WorldWideScience

Sample records for yellowstone grizzly bears

  1. Effects of exotic species on Yellowstone's grizzly bears

    Science.gov (United States)

    Reinhart, Daniel P.; Haroldson, Mark A.; Mattson, D.J.; Gunther, Kerry A.

    2001-01-01

    Humans have affected grizzly bears (Ursus arctos horribilis) by direct mortality, competition for space and resources, and introduction of exotic species. Exotic organisms that have affected grizzly bears in the Greater Yellowstone Area include common dandelion (Taraxacum officinale), nonnative clovers (Trifolium spp.), domesticated livestock, bovine brucellosis (Brucella abortus), lake trout (Salvelinus namaycush), and white pine blister rust (Cronartium ribicola). Some bears consume substantial amounts of dandelion and clover. However, these exotic foods provide little digested energy compared to higher-quality bear foods. Domestic livestock are of greater energetic value, but use of this food by bears often leads to conflicts with humans and subsequent increases in bear mortality. Lake trout, blister rust, and brucellosis diminish grizzly bears foods. Lake trout prey on native cutthroat trout (Oncorhynchus clarkii) in Yellowstone Lake; white pine blister rust has the potential to destroy native whitebark pine (Pinus albicaulis) stands; and management response to bovine brucellosis, a disease found in the Yellowstone bison (Bison bison) and elk (Cervus elaphus), could reduce populations of these 2 species. Exotic species will likely cause more harm than good for Yellowstone grizzly bears. Managers have few options to mitigate or contain the impacts of exotics on Yellowstone's grizzly bears. Moreover, their potential negative impacts have only begun to unfold. Exotic species may lead to the loss of substantial highquality grizzly bear foods, including much of the bison, trout, and pine seeds that Yellowstone grizzly bears currently depend upon.

  2. Use of lodgepole pine cover types by Yellowstone grizzly bears

    Science.gov (United States)

    Mattson, D.J.

    1997-01-01

    Lodgepole pine (Pinus contorta) forests are a large and dynamic part of grizzly bear (Ursus arctos) habitat in the Yellowstone ecosystem. Research in other areas suggests that grizzly bears select for young open forest stands, especially for grazing and feeding on berries. Management guidelines accordingly recommend timber harvest as a technique for improving habitat in areas potentially dominated by lodgepole pine. In this paper I examine grizzly bear use of lodgepole pine forests in the Yellowstone area, and test several hypotheses with relevance to a new generation of management guidelines. Differences in grizzly bear selection of lodgepole pine cover types (defined on the basis of stand age and structure) were not pronounced. Selection furthermore varied among years, areas, and individuals. Positive selection for any lodgepole pine type was uncommon. Estimates of selection took 5-11 years or 4-12 adult females to stabilize, depending upon the cover type. The variances of selection estimates tended to stabilize after 3-5 sample years, and were more-or-less stable to slightly increasing with progressively increased sample area. There was no conclusive evidence that Yellowstone's grizzlies favored young (<40 yr) stands in general or for their infrequent use of berries. On the other hand, these results corroborated previous observations that grizzlies favored open and/or young stands on wet and fertile sites for grazing. These results also supported the proposition that temporally and spatially robust inferences require extensive, long-duration studies, especially for wide-ranging vertebrates like grizzly bears.

  3. New challenges for grizzly bear management in Yellowstone National Park

    Science.gov (United States)

    van Manen, Frank T.; Gunther, Kerry A.

    2016-01-01

    A key factor contributing to the success of grizzly bear Ursus arctos conservation in the Greater Yellowstone Ecosystem has been the existence of a large protected area, Yellowstone National Park. We provide an overview of recovery efforts, how demographic parameters changed as the population increased, and how the bear management program in Yellowstone National Park has evolved to address new management challenges over time. Finally, using the management experiences in Yellowstone National Park, we present comparisons and perspectives regarding brown bear management in Shiretoko National Park.

  4. Dietary breadth of grizzly bears in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Gunther, Kerry A.; Shoemaker, Rebecca; Frey, Kevin L.; Haroldson, Mark A.; Cain, Steven L.; van Manen, Frank T.; Fortin, Jennifer K.

    2014-01-01

    Grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE) are opportunistic omnivores that eat a great diversity of plant and animal species. Changes in climate may affect regional vegetation, hydrology, insects, and fire regimes, likely influencing the abundance, range, and elevational distribution of the plants and animals consumed by GYE grizzly bears. Determining the dietary breadth of grizzly bears is important to document future changes in food resources and how those changes may affect the nutritional ecology of grizzlies. However, no synthesis exists of all foods consumed by grizzly bears in the GYE. We conducted a review of available literature and compiled a list of species consumed by grizzly bears in the GYE. We documented >266 species within 200 genera from 4 kingdoms, including 175 plant, 37 invertebrate, 34 mammal, 7 fungi, 7 bird, 4 fish, 1 amphibian, and 1 algae species as well as 1 soil type consumed by grizzly bears. The average energy values of the ungulates (6.8 kcal/g), trout (Oncorhynchus spp., 6.1 kcal/g), and small mammals (4.5 kcal/g) eaten by grizzlies were higher than those of the plants (3.0 kcal/g) and invertebrates (2.7 kcal/g) they consumed. The most frequently detected diet items were graminoids, ants (Formicidae), whitebark pine seeds (Pinus albicaulis), clover (Trifolium spp.), and dandelion (Taraxacum spp.). The most consistently used foods on a temporal basis were graminoids, ants, whitebark pine seeds, clover, elk (Cervus elaphus), thistle (Cirsium spp.), and horsetail (Equisetum spp.). Historically, garbage was a significant diet item for grizzlies until refuse dumps were closed. Use of forbs increased after garbage was no longer readily available. The list of foods we compiled will help managers of grizzly bears and their habitat document future changes in grizzly bear food habits and how bears respond to changing food resources.

  5. Trend of the Yellowstone Grizzly Bear Population

    International Nuclear Information System (INIS)

    Eberhardt, L.L.; Breiwick, J.M.

    2010-01-01

    Yellowstone's grizzlies (Ursus arctos) have been studied for more than 40 years. Radio telemetry has been used to obtain estimates of the rate of increase of the population, with results reported by Schwartz et al. (2006). Counts of females with cubs-of-the-year unduplicated also provide an index of abundance and are the primary subject of this report. An exponential model was fitted to n=24 such counts, using nonlinear least squares. Estimates of the rate of increase, r, were about 0.053. 95% confidence intervals, were obtained by several different methods, and all had lower limits substantially above zero, indicating that the population has been increasing steadily, in contrast to the results of Schwartz et al. (2006), which could not exclude a decreasing population. The grizzly data have been repeatedly mis-used in current literature for reasons explained here.

  6. Trend of the Yellowstone Grizzly Bear Population

    Directory of Open Access Journals (Sweden)

    L. L. Eberhardt

    2010-01-01

    Full Text Available Yellowstone's grizzlies (Ursus arctos have been studied for more than 40 years. Radiotelemetry has been used to obtain estimates of the rate of increase of the population, with results reported by Schwartz et al. (2006. Counts of females with cubs-of-the-year “unduplicated” also provide an index of abundance and are the primary subject of this report. An exponential model was fitted to n=24 such counts, using nonlinear leastsquares. Estimates of the rate of increase, r, were about 0.053. 95% confidence intervals, were obtained by several different methods, and all had lower limits substantially above zero, indicating that the population has been increasing steadily, in contrast to the results of Schwartz et al. (2006, which could not exclude a decreasing population. The grizzly data have been repeatedly mis-used in current literature for reasons explained here.

  7. Coefficients of productivity for Yellowstone's grizzly bear habitat

    Science.gov (United States)

    Mattson, David John; Barber, Kim; Maw, Ralene; Renkin, Roy

    2004-01-01

    This report describes methods for calculating coefficients used to depict habitat productivity for grizzly bears in the Yellowstone ecosystem. Calculations based on these coefficients are used in the Yellowstone Grizzly Bear Cumulative Effects Model to map the distribution of habitat productivity and account for the impacts of human facilities. The coefficients of habitat productivity incorporate detailed information that was collected over a 20-year period (1977-96) on the foraging behavior of Yellowstone's bears and include records of what bears were feeding on, when and where they fed, the extent of that feeding activity, and relative measures of the quantity consumed. The coefficients also incorporate information, collected primarily from 1986 to 1992, on the nutrient content of foods that were consumed, their digestibility, characteristic bite sizes, and the energy required to extract and handle each food. Coefficients were calculated for different time periods and different habitat types, specific to different parts of the Yellowstone ecosystem. Stratifications included four seasons of bear activity (spring, estrus, early hyperphagia, late hyperphagia), years when ungulate carrion and whitebark pine seed crops were abundant versus not, areas adjacent to (bear activity in each region, habitat type, and time period were incorporated into calculations, controlling for the effects of proximity to human facilities. The coefficients described in this report and associated estimates of grizzly bear habitat productivity are unique among many efforts to model the conditions of bear habitat because calculations include information on energetics derived from the observed behavior of radio-marked bears.

  8. Consumption of pondweed rhizomes by Yellowstone grizzly bears

    Science.gov (United States)

    Mattson, D.J.; Podruzny, S.R.; Haroldson, M.A.

    2005-01-01

    Pondweeds (Potamogeton spp.) are common foods of waterfowl throughout the Northern Hemisphere. However, consumption of pondweeds by bears has been noted only once, in Russia. We documented consumption of pondweed rhizomes by grizzly bears (Ursus arctos) in the Yellowstone region, 1977-96, during investigations of telemetry locations obtained from 175 radiomarked bears. We documented pondweed excavations at 25 sites and detected pondweed rhizomes in 18 feces. We observed grizzly bears excavating and consuming pondweed on 2 occasions. All excavations occurred in wetlands that were inundated during and after snowmelt, but dry by late August or early September of most years. These wetlands were typified by the presence of inflated sedge (Carex vesicaria) and occurred almost exclusively on plateaus of Pliocene-Pleistocene detrital sediments or volcanic rhyolite flows. Bears excavated wetlands with pondweeds when they were free of standing water, most commonly during October and occasionally during spring prior to the onset of terminal snowmelt. Most excavations were about 4.5 cm deep, 40 cubic decimeter (dm3) in total volume, and targeted the thickened pondweed rhizomes. Starch content of rhizomes collected near grizzly bear excavations averaged 28% (12% SD; n = 6). These results add to the documented diversity of grizzly bear food habits and, because pondweed is distributed circumboreally, also raise the possibility that consumption of pondweed by grizzly bears has been overlooked in other regions.

  9. Trophic cascades from wolves to grizzly bears in Yellowstone.

    Science.gov (United States)

    Ripple, William J; Beschta, Robert L; Fortin, Jennifer K; Robbins, Charles T

    2014-01-01

    We explored multiple linkages among grey wolves (Canis lupus), elk (Cervus elaphus), berry-producing shrubs and grizzly bears (Ursus arctos) in Yellowstone National Park. We hypothesized competition between elk and grizzly bears whereby, in the absence of wolves, increases in elk numbers would increase browsing on berry-producing shrubs and decrease fruit availability to grizzly bears. After wolves were reintroduced and with a reduced elk population, we hypothesized there would be an increase in the establishment of berry-producing shrubs, such as serviceberry (Amelanchier alnifolia), which is a major berry-producing plant. We also hypothesized that the percentage fruit in the grizzly bear diet would be greater after than before wolf reintroduction. We compared the frequency of fruit in grizzly bear scats to elk densities prior to wolf reintroduction during a time of increasing elk densities (1968-1987). For a period after wolf reintroduction, we calculated the percentage fruit in grizzly bear scat by month based on scats collected in 2007-2009 (n = 778 scats) and compared these results to scat data collected before wolf reintroduction. Additionally, we developed an age structure for serviceberry showing the origination year of stems in a northern range study area. We found that over a 19-year period, the percentage frequency of fruit in the grizzly diet (6231 scats) was inversely correlated (P wolves and other large carnivores on elk, a reduced and redistributed elk population, decreased herbivory and increased production of plant-based foods that may aid threatened grizzly bears. © 2013 The Authors. Journal of Animal Ecology © 2013 British Ecological Society.

  10. Distribution of grizzly bears in the Greater Yellowstone Ecosystem, 2004

    Science.gov (United States)

    Schwartz, C.C.; Haroldson, M.A.; Gunther, K.; Moody, D.

    2006-01-01

    The US Fish and Wildlife Service (USFWS) proposed delisting the Yellowstone grizzly bear (Ursus arctos horribilis) in November 2005. Part of that process required knowledge of the most current distribution of the species. Here, we update an earlier estimate of occupied range (1990–2000) with data through 2004. We used kernel estimators to develop distribution maps of occupied habitats based on initial sightings of unduplicated females (n = 481) with cubs of the year, locations of radiomarked bears (n = 170), and spatially unique locations of conflicts, confrontations, and mortalities (n = 1,075). Although each data set was constrained by potential sampling bias, together they provided insight into areas in the Greater Yellowstone Ecosystem (GYE) currently occupied by grizzly bears. The current distribution of 37,258 km2 (1990–2004) extends beyond the distribution map generated with data from 1990–2000 (34,416 km2 ). Range expansion is particularly evident in parts of the Caribou–Targhee National Forest in Idaho and north of Spanish Peaks on the Gallatin National Forest in Montana.

  11. Response of Yellowstone grizzly bears to changes in food resources: A synthesis. Final report to the Interagency Grizzly Bear Committee and Yellowstone Ecosystem Subcommittee

    Science.gov (United States)

    ,; van Manen, Frank T.; Costello, Cecily M.; Haroldson, Mark A.; Bjornlie, Daniel D.; Ebinger, Michael R.; Gunther, Kerry A.; Mahalovich, Mary Frances; Thompson, Daniel J.; Higgs, Megan D.; Irvine, Kathryn M.; Legg, Kristin; Tyers, Daniel B.; Landenburger, Lisa; Cain, Steven L.; Frey, Kevin L.; Aber, Bryan C.; Schwartz, Charles C.

    2013-01-01

    The Yellowstone grizzly bear (Ursus arctos) was listed as a threatened species in 1975 (Federal Register 40 FR:31734-31736). Since listing, recovery efforts have focused on increasing population size, improving habitat security, managing bear mortalities, and reducing bear-human conflicts. The Interagency Grizzly Bear Committee (IGBC; partnership of federal and state agencies responsible for grizzly bear recovery in the lower 48 states) and its Yellowstone Ecosystem Subcommitte (YES; federal, state, county, and tribal partners charged with recovery of grizzly bears in the Greater Yelowston Ecosystem [GYE]) tasked the Interagency Grizzly Bear Study Team to provide information and further research relevant to three concerns arising from the 9th Circuit Court of Appeals November 2011 decision: 1) the ability of grizzly bears as omnivores to find alternative foods to whitebark pine seeds; 2) literature to support their conclusions; and 3) the non-intuitive biological reality that impacts can occur to individuals without causing the overall population to decline. Specifically, the IGBC and YES requested a comprehensive synthesis of the current state of knowledge regarding whitebark pinbe decline and individual and population-level responses of grizzly bears to changing food resources in the GYE. This research was particularly relevant to grizzly bear conservation given changes in the population trajectory observed during the last decade.

  12. Use of naturally occurring mercury to determine the importance of cutthroat trout to Yellowstone grizzly bears

    Science.gov (United States)

    Felicetti, L.A.; Schwartz, C.C.; Rye, R.O.; Gunther, K.A.; Crock, J.G.; Haroldson, M.A.; Waits, L.; Robbins, C.T.

    2004-01-01

    Spawning cutthroat trout (Oncorhynchus clarki (Richardson, 1836)) are a potentially important food resource for grizzly bears (Ursus arctos horribilis Ord, 1815) in the Greater Yellowstone Ecosystem. We developed a method to estimate the amount of cutthroat trout ingested by grizzly bears living in the Yellowstone Lake area. The method utilized (i) the relatively high, naturally occurring concentration of mercury in Yellowstone Lake cutthroat trout (508 ± 93 ppb) and its virtual absence in all other bear foods (6 ppb), (ii) hair snares to remotely collect hair from bears visiting spawning cutthroat trout streams between 1997 and 2000, (iii) DNA analyses to identify the individual and sex of grizzly bears leaving a hair sample, (iv) feeding trials with captive bears to develop relationships between fish and mercury intake and hair mercury concentrations, and (v) mercury analyses of hair collected from wild bears to estimate the amount of trout consumed by each bear. Male grizzly bears consumed an average of 5 times more trout/kg bear than did female grizzly bears. Estimated cutthroat trout intake per year by the grizzly bear population was only a small fraction of that estimated by previous investigators, and males consumed 92% of all trout ingested by grizzly bears.

  13. Yellowstone grizzly bear investigations: Annual report of the Interagency Grizzly Bear Study Team, 2001

    Science.gov (United States)

    Schwartz, Charles C.; Haroldson, Mark A.

    2001-01-01

    The contents of this Annual Report summarize results of monitoring and research from the 2001 field season. The report also contains a summary of nuisance grizzly bear (Ursus arctos horribilis) management actions.

  14. Yellowstone grizzly bear investigations: Annual report of the Interagency Grizzly Bear Study Team, 2006

    Science.gov (United States)

    Schwartz, Charles C.; Haroldson, Mark A.; West, Karrie K.

    2007-01-01

    The contents of this Annual Report summarize results of monitoring and research from the 2006 field season. The report also contains a summary of nuisance grizzly bear (Ursus arctos horribilis) management actions.

  15. Grizzly bear use of army cutworm moths in the Yellowstone Ecosystem

    Science.gov (United States)

    French, Steven P.; French, Marilynn G.; Knight, Richard R.

    1994-01-01

    The ecology of alpine aggregations of army cutworm moths (Euxoa auxiliaris) and the feeding behavior of grizzly bears (Ursus arctos horribilis) at these areas were studied in the Yellowstone ecosystem from 1988 to 1991. Army cutworm moths migrate to mountain regions each summer to feed at night on the nectar of alpine and subalpine flowers, and during the day they seek shelter under various rock formations. Grizzly bears were observed feeding almost exclusively on moths up to 3 months each summer at the 10 moth-aggregation areas we identified. Fifty-one different grizzly bears were observed feeding at 4 of these areas during a single day in August 1991. Army cutworm moths are a preferred source of nutrition for many grizzly bears in the Yellowstone ecosystem and represent a high quality food that is available during hyperphagia.

  16. Grizzly bear management in Yellowstone National Park: The heart of recovery in the Yellowstone Ecosystem

    Science.gov (United States)

    Schwartz, C.C.; Gunther, K.; McCullough, Dale R.; Kaji, Koichi; Yamanaka, Masami

    2006-01-01

    Grizzly bear (Ursus arctos) management in the Greater Yellowstone Ecosystem (GYE) in the past quarter century has resulted in more than doubling of the population from around 200 to more than 500, expansion of range back into habitats where the bear has extirpated more than a century ago, and a move toward removal from the U.S. Endangered Species list. At the center of this success story are the management programs in Yellowstone National Park (YNP). Regulations that restrict human activity, camping, and food storage, elimination of human food and garbage as attractants, and ranger attendance of roadside bears have all resulted in the population of grizzlies in YNP approaching carrying capacity. Recent studies suggest, however, that YNP alone is too small to support the current population, making management beyond the park boundary important and necessary to the demographics of the population as a whole. Demographic analyses suggest a source-sink dynamic exists within the GYE, with YNP and lands outside the park within the Grizzly Bear Recovery Zone (RZ) representing source habitats, whereas lands beyond the RZ constitute sinks. The source-sink demography in the GYE is indicative of carnivore conservation issues worldwide where many national parks or preserves designed to protect out natural resources are inadequate in size or shape to provide all necessary life history requirements for these wide-ranging species. Additionally, wide-ranging behavior and long-distance dispersal seem inherent to large carnivores, so mortality around the edges is virtually inevitable, and conservation in the GYE is inextricably linked to management regimes not only within YNP, but within the GYE as a whole. We discuss those needs here.

  17. Body and diet composition of sympatric black and grizzly bears in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Schwartz, Charles C.; Fortin, Jennifer K.; Teisberg, Justin E.; Haroldson, Mark A.; Servheen, Christopher; Robbins, Charles T.; van Manen, Frank T.

    2013-01-01

    The Greater Yellowstone Ecosystem (GYE) has experienced changes in the distribution and availability of grizzly bear (Ursus arctos) food resources in recent decades. The decline of ungulates, fish, and whitebark pine seeds (Pinus albicaulis) has prompted questions regarding their ability to adapt. We examined body composition and diet of grizzly bears using bioelectrical impedance and stable isotopes to determine if 1) we can detect a change in diet quality associated with the decline in either ungulates or whitebark pine, and 2) the combined decline in ungulates, fish, and pine seeds resulted in a change in grizzly bear carrying capacity in the GYE. We contrasted body fat and mass in grizzly bears with a potential competitor, the American black bear (Ursus americanus), to address these questions. Grizzly bears assimilated more meat into their diet and were in better body condition than black bears throughout the study period, indicating the decline in ungulate resources did not affect grizzly bears more than black bears. We also found no difference in autumn fat levels in grizzly bears in years of good or poor pine seed production, and stable isotope analyses revealed this was primarily a function of switching to meat resources during poor seed-producing years. This dietary plasticity was consistent over the course of our study. We did not detect an overall downward trend in either body mass or the fraction of meat assimilated into the diet by grizzly bears over the past decade, but we did detect a downward trend in percent body fat in adult female grizzly bears after 2006. Whether this decline is an artifact of small sample size or due to the population reaching the ecological carrying capacity of the Yellowstone ecosystem warrants further investigation.

  18. Population growth of Yellowstone grizzly bears: Uncertainty and future monitoring

    Science.gov (United States)

    Harris, R.B.; White, Gary C.; Schwartz, C.C.; Haroldson, M.A.

    2007-01-01

    Grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem of the US Rocky Mountains have recently increased in numbers, but remain vulnerable due to isolation from other populations and predicted reductions in favored food resources. Harris et al. (2006) projected how this population might fare in the future under alternative survival rates, and in doing so estimated the rate of population growth, 1983–2002. We address issues that remain from that earlier work: (1) the degree of uncertainty surrounding our estimates of the rate of population change (λ); (2) the effect of correlation among demographic parameters on these estimates; and (3) how a future monitoring system using counts of females accompanied by cubs might usefully differentiate between short-term, expected, and inconsequential fluctuations versus a true change in system state. We used Monte Carlo re-sampling of beta distributions derived from the demographic parameters used by Harris et al. (2006) to derive distributions of λ during 1983–2002 given our sampling uncertainty. Approximate 95% confidence intervals were 0.972–1.096 (assuming females with unresolved fates died) and 1.008–1.115 (with unresolved females censored at last contact). We used well-supported models of Haroldson et al. (2006) and Schwartz et al. (2006a,b,c) to assess the strength of correlations among demographic processes and the effect of omitting them in projection models. Incorporating correlations among demographic parameters yielded point estimates of λ that were nearly identical to those from the earlier model that omitted correlations, but yielded wider confidence intervals surrounding λ. Finally, we suggest that fitting linear and quadratic curves to the trend suggested by the estimated number of females with cubs in the ecosystem, and using AICc model weights to infer population sizes and λ provides an objective means to monitoring approximate population trajectories in addition to demographic

  19. Methods to estimate distribution and range extent of grizzly bears in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Haroldson, Mark A.; Schwartz, Charles C.; Thompson, Daniel J.; Bjornlie, Daniel D.; Gunther, Kerry A.; Cain, Steven L.; Tyers, Daniel B.; Frey, Kevin L.; Aber, Bryan C.

    2014-01-01

    The distribution of the Greater Yellowstone Ecosystem grizzly bear (Ursus arctos) population has expanded into areas unoccupied since the early 20th century. Up-to-date information on the area and extent of this distribution is crucial for federal, state, and tribal wildlife and land managers to make informed decisions regarding grizzly bear management. The most recent estimate of grizzly bear distribution (2004) utilized fixed-kernel density estimators to describe distribution. This method was complex and computationally time consuming and excluded observations of unmarked bears. Our objective was to develop a technique to estimate grizzly bear distribution that would allow for the use of all verified grizzly bear location data, as well as provide the simplicity to be updated more frequently. We placed all verified grizzly bear locations from all sources from 1990 to 2004 and 1990 to 2010 onto a 3-km × 3-km grid and used zonal analysis and ordinary kriging to develop a predicted surface of grizzly bear distribution. We compared the area and extent of the 2004 kriging surface with the previous 2004 effort and evaluated changes in grizzly bear distribution from 2004 to 2010. The 2004 kriging surface was 2.4% smaller than the previous fixed-kernel estimate, but more closely represented the data. Grizzly bear distribution increased 38.3% from 2004 to 2010, with most expansion in the northern and southern regions of the range. This technique can be used to provide a current estimate of grizzly bear distribution for management and conservation applications.

  20. The Bear Facts: Implications of Whitebark Pine Loss for Yellowstone Grizzlies

    OpenAIRE

    Willcox, Louisa

    2009-01-01

    Whitebark pine is a foundation species, and barometer of the health of high elevation forests ecosystems in the West. It provides food and cover for numerous wildlife species, including the Clark’s nutcracker, crossbill, grosbeak, red squirrel and chipmunk. Whitebark pine is particularly important in the Greater Yellowstone Ecosystem (GYE), where it provides an essential food source for the imperiled Yellowstone grizzly bear. We will review the current scientific knowledge about the relations...

  1. Grizzly bear-human conflicts in the Yellowstone Ecosystem, 1992-2000

    Science.gov (United States)

    Gunther, K.A.; Haroldson, M.A.; Cain, S.L.; Copeland, J.; Frey, K.; Schwartz, C.C.

    2004-01-01

    For many years, the primary strategy for managing grizzly bears (Ursus arctos) that came into conflict with humans in the Greater Yellowstone Ecosystem (GYE) was to capture and translocate the offending bears away from conflict sites. Translocation usually only temporarily alleviated the problems and most often did not result in long-term solutions. Wildlife managers needed to be able to predict the causes, types, locations, and trends of conflicts to more efficiently allocate resources for pro-active rather than reactive management actions. To address this need, we recorded all grizzly bear-human conflicts reported in the GYE during 1992-2000. We analyzed trends in conflicts over time (increasing or decreasing), geographic location on macro- (inside or outside of the designated Yellowstone Grizzly Bear Recovery Zone [YGBRZ]) and micro- (geographic location) scales, land ownership (public or private), and relationship to the seasonal availability of bear foods. We recorded 995 grizzly bear-human conflicts in the GYE. Fifty-three percent of the conflicts occurred outside and 47% inside the YGBRZ boundary. Fifty-nine percent of the conflicts occurred on public and 41% on private land. Incidents of bears damaging property and obtaining anthropogenic foods were inversely correlated to the abundance of naturally occurring bear foods. Livestock depredations occurred independent of the availability of bear foods. To further aid in prioritizing management strategies to reduce conflicts, we also analyzed conflicts in relation to subsequent human-caused grizzly bear mortality. There were 74 human-caused grizzly bear mortalities during the study, primarily from killing bears in defense of life and property (43%) and management removal of bears involved in bear-human conflicts (28%). Other sources of human-caused mortality included illegal kills, electrocution by downed power-lines, mistaken identification by American black bear (Ursus americanus) hunters, and vehicle strikes

  2. Denning of grizzly bears in the Yellowstone National Park area

    Science.gov (United States)

    Judd, Steven L.; Knight, Richard R.; Blanchard, Bonnie M.

    1986-01-01

    Radiotelemetry was used to locate 101 grizzly bear (Ursus arctos) dens from 1975 to 1980; 35 dens were examined on the ground. Pregnant females denned in late October, and most other bears denned by mid-November. Duration of denning average 113, 132, and 170 days for males, females, and females with new cubs, respectively. Males emerged from mid-February to late March, followed by single females and females with yearlings and 2-year-olds. Females with new cubs emerged from early mid-April. Den sites were associated with moderate tree cover (26%-75% canopy cover) on 30°-60° slopes. Dens occurred on all aspects, although northerly exposures were most common. Grizzly bears usually dug new dens but occasionally used natural cavities or a den from a previous year. Males usually dug larger dens than females with young. Eight excavated and 2 natural dens of the 35 examined dens were used for more than 1 year.

  3. Predatory behavior of grizzly bears feeding on elk calves in Yellowstone National Park

    Science.gov (United States)

    French, Steven P.; French, Marilynn G.

    1990-01-01

    Grizzly bears (Ursus arctos horribilis) were observed preying on elk calves (Cervus elaphus) on 60 occasions in Yellowstone National Park, with 29 confirmed kills. Some bears were deliberate predators and effectively preyed on elk calves for short periods each spring, killing up to 1 calf daily. Primary hunting techniques were searching and chasing although some bears used a variety of techniques during a single hunt. They hunted both day and night and preyed on calves in the open and in the woods. Excess killing occurred when circumstances permitted. One bear caught 5 calves in a 15-minute interval. Elk used a variety of antipredator defenses and occasionally attacked predacious bears. The current level of this feeding behavior appears to be greater than previously reported. This is probably related to the increased availability of calves providing a greater opportunity for learning, and the adaptation of a more predatory behavior by some grizzly bears in Yellowstone.

  4. Temporal, spatial, and environmental influences on the demographics of grizzly bears in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Schwartz, Charles C.; Haroldson, Mark A.; White, Gary C.; Harris, Richard B.; Cherry, Steve; Keating, Kim A.; Moody, Dave; Servheen, Christopher

    2006-01-01

    During the past 2 decades, the grizzly bear (Ursus arctos) population in the Greater Yellowstone Ecosystem (GYE) has increased in numbers and expanded in range. Understanding temporal, environmental, and spatial variables responsible for this change is useful in evaluating what likely influenced grizzly bear demographics in the GYE and where future management efforts might benefit conservation and management. We used recent data from radio-marked bears to estimate reproduction (1983–2002) and survival (1983–2001); these we combined into models to evaluate demographic vigor (lambda [λ]). We explored the influence of an array of individual, temporal, and spatial covariates on demographic vigor.

  5. The natural food habits of grizzly bears in Yellowstone National Park, 1973-74

    Science.gov (United States)

    Mealey, Stephen Patrick

    1980-01-01

     The natural food habits of grizzly bears (Ursus arctos horribilis Ord) in Yellowstone National Park were investigated in 1973-74 to identify the grizzly's energy sources and trophic level(s), nutrient use, and distribution. Food consumption was determined by scat analysis and field observations. Food quality and digestibility were estimated by chemical analysis. Grizzlies were distributed in 3 distinctive feeding economies: valley/plateau, a grass/rodent economy where grizzlies were intensive diggers; mountain, primarily a grass/springbeauty/root economy where grizzlies were casual diggers; and lake, primarily a fish/grass economy where grizzlies were fishers. The economies occured in areas with fertile soils; distribution of bears within each was related to the occurrence of succulent plants. The feeding cycle in the valley/plateau and mountain economies followed plant phenology. Grizzlies fed primarily on meat before green-up and on succulent herbs afterwards; meat, corms, berries, and nuts became important during the postgrowing season. Succulent grasses and sedges with an importance value percentage of 78.5 were the most important food items consumed. Protein from animal tissue was more digestible than protein from plant tissue. Storage fats were more digestible than structural fats. Food energy and digestibility were directly related. Five principle nutrient materials (listed with their percentage digestibilities) contributed to total energy intake: protein from succulent herbs, 42.8; protein and fat from animal material, 78.1; fat and protein from pine nuts, 73.6; starch, 78.8; and sugar from berries and fruits, digestibility undetermined. Protein from succulent herbs, with a nutritive value percentage of 77.3, was the grizzlies' primary energy source. Because succulent, preflowering herbs had higher protein levels than dry, mature herbs, grizzly use of succulent herbs guaranteed them the highest source of herbaceous protein. Low protein digestibility of

  6. Modeling survival: application of the Andersen-Gill model to Yellowstone grizzly bears

    Science.gov (United States)

    Johnson, Christopher J.; Boyce, Mark S.; Schwartz, Charles C.; Haroldson, Mark A.

    2004-01-01

     Wildlife ecologists often use the Kaplan-Meier procedure or Cox proportional hazards model to estimate survival rates, distributions, and magnitude of risk factors. The Andersen-Gill formulation (A-G) of the Cox proportional hazards model has seen limited application to mark-resight data but has a number of advantages, including the ability to accommodate left-censored data, time-varying covariates, multiple events, and discontinuous intervals of risks. We introduce the A-G model including structure of data, interpretation of results, and assessment of assumptions. We then apply the model to 22 years of radiotelemetry data for grizzly bears (Ursus arctos) of the Greater Yellowstone Grizzly Bear Recovery Zone in Montana, Idaho, and Wyoming, USA. We used Akaike's Information Criterion (AICc) and multi-model inference to assess a number of potentially useful predictive models relative to explanatory covariates for demography, human disturbance, and habitat. Using the most parsimonious models, we generated risk ratios, hypothetical survival curves, and a map of the spatial distribution of high-risk areas across the recovery zone. Our results were in agreement with past studies of mortality factors for Yellowstone grizzly bears. Holding other covariates constant, mortality was highest for bears that were subjected to repeated management actions and inhabited areas with high road densities outside Yellowstone National Park. Hazard models developed with covariates descriptive of foraging habitats were not the most parsimonious, but they suggested that high-elevation areas offered lower risks of mortality when compared to agricultural areas.

  7. Interactions between wolves and female grizzly bears with cubs in Yellowstone National Park

    Science.gov (United States)

    Gunther, Kerry A.; Smith, Douglas W.

    2004-01-01

    Gray wolves (Canis lupus) were extirpated from Yellowstone National Park (YNP) by the 1920s through predator control actions (Murie 1940,Young and Goldman 1944, Weaver 1978), then reintroduced into the park from 1995 to 1996 to restore ecological integrity and adhere to legal mandates (Bangs and Fritts 1996, Phillips and Smith 1996, Smith et al. 2000). Prior to reintroduction, the potential effects of wolves on the region’s threatened grizzly bear (Ursus arctos) population were evaluated (Servheen and Knight 1993). In areas where wolves and grizzly bears are sympatric, interspecific killing by both species occasionally occurs (Ballard 1980, 1982; Hayes and Baer 1992). Most agonistic interactions between wolves and grizzly bears involve defense of young or competition for carcasses (Murie 1944, 1981; Ballard 1982; Hornbeck and Horejsi 1986; Hayes and Mossop 1987; Kehoe 1995; McNulty et al. 2001). Servheen and Knight (1993) predicted that reintroduced wolves could reduce the frequency of winter-killed and disease-killed ungulates available for bears to scavenge, and that grizzly bears would occasionally usurp wolf-killed ungulate carcasses. Servheen and Knight (1993) hypothesized that interspecific killing and competition for carcasses would have little or no population level effect on either species.

  8. Genetic analysis of individual origins supports isolation of grizzly bears in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Haroldson, Mark A.; Schwartz, Charles; Kendall, Katherine C.; Gunther, Kerry A.; Moody, David S.; Frey, Kevin L.; Paetkau, David

    2010-01-01

    The Greater Yellowstone Ecosystem (GYE) supports the southernmost of the 2 largest remaining grizzly bear (Ursus arctos) populations in the contiguous United States. Since the mid-1980s, this population has increased in numbers and expanded in range. However, concerns for its long-term genetic health remain because of its presumed continued isolation. To test the power of genetic methods for detecting immigrants, we generated 16-locus microsatellite genotypes for 424 individual grizzly bears sampled in the GYE during 1983–2007. Genotyping success was high (90%) and varied by sample type, with poorest success (40%) for hair collected from mortalities found ≥1 day after death. Years of storage did not affect genotyping success. Observed heterozygosity was 0.60, with a mean of 5.2 alleles/marker. We used factorial correspondence analysis (Program GENETIX) and Bayesian clustering (Program STRUCTURE) to compare 424 GYE genotypes with 601 existing genotypes from grizzly bears sampled in the Northern Continental Divide Ecosystem (NCDE) (FST  =  0.096 between GYE and NCDE). These methods correctly classified all sampled individuals to their population of origin, providing no evidence of natural movement between the GYE and NCDE. Analysis of 500 simulated first-generation crosses suggested that over 95% of such bears would also be detectable using our 16-locus data set. Our approach provides a practical method for detecting immigration in the GYE grizzly population. We discuss estimates for the proportion of the GYE population sampled and prospects for natural immigration into the GYE.

  9. Use of sulfur and nitrogen stable isotopes to determine the importance of whitebark pine nuts to Yellowstone grizzly bears

    Science.gov (United States)

    Felicetti, L.A.; Schwartz, C.C.; Rye, R.O.; Haroldson, M.A.; Gunther, K.A.; Phillips, D.L.; Robbins, C.T.

    2003-01-01

    Whitebark pine (Pinus albicaulis) is a masting species that produces relatively large, fat- and protein-rich nuts that are consumed by grizzly bears (Ursus arctos horribilis). Trees produce abundant nut crops in some years and poor crops in other years. Grizzly bear survival in the Greater Yellowstone Ecosystem is strongly linked to variation in pine-nut availability. Because whitebark pine trees are infected with blister rust (Cronartium ribicola), an exotic fungus that has killed the species throughout much of its range in the northern Rocky Mountains, we used stable isotopes to quantify the importance of this food resource to Yellowstone grizzly bears while healthy populations of the trees still exist. Whitebark pine nuts have a sulfur-isotope signature (9.2 ?? 1.3??? (mean ?? 1 SD)) that is distinctly different from those of all other grizzly bear foods (ranging from 1.9 ?? 1.7??? for all other plants to 3.1 ?? 2.6??? for ungulates). Feeding trials with captive grizzly bears were used to develop relationships between dietary sulfur-, carbon-, and nitrogen-isotope signatures and those of bear plasma. The sulfur and nitrogen relationships were used to estimate the importance of pine nuts to free-ranging grizzly bears from blood and hair samples collected between 1994 and 2001. During years of poor pine-nut availability, 72% of the bears made minimal use of pine nuts. During years of abundant cone availability, 8 ?? 10% of the bears made minimal use of pine nuts, while 67 ?? 19% derived over 51% of their assimilated sulfur and nitrogen (i.e., protein) from pine nuts. Pine nuts and meat are two critically important food resources for Yellowstone grizzly bears.

  10. Grizzly bear

    Science.gov (United States)

    Schwartz, C.C.; Miller, S.D.; Haroldson, M.A.; Feldhamer, G.; Thompson, B.; Chapman, J.

    2003-01-01

    The grizzly bear inspires fear, awe, and respect in humans to a degree unmatched by any other North American wild mammal. Like other bear species, it can inflict serious injury and death on humans and sometimes does. Unlike the polar bear (Ursus maritimus) of the sparsely inhabited northern arctic, however, grizzly bears still live in areas visited by crowds of people, where presence of the grizzly remains physically real and emotionally dominant. A hike in the wilderness that includes grizzly bears is different from a stroll in a forest from which grizzly bears have been purged; nighttime conversations around the campfire and dreams in the tent reflect the presence of the great bear. Contributing to the aura of the grizzly bear is the mixture of myth and reality about its ferocity. unpredictable disposition, large size, strength, huge canines, long claws, keen senses, swiftness, and playfulness. They share characteristics with humans such as generalist life history strategies. extended periods of maternal care, and omnivorous diets. These factors capture the human imagination in ways distinct from other North American mammals. Precontact Native American legends reflected the same fascination with the grizzly bear as modern stories and legends (Rockwell 1991).

  11. Influence of whitebark pine decline on fall habitat use and movements of grizzly bears in the Greater Yellowstone Ecosystem

    OpenAIRE

    Costello, Cecily M; van Manen, Frank T; Haroldson, Mark A; Ebinger, Michael R; Cain, Steven L; Gunther, Kerry A; Bjornlie, Daniel D

    2014-01-01

    When abundant, seeds of the high-elevation whitebark pine (WBP; Pinus albicaulis) are an important fall food for grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem. Rates of bear mortality and bear/human conflicts have been inversely associated with WBP productivity. Recently, mountain pine beetles (Dendroctonus ponderosae) have killed many cone-producing WBP trees. We used fall (15 August–30 September) Global Positioning System locations from 89 bear years to investigate tempo...

  12. Grizzly bear denning chronology and movements in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Haroldson, Mark A.; Ternent, Mark A.; Gunther, Kerry A.; Schwartz, Charles C.

    2002-01-01

    Den entrance and emergence dates of grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem are important to management agencies that wish to minimize impacts of human activities on bears. Current estimates for grizzly bear denning events use data that were collected from 1975–80. We update these estimates by including data obtained from 1981–99. We used aerial telemetry data to estimate week of den entry and emergence by determining the midpoint between the last known active date and the first known date denned, as well as the last known date denned and the first known active date. We also investigated post emergence movement patterns relative to den locations. Mean earliest and latest week of den entry and emergence were also determined. Den entry for females began during the fourth week in September, with 90% denned by the fourth week of November. Earliest den entry for males occurred during the second week of October, with 90% denned by the second week of December. Mean week of den entry for known pregnant females was earlier than males. Earliest week of den entry for known pregnant females was earlier than other females and males. Earliest den emergence for males occurred during the first week of February, with 90% of males out of dens by the fourth week of April. Earliest den emergence for females occurred during the third week of March; by the first week of May, 90% of females had emerged. Male bears emerged from dens earlier than females. Denning period differed among classes and averaged 171 days for females that emerged from dens with cubs, 151 days for other females, and 131 days for males. Known pregnant females tended to den at higher elevations and, following emergence, remained at higher elevation until late May. Females with cubs remained relatively close (grizzly bear populations in the southern Rocky Mountains. 

  13. Whitebark pine, population density, and home-range size of grizzly bears in the greater yellowstone ecosystem.

    Science.gov (United States)

    Bjornlie, Daniel D; Van Manen, Frank T; Ebinger, Michael R; Haroldson, Mark A; Thompson, Daniel J; Costello, Cecily M

    2014-01-01

    Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE), recent decline of whitebark pine (WBP; Pinus albicaulis), an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size.

  14. Whitebark pine, population density, and home-range size of grizzly bears in the greater yellowstone ecosystem.

    Directory of Open Access Journals (Sweden)

    Daniel D Bjornlie

    Full Text Available Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos in the Greater Yellowstone Ecosystem (GYE, recent decline of whitebark pine (WBP; Pinus albicaulis, an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size.

  15. Whitebark pine, population density, and home-range size of grizzly bears in the greater Yellowstone ecosystem

    Science.gov (United States)

    Bjornlie, Daniel D.; van Manen, Frank T.; Ebinger, Michael R.; Haroldson, Mark A.; Thompson, Daniel J.; Costello, Cecily M.

    2014-01-01

    Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE), recent decline of whitebark pine (WBP; Pinus albicaulis), an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size.

  16. Evaluation of rules to distinguish unique female grizzly bears with cubs in Yellowstone

    Science.gov (United States)

    Schwartz, C.C.; Haroldson, M.A.; Cherry, S.; Keating, K.A.

    2008-01-01

    The United States Fish and Wildlife Service uses counts of unduplicated female grizzly bears (Ursus arctos) with cubs-of-the-year to establish limits of sustainable mortality in the Greater Yellowstone Ecosystem, USA. Sightings are dustered into observations of unique bears based on an empirically derived rule set. The method has never been tested or verified. To evaluate the rule set, we used data from radiocollared females obtained during 1975-2004 to simulate populations under varying densities, distributions, and sighting frequencies. We tested individual rules and rule-set performance, using custom software to apply the rule-set and duster sightings. Results indicated most rules were violated to some degree, and rule-based dustering consistently underestimated the minimum number of females and total population size derived from a nonparametric estimator (Chao2). We conclude that the current rule set returns conservative estimates, but with minor improvements, counts of unduplicated females-with-cubs can serve as a reasonable index of population size useful for establishing annual mortality limits. For the Yellowstone population, the index is more practical and cost-effective than capture-mark-recapture using either DNA hair snagging or aerial surveys with radiomarked bears. The method has useful application in other ecosystems, but we recommend rules used to distinguish unique females be adapted to local conditions and tested.

  17. Carnivore re-colonisation: Reality, possibility and a non-equilibrium century for grizzly bears in the southern Yellowstone ecosystem

    Science.gov (United States)

    Pyare, Sanjay; Cain, S.; Moody, D.; Schwartz, C.; Berger, J.

    2004-01-01

    Most large native carnivores have experienced range contractions due to conflicts with humans, although neither rates of spatial collapse nor expansion have been well characterised. In North America, the grizzly bear (Ursus arctos) once ranged from Mexico northward to Alaska, however its range in the continental USA has been reduced by 95-98%. Under the U. S. Endangered Species Act, the Yellowstone grizzly bear population has re-colonised habitats outside Yellowstone National Park. We analysed historical and current records, including data on radio-collared bears, (1) to evaluate changes in grizzly bear distribution in the southern Greater Yellowstone Ecosystem (GYE) over a 100-year period, (2) to utilise historical rates of re-colonisation to project future expansion trends and (3) to evaluate the reality of future expansion based on human limitations and land use. Analysis of distribution in 20-year increments reflects range reduction from south to north (1900-1940) and expansion to the south (1940-2000). Expansion was exponential and the area occupied by grizzly bears doubled approximately every 20 years. A complementary analysis of bear occurrence in Grand Teton National Park also suggests an unprecedented period of rapid expansion during the last 20-30 years. The grizzly bear population currently has re-occupied about 50% of the southern GYE. Based on assumptions of continued protection and ecological stasis, our model suggests total occupancy in 25 years. Alternatively, extrapolation of linear expansion rates from the period prior to protection suggests total occupancy could take > 100 years. Analyses of historical trends can be useful as a restoration tool because they enable a framework and timeline to be constructed to pre-emptively address the social challenges affecting future carnivore recovery. ?? 2004 The Zoological Society of London.

  18. Grizzly bear predation links the loss of native trout to the demography of migratory elk in Yellowstone.

    Science.gov (United States)

    Middleton, Arthur D; Morrison, Thomas A; Fortin, Jennifer K; Robbins, Charles T; Proffitt, Kelly M; White, P J; McWhirter, Douglas E; Koel, Todd M; Brimeyer, Douglas G; Fairbanks, W Sue; Kauffman, Matthew J

    2013-07-07

    The loss of aquatic subsidies such as spawning salmonids is known to threaten a number of terrestrial predators, but the effects on alternative prey species are poorly understood. At the heart of the Greater Yellowstone ecosystem, an invasion of lake trout has driven a dramatic decline of native cutthroat trout that migrate up the shallow tributaries of Yellowstone Lake to spawn each spring. We explore whether this decline has amplified the effect of a generalist consumer, the grizzly bear, on populations of migratory elk that summer inside Yellowstone National Park (YNP). Recent studies of bear diets and elk populations indicate that the decline in cutthroat trout has contributed to increased predation by grizzly bears on the calves of migratory elk. Additionally, a demographic model that incorporates the increase in predation suggests that the magnitude of this diet shift has been sufficient to reduce elk calf recruitment (4-16%) and population growth (2-11%). The disruption of this aquatic-terrestrial linkage could permanently alter native species interactions in YNP. Although many recent ecological changes in YNP have been attributed to the recovery of large carnivores--particularly wolves--our work highlights a growing role of human impacts on the foraging behaviour of grizzly bears.

  19. Grizzly bear predation links the loss of native trout to the demography of migratory elk in Yellowstone

    Science.gov (United States)

    Middleton, Arthur D.; Morrison, Thomas A.; Fortin, Jennifer K.; Robbins, Charles T.; Proffitt, Kelly M.; White, P.J.; McWhirter, Douglas E.; Koel, Todd M.; Brimeyer, Douglas G.; Fairbanks, W. Sue; Kauffman, Matthew J.

    2013-01-01

    The loss of aquatic subsidies such as spawning salmonids is known to threaten a number of terrestrial predators, but the effects on alternative prey species are poorly understood. At the heart of the Greater Yellowstone ecosystem, an invasion of lake trout has driven a dramatic decline of native cutthroat trout that migrate up the shallow tributaries of Yellowstone Lake to spawn each spring. We explore whether this decline has amplified the effect of a generalist consumer, the grizzly bear, on populations of migratory elk that summer inside Yellowstone National Park (YNP). Recent studies of bear diets and elk populations indicate that the decline in cutthroat trout has contributed to increased predation by grizzly bears on the calves of migratory elk. Additionally, a demographic model that incorporates the increase in predation suggests that the magnitude of this diet shift has been sufficient to reduce elk calf recruitment (4–16%) and population growth (2–11%). The disruption of this aquatic–terrestrial linkage could permanently alter native species interactions in YNP. Although many recent ecological changes in YNP have been attributed to the recovery of large carnivores—particularly wolves—our work highlights a growing role of human impacts on the foraging behaviour of grizzly bears.

  20. Impacts of rural development on Yellowstone wildlife: linking grizzly bear Ursus arctos demographics with projected residential growth

    Science.gov (United States)

    Schwartz, Charles C.; Gude, Patricia H.; Landenburger, Lisa; Haroldson, Mark A.; Podruzny, Shannon

    2012-01-01

    Exurban development is consuming wildlife habitat within the Greater Yellowstone Ecosystem with potential consequences to the long-term conservation of grizzly bears Ursus arctos. We assessed the impacts of alternative future land-use scenarios by linking an existing regression-based simulation model predicting rural development with a spatially explicit model that predicted bear survival. Using demographic criteria that predict population trajectory, we portioned habitats into either source or sink, and projected the loss of source habitat associated with four different build out (new home construction) scenarios through 2020. Under boom growth, we predicted that 12 km2 of source habitat were converted to sink habitat within the Grizzly Bear Recovery Zone (RZ), 189 km2 were converted within the current distribution of grizzly bears outside of the RZ, and 289 km2 were converted in the area outside the RZ identified as suitable grizzly bear habitat. Our findings showed that extremely low densities of residential development created sink habitats. We suggest that tools, such as those outlined in this article, in addition to zoning and subdivision regulation may prove more practical, and the most effective means of retaining large areas of undeveloped land and conserving grizzly bear source habitat will likely require a landscape-scale approach. We recommend a focus on land conservation efforts that retain open space (easements, purchases and trades) coupled with the implementation of ‘bear community programmes’ on an ecosystem wide basis in an effort to minimize human-bear conflicts, minimize management-related bear mortalities associated with preventable conflicts and to safeguard human communities. Our approach has application to other species and areas, and it has illustrated how spatially explicit demographic models can be combined with models predicting land-use change to help focus conservation priorities.

  1. Selecting the best stable isotope mixing model to estimate grizzly bear diets in the Greater Yellowstone Ecosystem.

    Directory of Open Access Journals (Sweden)

    John B Hopkins

    Full Text Available Past research indicates that whitebark pine seeds are a critical food source for Threatened grizzly bears (Ursus arctos in the Greater Yellowstone Ecosystem (GYE. In recent decades, whitebark pine forests have declined markedly due to pine beetle infestation, invasive blister rust, and landscape-level fires. To date, no study has reliably estimated the contribution of whitebark pine seeds to the diets of grizzlies through time. We used stable isotope ratios (expressed as δ13C, δ15N, and δ34S values measured in grizzly bear hair and their major food sources to estimate the diets of grizzlies sampled in Cooke City Basin, Montana. We found that stable isotope mixing models that included different combinations of stable isotope values for bears and their foods generated similar proportional dietary contributions. Estimates generated by our top model suggest that whitebark pine seeds (35±10% and other plant foods (56±10% were more important than meat (9±8% to grizzly bears sampled in the study area. Stable isotope values measured in bear hair collected elsewhere in the GYE and North America support our conclusions about plant-based foraging. We recommend that researchers consider model selection when estimating the diets of animals using stable isotope mixing models. We also urge researchers to use the new statistical framework described here to estimate the dietary responses of grizzlies to declines in whitebark pine seeds and other important food sources through time in the GYE (e.g., cutthroat trout, as such information could be useful in predicting how the population will adapt to future environmental change.

