-time PCR for quantitative assessment of DNA and meat quality revealed that correlations could be established successfully with mathematical models to evaluate frozen beef quality. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Acinetobacter phage genome is similar to Sphinx 2.36, the circular DNA copurified with TSE infected particles.

    Science.gov (United States)

    Longkumer, Toshisangba; Kamireddy, Swetha; Muthyala, Venkateswar Reddy; Akbarpasha, Shaikh; Pitchika, Gopi Krishna; Kodetham, Gopinath; Ayaluru, Murali; Siddavattam, Dayananda

    2013-01-01

    While analyzing plasmids of Acinetobacter sp. DS002 we have detected a circular DNA molecule pTS236, which upon further investigation is identified as the genome of a phage. The phage genome has shown sequence similarity to the recently discovered Sphinx 2.36 DNA sequence co-purified with the Transmissible Spongiform Encephalopathy (TSE) particles isolated from infected brain samples collected from diverse geographical regions. As in Sphinx 2.36, the phage genome also codes for three proteins. One of them codes for RepA and is shown to be involved in replication of pTS236 through rolling circle (RC) mode. The other two translationally coupled ORFs, orf106 and orf96, code for coat proteins of the phage. Although an orf96 homologue was not previously reported in Sphinx 2.36, a closer examination of DNA sequence of Sphinx 2.36 revealed its presence downstream of orf106 homologue. TEM images and infection assays revealed existence of phage AbDs1 in Acinetobacter sp. DS002.

  2. Effect of secondary structure on the thermodynamics and kinetics of PNA hybridization to DNA hairpins

    DEFF Research Database (Denmark)

    Kushon, S A; Jordan, J P; Seifert, J L

    2001-01-01

    The binding of a series of PNA and DNA probes to a group of unusually stable DNA hairpins of the tetraloop motif has been observed using absorbance hypochromicity (ABS), circular dichroism (CD), and a colorimetric assay for PNA/DNA duplex detection. These results indicate that both stable PNA...... structures in both target and probe molecules are shown to depress the melting temperatures and free energies of the probe-target duplexes. Kinetic analysis of hybridization yields reaction rates that are up to 160-fold slower than hybridization between two unstructured strands. The thermodynamic and kinetic...

  3. Band vs. Circular Sawmills: Relative Labor & Maintenance Costs

    Science.gov (United States)

    Philip H. Steele; Philip A. Araman

    1997-01-01

    Substantial sawmill lumber yield increases from kerf and sawing variation reductions can be realized by employing band rather than circular headrigs. Softwood sawmills rapidly adopted bandsaw headrig technology to the extent that it is currently unusual to find circular saw headrigs in a softwood sawmill. Hardwood sawmills, faced with a different economic situation,...

  4. DNA polymerase. beta. reaction with ultraviolet-irradiated DNA incised by correndonuclease

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, R; Zarebska, Z [Instytut Onkologii, Warsaw (Poland); Zmudzka, B [Polska Akademia Nauk, Warsaw. Inst. Biochemii i Biofizyki

    1980-09-19

    Covalently closed circular Col E1 DNA was ultraviolet-irradiated with a dose of 60 J/m/sup 2/, thus introducing about 3.2 pyrimidine dimers per DNA molecule. Treatment of irradiated Col E1 DNA with Micrococcus luteus correndonuclease resulted, in the vicinity of pyrimidine dimers, in an average of 3.3 incisions per DNA molecule, and converted DNA to the open circular form. Incised Col E1 DNA stimulated no reaction with calf thymus DNA polymerase ..cap alpha.. but was recognized as a template by DNA polymerase ..beta... The latter enzyme incorporated about 1.6 molecules of dTMP (corresponding to 6 molecules of dNMP) per one correndonuclease incision. The length of the DNA polymerase ..beta.. product was comparable to the anticipated length of the DNA region within which the hydrogen bonds were disrupted owing to dimer formation. The enzyme required Mg/sup 2 +/ and four dNTPs for reaction and was resistant to N-ethylmaleimide or p-mercuribenzoate.

  5. Diverse replication-associated protein encoding circular DNA viruses in guano samples of Central-Eastern European bats.

    Science.gov (United States)

    Kemenesi, Gábor; Kurucz, Kornélia; Zana, Brigitta; Földes, Fanni; Urbán, Péter; Vlaschenko, Anton; Kravchenko, Kseniia; Budinski, Ivana; Szodoray-Parádi, Farkas; Bücs, Szilárd; Jére, Csaba; Csősz, István; Szodoray-Parádi, Abigél; Estók, Péter; Görföl, Tamás; Boldogh, Sándor; Jakab, Ferenc

    2018-03-01

    Circular replication-associated protein encoding single-stranded DNA (CRESS DNA) viruses are increasingly recognized worldwide in a variety of samples. Representative members include well-described veterinary pathogens with worldwide distribution, such as porcine circoviruses or beak and feather disease virus. In addition, numerous novel viruses belonging to the family Circoviridae with unverified pathogenic roles have been discovered in different human samples. Viruses of the family Genomoviridae have also been described as being highly abundant in different faecal and environmental samples, with case reports showing them to be suspected pathogens in human infections. In order to investigate the genetic diversity of these viruses in European bat populations, we tested guano samples from Georgia, Hungary, Romania, Serbia and Ukraine. This resulted in the detection of six novel members of the family Circoviridae and two novel members of the family Genomoviridae. Interestingly, a gemini-like virus, namely niminivirus, which was originally found in raw sewage samples in Nigeria, was also detected in our samples. We analyzed the nucleotide composition of members of the family Circoviridae to determine the possible host origins of these viruses. This study provides the first dataset on CRESS DNA viruses of European bats, and members of several novel viral species were discovered.

  6. DNA Knots: Theory and Experiments

    Science.gov (United States)

    Sumners, D. W.

    Cellular DNA is a long, thread-like molecule with remarkably complex topology. Enzymes that manipulate the geometry and topology of cellular DNA perform many vital cellular processes (including segregation of daughter chromosomes, gene regulation, DNA repair, and generation of antibody diversity). Some enzymes pass DNA through itself via enzyme-bridged transient breaks in the DNA; other enzymes break the DNA apart and reconnect it to different ends. In the topological approach to enzymology, circular DNA is incubated with an enzyme, producing an enzyme signature in the form of DNA knots and links. By observing the changes in DNA geometry (supercoiling) and topology (knotting and linking) due to enzyme action, the enzyme binding and mechanism can often be characterized. This paper will discuss some personal research history, and the tangle model for the analysis of site-specific recombination experiments on circular DNA.

  7. Evaluating differential nuclear DNA yield rates and osteocyte numbers among human bone tissue types: A synchrotron radiation micro-CT approach.

    Science.gov (United States)

    Andronowski, Janna M; Mundorff, Amy Z; Pratt, Isaac V; Davoren, Jon M; Cooper, David M L

    2017-05-01

    Molecular human identification has conventionally focused on DNA sampling from dense, weight-bearing cortical bone tissue, typically from femora or tibiae. A comparison of skeletal elements from three contemporary individuals demonstrated that elements with high quantities of cancellous bone yielded nuclear DNA at the highest rates, suggesting that preferentially sampling cortical bone may be suboptimal (Mundorff & Davoren, 2014). Despite these findings, the reason for the differential DNA yields between cortical and cancellous bone tissues remains unknown. The primary goal of this work is to ascertain whether differences in bone microstructure can be used to explain differential nuclear DNA yield among bone tissue types observed by Mundorff and Davoren (2014), with a focus on osteocytes and the three-dimensional (3D) quantification of their associated lacunae. Osteocytes and other bone cells are recognized to house DNA in bone tissue, thus examining the density of their lacunae may explain why nuclear DNA yield rates differ among bone tissue types. Lacunae were visualized and quantified using synchrotron radiation-based micro-Computed Tomographic imaging (SR micro-CT). Volumes of interest (VOIs) from cortical and cancellous bone tissues (n=129) were comparatively analyzed from the three skeletons sampled for Mundorff and Davoren's (2014) study. Analyses tested the primary hypothesis that the abundance and density of osteocytes (inferred from their lacunar spaces) vary between cortical and cancellous bone tissue types. Results demonstrated that osteocyte lacunar abundance and density vary between cortical and cancellous bone tissue types, with cortical bone VOIs containing a higher lacunar abundance and density. We found that the osteocyte lacunar density values are independent of nuclear DNA yield, suggesting an alternative explanation for the higher nuclear DNA yields from bones with greater quantities of cancellous bone tissue. The use of SR micro-CT allowed for

  8. Photoexcitation circular dichroism in chiral molecules

    Science.gov (United States)

    Beaulieu, S.; Comby, A.; Descamps, D.; Fabre, B.; Garcia, G. A.; Géneaux, R.; Harvey, A. G.; Légaré, F.; Mašín, Z.; Nahon, L.; Ordonez, A. F.; Petit, S.; Pons, B.; Mairesse, Y.; Smirnova, O.; Blanchet, V.

    2018-05-01

    Chiral effects appear in a wide variety of natural phenomena and are of fundamental importance in science, from particle physics to metamaterials. The standard technique of chiral discrimination—photoabsorption circular dichroism—relies on the magnetic properties of a chiral medium and yields an extremely weak chiral response. Here, we propose and demonstrate an orders of magnitude more sensitive type of circular dichroism in neutral molecules: photoexcitation circular dichroism. This technique does not rely on weak magnetic effects, but takes advantage of the coherent helical motion of bound electrons excited by ultrashort circularly polarized light. It results in an ultrafast chiral response and the efficient excitation of a macroscopic chiral density in an initially isotropic ensemble of randomly oriented chiral molecules. We probe this excitation using linearly polarized laser pulses, without the aid of further chiral interactions. Our time-resolved study of vibronic chiral dynamics opens a way to the efficient initiation, control and monitoring of chiral chemical change in neutral molecules at the level of electrons.

  9. Biomolecular and structural analyses of cauliflower-like DNAs by ultraviolet, circular dichroism, and fluorescence spectroscopies in comparison with natural DNA.

    Science.gov (United States)

    Gill, Pooria; Ranjbar, Bijan; Saber, Reza; Khajeh, Khosro; Mohammadian, Mehdi

    2011-07-01

    Cauliflower-like DNAs are stem-loop DNAs that are fabricated periodically in inverted repetitions from deoxyribonucleic acid phosphates (dNTPs) by loop-mediated isothermal amplification (LAMP). Cauliflower-like DNAs have ladder-shape behaviors on gel electrophoresis, and increasing the time of LAMP leads to multiplying the repetitions, stem-loops, and electrophoretic bands. Cauliflower-like DNAs were fabricated via LAMP using two loop primers, two bumper primers, dNTPs, a λ-phage DNA template, and a Bst DNA polymerase in 75- and 90-min periods. These times led to manufacturing two types of cauliflower-like DNAs with different contents of inverted repetitions and stem-loops, which were clearly indicated by two comparable electrophoresis patterns in agarose gel. LAMP-fabricated DNAs and natural dsB-DNA (salmon genomic DNA) were dialyzed in Gomori phosphate buffer (10 mM, pH 7.4) to be isolated from salts, nucleotides, and primers. Dialyzed DNAs were studied using UV spectroscopy, circular dichroism spectropolarimetry, and fluorescence spectrophotometry. Structural analyses indicated reduction of the molecular ellipticity and extinction coefficients in comparison with B-DNA. Also, cauliflower-like DNAs demonstrated less intrinsic and more extrinsic fluorescence in comparison with natural DNA. The overwinding and lengthening of the cauliflower-like configurations of LAMP DNAs led to changes in physical parameters of this type of DNA in comparison with natural DNA. The results obtained introduced new biomolecular characteristics of DNA macromolecules fabricated within a LAMP process and show the effects of more inverted repeats and stem-loops, which are manufactured by lengthening the process.

  10. Predictors of mother and child DNA yields in buccal cell samples collected in pediatric cancer epidemiologic studies: a report from the Children's Oncology group.

    Science.gov (United States)

    Poynter, Jenny N; Ross, Julie A; Hooten, Anthony J; Langer, Erica; Blommer, Crystal; Spector, Logan G

    2013-08-12

    Collection of high-quality DNA is essential for molecular epidemiology studies. Methods have been evaluated for optimal DNA collection in studies of adults; however, DNA collection in young children poses additional challenges. Here, we have evaluated predictors of DNA quantity in buccal cells collected for population-based studies of infant leukemia (N = 489 mothers and 392 children) and hepatoblastoma (HB; N = 446 mothers and 412 children) conducted through the Children's Oncology Group. DNA samples were collected by mail using mouthwash (for mothers and some children) and buccal brush (for children) collection kits and quantified using quantitative real-time PCR. Multivariable linear regression models were used to identify predictors of DNA yield. Median DNA yield was higher for mothers in both studies compared with their children (14 μg vs. mothers or children in this analysis. The association with seasonality suggests that conditions during transport may influence DNA yield. The low yields observed in most children in these studies highlight the importance of developing alternative methods for DNA collection in younger age groups.

  11. Serum hepatitis B core-related antigen is a satisfactory surrogate marker of intrahepatic covalently closed circular DNA in chronic hepatitis B.

    Science.gov (United States)

    Chen, En-Qiang; Feng, Shu; Wang, Meng-Lan; Liang, Ling-Bo; Zhou, Ling-Yun; Du, Ling-Yao; Yan, Li-Bo; Tao, Chuan-Min; Tang, Hong

    2017-03-14

    Recently, hepatitis B core-related antigen (HBcrAg) has been suggested as an additional marker of hepatitis B virus (HBV) infection. This study aimed to investigate whether serum quantitative HBcrAg (qHBcrAg) was a satisfactory surrogate marker of intrahepatic covalently closed circular DNA (cccDNA). A total of 139 patients with liver biopsy were enrolled, consisting of 59 patients in immune tolerance (IT) phase, 52 patients in immune clearance (IC) phase, 18 patients in low-replication (LR) phase, and 10 patients in reactivation phase. All patients in IC phase have received entecavir (ETV) therapy, and 32 of them undergone a second liver biopsy at 24 months. Among those patients, qHBcrAg was strongly correlated with intrahepatic cccDNA, which is superior to that of qHBsAg and HBV DNA. And similar findings were also observed in patients in IT, IC, LR and reactivation phases. Among the 32 ETV-treated patients with a second liver biopsy in IC phase, the decline of intrahepatic cccDNA was accompanied by changes in both qHBcrAg and qHBsAg. However, as compared to qHBsAg, the change of qHBcrAg was more strongly associated with intrahepatic cccDNA-decline. In summary, serum qHBcrAg should be a satisfactory surrogate of intrahepatic HBV cccDNA in CHB patients.

  12. Engineering Circular Gliding of Actin Filaments Along Myosin-Patterned DNA Nanotube Rings To Study Long-Term Actin-Myosin Behaviors.

    Science.gov (United States)

    Hariadi, Rizal F; Appukutty, Abhinav J; Sivaramakrishnan, Sivaraj

    2016-09-27

    Nature has evolved molecular motors that are critical in cellular processes occurring over broad time scales, ranging from seconds to years. Despite the importance of the long-term behavior of molecular machines, topics such as enzymatic lifetime are underexplored due to the lack of a suitable approach for monitoring motor activity over long time periods. Here, we developed an "O"-shaped Myosin Empowered Gliding Assay (OMEGA) that utilizes engineered micron-scale DNA nanotube rings with precise arrangements of myosin VI to trap gliding actin filaments. This circular gliding assay platform allows the same individual actin filament to glide over the same myosin ensemble (50-1000 motors per ring) multiple times. First, we systematically characterized the formation of DNA nanotubes rings with 4, 6, 8, and 10 helix circumferences. Individual actin filaments glide along the nanotube rings with high processivity for up to 12.8 revolutions or 11 min in run time. We then show actin gliding speed is robust to variation in motor number and independent of ring curvature within our sample space (ring diameter of 0.5-4 μm). As a model application of OMEGA, we then analyze motor-based mechanical influence on "stop-and-go" gliding behavior of actin filaments, revealing that the stop-to-go transition probability is dependent on motor flexibility. Our circular gliding assay may provide a closed-loop platform for monitoring long-term behavior of broad classes of molecular motors and enable characterization of motor robustness and long time scale nanomechanical processes.

  13. The yield, processing, and biological consequences of clustered DNA damage induced by ionizing radiation

    International Nuclear Information System (INIS)

    Shikazono, Naoya; Noguchi, Miho; Fujii, Kentaro; Urushibara, Ayumi; Yokoya, Akinari

    2009-01-01

    After living cells are exposed to ionizing radiation, a variety of chemical modifications of DNA are induced either directly by ionization of DNA or indirectly through interactions with water-derived radicals. The DNA lesions include single strand breaks (SSB), base lesions, sugar damage, and apurinic/apyrimidinic sites (AP sites). Clustered DNA damage, which is defined as two or more of such lesions within one to two helical turns of DNA induced by a single radiation track, is considered to be a unique feature of ionizing radiation. A double strand break (DSB) is a type of clustered DNA damage, in which single strand breaks are formed on opposite strands in close proximity. Formation and repair of DSBs have been studied in great detail over the years as they have been linked to important biological endpoints, such as cell death, loss of genetic material, chromosome aberration. Although non-DSB clustered DNA damage has received less attention, there is growing evidence of its biological significance. This review focuses on the current understanding of (1) the yield of non-DSB clustered damage induced by ionizing radiation (2) the processing, and (3) biological consequences of non-DSB clustered DNA damage. (author)

  14. Yields of base damage products in crystalline DNA produced by the direct-type effect

    International Nuclear Information System (INIS)

    Gilbert, D.C.; Bernhard, W.A.; Swarts, S.G.

    2003-01-01

    Our aim is to determine the yields of base damage products due to direct-type effects in well-defined DNA samples. The sample, crystalline d(GCACGCGTGC) 2 , which contains Co(III), has been structurally characterized by others using X-ray crystallography and the free radical yields measured by our laboratory using EPR spectroscopy. Polycrystalline samples were x-irradiated (70 KeV) at room temperature (RT) to doses up to 150 kGy. Following dissolution under air, the base products were identified and quantified using GC-MS. 7,8-dihydro-8-oxoguanine (8-oxo-G) is the primary base damage product found, with a yield of ∼0.09 μmoles/J, whereas 2,6-diamino-4-oxo-5-formamidopyrimidine (FpyG) was below the limits of detection of the GC-MS assay. Radiation yields for 5,6-dihydrothymine (DHT) and 5-hydroxymethyluracil of 0.0017 and 0.0042 μmoles/J, respectively, were also observed. These results differ from those obtained in a previous study of solid-state hydrated DNA irradiated at RT (Swarts et al., Radiat. Res. 145: 304-14, 1996), where the yields of FpyG and DHT were approximately 11% and 20% that of 8-oxo-G, respectively. Our working hypothesis is that Co(III) in crystalline d(GCACGCGTGC) 2 modifies the product distribution. Based on the EPR data, the influence of Co(III) on the initial distribution of radical trapping is negligible. This suggests that electron transfer from the pyrimidines to Co(III) occurs either upon annealing and/or upon solvation, thereby competing with dihydropyrimidine formation. While strand break (sb) yields for d(GCACGCGTGC) 2 are not yet completed, in earlier work on crystals of other oligomers, we obtained sb yields of 0.06-0.16 μmoles/J. We anticipate, therefore, that the stoichiometry between 8-oxo-G and sb formation will be about 1:1

  15. Administrative Circulars

    CERN Document Server

    Département des Ressources humaines

    2004-01-01

    Administrative Circular N° 2 (Rev. 2) - May 2004 Guidelines and procedures concerning recruitment and probation period of staff members This circular has been revised. It cancels and replaces Administrative Circular N° 2 (Rev. 1) - March 2000. Administrative Circular N° 9 (Rev. 3) - May 2004 Staff members contracts This circular has been revised. It cancels and replaces Administrative Circular N° 9 (Rev. 2) - March 2000. Administrative Circular N° 26 (Rev. 4) - May 2004 Procedure governing the career evolution of staff members This circular has also been revised. It Administrative Circulars Administrative Circular N° 26 (Rev. 3) - December 2001 and brings up to date the French version (Rev. 4) published on the HR Department Web site in January 2004. Operational Circular N° 7 - May 2004 Work from home This circular has been drawn up. Operational Circular N° 8 - May 2004 Dealing with alcohol-related problems...

  16. A new X-ray detector for magnetic circular dichroism experiments

    CERN Document Server

    Bateman, J E; Dudzik, E; Laan, G V D; Lipp, J D; Smith, A D; Stephenson, R

    2001-01-01

    X-ray magnetic circular dichroism (XMCD) studies of magnetic 3d transition metal samples require the recording of high quality absorption scans in high magnetic fields using circularly polarised soft X-rays of energies in the range 0.5-1 keV. A Gas Microstrip Detector is described which permits the option of using the X-ray fluorescence signal instead of the usual electron yield signal.

  17. Examining a DNA Replication Requirement for Bacteriophage λ Red- and Rac Prophage RecET-Promoted Recombination in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Lynn C. Thomason

    2016-09-01

    Full Text Available Recombineering, in vivo genetic engineering with bacteriophage homologous recombination systems, is a powerful technique for making genetic modifications in bacteria. Two systems widely used in Escherichia coli are the Red system from phage λ and RecET from the defective Rac prophage. We investigated the in vivo dependence of recombineering on DNA replication of the recombining substrate using plasmid targets. For λ Red recombination, when DNA replication of a circular target plasmid is prevented, recombination with single-stranded DNA oligonucleotides is greatly reduced compared to that under replicating conditions. For RecET recombination, when DNA replication of the targeted plasmid is prevented, the recombination frequency is also reduced, to a level identical to that seen for the Red system in the absence of replication. The very low level of oligonucleotide recombination observed in the absence of any phage recombination functions is the same in the presence or absence of DNA replication. In contrast, both the Red and RecET systems recombine a nonreplicating linear dimer plasmid with high efficiency to yield a circular monomer. Therefore, the DNA replication requirement is substrate dependent. Our data are consistent with recombination by both the Red and RecET systems occurring predominately by single-strand annealing rather than by strand invasion.

  18. Genome-wide Purification of Extrachromosomal Circular DNA from Eukaryotic Cells

    DEFF Research Database (Denmark)

    Møller, Henrik D.; Bojsen, Rasmus Kenneth; Tachibana, Chris

    2016-01-01

    Extrachromosomal circular DNAs (eccDNAs) are common genetic elements in Saccharomyces cerevisiae and are reported in other eukaryotes as well. EccDNAs contribute to genetic variation among somatic cells in multicellular organisms and to evolution of unicellular eukaryotes. Sensitive methods...

  19. Study of serotonin effect on the yield of some damages in DNA after ultraviolet and x-ray irradiations

    International Nuclear Information System (INIS)

    Ivanova, Eh.V.; Frajkin, G.Ya.

    1985-01-01

    Using thin-layer two-dimensional chromatography serotonin effect on the yield of thymine dimers and appearance of n-glycoside strand breaks in DNA (thymine yield) after ultraviolet and X-ray irradiation is studied. It is shown that bound with DNA serotonin decreases formation of induced by ultraviolet thymine dimers but doesn't affect on the quantity of N-glycoside bond breaks in thymidine residues caused by X radiation. The obtained data are discussed in relation to the problem on mechanisms of realization of serotonin protective effect in the processes of yeast Saccharomyces photoprotection from ultraviolet and X-ray irradiation lethal effect

  20. Genome-wide Purification of Extrachromosomal Circular DNA from Eukaryotic Cells

    DEFF Research Database (Denmark)

    Møller, Henrik D.; Bojsen, Rasmus Kenneth; Tachibana, Chris

    2016-01-01

    Extrachromosomal circular DNAs (eccDNAs) are common genetic elements in Saccharomyces cerevisiae and are reported in other eukaryotes as well. EccDNAs contribute to genetic variation among somatic cells in multicellular organisms and to evolution of unicellular eukaryotes. Sensitive methods for d...

  1. Sequencing the extrachromosomal circular mobilome reveals retrotransposon activity in plants

    OpenAIRE

    Lanciano, Sophie; Carpentier, M. C.; Llauro, C.; Jobet, E.; Robakowska-Hyzorek, D.; Lasserre, E.; Ghesquière, Alain; Panaud, O.; Mirouze, Marie

    2017-01-01

    Retrotransposons are mobile genetic elements abundant in plant and animal genomes. While efficiently silenced by the epigenetic machinery, they can be reactivated upon stress or during development. Their level of transcription not reflecting their transposition ability, it is thus difficult to evaluate their contribution to the active mobilome. Here we applied a simple methodology based on the high throughput sequencing of extrachromosomal circular DNA (eccDNA) forms of active retrotransposon...

  2. Nudiviruses and other large, double-stranded circular DNA viruses of invertebrates: new insights on an old topic.

    Science.gov (United States)

    Wang, Yongjie; Jehle, Johannes A

    2009-07-01

    Nudiviruses (NVs) are a highly diverse group of large, circular dsDNA viruses pathogenic for invertebrates. They have rod-shaped and enveloped nucleocapsids, replicate in the nucleus of infected host cells, and possess interesting biological and molecular properties. The unassigned viral genus Nudivirus has been proposed for classification of nudiviruses. Currently, the nudiviruses comprise five different viruses: the palm rhinoceros beetle virus (Oryctes rhinoceros NV, OrNV), the Hz-1 virus (Heliothis zea NV-1, HzNV-1), the cricket virus (Gryllus bimaculatus NV, GbNV), the corn earworm moth Hz-2 virus (HzNV-2), and the occluded shrimp Monodon Baculovirus reassigned as Penaeus monodon NV (PmNV). Thus far, the genomes of OrNV, GbNV, HzNV-1 and HzNV-2 have been completely sequenced. They vary between 97 and 230kbp in size and encode between 98 and 160 open reading frames (ORFs). All sequenced nudiviruses have 33 ORFs in common. Strikingly, 20 of them are homologous to baculovirus core genes involved in RNA transcription, DNA replication, virion structural components and other functions. Another nine conserved ORFs are likely associated with DNA replication, repair and recombination, and nucleotide metabolism; one is homologous to baculovirus iap-3 gene; two are nudivirus-specific ORFs of unknown function. Interestingly, one nudivirus ORF is similar to polh/gran gene, encoding occlusion body protein matrix and being conserved in Alpha- Beta- and Gammabaculoviruses. Members of nudiviruses are closely related and form a monophyletic group consisting of two sister clades of OrNV/GbNV and HzNVs/PmNV. It is proposed that nudiviruses and baculoviruses derived from a common ancestor and are evolutionarily related to other large DNA viruses such as the insect-specific salivary gland hypertrophy virus (SGHV) and the marine white spot syndrome virus (WSSV).

  3. Underwater Shock Response of Circular HSLA Steel Plates

    Directory of Open Access Journals (Sweden)

    R. Rajendran

    2000-01-01

    Full Text Available Studies on shock response of circular plates subjected to underwater explosion is of interest to ship designers. Non-contact underwater explosion experiments were carried out on air backed circular High Strength Low Alloy (HSLA steel plates of 4 mm thickness and 290 mm diameter. The experiments were carried out in two phases. In the first phase, strain gauges were fixed at intervals of 30 mm from the centre of the plate and strains were recorded for the shock intensity gradually increasing to yielding. Semi-analytical models were derived for the elastic strain prediction which showed good agreement with the experiments. Dynamic yield stress and the shock factor for yielding were established. In the second phase, individual plates were subjected to increasing shock severity until fracture and the apex bulge depth and the thickness strains were measured. Empirical models were derived to predict the plastic deformation which were validated through a fresh set of experiments. Analysis of the fractured surface by visual examination showed that there was slant fracture indicating ductile mode of failure and the same was corroborated by Scanning Electron Microscopic (SEM examination.

  4. Diverse circular replication-associated protein encoding viruses circulating in invertebrates within a lake ecosystem.

    Science.gov (United States)

    Dayaram, Anisha; Galatowitsch, Mark L; Argüello-Astorga, Gerardo R; van Bysterveldt, Katherine; Kraberger, Simona; Stainton, Daisy; Harding, Jon S; Roumagnac, Philippe; Martin, Darren P; Lefeuvre, Pierre; Varsani, Arvind

    2016-04-01

    Over the last five years next-generation sequencing has become a cost effective and efficient method for identifying known and unknown microorganisms. Access to this technique has dramatically changed the field of virology, enabling a wide range of environmental viral metagenome studies to be undertaken of organisms and environmental samples from polar to tropical regions. These studies have led to the discovery of hundreds of highly divergent single stranded DNA (ssDNA) virus-like sequences encoding replication-associated proteins. Yet, few studies have explored how viruses might be shared in an ecosystem through feeding relationships. Here we identify 169 circular molecules (160 CRESS DNA molecules, nine circular molecules) recovered from a New Zealand freshwater lake, that we have tentatively classified into 51 putatively novel species and five previously described species (DflaCV-3, -5, -6, -8, -10). The CRESS DNA viruses identified in this study were recovered from molluscs (Echyridella menzeisii, Musculium novaezelandiae, Potamopyrgus antipodarum and Physella acuta) and insect larvae (Procordulia grayi, Xanthocnemis zealandica, and Chironomus zealandicus) collected from Lake Sarah, as well as from the lake water and benthic sediments. Extensive diversity was observed across most CRESS DNA molecules recovered. The putative capsid protein of one viral species was found to be most similar to those of members of the Tombusviridae family, thus expanding the number of known RNA-DNA hybrid viruses in nature. We noted a strong association between the CRESS DNA viruses and circular molecules identified in the water and browser organisms (C. zealandicus, P. antipodarum and P. acuta), and between water sediments and undefended prey species (C. zealandicus). However, we were unable to find any significant correlation of viral assemblages to the potential feeding relationships of the host aquatic invertebrates. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Intrinsically bent DNA in replication origins and gene promoters.

    Science.gov (United States)

    Gimenes, F; Takeda, K I; Fiorini, A; Gouveia, F S; Fernandez, M A

    2008-06-24

    Intrinsically bent DNA is an alternative conformation of the DNA molecule caused by the presence of dA/dT tracts, 2 to 6 bp long, in a helical turn phase DNA or with multiple intervals of 10 to 11 bp. Other than flexibility, intrinsic bending sites induce DNA curvature in particular chromosome regions such as replication origins and promoters. Intrinsically bent DNA sites are important in initiating DNA replication, and are sometimes found near to regions associated with the nuclear matrix. Many methods have been developed to localize bent sites, for example, circular permutation, computational analysis, and atomic force microscopy. This review discusses intrinsically bent DNA sites associated with replication origins and gene promoter regions in prokaryote and eukaryote cells. We also describe methods for identifying bent DNA sites for circular permutation and computational analysis.

  6. Electrically small circularly polarized spherical antenna with air core

    DEFF Research Database (Denmark)

    Kim, O. S.

    2013-01-01

    An electrically small circularly polarized self-resonant spherical antenna with air core is presented. The antenna is a modified multiarm spherical helix exciting TM10 and TE10 spherical modes with equal radiated power, and thus yielding perfect circular polarization over the entire far......-field sphere (except the polar regions, where the radiation is low). The self-resonance is achieved by exciting higher-order TM modes, which provide the necessary electric stored energy in the near-field, while contributing negligibly to the far-field radiation of the antenna. The antenna has electrical size...

  7. Impact Modelling for Circular Economy: Geodesign Discussion Support Environment

    NARCIS (Netherlands)

    Šileryte, R.; Wandl, A.; van Timmeren, A.; Bregt, Arnold; Sarjakoski, Tapani; van Lammeren, Ron; Rip, Frans

    2017-01-01

    Transitioning towards circular economy requires changes in the current system which yield a number of impacts on such fundamental values as human health, natural environment, exhaustible resources, social well-being and prosperity. Moreover, this process involves multiple actors and requires careful

  8. PRMT5 restricts hepatitis B virus replication through epigenetic repression of covalently closed circular DNA transcription and interference with pregenomic RNA encapsidation.

    Science.gov (United States)

    Zhang, Wen; Chen, Jieliang; Wu, Min; Zhang, Xiaonan; Zhang, Min; Yue, Lei; Li, Yaming; Liu, Jiangxia; Li, Baocun; Shen, Fang; Wang, Yang; Bai, Lu; Protzer, Ulrike; Levrero, Massimo; Yuan, Zhenghong

    2017-08-01

    Chronic hepatitis B virus (HBV) infection remains a major health problem worldwide. The covalently closed circular DNA (cccDNA) minichromosome, which serves as the template for the transcription of viral RNAs, plays a key role in viral persistence. While accumulating evidence suggests that cccDNA transcription is regulated by epigenetic machinery, particularly the acetylation of cccDNA-bound histone 3 (H3) and H4, the potential contributions of histone methylation and related host factors remain obscure. Here, by screening a series of methyltransferases and demethylases, we identified protein arginine methyltransferase 5 (PRMT5) as an effective restrictor of HBV transcription and replication. In cell culture-based models for HBV infection and in liver tissues of patients with chronic HBV infection, we found that symmetric dimethylation of arginine 3 on H4 on cccDNA was a repressive marker of cccDNA transcription and was regulated by PRMT5 depending on its methyltransferase domain. Moreover, PRMT5-triggered symmetric dimethylation of arginine 3 on H4 on the cccDNA minichromosome involved an interaction with the HBV core protein and the Brg1-based human SWI/SNF chromatin remodeler, which resulted in down-regulation of the binding of RNA polymerase II to cccDNA. In addition to the inhibitory effect on cccDNA transcription, PRMT5 inhibited HBV core particle DNA production independently of its methyltransferase activity. Further study revealed that PRMT5 interfered with pregenomic RNA encapsidation by preventing its interaction with viral polymerase protein through binding to the reverse transcriptase-ribonuclease H region of polymerase, which is crucial for the polymerase-pregenomic RNA interaction. PRMT5 restricts HBV replication through a two-part mechanism including epigenetic suppression of cccDNA transcription and interference with pregenomic RNA encapsidation; these findings improve the understanding of epigenetic regulation of HBV transcription and host

  9. Circular Coinduction

    Science.gov (United States)

    Rosu, Grigore; Goguen, Joseph; Norvig, Peter (Technical Monitor)

    2001-01-01

    Circular coinduction is a technique for behavioral reasoning that extends cobasis coinduction to specifications with circularities. Because behavioral satisfaction is not recursively enumerable, no algorithm can work for every behavioral statement. However. algorithms using circular coinduction can prove every practical behavioral result that we know. This paper proves the correctness of circular coinduction and some consequences.

  10. Photocleavage of DNA: irradiation of quinone-containing reagents converts supercoiled to linear DNA

    International Nuclear Information System (INIS)

    Kock, T.; Schuster, G.B.; Ropp, J.D.; Sligar, S.G.

    1993-01-01

    Irradiation (350 nm) of air-saturated solutions of reagents containing an anthraquinone group linked to quaternary alkyl ammonium groups converts supercoiled DNA to circular and to linear DNA. Generation of linear DNA does not occur by accumulation of numerous single-strand cuts but by coincident-site double-strand cleavage of DNA. Irradiation forms the triplet state of the anthraquinone, which reacts either by hydrogen atom abstraction from a sugar of DNA or by electron transfer from a base of the DNA. Subsequent reactions result in chain scission. The quinone is apparently reformed after this sequence and reirradiation leads to double-strand cleavage. (Author)

  11. Comparison of DNA strand-break simulated with different DNA models

    International Nuclear Information System (INIS)

    Xie, Wenzhang; Li, Junli; Qiu, Rui; Yan, Congchong; Zeng, Zhi; Li, Chunyan

    2013-01-01

    Full text of the publication follows. In Monte Carlo simulation of DNA damage, the geometric model of DNA is of great importance. To study the influence of DNA model on the simulation of DNA damage, three DNA models were created in this paper. They were a volume model and two atomic models with different parameters. Direct DNA strand-break induced by low-energy electrons were simulated respectively with the three models. The results show that most of the energy depositions in the DNA segments do not lead to strand-breaks. The simple single strand-break (SSB) tends to be the predominant damage type, and the contribution of complex double strand-break (DSB) to the total DSB cannot be neglected. Among the yields of all the three DNA target models applied here, the yields of the volume model are the highest, the yields of the atomic model with double van der Waals radii (r) take the second place, whereas the yields of the atomic model with single r come last. On average, the ratios of SSB yields are approximately equivalent to the corresponding ratios of the models' volume. However, there seems to be no clear relationship between the DSB yields and the models' volume. (authors)

  12. DNA binding studies of tartrazine food additive.

    Science.gov (United States)

    Kashanian, Soheila; Zeidali, Sahar Heidary

    2011-07-01

    The interaction of native calf thymus DNA with tartrazine in 10 mM Tris-HCl aqueous solution at neutral pH 7.4 was investigated. Tartrazine is a nitrous derivative and may cause allergic reactions, with a potential of toxicological risk. Also, tartrazine induces oxidative stress and DNA damage. Its DNA binding properties were studied by UV-vis and circular dichroism spectra, competitive binding with Hoechst 33258, and viscosity measurements. Tartrazine molecules bind to DNA via groove mode as illustrated by hyperchromism in the UV absorption band of tartrazine, decrease in Hoechst-DNA solution fluorescence, unchanged viscosity of DNA, and conformational changes such as conversion from B-like to C-like in the circular dichroism spectra of DNA. The binding constants (K(b)) of DNA with tartrazine were calculated at different temperatures. Enthalpy and entropy changes were calculated to be +37 and +213 kJ mol(-1), respectively, according to the Van't Hoff equation, which indicated that the reaction is predominantly entropically driven. Also, tartrazine does not cleave plasmid DNA. Tartrazine interacts with calf thymus DNA via a groove interaction mode with an intrinsic binding constant of 3.75 × 10(4) M(-1).

  13. The Bearing Capacity of Circular Footings in Sand

    DEFF Research Database (Denmark)

    Krabbenhøft, Sven; Clausen, Johan; Damkilde, Lars

    2012-01-01

    dependent on the stress level and on the basis of the test results, a non linear Mohr failure criterion has been proposed. This yield criterion has been implemented in a finite element program and an analysis of the bearing capacity of a circular shaped model foundation, diameter 100mm, has been conducted...

  14. Gene expression of benthic amphipods (genus: Diporeia in relation to a circular ssDNA virus across two Laurentian Great Lakes

    Directory of Open Access Journals (Sweden)

    Kalia S.I. Bistolas

    2017-09-01

    Full Text Available Circular rep-encoding ssDNA (CRESS-DNA viruses are common constituents of invertebrate viral consortia. Despite their ubiquity and sequence diversity, the effects of CRESS-DNA viruses on invertebrate biology and ecology remain largely unknown. This study assessed the relationship between the transcriptional profile of benthic amphipods of genus Diporeia and the presence of the CRESS-DNA virus, LM29173, in the Laurentian Great Lakes to provide potential insight into the influence of these viruses on invertebrate gene expression. Twelve transcriptomes derived from Diporeia were compared, representing organisms from two amphipod haplotype clades (Great Lakes Michigan and Superior, defined by COI barcode sequencing with varying viral loads (up to 3 × 106 genome copies organism−1. Read recruitment to de novo assembled transcripts revealed 2,208 significantly over or underexpressed contigs in transcriptomes with above average LM29173 load. Of these contigs, 31.5% were assigned a putative function. The greatest proportion of annotated, differentially expressed transcripts were associated with functions including: (1 replication, recombination, and repair, (2 cell structure/biogenesis, and (3 post-translational modification, protein turnover, and chaperones. Contigs putatively associated with innate immunity displayed no consistent pattern of expression, though several transcripts were significantly overexpressed in amphipods with high viral load. Quantitation (RT-qPCR of target transcripts, non-muscular myosin heavy chain, β-actin, and ubiquitin-conjugating enzyme E2, corroborated transcriptome analysis and indicated that Lake Michigan and Lake Superior amphipods with high LM29173 load exhibit lake-specific trends in gene expression. While this investigation provides the first comparative survey of the transcriptional profile of invertebrates of variable CRESS-DNA viral load, additional inquiry is required to define the scope of host

  15. Circular Solutions

    NARCIS (Netherlands)

    Annevelink, E.; Bos, H.L.; Meesters, K.P.H.; Oever, van den M.J.A.; Haas, de W.; Kuikman, P.J.; Rietra, R.P.J.J.; Sikirica, N.

    2016-01-01

    The fifth part of this report on Circular Solutions is about the circular principle From Waste to Resource. The purpose of this study is to select promising options for the implementation of this circular principle and to elaborate these options further.

  16. Operational circular No. 1 (Rev. 1) – Operational circulars

    CERN Multimedia

    HR Department

    2011-01-01

    Operational Circular No. 1 (Rev. 1) is applicable to members of the personnel and other persons concerned. Operational Circular No. 1 (Rev. 1) entitled "Operational circulars", approved following discussion at the Standing Concertation Committee meeting on 4 May 2011, is available on the intranet site of the Human Resources Department: https://hr-docs.web.cern.ch/hr-docs/opcirc/opcirc.asp It cancels and replaces Operational Circular No. 1 entitled "Operational Circulars” of December 1996. This new version clarifies, in particular, that operational circulars do not necessarily arise from the Staff Rules and Regulations, and the functional titles have been updated to bring them into line with the current CERN organigram. Department Head Office  

  17. Conversion of DNA gyrase into a conventional type II topoisomerase

    DEFF Research Database (Denmark)

    Kampranis, S C; Maxwell, A

    1996-01-01

    DNA gyrase is unique among topoisomerases in its ability to introduce negative supercoils into closed-circular DNA. We have demonstrated that deletion of the C-terminal DNA-binding domain of the A subunit of gyrase gives rise to an enzyme that cannot supercoil DNA but relaxes DNA in an ATP-depend...

  18. Psoralens cleave pBR322 DNA under ultraviolet radiation

    International Nuclear Information System (INIS)

    Kagan, J.; Xinsheng Chen; Wang, T.P.

    1992-01-01

    Supercoiled (SC) pBR322 was used to probe the recent claim that 5-geranoxylpsoralen (5-GOP) did not photoreact with DNA. Contrary to expectations, 5-GOP was found to damage DNA in the presence of UV-A through two competing pathways; (a) single strand breaks, identified by the conversion of supercoiled into open circular and linear DNA, and (b) cross-linking, revealed by the fluence-dependent decrease in the extent of denaturation of the double stranded supercoiled DNA to single stranded circular DNA. In addition, a fluence-dependent modification reduced the ability of the restriction enzyme EcoR I to linearize the photosensitized DNA, and alkali-labile lesions were generated. Psoralen, 5-methoxypsoralen, and 8-methoxypsoralen, which are well-known to undergo cycloaddition to DNA, had a more pronounced effect on supercoiled DNA. Single strand breaks occurred more readily than with 5-GOP, and the surviving SC form remaining had reduced electrophoretic mobility in agarose gels. In all cases, the DNA damage was more prominent when oxygen was absent. (author)

  19. Biological processes for advancing lignocellulosic waste biorefinery by advocating circular economy.

    Science.gov (United States)

    Liguori, Rossana; Faraco, Vincenza

    2016-09-01

    The actualization of a circular economy through the use of lignocellulosic wastes as renewable resources can lead to reduce the dependence from fossil-based resources and contribute to a sustainable waste management. The integrated biorefineries, exploiting the overall lignocellulosic waste components to generate fuels, chemicals and energy, are the pillar of the circular economy. The biological treatment is receiving great attention for the biorefinery development since it is considered an eco-friendly alternative to the physico-chemical strategies to increase the biobased product recovery from wastes and improve saccharification and fermentation yields. This paper reviews the last advances in the biological treatments aimed at upgrading lignocellulosic wastes, implementing the biorefinery concept and advocating circular economy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effect of elevated postirradiation pH on the yield of double-strand breaks in DNA from irradiated bacterial cells

    International Nuclear Information System (INIS)

    Tilby, M.J.; Loverock, P.S.; Fielden, E.M.

    1984-01-01

    Exposure of DNA isolated from irradiated cells of Escherichia coli to a pH of 9.6 caused a marked increase in the yield of double-strand breaks (dsb). After incubation for 4 hr at 37 0 C and pH 9.6 the dsb yields were 95% and 71% higher than when incubation was at pH 7.0 for irradiation under oxic and anoxic conditions, respectively. This effect was not apparent when dsb were induced enzymatically and it was linearly related to radiation dose. After oxic irradiation, the increase in dsb at pH 9.6 was consistent with first-order kinetics over >2 half-lives (t/sub 1/2/ = 1.6 hr at 37 0 C). It is propsoed that the effects of elevated pH revealed the presence in intracellularly irradiated DNA of previously unidentified sites where both strands of the DNA were damaged as a result of single radiation events. The possible nature of the proposed sites and the relevance of these findings to the ''neutral'' elution technique are discussed

  1. DNA maintenance in plastids and mitochondria of plants

    Directory of Open Access Journals (Sweden)

    Delene J Oldenburg

    2015-10-01

    Full Text Available The DNA molecules in plastids and mitochondria of plants have been studied for over 40 years. Here, we review the data on the circular or linear form, replication, repair, and persistence of the organellar DNA (orgDNA in plants. The bacterial origin of orgDNA appears to have profoundly influenced ideas about the properties of chromosomal DNA molecules in these organelles to the point of dismissing data inconsistent with ideas from the 1970s. When found at all, circular genome-sized molecules comprise a few percent of orgDNA. In cells active in orgDNA replication, most orgDNA is found as linear and branched-linear forms larger than the size of the genome, likely a consequence of a virus-like DNA replication mechanism. In contrast to the stable chromosomal DNA molecules in bacteria and the plant nucleus, the molecular integrity of orgDNA declines during leaf development at a rate that varies among plant species. This decline is attributed to degradation of damaged-but-not-repaired molecules, with a proposed repair cost-saving benefit most evident in grasses. All orgDNA maintenance activities are proposed to occur on the nucleoid tethered to organellar membranes by developmentally-regulated proteins.

  2. Enhancement of DNA-transfection frequency by X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, Ryota; Fushimi, Kazuo; Hiraki, Yoshio; Namba, Masayoshi [Okayama University Medical School (Japan). Institute of Cellular and Molecular Biology

    1997-02-01

    This study was conducted to evaluate the frequency of DNA transfection into human cells following X-ray irradiation. We transfected plasmid DNA (pSV2neo) into human cells, HeLa and PA-1, by either calcium phosphate precipitation or the lipofection method immediately after irradiating the cells with various doses of X-rays. The transfection frequency was evaluated by counting the number of G418-resistant colonies. When circular plasmid DNA was used, irradiation up to a dose of 2 Gy dose-dependently increased the transfection frequency, which reached a maximum of 5 to 10-fold that of the control unirradiated cells. When linear plasmid DNA was used, the transfection frequency was 2 times higher than that of circular DNA. All five of the clones that were randomly chosen expressed the transfected neo gene. In addition, the pSV2neo gene was randomly integrated into the genomic DNA of each clone. These findings indicate that X-ray treatment can facilitate foreign DNA transfer into human cells and that radiation-induced DNA breaks may promote the insertion of foreign DNA into host DNA. The enhancement of DNA transfection with X-rays may be instrumental in practicing gene therapy. (author)

  3. Enhancement of DNA-transfection frequency by X-rays

    International Nuclear Information System (INIS)

    Iwamoto, Ryota; Fushimi, Kazuo; Hiraki, Yoshio; Namba, Masayoshi

    1997-01-01

    This study was conducted to evaluate the frequency of DNA transfection into human cells following X-ray irradiation. We transfected plasmid DNA (pSV2neo) into human cells, HeLa and PA-1, by either calcium phosphate precipitation or the lipofection method immediately after irradiating the cells with various doses of X-rays. The transfection frequency was evaluated by counting the number of G418-resistant colonies. When circular plasmid DNA was used, irradiation up to a dose of 2 Gy dose-dependently increased the transfection frequency, which reached a maximum of 5 to 10-fold that of the control unirradiated cells. When linear plasmid DNA was used, the transfection frequency was 2 times higher than that of circular DNA. All five of the clones that were randomly chosen expressed the transfected neo gene. In addition, the pSV2neo gene was randomly integrated into the genomic DNA of each clone. These findings indicate that X-ray treatment can facilitate foreign DNA transfer into human cells and that radiation-induced DNA breaks may promote the insertion of foreign DNA into host DNA. The enhancement of DNA transfection with X-rays may be instrumental in practicing gene therapy. (author)

  4. Extrachromosomal circles of satellite repeats and 5S ribosomal DNA in human cells

    Directory of Open Access Journals (Sweden)

    Cohen Sarit

    2010-03-01

    Full Text Available Abstract Background Extrachomosomal circular DNA (eccDNA is ubiquitous in eukaryotic organisms and was detected in every organism tested, including in humans. A two-dimensional gel electrophoresis facilitates the detection of eccDNA in preparations of genomic DNA. Using this technique we have previously demonstrated that most of eccDNA consists of exact multiples of chromosomal tandemly repeated DNA, including both coding genes and satellite DNA. Results Here we report the occurrence of eccDNA in every tested human cell line. It has heterogeneous mass ranging from less than 2 kb to over 20 kb. We describe eccDNA homologous to human alpha satellite and the SstI mega satellite. Moreover, we show, for the first time, circular multimers of the human 5S ribosomal DNA (rDNA, similar to previous findings in Drosophila and plants. We further demonstrate structures that correspond to intermediates of rolling circle replication, which emerge from the circular multimers of 5S rDNA and SstI satellite. Conclusions These findings, and previous reports, support the general notion that every chromosomal tandem repeat is prone to generate eccDNA in eukryoric organisms including humans. They suggest the possible involvement of eccDNA in the length variability observed in arrays of tandem repeats. The implications of eccDNA on genome biology may include mechanisms of centromere evolution, concerted evolution and homogenization of tandem repeats and genomic plasticity.

  5. Heterochromatin position effects on circularized sex chromosomes cause filicidal embryonic lethality in Drosophila melanogaster.

    Science.gov (United States)

    Ferree, Patrick M; Gomez, Karina; Rominger, Peter; Howard, Dagnie; Kornfeld, Hannah; Barbash, Daniel A

    2014-04-01

    Some circularized X-Y chromosomes in Drosophila melanogaster are mitotically unstable and induce early embryonic lethality, but the genetic basis is unknown. Our experiments suggest that a large region of X-linked satellite DNA causes anaphase bridges and lethality when placed into a new heterochromatic environment within certain circularized X-Y chromosomes. These results reveal that repetitive sequences can be incompatible with one another in cis. The lethal phenotype also bears a remarkable resemblance to a case of interspecific hybrid lethality.

  6. Administrative circular

    CERN Multimedia

    2003-01-01

    • N° 21 - August 2003 Special leave This circular has been amended. Copies of this circular are available in the Divisional Secretariats. In addition, administrative and operational circulars, as well as the lists of those in force, are available for consultation on the Web at: http://cern.ch/hr-div/internal/admin_services/admincirc/listadmincirc.asp Human Resources Division Tel. 74128

  7. Experimental Study of Damage Evolution in Circular Stirrup-Confined Concrete.

    Science.gov (United States)

    Li, Zuohua; Peng, Zhihan; Teng, Jun; Wang, Ying

    2016-04-08

    This paper presents an experimental study on circular stirrup-confined concrete specimens under uniaxial and monotonic load. The effects of stirrup volume ratio, stirrup yield strength and concrete strength on damage evolution of stirrup-confined concrete were investigated. The experimental results showed that the strength and ductility of concrete are improved by appropriate arrangement of the stirrup confinement. Firstly, the concrete damage evolution can be relatively restrained with the increase of the stirrup volume ratio. Secondly, higher stirrup yield strength usually causes larger confining pressures and slower concrete damage evolution. In contrast, higher concrete strength leads to higher brittleness, which accelerates the concrete damage evolution. A plastic strain expression is obtained through curve fitting, and a damage evolution equation for circular stirrup-confined concrete is proposed by introducing a confinement factor ( C ) based on the experimental data. The comparison results demonstrate that the proposed damage evolution model can accurately describe the experimental results.

  8. Experimental Study of Damage Evolution in Circular Stirrup-Confined Concrete

    Science.gov (United States)

    Li, Zuohua; Peng, Zhihan; Teng, Jun; Wang, Ying

    2016-01-01

    This paper presents an experimental study on circular stirrup-confined concrete specimens under uniaxial and monotonic load. The effects of stirrup volume ratio, stirrup yield strength and concrete strength on damage evolution of stirrup-confined concrete were investigated. The experimental results showed that the strength and ductility of concrete are improved by appropriate arrangement of the stirrup confinement. Firstly, the concrete damage evolution can be relatively restrained with the increase of the stirrup volume ratio. Secondly, higher stirrup yield strength usually causes larger confining pressures and slower concrete damage evolution. In contrast, higher concrete strength leads to higher brittleness, which accelerates the concrete damage evolution. A plastic strain expression is obtained through curve fitting, and a damage evolution equation for circular stirrup-confined concrete is proposed by introducing a confinement factor (C) based on the experimental data. The comparison results demonstrate that the proposed damage evolution model can accurately describe the experimental results. PMID:28773402

  9. Administrative Circulars Rev.

    CERN Multimedia

    2003-01-01

    Administrative Circular N° 19 (Rev. 3) - April 2003 Subsistence indemnity - Other expenses necessarily incurred in the course of duty travelAdministrative Circular N° 25 (Rev. 2) - April 2003 Shift work - Special provisions for the Fire and Rescue Service - These circulars have been revised. Human Resources Division Tel. 74128Copies of these circulars are available in the Divisional Secretariats. In addition, administrative and operational circulars, as well as the lists of those in force, are available for consultation on the Web at: http://humanresources.web.cern.ch/humanresources/internal/admin_services/admincirc/listadmincirc.asp

  10. Operational Circulars

    CERN Multimedia

    2003-01-01

    Operational Circular N° 4 - April 2003 Conditions for use by members of the CERN personnel of vehicles belonging to or rented by CERN - This circular has been drawn up. Operational Circular N° 5 - October 2000 Use of CERN computing facilities - Further details on the personal use of CERN computing facilities Operational Circular N° 5 and its Subsidiary Rules http://cern.ch/ComputingRules defines the rules for the use of CERN computing facilities. One of the basic principles governing such use is that it must come within the professional duties of the user concerned, as defined by the user's divisional hierarchy. However, personal use of the computing facilities is tolerated or allowed provided : a) It is in compliance with Operational Circular N° 5 and not detrimental to official duties, including those of other users; b) the frequency and duration is limited and there is a negligible use of CERN resources; c) it does not constitute a political, commercial and/or profit-making activity; d) it is not...

  11. Visualizing Single-molecule DNA Replication with Fluorescence Microscopy

    NARCIS (Netherlands)

    Tanner, Nathan A.; Loparo, Joseph J.; Oijen, Antoine M. van

    2009-01-01

    We describe a simple fluorescence microscopy-based real-time method for observing DNA replication at the single-molecule level. A circular, forked DNA template is attached to a functionalized glass coverslip and replicated extensively after introduction of replication proteins and nucleotides. The

  12. Porcine circovirus: transcription and rolling-circle DNA replication

    Science.gov (United States)

    This review summarizes the molecular studies pertaining to porcine circovirus (PCV) transcription and DNA replication. The genome of PCV is circular, single-stranded DNA and contains 1759-1768 nucleotides. Both the genome-strand (packaged in the virus particle) and the complementary-strand (synthesi...

  13. Information Circulars

    International Nuclear Information System (INIS)

    1969-01-01

    Information circulars are published from time to time under the symbol INFCIRC/. . . . for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A list of the circulars which were of current interest on 15 January 1969 is given below, followed by an index to their subject matter. Other circulars can be traced by reference to earlier issues of the present document.

  14. Information Circulars

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1969-01-24

    Information circulars are published from time to time under the symbol INFCIRC/. . . . for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A list of the circulars which were of current interest on 15 January 1969 is given below, followed by an index to their subject matter. Other circulars can be traced by reference to earlier issues of the present document.

  15. Charge-transfer interactions of Cr species with DNA.

    Science.gov (United States)

    Nowicka, Anna M; Matysiak-Brynda, Edyta; Hepel, Maria

    2017-10-01

    Interactions of Cr species with nucleic acids in living organisms depend strongly on Cr oxidation state and the environmental conditions. As the effects of these interactions range from benign to pre-mutagenic to carcinogenic, careful assessment of the hazard they pose to human health is necessary. We have investigated methods that would enable quantifying the DNA damage caused by Cr species under varying environmental conditions, including UV, O 2 , and redox potential, using simple instrumental techniques which could be in future combined into a field-deployable instrumentation. We have employed electrochemical quartz crystal nanogravimetry (EQCN), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) to evaluate the extent of DNA damage expressed in terms of guanine oxidation yield (η) and changes in specific characteristics provided by these techniques. The effects of the interactions of Cr species with DNA were analyzed using a model calf thymus DNA (ctDNA) film on a gold electrode (Au@ctDNA) in different media, including: (i) Cr(VI), (ii) Cr(VI) reduced at -0.2V, (iii) Cr(III)+UV radiation+O 2 , and Cr(III), obtaining the η values: 7.4±1.4, 1.5±0.4, 1.1±0.31%, and 0%, respectively, thus quantifying the hazard posed. The EIS measurements have enabled utilizing the decrease in charge-transfer resistance (R ct ) for ferri/ferrocyanide redox probe at an Au@ctDNA electrode to assess the oxidative ctDNA damage by Cr(VI) species. In this case, circular dichroism indicates an extensive damage to the ctDNA hydrogen bonding. On the other hand, Cr(III) species have not induced any damage to ctDNA, although the EQCN measurements show an electrostatic binding to DNA. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Complex forms of mitochondrial DNA in human B cells transformed by Epstein-Barr virus (EBV)

    DEFF Research Database (Denmark)

    Christiansen, Gunna; Christiansen, C; Zeuthen, J

    1983-01-01

    Human lymphocytes and lymphoid cell lines were analyzed for the presence of complex forms of mitochondrial DNA (mtDNA) by electron microscopy. A high frequency (9%-14.5%) of catenated dimers, circular dimers, or oligomers were found in samples from Epstein-Barr-virus-(EBV) transformed lymphoblast......Human lymphocytes and lymphoid cell lines were analyzed for the presence of complex forms of mitochondrial DNA (mtDNA) by electron microscopy. A high frequency (9%-14.5%) of catenated dimers, circular dimers, or oligomers were found in samples from Epstein-Barr-virus-(EBV) transformed...

  17. Design for Circular Behaviour: Considering Users in a Circular Economy

    Directory of Open Access Journals (Sweden)

    Thomas Wastling

    2018-05-01

    Full Text Available In a linear economy, a product is manufactured and sold to a customer. Then, little concern is given to what the user actually does with it when they have it. However, in a circular economy where the aim is to circulate products at their highest level of value, the customer’s behaviour can become an important part of the system. Circular design strategies have tended to focus on the physical aspects of a product (e.g., disassembly, material selection, but the design of products and services can also have an influence on user behaviour and, to date, this aspect of circular design has not been fully explored. This project aims to define what key user behaviours are required for circular business models to work and to outline how design can enable these ‘circular behaviours’. This research project consists of a literature review, case study analysis and expert interviews with practitioners. A theoretical framework for designing products and services to encourage circular behaviour is developed. This work provides an initial step towards a better understanding of the user’s role in the transition to a circular economy as well as a preliminary model for how design for behaviour change strategies could be implemented in this context.