  2. Selecting the best stable isotope mixing model to estimate grizzly bear diets in the Greater Yellowstone Ecosystem.

    Science.gov (United States)

    Hopkins, John B; Ferguson, Jake M; Tyers, Daniel B; Kurle, Carolyn M

    2017-01-01

    Past research indicates that whitebark pine seeds are a critical food source for Threatened grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE). In recent decades, whitebark pine forests have declined markedly due to pine beetle infestation, invasive blister rust, and landscape-level fires. To date, no study has reliably estimated the contribution of whitebark pine seeds to the diets of grizzlies through time. We used stable isotope ratios (expressed as δ13C, δ15N, and δ34S values) measured in grizzly bear hair and their major food sources to estimate the diets of grizzlies sampled in Cooke City Basin, Montana. We found that stable isotope mixing models that included different combinations of stable isotope values for bears and their foods generated similar proportional dietary contributions. Estimates generated by our top model suggest that whitebark pine seeds (35±10%) and other plant foods (56±10%) were more important than meat (9±8%) to grizzly bears sampled in the study area. Stable isotope values measured in bear hair collected elsewhere in the GYE and North America support our conclusions about plant-based foraging. We recommend that researchers consider model selection when estimating the diets of animals using stable isotope mixing models. We also urge researchers to use the new statistical framework described here to estimate the dietary responses of grizzlies to declines in whitebark pine seeds and other important food sources through time in the GYE (e.g., cutthroat trout), as such information could be useful in predicting how the population will adapt to future environmental change.

  3. Re-evaluation of Yellowstone grizzly bear population dynamics not supported by empirical data: response to Doak & Cutler

    Science.gov (United States)

    van Manen, Frank T.; Ebinger, Michael R.; Haroldson, Mark A.; Harris, Richard B.; Higgs, Megan D.; Cherry, Steve; White, Gary C.; Schwartz, Charles C.

    2014-01-01

    Doak and Cutler critiqued methods used by the Interagency Grizzly Bear Study Team (IGBST) to estimate grizzly bear population size and trend in the Greater Yellowstone Ecosystem. Here, we focus on the premise, implementation, and interpretation of simulations they used to support their arguments. They argued that population increases documented by IGBST based on females with cubs-of-the-year were an artifact of increased search effort. However, we demonstrate their simulations were neither reflective of the true observation process nor did their results provide statistical support for their conclusion. They further argued that survival and reproductive senescence should be incorporated into population projections, but we demonstrate their choice of extreme mortality risk beyond age 20 and incompatible baseline fecundity led to erroneous conclusions. The conclusions of Doak and Cutler are unsubstantiated when placed within the context of a thorough understanding of the data, study system, and previous research findings and publications.

  4. Multiple estimates of effective population size for monitoring a long-lived vertebrate: an application to Yellowstone grizzly bears.

    Science.gov (United States)

    Kamath, Pauline L; Haroldson, Mark A; Luikart, Gordon; Paetkau, David; Whitman, Craig; van Manen, Frank T

    2015-11-01

    Effective population size (N(e)) is a key parameter for monitoring the genetic health of threatened populations because it reflects a population's evolutionary potential and risk of extinction due to genetic stochasticity. However, its application to wildlife monitoring has been limited because it is difficult to measure in natural populations. The isolated and well-studied population of grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem provides a rare opportunity to examine the usefulness of different N(e) estimators for monitoring. We genotyped 729 Yellowstone grizzly bears using 20 microsatellites and applied three single-sample estimators to examine contemporary trends in generation interval (GI), effective number of breeders (N(b)) and N(e) during 1982-2007. We also used multisample methods to estimate variance (N(eV)) and inbreeding N(e) (N(eI)). Single-sample estimates revealed positive trajectories, with over a fourfold increase in N(e) (≈100 to 450) and near doubling of the GI (≈8 to 14) from the 1980s to 2000s. N(eV) (240-319) and N(eI) (256) were comparable with the harmonic mean single-sample N(e) (213) over the time period. Reanalysing historical data, we found N(eV) increased from ≈80 in the 1910s-1960s to ≈280 in the contemporary population. The estimated ratio of effective to total census size (N(e) /N(c)) was stable and high (0.42-0.66) compared to previous brown bear studies. These results support independent demographic evidence for Yellowstone grizzly bear population growth since the 1980s. They further demonstrate how genetic monitoring of N(e) can complement demographic-based monitoring of N(c) and vital rates, providing a valuable tool for wildlife managers. © 2015 John Wiley & Sons Ltd.

  5. Multiple estimates of effective population size for monitoring a long-lived vertebrate: An application to Yellowstone grizzly bears

    Science.gov (United States)

    Kamath, Pauline L.; Haroldson, Mark A.; Luikart, Gordon; Paetkau, David; Whitman, Craig L.; van Manen, Frank T.

    2015-01-01

    Effective population size (Ne) is a key parameter for monitoring the genetic health of threatened populations because it reflects a population's evolutionary potential and risk of extinction due to genetic stochasticity. However, its application to wildlife monitoring has been limited because it is difficult to measure in natural populations. The isolated and well-studied population of grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem provides a rare opportunity to examine the usefulness of different Ne estimators for monitoring. We genotyped 729 Yellowstone grizzly bears using 20 microsatellites and applied three single-sample estimators to examine contemporary trends in generation interval (GI), effective number of breeders (Nb) and Ne during 1982–2007. We also used multisample methods to estimate variance (NeV) and inbreeding Ne (NeI). Single-sample estimates revealed positive trajectories, with over a fourfold increase in Ne (≈100 to 450) and near doubling of the GI (≈8 to 14) from the 1980s to 2000s. NeV (240–319) and NeI (256) were comparable with the harmonic mean single-sample Ne (213) over the time period. Reanalysing historical data, we found NeV increased from ≈80 in the 1910s–1960s to ≈280 in the contemporary population. The estimated ratio of effective to total census size (Ne/Nc) was stable and high (0.42–0.66) compared to previous brown bear studies. These results support independent demographic evidence for Yellowstone grizzly bear population growth since the 1980s. They further demonstrate how genetic monitoring of Ne can complement demographic-based monitoring of Nc and vital rates, providing a valuable tool for wildlife managers.

  6. Changing numbers of spawning cutthroat trout in tributary streams of Yellowstone Lake and estimates of grizzly bears visiting streams from DNA

    Science.gov (United States)

    Haroldson, M.A.; Gunther, K.A.; Reinhart, Daniel P.; Podruzny, S.R.; Cegelski, C.; Waits, L.; Wyman, T.C.; Smith, J.

    2005-01-01

    Spawning Yellowstone cutthroat trout (Oncorhynchus clarki) provide a source of highly digestible energy for grizzly bears (Ursus arctos) that visit tributary streams to Yellowstone Lake during the spring and early summer. During 1985–87, research documented grizzly bears fishing on 61% of the 124 tributary streams to the lake. Using track measurements, it was estimated that a minimum of 44 grizzly bears fished those streams annually. During 1994, non-native lake trout (Salvelinus namaycush) were discovered in Yellowstone Lake. Lake trout are efficient predators and have the potential to reduce the native cutthroat population and negatively impact terrestrial predators that use cutthroat trout as a food resource. In 1997, we began sampling a subset of streams (n = 25) from areas of Yellowstone Lake surveyed during the previous study to determine if changes in spawner numbers or bear use had occurred. Comparisons of peak numbers and duration suggested a considerable decline between study periods in streams in the West Thumb area of the lake. The apparent decline may be due to predation by lake trout. Indices of bear use also declined on West Thumb area streams. We used DNA from hair collected near spawning streams to estimate the minimum number of bears visiting the vicinity of spawning streams. Seventy-four individual bears were identified from 429 hair samples. The annual number of individuals detected ranged from 15 in 1997 to 33 in 2000. Seventy percent of genotypes identified were represented by more than 1 sample, but only 31% of bears were documented more than 1 year of the study. Sixty-two (84%) bears were only documented in 1 segment of the lake, whereas 12 (16%) were found in 2–3 lake segments. Twenty-seven bears were identified from hair collected at multiple streams. One bear was identified on 6 streams in 2 segments of the lake and during 3 years of the study. We used encounter histories derived from DNA and the Jolly-Seber procedure in Program MARK

  7. Influence of whitebark pine decline on fall habitat use and movements of grizzly bears in the Greater Yellowstone Ecosystem.

    Science.gov (United States)

    Costello, Cecily M; van Manen, Frank T; Haroldson, Mark A; Ebinger, Michael R; Cain, Steven L; Gunther, Kerry A; Bjornlie, Daniel D

    2014-05-01

    When abundant, seeds of the high-elevation whitebark pine (WBP; Pinus albicaulis) are an important fall food for grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem. Rates of bear mortality and bear/human conflicts have been inversely associated with WBP productivity. Recently, mountain pine beetles (Dendroctonus ponderosae) have killed many cone-producing WBP trees. We used fall (15 August-30 September) Global Positioning System locations from 89 bear years to investigate temporal changes in habitat use and movements during 2000-2011. We calculated Manly-Chesson (MC) indices for selectivity of WBP habitat and secure habitat (≥500 m from roads and human developments), determined dates of WBP use, and documented net daily movement distances and activity radii. To evaluate temporal trends, we used regression, model selection, and candidate model sets consisting of annual WBP production, sex, and year. One-third of sampled grizzly bears had fall ranges with little or no mapped WBP habitat. Most other bears (72%) had a MC index above 0.5, indicating selection for WBP habitats. From 2000 to 2011, mean MC index decreased and median date of WBP use shifted about 1 week later. We detected no trends in movement indices over time. Outside of national parks, there was no correlation between the MC indices for WBP habitat and secure habitat, and most bears (78%) selected for secure habitat. Nonetheless, mean MC index for secure habitat decreased over the study period during years of good WBP productivity. The wide diet breadth and foraging plasticity of grizzly bears likely allowed them to adjust to declining WBP. Bears reduced use of WBP stands without increasing movement rates, suggesting they obtained alternative fall foods within their local surroundings. However, the reduction in mortality risk historically associated with use of secure, high-elevation WBP habitat may be diminishing for bears residing in multiple-use areas.

  8. Influence of whitebark pine decline on fall habitat use and movements of grizzly bears in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Costello, Cecily M.; van Manen, Frank T.; Haroldson, Mark A.; Ebinger, Michael R.; Cain, Steven L.; Gunther, Kerry A.; Bjornlie, Daniel D.

    2014-01-01

    When abundant, seeds of the high-elevation whitebark pine (WBP; Pinus albicaulis) are an important fall food for grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem. Rates of bear mortality and bear/human conflicts have been inversely associated with WBP productivity. Recently, mountain pine beetles (Dendroctonus ponderosae) have killed many cone-producing WBP trees. We used fall (15 August–30 September) Global Positioning System locations from 89 bear years to investigate temporal changes in habitat use and movements during 2000–2011. We calculated Manly–Chesson (MC) indices for selectivity of WBP habitat and secure habitat (≥500 m from roads and human developments), determined dates of WBP use, and documented net daily movement distances and activity radii. To evaluate temporal trends, we used regression, model selection, and candidate model sets consisting of annual WBP production, sex, and year. One-third of sampled grizzly bears had fall ranges with little or no mapped WBP habitat. Most other bears (72%) had a MC index above 0.5, indicating selection for WBP habitats. From 2000 to 2011, mean MC index decreased and median date of WBP use shifted about 1 week later. We detected no trends in movement indices over time. Outside of national parks, there was no correlation between the MC indices for WBP habitat and secure habitat, and most bears (78%) selected for secure habitat. Nonetheless, mean MC index for secure habitat decreased over the study period during years of good WBP productivity. The wide diet breadth and foraging plasticity of grizzly bears likely allowed them to adjust to declining WBP. Bears reduced use of WBP stands without increasing movement rates, suggesting they obtained alternative fall foods within their local surroundings. However, the reduction in mortality risk historically associated with use of secure, high-elevation WBP habitat may be diminishing for bears residing in multiple-use areas.

  9. 75 FR 14496 - Endangered and Threatened Wildlife and Plants; Reinstatement of Protections for the Grizzly Bear...

    Science.gov (United States)

    2010-03-26

    ... of Protections for the Grizzly Bear in the Greater Yellowstone Ecosystem in Compliance With Court... grizzly bear (Ursus arctos horribilis) in the Greater Yellowstone Area (GYA) and surrounding area. This rule corrects the grizzly bear listing to reinstate the listing of grizzly bears in the GYA. This final...

  10. Evaluating estimators for numbers of females with cubs-of-the-year in the Yellowstone grizzly bear population

    Science.gov (United States)

    Cherry, S.; White, G.C.; Keating, K.A.; Haroldson, Mark A.; Schwartz, Charles C.

    2007-01-01

    Current management of the grizzly bear (Ursus arctos) population in Yellowstone National Park and surrounding areas requires annual estimation of the number of adult female bears with cubs-of-the-year. We examined the performance of nine estimators of population size via simulation. Data were simulated using two methods for different combinations of population size, sample size, and coefficient of variation of individual sighting probabilities. We show that the coefficient of variation does not, by itself, adequately describe the effects of capture heterogeneity, because two different distributions of capture probabilities can have the same coefficient of variation. All estimators produced biased estimates of population size with bias decreasing as effort increased. Based on the simulation results we recommend the Chao estimator for model M h be used to estimate the number of female bears with cubs of the year; however, the estimator of Chao and Shen may also be useful depending on the goals of the research.

  11. USE OF SULFUR AND NITROGEN STABLE ISOTOPES TO DETERMINE THE IMPORTANCE OF WHITEBARK PINE NUTS TO YELLOWSTONE GRIZZLY BEARS

    Science.gov (United States)

    Whitebark pine (Pinus albicaulis) is a masting species that produces relatively large, fat and protein-rich nuts that are consumed by grizzly bears (Ursus arctos horribilis). Trees produce abundant nut crops in some years and poor crops in other years. Grizzly bear survival in ...

  12. The paradigm of grizzly bear restoration in North America

    Science.gov (United States)

    Schwartz, C. C.; Maehr, David S.; Noss, Reed F.; Larkin, J.L.

    2002-01-01

    Grizzly bear restoration and recovery is a controversial, highly politicized process. By 1959, when the Craigheads began their pioneering work on Yellowstone grizzly bears, the species had been reduced to a remnant of its historic range. Prior to the colonization of North America by Europeans, the grizzly lived in relatively pristine habitats with aboriginal Native Americans. As civilization expanded, humans changed the face of the landscape, converting grizzly bear habitat to farms and ranches. People killed grizzlies to protect livestock and eliminate a perceived threat to human safety. In concert, habitat loss and direct human-caused mortality had effectively eliminated the grizzly from 95 percent of its historic range in the conterminous United States by the 1920s (Servheen 1989). Grizzly bear numbers had been reduced nearly 98 percent by 1975 when the species was listed as threatened under the Endangered Species Act (ESA) (USFWS 1993).

  13. 78 FR 17708 - Endangered and Threatened Wildlife and Plants; Draft Revised Supplement to the Grizzly Bear...

    Science.gov (United States)

    2013-03-22

    ...] Endangered and Threatened Wildlife and Plants; Draft Revised Supplement to the Grizzly Bear Recovery Plan... Revised Supplement to the Grizzly Bear Recovery Plan. Specifically, this supplement proposes to revise the demographic recovery criteria for the Yellowstone Ecosystem. In the lower 48 States, Grizzly bears (Ursus...

  14. Eastern slopes grizzly bear project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-01-01

    The cumulative effects of human activities on the grizzly bears in the central Canadian Rockies are not well known. As a result, a project was initiated in 1994 to address the urgent requirement for accurate scientific information on the habitat and populations of grizzly bears in the area of the Banff National Park and Kananaskis Country. This area is probably the most heavily used and developed area where the grizzly still survives. The information gathered throughout the course of this study will be used to better protect and manage the bears and other sensitive carnivores in the region. Using telemetry, researchers are monitoring 25 grizzly bears which were radio-collared in a 22,000 square-kilometer area in the upper Bow Valley drainage of the eastern Alberta slopes. The researchers involved in the project are working with representatives from Husky Oil and Talisman Energy on the sound development of the Moose Mountain oil and gas field without adversely affecting the grizzly bear population. Information collected over seven years indicated that the grizzly bears have few and infrequent offspring. Using the information gathered so far, the location of the Moose Mountain to Jumping Pound pipeline was carefully selected, since the bears recover very slowly from high mortality, and also considering that the food and cover had already been compromised by the high number of roads, trails and other human activities in the area. The status of the population and habitat of the grizzly bear will be assessed upon the conclusion of the field research phase in 2001. Models will be updated using the data obtained during eight years and will assist in the understanding of complex variables that affect grizzly bears.

  15. The impacts of intensity of human use on grizzly bear habitat selection

    OpenAIRE

    Ouren, Douglas S.; Garrott, Robert A.; Watts, Raymond D.; Lukins, William J.

    2003-01-01

    Problem Statement One of the major challenges to grizzly bear preservation in the greater Yellowstone area is the impact on grizzly bear habitat selection by various types and intensities of human activities. The most prevalent of these human activities is the presence and intensity of use of motorized transportation systems. These transportation systems provide increased access into grizzly bear habitat and thus increase the risk of mortality and dilute the effectiveness of their habitat (Br...

  16. Density dependence, whitebark pine, and vital rates of grizzly bears

    Science.gov (United States)

    van Manen, Frank T.; Haroldson, Mark A.; Bjornlie, Daniel D.; Ebinger, Michael R.; Thompson, Daniel J.; Costello, Cecily M.; White, Gary C.

    2016-01-01

    Understanding factors influencing changes in population trajectory is important for effective wildlife management, particularly for populations of conservation concern. Annual population growth of the grizzly bear (Ursus arctos) population in the Greater Yellowstone Ecosystem, USA has slowed from 4.2–7.6% during 1983–2001 to 0.3–2.2% during 2002–2011. Substantial changes in availability of a key food source and bear population density have occurred. Whitebark pine (Pinus albicaulis), the seeds of which are a valuable but variable fall food for grizzly bears, has experienced substantial mortality primarily due to a mountain pine beetle (Dendroctonus ponderosae) outbreak that started in the early 2000s. Positive growth rates of grizzly bears have resulted in populations reaching high densities in some areas and have contributed to continued range expansion. We tested research hypotheses to examine if changes in vital rates detected during the past decade were more associated with whitebark pine decline or, alternatively, increasing grizzly bear density. We focused our assessment on known-fate data to estimate survival of cubs-of-the-year (cubs), yearlings, and independent bears (≥2 yrs), and reproductive transition of females from having no offspring to having cubs. We used spatially and temporally explicit indices for grizzly bear density and whitebark pine mortality as individual covariates. Models indicated moderate support for an increase in survival of independent male bears over 1983–2012, whereas independent female survival did not change. Cub survival, yearling survival, and reproductive transition from no offspring to cubs all changed during the 30-year study period, with lower rates evident during the last 10–15 years. Cub survival and reproductive transition were negatively associated with an index of grizzly bear density, indicating greater declines where bear densities were higher. Our analyses did not support a similar relationship for the

  17. Exploitation of pocket gophers and their food caches by grizzly bears

    Science.gov (United States)

    Mattson, D.J.

    2004-01-01

    I investigated the exploitation of pocket gophers (Thomomys talpoides) by grizzly bears (Ursus arctos horribilis) in the Yellowstone region of the United States with the use of data collected during a study of radiomarked bears in 1977-1992. My analysis focused on the importance of pocket gophers as a source of energy and nutrients, effects of weather and site features, and importance of pocket gophers to grizzly bears in the western contiguous United States prior to historical extirpations. Pocket gophers and their food caches were infrequent in grizzly bear feces, although foraging for pocket gophers accounted for about 20-25% of all grizzly bear feeding activity during April and May. Compared with roots individually excavated by bears, pocket gopher food caches were less digestible but more easily dug out. Exploitation of gopher food caches by grizzly bears was highly sensitive to site and weather conditions and peaked during and shortly after snowmelt. This peak coincided with maximum success by bears in finding pocket gopher food caches. Exploitation was most frequent and extensive on gently sloping nonforested sites with abundant spring beauty (Claytonia lanceolata) and yampah (Perdieridia gairdneri). Pocket gophers are rare in forests, and spring beauty and yampah roots are known to be important foods of both grizzly bears and burrowing rodents. Although grizzly bears commonly exploit pocket gophers only in the Yellowstone region, this behavior was probably widespread in mountainous areas of the western contiguous United States prior to extirpations of grizzly bears within the last 150 years.

  18. Trophic cascades from wolves to grizzly bears or changing abundance of bears and alternate foods?

    Science.gov (United States)

    Barber-Meyer, Shannon M

    2015-05-01

    This is a Forum article commenting on: Ripple, W. J., Beschta, R. L., Fortin, J. K., & Robbins, C. T. (2014) Trophic cascades from wolves to grizzly bears in Yellowstone. Journal of Animal Ecology, 83, 223-233. Comparisons Ripple et al. (2014) used to demonstrate increased fruit availability and consumption by grizzly bears post-wolf reintroduction are flawed and tenuous at best. Importantly, a more parsimonious (than trophic cascades) hypothesis, not sufficiently considered by Ripple et al., exists and is better supported by available data I review. Published 2015. This article is a U. S. Government work and is in the public domain in the USA.

  19. Eastern slopes grizzly bear project : project update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-01-01

    This report updates a study to examine the cumulative effects of human activities on the grizzly bears in the central Canadian Rockies. The project was initiated in 1994 to acquire accurate scientific information on the habitat and populations of grizzly bears in the area of the Banff National Park and Kananaskis Country. This area is probably the most heavily used and developed area where the grizzly still survives. The information gathered throughout the course of the study is used to better protect and manage the bears and other sensitive carnivores in the region. Using telemetry, researchers monitored 25 grizzly bears which were radio-collared in a 22,000 square-kilometer area in the upper Bow Valley drainage of the eastern Alberta slopes. The researchers worked with representatives from Husky Oil and Rigel Energy on the development of the Moose Mountain oil and gas field without adversely affecting the grizzly bear population. Information collected over eight years indicates that the grizzly bears have few and infrequent offspring. Using the information gathered thus far, the location of the Moose Mountain to Jumping Pound pipeline was carefully selected, since the bears suffer from high mortality, and the food and cover had already been compromised by the high number of roads, trails and other human activities in the area. The research concluded in November 2001 provides sufficient information to accurately asses the status of the grizzly bear population and habitat. The data will be analyzed and integrated in 2002 into models that reflect the variables affecting grizzly bears and a final report will be published.

  20. Wolves trigger a trophic cascade to berries as alternative food for grizzly bears.

    Science.gov (United States)

    Ripple, William J; Beschta, Robert L; Fortin, Jennifer K; Robbins, Charles T

    2015-05-01

    This is a Forum article in response to: Barber-Meyer, S. (2015) Trophic cascades from wolves to grizzly bears or changing abundance of bears and alternate foods? Journal of Animal Ecology, 83, doi: 10.1111/1365-2656.12338. We used multiple data sets and study areas as well as several lines of evidence to investigate potential trophic linkages in Yellowstone National Park. Our results suggest that a trophic cascade from wolves to elk to berry production to berry consumption by grizzly bears may now be underway in the Park. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  1. Selection of microsites by grizzly bears to excavate biscuitroots (Lomatium cous)

    Science.gov (United States)

    Mattson, D.J.

    1997-01-01

    Roots of the biscuitroot (Lomatium cous) are a common food of grizzly bears (Ursus arctos horribilis) in drier parts of their southern range. I used random sampling and locations of radiomarked bears in the Yellowstone ecosystem to investigate the importance of mass and starch content of roots, digability of the site, and density of plants relative to selection of sites by grizzly bears to dig biscuitroots. Where biscuitroots were present, most differences between dug and undug sites were related to digability of the site and mass and starch content of roots. Grizzly bears more often dug in sites where average milligrams of starch per kilogram of pull per root (a??energy gain) was high. Density of biscuitroots was not related to selection of sites by grizzly bears. Mass of biscuitroot stems also provided relatively little information about mass of roots. Distribution of biscuitroots was associated with increased cover of rocks and exposure to wind, and with decreased slopes and cover of forbs. Digs by grizzly bears were associated with the presence of biscuitroots, proximity to edge of forest, and increased cover of rocks. Results were consistent with previously observed tendencies of grizzly bears to concentrate their feeding within 50-100 m of cover.

  2. Extirpations of grizzly bears in the contiguous United States of America, 1850-2000

    Science.gov (United States)

    Mattson, David J.; Merrill, Troy

    2002-01-01

    We investigated factors associated with the distribution of grizzly bears (Ursus arctos horribilis) in 1850 and their extirpation during 1850–1920 and 1920–1970 in the contiguous United States. We used autologistic regression to describe relations between grizzly bear range in 1850, 1920, and 1970 and potential explanatory factors specified for a comprehensive grid of cells, each 900 km2 in size. We also related persistence, 1920–1970, to range size and shape. Grizzly bear range in 1850 was positively related to occurrence in mountainous ecoregions and the ranges of oaks (Quercus spp.), piñon pines (Pinus edulis and P. monophylla), whitebark pine (P. albicaulis), and bison (Bos bison) and negatively related to occurrence in prairie and hot desert ecoregions. Relations with salmon (Oncorynchus spp.) range and human factors were complex. Persistence of grizzly bear range, 1850–1970, was positively related to occurrence in the Rocky Mountains, whitebark pine range, and local size of grizzly bear range at the beginning of each period, and negatively related to number of humans and the ranges of bison, salmon, and piñon pines. We speculate that foods affected persistence primarily by influencing the frequency of contact between humans and bears. With respect to current conservation, grizzly bears survived from 1920 to 1970 most often where ranges at the beginning of this period were either larger than 20,000 km2 or larger than 7,000 km2 but with a ratio of perimeter to area of grizzly bear range would be as extensive as it is now. Although grizzly bear range in the Yellowstone region is currently the most robust of any to potential future increases in human lethality, bears in this region are threatened by the loss of whitebark pine.

  3. Evaluating management strategies for grizzly bears in British Columbia, Canada

    OpenAIRE

    Schroeder, Amanda

    2017-01-01

    In British Columbia, The Ministry of Forests, Lands and Natural Resource Operations manages grizzly bear hunting as the most rigid and conservatively managed hunt in the province. However, there has been concern raised in the media and from some members of the academic community over the sustainability of grizzly bear hunting. It is unclear whether the current management strategy effectively incorporates uncertainties in grizzly bear biology and management. My research intends to address thes...

  4. Grizzly bear diet shifting on reclaimed mines

    Directory of Open Access Journals (Sweden)

    Bogdan Cristescu

    2015-07-01

    Full Text Available Industrial developments and reclamation change habitat, possibly altering large carnivore food base. We monitored the diet of a low-density population of grizzly bears occupying a landscape with open-pit coal mines in Canada. During 2009–2010 we instrumented 10 bears with GPS radiocollars and compared their feeding on reclaimed coal mines and neighboring Rocky Mountains and their foothills. In addition, we compared our data with historical bear diet for the same population collected in 2001–2003, before extensive mine reclamation occurred. Diet on mines (n=331 scats was dominated by non-native forbs and graminoids, while diets in the Foothills and Mountains consisted primarily of ungulates and Hedysarum spp. roots respectively, showing diet shifting with availability. Field visitation of feeding sites (n=234 GPS relocation clusters also showed that ungulates were the main diet component in the Foothills, whereas on reclaimed mines bears were least carnivorous. These differences illustrate a shift to feeding on non-native forbs while comparisons with historical diet reveal emergence of elk as an important bear food. Food resources on reclaimed mines attract bears from wilderness areas and bears may be more adaptable to landscape change than previously thought. The grizzly bear’s ready use of mines cautions the universal view of this species as umbrella indicative of biodiversity.

  5. Grizzly West: A Failed Attempt to Reintroduce Grizzly Bears in the Mountain West

    Directory of Open Access Journals (Sweden)

    Douglas M. Richardson

    2016-05-01

    Full Text Available Reviewed: Grizzly West: A Failed Attempt to Reintroduce Grizzly Bears in the Mountain West. By Michael M. Dax. Lincoln, NE: University of Nebraska Press, 2015. x + 289 pp. US$ 37.50. ISBN 978-0-8032-6673-5.

  6. Grizzly bear habitat selection is scale dependent.

    Science.gov (United States)

    Ciarniello, Lana M; Boyce, Mark S; Seip, Dale R; Heard, Douglas C

    2007-07-01

    The purpose of our study is to show how ecologists' interpretation of habitat selection by grizzly bears (Ursus arctos) is altered by the scale of observation and also how management questions would be best addressed using predetermined scales of analysis. Using resource selection functions (RSF) we examined how variation in the spatial extent of availability affected our interpretation of habitat selection by grizzly bears inhabiting mountain and plateau landscapes. We estimated separate models for females and males using three spatial extents: within the study area, within the home range, and within predetermined movement buffers. We employed two methods for evaluating the effects of scale on our RSF designs. First, we chose a priori six candidate models, estimated at each scale, and ranked them using Akaike Information Criteria. Using this method, results changed among scales for males but not for females. For female bears, models that included the full suite of covariates predicted habitat use best at each scale. For male bears that resided in the mountains, models based on forest successional stages ranked highest at the study-wide and home range extents, whereas models containing covariates based on terrain features ranked highest at the buffer extent. For male bears on the plateau, each scale estimated a different highest-ranked model. Second, we examined differences among model coefficients across the three scales for one candidate model. We found that both the magnitude and direction of coefficients were dependent upon the scale examined; results varied between landscapes, scales, and sexes. Greenness, reflecting lush green vegetation, was a strong predictor of the presence of female bears in both landscapes and males that resided in the mountains. Male bears on the plateau were the only animals to select areas that exposed them to a high risk of mortality by humans. Our results show that grizzly bear habitat selection is scale dependent. Further, the

  7. Foothills model forest grizzly bear study : project update

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-01-01

    This report updates a five year study launched in 1999 to ensure the continued healthy existence of grizzly bears in west-central Alberta by integrating their needs into land management decisions. The objective was to gather better information and to develop computer-based maps and models regarding grizzly bear migration, habitat use and response to human activities. The study area covers 9,700 square km in west-central Alberta where 66 to 147 grizzly bears exist. During the first 3 field seasons, researchers captured and radio collared 60 bears. Researchers at the University of Calgary used remote sensing tools and satellite images to develop grizzly bear habitat maps. Collaborators at the University of Washington used trained dogs to find bear scat which was analyzed for DNA, stress levels and reproductive hormones. Resource Selection Function models are being developed by researchers at the University of Alberta to identify bear locations and to see how habitat is influenced by vegetation cover and oil, gas, forestry and mining activities. The health of the bears is being studied by researchers at the University of Saskatchewan and the Canadian Cooperative Wildlife Health Centre. The study has already advanced the scientific knowledge of grizzly bear behaviour. Preliminary results indicate that grizzlies continue to find mates, reproduce and gain weight and establish dens. These are all good indicators of a healthy population. Most bear deaths have been related to poaching. The study will continue for another two years. 1 fig.

  8. Grizzly bears and mining in the Cheviot region

    Energy Technology Data Exchange (ETDEWEB)

    Symbaluk, M.; Archibald, T. [Foothills Research Inst., Hinton, AB (Canada)

    2008-07-01

    This presentation described a grizzly bear research program conducted by the Foothill Research Institute at the Cheviot mine. The research program uses a satellite land classification protocol and remote sensing tools to map and identify the grizzly bear habitat. Modelling is also conducted to predict bear probabilities. Global information systems (GIS) are used to evaluate bear responses to human activities. Grizzly bear health and wellness is also assessed as part of the programs. Land maps are combined with global positioning systems (GPS) and resource selection function (RSF) models in order to map grizzly bear distribution. Data obtained from the program is used to inform decision-making and support policy development. Previous studies predicted that the grizzly bear population would disappear from the Cheviot mine area after 20 years of its being in operation. The research program provided real data to test predictions made during previous environmental assessments. Grizzly bear populations have actually increased in the mining area. It was concluded that the bears have moved more freely through industrial landscapes than previously predicted. tabs., figs.

  9. How much lox is a grizzly bear worth?

    Science.gov (United States)

    Chase, Jonathan

    2012-01-01

    Using grizzly bears as surrogates for "salmon ecosystem" function, the authors develop a generalizable ecosystem-based management framework that enables decision makers to quantify ecosystem-harvest tradeoffs between wild and human recipients of natural resources like fish.

  10. Contrasting past and current numbers of bears visiting Yellowstone cutthroat trout streams

    Science.gov (United States)

    Haroldson, Mark A.; Schwartz, Charles C.; Teisberg, Justin E.; Gunther, Kerry A.; Fortin, Jennifer K.; Robbins, Charles T.

    2014-01-01

    Spawning cutthroat trout (Oncorhynchus clarkii bouvieri) were historically abundant within tributary streams of Yellowstone Lake within Yellowstone National Park and were a highly digestible source of energy and protein for Yellowstone’s grizzly bears (Ursus arctos) and black bears (U. americanus). The cutthroat trout population has subsequently declined since the introduction of non-native lake trout (Salvelinus namaycush), and in response to effects of drought and whirling disease (Myxobolus cerebralis). The trout population, duration of spawning runs, and indices of bear use of spawning streams had declined in some regions of the lake by 1997–2000. We initiated a 3-year study in 2007 to assess whether numbers of spawning fish, black bears, and grizzly bears within and alongside stream corridors had changed since 1997– 2000. We estimated numbers of grizzly bears and black bears by first compiling encounter histories of individual bears visiting 48 hair-snag sites along 35 historically fished streams.We analyzed DNA encounter histories with Pradel-recruitment and Jolly-Seber (POPAN) capture-mark-recapture models. When compared to 1997–2000, the current number of spawning cutthroat trout per stream and the number of streams with cutthroat trout has decreased. We estimated that 48 (95% CI¼42–56) male and 23 (95% CI¼21–27) female grizzly bears visited the historically fished tributary streams during our study. In any 1- year, 46 to 59 independent grizzly bears (8–10% of estimated Greater Yellowstone Ecosystem population) visited these streams. When compared with estimates from the 1997 to 2000 study and adjusted for equal effort, the number of grizzly bears using the stream corridors decreased by 63%. Additionally, the number of black bears decreased between 64% and 84%. We also document an increased proportion of bears of both species visiting front-country (i.e., near human development) streams. With the recovery of cutthroat trout, we suggest bears

  11. Grizzly bear corticosteroid binding globulin: Cloning and serum protein expression.

    Science.gov (United States)

    Chow, Brian A; Hamilton, Jason; Alsop, Derek; Cattet, Marc R L; Stenhouse, Gordon; Vijayan, Mathilakath M

    2010-06-01

    Serum corticosteroid levels are routinely measured as markers of stress in wild animals. However, corticosteroid levels rise rapidly in response to the acute stress of capture and restraint for sampling, limiting its use as an indicator of chronic stress. We hypothesized that serum corticosteroid binding globulin (CBG), the primary transport protein for corticosteroids in circulation, may be a better marker of the stress status prior to capture in grizzly bears (Ursus arctos). To test this, a full-length CBG cDNA was cloned and sequenced from grizzly bear testis and polyclonal antibodies were generated for detection of this protein in bear sera. The deduced nucleotide and protein sequences were 1218 bp and 405 amino acids, respectively. Multiple sequence alignments showed that grizzly bear CBG (gbCBG) was 90% and 83% identical to the dog CBG nucleotide and amino acid sequences, respectively. The affinity purified rabbit gbCBG antiserum detected grizzly bear but not human CBG. There were no sex differences in serum total cortisol concentration, while CBG expression was significantly higher in adult females compared to males. Serum cortisol levels were significantly higher in bears captured by leg-hold snare compared to those captured by remote drug delivery from helicopter. However, serum CBG expression between these two groups did not differ significantly. Overall, serum CBG levels may be a better marker of chronic stress, especially because this protein is not modulated by the stress of capture and restraint in grizzly bears. Copyright 2010 Elsevier Inc. All rights reserved.

  12. Grizzly bear density in Glacier National Park, Montana

    Science.gov (United States)

    Kendall, K.C.; Stetz, J.B.; Roon, David A.; Waits, L.P.; Boulanger, J.B.; Paetkau, David

    2008-01-01

    We present the first rigorous estimate of grizzly bear (Ursus arctos) population density and distribution in and around Glacier National Park (GNP), Montana, USA. We used genetic analysis to identify individual bears from hair samples collected via 2 concurrent sampling methods: 1) systematically distributed, baited, barbed-wire hair traps and 2) unbaited bear rub trees found along trails. We used Huggins closed mixture models in Program MARK to estimate total population size and developed a method to account for heterogeneity caused by unequal access to rub trees. We corrected our estimate for lack of geographic closure using a new method that utilizes information from radiocollared bears and the distribution of bears captured with DNA sampling. Adjusted for closure, the average number of grizzly bears in our study area was 240.7 (95% CI = 202–303) in 1998 and 240.6 (95% CI = 205–304) in 2000. Average grizzly bear density was 30 bears/1,000 km2, with 2.4 times more bears detected per hair trap inside than outside GNP. We provide baseline information important for managing one of the few remaining populations of grizzlies in the contiguous United States.

  13. 78 FR 29774 - Endangered and Threatened Wildlife and Plants; Draft Revised Supplement to the Grizzly Bear...

    Science.gov (United States)

    2013-05-21

    ...] Endangered and Threatened Wildlife and Plants; Draft Revised Supplement to the Grizzly Bear Recovery Plan... extending the public comment period for a Draft Revised Supplement to the Grizzly Bear Recovery Plan in the... to the Grizzly Bear Recovery Plan is available at http://www.fws.gov/mountain-prairie/species/mammals...

  14. Predicting grizzly bear density in western North America.

    Science.gov (United States)

    Mowat, Garth; Heard, Douglas C; Schwarz, Carl J

    2013-01-01

    Conservation of grizzly bears (Ursus arctos) is often controversial and the disagreement often is focused on the estimates of density used to calculate allowable kill. Many recent estimates of grizzly bear density are now available but field-based estimates will never be available for more than a small portion of hunted populations. Current methods of predicting density in areas of management interest are subjective and untested. Objective methods have been proposed, but these statistical models are so dependent on results from individual study areas that the models do not generalize well. We built regression models to relate grizzly bear density to ultimate measures of ecosystem productivity and mortality for interior and coastal ecosystems in North America. We used 90 measures of grizzly bear density in interior ecosystems, of which 14 were currently known to be unoccupied by grizzly bears. In coastal areas, we used 17 measures of density including 2 unoccupied areas. Our best model for coastal areas included a negative relationship with tree cover and positive relationships with the proportion of salmon in the diet and topographic ruggedness, which was correlated with precipitation. Our best interior model included 3 variables that indexed terrestrial productivity, 1 describing vegetation cover, 2 indices of human use of the landscape and, an index of topographic ruggedness. We used our models to predict current population sizes across Canada and present these as alternatives to current population estimates. Our models predict fewer grizzly bears in British Columbia but more bears in Canada than in the latest status review. These predictions can be used to assess population status, set limits for total human-caused mortality, and for conservation planning, but because our predictions are static, they cannot be used to assess population trend.

  15. Predicting grizzly bear density in western North America.

    Directory of Open Access Journals (Sweden)

    Garth Mowat

    Full Text Available Conservation of grizzly bears (Ursus arctos is often controversial and the disagreement often is focused on the estimates of density used to calculate allowable kill. Many recent estimates of grizzly bear density are now available but field-based estimates will never be available for more than a small portion of hunted populations. Current methods of predicting density in areas of management interest are subjective and untested. Objective methods have been proposed, but these statistical models are so dependent on results from individual study areas that the models do not generalize well. We built regression models to relate grizzly bear density to ultimate measures of ecosystem productivity and mortality for interior and coastal ecosystems in North America. We used 90 measures of grizzly bear density in interior ecosystems, of which 14 were currently known to be unoccupied by grizzly bears. In coastal areas, we used 17 measures of density including 2 unoccupied areas. Our best model for coastal areas included a negative relationship with tree cover and positive relationships with the proportion of salmon in the diet and topographic ruggedness, which was correlated with precipitation. Our best interior model included 3 variables that indexed terrestrial productivity, 1 describing vegetation cover, 2 indices of human use of the landscape and, an index of topographic ruggedness. We used our models to predict current population sizes across Canada and present these as alternatives to current population estimates. Our models predict fewer grizzly bears in British Columbia but more bears in Canada than in the latest status review. These predictions can be used to assess population status, set limits for total human-caused mortality, and for conservation planning, but because our predictions are static, they cannot be used to assess population trend.

  16. Active fans and grizzly bears: Reducing risks for wilderness campers

    Science.gov (United States)

    Sakals, M. E.; Wilford, D. J.; Wellwood, D. W.; MacDougall, S. A.

    2010-03-01

    Active geomorphic fans experience debris flows, debris floods and/or floods (hydrogeomorphic processes) that can be hazards to humans. Grizzly bears ( Ursus arctos) can also be a hazard to humans. This paper presents the results of a cross-disciplinary study that analyzed both hydrogeomorphic and grizzly bear hazards to wilderness campers on geomorphic fans along a popular hiking trail in Kluane National Park and Reserve in southwestern Yukon Territory, Canada. Based on the results, a method is proposed to reduce the risks to campers associated with camping on fans. The method includes both landscape and site scales and is based on easily understood and readily available information regarding weather, vegetation, stream bank conditions, and bear ecology and behaviour. Educating wilderness campers and providing a method of decision-making to reduce risk supports Parks Canada's public safety program; a program based on the principle of user self-sufficiency. Reducing grizzly bear-human conflicts complements the efforts of Parks Canada to ensure a healthy grizzly bear population.

  17. Potential paths for male-mediated gene flow to and from an isolated grizzly bear population

    Science.gov (United States)

    Peck, Christopher P.; van Manen, Frank T.; Costello, Cecily M.; Haroldson, Mark A.; Landenburger, Lisa; Roberts, Lori L.; Bjornlie, Daniel D.; Mace, Richard D.

    2017-01-01

    For several decades, grizzly bear populations in the Greater Yellowstone Ecosystem (GYE) and the Northern Continental Divide Ecosystem (NCDE) have increased in numbers and range extent. The GYE population remains isolated and although effective population size has increased since the early 1980s, genetic connectivity between these populations remains a long-term management goal. With only ~110 km distance separating current estimates of occupied range for these populations, the potential for gene flow is likely greater now than it has been for many decades. We sought to delineate potential paths that would provide the opportunity for male-mediated gene flow between the two populations. We first developed step-selection functions to generate conductance layers using ecological, physical, and anthropogenic landscape features associated with non-stationary GPS locations of 124 male grizzly bears (199 bear-years). We then used a randomized shortest path (RSP) algorithm to estimate the average number of net passages for all grid cells in the study region, when moving from an origin to a destination node. Given habitat characteristics that were the basis for the conductance layer, movements follow certain grid cell sequences more than others and the resulting RSP values thus provide a measure of movement potential. Repeating this process for 100 pairs of random origin and destination nodes, we identified paths for three levels of random deviation (θ) from the least-cost path. We observed broad-scale concordance between model predictions for paths originating in the NCDE and those originating in the GYE for all three levels of movement exploration. Model predictions indicated that male grizzly bear movement between the ecosystems could involve a variety of routes, and verified observations of grizzly bears outside occupied range supported this finding. Where landscape features concentrated paths into corridors (e.g., because of anthropogenic influence), they typically

  18. How much lox is a grizzly bear worth?

    Directory of Open Access Journals (Sweden)

    Jonathan Chase

    Full Text Available Using grizzly bears as surrogates for "salmon ecosystem" function, the authors develop a generalizable ecosystem-based management framework that enables decision makers to quantify ecosystem-harvest tradeoffs between wild and human recipients of natural resources like fish.

  19. MEDULLOBLASTOMA IN A GRIZZLY BEAR (URSUS ARCTOS HORRIBLIS).

    Science.gov (United States)

    Mitchell, Jeffrey W; Thomovsky, Stephanie A; Chen, Annie V; Layton, Arthur W; Haldorson, Gary; Tucker, Russell L; Roberts, Gregory

    2015-09-01

    A 3-yr-old female spayed grizzly bear (Ursus arctos horribilis) was evaluated for seizure activity along with lethargy, inappetence, dull mentation, and aggressive behavior. Magnetic resonance (MR) examination of the brain revealed a contrast-enhanced right cerebellar mass with multifocal smaller nodules located in the left cerebellum, thalamus, hippocampus, and cerebrum with resultant obstructive hydrocephalus. Cerebrospinal fluid analysis revealed mild mononuclear pleocytosis, with differentials including inflammatory versus neoplastic processes. Blood and cerebrospinal fluid were also submitted for polymerase chain reaction and agar gel immunodiffusion to rule out infectious causes of meningitis/encephalitis. While awaiting these results, the bear was placed on steroid and antibiotic therapy. Over the next week, the bear deteriorated; she died 1 wk after MR. A complete postmortem examination, including immunohistochemisty, revealed the cerebellar mass to be a medulloblastoma. This is the only case report, to the authors' knowledge, describing a medulloblastoma in a grizzly bear.

  20. Acquired arteriovenous fistula in a grizzly bear (Ursus arctos horribilis).

    Science.gov (United States)

    Tuttle, Allison D; MacLean, Robert A; Linder, Keith; Cullen, John M; Wolfe, Barbara A; Loomis, Michael

    2009-03-01

    A captive adult male grizzly bear (Ursus arctos horribilis) was evaluated due to multifocal wounds of the skin and subcutaneous tissues sustained as a result of trauma from another grizzly bear. On presentation, one lesion that was located in the perineal region seemed to be a deep puncture with purple tissue protruding from it. This perineal wound did not heal in the same manner or rate as did the other wounds. Twenty-five days after initial detection, substantial active hemorrhage from the lesion occurred and necessitated anesthesia for examination of the bear. The entire lesion was surgically excised, which later proved curative. An acquired arteriovenous fistula was diagnosed via histopathology. Arteriovenous fistulas can develop after traumatic injury and should be considered as a potential complication in bears with nonhealing wounds.

  1. Contrasting activity patterns of sympatric and allopatric black and grizzly bears

    Science.gov (United States)

    Schwartz, C.C.; Cain, S.L.; Podruzny, S.; Cherry, S.; Frattaroli, L.

    2010-01-01

    The distribution of grizzly (Ursus arctos) and American black bears (U. americanus) overlaps in western North America. Few studies have detailed activity patterns where the species are sympatric and no studies contrasted patterns where populations are both sympatric and allopatric. We contrasted activity patterns for sympatric black and grizzly bears and for black bears allopatric to grizzly bears, how human influences altered patterns, and rates of grizzlyblack bear predation. Activity patterns differed between black bear populations, with those sympatric to grizzly bears more day-active. Activity patterns of black bears allopatric with grizzly bears were similar to those of female grizzly bears; both were crepuscular and day-active. Male grizzly bears were crepuscular and night-active. Both species were more night-active and less day-active when ???1 km from roads or developments. In our sympatric study area, 2 of 4 black bear mortalities were due to grizzly bear predation. Our results suggested patterns of activity that allowed for intra- and inter-species avoidance. National park management often results in convergence of locally high human densities in quality bear habitat. Our data provide additional understanding into how bears alter their activity patterns in response to other bears and humans and should help park managers minimize undesirable bearhuman encounters when considering needs for temporal and spatial management of humans and human developments in bear habitats. ?? 2010 The Wildlife Society.

  2. Grizzly bear predation rates on caribou calves in northeastern Alaska

    Science.gov (United States)

    Young, Donald D.; McCabe, Thomas R.

    1997-01-01

    During June 1993 and 1994, 11 radiocollared and 7 unmarked grizzly bears (Ursus arctos) were monitored visually (observation) from fixed-wing aircraft to document predation on calves of the Porcupine Caribou (Rangifer tarandus) Herd (PCH) in northeastern Alaska. Twenty-six (72%) grizzly bear observations were completed (???60 min) successfully (median duration = 180 min; ??95% CI = 136-181 min; range = 67-189 min) and 10 were discontinued (duration ???24 min) due to disturbance to the bear, or unfavorable weather conditions. Of the 26 successfully completed observations, 15 (58%) included predatory activity (encounter) directed at caribou calves and 8 (31%) included kills. Of 32 encounters, 9 resulted in kills, for a success rate of 28%. The median duration of encounters was 1 minute (??95% CI = 1-2 min; range = 1-6 min; n = 32;), and the median time spent at a kill was 14 minutes (??95% CI = 9-23 min; range = 6-56 min; n = 9). Sows with young (n = 4) killed more frequently (75%; P = 0.0178) than barren sows, boars, and consorting pairs combined (17%; n = 18). Estimated kill rate was highest for sows with young (6.3 kills/bear/day; n = 4), followed by barren sows (4.6 kills/bear/day; n = 5), boars (1.9 kills/bear/day; n = 5), and, finally, consorting pairs (1.0 kills/bear/day; n = 8). Estimated kill rate obtained via conventional radiotracking point surveys (4.8 kills/bear/day) was higher than that obtained via concurrent bear observations (3.1 kills/bear/day). Our research provides baseline estimates of predation rates by grizzly bears on caribou calves that will enhance the capability of wildlife professionals in managing populations of both predators and their prey.

  3. Analyzing Whitebark Pine Distribution in the Northern Rocky Mountains in Support of Grizzly Bear Recovery

    Science.gov (United States)

    Lawrence, R.; Landenburger, L.; Jewett, J.

    2007-12-01

    Whitebark pine seeds have long been identified as the most significant vegetative food source for grizzly bears in the Greater Yellowstone Ecosystem (GYE) and, hence, a crucial element of suitable grizzly bear habitat. The overall health and status of whitebark pine in the GYE is currently threatened by mountain pine beetle infestations and the spread of whitepine blister rust. Whitebark pine distribution (presence/absence) was mapped for the GYE using Landsat 7 Enhanced Thematic Mapper (ETM+) imagery and topographic data as part of a long-term inter-agency monitoring program. Logistic regression was compared with classification tree analysis (CTA) with and without boosting. Overall comparative classification accuracies for the central portion of the GYE covering three ETM+ images along a single path ranged from 91.6% using logistic regression to 95.8% with See5's CTA algorithm with the maximum 99 boosts. The analysis is being extended to the entire northern Rocky Mountain Ecosystem and extended over decadal time scales. The analysis is being extended to the entire northern Rocky Mountain Ecosystem and extended over decadal time scales.

  4. Oil and gas planning and development in Alberta : new approaches to integrate grizzly bear conservation

    Energy Technology Data Exchange (ETDEWEB)

    Stenhouse, G. [Foothills Model Forest Grizzly Bear Research Program, AB (Canada)

    2007-07-01

    This paper reported on a grizzly bear research program that was initiated in the province of Alberta to provide new knowledge and tools to ensure the long term survival of grizzly bears on a multiple use landscape. The Foothills Model Forest (FMF) Grizzly Bear Research Program was formed by scientists from across Canada from a variety of scientific disciplines. A strong partner base has been created to allow the FMF's research efforts to span the entire current distribution of grizzly bear habitat in Alberta. The FMF has provided new large scale seamless maps of grizzly bear habitat and, using detailed grizzly bear GPS movement data, has constructed and tested models that can identify key grizzly bear habitat. This presentation focused on the results of 9 years of applied research and described the new tools and models that are now available to program partners in Alberta. The products are currently being used by both industry and government in Alberta as new standards in landscape management planning in grizzly bear habitat. The author suggested that the approach taken with grizzly bears in Alberta could be used and adapted for a variety of wildlife species in the north. figs.

  5. Energy homeostasis regulatory peptides in hibernating grizzly bears.

    Science.gov (United States)

    Gardi, János; Nelson, O Lynne; Robbins, Charles T; Szentirmai, Eva; Kapás, Levente; Krueger, James M

    2011-05-15

    Grizzly bears (Ursus arctos horribilis) are inactive for up to 6 months during hibernation. They undergo profound seasonal changes in food intake, body mass, and energy expenditure. The circa-annual regulation of metabolism is poorly understood. In this study, we measured plasma ghrelin, leptin, obestatin, and neuropeptide-Y (NPY) levels, hormones known to be involved in the regulation of energy homeostasis, in ten grizzly bears. Blood samples were collected during the active summer period, early hibernation and late hibernation. Plasma levels of leptin, obestatin, and NPY did not change between the active and the hibernation periods. Plasma total ghrelin and desacyl-ghrelin concentrations significantly decreased during the inactive winter period compared to summer levels. The elevated ghrelin levels may help enhance body mass during pre-hibernation, while the low plasma ghrelin concentrations during hibernation season may contribute to the maintenance of hypophagia, low energy utilization and behavioral inactivity. Our results suggest that ghrelin plays a potential role in the regulation of metabolic changes and energy homeostasis during hibernation in grizzly bears. Copyright © 2011 Elsevier Inc. All rights reserved.

  6. Salmon-Eating Grizzly Bears Exposed to Elevated Levels of Marine Derived Persistent Organic Pollutants

    Science.gov (United States)

    Christensen, J. R.; Ross, P. S.; Whiticar, M. J.

    2004-12-01

    The coastal grizzly bears of British Columbia (BC, Canada) rely heavily on salmon returning from the Pacific Ocean, whereas interior bears do not have access to or readily utilize this marine-derived food source. Since salmon have been shown to accumulate persistent organic pollutants (POPs) from the North Pacific Ocean, we hypothesized that salmon consumption by grizzly bears would be reflected by an increase in the POP burden. To test this hypothesis we collected hair and fat tissue from grizzlies at various locations around BC to compare salmon-eating (coastal) grizzlies to non-salmon-eating (interior) grizzlies. We characterized the feeding habits for each bear sampled by measuring the stable carbon and nitrogen isotope signature of their hair. The positive relationship between 13C/12C and 15N/14N isotopic ratios suggests that the majority of the meat portion of the diet of coastal grizzlies is coming from salmon, rather than from terrestrial or freshwater sources. By contrast, stable isotope ratios revealed that interior bears have an almost exclusive vegetarian diet with no marine influence. As hypothesized, the coastal grizzly bears have significantly greater OC pesticide and lower-brominated PBDE congener body burden than the interior grizzlies. We also found a positive relationship between C and N isotope ratios and these same POP contaminants in bear tissue. Overall, these results demonstrate that Pacific salmon represents a significant vector delivering both OC pesticides and PBDEs to BC coastal grizzly bears.

  7. The role of human outdoor recreation in shaping patterns of grizzly bear-black bear co-occurrence.

    Directory of Open Access Journals (Sweden)

    Andrew Ladle

    Full Text Available Species' distributions are influenced by a combination of landscape variables and biotic interactions with other species, including people. Grizzly bears and black bears are sympatric, competing omnivores that also share habitats with human recreationists. By adapting models for multi-species occupancy analysis, we analyzed trail camera data from 192 trail camera locations in and around Jasper National Park, Canada to estimate grizzly bear and black bear occurrence and intensity of trail use. We documented (a occurrence of grizzly bears and black bears relative to habitat variables (b occurrence and intensity of use relative to competing bear species and motorised and non-motorised recreational activity, and (c temporal overlap in activity patterns among the two bear species and recreationists. Grizzly bears were spatially separated from black bears, selecting higher elevations and locations farther from roads. Both species co-occurred with motorised and non-motorised recreation, however, grizzly bears reduced their intensity of use of sites with motorised recreation present. Black bears showed higher temporal activity overlap with recreational activity than grizzly bears, however differences in bear daily activity patterns between sites with and without motorised and non-motorised recreation were not significant. Reduced intensity of use by grizzly bears of sites where motorised recreation was present is a concern given off-road recreation is becoming increasingly popular in North America, and can negatively influence grizzly bear recovery by reducing foraging opportunities near or on trails. Camera traps and multi-species occurrence models offer non-invasive methods for identifying how habitat use by animals changes relative to sympatric species, including humans. These conclusions emphasise the need for integrated land-use planning, access management, and grizzly bear conservation efforts to consider the implications of continued access for

  8. The role of human outdoor recreation in shaping patterns of grizzly bear-black bear co-occurrence.

    Science.gov (United States)

    Ladle, Andrew; Steenweg, Robin; Shepherd, Brenda; Boyce, Mark S

    2018-01-01

    Species' distributions are influenced by a combination of landscape variables and biotic interactions with other species, including people. Grizzly bears and black bears are sympatric, competing omnivores that also share habitats with human recreationists. By adapting models for multi-species occupancy analysis, we analyzed trail camera data from 192 trail camera locations in and around Jasper National Park, Canada to estimate grizzly bear and black bear occurrence and intensity of trail use. We documented (a) occurrence of grizzly bears and black bears relative to habitat variables (b) occurrence and intensity of use relative to competing bear species and motorised and non-motorised recreational activity, and (c) temporal overlap in activity patterns among the two bear species and recreationists. Grizzly bears were spatially separated from black bears, selecting higher elevations and locations farther from roads. Both species co-occurred with motorised and non-motorised recreation, however, grizzly bears reduced their intensity of use of sites with motorised recreation present. Black bears showed higher temporal activity overlap with recreational activity than grizzly bears, however differences in bear daily activity patterns between sites with and without motorised and non-motorised recreation were not significant. Reduced intensity of use by grizzly bears of sites where motorised recreation was present is a concern given off-road recreation is becoming increasingly popular in North America, and can negatively influence grizzly bear recovery by reducing foraging opportunities near or on trails. Camera traps and multi-species occurrence models offer non-invasive methods for identifying how habitat use by animals changes relative to sympatric species, including humans. These conclusions emphasise the need for integrated land-use planning, access management, and grizzly bear conservation efforts to consider the implications of continued access for motorised

  9. Evaluation of cardiac function in active and hibernating grizzly bears.

    Science.gov (United States)

    Nelson, O Lynne; McEwen, Margaret-Mary; Robbins, Charles T; Felicetti, Laura; Christensen, William F

    2003-10-15

    To evaluate cardiac function parameters in a group of active and hibernating grizzly bears. Prospective study. 6 subadult grizzly bears. Indirect blood pressure, a 12-lead ECG, and a routine echocardiogram were obtained in each bear during the summer active phase and during hibernation. All measurements of myocardial contractility were significantly lower in all bears during hibernation, compared with the active period. Mean rate of circumferential left ventricular shortening, percentage fractional shortening, and percentage left ventricular ejection fraction were significantly lower in bears during hibernation, compared with the active period. Certain indices of diastolic function appeared to indicate enhanced ventricular compliance during the hibernation period. Mean mitral inflow ratio and isovolumic relaxation time were greater during hibernation. Heart rate was significantly lower for hibernating bears, and mean cardiac index was lower but not significantly different from cardiac index during the active phase. Contrary to results obtained in hibernating rodent species, cardiac index was not significantly correlated with heart rate. Cardiac function parameters in hibernating bears are opposite to the chronic bradycardic effects detected in nonhibernating species, likely because of intrinsic cardiac muscle adaptations during hibernation. Understanding mechanisms and responses of the myocardium during hibernation could yield insight into mechanisms of cardiac function regulation in various disease states in nonhibernating species.

  10. Detecting grizzly bear use of ungulate carcasses using global positioning system telemetry and activity data

    Science.gov (United States)

    Ebinger, Michael R.; Haroldson, Mark A.; van Manen, Frank T.; Costello, Cecily M.; Bjornlie, Daniel D.; Thompson, Daniel J.; Gunther, Kerry A.; Fortin, Jennifer K.; Teisberg, Justin E.; Pils, Shannon R; White, P J; Cain, Steven L.; Cross, Paul C.

    2016-01-01

    Global positioning system (GPS) wildlife collars have revolutionized wildlife research. Studies of predation by free-ranging carnivores have particularly benefited from the application of location clustering algorithms to determine when and where predation events occur. These studies have changed our understanding of large carnivore behavior, but the gains have concentrated on obligate carnivores. Facultative carnivores, such as grizzly/brown bears (Ursus arctos), exhibit a variety of behaviors that can lead to the formation of GPS clusters. We combined clustering techniques with field site investigations of grizzly bear GPS locations (n = 732 site investigations; 2004–2011) to produce 174 GPS clusters where documented behavior was partitioned into five classes (large-biomass carcass, small-biomass carcass, old carcass, non-carcass activity, and resting). We used multinomial logistic regression to predict the probability of clusters belonging to each class. Two cross-validation methods—leaving out individual clusters, or leaving out individual bears—showed that correct prediction of bear visitation to large-biomass carcasses was 78–88%, whereas the false-positive rate was 18–24%. As a case study, we applied our predictive model to a GPS data set of 266 bear-years in the Greater Yellowstone Ecosystem (2002–2011) and examined trends in carcass visitation during fall hyperphagia (September–October). We identified 1997 spatial GPS clusters, of which 347 were predicted to be large-biomass carcasses. We used the clustered data to develop a carcass visitation index, which varied annually, but more than doubled during the study period. Our study demonstrates the effectiveness and utility of identifying GPS clusters associated with carcass visitation by a facultative carnivore.

  11. Use of isotopic sulfur to determine whitebark pine consumption by Yellowstone bears: a reassessment

    Science.gov (United States)

    Schwartz, Charles C.; Teisberg, Justin E.; Fortin, Jennifer K.; Haroldson, Mark A.; Servheen, Christopher; Robbins, Charles T.; van Manen, Frank T.

    2014-01-01

    Use of naturally occurring stable isotopes to estimate assimilated diet of bears is one of the single greatest breakthroughs in nutritional ecology during the past 20 years. Previous research in the Greater Yellowstone Ecosystem (GYE), USA, established a positive relationship between the stable isotope of sulfur (δ34S) and consumption of whitebark pine (Pinus albicaulis) seeds. That work combined a limited sample of hair, blood clots, and serum. Here we use a much larger sample to reassess those findings. We contrasted δ34S values in spring hair and serum with abundance of seeds of whitebark pine in samples collected from grizzly (Ursus arctos) and American black bears (U. americanus) in the GYE during 2000–2010. Although we found a positive relationship between δ34S values in spring hair and pine seed abundance for grizzly bears, the coefficients of determination were small (R2 ≤ 0.097); we failed to find a similar relationship with black bears. Values of δ34S in spring hair were larger in black bears and δ34S values in serum of grizzly bears were lowest in September and October, a time when we expect δ34S to peak if whitebark pine seeds were the sole source of high δ34S. The relationship between δ34S in bear tissue and the consumption of whitebark pine seeds, as originally reported, may not be as clean a method as proposed. Data we present here suggest other foods have high values of δ34S, and there is spatial heterogeneity affecting the δ34S values in whitebark pine, which must be addressed.

  12. Bacterial populations and metabolites in the feces of free roaming and captive grizzly bears.

    Science.gov (United States)

    Schwab, Clarissa; Cristescu, Bogdan; Boyce, Mark S; Stenhouse, Gordon B; Gänzle, Michael

    2009-12-01

    Gut physiology, host phylogeny, and diet determine the composition of the intestinal microbiota. Grizzly bears (Ursus arctos horribilis) belong to the Order Carnivora, yet feed on an omnivorous diet. The role of intestinal microflora in grizzly bear digestion has not been investigated. Microbiota and microbial activity were analysed from the feces of wild and captive grizzly bears. Bacterial composition was determined using culture-dependent and culture-independent methods. The feces of wild and captive grizzly bears contained log 9.1 +/- 0.5 and log 9.2 +/- 0.3 gene copies x g(-1), respectively. Facultative anaerobes Enterobacteriaceae and enterococci were dominant in wild bear feces. Among the strict anaerobes, the Bacteroides-Prevotella-Porphyromonas group was most prominent. Enterobacteriaceae were predominant in the feces of captive grizzly bears, at log 8.9 +/- 0.5 gene copies x g(-1). Strict anaerobes of the Bacteroides-Prevotella-Porphyromonas group and the Clostridium coccoides cluster were present at log 6.7 +/- 0.9 and log 6.8 +/- 0.8 gene copies x g(-1), respectively. The presence of lactate and short-chain fatty acids (SCFAs) verified microbial activity. Total SCFA content and composition was affected by diet. SCFA composition in the feces of captive grizzly bears resembled the SCFA composition of prey-consuming wild animals. A consistent data set was obtained that associated fecal microbiota and metabolites with the distinctive gut physiology and diet of grizzly bears.

  13. The role of human outdoor recreation in shaping patterns of grizzly bear-black bear co-occurrence

    OpenAIRE

    Ladle, Andrew; Steenweg, Robin; Shepherd, Brenda; Boyce, Mark S.

    2018-01-01

    Species' distributions are influenced by a combination of landscape variables and biotic interactions with other species, including people. Grizzly bears and black bears are sympatric, competing omnivores that also share habitats with human recreationists. By adapting models for multi-species occupancy analysis, we analyzed trail camera data from 192 trail camera locations in and around Jasper National Park, Canada to estimate grizzly bear and black bear occurrence and intensity of trail use....

  14. The role of human outdoor recreation in shaping patterns of grizzly bear-black bear co-occurrence

    OpenAIRE

    Ladle, Andrew; Steenweg, Robin; Shepherd, Brenda; Boyce, Mark S.

    2018-01-01

    Species’ distributions are influenced by a combination of landscape variables and biotic interactions with other species, including people. Grizzly bears and black bears are sympatric, competing omnivores that also share habitats with human recreationists. By adapting models for multi-species occupancy analysis, we analyzed trail camera data from 192 trail camera locations in and around Jasper National Park, Canada to estimate grizzly bear and black bear occurrence and intensity of trail use....

  15. Demography and genetic structure of a recovering grizzly bear population

    Science.gov (United States)

    Kendall, K.C.; Stetz, J.B.; Boulanger, J.; Macleod, A.C.; Paetkau, David; White, Gary C.

    2009-01-01

    Grizzly bears (brown bears; Ursus arctos) are imperiled in the southern extent of their range worldwide. The threatened population in northwestern Montana, USA, has been managed for recovery since 1975; yet, no rigorous data were available to monitor program success. We used data from a large noninvasive genetic sampling effort conducted in 2004 and 33 years of physical captures to assess abundance, distribution, and genetic health of this population. We combined data from our 3 sampling methods (hair trap, bear rub, and physical capture) to construct individual bear encounter histories for use in Huggins-Pledger closed mark-recapture models. Our population estimate, N?? = 765 (95% CI = 715-831) was more than double the existing estimate derived from sightings of females with young. Based on our results, the estimated known, human-caused mortality rate in 2004 was 4.6% (95% CI = 4.2-4.9%), slightly above the 4% considered sustainable; however, the high proportion of female mortalities raises concern. We used location data from telemetry, confirmed sightings, and genetic sampling to estimate occupied habitat. We found that grizzly bears occupied 33,480 km2 in the Northern Continental Divide Ecosystem (NCDE) during 1994-2007, including 10,340 km beyond the Recovery Zone. We used factorial correspondence analysis to identify potential barriers to gene flow within this population. Our results suggested that genetic interchange recently increased in areas with low gene flow in the past; however, we also detected evidence of incipient fragmentation across the major transportation corridor in this ecosystem. Our results suggest that the NCDE population is faring better than previously thought, and they highlight the need for a more rigorous monitoring program.

  16. Disseminated pleomorphic myofibrosarcoma in a grizzly bear (Ursus arctos horribilis).

    Science.gov (United States)

    Mete, A; Woods, L; Famini, D; Anderson, M

    2012-01-01

    The pathological and diagnostic features of a widely disseminated pleomorphic high-grade myofibroblastic sarcoma are described in a 23-year-old male brown bear (Ursus arctos horribilis). Firm, solid, white to tan neoplastic nodules, often with cavitated or soft grey-red necrotic centres, were observed throughout most internal organs, subcutaneous tissues and skeletal muscles on gross examination. Microscopically, the tumour consisted of pleomorphic spindle cells forming interlacing fascicles with a focal storiform pattern with large numbers of bizarre polygonal multinucleate cells, frequently within a collagenous stroma. Immunohistochemistry, Masson's trichrome stain and transmission electron microscopy designated the myofibroblast as the cell of origin. This is the first case of a high-grade myofibrosarcoma in a grizzly bear. Published by Elsevier Ltd.

  17. Prevalence of Trichinella spp. in black bears, grizzly bears, and wolves in the Dehcho Region, Northwest Territories, Canada, including the first report of T. nativa in a grizzly bear from Canada.

    Science.gov (United States)

    Larter, Nicholas C; Forbes, Lorry B; Elkin, Brett T; Allaire, Danny G

    2011-07-01

    Samples of muscle from 120 black bears (Ursus americanus), 11 grizzly bears (Ursus arctos), and 27 wolves (Canis lupus) collected in the Dehcho Region of the Northwest Territories from 2001 to 2010 were examined for the presence of Trichinella spp. larvae using a pepsin-HCl digestion assay. Trichinella spp. larvae were found in eight of 11 (73%) grizzly bears, 14 of 27 (52%) wolves, and seven of 120 (5.8%) black bears. The average age of positive grizzly bears, black bears, and wolves was 13.5, 9.9, and approximately 4 yr, respectively. Larvae from 11 wolves, six black bears, and seven grizzly bears were genotyped. Six wolves were infected with T. nativa and five with Trichinella T6, four black bears were infected with T. nativa and two with Trichinella T6, and all seven grizzly bears were infected with Trichinella T6 and one of them had a coinfection with T. nativa. This is the first report of T. nativa in a grizzly bear from Canada. Bears have been linked to trichinellosis outbreaks in humans in Canada, and black bears are a subsistence food source for residents of the Dehcho region. In order to assess food safety risk it is important to monitor the prevalence of Trichinella spp. in both species of bear and their cohabiting mammalian food sources.

  18. Contrafreeloading in grizzly bears: implications for captive foraging enrichment.

    Science.gov (United States)

    McGowan, Ragen T S; Robbins, Charles T; Alldredge, J Richard; Newberry, Ruth C

    2010-01-01

    Although traditional feeding regimens for captive animals were focused on meeting physiological needs to assure good health, more recently emphasis has also been placed on non-nutritive aspects of feeding. The provision of foraging materials to diversify feeding behavior is a common practice in zoos but selective consumption of foraging enrichment items over more balanced "chow" diets could lead to nutrient imbalance. One alternative is to provide balanced diets in a contrafreeloading paradigm. Contrafreeloading occurs when animals choose resources that require effort to exploit when identical resources are freely available. To investigate contrafreeloading and its potential as a theoretical foundation for foraging enrichment, we conducted two experiments with captive grizzly bears (Ursus arctos horribilis). In Experiment 1, bears were presented with five foraging choices simultaneously: apples, apples in ice, salmon, salmon in ice, and plain ice under two levels of food restriction. Two measures of contrafreeloading were considered: weight of earned food consumed and time spent working for earned food. More free than earned food was eaten, with only two bears consuming food extracted from ice, but all bears spent more time manipulating ice containing salmon or apples than plain ice regardless of level of food restriction. In Experiment 2, food-restricted bears were presented with three foraging choices simultaneously: apples, apples inside a box, and an empty box. Although they ate more free than earned food, five bears consumed food from boxes and all spent more time manipulating boxes containing apples than empty boxes. Our findings support the provision of contrafreeloading opportunities as a foraging enrichment strategy for captive wildlife. (c) 2009 Wiley-Liss, Inc.

  19. Seasonal habitat use and selection by grizzly bears in Northern British Columbia

    Science.gov (United States)

    Milakovic, B.; Parker, K.L.; Gustine, D.D.; Lay, R.J.; Walker, A.B.D.; Gillingham, M.P.

    2012-01-01

    We defined patterns of habitat use and selection by female grizzly bears (Ursus arctos) in the Besa-Prophet watershed of northern British Columbia. We fitted 13 adult females with Geographic Positioning System (GPS) radio-collars and monitored them between 2001 and 2004. We examined patterns of habitat selection by grizzly bears relative to topographical attributes and 3 potential surrogates of food availability: land-cover class, vegetation biomass or quality (as measured by the Normalized Difference Vegetation Index), and selection value for prey species themselves (moose [Alces alces], elk [Cervus elaphus], woodland caribou [Rangifer tarandus], Stone's sheep [Ovis dalli stonei]). Although vegetation biomass and quality, and selection values for prey were important in seasonal selection by some individual bears, land-cover class, elevation, aspect, and vegetation diversity most influenced patterns of habitat selection across grizzly bears, which rely on availability of plant foods and encounters with ungulate prey. Grizzly bears as a group avoided conifer stands and areas of low vegetation diversity, and selected for burned land-cover classes and high vegetation diversity across seasons. They also selected mid elevations from what was available within seasonal ranges. Quantifying relative use of different attributes helped place selection patterns within the context of the landscape. Grizzly bears used higher elevations (1,595??31 m SE) in spring and lower elevations (1,436??27 m) in fall; the range of average elevations used among individuals was highest (500 m) during the summer. During all seasons, grizzly bears most frequented aspects with high solar gain. Use was distributed across 10 land-cover classes and depended on season. Management and conservation actions must maintain a diverse habitat matrix distributed across a large elevational gradient to ensure persistence of grizzly bears as levels of human access increase in the northern Rocky Mountains

  20. Spatial patterns of breeding success of grizzly bears derived from hierarchical multistate models.

    Science.gov (United States)

    Fisher, Jason T; Wheatley, Matthew; Mackenzie, Darryl

    2014-10-01

    Conservation programs often manage populations indirectly through the landscapes in which they live. Empirically, linking reproductive success with landscape structure and anthropogenic change is a first step in understanding and managing the spatial mechanisms that affect reproduction, but this link is not sufficiently informed by data. Hierarchical multistate occupancy models can forge these links by estimating spatial patterns of reproductive success across landscapes. To illustrate, we surveyed the occurrence of grizzly bears (Ursus arctos) in the Canadian Rocky Mountains Alberta, Canada. We deployed camera traps for 6 weeks at 54 surveys sites in different types of land cover. We used hierarchical multistate occupancy models to estimate probability of detection, grizzly bear occupancy, and probability of reproductive success at each site. Grizzly bear occupancy varied among cover types and was greater in herbaceous alpine ecotones than in low-elevation wetlands or mid-elevation conifer forests. The conditional probability of reproductive success given grizzly bear occupancy was 30% (SE = 0.14). Grizzly bears with cubs had a higher probability of detection than grizzly bears without cubs, but sites were correctly classified as being occupied by breeding females 49% of the time based on raw data and thus would have been underestimated by half. Repeated surveys and multistate modeling reduced the probability of misclassifying sites occupied by breeders as unoccupied to <2%. The probability of breeding grizzly bear occupancy varied across the landscape. Those patches with highest probabilities of breeding occupancy-herbaceous alpine ecotones-were small and highly dispersed and are projected to shrink as treelines advance due to climate warming. Understanding spatial correlates in breeding distribution is a key requirement for species conservation in the face of climate change and can help identify priorities for landscape management and protection. © 2014 Society

  1. Exertional myopathy in a grizzly bear (Ursus arctos) captured by leghold snare.

    Science.gov (United States)

    Cattet, Marc; Stenhouse, Gordon; Bollinger, Trent

    2008-10-01

    We diagnosed exertional myopathy (EM) in a grizzly bear (Ursus arctos) that died approximately 10 days after capture by leghold snare in west-central Alberta, Canada, in June 2003. The diagnosis was based on history, post-capture movement data, gross necropsy, histopathology, and serum enzyme levels. We were unable to determine whether EM was the primary cause of death because autolysis precluded accurate evaluation of all tissues. Nevertheless, comparison of serum aspartate aminotransferase and creatine kinase concentrations and survival between the affected bear and other grizzly bears captured by leghold snare in the same research project suggests EM also occurred in other bears, but that it is not generally a cause of mortality. We propose, however, occurrence of nonfatal EM in grizzly bears after capture by leghold snare has potential implications for use of this capture method, including negative effects on wildlife welfare and research data.

  2. Cardiac function adaptations in hibernating grizzly bears (Ursus arctos horribilis).

    Science.gov (United States)

    Nelson, O Lynne; Robbins, Charles T

    2010-03-01

    Research on the cardiovascular physiology of hibernating mammals may provide insight into evolutionary adaptations; however, anesthesia used to handle wild animals may affect the cardiovascular parameters of interest. To overcome these potential biases, we investigated the functional cardiac phenotype of the hibernating grizzly bear (Ursus arctos horribilis) during the active, transitional and hibernating phases over a 4 year period in conscious rather than anesthetized bears. The bears were captive born and serially studied from the age of 5 months to 4 years. Heart rate was significantly different from active (82.6 +/- 7.7 beats/min) to hibernating states (17.8 +/- 2.8 beats/min). There was no difference from the active to the hibernating state in diastolic and stroke volume parameters or in left atrial area. Left ventricular volume:mass was significantly increased during hibernation indicating decreased ventricular mass. Ejection fraction of the left ventricle was not different between active and hibernating states. In contrast, total left atrial emptying fraction was significantly reduced during hibernation (17.8 +/- 2.8%) as compared to the active state (40.8 +/- 1.9%). Reduced atrial chamber function was also supported by reduced atrial contraction blood flow velocities and atrial contraction ejection fraction during hibernation; 7.1 +/- 2.8% as compared to 20.7 +/- 3% during the active state. Changes in the diastolic cardiac filling cycle, especially atrial chamber contribution to ventricular filling, appear to be the most prominent macroscopic functional change during hibernation. Thus, we propose that these changes in atrial chamber function constitute a major adaptation during hibernation which allows the myocardium to conserve energy, avoid chamber dilation and remain healthy during a period of extremely low heart rates. These findings will aid in rational approaches to identifying underlying molecular mechanisms.

  3. Confronting uncertainty in wildlife management: performance of grizzly bear management.

    Science.gov (United States)

    Artelle, Kyle A; Anderson, Sean C; Cooper, Andrew B; Paquet, Paul C; Reynolds, John D; Darimont, Chris T

    2013-01-01

    Scientific management of wildlife requires confronting the complexities of natural and social systems. Uncertainty poses a central problem. Whereas the importance of considering uncertainty has been widely discussed, studies of the effects of unaddressed uncertainty on real management systems have been rare. We examined the effects of outcome uncertainty and components of biological uncertainty on hunt management performance, illustrated with grizzly bears (Ursus arctos horribilis) in British Columbia, Canada. We found that both forms of uncertainty can have serious impacts on management performance. Outcome uncertainty alone--discrepancy between expected and realized mortality levels--led to excess mortality in 19% of cases (population-years) examined. Accounting for uncertainty around estimated biological parameters (i.e., biological uncertainty) revealed that excess mortality might have occurred in up to 70% of cases. We offer a general method for identifying targets for exploited species that incorporates uncertainty and maintains the probability of exceeding mortality limits below specified thresholds. Setting targets in our focal system using this method at thresholds of 25% and 5% probability of overmortality would require average target mortality reductions of 47% and 81%, respectively. Application of our transparent and generalizable framework to this or other systems could improve management performance in the presence of uncertainty.

  4. Confronting uncertainty in wildlife management: performance of grizzly bear management.

    Directory of Open Access Journals (Sweden)

    Kyle A Artelle

    Full Text Available Scientific management of wildlife requires confronting the complexities of natural and social systems. Uncertainty poses a central problem. Whereas the importance of considering uncertainty has been widely discussed, studies of the effects of unaddressed uncertainty on real management systems have been rare. We examined the effects of outcome uncertainty and components of biological uncertainty on hunt management performance, illustrated with grizzly bears (Ursus arctos horribilis in British Columbia, Canada. We found that both forms of uncertainty can have serious impacts on management performance. Outcome uncertainty alone--discrepancy between expected and realized mortality levels--led to excess mortality in 19% of cases (population-years examined. Accounting for uncertainty around estimated biological parameters (i.e., biological uncertainty revealed that excess mortality might have occurred in up to 70% of cases. We offer a general method for identifying targets for exploited species that incorporates uncertainty and maintains the probability of exceeding mortality limits below specified thresholds. Setting targets in our focal system using this method at thresholds of 25% and 5% probability of overmortality would require average target mortality reductions of 47% and 81%, respectively. Application of our transparent and generalizable framework to this or other systems could improve management performance in the presence of uncertainty.

  5. Nature vs. Nurture: Evidence for Social Learning of Conflict Behaviour in Grizzly Bears.

    Directory of Open Access Journals (Sweden)

    Andrea T Morehouse

    Full Text Available The propensity for a grizzly bear to develop conflict behaviours might be a result of social learning between mothers and cubs, genetic inheritance, or both learning and inheritance. Using non-invasive genetic sampling, we collected grizzly bear hair samples during 2011-2014 across southwestern Alberta, Canada. We targeted private agricultural lands for hair samples at grizzly bear incident sites, defining an incident as an occurrence in which the grizzly bear caused property damage, obtained anthropogenic food, or killed or attempted to kill livestock or pets. We genotyped 213 unique grizzly bears (118 M, 95 F at 24 microsatellite loci, plus the amelogenin marker for sex. We used the program COLONY to assign parentage. We evaluated 76 mother-offspring relationships and 119 father-offspring relationships. We compared the frequency of problem and non-problem offspring from problem and non-problem parents, excluding dependent offspring from our analysis. Our results support the social learning hypothesis, but not the genetic inheritance hypothesis. Offspring of problem mothers are more likely to be involved in conflict behaviours, while offspring from non-problem mothers are not likely to be involved in incidents or human-bear conflicts themselves (Barnard's test, p = 0.05, 62.5% of offspring from problem mothers were problem bears. There was no evidence that offspring are more likely to be involved in conflict behaviour if their fathers had been problem bears (Barnard's test, p = 0.92, 29.6% of offspring from problem fathers were problem bears. For the mother-offspring relationships evaluated, 30.3% of offspring were identified as problem bears independent of their mother's conflict status. Similarly, 28.6% of offspring were identified as problem bears independent of their father's conflict status. Proactive mitigation to prevent female bears from becoming problem individuals likely will help prevent the perpetuation of conflicts through social

  6. Nature vs. Nurture: Evidence for Social Learning of Conflict Behaviour in Grizzly Bears.

    Science.gov (United States)

    Morehouse, Andrea T; Graves, Tabitha A; Mikle, Nate; Boyce, Mark S

    2016-01-01

    The propensity for a grizzly bear to develop conflict behaviours might be a result of social learning between mothers and cubs, genetic inheritance, or both learning and inheritance. Using non-invasive genetic sampling, we collected grizzly bear hair samples during 2011-2014 across southwestern Alberta, Canada. We targeted private agricultural lands for hair samples at grizzly bear incident sites, defining an incident as an occurrence in which the grizzly bear caused property damage, obtained anthropogenic food, or killed or attempted to kill livestock or pets. We genotyped 213 unique grizzly bears (118 M, 95 F) at 24 microsatellite loci, plus the amelogenin marker for sex. We used the program COLONY to assign parentage. We evaluated 76 mother-offspring relationships and 119 father-offspring relationships. We compared the frequency of problem and non-problem offspring from problem and non-problem parents, excluding dependent offspring from our analysis. Our results support the social learning hypothesis, but not the genetic inheritance hypothesis. Offspring of problem mothers are more likely to be involved in conflict behaviours, while offspring from non-problem mothers are not likely to be involved in incidents or human-bear conflicts themselves (Barnard's test, p = 0.05, 62.5% of offspring from problem mothers were problem bears). There was no evidence that offspring are more likely to be involved in conflict behaviour if their fathers had been problem bears (Barnard's test, p = 0.92, 29.6% of offspring from problem fathers were problem bears). For the mother-offspring relationships evaluated, 30.3% of offspring were identified as problem bears independent of their mother's conflict status. Similarly, 28.6% of offspring were identified as problem bears independent of their father's conflict status. Proactive mitigation to prevent female bears from becoming problem individuals likely will help prevent the perpetuation of conflicts through social learning.

  7. Nature vs. nurture: Evidence for social learning of conflict behaviour in grizzly bears

    Science.gov (United States)

    Morehouse, Andrea T.; Graves, Tabitha A.; Mikle, Nathaniel; Boyce, Mark S.

    2016-01-01

    The propensity for a grizzly bear to develop conflict behaviours might be a result of social learning between mothers and cubs, genetic inheritance, or both learning and inheritance. Using non-invasive genetic sampling, we collected grizzly bear hair samples during 2011–2014 across southwestern Alberta, Canada. We targeted private agricultural lands for hair samples at grizzly bear incident sites, defining an incident as an occurrence in which the grizzly bear caused property damage, obtained anthropogenic food, or killed or attempted to kill livestock or pets. We genotyped 213 unique grizzly bears (118 M, 95 F) at 24 microsatellite loci, plus the amelogenin marker for sex. We used the program COLONY to assign parentage. We evaluated 76 mother-offspring relationships and 119 father-offspring relationships. We compared the frequency of problem and non-problem offspring from problem and non-problem parents, excluding dependent offspring from our analysis. Our results support the social learning hypothesis, but not the genetic inheritance hypothesis. Offspring of problem mothers are more likely to be involved in conflict behaviours, while offspring from non-problem mothers are not likely to be involved in incidents or human-bear conflicts themselves (Barnard’s test, p = 0.05, 62.5% of offspring from problem mothers were problem bears). There was no evidence that offspring are more likely to be involved in conflict behaviour if their fathers had been problem bears (Barnard’s test, p = 0.92, 29.6% of offspring from problem fathers were problem bears). For the mother-offspring relationships evaluated, 30.3% of offspring were identified as problem bears independent of their mother’s conflict status. Similarly, 28.6% of offspring were identified as problem bears independent of their father’s conflict status. Proactive mitigation to prevent female bears from becoming problem individuals likely will help prevent the perpetuation of conflicts through social learning.

  8. Trichinellosis acquired in Nunavut, Canada in September 2009: meat from grizzly bear suspected.

    Science.gov (United States)

    Houzé, S; Ancelle, T; Matra, R; Boceno, C; Carlier, Y; Gajadhar, A A; Dupouy-Camet, J

    2009-11-05

    Five cases of trichinellosis with onset of symptoms in September 2009, were reported in France, and were probably linked to the consumption of meat from a grizzly bear in Cambridge Bay in Nunavut, Canada. Travellers should be aware of the risks of eating raw or rare meat products in arctic regions, particularly game meat such as bear or walrus meat.

  9. The impact of roads on the demography of grizzly bears in Alberta.

    Science.gov (United States)

    Boulanger, John; Stenhouse, Gordon B

    2014-01-01

    One of the principal factors that have reduced grizzly bear populations has been the creation of human access into grizzly bear habitat by roads built for resource extraction. Past studies have documented mortality and distributional changes of bears relative to roads but none have attempted to estimate the direct demographic impact of roads in terms of both survival rates, reproductive rates, and the interaction of reproductive state of female bears with survival rate. We applied a combination of survival and reproductive models to estimate demographic parameters for threatened grizzly bear populations in Alberta. Instead of attempting to estimate mean trend we explored factors which caused biological and spatial variation in population trend. We found that sex and age class survival was related to road density with subadult bears being most vulnerable to road-based mortality. A multi-state reproduction model found that females accompanied by cubs of the year and/or yearling cubs had lower survival rates compared to females with two year olds or no cubs. A demographic model found strong spatial gradients in population trend based upon road density. Threshold road densities needed to ensure population stability were estimated to further refine targets for population recovery of grizzly bears in Alberta. Models that considered lowered survival of females with dependant offspring resulted in lower road density thresholds to ensure stable bear populations. Our results demonstrate likely spatial variation in population trend and provide an example how demographic analysis can be used to refine and direct conservation measures for threatened species.

  10. Titin isoform switching is a major cardiac adaptive response in hibernating grizzly bears.

    Science.gov (United States)

    Nelson, O Lynne; Robbins, Charles T; Wu, Yiming; Granzier, Henk

    2008-07-01

    The hibernation phenomenon captures biological as well as clinical interests to understand how organs adapt. Here we studied how hibernating grizzly bears (Ursus arctos horribilis) tolerate extremely low heart rates without developing cardiac chamber dilation. We evaluated cardiac filling function in unanesthetized grizzly bears by echocardiography during the active and hibernating period. Because both collagen and titin are involved in altering diastolic function, we investigated both in the myocardium of active and hibernating grizzly bears. Heart rates were reduced from 84 beats/min in active bears to 19 beats/min in hibernating bears. Diastolic volume, stroke volume, and left ventricular ejection fraction were not different. However, left ventricular muscle mass was significantly lower (300 +/- 12 compared with 402 +/- 14 g; P = 0.003) in the hibernating bears, and as a result the diastolic volume-to-left ventricular muscle mass ratio was significantly greater. Early ventricular filling deceleration times (106.4 +/- 14 compared with 143.2 +/- 20 ms; P = 0.002) were shorter during hibernation, suggesting increased ventricular stiffness. Restrictive pulmonary venous flow patterns supported this conclusion. Collagen type I and III comparisons did not reveal differences between the two groups of bears. In contrast, the expression of titin was altered by a significant upregulation of the stiffer N2B isoform at the expense of the more compliant N2BA isoform. The mean ratio of N2BA to N2B titin was 0.73 +/- 0.07 in the active bears and decreased to 0.42 +/- 0.03 (P = 0.006) in the hibernating bears. The upregulation of stiff N2B cardiac titin is a likely explanation for the increased ventricular stiffness that was revealed by echocardiography, and we propose that it plays a role in preventing chamber dilation in hibernating grizzly bears. Thus our work identified changes in the alternative splicing of cardiac titin as a major adaptive response in hibernating grizzly

  11. Persistent or not persistent? Polychlorinated biphenyls are readily depurated by grizzly bears (Ursus arctos horribilis).

    Science.gov (United States)

    Christensen, Jennie R; Letcher, Robert J; Ross, Peter S

    2009-10-01

    Major pharmacokinetic processes influencing polychlorinated biphenyl (PCB) accumulation in mammals include uptake, biotransformation, respiration, and excretion. We characterized some of the factors underlying PCB accumulation/loss by evaluating PCB concentrations and patterns in pre- and posthibernation grizzly bears (Ursus arctos horribilis) and their prey. The PCB congeners with vicinal meta- and para-chlorine unsubstituted hydrogen positions consistently showed loss both before and during hibernation, supporting the idea of a dominant role for biotransformation. Retention of all other studied congeners relative to that of PCB 194 varied widely (from bears do not eat or excrete. We estimate that grizzly bears retain less than 10% of total PCBs taken up from their diet. Our results suggest that for grizzly bears, depuration of PCBs via biotransformation is important (explaining approximately 40% of loss), but that nonbiotransformation processes, such as excretion, may be more important (explaining approximately 60% of loss). These findings, together with the approximately 91% loss of the persistent PCB 153 congener relative to PCB 194 in grizzly bears, raise important questions about how one defines persistence of PCBs in wildlife and may have bearing on the interpretation of food-web biomagnification studies.

  12. Grizzly Bear Noninvasive Genetic Tagging Surveys: Estimating the Magnitude of Missed Detections.

    Directory of Open Access Journals (Sweden)

    Jason T Fisher

    Full Text Available Sound wildlife conservation decisions require sound information, and scientists increasingly rely on remotely collected data over large spatial scales, such as noninvasive genetic tagging (NGT. Grizzly bears (Ursus arctos, for example, are difficult to study at population scales except with noninvasive data, and NGT via hair trapping informs management over much of grizzly bears' range. Considerable statistical effort has gone into estimating sources of heterogeneity, but detection error-arising when a visiting bear fails to leave a hair sample-has not been independently estimated. We used camera traps to survey grizzly bear occurrence at fixed hair traps and multi-method hierarchical occupancy models to estimate the probability that a visiting bear actually leaves a hair sample with viable DNA. We surveyed grizzly bears via hair trapping and camera trapping for 8 monthly surveys at 50 (2012 and 76 (2013 sites in the Rocky Mountains of Alberta, Canada. We used multi-method occupancy models to estimate site occupancy, probability of detection, and conditional occupancy at a hair trap. We tested the prediction that detection error in NGT studies could be induced by temporal variability within season, leading to underestimation of occupancy. NGT via hair trapping consistently underestimated grizzly bear occupancy at a site when compared to camera trapping. At best occupancy was underestimated by 50%; at worst, by 95%. Probability of false absence was reduced through successive surveys, but this mainly accounts for error imparted by movement among repeated surveys, not necessarily missed detections by extant bears. The implications of missed detections and biased occupancy estimates for density estimation-which form the crux of management plans-require consideration. We suggest hair-trap NGT studies should estimate and correct detection error using independent survey methods such as cameras, to ensure the reliability of the data upon which species

  13. Grizzly Bear Noninvasive Genetic Tagging Surveys: Estimating the Magnitude of Missed Detections.

    Science.gov (United States)

    Fisher, Jason T; Heim, Nicole; Code, Sandra; Paczkowski, John

    2016-01-01

    Sound wildlife conservation decisions require sound information, and scientists increasingly rely on remotely collected data over large spatial scales, such as noninvasive genetic tagging (NGT). Grizzly bears (Ursus arctos), for example, are difficult to study at population scales except with noninvasive data, and NGT via hair trapping informs management over much of grizzly bears' range. Considerable statistical effort has gone into estimating sources of heterogeneity, but detection error-arising when a visiting bear fails to leave a hair sample-has not been independently estimated. We used camera traps to survey grizzly bear occurrence at fixed hair traps and multi-method hierarchical occupancy models to estimate the probability that a visiting bear actually leaves a hair sample with viable DNA. We surveyed grizzly bears via hair trapping and camera trapping for 8 monthly surveys at 50 (2012) and 76 (2013) sites in the Rocky Mountains of Alberta, Canada. We used multi-method occupancy models to estimate site occupancy, probability of detection, and conditional occupancy at a hair trap. We tested the prediction that detection error in NGT studies could be induced by temporal variability within season, leading to underestimation of occupancy. NGT via hair trapping consistently underestimated grizzly bear occupancy at a site when compared to camera trapping. At best occupancy was underestimated by 50%; at worst, by 95%. Probability of false absence was reduced through successive surveys, but this mainly accounts for error imparted by movement among repeated surveys, not necessarily missed detections by extant bears. The implications of missed detections and biased occupancy estimates for density estimation-which form the crux of management plans-require consideration. We suggest hair-trap NGT studies should estimate and correct detection error using independent survey methods such as cameras, to ensure the reliability of the data upon which species management and

  14. Grizzly bears as a filter for human use management in Canadian Rocky Mountain national parks

    Science.gov (United States)

    Derek Petersen

    2000-01-01

    Canadian National Parks within the Rocky Mountains recognize that human use must be managed if the integrity and health of the ecosystems are to be preserved. Parks Canada is being challenged to ensure that these management actions are based on credible scientific principles and understanding. Grizzly bears provide one of only a few ecological tools that can be used to...

  15. Perspectives on grizzly bear management in Banff National Park and the Bow River Watershed, Alberta: A Q methodology study

    OpenAIRE

    Chamberlain, Emily Carter

    2006-01-01

    Conserving populations of large carnivores such as grizzly bears (Ursus arctos) requires not only biophysical research, but also an understanding of the values and beliefs of the people involved with and affected by carnivore management. I used Q methodology to examine views of stakeholders concerning grizzly bear management in the Banff-Bow Valley region of Alberta, Canada. In recent years, decision-making about bears in this region has been characterized by acrimonious disputes over scienti...

  16. The impact of roads on the demography of grizzly bears in Alberta.

    Directory of Open Access Journals (Sweden)

    John Boulanger

    Full Text Available One of the principal factors that have reduced grizzly bear populations has been the creation of human access into grizzly bear habitat by roads built for resource extraction. Past studies have documented mortality and distributional changes of bears relative to roads but none have attempted to estimate the direct demographic impact of roads in terms of both survival rates, reproductive rates, and the interaction of reproductive state of female bears with survival rate. We applied a combination of survival and reproductive models to estimate demographic parameters for threatened grizzly bear populations in Alberta. Instead of attempting to estimate mean trend we explored factors which caused biological and spatial variation in population trend. We found that sex and age class survival was related to road density with subadult bears being most vulnerable to road-based mortality. A multi-state reproduction model found that females accompanied by cubs of the year and/or yearling cubs had lower survival rates compared to females with two year olds or no cubs. A demographic model found strong spatial gradients in population trend based upon road density. Threshold road densities needed to ensure population stability were estimated to further refine targets for population recovery of grizzly bears in Alberta. Models that considered lowered survival of females with dependant offspring resulted in lower road density thresholds to ensure stable bear populations. Our results demonstrate likely spatial variation in population trend and provide an example how demographic analysis can be used to refine and direct conservation measures for threatened species.

  17. Grizzly bear (Ursus arctos horribilis) locomotion: gaits and ground reaction forces.

    Science.gov (United States)

    Shine, Catherine L; Penberthy, Skylar; Robbins, Charles T; Nelson, O Lynne; McGowan, Craig P

    2015-10-01

    Locomotion of plantigrade generalists has been relatively little studied compared with more specialised postures even though plantigrady is ancestral among quadrupeds. Bears (Ursidae) are a representative family for plantigrade carnivorans, they have the majority of the morphological characteristics identified for plantigrade species, and they have the full range of generalist behaviours. This study compared the locomotion of adult grizzly bears (Ursus arctos horribilis Linnaeus 1758), including stride parameters, gaits and analysis of three-dimensional ground reaction forces, with that of previously studied quadrupeds. At slow to moderate speeds, grizzly bears use walks, running walks and canters. Vertical ground reaction forces demonstrated the typical M-shaped curve for walks; however, this was significantly more pronounced in the hindlimb. The rate of force development was also significantly higher for the hindlimbs than for the forelimbs at all speeds. Mediolateral forces were significantly higher than would be expected for a large erect mammal, almost to the extent of a sprawling crocodilian. There may be morphological or energetic explanations for the use of the running walk rather than the trot. The high medial forces (produced from a lateral push by the animal) could be caused by frontal plane movement of the carpus and elbow by bears. Overall, while grizzly bears share some similarities with large cursorial species, their locomotor kinetics have unique characteristics. Additional studies are needed to determine whether these characters are a feature of all bears or plantigrade species. © 2015. Published by The Company of Biologists Ltd.

  18. Estimating grizzly and black bear population abundance and trend in Banff National Park using noninvasive genetic sampling.

    Directory of Open Access Journals (Sweden)

    Michael A Sawaya

    Full Text Available We evaluated the potential of two noninvasive genetic sampling methods, hair traps and bear rub surveys, to estimate population abundance and trend of grizzly (Ursus arctos and black bear (U. americanus populations in Banff National Park, Alberta, Canada. Using Huggins closed population mark-recapture models, we obtained the first precise abundance estimates for grizzly bears (N= 73.5, 95% CI = 64-94 in 2006; N= 50.4, 95% CI = 49-59 in 2008 and black bears (N= 62.6, 95% CI = 51-89 in 2006; N= 81.8, 95% CI = 72-102 in 2008 in the Bow Valley. Hair traps had high detection rates for female grizzlies, and male and female black bears, but extremely low detection rates for male grizzlies. Conversely, bear rubs had high detection rates for male and female grizzlies, but low rates for black bears. We estimated realized population growth rates, lambda, for grizzly bear males (λ= 0.93, 95% CI = 0.74-1.17 and females (λ= 0.90, 95% CI = 0.67-1.20 using Pradel open population models with three years of bear rub data. Lambda estimates are supported by abundance estimates from combined hair trap/bear rub closed population models and are consistent with a system that is likely driven by high levels of human-caused mortality. Our results suggest that bear rub surveys would provide an efficient and powerful means to inventory and monitor grizzly bear populations in the Central Canadian Rocky Mountains.

  19. Estimating grizzly and black bear population abundance and trend in Banff National Park using noninvasive genetic sampling.

    Science.gov (United States)

    Sawaya, Michael A; Stetz, Jeffrey B; Clevenger, Anthony P; Gibeau, Michael L; Kalinowski, Steven T

    2012-01-01

    We evaluated the potential of two noninvasive genetic sampling methods, hair traps and bear rub surveys, to estimate population abundance and trend of grizzly (Ursus arctos) and black bear (U. americanus) populations in Banff National Park, Alberta, Canada. Using Huggins closed population mark-recapture models, we obtained the first precise abundance estimates for grizzly bears (N= 73.5, 95% CI = 64-94 in 2006; N= 50.4, 95% CI = 49-59 in 2008) and black bears (N= 62.6, 95% CI = 51-89 in 2006; N= 81.8, 95% CI = 72-102 in 2008) in the Bow Valley. Hair traps had high detection rates for female grizzlies, and male and female black bears, but extremely low detection rates for male grizzlies. Conversely, bear rubs had high detection rates for male and female grizzlies, but low rates for black bears. We estimated realized population growth rates, lambda, for grizzly bear males (λ= 0.93, 95% CI = 0.74-1.17) and females (λ= 0.90, 95% CI = 0.67-1.20) using Pradel open population models with three years of bear rub data. Lambda estimates are supported by abundance estimates from combined hair trap/bear rub closed population models and are consistent with a system that is likely driven by high levels of human-caused mortality. Our results suggest that bear rub surveys would provide an efficient and powerful means to inventory and monitor grizzly bear populations in the Central Canadian Rocky Mountains.

  20. Density, distribution, and genetic structure of grizzly bears in the Cabinet-Yaak Ecosystem

    Science.gov (United States)

    Macleod, Amy C.; Boyd, Kristina L.; Boulanger, John; Royle, J. Andrew; Kasworm, Wayne F.; Paetkau, David; Proctor, Michael F.; Annis, Kim; Graves, Tabitha A.

    2016-01-01

    The conservation status of the 2 threatened grizzly bear (Ursus arctos) populations in the Cabinet-Yaak Ecosystem (CYE) of northern Montana and Idaho had remained unchanged since designation in 1975; however, the current demographic status of these populations was uncertain. No rigorous data on population density and distribution or analysis of recent population genetic structure were available to measure the effectiveness of conservation efforts. We used genetic detection data from hair corral, bear rub, and opportunistic sampling in traditional and spatial capture–recapture models to generate estimates of abundance and density of grizzly bears in the CYE. We calculated mean bear residency on our sampling grid from telemetry data using Huggins and Pledger models to estimate the average number of bears present and to correct our superpopulation estimates for lack of geographic closure. Estimated grizzly bear abundance (all sex and age classes) in the CYE in 2012 was 48–50 bears, approximately half the population recovery goal. Grizzly bear density in the CYE (4.3–4.5 grizzly bears/1,000 km2) was among the lowest of interior North American populations. The sizes of the Cabinet (n = 22–24) and Yaak (n = 18–22) populations were similar. Spatial models produced similar estimates of abundance and density with comparable precision without requiring radio-telemetry data to address assumptions of geographic closure. The 2 populations in the CYE were demographically and reproductively isolated from each other and the Cabinet population was highly inbred. With parentage analysis, we documented natural migrants to the Cabinet and Yaak populations by bears born to parents in the Selkirk and Northern Continental Divide populations. These events supported data from other sources suggesting that the expansion of neighboring populations may eventually help sustain the CYE populations. However, the small size, isolation, and inbreeding documented by this study

  1. Comparison of methanol and isopropanol as wash solvents for determination of hair cortisol concentration in grizzly bears and polar bears.

    Science.gov (United States)

    Kroshko, Thomas; Kapronczai, Luciene; Cattet, Marc R L; Macbeth, Bryan J; Stenhouse, Gordon B; Obbard, Martyn E; Janz, David M

    2017-01-01

    Methodological differences among laboratories are recognized as significant sources of variation in quantification of hair cortisol concentration (HCC). An important step in processing hair, particularly when collected from wildlife, is the choice of solvent used to remove or "wash" external hair shaft cortisol prior to quantification of HCC. The present study systematically compared methanol and isopropanol as wash solvents for their efficiency at removing external cortisol without extracting internal hair shaft cortisol in samples collected from free-ranging grizzly bears and polar bears. Cortisol concentrations in solvents and hair were determined in each of one to eight washes of hair with each solvent independently. •There were no significant decreases in internal hair shaft cortisol among all eight washes for either solvent, although methanol removed detectable hair surface cortisol after one wash in grizzly bear hair whereas hair surface cortisol was detected in all eight isopropanol washes.•There were no significant differences in polar bear HCC washed one to eight times with either solvent, but grizzly bear HCC was significantly greater in hair washed with isopropanol compared to methanol.•There were significant differences in HCC quantified using different commercial ELISA kits commonly used for HCC determinations.

  2. Idiosyncratic responses of grizzly bear habitat to climate change based on projected food resource changes.

    Science.gov (United States)

    Roberts, David R; Nielsen, Scott E; Stenhouse, Gordon B

    2014-07-01

    Climate change vulnerability assessments for species of conservation concern often use species distribution and ecological niche modeling to project changes in habitat. One of many assumptions of these approaches is that food web dependencies are consistent in time and environmental space. Species at higher trophic levels that rely on the availability of species at lower trophic levels as food may be sensitive to extinction cascades initiated by changes in the habitat of key food resources. Here we assess climate change vulnerability for Ursus arctos (grizzly bears) in the southern Canadian Rocky Mountains using projected changes to 17 of the most commonly consumed plant food items. We used presence-absence information from 7088 field plots to estimate ecological niches and to project changes in future distributions of each species. Model projections indicated idiosyncratic responses among food items. Many food items persisted or even increased, although several species were found to be vulnerable based on declines or geographic shifts in suitable habitat. These included Hedysarum alpinum (alpine sweet vetch), a critical spring and autumn root-digging resource when little else is available. Potential habitat loss was also identified for three fruiting species of lower importance to bears: Empetrum nigrum (crowberry), Vaccinium scoparium (grouseberry), and Fragaria virginiana (strawberry). A general trend towards uphill migration of bear foods may result in higher vulnerability to bear populations at low elevations, which are also those that are most likely to have human-bear conflict problems. Regardless, a wide diet breadth of grizzly bears, as well as wide environmental niches of most food items, make climate change a much lower threat to grizzly bears than other bear species such as polar bears and panda bears. We cannot exclude, however, future alterations in human behavior and land use resulting from climate change that may reduce survival rates.