  18. Enzymatic properties of the bacteriophage phi X174 A protein on superhelical phi X174 DNA: a model for the termination of the rolling circle DNA replication

    NARCIS (Netherlands)

    van der Ende, A.; Langeveld, S. A.; Teertstra, R.; van Arkel, G. A.; Weisbeek, P. J.

    1981-01-01

    Incubation of phi X174 replication form I DNA with the A* protein of phi X174 in the presence of MN2+ results in the formation of three different types of DNA molecules: open circular form DNA (RFII), linear form DNA (RFIII) and the relaxed covalently closed form DNA (RFIV). The RFII and RFIII DNAs

  19. Sequence analysis of mitochondrial DNA hypervariable region III of ...

    African Journals Online (AJOL)

    The aims of this research were to study mitochondrial DNA hypervariable region III and establish the degree of variation characteristic of a fragment. The mitochondrial DNA (mtDNA) is a small circular genome located within the mitochondria in the cytoplasm of the cell and a smaller 1.2 kb pair fragment, called the control ...

  20. Electrokinetic acceleration of DNA hybridization in microsystems.

    Science.gov (United States)

    Lei, Kin Fong; Wang, Yun-Hsiang; Chen, Huai-Yi; Sun, Jia-Hong; Cheng, Ji-Yen

    2015-06-01

    In this work, electrokinetic acceleration of DNA hybridization was investigated by different combinations of frequencies and amplitudes of actuating electric signals. Because the frequencies from low to high can induce different kinds of electrokinetic forces, i.e., electroosmotic to electrothermal forces, this work provides an in-depth investigation of electrokinetic enhanced hybridization. Concentric circular Cr/Au microelectrodes of 350 µm in diameter were fabricated on a glass substrate and probe DNA was immobilized on the electrode surface. Target DNA labeled with fluorescent dyes suspending in solution was then applied to the electrode. Different electrokinetic forces were induced by the application of different electric signals to the circular microelectrodes. Local microfluidic vortexes were generated to increase the collision efficiency between the target DNA suspending in solution and probe DNA immobilized on the electrode surface. DNA hybridization on the electrode surface could be accelerated by the electrokinetic forces. The level of hybridization was represented by the fluorescent signal intensity ratio. Results revealed that such 5-min dynamic hybridization increased 4.5 fold of signal intensity ratio as compared to a 1-h static hybridization. Moreover, dynamic hybridization was found to have better differentiation ability between specific and non-specific target DNA. This study provides a strategy to accelerate DNA hybridization in microsystems. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Yield of radiation-induced DNA single-strand breaks in Escherichia coli and superinfecting phage lambda at different dose rates. Repair of strand breaks in different buffers

    International Nuclear Information System (INIS)

    Boye, E.; Johansen, I.; Brustad, T.

    1976-01-01

    Cells of E. coli K-12 strain AB 1886 were irradiated in oxygenated phosphate buffered saline at 2 0 C with electrons from a 4-MeV linear accelerator. The yield of DNA single-strand breaks was determined as a function of the dose rate between 2.5 and 21,000 krad/min. For dose rates over 100 krad/min the yield was found to be constant. Below 10 krad/min the yield of breaks decreases drastically. This is explained by rejoining of breaks during irradiation. Twenty percent of the breaks induced by acute exposure are repaired within 3 min at 2 0 C. Superinfecting phage lambda DNA is repaired at the same rate as chromosomal DNA. In contrast to the results obtained with phosphate-buffered saline, an increase in the number of breaks after irradiation is observed when the bacteria are suspended in tris buffer. It is suggested that buffers of low ionic strength facilitate the leakage through the membrane of a small-molecular-weight component(s) necessary for DNA strand rejoining

  2. Circular defects detection in welded joints using circular hough transform

    International Nuclear Information System (INIS)

    Hafizal Yazid; Mohd Harun; Shukri Mohd; Abdul Aziz Mohamed; Shaharudin Sayuti; Muhamad Daud

    2007-01-01

    Conventional radiography is one of the common non-destructive testing which employs manual image interpretation. The interpretation is very subjective and depends much on the inspector experience and working conditions. It is therefore useful to have pattern recognition system in order to assist human interpreter in evaluating the quality of the radiograph sample, especially radiographic image of welded joint. This paper describes a system to detect circular discontinuities that is present in the joints. The system utilizes together 2 different algorithms, which is separability filter to identify the best object candidate and Circular Hough Transform to detect the present of circular shape. The result of the experiment shows a promising output in recognition of circular discontinuities in a radiographic image. This is based on 81.82-100% of radiography film with successful circular detection by using template movement of 10 pixels. (author)

  3. Analytical solution to the circularity problem in the discounted cash flow valuation framework

    Directory of Open Access Journals (Sweden)

    Felipe Mejía-Peláez

    2011-12-01

    Full Text Available In this paper we propose an analytical solution to the circularity problem between value and cost of capital. Our solution is derived starting from a central principle of finance that relates value today to value, cash flow, and the discount rate for next period. We present a general formulation without circularity for the equity value (E, cost of levered equity (Ke, levered firm value (V, and the weighted average cost of capital (WACC. We furthermore compare the results obtained from these formulas with the results of the application of the Adjusted Present Value approach (no circularity and the iterative solution of circularity based upon the iteration feature of a spreadsheet, concluding that all methods yield exactly the same answer. The advantage of this solution is that it avoids problems such as using manual methods (i.e., the popular “Rolling WACC” ignoring the circularity issue, setting a target leverage (usually constant with the inconsistencies that result from it, the wrong use of book values, or attributing the discrepancies in values to rounding errors.

  4. Upper limits for the circular dichroism for the C 1s and O 1s core excitation of methyl oxirane

    International Nuclear Information System (INIS)

    Pruemper, G; Lischke, T; Fukuzawa, H; Reinkoester, A; Ueda, K

    2007-01-01

    The circular dichroism (CD) in the total and partial ion yields of methyl-oxirane C 3 H 6 O was measured at the C 1s and O 1s edges. The difference of the response of the chiral molecule to circularly polarized light with opposite handedness was found to be less than 0.2% for the total ion yield and less than 0.5% for the partial ion yield. Additionally we tried to find a dipole allowed molecular orientation CD effect by analysing the fragmentation in the forward and backward direction. For this effect we found an upper limit of 1-2% for all abundant ionic fragments

  5. Relationship between chromatin complexity and nuclear envelope circularity in hippocampal pyramidal neurons

    International Nuclear Information System (INIS)

    Pantic, Igor; Basailovic, Milos; Paunovic, Jovana; Pantic, Senka

    2015-01-01

    Highlights: •We analyzed chromatin structure and nuclear envelope of 200 hippocampal pyramidal neurons. •Fractal and GLCM mathematical parameters were calculated each chromatin structure. •Nuclear shape was quantified by calculating circularity of the nuclear envelope. •Circularity was in significant relationship with chromatin fractal dimension. •Strong correlation was detected between circularity and some GLCM parameters. -- Abstract: In this study we tested the existence and strength of the relationship between circularity of nuclear envelope and mathematical parameters of chromatin structure. Coronal sections of the brain were made in 10 male albino mice. The brain tissue was stained using a modification of Feulgen method for DNA visualization. A total of 200 hippocampal pyramidal neurons (20 per animal) were visualized using DEM 200 High-Speed Color CMOS Chip and Olympus CX21FS1 microscope. Circularity of the nuclear membrane was calculated in ImageJ (NIH, USA) after the nuclear segmentation, based on the freehand selection of the nuclear regions of interest. Circularity was determined from the values of area and perimeter. For each chromatin structure, using fractal and grey level co-occurrence matrix (GLCM) algorithms, we determined the values of fractal dimension, lacunarity, angular second moment, GLCM entropy, inverse difference moment, GLCM correlation, and GLCM contrast. It was found that circularity is in a significant correlation (p < 0.05) with fractal dimension as the main parameter of fractal complexity analysis. Also, circularity was in a very strong relationship (p < 0.001) with certain parameters of grey level co-occurrence matrix such as the angular second moment and GLCM correlation. This is the first study to indicate that nuclear shape is significantly related to mathematical parameters of higher chromatin organization. Also, it seems that circularity of the nuclear envelope is a good predictor of certain features of chromatin

  6. Efficient Sleeping Beauty DNA Transposition From DNA Minicircles

    Directory of Open Access Journals (Sweden)

    Nynne Sharma

    2013-01-01

    Full Text Available DNA transposon-based vectors have emerged as new potential delivery tools in therapeutic gene transfer. Such vectors are now showing promise in hematopoietic stem cells and primary human T cells, and clinical trials with transposon-engineered cells are on the way. However, the use of plasmid DNA as a carrier of the vector raises safety concerns due to the undesirable administration of bacterial sequences. To optimize vectors based on the Sleeping Beauty (SB DNA transposon for clinical use, we examine here SB transposition from DNA minicircles (MCs devoid of the bacterial plasmid backbone. Potent DNA transposition, directed by the hyperactive SB100X transposase, is demonstrated from MC donors, and the stable transfection rate is significantly enhanced by expressing the SB100X transposase from MCs. The stable transfection rate is inversely related to the size of circular donor, suggesting that a MC-based SB transposition system benefits primarily from an increased cellular uptake and/or enhanced expression which can be observed with DNA MCs. DNA transposon and transposase MCs are easily produced, are favorable in size, do not carry irrelevant DNA, and are robust substrates for DNA transposition. In accordance, DNA MCs should become a standard source of DNA transposons not only in therapeutic settings but also in the daily use of the SB system.

  7. Interaction of nogalamycin and analogs with DNA and other biopolymers

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, W C [Univ. of Minnesota, Minneapolis; Pschigoda, L M; Schpok, S L.F.; Moscowitz, A.; McGovren, J P; Neta, P; Merritt, M V; Li, L H

    1981-01-01

    The interaction with calf thymus DNA of the anthracycline antibiotics, nogalamycin and its analogs, was studied by electronic absorption, circular dichroism (CD), thermal denaturation, solvent partition and pulse radiolysis techniques. The Scatchard, thermal denaturation (..delta..T/sub m/), difference circular dichroism (..delta..CD) and solvent partition binding parameters gave the same order of relative binding on a given lot of DNA, but some parameters were DNA-lot-dependent. In general, molecules containing the sugar moiety nogalose at C-7 or those having the natural or dis stereochemistry of nogalamycin at C-7 bound more strongly to DNA than did the molecules lacking nogalose or those with the opposite configuration at C-7 (con stereochemistry). This stereochemical-binding correlation differs from that found for adriamycin which has the con stereochemistry, but which binds strongly to DNA. Scatchard binding parameters could not be obtained from the pulse radiolysis or solvent partition techniques because of solubility difficulties.

  8. Towards quantitative viromics for both double-stranded and single-stranded DNA viruses

    Directory of Open Access Journals (Sweden)

    Simon Roux

    2016-12-01

    Full Text Available Background Viruses strongly influence microbial population dynamics and ecosystem functions. However, our ability to quantitatively evaluate those viral impacts is limited to the few cultivated viruses and double-stranded DNA (dsDNA viral genomes captured in quantitative viral metagenomes (viromes. This leaves the ecology of non-dsDNA viruses nearly unknown, including single-stranded DNA (ssDNA viruses that have been frequently observed in viromes, but not quantified due to amplification biases in sequencing library preparations (Multiple Displacement Amplification, Linker Amplification or Tagmentation. Methods Here we designed mock viral communities including both ssDNA and dsDNA viruses to evaluate the capability of a sequencing library preparation approach including an Adaptase step prior to Linker Amplification for quantitative amplification of both dsDNA and ssDNA templates. We then surveyed aquatic samples to provide first estimates of the abundance of ssDNA viruses. Results Mock community experiments confirmed the biased nature of existing library preparation methods for ssDNA templates (either largely enriched or selected against and showed that the protocol using Adaptase plus Linker Amplification yielded viromes that were ±1.8-fold quantitative for ssDNA and dsDNA viruses. Application of this protocol to community virus DNA from three freshwater and three marine samples revealed that ssDNA viruses as a whole represent only a minor fraction (<5% of DNA virus communities, though individual ssDNA genomes, both eukaryote-infecting Circular Rep-Encoding Single-Stranded DNA (CRESS-DNA viruses and bacteriophages from the Microviridae family, can be among the most abundant viral genomes in a sample. Discussion Together these findings provide empirical data for a new virome library preparation protocol, and a first estimate of ssDNA virus abundance in aquatic systems.

  9. DNAzyme Feedback Amplification: Relaying Molecular Recognition to Exponential DNA Amplification.

    Science.gov (United States)

    Liu, Meng; Yin, Qingxin; McConnell, Erin M; Chang, Yangyang; Brennan, John D; Li, Yingfu

    2018-03-26

    Technologies capable of linking DNA amplification to molecular recognition are very desirable for ultrasensitive biosensing applications. We have developed a simple but powerful isothermal DNA amplification method, termed DNAzyme feedback amplification (DFA), that is capable of relaying molecular recognition to exponential DNA amplification. The method incorporates both an RNA-cleaving DNAzyme (RCD) and rolling circle amplification (RCA) carried out by a special DNA polymerase using a circular DNA template. DFA begins with a stimulus-dependent RCA reaction, producing tandemly linked RCDs in long-chain DNA products. These RCDs cleave an RNA-containing DNA sequence to form additional primers that hybridize to the circular DNA molecule, giving rise to DNA assemblies that act as the new inputs for RCA. The RCA reaction and the cleavage event keep on feeding each other autonomously, resulting in exponential growth of repetitive DNA sequences that can be easily detected. This method can be used for the detection of both nucleic acid based targets and non-nucleic acid analytes. In this article, we discuss the conceptual framework of the feedback amplification approach, the essential features of this method as well as remaining challenges and possible solutions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. DNA cards: determinants of DNA yield and quality in collecting genetic samples for pharmacogenetic studies.

    Science.gov (United States)

    Mas, Sergi; Crescenti, Anna; Gassó, Patricia; Vidal-Taboada, Jose M; Lafuente, Amalia

    2007-08-01

    As pharmacogenetic studies frequently require establishment of DNA banks containing large cohorts with multi-centric designs, inexpensive methods for collecting and storing high-quality DNA are needed. The aims of this study were two-fold: to compare the amount and quality of DNA obtained from two different DNA cards (IsoCode Cards or FTA Classic Cards, Whatman plc, Brentford, Middlesex, UK); and to evaluate the effects of time and storage temperature, as well as the influence of anticoagulant ethylenediaminetetraacetic acid on the DNA elution procedure. The samples were genotyped by several methods typically used in pharmacogenetic studies: multiplex PCR, PCR-restriction fragment length polymorphism, single nucleotide primer extension, and allelic discrimination assay. In addition, they were amplified by whole genome amplification to increase genomic DNA mass. Time, storage temperature and ethylenediaminetetraacetic acid had no significant effects on either DNA card. This study reveals the importance of drying blood spots prior to isolation to avoid haemoglobin interference. Moreover, our results demonstrate that re-isolation protocols could be applied to increase the amount of DNA recovered. The samples analysed were accurately genotyped with all the methods examined herein. In conclusion, our study shows that both DNA cards, IsoCode Cards and FTA Classic Cards, facilitate genetic and pharmacogenetic testing for routine clinical practice.

  11. Radicals of DNA and DNA nucleotides generated by ionising radiation

    International Nuclear Information System (INIS)

    Przybytniak, G.

    2004-01-01

    A first stage of cell processes leading to DNA damage of initiated by radical reactions. In a model system such transformations were generated by ionising radiation which involves production of electron loss and electron gain centers of the substrate and radical formation. Using cryogenic ESR spectroscopy it was found that the DNA nucleotides, which convert to radical anions upon electron capture undergo the separation of unpaired spin and charge due to protonation. Circular and linear dichroism studies enabled to conclude that iron ions(III) induce strong changes in the DNA helical structure indicating their coordination with nitrogen bases. The repair of DNA radicals produced via radiolytic oxidation, i.e. the guanine radical cation and the allyl type radical of thymine, is possible at elevated temperatures due to the involvement of sulphydryl groups. The influence of the thiol charge is then limited

  12. Information Circulars

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1973-09-10

    Information circulars are published from time to time under the symbol INFCIRC/.. for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A subject index to the circulars is presented overleaf. It covers all those published in the last five years (that is, since the beginning of 1968 and ending with INFCIRC/192), as well as others which, for one reason or another, are still considered to be of current rather than merely historical interest. Such circulars can be traced by reference to the indexes that were included in earlier revisions of the present document.

  13. Information Circulars

    International Nuclear Information System (INIS)

    1973-01-01

    Information circulars are published from time to time under the symbol INFCIRC/.. for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A subject index to the circulars is presented overleaf. It covers all those published in the last five years (that is, since the beginning of 1968 and ending with INFCIRC/192), as well as others which, for one reason or another, are still considered to be of current rather than merely historical interest. Such circulars can be traced by reference to the indexes that were included in earlier revisions of the present document.

  14. Isothermal circular-strand-displacement polymerization of DNA and microRNA in digital microfluidic devices.

    Science.gov (United States)

    Giuffrida, Maria Chiara; Zanoli, Laura Maria; D'Agata, Roberta; Finotti, Alessia; Gambari, Roberto; Spoto, Giuseppe

    2015-02-01

    Nucleic-acid amplification is a crucial step in nucleic-acid-sequence-detection assays. The use of digital microfluidic devices to miniaturize amplification techniques reduces the required sample volume and the analysis time and offers new possibilities for process automation and integration in a single device. The recently introduced droplet polymerase-chain-reaction (PCR) amplification methods require repeated cycles of two or three temperature-dependent steps during the amplification of the nucleic-acid target sequence. In contrast, low-temperature isothermal-amplification methods have no need for thermal cycling, thus requiring simplified microfluidic-device features. Here, the combined use of digital microfluidics and molecular-beacon (MB)-assisted isothermal circular-strand-displacement polymerization (ICSDP) to detect microRNA-210 sequences is described. MicroRNA-210 has been described as the most consistently and predominantly upregulated hypoxia-inducible factor. The nmol L(-1)-pmol L(-1) detection capabilities of the method were first tested by targeting single-stranded DNA sequences from the genetically modified Roundup Ready soybean. The ability of the droplet-ICSDP method to discriminate between full-matched, single-mismatched, and unrelated sequences was also investigated. The detection of a range of nmol L(-1)-pmol L(-1) microRNA-210 solutions compartmentalized in nanoliter-sized droplets was performed, establishing the ability of the method to detect as little as 10(-18) mol of microRNA target sequences compartmentalized in 20 nL droplets. The suitability of the method for biological samples was tested by detecting microRNA-210 from transfected K562 cells.

  15. The effects of indium-111 decay on pBR322 DNA

    International Nuclear Information System (INIS)

    Sahu, S.K.; Adelstein, S.J.; Makrigiorgos, G.M.; Baranowska-Kortylewicz, J.

    1995-01-01

    We have compared the effectiveness in causing DNA strand breaks of 111 In bound to DNA or free in aqueous solution with that of γ rays. Supercoiled DNA from pBR322 plasmid labeled with [ 3 H]thymidine was purified and mixed with 111 InCl 3 in the absence of presence of diethylenetriaminepentaacetic dianhydride (DTPA), a metal chelator which prevents the binding of indium to DNA. The reaction mixtures were stored at 4 degrees C to accumulate radiation dose from the decay of 111 In. The DNA was then resolved by gel electrophoresis into supercoiled, nicked circular and linear forms, representing undamaged DNA, single-strand breaks (SSBs) and double-strand breaks (DSBs), respectively. The D o values of pBR322 DNA exposed to γ radiation from an external 137 Cs source and the decay of 111 In dispersed in solution (+DTPA) are 3.1 ± 0.1 and 2.8 ± 0.1 Gy, respectively. In terms of accumulated 111 In disintegrations cm -3 of plasmid DNA solution, the D o value is 15.3 (± 0.7) x 10 10 disintegrations in the absence of DTPA and 38.2 (± 1.1) x 10 10 disintegrations in its presence. Since only 14.6 ± 5% of the 111 In was bound to DNA in the absence of DTPA, an effective D o for bound 111 In of 3.4 (± 1.1) x 10 10 disintegrations is obtained. The 11-fold (range 9- to 17-fold) increased effectiveness of this Auger electron emitter when in proximity to DNA appears to be due mainly to the higher yield of SSBs. 34 refs., 4 figs., 3 tabs

  16. Increased yield of PCR products by addition of T4 gene 32 protein to the SMART PCR cDNA synthesis system.

    Science.gov (United States)

    Villalva, C; Touriol, C; Seurat, P; Trempat, P; Delsol, G; Brousset, P

    2001-07-01

    Under certain conditions, T4 gene 32 protein is known to increase the efficiency of different enzymes, such as Taq DNA polymerase, reverse transcriptase, and telomerase. In this study, we compared the efficiency of the SMART PCR cDNA synthesis kit with and without the T4 gene 32 protein. The use of this cDNA synthesis procedure, in combination with T4 gene 32 protein, increases the yield of RT-PCR products from approximately 90% to 150%. This effect is even observed for long mRNA templates and low concentrations of total RNA (25 ng). Therefore, we suggest the addition of T4 gene 32 protein in the RT-PCR mixture to increase the efficiency of cDNA synthesis, particularly in cases when low amounts of tissue are used.

  17. Sequencing the extrachromosomal circular mobilome reveals retrotransposon activity in plants.

    Directory of Open Access Journals (Sweden)

    Sophie Lanciano

    2017-02-01

    Full Text Available Retrotransposons are mobile genetic elements abundant in plant and animal genomes. While efficiently silenced by the epigenetic machinery, they can be reactivated upon stress or during development. Their level of transcription not reflecting their transposition ability, it is thus difficult to evaluate their contribution to the active mobilome. Here we applied a simple methodology based on the high throughput sequencing of extrachromosomal circular DNA (eccDNA forms of active retrotransposons to characterize the repertoire of mobile retrotransposons in plants. This method successfully identified known active retrotransposons in both Arabidopsis and rice material where the epigenome is destabilized. When applying mobilome-seq to developmental stages in wild type rice, we identified PopRice as a highly active retrotransposon producing eccDNA forms in the wild type endosperm. The mobilome-seq strategy opens new routes for the characterization of a yet unexplored fraction of plant genomes.

  18. Sequencing the extrachromosomal circular mobilome reveals retrotransposon activity in plants.

    Science.gov (United States)

    Lanciano, Sophie; Carpentier, Marie-Christine; Llauro, Christel; Jobet, Edouard; Robakowska-Hyzorek, Dagmara; Lasserre, Eric; Ghesquière, Alain; Panaud, Olivier; Mirouze, Marie

    2017-02-01

    Retrotransposons are mobile genetic elements abundant in plant and animal genomes. While efficiently silenced by the epigenetic machinery, they can be reactivated upon stress or during development. Their level of transcription not reflecting their transposition ability, it is thus difficult to evaluate their contribution to the active mobilome. Here we applied a simple methodology based on the high throughput sequencing of extrachromosomal circular DNA (eccDNA) forms of active retrotransposons to characterize the repertoire of mobile retrotransposons in plants. This method successfully identified known active retrotransposons in both Arabidopsis and rice material where the epigenome is destabilized. When applying mobilome-seq to developmental stages in wild type rice, we identified PopRice as a highly active retrotransposon producing eccDNA forms in the wild type endosperm. The mobilome-seq strategy opens new routes for the characterization of a yet unexplored fraction of plant genomes.

  19. Information Circulars

    International Nuclear Information System (INIS)

    1965-01-01

    Information circulars are published from time to time under the symbol INFCIRC/. for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A list of the circulars that were current on 31 December 1964 is given, followed by an index to their subject matter.

  20. Information circulars

    International Nuclear Information System (INIS)

    1992-08-01

    The document summarizes the Information Circulars published by the IAEA for the purpose of bringing matters of general interest to the attention of all Members of the Agency. This revision contains INFCIRCs published up to mid-August 1992. A complete numerical lift of Information Circulars with their titles is reproduced in an Annex

  1. Information Circulars

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1965-01-18

    Information circulars are published from time to time under the symbol INFCIRC/. for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A list of the circulars that were current on 31 December 1964 is given, followed by an index to their subject matter.

  2. Quality Analysis of DNA from Cord Blood Buffy Coat: The Best Neonatal DNA Source for Epidemiological Studies?

    Science.gov (United States)

    Zhou, Guangdi; Li, Qin; Huang, Lisu; Wu, Yuhang; Wu, Meiqin; Wang, Weiye C

    2016-04-01

    Umbilical cord blood is an economical and easy to obtain source of high-quality neonatal genomic DNA. However, although large numbers of cord blood samples have been collected, information on the yield and quality of the DNA extracted from cord blood is scarce. Moreover, considerable doubt still exists on the utility of the buffy coat instead of whole blood as a DNA source. We compared the sample storage and DNA extraction costs for whole blood, buffy coat, and all-cell pellet. We evaluated three different DNA purification kits and selected the most suitable one to purify 1011 buffy coat samples. We determined the DNA yield and optical density (OD) ratios and analyzed 48 single-nucleotide polymorphisms using time-of-flight mass spectrometry (TOF MS). We also analyzed eight possible preanalytical variables that may correlate with DNA yield or quality. Buffy coat was the most economical and least labor-intensive source for sample storage and DNA extraction. The average yield of genomic DNA from 200 μL of buffy coat sample was 16.01 ± 8.00 μg, which is sufficient for analytic experiments. The mean A260/A280 ratio and the mean A260/A230 ratio were 1.89 ± 0.09 and 1.95 ± 0.66, respectively. More than 99.5% of DNA samples passed the TOF MS test. Only hemolysis showed a strong correlation with OD ratios of DNA, but not with yield. Our findings show that cord blood buffy coat yields high-quality DNA in sufficient quantities to meet the requirements of experiments. Buffy coat was also found to be the most economic, efficient, and stable source of genomic DNA.

  3. Information circulars

    International Nuclear Information System (INIS)

    1997-02-01

    The document summarizes the Information Circulars published by the IAEA for the purpose of bringing matters of general interest to the attention of all Member States. This revision contains INFCIRCs published up to February 1997, grouped by field of activity. A complete list of information circulars in numerical order is given in an annex

  4. Information circulars

    International Nuclear Information System (INIS)

    1994-08-01

    Information circulars are published from time to time under the symbol INFCIRC/... for the purpose of bringing matters of general interest to the attention of all Members of the Agency. The present revision contains INFCIRCs published up to mid-August 1994. A complete numerical list of information circulars is reproduced with their titles in the Annex

  5. Information circulars

    International Nuclear Information System (INIS)

    2002-05-01

    Information circulars are published from time to time under the symbol INFCIRC/... for the purpose of bringing matters of general interest to the attention of all Members of the Agency. The present revision contains INFCIRCs published up to the end of April 2002. A complete numerical list of information circulars is reproduced with their titles in the Annex

  6. Information circulars

    International Nuclear Information System (INIS)

    1999-06-01

    The document summarizes the Information Circulars published by the IAEA for the purpose of bringing matters of general interest to the attention of all Member States. This revision contains INFCIRCs published up to the end of May 1999, grouped by field of activity. A complete list of information circulars in numerical order is given in an annex

  7. Information Circulars

    International Nuclear Information System (INIS)

    1966-01-01

    Information circulars are published from time to time under the symbol INFCIRC/. . . . for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A list of the circulars that were current or on the press on 15 May 1966 is given, followed by an index to their subject matter.

  8. Information Circulars

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1966-06-10

    Information circulars are published from time to time under the symbol INFCIRC/. . . . for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A list of the circulars that were current or on the press on 15 May 1966 is given, followed by an index to their subject matter.

  9. Electron microscopic visualization of the RecA protein-mediated pairing and branch migration phases of DNA strand exchange

    DEFF Research Database (Denmark)

    Register, JC; Christiansen, Gunna; Griffith, J

    1987-01-01

    examined by electron microscopy: supertwisted double-stranded (ds) DNA and linear single-stranded (ss) DNA, linear dsDNA and circular ssDNA, and linear dsDNA and colinear ssDNA. Several major observations were: (i) with RecA protein bound to the DNA, plectonemic joints were ultrastructurally...

  10. Improved Yield of High Molecular Weight DNA Coincides with Increased Microbial Diversity Access from Iron Oxide Cemented Sub-Surface Clay Environments

    Science.gov (United States)

    Hurt, Richard A.; Robeson, Michael S.; Shakya, Migun; Moberly, James G.; Vishnivetskaya, Tatiana A.; Gu, Baohua; Elias, Dwayne A.

    2014-01-01

    Despite over three decades of progress, extraction of high molecular weight (HMW) DNA from high clay soils or iron oxide cemented clay has remained challenging. HMW DNA is desirable for next generation sequencing as it yields the most comprehensive coverage. Several DNA extraction procedures were compared from samples that exhibit strong nucleic acid adsorption. pH manipulation or use of alternative ion solutions offered no improvement in nucleic acid recovery. Lysis by liquid N2 grinding in concentrated guanidine followed by concentrated sodium phosphate extraction supported HMW DNA recovery from clays high in iron oxides. DNA recovered using 1 M sodium phosphate buffer (PB) as a competitive desorptive wash was 15.22±2.33 µg DNA/g clay, with most DNA consisting of >20 Kb fragments, compared to 2.46±0.25 µg DNA/g clay with the Powerlyzer system (MoBio). Increasing PB concentration in the lysis reagent coincided with increasing DNA fragment length during initial extraction. Rarefaction plots of 16S rRNA (V1–V3 region) pyrosequencing from A-horizon and clay soils showed an ∼80% and ∼400% larger accessed diversity compared to the Powerlyzer soil DNA system, respectively. The observed diversity from the Firmicutes showed the strongest increase with >3-fold more operational taxonomic units (OTU) recovered. PMID:25033199

  11. Food waste biorefinery: Sustainable strategy for circular bioeconomy.

    Science.gov (United States)

    Dahiya, Shikha; Kumar, A Naresh; Shanthi Sravan, J; Chatterjee, Sulogna; Sarkar, Omprakash; Mohan, S Venkata

    2018-01-01

    Enormous quantity of food waste (FW) is becoming a global concern. To address this persistent problem, sustainable interventions with green technologies are essential. FW can be used as potential feedstock in biological processes for the generation of various biobased products along with its remediation. Enabling bioprocesses like acidogenesis, fermentation, methanogenesis, solventogenesis, photosynthesis, oleaginous process, bio-electrogenesis, etc., that yields various products like biofuels, platform chemicals, bioelectricity, biomaterial, biofertilizers, animal feed, etc can be utilized for FW valorisation. Integrating these bioprocesses further enhances the process efficiency and resource recovery sustainably. Adapting biorefinery strategy with integrated approach can lead to the development of circular bioeconomy. The present review highlights the various enabling bioprocesses that can be employed for the generation of energy and various commodity chemicals in an integrated approach addressing sustainability. The waste biorefinery approach for FW needs optimization of the cascade of the individual bioprocesses for the transformation of linear economy to circular bioeconomy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. In vitro DNA binding studies of Aspartame, an artificial sweetener.

    Science.gov (United States)

    Kashanian, Soheila; Khodaei, Mohammad Mehdi; Kheirdoosh, Fahimeh

    2013-03-05

    A number of small molecules bind directly and selectively to DNA, by inhibiting replication, transcription or topoisomerase activity. In this work the interaction of native calf thymus DNA (CT-DNA) with Aspartame (APM), an artificial sweeteners was studied at physiological pH. DNA binding study of APM is useful to understand APM-DNA interaction mechanism and to provide guidance for the application and design of new and safer artificial sweeteners. The interaction was investigated using spectrophotometric, spectrofluorometric competition experiment and circular dichroism (CD). Hypochromism and red shift are shown in UV absorption band of APM. A strong fluorescence quenching reaction of DNA to APM was observed and the binding constants (Kf) of DNA with APM and corresponding number of binding sites (n) were calculated at different temperatures. Thermodynamic parameters, enthalpy changes (ΔH) and entropy changes (ΔS) were calculated to be +181kJmol(-1) and +681Jmol(-1)K(-1) according to Van't Hoff equation, which indicated that reaction is predominantly entropically driven. Moreover, spectrofluorometric competition experiment and circular dichroism (CD) results are indicative of non-intercalative DNA binding nature of APM. We suggest that APM interacts with calf thymus DNA via groove binding mode with an intrinsic binding constant of 5×10(+4)M(-1). Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Examining a DNA Replication Requirement for Bacteriophage λ Red- and Rac Prophage RecET-Promoted Recombination in Escherichia coli.

    Science.gov (United States)

    Thomason, Lynn C; Costantino, Nina; Court, Donald L

    2016-09-13

    Recombineering, in vivo genetic engineering with bacteriophage homologous recombination systems, is a powerful technique for making genetic modifications in bacteria. Two systems widely used in Escherichia coli are the Red system from phage λ and RecET from the defective Rac prophage. We investigated the in vivo dependence of recombineering on DNA replication of the recombining substrate using plasmid targets. For λ Red recombination, when DNA replication of a circular target plasmid is prevented, recombination with single-stranded DNA oligonucleotides is greatly reduced compared to that under replicating conditions. For RecET recombination, when DNA replication of the targeted plasmid is prevented, the recombination frequency is also reduced, to a level identical to that seen for the Red system in the absence of replication. The very low level of oligonucleotide recombination observed in the absence of any phage recombination functions is the same in the presence or absence of DNA replication. In contrast, both the Red and RecET systems recombine a nonreplicating linear dimer plasmid with high efficiency to yield a circular monomer. Therefore, the DNA replication requirement is substrate dependent. Our data are consistent with recombination by both the Red and RecET systems occurring predominately by single-strand annealing rather than by strand invasion. Bacteriophage homologous recombination systems are widely used for in vivo genetic engineering in bacteria. Single- or double-stranded linear DNA substrates containing short flanking homologies to chromosome targets are used to generate precise and accurate genetic modifications when introduced into bacteria expressing phage recombinases. Understanding the molecular mechanism of these recombination systems will facilitate improvements in the technology. Here, two phage-specific systems are shown to require exposure of complementary single-strand homologous targets for efficient recombination; these single

  14. pH-induced fabrication of DNA/chitosan/α-ZrP nanocomposite and DNA release

    International Nuclear Information System (INIS)

    Liu Limin; Zhang Haitang; Shen Bo; He Weijiang; Lu Guoyuan; Liu Yuge; Zhu Junjie

    2010-01-01

    With positively charged chitosan as an intermediary, herring sperm DNA was intercalated into the interlayer galleries of negatively charged α-ZrP to form DNA/chitosan/α-ZrP ternary hybrids at pH 5.5. Fourier-transform IR, x-ray diffraction and scanning electron microscopy confirmed not only the coexistence of DNA, chitosan and α-ZrP in the composite but also the layered composite structure with an interlayer distance of 4.25 nm. Circular dichroism (CD) and UV spectroscopic studies disclosed that the restraint of DNA by the layered α-ZrP favors stabilization of the double-helical conformation of DNA and enhances the denaturation temperature. The intercalated DNA can be effectively released from the ternary nanocomposites at pHs higher than 6.5, and the released DNA displayed a similar CD spectrum to that of free DNA. The current research displays the promising potential to obtain a non-viral gene vector by intercalating DNA into negatively charged inorganic layered materials in the presence of a positively charged intermediary.

  15. Information circulars

    International Nuclear Information System (INIS)

    1987-06-01

    The document summarizes the information circulars published by the IAEA for the purpose of bringing matters of general interest to the attention of all Members of the Agency. In the main body of the document only those documents which are regarded as likely to be of current interest are listed. A complete numerical list of information circulars with their titles is reproduced in the Annex

  16. Bright circularly polarized soft X-ray high harmonics for X-ray magnetic circular dichroism.

    Science.gov (United States)

    Fan, Tingting; Grychtol, Patrik; Knut, Ronny; Hernández-García, Carlos; Hickstein, Daniel D; Zusin, Dmitriy; Gentry, Christian; Dollar, Franklin J; Mancuso, Christopher A; Hogle, Craig W; Kfir, Ofer; Legut, Dominik; Carva, Karel; Ellis, Jennifer L; Dorney, Kevin M; Chen, Cong; Shpyrko, Oleg G; Fullerton, Eric E; Cohen, Oren; Oppeneer, Peter M; Milošević, Dejan B; Becker, Andreas; Jaroń-Becker, Agnieszka A; Popmintchev, Tenio; Murnane, Margaret M; Kapteyn, Henry C

    2015-11-17

    We demonstrate, to our knowledge, the first bright circularly polarized high-harmonic beams in the soft X-ray region of the electromagnetic spectrum, and use them to implement X-ray magnetic circular dichroism measurements in a tabletop-scale setup. Using counterrotating circularly polarized laser fields at 1.3 and 0.79 µm, we generate circularly polarized harmonics with photon energies exceeding 160 eV. The harmonic spectra emerge as a sequence of closely spaced pairs of left and right circularly polarized peaks, with energies determined by conservation of energy and spin angular momentum. We explain the single-atom and macroscopic physics by identifying the dominant electron quantum trajectories and optimal phase-matching conditions. The first advanced phase-matched propagation simulations for circularly polarized harmonics reveal the influence of the finite phase-matching temporal window on the spectrum, as well as the unique polarization-shaped attosecond pulse train. Finally, we use, to our knowledge, the first tabletop X-ray magnetic circular dichroism measurements at the N4,5 absorption edges of Gd to validate the high degree of circularity, brightness, and stability of this light source. These results demonstrate the feasibility of manipulating the polarization, spectrum, and temporal shape of high harmonics in the soft X-ray region by manipulating the driving laser waveform.

  17. Modeling of contact theories for the manipulation of biological micro/nanoparticles in the form of circular crowned rollers based on the atomic force microscope

    International Nuclear Information System (INIS)

    Korayem, M. H.; Khaksar, H.; Taheri, M.

    2013-01-01

    This article has dealt with the development and modeling of various contact theories for biological nanoparticles shaped as cylinders and circular crowned rollers for application in the manipulation of different biological micro/nanoparticles based on Atomic Force Microscope. First, the effective contact forces were simulated, and their impact on contact mechanics simulation was investigated. In the next step, the Hertz contact model was simulated and compared for gold and DNA nanoparticles with the three types of spherical, cylindrical, and circular crowned roller type contact geometries. Then by reducing the length of the cylindrical section in the circular crowned roller geometry, the geometry of the body was made to approach that of a sphere, and the results were compared for DNA nanoparticles. To anticipatory validate the developed theories, the results of the cylindrical and the circular crowned roller contacts were compared with the results of the existing spherical contact simulations. Following the development of these contact models for the manipulation of various biological micro/nanoparticles, the cylindrical and the circular crowned roller type contact theories were modeled based on the theories of Lundberg, Dowson, Nikpur, Heoprich, and Hertz for the manipulation of biological micro/nanoparticles. Then, for a more accurate validation, the results obtained from the simulations were compared with those obtained by the finite element method and with the experimental results available in previous articles. The previous research works on the simulation of nanomanipulation have mainly investigated the contact theories used in the manipulation of spherical micro/nanoparticles. However since in real biomanipulation situations, biological micro/nanoparticles of more complex shapes need to be displaced in biological environments, this article therefore has modeled and compared, for the first time, different contact theories for use in the biomanipulation of

  18. Paramagnetic decoration of DNA origami nanostructures by Eu³⁺ coordination.

    Science.gov (United States)

    Opherden, Lars; Oertel, Jana; Barkleit, Astrid; Fahmy, Karim; Keller, Adrian

    2014-07-15

    The folding of DNA into arbitrary two- and three-dimensional shapes, called DNA origami, represents a powerful tool for the synthesis of functional nanostructures. Here, we present the first approach toward the paramagnetic functionalization of DNA origami nanostructures by utilizing postassembly coordination with Eu(3+) ions. In contrast to the usual formation of toroidal dsDNA condensates in the presence of trivalent cations, planar as well as rod-like DNA origami maintain their shape and monomeric state even under high loading with the trivalent lanthanide. Europium coordination was demonstrated by the change in Eu(3+) luminescence upon binding to the two DNA origami. Their natural circular dichroism in the Mg(2+)- and Eu(3+)-bound state was found to be very similar to that of genomic DNA, evidencing little influence of the DNA origami superstructure on the local chirality of the stacked base pairs. In contrast, the magnetic circular dichroism of the Mg(2+)-bound DNA origami deviates from that of genomic DNA. Furthermore, the lanthanide affects the magnetic properties of DNA in a superstructure-dependent fashion, indicative of the existence of superstructure-specific geometry of Eu(3+) binding sites in the DNA origami that are not formed in genomic DNA. This simple approach lays the foundation for the generation of magneto-responsive DNA origami nanostructures. Such systems do not require covalent modifications and can be used for the magnetic manipulation of DNA nanostructures or for the paramagnetic alignment of molecules in NMR spectroscopy.

  19. Probing electronic coupling between adenine bases in RNA strands from synchrotron radiation circular dichroism experiments

    DEFF Research Database (Denmark)

    Nielsen, Lisbeth Munksgård; Hoffmann, Søren Vrønning; Nielsen, Steen Brøndsted

    2012-01-01

    Circular dichroism spectra (176–330 nm) of RNA adenine oligomers, (rA)n (n = 1–10, 12, 15, and 20), reveal electronic coupling between two bases in short strands. The number of interacting bases in long strands is more and larger than that reported previously for the corresponding DNA strands....

  20. A lateral flow biosensor for detection of single nucleotide polymorphism by circular strand displacement reaction.

    Science.gov (United States)

    Xiao, Zhuo; Lie, Puchang; Fang, Zhiyuan; Yu, Luxin; Chen, Junhua; Liu, Jie; Ge, Chenchen; Zhou, Xuemeng; Zeng, Lingwen

    2012-09-04

    A lateral flow biosensor for detection of single nucleotide polymorphism based on circular strand displacement reaction (CSDPR) has been developed. Taking advantage of high fidelity of T4 DNA ligase, signal amplification by CSDPR, and the optical properties of gold nanoparticles, this assay has reached a detection limit of 0.01 fM.

  1. Publication of administrative circular

    CERN Multimedia

    HR Department

    2009-01-01

    ADMINISTRATIVE CIRCULAR NO. 23 (REV. 2) – SPECIAL WORKING HOURS Administrative Circular No. 23 (Rev. 2) entitled "Special working hours", approved following discussion in the Standing Concertation Committee on 9 December 2008, will be available on the intranet site of the Human Resources Department as from 19 December 2008: http://cern.ch/hr-docs/admincirc/admincirc.asp It cancels and replaces Administrative Circular No. 23 (Rev. 1) entitled "Stand-by duty" of April 1988. A "Frequently Asked Questions" information document on special working hours will also be available on this site. Paper copies of this circular will shortly be available in Departmental Secretariats. Human Resources Department Tel. 78003

  2. PUBLICATION OF ADMINISTRATIVE CIRCULAR

    CERN Multimedia

    HR Department

    2008-01-01

    ADMINISTRATIVE CIRCULAR NO. 23 (REV. 2) – SPECIAL WORKING HOURS Administrative Circular No. 23 (Rev. 2) entitled "Special working hours", approved following discussion in the Standing Concertation Committee meeting of 9 December 2008, will be available on the intranet site of the Human Resources Department as from 19 December 2008: http://cern.ch/hr-docs/admincirc/admincirc.asp It cancels and replaces Administrative Circular No. 23 (Rev. 1) entitled "Stand-by duty" of April 1988. A "Frequently Asked Questions" information document on special working hours will also be available on this site. Paper copies of this circular will shortly be available in departmental secretariats. Human Resources Department Tel. 78003

  3. Silver-mediated base pairings: towards dynamic DNA nanostructures with enhanced chemical and thermal stability

    International Nuclear Information System (INIS)

    Swasey, Steven M; Gwinn, Elisabeth G

    2016-01-01

    The thermal and chemical fragility of DNA nanomaterials assembled by Watson–Crick (WC) pairing constrain the settings in which these materials can be used and how they can be functionalized. Here we investigate use of the silver cation, Ag + , as an agent for more robust, metal-mediated self-assembly, focusing on the simplest duplex building blocks that would be required for more elaborate Ag + –DNA nanostructures. Our studies of Ag + -induced assembly of non-complementary DNA oligomers employ strands of 2–24 bases, with varied base compositions, and use electrospray ionization mass spectrometry to determine product compositions. High yields of duplex products containing narrowly distributed numbers of Ag + can be achieved by optimizing solution conditions. These Ag + -mediated duplexes are stable to at least 60 mM Mg 2+ , higher than is necessary for WC nanotechnology schemes such as tile assemblies and DNA origami, indicating that sequential stages of Ag + -mediated and WC-mediated assembly may be feasible. Circular dichroism spectroscopy suggests simple helical structures for Ag + -mediated duplexes with lengths to at least 20 base pairs, and further indicates that the structure of cytosine-rich duplexes is preserved at high urea concentrations. We therefore propose an approach towards dynamic DNA nanomaterials with enhanced thermal and chemical stability through designs that combine sturdy silver-mediated ‘frames’ with WC paired ‘pictures’. (paper)

  4. Genetic mutation analysis of HBV covalently closed circular DNA in peripheral blood mononuclear cells from chronic hepatitis B patients with nucleos(tide analog-resistant mutations in serum virions

    Directory of Open Access Journals (Sweden)

    Zhong-bin LI

    2012-06-01

    Full Text Available Objective  To analyze the characteristics of genetic mutations in reverse-transcriptase (RT domain of HBV covalently closed circular DNA (cccDNA in peripheral blood mononuclear cells (PBMCs obtained from chronic hepatitis B (CHB patients with drug-resistant mutations in serum virions during nucleoside/nucleotide analog (NA therapy. Methods  A total of 30 CHB patients admitted to 302 Hospital of PLA from July 2010 to August 2011 were included in this study. All the patients were confirmed to harbor the drug-resistant mutations in serum virions during an NA therapy longer than 6 months. Total DNA was extracted from PBMCs isolated from 30 whole blood samples at the same time point as that of serum analysis. Plasmid-safe ATP-dependent DNase (PSAD digestion in combination with rolling circle amplification and gap-spanning semi-nested PCR were used to amplify the RT region of HBV cccDNA. NA-resistant-associated mutations were analyzed at nine sites. Results  HBV cccDNA was efficiently amplified in 16 out of 30 (53.3% PBMC samples, and the detection rate was not correlated with HBeAg-positive rate, serum ALT level or HBV DNA load. Five of 16 (31.3% patients were sustained to have genotype B HBV infection, and 11 of 16 (68.8% were of genotype C HBV infection, and the result was consistent with the genotyping results using serum HBV. Different from drug-resistant mutations detected in the serum virions, the viruses detected in HBV cccDNA of 16 PBMC samples were all wild-type viruses without NA-resistant-associated mutations in RT region. Conclusions  During NA antiviral treatment, if drug-resistant mutations occur in serum HBV DNA of CHB patients, the dominant species of HBV cccDNA in PBMCs from the same patient is still the original wild-type strains. It is speculated that PBMCs might be the potential "repository" of HBV wild-type strain in vivo.

  5. Repeated extraction of DNA from FTA cards

    DEFF Research Database (Denmark)

    Stangegaard, Michael; Ferrero, Laura; Børsting, Claus

    2011-01-01

    Extraction of DNA using magnetic bead based techniques on automated DNA extraction instruments provides a fast, reliable and reproducible method for DNA extraction from various matrices. However, the yield of extracted DNA from FTA-cards is typically low. Here, we demonstrate that it is possible...... to repeatedly extract DNA from the processed FTA-disk. The method increases the yield from the nanogram range to the microgram range....

  6. Raman spectroscopic study of plasma-treated salmon DNA

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Geon Joon; Kim, Yong Hee; Choi, Eun Ha [Plasma Bioscience Research Center, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Kwon, Young-Wan [Department of Chemistry, Korea University, Seoul 136-701 (Korea, Republic of)

    2013-01-14

    In this research, we studied the effect of plasma treatment on the optical/structural properties of the deoxyribonucleic acid (DNA) extracted from salmon sperm. DNA-cetyltrimethylammonium (CTMA) films were obtained by complexation of DNA with CTMA. Circular dichroism (CD) and Raman spectra indicated that DNA retained its double helical structure in the solid film. The Raman spectra exhibited several vibration modes corresponding to the nuclear bases and the deoxyribose-phosphate backbones of the DNA, as well as the alkylchains of CTMA. Dielectric-barrier-discharge (DBD) plasma treatment induced structural modification and damage to the DNA, as observed by changes in the ultraviolet-visible absorption, CD, and Raman spectra. The optical emission spectra of the DBD plasma confirmed that DNA modification was induced by plasma ions such as reactive oxygen species and reactive nitrogen species.

  7. Interpreting tunneling time in circularly polarized strong-laser ionization

    OpenAIRE

    Yuan, MingHu; Xin, PeiPei; Chu, TianShu; Liu, HongPing

    2016-01-01

    We propose a method to study the tunneling process by analyzing the time-dependent ionization yield in circularly polarized laser. A numerical calculation shows that for an atom exposed to a long laser pulse, if its initial electronic state wave function is non-spherical symmetric, the delayed phase shift of the ionization rate vs. the laser cycle period in real time in the region close to the peak intensity of the laser pulse can be used to probe the tunneling time. In this region, an obviou...

  8. Improving the circular economy via hydrothermal processing of high-density waste plastics.

    Science.gov (United States)

    Helmer Pedersen, Thomas; Conti, Federica

    2017-10-01

    Rising environmental concerns on climate changes are causing an increasing attention on circular economies. The plastic economy, in particular, is in focus due to the accelerating consumption of plastics, mainly derived from virgin feedstock, combined with the lack of plastic recycling strategies. This work presents a novel outlook on the potential of using supercritical hydrothermal processing of waste plastic fractions for tertiary recycling. The study investigates hydrothermal processing of nine different, high-density types of plastics into original resin monomers and other value-added chemical compounds. The outlook presents conversion yields, carbon balances, and chemical details on the products obtained. It is found that all the investigated resins are prone to hydrothermal treatment, and that high yields of monomers and high value compounds (up to nearly 100%), suitable for chemicals and fuels applications, can be obtained. For instance, for polycarbonate, styrene-butadiene, poly(lactic acid), poly(ethylene terephthalate), and poly(butylene terephthalate), original monomeric compounds can be reclaimed for manufacturing new resins. The promising results presented demonstrate that hydrothermal processing of high-density plastics is a prospective technology for increasing the circularity of the plastic economy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. DNA-PK dependent targeting of DNA-ends to a protein complex assembled on matrix attachment region DNA sequences

    International Nuclear Information System (INIS)

    Mauldin, S.K.; Getts, R.C.; Perez, M.L.; DiRienzo, S.; Stamato, T.D.

    2003-01-01

    Full text: We find that nuclear protein extracts from mammalian cells contain an activity that allows DNA ends to associate with circular pUC18 plasmid DNA. This activity requires the catalytic subunit of DNA-PK (DNA-PKcs) and Ku since it was not observed in mutants lacking Ku or DNA-PKcs but was observed when purified Ku/DNA-PKcs was added to these mutant extracts. Competition experiments between pUC18 and pUC18 plasmids containing various nuclear matrix attachment region (MAR) sequences suggest that DNA ends preferentially associate with plasmids containing MAR DNA sequences. At a 1:5 mass ratio of MAR to pUC18, approximately equal amounts of DNA end binding to the two plasmids were observed, while at a 1:1 ratio no pUC18 end-binding was observed. Calculation of relative binding activities indicates that DNA-end binding activities to MAR sequences was 7 to 21 fold higher than pUC18. Western analysis of proteins bound to pUC18 and MAR plasmids indicates that XRCC4, DNA ligase IV, scaffold attachment factor A, topoisomerase II, and poly(ADP-ribose) polymerase preferentially associate with the MAR plasmid in the absence or presence of DNA ends. In contrast, Ku and DNA-PKcs were found on the MAR plasmid only in the presence of DNA ends. After electroporation of a 32P-labeled DNA probe into human cells and cell fractionation, 87% of the total intercellular radioactivity remained in nuclei after a 0.5M NaCl extraction suggesting the probe was strongly bound in the nucleus. The above observations raise the possibility that DNA-PK targets DNA-ends to a repair and/or DNA damage signaling complex which is assembled on MAR sites in the nucleus

  10. Primer-Independent DNA Synthesis by a Family B DNA Polymerase from Self-Replicating Mobile Genetic Elements

    Directory of Open Access Journals (Sweden)

    Modesto Redrejo-Rodríguez

    2017-11-01

    Full Text Available Family B DNA polymerases (PolBs play a central role during replication of viral and cellular chromosomes. Here, we report the discovery of a third major group of PolBs, which we denote primer-independent PolB (piPolB, that might be a link between the previously known protein-primed and RNA/DNA-primed PolBs. PiPolBs are encoded by highly diverse mobile genetic elements, pipolins, integrated in the genomes of diverse bacteria and also present as circular plasmids in mitochondria. Biochemical characterization showed that piPolB displays efficient DNA polymerization activity that can use undamaged and damaged templates and is endowed with proofreading and strand displacement capacities. Remarkably, the protein is also capable of template-dependent de novo DNA synthesis, i.e., DNA-priming activity, thereby breaking the long-standing dogma that replicative DNA polymerases require a pre-existing primer for DNA synthesis. We suggest that piPolBs are involved in self-replication of pipolins and may also contribute to bacterial DNA damage tolerance.

  11. Failure assessment diagrams for circular hollow section X- and K-joints

    International Nuclear Information System (INIS)

    Qian, Xudong

    2013-01-01

    This paper reports the failure assessment curves for semi-elliptical surface cracks located at hot-spot positions in the circular hollow section X- and K-joints. The failure assessment curves derive from the square root of the ratio between the linear–elastic and the elastic–plastic energy release rates, computed from the domain-integral approach. This study examines both the material and geometric dependence of the failure assessment curves. The area reduction factor, used in defining the strength of the cracked joints, imposes a significant effect on the computed failure assessment curve. The failure assessment curves indicate negligible variations with respect to the crack-front locations and the material yield strength. The crack depth ratio exerts a stronger effect on the computed failure assessment curve than does the crack aspect ratio. This study proposes a parametric expression for the failure assessment curves based on the geometric parameters for surface cracks in circular hollow section X- and K-joints. -- Highlights: ► This study proposes geometric dependent expressions of FADs for tubular joints. ► We examine the geometric and material dependence of the FADs for X- and K-joints. ► The proposed FAD is independent of yield strength and is a lower-bound for typical hardening

  12. The Structure of a Thermophilic Kinase Shapes Fitness upon Random Circular Permutation.

    Science.gov (United States)

    Jones, Alicia M; Mehta, Manan M; Thomas, Emily E; Atkinson, Joshua T; Segall-Shapiro, Thomas H; Liu, Shirley; Silberg, Jonathan J

    2016-05-20

    Proteins can be engineered for synthetic biology through circular permutation, a sequence rearrangement in which native protein termini become linked and new termini are created elsewhere through backbone fission. However, it remains challenging to anticipate a protein's functional tolerance to circular permutation. Here, we describe new transposons for creating libraries of randomly circularly permuted proteins that minimize peptide additions at their termini, and we use transposase mutagenesis to study the tolerance of a thermophilic adenylate kinase (AK) to circular permutation. We find that libraries expressing permuted AKs with either short or long peptides amended to their N-terminus yield distinct sets of active variants and present evidence that this trend arises because permuted protein expression varies across libraries. Mapping all sites that tolerate backbone cleavage onto AK structure reveals that the largest contiguous regions of sequence that lack cleavage sites are proximal to the phosphotransfer site. A comparison of our results with a range of structure-derived parameters further showed that retention of function correlates to the strongest extent with the distance to the phosphotransfer site, amino acid variability in an AK family sequence alignment, and residue-level deviations in superimposed AK structures. Our work illustrates how permuted protein libraries can be created with minimal peptide additions using transposase mutagenesis, and it reveals a challenge of maintaining consistent expression across permuted variants in a library that minimizes peptide additions. Furthermore, these findings provide a basis for interpreting responses of thermophilic phosphotransferases to circular permutation by calibrating how different structure-derived parameters relate to retention of function in a cellular selection.

  13. Synthesis, DNA Binding and Topoisomerase I Inhibition Activity of Thiazacridine and Imidazacridine Derivatives

    Directory of Open Access Journals (Sweden)

    Elizabeth Almeida Lafayette

    2013-12-01

    Full Text Available Thiazacridine and imidazacridine derivatives have shown promising results as tumors suppressors in some cancer cell lines. For a better understanding of the mechanism of action of these compounds, binding studies of 5-acridin-9-ylmethylidene-3-amino-2-thioxo-thiazolidin-4-one, 5-acridin-9-ylmethylidene-2-thioxo-thiazolidin-4-one, 5-acridin-9-ylmethylidene-2-thioxo-imidazolidin-4-one and 3-acridin-9-ylmethyl-thiazolidin-2,4-dione with calf thymus DNA (ctDNA by electronic absorption and fluorescence spectroscopy and circular dichroism spectroscopy were performed. The binding constants ranged from 1.46 × 104 to 6.01 × 104 M−1. UV-Vis, fluorescence and circular dichroism measurements indicated that the compounds interact effectively with ctDNA, both by intercalation or external binding. They demonstrated inhibitory activities to human topoisomerase I, except for 5-acridin-9-ylmethylidene-2-thioxo-1,3-thiazolidin-4-one. These results provide insight into the DNA binding mechanism of imidazacridines and thiazacridines.

  14. Recovery of DNA from agarose gel by trap method | Xia | African ...

    African Journals Online (AJOL)

    Recovery of DNA from agarose gel electrophoresis is a basic operation during molecular cloning. Circular or linear DNA fragments which vary from 1.5 to 6.5 kb and correspond to 1 kb marker can be recovered from 0.8 to 1.0% agarose gel smoothly with a simple and rapid trap method. The recovery efficiency could be ...

  15. Circular viral DNA detection and junction sequence analysis from PBMC of SHIV-infected cynomolgus monkeys with undetectable virus plasma RNA

    International Nuclear Information System (INIS)

    Cara, Andrea; Maggiorella, Maria Teresa; Bona, Roberta; Sernicola, Leonardo; Baroncelli, Silvia; Negri, Donatella R.M.; Leone, Pasqualina; Fagrouch, Zahra; Heeney, Jonathan; Titti, Fausto; Cafaro, Aurelio; Ensoli, Barbara

    2004-01-01

    Extrachromosomal forms of human immunodeficiency virus (HIV)-1 can be detected in peripheral blood mononuclear cell (PBMC) from HIV-infected patients in the absence of detectable viral replication and are thought to be a sign of active but cryptic virus replication. No information, however, are available on whether these forms are also present in animal models for acquired immunodeficiency syndrome (AIDS) and on their relation with other methods of detection of virus replication. To this aim, a polymerase chain reaction (PCR) approach was used to detect and analyze unintegrated circular 2-LTR-containing forms in PBMC of simian human immunodeficiency virus (SHIV)89.6P infected cynomolgus monkeys with RNA levels ranging between 1.8x10 6 and less than 50 copies/ml of plasma. 2-LTR forms were detected in 96.5% of monkeys' samples above 50 copies/ml of plasma, whereas they were present in 75.8% of monkeys' samples below 50 copies/ml of plasma. Persistence of unintegrated viral DNA in monkeys with undetectable plasma RNA could indicate either stability in non-dividing cells or ongoing low levels of viral replication in dividing cells

  16. Circular states of atomic hydrogen

    International Nuclear Information System (INIS)

    Lutwak, R.; Holley, J.; Chang, P.P.; Paine, S.; Kleppner, D.; Ducas, T.

    1997-01-01

    We describe the creation of circular states of hydrogen by adiabatic transfer of a Rydberg state in crossed electric and magnetic fields, and also by adiabatic passage in a rotating microwave field. The latter method permits rapid switching between the two circular states of a given n manifold. The two methods are demonstrated experimentally, and results are presented of an analysis of the field ionization properties of the circular states. An application for the circular states is illustrated by millimeter-wave resonance in hydrogen of the n=29→n=30 transition. copyright 1997 The American Physical Society

  17. Metallization of DNA on silicon surface

    International Nuclear Information System (INIS)

    Puchkova, Anastasiya Olegovna; Sokolov, Petr; Petrov, Yuri Vladimirovich; Kasyanenko, Nina Anatolievna

    2011-01-01

    New simple way for silver deoxyribonucleic acid (DNA)-based nanowires preparation on silicon surface was developed. The electrochemical reduction of silver ions fixed on DNA molecule provides the forming of tightly matched zonate silver clusters. Highly homogeneous metallic clusters have a size about 30 nm. So the thickness of nanowires does not exceed 30–50 nm. The surface of n-type silicon monocrystal is the most convenient substrate for this procedure. The comparative analysis of DNA metallization on of n-type silicon with a similar way for nanowires fabrication on p-type silicon, freshly cleaved mica, and glass surface shows the advantage of n-type silicon, which is not only the substrate for DNA fixation but also the source of electrons for silver reduction. Images of bound DNA molecules and fabricated nanowires have been obtained using an atomic force microscope and a scanning ion helium microscope. DNA interaction with silver ions in a solution was examined by the methods of ultraviolet spectroscopy and circular dichroism.

  18. Influence of Tension Stiffening on the Flexural Stiffness of Reinforced Concrete Circular Sections.

    Science.gov (United States)

    Morelli, Francesco; Amico, Cosimo; Salvatore, Walter; Squeglia, Nunziante; Stacul, Stefano

    2017-06-18

    Within this paper, the assessment of tension stiffening effects on a reinforced concrete element with the circular sections subjected to axial and bending loads is presented. To this purpose, an enhancement of an analytical model already present within the actual technical literature is proposed. The accuracy of the enhanced method is assessed by comparing the experimental results carried out in past research and the numerical ones obtained by the model. Finally, a parametric study is executed in order to study the influence of axial compressive force on the flexural stiffness of reinforced concrete elements that are characterized by a circular section, comparing the secant stiffness evaluated at yielding and at maximum resistance, considering and not considering the effects of tension stiffness.

  19. Influence of Tension Stiffening on the Flexural Stiffness of Reinforced Concrete Circular Sections

    Directory of Open Access Journals (Sweden)

    Francesco Morelli

    2017-06-01

    Full Text Available Within this paper, the assessment of tension stiffening effects on a reinforced concrete element with the circular sections subjected to axial and bending loads is presented. To this purpose, an enhancement of an analytical model already present within the actual technical literature is proposed. The accuracy of the enhanced method is assessed by comparing the experimental results carried out in past research and the numerical ones obtained by the model. Finally, a parametric study is executed in order to study the influence of axial compressive force on the flexural stiffness of reinforced concrete elements that are characterized by a circular section, comparing the secant stiffness evaluated at yielding and at maximum resistance, considering and not considering the effects of tension stiffness.

  20. Comparison on the interaction of Al3+/nano-Al13 with calf thymus DNA /salmon sperm DNA

    Science.gov (United States)

    Ma, Fei; Ma, Yue; Du, Changwen; Yang, Xiaodi; Shen, Renfang

    2015-11-01

    The conformation change, binding mode and binding site between Al3+/nano-Al13 and calf thymus DNA/salmon sperm DNA were investigated by UV-vis absorption, FTIR spectra, Raman spectroscopy and CD spectra, as well as melting curves measurement. The UV-vis spectra and circular dichroism spectra results suggested that the phosphate group structure was changed when Al3+ interacted with DNA, while the double-helix was distorted when nano-Al13 interacted with DNA. The FTIR and Raman spectroscopy revealed that the binding sites were Al3+ … PO2, Al3+ … N7/guanine PO2 … Al13 … N7-C8/guanine with calf thymus DNA, and Al3+ … N3-O2/cytosine, Al3+ … N7-C8/guanine, PO2 … Al13 … N7-C8/guanine, PO2 … Al13 … N1/adenine with salmon sperm DNA, respectively. The electrostatic binding was existed between Al3+ and DNA, and the electrostatic binding and complexing were found between nano-Al13 and DNA.

  1. Improved recovery of DNA from polyacrylamide gels after in situ DNA footprinting

    NARCIS (Netherlands)

    van Keulen, G; Meijer, WG

    Methods used to date for the isolation of DNA from polyacrylamide gels are elution based, time-consuming and with low yield in DNA. This paper describes an improved system employing polyacrylamide gels made of a meltable matrix. The new system was successfully applied to in situ DNA footprinting

  2. Solid Angle Computations for a Circular Radiator and a Circular Detector

    Energy Technology Data Exchange (ETDEWEB)

    Konijn, J; Tollander, B

    1963-02-15

    The problem of particle detection, when using an isotropic neutron point source at different distances from a circular target or a radioactive source as seen by a circular detector, e. g. a solid state counter, is dealt with. Tables are given for different distances of the source when the reaction at the target has an isotropic or a cosine angular distribution in the laboratory system.

  3. Antennas on circular cylinders

    DEFF Research Database (Denmark)

    Knudsen, H. L.

    1959-01-01

    On the basis of the results obtained by Silver and Saunders [4] for the field radiated from an arbitrary slot in a perfectly conducting circular cylinder, expressions have been derived for the field radiated by a narrow helical slot, with an arbitrary aperture field distribution, in a circular...... antenna in a circular cylinder. By a procedure similar to the one used by Silver and Saunders, expressions have been derived for the field radiated from an arbitrary surface current distribution on a cylinder surface coaxial with a perfectly conducting cylinder. The cases where the space between the two...

  4. DNA Origami-Graphene Hybrid Nanopore for DNA Detection.

    Science.gov (United States)

    Barati Farimani, Amir; Dibaeinia, Payam; Aluru, Narayana R

    2017-01-11

    DNA origami nanostructures can be used to functionalize solid-state nanopores for single molecule studies. In this study, we characterized a nanopore in a DNA origami-graphene heterostructure for DNA detection. The DNA origami nanopore is functionalized with a specific nucleotide type at the edge of the pore. Using extensive molecular dynamics (MD) simulations, we computed and analyzed the ionic conductivity of nanopores in heterostructures carpeted with one or two layers of DNA origami on graphene. We demonstrate that a nanopore in DNA origami-graphene gives rise to distinguishable dwell times for the four DNA base types, whereas for a nanopore in bare graphene, the dwell time is almost the same for all types of bases. The specific interactions (hydrogen bonds) between DNA origami and the translocating DNA strand yield different residence times and ionic currents. We also conclude that the speed of DNA translocation decreases due to the friction between the dangling bases at the pore mouth and the sequencing DNA strands.

  5. Towards Circular Business Models

    DEFF Research Database (Denmark)

    Guldmann, Eva; Remmen, Arne

    The present report concerns the practical process of developing initiatives based on the circular economy in eight Danish companies. The report outlines how the process of integrating the circular economy was approached in each of the participating companies during 2014 and 2015 and what came out...

  6. Human mitochondrial DNA (mtDNA) types in Malaysia

    International Nuclear Information System (INIS)

    Lian, L.H.; Koh, C.L.; Lim, M.E.

    2000-01-01

    Each human cell contains hundreds of mitochondria and thousands of double-stranded circular mtDNA. The delineation of human mtDNA variation and genetics over the past decade has provided unique and often startling insights into human evolution, degenerative diseases, and aging. Each mtDNA of 16,569 base pairs, encodes 13 polypeptides essential to the enzymes of the mitochondrial energy generating pathway, plus the necessary tRNAs and rRNAs. The highly polymorphic noncoding D-(displacement) loop region, also called the control region, is approximately 1.2 kb long. It contains two well-characterized hypervariable (HV-) regions, HV1 and HV2. MtDNA identification is usually based on these sequence differences. According to the TWTGDAM (Technical Working Group for DNA Analysis Methods), the minimum requirement for a mtDNA database for HV1 is from positions 16024 to 16365 and for HV2, from positions 00073 to 00340. The targeted Malaysian population subgroups for this study were mainly the Malays, Chinese, Indians, and indigenous Ibans, Bidayuhs, Kadazan-Dusuns, and Bajaus. Research methodologies undertaken included DNA extraction of samples from unrelated individuals, amplification of the specific regions via the polymerase chain reaction (PCR), and preparation of template DNA for sequencing by using an automated DNA sequencer. Sufficient nucleotide sequence data were generated from the mtDNA analysis. When the sequences were analyzed, sequence variations were found to be caused by nucleotide substitutions, insertions, and deletions. Of the three causes of the sequence variations, nucleotide substitutions (86.1%) accounted for the vast majority of polymorphism. It is noted that transitions (83.5%) were predominant when compared to the significantly lower frequencies of transversions (2.6%). Insertions (0.9%) and deletions (13.0%) were rather rare and found only in HV2. The data generated will also form the basis of a Malaysian DNA sequence database of mtDNA D

  7. Low-Voltage Paper Isotachophoresis Device for DNA Focusing

    Science.gov (United States)

    Li, Xiang; Luo, Long; Crooks, Richard M.

    2015-01-01

    We present a new paper-based isotachophoresis (ITP) device design for focusing DNA samples having lengths ranging from 23 to at least 1517 bp. DNA is concentrated by more than two orders of magnitude within 4 min. The key component of this device is a 2 mm-long, 2 mm-wide circular paper channel formed by concertina folding a paper strip and aligning the circular paper zones on each layer. Due to the short channel length, a high electric field of ~16 kV/m is easily generated in the paper channel using two 9 V batteries. The multilayer architecture also enables convenient reclamation and analysis of the sample after ITP focusing by simply opening the origami paper and cutting out the desired layers. We profiled the electric field in the origami paper channel during ITP experiments using a nonfocusing fluorescent tracer. The result showed that focusing relies on formation and subsequent movement of a sharp electric field boundary between the leading and trailing electrolyte. PMID:26338530

  8. Circularity and Lambda Abstraction

    DEFF Research Database (Denmark)

    Danvy, Olivier; Thiemann, Peter; Zerny, Ian

    2013-01-01

    unknowns from what is done to them, which we lambda-abstract with functions. The circular unknowns then become dead variables, which we eliminate. The result is a strict circu- lar program a la Pettorossi. This transformation is reversible: given a strict circular program a la Pettorossi, we introduce...

  9. Purification of supercoiled DNA of plasmid Col E1 by RPC-5 chromatography

    Energy Technology Data Exchange (ETDEWEB)

    Best, A.N.; Allison, D.P.; Novelli, G.D.

    1981-07-01

    Col E1 DNA can be purified to a high degree by RPC-5 chromatography of a partially purified cell lysate with a very shallow linear NaC1 gradient at pH 7.8. Electron micrographs demonstrated that the purest fractions were composed of 93% supercoiled (form I) DNA and 7% open circular (form II) DNA. The actual chromatography can be accomplished in 13 to 14 h and is designed for the production of several milligrams of plasmid DNA.

  10. Identification and reproducibility of diagnostic DNA markers for tuber starch and yield optimization in a novel association mapping population of potato (Solanum tuberosum L.).

    Science.gov (United States)

    Schönhals, E M; Ortega, F; Barandalla, L; Aragones, A; Ruiz de Galarreta, J I; Liao, J-C; Sanetomo, R; Walkemeier, B; Tacke, E; Ritter, E; Gebhardt, C

    2016-04-01

    SNPs in candidate genes Pain - 1, InvCD141 (invertases), SSIV (starch synthase), StCDF1 (transcription factor), LapN (leucine aminopeptidase), and cytoplasm type are associated with potato tuber yield, starch content and/or starch yield. Tuber yield (TY), starch content (TSC), and starch yield (TSY) are complex characters of high importance for the potato crop in general and for industrial starch production in particular. DNA markers associated with superior alleles of genes that control the natural variation of TY, TSC, and TSY could increase precision and speed of breeding new cultivars optimized for potato starch production. Diagnostic DNA markers are identified by association mapping in populations of tetraploid potato varieties and advanced breeding clones. A novel association mapping population of 282 genotypes including varieties, breeding clones and Andean landraces was assembled and field evaluated in Northern Spain for TY, TSC, TSY, tuber number (TN) and tuber weight (TW). The landraces had lower mean values of TY, TW, TN, and TSY. The population was genotyped for 183 microsatellite alleles, 221 single nucleotide polymorphisms (SNPs) in fourteen candidate genes and eight known diagnostic markers for TSC and TSY. Association test statistics including kinship and population structure reproduced five known marker-trait associations of candidate genes and discovered new ones, particularly for tuber yield and starch yield. The inclusion of landraces increased the number of detected marker-trait associations. Integration of the present association mapping results with previous QTL linkage mapping studies for TY, TSC, TSY, TW, TN, and tuberization revealed some hot spots of QTL for these traits in the potato genome. The genomic positions of markers linked or associated with QTL for complex tuber traits suggest high multiplicity and genome wide distribution of the underlying genes.

  11. A rolling circle replication mechanism produces multimeric lariats of mitochondrial DNA in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Samantha C Lewis

    2015-02-01

    Full Text Available Mitochondrial DNA (mtDNA encodes respiratory complex subunits essential to almost all eukaryotes; hence respiratory competence requires faithful duplication of this molecule. However, the mechanism(s of its synthesis remain hotly debated. Here we have developed Caenorhabditis elegans as a convenient animal model for the study of metazoan mtDNA synthesis. We demonstrate that C. elegans mtDNA replicates exclusively by a phage-like mechanism, in which multimeric molecules are synthesized from a circular template. In contrast to previous mammalian studies, we found that mtDNA synthesis in the C. elegans gonad produces branched-circular lariat structures with multimeric DNA tails; we were able to detect multimers up to four mtDNA genome unit lengths. Further, we did not detect elongation from a displacement-loop or analogue of 7S DNA, suggesting a clear difference from human mtDNA in regard to the site(s of replication initiation. We also identified cruciform mtDNA species that are sensitive to cleavage by the resolvase RusA; we suggest these four-way junctions may have a role in concatemer-to-monomer resolution. Overall these results indicate that mtDNA synthesis in C. elegans does not conform to any previously documented metazoan mtDNA replication mechanism, but instead are strongly suggestive of rolling circle replication, as employed by bacteriophages. As several components of the metazoan mitochondrial DNA replisome are likely phage-derived, these findings raise the possibility that the rolling circle mtDNA replication mechanism may be ancestral among metazoans.

  12. The generalized circular model

    NARCIS (Netherlands)

    Webers, H.M.

    1995-01-01

    In this paper we present a generalization of the circular model. In this model there are two concentric circular markets, which enables us to study two types of markets simultaneously. There are switching costs involved for moving from one circle to the other circle, which can also be thought of as

  13. Identification of the DNA-Binding Domains of Human Replication Protein A That Recognize G-Quadruplex DNA

    Directory of Open Access Journals (Sweden)

    Aishwarya Prakash

    2011-01-01

    Full Text Available Replication protein A (RPA, a key player in DNA metabolism, has 6 single-stranded DNA-(ssDNA- binding domains (DBDs A-F. SELEX experiments with the DBDs-C, -D, and -E retrieve a 20-nt G-quadruplex forming sequence. Binding studies show that RPA-DE binds preferentially to the G-quadruplex DNA, a unique preference not observed with other RPA constructs. Circular dichroism experiments show that RPA-CDE-core can unfold the G-quadruplex while RPA-DE stabilizes it. Binding studies show that RPA-C binds pyrimidine- and purine-rich sequences similarly. This difference between RPA-C and RPA-DE binding was also indicated by the inability of RPA-CDE-core to unfold an oligonucleotide containing a TC-region 5′ to the G-quadruplex. Molecular modeling studies of RPA-DE and telomere-binding proteins Pot1 and Stn1 reveal structural similarities between the proteins and illuminate potential DNA-binding sites for RPA-DE and Stn1. These data indicate that DBDs of RPA have different ssDNA recognition properties.

  14. Best Practice Examples of Circular Business Models

    DEFF Research Database (Denmark)

    Guldmann, Eva

    Best practice examples of circular business models are presented in this report. The purpose is to inform and inspire interested readers, in particular companies that aspire to examine the potentials of the circular economy. Circular business models in two different sectors are examined, namely...... the textile and clothing sector as well as the durable goods sector. In order to appreciate the notion of circular business models, the basics of the circular economy are outlined along with three frameworks for categorizing the various types of circular business models. The frameworks take point of departure...... in resource loops, value bases and business model archetypes respectively, and they are applied for analysing and organizing the business models that are presented throughout the report. The investigations in the report show that circular business models are relevant to businesses because they hold...

  15. [The effect of spermine on acid-base equilibrium in DNA molecule].

    Science.gov (United States)

    Slonitskiĭ, S V; Kuptsov, V Iu

    1990-01-01

    The influence of spermine (Sp) on the acid-induced predenaturational and denaturational transitions in the DNA molecule structure has been studied by means of circular dichroism, spectrophotometric and viscometric titration at supporting electrolyte concentration 10 mM NaCl. The data available indicate that at [N]/[P] less than or equal to 0.60 (here [N] and [P] are molar concentrations of Sp nitrogen and DNA phosphours, respectively) the cooperative structural B----B(+)----S transitions are accompanied by the DNA double-helice winding. No competition for proton acceptor sites in the DNA molecule between H+ and Sp4+ cations has been observed when binding to neutral macromolecule. At 0.60 less than or equal to [N]/[P] less than or equal to 0.75 the displacement of the B----B(+)----S transitions midpoints to acidic pH region has been established. This is accompanied by DNA condensation and the appearance of differential scattering of circularly polarized light. The calculations carried out in the framework of the two-variable Manning theory have shown that the acid-induced reduction of the effective polyion charge density facilitates the Sp-induced DNA condensation. It has been shown that the acid-base equilibrium in the DNA molecule is determined by local [H+] in the 2-3 A hydrated monolayer of the macromolecule. An adequate estimation of [H+] can be obtained on the basis of the Poisson-Boltzman approach. The data obtained are consistent with recently proposed hypothesis of polyelectrolyte invariance of the acid-base equilibrium in the DNA molecule.

  16. Establishment of Cre-mediated HBV recombinant cccDNA (rcccDNA) cell line for cccDNA biology and antiviral screening assays.

    Science.gov (United States)

    Wu, Min; Li, Jin; Yue, Lei; Bai, Lu; Li, Yaming; Chen, Jieliang; Zhang, Xiaonan; Yuan, Zhenghong

    2018-04-01

    Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA), existing in hepatocyte nuclei as a stable minichromosome, plays a central role in the life cycle of the virus and permits the persistence of infection. Despite being essential for HBV infection, little is known about the molecular mechanisms of cccDNA formation, regulation and degradation, and there is no therapeutic agents directly targeting cccDNA, fore mostly due to the lack of robust, reliable and quantifiable HBV cccDNA models. In this study, combined the Cre/loxP and sleeping beauty transposons system, we established HepG2-derived cell lines integrated with 2-60 copies of monomeric HBV genome flanked by loxP sites (HepG2-HBV/loxP). After Cre expression via adenoviral transduction, 3.3-kb recombinant cccDNA (rcccDNA) bearing a chimeric intron can be produced in the nuclei of these HepG2-HBV/loxP cells. The rcccDNA could be accurately quantified by quantitative PCR using specific primers and cccDNA pool generated in this model could be easily detected by Southern blotting using the digoxigenin probe system. We demonstrated that the rcccDNA was epigenetically organized as the natural minichromosome and served as the template supporting pgRNA transcription and viral replication. As the expression of HBV S antigen (HBsAg) is dependent on the newly generated cccDNA, HBsAg is the surrogate marker of cccDNA. Additionally, the efficacies of 3 classes of anti-HBV agents were evaluated in HepG2-HBV/loxP cells and antiviral activities with different mechanisms were confirmed. These data collectively suggested that HepG2-HBV/loxP cell system will be powerful platform for studying cccDNA related biological mechanisms and developing novel cccDNA targeting drugs. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Assembly of DNA Architectures in a Non-Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Thomas J. Proctor

    2012-08-01

    Full Text Available In the present work, the procedures for the creation of self-assembled DNA nanostructures in aqueous and non-aqueous media are described. DNA-Surfactant complex formation renders the DNA soluble in organic solvents offering an exciting way to bridge the transition of DNA origami materials electronics applications. The DNA retains its structural features, and these unique geometries provide an interesting candidate for future electronics and nanofabrication applications with potential for new properties. The DNA architectures were first assembled under aqueous conditions, and then characterized in solution (using circular dichroism (CD spectroscopy and on the surface (using atomic force microscopy (AFM. Following aqueous assembly, the DNA nanostructures were transitioned to a non-aqueous environment, where butanol was chosen for optical compatibility and thermal properties. The retention of DNA hierarchical structure and thermal stability in non-aqueous conditions were confirmed via CD spectroscopy. The formation and characterization of these higher order DNA-surfactant complexes is described in this paper.

  18. Circular arc structures

    KAUST Repository

    Bo, Pengbo

    2011-07-01

    The most important guiding principle in computational methods for freeform architecture is the balance between cost efficiency on the one hand, and adherence to the design intent on the other. Key issues are the simplicity of supporting and connecting elements as well as repetition of costly parts. This paper proposes so-called circular arc structures as a means to faithfully realize freeform designs without giving up smooth appearance. In contrast to non-smooth meshes with straight edges where geometric complexity is concentrated in the nodes, we stay with smooth surfaces and rather distribute complexity in a uniform way by allowing edges in the shape of circular arcs. We are able to achieve the simplest possible shape of nodes without interfering with known panel optimization algorithms. We study remarkable special cases of circular arc structures which possess simple supporting elements or repetitive edges, we present the first global approximation method for principal patches, and we show an extension to volumetric structures for truly threedimensional designs. © 2011 ACM.

  19. Synthesis and characterization of a lamellar hydroxyapatite/DNA nanohybrid

    Energy Technology Data Exchange (ETDEWEB)

    Zuo Guifu; Wan Yizao; Meng Xianguang [School of Materials Science and Engineering, Tianjin University, Tianjin 300072 (China); Zhao Qing [School of Agriculture and Bioengineering, Tianjin University, Tianjin 300072 (China); Ren Kaijing [Department of Joint Surgery, Tianjin Hospital, Tianjin 300211 (China); Jia Shiru [Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin University of Science and Technology, 29, 13th Street, TEDA, Tianjin 300457 (China); Wang Jiehua, E-mail: gfzuo@tju.edu.cn [School of Agriculture and Bioengineering, Tianjin University, Tianjin 300072 (China)

    2011-04-15

    Research highlights: {yields} A lamellar hydroxyapatite (HAp)/DNA nanohybrid was prepared as a novel gene delivering vector. {yields} Gel electrophoresis analysis confirmed that the lamellar HAp could protect DNA from degradation of DNase I. {yields} The protected DNA in the HAp/DNA nanohybrid could be recovered readily under acid conditions. - Abstract: Two-dimensional layered materials exhibit desired functionalities when being used as gene delivery materials. In this study, a novel gene delivering vector, lamellar hydroxyapatite (HAp)/DNA nanohybrid was prepared. The structure of HAp/DNA nanohybrid was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fourier transform infrared (FT-IR) spectroscopy analysis revealed that ion-exchange occurred during the process. Gel electrophoresis analysis confirmed that the lamellar HAp could protect DNA from degradation of DNase I and the protected DNA could be recovered readily under acid conditions. Furthermore, the integrity of released DNA was confirmed by UV-vis spectra.

  20. Color Image Encryption Using Three-Dimensional Sine ICMIC Modulation Map and DNA Sequence Operations

    Science.gov (United States)

    Liu, Wenhao; Sun, Kehui; He, Yi; Yu, Mengyao

    Derived from Sine map and iterative chaotic map with infinite collapse (ICMIC), a three-dimensional hyperchaotic Sine ICMIC modulation map (3D-SIMM) is proposed based on a close-loop modulation coupling (CMC) method. Based on this map, a novel color image encryption algorithm is designed by employing a hybrid model of multidirectional circular permutation and deoxyribonucleic acid (DNA) masking. In this scheme, the pixel positions of image are scrambled by multidirectional circular permutation, and the pixel values are substituted by DNA sequence operations. The simulation results and security analysis show that the algorithm has good encryption effect and strong key sensitivity, and can resist brute-force, statistical, differential, known-plaintext and chosen-plaintext attacks.

  1. Voltammetric determination of attomolar levels of a sequence derived from the genom of hepatitis B virus by using molecular beacon mediated circular strand displacement and rolling circle amplification.

    Science.gov (United States)

    Huang, Shan; Feng, Mengmeng; Li, Jiawen; Liu, Yi; Xiao, Qi

    2018-03-03

    The authors describe an electrochemical method for the determination of the single-stranded DNA (ssDNA) oligonucleotide with a sequence derived from the genom of hepatitis B virus (HBV). It is making use of circular strand displacement (CSD) and rolling circle amplification (RCA) strategies mediated by a molecular beacon (MB). This ssDNA hybridizes with the loop portion of the MB immobilized on the surface of a gold electrode, while primer DNA also hybridizes with the rest of partial DNA sequences of MB. This triggers the MB-mediated CSD. The RCA is then initiated to produce a long DNA strand with multiple tandem-repeat sequences, and this results in a significant increase of the differential pulse voltammetric response of the electrochemical probe Methylene Blue at a rather low working potential of -0.24 V (vs. Ag/AgCl). Under optimal experimental conditions, the assay displays an ultrahigh sensitivity (with a 2.6 aM detection limit) and excellent selectivity. Response is linear in the 10 to 700 aM DNA concentration range. Graphical abstract Schematic of a voltammetric method for the determination of attomolar levels of target DNA. It is based on molecular beacon mediated circular strand displacement and rolling circle amplification strategies. Under optimal experimental conditions, the assay displays an ultrahigh sensitivity with a 2.6 aM detection limit and excellent selectivity.

  2. Novel Single-Stranded DNA Virus Genomes Recovered from Chimpanzee Feces Sampled from the Mambilla Plateau in Nigeria

    Science.gov (United States)

    Walters, Matthew; Bawuro, Musa; Christopher, Alfred; Knight, Alexander; Kraberger, Simona; Stainton, Daisy; Chapman, Hazel

    2017-01-01

    ABSTRACT Metagenomic approaches are rapidly expanding our knowledge of the diversity of viruses. In the fecal matter of Nigerian chimpanzees we recovered three gokushovirus genomes, one circular replication-associated protein encoding single-stranded DNA virus (CRESS), and a CRESS DNA molecule. PMID:28254982

  3. A Conceptual Framework for Circular Design

    Directory of Open Access Journals (Sweden)

    Mariale Moreno

    2016-09-01

    Full Text Available Design has been recognised in the literature as a catalyst to move away from the traditional model of take-make-dispose to achieve a more restorative, regenerative and circular economy. As such, for a circular economy to thrive, products need to be designed for closed loops, as well as be adapted to generate revenues. This should not only be at the point of purchase, but also during use, and be supported by low-cost return chains and reprocessing structures, as well as effective policy and regulation. To date, most academic and grey literature on the circular economy has focused primarily on the development of new business models, with some of the latter studies addressing design strategies for a circular economy, specifically in the area of resource cycles and design for product life extension. However, these studies primarily consider a limited spectrum of the technical and biological cycles where materials are recovered and restored and nutrients (e.g., materials, energy, water are regenerated. This provides little guidance or clarity for designers wishing to design for new circular business models in practice. As such, this paper aims to address this gap by systematically analysing previous literature on Design for Sustainability (DfX (e.g., design for resource conservation, design for slowing resource loops and whole systems design and links these approaches to the current literature on circular business models. A conceptual framework is developed for circular economy design strategies. From this conceptual framework, recommendations are made to enable designers to fully consider the holistic implications for design within a circular economy.

  4. Asymptotic theory of circular polarization memory.

    Science.gov (United States)

    Dark, Julia P; Kim, Arnold D

    2017-09-01

    We establish a quantitative theory of circular polarization memory, which is the unexpected persistence of the incident circular polarization state in a strongly scattering medium. Using an asymptotic analysis of the three-dimensional vector radiative transfer equation (VRTE) in the limit of strong scattering, we find that circular polarization memory must occur in a boundary layer near the portion of the boundary on which polarized light is incident. The boundary layer solution satisfies a one-dimensional conservative scattering VRTE. Through a spectral analysis of this boundary layer problem, we introduce the dominant mode, which is the slowest-decaying mode in the boundary layer. To observe circular polarization memory for a particular set of optical parameters, we find that this dominant mode must pass three tests: (1) this dominant mode is given by the largest, discrete eigenvalue of a reduced problem that corresponds to Fourier mode k=0 in the azimuthal angle, and depends only on Stokes parameters U and V; (2) the polarization state of this dominant mode is largely circular polarized so that |V|≫|U|; and (3) the circular polarization of this dominant mode is maintained for all directions so that V is sign-definite. By applying these three tests to numerical calculations for monodisperse distributions of Mie scatterers, we determine the values of the size and relative refractive index when circular polarization memory occurs. In addition, we identify a reduced, scalar-like problem that provides an accurate approximation for the dominant mode when circular polarization memory occurs.

  5. Exploration of disulfiram dealings with calf thymus DNA using spectroscopic, electrochemical and molecular docking techniques

    International Nuclear Information System (INIS)

    Subastri, A.; Durga, A.; Harikrishna, K.; Sureshkumar, M.; Jeevaratnam, K.; Girish, K.S.; Thirunavukkarasu, C.

    2016-01-01

    Disulfiram (C 10 H 20 N 2 S 4 ) is an acetaldehyde dehydrogenase inhibitor used in the treatment of chronic alcoholism and it has also been subjected to the clinical trial for cancer in recent times. However, there is no report on the binding effect of this emerging drug with DNA. Hence, the present investigation was taken up to study the binding effect of disulfiram on DNA under physiological conditions. UV–vis absorption spectroscopy, fluorescence emission spectroscopy, circular dichroism spectroscopy, cyclic voltammetry and molecular docking techniques were employed to determine the interaction mode of disulfiram with DNA. Further, DNA cleavage property of disulfiram was carried out by using agarose gel electrophoresis. The UV–vis absorption, emission and cyclic voltammetry measurements revealed that disulfiram showed the intercalative mode of interaction with DNA. The circular dichroism study exhibited structural changes of partial transition from B-conformation to A-conformation in DNA upon addition of disulfiram. Molecular docking study of disulfiram with DNA depicted intercalative mode of binding by formation of hydrogen and hydrophobic interaction along with docking score of −3.07 kcal/mol. The DNA cleavage study revealed that low concentration of disulfiram (50 µM) protected the DNA from oxidative damage sequentially, while high concentration of disulfiram (100 µM) showed less protective activity. Conversely, it caused DNA damage in the presence of hydroxyl radical oxidative system. Hence, the results obtained from the present investigations provide detailed discernment into DNA interaction effects of disulfiram.

  6. Protein Self-Assembly and Protein-Induced DNA Morphologies

    Science.gov (United States)

    Mawhinney, Matthew T.

    The ability of biomolecules to associate into various structural configurations has a substantial impact on human physiology. The synthesis of protein polypeptide chains using the information encoded by DNA is mediated through the use of regulatory proteins, known as transcription factors. Some transcription factors perform function by inducing local curvature in deoxyribonucleic acid (DNA) strands, the mechanisms of which are not entirely known. An important architectural protein, eleven zinc finger CTCF (11 ZF CTCF) is involved in genome organization and hypothesized to mediate DNA loop formation. Direct evidence for these CTCF-induced DNA loops has yet to be observed. In this thesis, the effect of 11 ZF CTCF on DNA morphology is examined using atomic force microscopy, a powerful technique for visualizing biomolecules with nanometer resolution. The presence of CTCF is revealed to induce a variety of morphologies deviating from the relaxed state of control DNA samples, including compact circular complexes, meshes, and networks. Images reveal quasi-circular DNA/CTCF complexes consistent with a single DNA molecule twice wrapped around the protein. The structures of DNA and proteins are highly important for operations in the cell. Structural irregularities may lead to a variety of issues, including more than twenty human pathologies resulting from aberrant protein misfolding into amyloid aggregates of elongated fibrils. Insulin deficiency and resistance characterizing type 2 diabetes often requires administration of insulin. Injectable and inhalable delivery methods have been documented to result in the deposition of amyloid fibrils. Oligomers, soluble multiprotein assemblies, are believed to play an important role in this process. Insulin aggregation under physiological conditions is not well understood and oligomers have not yet been fully characterized. In this thesis, in vitro insulin aggregation at acidic and neutral pH is explored using a variety of techniques

  7. Microbial food safety: Potential of DNA extraction methods for use in diagnostic metagenomics

    DEFF Research Database (Denmark)

    Josefsen, Mathilde Hasseldam; Andersen, Sandra Christine; Christensen, Julia

    2015-01-01

    ) yielding protocols. The PowerLyzer PowerSoil DNA Isolation Kit performed significantly better than all other protocols tested. Selected protocols were modified, i.e., extended heating and homogenization, resulting in increased yields of total DNA. For QIAamp Fast DNA Stool Mini Kit (Qiagen) a 7-fold...... of the protocols to extract DNA was observed. The highest DNA yield was obtained with the PowerLyzer PowerSoil DNA Isolation Kit, whereas the FastDNA SPIN Kit for Feces (MP Biomedicals) resulted in the highest amount of PCR-amplifiable C. jejuni DNA....

  8. Identification, Characterization, and Three-Dimensional Structure of the Novel Circular Bacteriocin, Enterocin NKR-5-3B, from Enterococcus faecium.

    Science.gov (United States)

    Himeno, Kohei; Rosengren, K Johan; Inoue, Tomoko; Perez, Rodney H; Colgrave, Michelle L; Lee, Han Siean; Chan, Lai Y; Henriques, Sónia Troeira; Fujita, Koji; Ishibashi, Naoki; Zendo, Takeshi; Wilaipun, Pongtep; Nakayama, Jiro; Leelawatcharamas, Vichien; Jikuya, Hiroyuki; Craik, David J; Sonomoto, Kenji

    2015-08-11

    Enterocin NKR-5-3B, one of the multiple bacteriocins produced by Enterococcus faecium NKR-5-3, is a 64-amino acid novel circular bacteriocin that displays broad-spectrum antimicrobial activity. Here we report the identification, characterization, and three-dimensional nuclear magnetic resonance solution structure determination of enterocin NKR-5-3B. Enterocin NKR-5-3B is characterized by four helical segments that enclose a compact hydrophobic core, which together with its circular backbone impart high stability and structural integrity. We also report the corresponding structural gene, enkB, that encodes an 87-amino acid precursor peptide that undergoes a yet to be described enzymatic processing that involves adjacent cleavage and ligation of Leu(24) and Trp(87) to yield the mature (circular) enterocin NKR-5-3B.

  9. A Selective G-Quadruplex DNA-Stabilizing Ligand Based on a Cyclic Naphthalene Diimide Derivative

    Directory of Open Access Journals (Sweden)

    Md. Monirul Islam

    2015-06-01

    Full Text Available A cyclic naphthalene diimide (cyclic NDI, 1, carrying a benzene moiety as linker chain, was synthesized and its interaction with G-quadruplex DNAs of a-core and a-coreTT as a human telomeric DNA, c-kit and c-myc as DNA sequence at promoter region, or thrombin-binding aptamer (TBA studied based on UV-VIS and circular dichroism (CD spectroscopic techniques, thermal melting temperature measurement, and FRET-melting assay. The circular dichroism spectra showed that 1 induced the formation of different types of G-quadruplex DNA structure. Compound 1 bound to these G-quadruplexes with affinities in the range of 106–107 M−1 order and a 2:1 stoichiometry. Compound 1 showed 270-fold higher selectivity for a-core than dsDNA with a preferable a-core binding than a-coreTT, c-kit, c-myc and TBA in the presence of K+, which is supported by thermal melting studies. The FRET-melting assay also showed that 1 bound preferentially to human telomeric DNA. Compound 1 showed potent inhibition against telomerase activity with an IC50 value of 0.9 μM and preferable binding to G-quadruplexes DNA than our previously published cyclic NDI derivative 3 carrying a benzene moiety as longer linker chain.

  10. How to Assess Product Performance in the Circular Economy? Proposed Requirements for the Design of a Circularity Measurement Framework

    OpenAIRE

    Saidani , Michael; YANNOU , Bernard; Leroy , Yann; Cluzel , François

    2017-01-01

    International audience; Assessing product circularity performance is not straightforward. Meanwhile, it gains increasingly importance for businesses and industrial practitioners who are willing to effectively take benefits from circular economy promises. Thus, providing methods and tools to evaluate then enhance product performance—in the light of circular economy—becomes a significant but still barely addressed topic. Following a joint agreement on the need to measure product circularity per...

  11. Reverse gyrase functions in genome integrity maintenance by protecting DNA breaks in vivo

    DEFF Research Database (Denmark)

    Han, Wenyuan; Feng, Xu; She, Qunxin

    2017-01-01

    Reverse gyrase introduces positive supercoils to circular DNA and is implicated in genome stability maintenance in thermophiles. The extremely thermophilic crenarchaeon Sulfolobus encodes two reverse gyrase proteins, TopR1 (topoisomerase reverse gyrase 1) and TopR2, whose functions in thermophilic...... and subsequent DNA degradation. The former occurred immediately after drug treatment, leading to chromosomal DNA degradation that concurred with TopR1 degradation, followed by chromatin protein degradation and DNA-less cell formation. To gain a further insight into TopR1 function, the expression of the enzyme...

  12. Tolerance of a knotted near infrared fluorescent protein to random circular permutation

    Science.gov (United States)

    Pandey, Naresh; Kuypers, Brianna E.; Nassif, Barbara; Thomas, Emily E.; Alnahhas, Razan N.; Segatori, Laura; Silberg, Jonathan J.

    2016-01-01

    Bacteriophytochrome photoreceptors (BphP) are knotted proteins that have been developed as near-infrared fluorescent protein (iRFP) reporters of gene expression. To explore how rearrangements in the peptides that interlace into the knot within the BphP photosensory core affect folding, we subjected iRFP to random circular permutation using an improved transposase mutagenesis strategy and screened for variants that fluoresce. We identified twenty seven circularly permuted iRFP that display biliverdin-dependent fluorescence in Escherichia coli. The variants with the brightest whole cell fluorescence initiated translation at residues near the domain linker and knot tails, although fluorescent variants were discovered that initiated translation within the PAS and GAF domains. Circularly permuted iRFP retained sufficient cofactor affinity to fluoresce in tissue culture without the addition of biliverdin, and one variant displayed enhanced fluorescence when expressed in bacteria and tissue culture. This variant displayed a similar quantum yield as iRFP, but exhibited increased resistance to chemical denaturation, suggesting that the observed signal increase arose from more efficient protein maturation. These results show how the contact order of a knotted BphP can be altered without disrupting chromophore binding and fluorescence, an important step towards the creation of near-infrared biosensors with expanded chemical-sensing functions for in vivo imaging. PMID:27304983

  13. Genomic DNA extraction from sapwood of Pinus roxburghii for ...

    African Journals Online (AJOL)

    A method for extraction of genomic DNA from sapwood tissues of mature tall trees of Pinus roxburghii, where collection of needle tissues is extremely difficult has been standardized. The extracted DNA was comparable to that obtained from the needle tissue in terms of yield and purity. The yield of extracted DNA ranged ...

  14. Isolating silkworm genomic DNA without liquid nitrogen suitable for ...

    African Journals Online (AJOL)

    Genomic DNA was isolated from posterior silk gland of silkworms, Antheraea assama. Absolute alcohol was used as tissue fixing solution instead of grinding in liquid nitrogen, which yielded high molecular weight DNA (>40 kb). Samples yielded similar amount of DNA when fixed in absolute alcohol (400 μmg/g of silk gland ...

  15. Computational simulations of hydrogen circular migration in protonated acetylene induced by circularly polarized light

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xuetao; Li, Wen; Schlegel, H. Bernhard, E-mail: hbs@chem.wayne.edu [Department of Chemistry, Wayne State University, Detroit, Michigan 48202 (United States)

    2016-08-28

    The hydrogens in protonated acetylene are very mobile and can easily migrate around the C{sub 2} core by moving between classical and non-classical structures of the cation. The lowest energy structure is the T-shaped, non-classical cation with a hydrogen bridging the two carbons. Conversion to the classical H{sub 2}CCH{sup +} ion requires only 4 kcal/mol. The effect of circularly polarized light on the migration of hydrogens in oriented C{sub 2}H{sub 3}{sup +} has been simulated by Born-Oppenheimer molecular dynamics. Classical trajectory calculations were carried out with the M062X/6-311+G(3df,2pd) level of theory using linearly and circularly polarized 32 cycle 7 μm cosine squared pulses with peak intensity of 5.6 × 10{sup 13} W/cm{sup 2} and 3.15 × 10{sup 13} W/cm{sup 2}, respectively. These linearly and circularly polarized pulses transfer similar amounts of energy and total angular momentum to C{sub 2}H{sub 3}{sup +}. The average angular momentum vectors of the three hydrogens show opposite directions of rotation for right and left circularly polarized light, but no directional preference for linearly polarized light. This difference results in an appreciable amount of angular displacement of the three hydrogens relative to the C{sub 2} core for circularly polarized light, but only an insignificant amount for linearly polarized light. Over the course of the simulation with circularly polarized light, this corresponds to a propeller-like motion of the three hydrogens around the C{sub 2} core of protonated acetylene.

  16. Specific functions of the Rep and Rep׳ proteins of porcine circovirus during copy-release and rolling-circle DNA replication.

    Science.gov (United States)

    Cheung, Andrew K

    2015-07-01

    The roles of two porcine circovirus replication initiator proteins, Rep and Rep׳, in generating copy-release and rolling-circle DNA replication intermediates were determined. Rep uses the supercoiled closed-circular genome (ccc) to initiate leading-strand synthesis (identical to copy-release replication) and generates the single-stranded circular (ssc) genome from the displaced DNA strand. In the process, a minus-genome primer (MGP) necessary for complementary-strand synthesis, from ssc to ccc, is synthesized. Rep׳ cleaves the growing nascent-strand to regenerate the parent ccc molecule. In the process, a Rep׳-DNA hybrid containing the right palindromic sequence (at the origin of DNA replication) is generated. Analysis of the virus particle showed that it is composed of four components: ssc, MGP, capsid protein and a novel Rep-related protein (designated Protein-3). Copyright © 2015. Published by Elsevier Inc.

  17. Precise Sequential DNA Ligation on A Solid Substrate: Solid-Based Rapid Sequential Ligation of Multiple DNA Molecules

    Science.gov (United States)

    Takita, Eiji; Kohda, Katsunori; Tomatsu, Hajime; Hanano, Shigeru; Moriya, Kanami; Hosouchi, Tsutomu; Sakurai, Nozomu; Suzuki, Hideyuki; Shinmyo, Atsuhiko; Shibata, Daisuke

    2013-01-01

    Ligation, the joining of DNA fragments, is a fundamental procedure in molecular cloning and is indispensable to the production of genetically modified organisms that can be used for basic research, the applied biosciences, or both. Given that many genes cooperate in various pathways, incorporating multiple gene cassettes in tandem in a transgenic DNA construct for the purpose of genetic modification is often necessary when generating organisms that produce multiple foreign gene products. Here, we describe a novel method, designated PRESSO (precise sequential DNA ligation on a solid substrate), for the tandem ligation of multiple DNA fragments. We amplified donor DNA fragments with non-palindromic ends, and ligated the fragment to acceptor DNA fragments on solid beads. After the final donor DNA fragments, which included vector sequences, were joined to the construct that contained the array of fragments, the ligation product (the construct) was thereby released from the beads via digestion with a rare-cut meganuclease; the freed linear construct was circularized via an intra-molecular ligation. PRESSO allowed us to rapidly and efficiently join multiple genes in an optimized order and orientation. This method can overcome many technical challenges in functional genomics during the post-sequencing generation. PMID:23897972

  18. Study of Auger effect in DNA when bound to molecules containing platinum. A possible application to hadrontherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, K.; Usami, N.; Sasaki, I.; Frohlich, H.; Le Sech, C. E-mail: lesech@lcam.u-psud.fr

    2003-01-01

    Complexes made of DNA and Cyclo-Pt bound to plasmid DNA, were placed in aqueous solution and irradiated with monochromatic X-rays in the range E=8.5-13 keV, including the resonant photoabsorption energy of the L{sub III} shell of the platinum atom. The number of single- and double-strand breaks (ssb and dsb) induced by irradiation on a supercoiled DNA plasmid was measured by the production of circular-nicked and linear forms. In order to disentangle the contribution of the direct effects imparted to ionization, and the indirect effects due to a free radical attack, experiments have been performed in the presence of a small concentration (64 mmol l{sup -1}) of hydroxyl free radical scavenger dimethyl sulfoxide (DMSO). An enhancement of the number of ssb and dsb is observed when the plasmids contain the Pt intercalating molecules. Even when off-resonant X-rays are used, the strand break efficiency remains higher than expected based upon the absorption cross-section, as if the Pt bound to DNA is increasing the yield of strand breaks. A mechanism is suggested, involving photoelectrons generated from the ionization of water which efficiently ionize Pt atoms. This observation may provide an insight to understanding the effects of new radiotherapy protocols, associated chemotherapeutic agents such as cisplatin and ordinary radiotherapy for tumoral treatments.

  19. Circular Updates

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Circular Updates are periodic sequentially numbered instructions to debriefing staff and observers informing them of changes or additions to scientific and specimen...

  20. Effect of DNA sequence of Fab fragment on yield characteristics and cell growth of E. coli.

    Science.gov (United States)

    Kulmala, Antti; Huovinen, Tuomas; Lamminmäki, Urpo

    2017-06-19

    Codon usage is one of the factors influencing recombinant protein expression. We were interested in the codon usage of an antibody Fab fragment gene exhibiting extreme toxicity in the E. coli host. The toxic synthetic human Fab gene contained domains optimized by the "one amino acid-one codon" method. We redesigned five segments of the Fab gene with a "codon harmonization" method described by Angov et al. and studied the effects of these changes on cell viability, Fab yield and display on filamentous phage using different vectors and bacterial strains. The harmonization considerably reduced toxicity, increased Fab expression from negligible levels to 10 mg/l, and restored the display on phage. Testing the impact of the individual redesigned segments revealed that the most significant effects were conferred by changes in the constant domain of the light chain. For some of the Fab gene variants, we also observed striking differences in protein yields when cloned from a chloramphenicol resistant vector into an identical vector, except with ampicillin resistance. In conclusion, our results show that the expression of a heterodimeric secretory protein can be improved by harmonizing selected DNA segments by synonymous codons and reveal additional complexity involved in heterologous protein expression.

  1. Circular RNAs as Promising Biomarkers: A mini-review

    Directory of Open Access Journals (Sweden)

    Nadiah Abu

    2016-08-01

    Full Text Available The interest in circular RNAs has resurfaced in the past few years. What was considered as junk for nearly two decades is now one of the most interesting molecules. Circular RNAs are non-coding RNAs that are formed by back-splicing events and have covalently closed loops with no poly-adenylated tails. The regulation of circular RNAs is distinctive and they are selectively abundant in different types of tissues. Based on the current knowledge of circular RNAs, these molecules have the potential to be the next big thing especially as biomarkers for different diseases. This mini-review attempts to concisely look at the biology of circular RNAs, the putative functional activities, the prevalence of circular RNAs, and the possible role of circular RNA as biomarkers for diagnosis or measuring drug response.

  2. Optimised Pre-Analytical Methods Improve KRAS Mutation Detection in Circulating Tumour DNA (ctDNA) from Patients with Non-Small Cell Lung Cancer (NSCLC)

    Science.gov (United States)

    Sherwood, James L.; Corcoran, Claire; Brown, Helen; Sharpe, Alan D.; Musilova, Milena; Kohlmann, Alexander

    2016-01-01

    Introduction Non-invasive mutation testing using circulating tumour DNA (ctDNA) is an attractive premise. This could enable patients without available tumour sample to access more treatment options. Materials & Methods Peripheral blood and matched tumours were analysed from 45 NSCLC patients. We investigated the impact of pre-analytical variables on DNA yield and/or KRAS mutation detection: sample collection tube type, incubation time, centrifugation steps, plasma input volume and DNA extraction kits. Results 2 hr incubation time and double plasma centrifugation (2000 x g) reduced overall DNA yield resulting in lowered levels of contaminating genomic DNA (gDNA). Reduced “contamination” and increased KRAS mutation detection was observed using cell-free DNA Blood Collection Tubes (cfDNA BCT) (Streck), after 72 hrs following blood draw compared to EDTA tubes. Plasma input volume and use of different DNA extraction kits impacted DNA yield. Conclusion This study demonstrated that successful ctDNA recovery for mutation detection in NSCLC is dependent on pre-analytical steps. Development of standardised methods for the detection of KRAS mutations from ctDNA specimens is recommended to minimise the impact of pre-analytical steps on mutation detection rates. Where rapid sample processing is not possible the use of cfDNA BCT tubes would be advantageous. PMID:26918901

  3. Optimised Pre-Analytical Methods Improve KRAS Mutation Detection in Circulating Tumour DNA (ctDNA from Patients with Non-Small Cell Lung Cancer (NSCLC.

    Directory of Open Access Journals (Sweden)

    James L Sherwood

    Full Text Available Non-invasive mutation testing using circulating tumour DNA (ctDNA is an attractive premise. This could enable patients without available tumour sample to access more treatment options.Peripheral blood and matched tumours were analysed from 45 NSCLC patients. We investigated the impact of pre-analytical variables on DNA yield and/or KRAS mutation detection: sample collection tube type, incubation time, centrifugation steps, plasma input volume and DNA extraction kits.2 hr incubation time and double plasma centrifugation (2000 x g reduced overall DNA yield resulting in lowered levels of contaminating genomic DNA (gDNA. Reduced "contamination" and increased KRAS mutation detection was observed using cell-free DNA Blood Collection Tubes (cfDNA BCT (Streck, after 72 hrs following blood draw compared to EDTA tubes. Plasma input volume and use of different DNA extraction kits impacted DNA yield.This study demonstrated that successful ctDNA recovery for mutation detection in NSCLC is dependent on pre-analytical steps. Development of standardised methods for the detection of KRAS mutations from ctDNA specimens is recommended to minimise the impact of pre-analytical steps on mutation detection rates. Where rapid sample processing is not possible the use of cfDNA BCT tubes would be advantageous.

  4. High Precision Linear And Circular Polarimetry. Sources With Stable Stokes Q,U & V In The Ghz Regime

    Science.gov (United States)

    Myserlis, Ioannis; Angelakis, E.; Zensus, J. A.

    2017-10-01

    We present a novel data analysis pipeline for the reconstruction of the linear and circular polarization parameters of radio sources. It includes several correction steps to minimize the effect of instrumental polarization, allowing the detection of linear and circular polarization degrees as low as 0.3 %. The instrumental linear polarization is corrected across the whole telescope beam and significant Stokes Q and U can be recovered even when the recorded signals are severely corrupted. The instrumental circular polarization is corrected with two independent techniques which yield consistent Stokes V results. The accuracy we reach is of the order of 0.1-0.2 % for the polarization degree and 1\\u00ba for the angle. We used it to recover the polarization of around 150 active galactic nuclei that were monitored monthly between 2010.6 and 2016.3 with the Effelsberg 100-m telescope. We identified sources with stable polarization parameters that can be used as polarization standards. Five sources have stable linear polarization; three are linearly unpolarized; eight have stable polarization angle; and 11 sources have stable circular polarization, four of which with non-zero Stokes V.

  5. The effects of solar ultraviolet-B radiation on the growth and yield of barley are accompanied by increased DNA damage and antioxidant responses

    International Nuclear Information System (INIS)

    Mazza, C.A.; Battista, D.; Zima, A.M.; Szwarcberg-Bracchitta, M.; Giordano, C.V.; Acevedo, A.; Scopel, A.L.; Ballare, C.L.

    1999-01-01

    There is limited information on the impacts of present-day solar ultraviolet-B radiation (UV-B) on biomass and grain yield of field crops and on the mechanisms that confer tolerance to UV-B radiation under field conditions. We investigated the effects of solar UV-B on aspects of the biochemistry, growth and yield of barley crops using replicated field plots and two barley strains, a catalase (CAT)-deficient mutant (RPr 79/4) and its wild-type mother line (Maris Mink). Solar UV-B reduced biomass accumulation and grain yield in both strains. The effects on crop biomass accumulation tended to be more severe in RPr 79/4 (≈ 32% reduction) than in the mother line (≈ 20% reduction). Solar UV-B caused measurable DNA damage in leaf tissue, in spite of inducing a significant increase in UV-absorbing sunscreens in the two lines. Maris Mink responded to solar UV-B with increased CAT and ascorbate peroxidase (APx) activity. No effects of UV-B on total superoxide dismutase (SOD) activity were detected. Compared with the wild type, RPr 79/4 had lower CAT activity, as expected, but higher APx activity. Neither of these activities increased in response to UV-B in RPr 79/4. These results suggest that growth inhibition by solar UV-B involves DNA damage and oxidative stress, and that constitutive and UV-B-induced antioxidant capacity may play an important role in UV-B tolerance. (author)

  6. Broadband Circularly Polarized Slot Antenna Loaded by a Multiple-Circular-Sector Patch.

    Science.gov (United States)

    Trinh-Van, Son; Yang, Youngoo; Lee, Kang-Yoon; Hwang, Keum Cheol

    2018-05-15

    In this paper, a microstrip-fed broadband circularly polarized (CP) slot antenna is presented. CP operation can be attained simply by embedding an S-shaped strip. By loading with a multiple-circular-sector patch, which consists of 12 circular-sector patches with identical central angles of 30° and different radii, the 3 dB axial ratio (AR) bandwidth is significantly broadened. To validate the performance of the proposed antenna, an antenna prototype is fabricated and tested. The fabricated antenna is 54 mm × 54 mm × 0.8 mm in size. The measured -10 dB reflection and 3 dB AR bandwidths are 81.06% (1.68⁻3.97 GHz) and 70.55% (1.89⁻3.95 GHz), respectively. Within the 3 dB AR bandwidth, the measured peak gain is 3.81 dBic. Reasonable agreement is also obtained between the measured and simulated results.

  7. Circular Business: Collaborate and Circulate : a bookreview

    NARCIS (Netherlands)

    Timmermans, Ratna W.; Witjes, S.|info:eu-repo/dai/nl/381088200

    2016-01-01

    With their book, “Circular Business: Collaborate and Circulate”, Circular Collaboration, Amersfoort, ISBN: 978-90-824902-0-6, €35, Kraaijenhagen et al. (2016) give companies practical guidance on their contribution to the development of a more circular economy by presenting a practical 10-step

  8. Regulation Mechanism of HBV cccDNA

    Directory of Open Access Journals (Sweden)

    Cheng Jun

    2012-06-01

    Full Text Available Covalently closed circular (ccc DNA of hepatitis B virus (HBV existed in the nuclei of HBV infected hepatocytes with a half-life time of 14.3 years in a mathematic model. Viral protein feedback regulation in HBV life cycle to maintain vital viral replication is an important mechanism. Interleukin-6, epithelial growth factor, heme oxygenase-1, histones, and hepatocyte nuclear factors are demonstrated as the key regulators for HBV life cycle. CpG island structure and methylation status are involved in the regulation of HBV DNA replication. Nucleos(tide analogues are widely used in the clinical practice for the treatment of chronic hepatitis B patients, although no evidence indicating a direct inhibiton of HBV cccDNA. In the future, along with the study of HBV life cycle, new drugs including RNA interference technique, will pave the way to eliminate the HBV cccDNA from infected hepatocytes resulting final cure of chronic hepatitis B.

  9. Method for assessing damage to mitochondrial DNA caused by radiation and epichlorohydrin

    International Nuclear Information System (INIS)

    Singh, G.; Hauswirth, W.W.; Ross, W.E.; Neims, A.H.

    1985-01-01

    This paper describes a rapid and reliable method for quantification of damage to mitochondrial DNA (mtDNA), especially strand breaks. The degree of damage to mtDNA is assessed by the proportion of physical forms (i.e., supercoiled versus open-circular and linear forms) upon agarose gel electrophoresis, blotting, and visualization by hybridization with [ 32 P]mtDNA probes. The use of a radiolabeled probe is a crucial step in the procedure because it provides both a means to quantify by radioautography and to obtain the mtDNA specificity required to eliminate misinterpretation due to nuclear DNA contamination. To demonstrate the utility of this technique, X-irradiation and epichlorohydrin are shown to damage both isolated mtDNA and mtDNA in whole cells in a dose-dependent fashion

  10. Localization and dynamics of small circular DNA in live mammalian nuclei

    DEFF Research Database (Denmark)

    Mearini, Giulia; Nielsen, Peter E; Fackelmayer, Frank O

    2004-01-01

    with intranuclear structural sites that strongly reduce its mobility and restrict the DNA to regions excluding nucleoli and nuclear bodies such as PML bodies. The labeled plasmids partially co-localize with SAF-A, a well characterized marker protein for the nuclear 'scaffold' or 'matrix', and are resistant towards...

  11. Modifying and adapting a plant-based DNA extraction protocol for ...

    African Journals Online (AJOL)

    ... a 100 apparently healthy individuals residing in Calabar. The modified DNA procedure yielded good quality genomic DNA which was used in carrying out allele specific polymerase chain reaction which also yielded good quality amplicons. This method is simple and suitable for the extraction of DNA from human red cell.

  12. Optical Detection of Non-amplified Genomic DNA

    Science.gov (United States)

    Li, Di; Fan, Chunhai

    Nucleic acid sequences are unique to every living organisms including animals, plants and even bacteria and virus, which provide a practical molecular target for the identification and diagnosis of various diseases. DNA contains heterocyclic rings that has inherent optical absorbance at 260 nm, which is widely used to quantify single and double stranded DNA in biology. However, this simple quantification method could not differentiate sequences; therefore it is not suitable for sequence-specific analyte detection. In addition to a few exceptions such as chiral-related circular dichroism spectra, DNA hybridization does not produce significant changes in optical signals, thus an optical label is generally needed for sequence-specific DNA detection with optical means. During the last two decades, we have witnessed explosive progress in the area of optical DNA detection, especially with the help of simultaneously rapidly developed nanomaterials. In this chapter, we will summarize recent advances in optical DNA detection including colorimetric, fluorescent, luminescent, surface plasmon resonance (SPR) and Raman scattering assays. Challenges and problems remained to be addressed are also discussed.

  13. Mitochondrial DNA replication: a PrimPol perspective

    Science.gov (United States)

    Bailey, Laura J.