  3. Landscape conditions predisposing grizzly bears to conflicts on private agricultural lands in the western USA

    Science.gov (United States)

    Wilson, S.M.; Madel, M.J.; Mattson, D.J.; Graham, J.M.; Merrill, T.

    2006-01-01

    We used multiple logistic regression to model how different landscape conditions contributed to the probability of human-grizzly bear conflicts on private agricultural ranch lands. We used locations of livestock pastures, traditional livestock carcass disposal areas (boneyards), beehives, and wetland-riparian associated vegetation to model the locations of 178 reported human-grizzly bear conflicts along the Rocky Mountain East Front, Montana, USA during 1986-2001. We surveyed 61 livestock producers in the upper Teton watershed of north-central Montana, to collect spatial and temporal data on livestock pastures, boneyards, and beehives for the same period, accounting for changes in livestock and boneyard management and beehive location and protection, for each season. We used 2032 random points to represent the null hypothesis of random location relative to potential explanatory landscape features, and used Akaike's Information Criteria (AIC/AICC) and Hosmer-Lemeshow goodness-of-fit statistics for model selection. We used a resulting "best" model to map contours of predicted probabilities of conflict, and used this map for verification with an independent dataset of conflicts to provide additional insights regarding the nature of conflicts. The presence of riparian vegetation and distances to spring, summer, and fall sheep or cattle pastures, calving and sheep lambing areas, unmanaged boneyards, and fenced and unfenced beehives were all associated with the likelihood of human-grizzly bear conflicts. Our model suggests that collections of attractants concentrated in high quality bear habitat largely explain broad patterns of human-grizzly bear conflicts on private agricultural land in our study area. ?? 2005 Elsevier Ltd. All rights reserved.

  4. Immobilization of grizzly bears (Ursus arctos) with dexmedetomidine, tiletamine, and zolazepam.

    Science.gov (United States)

    Teisberg, Justin E; Farley, Sean D; Nelson, O Lynne; Hilderbrand, Grant V; Madel, Michael J; Owen, Patricia A; Erlenbach, Joy A; Robbins, Charles T

    2014-01-01

    Safe and effective immobilization of grizzly bears (Ursus arctos) is essential for research and management. Fast induction of anesthesia, maintenance of healthy vital rates, and predictable recoveries are priorities. From September 2010 to May 2012, we investigated these attributes in captive and wild grizzly bears anesthetized with a combination of a reversible α2 agonist (dexmedetomidine [dexM], the dextrorotatory enantiomer of medetomidine) and a nonreversible N-methyl-d-aspartate (NMDA) agonist and tranquilizer (tiletamine and zolazepam [TZ], respectively). A smaller-than-expected dose of the combination (1.23 mg tiletamine, 1.23 mg zolazepam, and 6.04 µg dexmedetomidine per kg bear) produced reliable, fast ataxia (3.7 ± 0.5 min, x̄±SE) and workable anesthesia (8.1 ± 0.6 min) in captive adult grizzly bears. For wild bears darted from a helicopter, a dose of 2.06 mg tiletamine, 2.06 mg zolazepam, and 10.1 µg dexmedetomidine/kg produced ataxia in 2.5 ± 0.3 min and anesthesia in 5.5 ± 1.0 min. Contrary to published accounts of bear anesthesia with medetomidine, tiletamine, and zolazepam, this combination did not cause hypoxemia or hypoventilation, although mild bradycardia (bears during the active season. With captive bears, effective dose rates during hibernation were approximately half those during the active season. The time to first signs of recovery after the initial injection of dexMTZ was influenced by heart rate (Pgrizzly bears, especially during helicopter capture operations.

  5. Grizzly bears (Ursus arctos horribilis) and black bears (Ursus americanus) prevent trabecular bone loss during disuse (hibernation).

    Science.gov (United States)

    McGee-Lawrence, Meghan E; Wojda, Samantha J; Barlow, Lindsay N; Drummer, Thomas D; Castillo, Alesha B; Kennedy, Oran; Condon, Keith W; Auger, Janene; Black, Hal L; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2009-12-01

    Disuse typically causes an imbalance in bone formation and bone resorption, leading to losses of cortical and trabecular bone. In contrast, bears maintain balanced intracortical remodeling and prevent cortical bone loss during disuse (hibernation). Trabecular bone, however, is more detrimentally affected than cortical bone in other animal models of disuse. Here we investigated the effects of hibernation on bone remodeling, architectural properties, and mineral density of grizzly bear (Ursus arctos horribilis) and black bear (Ursus americanus) trabecular bone in several skeletal locations. There were no differences in bone volume fraction or tissue mineral density between hibernating and active bears or between pre- and post-hibernation bears in the ilium, distal femur, or calcaneus. Though indices of cellular activity level (mineral apposition rate, osteoid thickness) decreased, trabecular bone resorption and formation indices remained balanced in hibernating grizzly bears. These data suggest that bears prevent bone loss during disuse by maintaining a balance between bone formation and bone resorption, which consequently preserves bone structure and strength. Further investigation of bone metabolism in hibernating bears may lead to the translation of mechanisms preventing disuse-induced bone loss in bears into novel treatments for osteoporosis.

  6. Diet and Macronutrient Optimization in Wild Ursids: A Comparison of Grizzly Bears with Sympatric and Allopatric Black Bears.

    Science.gov (United States)

    Costello, Cecily M; Cain, Steven L; Pils, Shannon; Frattaroli, Leslie; Haroldson, Mark A; van Manen, Frank T

    2016-01-01

    When fed ad libitum, ursids can maximize mass gain by selecting mixed diets wherein protein provides 17 ± 4% of digestible energy, relative to carbohydrates or lipids. In the wild, this ability is likely constrained by seasonal food availability, limits of intake rate as body size increases, and competition. By visiting locations of 37 individuals during 274 bear-days, we documented foods consumed by grizzly (Ursus arctos) and black bears (Ursus americanus) in Grand Teton National Park during 2004-2006. Based on published nutritional data, we estimated foods and macronutrients as percentages of daily energy intake. Using principal components and cluster analyses, we identified 14 daily diet types. Only 4 diets, accounting for 21% of days, provided protein levels within the optimal range. Nine diets (75% of days) led to over-consumption of protein, and 1 diet (3% of days) led to under-consumption. Highest protein levels were associated with animal matter (i.e., insects, vertebrates), which accounted for 46-47% of daily energy for both species. As predicted: 1) daily diets dominated by high-energy vertebrates were positively associated with grizzly bears and mean percent protein intake was positively associated with body mass; 2) diets dominated by low-protein fruits were positively associated with smaller-bodied black bears; and 3) mean protein was highest during spring, when high-energy plant foods were scarce, however it was also higher than optimal during summer and fall. Contrary to our prediction: 4) allopatric black bears did not exhibit food selection for high-energy foods similar to grizzly bears. Although optimal gain of body mass was typically constrained, bears usually opted for the energetically superior trade-off of consuming high-energy, high-protein foods. Given protein digestion efficiency similar to obligate carnivores, this choice likely supported mass gain, consistent with studies showing monthly increases in percent body fat among bears in this

  7. Diet and Macronutrient Optimization in Wild Ursids: A Comparison of Grizzly Bears with Sympatric and Allopatric Black Bears.

    Directory of Open Access Journals (Sweden)

    Cecily M Costello

    Full Text Available When fed ad libitum, ursids can maximize mass gain by selecting mixed diets wherein protein provides 17 ± 4% of digestible energy, relative to carbohydrates or lipids. In the wild, this ability is likely constrained by seasonal food availability, limits of intake rate as body size increases, and competition. By visiting locations of 37 individuals during 274 bear-days, we documented foods consumed by grizzly (Ursus arctos and black bears (Ursus americanus in Grand Teton National Park during 2004-2006. Based on published nutritional data, we estimated foods and macronutrients as percentages of daily energy intake. Using principal components and cluster analyses, we identified 14 daily diet types. Only 4 diets, accounting for 21% of days, provided protein levels within the optimal range. Nine diets (75% of days led to over-consumption of protein, and 1 diet (3% of days led to under-consumption. Highest protein levels were associated with animal matter (i.e., insects, vertebrates, which accounted for 46-47% of daily energy for both species. As predicted: 1 daily diets dominated by high-energy vertebrates were positively associated with grizzly bears and mean percent protein intake was positively associated with body mass; 2 diets dominated by low-protein fruits were positively associated with smaller-bodied black bears; and 3 mean protein was highest during spring, when high-energy plant foods were scarce, however it was also higher than optimal during summer and fall. Contrary to our prediction: 4 allopatric black bears did not exhibit food selection for high-energy foods similar to grizzly bears. Although optimal gain of body mass was typically constrained, bears usually opted for the energetically superior trade-off of consuming high-energy, high-protein foods. Given protein digestion efficiency similar to obligate carnivores, this choice likely supported mass gain, consistent with studies showing monthly increases in percent body fat among

  8. Diet and macronutrient optimization in wild ursids: A comparison of grizzly bears with sympatric and allopatric black bears

    Science.gov (United States)

    Costello, Cecily M.; Cain, Steven L.; Pils, Shannon R; Frattaroli, Leslie; Haroldson, Mark A.; van Manen, Frank T.

    2016-01-01

    When fed ad libitum, ursids can maximize mass gain by selecting mixed diets wherein protein provides 17 ± 4% of digestible energy, relative to carbohydrates or lipids. In the wild, this ability is likely constrained by seasonal food availability, limits of intake rate as body size increases, and competition. By visiting locations of 37 individuals during 274 bear-days, we documented foods consumed by grizzly (Ursus arctos) and black bears (Ursus americanus) in Grand Teton National Park during 2004–2006. Based on published nutritional data, we estimated foods and macronutrients as percentages of daily energy intake. Using principal components and cluster analyses, we identified 14 daily diet types. Only 4 diets, accounting for 21% of days, provided protein levels within the optimal range. Nine diets (75% of days) led to over-consumption of protein, and 1 diet (3% of days) led to under-consumption. Highest protein levels were associated with animal matter (i.e., insects, vertebrates), which accounted for 46–47% of daily energy for both species. As predicted: 1) daily diets dominated by high-energy vertebrates were positively associated with grizzly bears and mean percent protein intake was positively associated with body mass; 2) diets dominated by low-protein fruits were positively associated with smaller-bodied black bears; and 3) mean protein was highest during spring, when high-energy plant foods were scarce, however it was also higher than optimal during summer and fall. Contrary to our prediction: 4) allopatric black bears did not exhibit food selection for high-energy foods similar to grizzly bears. Although optimal gain of body mass was typically constrained, bears usually opted for the energetically superior trade-off of consuming high-energy, high-protein foods. Given protein digestion efficiency similar to obligate carnivores, this choice likely supported mass gain, consistent with studies showing monthly increases in percent body fat among bears in

  9. Using spatial mark-recapture for conservation monitoring of grizzly bear populations in Alberta.

    Science.gov (United States)

    Boulanger, John; Nielsen, Scott E; Stenhouse, Gordon B

    2018-03-26

    One of the challenges in conservation is determining patterns and responses in population density and distribution as it relates to habitat and changes in anthropogenic activities. We applied spatially explicit capture recapture (SECR) methods, combined with density surface modelling from five grizzly bear (Ursus arctos) management areas (BMAs) in Alberta, Canada, to assess SECR methods and to explore factors influencing bear distribution. Here we used models of grizzly bear habitat and mortality risk to test local density associations using density surface modelling. Results demonstrated BMA-specific factors influenced density, as well as the effects of habitat and topography on detections and movements of bears. Estimates from SECR were similar to those from closed population models and telemetry data, but with similar or higher levels of precision. Habitat was most associated with areas of higher bear density in the north, whereas mortality risk was most associated (negatively) with density of bears in the south. Comparisons of the distribution of mortality risk and habitat revealed differences by BMA that in turn influenced local abundance of bears. Combining SECR methods with density surface modelling increases the resolution of mark-recapture methods by directly inferring the effect of spatial factors on regulating local densities of animals.

  10. Linking landscape characteristics to local grizzly bear abundance using multiple detection methods in a hierarchical model

    Science.gov (United States)

    Graves, T.A.; Kendall, Katherine C.; Royle, J. Andrew; Stetz, J.B.; Macleod, A.C.

    2011-01-01

    Few studies link habitat to grizzly bear Ursus arctos abundance and these have not accounted for the variation in detection or spatial autocorrelation. We collected and genotyped bear hair in and around Glacier National Park in northwestern Montana during the summer of 2000. We developed a hierarchical Markov chain Monte Carlo model that extends the existing occupancy and count models by accounting for (1) spatially explicit variables that we hypothesized might influence abundance; (2) separate sub-models of detection probability for two distinct sampling methods (hair traps and rub trees) targeting different segments of the population; (3) covariates to explain variation in each sub-model of detection; (4) a conditional autoregressive term to account for spatial autocorrelation; (5) weights to identify most important variables. Road density and per cent mesic habitat best explained variation in female grizzly bear abundance; spatial autocorrelation was not supported. More female bears were predicted in places with lower road density and with more mesic habitat. Detection rates of females increased with rub tree sampling effort. Road density best explained variation in male grizzly bear abundance and spatial autocorrelation was supported. More male bears were predicted in areas of low road density. Detection rates of males increased with rub tree and hair trap sampling effort and decreased over the sampling period. We provide a new method to (1) incorporate multiple detection methods into hierarchical models of abundance; (2) determine whether spatial autocorrelation should be included in final models. Our results suggest that the influence of landscape variables is consistent between habitat selection and abundance in this system.

  11. Plant consumption by grizzly bears reduces biomagnification of salmon-derived polychlorinated biphenyls, polybrominated diphenyl ethers, and organochlorine pesticides.

    Science.gov (United States)

    Christensen, Jennie R; Yunker, Mark B; MacDuffee, Misty; Ross, Peter S

    2013-04-01

    The present study characterizes the uptake and loss of persistent organic pollutants (POPs) in grizzly bears (Ursus arctos horribilis) by sampling and analyzing their terrestrial and marine foods and fecal material from a remote coastal watershed in British Columbia, Canada. The authors estimate that grizzly bears consume 341 to 1,120 µg of polychlorinated biphenyls (PCBs) and 3.9 to 33 µg of polybrominated diphenyl ethers daily in the fall when they have access to an abundant supply of returning salmon. The authors also estimate that POP elimination by grizzly bears through defecation is very low following salmon consumption (typically 100% for PCBs and organochlorine pesticides). Excretion of individual POPs is largely driven by a combination of fugacity (differences between bear and food concentrations) and the digestibility of the food. The results of the present study are substantiated by a principal components analysis, which also demonstrates a strong role for log KOW in governing the excretion of different POPs in grizzly bears. Collectively, the present study's results reveal that grizzly bears experience a vegetation-associated drawdown of POPs previously acquired through the consumption of salmon, to such an extent that net biomagnification is reduced. Copyright © 2013 SETAC.

  12. Home range size variation in female arctic grizzly bears relative to reproductive status and resource availability.

    Science.gov (United States)

    Edwards, Mark A; Derocher, Andrew E; Nagy, John A

    2013-01-01

    The area traversed in pursuit of resources defines the size of an animal's home range. For females, the home range is presumed to be a function of forage availability. However, the presence of offspring may also influence home range size due to reduced mobility, increased nutritional need, and behavioral adaptations of mothers to increase offspring survival. Here, we examine the relationship between resource use and variation in home range size for female barren-ground grizzly bears (Ursus arctos) of the Mackenzie Delta region in Arctic Canada. We develop methods to test hypotheses of home range size that address selection of cover where cover heterogeneity is low, using generalized linear mixed-effects models and an information-theoretic approach. We found that the reproductive status of female grizzlies affected home range size but individually-based spatial availability of highly selected cover in spring and early summer was a stronger correlate. If these preferred covers in spring and early summer, a period of low resource availability for grizzly bears following den-emergence, were patchy and highly dispersed, females travelled farther regardless of the presence or absence of offspring. Increased movement to preferred covers, however, may result in greater risk to the individual or family.

  13. Home range size variation in female arctic grizzly bears relative to reproductive status and resource availability.

    Directory of Open Access Journals (Sweden)

    Mark A Edwards

    Full Text Available The area traversed in pursuit of resources defines the size of an animal's home range. For females, the home range is presumed to be a function of forage availability. However, the presence of offspring may also influence home range size due to reduced mobility, increased nutritional need, and behavioral adaptations of mothers to increase offspring survival. Here, we examine the relationship between resource use and variation in home range size for female barren-ground grizzly bears (Ursus arctos of the Mackenzie Delta region in Arctic Canada. We develop methods to test hypotheses of home range size that address selection of cover where cover heterogeneity is low, using generalized linear mixed-effects models and an information-theoretic approach. We found that the reproductive status of female grizzlies affected home range size but individually-based spatial availability of highly selected cover in spring and early summer was a stronger correlate. If these preferred covers in spring and early summer, a period of low resource availability for grizzly bears following den-emergence, were patchy and highly dispersed, females travelled farther regardless of the presence or absence of offspring. Increased movement to preferred covers, however, may result in greater risk to the individual or family.

  14. An evaluation of the use of ERTS-1 satellite imagery for grizzly bear habitat analysis

    Science.gov (United States)

    Varney, J. R.; Craighead, J. J.; Sumner, J.

    1973-01-01

    Multispectral scanner images taken by the ERTS-1 satellite in August and October, 1972, were examined to determine if they would be useful in identifying and mapping favorable habitat for grizzly bears. It was possible to identify areas having a suitable mixture of alpine meadow and timber, and to eliminate those which did not meet the isolation requirements of grizzlies because of farming or grazing activity. High altitude timbered areas mapped from satellite imagery agreed reasonably well with the distribution of whitebark pine, an important food species. Analysis of satellite imagery appears to be a valuable supplement to present ground observation methods, since it allows the most important areas to be identified for intensive study and many others to be eliminated from consideration. A sampling plan can be developed from such data which will minimize field effort and overall program cost.

  15. Caching behaviour by red squirrels may contribute to food conditioning of grizzly bears

    Directory of Open Access Journals (Sweden)

    Julia Elizabeth Put

    2017-08-01

    Full Text Available We describe an interspecific relationship wherein grizzly bears (Ursus arctos horribilis appear to seek out and consume agricultural seeds concentrated in the middens of red squirrels (Tamiasciurus hudsonicus, which had collected and cached spilled grain from a railway. We studied this interaction by estimating squirrel density, midden density and contents, and bear activity along paired transects that were near (within 50 m or far (200 m from the railway. Relative to far ones, near transects had 2.4 times more squirrel sightings, but similar numbers of squirrel middens. Among 15 middens in which agricultural products were found, 14 were near the rail and 4 subsequently exhibited evidence of bear digging. Remote cameras confirmed the presence of squirrels on the rail and bears excavating middens. We speculate that obtaining grain from squirrel middens encourages bears to seek grain on the railway, potentially contributing to their rising risk of collisions with trains.

  16. Environmental, biological and anthropogenic effects on grizzly bear body size: temporal and spatial considerations.

    Science.gov (United States)

    Nielsen, Scott E; Cattet, Marc R L; Boulanger, John; Cranston, Jerome; McDermid, Greg J; Shafer, Aaron B A; Stenhouse, Gordon B

    2013-09-08

    Individual body growth is controlled in large part by the spatial and temporal heterogeneity of, and competition for, resources. Grizzly bears (Ursus arctos L.) are an excellent species for studying the effects of resource heterogeneity and maternal effects (i.e. silver spoon) on life history traits such as body size because their habitats are highly variable in space and time. Here, we evaluated influences on body size of grizzly bears in Alberta, Canada by testing six factors that accounted for spatial and temporal heterogeneity in environments during maternal, natal and 'capture' (recent) environments. After accounting for intrinsic biological factors (age, sex), we examined how body size, measured in mass, length and body condition, was influenced by: (a) population density; (b) regional habitat productivity; (c) inter-annual variability in productivity (including silver spoon effects); (d) local habitat quality; (e) human footprint (disturbances); and (f) landscape change. We found sex and age explained the most variance in body mass, condition and length (R(2) from 0.48-0.64). Inter-annual variability in climate the year before and of birth (silver spoon effects) had detectable effects on the three-body size metrics (R(2) from 0.04-0.07); both maternal (year before birth) and natal (year of birth) effects of precipitation and temperature were related with body size. Local heterogeneity in habitat quality also explained variance in body mass and condition (R(2) from 0.01-0.08), while annual rate of landscape change explained additional variance in body length (R(2) of 0.03). Human footprint and population density had no observed effect on body size. These results illustrated that body size patterns of grizzly bears, while largely affected by basic biological characteristics (age and sex), were also influenced by regional environmental gradients the year before, and of, the individual's birth thus illustrating silver spoon effects. The magnitude of the silver

  17. Genetic analysis reveals demographic fragmentation of grizzly bears yielding vulnerably small populations.

    Science.gov (United States)

    Proctor, Michael F; McLellan, Bruce N; Strobeck, Curtis; Barclay, Robert M R

    2005-11-22

    Ecosystem conservation requires the presence of native carnivores, yet in North America, the distributions of many larger carnivores have contracted. Large carnivores live at low densities and require large areas to thrive at the population level. Therefore, if human-dominated landscapes fragment remaining carnivore populations, small and demographically vulnerable populations may result. Grizzly bear range contraction in the conterminous USA has left four fragmented populations, three of which remain along the Canada-USA border. A tenet of grizzly bear conservation is that the viability of these populations requires demographic linkage (i.e. inter-population movement of both sexes) to Canadian bears. Using individual-based genetic analysis, our results suggest this demographic connection has been severed across their entire range in southern Canada by a highway and associated settlements, limiting female and reducing male movement. Two resulting populations are vulnerably small (bear populations may be more threatened than previously thought and that conservation efforts must expand to include international connectivity management. They also demonstrate the ability of genetic analysis to detect gender-specific demographic population fragmentation in recently disturbed systems, a traditionally intractable yet increasingly important ecological measurement worldwide.

  18. Respect for Grizzly Bears: an Aboriginal Approach for Co-existence and Resilience

    Directory of Open Access Journals (Sweden)

    Douglas A. Clark

    2009-06-01

    Full Text Available Aboriginal peoples' respect for grizzly bear (Ursus arctos is widely acknowledged, but rarely explored, in wildlife management discourse in northern Canada. Practices of respect expressed toward bears were observed and grouped into four categories: terminology, stories, reciprocity, and ritual. In the southwest Yukon, practices in all four categories form a coherent qualitative resource management system that may enhance the resilience of the bear-human system as a whole. This system also demonstrates the possibility of a previously unrecognized human role in maintaining productive riparian ecosystems and salmon runs, potentially providing a range of valued social-ecological outcomes. Practices of respect hold promise for new strategies to manage bear-human interactions, but such successful systems may be irreducibly small scale and place based.

  19. Grizzly bear population vital rates and trend in the Northern Continental Divide Ecosystem, Montana

    Science.gov (United States)

    Mace, R.D.; Carney, D.W.; Chilton-Radandt, T.; Courville, S.A.; Haroldson, M.A.; Harris, R.B.; Jonkel, J.; McLellan, B.; Madel, M.; Manley, T.L.; Schwartz, C.C.; Servheen, C.; Stenhouse, G.; Waller, J.S.; Wenum, E.

    2012-01-01

    We estimated grizzly bear (Ursus arctos) population vital rates and trend for the Northern Continental Divide Ecosystem (NCDE), Montana, between 2004 and 2009 by following radio-collared females and observing their fate and reproductive performance. Our estimates of dependent cub and yearling survival were 0.612 (95% CI = 0.300–0.818) and 0.682 (95% CI = 0.258–0.898). Our estimates of subadult and adult female survival were 0.852 (95% CI = 0.628–0.951) and 0.952 (95% CI = 0.892–0.980). From visual observations, we estimated a mean litter size of 2.00 cubs/litter. Accounting for cub mortality prior to the first observations of litters in spring, our adjusted mean litter size was 2.27 cubs/litter. We estimated the probabilities of females transitioning from one reproductive state to another between years. Using the stable state probability of 0.322 (95% CI = 0.262–0.382) for females with cub litters, our adjusted fecundity estimate (mx) was 0.367 (95% CI = 0.273–0.461). Using our derived rates, we estimated that the population grew at a mean annual rate of approximately 3% (λ = 1.0306, 95% CI = 0.928–1.102), and 71.5% of 10,000 Monte Carlo simulations produced estimates of λ > 1.0. Our results indicate an increasing population trend of grizzly bears in the NCDE. Coupled with concurrent studies of population size, we estimate that over 1,000 grizzly bears reside in and adjacent to this recovery area. We suggest that monitoring of population trend and other vital rates using radioed females be continued.

  20. Natural regeneration on seismic lines influences movement behaviour of wolves and grizzly bears.

    Science.gov (United States)

    Finnegan, Laura; Pigeon, Karine E; Cranston, Jerome; Hebblewhite, Mark; Musiani, Marco; Neufeld, Lalenia; Schmiegelow, Fiona; Duval, Julie; Stenhouse, Gordon B

    2018-01-01

    Across the boreal forest of Canada, habitat disturbance is the ultimate cause of caribou (Rangifer tarandus caribou) declines. Habitat restoration is a focus of caribou recovery efforts, with a goal to finding ways to reduce predator use of disturbances, and caribou-predator encounters. One of the most pervasive disturbances within caribou ranges in Alberta, Canada are seismic lines cleared for energy exploration. Seismic lines facilitate predator movement, and although vegetation on some seismic lines is regenerating, it remains unknown whether vegetation regrowth is sufficient to alter predator response. We used Light Detection and Ranging (LiDAR) data, and GPS locations, to understand how vegetation and other attributes of seismic lines influence movements of two predators, wolves (Canis lupus) and grizzly bears (Ursus arctos). During winter, wolves moved towards seismic lines regardless of vegetation height, while during spring wolves moved towards seismic lines with higher vegetation. During summer, wolves moved towards seismic lines with lower vegetation and also moved faster near seismic lines with vegetation grizzly bears during spring and summer, but there was no relationship between vegetation height and grizzly bear movement rates. These results suggest that wolves use seismic lines for travel during summer, but during winter wolf movements relative to seismic lines could be influenced by factors additional to movement efficiency; potentially enhanced access to areas frequented by ungulate prey. Grizzly bears may be using seismic lines for movement, but could also be using seismic lines as a source of vegetative food or ungulate prey. To reduce wolf movement rate, restoration could focus on seismic lines with vegetation <1 m in height. However our results revealed that seismic lines continue to influence wolf movement behaviour decades after they were built, and even at later stages of regeneration. Therefore it remains unknown at what stage of natural

  1. Macronutrient optimization and seasonal diet mixing in a large omnivore, the grizzly bear: a geometric analysis.

    Directory of Open Access Journals (Sweden)

    Sean C P Coogan

    Full Text Available Nutrient balance is a strong determinant of animal fitness and demography. It is therefore important to understand how the compositions of available foods relate to required balance of nutrients and habitat suitability for animals in the wild. These relationships are, however, complex, particularly for omnivores that often need to compose balanced diets by combining their intake from diverse nutritionally complementary foods. Here we apply geometric models to understand how the nutritional compositions of foods available to an omnivorous member of the order Carnivora, the grizzly bear (Ursus arctos L., relate to optimal macronutrient intake, and assess the seasonal nutritional constraints on the study population in west-central Alberta, Canada. The models examined the proportion of macronutrients that bears could consume by mixing their diet from food available in each season, and assessed the extent to which bears could consume the ratio of protein to non-protein energy previously demonstrated using captive bears to optimize mass gain. We found that non-selective feeding on ungulate carcasses provided a non-optimal macronutrient balance with surplus protein relative to fat and carbohydrate, reflecting adaptation to an omnivorous lifestyle, and that optimization through feeding selectively on different tissues of ungulate carcasses is unlikely. Bears were, however, able to dilute protein intake to an optimal ratio by mixing their otherwise high-protein diet with carbohydrate-rich fruit. Some individual food items were close to optimally balanced in protein to non-protein energy (e.g. Hedysarum alpinum roots, which may help explain their dietary prevalence. Ants may be consumed particularly as a source of lipids. Overall, our analysis showed that most food available to bears in the study area were high in protein relative to lipid or carbohydrate, suggesting the lack of non-protein energy limits the fitness (e.g. body size and reproduction and

  2. Macronutrient optimization and seasonal diet mixing in a large omnivore, the grizzly bear: a geometric analysis.

    Science.gov (United States)

    Coogan, Sean C P; Raubenheimer, David; Stenhouse, Gordon B; Nielsen, Scott E

    2014-01-01

    Nutrient balance is a strong determinant of animal fitness and demography. It is therefore important to understand how the compositions of available foods relate to required balance of nutrients and habitat suitability for animals in the wild. These relationships are, however, complex, particularly for omnivores that often need to compose balanced diets by combining their intake from diverse nutritionally complementary foods. Here we apply geometric models to understand how the nutritional compositions of foods available to an omnivorous member of the order Carnivora, the grizzly bear (Ursus arctos L.), relate to optimal macronutrient intake, and assess the seasonal nutritional constraints on the study population in west-central Alberta, Canada. The models examined the proportion of macronutrients that bears could consume by mixing their diet from food available in each season, and assessed the extent to which bears could consume the ratio of protein to non-protein energy previously demonstrated using captive bears to optimize mass gain. We found that non-selective feeding on ungulate carcasses provided a non-optimal macronutrient balance with surplus protein relative to fat and carbohydrate, reflecting adaptation to an omnivorous lifestyle, and that optimization through feeding selectively on different tissues of ungulate carcasses is unlikely. Bears were, however, able to dilute protein intake to an optimal ratio by mixing their otherwise high-protein diet with carbohydrate-rich fruit. Some individual food items were close to optimally balanced in protein to non-protein energy (e.g. Hedysarum alpinum roots), which may help explain their dietary prevalence. Ants may be consumed particularly as a source of lipids. Overall, our analysis showed that most food available to bears in the study area were high in protein relative to lipid or carbohydrate, suggesting the lack of non-protein energy limits the fitness (e.g. body size and reproduction) and population density

  3. The effects of automated scatter feeders on captive grizzly bear activity budgets.

    Science.gov (United States)

    Andrews, Nathan L P; Ha, James C

    2014-01-01

    Although captive bears are popular zoo attractions, they are known to exhibit high levels of repetitive behaviors (RBs). These behaviors have also made them particularly popular subjects for welfare research. To date, most research on ursid welfare has focused on various feeding methods that seek to increase time spent searching for, extracting, or consuming food. Prior research indicates an average of a 50% reduction in RBs when attempts are successful and, roughly, a 50% success rate across studies. This research focused on decreasing time spent in an RB while increasing the time spent active by increasing time spent searching for, extracting, and consuming food. The utility of timed, automated scatter feeders was examined for use with captive grizzly bears (Ursis arctos horribilis). Findings include a significant decrease in time spent in RB and a significant increase in time spent active while the feeders were in use. Further, the bears exhibited a wider range of behaviors and a greater use of their enclosure.

  4. Grizzly bear monitoring by the Heiltsuk people as a crucible for First Nation conservation practice

    Directory of Open Access Journals (Sweden)

    William G. Housty

    2014-06-01

    Full Text Available Guided by deeply held cultural values, First Nations in Canada are rapidly regaining legal authority to manage natural resources. We present a research collaboration among academics, tribal government, provincial and federal government, resource managers, conservation practitioners, and community leaders supporting First Nation resource authority and stewardship. First, we present results from a molecular genetics study of grizzly bears inhabiting an important conservation area within the territory of the Heiltsuk First Nation in coastal British Columbia. Noninvasive hair sampling occurred between 2006 and 2009 in the Koeye watershed, a stronghold for grizzly bears, salmon, and Heiltsuk people. Molecular demographic analyses revealed a regionally significant population of bears, which congregate at the Koeye each salmon-spawning season. There was a minimum of 57 individual bears detected during the study period. Results also pointed to a larger than expected source geography for salmon-feeding bears in the study area (> 1000 km², as well as early evidence of a declining trend in the bear population potentially explained by declining salmon numbers. Second, we demonstrate and discuss the power of integrating scientific research with a culturally appropriate research agenda developed by indigenous people. Guided explicitly by principles from Gvi'ilas or customary law, this research methodology is coupled with Heiltsuk culture, enabling results of applied conservation science to involve and resonate with tribal leadership in ways that have eluded previous scientific endeavors. In this context, we discuss the effectiveness of research partnerships that, from the outset, create both scientific programs and integrated communities of action that can implement change. We argue that indigenous resource management requires collaborative approaches like ours, in which science-based management is embedded within a socially and culturally appropriate

  5. Multiple data sources improve DNA-based mark-recapture population estimates of grizzly bears.

    Science.gov (United States)

    Boulanger, John; Kendall, Katherine C; Stetz, Jeffrey B; Roon, David A; Waits, Lisette P; Paetkau, David

    2008-04-01

    A fundamental challenge to estimating population size with mark-recapture methods is heterogeneous capture probabilities and subsequent bias of population estimates. Confronting this problem usually requires substantial sampling effort that can be difficult to achieve for some species, such as carnivores. We developed a methodology that uses two data sources to deal with heterogeneity and applied this to DNA mark-recapture data from grizzly bears (Ursus arctos). We improved population estimates by incorporating additional DNA "captures" of grizzly bears obtained by collecting hair from unbaited bear rub trees concurrently with baited, grid-based, hair snag sampling. We consider a Lincoln-Petersen estimator with hair snag captures as the initial session and rub tree captures as the recapture session and develop an estimator in program MARK that treats hair snag and rub tree samples as successive sessions. Using empirical data from a large-scale project in the greater Glacier National Park, Montana, USA, area and simulation modeling we evaluate these methods and compare the results to hair-snag-only estimates. Empirical results indicate that, compared with hair-snag-only data, the joint hair-snag-rub-tree methods produce similar but more precise estimates if capture and recapture rates are reasonably high for both methods. Simulation results suggest that estimators are potentially affected by correlation of capture probabilities between sample types in the presence of heterogeneity. Overall, closed population Huggins-Pledger estimators showed the highest precision and were most robust to sparse data, heterogeneity, and capture probability correlation among sampling types. Results also indicate that these estimators can be used when a segment of the population has zero capture probability for one of the methods. We propose that this general methodology may be useful for other species in which mark-recapture data are available from multiple sources.

  6. Geographic pattern of serum antibody prevalence for Brucella spp. in caribou, grizzly bears, and wolves from Alaska, 1975-1998.

    Science.gov (United States)

    Zarnke, Randall L; Ver Hoef, Jay M; DeLong, Robert A

    2006-07-01

    Blood samples were collected from 2,635 caribou (Rangifer tarandus), 1,238 grizzly bears (Ursus arctos), and 930 wolves (Canis lupus) from throughout mainland Alaska during 1975-98. Sera were tested for evidence of exposure to Brucella spp. Serum antibody prevalences were highest in the northwestern region of the state. In any specific area, antibody prevalences for caribou and wolves were of a similar magnitude, whereas antibody prevalence for bears in these same areas were two to three times higher.

  7. Human perspectives and conservation of grizzly bears in Banff National Park, Canada.

    Science.gov (United States)

    Chamberlain, Emily C; Rutherford, Murray B; Gibeau, Michael L

    2012-06-01

    Some conservation initiatives provoke intense conflict among stakeholders. The need for action, the nature of the conservation measures, and the effects of these measures on human interests may be disputed. Tools are needed to depolarize such situations, foster understanding of the perspectives of people involved, and find common ground. We used Q methodology to explore stakeholders' perspectives on conservation and management of grizzly bears (Ursus arctos horribilis) in Banff National Park and the Bow River watershed of Alberta, Canada. Twenty-nine stakeholders participated in the study, including local residents, scientists, agency employees, and representatives of nongovernmental conservation organizations and other interest groups. Participants rank ordered a set of statements to express their opinions on the problems of grizzly bear management (I-IV) and a second set of statements on possible solutions to the problems (A-C). Factor analysis revealed that participants held 4 distinct views of the problems: individuals associated with factor I emphasized deficiencies in goals and plans; those associated with factor II believed that problems had been exaggerated; those associated with factor III blamed institutional flaws such as disjointed management and inadequate resources; and individuals associated with factor IV blamed politicized decision making. There were 3 distinct views about the best solutions to the problems: individuals associated with factor A called for increased conservation efforts; those associated with factor B wanted reforms in decision-making processes; and individuals associated with factor C supported active landscape management. We connected people's definitions of the problem with their preferred solutions to form 5 overall problem narratives espoused by groups in the study: the problem is deficient goals and plans, the solution is to prioritize conservation efforts (planning-oriented conservation advocates); the problem is flawed

  8. Effect of season and high ambient temperature on activity levels and patterns of grizzly bears (Ursus arctos).

    Science.gov (United States)

    McLellan, Michelle L; McLellan, Bruce N

    2015-01-01

    Understanding factors that influence daily and annual activity patterns of a species provides insights to challenges facing individuals, particularly when climate shifts, and thus is important in conservation. Using GPS collars with dual-axis motion sensors that recorded the number of switches every 5 minutes we tested the hypotheses: 1. Grizzly bears (Ursus arctos) increase daily activity levels and active bout lengths when they forage on berries, the major high-energy food in this ecosystem, and 2. Grizzly bears become less active and more nocturnal when ambient temperature exceeds 20°C. We found support for hypothesis 1 with both male and female bears being active from 0.7 to 2.8 h longer in the berry season than in other seasons. Our prediction under hypothesis 2 was not supported. When bears foraged on berries on a dry, open mountainside, there was no relationship between daily maximum temperature (which varied from 20.4 to 40.1°C) and the total amount of time bears were active, and no difference in activity levels during day or night between warm (20.4-27.3°C) and hot (27.9-40.1°C) days. Our results highlight the strong influence that food acquisition has on activity levels and patterns of grizzly bears and is a challenge to the heat dissipation limitation theory.

  9. Effect of season and high ambient temperature on activity levels and patterns of grizzly bears (Ursus arctos.

    Directory of Open Access Journals (Sweden)

    Michelle L McLellan

    Full Text Available Understanding factors that influence daily and annual activity patterns of a species provides insights to challenges facing individuals, particularly when climate shifts, and thus is important in conservation. Using GPS collars with dual-axis motion sensors that recorded the number of switches every 5 minutes we tested the hypotheses: 1. Grizzly bears (Ursus arctos increase daily activity levels and active bout lengths when they forage on berries, the major high-energy food in this ecosystem, and 2. Grizzly bears become less active and more nocturnal when ambient temperature exceeds 20°C. We found support for hypothesis 1 with both male and female bears being active from 0.7 to 2.8 h longer in the berry season than in other seasons. Our prediction under hypothesis 2 was not supported. When bears foraged on berries on a dry, open mountainside, there was no relationship between daily maximum temperature (which varied from 20.4 to 40.1°C and the total amount of time bears were active, and no difference in activity levels during day or night between warm (20.4-27.3°C and hot (27.9-40.1°C days. Our results highlight the strong influence that food acquisition has on activity levels and patterns of grizzly bears and is a challenge to the heat dissipation limitation theory.

  10. Grizzly bears and calving caribou: What is the relation with river corridors?

    Science.gov (United States)

    Young, Donald D.; McCabe, Thomas R.

    1998-01-01

    Researchers have debated the effect of the Trans-Alaska Pipeline (TAP) and associated developments to caribou (Rangifer tarandus) of the central Arctic herd (CAH) since the 1970s. Several studies have demonstrated that cows and calves of the CAH avoided the TAP corridor because of disturbance associated with the pipeline, whereas others have indicated that female caribou of the CAH avoided riparian habitats closely associated with the pipeline. This avoidance was explained as a predator-avoidance strategy. We investigated the relation between female caribou and grizzly bear (Ursus arctos) use of river corridors on the yet undisturbed calving grounds of the Porcupine caribou herd (PCH) in northeastern Alaska. On the coastal plain, caribou were closer to river corridors than expected (P = 0.038), but bear use of river corridors did not differ from expected (P = 0.740). In the foothills, caribou use of river corridors did not differ from expected (P = 0.520), but bears were farther from rivers than expected (P = 0.001). Our results did not suggest an avoidance of river corridors by calving caribou or a propensity for bears to be associated with riparian habitats, presumably for stalking or ambush cover. We propose that PCH caribou reduce the risks of predation to neonates by migrating to a common calving grounds, where predator swamping is the operational antipredator strategy. Consequently, we hypothesize that nutritional demands, not predator avoidance strategies, ultimately regulate habitat use patterns (e.g., use of river corridors) of calving PCH caribou.

  11. Using grizzly bears to assess harvest-ecosystem tradeoffs in salmon fisheries.

    Science.gov (United States)

    Levi, Taal; Darimont, Chris T; Macduffee, Misty; Mangel, Marc; Paquet, Paul; Wilmers, Christopher C

    2012-01-01

    Implementation of ecosystem-based fisheries management (EBFM) requires a clear conceptual and quantitative framework for assessing how different harvest options can modify benefits to ecosystem and human beneficiaries. We address this social-ecological need for Pacific salmon fisheries, which are economically valuable but intercept much of the annual pulse of nutrient subsidies that salmon provide to terrestrial and aquatic food webs. We used grizzly bears, vectors of salmon nutrients and animals with densities strongly coupled to salmon abundance, as surrogates for "salmon ecosystem" function. Combining salmon biomass and stock-recruitment data with stable isotope analysis, we assess potential tradeoffs between fishery yields and bear population densities for six sockeye salmon stocks in Bristol Bay, Alaska, and British Columbia (BC), Canada. For the coastal stocks, we find that both bear densities and fishery yields would increase substantially if ecosystem allocations of salmon increase from currently applied lower to upper goals and beyond. This aligning of benefits comes at a potential cost, however, with the possibility of forgoing harvests in low productivity years. In contrast, we detect acute tradeoffs between bear densities and fishery yields in interior stocks within the Fraser River, BC, where biomass from other salmon species is low. There, increasing salmon allocations to ecosystems would benefit threatened bear populations at the cost of reduced long-term yields. To resolve this conflict, we propose an EBFM goal that values fisheries and bears (and by extension, the ecosystem) equally. At such targets, ecosystem benefits are unexpectedly large compared with losses in fishery yields. To explore other management options, we generate tradeoff curves that provide stock-specific accounting of the expected loss to fishers and gain to bears as more salmon escape the fishery. Our approach, modified to suit multiple scenarios, provides a generalizable method

  12. Using grizzly bears to assess harvest-ecosystem tradeoffs in salmon fisheries.

    Directory of Open Access Journals (Sweden)

    Taal Levi

    Full Text Available Implementation of ecosystem-based fisheries management (EBFM requires a clear conceptual and quantitative framework for assessing how different harvest options can modify benefits to ecosystem and human beneficiaries. We address this social-ecological need for Pacific salmon fisheries, which are economically valuable but intercept much of the annual pulse of nutrient subsidies that salmon provide to terrestrial and aquatic food webs. We used grizzly bears, vectors of salmon nutrients and animals with densities strongly coupled to salmon abundance, as surrogates for "salmon ecosystem" function. Combining salmon biomass and stock-recruitment data with stable isotope analysis, we assess potential tradeoffs between fishery yields and bear population densities for six sockeye salmon stocks in Bristol Bay, Alaska, and British Columbia (BC, Canada. For the coastal stocks, we find that both bear densities and fishery yields would increase substantially if ecosystem allocations of salmon increase from currently applied lower to upper goals and beyond. This aligning of benefits comes at a potential cost, however, with the possibility of forgoing harvests in low productivity years. In contrast, we detect acute tradeoffs between bear densities and fishery yields in interior stocks within the Fraser River, BC, where biomass from other salmon species is low. There, increasing salmon allocations to ecosystems would benefit threatened bear populations at the cost of reduced long-term yields. To resolve this conflict, we propose an EBFM goal that values fisheries and bears (and by extension, the ecosystem equally. At such targets, ecosystem benefits are unexpectedly large compared with losses in fishery yields. To explore other management options, we generate tradeoff curves that provide stock-specific accounting of the expected loss to fishers and gain to bears as more salmon escape the fishery. Our approach, modified to suit multiple scenarios, provides a

  13. Population fragmentation and inter-ecosystem movements of grizzly bears in Western Canada and the Northern United States

    Science.gov (United States)

    Proctor, M.F.; Paetkau, David; McLellan, B.N.; Stenhouse, G.B.; Kendall, K.C.; Mace, R.D.; Kasworm, W.F.; Servheen, C.; Lausen, C.L.; Gibeau, M.L.; Wakkinen, W.L.; Haroldson, M.A.; Mowat, G.; Apps, C.D.; Ciarniello, L.M.; Barclay, R.M.R.; Boyce, M.S.; Schwartz, C.C.; Strobeck, C.

    2012-01-01

    Population fragmentation compromises population viability, reduces a species ability to respond to climate change, and ultimately may reduce biodiversity. We studied the current state and potential causes of fragmentation in grizzly bears over approximately 1,000,000 km 2 of western Canada, the northern United States (US), and southeast Alaska. We compiled much of our data from projects undertaken with a variety of research objectives including population estimation and trend, landscape fragmentation, habitat selection, vital rates, and response to human development. Our primary analytical techniques stemmed from genetic analysis of 3,134 bears, supplemented with radiotelemetry data from 792 bears. We used 15 locus microsatellite data coupled withmeasures of genetic distance, isolation-by-distance (IBD) analysis, analysis of covariance (ANCOVA), linear multiple regression, multi-factorial correspondence analysis (to identify population divisions or fractures with no a priori assumption of group membership), and population-assignment methods to detect individual migrants between immediately adjacent areas. These data corroborated observations of inter-area movements from our telemetry database. In northern areas, we found a spatial genetic pattern of IBD, although there was evidence of natural fragmentation from the rugged heavily glaciated coast mountains of British Columbia (BC) and the Yukon. These results contrasted with the spatial pattern of fragmentation in more southern parts of their distribution. Near the Canada-US border area, we found extensive fragmentation that corresponded to settled mountain valleys andmajor highways. Genetic distances across developed valleys were elevated relative to those across undeveloped valleys in central and northern BC. In disturbed areas, most inter-area movements detected were made by male bears, with few female migrants identified. North-south movements within mountain ranges (Mts) and across BC Highway 3 were more common

  14. Diet and environment shape fecal bacterial microbiota composition and enteric pathogen load of grizzly bears.

    Directory of Open Access Journals (Sweden)

    Clarissa Schwab

    Full Text Available BACKGROUND: Diet and environment impact the composition of mammalian intestinal microbiota; dietary or health disturbances trigger alterations in intestinal microbiota composition and render the host susceptible to enteric pathogens. To date no long term monitoring data exist on the fecal microbiota and pathogen load of carnivores either in natural environments or in captivity. This study investigates fecal microbiota composition and the presence of pathogenic Escherichia coli and toxigenic clostridia in wild and captive grizzly bears (Ursus arctos and relates these to food resources consumed by bears. METHODOLOGY/PRINCIPAL FINDINGS: Feces were obtained from animals of two wild populations and from two captive animals during an active bear season. Wild animals consumed a diverse diet composed of plant material, animal prey and insects. Captive animals were fed a regular granulated diet with a supplement of fruits and vegetables. Bacterial populations were analyzed using quantitative PCR. Fecal microbiota composition fluctuated in wild and in captive animals. The abundance of Clostridium clusters I and XI, and of C. perfringens correlated to regular diet protein intake. Enteroaggregative E. coli were consistently present in all populations. The C. sordellii phospholipase C was identified in three samples of wild animals and for the first time in Ursids. CONCLUSION: This is the first longitudinal study monitoring the fecal microbiota of wild carnivores and comparing it to that of captive individuals of the same species. Location and diet affected fecal bacterial populations as well as the presence of enteric pathogens.

  15. Diet and environment shape fecal bacterial microbiota composition and enteric pathogen load of grizzly bears.

    Science.gov (United States)

    Schwab, Clarissa; Cristescu, Bogdan; Northrup, Joseph M; Stenhouse, Gordon B; Gänzle, Michael

    2011-01-01

    Diet and environment impact the composition of mammalian intestinal microbiota; dietary or health disturbances trigger alterations in intestinal microbiota composition and render the host susceptible to enteric pathogens. To date no long term monitoring data exist on the fecal microbiota and pathogen load of carnivores either in natural environments or in captivity. This study investigates fecal microbiota composition and the presence of pathogenic Escherichia coli and toxigenic clostridia in wild and captive grizzly bears (Ursus arctos) and relates these to food resources consumed by bears. Feces were obtained from animals of two wild populations and from two captive animals during an active bear season. Wild animals consumed a diverse diet composed of plant material, animal prey and insects. Captive animals were fed a regular granulated diet with a supplement of fruits and vegetables. Bacterial populations were analyzed using quantitative PCR. Fecal microbiota composition fluctuated in wild and in captive animals. The abundance of Clostridium clusters I and XI, and of C. perfringens correlated to regular diet protein intake. Enteroaggregative E. coli were consistently present in all populations. The C. sordellii phospholipase C was identified in three samples of wild animals and for the first time in Ursids. This is the first longitudinal study monitoring the fecal microbiota of wild carnivores and comparing it to that of captive individuals of the same species. Location and diet affected fecal bacterial populations as well as the presence of enteric pathogens.

  16. The influence of sulfur and hair growth on stable isotope diet estimates for grizzly bears.

    Directory of Open Access Journals (Sweden)

    Garth Mowat

    Full Text Available Stable isotope ratios of grizzly bear (Ursus arctos guard hair collected from bears on the lower Stikine River, British Columbia (BC were analyzed to: 1 test whether measuring δ34S values improved the precision of the salmon (Oncorhynchus spp. diet fraction estimate relative to δ15N as is conventionally done, 2 investigate whether measuring δ34S values improves the separation of diet contributions of moose (Alces alces, marmot (Marmota caligata, and mountain goat (Oreamnos americanus and, 3 examine the relationship between collection date and length of hair and stable isotope values. Variation in isotope signatures among hair samples from the same bear and year were not trivial. The addition of δ34S values to mixing models used to estimate diet fractions generated small improvement in the precision of salmon and terrestrial prey diet fractions. Although the δ34S value for salmon is precise and appears general among species and areas, sulfur ratios were strongly correlated with nitrogen ratios and therefore added little new information to the mixing model regarding the consumption of salmon. Mean δ34S values for the three terrestrial herbivores of interest were similar and imprecise, so these data also added little new information to the mixing model. The addition of sulfur data did confirm that at least some bears in this system ate marmots during summer and fall. We show that there are bears with short hair that assimilate >20% salmon in their diet and bears with longer hair that eat no salmon living within a few kilometers of one another in a coastal ecosystem. Grizzly bears are thought to re-grow hair between June and October however our analysis of sectioned hair suggested at least some hairs begin growing in July or August, not June and, that hair of wild bears may grow faster than observed in captive bears. Our hair samples may have been from the year of sampling or the previous year because samples were collected in summer when

  17. The influence of sulfur and hair growth on stable isotope diet estimates for grizzly bears.

    Science.gov (United States)

    Mowat, Garth; Curtis, P Jeff; Lafferty, Diana J R

    2017-01-01

    Stable isotope ratios of grizzly bear (Ursus arctos) guard hair collected from bears on the lower Stikine River, British Columbia (BC) were analyzed to: 1) test whether measuring δ34S values improved the precision of the salmon (Oncorhynchus spp.) diet fraction estimate relative to δ15N as is conventionally done, 2) investigate whether measuring δ34S values improves the separation of diet contributions of moose (Alces alces), marmot (Marmota caligata), and mountain goat (Oreamnos americanus) and, 3) examine the relationship between collection date and length of hair and stable isotope values. Variation in isotope signatures among hair samples from the same bear and year were not trivial. The addition of δ34S values to mixing models used to estimate diet fractions generated small improvement in the precision of salmon and terrestrial prey diet fractions. Although the δ34S value for salmon is precise and appears general among species and areas, sulfur ratios were strongly correlated with nitrogen ratios and therefore added little new information to the mixing model regarding the consumption of salmon. Mean δ34S values for the three terrestrial herbivores of interest were similar and imprecise, so these data also added little new information to the mixing model. The addition of sulfur data did confirm that at least some bears in this system ate marmots during summer and fall. We show that there are bears with short hair that assimilate >20% salmon in their diet and bears with longer hair that eat no salmon living within a few kilometers of one another in a coastal ecosystem. Grizzly bears are thought to re-grow hair between June and October however our analysis of sectioned hair suggested at least some hairs begin growing in July or August, not June and, that hair of wild bears may grow faster than observed in captive bears. Our hair samples may have been from the year of sampling or the previous year because samples were collected in summer when bears were

  18. Insights into the latent multinomial model through mark-resight data on female grizzly bears with cubs-of-the-year

    Science.gov (United States)

    Higgs, Megan D.; Link, William; White, Gary C.; Haroldson, Mark A.; Bjornlie, Daniel D.

    2013-01-01

    Mark-resight designs for estimation of population abundance are common and attractive to researchers. However, inference from such designs is very limited when faced with sparse data, either from a low number of marked animals, a low probability of detection, or both. In the Greater Yellowstone Ecosystem, yearly mark-resight data are collected for female grizzly bears with cubs-of-the-year (FCOY), and inference suffers from both limitations. To overcome difficulties due to sparseness, we assume homogeneity in sighting probabilities over 16 years of bi-annual aerial surveys. We model counts of marked and unmarked animals as multinomial random variables, using the capture frequencies of marked animals for inference about the latent multinomial frequencies for unmarked animals. We discuss undesirable behavior of the commonly used discrete uniform prior distribution on the population size parameter and provide OpenBUGS code for fitting such models. The application provides valuable insights into subtleties of implementing Bayesian inference for latent multinomial models. We tie the discussion to our application, though the insights are broadly useful for applications of the latent multinomial model.

  19. Despotism and risk of infanticide influence grizzly bear den-site selection.

    Science.gov (United States)

    Libal, Nathan S; Belant, Jerrold L; Leopold, Bruce D; Wang, Guiming; Owen, Patricia A

    2011-01-01

    Given documented social dominance and intraspecific predation in bear populations, the ideal despotic distribution model and sex hypothesis of sexual segregation predict adult female grizzly bears (Ursus arctos) will avoid areas occupied by adult males to reduce risk of infanticide. Under ideal despotic distribution, juveniles should similarly avoid adult males to reduce predation risk. Den-site selection and use is an important component of grizzly bear ecology and may be influenced by multiple factors, including risk from conspecifics. To test the role of predation risk and the sex hypothesis of sexual segregation, we compared adult female (n = 142), adult male (n = 36), and juvenile (n = 35) den locations in Denali National Park and Preserve, Alaska, USA. We measured elevation, aspect, slope, and dominant land cover for each den site, and used maximum entropy modeling to determine which variables best predicted den sites. We identified the global model as the best-fitting model for adult female (area under curve (AUC) = 0.926) and elevation as the best predictive variable for adult male (AUC = 0.880) den sites. The model containing land cover and elevation best-predicted juvenile (AUC = 0.841) den sites. Adult females spatially segregated from adult males, with dens characterized by higher elevations (mean= 1,412 m, SE = 52) and steeper slopes (mean = 21.9°, SE = 1.1) than adult male (elevation: mean = 1,209 m, SE = 76; slope: mean = 15.6°, SE = 1.9) den sites. Juveniles used a broad range of landscape attributes but did not avoid adult male denning areas. Observed spatial segregation by adult females supports the sex hypothesis of sexual segregation and we suggest is a mechanism to reduce risk of infanticide. Den site selection of adult males is likely related to distribution of food resources during spring.

  20. Despotism and risk of infanticide influence grizzly bear den-site selection.

    Directory of Open Access Journals (Sweden)

    Nathan S Libal

    Full Text Available Given documented social dominance and intraspecific predation in bear populations, the ideal despotic distribution model and sex hypothesis of sexual segregation predict adult female grizzly bears (Ursus arctos will avoid areas occupied by adult males to reduce risk of infanticide. Under ideal despotic distribution, juveniles should similarly avoid adult males to reduce predation risk. Den-site selection and use is an important component of grizzly bear ecology and may be influenced by multiple factors, including risk from conspecifics. To test the role of predation risk and the sex hypothesis of sexual segregation, we compared adult female (n = 142, adult male (n = 36, and juvenile (n = 35 den locations in Denali National Park and Preserve, Alaska, USA. We measured elevation, aspect, slope, and dominant land cover for each den site, and used maximum entropy modeling to determine which variables best predicted den sites. We identified the global model as the best-fitting model for adult female (area under curve (AUC = 0.926 and elevation as the best predictive variable for adult male (AUC = 0.880 den sites. The model containing land cover and elevation best-predicted juvenile (AUC = 0.841 den sites. Adult females spatially segregated from adult males, with dens characterized by higher elevations (mean= 1,412 m, SE = 52 and steeper slopes (mean = 21.9°, SE = 1.1 than adult male (elevation: mean = 1,209 m, SE = 76; slope: mean = 15.6°, SE = 1.9 den sites. Juveniles used a broad range of landscape attributes but did not avoid adult male denning areas. Observed spatial segregation by adult females supports the sex hypothesis of sexual segregation and we suggest is a mechanism to reduce risk of infanticide. Den site selection of adult males is likely related to distribution of food resources during spring.

  1. Grizzly bears exhibit augmented insulin sensitivity while obese prior to a reversible insulin resistance during hibernation.

    Science.gov (United States)

    Nelson, O Lynne; Jansen, Heiko T; Galbreath, Elizabeth; Morgenstern, Kurt; Gehring, Jamie Lauren; Rigano, Kimberly Scott; Lee, Jae; Gong, Jianhua; Shaywitz, Adam J; Vella, Chantal A; Robbins, Charles T; Corbit, Kevin C

    2014-08-05

    The confluence of obesity and diabetes as a worldwide epidemic necessitates the discovery of new therapies. Success in this endeavor requires translatable preclinical studies, which traditionally employ rodent models. As an alternative approach, we explored hibernation where obesity is a natural adaptation to survive months of fasting. Here we report that grizzly bears exhibit seasonal tripartite insulin responsiveness such that obese animals augment insulin sensitivity but only weeks later enter hibernation-specific insulin resistance (IR) and subsequently reinitiate responsiveness upon awakening. Preparation for hibernation is characterized by adiposity coupled to increased insulin sensitivity via modified PTEN/AKT signaling specifically in adipose tissue, suggesting a state of "healthy" obesity analogous to humans with PTEN haploinsufficiency. Collectively, we show that bears reversibly cope with homeostatic perturbations considered detrimental to humans and describe a mechanism whereby IR functions not as a late-stage metabolic adaptation to obesity, but rather a gatekeeper of the fed-fasting transition. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. Prioritizing Sites for Protection and Restoration for Grizzly Bears (Ursus arctos) in Southwestern Alberta, Canada.

    Science.gov (United States)

    Braid, Andrew C R; Nielsen, Scott E

    2015-01-01

    As the influence of human activities on natural systems continues to expand, there is a growing need to prioritize not only pristine sites for protection, but also degraded sites for restoration. We present an approach for simultaneously prioritizing sites for protection and restoration that considers landscape patterns for a threatened population of grizzly bears (Ursus arctos) in southwestern Alberta, Canada. We considered tradeoffs between bottom-up (food resource supply) and top-down (mortality risk from roads) factors affecting seasonal habitat quality for bears. Simulated annealing was used to prioritize source-like sites (high habitat productivity, low mortality risk) for protection, as well as sink-like sites (high habitat productivity, high mortality risk) for restoration. Priority source-like habitats identified key conservation areas where future developments should be limited, whereas priority sink-like habitats identified key areas for mitigating road-related mortality risk with access management. Systematic conservation planning methods can be used to complement traditional habitat-based methods for individual focal species by identifying habitats where conservation actions (both protection and restoration) have the highest potential utility.

  3. Prioritizing Sites for Protection and Restoration for Grizzly Bears (Ursus arctos in Southwestern Alberta, Canada.

    Directory of Open Access Journals (Sweden)

    Andrew C R Braid

    Full Text Available As the influence of human activities on natural systems continues to expand, there is a growing need to prioritize not only pristine sites for protection, but also degraded sites for restoration. We present an approach for simultaneously prioritizing sites for protection and restoration that considers landscape patterns for a threatened population of grizzly bears (Ursus arctos in southwestern Alberta, Canada. We considered tradeoffs between bottom-up (food resource supply and top-down (mortality risk from roads factors affecting seasonal habitat quality for bears. Simulated annealing was used to prioritize source-like sites (high habitat productivity, low mortality risk for protection, as well as sink-like sites (high habitat productivity, high mortality risk for restoration. Priority source-like habitats identified key conservation areas where future developments should be limited, whereas priority sink-like habitats identified key areas for mitigating road-related mortality risk with access management. Systematic conservation planning methods can be used to complement traditional habitat-based methods for individual focal species by identifying habitats where conservation actions (both protection and restoration have the highest potential utility.

  4. Space-time clusters for early detection of grizzly bear predation.

    Science.gov (United States)

    Kermish-Wells, Joseph; Massolo, Alessandro; Stenhouse, Gordon B; Larsen, Terrence A; Musiani, Marco

    2018-01-01

    Accurate detection and classification of predation events is important to determine predation and consumption rates by predators. However, obtaining this information for large predators is constrained by the speed at which carcasses disappear and the cost of field data collection. To accurately detect predation events, researchers have used GPS collar technology combined with targeted site visits. However, kill sites are often investigated well after the predation event due to limited data retrieval options on GPS collars (VHF or UHF downloading) and to ensure crew safety when working with large predators. This can lead to missing information from small-prey (including young ungulates) kill sites due to scavenging and general site deterioration (e.g., vegetation growth). We used a space-time permutation scan statistic (STPSS) clustering method (SaTScan) to detect predation events of grizzly bears ( Ursus arctos ) fitted with satellite transmitting GPS collars. We used generalized linear mixed models to verify predation events and the size of carcasses using spatiotemporal characteristics as predictors. STPSS uses a probability model to compare expected cluster size (space and time) with the observed size. We applied this method retrospectively to data from 2006 to 2007 to compare our method to random GPS site selection. In 2013-2014, we applied our detection method to visit sites one week after their occupation. Both datasets were collected in the same study area. Our approach detected 23 of 27 predation sites verified by visiting 464 random grizzly bear locations in 2006-2007, 187 of which were within space-time clusters and 277 outside. Predation site detection increased by 2.75 times (54 predation events of 335 visited clusters) using 2013-2014 data. Our GLMMs showed that cluster size and duration predicted predation events and carcass size with high sensitivity (0.72 and 0.94, respectively). Coupling GPS satellite technology with clusters using a program based

  5. Impacts of hydro-electric reservoir on populations of caribou and grizzly bear in southern British Columbia

    International Nuclear Information System (INIS)

    Simpson, K.

    1987-02-01

    The impacts of a hydroelectric reservoir on populations of caribou and grizzly bear were studied north of Revelstoke, British Columbia. Information collected for 3 years prior to flooding was compared with data collected in 1984-85. The reservoir did not obstruct movement of caribou and animals did not attempt crossing during periods when ice conditions were hazardous. Evidence suggested that predator avoidance was the most important determinant of habitats used in spring. The cleared reservoir was an important habitat for caribou in the spring because of the abundant food and security from predators it offered. A potential decline in caribou recruitment was noted in 1985 coincident with reservoir flooding. Mitigative recommendations include clearing logged areas adjacent to formerly used reservoir habitats and maintaining movement corridors of mature timber between seasonal habitats. Inconclusive evidence suggested that the reservoir was a barrier to grizzly movement. Spring movements of grizzly were mainly related to finding good feeding sites. Avalanche paths in side drainages were the principal habitats used. Cleared areas did provide an abundance of food comparable to naturally disturbed habitats. The main impact of flooding was to shift habitat use of bears from relatively secure areas in the reservoir to high-risk habitats on the highway and power line rights-of-way. Mitigative recommendations include reducing the attractiveness of those rights-of-way and maintaining spring ranges in tributary valleys by careful development planning. 14 refs., 7 figs., 17 tabs

  6. Impacts of hydro-electric reservoir on populations of caribou and grizzly bear in southern British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, K.

    1987-02-01

    The impacts of a hydroelectric reservoir on populations of caribou and grizzly bear were studied north of Revelstoke, British Columbia. Information collected for 3 years prior to flooding was compared with data collected in 1984-85. The reservoir did not obstruct movement of caribou and animals did not attempt crossing during periods when ice conditions were hazardous. Evidence suggested that predator avoidance was the most important determinant of habitats used in spring. The cleared reservoir was an important habitat for caribou in the spring because of the abundant food and security from predators it offered. A potential decline in caribou recruitment was noted in 1985 coincident with reservoir flooding. Mitigative recommendations include clearing logged areas adjacent to formerly used reservoir habitats and maintaining movement corridors of mature timber between seasonal habitats. Inconclusive evidence suggested that the reservoir was a barrier to grizzly movement. Spring movements of grizzly were mainly related to finding good feeding sites. Avalanche paths in side drainages were the principal habitats used. Cleared areas did provide an abundance of food comparable to naturally disturbed habitats. The main impact of flooding was to shift habitat use of bears from relatively secure areas in the reservoir to high-risk habitats on the highway and power line rights-of-way. Mitigative recommendations include reducing the attractiveness of those rights-of-way and maintaining spring ranges in tributary valleys by careful development planning. 14 refs., 7 figs., 17 tabs.

  7. Morphological variability and molecular identification of Uncinaria spp. (Nematoda: Ancylostomatidae) from grizzly and black bears: new species or phenotypic plasticity?

    Science.gov (United States)

    Catalano, Stefano; Lejeune, Manigandan; van Paridon, Bradley; Pagan, Christopher A; Wasmuth, James D; Tizzani, Paolo; Duignan, Pádraig J; Nadler, Steven A

    2015-04-01

    The hookworms Uncinaria rauschi Olsen, 1968 and Uncinaria yukonensis ( Wolfgang, 1956 ) were formally described from grizzly ( Ursus arctos horribilis) and black bears ( Ursus americanus ) of North America. We analyzed the intestinal tracts of 4 grizzly and 9 black bears from Alberta and British Columbia, Canada and isolated Uncinaria specimens with anatomical traits never previously documented. We applied morphological and molecular techniques to investigate the taxonomy and phylogeny of these Uncinaria parasites. The morphological analysis supported polymorphism at the vulvar region for females of both U. rauschi and U. yukonensis. The hypothesis of morphological plasticity for U. rauschi and U. yukonensis was confirmed by genetic analysis of the internal transcribed spacers (ITS-1 and ITS-2) of the nuclear ribosomal DNA. Two distinct genotypes were identified, differing at 5 fixed sites for ITS-1 (432 base pairs [bp]) and 7 for ITS-2 (274 bp). Morphometric data for U. rauschi revealed host-related size differences: adult U. rauschi were significantly larger in black bears than in grizzly bears. Interpretation of these results, considering the historical biogeography of North American bears, suggests a relatively recent host-switching event of U. rauschi from black bears to grizzly bears which likely occurred after the end of the Wisconsin glaciation. Phylogenetic maximum parsimony (MP) and maximum likelihood (ML) analyses of the concatenated ITS-1 and ITS-2 datasets strongly supported monophyly of U. rauschi and U. yukonensis and their close relationship with Uncinaria stenocephala (Railliet, 1884), the latter a parasite primarily of canids and felids. Relationships among species within this group, although resolved by ML, were unsupported by MP and bootstrap resampling. The clade of U. rauschi, U. yukonensis, and U. stenocephala was recovered as sister to the clade represented by Uncinaria spp. from otariid pinnipeds. These results support the absence of strict

  8. Testing landscape modeling approaches for environmental impact assessment of mining land use on grizzly bears (Ursus arctos horribilis) in the foothills region of west central Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Symbaluk, M.D. [Elk Valley Coal Corp., Hinton, AB (Canada). Cardinal River Operations

    2008-07-01

    The Cheviot open pit coal mine is located on the front range of the Rocky Mountains in Alberta. The environmental impact assessment (EIA) requirements for the mining project included an assessment of the cumulative effects of past, existing, and immanent activities on a 3040 km{sup 2} study area radiating approximately 25 km around the proposed project area. The grizzly bear was identified as a flagship valued ecosystem component (VEC) for assessing the regional cumulative effects of the proposed Cheviot project. In this portion of the study, a grizzly bear habitat effectiveness model was used to monitor grizzly bear response to mining land use in the study area. An investigation of grizzly bear movement paths prior to and during mine disturbances demonstrated that mining land use does not present significant barriers to grizzly bear activities. The study demonstrated the importance of using inductive modelling tools at appropriate scales, as well as the use of site-specific empirical data. It was concluded that continued monitoring of mining sites is needed to ensure that adaptive management processes are improved. A review of the Cheviot cumulative environmental effects (CEA) process was also provided. 17 refs., 1 fig.

  9. Development and application of an antibody-based protein microarray to assess physiological stress in grizzly bears (Ursus arctos).

    Science.gov (United States)

    Carlson, Ruth I; Cattet, Marc R L; Sarauer, Bryan L; Nielsen, Scott E; Boulanger, John; Stenhouse, Gordon B; Janz, David M

    2016-01-01

    A novel antibody-based protein microarray was developed that simultaneously determines expression of 31 stress-associated proteins in skin samples collected from free-ranging grizzly bears (Ursus arctos) in Alberta, Canada. The microarray determines proteins belonging to four broad functional categories associated with stress physiology: hypothalamic-pituitary-adrenal axis proteins, apoptosis/cell cycle proteins, cellular stress/proteotoxicity proteins and oxidative stress/inflammation proteins. Small skin samples (50-100 mg) were collected from captured bears using biopsy punches. Proteins were isolated and labelled with fluorescent dyes, with labelled protein homogenates loaded onto microarrays to hybridize with antibodies. Relative protein expression was determined by comparison with a pooled standard skin sample. The assay was sensitive, requiring 80 µg of protein per sample to be run in triplicate on the microarray. Intra-array and inter-array coefficients of variation for individual proteins were generally bears. This suggests that remotely delivered biopsy darts could be used in future sampling. Using generalized linear mixed models, certain proteins within each functional category demonstrated altered expression with respect to differences in year, season, geographical sampling location within Alberta and bear biological parameters, suggesting that these general variables may influence expression of specific proteins in the microarray. Our goal is to apply the protein microarray as a conservation physiology tool that can detect, evaluate and monitor physiological stress in grizzly bears and other species at risk over time in response to environmental change.

  10. Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis).

    Science.gov (United States)

    McGee, Meghan E; Maki, Aaron J; Johnson, Steven E; Nelson, O Lynne; Robbins, Charles T; Donahue, Seth W

    2008-02-01

    Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. Here we show decreased cortical bone turnover during hibernation with balanced formation and resorption in grizzly bear femurs. Hibernating grizzly bear femurs were less porous and more mineralized, and did not demonstrate any changes in cortical bone geometry or whole bone mechanical properties compared to active grizzly bear femurs. The activation frequency of intracortical remodeling was 75% lower during hibernation than during periods of physical activity, but the normalized mineral apposition rate was unchanged. These data indicate that bone turnover decreases during hibernation, but osteons continue to refill at normal rates. There were no changes in regional variation of porosity, geometry, or remodeling indices in femurs from hibernating bears, indicating that hibernation did not preferentially affect one region of the cortex. Thus, grizzly bears prevent bone loss during disuse by decreasing bone turnover and maintaining balanced formation and resorption, which preserves bone structure and strength. These results support the idea that bears possess a biological mechanism to prevent disuse osteoporosis.

  11. Grizzly bear (Ursus arctos horribilis) locomotion: forelimb joint mechanics across speed in the sagittal and frontal planes.

    Science.gov (United States)

    Shine, Catherine L; Robbins, Charles T; Nelson, O Lynne; McGowan, Craig P

    2017-04-01

    The majority of terrestrial locomotion studies have focused on parasagittal motion and paid less attention to forces or movement in the frontal plane. Our previous research has shown that grizzly bears produce higher medial ground reaction forces (lateral pushing from the animal) than would be expected for an upright mammal, suggesting frontal plane movement may be an important aspect of their locomotion. To examine this, we conducted an inverse dynamics analysis in the sagittal and frontal planes, using ground reaction forces and position data from three high-speed cameras of four adult female grizzly bears. Over the speed range collected, the bears used walks, running walks and canters. The scapulohumeral joint, wrist and the limb overall absorb energy (average total net work of the forelimb joints, -0.97 W kg -1 ). The scapulohumeral joint, elbow and total net work of the forelimb joints have negative relationships with speed, resulting in more energy absorbed by the forelimb at higher speeds (running walks and canters). The net joint moment and power curves maintain similar patterns across speed as in previously studied species, suggesting grizzly bears maintain similar joint dynamics to other mammalian quadrupeds. There is no significant relationship with net work and speed at any joint in the frontal plane. The total net work of the forelimb joints in the frontal plane was not significantly different from zero, suggesting that, despite the high medial ground reaction forces, the forelimb acts as a strut in that plane. © 2017. Published by The Company of Biologists Ltd.

  12. First report of Taenia arctos (Cestoda: Taeniidae) from grizzly (Ursus arctos horribilis) and black bears (Ursus americanus) in North America.

    Science.gov (United States)

    Catalano, Stefano; Lejeune, Manigandan; Verocai, Guilherme G; Duignan, Pádraig J

    2014-04-01

    The cestode Taenia arctos was found at necropsy in the small intestine of a grizzly (Ursus arctos horribilis) and a black bear (Ursus americanus) from Kananaskis Country in southwestern Alberta, Canada. The autolysis of the tapeworm specimens precluded detailed morphological characterization of the parasites but molecular analysis based on mitochondrial DNA cytochrome c oxidase subunit 1 gene confirmed their identity as T. arctos. This is the first report of T. arctos from definitive hosts in North America. Its detection in Canadian grizzly and black bears further supports the Holarctic distribution of this tapeworm species and its specificity for ursids as final hosts. Previously, T. arctos was unambiguously described at its adult stage in brown bears (Ursus arctos arctos) from Finland, and as larval stages in Eurasian elk (Alces alces) from Finland and moose (Alces americanus) from Alaska, USA. Given the morphological similarity between T. arctos and other Taenia species, the present study underlines the potential for misidentification of tapeworm taxa in previous parasitological reports from bears and moose across North America. The biogeographical history of both definitive and intermediate hosts in the Holarctic suggests an ancient interaction between U. arctos, Alces spp., and T. arctos, and a relatively recent host-switching event in U. americanus. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. Natural landscape features, human-related attractants, and conflict hotspots: A spatial analysis of human-grizzly bear conflicts

    Science.gov (United States)

    Wilson, S.M.; Madel, M.J.; Mattson, D.J.; Graham, J.M.; Burchfield, J.A.; Belsky, J.M.

    2005-01-01

    There is a long history of conflict in the western United States between humans and grizzly bears (Ursus arctos) involving agricultural attractants. However, little is known about the spatial dimensions of this conflict and the relative importance of different attractants. This study was undertaken to better understand the spatial and functional components of conflict between humans and grizzly bears on privately owned agricultural lands in Montana. Our investigations focused on spatial associations of rivers and creeks, livestock pastures, boneyards (livestock carcass dump sites), beehives, and grizzly bear habitat with reported human-grizzly bear conflicts during 1986-2001. We based our analysis on a survey of 61 of 64 livestock producers in our study in the Rocky Mountain East Front, Montana. With the assistance of livestock and honey producers, we mapped the locations of cattle and sheep pastures, boneyards, and beehives. We used density surface mapping to identify seasonal clusters of conflicts that we term conflict hotspots. Hotspots accounted for 75% of all conflicts and encompassed approximately 8% of the study area. We also differentiated chronic (4 or more years of conflicts) from non-chronic hotspots (fewer than 4 years of conflict). The 10 chronic hotpots accounted for 58% of all conflicts. Based on Monte Carlo simulations, we found that conflict locations were most strongly associated with rivers and creeks followed by sheep lambing areas and fall sheep pastures. Conflicts also were associated with cattle calving areas, spring cow-calf pastures, summer and fall cattle pastures, and boneyards. The Monte Carlo simulations indicated associations between conflict locations and unprotected beehives at specific analysis scales. Protected (fenced) beehives were less likely to experience conflicts than unprotected beehives. Conflicts occurred at a greater rate in riparian and wetland vegetation than would be expected. The majority of conflicts occurred in a

  14. Spatial analysis of factors influencing long-term stress in the grizzly bear (Ursus arctos population of Alberta, Canada.

    Directory of Open Access Journals (Sweden)

    Mathieu L Bourbonnais

    Full Text Available Non-invasive measures for assessing long-term stress in free ranging mammals are an increasingly important approach for understanding physiological responses to landscape conditions. Using a spatially and temporally expansive dataset of hair cortisol concentrations (HCC generated from a threatened grizzly bear (Ursus arctos population in Alberta, Canada, we quantified how variables representing habitat conditions and anthropogenic disturbance impact long-term stress in grizzly bears. We characterized spatial variability in male and female HCC point data using kernel density estimation and quantified variable influence on spatial patterns of male and female HCC stress surfaces using random forests. Separate models were developed for regions inside and outside of parks and protected areas to account for substantial differences in anthropogenic activity and disturbance within the study area. Variance explained in the random forest models ranged from 55.34% to 74.96% for males and 58.15% to 68.46% for females. Predicted HCC levels were higher for females compared to males. Generally, high spatially continuous female HCC levels were associated with parks and protected areas while low-to-moderate levels were associated with increased anthropogenic disturbance. In contrast, male HCC levels were low in parks and protected areas and low-to-moderate in areas with increased anthropogenic disturbance. Spatial variability in gender-specific HCC levels reveal that the type and intensity of external stressors are not uniform across the landscape and that male and female grizzly bears may be exposed to, or perceive, potential stressors differently. We suggest observed spatial patterns of long-term stress may be the result of the availability and distribution of foods related to disturbance features, potential sexual segregation in available habitat selection, and may not be influenced by sources of mortality which represent acute traumas. In this wildlife

  15. Spatial analysis of factors influencing long-term stress in the grizzly bear (Ursus arctos) population of Alberta, Canada.

    Science.gov (United States)

    Bourbonnais, Mathieu L; Nelson, Trisalyn A; Cattet, Marc R L; Darimont, Chris T; Stenhouse, Gordon B

    2013-01-01

    Non-invasive measures for assessing long-term stress in free ranging mammals are an increasingly important approach for understanding physiological responses to landscape conditions. Using a spatially and temporally expansive dataset of hair cortisol concentrations (HCC) generated from a threatened grizzly bear (Ursus arctos) population in Alberta, Canada, we quantified how variables representing habitat conditions and anthropogenic disturbance impact long-term stress in grizzly bears. We characterized spatial variability in male and female HCC point data using kernel density estimation and quantified variable influence on spatial patterns of male and female HCC stress surfaces using random forests. Separate models were developed for regions inside and outside of parks and protected areas to account for substantial differences in anthropogenic activity and disturbance within the study area. Variance explained in the random forest models ranged from 55.34% to 74.96% for males and 58.15% to 68.46% for females. Predicted HCC levels were higher for females compared to males. Generally, high spatially continuous female HCC levels were associated with parks and protected areas while low-to-moderate levels were associated with increased anthropogenic disturbance. In contrast, male HCC levels were low in parks and protected areas and low-to-moderate in areas with increased anthropogenic disturbance. Spatial variability in gender-specific HCC levels reveal that the type and intensity of external stressors are not uniform across the landscape and that male and female grizzly bears may be exposed to, or perceive, potential stressors differently. We suggest observed spatial patterns of long-term stress may be the result of the availability and distribution of foods related to disturbance features, potential sexual segregation in available habitat selection, and may not be influenced by sources of mortality which represent acute traumas. In this wildlife system and others

  16. A Comparison of Grizzly Bear Demographic Parameters Estimated from Non-Spatial and Spatial Open Population Capture-Recapture Models.

    Science.gov (United States)

    Whittington, Jesse; Sawaya, Michael A

    2015-01-01

    Capture-recapture studies are frequently used to monitor the status and trends of wildlife populations. Detection histories from individual animals are used to estimate probability of detection and abundance or density. The accuracy of abundance and density estimates depends on the ability to model factors affecting detection probability. Non-spatial capture-recapture models have recently evolved into spatial capture-recapture models that directly include the effect of distances between an animal's home range centre and trap locations on detection probability. Most studies comparing non-spatial and spatial capture-recapture biases focussed on single year models and no studies have compared the accuracy of demographic parameter estimates from open population models. We applied open population non-spatial and spatial capture-recapture models to three years of grizzly bear DNA-based data from Banff National Park and simulated data sets. The two models produced similar estimates of grizzly bear apparent survival, per capita recruitment, and population growth rates but the spatial capture-recapture models had better fit. Simulations showed that spatial capture-recapture models produced more accurate parameter estimates with better credible interval coverage than non-spatial capture-recapture models. Non-spatial capture-recapture models produced negatively biased estimates of apparent survival and positively biased estimates of per capita recruitment. The spatial capture-recapture grizzly bear population growth rates and 95% highest posterior density averaged across the three years were 0.925 (0.786-1.071) for females, 0.844 (0.703-0.975) for males, and 0.882 (0.779-0.981) for females and males combined. The non-spatial capture-recapture population growth rates were 0.894 (0.758-1.024) for females, 0.825 (0.700-0.948) for males, and 0.863 (0.771-0.957) for both sexes. The combination of low densities, low reproductive rates, and predominantly negative population growth

  17. A Comparison of Grizzly Bear Demographic Parameters Estimated from Non-Spatial and Spatial Open Population Capture-Recapture Models.

    Directory of Open Access Journals (Sweden)

    Jesse Whittington

    Full Text Available Capture-recapture studies are frequently used to monitor the status and trends of wildlife populations. Detection histories from individual animals are used to estimate probability of detection and abundance or density. The accuracy of abundance and density estimates depends on the ability to model factors affecting detection probability. Non-spatial capture-recapture models have recently evolved into spatial capture-recapture models that directly include the effect of distances between an animal's home range centre and trap locations on detection probability. Most studies comparing non-spatial and spatial capture-recapture biases focussed on single year models and no studies have compared the accuracy of demographic parameter estimates from open population models. We applied open population non-spatial and spatial capture-recapture models to three years of grizzly bear DNA-based data from Banff National Park and simulated data sets. The two models produced similar estimates of grizzly bear apparent survival, per capita recruitment, and population growth rates but the spatial capture-recapture models had better fit. Simulations showed that spatial capture-recapture models produced more accurate parameter estimates with better credible interval coverage than non-spatial capture-recapture models. Non-spatial capture-recapture models produced negatively biased estimates of apparent survival and positively biased estimates of per capita recruitment. The spatial capture-recapture grizzly bear population growth rates and 95% highest posterior density averaged across the three years were 0.925 (0.786-1.071 for females, 0.844 (0.703-0.975 for males, and 0.882 (0.779-0.981 for females and males combined. The non-spatial capture-recapture population growth rates were 0.894 (0.758-1.024 for females, 0.825 (0.700-0.948 for males, and 0.863 (0.771-0.957 for both sexes. The combination of low densities, low reproductive rates, and predominantly negative

  18. Stress and reproductive hormones in grizzly bears reflect nutritional benefits and social consequences of a salmon foraging niche.

    Science.gov (United States)

    Bryan, Heather M; Darimont, Chris T; Paquet, Paul C; Wynne-Edwards, Katherine E; Smits, Judit E G

    2013-01-01

    Physiological indicators of social and nutritional stress can provide insight into the responses of species to changes in food availability. In coastal British Columbia, Canada, grizzly bears evolved with spawning salmon as an abundant but spatially and temporally constrained food source. Recent and dramatic declines in salmon might have negative consequences on bear health and ultimately fitness. To examine broadly the chronic endocrine effects of a salmon niche, we compared cortisol, progesterone, and testosterone levels in hair from salmon-eating bears from coastal BC (n = 75) with the levels in a reference population from interior BC lacking access to salmon (n = 42). As predicted, testosterone was higher in coastal bears of both sexes relative to interior bears, possibly reflecting higher social density on the coast mediated by salmon availability. We also investigated associations between the amount of salmon individual bears consumed (as measured by stable isotope analysis) and cortisol and testosterone in hair. Also as predicted, cortisol decreased with increasing dietary salmon and was higher after a year of low dietary salmon than after a year of high dietary salmon. These findings at two spatial scales suggest that coastal bears might experience nutritional or social stress in response to on-going salmon declines, providing novel insights into the effects of resource availability on fitness-related physiology.

  19. Stress and reproductive hormones in grizzly bears reflect nutritional benefits and social consequences of a salmon foraging niche.

    Directory of Open Access Journals (Sweden)

    Heather M Bryan

    Full Text Available Physiological indicators of social and nutritional stress can provide insight into the responses of species to changes in food availability. In coastal British Columbia, Canada, grizzly bears evolved with spawning salmon as an abundant but spatially and temporally constrained food source. Recent and dramatic declines in salmon might have negative consequences on bear health and ultimately fitness. To examine broadly the chronic endocrine effects of a salmon niche, we compared cortisol, progesterone, and testosterone levels in hair from salmon-eating bears from coastal BC (n = 75 with the levels in a reference population from interior BC lacking access to salmon (n = 42. As predicted, testosterone was higher in coastal bears of both sexes relative to interior bears, possibly reflecting higher social density on the coast mediated by salmon availability. We also investigated associations between the amount of salmon individual bears consumed (as measured by stable isotope analysis and cortisol and testosterone in hair. Also as predicted, cortisol decreased with increasing dietary salmon and was higher after a year of low dietary salmon than after a year of high dietary salmon. These findings at two spatial scales suggest that coastal bears might experience nutritional or social stress in response to on-going salmon declines, providing novel insights into the effects of resource availability on fitness-related physiology.

  20. Seasonal and individual variation in the use of rail-associated food attractants by grizzly bears (Ursus arctos) in a national park.

    Science.gov (United States)

    Murray, Maureen H; Fassina, Sarah; Hopkins, John B; Whittington, Jesse; St Clair, Colleen C

    2017-01-01

    Similar to vehicles on roadways, trains frequently kill wildlife via collisions along railways. Despite the prevalence of this mortality worldwide, little is known about the relative importance of wildlife attractants associated with railways, including spilled agricultural products, enhanced vegetation, invertebrates, and carcasses of rail-killed ungulates. We assessed the relative importance of several railway attractants to a provincially-threatened population of grizzly bears (Ursus arctos) in Banff and Yoho National Parks, Canada, for which rail-caused mortality has increased in recent decades without known cause. We examined the relationship between the use of the railway and diet by fitting 21 grizzly bears with GPS collars in 2011-2013 and measuring the stable isotope values (δ15N, δ34S) derived from their hair. We also examined the importance of rail-associated foods to grizzly bears by analyzing 230 grizzly bear scats collected from May through October in 2012-2014, some of which could be attributed to GPS-collared bears. Among the 21 collared bears, 17 used the rail rarely (bears (which included the three smallest bears and the largest bear in our sample) used the rail frequently (>20% of their monitored days). We found no significant relationships between δ15N and δ34S values measured from the hair of grizzlies and their frequency of rail use. Instead, δ15N increased with body mass, especially for male bears, suggesting large males consumed more animal protein during hair growth. All four bears that used the railway frequently produced scats containing grain. Almost half the scats (43%) collected within 150 m of the railway contained grain compared to only 7% of scats found >150 m from the railway. Scats deposited near the rail were also more likely to contain grain in the fall (85% of scats) compared to summer (14%) and spring (17%), and those containing grain were more diverse in their contents (6.8 ± 2.2 species vs. 4.9 ± 1.6, P bears in the

  1. Dietary protein content alters energy expenditure and composition of the mass gain in grizzly bears (Ursus arctos horribilis).

    Science.gov (United States)

    Felicetti, Laura A; Robbins, Charles T; Shipley, Lisa A

    2003-01-01

    Many fruits contain high levels of available energy but very low levels of protein and other nutrients. The discrepancy between available energy and protein creates a physiological paradox for many animals consuming high-fruit diets, as they will be protein deficient if they eat to meet their minimum energy requirement. We fed young grizzly bears both high-energy pelleted and fruit diets containing from 1.6% to 15.4% protein to examine the role of diet-induced thermogenesis and fat synthesis in dealing with high-energy-low-protein diets. Digestible energy intake at mass maintenance increased 2.1 times, and composition of the gain changed from primarily lean mass to entirely fat when the protein content of the diet decreased from 15.4% to 1.6%. Daily fat gain was up to three times higher in bears fed low-protein diets ad lib., compared with bears consuming the higher-protein diet and gaining mass at the same rate. Thus, bears eating fruit can either consume other foods to increase dietary protein content and reduce energy expenditure, intake, and potentially foraging time or overeat high-fruit diets and use diet-induced thermogenesis and fat synthesis to deal with their skewed energy-to-protein ratio. These are not discrete options but a continuum that creates numerous solutions for balancing energy expenditure, intake, foraging time, fat accumulation, and ultimately fitness, depending on food availability, foraging efficiency, bear size, and body condition.

  2. An evaluation of the use of ERTS-1 satellite imagery for grizzly bear habitat analysis. [Montana

    Science.gov (United States)

    Varney, J. R.; Craighead, J. J.; Sumner, J. S.

    1974-01-01

    Improved classification and mapping of grizzly habitat will permit better estimates of population density and distribution, and allow accurate evaluation of the potential effects of changes in land use, hunting regulation, and management policies on existing populations. Methods of identifying favorable habitat from ERTS-1 multispectral scanner imagery were investigated and described. This technique could reduce the time and effort required to classify large wilderness areas in the Western United States.

  3. Seasonal and individual variation in the use of rail-associated food attractants by grizzly bears (Ursus arctos in a national park.

    Directory of Open Access Journals (Sweden)

    Maureen H Murray

    Full Text Available Similar to vehicles on roadways, trains frequently kill wildlife via collisions along railways. Despite the prevalence of this mortality worldwide, little is known about the relative importance of wildlife attractants associated with railways, including spilled agricultural products, enhanced vegetation, invertebrates, and carcasses of rail-killed ungulates. We assessed the relative importance of several railway attractants to a provincially-threatened population of grizzly bears (Ursus arctos in Banff and Yoho National Parks, Canada, for which rail-caused mortality has increased in recent decades without known cause. We examined the relationship between the use of the railway and diet by fitting 21 grizzly bears with GPS collars in 2011-2013 and measuring the stable isotope values (δ15N, δ34S derived from their hair. We also examined the importance of rail-associated foods to grizzly bears by analyzing 230 grizzly bear scats collected from May through October in 2012-2014, some of which could be attributed to GPS-collared bears. Among the 21 collared bears, 17 used the rail rarely (20% of their monitored days. We found no significant relationships between δ15N and δ34S values measured from the hair of grizzlies and their frequency of rail use. Instead, δ15N increased with body mass, especially for male bears, suggesting large males consumed more animal protein during hair growth. All four bears that used the railway frequently produced scats containing grain. Almost half the scats (43% collected within 150 m of the railway contained grain compared to only 7% of scats found >150 m from the railway. Scats deposited near the rail were also more likely to contain grain in the fall (85% of scats compared to summer (14% and spring (17%, and those containing grain were more diverse in their contents (6.8 ± 2.2 species vs. 4.9 ± 1.6, P < 0.001. Lastly, scats collected near the rail were more likely to contain ungulate hair and ant remains

  4. Positive Reinforcement Training for Blood Collection in Grizzly Bears (Ursus arctos horribilis) Results in Undetectable Elevations in Serum Cortisol Levels: A Preliminary Investigation.

    Science.gov (United States)

    Joyce-Zuniga, Nicole M; Newberry, Ruth C; Robbins, Charles T; Ware, Jasmine V; Jansen, Heiko T; Nelson, O Lynne

    2016-01-01

    Training nonhuman animals in captivity for participation in routine husbandry procedures is believed to produce a lower stress environment compared with undergoing a general anesthetic event for the same procedure. This hypothesis rests largely on anecdotal evidence that the captive subjects appear more relaxed with the trained event. Blood markers of physiological stress responses were evaluated in 4 captive grizzly bears (Ursus arctos horribilis) who were clicker-trained for blood collection versus 4 bears who were chemically immobilized for blood collection. Serum cortisol and immunoglobulin A (IgA) and plasma β-endorphin were measured as indicators of responses to stress. Plasma β-endorphin was not different between the groups. Serum IgA was undetectable in all bears. Serum cortisol was undetectable in all trained bears, whereas chemically immobilized bears had marked cortisol elevations (p bears with extensive recent immobilization experience. These findings support the use of positive reinforcement training for routine health procedures to minimize anxiety.

  5. Interthalamic hematoma secondary to cerebrovascular atherosclerosis in an aged grizzly bear (Ursus arctos horribilis) with primary cardiac schwannoma.

    Science.gov (United States)

    Miller, Andrew David; McDonough, Sean

    2008-12-01

    A 38-year-old intact female Grizzly bear (Ursus arctos horribilis) was evaluated for progressive seizure activity, pale mucous membranes, deficient pupillary light and menace responses, and irregular shallow respiration. Because of poor response to treatment, the animal was euthanized. Gross examination revealed abundant hemorrhage in both lateral ventricles; a large, encapsulated mass within the rostral interthalamic region; and a well-demarcated, round white mass in the apex of the right ventricle. Histologic examination of the interthalamic mass revealed a resolving hematoma composed of stratified layers of fibrin and white blood cells that was surrounded by a thick fibrous capsule. Most meningeal and intraparenchymal blood vessels had multifocal degeneration, fragmentation, and fraying of the internal elastic lamina with prominent intimal proliferations and plaques. The plaques were formed by small numbers of lipid-laden macrophages (foam cells) that were intermixed with occasional lymphocytes and plasma cells. The cardiac mass was composed of pallisading and interlacing spindle cells with parallel nuclei and abundant, pale eosinophilic cytoplasm consistent with a schwannoma.

  6. Mating-related behaviour of grizzly bears inhabiting marginal habitat at the periphery of their North American range.

    Science.gov (United States)

    Edwards, Mark A; Derocher, Andrew E

    2015-02-01

    In comparison to core populations, peripheral populations have low density and recruitment, and are subject to different selective pressures, such as environmental conditions, food type and availability, predation, disease, etc., which may result in behavioural modifications to mating. We test the roam-to-mate hypothesis for a peripheral population of grizzly bears (Ursus arctos) at the northern extent of their North American range, in Canada's Arctic. If bears are roaming-to-mate, we predicted greater range size and daily displacement, and more linear movements for receptive animals during the mating period compared to post-mating. In contrast to our predictions, we found that in general range size and displacement increased from mating to post-mating regardless of reproductive status. When considered across both periods, females with cubs-of-the-year had smaller range use metrics than other reproductive groups, which we attribute to a counter-strategy against sexually selected infanticide and the reduced mobility of cubs. Linearity of movements remained near zero during both periods across all groups, suggesting tortuous movements more characteristic of foraging than of mate-searching. We suggest that for this population, finding quality habitat takes precedence over mate-searching in this marginal Arctic landscape. Alternatively, a more monogamous mating system and sequestering behaviour may have obscured movement differences between the two periods. The behavioural differences in mating that we observed from what is typical of core populations may reflect local adaptation to marginal conditions and could benefit the species in the face of ongoing environmental change. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Landscape features and attractants that predispose grizzly bears to risk of conflicts with humans: A spatial and temporal analysis on privately owned agricultural land

    Science.gov (United States)

    Wilson, Seth Mark

    Grizzly bear (Ursus arctos) deaths in the US tend to be concentrated on the periphery of core habitats. These deaths were often preceded by conflicts with humans. Management removals of "nuisance" and or habituated grizzly bears are a leading cause of death in many populations. This exploratory study focuses on the conditions that lead to human-grizzly bear conflicts on private lands near core habitat. I examined spatial associations among reported human-grizzly bear conflicts during 1986--2001, landscape features, and agricultural-attractants in north-central Montana. I surveyed 61 of a possible 64 active livestock related land users and I used geographic information system (GIS) techniques to collect information on cattle and sheep pasture locations, seasons of use, and bone yard (carcass dumps) and beehive locations. I used GIS spatial analyses, univariate tests, and logistic regression models to explore the associations among conflicts, landscape features, and attractants. A majority (75%) of conflicts were found in distinct seasonal conflict hotspots. Conflict hotspots with spatial overlap were associated with riparian vegetation, bone yards, and beehives in close proximity to one another and accounted for 62% of all conflicts. Consistently available seasonal attractants in overlapping hotspots such as calving areas, sheep lambing areas and spring, summer, and fall sheep and cattle pastures appear to perpetuate the occurrence of conflicts. I found that lambing areas and spring and summer sheep pastures were strongly associated with conflict locations as were cattle calving areas, spring cow/calf pastures, fall pastures, and bone yards. Logistic regression modeling revealed that the presence of riparian vegetation within a 1.6 km search radius strongly influenced the likelihood of conflict. After controlling for riparian vegetation, I found that unmanaged bone yards, unfenced and fenced beehives, all increased the odds of conflict. For every 1 km moved away

  8. Environmental factors and habitat use influence body condition of individuals in a species at risk, the grizzly bear.

    Science.gov (United States)

    Bourbonnais, Mathieu L; Nelson, Trisalyn A; Cattet, Marc R L; Darimont, Chris T; Stenhouse, Gordon B; Janz, David M

    2014-01-01

    Metrics used to quantify the condition or physiological states of individuals provide proactive mechanisms for understanding population dynamics in the context of environmental factors. Our study examined how anthropogenic disturbance, habitat characteristics and hair cortisol concentrations interpreted as a sex-specific indicator of potential habitat net-energy demand affect the body condition of grizzly bears (n = 163) in a threatened population in Alberta, Canada. We quantified environmental variables by modelling spatial patterns of individual habitat use based on global positioning system telemetry data. After controlling for gender, age and capture effects, we assessed the influence of biological and environmental variables on body condition using linear mixed-effects models in an information theoretical approach. Our strongest model suggested that body condition was improved when patterns of habitat use included greater vegetation productivity, increased influence of forest harvest blocks and oil and gas well sites, and a higher percentage of regenerating and coniferous forest. However, body condition was negatively affected by habitat use in close proximity to roads and in areas where potential energetic demands were high. Poor body condition was also associated with increased selection of parks and protected areas and greater seasonal vegetation productivity. Adult females, females with cubs-of-year, juvenile females and juvenile males were in poorer body condition compared with adult males, suggesting that intra-specific competition and differences in habitat use based on gender and age may influence body condition dynamics. Habitat net-energy demand also tended to be higher in areas used by females which, combined with observed trends in body condition, could affect reproductive success in this threatened population. Our results highlight the importance of considering spatiotemporal variability in environmental factors and habitat use when assessing

  9. Using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to characterize copper, zinc and mercury along grizzly bear hair providing estimate of diet

    Energy Technology Data Exchange (ETDEWEB)

    Noël, Marie, E-mail: marie.noel@stantec.com [Stantec Consulting Ltd. 2042 Mills Road, Unit 11, Sidney BC V8L 4X2 (Canada); Christensen, Jennie R., E-mail: jennie.christensen@stantec.com [Stantec Consulting Ltd. 2042 Mills Road, Unit 11, Sidney BC V8L 4X2 (Canada); Spence, Jody, E-mail: jodys@uvic.ca [School of Earth and Ocean Sciences, Bob Wright Centre A405, University of Victoria, PO BOX 3065 STN CSC, Victoria, BC V8W 3V6 (Canada); Robbins, Charles T., E-mail: ctrobbins@wsu.edu [School of the Environment and School of Biological Sciences, Washington State University, Pullman, WA 99164-4236 (United States)

    2015-10-01

    We enhanced an existing technique, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), to function as a non-lethal tool in the temporal characterization of trace element exposure in wild mammals. Mercury (Hg), copper (Cu), cadmium (Cd), lead (Pb), iron (Fe) and zinc (Zn) were analyzed along the hair of captive and wild grizzly bears (Ursus arctos horribilis). Laser parameters were optimized (consecutive 2000 μm line scans along the middle line of the hair at a speed of 50 μm/s; spot size = 30 μm) for consistent ablation of the hair. A pressed pellet of reference material DOLT-2 and sulfur were used as external and internal standards, respectively. Our newly adapted method passed the quality control tests with strong correlations between trace element concentrations obtained using LA-ICP-MS and those obtained with regular solution-ICP-MS (r{sup 2} = 0.92, 0.98, 0.63, 0.57, 0.99 and 0.90 for Hg, Fe, Cu, Zn, Cd and Pb, respectively). Cross-correlation analyses revealed good reproducibility between trace element patterns obtained from hair collected from the same bear. One exception was Cd for which external contamination was observed resulting in poor reproducibility. In order to validate the method, we used LA-ICP-MS on the hair of five captive grizzly bears fed known and varying amounts of cutthroat trout over a period of 33 days. Trace element patterns along the hair revealed strong Hg, Cu and Zn signals coinciding with fish consumption. Accordingly, significant correlations between Hg, Cu, and Zn in the hair and Hg, Cu, and Zn intake were evident and we were able to develop accumulation models for each of these elements. While the use of LA-ICP-MS for the monitoring of trace elements in wildlife is in its infancy, this study highlights the robustness and applicability of this newly adapted method. - Highlights: • LA-ICP-MS provides temporal trace metal exposure information for wild grizzly bears. • Cu and Zn temporal exposures provide

  10. Using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to characterize copper, zinc and mercury along grizzly bear hair providing estimate of diet

    International Nuclear Information System (INIS)

    Noël, Marie; Christensen, Jennie R.; Spence, Jody; Robbins, Charles T.

    2015-01-01

    We enhanced an existing technique, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), to function as a non-lethal tool in the temporal characterization of trace element exposure in wild mammals. Mercury (Hg), copper (Cu), cadmium (Cd), lead (Pb), iron (Fe) and zinc (Zn) were analyzed along the hair of captive and wild grizzly bears (Ursus arctos horribilis). Laser parameters were optimized (consecutive 2000 μm line scans along the middle line of the hair at a speed of 50 μm/s; spot size = 30 μm) for consistent ablation of the hair. A pressed pellet of reference material DOLT-2 and sulfur were used as external and internal standards, respectively. Our newly adapted method passed the quality control tests with strong correlations between trace element concentrations obtained using LA-ICP-MS and those obtained with regular solution-ICP-MS (r 2 = 0.92, 0.98, 0.63, 0.57, 0.99 and 0.90 for Hg, Fe, Cu, Zn, Cd and Pb, respectively). Cross-correlation analyses revealed good reproducibility between trace element patterns obtained from hair collected from the same bear. One exception was Cd for which external contamination was observed resulting in poor reproducibility. In order to validate the method, we used LA-ICP-MS on the hair of five captive grizzly bears fed known and varying amounts of cutthroat trout over a period of 33 days. Trace element patterns along the hair revealed strong Hg, Cu and Zn signals coinciding with fish consumption. Accordingly, significant correlations between Hg, Cu, and Zn in the hair and Hg, Cu, and Zn intake were evident and we were able to develop accumulation models for each of these elements. While the use of LA-ICP-MS for the monitoring of trace elements in wildlife is in its infancy, this study highlights the robustness and applicability of this newly adapted method. - Highlights: • LA-ICP-MS provides temporal trace metal exposure information for wild grizzly bears. • Cu and Zn temporal exposures provide

  11. Land use planning: A potential force for retaining habitat connectivity in the Greater Yellowstone Ecosystem and Beyond

    Directory of Open Access Journals (Sweden)

    Craig L. Shafer

    2015-01-01

    Full Text Available The grizzly bear (Ursus arctos horribilis population in the Greater Yellowstone Ecosystem (GYE is perceived to have been isolated from the population in the Northern Continental Divide Ecosystem for a century. Better land use planning is needed to thwart progressive intra- and inter-ecosystem habitat fragmentation, especially due to private land development. The dilemma of private lands being intermixed in large landscapes is addressed. This review attempts to identify some land use planning levels and tools which might facilitate dispersal by the grizzly bear and other large mammals. The planning levels discussed include national, regional, state, county and municipal, and federal land management agency. Specific potential federal tools mentioned include zoning, Landscape Conservation Cooperatives, the Endangered Species Act, beyond boundary authority, land exchanges, less-than-fee acquisition and other incentives, the Northern Rockies Ecosystem Protection Act, and federal land annexation. Besides summarizing existing recommendations, some derived observations are offered.

  12. Large carnivores response to recreational big game hunting along the Yellowstone National Park and Absaroka-Beartooth Wilderness boundary

    Science.gov (United States)

    Ruth, T.E.; Smith, D.W.; Haroldson, M.A.; Buotte, P.C.; Schwartz, C.C.; Quigley, H.B.; Cherry, S.; Tyres, D.; Frey, K.