    2017-01-01

    PrimPol, (primase–polymerase), the most recently identified eukaryotic polymerase, has roles in both nuclear and mitochondrial DNA maintenance. PrimPol is capable of acting as a DNA polymerase, with the ability to extend primers and also bypass a variety of oxidative and photolesions. In addition, PrimPol also functions as a primase, catalysing the preferential formation of DNA primers in a zinc finger-dependent manner. Although PrimPol's catalytic activities have been uncovered in vitro, we still know little about how and why it is targeted to the mitochondrion and what its key roles are in the maintenance of this multicopy DNA molecule. Unlike nuclear DNA, the mammalian mitochondrial genome is circular and the organelle has many unique proteins essential for its maintenance, presenting a differing environment within which PrimPol must function. Here, we discuss what is currently known about the mechanisms of DNA replication in the mitochondrion, the proteins that carry out these processes and how PrimPol is likely to be involved in assisting this vital cellular process. PMID:28408491

  14. Exploration of disulfiram dealings with calf thymus DNA using spectroscopic, electrochemical and molecular docking techniques

    Energy Technology Data Exchange (ETDEWEB)

    Subastri, A.; Durga, A. [Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605014 (India); Harikrishna, K.; Sureshkumar, M. [Centre for Bioinformatics, Pondicherry University, Puducherry 605014 (India); Jeevaratnam, K. [Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605014 (India); Girish, K.S. [Department of Studies & Research in Biochemistry, Tumkur University, Tumkur, Karnataka (India); Thirunavukkarasu, C., E-mail: tchinnasamy@hotmail.com [Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry 605014 (India)

    2016-02-15

    Disulfiram (C{sub 10}H{sub 20}N{sub 2}S{sub 4}) is an acetaldehyde dehydrogenase inhibitor used in the treatment of chronic alcoholism and it has also been subjected to the clinical trial for cancer in recent times. However, there is no report on the binding effect of this emerging drug with DNA. Hence, the present investigation was taken up to study the binding effect of disulfiram on DNA under physiological conditions. UV–vis absorption spectroscopy, fluorescence emission spectroscopy, circular dichroism spectroscopy, cyclic voltammetry and molecular docking techniques were employed to determine the interaction mode of disulfiram with DNA. Further, DNA cleavage property of disulfiram was carried out by using agarose gel electrophoresis. The UV–vis absorption, emission and cyclic voltammetry measurements revealed that disulfiram showed the intercalative mode of interaction with DNA. The circular dichroism study exhibited structural changes of partial transition from B-conformation to A-conformation in DNA upon addition of disulfiram. Molecular docking study of disulfiram with DNA depicted intercalative mode of binding by formation of hydrogen and hydrophobic interaction along with docking score of −3.07 kcal/mol. The DNA cleavage study revealed that low concentration of disulfiram (50 µM) protected the DNA from oxidative damage sequentially, while high concentration of disulfiram (100 µM) showed less protective activity. Conversely, it caused DNA damage in the presence of hydroxyl radical oxidative system. Hence, the results obtained from the present investigations provide detailed discernment into DNA interaction effects of disulfiram.

  15. Characterization of a Xenopus laevis mitochondrial protein with a high affinity for supercoiled DNA.

    OpenAIRE

    Mignotte, B; Barat, M

    1986-01-01

    A DNA binding protein of 31 Kd -mtDBPC- has been isolated from X. laevis oocyte mitochondria. It is present in large amounts in the organelle and does not show any enzymatic activity. Its binding to the superhelical form of a DNA is higher than for any other form, or for RNA. No sequence specificity could be found for any mtDNA fragments tested, including both origins of replication. It is able to introduce superhelical turns into relaxed circular DNA in the presence of a topoisomerase I acti...

  16. Symplectic methods in circular accelerators

    International Nuclear Information System (INIS)

    Forest, E.

    1994-01-01

    By now symplectic integration has been applied to many problems in classical mechanics. It is my conviction that the field of particle simulation in circular rings is ideally suited for the application of symplectic integration. In this paper, I present a short description symplectic tools in circular storage rings

  17. 76 FR 60593 - Title VI; Proposed Circular

    Science.gov (United States)

    2011-09-29

    ..., several of them related to ambiguous language in the existing Circular. The proposed Circular reorganizes... regional entity, and inclusive of public and private entities. This term is used exclusively in Chapter IV... revisions to the Title VI Circular. The section that addresses the existing requirement for a Language...

  18. Effect of vanillin on methylene blue plus light-induced single-strand breaks in plasmid pBR322 DNA.

    Science.gov (United States)

    Kumar, S S; Ghosh, A; Devasagayam, T P; Chauhan, P S

    2000-09-20

    The ability of vanillin (4-hydroxy-3-methoxybenzaldehyde), a naturally occurring food flavouring agent, in inhibiting photosensitization-induced single-strand breaks (ssbs) in plasmid pBR322 DNA has been examined in an in vitro system, independent of DNA repair/replication processes. Photosensitization of DNA with methylene blue, visible light and oxygen, induced ssbs resulting in the production of open circular form (OC form) in a concentration-dependent manner. The yield of OC form induced by photosensitization was increased several-fold by deuteration of the buffer and was found to be inhibited by sodium azide, a scavenger of singlet oxygen (1O(2)). Vanillin, per se, did not induce but inhibited photosensitization-induced ssbs in plasmid DNA, at millimolar concentrations. The inhibitory effect of vanillin was both concentration- and time-dependent. On a molar basis, vanillin was, however, less effective than trolox, a water-soluble analogue of alpha-tocopherol. Photosensitization by methylene blue system generates singlet oxygen, as one of the major components of ROS. Therefore, interaction of singlet oxygen with vanillin was investigated. The rate constant of vanillin with 1O(2) was estimated to be 5.93x10(7)M(-1)s(-1) and that of sodium azide as 2. 7x10(8)M(-1)s(-1). The present investigations show that vanillin can protect against photosensitization-induced ssbs in the plasmid pBR322 DNA, and this effect may partly be due to its ability to scavenge 1O(2).

  19. Elastic unloading of a disk after plastic deformation by a circular heat source

    International Nuclear Information System (INIS)

    Gamer, U.; Mack, W.

    1987-01-01

    Subject of the investigation is the transient stress distribution in an elastic-plastic disk acted upon by a circular heat source. The disk serves as a mechanical model of the rotating anode of an X-ray-tube. The calculation is based on Tresca's yield criterion and the flow rule associatd to it. During heating, a plastic region spreads around the source, which is absorbed by an unloaded zone after the removal of the source. (orig.) [de

  20. Cygnus X-1: Discovery of variable circular polarization

    International Nuclear Information System (INIS)

    Michalsky, J.J.; Swedlund, J.B.; Stokes, R.A.

    1975-01-01

    HDE 226868, the optical counterpart of Cyg X-1, has been observed for circular polarization during 1974. Observations in five colors suggest that circular polarization results from an interstellar effect. Measurements of the blue polarization reveal circular polarization variations synchronous with the 5)./sub /6 orbital period. The circular polarization variation appears to be similar to the blue intensity variation

  1. Dynamic optimal grasping of a circular object with gravity using robotic soft-fingertips

    Directory of Open Access Journals (Sweden)

    García-Rodríguez Rodolfo

    2016-06-01

    Full Text Available Object manipulation usually requires dexterity, encoded as the ability to roll, which is very difficult to achieve with robotic hands based on point contact models (subject to holonomic constraints. As an alternative for dexterous manipulation, deformable contact with hemispherical shape fingertips has been proposed to yield naturally a rolling constraint. It entails dexterity at the expense of dealing with normal and tangential forces, as well as more elaborated models and control schemes. Furthermore, the essential feature of the quality of grasp can be addressed with this type of robot hands, but it has been overlooked for deformable contact. In this paper, a passivity-based controller that considers an optimal grasping measure is proposed for robotic hands with hemispherical deformable fingertips, to manipulate circular dynamic objects. Optimal grasping that minimizes the contact wrenches is achieved through fingertip rolling until normal forces pass through the center of mass of the object, aligning the relative angle between these normal forces. The case of a circular object is developed in detail, though our proposal can be extended to objects with an arbitrary shape that admit a local decomposition by a circular curvature. Simulation and experimental results show convergence under various conditions, wherein rolling and tangent forces become instrumental to achieve such a quality of grasp.

  2. Pyrrolobenzodiazepines (PBDs do not bind to DNA G-quadruplexes.

    Directory of Open Access Journals (Sweden)

    Khondaker M Rahman

    Full Text Available The pyrrolo[2,1-c][1,4] benzodiazepines (PBDs are a family of sequence-selective, minor-groove binding DNA-interactive agents that covalently attach to guanine residues. A recent publication in this journal (Raju et al, PloS One, 2012, 7, 4, e35920 reported that two PBD molecules were observed to bind with high affinity to the telomeric quadruplex of Tetrahymena glaucoma based on Electrospray Ionisation Mass Spectrometry (ESI-MS, Circular Dichroism, UV-Visible and Fluorescence spectroscopy data. This was a surprising result given the close 3-dimensional shape match between the structure of all PBD molecules and the minor groove of duplex DNA, and the completely different 3-dimensional structure of quadruplex DNA. Therefore, we evaluated the interaction of eight PBD molecules of diverse structure with a range of parallel, antiparallel and mixed DNA quadruplexes using DNA Thermal Denaturation, Circular Dichroism and Molecular Dynamics Simulations. Those PBD molecules without large C8-substitutents had an insignificant affinity for the eight quadruplex types, although those with large π-system-containing C8-substituents (as with the compounds evaluated by Raju and co-workers were found to interact to some extent. Our molecular dynamics simulations support the likelihood that molecules of this type, including those examined by Raju and co-workers, interact with quadruplex DNA through their C8-substituents rather than the PBD moiety itself. It is important for the literature to be clear on this matter, as the mechanism of action of these agents will be under close scrutiny in the near future due to the growing number of PBD-based agents entering the clinic as both single-agents and as components of antibody-drug conjugates (ADCs.

  3. Protection of free-radical induced DNA strand breaks in vitro by flavonoids

    International Nuclear Information System (INIS)

    Fisher, L.; Anderson, R.F.

    1998-01-01

    Full text: We have used both plasmid and cosmid test systems to assay the effect of antioxidant flavonoids (AO) on DNA strand breakage in supercoiled closed circular DNA (DNA SC ) following the formation oxidative radical damage on DNA (DNA OXID + . ) in aqueous solution. Single strand breaks in DNA SC result in the formation of the relaxed circular form (DNA RC ) and double strand breaks give linear DNA (DNA L ). Dose response curves were constructed for the log of the loss of [DNA S C] against dose (0-600 Gy). The D 37 (dose for 37% unchanged DNA SC ) values determined in the presence of increasing amounts of flavonoids were compared as ratios to the D 37 control value to give dose modification factor (DMF). Irradiations were carried out under 'constant scavenging' conditions to separate out the effect of direct radical scavenging from the possible electron transfer reaction. Control irradiation experiments, were performed in aerated TRIS buffer, concentration 10 mM, which has a scavenging capacity, k s (defined as the summation of the rate constants for the reaction of OH radicals with all species in solution, multiplied by their concentrations) of 1.5 x 10 7 s -1 . The concentration of TRIS was reduced upon addition of AO to maintain k s at this level. Data will be presented for examples from all four major types of flavonoids (flavonols, isoflavones, flavones and flavon-3-ols) showing DMF values plateau at near 2.0 even at low concentrations (ca. 20 μM) of the flavonoids. Increased DNA strand breaks following post irradiation incubation with endo III protein was unaffected by having the flavonoids present at the time of irradiation. This result suggests that the protection afforded by the flavonoids is unlikely to be in repairing radical damage on pyrimidine bases that are precursors of DNA strand breaks. Overall these studies provide evidence for an additional mechanism of antioxidant activity

  4. DNA double strand break repair is enhanced by P53 following induction by DNA damage and is dependent on the C-terminal domain of P53

    International Nuclear Information System (INIS)

    Wei Tang; Powell, Simon N.

    1996-01-01

    Purpose: The tumor suppressor gene p53 can mediate cell cycle arrest or apoptosis in response to DNA damage. Accumulating evidence suggests that it may also directly or indirectly influence the DNA repair machinery. In the present study, we investigated whether p53, induced by DNA damage, could enhance the rejoining of double-strand DNA breaks. Materials and Methods: DNA double-strand breaks (dsb) were made by restriction enzyme digestion of a plasmid, between a promoter and a 'reporter' gene: luciferase (LUC) or chloramphenicol acetyl-transferase (CAT). Linear or circular plasmid DNA (LUC or CAT) was co-transfected with circular β-Gal plasmid (to normalize for uptake) into mouse embryonic fibroblasts genetically matched to be (+/+) or (-/-) for p53. Their ability to rejoin linearized plasmid was measured by the luciferase or CAT activity detected in rescued plasmids. The activity detected in cells transfected with linear plasmid was scored relative to the activity detected in cells transfected with circular plasmid. Results: Ionizing radiation (IR, 2 Gy) enhanced the dsb repair activity in wild type p53 cells; however, p53 null cells lose this effect, indicating that the enhancement of dsb repair was p53-dependent. REF cells with dominant-negative mutant p53 showed a similar induction compared with the parental REF cells with wild-type p53. This ala-143 mutant p53 prevents cell cycle arrest and transactivation of p21 WAF1/cip1) following IR, indicating that the p53-dependent enhancement of DNA repair is distinct from transactivation. Immortalized murine embryonic fibroblasts, 10(1)VasK1 cells, which express p53 cDNA encoding a temperature-sensitive mutant in the DNA sequence specific binding domain (ala135 to val135) with an alternatively spliced C-terminal domain (ASp53: amino-acids 360-381) and, 10(1)Val5 cells, which express the normal spliced p53 (NSp53) with the same temperature-sensitive mutant were compared. It was found that 10(1)VasK1 cells showed no DNA

  5. Modeling the yield of double-strand breaks due to formation of multiply damaged sites in irradiated plasmid DNA

    International Nuclear Information System (INIS)

    Xapsos, M.A.; Pogozelski, W.K.

    1996-01-01

    Although double-strand breaks have long been recognized as an important type of DNa lesion, it is well established that this broad class of damage does not correlate well with indicators of the effectiveness of radiation as the cellular level. Assays of double-strand breaks do not distinguish the degree of complexity or clustering of singly damaged sites produced in a single energy deposition event, which is currently hypothesized to be key to understanding cellular end points. As a step toward this understanding, double-strand breaks that are formed proportionally to dose in plasmid DNA are analyzed from the mechanistic aspect to evaluate the yield that arises from multiply damaged sites as hypothesized by Ward (Prog. Nucleic Acid Res. Mol. Biol. 35, 95-125, 1988) and Goodhead (Int. J. Radiat. Biol. 65, 7-17, 1994) as opposed to the yield that arises form single hydroxyl radicals as hypothesized by Siddiqi and Bothe (Radiat. Res. 112, 449-463, 1987). For low-LET radiation such as γ rays, the importance of multiply damaged sites is shown to increase with the solution's hydroxyl radical scavenging capacity. For moderately high-LET radiation such as 100 keV/μm helium ions, a much different behavior is observed. In this case, a large fraction of double-strand breaks are formed as a result of multiply damaged sties over a broad range of scavenging conditions. Results also indicate that the RBE for common cellular end points correlates more closely with the RBE for common cellular end points correlates more closely with the RBE for multiply damaged sites than with the RBE for total double-strand breaks over a range of LET up to at least 100 keV/μm. 22 refs., 3 figs., 2 tabs

  6. (CGA)4: parallel, anti-parallel, right-handed and left-handed homoduplexes of a trinucleotide repeat DNA

    Czech Academy of Sciences Publication Activity Database

    Kejnovská, Iva; Tůmová, Marcela; Vorlíčková, Michaela

    2001-01-01

    Roč. 1527, 1-2 (2001), s. 73-80 ISSN 0304-4165 R&D Projects: GA ČR GA204/98/1027; GA ČR GA204/01/0561 Institutional research plan: CEZ:AV0Z5004920 Keywords : DNA conformational polymorphism * circular dichroism * Z-DNA Subject RIV: BO - Biophysics Impact factor: 1.849, year: 2000

  7. Tolerance of a Knotted Near-Infrared Fluorescent Protein to Random Circular Permutation.

    Science.gov (United States)

    Pandey, Naresh; Kuypers, Brianna E; Nassif, Barbara; Thomas, Emily E; Alnahhas, Razan N; Segatori, Laura; Silberg, Jonathan J

    2016-07-12

    Bacteriophytochrome photoreceptors (BphP) are knotted proteins that have been developed as near-infrared fluorescent protein (iRFP) reporters of gene expression. To explore how rearrangements in the peptides that interlace into the knot within the BphP photosensory core affect folding, we subjected iRFPs to random circular permutation using an improved transposase mutagenesis strategy and screened for variants that fluoresce. We identified 27 circularly permuted iRFPs that display biliverdin-dependent fluorescence in Escherichia coli. The variants with the brightest whole cell fluorescence initiated translation at residues near the domain linker and knot tails, although fluorescent variants that initiated translation within the PAS and GAF domains were discovered. Circularly permuted iRFPs retained sufficient cofactor affinity to fluoresce in tissue culture without the addition of biliverdin, and one variant displayed enhanced fluorescence when expressed in bacteria and tissue culture. This variant displayed a quantum yield similar to that of iRFPs but exhibited increased resistance to chemical denaturation, suggesting that the observed increase in the magnitude of the signal arose from more efficient protein maturation. These results show how the contact order of a knotted BphP can be altered without disrupting chromophore binding and fluorescence, an important step toward the creation of near-infrared biosensors with expanded chemical sensing functions for in vivo imaging.

  8. A novel color image encryption scheme using fractional-order hyperchaotic system and DNA sequence operations

    International Nuclear Information System (INIS)

    Zhang Li-Min; Sun Ke-Hui; Liu Wen-Hao; He Shao-Bo

    2017-01-01

    In this paper, Adomian decomposition method (ADM) with high accuracy and fast convergence is introduced to solve the fractional-order piecewise-linear (PWL) hyperchaotic system. Based on the obtained hyperchaotic sequences, a novel color image encryption algorithm is proposed by employing a hybrid model of bidirectional circular permutation and DNA masking. In this scheme, the pixel positions of image are scrambled by circular permutation, and the pixel values are substituted by DNA sequence operations. In the DNA sequence operations, addition and substraction operations are performed according to traditional addition and subtraction in the binary, and two rounds of addition rules are used to encrypt the pixel values. The simulation results and security analysis show that the hyperchaotic map is suitable for image encryption, and the proposed encryption algorithm has good encryption effect and strong key sensitivity. It can resist brute-force attack, statistical attack, differential attack, known-plaintext, and chosen-plaintext attacks. (paper)

  9. DNA damage induced by the direct effect of He ion particles

    International Nuclear Information System (INIS)

    Urushibara, A.; Shikazono, N.; Watanabe, R.; Fujii, K.; O'Neill, P.; Yokoya, A.

    2006-01-01

    We present here evidence showing that the yields of DNA lesions induced by He 2+ ions strongly depend on Linear energy transfer (LET). In this study, hydrated plasmid DNA was irradiated with He 2+ ions with LET values of 19, 63 and 95 keVμm -1 . The yields of prompt single-strand breaks (SSBs) are very similar at the varying LET values, whereas the yields of prompt double-strand breaks (DSBs) increase with increasing LET. Further, base lesions were revealed as additional strand breaks by post-irradiation treatment of the DNA with endonuclease III (Nth) and formamido-pyrimidine-DNA glycosylase (Fpg). The reduction in the yield of these enzymatically induced SSBs and DSBs becomes significant as the LET increases. These results suggest that the clustering of DNA lesions becomes more probable in regions of high LET. (authors)

  10. Development pattern of circular economy in Jiangsu coastland

    OpenAIRE

    Wang, Liang

    2009-01-01

    Circular economy is an effective development pattern to balance economic growth, social development and environmental protection. Based on apprehending the connotation of circular economy, this paper fully considers and studies on the future trends in this area according to the theory of circular economy and the empirical circumstances of Jiangsu Coastland. This paper also discusses the circular economy development pattern adopted by Jiangsu coastland during economic and social development fr...

  11. Total and Differential Efficiencies for a Circular Detector Viewing a Circular Radiator of Finite Thickness

    Energy Technology Data Exchange (ETDEWEB)

    Lauber, A; Tollander, B

    1967-08-15

    Total and differential detection efficiencies have been computed for a circular detector viewing a circular radiator of finite thickness. Isotropic, cosines and n-p scattering angular emission distributions of the radiated particles are considered. Tables are given for the total efficiencies as well as for the differential efficiencies in the n-p scattering case.

  12. Properties of the chromatin assembled on DNA injected into Xenopus oocytes and eggs

    International Nuclear Information System (INIS)

    Gargiulo, G.; Wasserman, W.; Worcel, A.

    1983-01-01

    The onset of DNA synthesis occurs between 10 and 30 minutes after activation of the egg and thus the transition from nuclease-sensitive to nuclease-resistant supercoils may take place on the newly replicated DNA. To test this possibility, the nonradioactive circular 5-kb DNA carrying the Drosophila histone gene repeat and [α -32 P]dCTP were coinjected into fertilized eggs. Such protocol labels both the injected, replicated heterologous DNA and the replicated endogenous, maternal Xenopus DNA. The labeled, presumably replicated, supercoiled DNA is resistant to micrococcal nuclease as expected. The endogenous, high-molecular-weight Xenopus DNA is degraded to 180-bp nucleosomal DNA. Thus, the nuclease resistance is not a general property of chromatin during the cleavage stage of the Xenopus embryo but is a peculiar feature of the injected DNA. 42 references, 5 figures

  13. Circular codes revisited: a statistical approach.

    Science.gov (United States)

    Gonzalez, D L; Giannerini, S; Rosa, R

    2011-04-21

    In 1996 Arquès and Michel [1996. A complementary circular code in the protein coding genes. J. Theor. Biol. 182, 45-58] discovered the existence of a common circular code in eukaryote and prokaryote genomes. Since then, circular code theory has provoked great interest and underwent a rapid development. In this paper we discuss some theoretical issues related to the synchronization properties of coding sequences and circular codes with particular emphasis on the problem of retrieval and maintenance of the reading frame. Motivated by the theoretical discussion, we adopt a rigorous statistical approach in order to try to answer different questions. First, we investigate the covering capability of the whole class of 216 self-complementary, C(3) maximal codes with respect to a large set of coding sequences. The results indicate that, on average, the code proposed by Arquès and Michel has the best covering capability but, still, there exists a great variability among sequences. Second, we focus on such code and explore the role played by the proportion of the bases by means of a hierarchy of permutation tests. The results show the existence of a sort of optimization mechanism such that coding sequences are tailored as to maximize or minimize the coverage of circular codes on specific reading frames. Such optimization clearly relates the function of circular codes with reading frame synchronization. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Comparative Study of Seven Commercial Kits for Human DNA Extraction from Urine Samples Suitable for DNA Biomarker-Based Public Health Studies

    Science.gov (United States)

    El Bali, Latifa; Diman, Aurélie; Bernard, Alfred; Roosens, Nancy H. C.; De Keersmaecker, Sigrid C. J.

    2014-01-01

    Human genomic DNA extracted from urine could be an interesting tool for large-scale public health studies involving characterization of genetic variations or DNA biomarkers as a result of the simple and noninvasive collection method. These studies, involving many samples, require a rapid, easy, and standardized extraction protocol. Moreover, for practicability, there is a necessity to collect urine at a moment different from the first void and to store it appropriately until analysis. The present study compared seven commercial kits to select the most appropriate urinary human DNA extraction procedure for epidemiological studies. DNA yield has been determined using different quantification methods: two classical, i.e., NanoDrop and PicoGreen, and two species-specific real-time quantitative (q)PCR assays, as DNA extracted from urine contains, besides human, microbial DNA also, which largely contributes to the total DNA yield. In addition, the kits giving a good yield were also tested for the presence of PCR inhibitors. Further comparisons were performed regarding the sampling time and the storage conditions. Finally, as a proof-of-concept, an important gene related to smoking has been genotyped using the developed tools. We could select one well-performing kit for the human DNA extraction from urine suitable for molecular diagnostic real-time qPCR-based assays targeting genetic variations, applicable to large-scale studies. In addition, successful genotyping was possible using DNA extracted from urine stored at −20°C for several months, and an acceptable yield could also be obtained from urine collected at different moments during the day, which is particularly important for public health studies. PMID:25365790

  15. Comparative study of seven commercial kits for human DNA extraction from urine samples suitable for DNA biomarker-based public health studies.

    Science.gov (United States)

    El Bali, Latifa; Diman, Aurélie; Bernard, Alfred; Roosens, Nancy H C; De Keersmaecker, Sigrid C J

    2014-12-01

    Human genomic DNA extracted from urine could be an interesting tool for large-scale public health studies involving characterization of genetic variations or DNA biomarkers as a result of the simple and noninvasive collection method. These studies, involving many samples, require a rapid, easy, and standardized extraction protocol. Moreover, for practicability, there is a necessity to collect urine at a moment different from the first void and to store it appropriately until analysis. The present study compared seven commercial kits to select the most appropriate urinary human DNA extraction procedure for epidemiological studies. DNA yield has been determined using different quantification methods: two classical, i.e., NanoDrop and PicoGreen, and two species-specific real-time quantitative (q)PCR assays, as DNA extracted from urine contains, besides human, microbial DNA also, which largely contributes to the total DNA yield. In addition, the kits giving a good yield were also tested for the presence of PCR inhibitors. Further comparisons were performed regarding the sampling time and the storage conditions. Finally, as a proof-of-concept, an important gene related to smoking has been genotyped using the developed tools. We could select one well-performing kit for the human DNA extraction from urine suitable for molecular diagnostic real-time qPCR-based assays targeting genetic variations, applicable to large-scale studies. In addition, successful genotyping was possible using DNA extracted from urine stored at -20°C for several months, and an acceptable yield could also be obtained from urine collected at different moments during the day, which is particularly important for public health studies.

  16. Building a Circular Future

    DEFF Research Database (Denmark)

    Merrild, Heidi

    2016-01-01

    Natural resources are scarce and construction accounts for 40 percent of the material and energy consumption in Europe. This means that a switch to a circular future is necessary. ’Building a Circular Future’ maps out where we are, where we are going, and what is needed for this conversion to take...... on the project’s strategies. The financial result is a profit of DKK 35 million on the structure alone in the demolition of a building built for the cost of DKK 860 million. The total potential for the whole building, calculated in projected material prices, is estimated to be up to 16% of the total construction...... of the circular strategies is not only in the future. Increased flexibility, optimized operation and maintenance, as well as a healthier building, is low-hanging fruit that can be harvested today. The project’s principles can be implemented in industrialized construction in a large scale today. That is proven...

  17. ADMINISTRATIVE CIRCULARS

    CERN Multimedia

    Division des ressources humaines

    2000-01-01

    N° 2 (Rev. 1) - March 2000Guidelines and procedures concerning recruitment and probation period of staff membersN° 9 (Rev. 2) - March 2000Staff members contractsN° 16 (Rev. 2) - January 2000TrainingN° 30 (Rev. 1) - January 2000Indemnities and reimbursements upon taking up appointment and termination of contractN° 32 - February 2000Principles and procedures governing complaints of harassmentThese circular have been amended (No 2, N° 9, N° 16 and N° 30) or drawn up (N° 32).Copies are available in the Divisional Secretariats.Note:\tAdministrative and operational circulars, as well as the lists of those in force, are available for consultation in the server SRV4_Home in the Appletalk zone NOVELL (as GUEST or using your Novell username and password), volume PE Division Data Disk.The Word files are available in the folder COM, folder Public, folder ADM.CIRC.docHuman Resources DivisionTel. 74128

  18. Comparative analysis of protocols for DNA extraction from soybean caterpillars.

    Science.gov (United States)

    Palma, J; Valmorbida, I; da Costa, I F D; Guedes, J V C

    2016-04-07

    Genomic DNA extraction is crucial for molecular research, including diagnostic and genome characterization of different organisms. The aim of this study was to comparatively analyze protocols of DNA extraction based on cell lysis by sarcosyl, cetyltrimethylammonium bromide, and sodium dodecyl sulfate, and to determine the most efficient method applicable to soybean caterpillars. DNA was extracted from specimens of Chrysodeixis includens and Spodoptera eridania using the aforementioned three methods. DNA quantification was performed using spectrophotometry and high molecular weight DNA ladders. The purity of the extracted DNA was determined by calculating the A260/A280 ratio. Cost and time for each DNA extraction method were estimated and analyzed statistically. The amount of DNA extracted by these three methods was sufficient for PCR amplification. The sarcosyl method yielded DNA of higher purity, because it generated a clearer pellet without viscosity, and yielded high quality amplification products of the COI gene I. The sarcosyl method showed lower cost per extraction and did not differ from the other methods with respect to preparation times. Cell lysis by sarcosyl represents the best method for DNA extraction in terms of yield, quality, and cost effectiveness.

  19. Three-dimensional plasmonic chiral tetramers assembled by DNA origami.

    Science.gov (United States)

    Shen, Xibo; Asenjo-Garcia, Ana; Liu, Qing; Jiang, Qiao; García de Abajo, F Javier; Liu, Na; Ding, Baoquan

    2013-05-08

    Molecular chemistry offers a unique toolkit to draw inspiration for the design of artificial metamolecules. For a long time, optical circular dichroism has been exclusively the terrain of natural chiral molecules, which exhibit optical activity mainly in the UV spectral range, thus greatly hindering their significance for a broad range of applications. Here we demonstrate that circular dichroism can be generated with artificial plasmonic chiral nanostructures composed of the minimum number of spherical gold nanoparticles required for three-dimensional (3D) chirality. We utilize a rigid addressable DNA origami template to precisely organize four nominally identical gold nanoparticles into a three-dimensional asymmetric tetramer. Because of the chiral structural symmetry and the strong plasmonic resonant coupling between the gold nanoparticles, the 3D plasmonic assemblies undergo different interactions with left and right circularly polarized light, leading to pronounced circular dichroism. Our experimental results agree well with theoretical predictions. The simplicity of our structure geometry and, most importantly, the concept of resorting on biology to produce artificial photonic functionalities open a new pathway to designing smart artificial plasmonic nanostructures for large-scale production of optically active metamaterials.

  20. Perceptions of Circular Business Models in SMEs

    Directory of Open Access Journals (Sweden)

    Sebastian-Ion Ceptureanu

    2018-05-01

    Full Text Available Testing circular economy business models is crucial in understanding Circular Economy features across various industries. This paper analyses Circular Economy perceptions in Romanian SMEs by investigating entrepreneurs from PVC joinery industry. Using a multidimensional framework, ReSOLVE, as a conceptual model, and Lewandowski systematization, we measured 6 business actions and their relations with Value creation. The results of our survey can be described as mixed. Of the 6 business actions of ReSOLVE framework, for half of them (Regenerate, Optimize and Exchange we can definitely conclude that these are correlated with Circular Economy in terms of Value Creation, while for a fourth there are variables significantly correlated without being able to conclude its overall contribution in terms of Value creation. Our empirical investigation contributes to literature development on Circular Economy research in SMEs and a step forward to shape future research initiatives.

  1. Fission yeast strains with circular chromosomes require the 9-1-1 checkpoint complex for the viability in response to the anti-cancer drug 5-fluorodeoxyuridine.

    Directory of Open Access Journals (Sweden)

    Hossain Mohammad Shamim

    Full Text Available Thymidine kinase converts 5-fluorodeoxyuridine to 5-fluorodeoxyuridine monophosphate, which causes disruption of deoxynucleotide triphosphate ratios. The fission yeast Schizosaccharomyces pombe does not express endogenous thymidine kinase but 5-fluorodeoxyuridine inhibits growth when exogenous thymidine kinase is expressed. Unexpectedly, we found that 5-fluorodeoxyuridine causes S phase arrest even without thymidine kinase expression. DNA damage checkpoint proteins such as the 9-1-1 complex were required for viability in the presence of 5-fluorodeoxyuridine. We also found that strains with circular chromosomes, due to loss of pot1+, which have higher levels of replication stress, were more sensitive to loss of the 9-1-1 complex in the presence of 5-fluorodeoxyuridine. Thus, our results suggest that strains carrying circular chromosomes exhibit a greater dependence on DNA damage checkpoints to ensure viability in the presence of 5-fluorodeoxyuridine compared to stains that have linear chromosomes.

  2. Fission yeast strains with circular chromosomes require the 9-1-1 checkpoint complex for the viability in response to the anti-cancer drug 5-fluorodeoxyuridine.

    Science.gov (United States)

    Shamim, Hossain Mohammad; Minami, Yukako; Tanaka, Daiki; Ukimori, Shinobu; Murray, Johanne M; Ueno, Masaru

    2017-01-01

    Thymidine kinase converts 5-fluorodeoxyuridine to 5-fluorodeoxyuridine monophosphate, which causes disruption of deoxynucleotide triphosphate ratios. The fission yeast Schizosaccharomyces pombe does not express endogenous thymidine kinase but 5-fluorodeoxyuridine inhibits growth when exogenous thymidine kinase is expressed. Unexpectedly, we found that 5-fluorodeoxyuridine causes S phase arrest even without thymidine kinase expression. DNA damage checkpoint proteins such as the 9-1-1 complex were required for viability in the presence of 5-fluorodeoxyuridine. We also found that strains with circular chromosomes, due to loss of pot1+, which have higher levels of replication stress, were more sensitive to loss of the 9-1-1 complex in the presence of 5-fluorodeoxyuridine. Thus, our results suggest that strains carrying circular chromosomes exhibit a greater dependence on DNA damage checkpoints to ensure viability in the presence of 5-fluorodeoxyuridine compared to stains that have linear chromosomes.

  3. Localization of CO2 Leakage from a Circular Hole on a Flat-Surface Structure Using a Circular Acoustic Emission Sensor Array

    Directory of Open Access Journals (Sweden)

    Xiwang Cui

    2016-11-01

    Full Text Available Leak localization is essential for the safety and maintenance of storage vessels. This study proposes a novel circular acoustic emission sensor array to realize the continuous CO2 leak localization from a circular hole on the surface of a large storage vessel in a carbon capture and storage system. Advantages of the proposed array are analyzed and compared with the common sparse arrays. Experiments were carried out on a laboratory-scale stainless steel plate and leak signals were obtained from a circular hole in the center of this flat-surface structure. In order to reduce the influence of the ambient noise and dispersion of the acoustic wave on the localization accuracy, ensemble empirical mode decomposition is deployed to extract the useful leak signal. The time differences between the signals from the adjacent sensors in the array are calculated through correlation signal processing before estimating the corresponding distance differences between the sensors. A hyperbolic positioning algorithm is used to identify the location of the circular leak hole. Results show that the circular sensor array has very good directivity toward the circular leak hole. Furthermore, an optimized method is proposed by changing the position of the circular sensor array on the flat-surface structure or adding another circular sensor array to identify the direction of the circular leak hole. Experiential results obtained on a 100 cm × 100 cm stainless steel plate demonstrate that the full-scale error in the leak localization is within 0.6%.

  4. Interaction studies of resistomycin from Streptomyces aurantiacus AAA5 with calf thymus DNA and bovine serum albumin

    Science.gov (United States)

    Vijayabharathi, R.; Sathyadevi, P.; Krishnamoorthy, P.; Senthilraja, D.; Brunthadevi, P.; Sathyabama, S.; Priyadarisini, V. Brindha

    2012-04-01

    Resistomycin, a secondary metabolite produced by Streptomyces aurantiacus AAA5. The binding interaction of resistomycin with calf thymus DNA (CT DNA) and bovine serum albumin (BSA) was investigated by spectrophotometry, spectrofluorimetry, circular dichroism (CD) and synchronous fluorescence techniques under physiological conditions in vitro. Absorption spectral studies along with the fluorescence competition with ethidium bromide measurements and circular dichroism clearly suggest that the resistomycin bind with CT DNA relatively strong via groove binding. BSA interaction results revealed that the drug was found to quench the fluorescence intensity of the protein through a static quenching mechanism. The number of binding sites 'n' and apparent binding constant 'K' calculated according to the Scatchard equation exhibit a good binding property to bovine serum albumin protein. In addition, the results observed from synchronous fluorescence measurements clearly demonstrate the occurrence of conformational changes of BSA upon addition of the test compound.

  5. Synthesis, structure, DNA/BSA binding and antibacterial studies of NNO tridentate Schiff base metal complexes

    Science.gov (United States)

    Sakthi, Marimuthu; Ramu, Andy

    2017-12-01

    A new salicylaldehyde derived 2,4-diiodo-6-((2-phenylaminoethylimino)methyl)phenol Schiff base(L) and its transition metal complexes of the type MLCl where, M = Cu(II), Ni(II), Co(II), Mn(II) and Zn(II) have been synthesized. The coordination mode of Schiff base holding NNO donor atoms with metal ions was well investigated by elemental analysis, ESI-mass as well as IR, UV-vis, CV and NMR spectral studies. The binding efficiency and mode of these complexes with biological macromolecules viz., herring sperm DNA (HS- DNA) and bovine serum albumin (BSA) have been explored through various spectroscopic techniques. The characteristic changes in absorption, emission and, circular dichroism spectra of the complexes with DNA indicate the noticeable interaction between them. From the all spectral information complexes could interact with DNA via non-intercalation mode of binding. The hyperchromisim in absorption band and hypochromisim in emission intensity of BSA with different complex concentrations shown significant information, and the binding affinity value has been predicted from Stern-Volmer plots. Further, all the complexes could cleave the circular plasmid pUC19 DNA efficiently by using an activator H2O2. The ligand and all metal(II) complexes showed good antibacterial activities. The molecular docking studies of the complexes with DNA were performed in order to make a comparison and conclusion with spectral technic results.

  6. Surface-assisted DNA self-assembly: An enzyme-free strategy towards formation of branched DNA lattice

    International Nuclear Information System (INIS)

    Bhanjadeo, Madhabi M.; Nayak, Ashok K.; Subudhi, Umakanta

    2017-01-01

    DNA based self-assembled nanostructures and DNA origami has proven useful for organizing nanomaterials with firm precision. However, for advanced applications like nanoelectronics and photonics, large-scale organization of self-assembled branched DNA (bDNA) into periodic lattices is desired. In this communication for the first time we report a facile method of self-assembly of Y-shaped bDNA nanostructures on the cationic surface of Aluminum (Al) foil to prepare periodic two dimensional (2D) bDNA lattice. Particularly those Y-shaped bDNA structures having smaller overhangs and unable to self-assemble in solution, they are easily assembled on the surface of Al foil in the absence of ligase. Field emission scanning electron microscopy (FESEM) analysis shows homogenous distribution of two-dimensional bDNA lattices across the Al foil. When the assembled bDNA structures were recovered from the Al foil and electrophoresed in nPAGE only higher order polymeric bDNA structures were observed without a trace of monomeric structures which confirms the stability and high yield of the bDNA lattices. Therefore, this enzyme-free economic and efficient strategy for developing bDNA lattices can be utilized in assembling various nanomaterials for functional molecular components towards development of DNA based self-assembled nanodevices. - Highlights: • Al foil surface-assisted self-assembly of monomeric structures into larger branched DNA lattice. • FESEM study confirms the uniform distribution of two-dimensional bDNA lattice structures across the surface of Al foil. • Enzyme-free and economic strategy to prepare higher order structures from simpler DNA nanostructures have been confirmed by recovery assay. • Use of well proven sequences for the preparation of pure Y-shaped monomeric DNA nanostructure with high yield.

  7. Design and synthesis of DNA four-helix bundles

    Energy Technology Data Exchange (ETDEWEB)

    Rangnekar, Abhijit; Gothelf, Kurt V [Department of Chemistry, Centre for DNA Nanotechnology (CDNA) and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C (Denmark); LaBean, Thomas H, E-mail: kvg@chem.au.dk, E-mail: thl@cs.duke.edu [Department of Chemistry, Duke University, Durham, NC 27708 (United States)

    2011-06-10

    The field of DNA nanotechnology has evolved significantly in the past decade. Researchers have succeeded in synthesizing tile-based structures and using them to form periodic lattices in one, two and three dimensions. Origami-based structures have also been used to create nanoscale structures in two and three dimensions. Design and construction of DNA bundles with fixed circumference has added a new dimension to the field. Here we report the design and synthesis of a DNA four-helix bundle. It was found to be extremely rigid and stable. When several such bundles were assembled using appropriate sticky-ends, they formed micrometre-long filaments. However, when creation of two-dimensional sheet-like arrays of the four-helix bundles was attempted, nanoscale rings were observed instead. The exact reason behind the nanoring formation is yet to be ascertained, but it provides an exciting prospect for making programmable circular nanostructures using DNA.

  8. Design and synthesis of DNA four-helix bundles

    International Nuclear Information System (INIS)

    Rangnekar, Abhijit; Gothelf, Kurt V; LaBean, Thomas H

    2011-01-01

    The field of DNA nanotechnology has evolved significantly in the past decade. Researchers have succeeded in synthesizing tile-based structures and using them to form periodic lattices in one, two and three dimensions. Origami-based structures have also been used to create nanoscale structures in two and three dimensions. Design and construction of DNA bundles with fixed circumference has added a new dimension to the field. Here we report the design and synthesis of a DNA four-helix bundle. It was found to be extremely rigid and stable. When several such bundles were assembled using appropriate sticky-ends, they formed micrometre-long filaments. However, when creation of two-dimensional sheet-like arrays of the four-helix bundles was attempted, nanoscale rings were observed instead. The exact reason behind the nanoring formation is yet to be ascertained, but it provides an exciting prospect for making programmable circular nanostructures using DNA.

  9. DNA polymerase I-mediated repair of 365 nm-induced single-strand breaks in the DNA of Escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Ley, R D; Sedita, B A; Boye, E [Argonne National Lab., Ill. (USA)

    1978-03-01

    Irradiation of closed circular phage lambda DNA in vivo at 365 nm results in the induction of single-strand breaks and alkali-labile lesions at rates of 1.1 x 10/sup -14/ and 0.2 x 10/sup -14//dalton/J/m/sup 2/, respectively. The sum of the induction rates is similar to the rate of induction of single-strand breaks plus alkali-labile lesions (1 x 10/sup -14//dalton/J/m/sup 2/) observed in the E. coli genome. Postirradiation incubation of wild-type cells in buffer results in rapid repair of the breaks (up to 80% repaired in 10 min). No repair was observed in a DNA polymerase I-deficient mutant of E.coli.

  10. Mechanisms of mutagenesis: DNA replication in the presence of DNA damage.

    Science.gov (United States)

    Liu, Binyan; Xue, Qizhen; Tang, Yong; Cao, Jia; Guengerich, F Peter; Zhang, Huidong

    2016-01-01

    Environmental mutagens cause DNA damage that disturbs replication and produces mutations, leading to cancer and other diseases. We discuss mechanisms of mutagenesis resulting from DNA damage, from the level of DNA replication by a single polymerase to the complex DNA replisome of some typical model organisms (including bacteriophage T7, T4, Sulfolobus solfataricus, Escherichia coli, yeast and human). For a single DNA polymerase, DNA damage can affect replication in three major ways: reducing replication fidelity, causing frameshift mutations, and blocking replication. For the DNA replisome, protein interactions and the functions of accessory proteins can yield rather different results even with a single DNA polymerase. The mechanism of mutation during replication performed by the DNA replisome is a long-standing question. Using new methods and techniques, the replisomes of certain organisms and human cell extracts can now be investigated with regard to the bypass of DNA damage. In this review, we consider the molecular mechanism of mutagenesis resulting from DNA damage in replication at the levels of single DNA polymerases and complex DNA replisomes, including translesion DNA synthesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Photoinduced Circular Anisotropy in Side-Chain Azobenzene Polyesters

    DEFF Research Database (Denmark)

    Nikolova, L.; Todorov, T.; Ivanov, M.

    1997-01-01

    We report for the first time the inducing of large circular anisotropy in previously unoriented films of side-chain azobenzene polyesters on illumination with circularly polarized light at a wavelength of 488 nm. The circular dichroism and optical activity are measured simultaneously in real time...

  12. A computational protocol for the study of circularly polarized phosphorescence and circular dichroism in spin-forbidden absorption

    DEFF Research Database (Denmark)

    Kaminski, Maciej; Cukras, Janusz; Pecul, Magdalena

    2015-01-01

    We present a computational methodology to calculate the intensity of circular dichroism (CD) in spinforbidden absorption and of circularly polarized phosphorescence (CPP) signals, a manifestation of the optical activity of the triplet–singlet transitions in chiral compounds. The protocol is based...

  13. Self-complementary circular codes in coding theory.

    Science.gov (United States)

    Fimmel, Elena; Michel, Christian J; Starman, Martin; Strüngmann, Lutz

    2018-04-01

    Self-complementary circular codes are involved in pairing genetic processes. A maximal [Formula: see text] self-complementary circular code X of trinucleotides was identified in genes of bacteria, archaea, eukaryotes, plasmids and viruses (Michel in Life 7(20):1-16 2017, J Theor Biol 380:156-177, 2015; Arquès and Michel in J Theor Biol 182:45-58 1996). In this paper, self-complementary circular codes are investigated using the graph theory approach recently formulated in Fimmel et al. (Philos Trans R Soc A 374:20150058, 2016). A directed graph [Formula: see text] associated with any code X mirrors the properties of the code. In the present paper, we demonstrate a necessary condition for the self-complementarity of an arbitrary code X in terms of the graph theory. The same condition has been proven to be sufficient for codes which are circular and of large size [Formula: see text] trinucleotides, in particular for maximal circular codes ([Formula: see text] trinucleotides). For codes of small-size [Formula: see text] trinucleotides, some very rare counterexamples have been constructed. Furthermore, the length and the structure of the longest paths in the graphs associated with the self-complementary circular codes are investigated. It has been proven that the longest paths in such graphs determine the reading frame for the self-complementary circular codes. By applying this result, the reading frame in any arbitrary sequence of trinucleotides is retrieved after at most 15 nucleotides, i.e., 5 consecutive trinucleotides, from the circular code X identified in genes. Thus, an X motif of a length of at least 15 nucleotides in an arbitrary sequence of trinucleotides (not necessarily all of them belonging to X) uniquely defines the reading (correct) frame, an important criterion for analyzing the X motifs in genes in the future.

  14. Estrogen receptor accessory proteins augment receptor-DNA interaction and DNA bending.

    Science.gov (United States)

    Landel, C C; Potthoff, S J; Nardulli, A M; Kushner, P J; Greene, G L

    1997-01-01

    Increasing evidence suggests that accessory proteins play an important role in the ability of the estrogen receptor (ER) and other nuclear hormone receptors to modulate transcription when bound to cis-acting hormone response elements in target genes. We have previously shown that four proteins, hsp70, protein disulfide isomerase (PDI) and two unknown proteins (p48 and p45), copurify with ER that has been isolated by site-specific DNA chromatography (BERE) and influence the interaction of ER with DNA in vitro. To better define the nature of these effects, we used filter binding and electrophoretic mobility shift assays to study the ability of these proteins to alter the kinetics of ER-DNA interaction and to influence the ability of ER to bend DNA when bound to an estrogen response element (ERE). The results of both assays indicate that ERE-purified ER, with its four associated proteins (hsp70, PDI, p48, p45), has a greater ability to bind to the vitellogenin A2 ERE than ER purified by estradiol-Sepharose chromatography in the absence (ESeph) or presence (EATP) of ATP, in which p48, p45 (ESeph) and hsp70 (EATP) are removed. Surprisingly, the rates of association and dissociation of ER and ERE were essentially the same for all three mixtures, suggesting that one or more ER-associated proteins, especially p45 and p48, may be required for ER to attain maximum DNA binding activity. In addition, circular permutation and phasing analyses demonstrated that the same ER-associated proteins produced higher order ER-DNA complexes that significantly increased the magnitude of DNA distortion, but did not alter the direction of the ER-induced bend of ERE-containing DNA fragments, which was toward the major groove of the DNA helix. These results suggest that p45 and/or p48 and possibly hsp70, play an important role both in the specific DNA binding and bending activities of ER and thus contribute to the overall stimulation of transcription in target genes that contain cis

  15. A product design framework for a circular economy

    NARCIS (Netherlands)

    Van den Berg, M.R.; Bakker, C.A.

    2015-01-01

    The paper provides a circular economy framework from a product design perspective with tools to aid product designers in applying circular product design in practice. Design research for circular economy has so far mainly been limited to referring to existing fields of research such as design for

  16. Zernike vs. Bessel circular functions in visual optics.

    Science.gov (United States)

    Trevino, Juan P; Gómez-Correa, Jesus E; Iskander, D Robert; Chávez-Cerda, Sabino

    2013-07-01

    We propose the Bessel Circular Functions as alternatives of the Zernike Circle Polynomials to represent relevant circular ophthalmic surfaces. We assess the fitting capabilities of the orthogonal Bessel Circular Functions by comparing them to Zernike Circle Polynomials for approximating a variety of computationally generated surfaces which can represent ophthalmic surfaces. The Bessel Circular Functions showed better modelling capabilities for surfaces with abrupt variations such as the anterior eye surface at the limbus region, and influence functions. From our studies we find that the Bessel Circular Functions can be more suitable for studying particular features of post surgical corneal surfaces. We show that given their boundary conditions and free oscillating properties, the Bessel Circular Functions are an alternative for representing specific wavefronts and can be better than the Zernike Circle Polynomials for some important cases of corneal surfaces, influence functions and the complete anterior corneal surface. © 2013 The Authors Ophthalmic & Physiological Optics © 2013 The College of Optometrists.

  17. DNA nanotechnology for nanophotonic applications.

    Science.gov (United States)

    Samanta, Anirban; Banerjee, Saswata; Liu, Yan

    2015-02-14

    DNA nanotechnology has touched the epitome of miniaturization by integrating various nanometer size particles with nanometer precision. This enticing bottom-up approach has employed small DNA tiles, large multi-dimensional polymeric structures or more recently DNA origami to organize nanoparticles of different inorganic materials, small organic molecules or macro-biomolecules like proteins, and RNAs into fascinating patterns that are difficult to achieve by other conventional methods. Here, we are especially interested in the self-assembly of nanomaterials that are potentially attractive elements in the burgeoning field of nanophotonics. These materials include plasmonic nanoparticles, quantum dots, fluorescent organic dyes, etc. DNA based self-assembly allows excellent control over distance, orientation and stoichiometry of these nano-elements that helps to engineer intelligent systems that can potentially pave the path for future technology. Many outstanding structures have been fabricated that are capable of fine tuning optical properties, such as fluorescence intensity and lifetime modulation, enhancement of Raman scattering and emergence of circular dichroism responses. Within the limited scope of this review we have tried to give a glimpse of the development of this still nascent but highly promising field to its current status as well as the existing challenges before us.

  18. Larger yield of cyclobutane dimers than 8-oxo-7,8-dihydroguanine in the DNA of UVA-irradiated human skin cells

    International Nuclear Information System (INIS)

    Courdavault, Sophie; Baudouin, Caroline; Charveron, Marie; Favier, Alain; Cadet, Jean; Douki, Thierry

    2004-01-01

    Exposure to solar ultraviolet light is the major cause of most skin cancers. While the genotoxic properties of UVB radiation are now well understood, the DNA damaging processes triggered by less energetic but more abundant UVA photons remain to be elucidated. Evidence has been provided for the induction of oxidative lesions to cellular DNA including strand breaks and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo). Formation of cyclobutane pyrimidine dimers (CPDs) has also been reported, mostly in rodent cells. In order to gain insights into the relevance of the latter photoproducts in UVA-mutagenesis of human skin, we quantified the level of 8-oxodGuo and CPDs within primary cultures of normal fibroblasts and keratinocytes using specific chromatographic assays. The yield of formation of CPDs was found to be higher than that of 8-oxodGuo in both cell types. In addition, CPDs were mostly TT derivatives, and neither (6-4) photoproducts nor Dewar valence isomers were detected. These observations are reminiscent of results obtained in rodent cells and suggest that a photosensitized triplet energy transfer occurs and that this reaction is more efficient than photooxidation of DNA components. The predominant formation of CPDs with respect to oxidative damage within normal human skin cells exposed to UVA radiation should be taken into account in photoprotection strategies

  19. Larger yield of cyclobutane dimers than 8-oxo-7,8-dihydroguanine in the DNA of UVA-irradiated human skin cells

    Energy Technology Data Exchange (ETDEWEB)

    Courdavault, Sophie [Laboratoire Lesions des Acides Nucleiques, Service de Chimie Inorganique et Biologique, CEA/DSM/Departement de Recherche Fondamentale sur la Matiere Condensee, CEA-Grenoble, 17, avenue des Martyrs, 38054 Grenoble Cedex 9 (France); Baudouin, Caroline [Institut de Recherche Pierre Fabre, Laboratoire de Biologie Cellulaire, Toulouse (France); Charveron, Marie [Institut de Recherche Pierre Fabre, Laboratoire de Biologie Cellulaire, Toulouse (France); Favier, Alain [Laboratoire Lesions des Acides Nucleiques, Service de Chimie Inorganique et Biologique, CEA/DSM/Departement de Recherche Fondamentale sur la Matiere Condensee, CEA-Grenoble, 17, avenue des Martyrs, 38054 Grenoble Cedex 9 (France); Cadet, Jean [Laboratoire Lesions des Acides Nucleiques, Service de Chimie Inorganique et Biologique, CEA/DSM/Departement de Recherche Fondamentale sur la Matiere Condensee, CEA-Grenoble, 17, avenue des Martyrs, 38054 Grenoble Cedex 9 (France); Douki, Thierry [Laboratoire Lesions des Acides Nucleiques, Service de Chimie Inorganique et Biologique, CEA/DSM/Departement de Recherche Fondamentale sur la Matiere Condensee, CEA-Grenoble, 17, avenue des Martyrs, 38054 Grenoble Cedex 9 (France)]. E-mail: tdouki@cea.fr

    2004-11-22

    Exposure to solar ultraviolet light is the major cause of most skin cancers. While the genotoxic properties of UVB radiation are now well understood, the DNA damaging processes triggered by less energetic but more abundant UVA photons remain to be elucidated. Evidence has been provided for the induction of oxidative lesions to cellular DNA including strand breaks and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo). Formation of cyclobutane pyrimidine dimers (CPDs) has also been reported, mostly in rodent cells. In order to gain insights into the relevance of the latter photoproducts in UVA-mutagenesis of human skin, we quantified the level of 8-oxodGuo and CPDs within primary cultures of normal fibroblasts and keratinocytes using specific chromatographic assays. The yield of formation of CPDs was found to be higher than that of 8-oxodGuo in both cell types. In addition, CPDs were mostly TT derivatives, and neither (6-4) photoproducts nor Dewar valence isomers were detected. These observations are reminiscent of results obtained in rodent cells and suggest that a photosensitized triplet energy transfer occurs and that this reaction is more efficient than photooxidation of DNA components. The predominant formation of CPDs with respect to oxidative damage within normal human skin cells exposed to UVA radiation should be taken into account in photoprotection strategies.0.

  20. Studies of interaction between two alkaloids and double helix DNA

    International Nuclear Information System (INIS)

    Sun, Yantao; Peng, Tingting; Zhao, Lei; Jiang, Dayu; Cui, Yuncheng

    2014-01-01

    This article presents the study on the interaction of two alkaloids (matrine and evodiamine) and hs-DNA by absorption, fluorescence, circular dichroism (CD), DNA melting and viscosity experiments. The spectroscopic studies suggested that two alkaloids can bind to DNA through an intercalative mode. The viscosity measurement and thermal denaturation also indicated that two alkaloids can intercalate to DNA. The binding constants (K A ) and the number of binding sites (n) were determined. At the same time, some significant thermodynamic parameters of the binding of the alkaloids to DNA were obtained. Competitive binding studies revealed that alkaloids had an effect on ethidium bromide (EB) bound DNA. In addition, it was also proved that the fluorescence quenching was influenced by ionic strength. - Highlights: • Interaction between two alkaloids and DNA is studied by spectral methods. • The binding constant and the binding sites between two alkaloids and DNA are obtained. • There are a classical intercalative mode between alkaloids and DNA. • The binding of matrine with DNA is weaker than that of evodiamine. • It is important for us to understand the alkaloids–DNA interactions at a molecular level

  1. Study on DNA damages induced by UV radiation

    International Nuclear Information System (INIS)

    Doan Hong Van; Dinh Ba Tuan; Tran Tuan Anh; Nguyen Thuy Ngan; Ta Bich Thuan; Vo Thi Thuong Lan; Tran Minh Quynh; Nguyen Thi Thom

    2015-01-01

    DNA damages in Escherichia coli (E. coli) exposed to UV radiation have been investigated. After 30 min of exposure to UV radiation of 5 mJ/cm"2, the growth of E. coli in LB broth medium was about only 10% in compared with non-irradiated one. This results suggested that the UV radiation caused the damages for E. coli genome resulted in reduction in its growth and survival, and those lesions can be somewhat recovered. For both solutions of plasmid DNAs and E. coli cells containing plasmid DNA, this dose also caused the breakage on single and double strands of DNA, shifted the morphology of DNA plasmid from supercoiled to circular and linear forms. The formation of pyrimidine dimers upon UV radiation significantly reduced when the DNA was irradiated in the presence of Ganoderma lucidum extract. Thus, studies on UV-induced DNA damage at molecular level are very essential to determine the UV radiation doses corresponding to the DNA damages, especially for creation and selection of useful radiation-induced mutants, as well as elucidation the protective effects of the specific compounds against UV light. (author)

  2. Information circulars

    International Nuclear Information System (INIS)

    1989-04-01

    The document summarizes the Information Circulars published by the IAEA under the symbol INFCIRC/ for the purpose of bringing matters of general interest to the attention of all Members of the Agency. A complete list of INFCIRCs in numerical order with their titles is given in the Annex

  3. Compatibility of DNA IQ™, QIAamp® DNA Investigator, and QIAsymphony® DNA Investigator® with various fingerprint treatments.

    Science.gov (United States)

    Lin, Sze-Wah; Ip, Stephen C Y; Lam, Tze-Tsun; Tan, Tung-Fai; Yeung, Wai-Lung; Tam, Wai-Ming

    2017-03-01

    Latent fingerprint and touch DNA are the two most important contact evidence for individualization in forensic science which provide complementary information that can lead to direct and unequivocal identification of the culprit. In order to retrieve useful information from both fingerprints and DNA, which are usually mingled together, one strategy is to perform fingerprint examination prior to DNA analysis since common DNA sampling technique such as swabbing could disturb or even destroy fingerprint details. Here, we describe the compatibility of three automatic DNA extraction systems, namely, DNA IQ™, QIAamp ® DNA Investigator, and QIAsymphony ® DNA Investigator ® , with respective to the effects of various fingerprint detection techniques. Our results demonstrate that Super Glue fingerprint treatment followed by DNA IQ™ extraction shows better effectiveness in DNA profiling. Aluminum powder dusting offers the least interference to the three DNA extraction systems above. Magnetic powder dusting, on the other hand, strongly impedes DNA recovery. Physical Developer is the most intrusive, which yields profiles with poor quality, including lower peak heights, poor peak height ratios, and poor intra-color balance. In terms of the choice of extraction method, DNA IQ™ system is recommended for sampling after fingerprint treatments, but not the two DNA Investigator systems.