    2003-01-01

    The Greater Yellowstone Ecosystem contains the rare combination of an intact guild of native large carnivores, their prey, and differing land management policies (National Park versus National Forest; no hunting versus hunting). Concurrent field studies on large carnivores allowed us to investigate activities of humans and carnivores on Yellowstone National Park's (YNP) northern boundary. Prior to and during the backcountry big-game hunting season, we monitored movements of grizzly bears (Ursus arctos), wolves (Canis lupus), and cougars (Puma concolor) on the northern boundary of YNP. Daily aerial telemetry locations (September 1999), augmented with weekly telemetry locations (August and October 1999), were obtained for 3 grizzly bears, 7 wolves in 2 groups of 1 pack, and 3 cougars in 1 family group. Grizzly bears were more likely located inside the YNP boundary during the pre-hunt period and north of the boundary once hunting began. The cougar family tended to be found outside YNP during the pre-hunt period and moved inside YNP when hunting began. Wolves did not significantly change their movement patterns during the pre-hunt and hunting periods. Qualitative information on elk (Cervus elaphus) indicated they moved into YNP once hunting started, suggesting that cougars followed living prey or responded to hunting activity, grizzly bears focused on dead prey (e.g., gut piles, crippled elk), and wolves may have taken advantage of both. Measures of association (Jacob's Index) were positive within carnivore species but inconclusive among species. Further collaborative research and the use of new technologies such as Global Positioning System (GPS) telemetry collars will advance our ability to understand these species, the carnivore community and its interactions, and human influences on carnivores.

  13. Yellowstone elk calf mortality following wolf restorations: Bears remain top summer predators

    Science.gov (United States)

    Barber, S.M.; Mech, L.D.; White, P.J.

    2005-01-01

    Based on 151 neonate elk calves radio-tagged in YNP, bears accounted for 55-60% of deaths, coyotes, 10-15%, and wolves 10-15%. More than 70% of this predation occurred within the calves' first 15 days.

  14. Integration of LIDAR, optical remotely sensed, and ancillary data for forest monitoring and Grizzly bear habitat characterization / Integração de LIDAR, sensores remotos óticos e dados auxiliares para o monitoramento fl orestal e caracterização do habitat dos ursos Grizzly

    Directory of Open Access Journals (Sweden)

    Michael A. Wulder

    2008-09-01

    Full Text Available Forest management and reporting information needs are becomingincreasingly complex in Canada. Inclusion of timber and non-timber considerations for both management and reporting has resulted inopportunities for integration of data from differing sources to provide the desired information. Canada’s forested land-base is over 400million hectares in size and fulfi lls important ecological and economic functions. In this communication we describe how remotely senseddata and other available spatial data layers capture different forestcharacteristics and conditions, and how these varying data sources may be combined to provide otherwise unavailable information. For instance, light detection and ranging (LIDAR confers information regardingvertical forest structure; high spatial resolution imagery captures (indetail the horizontal distribution and arrangement of vegetation andvegetation conditions; and, moderate spatial resolution imagery providesconsistent wide-area depictions of forest conditions. Furthermore, coarsespatial resolution imagery, with a high temporal density, can be blended with data of a higher spatial resolution to generate moderate spatialresolution data with a high temporal density. These remotely sensed datasources, when combined with existing spatial data layers such as forest inventory and digital terrain models, provide useful information thatmay be used to address, through modelling, questions regarding forest condition, structure, and change. In this communication, we discuss the importance of data integration and ultimately, information generation, inthe context of Grizzly bear habitat characterization. Grizzly bear habitat in western Canada is currently undergoing pressure from a combination of anthropogenic activities and a widespread outbreak of mountain pine beetle, resulting in a variety of information needs, including: detailed depictions of horizontal and vertical vegetation structure over large areasto support bark

  15. Increased cardiac alpha-myosin heavy chain in left atria and decreased myocardial insulin-like growth factor (Igf-I) expression accompany low heart rate in hibernating grizzly bears.

    Science.gov (United States)

    Barrows, N D; Nelson, O L; Robbins, C T; Rourke, B C

    2011-01-01

    Grizzly bears (Ursus arctos horribilis) tolerate extended periods of extremely low heart rate during hibernation without developing congestive heart failure or cardiac chamber dilation. Left ventricular atrophy and decreased left ventricular compliance have been reported in this species during hibernation. We evaluated the myocardial response to significantly reduced heart rate during hibernation by measuring relative myosin heavy-chain (MyHC) isoform expression and expression of a set of genes important to muscle plasticity and mass regulation in the left atria and left ventricles of active and hibernating bears. We supplemented these data with measurements of systolic and diastolic function via echocardiography in unanesthetized grizzly bears. Atrial strain imaging revealed decreased atrial contractility, decreased expansion/reservoir function (increased atrial stiffness), and decreased passive-filling function (increased ventricular stiffness) in hibernating bears. Relative MyHC-α protein expression increased significantly in the atrium during hibernation. The left ventricle expressed 100% MyHC-β protein in both groups. Insulin-like growth factor (IGF-I) mRNA expression was reduced by ∼50% in both chambers during hibernation, consistent with the ventricular atrophy observed in these bears. Interestingly, mRNA expression of the atrophy-related ubiquitin ligases Muscle Atrophy F-box (MAFBx) and Muscle Ring Finger 1 did not increase, nor did expression of myostatin or hypoxia-inducible factor 1α (HIF-1α). We report atrium-specific decreases of 40% and 50%, respectively, in MAFBx and creatine kinase mRNA expression during hibernation. Decreased creatine kinase expression is consistent with lowered energy requirements and could relate to reduced atrial emptying function during hibernation. Taken together with our hemodynamic assessment, these data suggest a potential downregulation of atrial chamber function during hibernation to prevent fatigue and dilation

  16. Animal migration amid shifting patterns of phenology and predation: lessons from a Yellowstone elk herd.

    Science.gov (United States)

    Middleton, Arthur D; Kauffman, Matthew J; McWhirter, Douglas E; Cook, John G; Cook, Rachel C; Nelson, Abigail A; Jimenez, Michael D; Klaver, Robert W

    2013-06-01

    Migration is a striking behavioral strategy by which many animals enhance resource acquisition while reducing predation risk. Historically, the demographic benefits of such movements made migration common, but in many taxa the phenomenon is considered globally threatened. Here we describe a long-term decline in the productivity of elk (Cervus elaphus) that migrate through intact wilderness areas to protected summer ranges inside Yellowstone National Park, USA. We attribute this decline to a long-term reduction in the demographic benefits that ungulates typically gain from migration. Among migratory elk, we observed a 21-year, 70% reduction in recruitment and a 4-year, 19% depression in their pregnancy rate largely caused by infrequent reproduction of females that were young or lactating. In contrast, among resident elk, we have recently observed increasing recruitment and a high rate of pregnancy. Landscape-level changes in habitat quality and predation appear to be responsible for the declining productivity of Yellowstone migrants. From 1989 to 2009, migratory elk experienced an increasing rate and shorter duration of green-up coincident with warmer spring-summer temperatures and reduced spring precipitation, also consistent with observations of an unusually severe drought in the region. Migrants are also now exposed to four times as many grizzly bears (Ursus arctos) and wolves (Canis lupus) as resident elk. Both of these restored predators consume migratory elk calves at high rates in the Yellowstone wilderness but are maintained at low densities via lethal management and human disturbance in the year-round habitats of resident elk. Our findings suggest that large-carnivore recovery and drought, operating simultaneously along an elevation gradient, have disproportionately influenced the demography of migratory elk. Many migratory animals travel large geographic distances between their seasonal ranges. Changes in land use and climate that disparately influence

  17. Animal migration amid shifting patterns of phenology and predation: Lessons from a Yellowstone elk herd

    Science.gov (United States)

    Middleton, Arthur D.; Kauffman, Matthew J.; McWhirter, Douglas E.; Cook, John G.; Cook, Rachel C.; Nelson, Abigail A.; Jimenez, Michael D.; Klaver, Robert W.

    2013-01-01

    Migration is a striking behavioral strategy by which many animals enhance resource acquisition while reducing predation risk. Historically, the demographic benefits of such movements made migration common, but in many taxa the phenomenon is considered globally threatened. Here we describe a long-term decline in the productivity of elk (Cervus elaphus) that migrate through intact wilderness areas to protected summer ranges inside Yellowstone National Park, USA. We attribute this decline to a long-term reduction in the demographic benefits that ungulates typically gain from migration. Among migratory elk, we observed a 21-year, 70% reduction in recruitment and a 4-year, 19% depression in their pregnancy rate largely caused by infrequent reproduction of females that were young or lactating. In contrast, among resident elk, we have recently observed increasing recruitment and a high rate of pregnancy. Landscape-level changes in habitat quality and predation appear to be responsible for the declining productivity of Yellowstone migrants. From 1989 to 2009, migratory elk experienced an increasing rate and shorter duration of green-up coincident with warmer spring–summer temperatures and reduced spring precipitation, also consistent with observations of an unusually severe drought in the region. Migrants are also now exposed to four times as many grizzly bears (Ursus arctos) and wolves (Canis lupus) as resident elk. Both of these restored predators consume migratory elk calves at high rates in the Yellowstone wilderness but are maintained at low densities via lethal management and human disturbance in the year-round habitats of resident elk. Our findings suggest that large-carnivore recovery and drought, operating simultaneously along an elevation gradient, have disproportionately influenced the demography of migratory elk. Many migratory animals travel large geographic distances between their seasonal ranges. Changes in land use and climate that disparately influence

  18. Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis)

    OpenAIRE

    McGee, Meghan E.; Maki, Aaron J.; Johnson, Steven E.; Lynne Nelson, O.; Robbins, Charles T.; Donahue, Seth W.

    2007-01-01

    Disuse uncouples bone formation from resorption, leading to increased porosity, decreased bone geometrical properties, and decreased bone mineral content which compromises bone mechanical properties and increases fracture risk. However, black bear bone properties are not adversely affected by aging despite annual periods of disuse (i.e., hibernation), which suggests that bears either prevent bone loss during disuse or lose bone and subsequently recover it at a faster rate than other animals. ...

  19. Grizzly Usage and Theory Manual

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, B. W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Backman, M. [Univ. of Tennessee, Knoxville, TN (United States); Chakraborty, P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwen, D. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Y. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Huang, H. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bai, X. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jiang, W. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    Grizzly is a multiphysics simulation code for characterizing the behavior of nuclear power plant (NPP) structures, systems and components (SSCs) subjected to a variety of age-related aging mechanisms. Grizzly simulates both the progression of aging processes, as well as the capacity of aged components to safely perform. This initial beta release of Grizzly includes capabilities for engineering-scale thermo-mechanical analysis of reactor pressure vessels (RPVs). Grizzly will ultimately include capabilities for a wide range of components and materials. Grizzly is in a state of constant development, and future releases will broaden the capabilities of this code for RPV analysis, as well as expand it to address degradation in other critical NPP components.

  20. Bears, Big and Little. Young Discovery Library Series.

    Science.gov (United States)

    Pfeffer, Pierre

    This book is written for children 5 through 10. Part of a series designed to develop their curiosity, fascinate them and educate them, this volume describes: (1) the eight species of bears, including black bear, brown bear, grizzly bear, spectacled bear, sun bear, sloth bear, polar bear, and giant panda; (2) geographical habitats of bears; (3)…

  1. Watchable Wildlife: The Black Bear

    Science.gov (United States)

    Lynn L. Rogers

    1992-01-01

    Black bears are the bears people most often encounter. Black bears live in forests over much of North America, unlike grizzlies that live only in Alaska, northern and western Canada, and the northern Rocky Mountains. This brochure presents the latest information on black bear life and how this species responds to an ever-increasing number of campers, hikers, and...

  2. Atlas of Yellowstone

    Science.gov (United States)

    Pierce, Kenneth L.; Marcus, A. W.; Meachan, J. E.; Rodman, A. W.; Steingisser, A. Y.; Allan, Stuart; West, Ross

    2012-01-01

    Established in 1872, Yellowstone National Park was the world’s first national park. In a fitting tribute to this diverse and beautiful region, the Atlas of Yellowstone is a compelling visual guide to this unique national park and its surrounding area. Ranging from art to wolves, from American Indians to the Yellowstone Volcano, and from geysers to population, each page explains something new about the dynamic forces shaping Yellowstone. Equal parts reference and travel guide, the Atlas of Yellowstone is an unsurpassed resource.

  3. In bear country: peaceful co-existence with a touchy wilderness icon starting to look possible

    Energy Technology Data Exchange (ETDEWEB)

    Podlubny, J.

    2002-10-07

    How oil and gas companies have harnessed location data maps and satellite communication technology to help resource developers to map out new roads and pipelines in the grizzly bear habitat of western Alberta is described. The high-tech approach is part of the Foot Hills Model Forest Grizzly Bear Study project, operating out of Hinton, Alberta, which focuses on the effects of industrial activity on the Alberta grizzly bear. Since the project's inception three years ago a library of data has been collected with a tool known as the GPS collar. This collar attached to more than 70 bears enabled scientists to add new dimensions of precision and intimacy to the tracking of grizzly bears. The maps created from data captured by the collars have been used by forestry and oil and gas industry personnel to help establish working relationships with grizzly bears by using the information as a guide to decisions on which routes are best suited for road and pipeline projects, i.e. which ones can be forecast to have the least effect on bears. The study is the first that has generated scientific information which is being used in a practical way to help preserve grizzly bears in the wild. At least one pipeline route has been changed when the company found out, through the mapping technology, that an area affected by the originally proposed route was an important grizzly bear habitat. The information also has been used in conjunction with developing new roads, mining locations and other activities that involve grizzly bear habitats. In addition to these practical industry-related applications the study also focuses on collecting new information about grizzly bears, clearing up bear myths, making discoveries about bear DNA, creating new trapping techniques and the best drugs to use when putting on collars and ear tags.

  4. Grizzli mobile systems and LPG delivery management; Grizzli mobile systems

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2000-07-01

    Complete text of publication follows: Grizzli Mobile Systems (and its sister companies) specialists in data communications and system solutions, offer their complete management solution for LPG deliveries, right through from remote reading of the gas level in the tank, through route management, management of the delivery itself and finally on-site invoicing and payment. The system permits a supplier to really differentiate itself from its competitors in terms of customer service and control of its operations. Domestic gas tanks are often difficult to access; visual reading of the gauge is not always easy and often leads to the customer re-ordering in panic mode. The supplier has also to react in panic mode to the customer. Grizzli Mobile Systems has developed a radio module that is fitted to the gas tank that calls, at regular set intervals with the tank level to a Call Rider gateway plug. The Call Rider is a small box plugged into the regular telephone socket (also supplying multiple operator telephony and other home automation services). As soon as the gas level reaches a predetermined minimum level, this radio information is relayed via the Internet to the LPG supplier. The supplier can then arrange (in non-panic mode) to deliver gas to the customer, via conventional means or by use of an interactive radio display (attached to a refrigerator or similar by magnets) that communicates with the Call Rider by radio. Once a delivery date has been set, a Grizzli Mobile Systems' dispatch system, installed at the supplier's headquarters creates and transfers routes via GSM communications to its fleet of delivery vehicles. A main-frame mapping software provides real-time follow-up and status checks of the vehicles using the GPS functionality and imports data back from the vehicles and updates databases. The driver is also assisted in localizing delivery sites. Inside the cabin of the vehicle the driver has available a Fujitsu PenCentra pen computer, a Microsoft

  5. 76 FR 61266 - Special Regulations; Areas of the National Park System, Grand Teton National Park, Bicycle Routes...

    Science.gov (United States)

    2011-10-04

    ... Yellowstone National Park, Grand Teton is at the heart of the Greater Yellowstone Ecosystem, and includes the... elk, moose, bison, pronghorn, grizzly and black bears, grey wolves, and coyotes. Other species such as...

  6. 76 FR 18040 - Amendment of Class E Airspace; West Yellowstone, MT

    Science.gov (United States)

    2011-04-01

    ... airspace at Yellowstone Airport, West Yellowstone, MT, to accommodate aircraft using Instrument Landing... the earth. * * * * * ANM MT E5 West Yellowstone, MT [Amended] West Yellowstone, Yellowstone Airport...

  7. Wolverine in Greater Yellowstone

    Science.gov (United States)

    Kerry Murphy; Jason Wilmot; Jeff Copeland; Dan Tyers; John. Squires

    2011-01-01

    The wolverine is one of the least studied carnivores in North America, particularly in the contiguous United States where it occurs at the southern extent of its range. This project documented the distribution of wolverines in the eastern portion of Yellowstone National Park and adjoining areas of national forest and their population characteristics, habitat...

  8. Origins of geothermal gases at Yellowstone

    Science.gov (United States)

    Lowenstern, Jacob B.; Bergfeld, Deborah; Evans, William C.; Hunt, Andrew G.

    2015-01-01

    Gas emissions at the Yellowstone Plateau Volcanic Field (YPVF) reflect open-system mixing of gas species originating from diverse rock types, magmas, and crustal fluids, all combined in varying proportions at different thermal areas. Gases are not necessarily in chemical equilibrium with the waters through which they vent, especially in acid sulfate terrain where bubbles stream through stagnant acid water. Gases in adjacent thermal areas often can be differentiated by isotopic and gas ratios, and cannot be tied to one another solely by shallow processes such as boiling-induced fractionation of a parent liquid. Instead, they inherit unique gas ratios (e.g., CH4/He) from the dominant rock reservoirs where they originate, some of which underlie the Quaternary volcanic rocks. Steam/gas ratios (essentially H2O/CO2) of Yellowstone fumaroles correlate with Ar/He and N2/CO2, strongly suggesting that H2O/CO2 is controlled by addition of steam boiled from water rich in atmospheric gases. Moreover, H2O/CO2 varies systematically with geographic location, such that boiling is more enhanced in some areas than others. The δ13C and 3He/CO2 of gases reflect a dominant mantle origin for CO2 in Yellowstone gas. The mantle signature is most evident at Mud Volcano, which hosts gases with the lowest H2O/CO2, lowest CH4 concentrations and highest He isotope ratios (~16Ra), consistent with either a young subsurface intrusion or less input of crustal and meteoric gas than any other location at Yellowstone. Across the YPVF, He isotope ratios (3He/4He) inversely vary with He concentrations, and reflect varied amounts of long- stored, radiogenic He added to the magmatic endmember within the crust. Similarly, addition of CH4 from organic-rich sediments is common in the eastern thermal areas at Yellowstone. Overall, Yellowstone gases reflect addition of deep, high-temperature magmatic gas (CO2-rich), lower-temperatures crustal gases (4He- and CH4-bearing), and those gases (N2, Ne, Ar) added

  9. Lessons from geothermal gases at Yellowstone

    Science.gov (United States)

    Lowenstern, J. B.; Bergfeld, D.; Evans, W.; Hurwitz, S.

    2015-12-01

    The magma-hydrothermal system of the Yellowstone Plateau Volcanic Field encompasses over ten thousand individual springs, seeps, and fumaroles spread out over >9000 square kilometers, and produces a range of acid, neutral and alkaline waters. A prominent model (Fournier, 1989 and related papers) concludes that many neutral and alkaline fluids found in hot springs and geysers are derived from a uniform, high-enthalpy parent fluid through processes such as deep boiling and mixing with dilute meteoric groundwater. Acid waters are generally condensates of gas-bearing steam that boils off of subsurface geothermal waters. Our recent studies of gases at Yellowstone (Lowenstern et al., 2015 and references therein) are compatible with such a model, but also reveal that gases are largely decoupled from thermal waters due to open-system addition of abundant deep gas to (comparatively) shallow circulating thermal waters. Fumarole emissions at Yellowstone range from gas-rich (up to 15 mol%) composed of deeply derived CO2, He and CH4, to steam-rich emissions (16 RA) and low CH4 and He concentrations and 2) mantle-derived CO2 with much higher CH4 and/or He concentrations and abundant radiogenic He picked up from crustal degassing. Individual thermal areas have distinct CH4/He. It remains unclear whether some gas ratios mainly reflect subsurface geothermal temperatures. Instead, they may simply reflect signatures imparted by local rock types and mixing on timescales too fast for reequilibration. Overall, the gas chemistry reflects a broader view of mantle-crust dynamics than can be appreciated by studies of only dissolved solutes in the neutral and alkaline waters from Yellowstone geysers. Fournier (1989) Ann. Rev. Earth Planet. Sci. v. 17, p. 13-53. Lowenstern et al. (2015) JVGR, v. 302, 87-101.

  10. Influences of supplemental feeding on winter elk calf:cow ratios in the southern Greater Yellowstone Ecosystem

    Science.gov (United States)

    M. Foley, Aaron; Cross, Paul C.; Christianson, David A; Scurlock, Brandon M.; Creely, Scott

    2015-01-01

    Several elk herds in the Greater Yellowstone Ecosystem are fed during winter to alleviate interactions with livestock, reduce damage to stored crops, and to manage for high elk numbers. The effects of supplemental feeding on ungulate population dynamics has rarely been examined, despite the fact that supplemental feeding is partially justified as necessary for maintaining or enhancing population growth rates. We used linear regression to assess how the presence of feedgrounds, snowpack, summer rainfall, indices of grizzly bear density and wolves per elk, elk population trend counts, brucellosis seroprevalence, and survey date were correlated with midwinter calf:cow ratios, a metric correlated with population growth, from 1983–2010 from 12 ecologically similar elk herd units (7 fed and 5 unfed) in Wyoming, USA. Our statistical approach allowed for rigorous tests of the hypotheses that supplemental feeding had positive effects on calf:cow ratios and reduced sensitivity of calf:cow ratios to bottom-up limitation relative to top-down limitation from native predators. Calf:cow ratios generally declined across all herd units over the study period and varied widely among units with feedgrounds. We found no evidence that the presence of feedgrounds had positive effects on midwinter calf:cow ratios in Wyoming. Further, fed elk showed stronger correlations with environmental factors, whereas calf:cow ratios for unfed elk showed stronger correlations with predator indices. Although we found no consistent association between winter feeding and higher calf:cow ratios, we did not assess late winter mortality and differences in human offtake between fed and unfed regions, which remain a priority for future research. 

  11. Pitfalls in comparing modern hair and fossil bone collagen C and N isotopic data to reconstruct ancient diets: a case study with cave bears (Ursus spelaeus).

    Science.gov (United States)

    Bocherens, Hervé; Grandal-d'Anglade, Aurora; Hobson, Keith A

    2014-01-01

    Stable isotope analyses provide one of the few means to evaluate diet of extinct taxa. However, interpreting isotope data from bone collagen of extinct animals based on isotopic patterns in different tissues of modern animal proxies is precarious. For example, three corrections are needed before making comparisons of recent hair and ancient bone collagen: calibration of carbon-13 variations in atmospheric CO2, different isotopic discrimination between diet-hair keratin and diet-bone collagen, and time averaging of bone collagen versus short-term record in hair keratin. Recently, Robu et al. [Isotopic evidence for dietary flexibility among European Late Pleistocene cave bears (Ursus spelaeus). Can J Zool. 2013;91:227-234] published an article comparing extant carbon (δ(13)C) and nitrogen (δ(15)N) stable isotopic data of European cave bear bone collagen with those of Yellowstone Park grizzly bear hair in order to test the prevailing assumption of a largely vegetarian diet among cave bears. The authors concluded that cave bears were carnivores. This work is unfortunately unfounded as the authors failed to consider the necessary corrections listed above. When these corrections are applied to the Romanian cave bears, these individuals can be then interpreted without involving consumption of high trophic-level food, and environmental changes are probably the reason for the unusual isotopic composition of these cave bears in comparison with other European cave bears, rather than a change of diet. We caution researchers to pay careful attention to these factors when interpreting feeding ecology of extinct fauna using stable isotope techniques.

  12. Assessing bear-human conflicts in the Yukon Territory

    OpenAIRE

    Lukie, Raechel Dawn

    2010-01-01

    Managing conflicts between bears and humans is vital for human safety and for the conservation of bears. This study investigated black bear (Ursus americanus) and grizzly bear (Ursus arctos) interactions with humans in 18 major communities of the Yukon Territory. I used an information theoretic approach to generate predictive models of the relative potential of bear-human interaction for the 9 conservation officer management regions in the Yukon Territory. I independently modeled interactions...

  13. Yellowstone Lake Nanoarchaeota

    Directory of Open Access Journals (Sweden)

    Scott eClingenpeel

    2013-09-01

    Full Text Available Considerable Nanoarchaeota novelty and diversity were encountered in Yellowstone Lake, Yellowstone National Park, where sampling targeted lake floor hydrothermal vent fluids, streamers and sediments associated with these vents, and in planktonic photic zones in three different regions of the lake. Significant homonucleotide repeats (HR were observed in pyrosequence reads and in near full-length Sanger sequences, averaging 112 HR per 1,349 bp clone and could confound diversity estimates derived from pyrosequencing, resulting in false nucleotide insertions or deletions (indels. However, Sanger sequencing of two different sets of PCR clones (110 bp, 1349 bp demonstrated that at least some of these indels are real. The majority of the Nanoarchaeota PCR amplicons were vent associated; however, curiously, one relatively small Nanoarchaeota OTU (70 pyrosequencing reads was only found in photic zone water samples obtained from a region of the lake furthest removed from the hydrothermal regions of the lake. Extensive pyrosequencing failed to demonstrate the presence of an Ignicoccus lineage in this lake, suggesting the Nanoarchaeota in this environment are associated with novel Archaea hosts. Defined phylogroups based on near full-length PCR clones document the significant Nanoarchaeota 16S rRNA gene diversity in this lake and firmly establish a terrestrial clade distinct from the marine Nanoarcheota as well as from other geographical locations.

  14. Conservation challenges of managing lynx

    Science.gov (United States)

    John R. Squires

    2005-01-01

    Yellowstone National Park is hallowed ground when it comes to wildlife in America. The very word “Yellowstone” conjures up images of grizzly bears digging tubers, bands of elk dotting the landscape, and gray wolves pursuing elk along the Lamar River. However, Yellowstone also provides habitat to one of the rarest cats in the continental United States: the...

  15. Studying boat-based bear viewing: Methodological challenges and solutions

    Science.gov (United States)

    Sarah Elmeligi

    2007-01-01

    Wildlife viewing, a growing industry throughout North America, holds much potential for increased revenue and public awareness regarding species conservation. In Alaska and British Columbia, grizzly bear (Ursus arctos) viewing is becoming more popular, attracting tourists from around the world. Viewing is typically done from a land-based observation...

  16. Immobilization of Wyoming bears using carfentanil and xylazine.

    Science.gov (United States)

    Kreeger, Terry J; Bjornlie, Dan; Thompson, Dan; Clapp, Justin; Clark, Colby; Hansen, Cole; Huizenga, Matt; Lockwood, Sam

    2013-07-01

    Seven grizzly (Ursus arctos; four male, three female) and three black (Ursus americanus; two male, one female) bears caught in culvert traps or leg snares were immobilized in northwestern Wyoming with carfentanil and xylazine at doses, respectively, of 0.011 ± 0.001 and 0.12 ± 0.01 mg/kg for grizzly bears and 0.014 ± 0.002 and 0.15 ± 0.04 mg/kg for black bears. These drugs were antagonized with 1 mg/kg naltrexone and 2 mg/kg tolazoline. Induction and recovery times, respectively, were 4.3 ± 0.5 and 7.1 ± 0.8 min for grizzly bears and 5.2 ± 0.4 and 9.1 ± 2.2 min for black bears. Inductions were smooth and uneventful. Recoveries were characterized initially by increased respiration followed by raising of the head, which quickly led to a full recovery, with the bears recognizing and avoiding humans and moving away, maneuvering around obstacles. All bears experienced respiratory depression, which did not significantly improve with supplemental oxygen on the basis of pulse oximetry (P=0.56). Rectal temperatures were normothermic. Carfentanil-xylazine immobilization of bears provided significant advantages over other drug regimens, including small drug volumes, predictable inductions, quick and complete recoveries, and lower costs. On the basis of these data, both grizzly and black bears can be immobilized effectively with 0.01 mg/kg carfentanil and 0.1 mg/kg xylazine.

  17. Glacial and Quaternary geology of the northern Yellowstone area, Montana and Wyoming

    Science.gov (United States)

    Pierce, Kenneth L.; Licciardi, Joseph M.; Krause, Teresa R.; Whitlock, Cathy

    2014-01-01

    This field guide focuses on the glacial geology and paleoecology beginning in the Paradise Valley and progressing southward into northern Yellowstone National Park. During the last (Pinedale) glaciation, the northern Yellowstone outlet glacier flowed out of Yellowstone Park and down the Yellowstone River Valley into the Paradise Valley. The field trip will traverse the following Pinedale glacial sequence: (1) deposition of the Eightmile terminal moraines and outwash 16.5 ± 1.4 10Be ka in the Paradise Valley; (2) glacial recession of ~8 km and deposition of the Chico moraines and outwash 16.1 ± 1.7 10Be ka; (3) glacial recession of 45 km to near the northern Yellowstone boundary and moraine deposition during the Deckard Flats readjustment 14.2 ± 1.2 10Be ka; and (4) glacial recession of ~37 km and deposition of the Junction Butte moraines 15.2 ± 1.3 10Be ka (this age is a little too old based on the stratigraphic sequence). Yellowstone's northern range of sagebrush-grasslands and bison, elk, wolf, and bear inhabitants is founded on glacial moraines, sub-glacial till, and outwash deposited during the last glaciation. Floods released from glacially dammed lakes and a landslide-dammed lake punctuate this record. The glacial geologic reconstruction was evaluated by calculation of basal shear stress, and yielded the following values for flow pattern in plan view: strongly converging—1.21 ± 0.12 bars (n = 15); nearly uniform—1.04 ± 0.16 bars (n = 11); and strongly diverging—0.84 ± 0.14 bars (n = 16). Reconstructed mass balance yielded accumulation and ablation each of ~3 km3/yr, with glacial movement near the equilibrium line altitude dominated by basal sliding. Pollen and charcoal records from three lakes in northern Yellowstone provide information on the postglacial vegetation and fire history. Following glacial retreat, sparsely vegetated landscapes were colonized first by spruce parkland and then by closed subalpine forests. Regional fire activity

  18. Denali Park wolf studies: Implications for Yellowstone

    Science.gov (United States)

    Mech, L. David; Meier, Thomas J.; Burch, John W.

    1991-01-01

    The Northern Rocky Mountain Wolf Recovery Plan approved by the U.S. Fish and Wildlife Service (1987) recommends re-establishment of wolves (Canis lupus) in Yellowstone National Park. Bills proposing wolf re-establishment in the Park have been introduced into the U.S. House and Senate. However, several questions have been raised about the possible effects of wolf re-establishment on other Yellowstone Park fauna, on human use of the Park and on human use of surrounding areas. Thus the proposed wolf re-establishment remains controversial.Information pertinent to some of the above questions is available from a current study of wolf ecology in Denali National Park and Preserve, Alaska, which we began in 1986. Although Denali Park differs from Yellowstone in several ways, it is also similar enough in important respects to provide insight into questions raised about wolf re-establishment in Yellowstone.

  19. Bears and pipeline construction in Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Follmann, E.H.; Hechtel, J.L. (Univ. of Alaska Fairbanks, AK (USA))

    1990-06-01

    Serious problems were encountered with bears during construction of the 1274-km trans-Alaska oil pipeline between Prudhoe Bay and Valdez. This multi-billion-dollar project traversed both black bear (Ursus americanus Pallas) and grizzly bear (U. arctos L.) habitat throughtout its entire length. Plans for dealing with anticipated problems with bears were often inadequate. Most (71%) problems occurred north of the Yukon River in a previously roadless wilderness where inadequate refuse disposal and widespread animal feeding created dangerous situations. Of the 192 officially reported bear problems associated with the Trans-Alaska Pipeline System (TAPS) (1971-1979), about 65% involved the presence of bears in camps or dumps, 13% the feeding of bears on garbage or handouts, 10% property damage or economic loss, 7% bears under and in buildings, and only 5% charges by bears. Remarkably, no bear-related injuries were reported, suggesting that bears became accustomed to people and did not regard them as a threat. Following construction of the TAPS there have been proposals for pipelines to transport natural gas from Prudhoe Bay to southern and Pacific-rim markets. Based on past experience, some animal control measures were developed during the planning phase for the authorized gas pipeline route in Alaska. Fences installed around 100-person survey camps were found to be effective in deterring bears in two traditionally troublesome areas. 16 refs., 7 figs., 1 tab.

  20. Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries

    Science.gov (United States)

    for Solar Power Yellowstone Park Recycles Vehicle Batteries for Solar Power to someone by E -mail Share Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries for Solar Power on Facebook Tweet about Alternative Fuels Data Center: Yellowstone Park Recycles Vehicle Batteries

  1. Crystal Plasticity Model of Reactor Pressure Vessel Embrittlement in GRIZZLY

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Pritam [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Biner, Suleyman Bulent [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Spencer, Benjamin Whiting [Idaho National Laboratory (INL), Idaho Falls, ID (United States)

    2015-07-01

    The integrity of reactor pressure vessels (RPVs) is of utmost importance to ensure safe operation of nuclear reactors under extended lifetime. Microstructure-scale models at various length and time scales, coupled concurrently or through homogenization methods, can play a crucial role in understanding and quantifying irradiation-induced defect production, growth and their influence on mechanical behavior of RPV steels. A multi-scale approach, involving atomistic, meso- and engineering-scale models, is currently being pursued within the GRIZZLY project to understand and quantify irradiation-induced embrittlement of RPV steels. Within this framework, a dislocation-density based crystal plasticity model has been developed in GRIZZLY that captures the effect of irradiation-induced defects on the flow stress behavior and is presented in this report. The present formulation accounts for the interaction between self-interstitial loops and matrix dislocations. The model predictions have been validated with experiments and dislocation dynamics simulation.

  2. Crystal Plasticity Model of Reactor Pressure Vessel Embrittlement in GRIZZLY

    International Nuclear Information System (INIS)

    Chakraborty, Pritam; Biner, Suleyman Bulent; Zhang, Yongfeng; Spencer, Benjamin Whiting

    2015-01-01

    The integrity of reactor pressure vessels (RPVs) is of utmost importance to ensure safe operation of nuclear reactors under extended lifetime. Microstructure-scale models at various length and time scales, coupled concurrently or through homogenization methods, can play a crucial role in understanding and quantifying irradiation-induced defect production, growth and their influence on mechanical behavior of RPV steels. A multi-scale approach, involving atomistic, meso- and engineering-scale models, is currently being pursued within the GRIZZLY project to understand and quantify irradiation-induced embrittlement of RPV steels. Within this framework, a dislocation-density based crystal plasticity model has been developed in GRIZZLY that captures the effect of irradiation-induced defects on the flow stress behavior and is presented in this report. The present formulation accounts for the interaction between self-interstitial loops and matrix dislocations. The model predictions have been validated with experiments and dislocation dynamics simulation.

  3. The importance of meat, particularly salmon, to body size, population productivity, and conservation of North American brown bears.

    Science.gov (United States)

    G.V. Hilderbrand; C.C. Schwartz; C.T. Robbins; M.E. Hanley Jacoby; S.M. Arthur; C. Servheen

    1999-01-01

    We hypothesized that the relative availability of meat, indicated by contribution to the diet, would be positively related to body size and population productivity of North American brown, or grizzly, bears (Ursus arctos). Dietary contributions of plant matter and meat derived from both terrestrial and marine sources were quantified by stable-...

  4. Seasonal gravity change at Yellowstone caldera

    Science.gov (United States)

    Poland, M. P.; de Zeeuw-van Dalfsen, E.

    2017-12-01

    The driving forces behind Yellowstone's dynamic deformation, vigorous hydrothermal system, and abundant seismicity are usually ascribed to "magmatic fluids," which could refer to magma, water, volatiles, or some combination. Deformation data alone cannot distinguish the relative importance of these fluids. Gravity measurements, however, provide an indication of mass change over time and, when combined with surface displacements, can constrain the density of subsurface fluids. Unfortunately, several decades of gravity surveys at Yellowstone have yielded ambiguous results. We suspect that the difficulty in interpreting Yellowstone gravity data is due to seasonal variations in environmental conditions—especially surface and ground water. Yellowstone gravity surveys are usually carried out at the same time of year (generally late summer) to minimize the impact of seasonality. Nevertheless, surface and subsurface water levels are not likely to be constant from year to year, given annual differences in precipitation. To assess the overall magnitude of seasonal gravity changes, we conducted gravity surveys of benchmarks in and around Yellowstone caldera in May, July, August, and October 2017. Our goal was to characterize seasonal variations due to snow melt/accumulation, changes in river and lake levels, changes in groundwater levels, and changes in hydrothermal activity. We also hope to identify sites that show little variation in gravity over the course of the 2017 surveys, as these locations may be less prone to seasonal changes and more likely to detect small variations due to magmatic processes. Preliminary examination of data collected in May and July 2017 emphasizes the importance of site location relative to sources of water. For example, a site on the banks of the Yellowstone River showed a gravity increase of several hundred microgals associated with a 50 cm increase in the river level. A high-altitude site far from rivers and lakes, in contrast, showed a

  5. The influence of herd size, conspecific risk, and predation risk on the vigilance of elk (Cervus elaphus) in Yellowstone National Park, and, Interest, learning, and a thematic biology course

    Science.gov (United States)

    Lung, Mark A.

    This dissertation is a composite of biological and educational research. The biological research concerns Rocky Mountain elk (Cervus elaphus ) behavior. The educational research presents ideas and findings on the influence of a thematic general biology course on student interest and perception of learning. The dissertation begins with a Preface that attempts to bring the ideas presented in later chapters together. Chapter One is a review of the literature concerning sociality, social behaviors, and elk biology. It summarizes current research literature as a means of introduction to Chapter Two. Chapter Two presents findings concerning the effects of herd size, predation risk, and the risk of being near conspecifics on two behaviors commonly associated with social animals---vigilance and aggression. Vigilance and aggression were measured in elk in Yellowstone National Park in two regions that varied in their presence of elk predators (wolves---Canis lupus, and grizzly bears---Ursus arctos) and in two seasons (spring and fall) that varied in the risks of being near conspecifics. Overall, male and female elk responded very differently. Male elk adjust their vigilance and aggression in response to changes in conspecific risk, but not to changes in predation risk. Female elk adjust their vigilance in response to changes in predation risk, but not to changes in conspecific risk. Males show no response in vigilance to changes in herd size. Non-reproductive females, however, adjust their levels of vigilance with changes in herd size in high risk regions. Interestingly, in the spring, vigilance decreases with increasing herd size, but in the fall, vigilance increases with increasing herd size. Chapter Three presents findings concerning the influence of a thematic course design on student perceptions of interest and teaming in a non-major's biology course (Bins 100: Concepts of Biology). I compared responses on student evaluations from two sections of Bios 100 taught in a

  6. Infectious diseases of wolves in Yellowstone

    Science.gov (United States)

    Almberg, Emily S.; Cross, Paul C.; Hudson, Peter J.; Dobson, Andrew P.; Smith, Douglas W.; Stahler, Daniel R.

    2016-01-01

    The summer of 2005 began with such promise for wolves in Yellowstone.  The population had been at an all-time high the last few years, and the wolves appeared to be in good condition.  Several packs had been particularly busy during the breeding season, and early summer pup counts suggested another healthy crop of new wolves rising through the ranks.

  7. Pregnancy rates in central Yellowstone bison

    Science.gov (United States)

    Gogan, Peter J.; Russell, Robin E.; Olexa, Edward M.; Podruzny, Kevin M.

    2013-01-01

    Plains bison (Bison b. bison) centered on Yellowstone National Park are chronically infected with brucellosis (Brucella abortus) and culled along the park boundaries to reduce the probability of disease transmission to domestic livestock. We evaluated the relationship between pregnancy rates and age, dressed carcass weight, and serological status for brucellosis among bison culled from the central Yellowstone subpopulation during the winters of 1996–1997, 2001–2002, and 2002–2003. A model with only dressed carcass weight was the best predictor of pregnancy status for all ages with the odds of pregnancy increasing by 1.03 (95% CI = 1.02–1.04) for every 1-kg increase in weight. We found no effect of age or the serological status for brucellosis on pregnancy rates across age classes; however, we did find a positive association between age and pregnancy rates for bison ≥2 years old. Bison ≥2 years old had an overall pregnancy rate of 65% with markedly different rates in alternate ages for animals between 3 and 7 years old. Pregnancy rates were 0.50 (95% CI = 0.31–0.69) for brucellosis positive and 0.57 (95% CI = 0.34–0.78) for brucellosis negative 2- and 3-year-olds and 0.74 (95% CI = 0.60–0.85) in brucellosis positive and 0.69 (95% CI = 0.49–0.85) in brucellosis negative bison ≥4 years old. Only 1 of 21 bison <2 years old was pregnant. Our findings are important to accurately predict the effects of brucellosis on Yellowstone bison population dynamics. We review our results relative to other studies of Yellowstone bison that concluded serological status for brucellosis influences pregnancy rates.

  8. Dynamics of the Yellowstone hydrothermal system

    Science.gov (United States)

    Hurwitz, Shaul; Lowenstern, Jacob B.

    2014-01-01

    The Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.

  9. Integrated Geoscience Studies in the Greater Yellowstone Area - Volcanic, Tectonic, and Hydrothermal Processes in the Yellowstone Geoecosystem

    Science.gov (United States)

    Morgan, Lisa A.

    2007-01-01

    Yellowstone National Park, rimmed by a crescent of older mountainous terrain, has at its core the Quaternary Yellowstone Plateau, an undulating landscape shaped by forces of volcanism, tectonism, and later glaciation. Its spectacular hydrothermal systems cap this landscape. From 1997 through 2003, the United States Geological Survey Mineral Resources Program conducted a multidisciplinary project of Yellowstone National Park entitled Integrated Geoscience Studies of the Greater Yellowstone Area, building on a 130-year foundation of extensive field studies (including the Hayden survey of 1871, the Hague surveys of the 1880s through 1896, the studies of Iddings, Allen, and Day during the 1920s, and NASA-supported studies starting in the 1970s - now summarized in USGS Professional Paper 729 A through G) in this geologically dynamic terrain. The project applied a broad range of scientific disciplines and state-of-the-art technologies targeted to improve stewardship of the unique natural resources of Yellowstone and enable the National Park Service to effectively manage resources, protect park visitors from geologic hazards, and better educate the public on geologic processes and resources. This project combined a variety of data sets in characterizing the surficial and subsurface chemistry, mineralogy, geology, geophysics, and hydrothermal systems in various parts of the park. The sixteen chapters presented herein in USGS Professional Paper 1717, Integrated Geoscience Studies in the Greater Yellowstone Area - Volcanic, Tectonic, and Hydrothermal Processes in the Yellowstone Geoecosystem, can be divided into four major topical areas: (1) geologic studies, (2) Yellowstone Lake studies, (3) geochemical studies, and (4) geophysical studies. The geologic studies include a paper by Ken Pierce and others on the influence of the Yellowstone hotspot on landscape formation, the ecological effects of the hotspot, and the human experience and human geography of the greater

  10. Bearing system

    Science.gov (United States)

    Kapich, Davorin D.

    1987-01-01

    A bearing system includes backup bearings for supporting a rotating shaft upon failure of primary bearings. In the preferred embodiment, the backup bearings are rolling element bearings having their rolling elements disposed out of contact with their associated respective inner races during normal functioning of the primary bearings. Displacement detection sensors are provided for detecting displacement of the shaft upon failure of the primary bearings. Upon detection of the failure of the primary bearings, the rolling elements and inner races of the backup bearings are brought into mutual contact by axial displacement of the shaft.

  11. The economics of roadside bear viewing

    Science.gov (United States)

    Richardson, Leslie; Rosen, Tatjana; Gunther, Kerry; Schwartz, Chuck

    2014-01-01

    Viewing bears along roadside habitats is a popular recreational activity in certain national parks throughout the United States. However, safely managing visitors during traffic jams that result from this activity often requires the use of limited park resources. Using unique visitor survey data, this study quantifies economic values associated with roadside bear viewing in Yellowstone National Park, monetary values that could be used to determine whether this continued use of park resources is warranted on economic grounds. Based on visitor expenditure data and results of a contingent visitation question, it is estimated that summer Park visitation would decrease if bears were no longer allowed to stay along roadside habitats, resulting in a loss of 155 jobs in the local economy. Results from a nonmarket valuation survey question indicate that on average, visitors to Yellowstone National Park are willing to pay around $41 more in Park entrance fees to ensure that bears are allowed to remain along roads within the Park. Generalizing this value to the relevant population of visitors indicates that the economic benefits of allowing this wildlife viewing opportunity to continue could outweigh the costs of using additional resources to effectively manage these traffic jams.

  12. Wildlife health initiatives in Yellowstone National Park

    Science.gov (United States)

    Cross, Paul C.; Plumb, G.

    2007-01-01

    Yellowstone Science 15(2) • 2007 and conservation organizations ( see inset page 7, The Yellowstone Wildlife Health Program ). Wildlife and Human Health are Linked Much of the interest in disease ecology and wildlife health has been prompted by the emergence, or resurgence, of many parasites that move between livestock, wildlife, and/or humans. Wildlife diseases are important because of their impact on both the natural ecosystem and human health. Many human dis - eases arise from animal reservoirs (WHO 2002). Hantaviruses, West Nile virus, avian influenza, and severe acute respiratory syndrome (SARS) are examples of disease issues that have arisen over the last decade. Indeed, nearly 75% of all emerg - ing human infectious diseases are zoonotic (a disease that has spread to humans from another animal species). Many of these diseases have spilled over from natural wildlife reservoirs either directly into humans or via domestic animals (WHO/FAO/ OIE 2004). Unprecedented human population abundance and distribution, combined with anthropogenic environmental change, has resulted in dramatic increases in human–animal contact, thus increasing the intimate linkages between animal and human health (Figure 1). Linkage of human and animal health is not a new phenomenon, but the scope, scale, and worldwide impacts of contemporary zoonoses have no historical precedent (OIE 2004a). Zoonotic infectious diseases can have major impacts on wild and domestic animals and human health, resulting in

  13. Exterior sound level measurements of snowcoaches at Yellowstone National Park

    Science.gov (United States)

    2010-04-01

    Sounds associated with oversnow vehicles, such as snowmobiles and snowcoaches, are an important management concern at Yellowstone and Grand Teton National Parks. The John A. Volpe National Transportation Systems Centers Environmental Measurement a...

  14. Biweekly disturbance capture and attribution: case study in western Alberta grizzly bear habitat

    Science.gov (United States)

    Hilker, Thomas; Coops, Nicholas C.; Gaulton, Rachel; Wulder, Michael A.; Cranston, Jerome; Stenhouse, Gordon

    2011-01-01

    An increasing number of studies have demonstrated the impact of landscape disturbance on ecosystems. Satellite remote sensing can be used for mapping disturbances, and fusion techniques of sensors with complimentary characteristics can help to improve the spatial and temporal resolution of satellite-based mapping techniques. Classification of different disturbance types from satellite observations is difficult, yet important, especially in an ecological context as different disturbance types might have different impacts on vegetation recovery, wildlife habitats, and food resources. We demonstrate a possible approach for classifying common disturbance types by means of their spatial characteristics. First, landscape level change is characterized on a near biweekly basis through application of a data fusion model (spatial temporal adaptive algorithm for mapping reflectance change) and a number of spatial and temporal characteristics of the predicted disturbance patches are inferred. A regression tree approach is then used to classify disturbance events. Our results show that spatial and temporal disturbance characteristics can be used to classify disturbance events with an overall accuracy of 86% of the disturbed area observed. The date of disturbance was identified as the most powerful predictor of the disturbance type, together with the patch core area, patch size, and contiguity.

  15. DNA Fingerprinting to monitor grizzly bear populations in the Greater Glacier Area

    Science.gov (United States)

    Kendall, Katherine; Dave, Schirokauer; Peterson, Kris; Waits, Lisette P.

    2001-01-01

    A study area of 8,100 km² (2 million acres) was established where 126 8 x 8 km (64 km²) grid cells were identified for placement of traps. Trapping was carried out during five 2- week trap sessions. Some 620 hair traps were placed in the field; samples were retrieved between May 19th and August 12th, 1998. Approximately 7,200 hair samples were collected that year. Hair was found at 80% of the traps where the average number of hair samples per trap site was 14. Forty percent of the samples had 5 or more hair follicles. Preliminary results of sampling indicate that DNA was extracted from 90-100% of the hair samples (N=300). Eight hundred miles of trail were surveyed between June 1 and October 9. Thirteen hundred hair samples were collected from rub trees along trails. Seven hundred scat samples were collected from trails.

  16. Yellowstone wolves and the forces that structure natural systems.

    OpenAIRE

    Andy P Dobson

    2014-01-01

    Since their introduction in 1995 and 1996, wolves have had effects on Yellowstone that ripple across the entire structure of the food web that defines biodiversity in the Northern Rockies ecosystem. Ecological interpretations of the wolves have generated a significant amount of debate about the relative strength of top-down versus bottom-up forces in determining herbivore and vegetation abundance in Yellowstone. Debates such as this are central to the resolution of broader debates about the r...

  17. Gray Wolves as Climate Change Buffers in Yellowstone

    OpenAIRE

    Wilmers Christopher C; Getz Wayne M; Getz Wayne M

    2005-01-01

    Understanding the mechanisms by which climate and predation patterns by top predators co-vary to affect community structure accrues added importance as humans exert growing influence over both climate and regional predator assemblages. In Yellowstone National Park, winter conditions and reintroduced gray wolves (Canis lupus) together determine the availability of winter carrion on which numerous scavenger species depend for survival and reproduction. As climate changes in Yellowstone, therefo...

  18. Gray wolves as climate change buffers in Yellowstone.

    OpenAIRE

    Christopher C Wilmers; Wayne M Getz

    2005-01-01

    Understanding the mechanisms by which climate and predation patterns by top predators co-vary to affect community structure accrues added importance as humans exert growing influence over both climate and regional predator assemblages. In Yellowstone National Park, winter conditions and reintroduced gray wolves (Canis lupus) together determine the availability of winter carrion on which numerous scavenger species depend for survival and reproduction. As climate changes in Yellowstone, therefo...

  19. Pregnancy rates in central Yellowstone bison

    Science.gov (United States)

    Gogan, Peter J.; Russell, Robin E.; Olexa, Edward M.; Podruzny, Kevin M.

    2013-01-01

    Plains bison (Bison b. bison) centered on Yellowstone National Park are chronically infected with brucellosis (Brucella abortus) and culled along the park boundaries to reduce the probability of disease transmission to domestic livestock. We evaluated the relationship between pregnancy rates and age, dressed carcass weight, and serological status for brucellosis among bison culled from the central Yellowstone subpopulation during the winters of 1996–1997, 2001–2002, and 2002–2003. A model with only dressed carcass weight was the best predictor of pregnancy status for all ages with the odds of pregnancy increasing by 1.03 (95% CI = 1.02–1.04) for every 1-kg increase in weight. We found no effect of age or the serological status for brucellosis on pregnancy rates across age classes; however, we did find a positive association between age and pregnancy rates for bison ≥2 years old. Bison ≥2 years old had an overall pregnancy rate of 65% with markedly different rates in alternate ages for animals between 3 and 7 years old. Pregnancy rates were 0.50 (95% CI = 0.31–0.69) for brucellosis positive and 0.57 (95% CI = 0.34–0.78) for brucellosis negative 2- and 3-year-olds and 0.74 (95% CI = 0.60–0.85) in brucellosis positive and 0.69 (95% CI = 0.49–0.85) in brucellosis negative bison ≥4 years old. Only 1 of 21 bison pregnancy rates.

  20. 75 FR 27579 - Bison Brucellosis Remote Vaccination, Draft Environmental Impact Statement, Yellowstone National...

    Science.gov (United States)

    2010-05-17

    ... DEPARTMENT OF THE INTERIOR National Park Service Bison Brucellosis Remote Vaccination, Draft... Brucellosis Remote Vaccination Program, Yellowstone National Park. SUMMARY: Pursuant to the National... the Bison Brucellosis Remote Vaccination Draft Environmental Impact Statement (EIS) for Yellowstone...