  4. Estimated yield of double-strand breaks from internal exposure to tritium.

    Science.gov (United States)

    Chen, Jing

    2012-08-01

    Internal exposure to tritium may result in DNA lesions. Of those, DNA double-strand breaks (DSBs) are believed to be important. However, experimental and computational data of DSBs induction by tritium are very limited. In this study, microdosimetric characteristics of uniformly distributed tritium were determined in dimensions of critical significance in DNA DSBs. Those characteristics were used to identify other particles comparable to tritium in terms of microscopic energy deposition. The yield of DSBs could be strongly dependent on biological systems and cellular environments. After reviewing theoretically predicted and experimentally determined DSB yields available in the literature for low-energy electrons and high-energy protons of comparable microdosimetric characteristics to tritium in the dimensions relevant to DSBs, it is estimated that the average DSB yields of 2.7 × 10(-11), 0.93 × 10(-11), 2.4 × 10(-11) and 1.6 × 10(-11) DSBs Gy(-1) Da(-1) could be reasonable estimates for tritium in plasmid DNAs, yeast cells, Chinese hamster V79 cells and human fibroblasts, respectively. If a biological system is not specified, the DSB yield from tritium exposure can be estimated as (2.3 ± 0.7) × 10(-11) DSBs Gy(-1) Da(-1), which is a simple average over experimentally determined yields of DSBs for low-energy electrons in various biological systems without considerations of variations caused by different techniques used and obvious differences among different biological systems where the DSB yield was measured.

  5. Preparation of Phi29 DNA polymerase free of amplifiable DNA using ethidium monoazide, an ultraviolet-free light-emitting diode lamp and trehalose.

    Directory of Open Access Journals (Sweden)

    Hirokazu Takahashi

    Full Text Available We previously reported that multiply-primed rolling circle amplification (MRPCA using modified random RNA primers can amplify tiny amounts of circular DNA without producing any byproducts. However, contaminating DNA in recombinant Phi29 DNA polymerase adversely affects the outcome of MPRCA, especially for negative controls such as non-template controls. The amplified DNA in negative control casts doubt on the result of DNA amplification. Since Phi29 DNA polymerase has high affinity for both single-strand and double-stranded DNA, some amount of host DNA will always remain in the recombinant polymerase. Here we describe a procedure for preparing Phi29 DNA polymerase which is essentially free of amplifiable DNA. This procedure is realized by a combination of host DNA removal using appropriate salt concentrations, inactivation of amplifiable DNA using ethidium monoazide, and irradiation with visible light from a light-emitting diode lamp. Any remaining DNA, which likely exists as oligonucleotides captured by the Phi29 DNA polymerase, is degraded by the 3'-5' exonuclease activity of the polymerase itself in the presence of trehalose, used as an anti-aggregation reagent. Phi29 DNA polymerase purified by this procedure has little amplifiable DNA, resulting in reproducible amplification of at least ten copies of plasmid DNA without any byproducts and reducing reaction volume. This procedure could aid the amplification of tiny amounts DNA, thereby providing clear evidence of contamination from laboratory environments, tools and reagents.

  6. A bipedal DNA motor that travels back and forth between two DNA origami tiles.

    Science.gov (United States)

    Liber, Miran; Tomov, Toma E; Tsukanov, Roman; Berger, Yaron; Nir, Eyal

    2015-02-04

    In this work, the successful operation of a dynamic DNA device constructed from two DNA origami building blocks is reported. The device includes a bipedal walker that strides back and forth between the two origami tiles. Two different DNA origami tiles are first prepared separately; they are then joined together in a controlled manner by a set of DNA strands to form a stable track in high yield as confirmed by single-molecule fluorescence (SMF). Second, a bipedal DNA motor, initially attached to one of the two origami units and operated by sequential interaction with "fuel" and "antifuel" DNA strands, moves from one origami tile to another and then back again. The operational yield, measured by SMF, was similar to that of a motor operating on a similar track embedded in a single origami tile, confirming that the transfer across the junction from one tile to the other does not result in dissociation that is any more than that of steps on a single tile. These results demonstrate that moving parts can reliably travel from one origami unit to another, and it demonstrates the feasibility of dynamic DNA molecular machines that are made of more than a single origami building block. This study is a step toward the development of motors that can stride over micrometer distances. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Chiral Binaphthylbis(4,4'-Bipyridin-1-Ium)/Cucurbit[8]Uril Supramolecular System and Its Induced Circularly Polarized Luminescence.

    Science.gov (United States)

    Chen, Xu-Man; Chen, Yong; Liang, Lu; Liu, Qiu-Jun; Liu, Yu

    2018-05-01

    Circularly polarized luminescence (CPL) induced by host-guest complexation remains a challenge in supramolecular chemistry. Herein, a couple of CPL-silent enantiomeric guest binaphthylbis(4,4'-bipyridinium) salts can emit obvious CPL in the presence of cucurbit[8]uril in aqueous media, due to the restriction of molecular rotation limitation effect. Such CPL can be reversibly adjusted by the addition of acid and base. Furthermore, the resultant supramolecular systems can interact with DNA, accompanied by the morphological conversion from branched supramolecular nanowires to exfoliated nanowires, which can enable to the exploration of such supramolecular systems as DNA markers by CPL signals. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The Effect of Non-Circular Bearing Shapes in Hydrodynamic Journal Bearings on the Vibration Behavior of Turbocharger Structures

    Directory of Open Access Journals (Sweden)

    Lukas Bernhauser

    2017-03-01

    Full Text Available Increasing quality demands of combustion engines require, amongst others, improvements of the engine’s acoustics and all (subcomponents mounted to the latter. A significant impact to the audible tonal noise spectrum results from the vibratory motions of fast-rotating turbocharger rotor systems in multiple hydrodynamic bearings such as floating bearing rings. Particularly, the study of self-excited non-linear vibrations of the rotor-bearing systems is crucial for the understanding, prevention or reduction of the noise and, consequently, for a sustainable engine acoustics development. This work presents an efficient modeling approach for the investigation, optimization, and design improvement of complex turbocharger rotors in hydrodynamic journal bearings, including floating bearing rings with circular and non-circular bearing geometries. The capability of tonal non-synchronous vibration prevention using non-circular bearing shapes is demonstrated with dynamic run-up simulations of the presented model. These findings and the performance of our model are compared and validated with results of a classical Laval/Jeffcott rotor-bearing model and a specific turbocharger model found in the literature. It is shown that the presented simulation method yields fast and accurate results and furthermore, that non-circular bearing shapes are an effective measure to reduce or even prevent self-excited tonal noise.

  9. A novel technique using DNA denaturation to detect multiply induced single-strand breaks in a hydrated plasmid DNA molecule by X-ray and 4He2+ ion irradiation

    International Nuclear Information System (INIS)

    Yokoya, A.; Shikazono, N.; Fujii, K.; Noguchi, M.; Urushibara, A.

    2011-01-01

    To detect multiple single-strand breaks (SSBs) produced in plasmid DNA molecules by direct energy deposition from radiation tracks, we have developed a novel technique using DNA denaturation by which irradiated DNA is analysed as single-strand DNA (SS-DNA). The multiple SSBs that arise in both strands of DNA, but do not induce a double-strand break, are quantified as loss of SS-DNA using agarose gel electrophoresis. We have applied this method to X-ray and 4 He 2+ ion-irradiated samples of fully hydrated pUC18 plasmid DNA. The fractions of both SS-DNA and closed circular DNA (CC-DNA) exponentially decrease with the increasing dose of X rays and 4 He 2+ ions. The efficiency of the loss of SS-DNA was half that of CC-DNA for both types of irradiation, indicating that one of two strands in DNA is not broken when one SSB is produced in CC-DNA by irradiation. Contrary to our initial expectation, these results indicate that SSBs are not multiply induced even by high linear energy transfer radiation distributed in both strands. (authors)

  10. Breaking the fault tree circular logic

    International Nuclear Information System (INIS)

    Lankin, M.

    2000-01-01

    Event tree - fault tree approach to model failures of nuclear plants as well as of other complex facilities is noticeably dominant now. This approach implies modeling an object in form of unidirectional logical graph - tree, i.e. graph without circular logic. However, genuine nuclear plants intrinsically demonstrate quite a few logical loops (circular logic), especially where electrical systems are involved. This paper shows the incorrectness of existing practice of circular logic breaking by elimination of part of logical dependencies and puts forward a formal algorithm, which enables the analyst to correctly model the failure of complex object, which involves logical dependencies between system and components, in form of fault tree. (author)

  11. Radiobiology of DNA strand breakage

    International Nuclear Information System (INIS)

    Johansen, I.

    1975-01-01

    The yield of single-strand breaks in lambda DNA within lysogenic host bacteria was measured after exposure to 4-MeV electrons (50 msec) and rapid transfer (45 msec) to alkaline detergent. In nitrogen anoxia the yield was 1.2 x 10 -12 DNA single-strand breaks per rad per dalton, and under full oxygenation the yield increased to 5 x 10 -12 breaks per rad per dalton. A search for the presence of fast repair mechanisms failed to demonstrate the presence of any mechanism for repair of strand breaks operating within a fraction of a second. Strand breaks produced in the presence of oxygen were repaired in 30--40 sec, while breaks produced under anoxia were rejoined even slower. A functional product from the polAl gene was needed for the rejoining of the broken molecules. Intermediate levels of DNA strand breakage seen at low concentrations of oxygen are dependent on the concentration of cellular sulfhydryl compounds, suggesting that in strand breakage oxygen and hydrogen donors compete for reactions with radiation-induced transients in the DNA. Intercomparisons of data on radiation-induced lethality of cells and single-strand breaks in episomal DNA allow the distinction between two classes of radiation-induced radicals, R 1 and R 2 , with different chemical properties; R 1 reacts readily with oxygen and N-oxyls under formation of potentially lethal products. The reactivity of oxygen in this reaction is 30--40 times higher than that of TMPN. R 2 reacts 16 times more readily than R 1 with oxygen under formation of single-strand breaks in the DNA. R 2 does not react with N-oxyls

  12. Termination of DNA synthesis in vitro at apurinic sites but not at ethyl adducts of the template

    Energy Technology Data Exchange (ETDEWEB)

    Lockhart, M.L.; Deutsch, J.F.; Yamaura, I.; Cavalieri, L.F.; Rosenberg, B.H.

    1982-01-01

    The effects of DNA lesions produced by the carcinogenic alkylating agents ethylnitrosourea and diethylsulfate on the extent of DNA synthesis have been studied in a system utilizing circular single-stranded phi X174 DNA as template and a 392-base restriction fragment as primer with E. coli polymerase I (Klenow fragment). Apurinic sites produced by loss of unstable ethylated bases from the template terminate DNA synthesis at the first such site encountered, but ethyl adducts at most, if not all, locations permit readthrough. 22 references, 3 figures, 1 table.

  13. Unwinding after high salinity stress: Pea DNA helicase 45 over- expression in tobacco confers high salinity tolerance without affecting yield (abstract)

    International Nuclear Information System (INIS)

    Tuteja, N.

    2005-01-01

    Soil salinity is an increasing threat for agriculture and is a major factor in reducing plant productivity; therefore, it is necessary to obtain salinity-tolerant varieties. A typical characteristic of soil salinity is the induction of multiple stress- inducible genes. Some of the genes encoding osmolytes, ion channels or enzymes are able to confer salinity-tolerant phenotypes when transferred to sensitive plants. As salinity stress affects the cellular gene-expression machinery, it is evident that molecules involved in nucleic acid processing including helicases, are likely to be affected as well. DNA helicases unwind duplex DNA and are involved in replication, repair, recombination and transcription while RNA helicases unfold the secondary structures in RNA and are involved in transcription, ribosome biogenesis and translation initiation. We have earlier reported the isolation of a pea DNA helicase 45 (PDH45) that exhibits striking homology with eIF-4A (Plant J. 24:219-230,2000). Here we report that PDH45 mRNA is induced in pea seedlings in response to high salt and its over- expression driven by a constitutive CAMV-355-promoter in tobacco plants confers salinity tolerance, thus suggesting a new pathway for manipulating stress tolerance in crop plants. The T0 transgenic plants showed high-levels of PDH45 protein in normal and stress conditions, as compared to wild type (WT) plants. The T0 transgenics also showed tolerance to high salinity as tested by a leaf disc senescence assay. The T1 transgenics were able to grow to maturity and set normal viable seeds under continuous salinity stress, without any reduction in plant yield, in terms of seed weight. Measurement of Na/sup +/ ions in different parts of the plant showed higher accumulation in the old leaves and negligible in seeds of T1 transgenic lines as compared with the WT plants. The possible mechanism of salinity tolerance will be discussed. Over-expression of PDH45 provides a possible example of the

  14. Astigmatism-free high-brightness 1060 nm edge-emitting lasers with narrow circular beam profile.

    Science.gov (United States)

    Miah, Md Jarez; Kalosha, Vladimir P; Bimberg, Dieter; Pohl, Johannes; Weyers, Markus

    2016-12-26

    1060 nm high-brightness vertical broad-area edge-emitting lasers providing anastigmatic high optical power into a narrow circular beam profile are demonstrated. Ridge-waveguide (RW) lasers yield record 2.2 W single-transverse mode power in the 1060-nm wavelength range under continuous-wave (cw) operation at room temperature with excellent beam quality factor M2 ≤ 2. Independent of operating current the astigmatism is only 2.5 µm. 3 mm long broad-area (BA) lasers produce a θvert as narrow as 9° full width at half maximum, which agrees well with our simulation results, being insensitive to drive current. 5 mm long BA lasers deliver highest ever reported cw 12 W multimode output power among lasers showing θvert <10° in the 1060-nm wavelength range. The emitted laser beams from both RW and BA lasers show a perfect circular shape with ≤10° divergence angle at record 2.1 W and 4.2 W cw-mode output power, respectively.

  15. DNA replication stress restricts ribosomal DNA copy number.

    Science.gov (United States)

    Salim, Devika; Bradford, William D; Freeland, Amy; Cady, Gillian; Wang, Jianmin; Pruitt, Steven C; Gerton, Jennifer L

    2017-09-01

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  16. DNA replication stress restricts ribosomal DNA copy number

    Science.gov (United States)

    Salim, Devika; Bradford, William D.; Freeland, Amy; Cady, Gillian; Wang, Jianmin

    2017-01-01

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100–200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how “normal” copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a “normal” rDNA copy number. PMID:28915237

  17. DNA replication stress restricts ribosomal DNA copy number.

    Directory of Open Access Journals (Sweden)

    Devika Salim

    2017-09-01

    Full Text Available Ribosomal RNAs (rRNAs in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  18. Mechanisms of free radical-induced damage to DNA.

    Science.gov (United States)

    Dizdaroglu, Miral; Jaruga, Pawel

    2012-04-01

    Endogenous and exogenous sources cause free radical-induced DNA damage in living organisms by a variety of mechanisms. The highly reactive hydroxyl radical reacts with the heterocyclic DNA bases and the sugar moiety near or at diffusion-controlled rates. Hydrated electron and H atom also add to the heterocyclic bases. These reactions lead to adduct radicals, further reactions of which yield numerous products. These include DNA base and sugar products, single- and double-strand breaks, 8,5'-cyclopurine-2'-deoxynucleosides, tandem lesions, clustered sites and DNA-protein cross-links. Reaction conditions and the presence or absence of oxygen profoundly affect the types and yields of the products. There is mounting evidence for an important role of free radical-induced DNA damage in the etiology of numerous diseases including cancer. Further understanding of mechanisms of free radical-induced DNA damage, and cellular repair and biological consequences of DNA damage products will be of outmost importance for disease prevention and treatment.

  19. Binding of anthracene to cellular macromolecules in the presence of light. [DNA, HSA

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, B K; Chignell, C F [National Inst. of Environmental Health Sciences, Research Triangle Park, NC (USA)

    1983-01-01

    Ultraviolet radiation (> 295 nm) induced covalent binding of anthracene to DNA which increased with time and was not affected by oxygen. Irradiation in the presence of anthracene induced nicking of Col E/sub 1/ circular DNA and decreased the thermal denaturation temperature of calf thymus DNA. These effects were oxygen dependent, and were decreased by GMP. Irradiation of anthracene and human serum albumin resulted in covalent binding of the hydrocarbon to the protein accompanied by crosslinking of the protein. Protein crosslinking decreased under anaerobic conditions. Irradiation of anthracene bound to liposomes induced lipid peroxidation which was not affected by superoxide dismutase or catalase.

  20. Mechanisms for radiation damadge in DNA

    International Nuclear Information System (INIS)

    Sevilla, M.D.

    1994-11-01

    A comprehensive report is provided of the author's research since 1986 on radiolysis of DNA as well as current state of knowledge in this area. In particular study areas such as the influence of hydration on the absolute yield of primary ionic free radicals in irradiated DNA at 77K, Ab Initio molecular orbital calculations of DNA base pairs and their radical ions, and radiation-induced DNA damage as a function of hydration are discussed

  1. NUMERICAL MODELING OF STRESSES NEAR THE SURFACE IN THE INGOT OF CIRCULAR SECTION, CRYSTALLIZABLE AT CIRCULAR TORCH SECONDARY COOLING

    Directory of Open Access Journals (Sweden)

    A. N. Chichko

    2004-01-01

    Full Text Available The results of computer calculations of the stresses, generated in outside layer of ingot of steel 20 of circular section with diameter 300 mm, in application to one of the industrial technological schemas of RUP “BMZ”, are presented. The segments of compressive and tensile stresses formation along the length of ingot are determined and the principal possibility of production of continuously cast slug of circular section at circular-torch spray cooling is shown.

  2. Linear and circular dichroism in angle resolved Fe 3p photomission. Revision 1

    International Nuclear Information System (INIS)

    Tamura, E.; Waddill, G.D.; Tobin, J.G.; Sterne, P.A.

    1994-01-01

    Using a recently developed spin-polarized, fully relativistic, multiple scattering approach based on the layer KKR Green function method, we have reproduced the Fe 3p angle-resolved soft x-ray photoemission spectra and analyzed the associated large magnetic dichroism effects for excitation with both linearly and circularly polarized light. Comparison between theory and experiment yields a spin-orbit splitting of 1.0--1.2 eV and an exchange splitting of 0.9-- 1.0 eV for Fe 3p. These values are 50--100% larger than those hitherto obtained experimentally

  3. Calculation of direct effects of {sup 60}Co gamma rays on the different DNA structural levels: A simulation study using the Geant4-DNA toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Tajik, Marjan; Rozatian, Amir S.H. [Department of Physics, University of Isfahan, Hezar Jarib Street, Isfahan 81746-73441 (Iran, Islamic Republic of); Semsarha, Farid, E-mail: Semsarha@ibb.ut.ac.ir [Institute of Biochemistry and Biophysics (IBB), University of Tehran, P.O. Box: 13145-1384, Tehran (Iran, Islamic Republic of)

    2015-03-01

    In this study, simple single strand breaks (SSB) and double strand breaks (DSB) due to direct effects of the secondary electron spectrum of {sup 60}Co gamma rays on different organizational levels of a volume model of the B-DNA conformation have been calculated using the Geant4-DNA toolkit. Result of this study for the direct DSB yield shows a good agreement with other theoretical and experimental results obtained by both photons and their secondary electrons; however, in the case of SSB a noticeable difference can be observed. Moreover, regarding the almost constant yields of the direct strand breaks in the different structural levels of the DNA, calculated in this work, and compared with some theoretical studies, it can be deduced that the direct strand breaks yields depend mainly on the primary double helix structure of the DNA and the higher-order structures cannot have a noticeable effect on the direct DNA damage inductions by {sup 60}Co gamma rays. In contrast, a direct dependency between the direct SSB and DSB yields and the volume of the DNA structure has been found. Also, a further study on the histone proteins showed that they can play an important role in the trapping of low energy electrons without any significant effect on the direct DNA strand breaks inductions, at least in the range of energies used in the current study.

  4. Investigation of mechanical properties of bimetallic square tubes produced by shape rolling of Al/Cu circular pipes

    International Nuclear Information System (INIS)

    Tajyar, Ali; Masoumi, Abolfazi

    2016-01-01

    We investigated the effect of shape rolling process on the bond strength and mechanical properties of Al/Cu bimetal pipes. A bimetal circular pipe was fabricated by the explosive welding process. Then, the bimetal explosive-welded circular pipe was reshaped to a square tube by means of the shape rolling process. The mechanical properties of explosive welded pipes and shape-rolled tubes at the various stages of the rolling process were experimentally investigated by using the shear testing, micro hardness testing along the thicknesses and measurement of yield. The obtained results show that with the increase of roll gap reduction during the various stages, the hardness increases, while the shear strength decreases. However, their effects on hardness increase are not the same for both materials. Yield stress measurement results indicate that the average yield stress increases during explosive welding and also shape rolling process, but the rate of increase is more intensive in the explosive welding process. Moreover, the morphology of the interface before and after the Shape rolling was examined by Optical microscope (OM) and the presence of the intermetallic compounds at the interface was investigated by the electron microscope (SEM) and EDS analysis. Examination of the interfaces morphology revealed that, due to the brittle nature of the intermetallic compounds at the joining interface, the nucleation and propagation of micro cracks accelerated during the shape rolling process and the amount of micro cracks increases which makes the shear strength decrease

  5. Investigation of mechanical properties of bimetallic square tubes produced by shape rolling of Al/Cu circular pipes

    Energy Technology Data Exchange (ETDEWEB)

    Tajyar, Ali; Masoumi, Abolfazi [School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of)

    2016-09-15

    We investigated the effect of shape rolling process on the bond strength and mechanical properties of Al/Cu bimetal pipes. A bimetal circular pipe was fabricated by the explosive welding process. Then, the bimetal explosive-welded circular pipe was reshaped to a square tube by means of the shape rolling process. The mechanical properties of explosive welded pipes and shape-rolled tubes at the various stages of the rolling process were experimentally investigated by using the shear testing, micro hardness testing along the thicknesses and measurement of yield. The obtained results show that with the increase of roll gap reduction during the various stages, the hardness increases, while the shear strength decreases. However, their effects on hardness increase are not the same for both materials. Yield stress measurement results indicate that the average yield stress increases during explosive welding and also shape rolling process, but the rate of increase is more intensive in the explosive welding process. Moreover, the morphology of the interface before and after the Shape rolling was examined by Optical microscope (OM) and the presence of the intermetallic compounds at the interface was investigated by the electron microscope (SEM) and EDS analysis. Examination of the interfaces morphology revealed that, due to the brittle nature of the intermetallic compounds at the joining interface, the nucleation and propagation of micro cracks accelerated during the shape rolling process and the amount of micro cracks increases which makes the shear strength decrease.

  6. More than a cool illusion? Functional significance of self-motion illusion (circular vection) for perspective switches.

    Science.gov (United States)

    Riecke, Bernhard E; Feuereissen, Daniel; Rieser, John J; McNamara, Timothy P

    2015-01-01

    Self-motion can facilitate perspective switches and "automatic spatial updating" and help reduce disorientation in applications like virtual reality (VR). However, providing physical motion through moving-base motion simulators or free-space walking areas comes with high cost and technical complexity. This study provides first evidence that merely experiencing an embodied illusion of self-motion ("circular vection") can provide similar behavioral benefits as actual self-motion: Blindfolded participants were asked to imagine facing new perspectives in a well-learned room, and point to previously learned objects. Merely imagining perspective switches while stationary yielded worst performance. When perceiving illusory self-rotation to the novel perspective, however, performance improved significantly and yielded performance similar to actual rotation. Circular vection was induced by combining rotating sound fields ("auditory vection") and biomechanical vection from stepping along a carrousel-like rotating floor platter. In sum, illusory self-motion indeed facilitated perspective switches and thus spatial orientation, similar to actual self-motion, thus providing first compelling evidence of the functional significance and behavioral relevance of vection. This could ultimately enable us to complement the prevailing introspective vection measures with behavioral indicators, and guide the design for more affordable yet effective VR simulators that intelligently employ multi-modal self-motion illusions to reduce the need for costly physical observer motion.

  7. Circular dichroism spectroscopy of conformers of (guanine + adenine) repeat strands of DNA

    Czech Academy of Sciences Publication Activity Database

    Kejnovská, Iva; Kypr, Jaroslav; Vorlíčková, Michaela

    2003-01-01

    Roč. 15, č. 7 (2003), s. 584-592 ISSN 0899-0042 R&D Projects: GA AV ČR IAA4004201; GA ČR GA204/01/0561 Institutional research plan: CEZ:AV0Z5004920 Keywords : DNA conformation * (guanine + adenine) repeats * homoduplexes Subject RIV: BO - Biophysics Impact factor: 1.793, year: 2003

  8. Theory-based scaling of the SOL width in circular limited tokamak plasmas

    International Nuclear Information System (INIS)

    Halpern, F.D.; Ricci, P.; Labit, B.; Furno, I.; Jolliet, S.; Loizu, J.; Mosetto, A.; Arnoux, G.; Silva, C.; Gunn, J.P.; Horacek, J.; Kočan, M.; LaBombard, B.

    2013-01-01

    A theory-based scaling for the characteristic length of a circular, limited tokamak scrape-off layer (SOL) is obtained by considering the balance between parallel losses and non-linearly saturated resistive ballooning mode turbulence driving anomalous perpendicular transport. The SOL size increases with plasma size, resistivity, and safety factor q. The scaling is verified against flux-driven non-linear turbulence simulations, which reveal good agreement within a wide range of dimensionless parameters, including parameters closely matching the TCV tokamak. An initial comparison of the theory against experimental data from several tokamaks also yields good agreement. (letter)

  9. Interaction between insulin and calf thymus DNA, and quantification of insulin and calf thymus DNA by a resonance Rayleigh scattering method

    International Nuclear Information System (INIS)

    Kong, L.; Liu, Z.; Hu, X.; Liu, S.; Li, W.

    2012-01-01

    The interaction of insulin with calf thymus deoxyribonucleic acid (ctDNA) leads to a complex that displays remarkably enhanced resonance Rayleigh scattering (RRS). The complex and its formation were investigated by atomic force microscopy and by absorption, fluorescence and circular dichroism spectroscopies. We show that the Tyr B16, Tyr B26 and Phe B24 amino acids near the active center (Phe B25) were influenced by the interaction, whereas Tyr A14, Tyr A19 and Phe B1 (which are located far away from the active center) were less influenced. The interaction provide a way in the quantitation of both ctDNA and insulin with high sensitivity. When ctDNA is used as a probe to quantify insulin, the detection limit (3σ) is 6.0 ng mL -1 . If, inversely, insulin is used as a probe to quantify ctDNA, the detection limit (3σ) is 7.2 ng mL -1 . The analysis of synthetic DNA samples and an insulin infection sample provided satisfactory results. (author)

  10. The Baltics on Their Way towards a Circular Economy

    Directory of Open Access Journals (Sweden)

    Grigoryan A. A.

    2017-10-01

    Full Text Available Circular economy has been studied extensively both in Europe and worldwide. It is largely viewed as a potential strategy for societal development, aimed to increase prosperity while reducing dependence on raw materials and energy. Many businesses regard circular economy as a way to enhance economic growth and increase profits. Governments across the world actively engage in the discussion about the benefits of a transition to a circular economy and about its impact on employment, economic growth, and the environment. This paper aims to study the major issues of circular economy, to identify its advantages, and to offer an insight into the transition stage the Baltic States are undergoing today on their way to circular economy. It is stressed that the Baltic countries are not fully using the opportunities offered by a circular economy. For example, Latvia’s, Lithuania’s, and Estonia’s recycling rates are significantly below those of other European countries. The Baltics depend heavily on EU financial support. An increase in funding will contribute to the implementation of circular economy technologies.

  11. Eu3+-induced DNA condensation and chirality transfer

    Czech Academy of Sciences Publication Activity Database

    Wu, Tao; Bouř, Petr; Andrushchenko, Valery

    2016-01-01

    Roč. 23, č. 1 (2016), s. 26 ISSN 1211-5894. [Discussions in Structural Molecular Biology /14./. 17.03.2016-19.03.2016, Nové Hrady] R&D Projects: GA ČR(CZ) GJ16-08764Y; GA ČR GA15-09072S; GA ČR(CZ) GA16-04902S Institutional support: RVO:61388963 Keywords : DNA * lanthanides * circularly polarised luminescence Subject RIV: CF - Physical ; Theoretical Chemistry

  12. DNA damage induced by radiation plasmodial mixed + gamma thermal neutrons in the presence and absence of free radical scavenger

    International Nuclear Information System (INIS)

    Rodriguez Gual, Maritza; Mas Milian, Felix; Gouveia, Andreia; Deppman, Airton

    2010-01-01

    In this work is quantified the damage in DNA plasmid induced by mixed radiation (thermal neutron and gamma rays) for first time. For the study was used the pBs KS+ plasmid of 2961 bp in aqueous solution of the 88 ng/μL with 0, 2 and 20 mmol/L of glycerol which acts as a free radicals scavenger. This plasmid changes its form of supercoiled to circular when a simple strand break is produced, and passes to a linear form when a double strand break is produced in the chain. Quantifying the fractions that exist in each of these forms is possible to estimate the effect of radiation on DNA. The irradiations were carried out in the radial channel 3 at IEA-R1 research reactor of the Instituto de Pesquisas Energeticas y Nucleares in Sao Paulo, Brazil. DNA forms were separated by agarose gel electrophoresis. For quantification the program GelAnalis was used. The values of the fractions of DNA in various forms were plotted as a function of dose and fitted to exponential and linear functions to obtaining the probabilities of simple and double strand breaks normalized by dose and molecular mass. The results showed the protective action of free radical scavenger against damage induced for radiation which corroborates the previous results found with other ionizing radiations. Yields of SSB and DSB will be of interest for the validation of the different models that attempt to reproduce the experimental results

  13. Modification of DNA radiolysis by DNA-binding proteins: Structural aspects

    International Nuclear Information System (INIS)

    Davidkova, M.; Stisova, V.; Goffinont, S.; Gillard, N.; Castaing, B.; Spotheim-Maurizot, M.

    2006-01-01

    Formation of specific complexes between proteins and their cognate DNA modulates the yields and the location of radiation damage on both partners of the complex. The radiolysis of DNA-protein complexes is studied for: (1) the Escherichia coli lactose operator-repressor complex, (2) the complex between DNA bearing an analogue of an abasic site and the repair protein Fpg of Lactococcus lactis. Experimental patterns of DNA damages are presented and compared to predicted damage distribution obtained using an improved version of the stochastic model RADACK. The same method is used for predicting the location of damages on the proteins. At doses lower than a threshold that depends on the system, proteins protect their specific binding site on DNA while at high doses, the studied complexes are disrupted mainly through protein damage. The loss of binding ability is the functional consequence of the amino-acids modification by OH . radicals. Many of the most probably damaged amino acids are essential for the DNA-protein interaction and within a complex are protected by DNA. (authors)

  14. University Students Alternative Conceptions On Circular Motion

    Directory of Open Access Journals (Sweden)

    Ian Phil Canlas

    2015-08-01

    Full Text Available This study attempted to find out university students alternative conceptions on circular motion. An 18-item researcher-compiled and content-validated questionnaire was administered to twenty-six 26 students taking up a program in Bachelor in Secondary Education-Physical Science in their second year enrolled in a course on mechanics. Results revealed that majority of the students possess alternative conceptions on circular motion specifically along velocity acceleration and force. Moreover results showed the inconsistencies in the students understanding of circular motion concepts.

  15. Diversity of Dicotyledenous-Infecting Geminiviruses and Their Associated DNA Molecules in Southern Africa, Including the South-West Indian Ocean Islands

    Directory of Open Access Journals (Sweden)

    Lindy L. Esterhuizen

    2012-09-01

    Full Text Available The family Geminiviridae comprises a group of plant-infecting circular ssDNA viruses that severely constrain agricultural production throughout the temperate regions of the world, and are a particularly serious threat to food security in sub-Saharan Africa. While geminiviruses exhibit considerable diversity in terms of their nucleotide sequences, genome structures, host ranges and insect vectors, the best characterised and economically most important of these viruses are those in the genus Begomovirus. Whereas begomoviruses are generally considered to be either monopartite (one ssDNA component or bipartite (two circular ssDNA components called DNA-A and DNA-B, many apparently monopartite begomoviruses are associated with additional subviral ssDNA satellite components, called alpha- (DNA-as or betasatellites (DNA-βs. Additionally, subgenomic molecules, also known as defective interfering (DIs DNAs that are usually derived from the parent helper virus through deletions of parts of its genome, are also associated with bipartite and monopartite begomoviruses. The past three decades have witnessed the emergence and diversification of various new begomoviral species and associated DI DNAs, in southern Africa, East Africa, and proximal Indian Ocean islands, which today threaten important vegetable and commercial crops such as, tobacco, cassava, tomato, sweet potato, and beans. This review aims to describe what is known about these viruses and their impacts on sustainable production in this sensitive region of the world.

  16. Hepatitis B virus DNA quantification with the three-in-one (3io) method allows accurate single-step differentiation of total HBV DNA and cccDNA in biopsy-size liver samples.

    Science.gov (United States)

    Taranta, Andrzej; Tien Sy, Bui; Zacher, Behrend Johan; Rogalska-Taranta, Magdalena; Manns, Michael Peter; Bock, Claus Thomas; Wursthorn, Karsten

    2014-08-01

    Hepatitis B virus (HBV) replicates via reverse transcription converting its partially double stranded genome into the covalently closed circular DNA (cccDNA). The long-lasting cccDNA serves as a replication intermediate in the nuclei of hepatocytes. It is an excellent, though evasive, parameter for monitoring the course of liver disease and treatment efficiency. To develop and test a new approach for HBV DNA quantification in serum and small-size liver samples. The p3io plasmid contains an HBV fragment and human β-actin gene (hACTB) as a standard. Respective TaqMan probes were labeled with different fluorescent dyes. A triplex real-time PCR for simultaneous quantification of total HBV DNA, cccDNA and hACTB could be established. Three-in-one method allows simultaneous analysis of 3 targets with a lower limit of quantification of 48 copies per 20 μl PCR reaction and a wide range of linearity (R(2)>0.99, pDNA samples from HBV infected patients. Total HBV DNA and cccDNA could be quantified in 32 and 22 of 33 FFPE preserved liver specimens, respectively. Total HBV DNA concentrations quantified by the 3io method remained comparable with Cobas TaqMan HBV Test v2.0. The three-in-one protocol allows the single step quantification of viral DNA in samples from different sources. Therefore lower sample input, faster data acquisition, a lowered error and significantly lower costs are the advantages of the method. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Architectural Surfaces and Structures from Circular Arcs

    KAUST Repository

    Shi, Ling

    2013-01-01

    the most attention from geometry researchers. In this thesis, we aim to realize this process with simple geometric primitives, circular arcs. We investigate architectural surfaces and structures consisting of circular arcs. Our focus is lying on how

  18. Estimated yield of double-strand breaks from internal exposure to tritium

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jing [Health Canada, Radiation Protection Bureau, Ottawa, ON (Canada)

    2012-08-15

    Internal exposure to tritium may result in DNA lesions. Of those, DNA double-strand breaks (DSBs) are believed to be important. However, experimental and computational data of DSBs induction by tritium are very limited. In this study, microdosimetric characteristics of uniformly distributed tritium were determined in dimensions of critical significance in DNA DSBs. Those characteristics were used to identify other particles comparable to tritium in terms of microscopic energy deposition. The yield of DSBs could be strongly dependent on biological systems and cellular environments. After reviewing theoretically predicted and experimentally determined DSB yields available in the literature for low-energy electrons and high-energy protons of comparable microdosimetric characteristics to tritium in the dimensions relevant to DSBs, it is estimated that the average DSB yields of 2.7 x 10{sup -11}, 0.93 x 10{sup -11}, 2.4 x 10{sup -11} and 1.6 x 10{sup -11} DSBs Gy{sup -1} Da{sup -1} could be reasonable estimates for tritium in plasmid DNAs, yeast cells, Chinese hamster V79 cells and human fibroblasts, respectively. If a biological system is not specified, the DSB yield from tritium exposure can be estimated as (2.3 ± 0.7) x 10{sup -11} DSBs Gy{sup -1} Da{sup -1}, which is a simple average over experimentally determined yields of DSBs for low-energy electrons in various biological systems without considerations of variations caused by different techniques used and obvious differences among different biological systems where the DSB yield was measured. (orig.)

  19. Protective role of OH scavengers and DNA/chromatin organization in the induction of DNA breaks: mechanistic models and Monte Carlo simulations

    International Nuclear Information System (INIS)

    Ballarini, F.; Rossetti, M.; Scannicchio, D.; Jacob, P.; Molinelli, S.; Ottolenghi, A.; Volata, A.

    2003-01-01

    Radiation-induced DNA damage can be modulated by various factors, including the environment scavenging capacity (SC) and the DNA organization within the cell nucleus (chromatin compactness, DNA-binding proteins etc.). In this context the induction of ssb and dsb by photons and light ions of different energies impinging on different DNA structures (e.g. linear DNA, SV40 'minichromosomes' and cellular DNA) at different OH-radical SC values was modelled with the Monte Carlo PARTRAC code. Presently PARTRAC can transport electrons, photons, protons and alpha particles in liquid water with an 'event-by-event' approach, and can simulate the DNA content of mammalian cells with an 'atom-by-atom' description, from nucleotide pairs to chromatin fibre loops and chromosome territories. Energy depositions in the sugar-phosphate were considered as potential (direct) ssb. The production, diffusion and reaction of chemical species were explicitly simulated; reactions of OH radicals with the sugar-phosphate were assumed to lead to 'indirect' ssb with probability 65%. Two ssb on opposite strands within 10 bp were considered as a dsb. Yields of ssb and dsb/Gy/Dalton were calculated for different DNA structures as a function of the OH mean life time. By Zyuzikov, N.; Michael, B.D. (Gray Cancer Institute, (GB)); Wu, L. (Ch Zyuzdirect damage yields. In general, also depending on radiation quality, linear DNA was found to be more susceptible to strand breakage than SV40 minichromosomes, which in turn showed higher damage yields with respect to cellular DNA. The very good agreement found with available experimental data provided a validation of the model and allowed us to quantify separately the protective effect of OH scavengers and DNA/chromatin organization. Comparisons with data on nucleoids (DNA unfolded and depleted of histones) suggested that the experimental procedures used to obtain such targets might lower the environment SC, due to the loss of cellular scavenging compounds

  20. Assessment of DNA quality in processed tuna muscle tissues

    Directory of Open Access Journals (Sweden)

    Zora Piskatá

    2016-06-01

    Full Text Available Authentication of tuna fish products is necessary to assure consumers of accurate labelling of food products. The quality of species specific DNA crucially affects the efficiency of amplification during the subsequent PCR. The problem in DNA detection in canned products lies in the possibility of the fragmentation of DNA during the processing technologies and the use of ingredients (oil, salt, spice, that may inhibit the PCR reaction. In this study three DNA extraction methods were compared: DNeasy Blood and Tissue Kit, DNeasy mericon Food Kit and Chemagic DNA tissue 10 Kit. The quantity and quality of DNA were evaluated by measuring DNA concentration and ratios A260/A280. Several parameters were estimated: the effect of whole and mechanically treated muscle, sterilization procedure used in canned process (high temperature in combination with high pressure and addition of raw materials. The highest DNA concentrations were observed in non-processed muscle that is not influenced by the sterilization process. Canned whole muscle demonstrated lower DNA yield, and furthermore, the mechanical treatment (canned ground resulted in lower values of DNA concentration that was registered by using all three types of DNA extraction kits. DNeasy mericon Food Kit produced DNA of higher concentration in non-processed sample, Chemagic DNA tissue 10 Kit delivered higher DNA yields than kits DNeasy Blood and Tissue Kit and DNeasy mericon Food Kit in canned samples, although the purity was lower, but still within the range 1.7 - 2.0. DNA was considered to be satisfactorily pure in all three types of samples and using all three types of DNA isolation. In case of the samples enriched of ingredients and treated with sterilization process as whole or ground muscle Chemagic DNA tissue 10 Kit produced in all samples (whole and ground muscle the highest values of DNA concentration, but almost all values of A260/A280 were lower than 1.7. Therefore DNeasy mericon Food Kit

  1. Unprecedented large inverted repeats at the replication terminus of circular bacterial chromosomes suggest a novel mode of chromosome rescue

    Science.gov (United States)

    El Kafsi, Hela; Loux, Valentin; Mariadassou, Mahendra; Blin, Camille; Chiapello, Hélène; Abraham, Anne-Laure; Maguin, Emmanuelle; van de Guchte, Maarten

    2017-01-01

    The first Lactobacillus delbrueckii ssp. bulgaricus genome sequence revealed the presence of a very large inverted repeat (IR), a DNA sequence arrangement which thus far seemed inconceivable in a non-manipulated circular bacterial chromosome, at the replication terminus. This intriguing observation prompted us to investigate if similar IRs could be found in other bacteria. IRs with sizes varying from 38 to 76 kbp were found at the replication terminus of all 5 L. delbrueckii ssp. bulgaricus chromosomes analysed, but in none of 1373 other chromosomes. They represent the first naturally occurring very large IRs detected in circular bacterial genomes. A comparison of the L. bulgaricus replication terminus regions and the corresponding regions without IR in 5 L. delbrueckii ssp. lactis genomes leads us to propose a model for the formation and evolution of the IRs. The DNA sequence data are consistent with a novel model of chromosome rescue after premature replication termination or irreversible chromosome damage near the replication terminus, involving mechanisms analogous to those proposed in the formation of very large IRs in human cancer cells. We postulate that the L. delbrueckii ssp. bulgaricus-specific IRs in different strains derive from a single ancestral IR of at least 93 kbp. PMID:28281695

  2. Optimization of DNA extraction for RAPD and ISSR analysis of Arbutus unedo L. Leaves.

    Science.gov (United States)

    Sá, Olga; Pereira, José Alberto; Baptista, Paula

    2011-01-01

    Genetic analysis of plants relies on high yields of pure DNA. For the strawberry tree (Arbutus unedo) this represents a great challenge since leaves can accumulate large amounts of polysaccharides, polyphenols and secondary metabolites, which co-purify with DNA. For this specie, standard protocols do not produce efficient yields of high-quality amplifiable DNA. Here, we present for the first time an improved leaf-tissue protocol, based on the standard cetyl trimethyl ammonium bromide protocol, which yields large amounts of high-quality amplifiable DNA. Key steps in the optimized protocol are the addition of antioxidant compounds-namely polyvinyl pyrrolidone (PVP), 1,4-dithiothreitol (DTT) and 2-mercaptoethanol, in the extraction buffer; the increasing of CTAB (3%, w/v) and sodium chloride (2M) concentration; and an extraction with organic solvents (phenol and chloroform) with the incubation of samples on ice. Increasing the temperature for cell lyses to 70 °C also improved both DNA quality and yield. The yield of DNA extracted was 200.0 ± 78.0 μg/μL and the purity, evaluated by the ratio A(260)/A(280), was 1.80 ± 0.021, indicative of minimal levels of contaminating metabolites. The quality of the DNA isolated was confirmed by random amplification polymorphism DNA and by inter-simple sequence repeat amplification, proving that the DNA can be amplified via PCR.

  3. Optimization of DNA Extraction for RAPD and ISSR Analysis of Arbutus unedo L. Leaves

    Directory of Open Access Journals (Sweden)

    Paula Baptista

    2011-06-01

    Full Text Available Genetic analysis of plants relies on high yields of pure DNA. For the strawberry tree (Arbutus unedo this represents a great challenge since leaves can accumulate large amounts of polysaccharides, polyphenols and secondary metabolites, which co-purify with DNA. For this specie, standard protocols do not produce efficient yields of high-quality amplifiable DNA. Here, we present for the first time an improved leaf-tissue protocol, based on the standard cetyl trimethyl ammonium bromide protocol, which yields large amounts of high-quality amplifiable DNA. Key steps in the optimized protocol are the addition of antioxidant compounds—namely polyvinyl pyrrolidone (PVP, 1,4-dithiothreitol (DTT and 2-mercaptoethanol, in the extraction buffer; the increasing of CTAB (3%, w/v and sodium chloride (2M concentration; and an extraction with organic solvents (phenol and chloroform with the incubation of samples on ice. Increasing the temperature for cell lyses to 70 °C also improved both DNA quality and yield. The yield of DNA extracted was 200.0 ± 78.0 µg/µL and the purity, evaluated by the ratio A260/A280, was 1.80 ± 0.021, indicative of minimal levels of contaminating metabolites. The quality of the DNA isolated was confirmed by random amplification polymorphism DNA and by inter-simple sequence repeat amplification, proving that the DNA can be amplified via PCR.

  4. A Green Solvent Induced DNA Package

    Science.gov (United States)

    Satpathi, Sagar; Sengupta, Abhigyan; Hridya, V. M.; Gavvala, Krishna; Koninti, Raj Kumar; Roy, Bibhisan; Hazra, Partha

    2015-03-01

    Mechanistic details of DNA compaction is essential blue print for gene regulation in living organisms. Many in vitro studies have been implemented using several compaction agents. However, these compacting agents may have some kinds of cytotoxic effects to the cells. To minimize this aspect, several research works had been performed, but people have never focused green solvent, i.e. room temperature ionic liquid as DNA compaction agent. To the best of our knowledge, this is the first ever report where we have shown that guanidinium tris(pentafluoroethyl)trifluorophosphate (Gua-IL) acts as a DNA compacting agent. The compaction ability of Gua-IL has been verified by different spectroscopic techniques, like steady state emission, circular dichroism, dynamic light scattering and UV melting. Notably, we have extensively probed this compaction by Gua-IL through field emission scanning electron microscopy (FE-SEM) and fluorescence microscopy images. We also have discussed the plausible compaction mechanism process of DNA by Gua-IL. Our results suggest that Gua-IL forms a micellar kind of self aggregation above a certain concentration (>=1 mM), which instigates this compaction process. This study divulges the specific details of DNA compaction mechanism by a new class of compaction agent, which is highly biodegradable and eco friendly in nature.

  5. The re-entrant cholesteric phase of DNA

    Science.gov (United States)

    Yevdokimov, Yu. M.; Skuridin, S. G.; Salyanov, V. I.; Semenov, S. V.; Shtykova, E. V.; Dadinova, L. A.; Kompanets, O. N.; Kats, E. I.

    2017-07-01

    The character of packing of double-stranded DNA molecules in particles of liquid-crystal dispersions formed as a result of the phase exclusion of DNA molecules from aqueous salt polyethylene glycol solutions has been estimated by comparing the circular dichroism (CD) spectra of these dispersions recorded at different osmotic pressures and temperatures. It is shown that the first cycle of heating of dispersion particles with hexagonally packed double-stranded DNA molecules leads to the occurrence of abnormal optical activity of these particles, which manifests itself in the form of a strong negative CD band, characteristic of DNA cholesterics. Moreover, subsequent cooling is accompanied by a further increase in the abnormal optical activity, which indicates the existence of the "hexagonal → cholesteric packing" phase transition, controlled by both the osmotic pressure of the solution and its temperature. The result obtained can be described in terms of "quasi-nematic" layers composed of orientationally ordered DNA molecules in the structure of dispersion particles. There are two possible ways of packing for these layers, which determine their hexagonal or cholesteric spatial structure. The second heating → cooling cycle confirms these results and is indicative of possible differences in the packing of double-stranded DNA molecules in the hexagonal phase, which depend on the osmotic pressure of the solution.

  6. Effect of the atmospheric pressure nonequilibrium plasmas on the conformational changes of plasmid DNA

    International Nuclear Information System (INIS)

    Yan Xu; He Guangyuan; Shi Mengjun; Gao Xuan; Li Yin; Ma Fengyun; Yu Men; Wang Changdong; Wang Yuesheng; Yang Guangxiao; Zou Fei; Lu Xinpei; Xiong Qing; Xiong Zilan

    2009-01-01

    The cold atmospheric pressure plasma, which has been widely used for biomedical applications, may potentially affect the conformation of DNA. In this letter, an atmospheric pressure plasma plume is used to investigate its effects on the conformational changes of DNA of plasmid pAHC25. It is found that the plasma plume could cause plasmid DNA topology alteration, resulting in the percentage of the supercoiled plasmid DNA form decreased while that of the open circular and linearized form of plasmid DNA increased as detected by agrose gel electrophoresis. On the other hand, further investigation by using polymerase chain reaction method shows that the atmospheric pressure plasma jet treatments under proper conditions does not affect the genes of the plasmid DNA, which may have potential application in increasing the transformation frequency by genetic engineering.

  7. DNA repair synthesis in human fibroblasts requires DNA polymerase delta

    International Nuclear Information System (INIS)

    Nishida, C.; Reinhard, P.; Linn, S.

    1988-01-01

    When UV-irradiated cultured diploid human fibroblasts were permeabilized with Brij-58 then separated from soluble material by centrifugation, conservative DNA repair synthesis could be restored by a soluble factor obtained from the supernatant of similarly treated HeLa cells. Extensive purification of this factor yielded a 10.2 S, 220,000-dalton polypeptide with the DNA polymerase and 3'- to 5'-exonuclease activities reported for DNA polymerase delta II. Monoclonal antibody to KB cell DNA polymerase alpha, while binding to HeLa DNA polymerase alpha, did not bind to the HeLa DNA polymerase delta. Moreover, at micromolar concentrations N2-(p-n-butylphenyl)-2'-deoxyguanosine 5'-triphosphate (BuPdGTP) and 2-(p-n-butylanilino)-2'-deoxyadenosine 5'-triphosphate (BuAdATP) were potent inhibitors of DNA polymerase alpha, but did not inhibit the DNA polymerase delta. Neither purified DNA polymerase alpha nor beta could promote repair DNA synthesis in the permeabilized cells. Furthermore, under conditions which inhibited purified DNA polymerase alpha by greater than 90%, neither monoclonal antibodies to DNA polymerase alpha, BuPdGTP, nor BuAdATP was able to inhibit significantly the DNA repair synthesis mediated by the DNA polymerase delta. Thus, it appears that a major portion of DNA repair synthesis induced by UV irradiation might be catalyzed by DNA polymerase delta. When xeroderma pigmentosum human diploid fibroblasts were utilized, DNA repair synthesis dependent upon ultraviolet light could be restored by addition of both T4 endonuclease V and DNA polymerase delta, but not by addition of either one alone

  8. Environmental issues elimination through circular economy

    Energy Technology Data Exchange (ETDEWEB)

    Špirková, M., E-mail: marta.spirkova@stuba.sk; Pokorná, E.; Šujanová, J.; Samáková, J. [Paulínska 16, 917 24 Trnava, Slovakia, Slovak University of Technology in Bratislava, Faculty of Materials Science and Technology in Trnava (Slovakia)

    2016-04-21

    Environmental efforts of European Union are currently going towards circular economy. Tools like Extended Producer Responsibility and Eco-design were established. The circular economy deals with resources availability issue on one hand and waste management on the other hand. There are few pioneering companies all over the world with some kind of circular economy practice. Generally the concept is not very wide-spread. The paper aims to evaluate possibility of transition towards circular economy in Slovak industrial companies. They need to have an active approach to material treatment of their products after usage stage. Innovation is another important pre-condition for the transition. Main problem of current cradle to grave system is landfilling of valuable materials after one cycle of usage. Their potential value for next manufacturing cycles is lost. Companies may do not see connection between waste management and material resource prices and volatility of supplies. Municipalities are responsible for municipal waste collection and treatment in Slovakia. The circular economy operates by cradle to cradle principle. Company manages material flow until the material comes back to the beginning of manufacturing process by itself or by another partners. Stable material supplies with quite low costs are provided this way. It is necessary to deal with environmental problems in phase of product design. Questionnaire survey results show on one hand low involvement of industrial companies in waste management area, however on the other hand they are open to environmental innovations in future.

  9. Environmental issues elimination through circular economy

    International Nuclear Information System (INIS)

    Špirková, M.; Pokorná, E.; Šujanová, J.; Samáková, J.

    2016-01-01

    Environmental efforts of European Union are currently going towards circular economy. Tools like Extended Producer Responsibility and Eco-design were established. The circular economy deals with resources availability issue on one hand and waste management on the other hand. There are few pioneering companies all over the world with some kind of circular economy practice. Generally the concept is not very wide-spread. The paper aims to evaluate possibility of transition towards circular economy in Slovak industrial companies. They need to have an active approach to material treatment of their products after usage stage. Innovation is another important pre-condition for the transition. Main problem of current cradle to grave system is landfilling of valuable materials after one cycle of usage. Their potential value for next manufacturing cycles is lost. Companies may do not see connection between waste management and material resource prices and volatility of supplies. Municipalities are responsible for municipal waste collection and treatment in Slovakia. The circular economy operates by cradle to cradle principle. Company manages material flow until the material comes back to the beginning of manufacturing process by itself or by another partners. Stable material supplies with quite low costs are provided this way. It is necessary to deal with environmental problems in phase of product design. Questionnaire survey results show on one hand low involvement of industrial companies in waste management area, however on the other hand they are open to environmental innovations in future.

  10. Environmental issues elimination through circular economy

    Science.gov (United States)

    Špirková, M.; Pokorná, E.; Šujanová, J.; Samáková, J.

    2016-04-01

    Environmental efforts of European Union are currently going towards circular economy. Tools like Extended Producer Responsibility and Eco-design were established. The circular economy deals with resources availability issue on one hand and waste management on the other hand. There are few pioneering companies all over the world with some kind of circular economy practice. Generally the concept is not very wide-spread. The paper aims to evaluate possibility of transition towards circular economy in Slovak industrial companies. They need to have an active approach to material treatment of their products after usage stage. Innovation is another important pre-condition for the transition. Main problem of current cradle to grave system is landfilling of valuable materials after one cycle of usage. Their potential value for next manufacturing cycles is lost. Companies may do not see connection between waste management and material resource prices and volatility of supplies. Municipalities are responsible for municipal waste collection and treatment in Slovakia. The circular economy operates by cradle to cradle principle. Company manages material flow until the material comes back to the beginning of manufacturing process by itself or by another partners. Stable material supplies with quite low costs are provided this way. It is necessary to deal with environmental problems in phase of product design. Questionnaire survey results show on one hand low involvement of industrial companies in waste management area, however on the other hand they are open to environmental innovations in future.

  11. The Circular Economy between Desiderates and Realities.

    Directory of Open Access Journals (Sweden)

    Tăchiciu Laurentiu

    2018-05-01

    Full Text Available The present issue of Amfiteatru Economic Journal addresses the subject of the circular economy, bringing together research contributions to a better understanding of the current state and perspectives of the adoption of economic and business models conceived to give resources’ highest utility and value in every stage by reducing waste, reusing and recycling. Contributors are approaching the circular economy from different perspectives. Some are concerned with the macroeconomic and social conditions accompanying a higher circularity in the economy, while others focus on businesses’ and individuals’ behaviours.

  12. Design and Assembly of DNA Nano-Objects and 2D DNA Origami Arrays

    Science.gov (United States)

    Liu, Wenyan

    DNA can cause the formation efficiencies of DNA origami tiles two to three times lower than those of origami tiles folded by normal single--stranded circular M13 DNA.

  13. The Circular Economy: In Practice-focused Undergraduate Engineering Education

    DEFF Research Database (Denmark)

    Knudby, Torben; Larsen, Samuel

    2017-01-01

    The growth of the planet’s population makes the traditional industrial model of “take, make and waste” unsustainable. The circular economy, in which resources are continuously reused, offers a solution. For manufacturers of durable goods the circular economy requires a well-functioning circular...

  14. Flow-induced vibration of circular cylindrical structures

    International Nuclear Information System (INIS)

    Chen, S.S.

    1985-06-01

    This report summarizes the flow-induced vibration of circular cylinders in quiescent fluid, axial flow, and crossflow, and applications of the analytical methods and experimental data in design evaluation of various system components consisting of circular cylinders. 219 figs., 30 tabs

  15. Use of damaged plasmid to study DNA repair in X-ray sensitive (xrs) strains of Chinese hamster ovary (CHO) cells

    International Nuclear Information System (INIS)

    Smith-Ravin, J.; Jeggo, P.A.

    1989-01-01

    The effect of γ-irradiation of pSV2gpt DNA on its transfection frequency has been analysed using radiosensitive CHO xrs mutants showing a defect in double-strand break (dsb) rejoining. At low doses a sharp decrease in relative transfection frequency, i.e. transfection frequency of irradiated plasmid relative to untreated plasmid, as observed in xrs mutants compared with the parent line K1. Electrophoresis of irradiated plasmid DNA showed the decrease in transfection frequency in the xrs mutants correlated with the change of supercoiled molecules into open-circular forms. In the parent line CHO-K1, open-circular and supercoiled molecules have the same transfection frequency. The effect of linearization of pSV2gpt DNA by restriction enzymes on transfection frequency in xrs and wild-type strains was also examined. No difference in the relative transfection frequency between xrs and wild-type strains was detected. (author)

  16. Eco-Innovation in Circular Agri-Business

    Directory of Open Access Journals (Sweden)

    Dong-Her Shih

    2018-04-01

    Full Text Available This study constructs a theory of eco-innovation in circular agri-business. Although previous studies have discussed eco-innovation in circular agri-business, they did not address eco-innovation from the perspective of a closed-loop sustainable supply chain. Hence, this study applied the fuzzy TOPSIS method to conduct the analysis and determine the interrelationship between eco-innovation and the closed-loop concept. The results are consistent with the theory and a significant improvement in terms of the decisive attributes. The findings suggest that improving water management, relationships with suppliers, knowledge sharing, environmental management systems, and new product and service development are the most effective and efficient ways to build eco-innovation in circular agri-business. The managerial and theoretical implications are discussed.

  17. Optics modules for circular accelerator design

    International Nuclear Information System (INIS)

    Brown, K.L.; Servranckx, R.V.

    1986-05-01

    The first-order differential equations of motion for a single particle in a closed circular machine are solved, introducing the concepts of phase shift, beta functions, and the Courant-Snyder invariant. The transfer matrix between two points in the machine is derived as a function of the phase shift and the parameters contained in the Courant-Snyder invariant. Typical optical modules used in circular machine designs are introduced and related to their characteristic transfer matrix elements, the phase shift through them, and the Courant-Snyder-Twiss parameters. The systematics of some elementary phase ellipse matching problems between optical modules are discussed. Second-order optical modules are discussed, including how they are used to provide the momentum bandwidth needed for the design of a typical circular machine

  18. Equatorial circular motion in Kerr spacetime

    International Nuclear Information System (INIS)

    Pugliese, Daniela; Quevedo, Hernando; Ruffini, Remo

    2011-01-01

    We analyze the properties of circular orbits of test particles on the equatorial plane of a rotating central mass whose gravitational field is described by the Kerr spacetime. For rotating black holes and naked singularities we explore all the spatial regions where circular orbits can exist and analyze the behavior of the energy and the angular momentum of the corresponding test particles. In particular, we find all the radii at which a test particle can have zero angular momentum due to the repulsive gravity effects generated by naked singularities. We classify all the stability zones of circular orbits. It is shown that the geometric structure of the stability zones of black holes is completely different from that of naked singularities.

  19. Characteristics of a Circular Logic and Its Treatment

    International Nuclear Information System (INIS)

    Lim, Ho-Gon; Han, Sang-Hoon; Yang, Joon Eon

    2007-01-01

    A circular logic or a logical loop is defined as the infinite circulation of supporting relations due to their mutual dependencies among the systems in the Fault Tree Analysis (FTA). While many methods to break the circular logic have been developed and used in the fault tree quantification codes, the general solution for a circular logic and its breaking methods are not generally known as yet. This paper presents an analytic solution for circular logics in which the systems are linearly interrelated with each other. Then, a general treatment of circular logics is discussed. To formulate the analytic solution, the relations among systems in the fault tree structure are described by the Boolean equations. The solution is, then, obtained from the successive substitutions of the Boolean equations, which is equivalent to the attaching processes of interrelated system's fault tree to a given fault tree. The solution for three interrelated systems and their independent fault tree structures are given as an example

  20. Circular arc structures

    KAUST Repository

    Bo, Pengbo; Pottmann, Helmut; Kilian, Martin; Wang, Wen Ping; Wallner, Johannes

    2011-01-01

    and connecting elements as well as repetition of costly parts. This paper proposes so-called circular arc structures as a means to faithfully realize freeform designs without giving up smooth appearance. In contrast to non-smooth meshes with straight edges where

  1. DNA psi-condensation and reentrant decondensation: Effect of the PEG degree of polymerization

    NARCIS (Netherlands)

    Ramos, J.E.B.; Vries, de R.J.; Neto, J.R.

    2005-01-01

    ¿-Condensation of DNA fragments of about 4 kbp was induced by poly(ethylene glycol) (PEG), with degrees of polymerization ranging from 45 to 182, and univalent salt (NaCl). Using circular dichroism spectroscopy, we were able to accurately determine the critical amount of PEG needed to induce

  2. Photodynamic effect of light-harvesting, long-lived triplet excited state Ruthenium(II)-polyimine-coumarin complexes: DNA binding, photocleavage and anticancer studies.

    Science.gov (United States)

    Nomula, Raju; Wu, Xueyan; Zhao, Jianzhang; Munirathnam, Nagegownivari R

    2017-10-01

    Two coumarin based Ru II -polyimine complexes (Ru-1 and Ru-2) showing intense absorption of visible light and long-lived triplet excited states (~12-15μs) were used for study of the interaction with DNA. The binding of the complexes with CT-DNA were studied by UV-vis, fluorescence and time-resolved nanosecond transient absorption (ns-TA) spectroscopy. The results suggesting that the complexes interact with CT-DNA by intercalation mode of binding, showing the binding constants (K b ) 6.47×10 4 for Ru-1 and 5.94×10 4 M -1 for Ru-2, in contrast no such results were found for Ru-0. The nanosecond transient absorption spectra of these systems in the presence of CT-DNA showing a clear perturbation in the bleaching region was observed compare to buffer alone. Visible light photoirradiation DNA cleavage was investigated for these complexes by treating with the supercoiled pUC19 DNA and irradiated at 450nm. The reactive species produced upon irradiation of current agents is singlet oxygen ( 1 O 2 ), which results in the generation of other reactive oxygen species (ROS). The complexes shown efficient cleavage activity, converted complete supercoiled DNA to nicked circular at as low as 20μM concentration in 30min of light irradiation time. Significant amount of linear form was generated by Ru-1 at the same conditions. Even though Ru-0 has significant 1 O 2 quantum yield but shown lower cleavage activity compared to other two analogs is due the miserable interaction (binding) with DNA. The cytotoxicity in vitro of the complexes toward HeLa, BEL-7402 and MG-63 cells was assessed by MTT assay. The cellular uptake was observed on BEL-7402 cells under fluorescence microscope. The complexes shown appreciable cytotoxicity towards the cancer cell lines. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Investigation of transient dynamics of capillary assisted particle assembly yield

    Energy Technology Data Exchange (ETDEWEB)

    Virganavičius, D. [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Laboratory of Micro- and Nanotechnology, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Juodėnas, M. [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Tamulevičius, T., E-mail: tomas.tamulevicius@ktu.lt [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Department of Physics, Kaunas University of Technology, Studentų St. 50, Kaunas LT-51368 (Lithuania); Schift, H. [Laboratory of Micro- and Nanotechnology, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Tamulevičius, S. [Institute of Materials Science, Kaunas University of Technology, K. Baršausko St. 59, Kaunas LT-51423 (Lithuania); Department of Physics, Kaunas University of Technology, Studentų St. 50, Kaunas LT-51368 (Lithuania)

    2017-06-01

    Highlights: • Regular particles arrays were assembled by capillary force assisted deposition. • Deposition yield dynamics was investigated at different thermal velocity regimes. • Yield transient behavior was approximated with logistic function. • Pattern density influence for switching behavior was assessed. - Abstract: In this paper, the transient behavior of the particle assembly yield dynamics when switching from low yield to high yield deposition at different velocity and thermal regimes is investigated. Capillary force assisted particle assembly (CAPA) using colloidal suspension of green fluorescent 270 nm diameter polystyrene beads was performed on patterned poly (dimethyl siloxane) substrates using a custom-built deposition setup. Two types of patterns with different trapping site densities were used to assess CAPA process dynamics and the influence of pattern density and geometry on the deposition yield transitions. Closely packed 300 nm diameter circular pits ordered in hexagonal arrangement with 300 nm pitch, and 2 × 2 mm{sup 2} square pits with 2 μm spacing were used. 2-D regular structures of the deposited particles were investigated by means of optical fluorescence and scanning electron microscopy. The fluorescence micrographs were analyzed using a custom algorithm enabling to identify particles and calculate efficiency of the deposition performed at different regimes. Relationship between the spatial distribution of particles in transition zone and ambient conditions was evaluated and quantified by approximation of the yield profile with a logistic function.

  4. Quinolone resistance-associated amino acid substitutions affect enzymatic activity of Mycobacterium leprae DNA gyrase.

    Science.gov (United States)

    Yamaguchi, Tomoyuki; Yokoyama, Kazumasa; Nakajima, Chie; Suzuki, Yasuhiko

    2017-07-01

    Quinolones are important antimicrobials for treatment of leprosy, a chronic infectious disease caused by Mycobacterium leprae. Although it is well known that mutations in DNA gyrase are responsible for quinolone resistance, the effect of those mutations on the enzymatic activity is yet to be studied in depth. Hence, we conducted in vitro assays to observe supercoiling reactions of wild type and mutated M. leprae DNA gyrases. DNA gyrase with amino acid substitution Ala91Val possessed the highest activity among the mutants. DNA gyrase with Gly89Cys showed the lowest level of activity despite being found in clinical strains, but it supercoiled DNA like the wild type does if applied at a sufficient concentration. In addition, patterns of time-dependent conversion from relaxed circular DNA into supercoiled DNA by DNA gyrases with clinically unreported Asp95Gly and Asp95Asn were observed to be distinct from those by the other DNA gyrases.

  5. Extraction of DNA from plant and fungus tissues in situ

    Directory of Open Access Journals (Sweden)

    Abu Almakarem Amal S

    2012-06-01

    Full Text Available Abstract Background When samples are collected in the field and transported to the lab, degradation of the nucleic acids contained in the samples is frequently observed. Immediate extraction and precipitation of the nucleic acids reduces degradation to a minimum, thus preserving accurate sequence information. An extraction method to obtain high quality DNA in field studies is described. Findings DNA extracted immediately after sampling was compared to DNA extracted after allowing the sampled tissues to air dry at 21°C for 48 or 72 hours. While DNA extracted from fresh tissues exhibited little degradation, DNA extracted from all tissues exposed to 21°C air for 48 or 72 hours exhibited varying degrees of degradation. Yield was higher for extractions from fresh tissues in most cases. Four microcentrifuges were compared for DNA yield: one standard electric laboratory microcentrifuge (max rcf = 16,000×g, two battery-operated microcentrifuges (max rcf = 5,000 and 3,000 ×g, and one manually-operated microcentrifuge (max rcf = 120×g. Yields for all centrifuges were similar. DNA extracted under simulated field conditions was similar in yield and quality to DNA extracted in the laboratory using the same equipment. Conclusions This CTAB (cetyltrimethylammonium bromide DNA extraction method employs battery-operated and manually-operated equipment to isolate high quality DNA in the field. The method was tested on plant and fungus tissues, and may be adapted for other types of organisms. The method produced high quality DNA in laboratory tests and under simulated field conditions. The field extraction method should prove useful for working in remote sites, where ice, dry ice, and liquid nitrogen are unavailable; where degradation is likely to occur due to the long distances between the sample site and the laboratory; and in instances where other DNA preservation and transportation methods have been unsuccessful. It may be possible to adapt

  6. The circular economy applied to local communities

    NARCIS (Netherlands)

    van der Blonk, Heico; van Spijk, Alex; van der Schoor, Tineke

    2015-01-01

    Based on a theoretical discussion the main difference between models of lineair economy and circular economy are elaborated; (1) Elimination of waste is essential the circulation of circular flows and reclamation of (raw) materials; this requires mechanisms for the return of obsolete materials. (2)

  7. Radical Circular Economy

    NARCIS (Netherlands)

    Prins, M.; Mohammadi, S.; Slob, N.

    2015-01-01

    Recently the Circular Economy (CE) concept has gained momentum in the Netherlands, propounding that environmental impact reduction can provide a significant positive economical impulse. The government, larger parts of the industry as a whole, as well as the construction industry, has warmly received

  8. METHOD OF CONJUGATED CIRCULAR ARCS TRACING

    Directory of Open Access Journals (Sweden)

    N. Ageyev Vladimir

    2017-01-01

    Full Text Available The geometric properties of conjugated circular arcs connecting two points on the plane with set directions of tan- gent vectors are studied in the work. It is shown that pairs of conjugated circular arcs with the same conditions in frontier points create one-parameter set of smooth curves tightly filling all the plane. One of the basic properties of this set is the fact that all coupling points of circular arcs are on the circular curve going through the initially given points. The circle radius depends on the direction of tangent vectors. Any point of the circle curve, named auxiliary in this work, determines a pair of conjugated arcs with given boundary conditions. One more condition of the auxiliary circle curve is that it divides the plane into two parts. The arcs going from the initial point are out of the circle limited by this circle curve and the arcs coming to the final point are inside it. These properties are the basis for the method of conjugated circular arcs tracing pro- posed in this article. The algorithm is rather simple and allows to fulfill all the needed plottings using only the divider and ruler. Two concrete examples are considered. The first one is related to the problem of tracing of a pair of conjugated arcs with the minimal curve jump when going through the coupling point. The second one demonstrates the possibility of trac- ing of the smooth curve going through any three points on the plane under condition that in the initial and final points the directions of tangent vectors are given. The proposed methods of conjugated circular arcs tracing can be applied in solving of a wide variety of problems connected with the tracing of cam contours, for example pattern curves in textile industry or in computer-aided-design systems when programming of looms with numeric control.

  9. Evaluation of DNA extraction methods for the detection of Cytomegalovirus in dried blood spots

    Science.gov (United States)

    Koontz, D.; Baecher, K.; Amin, M.; Nikolova, S.; Gallagher, M.; Dollard, S.

    2015-01-01

    Background Dried blood spots (DBS) are collected universally from newborns and may be valuable for the diagnosis of congenital Cytomegalovirus (CMV) infection. The reported analytical sensitivity for DBS testing compared to urine or saliva varies greatly across CMV studies. The purpose of this study was to directly compare the performance of various DNA extraction methods for identification of CMV in DBS including those used most often in CMV studies. Study design Whatman® Grade 903 filter paper cards were spotted with blood samples from 25 organ transplant recipients who had confirmed CMV viremia. Six DNA extraction methods were compared for relative yield of viral and cellular DNA: 2 manual solution-based methods (Gentra Puregene, thermal shock), 2 manual silica column-based methods (QIAamp DNA Mini, QIAamp DNA Investigator), and 2 automated methods (M48 MagAttract Mini, QIAcube Investigator). DBS extractions were performed in triplicate followed by real-time quantitative PCR (qPCR). Results For extraction of both viral and cellular DNA, two methods (QIAamp DNA Investigator and thermal shock) consistently gave the highest yields, and two methods (M48 MagAttract Mini and QIAamp DNA Mini) consistently gave the lowest yields. There was an average 3-fold difference in DNA yield between the highest and lowest yield methods. Conclusion The choice of DNA extraction method is a major factor in the ability to detect low levels of CMV in DBS and can largely account for the wide range of DBS sensitivities reported in studies to date. PMID:25866346

  10. Culture as a Caveat Towards Circular Economy

    DEFF Research Database (Denmark)

    Guerrieri, Valeria

    2015-01-01

    Circular economy represents an economic and political challenge, as well as a cultural one, requiring a massive transformation on all levels of society. But why is cultural change so important to understanding today’s economy and how can the circular model be considered a truly cross-cultural...

  11. Primal-dual path-following algorithms for circular programming

    Directory of Open Access Journals (Sweden)

    Baha Alzalg

    2017-06-01

    Full Text Available Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case‎. ‎Alizadeh and Goldfarb [Math‎. ‎Program‎. ‎Ser‎. ‎A 95 (2003 3--51] introduced primal-dual path-following algorithms for solving second-order cone programming problems‎. ‎In this paper‎, ‎we generalize their work by using the machinery of Euclidean Jordan algebras associated with the circular cones to derive primal-dual path-following interior point algorithms for circular programming problems‎. ‎We prove polynomial convergence of the proposed algorithms by showing that the circular logarithmic barrier is a strongly self-concordant barrier‎. ‎The numerical examples show the path-following algorithms are simple and efficient‎.

  12. Research on the development and countermeasures for circular economy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Ecological economics and sustainable development economics are the basic theories to research on circular economy. Through the systemically research on the relationship of the three above, this paper thinks that the reuse and recycle of circular economy ts a way that the stall is mended after a sheep is lost. Although the reduction technically controls the production process, it cannot solve the waste caused by blind production and excess competition. We have experienced variety obstacles when implementing the circular economy, whose main reason ts the conflict between the individual ration and the social ration. Therefore, only when the individual ration and social ration incline to conformity,the cooperating Nash equilibrium will be appeared. In order to realize the harmony of ecology, economy and society, we have to explore effective evaluation theory. This paper cites the "five flows of wealth operation theory"from professor Ma Chuandong to search operation mechanism of circular economy, makes clear the developing thoughts of circular economy based on the realities, and brings forward some countermeasures to develop circular economy based on the above theoretical analysis.

  13. Stimulus-Responsive Plasmonic Chiral Signals of Gold Nanorods Organized on DNA Origami.

    Science.gov (United States)

    Jiang, Qiao; Liu, Qing; Shi, Yuefeng; Wang, Zhen-Gang; Zhan, Pengfei; Liu, Jianbing; Liu, Chao; Wang, Hui; Shi, Xinghua; Zhang, Li; Sun, Jiashu; Ding, Baoquan; Liu, Minghua

    2017-11-08

    In response to environmental variations, living cells need to arrange the conformational changes of macromolecules to achieve the specific biofunctions. Inspired by natural molecular machines, artificial macromolecular assemblies with controllable nanostructures and environmentally responsive functions can be designed. By assembling macromolecular nanostructures with noble metal nanoparticles, environmental information could be significantly amplified and modulated. However, manufacturing dynamic plasmonic nanostructures that are efficiently responsive to different stimuli is still a challenging task. Here we demonstrate a stimulus-responsive plasmonic nanosystem based on DNA origami-organized gold nanorods (GNRs). L-shaped GNR dimers were assembled on rhombus-shaped DNA origami templates. The geometry and chiral signals of the GNR nanoarchitectures respond to multiple stimuli, including glutathione reduction, restriction enzyme action, pH change, or photoirradiation. While the glutathione reduction or restriction enzyme caused irreversible changes in the plasmonic circular dichroism (CD) signals, both pH and light irradiation triggered reversible changes in the plasmonic CD. Our system transduces external stimuli into conformational changes and circular dichroism responses in near-infrared (NIR) wavelengths. By this approach, programmable optical reporters for essential biological signals can be fabricated.

  14. More than a Cool Illusion? Functional Significance of Self-Motion Illusion (Circular Vection for Perspective Switches

    Directory of Open Access Journals (Sweden)

    Bernhard E. Riecke

    2015-08-01

    Full Text Available Self-motion can facilitate perspective switches and automatic spatial updating and help reduce disorientation in applications like Virtual Reality. However, providing physical motion through moving-base motion simulators or free-space walking areas comes with high cost and technical complexity. This study provides first evidence that merely experiencing an embodied illusion of self-motion (circular vection can provide similar behavioral benefits as actual self-motion: Blindfolded participants were asked to imagine facing new perspectives in a well-learned room, and point to previously-learned objects. Merely imagining perspective switches while stationary yielded worst performance. When perceiving illusory self-rotation to the novel perspective, however, performance improved significantly and yielded performance similar to actual rotation. Circular vection was induced by combining rotating sound fields (auditory vection and biomechanical vection from stepping along a carrousel-like rotating floor platter. In sum, illusory self-motion indeed facilitated perspective switches and thus spatial orientation, similar to actual self-motion, thus providing first compelling evidence of the functional significance and behavioral relevance of vection. This could ultimately enable us to complement the prevailing introspective vection measures with behavioral indicators, and guide the design for more affordable yet effective Virtual Reality simulators that intelligently employ multi-modal self-motion illusions to reduce the need for costly physical observer motion.

  15. Circular Bioassay Platforms for Applications in Microwave-Accelerated Techniques.

    Science.gov (United States)

    Mohammed, Muzaffer; Clement, Travis C; Aslan, Kadir

    2014-12-02

    In this paper, we present the design of four different circular bioassay platforms, which are suitable for homogeneous microwave heating, using theoretical calculations (i.e., COMSOL™ multiphysics software). Circular bioassay platforms are constructed from poly(methyl methacrylate) (PMMA) for optical transparency between 400-800 nm, has multiple sample capacity (12, 16, 19 and 21 wells) and modified with silver nanoparticle films (SNFs) to be used in microwave-accelerated bioassays (MABs). In addition, a small monomode microwave cavity, which can be operated with an external microwave generator (100 W), for use with the bioassay platforms in MABs is also developed. Our design parameters for the circular bioassay platforms and monomode microwave cavity during microwave heating were: (i) temperature profiles, (ii) electric field distributions, (iii) location of the circular bioassay platforms inside the microwave cavity, and (iv) design and number of wells on the circular bioassay platforms. We have also carried out additional simulations to assess the use of circular bioassay platforms in a conventional kitchen microwave oven (e.g., 900 W). Our results show that the location of the circular bioassay platforms in the microwave cavity was predicted to have a significant effect on the homogeneous heating of these platforms. The 21-well circular bioassay platform design in our monomode microwave cavity was predicted to offer a homogeneous heating pattern, where inter-well temperature was observed to be in between 23.72-24.13°C and intra-well temperature difference was less than 0.21°C for 60 seconds of microwave heating, which was also verified experimentally.

  16. Cavity-Type DNA Origami-Based Plasmonic Nanostructures for Raman Enhancement.

    Science.gov (United States)

    Zhao, Mengzhen; Wang, Xu; Ren, Shaokang; Xing, Yikang; Wang, Jun; Teng, Nan; Zhao, Dongxia; Liu, Wei; Zhu, Dan; Su, Shao; Shi, Jiye; Song, Shiping; Wang, Lihua; Chao, Jie; Wang, Lianhui

    2017-07-05

    DNA origami has been established as addressable templates for site-specific anchoring of gold nanoparticles (AuNPs). Given that AuNPs are assembled by charged DNA oligonucleotides, it is important to reduce the charge repulsion between AuNPs-DNA and the template to realize high yields. Herein, we developed a cavity-type DNA origami as templates to organize 30 nm AuNPs, which formed dimer and tetramer plasmonic nanostructures. Transmission electron microscopy images showed that high yields of dimer and tetramer plasmonic nanostructures were obtained by using the cavity-type DNA origami as the template. More importantly, we observed significant Raman signal enhancement from molecules covalently attached to the plasmonic nanostructures, which provides a new way to high-sensitivity Raman sensing.

  17. Investigation of DNA strand breaks induced by 7Li and 12C ions

    International Nuclear Information System (INIS)

    Sui Li; Zhao Kui; Ni Meinan; Guo Jiyu; Luo Hongbing; Mei Junping; Lu Xiuqin; Zhou Ping

    2004-01-01

    Deoxyribonucleic acid (DNA) is an important biomacromolecule. It is a carrier of genetic information and a critical target for radiobiological effects. Numerous lesions have been identified in irradiated DNA. DNA double strand breaks (DSBs) are considered as the most important initial damage of all biological effects induced by ionizing radiation. In this experiment, DNA DSBs induced by heavy ions in the early period were investigated with atomic force microscopy (AFM). Choosing 7 Li and 12 C heavy ions with different LET values delivered by HI-13 tandem accelerator respectively, purified plasmid DNA samples in aqueous solution were irradiated at different doses. AFM was used for nanometer-level-structure analysis of DNA damage induced by these two kinds of heavy ions. Measurement of the DNA fragment lengths was accomplished with the Scion Image analyzed soft-ware. Change laws of three forms of DNA, supercoils, open circular and linear form as dose increased were obtained. Distributed function of DNA fragment length was also obtained, and fitted with Tsallis entropy statistical theory. (author)

  18. Peroxynitrite modified DNA presents better epitopes for anti-DNA autoantibodies in diabetes type 1 patients.

    Science.gov (United States)

    Tripathi, Prashant; Moinuddin; Dixit, Kiran; Mir, Abdul Rouf; Habib, Safia; Alam, Khursheed; Ali, Asif

    2014-07-01

    Peroxynitrite (ONOO(-)), formed by the reaction between nitric oxide (NO) and superoxide (O2(-)), has been implicated in the etiology of numerous disease processes. Peroxynitrite interacts with DNA via direct oxidative reactions or via indirect radical-mediated mechanism. It can inflict both oxidative and nitrosative damages on DNA bases, generating abasic sites, resulting in the single strand breaks. Plasmid pUC 18 isolated from Escherichiacoli was modified with peroxynitrite, generated by quenched flow process. Modifications incurred in plasmid DNA were characterized by ultraviolet and fluorescence spectroscopy, circular dichroism, HPLC and melting temperature studies. Binding characteristics and specificity of antibodies from diabetes patients were analyzed by direct binding and inhibition ELISA. Peroxynitrite modification of pUC 18 plasmid resulted in the formation of strand breaks and base modification. The major compound formed when peroxynitrite reacted with DNA was 8-nitroguanine, a specific marker for peroxynitrite induced DNA damage in inflamed tissues. The concentration of 8-nitroguanine was found to be 3.8 μM. Sera from diabetes type 1 patients from different age groups were studied for their binding to native and peroxynitrite modified plasmid. Direct binding and competitive-inhibition ELISA results showed higher recognition of peroxynitrite modified plasmid, as compared to the native form, by auto-antibodies present in diabetes patients. The preferential recognition of modified plasmid by diabetes autoantibodies was further reiterated by gel shift assay. Experimentally induced anti-peroxynitrite-modified plasmid IgG was used as a probe to detect nitrosative lesions in the DNA isolated from diabetes patients. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Efficient DNA ligation in DNA–RNA hybrid helices by Chlorella virus DNA ligase

    Science.gov (United States)

    Lohman, Gregory J. S.; Zhang, Yinhua; Zhelkovsky, Alexander M.; Cantor, Eric J.; Evans, Thomas C.

    2014-01-01

    Single-stranded DNA molecules (ssDNA) annealed to an RNA splint are notoriously poor substrates for DNA ligases. Herein we report the unexpectedly efficient ligation of RNA-splinted DNA by Chlorella virus DNA ligase (PBCV-1 DNA ligase). PBCV-1 DNA ligase ligated ssDNA splinted by RNA with kcat ≈ 8 x 10−3 s−1 and KM DNA ligase produced only 5′-adenylylated DNA with a 20-fold lower kcat and a KM ≈ 300 nM. The rate of ligation increased with addition of Mn2+, but was strongly inhibited by concentrations of NaCl >100 mM. Abortive adenylylation was suppressed at low ATP concentrations (8, leading to increased product yields. The ligation reaction was rapid for a broad range of substrate sequences, but was relatively slower for substrates with a 5′-phosphorylated dC or dG residue on the 3′ side of the ligation junction. Nevertheless, PBCV-1 DNA ligase ligated all sequences tested with 10-fold less enzyme and 15-fold shorter incubation times than required when using T4 DNA ligase. Furthermore, this ligase was used in a ligation-based detection assay system to show increased sensitivity over T4 DNA ligase in the specific detection of a target mRNA. PMID:24203707

  20. Yield surfaces for perforated plates with square arrays of holes

    International Nuclear Information System (INIS)

    Bhattacharya, A.; Venkat Raj, V.

    2004-01-01

    A symmetric model of a perforated plate containing a 3x3 array of circular holes, arranged in a square pattern, was chosen and elastoplastic finite element analyses were carried out to determine the limit stresses for both pitch and diagonal directions of loading, for different values of biaxiality ratios. Plane stress conditions were assumed and the Tresca and von Mises yield criteria were employed to obtain two different sets of results. Yield surfaces were constructed and 'general cut-out factors' were determined for four different ligament efficiencies. The FEM results obtained by the authors using the Tresca and von Mises yield criteria were compared with the corresponding results of [J. Pressure Vessel Technol. Trans. ASME (1975) 146-154] and [J. Pressure Vessel Technol. Trans. ASME (1997) 122-126], respectively. The results based on the Tresca yield criterion obtained by the present authors and those in [J. Pressure Vessel Technol. Trans. ASME (1975) 146-154] were found to agree well with each other. In the case of the von Mises yield criterion, the agreement with [J. Pressure Vessel Technol. Trans. ASME 122-126] is generally good. The estimates based on the Tresca yield criterion are seen to result in lower values of limit stresses and cut-out factors as compared to those based on the von Mises yield criterion. The difference is attributed to the yield criterion and the flow rule chosen for the analysis. The shape as well as the size of the yield surface was found to depend on the ligament efficiency

  1. Designing the Business Models for Circular Economy—Towards the Conceptual Framework

    Directory of Open Access Journals (Sweden)

    Mateusz Lewandowski

    2016-01-01

    Full Text Available Switching from the current linear model of economy to a circular one has recently attracted increased attention from major global companies e.g., Google, Unilever, Renault, and policymakers attending the World Economic Forum. The reasons for this are the huge financial, social and environmental benefits. However, the global shift from one model of economy to another also concerns smaller companies on a micro-level. Thus, comprehensive knowledge on designing circular business models is needed to stimulate and foster implementation of the circular economy. Existing business models for the circular economy have limited transferability and there is no comprehensive framework supporting every kind of company in designing a circular business model. This study employs a literature review to identify and classify the circular economy characteristics according to a business model structure. The investigation in the eight sub-domains of research on circular business models was used to redefine the components of the business model canvas in the context of the circular economy. Two new components—the take-back system and adoption factors—have been identified, thereby leading to the conceptualization of an extended framework for the circular business model canvas. Additionally, the triple fit challenge has been recognized as an enabler of the transition towards a circular business model. Some directions for further research have been outlined, as well.

  2. Enzymatic induction of DNA double-strand breaks in γ-irradiated Escherichia coli K-12

    International Nuclear Information System (INIS)

    Bonura, T.; Smith, K.C.; Kaplan, H.S.

    1975-01-01

    The polA1 mutation increases the sensitivity of E. coli K-12 to killing by γ-irradiation in air by a factor of 2.9 and increases the yield of DNA double-strand breaks by a factor of 2.5. These additional DNA double-strand breaks appear to be due to the action of nucleases in the polA1 strain rather than to the rejoining of radiation-induced double-strand breaks in the pol + strain. This conclusion is based upon the observation that γ-irradiation at 3 0 did not affect the yield of DNA double-strand breaks in the pol + strain, but decreased the yield in the polA1 strain by a factor of 2.2. Irradiation of the polA1 strain at 3 0 followed by incubation at 3 0 for 20 min before plating resulted in approximately a 1.5-fold increase in the D 0 . The yield of DNA double-strand breaks was reduced by a factor of 1.5. The pol + strain, however, did not show the protective effect of the low temperature incubation upon either survival or DNA double-strand breakage. We suggest that the increased yield of DNA double-strand breaks in the polA 1 strain may be the result of the unsuccessful excision repair of ionizing radiation-induced dna base damage

  3. Role of DNA profiling in forensic odontology

    Directory of Open Access Journals (Sweden)

    S Leena Sakari

    2015-01-01

    Full Text Available The recent advances in DNA profiling have made DNA evidence to be more widely accepted in courts. This has revolutionized the aspect of forensic odontology. DNA profiling/DNA fingerprinting has come a long way from the conventional fingerprints. DNA that is responsible for all the cell′s activities, yields valuable information both in the healthy and diseased individuals. When other means of traditional identification become impossible following mass calamities or fire explosions, teeth provide a rich source of DNA as they have a high chemical as well as physical resistance. The recent evolution in the isolation of DNA and the ways of running a DNA fingerprint are highlighted in this literature review.

  4. DNA recovery from wild chimpanzee tools.

    Directory of Open Access Journals (Sweden)

    Fiona A Stewart

    Full Text Available Most of our knowledge of wild chimpanzee behaviour stems from fewer than 10 long-term field sites. This bias limits studies to a potentially unrepresentative set of communities known to show great behavioural diversity on small geographic scales. Here, we introduce a new genetic approach to bridge the gap between behavioural material evidence in unhabituated chimpanzees and genetic advances in the field of primatology. The use of DNA analyses has revolutionised archaeological and primatological fields, whereby extraction of DNA from non-invasively collected samples allows researchers to reconstruct behaviour without ever directly observing individuals. We used commercially available forensic DNA kits to show that termite-fishing by wild chimpanzees (Pan troglodytes schweinfurthii leaves behind detectable chimpanzee DNA evidence on tools. We then quantified the recovered DNA, compared the yield to that from faecal samples, and performed an initial assessment of mitochondrial and microsatellite markers to identify individuals. From 49 termite-fishing tools from the Issa Valley research site in western Tanzania, we recovered an average of 52 pg/μl chimpanzee DNA, compared to 376.2 pg/μl in faecal DNA extracts. Mitochondrial DNA haplotypes could be assigned to 41 of 49 tools (84%. Twenty-six tool DNA extracts yielded >25 pg/μl DNA and were selected for microsatellite analyses; genotypes were determined with confidence for 18 tools. These tools were used by a minimum of 11 individuals across the study period and termite mounds. These results demonstrate the utility of bio-molecular techniques and a primate archaeology approach in non-invasive monitoring and behavioural reconstruction of unhabituated primate populations.

  5. The fragile X chromosome (GCC) repeat folds into a DNA tetraplex at neutral pH

    Czech Academy of Sciences Publication Activity Database

    Fojtík, Petr; Vorlíčková, Michaela

    2001-01-01

    Roč. 29, č. 22 (2001), s. 4684-4690 ISSN 0305-1048 R&D Projects: GA ČR GA204/01/0561 Institutional research plan: CEZ:AV0Z5004920 Keywords : Parallel-stranded DNA * circular dichroism spectroscopy Subject RIV: BO - Biophysics Impact factor: 6.373, year: 2001

  6. The protein circular dichroism data bank, a Web-based site for access to circular dichroism spectroscopic data.

    Science.gov (United States)

    Whitmore, Lee; Woollett, Benjamin; Miles, Andrew J; Janes, Robert W; Wallace, B A

    2010-10-13

    The Protein Circular Dichroism Data Bank (PCDDB) is a newly released resource for structural biology. It is a web-accessible (http://pcddb.cryst.bbk.ac.uk) data bank for circular dichroism (CD) and synchrotron radiation circular dichroism (SRCD) spectra and their associated experimental and secondary metadata, with links to protein sequence and structure data banks. It is designed to provide a public repository for CD spectroscopic data on macromolecules, to parallel the Protein Data Bank (PDB) for crystallographic, electron microscopic, and nuclear magnetic resonance spectroscopic data. Similarly to the PDB, it includes validation checking procedures to ensure good practice and the integrity of the deposited data. This paper reports on the first public release of the PCDDB, which provides access to spectral data that comprise standard reference datasets. Copyright © 2010 Elsevier Ltd. All rights reserved.

  7. DNA damage, homology-directed repair, and DNA methylation.

    Directory of Open Access Journals (Sweden)

    Concetta Cuozzo

    2007-07-01

    Full Text Available To explore the link between DNA damage and gene silencing, we induced a DNA double-strand break in the genome of Hela or mouse embryonic stem (ES cells using I-SceI restriction endonuclease. The I-SceI site lies within one copy of two inactivated tandem repeated green fluorescent protein (GFP genes (DR-GFP. A total of 2%-4% of the cells generated a functional GFP by homology-directed repair (HR and gene conversion. However, approximately 50% of these recombinants expressed GFP poorly. Silencing was rapid and associated with HR and DNA methylation of the recombinant gene, since it was prevented in Hela cells by 5-aza-2'-deoxycytidine. ES cells deficient in DNA methyl transferase 1 yielded as many recombinants as wild-type cells, but most of these recombinants expressed GFP robustly. Half of the HR DNA molecules were de novo methylated, principally downstream to the double-strand break, and half were undermethylated relative to the uncut DNA. Methylation of the repaired gene was independent of the methylation status of the converting template. The methylation pattern of recombinant molecules derived from pools of cells carrying DR-GFP at different loci, or from an individual clone carrying DR-GFP at a single locus, was comparable. ClustalW analysis of the sequenced GFP molecules in Hela and ES cells distinguished recombinant and nonrecombinant DNA solely on the basis of their methylation profile and indicated that HR superimposed novel methylation profiles on top of the old patterns. Chromatin immunoprecipitation and RNA analysis revealed that DNA methyl transferase 1 was bound specifically to HR GFP DNA and that methylation of the repaired segment contributed to the silencing of GFP expression. Taken together, our data support a mechanistic link between HR and DNA methylation and suggest that DNA methylation in eukaryotes marks homologous recombined segments.

  8. Codon Distribution in Error-Detecting Circular Codes

    Directory of Open Access Journals (Sweden)

    Elena Fimmel

    2016-03-01

    Full Text Available In 1957, Francis Crick et al. suggested an ingenious explanation for the process of frame maintenance. The idea was based on the notion of comma-free codes. Although Crick’s hypothesis proved to be wrong, in 1996, Arquès and Michel discovered the existence of a weaker version of such codes in eukaryote and prokaryote genomes, namely the so-called circular codes. Since then, circular code theory has invariably evoked great interest and made significant progress. In this article, the codon distributions in maximal comma-free, maximal self-complementary C3 and maximal self-complementary circular codes are discussed, i.e., we investigate in how many of such codes a given codon participates. As the main (and surprising result, it is shown that the codons can be separated into very few classes (three, or five, or six with respect to their frequency. Moreover, the distribution classes can be hierarchically ordered as refinements from maximal comma-free codes via maximal self-complementary C3 codes to maximal self-complementary circular codes.

  9. Codon Distribution in Error-Detecting Circular Codes.

    Science.gov (United States)

    Fimmel, Elena; Strüngmann, Lutz

    2016-03-15

    In 1957, Francis Crick et al. suggested an ingenious explanation for the process of frame maintenance. The idea was based on the notion of comma-free codes. Although Crick's hypothesis proved to be wrong, in 1996, Arquès and Michel discovered the existence of a weaker version of such codes in eukaryote and prokaryote genomes, namely the so-called circular codes. Since then, circular code theory has invariably evoked great interest and made significant progress. In this article, the codon distributions in maximal comma-free, maximal self-complementary C³ and maximal self-complementary circular codes are discussed, i.e., we investigate in how many of such codes a given codon participates. As the main (and surprising) result, it is shown that the codons can be separated into very few classes (three, or five, or six) with respect to their frequency. Moreover, the distribution classes can be hierarchically ordered as refinements from maximal comma-free codes via maximal self-complementary C(3) codes to maximal self-complementary circular codes.

  10. A novel x-ray circularly polarized ranging method

    International Nuclear Information System (INIS)

    Song Shi-Bin; Xu Lu-Ping; Zhang Hua; Shen Yang-He; Gao Na

    2015-01-01

    Range measurement has found multiple applications in deep space missions. With more and further deep space exploration activities happening now and in the future, the requirement for range measurement has risen. In view of the future ranging requirement, a novel x-ray polarized ranging method based on the circular polarization modulation is proposed, termed as x-ray circularly polarized ranging (XCPolR). XCPolR utilizes the circular polarization modulation to process x-ray signals and the ranging information is conveyed by the circular polarization states. As the circular polarization states present good stability in space propagation and x-ray detectors have light weight and low power consumption, XCPolR shows great potential in the long-distance range measurement and provides an option for future deep space ranging. In this paper, we present a detailed illustration of XCPolR. Firstly, the structure of the polarized ranging system is described and the signal models in the ranging process are established mathematically. Then, the main factors that affect the ranging accuracy, including the Doppler effect, the differential demodulation, and the correlation error, are analyzed theoretically. Finally, numerical simulation is carried out to evaluate the performance of XCPolR. (paper)

  11. Circular relativistic motion of two identical bodies

    International Nuclear Information System (INIS)

    Shavokhina, N.S.

    1983-01-01

    Circular relativistic motion of two bodies as a solution of the earlier obtained equations with a deflecting argument where the self-deflection of the argument is an unknown function of time is considered. In case of circular motion the argument deflection is independent from time and it is the root of the transcendental equation obtained in the paper

  12. Single particle dynamics in circular accelerators

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1986-10-01

    The purpose of this paper is to introduce the reader to the theory associated with the transverse dynamics of single particle, in circular accelerators. The discussion begins with a review of Hamiltonian dynamics and canonical transformations. The case of a single particle in a circular accelerator is considered with a discussion of non-linear terms and chromaticity. The canonical perturbation theory is presented and nonlinear resonances are considered. Finally, the concept of renormalization and residue criterion are examined. (FI)

  13. Evaluation of Fluorescent Analogs of Deoxycytidine for Monitoring DNA Transitions from Duplex to Functional Structures

    Directory of Open Access Journals (Sweden)

    Yogini P. Bhavsar

    2011-01-01

    Full Text Available Topological variants of single-strand DNA (ssDNA structures, referred to as “functional DNA,” have been detected in regulatory regions of many genes and are thought to affect gene expression. Two fluorescent analogs of deoxycytidine, Pyrrolo-dC (PdC and 1,3-diaza-2-oxophenoxazine (tC∘, can be incorporated into DNA. Here, we describe spectroscopic studies of both analogs to determine fluorescent properties that report on structural transitions from double-strand DNA (dsDNA to ssDNA, a common pathway in the transition to functional DNA structures. We obtained fluorescence-detected circular dichroism (FDCD spectra, steady-state fluorescence spectra, and fluorescence lifetimes of the fluorophores in DNA. Our results show that PdC is advantageous in fluorescence lifetime studies because of a distinct ~2 ns change between paired and unpaired bases. However, tC∘ is a better probe for FDCD experiments that report on the helical structure of DNA surrounding the fluorophore. Both fluorophores provide complementary data to measure DNA structural transitions.

  14. Nearest Neighbor Estimates of Entropy for Multivariate Circular Distributions

    Directory of Open Access Journals (Sweden)

    Neeraj Misra

    2010-05-01

    Full Text Available In molecular sciences, the estimation of entropies of molecules is important for the understanding of many chemical and biological processes. Motivated by these applications, we consider the problem of estimating the entropies of circular random vectors and introduce non-parametric estimators based on circular distances between n sample points and their k th nearest neighbors (NN, where k (≤ n – 1 is a fixed positive integer. The proposed NN estimators are based on two different circular distances, and are proven to be asymptotically unbiased and consistent. The performance of one of the circular-distance estimators is investigated and compared with that of the already established Euclidean-distance NN estimator using Monte Carlo samples from an analytic distribution of six circular variables of an exactly known entropy and a large sample of seven internal-rotation angles in the molecule of tartaric acid, obtained by a realistic molecular-dynamics simulation.

  15. Administrative Circular No. 26 (Rev.10) - Recognition of merit

    CERN Multimedia

    2014-01-01

    Administrative Circular No. 26 (Rev. 10) entitled “Recognition of Merit”, approved by the Director-General following discussion at the Standing Concertation Committee meeting of 5 December 2013 and entering into force on 1 January 2014, is available on the intranet site of the Human Resources Department (see here).   This circular is applicable to staff members. It cancels and replaces Administrative Circular No. 26 (Rev. 9) entitled “Recognition of Merit” of December 2011. The circular was revised in order to take into account the work performed in the framework of an elective mandate during the exercise of merit recognition of staff members. In addition, the circular was revised to provide that, in the case of staff members on special leave for professional reasons for a period equal to or longer than half a year, it will no longer be possible to grant an exceptional advancement. Department Head Office HR Department

  16. Evaluation of methods to improve the extraction and recovery of DNA from cotton swabs for forensic analysis.

    Science.gov (United States)

    Adamowicz, Michael S; Stasulli, Dominique M; Sobestanovich, Emily M; Bille, Todd W

    2014-01-01

    Samples for forensic DNA analysis are often collected from a wide variety of objects using cotton or nylon tipped swabs. Testing has shown that significant quantities of DNA are retained on the swab, however, and subsequently lost. When processing evidentiary samples, the recovery of the maximum amount of available DNA is critical, potentially dictating whether a usable profile can be derived from a piece of evidence or not. The QIAamp DNA Investigator extraction kit was used with its recommended protocol for swabs (one hour incubation at 56°C) as a baseline. Results indicate that over 50% of the recoverable DNA may be retained on the cotton swab tip, or otherwise lost, for both blood and buccal cell samples when using this protocol. The protocol's incubation time and temperature were altered, as was incubating while shaking or stationary to test for increases in recovery efficiency. An additional step was then tested that included periodic re-suspension of the swab tip in the extraction buffer during incubation. Aliquots of liquid blood or a buccal cell suspension were deposited and dried on cotton swabs and compared with swab-less controls. The concentration of DNA in each extract was quantified and STR analysis was performed to assess the quality of the extracted DNA. Stationary incubations and those performed at 65°C did not result in significant gains in DNA yield. Samples incubated for 24 hours yielded less DNA. Increased yields were observed with three and 18 hour incubation periods. Increases in DNA yields were also observed using a swab re-suspension method for both cell types. The swab re-suspension method yielded an average two-fold increase in recovered DNA yield with buccal cells and an average three-fold increase with blood cells. These findings demonstrate that more of the DNA collected on swabs can be recovered with specific protocol alterations.

  17. The effect of volume exclusion on the formation of DNA minicircle networks: implications to kinetoplast DNA

    International Nuclear Information System (INIS)

    Diao, Y; Hinson, K; Sun, Y; Arsuaga, J

    2015-01-01

    Kinetoplast DNA (kDNA) is the mitochondrial of DNA of disease causing organisms such as Trypanosoma Brucei (T. Brucei) and Trypanosoma Cruzi (T. Cruzi). In most organisms, KDNA is made of thousands of small circular DNA molecules that are highly condensed and topologically linked forming a gigantic planar network. In our previous work we have developed mathematical and computational models to test the confinement hypothesis, that is that the formation of kDNA minicircle networks is a product of the high DNA condensation achieved in the mitochondrion of these organisms. In these studies we studied three parameters that characterize the growth of the network topology upon confinement: the critical percolation density, the mean saturation density and the mean valence (i.e. the number of mini circles topologically linked to any chosen minicircle). Experimental results on insect-infecting organisms showed that the mean valence is equal to three, forming a structure similar to those found in medieval chain-mails. These same studies hypothesized that this value of the mean valence was driven by the DNA excluded volume. Here we extend our previous work on kDNA by characterizing the effects of DNA excluded volume on the three descriptive parameters. Using computer simulations of polymer swelling we found that (1) in agreement with previous studies the linking probability of two minicircles does not decrease linearly with the distance between the two minicircles, (2) the mean valence grows linearly with the density of minicircles and decreases with the thickness of the excluded volume, (3) the critical percolation and mean saturation densities grow linearly with the thickness of the excluded volume. Our results therefore suggest that the swelling of the DNA molecule, due to electrostatic interactions, has relatively mild implications on the overall topology of the network. Our results also validate our topological descriptors since they appear to reflect the changes in the

  18. The effect of volume exclusion on the formation of DNA minicircle networks: implications to kinetoplast DNA

    Science.gov (United States)

    Diao, Y.; Hinson, K.; Sun, Y.; Arsuaga, J.

    2015-10-01

    Kinetoplast DNA (kDNA) is the mitochondrial of DNA of disease causing organisms such as Trypanosoma Brucei (T. Brucei) and Trypanosoma Cruzi (T. Cruzi). In most organisms, KDNA is made of thousands of small circular DNA molecules that are highly condensed and topologically linked forming a gigantic planar network. In our previous work we have developed mathematical and computational models to test the confinement hypothesis, that is that the formation of kDNA minicircle networks is a product of the high DNA condensation achieved in the mitochondrion of these organisms. In these studies we studied three parameters that characterize the growth of the network topology upon confinement: the critical percolation density, the mean saturation density and the mean valence (i.e. the number of mini circles topologically linked to any chosen minicircle). Experimental results on insect-infecting organisms showed that the mean valence is equal to three, forming a structure similar to those found in medieval chain-mails. These same studies hypothesized that this value of the mean valence was driven by the DNA excluded volume. Here we extend our previous work on kDNA by characterizing the effects of DNA excluded volume on the three descriptive parameters. Using computer simulations of polymer swelling we found that (1) in agreement with previous studies the linking probability of two minicircles does not decrease linearly with the distance between the two minicircles, (2) the mean valence grows linearly with the density of minicircles and decreases with the thickness of the excluded volume, (3) the critical percolation and mean saturation densities grow linearly with the thickness of the excluded volume. Our results therefore suggest that the swelling of the DNA molecule, due to electrostatic interactions, has relatively mild implications on the overall topology of the network. Our results also validate our topological descriptors since they appear to reflect the changes in the

  19. Propagation and radiation characteristics of the circular electric, circular magnetic and hybrid waveguide modes

    International Nuclear Information System (INIS)

    Crenn, J.P.

    1996-06-01

    The field distributions and propagation constants of the circular electric, circular magnetic and hybrid modes of oversized waveguides are expressed, taking the effects of walls into account. The near and far field patterns are derived in the case of real wall functions. It is shown that, for very oversized waveguides, the terms containing wall functions can be ignored in the calculations, and it results that the expressions of fields and propagation constants become independent of the types of waveguides. An application to corrugated waveguides for Electron Cyclotron Resonance Heating experiments shows the variations of the radiation characteristics versus geometric parameters of the corrugations and determines the ranges of interest for these parameters. (author)

  20. Spectroscopic studies of the interaction between pirimicarb and calf thymus DNA

    Science.gov (United States)

    Zhang, Guowen; Hu, Xing; Pan, Junhui

    2011-02-01

    The interaction between pirimicarb and calf thymus DNA in physiological buffer (pH 7.4) was investigated with the use of Neutral Red (NR) dye as a spectral probe by UV-vis absorption, fluorescence and circular dichroism (CD) spectroscopy, as well as viscosity measurements and DNA melting techniques. The results revealed that an intercalation binding should be the interaction mode of pirimicarb to DNA. CD spectra indicated that pirimicarb induced conformational changes of DNA. The binding constants of pirimicarb with DNA were obtained by the fluorescence quenching method. The thermodynamic parameters, enthalpy change (Δ Hθ) and entropy change (Δ Sθ) were calculated to be -52.13 ± 2.04 kJ mol -1 and -108.8 ± 6.72 J mol -1 K -1 according to the van't Hoff equation, which suggested that hydrogen bonds and van der Waals forces might play a major role in the binding of pirimicarb to DNA. Further, the alternative least squares (ALS) method was applied to resolve a complex two-way array of the absorption spectra data, which provided simultaneously the concentration information for the three reaction components, pirimicarb, NR and DNA-NR. This ALS analysis indicated that the intercalation of pirimicarb into the DNA by substituting for NR in the DNA-NR complex.

  1. DNA Sequences Proximal to Human Mitochondrial DNA Deletion Breakpoints Prevalent in Human Disease Form G-quadruplexes, a Class of DNA Structures Inefficiently Unwound by the Mitochondrial Replicative Twinkle Helicase*

    Science.gov (United States)

    Bharti, Sanjay Kumar; Sommers, Joshua A.; Zhou, Jun; Kaplan, Daniel L.; Spelbrink, Johannes N.; Mergny, Jean-Louis; Brosh, Robert M.

    2014-01-01

    Mitochondrial DNA deletions are prominent in human genetic disorders, cancer, and aging. It is thought that stalling of the mitochondrial replication machinery during DNA synthesis is a prominent source of mitochondrial genome instability; however, the precise molecular determinants of defective mitochondrial replication are not well understood. In this work, we performed a computational analysis of the human mitochondrial genome using the “Pattern Finder” G-quadruplex (G4) predictor algorithm to assess whether G4-forming sequences reside in close proximity (within 20 base pairs) to known mitochondrial DNA deletion breakpoints. We then used this information to map G4P sequences with deletions characteristic of representative mitochondrial genetic disorders and also those identified in various cancers and aging. Circular dichroism and UV spectral analysis demonstrated that mitochondrial G-rich sequences near deletion breakpoints prevalent in human disease form G-quadruplex DNA structures. A biochemical analysis of purified recombinant human Twinkle protein (gene product of c10orf2) showed that the mitochondrial replicative helicase inefficiently unwinds well characterized intermolecular and intramolecular G-quadruplex DNA substrates, as well as a unimolecular G4 substrate derived from a mitochondrial sequence that nests a deletion breakpoint described in human renal cell carcinoma. Although G4 has been implicated in the initiation of mitochondrial DNA replication, our current findings suggest that mitochondrial G-quadruplexes are also likely to be a source of instability for the mitochondrial genome by perturbing the normal progression of the mitochondrial replication machinery, including DNA unwinding by Twinkle helicase. PMID:25193669

  2. Administrative Circular No. 23 (Rev. 4) - Special working hours

    CERN Document Server

    Department Head Office - HR Department

    2016-01-01

    Administrative Circular No. 23 (Rev. 4) entitled "Special working hours", approved by the Director-General following discussion in the Standing Concertation Committee meeting on 22 March 2016, will be available on 1st September 2016 via the following link: https://cds.cern.ch/record/2208539.   This revised circular cancels and replaces Administrative Circular No. 23 (Rev. 3) also entitled "Special working hours" of January 2013. This document contains modifications to reflect the new career structure and ensuring the provision consistent with practice that compensation or remuneration of special working hours performed remotely is possible only in case of emergency.   This circular will enter into force on 1st September 2016.

  3. Shear strength of reinforced concrete circular cross-section beams

    Directory of Open Access Journals (Sweden)

    P. W. G. N. Teixeira

    Full Text Available A proposed adequation of NBR 6118, Item 7.4, related to shear strength of reinforced concrete beams is presented with aims to application on circular cross-section. The actual expressions are most suitable to rectangular cross-section and some misleading occurs when applied to circular sections at determination of VRd2, Vc and Vsw, as consequence of bw (beam width and d (effective depth definitions as well as the real effectiveness of circular stirrups. The proposed adequation is based on extensive bibliographic review and practical experience with a great number of infrastructure elements, such as anchored retaining pile walls, where the use of circular reinforced concrete members is frequent.

  4. Two circular chromosomes of unequal copy number make up the mitochondrial genome of the rotifer Brachionus plicatilis.

    Science.gov (United States)

    Suga, Koushirou; Mark Welch, David B; Tanaka, Yukari; Sakakura, Yoshitaka; Hagiwara, Atsushi

    2008-06-01

    The monogonont rotifer Brachionus plicatilis is an emerging model system for a diverse array of questions in limnological ecosystem dynamics, the evolution of sexual recombination, cryptic speciation, and the phylogeny of basal metazoans. We sequenced the complete mitochondrial genome of B. plicatilis sensu strictu NH1L and found that it is composed of 2 circular chromosomes, designated mtDNA-I (11,153 bp) and mtDNA-II (12,672 bp). Hybridization to DNA isolated from mitochondria demonstrated that mtDNA-I is present at 4 times the copy number of mtDNA-II. The only nucleotide similarity between the 2 chromosomes is a 4.9-kbp region of 99.5% identity including a transfer RNA (tRNA) gene and an extensive noncoding region that contains putative D-loop and control sequence. The mtDNA-I chromosome encodes 4 proteins (ATP6, COB, NAD1, and NAD2), 13 tRNAs, and the large and small subunit ribosomal RNAs; mtDNA-II encodes 8 proteins (COX1-3, NAD3-6, and NAD4L) and 9 tRNAs. Gene order is not conserved between B. plicatilis and its closest relative with a sequenced mitochondrial genome, the acanthocephalan Leptorhynchoides thecatus, or other sequenced mitochondrial genomes. Polymerase chain reaction assays and Southern hybridization to DNA from 18 strains of Brachionus suggest that the 2-chromosome structure has been stable for millions of years. The novel organization of the B. plicatilis mitochondrial genome into 2 nearly equal chromosomes of 4-fold different copy number may provide insight into the evolution of metazoan mitochondria and the phylogenetics of rotifers and other basal animal phyla.

  5. Single-molecule chemical reactions on DNA origami

    DEFF Research Database (Denmark)

    Voigt, Niels Vinther; Tørring, Thomas; Rotaru, Alexandru

    2010-01-01

    as templates for building materials with new functional properties. Relatively large nanocomponents such as nanoparticles and biomolecules can also be integrated into DNA nanostructures and imaged. Here, we show that chemical reactions with single molecules can be performed and imaged at a local position...... on a DNA origami scaffold by atomic force microscopy. The high yields and chemoselectivities of successive cleavage and bond-forming reactions observed in these experiments demonstrate the feasibility of post-assembly chemical modification of DNA nanostructures and their potential use as locally......DNA nanotechnology and particularly DNA origami, in which long, single-stranded DNA molecules are folded into predetermined shapes, can be used to form complex self-assembled nanostructures. Although DNA itself has limited chemical, optical or electronic functionality, DNA nanostructures can serve...

  6. Increased recovery of touch DNA evidence using FTA paper compared to conventional collection methods.

    Science.gov (United States)

    Kirgiz, Irina A; Calloway, Cassandra

    2017-04-01

    Tape lifting and FTA paper scraping methods were directly compared to traditional double swabbing for collecting touch DNA from car steering wheels (n = 70 cars). Touch DNA was collected from the left or right side of each steering wheel (randomized) using two sterile cotton swabs, while the other side was sampled using water-soluble tape or FTA paper cards. DNA was extracted and quantified in duplicate using qPCR. Quantifiable amounts of DNA were detected for 100% of the samples (n = 140) collected independent of the method. However, the DNA collection yield was dependent on the collection method. A statistically significant difference in DNA yield was observed between FTA scraping and double swabbing methods (p = 0.0051), with FTA paper collecting a two-fold higher amount. Statistical analysis showed no significant difference in DNA yields between the double swabbing and tape lifting techniques (p = 0.21). Based on the DNA concentration required for 1 ng input, 47% of the samples collected using FTA paper would be expected to yield a short tandem repeat (STR) profile compared to 30% and 23% using double swabbing or tape, respectively. Further, 55% and 77% of the samples collected using double swabbing or tape, respectively, did not yield a high enough DNA concentration for the 0.5 ng of DNA input recommended for conventional STR kits and would be expected to result in a partial or no profile compared to 35% of the samples collected using FTA paper. STR analysis was conducted for a subset of the higher concentrated samples to confirm that the DNA collected from the steering wheel was from the driver. 32 samples were selected with DNA amounts of at least 1 ng total DNA (100 pg/μl when concentrated if required). A mixed STR profile was observed for 26 samples (88%) and the last driver was the major DNA contributor for 29 samples (94%). For one sample, the last driver was the minor DNA contributor. A full STR profile of the last driver was observed for

  7. Modeling of circular-grating surface-emitting lasers

    Science.gov (United States)

    Shams-Zadeh-Amiri, Ali M.

    Grating-coupled surface-emitting lasers became an area of growing interest due to their salient features. Emission from a broad area normal to the wafer surface, makes them very well suited in high power applications and two- dimensional laser arrays. These new possibilities have caused an interest in different geometries to fully develop their potential. Among them, circular-grating lasers have the additional advantage of producing a narrow beam with a circular cross section. This special feature makes them ideal for coupling to optical fibers. All existing theoretical models dealing with circular- grating lasers only consider first-order gratings, or second-order gratings, neglecting surface emission. In this thesis, the emphasis is to develop accurate models describing the laser performance by considering the radiation field. Toward this aim, and due to the importance of the radiation modes in surface-emitting structures, a theoretical study of these modes in multilayer planar structures has been done in a rigorous and systematic fashion. Problems like orthogonality of the radiation modes have been treated very accurately. We have considered the inner product of radiation modes using the distribution theory. Orthogonality of degenerate radiation modes is an important issue. We have examined its validity using the transfer matrix method. It has been shown that orthogonality of degenerate radiation modes in a very special case leads to the Brewster theorem. In addition, simple analytical formulas for the normalization of radiation modes have been derived. We have shown that radiation modes can be handled in a much easier way than has been thought before. A closed-form spectral dyadic Green's function formulation of multilayer planar structures has been developed. In this formulation, both rectangular and cylindrical structures can be treated within the same mathematical framework. The Hankel transform of some auxiliary functions defined on a circular aperture has

  8. Molecular photoelectron holography with circularly polarized laser pulses.

    Science.gov (United States)

    Yang, Weifeng; Sheng, Zhihao; Feng, Xingpan; Wu, Miaoli; Chen, Zhangjin; Song, Xiaohong

    2014-02-10

    We investigate the photoelectron momentum distribution of molecular-ion H2+driven by ultrashort intense circularly polarized laser pulses. Both numerical solutions of the time-dependent Schrödinger equation (TDSE) and a quasiclassical model indicate that the photoelectron holography (PH) with circularly polarized pulses can occur in molecule. It is demonstrated that the interference between the direct electron wave and rescattered electron wave from one core to its neighboring core induces the PH. Moreover, the results of the TDSE predict that there is a tilt angle between the interference pattern of the PH and the direction perpendicular to the molecular axis. Furthermore, the tilt angle is sensitively dependent on the wavelength of the driven circularly polarized pulse, which is confirmed by the quasiclassical calculations. The PH induced by circularly polarized laser pulses provides a tool to resolve the electron dynamics and explore the spatial information of molecular structures.

  9. Using DNA origami nanostructures to determine absolute cross sections for UV photon-induced DNA strand breakage.

    Science.gov (United States)

    Vogel, Stefanie; Rackwitz, Jenny; Schürman, Robin; Prinz, Julia; Milosavljević, Aleksandar R; Réfrégiers, Matthieu; Giuliani, Alexandre; Bald, Ilko

    2015-11-19

    We have characterized ultraviolet (UV) photon-induced DNA strand break processes by determination of absolute cross sections for photoabsorption and for sequence-specific DNA single strand breakage induced by photons in an energy range from 6.50 to 8.94 eV. These represent the lowest-energy photons able to induce DNA strand breaks. Oligonucleotide targets are immobilized on a UV transparent substrate in controlled quantities through attachment to DNA origami templates. Photon-induced dissociation of single DNA strands is visualized and quantified using atomic force microscopy. The obtained quantum yields for strand breakage vary between 0.06 and 0.5, indicating highly efficient DNA strand breakage by UV photons, which is clearly dependent on the photon energy. Above the ionization threshold strand breakage becomes clearly the dominant form of DNA radiation damage, which is then also dependent on the nucleotide sequence.

  10. X-ray magnetic circular dichroism and small angle neutron scattering studies of thiol capped gold nanoparticles

    International Nuclear Information System (INIS)

    de la Venta, J.; Bouzas, V.; Pucci, A.; Laguna-Marco, M.A.; Haskel, D.; te Velthuis, S.G.E; Hoffmann, A.; Lal, J.; Bleuel, M.; Ruggeri, G.; de Julian Fernandez, C.; Garcia, M.A.