  1. Life in the fat lane: seasonal regulation of insulin sensitivity, food intake, and adipose biology in brown bears.

    Science.gov (United States)

    Rigano, K S; Gehring, J L; Evans Hutzenbiler, B D; Chen, A V; Nelson, O L; Vella, C A; Robbins, C T; Jansen, H T

    2017-05-01

    Grizzly bears (Ursus arctos horribilis) have evolved remarkable metabolic adaptations including enormous fat accumulation during the active season followed by fasting during hibernation. However, these fluctuations in body mass do not cause the same harmful effects associated with obesity in humans. To better understand these seasonal transitions, we performed insulin and glucose tolerance tests in captive grizzly bears, characterized the annual profiles of circulating adipokines, and tested the anorectic effects of centrally administered leptin at different times of the year. We also used bear gluteal adipocyte cultures to test insulin and beta-adrenergic sensitivity in vitro. Bears were insulin resistant during hibernation but were sensitive during the spring and fall active periods. Hibernating bears remained euglycemic, possibly due to hyperinsulinemia and hyperglucagonemia. Adipokine concentrations were relatively low throughout the active season but peaked in mid-October prior to hibernation when fat content was greatest. Serum glycerol was highest during hibernation, indicating ongoing lipolysis. Centrally administered leptin reduced food intake in October, but not in August, revealing seasonal variation in the brain's sensitivity to its anorectic effects. This was supported by strong phosphorylated signal transducer and activator of transcription 3 labeling within the hypothalamus of hibernating bears; labeling virtually disappeared in active bears. Adipocytes collected during hibernation were insulin resistant when cultured with hibernation serum but became sensitive when cultured with active season serum. Heat treatment of active serum blocked much of this action. Clarifying the cellular mechanisms responsible for the physiology of hibernating bears may inform new treatments for metabolic disorders.

  2. 78 FR 12353 - Winter Use Plan, Supplemental Environmental Impact Statement, Yellowstone National Park

    Science.gov (United States)

    2013-02-22

    ...] Winter Use Plan, Supplemental Environmental Impact Statement, Yellowstone National Park AGENCY: National... Final Supplemental Environmental Impact Statement (SEIS) for a Winter Use Plan for Yellowstone National... link to the 2012 Supplemental Winter Use Plan EIS), and at Yellowstone National Park headquarters...

  3. Initial Probabilistic Evaluation of Reactor Pressure Vessel Fracture with Grizzly and Raven

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hoffman, William [Univ. of Idaho, Moscow, ID (United States); Sen, Sonat [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Dickson, Terry [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Bass, Richard [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-10-01

    The Grizzly code is being developed with the goal of creating a general tool that can be applied to study a variety of degradation mechanisms in nuclear power plant components. The first application of Grizzly has been to study fracture in embrittled reactor pressure vessels (RPVs). Grizzly can be used to model the thermal/mechanical response of an RPV under transient conditions that would be observed in a pressurized thermal shock (PTS) scenario. The global response of the vessel provides boundary conditions for local models of the material in the vicinity of a flaw. Fracture domain integrals are computed to obtain stress intensity factors, which can in turn be used to assess whether a fracture would initiate at a pre-existing flaw. These capabilities have been demonstrated previously. A typical RPV is likely to contain a large population of pre-existing flaws introduced during the manufacturing process. This flaw population is characterized stastistically through probability density functions of the flaw distributions. The use of probabilistic techniques is necessary to assess the likelihood of crack initiation during a transient event. This report documents initial work to perform probabilistic analysis of RPV fracture during a PTS event using a combination of the RAVEN risk analysis code and Grizzly. This work is limited in scope, considering only a single flaw with deterministic geometry, but with uncertainty introduced in the parameters that influence fracture toughness. These results are benchmarked against equivalent models run in the FAVOR code. When fully developed, the RAVEN/Grizzly methodology for modeling probabilistic fracture in RPVs will provide a general capability that can be used to consider a wider variety of vessel and flaw conditions that are difficult to consider with current tools. In addition, this will provide access to advanced probabilistic techniques provided by RAVEN, including adaptive sampling and parallelism, which can dramatically

  4. Journal bearing

    Science.gov (United States)

    Menke, John R.; Boeker, Gilbert F.

    1976-05-11

    1. An improved journal bearing comprising in combination a non-rotatable cylindrical bearing member having a first bearing surface, a rotatable cylindrical bearing member having a confronting second bearing surface having a plurality of bearing elements, a source of lubricant adjacent said bearing elements for supplying lubricant thereto, each bearing element consisting of a pair of elongated relatively shallowly depressed surfaces lying in a cylindrical surface co-axial with the non-depressed surface and diverging from one another in the direction of rotation and obliquely arranged with respect to the axis of rotation of said rotatable member to cause a flow of lubricant longitudinally along said depressed surfaces from their distal ends toward their proximal ends as said bearing members are rotated relative to one another, each depressed surface subtending a radial angle of less than 360.degree., and means for rotating said rotatable bearing member to cause the lubricant to flow across and along said depressed surfaces, the flow of lubricant being impeded by the non-depressed portions of said second bearing surface to cause an increase in the lubricant pressure.

  5. Uplift, thermal unrest and magma intrusion at Yellowstone caldera.

    Science.gov (United States)

    Wicks, Charles W; Thatcher, Wayne; Dzurisin, Daniel; Svarc, Jerry

    2006-03-02

    The Yellowstone caldera, in the western United States, formed approximately 640,000 years ago when an explosive eruption ejected approximately 1,000 km3 of material. It is the youngest of a series of large calderas that formed during sequential cataclysmic eruptions that began approximately 16 million years ago in eastern Oregon and northern Nevada. The Yellowstone caldera was largely buried by rhyolite lava flows during eruptions that occurred from approximately 150,000 to approximately 70,000 years ago. Since the last eruption, Yellowstone has remained restless, with high seismicity, continuing uplift/subsidence episodes with movements of approximately 70 cm historically to several metres since the Pleistocene epoch, and intense hydrothermal activity. Here we present observations of a new mode of surface deformation in Yellowstone, based on radar interferometry observations from the European Space Agency ERS-2 satellite. We infer that the observed pattern of uplift and subsidence results from variations in the movement of molten basalt into and out of the Yellowstone volcanic system.

  6. Black bear density in Glacier National Park, Montana

    Science.gov (United States)

    Stetz, Jeff B.; Kendall, Katherine C.; Macleod, Amy C.

    2013-01-01

    We report the first abundance and density estimates for American black bears (Ursus americanus) in Glacier National Park (NP),Montana, USA.We used data from 2 independent and concurrent noninvasive genetic sampling methods—hair traps and bear rubs—collected during 2004 to generate individual black bear encounter histories for use in closed population mark–recapture models. We improved the precision of our abundance estimate by using noninvasive genetic detection events to develop individual-level covariates of sampling effort within the full and one-half mean maximum distance moved (MMDM) from each bear’s estimated activity center to explain capture probability heterogeneity and inform our estimate of the effective sampling area.Models including the one-halfMMDMcovariate received overwhelming Akaike’s Information Criterion support suggesting that buffering our study area by this distance would be more appropriate than no buffer or the full MMDM buffer for estimating the effectively sampled area and thereby density. Our modelaveraged super-population abundance estimate was 603 (95% CI¼522–684) black bears for Glacier NP. Our black bear density estimate (11.4 bears/100 km2, 95% CI¼9.9–13.0) was consistent with published estimates for populations that are sympatric with grizzly bears (U. arctos) and without access to spawning salmonids. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  7. Assessment of Probable Future Land Use and Habitat Conditions in Water Resources Planning.

    Science.gov (United States)

    1982-12-01

    R. Varney, and F. C. Craighead, Jr. 1974. A population analysis of the Yellowstone grizzly bears. Montana Forest Conservation Experiment Station Bull...34The wolves of Isle Royale." University of Georgia, Contributions in Systems Ecology. No. 5. Sargent, F. 0. and P. R. Berke. 1979. Planning undeveloped

  8. GAS BEARING

    Science.gov (United States)

    Skarstrom, C.W.

    1960-09-01

    A gas lubricated bearing for a rotating shaft is described. The assembly comprises a stationary collar having an annular member resiliently supported thereon. The collar and annular member are provided with cooperating gas passages arranged for admission of pressurized gas which supports and lubricates a bearing block fixed to the rotatable shaft. The resilient means for the annular member support the latter against movement away from the bearing block when the assembly is in operation.

  9. Protocols for geologic hazards response by the Yellowstone Volcano Observatory

    Science.gov (United States)

    ,

    2010-01-01

    The Yellowstone Plateau hosts an active volcanic system, with subterranean magma (molten rock), boiling, pressurized waters, and a variety of active faults with significant earthquake hazards. Within the next few decades, light-to-moderate earthquakes and steam explosions are certain to occur. Volcanic eruptions are less likely, but are ultimately inevitable in this active volcanic region. This document summarizes protocols, policies, and tools to be used by the Yellowstone Volcano Observatory (YVO) during earthquakes, hydrothermal explosions, or any geologic activity that could lead to a volcanic eruption.

  10. Survival of adult female elk in yellowstone following wolf restoration

    Science.gov (United States)

    Evans, S.B.; Mech, L.D.; White, P.J.; Sargeant, G.A.

    2006-01-01

    Counts of northern Yellowstone elk (Cervus elaphus) in northwestern Wyoming and adjacent Montana, USA, have decreased at an average rate of 6-8% per year since wolves (Canis lupus) were reintroduced in 1995. Population growth rates of elk are typically sensitive to variations in adult female survival; populations that are stable or increasing exhibit high adult female survival. We used survival records for 85 radiocollared adult female elk 1-19 years old to estimate annual survival from March 2000 to February 2004. Weighted average annual survival rates were approximately 0.83 (95% CI = 0.77-0.89) for females 1-15 years old and 0.80 (95% CI = 0.73-0.86) for all females. Our estimates were much lower than the rate of 0.99 observed during 1969-1975 when fewer elk were harvested by hunters, wolves were not present, and other predators were less numerous. Of 33 documented deaths included in our analysis, we attributed 11 to hunter harvest, 14 to predation (10 wolf, 2 unknown, 1 cougar [Puma concolor], and 1 bear [Ursus sp.]), 6 to unknown causes, and 2 to winter-kill. Most deaths occurred from December through March. Estimates of cause-specific annual mortality rates were 0.09 (0.05-0.14) for all predators, 0.08 (0.04-0.13) for hunting, and 0.07 (0.03-0.11) for wolves specifically. Wolf-killed elk were typically older (median = 12 yr) than hunter-killed elk (median = 9 yr, P = 0.03). However, elk that winter outside the park where they were exposed to hunting were also younger (median = 7 yr) than elk that we did not observe outside the park (median = 9 yr, P wolves and hunters may reflect characteristics of elk exposed to various causes of mortality, as well as differences in susceptibility. Unless survival rates of adult females increase, elk numbers are likely to continue declining. Hunter harvest is the only cause of mortality that is amenable to management at the present time.

  11. Polar bear attacks on humans: Implications of a changing climate

    Science.gov (United States)

    Wilder, James; Vongraven, Dag; Atwood, Todd C.; Hansen, Bob; Jessen, Amalie; Kochnev, Anatoly A.; York, Geoff; Vallender, Rachel; Hedman, Daryll; Gibbons, Melissa

    2017-01-01

    Understanding causes of polar bear (Ursus maritimus) attacks on humans is critical to ensuring both human safety and polar bear conservation. Although considerable attention has been focused on understanding black (U. americanus) and grizzly (U. arctos) bear conflicts with humans, there have been few attempts to systematically collect, analyze, and interpret available information on human-polar bear conflicts across their range. To help fill this knowledge gap, a database was developed (Polar Bear-Human Information Management System [PBHIMS]) to facilitate the range-wide collection and analysis of human-polar bear conflict data. We populated the PBHIMS with data collected throughout the polar bear range, analyzed polar bear attacks on people, and found that reported attacks have been extremely rare. From 1870–2014, we documented 73 attacks by wild polar bears, distributed among the 5 polar bear Range States (Canada, Greenland, Norway, Russia, and United States), which resulted in 20 human fatalities and 63 human injuries. We found that nutritionally stressed adult male polar bears were the most likely to pose threats to human safety. Attacks by adult females were rare, and most were attributed to defense of cubs. We judged that bears acted as a predator in most attacks, and that nearly all attacks involved ≤2 people. Increased concern for both human and bear safety is warranted in light of predictions of increased numbers of nutritionally stressed bears spending longer amounts of time on land near people because of the loss of their sea ice habitat. Improved conflict investigation is needed to collect accurate and relevant data and communicate accurate bear safety messages and mitigation strategies to the public. With better information, people can take proactive measures in polar bear habitat to ensure their safety and prevent conflicts with polar bears. This work represents an important first step towards improving our understanding of factors influencing

  12. Recovering aspen follow changing elk dynamics in Yellowstone: evidence of a trophic cascade?

    Science.gov (United States)

    Painter, Luke E; Beschta, Robert L; Larsen, Eric J; Ripple, William J

    2015-01-01

    To investigate the extent and causes of recent quaking aspen (Populus tremuloides) recruitment in northern Yellowstone National Park, we measured browsing intensity and height of young aspen in 87 randomly selected aspen stands in 2012, and compared our results to similar data collected in 1997-1998. We also examined the relationship between aspen recovery and the distribution of Rocky Mountain elk (Cervus elaphus) and bison (Bison bison) on the Yellowstone northern ungulate winter range, using ungulate fecal pile densities and annual elk count data. In 1998, 90% of young aspen were browsed and none were taller-than 200 cm, the height at which aspen begin to escape from elk browsing. In 2012, only 37% in the east and 63% in the west portions of the winter range were browsed, and 65% of stands in the east had young aspen taller than 200 cm. Heights of young aspen were inversely related to browsing intensity, with the least browsing and greatest heights in the eastern portion of the range, corresponding with recent changes in elk density and distribution. In contrast with historical elk distribution (1930s-1990s), the greatest densities of elk recently (2006-2012) have been north of the park boundary (approximately 5 elk/km2), and in the western part of the range (2-4 elk/km2), with relatively few elk in the eastern portion of the range (wolves (Canis lupius) in 1995-1996 played a role in these changing elk population dynamics, interacting with other influences including increased predation by bears (Ursus spp.), competition with an expanding bison population, and shifting patterns of human land use and hunting outside the park. The resulting new aspen recruitment is evidence of a landscape-scale trophic cascade in which a resurgent large carnivore community, combined with other ecological changes, has benefited aspen through effects on ungulate prey.

  13. Body condition and pregnancy in northern Yellowstone elk: evidence for predation risk effects?

    Science.gov (United States)

    White, P J; Garrott, Robert A; Hamlin, Kenneth L; Cook, Rachel C; Cook, John G; Cunningham, Julie A

    2011-01-01

    S. Creel et al. reported a negative correlation between fecal progesterone concentrations and elk:wolf ratios in greater Yellowstone elk (Cervus elaphus) herds and interpreted this correlation as evidence that pregnancy rates of elk decreased substantially in the presence of wolves (Canis lupus). Apparently, the hypothesized mechanism is that decreased forage intake reduces body condition and either results in elk failing to conceive during the autumn rut or elk losing the fetus during winter. We tested this hypothesis by comparing age-specific body condition (percentage ingesta-free body fat) and pregnancy rates for northern Yellowstone elk, one of the herds sampled by Creel et al., before (1962-1968) and after (2000-2006) wolf restoration using indices developed and calibrated for Rocky Mountain elk. Mean age-adjusted percentage body fat of female elk was similarly high in both periods (9.0%-0.9% pre-wolf; 8.9%-0.8% post-wolf). Estimated pregnancy rates (proportion of females that were pregnant) were 0.91 pre-wolf and 0.87 post-wolf for 4-9 year-old elk (95% CI on difference = -0.15 to 0.03, P = 0.46) and 0.64 pre-wolf and 0.78 post-wolf for elk > 9 years old (95% CI on difference = -0.01 to 0.27, P = 0.06). Thus, there was little evidence in these data to support strong effects of wolf presence on elk pregnancy. We caution that multiple lines of evidence and/or strong validation should be brought to bear before relying on indirect measures of how predators affect pregnancy rates.

  14. Geologic field-trip guide to the volcanic and hydrothermal landscape of the Yellowstone Plateau

    Science.gov (United States)

    Morgan Morzel, Lisa Ann; Shanks, W. C. Pat; Lowenstern, Jacob B.; Farrell, Jamie M.; Robinson, Joel E.

    2017-11-20

    Yellowstone National Park, a nearly 9,000 km2 (~3,468 mi2) area, was preserved in 1872 as the world’s first national park for its unique, extraordinary, and magnificent natural features. Rimmed by a crescent of older mountainous terrain, Yellowstone National Park has at its core the Quaternary Yellowstone Plateau, an undulating landscape shaped by forces of late Cenozoic explosive and effusive volcanism, on-going tectonism, glaciation, and hydrothermal activity. The Yellowstone Caldera is the centerpiece of the Yellowstone Plateau. The Yellowstone Plateau lies at the most northeastern front of the 17-Ma Yellowstone hot spot track, one of the few places on Earth where time-transgressive processes on continental crust can be observed in the volcanic and tectonic (faulting and uplift) record at the rate and direction predicted by plate motion. Over six days, this field trip presents an intensive overview into volcanism, tectonism, and hydrothermal activity on the Yellowstone Plateau (fig. 1). Field stops are linked directly to conceptual models related to monitoring of the various volcanic, geochemical, hydrothermal, and tectonic aspects of the greater Yellowstone system. Recent interest in young and possible future volcanism at Yellowstone as well as new discoveries and synthesis of previous studies, (for example, tomographic, deformation, gas, aeromagnetic, bathymetric, and seismic surveys), provide a framework in which to discuss volcanic, hydrothermal, and seismic activity in this dynamic region.

  15. Sagebrush-ungulate relationships on the Northern Yellowstone Winter Range

    Science.gov (United States)

    Carl L. Wambolt

    2005-01-01

    Sagebrush (Artemisia) taxa have historically been the landscape dominants over much of the Northern Yellowstone Winter Range (NYWR). Their importance to the unnaturally large ungulate populations on the NYWR throughout the twentieth century has been recognized since the 1920s. Sagebrush-herbivore ecology has been the focus of research on the NYWR for...

  16. Examining winter visitor use in Yellowstone National Park

    Science.gov (United States)

    Mae A. Davenport; Wayne A. Freimund; William T. Borrie; Robert E. Manning; William A. Valliere; Benjamin Wang

    2000-01-01

    This research was designed to assist the managers of Yellowstone National Park (YNP) in their decision making about winter visitation. The focus of this report is on winter use patterns and winter visitor preferences. It is the author’s hope that this information will benefit both the quality of winter experiences and the stewardship of the park resources. This report...

  17. 76 FR 77131 - Special Regulations; Areas of the National Park System, Yellowstone National Park

    Science.gov (United States)

    2011-12-12

    ... FURTHER INFORMATION CONTACT: Steve Iobst, Deputy Superintendent, Yellowstone National Park, (307) 344-2002... material way the economy, productivity, competition, jobs, the environment, public health or safety, or...

  18. Yellowstone wolves and the forces that structure natural systems.

    Science.gov (United States)

    Dobson, Andy P

    2014-12-01

    Since their introduction in 1995 and 1996, wolves have had effects on Yellowstone that ripple across the entire structure of the food web that defines biodiversity in the Northern Rockies ecosystem. Ecological interpretations of the wolves have generated a significant amount of debate about the relative strength of top-down versus bottom-up forces in determining herbivore and vegetation abundance in Yellowstone. Debates such as this are central to the resolution of broader debates about the role of natural enemies and climate as forces that structure food webs and modify ecosystem function. Ecologists need to significantly raise the profile of these discussions; understanding the forces that structure food webs and determine species abundance and the supply of ecosystem services is one of the central scientific questions for this century; its complexity will require new minds, new mathematics, and significant, consistent funding.

  19. Yellowstone wolves and the forces that structure natural systems.

    Directory of Open Access Journals (Sweden)

    Andy P Dobson

    2014-12-01

    Full Text Available Since their introduction in 1995 and 1996, wolves have had effects on Yellowstone that ripple across the entire structure of the food web that defines biodiversity in the Northern Rockies ecosystem. Ecological interpretations of the wolves have generated a significant amount of debate about the relative strength of top-down versus bottom-up forces in determining herbivore and vegetation abundance in Yellowstone. Debates such as this are central to the resolution of broader debates about the role of natural enemies and climate as forces that structure food webs and modify ecosystem function. Ecologists need to significantly raise the profile of these discussions; understanding the forces that structure food webs and determine species abundance and the supply of ecosystem services is one of the central scientific questions for this century; its complexity will require new minds, new mathematics, and significant, consistent funding.

  20. Seismic Evidence for Lower Mantle Plume Under the Yellowstone Hotspot

    Science.gov (United States)

    Nelson, P.; Grand, S.

    2017-12-01

    The mantle plume hypothesis for the origin of intraplate volcanism has been controversial since its inception in the 1970s. The hypothesis proposes hot narrow upwelling of rock rooted at the core mantle boundary (CMB) rise through the mantle and interact with the base of the lithosphere forming linear volcanic systems such as Hawaii and Yellowstone. Recently, broad lower mantle (>500 km in diameter) slow velocity conduits, most likely thermochemical in origin, have been associated with some intraplate volcanic provinces (French and Romanowicz, 2015). However, the direct detection of a classical thin thermal plume in the lower mantle using travel time tomography has remained elusive (Anderson and Natland, 2014). Here we present a new shear wave tomography model for the mantle beneath the western United States that is optimized to find short wavelength, sub-vertical structures in the lower mantle. Our approach uses carefully measured SKS and SKKS travel times recorded by dense North American seismic networks in conjunction with finite frequency kernels to build on existing tomography models. We find the presence of a narrow ( 300 km diameter) well isolated cylindrically shaped slow anomaly in the lower most mantle which we associate with the Yellowstone Hotspot. The conduit has a 2% reduction in shear velocity and is rooted at the CMB near the California/Arizona/Nevada border. A cross sectional view through the anomaly shows that it is slightly tilted toward the north until about 1300 km depth where it appears to weaken and deflect toward the surficial positon of the hotspot. Given the anomaly's strength, proximity to the Yellowstone Hotspot, and morphology we argue that a thermal plume interpretation is the most reasonable. Our results provide strong support for a lower mantle plume origin of the Yellowstone hotspot and more importantly the existence of deep thermal plumes.

  1. Hydrodynamic bearings

    CERN Document Server

    Bonneau, Dominique; Souchet, Dominique

    2014-01-01

    This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the rheological models and the equations of lubrication. It also presents the numerical approaches used to solve the above equations by finite differences, finite volumes and finite elements methods.

  2. Willow on Yellowstone's northern range: evidence for a trophic cascade?

    Science.gov (United States)

    Beyer, Hawthorne L; Merrill, Evelyn H; Varley, Nathan; Boyce, Mark S

    2007-09-01

    Reintroduction of wolves (Canis lupus) to Yellowstone National Park in 1995-1996 has been argued to promote a trophic cascade by altering elk (Cervus elaphus) density, habitat-selection patterns, and behavior that, in turn, could lead to changes within the plant communities used by elk. We sampled two species of willow (Salix boothii and S. geyeriana) on the northern winter range to determine whether (1) there was quantitative evidence of increased willow growth following wolf reintroduction, (2) browsing by elk affected willow growth, and (3) any increase in growth observed was greater than that expected by climatic and hydrological factors alone, thereby indicating a trophic cascade caused by wolves. Using stem sectioning techniques to quantify historical growth patterns we found an approximately twofold increase in stem growth-ring area following wolf reintroduction for both species of willow. This increase could not be explained by climate and hydrological factors alone; the presence of wolves on the landscape was a significant predictor of stem growth above and beyond these abiotic factors. Growth-ring area was positively correlated with the previous year's ring area and negatively correlated with the percentage of twigs browsed from the stem during the winter preceding growth, indicating that elk browse impeded stem growth. Our results are consistent with the hypothesis of a behaviorally mediated trophic cascade on Yellowstone's northern winter range following wolf reintroduction. We suggest that the community-altering effects of wolf restoration are an endorsement of ecological-process management in Yellowstone National Park.

  3. Volcanic calderas delineate biogeographic provinces among Yellowstone thermophiles.

    Science.gov (United States)

    Takacs-Vesbach, Cristina; Mitchell, Kendra; Jackson-Weaver, Olan; Reysenbach, Anna-Louise

    2008-07-01

    It has been suggested that the distribution of microorganisms should be cosmopolitan because of their enormous capacity for dispersal. However, recent studies have revealed that geographically isolated microbial populations do exist. Geographic distance as a barrier to dispersal is most often invoked to explain these distributions. Here we show that unique and diverse sequences of the bacterial genus Sulfurihydrogenibium exist in Yellowstone thermal springs, indicating that these sites are geographically isolated. Although there was no correlation with geographic distance or the associated geochemistry of the springs, there was a strong historical signal. We found that the Yellowstone calderas, remnants of prehistoric volcanic eruptions, delineate biogeographical provinces for the Sulfurihydrogenibium within Yellowstone (chi(2): 9.7, P = 0.002). The pattern of distribution that we have detected suggests that major geological events in the past 2 million years explain more of the variation in sequence diversity in this system than do contemporary factors such as habitat or geographic distance. These findings highlight the importance of historical legacies in determining contemporary microbial distributions and suggest that the same factors that determine the biogeography of macroorganisms are also evident among bacteria.

  4. Fracture Capabilities in Grizzly with the extended Finite Element Method (X-FEM)

    Energy Technology Data Exchange (ETDEWEB)

    Dolbow, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Ziyu [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spencer, Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jiang, Wen [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-01

    Efforts are underway to develop fracture mechanics capabilities in the Grizzly code to enable it to be used to perform deterministic fracture assessments of degraded reactor pressure vessels (RPVs). A capability was previously developed to calculate three-dimensional interaction- integrals to extract mixed-mode stress-intensity factors. This capability requires the use of a finite element mesh that conforms to the crack geometry. The eXtended Finite Element Method (X-FEM) provides a means to represent a crack geometry without explicitly fitting the finite element mesh to it. This is effected by enhancing the element kinematics to represent jump discontinuities at arbitrary locations inside of the element, as well as the incorporation of asymptotic near-tip fields to better capture crack singularities. In this work, use of only the discontinuous enrichment functions was examined to see how accurate stress intensity factors could still be calculated. This report documents the following work to enhance Grizzly’s engineering fracture capabilities by introducing arbitrary jump discontinuities for prescribed crack geometries; X-FEM Mesh Cutting in 3D: to enhance the kinematics of elements that are intersected by arbitrary crack geometries, a mesh cutting algorithm was implemented in Grizzly. The algorithm introduces new virtual nodes and creates partial elements, and then creates a new mesh connectivity; Interaction Integral Modifications: the existing code for evaluating the interaction integral in Grizzly was based on the assumption of a mesh that was fitted to the crack geometry. Modifications were made to allow for the possibility of a crack front that passes arbitrarily through the mesh; and Benchmarking for 3D Fracture: the new capabilities were benchmarked against mixed-mode three-dimensional fracture problems with known analytical solutions.

  5. Competition between apex predators? Brown bears decrease wolf kill rate on two continents.

    Science.gov (United States)

    Tallian, Aimee; Ordiz, Andrés; Metz, Matthew C; Milleret, Cyril; Wikenros, Camilla; Smith, Douglas W; Stahler, Daniel R; Kindberg, Jonas; MacNulty, Daniel R; Wabakken, Petter; Swenson, Jon E; Sand, Håkan

    2017-02-08

    Trophic interactions are a fundamental topic in ecology, but we know little about how competition between apex predators affects predation, the mechanism driving top-down forcing in ecosystems. We used long-term datasets from Scandinavia (Europe) and Yellowstone National Park (North America) to evaluate how grey wolf ( Canis lupus ) kill rate was affected by a sympatric apex predator, the brown bear ( Ursus arctos ). We used kill interval (i.e. the number of days between consecutive ungulate kills) as a proxy of kill rate. Although brown bears can monopolize wolf kills, we found no support in either study system for the common assumption that they cause wolves to kill more often. On the contrary, our results showed the opposite effect. In Scandinavia, wolf packs sympatric with brown bears killed less often than allopatric packs during both spring (after bear den emergence) and summer. Similarly, the presence of bears at wolf-killed ungulates was associated with wolves killing less often during summer in Yellowstone. The consistency in results between the two systems suggests that brown bear presence actually reduces wolf kill rate. Our results suggest that the influence of predation on lower trophic levels may depend on the composition of predator communities. © 2017 The Authors.

  6. Optimal wildlife management in the greater Yellowstone ecosystem: A spatiotemporal model of disease risk

    Science.gov (United States)

    South of Yellowstone National Park there are twenty-three sites where elk herds are provided supplementary feeding during the winter and spring months. Supplementary feeding of elk in the Greater Yellowstone Ecosystem (GYE) has been practiced since the early twentieth century, but the practice has b...

  7. 77 FR 74027 - Winter Use Plan, Final Environmental Impact Statement Amended Record of Decision, Yellowstone...

    Science.gov (United States)

    2012-12-12

    ...] Winter Use Plan, Final Environmental Impact Statement Amended Record of Decision, Yellowstone National... Availability of Amended Record of Decision for the Final Environmental Impact Statement for a Winter Use Plan... Record of Decision for the Winter Use Plan for Yellowstone National Park, located in Idaho, Montana, and...

  8. 77 FR 6581 - Winter Use Plan, Supplemental Environmental Impact Statement, Yellowstone National Park, Idaho...

    Science.gov (United States)

    2012-02-08

    ... DEPARTMENT OF THE INTERIOR National Park Service [2310-0070-422] Winter Use Plan, Supplemental... the Winter Use Plan, Yellowstone National Park. SUMMARY: Pursuant to the National Environmental Policy... Statement (SEIS) for a Winter Use Plan for Yellowstone National Park, located in Idaho, Montana and Wyoming...

  9. 76 FR 77249 - Winter Use Plan, Final Environmental Impact Statement Record of Decision, Yellowstone National...

    Science.gov (United States)

    2011-12-12

    ... DEPARTMENT OF THE INTERIOR National Park Service Winter Use Plan, Final Environmental Impact... Impact Statement for a Winter Use Plan, Yellowstone National Park. SUMMARY: Pursuant to Sec. 102(2)(C) of... Winter Use Plan for Yellowstone National Park, located in Idaho, Montana, and Wyoming. On December 5...

  10. Post-glacial inflation-deflation cycles, tilting, and faulting in the Yellowstone Caldera based on Yellowstone Lake shorelines

    Science.gov (United States)

    Pierce, Kenneth L.; Cannon, Kenneth P.; Meyer, Grant A.; Trebesch, Matthew J.; Watts, Raymond D.

    2002-01-01

    The Yellowstone caldera, like many other later Quaternary calderas of the world, exhibits dramatic unrest. Between 1923 and 1985, the center of the Yellowstone caldera rose nearly one meter along an axis between its two resurgent domes (Pelton and Smith, 1979, Dzurisin and Yamashita, 1987). From 1985 until 1995-6, it subsided at about two cm/yr (Dzurisin and others, 1990). More recent radar interferometry studies show renewed inflation of the northeastern resurgent dome between 1995 and 1996; this inflation migrated to the southwestern resurgent dome from 1996 to 1997 (Wicks and others, 1998). We extend this record back in time using dated geomorphic evidence of postglacial Yellowstone Lake shorelines around the northern shore, and Yellowstone River levels in the outlet area. We date these shorelines using carbon isotopic and archeological methods. Following Meyer and Locke (1986) and Locke and Meyer (1994), we identify the modern shoreline as S1 (1.9 ? 0.3 m above the lake gage datum), map paleoshoreline terraces S2 to S6, and infer that the prominent shorelines were cut during intracaldera uplift episodes that produced rising water levels. Doming along the caldera axis reduces the gradient of the Yellowstone River from Le Hardys Rapids to the Yellowstone Lake outlet and ultimately causes an increase in lake level. The 1923-1985 doming is part of a longer uplift episode that has reduced the Yellowstone River gradient to a ?pool? with a drop of only 0.25 m over most of this 5 km reach. We also present new evidence that doming has caused submergence of some Holocene lake and river levels. Shoreline S5 is about 14 m above datum and estimated to be ~12.6 ka, because it post-dates a large hydrothermal explosion deposit from the Mary Bay area (MB-II) that occurred ~13 ka. S4 formed about 8 m above datum ~10.7 ka as dated by archeology and 14C, and was accompanied by offset on the Fishing Bridge fault. About 9.7 ka, the Yellowstone River eroded the ?S-meander?, followed

  11. The evolution of Yellowstone's magmatic system over the past 630 kyr: Insights from the crystal record

    Science.gov (United States)

    Stelten, M. E.

    2017-12-01

    The Yellowstone Plateau volcanic field in northwestern Wyoming is one of the world's largest, active silicic volcanic centers, and has produced three caldera-forming "super eruptions" over the past 2.1 Myr. As a result, the petrologic evolution of Yellowstone's magmatic system has been the focus of numerous studies over the past 60 years. Early studies at Yellowstone focused on characterizing whole-rock chemical and isotopic variations observed in magmas erupted over Yellowstone's lifetime. While these have provided important insights into the source of Yellowstone magmas and the processes controlling their compositional evolution though time, whole-rock studies are limited in their ability to identify the mechanisms and timescales of rhyolite generation. In contrast, much of the recent work at Yellowstone has focused on applying micro-analytical techniques to characterize the age and composition of phenocrysts hosted in Yellowstone rhyolites. These studies have greatly advanced our understanding of the magmatic system at Yellowstone and have provided crucial new insights into the mechanisms and timescales of rhyolite generation. In particular, recent work has focused on applying micro-analytical techniques to study the age and origin of the [1] three caldera-forming eruptions that produced the Huckleberry Ridge, Mesa Falls, Lava Creek tuffs and [2] post-Lava Creek tuff intracaldera rhyolites that compose the Plateau Rhyolite. As a result, a wealth of crystal-chemical data now exists for rhyolites erupted throughout Yellowstone's 2.1 Myr history. These data provide a unique opportunity to create a detailed reconstruction of Yellowstone's magmatic system through time. In this contribution, I integrate available age, chemical, and isotopic data for phenocrysts hosted in Yellowstone rhyolites to construct a model for the evolution of Yellowstone's magmatic system from the caldera-forming eruption of the Lava Creek tuff at ca. 0.63 Ma to the present day. In particular

  12. Bearing structures

    International Nuclear Information System (INIS)

    Lee, A.S.; Preece, G.E.

    1988-01-01

    A hydrostatic bearing for the lower end of the vertical shaft of a sodium pump comprises a support shell encircling the shaft and a bush located between the shell and shaft. Liquid sodium is fed from the pump outlet to the bush/shaft and bush/shell interfaces to provide hydrostatic support. The bush outer surface and the shell inner surface are of complementary part-spherical shape and the bush floats relative to the shaft so that the bush can align itself with the shaft axis. Monitoring of the relative rotational speed of the bush with respect to the shaft (such rotation being induced by the viscous drag forces present) is also performed for the purposes of detecting abnormal operation of the bearing or partial seizure, at least one magnet is rotatable with the bush, and a magnetic sensor provides an output having a frequency related to the speed of the bush. (author)

  13. Journal Bearings

    Directory of Open Access Journals (Sweden)

    Renato Brancati

    1999-01-01

    determined after acquiring and analysing the orbits described by the journal axis for assigned unbalance values in different operating conditions. Analysis of the results shows some particular operating features that were not entirely predicted by the theoretical model and which may give rise to malfunctions in the rotor-tilting pad bearings system. The tests were carried out in the rotor dynamics laboratory of the Dipartimento di Ingegneria Meccanica per l'Energetica at the University of Naples.

  14. Camshaft bearing arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Aoi, K.; Ozawa, T.

    1986-06-10

    A bearing arrangement is described for the camshaft of an internal combustion engine or the like which camshaft is formed along its length in axial order with a first bearing surface, a first cam lobe, a second bearing surface, a second cam lobe, a third bearing surface, a third cam lobe and a fourth bearing surface, the improvement comprising first bearing means extending around substantially the full circumference of the first bearing surface and journaling the first bearing surface, second bearing means extending around substantially less than the circumference of the second bearing surface and journaling the second bearing surface, third bearing means extending around substantially less than the circumference of the third bearing surface and journaling the third bearing surface, and fourth bearing means extending around substantially the full circumference of the fourth bearing surface and journaling the first bearing surface.

  15. Monitoring and mitigating measures to reduce potential impacts of oil and gas exploration and development on bears in the Inuvik region

    Energy Technology Data Exchange (ETDEWEB)

    Branigan, M. [Government of the Northwest Territories, Inuvik, NT (Canada). Dept. of Environment and Natural Resources

    2007-07-01

    The Inuvik Region consists of the Northwest Territories portion of the Inuvialuit Settlement Region and the Gwich'in Settlement Area. The range of grizzly bears, polar bears and black bears extends to different parts of the region. The potential impact of development depends on the season of the development and the species of bear found in the footprint. As such, monitoring and mitigation measures should take this into consideration. This presentation focused on the potential impacts and current practices to monitor and mitigate the impacts in the region. Mitigation measures currently used include: communication with stakeholders; waste management guidelines; use of wildlife monitors to identify key habitat and den sites and to deter bears; minimum flight altitudes; and safety training. Suggestions for additional mitigation measures were also presented. figs.

  16. Gray wolves as climate change buffers in Yellowstone.

    Science.gov (United States)

    Wilmers, Christopher C; Getz, Wayne M

    2005-04-01

    Understanding the mechanisms by which climate and predation patterns by top predators co-vary to affect community structure accrues added importance as humans exert growing influence over both climate and regional predator assemblages. In Yellowstone National Park, winter conditions and reintroduced gray wolves (Canis lupus) together determine the availability of winter carrion on which numerous scavenger species depend for survival and reproduction. As climate changes in Yellowstone, therefore, scavenger species may experience a dramatic reshuffling of food resources. As such, we analyzed 55 y of weather data from Yellowstone in order to determine trends in winter conditions. We found that winters are getting shorter, as measured by the number of days with snow on the ground, due to decreased snowfall and increased number of days with temperatures above freezing. To investigate synergistic effects of human and climatic alterations of species interactions, we used an empirically derived model to show that in the absence of wolves, early snow thaw leads to a substantial reduction in late-winter carrion, causing potential food bottlenecks for scavengers. In addition, by narrowing the window of time over which carrion is available and thereby creating a resource pulse, climate change likely favors scavengers that can quickly track food sources over great distances. Wolves, however, largely mitigate late-winter reduction in carrion due to earlier snow thaws. By buffering the effects of climate change on carrion availability, wolves allow scavengers to adapt to a changing environment over a longer time scale more commensurate with natural processes. This study illustrates the importance of restoring and maintaining intact food chains in the face of large-scale environmental perturbations such as climate change.

  17. Gray Wolves as Climate Change Buffers in Yellowstone

    Directory of Open Access Journals (Sweden)

    Wilmers Christopher C

    2005-01-01

    Full Text Available Understanding the mechanisms by which climate and predation patterns by top predators co-vary to affect community structure accrues added importance as humans exert growing influence over both climate and regional predator assemblages. In Yellowstone National Park, winter conditions and reintroduced gray wolves (Canis lupus together determine the availability of winter carrion on which numerous scavenger species depend for survival and reproduction. As climate changes in Yellowstone, therefore, scavenger species may experience a dramatic reshuffling of food resources. As such, we analyzed 55 y of weather data from Yellowstone in order to determine trends in winter conditions. We found that winters are getting shorter, as measured by the number of days with snow on the ground, due to decreased snowfall and increased number of days with temperatures above freezing. To investigate synergistic effects of human and climatic alterations of species interactions, we used an empirically derived model to show that in the absence of wolves, early snow thaw leads to a substantial reduction in late-winter carrion, causing potential food bottlenecks for scavengers. In addition, by narrowing the window of time over which carrion is available and thereby creating a resource pulse, climate change likely favors scavengers that can quickly track food sources over great distances. Wolves, however, largely mitigate late-winter reduction in carrion due to earlier snow thaws. By buffering the effects of climate change on carrion availability, wolves allow scavengers to adapt to a changing environment over a longer time scale more commensurate with natural processes. This study illustrates the importance of restoring and maintaining intact food chains in the face of large-scale environmental perturbations such as climate change.

  18. Gray wolves as climate change buffers in Yellowstone.

    Directory of Open Access Journals (Sweden)

    Christopher C Wilmers

    2005-04-01

    Full Text Available Understanding the mechanisms by which climate and predation patterns by top predators co-vary to affect community structure accrues added importance as humans exert growing influence over both climate and regional predator assemblages. In Yellowstone National Park, winter conditions and reintroduced gray wolves (Canis lupus together determine the availability of winter carrion on which numerous scavenger species depend for survival and reproduction. As climate changes in Yellowstone, therefore, scavenger species may experience a dramatic reshuffling of food resources. As such, we analyzed 55 y of weather data from Yellowstone in order to determine trends in winter conditions. We found that winters are getting shorter, as measured by the number of days with snow on the ground, due to decreased snowfall and increased number of days with temperatures above freezing. To investigate synergistic effects of human and climatic alterations of species interactions, we used an empirically derived model to show that in the absence of wolves, early snow thaw leads to a substantial reduction in late-winter carrion, causing potential food bottlenecks for scavengers. In addition, by narrowing the window of time over which carrion is available and thereby creating a resource pulse, climate change likely favors scavengers that can quickly track food sources over great distances. Wolves, however, largely mitigate late-winter reduction in carrion due to earlier snow thaws. By buffering the effects of climate change on carrion availability, wolves allow scavengers to adapt to a changing environment over a longer time scale more commensurate with natural processes. This study illustrates the importance of restoring and maintaining intact food chains in the face of large-scale environmental perturbations such as climate change.

  19. The 2017 Maple Creek Seismic Swarm in Yellowstone National Park

    Science.gov (United States)

    Pang, G.; Hale, J. M.; Farrell, J.; Burlacu, R.; Koper, K. D.; Smith, R. B.

    2017-12-01

    The University of Utah Seismograph Stations (UUSS) performs near-real-time monitoring of seismicity in the region around Yellowstone National Park in partnership with the United States Geological Survey and the National Park Service. UUSS operates and maintains 29 seismic stations with network code WY (short-period, strong-motion, and broadband) and records data from five other seismic networks—IW, MB, PB, TA, and US—to enhance the location capabilities in the Yellowstone region. A seismic catalog is produced using a conventional STA/LTA detector and single-event location techniques (Hypoinverse). On June 12, 2017, a seismic swarm began in Yellowstone National Park about 5 km east of Hebgen Lake. The swarm is adjacent to the source region of the 1959 MW 7.3 Hebgen Lake earthquake, in an area corresponding to positive Coulumb stress change from that event. As of Aug. 1, 2017, the swarm consists of 1481 earthquakes with 1 earthquake above magnitude 4, 8 earthquakes in the magnitude 3 range, 115 earthquakes in the magnitude 2 range, 469 earthquakes in the magnitude 1 range, 856 earthquakes in the magnitude 0 range, 22 earthquakes with negative magnitudes, and 10 earthquakes with no magnitude. Earthquake depths are mostly between 3 and 10 km and earthquake depth increases toward the northwest. Moment tensors for the 2 largest events (3.6 MW and 4.4. MW) show strike-slip faulting with T axes oriented NE-SW, consistent with the regional stress field. We are currently using waveform cross-correlation methods to measure differential travel times that are being used with the GrowClust program to generate high-accuracy relative relocations. Those locations will be used to identify structures in the seismicity and make inferences about the tectonic and magmatic processes causing the swarm.

  20. The genealogy and genetic viability of reintroduced Yellowstone grey wolves.

    Science.gov (United States)

    Vonholdt, Bridgett M; Stahler, Daniel R; Smith, Douglas W; Earl, Dent A; Pollinger, John P; Wayne, Robert K

    2008-01-01

    The recovery of the grey wolf in Yellowstone National Park is an outstanding example of a successful reintroduction. A general question concerning reintroduction is the degree to which genetic variation has been preserved and the specific behavioural mechanisms that enhance the preservation of genetic diversity and reduce inbreeding. We have analysed 200 Yellowstone wolves, including all 31 founders, for variation in 26 microsatellite loci over the 10-year reintroduction period (1995-2004). The population maintained high levels of variation (1995 H(0) = 0.69; 2004 H(0) = 0.73) with low levels of inbreeding (1995 F(IS) = -0.063; 2004 F(IS) = -0.051) and throughout, the population expanded rapidly (N(1995) = 21; N(2004) = 169). Pedigree-based effective population size ratios did not vary appreciably over the duration of population expansion (1995 N(e)/N(g) = 0.29; 2000 N(e)/N(g) = 0.26; 2004 N(e)/N(g) = 0.33). We estimated kinship and found only two of 30 natural breeding pairs showed evidence of being related (average r = -0.026, SE = 0.03). We reconstructed the genealogy of 200 wolves based on genetic and field data and discovered that they avoid inbreeding through a wide variety of behavioural mechanisms including absolute avoidance of breeding with related pack members, male-biased dispersal to packs where they breed with nonrelatives, and female-biased subordinate breeding. We documented a greater diversity of such population assembly patterns in Yellowstone than previously observed in any other natural wolf population. Inbreeding avoidance is nearly absolute despite the high probability of within-pack inbreeding opportunities and extensive interpack kinship ties between adjacent packs. Simulations showed that the Yellowstone population has levels of genetic variation similar to that of a population managed for high variation and low inbreeding, and greater than that expected for random breeding within packs or across the entire breeding pool. Although short

  1. Serological survey for diseases in free-ranging coyotes (Canis latrans) in Yellowstone National Park, Wyoming.

    Science.gov (United States)

    Gese, E M; Schultz, R D; Johnson, M R; Williams, E S; Crabtree, R L; Ruff, R L

    1997-01-01

    From October 1989 to June 1993, we captured and sampled 110 coyotes (Canis latrans) for various diseases in Yellowstone National Park, Wyoming (USA). Prevalence of antibodies against canine parvovirus (CPV) was 100% for adults (> 24 months old), 100% for yearlings (12 to 24 months old), and 100% for old pups (4 to 12 months old); 0% of the young pups (Yellowstone National Park, with CPV influencing coyote pup survival during the first 3 months of life; eight of 21 transmitted pups died of CPV infection in 1992. The potential impact of these canine pathogens on wolves (C. lupus) reintroduced to Yellowstone National Park remains to be documented.

  2. Months between rejuvenation and volcanic eruption at Yellowstone caldera, Wyoming

    Science.gov (United States)

    Till, Christy B.; Vazquez, Jorge A.; Boyce, Jeremy W

    2015-01-01

    Rejuvenation of previously intruded silicic magma is an important process leading to effusive rhyolite, which is the most common product of volcanism at calderas with protracted histories of eruption and unrest such as Yellowstone, Long Valley, and Valles, USA. Although orders of magnitude smaller in volume than rare caldera-forming super-eruptions, these relatively frequent effusions of rhyolite are comparable to the largest eruptions of the 20th century and pose a considerable volcanic hazard. However, the physical pathway from rejuvenation to eruption of silicic magma is unclear particularly because the time between reheating of a subvolcanic intrusion and eruption is poorly quantified. This study uses geospeedometry of trace element profiles with nanometer resolution in sanidine crystals to reveal that Yellowstone’s most recent volcanic cycle began when remobilization of a near- or sub-solidus silicic magma occurred less than 10 months prior to eruption, following a 220,000 year period of volcanic repose. Our results reveal a geologically rapid timescale for rejuvenation and effusion of ~3 km3 of high-silica rhyolite lava even after protracted cooling of the subvolcanic system, which is consistent with recent physical modeling that predict a timescale of several years or less. Future renewal of rhyolitic volcanism at Yellowstone is likely to require an energetic intrusion of mafic or silicic magma into the shallow subvolcanic reservoir and could rapidly generate an eruptible rhyolite on timescales similar to those documented here.

  3. Siliceous Shrubs in Yellowstone's Hot Springs: Implications for Exobiological Investigations

    Science.gov (United States)

    Guidry, S. A.; Chafetz, H. S.

    2003-01-01

    Potential relict hot springs have been identified on Mars and, using the Earth as an analog, Martian hot springs are postulated to be an optimal locality for recognizing preserved evidence of extraterrestrial life. Distinctive organic and inorganic biomarkers are necessary to recognize preserved evidence of life in terrestrial and extraterrestrial hot spring accumulations. Hot springs in Yellowstone National Park, Wyoming, U.S.A., contain a wealth of information about primitive microbial life and associated biosignatures that may be useful for future exobiological investigations. Numerous siliceous hot springs in Yellowstone contain abundant, centimeter-scale, spinose precipitates of opaline silica (opal-A). Although areally extensive in siliceous hot spring discharge channel facies, these spinose forms have largely escaped attention. These precipitates referred to as shrubs, consist of porous aggregates of spinose opaline silica that superficially resemble miniature woody plants, i.e., the term shrubs. Shrubs in carbonate precipitating systems have received considerable attention, and represent naturally occurring biotically induced precipitates. As such, shrubs have great potential as hot spring environmental indicators and, more importantly, proxies for pre-existing microbial life.

  4. Get Fit with the Grizzlies: a community-school-home initiative to fight childhood obesity.

    Science.gov (United States)

    Irwin, Carol C; Irwin, Richard L; Miller, Maureen E; Somes, Grant W; Richey, Phyllis A

    2010-07-01

    Professional sport organizations in the United States have notable celebrity status, and several teams have used this "star power" to collaborate with local school districts toward the goal of affecting children's health. Program effectiveness is unknown due to the absence of comprehensive evaluations for these initiatives. The Memphis Grizzlies, the city's National Basketball Association franchise, launched "Get Fit with the Grizzlies," a 6-week, curricular addition focusing on nutrition and physical activity for the fourth and fifth grades in Memphis City Schools (MCS). The health-infused mini-unit was delivered by physical education teachers during their classes. The purpose of this study was to evaluate the "Get Fit" program effectiveness. Survey research was employed which measured health knowledge acquisition and health behavior change using a matched pre/posttest design in randomly chosen schools (n = 11) from all elementary schools in the MCS system (N = 110). The total number of matched pre/posttests (n = 888) equaled approximately 5% of the total fourth-/fifth-grade population. McNemar's test for significance (p < .05) was applied. Odds ratios were calculated for each question. Analyses confirmed that there was significant health knowledge acquisition (7 of 8 questions) with odds ratios confirming moderate to strong associations. Seven out of 10 health behavior change questions significantly improved after intervention, whereas odds ratios indicated a low level of association after intervention. This community-school-home initiative using a professional team's celebrity platform within a certain locale is largely overlooked by school districts and should be considered as a positive strategy to confront childhood obesity.

  5. Magnetic susceptibility measurements in Yellowstone National Park, USA; Beikoku Yellowstone kokuritsu koen ni okeru genchi jikaritsu sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Okuma, S [Geological Survey of Japan, Tsukuba (Japan)

    1997-05-27

    For the purpose of interpreting data of the aeromagnetic anomalies in Yellowstone National Park in the U.S.A., in-situ magnetization intensity measurements have been carried out in 1994 and 1995 on geological outcrops of rocks in that area. Comparisons and discussions were given on the measurement results, and existing rock magnetic data and aeromagnetic anomaly data available for the area. Outside the Yellowstone caldera, part of granitic gneisses among the Precambrian granitic gneisses and crystalline schists distributed to the north has an abnormally high magnetization intensity of 1 {times} 10 {sup -2} SI. This could be a powerful anomaly source for the high magnetic anomaly in this area. Paleogene volcanic rocks distributed widely in the eastern part of the park also have magnetization intensity as high as 1 {times} 10 {sup -2} SI or higher, which are also thought a powerful anomaly source in this area. Part of Pleistocene basalts which are exposed partially in the western part of the park has also very high magnetization intensity at 1 {times} 10 {sup -2} SI or higher. This suggests correlation with the magnetic anomaly in the east-west direction distributed in this area. Quaternary rhyolites are more magnetic than Quaternary welded tuffs, which should give greater effects to the magnetic anomaly. 10 refs., 5 figs.

  6. Mountain big sagebrush age distribution and relationships on the northern Yellowstone Winter Range

    Science.gov (United States)

    Carl L. Wambolt; Trista L. Hoffman

    2001-01-01

    This study was conducted within the Gardiner Basin, an especially critical wintering area for native ungulates utilizing the Northern Yellowstone Winter Range. Mountain big sagebrush plants on 33 sites were classified as large (≥22 cm canopy cover), small (

  7. Exterior sound level measurements of over-snow vehicles at Yellowstone National Park.

    Science.gov (United States)

    2008-09-30

    Sounds associated with oversnow vehicles, such as snowmobiles and snowcoaches, are an : important management concern at Yellowstone and Grand Teton National Parks. The John A. : Volpe National Transportation Systems Centers Environmental Measureme...