    2009-01-01

    X-ray magnetic circular dichroism (XMCD) and Small Angle Neutron Scattering (SANS) measurements were performed on thiol capped Au nanoparticles (NPs) embedded into polyethylene. An XMCD signal of 0.8 · 10 -4 was found at the Au L 3 edge of thiol capped Au NPs embedded in a polyethylene matrix for which Superconducting Quantum Interference Device (SQUID) magnetometry yielded a saturation magnetization, M s , of 0.06 emu/g Au . SANS measurements showed that the 3.2 nm average-diameter nanoparticles are 28% polydispersed, but no detectable SANS magnetic signal was found with the resolution and sensitivity accessible with the neutron experiment. A comparison with previous experiments carried out on Au NPs and multilayers, yield to different values between XMCD signals and magnetization measured by SQUID magnetometer. We discuss the origin of those differences

  11. Alignment of Gold Nanoparticle-Decorated DNA Origami Nanotubes: Substrate Prepatterning versus Molecular Combing.

    Science.gov (United States)

    Teschome, Bezu; Facsko, Stefan; Gothelf, Kurt V; Keller, Adrian

    2015-11-24

    DNA origami has become an established technique for designing well-defined nanostructures with any desired shape and for the controlled arrangement of functional nanostructures with few nanometer resolution. These unique features make DNA origami nanostructures promising candidates for use as scaffolds in nanoelectronics and nanophotonics device fabrication. Consequently, a number of studies have shown the precise organization of metallic nanoparticles on various DNA origami shapes. In this work, we fabricated large arrays of aligned DNA origami decorated with a high density of gold nanoparticles (AuNPs). To this end, we first demonstrate the high-yield assembly of high-density AuNP arrangements on DNA origami adsorbed to Si surfaces with few unbound background nanoparticles by carefully controlling the concentrations of MgCl2 and AuNPs in the hybridization buffer and the hybridization time. Then, we evaluate two methods, i.e., hybridization to prealigned DNA origami and molecular combing in a receding meniscus, with respect to their potential to yield large arrays of aligned AuNP-decorated DNA origami nanotubes. Because of the comparatively low MgCl2 concentration required for the efficient immobilization of the AuNPs, the prealigned DNA origami become mobile and displaced from their original positions, thereby decreasing the alignment yield. This increased mobility, on the other hand, makes the adsorbed origami susceptible to molecular combing, and a total alignment yield of 86% is obtained in this way.

  12. Low-Cost and High-Gain SIW Circularly Polarized Circular-Horn-Loaded Antenna for Broadband Millimeter-Wave Applications

    Directory of Open Access Journals (Sweden)

    Ming Du

    2017-09-01

    Full Text Available A wideband, low-cost and high-gain circularly polarized (CP circular-horn-loaded antenna based on substrate integrated waveguide (SIW technology operating at Ka band is presented. The proposed antenna, which is built on a single-layer substrate, consists of five parts: a short-ended SIW, a centro-symmetric wide slot, an L-shaped probe, a circular horn and a transition from SIW to air-filled rectangular waveguide for measurement. The slot is etched on the upper ground of the SIW, while the L-shaped probe for generating CP wave is printed inside the slot and connected to the SIW. A circular horn is also loaded on the surface of the SIW slot for high gain. Then, the proposed antenna with a dimension of 45×45×24.16 mm3 was fabricated and measured. The measured results show that the antenna has a wide impedance matching bandwidth of 28.6% from 30 to 40 GHz for |S11| ≤10 dB and a wide axial ratio (AR bandwidth of 22.8% from 31.5 to 39.6 GHz for AR ≤ 3 dB. The measured maximum gain is 15.6 dBi at 36 GHz with slight fluctuations over the 30–40-GHz frequency range. This kind of antenna merits low cost and easy integration with common differential circuits at the same time.

  13. Simulation of circularly polarized luminescence spectra using coupled cluster theory

    Energy Technology Data Exchange (ETDEWEB)

    McAlexander, Harley R.; Crawford, T. Daniel, E-mail: crawdad@vt.edu [Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2015-04-21

    We report the first computations of circularly polarized luminescence (CPL) rotatory strengths at the equation-of-motion coupled cluster singles and doubles (EOM-CCSD) level of theory. Using a test set of eight chiral ketones, we compare both dipole and rotatory strengths for absorption (electronic circular dichroism) and emission to the results from time-dependent density-functional theory (TD-DFT) and available experimental data for both valence and Rydberg transitions. For two of the compounds, we obtained optimized geometries of the lowest several excited states using both EOM-CCSD and TD-DFT and determined that structures and EOM-CCSD transition properties obtained with each structure were sufficiently similar that TD-DFT optimizations were acceptable for the remaining test cases. Agreement between EOM-CCSD and the Becke three-parameter exchange function and Lee-Yang-Parr correlation functional (B3LYP) corrected using the Coulomb attenuating method (CAM-B3LYP) is typically good for most of the transitions, though agreement with the uncorrected B3LYP functional is significantly worse for all reported properties. The choice of length vs. velocity representation of the electric dipole operator has little impact on the EOM-CCSD transition strengths for nearly all of the states we examined. For a pair of closely related β, γ-enones, (1R)-7-methylenebicyclo[2.2.1]heptan-2-one and (1S)-2-methylenebicyclo[2.2.1]heptan-7-one, we find that EOM-CCSD and CAM-B3LYP agree with the energetic ordering of the two possible excited-state conformations, resulting in good agreement with experimental rotatory strengths in both absorption and emission, whereas B3LYP yields a qualitatively incorrect result for the CPL signal of (1S)-2-methylenebicyclo[2.2.1]heptan-7-one. Finally, we predict that one of the compounds considered here, trans-bicyclo[3.3.0]octane-3,7-dione, is unique in that it exhibits an achiral ground state and a chiral first excited state, leading to a strong CPL

  14. System for circular and complex tomography

    International Nuclear Information System (INIS)

    Hellstrom, M.J.

    1979-01-01

    This invention discloses a system for conducting circular as well as complex tomographic procedures utilizing apparatus which has no mechanical linkage between the X-ray source and the X-ray receptor. The path of travel of the X-ray source both circularly and linearly is sensed by electromagnetic radiation and more particularly by light radiation which is generated by a laser. The linear travel is sensed by means of reflected laser radiation directed to the X-ray source and fed to an interferometer. The circular travel, on the other hand, is sensed by means of a laser gyroscope also receiving light radiation from a laser. Optical energy sensing means is thus used to generate command signals which are coupled to respective drive motors which act to rotate and when desirable, translate the X-ray receptor so that its motion follows the motion, both orbital and linear, of the X-ray source for performing any desired type of tomographic procedure

  15. Circular economy and waste to energy

    Science.gov (United States)

    Rada, E. C.; Ragazzi, M.; Torretta, V.; Castagna, G.; Adami, L.; Cioca, L. I.

    2018-05-01

    Waste management in European Union has long being regulated by the 4Rs principle, i.e. reduction, reuse, recycling, recovery, with landfill disposal as the last option. This vision recently led the European Union (especially since 2015) to the introduction of virtuous goals based on the rejection of linear economy in favour of circular economy strongly founded on materials recovery. In this scenario, landfill disposal option will disappear, while energy recovery may appear controversial when not applied to biogas production from anaerobic digestion. The present work aims to analyse the effects that circular economy principles introduced in the European Union context will have on the thermochemical waste treatment plants design. Results demonstrate that indirect combustion (gasification + combustion) along with integrated vitrification of the non-combustible fraction of treated waste will have a more relevant role in the field of waste treatment than in the past, thanks to the compliance of this option with the principles of circular economy.

  16. Nanofabrication Yields. Hybridization and Click-Fixation of Polycyclic DNA Nanoassemblies

    KAUST Repository

    Lundberg, Erik P.; Plesa, Calin; Wilhelmsson, L. Marcus; Lincoln, Per; Brown, Tom; Nordén, Bengt

    2011-01-01

    introduced site-specific click chemistry for making and purifying robust building blocks for future modular constructs of larger assemblies. Although the present yield of this robust module was only about 10%, it demonstrates a first step toward a general

  17. High-Order Analytic Expansion of Disturbing Function for Doubly Averaged Circular Restricted Three-Body Problem

    Directory of Open Access Journals (Sweden)

    Takashi Ito

    2016-01-01

    Full Text Available Terms in the analytic expansion of the doubly averaged disturbing function for the circular restricted three-body problem using the Legendre polynomial are explicitly calculated up to the fourteenth order of semimajor axis ratio (α between perturbed and perturbing bodies in the inner case (α1. The expansion outcome is compared with results from numerical quadrature on an equipotential surface. Comparison with direct numerical integration of equations of motion is also presented. Overall, the high-order analytic expansion of the doubly averaged disturbing function yields a result that agrees well with the numerical quadrature and with the numerical integration. Local extremums of the doubly averaged disturbing function are quantitatively reproduced by the high-order analytic expansion even when α is large. Although the analytic expansion is not applicable in some circumstances such as when orbits of perturbed and perturbing bodies cross or when strong mean motion resonance is at work, our expansion result will be useful for analytically understanding the long-term dynamical behavior of perturbed bodies in circular restricted three-body systems.

  18. Advisory Circular checklist and status of other FAA publications

    Science.gov (United States)

    1997-08-15

    This 1997 circular transmits the revised checklist of the Federal Aviation : Administration's (FAA) Advisory Circulars (AC's). It also lists certain other : FAA publications sold by the Superintendent of Documents.

  19. Mitogenomic analyses from ancient DNA

    DEFF Research Database (Denmark)

    Paijmans, Johanna L. A.; Gilbert, Tom; Hofreiter, Michael

    2013-01-01

    The analysis of ancient DNA is playing an increasingly important role in conservation genetic, phylogenetic and population genetic analyses, as it allows incorporating extinct species into DNA sequence trees and adds time depth to population genetics studies. For many years, these types of DNA...... analyses (whether using modern or ancient DNA) were largely restricted to the analysis of short fragments of the mitochondrial genome. However, due to many technological advances during the past decade, a growing number of studies have explored the power of complete mitochondrial genome sequences...... yielded major progress with regard to both the phylogenetic positions of extinct species, as well as resolving population genetics questions in both extinct and extant species....

  20. Circular RNAs

    DEFF Research Database (Denmark)

    Han, Yi-Neng; Xia, Shengqiang; Zhang, Yuan-Yuan

    2017-01-01

    Circular RNAs (circRNAs) are a novel type of universal and diverse endogenous noncoding RNAs (ncRNAs) and they form a covalently closed continuous loop without 5' or 3' tails unlike linear RNAs. Most circRNAs are presented with characteristics of abundance, stability, conservatism, and often exhi...... and expression regulators, RBP sponges in cancer as well as current research methods of circRNAs, providing evidence for the significance of circRNAs in cancer diagnosis and clinical treatment....

  1. Circular fringe projection profilometry.

    Science.gov (United States)

    Zhao, Hong; Zhang, Chunwei; Zhou, Changquan; Jiang, Kejian; Fang, Meiqi

    2016-11-01

    In this Letter, a novel three-dimensional (3D) measurement method, called the circular fringe projection profilometry (CFPP), is proposed. Similar to the conventional fringe projection profilometry, CFPP also requires fringe pattern projection and capture, phase demodulation, and phase unwrapping. However, it works with a totally different mechanism. CFPP recovers the height of a point by calculating its distance to the optical center of a projector along the optical axis. This distance is calculated with the aid of the divergence angle of a projected light ray and the distance between the measured point and the optical axis. The distance between the measured point and the optical axis is detected by a camera with telecentric lenses, while the divergence angle can be calculated from the phase of a captured circular fringe pattern. The validity of CFPP is confirmed by a set of experiments.

  2. Optimization of DNA extraction for ISSR studies in Tectona grandis Lf

    African Journals Online (AJOL)

    GRACE

    2006-07-03

    Jul 3, 2006 ... genomic DNA, emphasizing screening of inexpensive, rapid and simple DNA extraction methods (Weishing et al., 1995). Yield and quality of DNA often varies among tree tissue types (Henry, 2001). Besides, purification of genomic DNA in trees is difficult due to co-extraction of high quantities of tannins, ...

  3. Flow-cytometric analysis of mouse embryonic stem cell lipofection using small and large DNA constructs.

    Science.gov (United States)

    McLenachan, Samuel; Sarsero, Joseph P; Ioannou, Panos A

    2007-06-01

    Using the lipofection reagent LipofectAMINE 2000 we have examined the delivery of plasmid DNA (5-200 kb) to mouse embryonic stem (mES) cells by flow cytometry. To follow the physical uptake of lipoplexes we labeled DNA molecules with the fluorescent dye TOTO-1. In parallel, expression of an EGFP reporter cassette in constructs of different sizes was used as a measure of nuclear delivery. The cellular uptake of DNA lipoplexes is dependent on the uptake competence of mES cells, but it is largely independent of DNA size. In contrast, nuclear delivery was reduced with increasing plasmid size. In addition, linear DNA is transfected with lower efficiency than circular DNA. Inefficient cytoplasmic trafficking appears to be the main limitation in the nonviral delivery of large DNA constructs to the nucleus of mES cells. Overcoming this limitation should greatly facilitate functional studies with large genomic fragments in embryonic stem cells.

  4. Experimental investigation of complex circular Airy beam characteristics

    Science.gov (United States)

    Porfirev, A. P.; Fomchenkov, S. A.; Khonina, S. N.

    2018-04-01

    We demonstrate a new type of circular Airy beams, the so-called azimuthally modulated circular Airy beams, generated by utilizing a diffraction element, whose transmission function is the sum of the transmission function of the element generating a "petal" pattern and the transmission function of the element generating a circular Airy beam. We experimentally investigate the propagation dynamics of such beams and demonstrate that their autofocusing and selfhealing properties are strongly dependent on the number of generated petals. These beams are a combination of a conventional circular Airy beam and vortex laser beams (or their superpositions). Using a spatial light modulator, we demonstrate that these beams have unique properties such as autofocusing, "nondiffractive" propagation and self-healing after passing through an obstacle. The experimental results are in good agreement with the simulation. We believe that these results can be very useful for lensless laser fabrication and laser manipulation techniques, as well as for development of new filament plasma multi-channel formation methods.

  5. 12 CFR 563g.8 - Use of the offering circular.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Use of the offering circular. 563g.8 Section 563g.8 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY SECURITIES OFFERINGS § 563g.8 Use of the offering circular. (a) An offering circular or amendment declared effective by the...

  6. Strand breaks, base release and post-irradiation changes in DNA γ-irradiated in dilute O2-saturated aqueous solution

    International Nuclear Information System (INIS)

    Ward, J.F.; Kuo, I.

    1976-01-01

    Gamma irradiation of DNA in dilute O 2 -saturated aqueous solution releases free bases and damaged bases from the macromolecule. The yields of these products were measured after column chromatographic separation. For double stranded DNA the immediate yield of bases varies from G = 0.012 for cytosine to G = 0.033 for adenine. The yields of released bases increase with post-irradiation time (the majority of the increase occurs in the first 2 hrs.) to yields in the range of G = 0.07 +- 0.012. Yields of two released damaged thymine radiation products from γ-irradiated 3 H thymine labelled DNA also increased with post-irradiation time. Strand breaks were measured in γ-irradiated single stranded DNA the initial yield G = 0.02 was low but increased with time to G = 0.07. No direct correlation between strand-break production and release of low molecular weight products is possible. The findings are discussed in terms of damage to DNA in vivo and its enzymatic repair

  7. Swarm Robotics with Circular Formation Motion Including Obstacles Avoidance

    Directory of Open Access Journals (Sweden)

    Nabil M. Hewahi

    2017-07-01

    Full Text Available The robots science has been developed over the past few years, where robots have become used to accomplish difficult, repetitive or accurate tasks, which are very hard for humans to carry out. In this paper, we propose an algorithm to control the motion of a swarm of robots and make them able to avoid obstacles. The proposed solution is based on forming the robots in circular fashion. A group set of robots consists of multiple groups of robots, each group of robots consists of robots forming a circular shape and each group set is a circular form of robots. The proposed algorithm is concerned with first locating the randomly generated robots in groups and secondly with the swarm robot motion and finally with the swarm obstacle avoidance and swarm reorganization after crossing the obstacle. The proposed algorithm has been simulated with five different obstacles with various numbers of randomly generated robots. The results show that the swarm in the circular form can deal with the obstacles very effectively by passing the obstacles smoothly. The proposed algorithm has been compared with flocking algorithm and it is shown that the circular formation algorithm does not need extensive computation after obstacle avoidance whereas the flocking algorithm needs extensive computation. In addition, the circular formation algorithm maintains every robot in its group after avoiding the obstacles whereas with flocking algorithm does not.

  8. Multispectroscopic DNA-Binding studies and antimicrobial evaluation of new mixed-ligand Silver(I) complex and nanocomplex: A comparative study

    Science.gov (United States)

    Movahedi, Elaheh; Rezvani, Ali Reza

    2018-05-01

    A novel mixed-ligand Ag(I) complex, , has been synthesized and characterized by the elemental analysis, IR spectroscopy and 1HNMR. In the formula, dian and phen are N-(4,5-diazafluoren-9-ylidene)aniline and 1,10-phenanthroline, respectively. This complex also has been prepared at nano size by sonochemical technique and characterized by the FTIR and scanning electron microscopy (SEM). To evaluate the biological preferences of the Ag(I) complex and nanocomplex and verify the relationships between the structure and biological function, in vitro DNA binding and antibacterial experiments have been carried out. DNA-complex interaction has been pursued by electronic absorption titration, luminescence titration, competitive binding experiment, effect of ionic strength, thermodynamic studies, viscometric evaluation and circular dichroism spectroscopy in the physiological pH. Each compound displays significant binding trend to the CT-DNA. The mode of binding to the CT-DNA probably is a moderate intercalation mode with the partial insertion of the planar ligands between the base stacks of double-stranded DNA. The relative viscosities and circular dichroism spectra of the CT-DNA with the complex solutions, confirm the intense interactions of the Ag(I) complex and nanocomplex with DNA. An in vitro antibacterial test of the complex and nanocomplex on a series of the Gram-positive bacteria (Staphylococcus aureus, Enterococcus faecalis) and the Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa) shows a remarkable antibacterial feature of the Ag(I) complex. The MIC values (minimum inhibitory concentration) of the compounds compare with silver nitrate and silver sulfadiazine. The bacterial inhibitions of the Ag(I) complex and nanocomplex are agreed to their DNA binding affinities.

  9. FUCHS—towards full circular RNA characterization using RNAseq

    Directory of Open Access Journals (Sweden)

    Franziska Metge

    2017-02-01

    Full Text Available Circular RNAs (circRNAs belong to a recently re-discovered species of RNA that emerge during RNA maturation through a process called back-splicing. A downstream 5′ splice site is linked to an upstream 3′ splice site to form a circular transcript instead of a canonical linear transcript. Recent advances in next-generation sequencing (NGS have brought circRNAs back into the focus of many scientists. Since then, several studies reported that circRNAs are differentially expressed across tissue types and developmental stages, implying that they are actively regulated and not merely a by-product of splicing. Though functional studies have shown that some circRNAs could act as miRNA-sponges, the function of most circRNAs remains unknown. To expand our understanding of possible roles of circular RNAs, we propose a new pipeline that could fully characterizes candidate circRNA structure from RNAseq data—FUCHS: FUll CHaracterization of circular RNA using RNA-Sequencing. Currently, most computational prediction pipelines use back-spliced reads to identify circular RNAs. FUCHS extends this concept by considering all RNA-seq information from long reads (typically >150 bp to learn more about the exon coverage, the number of double break point fragments, the different circular isoforms arising from one host-gene, and the alternatively spliced exons within the same circRNA boundaries. This new knowledge will enable the user to carry out differential motif enrichment and miRNA seed analysis to determine potential regulators during circRNA biogenesis. FUCHS is an easy-to-use Python based pipeline that contributes a new aspect to the circRNA research.

  10. Optimized pH method for DNA elution from buccal cells collected in Whatman FTA cards.

    Science.gov (United States)

    Lema, Carolina; Kohl-White, Kendra; Lewis, Laurie R; Dao, Dat D

    2006-01-01

    DNA is the most accessible biologic material for obtaining information from the human genome because of its molecular stability and its presence in every nucleated cell. Currently, single nucleotide polymorphism genotyping and DNA methylation are the main DNA-based approaches to deriving genomic and epigenomic disease biomarkers. Upon the discontinuation of the Schleicher & Schuell IsoCode product (Dassel, Germany), which was a treated paper system to elute DNA from several biologic sources for polymerase chain reaction (PCR) analysis, a high-yielding DNA elution method was imperative. We describe here an improved procedure of the not fully validated Whatman pH-based elution protocol. Our DNA elution procedure from buccal cells collected in Whatman FTA cards (Whatman Inc., Florham Park, NJ) yielded approximately 4 microg of DNA from a 6-mm FTA card punch and was successfully applied for HLA-DQB1 genotyping. The genotypes showed complete concordance with data obtained from blood of the same subjects. The achieved high DNA yield from buccal cells suggests a potential cost-effective tool for genomic and epigenomic disease biomarkers development.

  11. Interaction of gold nanoparticles with Pfu DNA polymerase and effect on polymerase chain reaction.

    Science.gov (United States)

    Sun, L-P; Wang, S; Zhang, Z-W; Ma, Y-Y; Lai, Y-Q; Weng, J; Zhang, Q-Q

    2011-03-01

    The interaction of gold nanoparticles with Pfu DNA polymerase has been investigated by a number of biological, optical and electronic spectroscopic techniques. Polymerase chain reaction was performed to show gold nanoparticles' biological effect. Ultraviolet-visible and circular dichroism spectra analysis were applied to character the structure of Pfu DNA polymerase after conjugation with gold nanoparticles. X-ray photoelectron spectroscopy was used to investigate the bond properties of the polymerase-gold nanoparticles complex. The authors demonstrate that gold nanoparticles do not affect the amplification efficiency of polymerase chain reaction using Pfu DNA polymerase, and Pfu DNA polymerase displays no significant changes of the secondary structure upon interaction with gold nanoparticles. The adsorption of Pfu DNA polymerase to gold nanoparticles is mainly through Au-NH(2) bond and electrostatic interaction. These findings may have important implications regarding the safety issue as gold nanoparticles are widely used in biomedical applications.

  12. Clustered DNA damage induced by proton and heavy ion irradiation

    International Nuclear Information System (INIS)

    Davidkova, M.; Pachnerova Brabcova, K; Stepan, V.; Vysin, L.; Sihver, L.; Incerti, S.

    2014-01-01

    Ionizing radiation induces in DNA strand breaks, damaged bases and modified sugars, which accumulate with increasing density of ionizations in charged particle tracks. Compared to isolated DNA damage sites, the biological toxicity of damage clusters can be for living cells more severe. We investigated the clustered DNA damage induced by protons (30 MeV) and high LET radiation (C 290 MeV/u and Fe 500 MeV/u) in pBR322 plasmid DNA. To distinguish between direct and indirect pathways of radiation damage, the plasmid was irradiated in pure water or in aqueous solution of one of the three scavengers (coumarin-3-carboxylic acid, dimethylsulfoxide, and glycylglycine). The goal of the contribution is the analysis of determined types of DNA damage in dependence on radiation quality and related contribution of direct and indirect radiation effects. The yield of double strand breaks (DSB) induced in the DNA plasmid-scavenger system by heavy ion radiation was found to decrease with increasing scavenging capacity due to reaction with hydroxyl radical, linearly with high correlation coefficients. The yield of non-DSB clusters was found to occur twice as much as the DSB. Their decrease with increasing scavenging capacity had lower linear correlation coefficients. This indicates that the yield of non-DSB clusters depends on more factors, which are likely connected to the chemical properties of individual scavengers. (authors)

  13. On the Recognition of Fuzzy Circular Interval Graphs

    OpenAIRE

    Oriolo, Gianpaolo; Pietropaoli, Ugo; Stauffer, Gautier

    2011-01-01

    Fuzzy circular interval graphs are a generalization of proper circular arc graphs and have been recently introduced by Chudnovsky and Seymour as a fundamental subclass of claw-free graphs. In this paper, we provide a polynomial-time algorithm for recognizing such graphs, and more importantly for building a suitable representation.

  14. 5 CFR 1310.5 - List of current circulars.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false List of current circulars. 1310.5 Section 1310.5 Administrative Personnel OFFICE OF MANAGEMENT AND BUDGET OMB DIRECTIVES OMB CIRCULARS § 1310.5... and Use of Voluntary Consensus Standards and in Conformity Assessment Activities” A-122—“Cost...

  15. An analysis of near-circular lunar mapping orbits

    Indian Academy of Sciences (India)

    Numerical investigations have been carried out to analyse the evolution of lunar circular orbits and the influence of the higher order harmonics of the lunar gravity field. The aim is to select the appropriate near-circular orbit characteristics, which extend orbit life through passive orbit maintenance. The spherical harmonic ...

  16. University Students Alternative Conceptions On Circular Motion

    OpenAIRE

    Ian Phil Canlas

    2015-01-01

    This study attempted to find out university students alternative conceptions on circular motion. An 18-item researcher-compiled and content-validated questionnaire was administered to twenty-six 26 students taking up a program in Bachelor in Secondary Education-Physical Science in their second year enrolled in a course on mechanics. Results revealed that majority of the students possess alternative conceptions on circular motion specifically along velocity acceleration and force. Moreover res...

  17. DNA-assisted swarm control in a biomolecular motor system.

    Science.gov (United States)

    Keya, Jakia Jannat; Suzuki, Ryuhei; Kabir, Arif Md Rashedul; Inoue, Daisuke; Asanuma, Hiroyuki; Sada, Kazuki; Hess, Henry; Kuzuya, Akinori; Kakugo, Akira

    2018-01-31

    In nature, swarming behavior has evolved repeatedly among motile organisms because it confers a variety of beneficial emergent properties. These include improved information gathering, protection from predators, and resource utilization. Some organisms, e.g., locusts, switch between solitary and swarm behavior in response to external stimuli. Aspects of swarming behavior have been demonstrated for motile supramolecular systems composed of biomolecular motors and cytoskeletal filaments, where cross-linkers induce large scale organization. The capabilities of such supramolecular systems may be further extended if the swarming behavior can be programmed and controlled. Here, we demonstrate that the swarming of DNA-functionalized microtubules (MTs) propelled by surface-adhered kinesin motors can be programmed and reversibly regulated by DNA signals. Emergent swarm behavior, such as translational and circular motion, can be selected by tuning the MT stiffness. Photoresponsive DNA containing azobenzene groups enables switching between solitary and swarm behavior in response to stimulation with visible or ultraviolet light.

  18. Adeno-associated virus Rep-mediated targeting of integrase-defective retroviral vector DNA circles into human chromosome 19

    International Nuclear Information System (INIS)

    Huang, Shuohao; Kawabe, Yoshinori; Ito, Akira; Kamihira, Masamichi

    2012-01-01

    Highlights: ► Adeno-associated virus (AAV) is capable of targeted integration in human cells. ► Integrase-defective retroviral vector (IDRV) enables a circular DNA delivery. ► A targeted integration system of IDRV DNA using the AAV integration mechanism. ► Targeted IDRV integration ameliorates the safety concerns for retroviral vectors. -- Abstract: Retroviral vectors have been employed in clinical trials for gene therapy owing to their relative large packaging capacity, alterable cell tropism, and chromosomal integration for stable transgene expression. However, uncontrollable integrations of transgenes are likely to cause safety issues, such as insertional mutagenesis. A targeted transgene integration system for retroviral vectors, therefore, is a straightforward way to address the insertional mutagenesis issue. Adeno-associated virus (AAV) is the only known virus capable of targeted integration in human cells. In the presence of AAV Rep proteins, plasmids possessing the p5 integration efficiency element (p5IEE) can be integrated into the AAV integration site (AAVS1) in the human genome. In this report, we describe a system that can target the circular DNA derived from non-integrating retroviral vectors to the AAVS1 site by utilizing the Rep/p5IEE integration mechanism. Our results showed that after G418 selection 30% of collected clones had retroviral DNA targeted at the AAVS1 site.

  19. The study of evaluation index system on construction enterprise’s circular economy

    Science.gov (United States)

    Yi, Lu; Liu, Zhigang

    2017-06-01

    The development of circular economy is an important way to judge quality of enterprise development and to realize the sustainable development of enterprises. This paper will combine the characteristics of the development of circular economy in construction enterprise to construct circular economy evaluation index system. Then it uses fuzzy mathematics theory and hierarchical analysis evaluation method for comprehensive evaluation of circular economy development level. Through the empirical analysis, the paper provides the reference basis for construction enterprises to further improve the level of circular economy.

  20. Fabrication of circular microfluidic network in enzymatically-crosslinked gelatin hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    He, Jiankang, E-mail: jiankanghe@mail.xjtu.edu.cn; Chen, Ruomeng; Lu, Yongjie; Zhan, Li; Liu, Yaxiong; Li, Dichen; Jin, Zhongmin

    2016-02-01

    It is a huge challenge to engineer vascular networks in vital organ tissue engineering. Although the incorporation of artificial microfluidic network into thick tissue-engineered constructs has shown great promise, most of the existing microfluidic strategies are limited to generate rectangle cross-sectional channels rather than circular vessels in soft hydrogels. Here we present a facile approach to fabricate branched microfluidic network with circular cross-sections in gelatin hydrogels by combining micromolding and enzymatically-crosslinking mechanism. Partially crosslinked hydrogel slides with predefined semi-circular channels were molded, assembled and in situ fully crosslinked to form a seamless and circular microfluidic network. The bonding strength of the resultant gelatin hydrogels was investigated. The morphology and the dimension of the resultant circular channels were characterized using scanning electron microscopy (SEM) and micro-computerized tomography (μCT). Computational fluid dynamic simulation shows that the fabrication error had little effect on the distribution of flow field but affected the maximum velocity in comparison with designed models. The microfluidic gelatin hydrogel facilitates the attachment and spreading of human umbilical endothelial cells (HUVECs) to form a uniform endothelialized layer around the circular channel surface, which successfully exhibited barrier functions. The presented method might provide a simple way to fabricate circular microfluidic networks in biologically-relevant hydrogels to advance various applications of in vitro tissue models, organ-on-a-chip systems and tissue engineering. - Highlights: • A facile method was proposed to build a circular fluidic network in gelatin hydrogel. • The fluidic network is mechanically robust and supports physiological flow. • HUVECs formed endothelialized layer around the channel to express barrier function.

  1. A CTAB Procedure Of Total Genomic DNA Extraction For Medicinal Mushrooms

    International Nuclear Information System (INIS)

    Azhar Mohamad; Muhammad Hussaini Mohd Mustafa; Muhammad Hanif Azhari Noor; Rosnani Abdul Rashid; Hasan Hamdani Hasan Mutaat; Meswan Meskom; Mat Rasol Awang

    2014-01-01

    Medicinal mushroom is defined as mushrooms used in medicine or medical research. Isolation of intact, high-molecular-mass genomic DNA is essential for many molecular biology applications including Polymerase Chain Reaction (PCR), endonuclease restriction digestion, Southern blot analysis, and genomic library construction. The most important and prerequisite towards reliable molecular biology work is the total genomic DNA of a sample must be in good quality. Five freshly samples of medicinal mushroom were used in this work known as Auriculariapolytricha, Lentinus edode, Pleurotus sayorcaju, Sczhizopyllum commune and Ganodermalucidum. 5 mg of each sample were used to extraction the DNA, prepared in 3 replications and repeated twice. PCR based technique by using ISSR markers were used in checking the amplification ability of the total genomic extraction. A standard Doyle and Doyle protocol for genomic DNA extraction was modified in optimizing the total genomic DNA from the medicinal mushroom.The modification parameters were percentage of CTAB, incubation period and temperature. The results reveal that each sample required a certain combinations of time and period of incubation. Besides, percentage of CTAB in the buffer was found significant in giving a high yielding of extracted total genomic DNA. The extracted total genomic DNA from the medicinal mushroom yielded from 39.7 ng/ μl to 919.1 ng/ μl. The different yield among the samples found to be corresponded to polysaccharide content in the medicinal mushrooms. The objective of this works is to optimize total genomic DNA extraction of medicinal mushrooms towards a high quality intact genomic DNA for molecular activities. (author)

  2. Circular Business Models: Defining a Concept and Framing an Emerging Research Field

    Directory of Open Access Journals (Sweden)

    Julia L. K. Nußholz

    2017-10-01

    Full Text Available To aid companies in transitioning towards a circular economy and adopting strategies such as reuse, repair, and remanufacturing, the concept of circular business models has been developed. Although the concept draws on contributions from various academic disciplines, and despite its increasingly frequent use, few scholars clearly define what a circular business model is. Understanding about what makes a business model circular is diverse, hampering the theoretical development and practical application of circular business models. This study aims to help frame the field of circular business model research, by clarifying the fundamentals of the concept from the perspectives of resource efficiency and business model innovation. Expanding on these findings, a review of how the concept is used in recent academic literature is provided. It shows that a coherent view is lacking on which resource efficiency strategies classify a business model as circular. This study clarifies which resource efficiency strategies can be deemed as relevant key strategies for circular business models, and suggests a new definition of the concept. With the definition grounded in analysis of the fundamentals in terms of resource efficiency and business models, the study contributes to theoretical advancement and effective implementation of circular business models.

  3. Inheritance of mitochondrial DNA in serially recloned pigs by somatic cell nuclear transfer (SCNT)

    Energy Technology Data Exchange (ETDEWEB)

    Do, Minhwa; Jang, Won-Gu; Hwang, Jeong Hee; Jang, Hoon; Kim, Eun-Jung; Jeong, Eun-Jeong [Regenerative Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305 806 (Korea, Republic of); Shim, Hosup [Department of Physiology, Dankook University School of Medicine, Cheonan 330 714 (Korea, Republic of); Hwang, Sung Soo; Oh, Keon Bong; Byun, Sung June [Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, Suwon (Korea, Republic of); Kim, Jin-Hoi [Department of Animal Biotechnology, Konkuk University, Seoul 143 701 (Korea, Republic of); Lee, Jeong Woong, E-mail: jwlee@kribb.re.kr [Regenerative Medicine Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305 806 (Korea, Republic of)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer We success serial SCNT through the third generation using pig fibroblasts. Black-Right-Pointing-Pointer Donor-specific mtDNA in the recloned pigs was detected. Black-Right-Pointing-Pointer SCNT affect mtDNA mounts. -- Abstract: Somatic cell nuclear transfer (SCNT) has been established for the transmission of specific nuclear DNA. However, the fate of donor mitochondrial DNA (mtDNA) remains unclear. Here, we examined the fate of donor mtDNA in recloned pigs through third generations. Fibroblasts of recloned pigs were obtained from offspring of each generation produced by fusion of cultured fibroblasts from a Minnesota miniature pig (MMP) into enucleated oocytes of a Landrace pig. The D-loop regions from the mtDNA of donor and recipient differ at nucleotide sequence positions 16050 (A{yields}T), 16062 (T{yields}C), and 16135 (G{yields}A). In order to determine the fate of donor mtDNA in recloned pigs, we analyzed the D-loop region of the donor's mtDNA by allele-specific PCR (AS-PCR) and real-time PCR. Donor mtDNA was successfully detected in all recloned offspring (F1, F2, and F3). These results indicate that heteroplasmy that originate from donor and recipient mtDNA is maintained in recloned pigs, resulting from SCNT, unlike natural reproduction.

  4. 12 CFR 563g.2 - Offering circular requirement.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 5 2010-01-01 2010-01-01 false Offering circular requirement. 563g.2 Section 563g.2 Banks and Banking OFFICE OF THRIFT SUPERVISION, DEPARTMENT OF THE TREASURY SECURITIES OFFERINGS § 563g.2 Offering circular requirement. (a) General. No savings association shall offer or sell, directly...

  5. Evaluation of methods to improve the extraction and recovery of DNA from cotton swabs for forensic analysis.

    Directory of Open Access Journals (Sweden)

    Michael S Adamowicz

    Full Text Available Samples for forensic DNA analysis are often collected from a wide variety of objects using cotton or nylon tipped swabs. Testing has shown that significant quantities of DNA are retained on the swab, however, and subsequently lost. When processing evidentiary samples, the recovery of the maximum amount of available DNA is critical, potentially dictating whether a usable profile can be derived from a piece of evidence or not. The QIAamp DNA Investigator extraction kit was used with its recommended protocol for swabs (one hour incubation at 56°C as a baseline. Results indicate that over 50% of the recoverable DNA may be retained on the cotton swab tip, or otherwise lost, for both blood and buccal cell samples when using this protocol. The protocol's incubation time and temperature were altered, as was incubating while shaking or stationary to test for increases in recovery efficiency. An additional step was then tested that included periodic re-suspension of the swab tip in the extraction buffer during incubation. Aliquots of liquid blood or a buccal cell suspension were deposited and dried on cotton swabs and compared with swab-less controls. The concentration of DNA in each extract was quantified and STR analysis was performed to assess the quality of the extracted DNA. Stationary incubations and those performed at 65°C did not result in significant gains in DNA yield. Samples incubated for 24 hours yielded less DNA. Increased yields were observed with three and 18 hour incubation periods. Increases in DNA yields were also observed using a swab re-suspension method for both cell types. The swab re-suspension method yielded an average two-fold increase in recovered DNA yield with buccal cells and an average three-fold increase with blood cells. These findings demonstrate that more of the DNA collected on swabs can be recovered with specific protocol alterations.

  6. How can design science contribute to a circular economy?

    DEFF Research Database (Denmark)

    Pigosso, Daniela Cristina Antelmi; McAloone, Tim C.

    2017-01-01

    Circular Economy is increasingly seen as a key approach to operationalising goals and supporting the transition to a sustainable society by enhancing competitiveness and economic growth. Creating a Circular Economy requires fundamental changes throughout the value chain, from innovation, product...... design and production processes all the way to end of life, new business models and consumption patterns. This paper explores how design science can support the transition from the traditional linear 'take-make-consume-dispose' approach, to a Circular Economy. By means of a systematic literature review...

  7. Calibration of circular aperture area using vision probe at inmetro

    Directory of Open Access Journals (Sweden)

    Costa Pedro Bastos

    2016-01-01

    Full Text Available Circular aperture areas are standards of high importance for the realization of photometric and radiometric measurements, where the accuracy of these measures is related to the accuracy of the circular aperture area calibrations. In order to attend the requirement for traceability was developed in Brazilian metrology institute, a methodology for circular aperture area measurement as requirements from the radiometric and photometric measurements. In the developed methodology apertures are measured by non-contact measurement through images of the aperture edges captured by a camera. These images are processed using computer vision techniques and then the values of the circular aperture area are determined.

  8. ¿Son diferentes los migrantes circulares? La integración, el bienestar y la intención de quedarse de los que migran por primera vez y de los migrantes circulares (Are circular migrants different? Integration, wellbeing, and intention to stay of first-time and circular migrants

    Directory of Open Access Journals (Sweden)

    Michael Braun

    2010-12-01

    Full Text Available ResumenCon datos tomados del proyecto PIONEUR sobre la migración interna en la Unión Europea, definiremos (una forma débil de migrantes circulares como el colectivo de aquellos migrantes que ya habían experimentado una estancia prolongada en el país de residencia (en lo sucesivo abreviado a PDR antes de su traslado definitivo. A continuación, se ofrecerá una descripción de este colectivo junto con sus características sociodemográficas y se emplearán análisis de regresión (multinivel para determinar si la migración circular explica las diferencias en algunas variables dependientes (como el dominio del idioma, el apego al PDR que arrojan esos migrantes teniendo en cuenta las características sociodemográficas. De este modo, la migración circular estaría relacionada con un mayor contacto con la cultura del PDR y con una decisión consciente de regresar al país.AbstractUsing data from the PIONEUR project on intra-European migration, (a weak form of circular migrants will be defined by the group of migrants who experienced a prolonged sojourn in the country of residence (in the following abbreviated as CoR already before the final move. Then this group will be described along socio-demographic characteristics and (multilevel regression analysis will be used to determine whether circular migration explains differences in some outcome variables (such as language proficiency, attachment to the CoR, net of the socio-demographic characteristics these migrants have. Circular migration would then be related to additional exposure to the culture of the CoR and a conscious decision to re-enter the country.

  9. Long Terminal Repeat Circular DNA as Markers of Active Viral Replication of Human T Lymphotropic Virus-1 in Vivo

    Directory of Open Access Journals (Sweden)

    James M Fox

    2016-03-01

    Full Text Available Clonal expansion of human T-lymphotropic virus type-1 (HTLV-1 infected cells in vivo is well documented. Unlike human immunodeficiency virus type 1 (HIV-1, HTLV-1 plasma RNA is sparse. The contribution of the “mitotic” spread of HTLV-1 compared with infectious spread of the virus to HTLV-1 viral burden in established infection is uncertain. Since extrachromosomal long terminal repeat (LTR DNA circles are indicators of viral replication in HIV-1 carriers with undetectable plasma HIV RNA, we hypothesised that HTLV-1 LTR circles could indicate reverse transcriptase (RT usage and infectious activity. 1LTR and 2LTR DNA circles were measured in HTLV-1 cell lines and peripheral blood mononuclear cells (PBMC of asymptomatic carriers (ACs and patients with HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP or adult T cell leukaemia/lymphoma (ATLL. 1LTR DNA circles were detected in 14/20 patients at a mean of 1.38/100 PBMC but did not differentiate disease status nor correlate with HTLV-1 DNA copies. 2LTR DNA circles were detected in 30/31 patients and at higher concentrations in patients with HTLV-1-associated diseases, independent of HTLV-1 DNA load. In an incident case the 2LTR DNA circle concentration increased 2.1 fold at the onset of HAM/TSP compared to baseline. Detectable and fluctuating levels of HTLV-1 DNA circles in patients indicate viral RT usage and virus replication. Our results indicate HTLV-1 viral replication capacity is maintained in chronic infection and may be associated with disease onset.

  10. X-ray magnetic circular dichroism and small angle neutron scattering studies of thiol capped gold nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    de la Venta, J.; Bouzas, V.; Pucci, A.; Laguna-Marco, M. A.; Haskel, D.; te Velthuis, S. G. E; Hoffmann, A.; Lal, J.; Bleuel, M.; Ruggeri, G.; de Julian Fernandez, C.; Garcia, M. A.; Univ.Complutense de Madrid; Inst. de Magnetismo Aplicado; Univ. of Pisa; Lab. di Magnetismo Molecolare

    2009-01-01

    X-ray magnetic circular dichroism (XMCD) and Small Angle Neutron Scattering (SANS) measurements were performed on thiol capped Au nanoparticles (NPs) embedded into polyethylene. An XMCD signal of 0.8 {center_dot} 10{sup -4} was found at the Au L{sub 3} edge of thiol capped Au NPs embedded in a polyethylene matrix for which Superconducting Quantum Interference Device (SQUID) magnetometry yielded a saturation magnetization, M{sub s}, of 0.06 emu/g{sub Au}. SANS measurements showed that the 3.2 nm average-diameter nanoparticles are 28% polydispersed, but no detectable SANS magnetic signal was found with the resolution and sensitivity accessible with the neutron experiment. A comparison with previous experiments carried out on Au NPs and multilayers, yield to different values between XMCD signals and magnetization measured by SQUID magnetometer. We discuss the origin of those differences.

  11. X-ray magnetic circular dichroism and small angle neutron scattering study of thiol capped gold nanoparticles.

    Energy Technology Data Exchange (ETDEWEB)

    de la Venta, J.; Bouzas, V.; Pucci, A.; Laguna-Marco, M. A.; Haskel, D.; Pinel, E. F.; te Velthuis, S. G. E.; Hoffmann, A.; Lal, J.; Bleuel, M.; Ruggeri, G.; de Julian, C.; Garcia, M. A.; Univ. Complutense de Madrid; Inst. de Magnetismo Aplicado UCM; Univ. Pisa; Univ. di Padova

    2009-11-01

    X-ray magnetic circular dichroism (XMCD) and Small Angle Neutron Scattering (SANS) measurements were performed on thiol capped Au nanoparticles (NPs) embedded into polyethylene. An XMCD signal of 0.8 {center_dot} 10{sup -4} was found at the Au L{sub 3} edge of thiol capped Au NPs embedded in a polyethylene matrix for which Superconducting Quantum Interference Device (SQUID) magnetometry yielded a saturation magnetization, M{sub s}, of 0.06 emu/g{sub Au}. SANS measurements showed that the 3.2 nm average-diameter nanoparticles are 28% polydispersed, but no detectable SANS magnetic signal was found with the resolution and sensitivity accessible with the neutron experiment. A comparison with previous experiments carried out on Au NPs and multilayers, yield to different values between XMCD signals and magnetization measured by SQUID magnetometer. We discuss the origin of those differences.

  12. Breaking the Barriers to the Circular Economy

    OpenAIRE

    Kirchherr, J.W.; Hekkert, M.P.; Bour, Ruben; Huijbrechtse-Truijens, Anne; Kostense-Smit, Erica; Muller, Jennifer

    2017-01-01

    The Copernicus Institute of Sustainable Development, Utrecht University, the Netherlands and Deloitte have jointly carried out research on barriers to the Circular Economy (CE) in the European Union. For this research, a survey with 153 businesses, 55 government officials and expert interviews with forty-seven thought leaders on the circular economy from businesses, governments, academia and NGOs have been carried out. Two types of barriers emerged as main barriers Firstly, there are the cult...

  13. Spectroscopic studies of the interaction between pirimicarb and calf thymus DNA.

    Science.gov (United States)

    Zhang, Guowen; Hu, Xing; Pan, Junhui

    2011-02-01

    The interaction between pirimicarb and calf thymus DNA in physiological buffer (pH 7.4) was investigated with the use of Neutral Red (NR) dye as a spectral probe by UV-vis absorption, fluorescence and circular dichroism (CD) spectroscopy, as well as viscosity measurements and DNA melting techniques. The results revealed that an intercalation binding should be the interaction mode of pirimicarb to DNA. CD spectra indicated that pirimicarb induced conformational changes of DNA. The binding constants of pirimicarb with DNA were obtained by the fluorescence quenching method. The thermodynamic parameters, enthalpy change (ΔHθ) and entropy change (ΔSθ) were calculated to be -52.13±2.04 kJ mol(-1) and -108.8±6.72 J mol(-1) K(-1) according to the van't Hoff equation, which suggested that hydrogen bonds and van der Waals forces might play a major role in the binding of pirimicarb to DNA. Further, the alternative least squares (ALS) method was applied to resolve a complex two-way array of the absorption spectra data, which provided simultaneously the concentration information for the three reaction components, pirimicarb, NR and DNA-NR. This ALS analysis indicated that the intercalation of pirimicarb into the DNA by substituting for NR in the DNA-NR complex. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Performance limits of ion extraction systems with non-circular apertures

    Energy Technology Data Exchange (ETDEWEB)

    Shagayda, A., E-mail: shagayda@gmail.com; Madeev, S. [Keldysh Research Centre, Onezhskaya, 8, 125438 Moscow (Russian Federation)

    2016-04-15

    A three-dimensional computer simulation is used to determine the perveance limitations of ion extraction systems with non-circular apertures. The objective of the study is to analyze the possibilities to improve mechanical strength of the ion optics made of carbon-carbon composite materials. Non-circular grid apertures are better suited to the physical structure of carbon-carbon composite materials, than conventionally used circular holes in a hexagonal pattern, because they allow a fewer number of cut fibers. However, the slit-type accelerating systems, usually regarded as the main alternative to the conventional ion optics, have an intolerably narrow range of operating perveance values at which there is no direct ion impingement on the acceleration grid. This paper presents results of comparative analysis of a number of different ion optical systems with non-circular apertures and conventional ion optical systems with circular apertures. It has been revealed that a relatively wide perveance range without direct ion impingement may be obtained with apertures shaped as a square with rounded corners. Numerical simulations show that this geometry may have equivalent perveance range as the traditional geometry with circular apertures while being more mechanically robust. In addition, such important characteristics, as the effective transparency for both the ions and the neutral atoms, the height of the potential barrier reflecting the downstream plasma electrons and the angular divergence of the beamlet also can be very close to these parameters for the optics with circular apertures.

  15. Performance limits of ion extraction systems with non-circular apertures.

    Science.gov (United States)

    Shagayda, A; Madeev, S

    2016-04-01

    A three-dimensional computer simulation is used to determine the perveance limitations of ion extraction systems with non-circular apertures. The objective of the study is to analyze the possibilities to improve mechanical strength of the ion optics made of carbon-carbon composite materials. Non-circular grid apertures are better suited to the physical structure of carbon-carbon composite materials, than conventionally used circular holes in a hexagonal pattern, because they allow a fewer number of cut fibers. However, the slit-type accelerating systems, usually regarded as the main alternative to the conventional ion optics, have an intolerably narrow range of operating perveance values at which there is no direct ion impingement on the acceleration grid. This paper presents results of comparative analysis of a number of different ion optical systems with non-circular apertures and conventional ion optical systems with circular apertures. It has been revealed that a relatively wide perveance range without direct ion impingement may be obtained with apertures shaped as a square with rounded corners. Numerical simulations show that this geometry may have equivalent perveance range as the traditional geometry with circular apertures while being more mechanically robust. In addition, such important characteristics, as the effective transparency for both the ions and the neutral atoms, the height of the potential barrier reflecting the downstream plasma electrons and the angular divergence of the beamlet also can be very close to these parameters for the optics with circular apertures.

  16. Performance limits of ion extraction systems with non-circular apertures

    Science.gov (United States)

    Shagayda, A.; Madeev, S.

    2016-04-01

    A three-dimensional computer simulation is used to determine the perveance limitations of ion extraction systems with non-circular apertures. The objective of the study is to analyze the possibilities to improve mechanical strength of the ion optics made of carbon-carbon composite materials. Non-circular grid apertures are better suited to the physical structure of carbon-carbon composite materials, than conventionally used circular holes in a hexagonal pattern, because they allow a fewer number of cut fibers. However, the slit-type accelerating systems, usually regarded as the main alternative to the conventional ion optics, have an intolerably narrow range of operating perveance values at which there is no direct ion impingement on the acceleration grid. This paper presents results of comparative analysis of a number of different ion optical systems with non-circular apertures and conventional ion optical systems with circular apertures. It has been revealed that a relatively wide perveance range without direct ion impingement may be obtained with apertures shaped as a square with rounded corners. Numerical simulations show that this geometry may have equivalent perveance range as the traditional geometry with circular apertures while being more mechanically robust. In addition, such important characteristics, as the effective transparency for both the ions and the neutral atoms, the height of the potential barrier reflecting the downstream plasma electrons and the angular divergence of the beamlet also can be very close to these parameters for the optics with circular apertures.

  17. Performance limits of ion extraction systems with non-circular apertures

    International Nuclear Information System (INIS)

    Shagayda, A.; Madeev, S.

    2016-01-01

    A three-dimensional computer simulation is used to determine the perveance limitations of ion extraction systems with non-circular apertures. The objective of the study is to analyze the possibilities to improve mechanical strength of the ion optics made of carbon-carbon composite materials. Non-circular grid apertures are better suited to the physical structure of carbon-carbon composite materials, than conventionally used circular holes in a hexagonal pattern, because they allow a fewer number of cut fibers. However, the slit-type accelerating systems, usually regarded as the main alternative to the conventional ion optics, have an intolerably narrow range of operating perveance values at which there is no direct ion impingement on the acceleration grid. This paper presents results of comparative analysis of a number of different ion optical systems with non-circular apertures and conventional ion optical systems with circular apertures. It has been revealed that a relatively wide perveance range without direct ion impingement may be obtained with apertures shaped as a square with rounded corners. Numerical simulations show that this geometry may have equivalent perveance range as the traditional geometry with circular apertures while being more mechanically robust. In addition, such important characteristics, as the effective transparency for both the ions and the neutral atoms, the height of the potential barrier reflecting the downstream plasma electrons and the angular divergence of the beamlet also can be very close to these parameters for the optics with circular apertures.

  18. Circular polarimetry of the magnetic compact binary AM Herculis

    Energy Technology Data Exchange (ETDEWEB)

    Piirola, V; Vilhu, O; Tuominen, I

    1982-01-01

    Circular polarimetry in the red and simultaneous photometric observations in the UBVRI bands during the period June 1 to 3, 1981, of AM Herculis are discussed. Peak value of negative circular polarization (- 15 %) is stronger than observed in 1976 to 1979. Variations in the shape of the polarization and light curves occur from night to night. Positive crossover and reversal of the sign of the circular polarization are only marginal. Long term changes in polarization may be partly due to precession of the axis of rotation of the white dwarf about the binary axis. However, the duration of the phase interval where circular polarization remains close to zero changes on a time scale of days, casting doubt on precession models. The changing shape and position of the accretion columns with respect to the magnetic axis could explain short term variations. (ESA)

  19. Soil and land management in a circular economy.

    Science.gov (United States)

    Breure, A M; Lijzen, J P A; Maring, L

    2018-05-15

    This article elaborates the role of soil and land management in a circular economy. The circular economy is highly dependent on the functioning of soils and land for the production of food and other biomass; the storage, filtration and transformation of many substances including water, carbon, and nitrogen; the provision of fresh mineral resources and fossil fuels; and the use of their functions as the platform for nature and human activities. Resource demand is increasing as a result of the growing human population. In addition to the shrinking availability of resources resulting from their unsustainable use in the past, our planet's diminishing potential for resource production, due to a range of reasons, is leading to resource scarcity, especially in the case of depletable resources. As an economic system that focuses on maximizing the reuse of resources and products and minimizing their depreciation, the circular economy greatly influences, and depends on, soil and land management. The concise management of the resources, land and soil is thus necessary, to make a circular economy successful. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Inactivation of Heterosigma akashiwo in ballast water by circular orifice plate-generated hydrodynamic cavitation.

    Science.gov (United States)

    Feng, Daolun; Zhao, Jie; Liu, Tian

    2016-01-01

    The discharge of alien ballast water is a well-known, major reason for marine species invasion. Here, circular orifice plate-generated hydrodynamic cavitation was used to inactivate Heterosigma akashiwo in ballast water. In comparison with single- and multihole orifice plates, the conical-hole orifice plate yielded the highest inactivation percentage, 51.12%, and consumed only 6.84% energy (based on a 50% inactivation percentage). Repeating treatment, either using double series-connection or circling inactivation, elevated the inactivation percentage, yet consumed much more energy. The results indicate that conical-hole-generated hydrodynamic cavitation shows great potential as a pre-inactivation method for ballast water treatment.

  1. Specific functions of the Rep and Rep' proteins of porcine circovirus during copy-release and rolling-circle DNA replication

    Science.gov (United States)

    The roles of two porcine circovirus replication initiator proteins, Rep and Rep', in generating copy-release and rolling-circle DNA replication intermediates were determined. Rep uses the supercoiled closed-circular genome (ccc) to initiate leading-strand synthesis (identical to copy-release replica...

  2. Silver (I) as DNA glue: Ag+-mediated guanine pairing revealed by removing Watson-Crick constraints

    Science.gov (United States)

    Swasey, Steven M.; Leal, Leonardo Espinosa; Lopez-Acevedo, Olga; Pavlovich, James; Gwinn, Elisabeth G.

    2015-01-01

    Metal ion interactions with DNA have far-reaching implications in biochemistry and DNA nanotechnology. Ag+ is uniquely interesting because it binds exclusively to the bases rather than the backbone of DNA, without the toxicity of Hg2+. In contrast to prior studies of Ag+ incorporation into double-stranded DNA, we remove the constraints of Watson-Crick pairing by focusing on homo-base DNA oligomers of the canonical bases. High resolution electro-spray ionization mass spectrometry reveals an unanticipated Ag+-mediated pairing of guanine homo-base strands, with higher stability than canonical guanine-cytosine pairing. By exploring unrestricted binding geometries, quantum chemical calculations find that Ag+ bridges between non-canonical sites on guanine bases. Circular dichroism spectroscopy shows that the Ag+-mediated structuring of guanine homobase strands persists to at least 90 °C under conditions for which canonical guanine-cytosine duplexes melt below 20 °C. These findings are promising for DNA nanotechnology and metal-ion based biomedical science. PMID:25973536

  3. Silver (I) as DNA glue: Ag(+)-mediated guanine pairing revealed by removing Watson-Crick constraints.

    Science.gov (United States)

    Swasey, Steven M; Leal, Leonardo Espinosa; Lopez-Acevedo, Olga; Pavlovich, James; Gwinn, Elisabeth G

    2015-05-14

    Metal ion interactions with DNA have far-reaching implications in biochemistry and DNA nanotechnology. Ag(+) is uniquely interesting because it binds exclusively to the bases rather than the backbone of DNA, without the toxicity of Hg(2+). In contrast to prior studies of Ag(+) incorporation into double-stranded DNA, we remove the constraints of Watson-Crick pairing by focusing on homo-base DNA oligomers of the canonical bases. High resolution electro-spray ionization mass spectrometry reveals an unanticipated Ag(+)-mediated pairing of guanine homo-base strands, with higher stability than canonical guanine-cytosine pairing. By exploring unrestricted binding geometries, quantum chemical calculations find that Ag(+) bridges between non-canonical sites on guanine bases. Circular dichroism spectroscopy shows that the Ag(+)-mediated structuring of guanine homobase strands persists to at least 90 °C under conditions for which canonical guanine-cytosine duplexes melt below 20 °C. These findings are promising for DNA nanotechnology and metal-ion based biomedical science.

  4. Silver (I) as DNA glue: Ag+-mediated guanine pairing revealed by removing Watson-Crick constraints

    Science.gov (United States)

    Swasey, Steven M.; Leal, Leonardo Espinosa; Lopez-Acevedo, Olga; Pavlovich, James; Gwinn, Elisabeth G.

    2015-05-01

    Metal ion interactions with DNA have far-reaching implications in biochemistry and DNA nanotechnology. Ag+ is uniquely interesting because it binds exclusively to the bases rather than the backbone of DNA, without the toxicity of Hg2+. In contrast to prior studies of Ag+ incorporation into double-stranded DNA, we remove the constraints of Watson-Crick pairing by focusing on homo-base DNA oligomers of the canonical bases. High resolution electro-spray ionization mass spectrometry reveals an unanticipated Ag+-mediated pairing of guanine homo-base strands, with higher stability than canonical guanine-cytosine pairing. By exploring unrestricted binding geometries, quantum chemical calculations find that Ag+ bridges between non-canonical sites on guanine bases. Circular dichroism spectroscopy shows that the Ag+-mediated structuring of guanine homobase strands persists to at least 90 °C under conditions for which canonical guanine-cytosine duplexes melt below 20 °C. These findings are promising for DNA nanotechnology and metal-ion based biomedical science.

  5. Second-harmonic generation circular dichroism spectroscopy from tripod-like chiral molecular films

    International Nuclear Information System (INIS)

    Wang Xiao-Ou; Chen Li-An; Chen Li-Xue; Sun Xiu-Dong; Li Jun-Qing; Li Chun-Fei

    2010-01-01

    The second-harmonic generation (SHG) circular dichroism in the light of reflection from chiral films of tripod-like chiral molecules is investigated. The expressions of the second-harmonic generation circular dichroism are derived from our presented three-coupled-oscillator model for the tripod-like chiral molecules. Spectral dependence of the circular dichroism of SHG from film surface composed of tripod-like chiral molecules is simulated numerically and analysed. Influence of chiral parameters on the second-harmonic generation circular dichroism spectrum in chiral films is studied. The result shows that the second-harmonic generation circular dichroism is a sensitive method of detecting chirality compared with the ordinary circular dichroism in linear optics. All of our work indicates that the classical molecular models are very effective to explain the second-harmonic generation circular dichroism of chiral molecular system. The classical molecular model theory can give us a clear physical picture and brings us very instructive information about the link between the molecular configuration and the nonlinear processes

  6. Inkjet printed circularly polarized antennas for GPS applications

    KAUST Repository

    Farooqui, Muhammad Fahad

    2014-07-01

    Two novel, inkjet printed circularly polarized antenna designs are presented for GPS applications. First antenna design comprises a planar monopole which has been made circularly polarized by the introduction of an L-shaped slit. The antenna shows a gain of 0.2 dBi at 1.575 GHz with 3-dB axial ratio bandwidth of 3.8%. The second antenna design comprises a modified monopole in the form of an inverted L and has been termed as circularly polarized inverted L antenna (CILA). The antenna shows a gain of -2 dBi at 1.575 GHz with 3-dB axial ratio bandwidth of 4.1%. Both the antenna designs are attractive for mobile applications.

  7. Administrative Circular No. 26 (Rev. 7) – May 2007

    CERN Multimedia

    HR Department

    2007-01-01

    Recognition of Merit of Staff Members Administrative Circular No. 26 (Rev. 7) is now available on the intranet site of the Human Resources Department. This circular cancels and replaces Administrative Circular No. 26 (Rev. 6) - Procedures governing the career development of staff members. Copies will shortly be available in Departmental secretariats. If you require any additional information on the new staff-member merit assessment and recognition system, you may consult the FAQ, which has been available on the Human Resources Department intranet site since February 2007. Human Resources Department Tel. 78003

  8. Gene Therapy for Chronic HBV-Can We Eliminate cccDNA?

    Science.gov (United States)

    Bloom, Kristie; Maepa, Mohube Betty; Ely, Abdullah; Arbuthnot, Patrick

    2018-04-12

    Chronic infection with the hepatitis B virus (HBV) is a global health concern and accounts for approximately 1 million deaths annually. Amongst other limitations of current anti-HBV treatment, failure to eliminate the viral covalently closed circular DNA (cccDNA) and emergence of resistance remain the most worrisome. Viral rebound from latent episomal cccDNA reservoirs occurs following cessation of therapy, patient non-compliance, or the development of escape mutants. Simultaneous viral co-infections, such as by HIV-1, further complicate therapeutic interventions. These challenges have prompted development of novel targeted hepatitis B therapies. Given the ease with which highly specific and potent nucleic acid therapeutics can be rationally designed, gene therapy has generated interest for antiviral application. Gene therapy strategies developed for HBV include gene silencing by harnessing RNA interference, transcriptional inhibition through epigenetic modification of target DNA, genome editing by designer nucleases, and immune modulation with cytokines. DNA-binding domains and effectors based on the zinc finger (ZF), transcription activator-like effector (TALE), and clustered regularly interspaced short palindromic repeat (CRISPR) systems are remarkably well suited to targeting episomal cccDNA. This review discusses recent developments and challenges facing the field of anti-HBV gene therapy, its potential curative significance and the progress towards clinical application.

  9. Reversible DNA condensation induced by a tetranuclear nickel(II) complex.

    Science.gov (United States)

    Dong, Xindian; Wang, Xiaoyong; He, Yafeng; Yu, Zhen; Lin, Miaoxin; Zhang, Changli; Wang, Jing; Song, Yajie; Zhang, Yangmiao; Liu, Zhipeng; Li, Yizhi; Guo, Zijian

    2010-12-17

    DNA condensing agents play a critical role in gene therapy. A tetranuclear nickel(II) complex, [Ni(II)(4)(L-2H)(H(2)O)(6)(CH(3)CH(2)OH)(2)]·6NO(3) (L=3,3',5,5'-tetrakis{[(2-hydroxyethyl)(pyridin-2-ylmethyl)amino]methyl}biphenyl-4,4'-diol), has been synthesized as a nonviral vector to induce DNA condensation. X-ray crystallographic data indicate that the complex crystallizes in the monoclinic system with space group P2(1)/n, a=10.291(9), b=24.15(2), c=13.896(11) Å, and β=98.175(13)°. The DNA condensation induced by the complex has been investigated by means of UV/Vis spectroscopy, fluorescence spectroscopy, circular dichroism spectroscopy, dynamic light scattering, atomic force microscopy, gel electrophoresis assay, and zeta potential analysis. The complex interacts strongly with DNA through electrostatic attraction and induces its condensation into globular nanoparticles at low concentration. The release of DNA from its compact state has been achieved using the chelator ethylenediaminetetraacetic acid (EDTA) for the first time. Other essential properties, such as DNA cleavage inactivity and biocompatibility, have also been examined in vitro. In general, the complex satisfies the requirements of a gene vector in all of these respects.

  10. Inhibition of Hepatitis B virus cccDNA replication by siRNA

    International Nuclear Information System (INIS)

    Li Guiqiu; Gu Hongxi; Li Di; Xu Weizhen

    2007-01-01

    The development of an effective therapy for Hepatitis B virus (HBV) infection is still a challenge. Progress in RNA interference (RNAi) has shed slight on developing a new anti-HBV strategy. Here, we present a series of experiments showing a significant reduction in HBV transcripts and replication intermediates in HepG2.2.15 cells by vector-based siRNA targeted nuclear localization signal (NLS) region. More importantly, we showed that siRNA1 markedly inhibited HBV covalently closed circular DNA (cccDNA) replication. Our results indicated that HBV NLS may serve as a novel RNAi target to combat HBV infection, which can enhance anti-HBV efficacy and overcome the drawbacks of current therapies

  11. Circularly polarized luminescence of syndiotactic polystyrene

    Science.gov (United States)

    Rizzo, Paola; Abbate, Sergio; Longhi, Giovanna; Guerra, Gaetano

    2017-11-01

    Syndiotactic polystyrene (s-PS) films, when crystallized from the amorphous state by temporary sorption of non-racemic guest molecules (like carvone) not only exhibit unusually high optical activity, both in the UV-Visible and Infrared ranges, but also present circularly polarized luminescence (CPL) with high dissymmetry ratios (g = ΔI/I values in the range 0.02-0.03). Experimental evidences provide support, rather than to the usual molecular circular dichroism, to a supramolecular chiral optical response being extrinsic to the site of photon absorption and emission, possibly associated with a helical morphology of s-PS crystallites.

  12. Magnetic field generation by circularly polarized laser light and inertial plasma confinement in a miniature 'Magnetic Bottle' induced by circularly polarized laser light

    International Nuclear Information System (INIS)

    Kolka, E.

    1993-07-01

    A new concept of hot plasma confinement in a miniature magnetic bottle induced by circularly polarized laser light is suggested in this work. Magnetic fields generated by circularly polarized laser light may be of the order of megagauss. In this configuration the circularly polarized laser light is used to get confinement of a plasma contained in a good conductor vessel. The poloidal magnetic field induced by the circularly polarized laser and the efficiency of laser absorption by the plasma are calculated in this work. The confinement in this scheme is supported by the magnetic forces and the Lawson criterion for a DT plasma might be achieved for number density n=5*10 21 cm -3 and confinement time τ= 20 nsec. The laser and the plasma parameters required to get an energetic gain are calculated. (authors)

  13. Droplet Microfluidics Approach for Single-DNA Molecule Amplification and Condensation into DNA-Magnesium-Pyrophosphate Particles

    Directory of Open Access Journals (Sweden)

    Greta Zubaite

    2017-02-01

    Full Text Available Protein expression in vitro has broad applications in directed evolution, synthetic biology, proteomics and drug screening. However, most of the in vitro expression systems rely on relatively high DNA template concentrations to obtain sufficient amounts of proteins, making it harder to perform in vitro screens on gene libraries. Here, we report a technique for the generation of condensed DNA particles that can serve as efficient templates for in vitro gene expression. We apply droplet microfluidics to encapsulate single-DNA molecules in 3-picoliter (pL volume droplets and convert them into 1 μm-sized DNA particles by the multiple displacement amplification reaction driven by phi29 DNA polymerase. In the presence of magnesium ions and inorganic pyrophosphate, the amplified DNA condensed into the crystalline-like particles, making it possible to purify them from the reaction mix by simple centrifugation. Using purified DNA particles, we performed an in vitro transcription-translation reaction and successfully expressed complex enzyme β-galactosidase in droplets and in the 384-well format. The yield of protein obtained from DNA particles was significantly higher than from the corresponding amount of free DNA templates, thus opening new possibilities for high throughput screening applications.

  14. Modified circular velocity law

    Science.gov (United States)

    Djeghloul, Nazim

    2018-05-01

    A modified circular velocity law is presented for a test body orbiting around a spherically symmetric mass. This law exhibits a distance scale parameter and allows to recover both usual Newtonian behaviour for lower distances and a constant velocity limit at large scale. Application to the Galaxy predicts the known behaviour and also leads to a galactic mass in accordance with the measured visible stellar mass so that additional dark matter inside the Galaxy can be avoided. It is also shown that this circular velocity law can be embedded in a geometrical description of spacetime within the standard general relativity framework upon relaxing the usual asymptotic flatness condition. This formulation allows to redefine the introduced Newtonian scale limit in term of the central mass exclusively. Moreover, a satisfactory answer to the galactic escape speed problem can be provided indicating the possibility that one can also get rid of dark matter halo outside the Galaxy.

  15. Comparison of Six DNA Extraction Procedures and the Application of Plastid DNA Enrichment Methods in Selected Non-photosynthetic Plants

    Directory of Open Access Journals (Sweden)

    Shin-Yi Shyu

    2013-12-01

    Full Text Available Genomic DNA was isolated using three DNA extraction commercial kits and three CTAB-based methods for two non-photosynthetic plants, Balanophora japonica and Mitrastemon kanehirai. The quality of the isolated DNA was evaluated and subjected to following restriction enzyme digestions. All six procedures yielded DNA of sufficient quality for PCR, and the method described by Barnwell et al. (1998 performed well in isolating DNA from both species for restriction enzyme digestion. In addition, we succeeded to enrich plastid DNA content by using the methods depending on a high salt buffer to deplete nuclear material. The ‘high salt’ methods based on protocol presented by Milligan (1989 were able to increase plastid DNA effectively and significantly reduce nuclear DNA from M. kanehirai. The plastid DNA enrichment protocols are inexpensive and not time-consuming, and may be applicable to other non-photosynthetic plants.

  16. Lung Cancer-Specific Circular RNAs as Biomarkers

    Science.gov (United States)

    2017-08-01

    determine whether differential expression of circular RNAs can also be detected in cell culture models. Third, we will determine whether circular RNAs can...four of them as representative differentially expressed circRNAs in Table 1. For example , hsa_circRNA_400633 and hsa_circRNA_101100 were upregulated...sequence for hsa_circRNA_400633 and hsa_circRNA_101100, as shown in Figs. 1 and 2 as an example . The top part is the actual sequence and the

  17. Unleashing the Power of the Circular Economy

    Energy Technology Data Exchange (ETDEWEB)

    Kok, L.; Wurpel, G.; Ten Wolde, A. [IMSA Amsterdam, Amsterdam (Netherlands)

    2013-04-15

    The concept of circular economy is an economic and industrial system that focuses on the reusability of products and raw materials, reduces value destruction in the overall system and aims at value creation within each tier of the system. This report for Circle Economy (CE) outlines the general direction and concrete steps that must be taken to accomplish a breakthrough to a circular economy. It also provides a knowledge base behind the concept, connecting it to sustainability.

  18. Molecular electron recollision dynamics in intense circularly polarized laser pulses

    Science.gov (United States)

    Bandrauk, André D.; Yuan, Kai-Jun

    2018-04-01

    Extreme UV and x-ray table top light sources based on high-order harmonic generation (HHG) are focused now on circular polarization for the generation of circularly polarized attosecond pulses as new tools for controlling electron dynamics, such as charge transfer and migration and the generation of attosecond quantum electron currents for ultrafast magneto-optics. A fundamental electron dynamical process in HHG is laser induced electron recollision with the parent ion, well established theoretically and experimentally for linear polarization. We discuss molecular electron recollision dynamics in circular polarization by theoretical analysis and numerical simulation. The control of the polarization of HHG with circularly polarized ionizing pulses is examined and it is shown that bichromatic circularly polarized pulses enhance recollision dynamics, rendering HHG more efficient, especially in molecules because of their nonspherical symmetry. The polarization of the harmonics is found to be dependent on the compatibility of the rotational symmetry of the net electric field created by combinations of bichromatic circularly polarized pulses with the dynamical symmetry of molecules. We show how the field and molecule symmetry influences the electron recollision trajectories by a time-frequency analysis of harmonics. The results, in principle, offer new unique controllable tools in the study of attosecond molecular electron dynamics.

  19. Circular polarization observed in bioluminescence

    NARCIS (Netherlands)

    Wynberg, H.; Meijer, E.W.; Hummelen, J.C.; Dekkers, H.P.J.M.; Schippers, P.H.; Carlson, A.D.

    1980-01-01

    The left and right lanterns of live larvae of the fireflies Photuris lucicrescens and P. versicolor emitted circularly polarized light of opposite sense. A possible mechanism is discussed. [on SciFinder (R)

  20. The potential of a circular economy in the Netherlands: summary report

    NARCIS (Netherlands)

    Bastein, T.; Roelofs, E.; Rietveld, E.; Hoogendoorn, A.

    2013-01-01

    For the Dutch Parliament, TNO has assessed the opportunities for a circular economy in The Netherlands. TNO estimates the value of a circular economy to be about 7.3 billion euro. The results and conclusions of the TNO-rapport ‘The potential of a circular economy in the Netherlands’ are sent to the

  1. Circular braiding take-up speed generation using inverse kinematics

    NARCIS (Netherlands)

    van Ravenhorst, J.H.; Akkerman, Remko

    2014-01-01

    Circular overbraiding of composite preforms on complex mandrels currently lacks automatic generation of machine control data. To solve this limitation, an inverse kinematics-based procedure was designed and implemented for circular braiding machines with optional guide rings, resulting in a take-up

  2. Generation of circular polarization of the cosmic microwave background

    International Nuclear Information System (INIS)

    Alexander, Stephon; Ochoa, Joseph; Kosowsky, Arthur

    2009-01-01

    The standard cosmological model, which includes only Compton scattering photon interactions at energy scales near recombination, results in zero primordial circular polarization of the cosmic microwave background. In this paper we consider a particular renormalizable and gauge-invariant standard model extension coupling photons to an external vector field via a Chern-Simons term, which arises as a radiative correction if gravitational torsion couples to fermions. We compute the transport equations for polarized photons from a Boltzmann-like equation, showing that such a coupling will source circular polarization of the microwave background. For the particular coupling considered here, the circular polarization effect is always negligible compared to the rotation of the linear polarization orientation, also derived using the same formalism. We note the possibility that limits on microwave background circular polarization may probe other photon interactions and related fundamental effects such as violations of Lorentz invariance.

  3. A systematic review on drivers, barriers, and practices towards circular economy

    DEFF Research Database (Denmark)

    Govindan, Kannan; Hasanagic, Mia

    2018-01-01

    identified that emerge from the application of a circular economy, no concrete studies exist that investigate current state-of-the-art drivers, barriers and practices in this relevant field. An in-depth exploration of current practices would enhance the circular economy’s significance and would help...... understand its present level of implementation. With this concern, this study provides an analysis of the drivers, barriers and practices that influence the implementation of the circular economy in the context of supply chains through a systematic review. In order to analyse the circular economy’s level...... of implementation, we correlate stakeholders’ perspectives with drivers, barriers, and practices; thus, a multi-perspective framework is proposed. From the results, it is evident that among various stakeholders, the governmental perspective has the maximum positive impact on the implementation of the circular...

  4. DNA extraction methods for detecting genetically modified foods: A comparative study.

    Science.gov (United States)

    Elsanhoty, Rafaat M; Ramadan, Mohamed Fawzy; Jany, Klaus Dieter

    2011-06-15

    The work presented in this manuscript was achieved to compare six different methods for extracting DNA from raw maize and its derived products. The methods that gave higher yield and quality of DNA were chosen to detect the genetic modification in the samples collected from the Egyptian market. The different methods used were evaluated for extracting DNA from maize kernels (without treatment), maize flour (mechanical treatment), canned maize (sweet corn), frozen maize (sweet corn), maize starch, extruded maize, popcorn, corn flacks, maize snacks, and bread made from corn flour (mechanical and thermal treatments). The quality and quantity of the DNA extracted from the standards, containing known percentages of GMO material and from the different food products were evaluated. For qualitative detection of the GMO varieties in foods, the GMOScreen 35S/NOS test kit was used, to screen the genetic modification in the samples. The positive samples for the 35S promoter and/or the NOS terminator were identified by the standard methods adopted by EU. All of the used methods extracted yielded good DNA quality. However, we noted that the purest DNA extract were obtained using the DNA extraction kit (Roche) and this generally was the best method for extracting DNA from most of the maize-derived foods. We have noted that the yield of DNA extracted from maize-derived foods was generally lower in the processed products. The results indicated that 17 samples were positive for the presence of 35S promoter, while 34% from the samples were positive for the genetically modified maize line Bt-176. Copyright © 2010 Elsevier Ltd. All rights reserved.

  5. LEDGF/p75 Deficiency Increases Deletions at the HIV-1 cDNA Ends.

    Science.gov (United States)

    Bueno, Murilo T D; Reyes, Daniel; Llano, Manuel

    2017-09-15

    Processing of unintegrated linear HIV-1 cDNA by the host DNA repair system results in its degradation and/or circularization. As a consequence, deficient viral cDNA integration generally leads to an increase in the levels of HIV-1 cDNA circles containing one or two long terminal repeats (LTRs). Intriguingly, impaired HIV-1 integration in LEDGF/p75-deficient cells does not result in a correspondent increase in viral cDNA circles. We postulate that increased degradation of unintegrated linear viral cDNA in cells lacking the lens epithelium-derived growth factor (LEDGF/p75) account for this inconsistency. To evaluate this hypothesis, we characterized the nucleotide sequence spanning 2-LTR junctions isolated from LEDGF/p75-deficient and control cells. LEDGF/p75 deficiency resulted in a significant increase in the frequency of 2-LTRs harboring large deletions. Of note, these deletions were dependent on the 3' processing activity of integrase and were not originated by aberrant reverse transcription. Our findings suggest a novel role of LEDGF/p75 in protecting the unintegrated 3' processed linear HIV-1 cDNA from exonucleolytic degradation.

  6. Keeping mtDNA in shape between generations.

    Directory of Open Access Journals (Sweden)

    James B Stewart

    2014-10-01

    Full Text Available Since the unexpected discovery that mitochondria contain their own distinct DNA molecules, studies of the mitochondrial DNA (mtDNA have yielded many surprises. In animals, transmission of the mtDNA genome is explicitly non-Mendelian, with a very high number of genome copies being inherited from the mother after a drastic bottleneck. Recent work has begun to uncover the molecular details of this unusual mode of transmission. Many surprising variations in animal mitochondrial biology are known; however, a series of recent studies have identified a core of evolutionarily conserved mechanisms relating to mtDNA inheritance, e.g., mtDNA bottlenecks during germ cell development, selection against specific mtDNA mutation types during maternal transmission, and targeted destruction of sperm mitochondria. In this review, we outline recent literature on the transmission of mtDNA in animals and highlight the implications for human health and ageing.

  7. Role of DNA polymerase α in chromosomal aberration production by ionizing radiation

    International Nuclear Information System (INIS)

    Bender, M.A.

    1983-01-01

    Aphidicolin is a tetracyclic diterpinoid fungal antibiotic which inhibits DNA synthesis in eukaryotic cells by interfering specifically with DNA polymerase α, apparently by binding to and inactivating the DNA-polymerase α complex. We have shown that aphidicolin, like other inhibitors of DNA synthesis, both induces chromosomal aberrations in human peripheral lymphocytes, and, as a post-treatment, interacts synergistically with x rays to produce greatly enhanced aberration yields. The present experiments explore the effects of aphidicolin in human lymphocytes in the post-DNA-synthetic G 2 phase of the cell cycle. These experiments utilized labeling with tritiated thymidine to positively identify cells in the S phase at the time of treatment, and used serial colcemid collections and fixations to determine aberration yields over as much of the G 2 phase as feasible. Because DNA polymerase α is the only DNA synthetic or repair enzyme known to be affected by aphidicolin, we infer that this enzyme is directly involved in the repair of DNA lesions which can result in visible chromosomal aberrations. (DT)

  8. Circular polarization memory in single Quantum Dots

    International Nuclear Information System (INIS)

    Khatsevich, S.; Poem, E.; Benny, Y.; Marderfeld, I.; Gershoni, D.; Badolato, A.; Petroff, P. M.

    2010-01-01

    Under quasi-resonant circularly polarized optical excitation, charged quantum dots may emit polarized light. We measured various transitions with either positive, negative or no circular-polarization memory. We explain these observations and quantitatively calculate the polarization spectrum. Our model use the full configuration-interaction method, including the electron-hole exchange interaction, for calculating the quantum dot's confined many-carrier states, along with one assumption regarding the spin relaxation of photoexcited carriers: Electrons maintain their initial spin polarization, while holes do not.

  9. The optimum circular field size for dental radiography with intraoral films

    International Nuclear Information System (INIS)

    van Straaten, F.J.; van Aken, J.

    1982-01-01

    Intraoral radiographs are often made with circular fields to irradiate the film, and in many instances these fields are much larger than the film. The feasibility of reducing a circular radiation field without increasing the probability of excessive cone cutting was evaluated clinically, and an optimum field size was determined. A circular radiation field 4.5 cm. at the tube end was found to minimize cone cutting and reduce the area of tissue irradiated by at least 44 percent. Findings suggest that current I.C.R.P. recommendations for a 6 to 7.5 cm. diameter circular field may be too liberal

  10. FROM CIRCULAR ECONOMY TO BLUE ECONOMY

    Directory of Open Access Journals (Sweden)

    Iustin-Emanuel, ALEXANDRU

    2014-11-01

    Full Text Available Addressing the subject of this essay is based on the background ideas generated by a new branch of science - Biomimicry. According to European Commissioner for the Environment, "Nature is the perfect model of circular economy". Therefore, by imitating nature, we are witnessing a process of cycle redesign: production-consumption-recycling. The authors present some reflections on the European Commission's decision to adopt after July 1, 2014 new measures concerning the development of more circular economies. Starting from the principles of Ecolonomy, which is based on the whole living paradigm, this paper argues for the development within each economy of entrepreneurial policies related to the Blue economy. In its turn, Blue economy is based on scientific analyses that identify the best solutions in a business. Thus, formation of social capital will lead to healthier and cheaper products, which will stimulate entrepreneurship. Blue economy is another way of thinking economic practice and is a new model of business design. It is a healthy, sustainable business, designed for people. In fact, it is the core of the whole living paradigm through which, towards 2020, circular economy will grow more and more.

  11. Chemical detection of cysteine-rich circular petides in selected ...

    African Journals Online (AJOL)

    Cysteine-rich circular peptides (CRCs) comprise a large family of gene encoded and low molecular weight polypeptides that has recently engaged the attention of scientists. This class of peptides exhibit a continuous circular configuration and a cystine knot backbone, which defines their resilient nature-directed structural ...

  12. Identification of Fusarium oxysporum in the fluid of hydroponic culture using DNA analysis; DNA kaiseki ni yoru suiko saibai yoekichu no horenso ichobyokin

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, K.; Kawabata, T. [Chugoku Electric Power Co. Inc., Hiroshima (Japan)

    1999-09-24

    In the case of circularly using a fluid of the hydroponic culture for crops such as vegetable, the destructive damage is caused when specified harmful germs multiply in the growing crop. therefore, it is necessary to find the germs in question out and deal with them as quickly as possible. In this paper, studies were made on a sure identification technology of F. oxysporum using DNA analysis and the measures to prevent crop damages caused by diseases. The results of the study are reported. (translated by NEDO)

  13. New Catalytic DNA Biosensors for Radionuclides and Metal ions

    International Nuclear Information System (INIS)

    Lu, Yi

    2003-01-01

    The goals of the project are to develop new catalytic DNA biosensors for simultaneous detection and quantification of bioavailable radionuclides and metal ions, and apply the sensors for on-site, real-time assessment of concentration, speciation and stability of the individual contaminants during and after bioremediation. A negative selection strategy was tested and validated. In vitro selection was shown to yield highly active and specific transition metal ion-dependent catalytic DNA/RNA. A fluorescence resonance energy transfer (FRET) study of in vitro selected DNA demonstrated that the trifluorophore labeled system is a simple and powerful tool in studying complex biomolecules structure and dynamics, and is capable of revealing new sophisticated structural changes. New fluorophore/quenchers in a single fluorosensor yielded improved signal to noise ratio in detection, identification and quantification of metal contaminants. Catalytic DNA fluorescent and colorimetric sensors were shown useful in sensing lead in lake water and in leaded paint. Project results were described in two papers and two patents, and won an international prize

  14. Thermodynamic and hydration effects for the incorporation of a cationic 3-aminopropyl chain into DNA

    Science.gov (United States)

    Soto, Ana Maria; Kankia, Besik I.; Dande, Prasad; Gold, Barry; Marky, Luis A.

    2002-01-01

    The introduction of cationic 5-(ω-aminoalkyl)-2′-deoxypyrimidines into duplex DNA has been shown to induce DNA bending. In order to understand the energetic and hydration contributions for the incorporation of a cationic side chain in DNA a combination of spectroscopy, calorimetry and density techniques were used. Specifically, the temperature unfolding and isothermal formation was studied for a pair of duplexes with sequence d(CGTAGUCG TGC)/d(GCACGACTACG), where U represents 2′-deoxyuridine (‘control’) or 5-(3-aminopropyl)-2′-deoxyuridine (‘modified’). Continuous variation experiments confirmed 1:1 stoichiometries for each duplex and the circular dichroism spectra show that both duplexes adopted the B conformation. UV and differential scanning calorimetry melting experiments reveal that each duplex unfolds in two-state transitions. In low salt buffer, the ‘modified’ duplex is more stable and unfolds with a lower endothermic heat and lower release of counterion and water. This electrostatic stabilization is entropy driven and disappears at higher salt concentrations. Complete thermodynamic profiles at 15°C show that the favorable formation of each duplex results from the compensation of a favorable exothermic heat with an unfavorable entropy contribution. However, the isothermal profiles yielded a differential enthalpy of 8.8 kcal/mol, which is 4.3 kcal/mol higher than the differential enthalpy observed in the unfolding profiles. This indicates that the presence of the aminopropyl chain induces an increase in base stacking interactions in the modified single strand and a decrease in base stacking interactions in the modified duplex. Furthermore, the formation of the ‘control’ duplex releases water while the ‘modified’ duplex takes up water. Relative to the control duplex, formation of the modified duplex at 15°C yielded a marginal differential ΔG° term, positive ΔΔHITC–Δ(TΔS) compensation, negative ΔΔV and a net release of

  15. AgI -Induced Switching of DNA Binding Modes via Formation of a Supramolecular Metallacycle.

    Science.gov (United States)

    Basak, Shibaji; Léon, J Christian; Ferranco, Annaleizle; Sharma, Renu; Hebenbrock, Marian; Lough, Alan; Müller, Jens; Kraatz, Heinz-Bernhard

    2018-03-12

    The histidine derivative L1 of the DNA intercalator naphthalenediimide (NDI) forms a triangular Ag I complex (C2). The interactions of L1 and of C2 with DNA were studied by circular dichroism (CD) and UV/Vis spectroscopy and by viscosity studies. Different binding modes were observed for L1 and for C2, as the Ag I complex C2 is too large in size to act as an intercalator. If Ag I is added to the NDI molecule that is already intercalated into a duplex, higher order complexes are formed within the DNA duplex and cause disruptions in the helical duplex structure, which leads to a significant decrease in the characteristic CD features of B-DNA. Thus, via addition of a metal we show how a classic and well-known organic intercalator unit can be turned into a partial metallo insertor. We also show how electrochemical impedance spectroscopy (EIS) can be used to probe DNA binding modes on DNA films that are immobilized on gold surfaces. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The Circular Economy and the Leading European Retailers: A Research Note

    Directory of Open Access Journals (Sweden)

    Peter Jones

    2018-03-01

    Full Text Available The concept of the circular economy is gaining momentum in political and business thinking about the transition to a more sustainable future. EuroCommerce and the European Retail Round Table, for example, have argued that leading retailers are keen to play a leading role in shaping the circular economy within Europe. This exploratory research note outlines the characteristic features of the concept of the circular economy, provides some illustrations of how Europe’s leading retailers are publicly addressing circular economy approaches and offers some general reflections on the application of the concept within the retail sector of the economy. The findings reveal that almost 50% of the leading European retailers signalled a commitment to the circular economy and to the principles underpinning it and a number of them looked to evidence their commitment within their retail operations. That said the authors suggest that If Europe’s leading retailers’ public commitments to a more circular economy are to become a reality then they will not only need to effect a radical change in their current business models and that this will need to be accompanied by radical changes in consumers consumption behaviour. More contentiously, there must be concerns that the leading European retailers might effectively capture the concept of the circular economy to justify continuing economic growth.

  17. [Integrated evaluation of circular agriculture system: a life cycle perspective].

    Science.gov (United States)

    Liang, Long; Chen, Yuan-Quan; Gao, Wang-Sheng

    2010-11-01

    For the point of view that recycling economy system is one of ways to achieve the low-carbon economy, we have made an evaluation on a typical circular agriculture duck industry in Hunan Province, China, through improving the framework of life cycle assessment (LCA). The analysis indicated that the consumption of non-renewable resources, land and water were 48.629 MJ, 2.36 m2 and 1 321.41 kg, while the potential greenhouse gas (GHGs), acidification, eutrophication, human toxicity, freshwater ecotoxicity and terrestrial ecotoxicity were 11 543.26 g (CO2 eq), 52.36g (SO2eq), 25.83g (PO4eq), 1.26, 60.74 and 24.65 g (1,4-DCBeq), respectively. The potential damage of aquatic eutrophication, freshwater ecotoxicity and terrestrial ecotoxicity was more serious than that of GHGs. Main results were following: i. the circular agricultural chain promoted the principle of "moderate circulation", which based on the traditional production methods; ii. circular agriculture could not blindly pursue low carbon development. Instead, soil and biological carbon sequestration should be considered, in addition to reducing carbon emissions; iii. circular economy and circular agriculture should take other potential environmental impacts into account such as acidification, eutrophication and ecotoxicity,with the exception to carbon emissions,to developed integrated system assessment; iv. LCA could provide a comprehensive assessment of circular agriculture, and it was worth of further study.

  18. Interaction of DNA/nuclear protein/polycation and the terplexes for gene delivery

    Energy Technology Data Exchange (ETDEWEB)

    Shen Yuan; Pan Shirong; Feng Min; Wen Yuting; Deng Jingjing; Luo Xin; Wu Chuanbin [School of Pharmaceutical Sciences, Sun Yat-sen University, Zhongshan II Road 74, Guangzhou 510080 (China); Peng Hui, E-mail: fengmin@mail.sysu.edu.cn [School of Zhongshan Medicine, Sun Yat-sen University, 74 Zhongshan Road II, Guangzhou 510080 (China)

    2010-01-29

    Nuclear transport of exogenous DNA is a major barrier to nonviral gene delivery that needs to be addressed in the design of new vectors. In this study, we prepared pDNA/HMGB1/PEG-PEI terplexes to promote nuclear import. HMGB1 in the terplexes was used to assist the transportation of pDNA into the nucleus of cells, since it contained nuclear localization signal (NLS); PEG chains were introduced to stabilize pDNA/vector terplexes and reduce the cytotoxicity. HMGB1/PEG-PEI combined vectors have been investigated specifically for their structure interaction by atomic force microscopy and circular dichroic spectroscopy. The results demonstrated that the HMGB1 molecule could bind with the pDNA chains, but not condense pDNA well. The PEG-PEI further compacted pDNA/HMGB1 complexes into nanosized spherical terplexes. The pDNA delivered by HMGB1/PEG-PEI combined vectors was significantly accumulated in the nucleus of cells, as observed by confocal laser scanning microscopy. The percentage of GFP-transfected cells and VEGF protein expression level induced by HMGB1/PEG-PEI were 2.6-4.9-fold and 1.4-2.8-fold higher, respectively, than that of a common cationic polymer PEI 25 kDa. Therefore, the HMGB1/PEG-PEI combined vector could be used as a versatile vector for promoting exogenous DNA nuclear localization, thereby enhancing its expression.

  19. Digital quantification of rolling circle amplified single DNA molecules in a resistive pulse sensing nanopore.

    Science.gov (United States)

    Kühnemund, M; Nilsson, M

    2015-05-15

    Novel portable, sensitive and selective DNA sensor methods for bio-sensing applications are required that can rival conventionally used non-portable and expensive fluorescence-based sensors. In this paper, rolling circle amplification (RCA) products are detected in solution and on magnetic particles using a resistive pulse sensing (RPS) nanopore. Low amounts of DNA molecules are detected by padlock probes which are circularized in a strictly target dependent ligation reaction. The DNA-padlock probe-complex is captured on magnetic particles by sequence specific capture oligonucleotides and amplified by a short RCA. Subsequent RPS analysis is used to identify individual particles with single attached RCA products from blank particles. This proof of concept opens up for a novel non-fluorescent digital DNA quantification method that can have many applications in bio-sensing and diagnostic approaches. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. PCDDB: the Protein Circular Dichroism Data Bank, a repository for circular dichroism spectral and metadata.

    Science.gov (United States)

    Whitmore, Lee; Woollett, Benjamin; Miles, Andrew John; Klose, D P; Janes, Robert W; Wallace, B A

    2011-01-01

    The Protein Circular Dichroism Data Bank (PCDDB) is a public repository that archives and freely distributes circular dichroism (CD) and synchrotron radiation CD (SRCD) spectral data and their associated experimental metadata. All entries undergo validation and curation procedures to ensure completeness, consistency and quality of the data included. A web-based interface enables users to browse and query sample types, sample conditions, experimental parameters and provides spectra in both graphical display format and as downloadable text files. The entries are linked, when appropriate, to primary sequence (UniProt) and structural (PDB) databases, as well as to secondary databases such as the Enzyme Commission functional classification database and the CATH fold classification database, as well as to literature citations. The PCDDB is available at: http://pcddb.cryst.bbk.ac.uk.

  1. Role of Food Logistics Management in a circular economy

    NARCIS (Netherlands)

    Bloemhof-Ruwaard, J.M.; Groot, J.J.; Snels, J.C.M.A.

    2016-01-01

    In this paper we will discuss the role of food logistics management in a circular economy. Specific pillars in Circular Economy such as Closed Loop supply Chain management and Industrial Ecology will be discussed. Apart from a research agenda, we will provide exemplary cases in practice showing the

  2. Silver(I)-Mediated Base Pairs in DNA Sequences Containing 7-Deazaguanine/Cytosine: towards DNA with Entirely Metallated Watson-Crick Base Pairs.

    Science.gov (United States)

    Méndez-Arriaga, José M; Maldonado, Carmen R; Dobado, José A; Galindo, Miguel A

    2018-03-26

    DNA sequences comprising noncanonical 7-deazaguanine ( 7C G) and canonical cytosine (C) are capable of forming Watson-Crick base pairs via hydrogen bonds as well as silver(I)-mediated base pairs by coordination to central silver(I) ions. Duplexes I and II containing 7C G and C have been synthesized and characterized. The incorporation of silver(I) ions into these duplexes has been studied by means of temperature-dependent UV spectroscopy, circular dichroism, and DFT calculations. The results suggest the formation of DNA molecules comprising contiguous metallated 7C G-Ag I -C Watson-Crick base pairs that preserve the original B-type conformation. Furthermore, additional studies performed on duplex III indicated that, in the presence of Ag I ions, 7C G-C and 7C A-T Watson-Crick base pairs ( 7C A, 7-deazadenine; T, thymine) can be converted to metallated 7C G-Ag I -C and 7C A-Ag I -T base pairs inside the same DNA molecule whilst maintaining its initial double helix conformation. These findings are very important for the development of customized silver-DNA nanostructures based on a Watson-Crick complementarity pattern. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Spectroscopic profiling and computational study of the binding of tschimgine: A natural monoterpene derivative, with calf thymus DNA

    Science.gov (United States)

    Khajeh, Masoumeh Ashrafi; Dehghan, Gholamreza; Dastmalchi, Siavoush; Shaghaghi, Masoomeh; Iranshahi, Mehrdad

    2018-03-01

    DNA is a major target for a number of anticancer substances. Interaction studies between small molecules and DNA are essential for rational drug designing to influence main biological processes and also introducing new probes for the assay of DNA. Tschimgine (TMG) is a monoterpene derivative with anticancer properties. In the present study we tried to elucidate the interaction of TMG with calf thymus DNA (CT-DNA) using different spectroscopic methods. UV-visible absorption spectrophotometry, fluorescence and circular dichroism (CD) spectroscopies as well as molecular docking study revealed formation of complex between TMG and CT-DNA. Binding constant (Kb) between TMG and DNA was 2.27 × 104 M- 1, that is comparable to groove binding agents. The fluorescence spectroscopic data revealed that the quenching mechanism of fluorescence of TMG by CT-DNA is static quenching. Thermodynamic parameters (ΔH TMG with CT-DNA. Competitive binding assay with methylene blue (MB) and Hoechst 33258 using fluorescence spectroscopy displayed that TMG possibly binds to the minor groove of CT-DNA. These observations were further confirmed by CD spectral analysis, viscosity measurements and molecular docking.

  4. Guiding the folding pathway of DNA origami.

    Science.gov (United States)

    Dunn, Katherine E; Dannenberg, Frits; Ouldridge, Thomas E; Kwiatkowska, Marta; Turberfield, Andrew J; Bath, Jonathan

    2015-09-03

    DNA origami is a robust assembly technique that folds a single-stranded DNA template into a target structure by annealing it with hundreds of short 'staple' strands. Its guiding design principle is that the target structure is the single most stable configuration. The folding transition is cooperative and, as in the case of proteins, is governed by information encoded in the polymer sequence. A typical origami folds primarily into the desired shape, but misfolded structures can kinetically trap the system and reduce the yield. Although adjusting assembly conditions or following empirical design rules can improve yield, well-folded origami often need to be separated from misfolded structures. The problem could in principle be avoided if assembly pathway and kinetics were fully understood and then rationally optimized. To this end, here we present a DNA origami system with the unusual property of being able to form a small set of distinguishable and well-folded shapes that represent discrete and approximately degenerate energy minima in a vast folding landscape, thus allowing us to probe the assembly process. The obtained high yield of well-folded origami structures confirms the existence of efficient folding pathways, while the shape distribution provides information about individual trajectories through the folding landscape. We find that, similarly to protein folding, the assembly of DNA origami is highly cooperative; that reversible bond formation is important in recovering from transient misfoldings; and that the early formation of long-range connections can very effectively enforce particular folds. We use these insights to inform the design of the system so as to steer assembly towards desired structures. Expanding the rational design process to include the assembly pathway should thus enable more reproducible synthesis, particularly when targeting more complex structures. We anticipate that this expansion will be essential if DNA origami is to continue its

  5. Comparison of commercial DNA preparation kits for the detection of Brucellae in tissue using quantitative real-time PCR

    Directory of Open Access Journals (Sweden)

    Straube Eberhard

    2010-04-01

    Full Text Available Abstract Background The detection of Brucellae in tissue specimens using PCR assays is difficult because the amount of bacteria is usually low. Therefore, optimised DNA extraction methods are critical. The aim of this study was to assess the performance of commercial kits for the extraction of Brucella DNA. Methods Five kits were evaluated using clinical specimens: QIAamp™ DNA Mini Kit (QIAGEN, peqGold™ Tissue DNA Mini Kit (PeqLab, UltraClean™ Tissue and Cells DNA Isolation Kit (MoBio, DNA Isolation Kit for Cells and Tissues (Roche, and NucleoSpin™ Tissue (Macherey-Nagel. DNA yield was determined using a quantitative real-time PCR assay targeting IS711 that included an internal amplification control. Results Kits of QIAGEN and Roche provided the highest amount of DNA, Macherey-Nagel and Peqlab products were intermediate whereas MoBio yielded the lowest amount of DNA. Differences were significant (p Conclusions We observed differences in DNA yield as high as two orders of magnitude for some samples between the best and the worst DNA extraction kits and inhibition was observed occasionally. This indicates that DNA purification may be more relevant than expected when the amount of DNA in tissue is very low.

  6. Sizeable magnetic circular dichroism of artificially precipitated Co clusters in amorphous carbon

    Directory of Open Access Journals (Sweden)

    H. S. Hsu

    2012-09-01

    Full Text Available This study examines sizeable magnetic circular dichroism (MCD in Co(20%-doped amorphous carbon (a-C films. While as-grown films exhibit a non-detectable MCD signal, films that undergo rapid thermal annealing (RTA at 600°C in a vacuum yield broad MCD spectra with a large amplitude of ∼3.9 × 104 deg/cm in saturation field 0.78 T at the σ-σ* gap transition (∼5.5 eV. In such films after RTA, the metastable Co-C bonding is decomposed and suitable Co nanoparticles/a-C interfaces are thus formed. Our results indicate that the large change in MCD is contributed from Co nanoparticles and associated with the spin-dependent electronic structure at the Co/a-C interfaces.

  7. Quantitatively analyzing the mechanism of giant circular dichroism in extrinsic plasmonic chiral nanostructures by tracking the interplay of electric and magnetic dipoles.

    Science.gov (United States)

    Hu, Li; Tian, Xiaorui; Huang, Yingzhou; Fang, Liang; Fang, Yurui

    2016-02-14

    Plasmonic chirality has drawn much attention because of tunable circular dichroism (CD) and the enhancement for chiral molecule signals. Although various mechanisms have been proposed to explain the plasmonic CD, a quantitative explanation like the ab initio mechanism for chiral molecules, is still unavailable. In this study, a mechanism similar to the mechanisms associated with chiral molecules was analyzed. The giant extrinsic circular dichroism of a plasmonic splitting rectangle ring was quantitatively investigated from a theoretical standpoint. The interplay of the electric and magnetic modes of the meta-structure is proposed to explain the giant CD. We analyzed the interplay using both an analytical coupled electric-magnetic dipole model and a finite element method model. The surface charge distributions showed that the circular current yielded by the splitting rectangle ring causes the ring to behave like a magneton at some resonant modes, which then interact with the electric modes, resulting in a mixing of the two types of modes. The strong interplay of the two mode types is primarily responsible for the giant CD. The analysis of the chiral near-field of the structure shows potential applications for chiral molecule sensing.

  8. The levels of yield and purity of genomic DNA from five tomato ...

    African Journals Online (AJOL)

    Isolation of good quality genomic DNA from different plant materials is an important prerequisite for many molecular techniques related to both basic and applied research in the areas of plant molecular biology, crop improvement, biodiversity studies and conservation of genetic materials. Therefore, the need to extract ...

  9. Entropic derivation of F=ma for circular motion

    International Nuclear Information System (INIS)

    Duncan, Michael; Myrzakulov, Ratbay; Singleton, Douglas

    2011-01-01

    We examine the entropic picture of Newton's second law for the case of circular motion. It is shown that one must make modifications to the derivation of F=ma due to a change in the effective Unruh temperature for circular motion. These modifications present a challenge to the entropic derivation of Newton's second law, but also open up the possibility to experimentally test and constrain this model for large centripetal accelerations.

  10. The yield of DNA double strand breaks determined after exclusion of those forming from heat-labile lesions predicts tumor cell radiosensitivity to killing.

    Science.gov (United States)

    Cheng, Yanlei; Li, Fanghua; Mladenov, Emil; Iliakis, George

    2015-09-01

    The radiosensitivity to killing of tumor cells and in-field normal tissue are key determinants of radiotherapy response. In vitro radiosensitivity of tumor- and normal-tissue-derived cells often predicts radiation response, but high determination cost in time and resources compromise utility as routine response-predictor. Efforts to use induction or repair of DNA double-strand-breaks (DSBs) as surrogate-predictors of cell radiosensitivity to killing have met with limited success. Here, we re-visit this issue encouraged by our recent observations that ionizing radiation (IR) induces not only promptly-forming DSBs (prDSBs), but also DSBs developing after irradiation from the conversion to breaks of thermally-labile sugar-lesions (tlDSBs). We employ pulsed-field gel-electrophoresis and flow-cytometry protocols to measure total DSBs (tDSB=prDSB+tlDSBs) and prDSBs, as well as γH2AX and parameters of chromatin structure. We report a fully unexpected and in many ways unprecedented correlation between yield of prDSBs and radiosensitivity to killing in a battery of ten tumor cell lines that is not matched by yields of tDSBs or γH2AX, and cannot be explained by simple parameters of chromatin structure. We propose the introduction of prDSBs-yield as a novel and powerful surrogate-predictor of cell radiosensitivity to killing with potential for clinical application. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. A rapid and efficient DNA extraction protocol from fresh and frozen human blood samples.

    Science.gov (United States)

    Guha, Pokhraj; Das, Avishek; Dutta, Somit; Chaudhuri, Tapas Kumar

    2018-01-01

    Different methods available for extraction of human genomic DNA suffer from one or more drawbacks including low yield, compromised quality, cost, time consumption, use of toxic organic solvents, and many more. Herein, we aimed to develop a method to extract DNA from 500 μL of fresh or frozen human blood. Five hundred microliters of fresh and frozen human blood samples were used for standardization of the extraction procedure. Absorbance at 260 and 280 nm, respectively, (A 260 /A 280 ) were estimated to check the quality and quantity of the extracted DNA sample. Qualitative assessment of the extracted DNA was checked by Polymerase Chain reaction and double digestion of the DNA sample. Our protocol resulted in average yield of 22±2.97 μg and 20.5±3.97 μg from 500 μL of fresh and frozen blood, respectively, which were comparable to many reference protocols and kits. Besides yielding bulk amount of DNA, our protocol is rapid, economical, and avoids toxic organic solvents such as Phenol. Due to unaffected quality, the DNA is suitable for downstream applications. The protocol may also be useful for pursuing basic molecular researches in laboratories having limited funds. © 2017 Wiley Periodicals, Inc.

  12. DnaA protein DNA-binding domain binds to Hda protein to promote inter-AAA+ domain interaction involved in regulatory inactivation of DnaA.

    Science.gov (United States)

    Keyamura, Kenji; Katayama, Tsutomu

    2011-08-19

    Chromosomal replication is initiated from the replication origin oriC in Escherichia coli by the active ATP-bound form of DnaA protein. The regulatory inactivation of DnaA (RIDA) system, a complex of the ADP-bound Hda and the DNA-loaded replicase clamp, represses extra initiations by facilitating DnaA-bound ATP hydrolysis, yielding the inactive ADP-bound form of DnaA. However, the mechanisms involved in promoting the DnaA-Hda interaction have not been determined except for the involvement of an interaction between the AAA+ domains of the two. This study revealed that DnaA Leu-422 and Pro-423 residues within DnaA domain IV, including a typical DNA-binding HTH motif, are specifically required for RIDA-dependent ATP hydrolysis in vitro and that these residues support efficient interaction with the DNA-loaded clamp·Hda complex and with Hda in vitro. Consistently, substitutions of these residues caused accumulation of ATP-bound DnaA in vivo and oriC-dependent inhibition of cell growth. Leu-422 plays a more important role in these activities than Pro-423. By contrast, neither of these residues is crucial for DNA replication from oriC, although they are highly conserved in DnaA orthologues. Structural analysis of a DnaA·Hda complex model suggested that these residues make contact with residues in the vicinity of the Hda AAA+ sensor I that participates in formation of a nucleotide-interacting surface. Together, the results show that functional DnaA-Hda interactions require a second interaction site within DnaA domain IV in addition to the AAA+ domain and suggest that these interactions are crucial for the formation of RIDA complexes that are active for DnaA-ATP hydrolysis.

  13. DnaA Protein DNA-binding Domain Binds to Hda Protein to Promote Inter-AAA+ Domain Interaction Involved in Regulatory Inactivation of DnaA*

    Science.gov (United States)

    Keyamura, Kenji; Katayama, Tsutomu

    2011-01-01

    Chromosomal replication is initiated from the replication origin oriC in Escherichia coli by the active ATP-bound form of DnaA protein. The regulatory inactivation of DnaA (RIDA) system, a complex of the ADP-bound Hda and the DNA-loaded replicase clamp, represses extra initiations by facilitating DnaA-bound ATP hydrolysis, yielding the inactive ADP-bound form of DnaA. However, the mechanisms involved in promoting the DnaA-Hda interaction have not been determined except for the involvement of an interaction between the AAA+ domains of the two. This study revealed that DnaA Leu-422 and Pro-423 residues within DnaA domain IV, including a typical DNA-binding HTH motif, are specifically required for RIDA-dependent ATP hydrolysis in vitro and that these residues support efficient interaction with the DNA-loaded clamp·Hda complex and with Hda in vitro. Consistently, substitutions of these residues caused accumulation of ATP-bound DnaA in vivo and oriC-dependent inhibition of cell growth. Leu-422 plays a more important role in these activities than Pro-423. By contrast, neither of these residues is crucial for DNA replication from oriC, although they are highly conserved in DnaA orthologues. Structural analysis of a DnaA·Hda complex model suggested that these residues make contact with residues in the vicinity of the Hda AAA+ sensor I that participates in formation of a nucleotide-interacting surface. Together, the results show that functional DnaA-Hda interactions require a second interaction site within DnaA domain IV in addition to the AAA+ domain and suggest that these interactions are crucial for the formation of RIDA complexes that are active for DnaA-ATP hydrolysis. PMID:21708944

  14. THAP5 is a DNA-binding transcriptional repressor that is regulated in melanoma cells during DNA damage-induced cell death

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, Meenakshi P.; Cilenti, Lucia; Ambivero, Camilla [Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL (United States); Goto, Yamafumi [Department of Dermatology, Shinshu University School of Medicine, Matsumoto (Japan); Takata, Minoru [Department of Dermatology, Okayama University Graduate School of Medical Dentistry and Pharmaceutical Sciences, Okayama (Japan); Turkson, James; Li, Xiaoman Shawn [Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL (United States); Zervos, Antonis S., E-mail: azervos@mail.ucf.edu [Biomolecular Science Center, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL (United States)

    2011-01-07

    Research highlights: {yields} THAP5 is a DNA-binding protein and a transcriptional repressor. {yields} THAP5 is induced in melanoma cells upon exposure to UV or treatment with cisplatin. {yields} THAP5 induction correlates with the degree of apoptosis in melanoma cell population. {yields} THAP5 is a pro-apoptotic protein involved in melanoma cell death. -- Abstract: THAP5 was originally isolated as a specific interactor and substrate of the mitochondrial pro-apoptotic Omi/HtrA2 protease. It is a human zinc finger protein characterized by a restricted pattern of expression and the lack of orthologs in mouse and rat. The biological function of THAP5 is unknown but our previous studies suggest it could regulate G2/M transition in kidney cells and could be involved in human cardiomyocyte cell death associated with coronary artery disease (CAD). In this report, we expanded our studies on the properties and function of THAP5 in human melanoma cells. THAP5 was expressed in primary human melanocytes as well as in all melanoma cell lines that were tested. THAP5 protein level was significantly induced by UV irradiation or cisplatin treatment, conditions known to cause DNA damage. The induction of THAP5 correlated with a significant increase in apoptotic cell death. In addition, we show that THAP5 is a nuclear protein that could recognize and bind a specific DNA motif. THAP5 could also repress the transcription of a reporter gene in a heterologous system. Our work suggests that THAP5 is a DNA-binding protein and a transcriptional repressor. Furthermore, THAP5 has a pro-apoptotic function and it was induced in melanoma cells under conditions that promoted cell death.

  15. Recovery of DNA and fingerprints from touched documents.

    Science.gov (United States)

    Sewell, Jonathan; Quinones, Ignacio; Ames, Carole; Multaney, Bryan; Curtis, Stuart; Seeboruth, Haj; Moore, Stephen; Daniel, Barbara

    2008-09-01

    This study investigated the various factors affecting DNA profiling from DNA recovered from fingerprints deposited on paper before and after fingerprint enhancement treatments. The DNeasy plant mini kit (QIAGEN) was found to improve DNA recovery from paper by over 150% compared with the QIAamp mini kit. A significant decrease in the amount of DNA recovered was observed following treatment with DFO and/or Ninhydrin. This decrease in yield did not have a comparably significant effect on the quality of the SGM Plus profiles. Furthermore, this study found that whilst certain paper types, such as newspaper, magazine and filter paper allowed for the good recovery of DNA, common office paper and white card, strongly interfered with the recovery of DNA resulting in poor quality profiles.

  16. Highly sensitive chemiluminescent point mutation detection by circular strand-displacement amplification reaction.

    Science.gov (United States)

    Shi, Chao; Ge, Yujie; Gu, Hongxi; Ma, Cuiping

    2011-08-15

    Single nucleotide polymorphism (SNP) genotyping is attracting extensive attentions owing to its direct connections with human diseases including cancers. Here, we have developed a highly sensitive chemiluminescence biosensor based on circular strand-displacement amplification and the separation by magnetic beads reducing the background signal for point mutation detection at room temperature. This method took advantage of both the T4 DNA ligase recognizing single-base mismatch with high selectivity and the strand-displacement reaction of polymerase to perform signal amplification. The detection limit of this method was 1.3 × 10(-16)M, which showed better sensitivity than that of most of those reported detection methods of SNP. Additionally, the magnetic beads as carrier of immobility was not only to reduce the background signal, but also may have potential apply in high through-put screening of SNP detection in human genome. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. A new method to extract dental pulp DNA: application to universal detection of bacteria.

    Directory of Open Access Journals (Sweden)

    Lam Tran-Hung

    Full Text Available BACKGROUND: Dental pulp is used for PCR-based detection of DNA derived from host and bacteremic microorganims. Current protocols require odontology expertise for proper recovery of the dental pulp. Dental pulp specimen exposed to laboratory environment yields contaminants detected using universal 16S rDNA-based detection of bacteria. METHODOLOGY/PRINCIPAL FINDINGS: We developed a new protocol by encasing decontaminated tooth into sterile resin, extracting DNA into the dental pulp chamber itself and decontaminating PCR reagents by filtration and double restriction enzyme digestion. Application to 16S rDNA-based detection of bacteria in 144 teeth collected in 86 healthy people yielded a unique sequence in only 14 teeth (9.7% from 12 individuals (14%. Each individual yielded a unique 16S rDNA sequence in 1-2 teeth per individual. Negative controls remained negative. Bacterial identifications were all confirmed by amplification and sequencing of specific rpoB sequence. CONCLUSIONS/SIGNIFICANCE: The new protocol prevented laboratory contamination of the dental pulp. It allowed the detection of bacteria responsible for dental pulp colonization from blood and periodontal tissue. Only 10% such samples contained 16S rDNA. It provides a new tool for the retrospective diagnostic of bacteremia by allowing the universal detection of bacterial DNA in animal and human, contemporary or ancient tooth. It could be further applied to identification of host DNA in forensic medicine and anthropology.

  18. Rapid and efficient extraction of genomic DNA from different phytopathogenic fungi using DNAzol reagent.

    Science.gov (United States)

    Guo, Jian-Rong; Schnieder, F; Abd-Elsalam, K A; Verreet, J A

    2005-01-01

    A modified procedure using the commercial DNAzol reagent was successfully applied to extract genomic DNA from 25 fungal species. The DNA yield varied from 306 to 1,927 microg g(-1) dry mycelia and the A(260)/A(280) ratio from 1.59 to 1.93. Compared with the method of J.L. Cenis (Nucleic Acids Res. 1992, 20: 2380) this procedure generated a higher DNA yield from 17 species and a higher A(260)/A(280) ratio from 23 species. But for four species, Cenis (1992) method was more suitable. No inhibitor of polymerase chain reaction was evident for the DNA extracted by the modified procedure, whereas some inhibitors remained in DNA of eight species extracted by the previous method.

  19. Circular RNA profiling reveals that circular RNAs from ANXA2 can be used as new biomarkers for multiple sclerosis.

    Science.gov (United States)

    Iparraguirre, Leire; Muñoz-Culla, Maider; Prada-Luengo, Iñigo; Castillo-Triviño, Tamara; Olascoaga, Javier; Otaegui, David

    2017-09-15

    Multiple sclerosis is an autoimmune disease, with higher prevalence in women, in whom the immune system is dysregulated. This dysregulation has been shown to correlate with changes in transcriptome expression as well as in gene-expression regulators, such as non-coding RNAs (e.g. microRNAs). Indeed, some of these have been suggested as biomarkers for multiple sclerosis even though few biomarkers have reached the clinical practice. Recently, a novel family of non-coding RNAs, circular RNAs, has emerged as a new player in the complex network of gene-expression regulation. MicroRNA regulation function through a 'sponge system' and a RNA splicing regulation function have been proposed for the circular RNAs. This regulating role together with their high stability in biofluids makes them seemingly good candidates as biomarkers. Given the dysregulation of both protein-coding and non-coding transcriptome that have been reported in multiple sclerosis patients, we hypothesised that circular RNA expression may also be altered. Therefore, we carried out expression profiling of 13.617 circular RNAs in peripheral blood leucocytes from multiple sclerosis patients and healthy controls finding 406 differentially expressed (P-value  1.5) and demonstrate after validation that, circ_0005402 and circ_0035560 are underexpressed in multiple sclerosis patients and could be used as biomarkers of the disease. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Molecular mechanism of DNA replication-coupled inactivation of the initiator protein in Escherichia coli: interaction of DnaA with the sliding clamp-loaded DNA and the sliding clamp-Hda complex.

    Science.gov (United States)

    Su'etsugu, Masayuki; Takata, Makoto; Kubota, Toshio; Matsuda, Yusaku; Katayama, Tsutomu

    2004-06-01

    In Escherichia coli, the ATP-DnaA protein initiates chromosomal replication. After the DNA polymerase III holoenzyme is loaded on to DNA, DnaA-bound ATP is hydrolysed in a manner depending on Hda protein and the DNA-loaded form of the DNA polymerase III sliding clamp subunit, which yields ADP-DnaA, an inactivated form for initiation. This regulatory DnaA-inactivation represses extra initiation events. In this study, in vitro replication intermediates and structured DNA mimicking replicational intermediates were first used to identify structural prerequisites in the process of DnaA-ATP hydrolysis. Unlike duplex DNA loaded with sliding clamps, primer RNA-DNA heteroduplexes loaded with clamps were not associated with DnaA-ATP hydrolysis, and duplex DNA provided in trans did not rescue this defect. At least 40-bp duplex DNA is competent for the DnaA-ATP hydrolysis when a single clamp was loaded. The DnaA-ATP hydrolysis was inhibited when ATP-DnaA was tightly bound to a DnaA box-bearing oligonucleotide. These results imply that the DnaA-ATP hydrolysis involves the direct interaction of ATP-DnaA with duplex DNA flanking the sliding clamp. Furthermore, Hda protein formed a stable complex with the sliding clamp. Based on these, we suggest a mechanical basis in the DnaA-inactivation that ATP-DnaA interacts with the Hda-clamp complex with the aid of DNA binding. Copyright Blackwell Publishing Limited