  8. Anatomy of Old Faithful from subsurface seismic imaging of the Yellowstone Upper Geyser Basin

    KAUST Repository

    Wu, Sin-Mei; Ward, Kevin M.; Farrell, Jamie; Lin, Fan-Chi; Karplus, Marianne; Smith, Robert B.

    2017-01-01

    The Upper Geyser Basin in Yellowstone National Park contains one of the highest concentrations of hydrothermal features on Earth including the iconic Old Faithful geyser. Although this system has been the focus of many geological, geochemical

  9. 76 FR 27087 - Draft Environmental Impact Statement for the Winter Use Plan, Yellowstone National Park

    Science.gov (United States)

    2011-05-10

    ... one of several methods. Internet: We encourage you to comment via the Internet at http://parkplanning... regarding Yellowstone in the winter, including educational materials and a detailed history of winter use in...

  10. 75 FR 53979 - Bison Brucellosis Remote Vaccination, Draft Environmental Impact Statement, Yellowstone National...

    Science.gov (United States)

    2010-09-02

    ... DEPARTMENT OF THE INTERIOR National Park Service Bison Brucellosis Remote Vaccination, Draft Environmental Impact Statement, Yellowstone National Park, Wyoming ACTION: Reopening of public comment period... Brucellosis Remote Vaccination Draft Environmental Impact Statement. The original comment period was from 28...

  11. A field trip guide to the petrology of Quaternary volcanism on the Yellowstone Plateau

    Science.gov (United States)

    Vazquez, Jorge A.; Stelten, Mark; Bindeman, Ilya N.; Cooper, Kari

    2017-12-19

    The Yellowstone Plateau is one of the largest manifestations of silicic volcanism on Earth, and marks the youngest focus of magmatism associated with the Yellowstone Hot Spot. The earliest products of Yellowstone Hot Spot volcanism are from ~17 million years ago, but may be as old as ~32 Ma, and include contemporaneous eruption of voluminous mafic and silicic magmas, which are mostly located in the region of northwestern Nevada and southeastern Oregon. Since 17 Ma, the main locus of Yellowstone Hot Spot volcanism has migrated northeastward producing numerous silicic caldera complexes that generally remain active for ~2–4 million years, with the present-day focus being the Yellowstone Plateau. Northeastward migration of volcanism associated with the Yellowstone Hot Spot resulted in the formation of the Snake River Plain, a low relief physiographic feature extending ~750 kilometers from northern Nevada to eastern Idaho. Most of the silicic volcanic centers along the Snake River Plain have been inundated by younger basalt volcanism, but many of their ignimbrites and lava flows are exposed in the extended regions at the margins of the Snake River Plain. 

  12. Fungi from geothermal soils in Yellowstone National Park

    Science.gov (United States)

    Redman, R.S.; Litvintseva, A.; Sheehan, K.B.; Henson, J.M.; Rodriguez, R.J.

    1999-01-01

    Geothermal soils near Amphitheater Springs in Yellowstone National Park were characterized by high temperatures (up to 70??C), high heavy metal content, low pH values (down to pH 2.7), sparse vegetation, and limited organic carbon. From these soils we cultured 16 fungal species. Two of these species were thermophilic, and six were thermotolerant. We cultured only three of these species from nearby cool (0 to 22??C) soils. Transect studies revealed that higher numbers of CFUs occurred in and below the root zone of the perennial plant Dichanthelium lanuginosum (hot springs panic grass). The dynamics of fungal CFUs in geothermal soil and nearby nongeothermal soil were investigated for 12 months by examining soil cores and in situ mesocosms. For all of the fungal species studied, the temperature of the soil from which the organisms were cultured corresponded with their optimum axenic growth temperature.

  13. Sexual predators, energy development, and conservation in greater Yellowstone.

    Science.gov (United States)

    Berger, Joel; Beckmann, Jon P

    2010-06-01

    In the United States, as elsewhere, a growing debate pits national energy policy and homeland security against biological conservation. In rural communities the extraction of fossil fuels is often encouraged because of the employment opportunities it offers, although the concomitant itinerant workforce is often associated with increased wildlife poaching. We explored possible positive and negative factors associated with energy extraction in the Greater Yellowstone Ecosystem (GYE), an area known for its national parks, intact biological diversity, and some of the New World's longest terrestrial migrations. Specifically, we asked whether counties with different economies-recreation (ski), agrarian (ranching or farming), and energy extractive (petroleum)-differed in healthcare (gauged by the abundance of hospital beds) and in the frequency of sexual predators. The absolute and relative frequency of registered sex offenders grew approximately two to three times faster in areas reliant on energy extraction. Healthcare among counties did not differ. The strong conflation of community dishevel, as reflected by in-migrant sexual predators, and ecological decay in Greater Yellowstone is consistent with patterns seen in similar systems from Ecuador to northern Canada, where social and environmental disarray exist around energy boomtowns. In our case, that groups (albeit with different aims) mobilized campaigns to help maintain the quality of rural livelihoods by protecting open space is a positive sign that conservation can matter, especially in the face of rampant and poorly executed energy extraction projects. Our findings further suggest that the public and industry need stronger regulatory action to instill greater vigilance when and where social factors and land conversion impact biological systems.

  14. Migration of northern yellowstone elk: Implications of spatial structuring

    Science.gov (United States)

    White, P.J.; Proffitt, K.M.; Mech, L.D.; Evans, S.B.; Cunningham, J.A.; Hamlin, K.L.

    2010-01-01

    Migration can enhance survival and recruitment of mammals by increasing access to higher-quality forage or reducing predation risk, or both. We used telemetry locations collected from 140 adult female elk during 20002003 and 20072008 to identify factors influencing the migration of northern Yellowstone elk. Elk wintered in 2 semidistinct herd segments and migrated 10140 km to at least 12 summer areas in Yellowstone National Park (YNP) and nearby areas of Montana. Spring migrations were delayed after winters with increased snow pack, with earlier migration in years with earlier vegetation green-up. Elk wintering at lower elevations outside YNP migrated an average of 13 days earlier than elk at higher elevations. The timing of autumn migrations varied annually, but elk left their summer ranges at about the same time regardless of elevation, wolf numbers, or distance to their wintering areas. Elk monitored for multiple years typically returned to the same summer (96 fidelity, n 52) and winter (61 fidelity, n 41) ranges. Elk that wintered at lower elevations in or near the northwestern portion of the park tended to summer in the western part of YNP (56), and elk that wintered at higher elevations spent summer primarily in the eastern and northern parts of the park (82). Elk did not grossly modify their migration timing, routes, or use areas after wolf restoration. Elk mortality was low during summer and migration (8 of 225 elk-summers). However, spatial segregation and differential mortality and recruitment between herd segments on the northern winter range apparently contributed to a higher proportion of the elk population wintering outside the northwestern portion of YNP and summering in the western portion of the park. This change could shift wolf spatial dynamics more outside YNP and increase the risk of transmission of brucellosis from elk to cattle north of the park. ?? 2010 American Society of Mammalogists.

  15. Energy development and water options in the Yellowstone River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, R.; MacIntyre, D.D.; Torpy, M.F.

    1980-08-01

    Using a mixed-integer programming model, the impacts of institutional constraints on the marginal capacity for energy development in the Yellowstone River Basin and consequent hydrologic changes were examined. Under average annual flow conditions, energy outputs in the Yellowstone Basin can increase roughly nine times by 1985 and 12 to 18 times by 2000. In contrast, water availability is limiting energy development in the Tongue and Powder River Basins in Wyoming. Variability in hydrologic regime causes model solutions to change drastically. If flows decrease to 80 and 60% of average annual levels, the energy production is decreased by 17 and 95%, respectively. If development strategies in the basin are followed on the basis of 80% average annual flows, the Buffalo Bill enlargement (271,300 acre-ft), Tongue River Modification (58,000 acre-ft), and the two reservoirs at Sweetgrass Creek (each 27,000 acre-ft) will be necessary, in addition to several small storage facilities, to best meet the instream flow needs in Montana and to deliver the waters apportioned by compact between Wyoming and Montana. Furthermore, the results indicate that relaxing the instream flow requirements from recommended levels by 10% could increase regional energy output by 19% in 1985 and 35% in 2000. This model illustrates that modifications in institutional restrictions to achieve greater water mobility between users in a given state, as well as flexible practices for transferring water between states, can assist economic growth. Thus, the probability for restricted energy development at this juncture appears to be affected to a greater degree by institutional constraints than by water availability constraints.

  16. Comparative analysis of fecal microbiota and intestinal microbial metabolic activity in captive polar bears.

    Science.gov (United States)

    Schwab, Clarissa; Gänzle, Michael

    2011-03-01

    The composition of the intestinal microbiota depends on gut physiology and diet. Ursidae possess a simple gastrointestinal system composed of a stomach, small intestine, and indistinct hindgut. This study determined the composition and stability of fecal microbiota of 3 captive polar bears by group-specific quantitative PCR and PCR-DGGE (denaturing gradient gel electrophoresis) using the 16S rRNA gene as target. Intestinal metabolic activity was determined by analysis of short-chain fatty acids in feces. For comparison, other Carnivora and mammals were included in this study. Total bacterial abundance was approximately log 8.5 DNA gene copies·(g feces)-1 in all 3 polar bears. Fecal polar bear microbiota was dominated by the facultative anaerobes Enterobacteriaceae and enterococci, and the Clostridium cluster I. The detection of the Clostridium perfringens α-toxin gene verified the presence of C. perfringens. Composition of the fecal bacterial population was stable on a genus level; according to results obtained by PCR-DGGE, dominant bacterial species fluctuated. The total short-chain fatty acid content of Carnivora and other mammals analysed was comparable; lactate was detected in feces of all carnivora but present only in trace amounts in other mammals. In comparison, the fecal microbiota and metabolic activity of captive polar bears mostly resembled the closely related grizzly and black bears.

  17. Passive magnetic bearing configurations

    Science.gov (United States)

    Post, Richard F [Walnut Creek, CA

    2011-01-25

    A journal bearing provides vertical and radial stability to a rotor of a passive magnetic bearing system when the rotor is not rotating and when it is rotating. In the passive magnetic bearing system, the rotor has a vertical axis of rotation. Without the journal bearing, the rotor is vertically and radially unstable when stationary, and is vertically stable and radially unstable when rotating.

  18. Effects of potential geothermal development in the Corwin Springs Known Geothermal Resources Area, Montana, on the thermal features of Yellowstone National Park. Water Resources Investigation

    International Nuclear Information System (INIS)

    Sorey, M.L.

    1991-01-01

    A two-year study by the U.S. Geological Survey, in collaboration with the National Park Service, Argonne National Laboratory, and Los Alamos National Laboratory was initiated in 1988 to determine the effects of potential geothermal development in the Corwin Springs Known Geothermal Resources Area (KGRA), Montana, on the thermal features of Yellowstone National Park. The study addressed three principal issues: (1) the sources of thermal water in the hot springs at Mammoth, La Duke, and Bear Creek; (2) the degree of subsurface connection between these areas; and (3) the effects of geothermal development in the Corwin Springs KGRA on the Park's thermal features. The authors investigations included, but were not limited to, geologic mapping, electrical geophysical surveys, chemical sampling and analyses of waters and rocks, determinations of the rates of discharge of various thermal springs, and hydrologic tracer tests

  19. Understanding the Yellowstone magmatic system using 3D geodynamic inverse models

    Science.gov (United States)

    Kaus, B. J. P.; Reuber, G. S.; Popov, A.; Baumann, T.

    2017-12-01

    The Yellowstone magmatic system is one of the largest magmatic systems on Earth. Recent seismic tomography suggest that two distinct magma chambers exist: a shallow, presumably felsic chamber and a deeper much larger, partially molten, chamber above the Moho. Why melt stalls at different depth levels above the Yellowstone plume, whereas dikes cross-cut the whole lithosphere in the nearby Snake River Plane is unclear. Partly this is caused by our incomplete understanding of lithospheric scale melt ascent processes from the upper mantle to the shallow crust, which requires better constraints on the mechanics and material properties of the lithosphere.Here, we employ lithospheric-scale 2D and 3D geodynamic models adapted to Yellowstone to better understand magmatic processes in active arcs. The models have a number of (uncertain) input parameters such as the temperature and viscosity structure of the lithosphere, geometry and melt fraction of the magmatic system, while the melt content and rock densities are obtained by consistent thermodynamic modelling of whole rock data of the Yellowstone stratigraphy. As all of these parameters affect the dynamics of the lithosphere, we use the simulations to derive testable model predictions such as gravity anomalies, surface deformation rates and lithospheric stresses and compare them with observations. We incorporated it within an inversion method and perform 3D geodynamic inverse models of the Yellowstone magmatic system. An adjoint based method is used to derive the key model parameters and the factors that affect the stress field around the Yellowstone plume, locations of enhanced diking and melt accumulations. Results suggest that the plume and the magma chambers are connected with each other and that magma chamber overpressure is required to explain the surface displacement in phases of high activity above the Yellowstone magmatic system.

  20. Prodigious degassing of a billion years of accumulated radiogenic helium at Yellowstone

    Science.gov (United States)

    Lowenstern, Jacob B.; Evans, William C.; Bergfeld, D.; Hunt, Andrew G.

    2014-01-01

    Helium is used as a critical tracer throughout the Earth sciences, where its relatively simple isotopic systematics is used to trace degassing from the mantle, to date groundwater and to time the rise of continents1. The hydrothermal system at Yellowstone National Park is famous for its high helium-3/helium-4 isotope ratio, commonly cited as evidence for a deep mantle source for the Yellowstone hotspot2. However, much of the helium emitted from this region is actually radiogenic helium-4 produced within the crust by α-decay of uranium and thorium. Here we show, by combining gas emission rates with chemistry and isotopic analyses, that crustal helium-4 emission rates from Yellowstone exceed (by orders of magnitude) any conceivable rate of generation within the crust. It seems that helium has accumulated for (at least) many hundreds of millions of years in Archaean (more than 2.5 billion years old) cratonic rocks beneath Yellowstone, only to be liberated over the past two million years by intense crustal metamorphism induced by the Yellowstone hotspot. Our results demonstrate the extremes in variability of crustal helium efflux on geologic timescales and imply crustal-scale open-system behaviour of helium in tectonically and magmatically active regions.

  1. On the origin of brucellosis in bison of Yellowstone National Park: a review

    Science.gov (United States)

    Meagher, Mary; Meyer, Margaret E.

    1994-01-01

    Brucellosis caused by Brucella abortus occurs in the free-ranging bison (Bison bison) of Yellowstone and Wood Buffalo National Parks and in elk (Cervus elaphus) of the Greater Yellowstone Area. As a result of nationwide bovine brucellosis eradication programs, states and provinces proximate to the national parks are considered free of bovine brucellosis. Thus, increased attention has been focused on the wildlife within these areas as potential reservoirs for transmission to cattle. Because the national parks are mandated as natural areas, the question has been raised as to whether Brucella abortus is endogenous or exogenous to bison, particularly for Yellowstone National Park. We synthesized diverse lines of inquiry, including the evolutionary history of both bison and Brucella, wild animals as Brucella hosts, biochemical and genetic information, behavioral characteristics of host and organism, and area history to develop an evaluation of the question for the National Park Service. All lines of inquiry indicated that the organism was introduced to North America with cattle, and that the introduction into the Yellowstone bison probably was directly from cattle shortly before 1917. Fistulous withers of horses was a less likely possibility. Elk on winter feedgrounds south of Yellowstone National Park apparently acquired the disease directly from cattle. Bison presently using Grand Teton National Park probably acquired brucellosis from feedground elk.

  2. Wolf-bison interactions in Yellowstone National Park

    Science.gov (United States)

    Smith, Douglas W.; Mech, L. David; Meagher, Mary; Clark, Wendy E.; Jaffe, Rosemary; Phillips, Michael K.; Mack, John A.

    2000-01-01

    We studied interactions of reintroduced wolves (Canis lupus) with bison (Bison bison) in Yellowstone National Park. Only 2 of 41 wolves in this study had been exposed to bison before their translocation. Wolves were more successful killing elk (Cervus elaphus) than bison, and elk were more abundant than bison, so elk were the primary prey of wolves. Except for a lone emaciated bison calf killed by 8 1-year-old wolves 21 days after their release, the 1st documented kill occurred 25 months after wolves were released. Fourteen bison kills were documented from April 1995 through March 1999. All kills were made in late winter when bison were vulnerable because of poor condition or of bison that were injured or young. Wolves learned to kill bison and killed more bison where elk were absent or scarce. We predict that wolves that have learned to kill bison will kill them more regularly, at least in spring. The results of this study indicate how adaptable wolves are at killing prey species new to them.

  3. Brucellosis in Yellowstone National Park bison: Quantitative serology and infection

    Science.gov (United States)

    Roffe, T.J.; Rhyan, Jack C.; Aune, K.; Philo, L.M.; Ewalt, D.R.; Gidlewski, T.; Hennager, S.G.

    1999-01-01

    We collected complete sets of tissues, fluids, and swabs (approx 30) from 37 Yellowstone National Park (YNP) female bison (Bison bison) killed as a result of management actions by the Montana Department of Livestock and YNP personnel. Our goal was to establish the relation between blood tests demonstrating an animal has antibody to Brucella and the potential of that animal to be infected during the second trimester of pregnancy, the time when most management actions are taken. Twenty-eight of the 37 bison were seropositive adults (27) or a seropositive calf (1). We cultured samples using macerated whole tissues plated onto 4 Brucella-selective media and incubated with added CO2 for 1 week. Specimens from 2 adult seropositive females were contaminated, thus eliminating them from our data. Twelve of the remaining 26 seropositive adult and calf female bison (46%) were culture positive for Brucella abortus from 1 or more tissues. Culture positive adult females had high serologic titers. All 11 adults measured 3+ at 1:40 for 10 of 11 (91%) animals. All culture positive female adults had either a PCFIA ???0.080 or a CF reaction ???4+ at 1:80. However 5 (36%) bison with high titers were culture negative for B. abortus. Our findings on the relation between Brucella serology and culture are similar to those reported from studies of chronically infected cattle herds.

  4. Teddy Bear Stories

    DEFF Research Database (Denmark)

    van Leeuwen, Theo; Caldas-Coulthardt, Carmen

    2014-01-01

    This paper presents a semiotic analysis of a key cultural artefact, the teddy bear. After introducing the iconography of the teddy bear, it analyses different kinds of stories to show how teddy bears are endowed with meaning in everyday life: stories from children's books, reminiscenses by adults...... bears have traditionally centred on interpersonal relations within the nuclear family, but have recently been institutionalized and commercialized....

  5. Contributions of vital rates to growth of a protected population of American black bears

    Science.gov (United States)

    Mitchell, M.S.; Pacifici, L.B.; Grand, J.B.; Powell, R.A.

    2009-01-01

    Analyses of large, long-lived animals suggest that adult survival generally has the potential to contribute more than reproduction to population growth rate (??), but because survival varies little, high variability in reproduction can have a greater influence. This pattern has been documented for several species of large mammals, but few studies have evaluated such contributions of vital rates to ?? for American black bears (Ursus americanus). We used variance-based perturbation analyses (life table response experiments, LTRE) and analytical sensitivity and elasticity analyses to examine the actual and potential contributions of variation of vital rates to variation in growth rate (??) of a population of black bears inhabiting the Pisgah Bear Sanctuary in the southern Appalachian Mountains of North Carolina, using a 22-year dataset. We found that recruitment varied more than other vital rates; LTRE analyses conducted over several time intervals thus indicated that recruitment generally contributed at least as much as juvenile and adult survival to observed variation in ??, even though the latter 2 vital rates had the greater potential to affect ??. Our findings are consistent with predictions from studies on polar bears (U. maritimus) and grizzly bears (U. arctos), but contrast with the few existing studies on black bears in ways that suggest levels of protection from human-caused mortality might explain whether adult survival or recruitment contribute most to variation in ?? for this species. We hypothesize that ?? is most strongly influenced by recruitment in protected populations where adult survival is relatively high and constant, whereas adult survival will most influence ?? for unprotected populations. ?? 2009 International Association for Bear Research and Management.

  6. Eco-Heroes out of Place and Relations: Decolonizing the Narratives of "Into the Wild" and "Grizzly Man" through Land Education

    Science.gov (United States)

    Korteweg, Lisa; Oakley, Jan

    2014-01-01

    Eco-heroic quests for environmental communion continue to be represented, mediated, and glorified through film and media narratives. This paper examines two eco-heroic quests in the Alaskan "wilderness" that have been portrayed in two Hollywood motion pictures: the movies "Grizzly Man" and "Into the Wild". Both films…

  7. Experimental Investigations of Boron, Lithium, and Halogens During High-Temperature Water-Rock Interaction: Insights into the Yellowstone Hydrothermal System

    Science.gov (United States)

    Cullen, J. T.; Hurwitz, S.; Thordsen, J. J.; Barnes, J.

    2017-12-01

    B, Li, and halogens (Cl, F, Br) are used extensively in studies of thermal waters to infer fluid equilibrium conditions with the host reservoir lithology, and quantify the possible fraction of a magmatic component in thermal waters. Apart from fluorine, the limited number of minerals that incorporate these elements support the notion that they preferentially partition into an aqueous fluid during high temperature water-rock interaction. Although limited experimental work is largely consistent with these observations, a rigorous experimental investigation is required to quantify the mobility of these elements under conditions emulating a silicic hydrothermal system. Here we present the results from water-rhyolite interaction batch experiments conducted over a range of temperatures between 150 °C and 350 °C and 250 bar. Powdered obsidian from Yellowstone was reacted with MiliQ water and sampled intermittently throughout the duration of the 90 day experiment. The experimental data show that at temperatures ≤ 200 °C, B, Cl, Br, and Li are not readily leached from the rhyolite, whereas aqueous F- concentration increases by a factor of 3.5 when the temperature was increased from 150 °C to 200 °C. Between 200 °C and 250 °C, B concentration increased by more than an order of magnitude and Cl- concentration increased by a factor of 5. F- concentration increased by a factor of 3. Between 250 °C and 300 °C the opposite trend was observed, in which F- concentration decreased by 60%, Br- concentration increased by a factor of 5, and Cl- and B concentrations increased by more than an order of magnitude. The progressive decrease of aqueous F- at T ≥ 300 °C is likely controlled by precipitation into a fluorine bearing secondary mineral(s). Our experimental results demonstrate that leaching of B, Li, Cl, F, and Br from rhyolite is highly temperature-dependent between 150 °C and 350 °C. These results can provide context to infer the sources of solutes discharged at

  8. Heat flow in vapor dominated areas of the Yellowstone Plateau volcanic field: implications for the thermal budget of the Yellowstone Caldera

    Science.gov (United States)

    Hurwitz, Shaul; Harris, Robert; Werner, Cynthia Anne; Murphy, Fred

    2012-01-01

    Characterizing the vigor of magmatic activity in Yellowstone requires knowledge of the mechanisms and rates of heat transport between magma and the ground surface. We present results from a heat flow study in two vapor dominated, acid-sulfate thermal areas in the Yellowstone Caldera, the 0.11 km2 Obsidian Pool Thermal Area (OPTA) and the 0.25 km2 Solfatara Plateau Thermal Area (SPTA). Conductive heat flux through a low permeability layer capping large vapor reservoirs is calculated from soil temperature measurements at >600 locations and from laboratory measurements of soil properties. The conductive heat output is 3.6 ± 0.4 MW and 7.5 ± 0.4 MW from the OPTA and the SPTA, respectively. The advective heat output from soils is 1.3 ± 0.3 MW and 1.2 ± 0.3 MW from the OPTA and the SPTA, respectively and the heat output from thermal pools in the OPTA is 6.8 ± 1.4 MW. These estimates result in a total heat output of 11.8 ± 1.4 MW and 8.8 ± 0.4 MW from OPTA and SPTA, respectively. Focused zones of high heat flux in both thermal areas are roughly aligned with regional faults suggesting that faults in both areas serve as conduits for the rising acid vapor. Extrapolation of the average heat flux from the OPTA (103 ± 2 W·m−2) and SPTA (35 ± 3 W·m−2) to the ~35 km2 of vapor dominated areas in Yellowstone yields 3.6 and 1.2 GW, respectively, which is less than the total heat output transported by steam from the Yellowstone Caldera as estimated by the chloride inventory method (4.0 to 8.0 GW).

  9. Pathology of brucellosis in bison from Yellowstone National Park

    Science.gov (United States)

    Rhyan, Jack C.; Gidlewski, T.; Roffe, T.J.; Aune, K.; Philo, L.M.; Ewalt, D.R.

    2001-01-01

    Between February 1995 and June 1999, specimens from seven aborted bison (Bison bison) fetuses or stillborn calves and their placentas, two additional placentas, three dead neonates, one 2-wk-old calf, and 35 juvenile and adult female bison from Yellowstone National Park (USA) were submitted for bacteriologic and histopathologic examination. One adult animal with a retained placenta had recently aborted. Serum samples from the 35 juvenile and adult bison were tested for Brucella spp. antibodies. Twenty-six bison, including the cow with the retained placenta, were seropositive, one was suspect, and eight were seronegative. Brucella abortus biovar 1 was isolated from three aborted fetuses and associated placentas, an additional placenta, the 2-wk-old calf, and 11 of the seropositive female bison including the animal that had recently aborted. Brucella abortus biovar 2 was isolated from one additional seropositive adult female bison. Brucella abortus was recovered from numerous tissue sites from the aborted fetuses, placentas and 2-wk-old calf. In the juvenile and adult bison, the organism was more frequently isolated from supramammary (83%), retropharyngeal (67%), and iliac (58%) lymph nodes than from other tissues cultured. Cultures from the seronegative and suspect bison were negative for B. abortus. Lesions in the B. abortus-infected, aborted placentas and fetuses consisted of necropurulent placentitis and mild bronchointerstitial pneumonia. The infected 2-wk-old calf had bronchointerstitial pneumonia, focal splenic infarction, and purulent nephritis. The recently-aborting bison cow had purulent endometritis and necropurulent placentitis. Immunohistochemical staining of tissues from the culture-positive aborted fetuses, placentas, 2-wk-old calf, and recently-aborting cow disclosed large numbers of B. abortus in placental trophoblasts and exudate, and fetal and calf lung. A similar study with the same tissue collection and culture protocol was done using six

  10. Leaders' perspectives in the Yellowstone to Yukon Conservation Initiative

    Science.gov (United States)

    Mattson, D.J.; Clark, S.G.; Byrd, K.L.; Brown, S.R.; Robinson, B.

    2011-01-01

    The Yellowstone to Yukon Conservation Initiative (Y2Y) was created in 1993 to advance conservation in a 1.2 million km2 portion of the North American Rocky Mountains. We assembled 21 people with influence over Y2Y in a workshop to elucidate perspectives on challenges and solutions for this organization at a key point in its evolution, and used Q method to define four perspectives on challenges and three on solutions. Participants were differentiated by four models for effecting change-vision-based advocacy, practice-based learning, political engagement, and scientific management-with emphasis on the first three. Those with authority in Y2Y aligned with vision-based advocacy and expressed ambivalence about practice-based adaptive learning and rigorous appraisals of existing strategies. Workshop results were consistent with an apparent trend toward organizational maturation focused on stabilizing revenues, developing formal organizational arrangements, and focusing strategies. Consolidation of power in Y2Y around a long-standing formula does not bode well for the effectiveness of Y2Y. We recommend that leaders in Y2Y and similar organizations focused on large-scale conservation to create and maintain an open system-philosophically and operationally-that capitalizes on the diverse perspectives and skills of individuals who are attracted to such efforts. We also recommend that the Y2Y initiative be followed closely to harvest additional lessons for potential application to large-scale conservation efforts elsewhere. ?? Springer Science+Business Media, LLC(outside the USA).2011.

  11. 50 CFR 17.40 - Special rules-mammals.

    Science.gov (United States)

    2010-10-01

    ... elephant ivory quota for the year of export; (B) All of the permit requirements of 50 CFR parts 13 and 23... accompanied by young means any grizzly bear having offspring, including one or more cubs, yearlings, or 2-year... handles grizzly bears. Young grizzly bear means a cub, yearling, or 2-year-old grizzly bear. EC01JN91.000...

  12. The climate adaptation programs and activities of the Yellowstone to Yukon Conservation Initiative

    Science.gov (United States)

    Wendy L. Francis

    2011-01-01

    The Yellowstone to Yukon Conservation Initiative (Y2Y) is an innovative transboundary effort to protect biodiversity and facilitate climate adaptation by linking large protected core areas through compatible land uses on matrix lands. The Y2Y organization acts as the keeper of the Y2Y vision and implements two interconnected programs - Science and Action, and Vision...

  13. Climate influences on whitebark pine mortality from mountain pine beetle in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Polly C. Buotte; Jeffrey A. Hicke; Haiganoush K. Preisler; John T. Abatzoglou; Kenneth F. Raffa; Jesse A. Logan

    2016-01-01

    Extensive mortality of whitebark pine, beginning in the early to mid-2000s, occurred in the Greater Yellowstone Ecosystem (GYE) of the western USA, primarily from mountain pine beetle but also from other threats such as white pine blister rust. The climatic drivers of this recent mortality and the potential for future whitebark pine mortality from mountain pine beetle...

  14. Seeking a scientific approach to backcountry management in Yellowstone National Park

    Science.gov (United States)

    S. Thomas Olliff; Sue Consolo Murphy

    2000-01-01

    Three criteria are used to assess how Yellowstone’s wilderness managers incorporate science into management: preciousness, vulnerability and responsiveness to management. Four observations are proposed. First, where scientists lead, managers will follow. Scientists that leave the best trail will be followed most closely. Second, managers need to refocus efforts on...

  15. Monitoring white pine blister rust infection and mortality in whitebark pine in the Greater Yellowstone ecosystem

    Science.gov (United States)

    Cathie Jean; Erin Shanahan; Rob Daley; Gregg DeNitto; Dan Reinhart; Chuck Schwartz

    2011-01-01

    There is a critical need for information on the status and trend of whitebark pine (Pinus albicaulis) in the Greater Yellowstone Ecosystem (GYE). Concerns over the combined effects of white pine blister rust (WPBR, Cronartium ribicola), mountain pine beetle (MPB, Dendroctonus ponderosae), and climate change prompted an interagency working group to design and implement...

  16. Winter visitor use planning in Yellowstone and Grand Teton National Parks

    Science.gov (United States)

    John A. Sacklin; Kristin L. Legg; M. Sarah Creachbaum; Clifford L. Hawkes; George Helfrich

    2000-01-01

    Winter use in Yellowstone and Grand Teton National Parks increased dramatically in the 1980s and early 1990s. That increase and the emphasis on snowmobiles as the primary mode of transportation brought into focus a host of winter-related issues, including air pollution, unwanted sound, wildlife impacts and the adequacy of agency budgets, staff and infrastructure to...

  17. Performance of Yellowstone and Snake River Cutthroat Trout Fry Fed Seven Different Diets.

    Science.gov (United States)

    Five commercial diets and two formulated feeds were fed to initial-feeding Yellowstone cutthroat trout Oncorhynchus clarkii bouvieri fry and Snake River cutthroat trout O. clarkii spp. (currently being petitioned for classification as O. clarkii behnkei) fry for 18 weeks to evaluate fish performance...

  18. 77 FR 38824 - Winter Use Plan, Supplemental Draft Environmental Impact Statement, Yellowstone National Park

    Science.gov (United States)

    2012-06-29

    ... DEPARTMENT OF THE INTERIOR National Park Service [2310-0070-422] Winter Use Plan, Supplemental.... ACTION: Notice of Availability of the Draft Supplemental Environmental Impact Statement for the Winter... Supplemental Environmental Impact Statement (Draft SEIS) for a Winter Use Plan for Yellowstone National Park...

  19. 76 FR 68503 - Winter Use Plan, Final Environmental Impact Statement, Yellowstone National Park, Idaho, Montana...

    Science.gov (United States)

    2011-11-04

    ... DEPARTMENT OF THE INTERIOR National Park Service Winter Use Plan, Final Environmental Impact.... ACTION: Notice of availability of the Final Environmental Impact Statement for the Winter Use Plan... Winter Use Plan for Yellowstone National Park, located in Idaho, Montana, and [[Page 68504

  20. 75 FR 4842 - Winter Use Plan, Environmental Impact Statement, Yellowstone National Park

    Science.gov (United States)

    2010-01-29

    ... DEPARTMENT OF THE INTERIOR National Park Service Winter Use Plan, Environmental Impact Statement... to prepare an Environmental Impact Statement for a Winter Use Plan, Yellowstone National Park... Park Service (NPS) is preparing an Environmental Impact Statement (EIS) for a Winter Use Plan for...

  1. Lower-mantle plume beneath the Yellowstone hotspot revealed by core waves

    Science.gov (United States)

    Nelson, Peter L.; Grand, Stephen P.

    2018-04-01

    The Yellowstone hotspot, located in North America, is an intraplate source of magmatism the cause of which is hotly debated. Some argue that a deep mantle plume sourced at the base of the mantle supplies the heat beneath Yellowstone, whereas others claim shallower subduction or lithospheric-related processes can explain the anomalous magmatism. Here we present a shear wave tomography model for the deep mantle beneath the western United States that was made using the travel times of core waves recorded by the dense USArray seismic network. The model reveals a single narrow, cylindrically shaped slow anomaly, approximately 350 km in diameter that we interpret as a whole-mantle plume. The anomaly is tilted to the northeast and extends from the core-mantle boundary to the surficial position of the Yellowstone hotspot. The structure gradually decreases in strength from the deepest mantle towards the surface and if it is purely a thermal anomaly this implies an initial excess temperature of 650 to 850 °C. Our results strongly support a deep origin for the Yellowstone hotspot, and also provide evidence for the existence of thin thermal mantle plumes that are currently beyond the resolution of global tomography models.

  2. Continued warming could transform Greater Yellowstone fire regimes by mid-21st century

    Science.gov (United States)

    Anthony L. Westerling; Monica G. Turner; Erica A. H. Smithwick; William H. Romme; Michael G. Ryan

    2011-01-01

    Climate change is likely to alter wildfire regimes, but the magnitude and timing of potential climate-driven changes in regional fire regimes are not well understood. We considered how the occurrence, size, and spatial location of large fires might respond to climate projections in the Greater Yellowstone ecosystem (GYE) (Wyoming), a large wildland ecosystem dominated...

  3. The U S national parks in international perspective: The Yellowstone model or conservation syncretism?

    Science.gov (United States)

    John Schelhas

    2010-01-01

    In recent years, international conservation scholars and practitioners have largely dismissed the U.S. national park experience, often termed the “Yellowstone model,” as being too protectionist and exclusionary, and therefore irrelevant and even detrimental to park management and policy in lesser developed countries. A review of the U.S. national park experience finds...

  4. Attributes of Yellowstone cutthroat trout redds in a tributary of the Snake River, Idaho

    Science.gov (United States)

    Russell F. Thurow; John G. King

    1994-01-01

    We characterized spawning sites of Yellowstone cutthroat trout Oncorhynchus clarki bouvieri, described the microhabitat of completed redds, and tested the influence of habitat conditions on the morphology of completed redds in Pine Creek, Idaho. Cutthroat trout spawned in June as flows subsided after peak stream discharge. During spawning, minimum and maximum water...

  5. Twenty Years After the 1988 Yellowstone Fires: Lessons About Disturbance and Ecosystems

    Science.gov (United States)

    Romme, W.H.; Boyce, M.S.; Gresswell, R.; Merrill, E.H.; Minshall, G.W.; Whitlock, C.; Turner, M.G.

    2011-01-01

    The 1988 Yellowstone fires were among the first in what has proven to be an upsurge in large severe fires in the western USA during the past 20 years. At the time of the fires, little was known about the impacts of such a large severe disturbance because scientists had had few previous opportunities to study such an event. Ecologists predicted short- and long-term effects of the 1988 fires on vegetation, biogeochemistry, primary productivity, wildlife, and aquatic ecosystems based on scientific understanding of the time. Twenty-plus years of subsequent study allow these early predictions to be evaluated. Most of the original predictions were at least partially supported, but some predictions were refuted, others nuanced, and a few postfire phenomena were entirely unexpected. Post-1988 Yellowstone studies catalyzed advances in ecology focused on the importance of spatial and temporal heterogeneity, contingent influences, and multiple interacting drivers. Post-1988 research in Yellowstone also has changed public perceptions of fire as an ecological process and attitudes towards fire management. Looking ahead to projected climate change and more frequent large fires, the well-documented ecological responses to the 1988 Yellowstone fires provide a foundation for detecting and evaluating potential changes in fire regimes of temperate mountainous regions. ?? 2011 Springer Science+Business Media, LLC.

  6. The timing and origin of pre- and post-caldera volcanism associated with the Mesa Falls Tuff, Yellowstone Plateau volcanic field

    Science.gov (United States)

    Stelten, Mark E.; Champion, Duane E.; Kuntz, Mel A.

    2018-01-01

    We present new sanidine 40Ar/39Ar ages and paleomagnetic data for pre- and post-caldera rhyolites from the second volcanic cycle of the Yellowstone Plateau volcanic field, which culminated in the caldera-forming eruption of the Mesa Falls Tuff at ca. 1.3 Ma. These data allow for a detailed reconstruction of the eruptive history of the second volcanic cycle and provide new insights into the petrogenesis of rhyolite domes and flows erupted during this time period. 40Ar/39Ar age data for the biotite-bearing Bishop Mountain flow demonstrate that it erupted approximately 150 kyr prior to the Mesa Falls Tuff. Integrating 40Ar/39Ar ages and paleomagnetic data for the post-caldera Island Park rhyolite domes suggests that these five crystal-rich rhyolites erupted over a centuries-long time interval at 1.2905 ± 0.0020 Ma (2σ). The biotite-bearing Moonshine Mountain rhyolite dome was originally thought to be the downfaulted vent dome for the pre-caldera Bishop Mountain flow due to their similar petrographic and oxygen isotope characteristics, but new 40Ar/39Ar dating suggest that it erupted near contemporaneously with the Island Park rhyolite domes at 1.2931 ± 0.0018 Ma (2σ) and is a post-caldera eruption. Despite their similar eruption ages, the Island Park rhyolite domes and the Moonshine Mountain dome are chemically and petrographically distinct and are not derived from the same source. Integrating these new data with field relations and existing geochemical data, we present a petrogenetic model for the formation of the post-Mesa Falls Tuff rhyolites. Renewed influx of basaltic and/or silicic recharge magma into the crust at 1.2905 ± 0.0020 Ma led to [1] the formation of the Island Park rhyolite domes from the source region that earlier produced the Mesa Falls Tuff and [2] the formation of Moonshine Mountain dome from the source region that earlier produced the biotite-bearing Bishop Mountain flow. These magmas were stored in the crust for less than a few thousand

  7. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    Science.gov (United States)

    Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.

    2009-01-01

    Hydrothermal explosions are violent and dramatic events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments from source craters that range from a few meters up to more than 2 km in diameter; associated breccia can be emplaced as much as 3 to 4 km from the largest craters. Hydrothermal explosions occur where shallow interconnected reservoirs of steam- and liquid-saturated fluids with temperatures at or near the boiling curve underlie thermal fields. Sudden reduction in confi ning pressure causes fluids to fl ash to steam, resulting in signifi cant expansion, rock fragmentation, and debris ejection. In Yellowstone, hydrothermal explosions are a potentially signifi cant hazard for visitors and facilities and can damage or even destroy thermal features. The breccia deposits and associated craters formed from hydrothermal explosions are mapped as mostly Holocene (the Mary Bay deposit is older) units throughout Yellowstone National Park (YNP) and are spatially related to within the 0.64-Ma Yellowstone caldera and along the active Norris-Mammoth tectonic corridor. In Yellowstone, at least 20 large (>100 m in diameter) hydrothermal explosion craters have been identifi ed; the scale of the individual associated events dwarfs similar features in geothermal areas elsewhere in the world. Large hydrothermal explosions in Yellowstone have occurred over the past 16 ka averaging ??1 every 700 yr; similar events are likely in the future. Our studies of large hydrothermal explosion events indicate: (1) none are directly associated with eruptive volcanic or shallow intrusive events; (2) several historical explosions have been triggered by seismic events; (3) lithic clasts and comingled matrix material that form hydrothermal explosion deposits are extensively altered, indicating that explosions occur in areas subjected to intense hydrothermal processes; (4) many lithic clasts contained in explosion breccia deposits preserve evidence of repeated fracturing

  8. Good neighbours: even bears kept happy by the new approach to wilderness project

    International Nuclear Information System (INIS)

    Stonehouse, D.

    2000-01-01

    Experiences gained by Husky Oil and Rigel Energy drilling a successful exploratory well in Kananaskis country, Calgary's wilderness playground, are described. 'Fitting in' with the character of 'K-country' entailed developing a plan acceptable to recreational users, aboriginal groups, government agencies, and environmentalists. The result was a landmark effort in industrial adaptation to nature: the Eastern Slope Grizzly Bear Project, a major cumulative effects assessment, which is now gaining acceptance as an industry model. The assessment involved surveying the distribution of deer, elk, moose, sheep, rare plants, breeding birds and fish species and the tracking and mapping of the movements of bears, to get a complete picture of the health of the eastern slope habitat, and to provide the foundation for assessing development and land use. The study showed Husky Oil how to proceed without doing environmental damage. It influenced the manner in which the field was delineated, it altered production tests, it forced reinjection of fluids and gas during well testing rather than hauling it away in trucks, it determined the type and route for the access road and later the location of the pipeline, all in an effort to stay clear of high quality ungulate and bear habitat. It was time consuming and expensive, but according to company officials, well worth it. Development was also influenced by traditional land use and preservation of native cultural resources; for example, the pipeline was rerouted to avoid archaeological sites

  9. Good neighbours: even bears kept happy by the new approach to wilderness project

    Energy Technology Data Exchange (ETDEWEB)

    Stonehouse, D.

    2000-04-01

    Experiences gained by Husky Oil and Rigel Energy drilling a successful exploratory well in Kananaskis country, Calgary's wilderness playground, are described. 'Fitting in' with the character of 'K-country' entailed developing a plan acceptable to recreational users, aboriginal groups, government agencies, and environmentalists. The result was a landmark effort in industrial adaptation to nature: the Eastern Slope Grizzly Bear Project, a major cumulative effects assessment, which is now gaining acceptance as an industry model. The assessment involved surveying the distribution of deer, elk, moose, sheep, rare plants, breeding birds and fish species and the tracking and mapping of the movements of bears, to get a complete picture of the health of the eastern slope habitat, and to provide the foundation for assessing development and land use. The study showed Husky Oil how to proceed without doing environmental damage. It influenced the manner in which the field was delineated, it altered production tests, it forced reinjection of fluids and gas during well testing rather than hauling it away in trucks, it determined the type and route for the access road and later the location of the pipeline, all in an effort to stay clear of high quality ungulate and bear habitat. It was time consuming and expensive, but according to company officials, well worth it. Development was also influenced by traditional land use and preservation of native cultural resources; for example, the pipeline was rerouted to avoid archaeological sites.

  10. Geomicrobiology of sublacustrine thermal vents in Yellowstone Lake: Geochemical controls on microbial community structure and function

    Directory of Open Access Journals (Sweden)

    William P. Inskeep

    2015-10-01

    Full Text Available Yellowstone Lake (Yellowstone National Park, WY, USA is a large high-altitude (2200 m, fresh-water lake, which straddles an extensive caldera and is the center of significant geothermal activity. The primary goal of this interdisciplinary study was to evaluate the microbial populations inhabiting thermal vent communities in Yellowstone Lake (Yellowstone Lake using 16S rRNA gene and random metagenome sequencing, and to determine how geochemical attributes of vent waters influence the distribution of specific microorganisms and their metabolic potential. Thermal vent waters and associated microbial biomass were sampled during two field seasons (2007 - 2008 using a remotely operated vehicle (ROV. Sublacustrine thermal vent waters (circa 50 - 90 oC contained elevated concentrations of numerous constituents associated with geothermal activity including dissolved hydrogen, sulfide, methane and carbon dioxide. Microorganisms associated with sulfur-rich filamentous ‘streamer’ communities of Inflated Plain and West Thumb (pH range 5 - 6 were dominated by bacteria from the Aquificales, but also contained thermophilic archaea from the Crenarchaeota and Euryarchaeota. Novel groups of methanogens and members of the Korarchaeota were observed in vents from West Thumb and Elliot’s Crater (pH 5 - 6. Conversely, metagenome sequence from Mary Bay vent sediments did not yield large assemblies, and contained diverse thermophilic and nonthermophilic bacterial relatives. Analysis of functional genes associated with the major vent populations indicated a direct linkage to high concentrations of carbon dioxide, reduced sulfur (sulfide and/or elemental S, hydrogen and methane in the deep thermal ecosystems. Our observations show that sublacustrine thermal vents in Yellowstone Lake support novel thermophilic communities, which contain microorganisms with functional attributes not found to date in terrestrial geothermal systems of YNP.

  11. Lake Generated Microseisms at Yellowstone Lake as a Record of Ice Phenology

    Science.gov (United States)

    Mohd Mokhdhari, A. A.; Koper, K. D.; Burlacu, R.

    2017-12-01

    It has recently been shown that wave action in lakes produces microseisms, which generate noise peaks in the period range of 0.8-1.2 s as recorded by nearby seismic stations. Such noise peaks have been observed at seven seismic stations (H17A, LKWY, B208, B944, YTP, YLA, and YLT) located within 2 km of the Yellowstone Lake shoreline. Initial work using 2016 data shows that the variations in the microseism signals at Yellowstone Lake correspond with the freezing and thawing of lake ice: the seismic noise occurs more frequently in the spring, summer, and fall, and less commonly in the winter. If this can be confirmed, then lake-generated microseisms could provide a consistent measure of the freezing and melting dates of high-latitude lakes in remote areas. The seismic data would then be useful in assessing the effects of climate change on the ice phenology of those lakes. In this work, we analyze continuous seismic data recorded by the seven seismic stations around Yellowstone Lake for the years of 1995 to 2016. We generate probability distribution functions of power spectral density for each station to observe the broad elevation of energy near a period of 1 s. The time dependence of this 1-s seismic noise energy is analyzed by extracting the power spectral density at 1 s from every processed hour. The seismic observations are compared to direct measurements of the dates of ice-out and freeze-up as reported by rangers at Yellowstone National Park. We examine how accurate the seismic data are in recording the freezing and melting of Yellowstone Lake, and how the accuracy changes as a function of the number of stations used. We also examine how sensitive the results are to the particular range of periods that are analyzed.

  12. Polar bears, Ursus maritimus

    Science.gov (United States)

    Rode, Karyn D.; Stirling, Ian

    2017-01-01

    Polar bears are the largest of the eight species of bears found worldwide and are covered in a pigment-free fur giving them the appearance of being white. They are the most carnivorous of bear species consuming a high-fat diet, primarily of ice-associated seals and other marine mammals. They range throughout the circumpolar Arctic to the southernmost extent of seasonal pack ice.

  13. EcoBears

    DEFF Research Database (Denmark)

    Nielsen, Nick; Pedersen, Sandra Bleuenn; Sørensen, Jens Ager

    2015-01-01

    In this paper, we introduce the EcoBears concept that aims to augment household appliances with functional and aesthetic features to promote their "use'' and "longevity of use'' to prevent their disposal. The EcoBears also aim to support the communication of environmental issues in the home setting....... We present our initial design and implementation of the EcoBears that consist of two bear modules (a mother and her cub). We also present our preliminary concept validations and lessons learned to be considered for future directions....

  14. Bearing restoration by grinding

    Science.gov (United States)

    Hanau, H.; Parker, R. J.; Zaretsky, E. V.; Chen, S. M.; Bull, H. L.

    1976-01-01

    A joint program was undertaken by the NASA Lewis Research Center and the Army Aviation Systems Command to restore by grinding those rolling-element bearings which are currently being discarded at aircraft engine and transmission overhaul. Three bearing types were selected from the UH-1 helicopter engine (T-53) and transmission for the pilot program. No bearing failures occurred related to the restoration by grinding process. The risk and cost of a bearing restoration by grinding programs was analyzed. A microeconomic impact analysis was performed.

  15. Polar bears at risk

    Energy Technology Data Exchange (ETDEWEB)

    Norris, S.; Rosentrater, L.; Eid, P.M. [WWF International Arctic Programme, Oslo (Norway)

    2002-05-01

    Polar bears, the world's largest terrestrial carnivore, spend much of their lives on the arctic sea ice. This is where they hunt and move between feeding, denning, and resting areas. The world population, estimated at 22,000 bears, is made up of 20 relatively distinct populations varying in size from a few hundred to a few thousand animals. About 60 per cent of all polar bears are found in Canada. In general, the status of this species is stable, although there are pronounced differences between populations. Reductions in the extent and thickness of sea ice has lead the IUCN Polar Bear Specialist Group to describe climate change as one of the major threats facing polar bears today. Though the long-term effects of climate change will vary in different areas of the Arctic, impacts on the condition and reproductive success of polar bears and their prey are likely to be negative. Longer ice-free periods resulting from earlier break-up of sea ice in the spring and later formation in the fall is already impacting polar bears in the southern portions of their range. In Canada's Hudson Bay, for example, bears hunt on the ice through the winter and into early summer, after which the ice melts completely, forcing bears ashore to fast on stored fat until freeze-up in the fall. The time bears have on the ice to hunt and build up their body condition is cut short when the ice melts early. Studies from Hudson Bay show that for every week earlier that ice break-up occurs, bears will come ashore 10 kg lighter and in poorer condition. It is likely that populations of polar bears dividing their time between land and sea will be severely reduced and local extinctions may occur as greenhouse gas emissions continue to rise and sea ice melts. Expected changes in regional weather patterns will also impact polar bears. Rain in the late winter can cause maternity dens to collapse before females and cubs have departed, thus exposing occupants to the elements and to predators. Such

  16. Seismic and GPS constraints on the dynamics and kinematics of the Yellowstone volcanic field

    Science.gov (United States)

    Smith, R. B.; Farrell, J.; Jordan, M.; Puskas, C.; Waite, G. P.

    2007-12-01

    The seismically and volcanically Yellowstone hotspot resulted from interaction of a mantle plume with the overriding North America plate. This feature and related processes have modified continental lithosphere producing the Yellowstone-Snake River Plain-Newberry silicic volcanic field (YSRPN) system, with its NE volcanically active Yellowstone volcanic field. The size and accessibility of the Yellowstone area has allowed a range of geophysical experiments including earthquake monitoring and seismic and GPS imaging of this system. Seismicity is dominated by small-magnitude normal- to oblique-slip faulting earthquake swarms with shallow focal depths, maximum of ~5 km, restricted by high temperatures and a weak elastic layer. There is developing evidence of non-double couple events. Outside the caldera, earthquakes are deeper, ~20 km, and capable of M 7+ earthquakes. We integrate the results from a multi-institution experiment that recorded data from 110 seismic stations and 180 GPS stations for 1999-2004. The tomographic images confirm the existence of a low Vp-body beneath the Yellowstone caldera at depths greater than 8 km, possibly representing hot, crystallizing magma. A key result of our study is a volume of anomalously low Vp and Vp/Vs in the northwestern part of the volcanic field at shallow depths of stress field inverted from seismic and GPS data is dominated by regional SW extension with superimposed volumetric expansion and uplift from local volcanic sources. Mantle tomography derived from integrated inversion of teleseismic and local earthquake data constrained by geoid, crustal structure, discontinuity structure reveals an upper-mantle low P and S velocity body extends from 80 km to ~250 km directly beneath Yellowstone and then continues to 650 km with unexpected westward tilt to the west at ~60° with a 1% to 2% melt. This geometry is consistent with the ascent of the buoyant magma entrained in eastward return-flow of the upper mantle. Some remaining

  17. Negative binomial models for abundance estimation of multiple closed populations

    Science.gov (United States)

    Boyce, Mark S.; MacKenzie, Darry I.; Manly, Bryan F.J.; Haroldson, Mark A.; Moody, David W.

    2001-01-01

    Counts of uniquely identified individuals in a population offer opportunities to estimate abundance. However, for various reasons such counts may be burdened by heterogeneity in the probability of being detected. Theoretical arguments and empirical evidence demonstrate that the negative binomial distribution (NBD) is a useful characterization for counts from biological populations with heterogeneity. We propose a method that focuses on estimating multiple populations by simultaneously using a suite of models derived from the NBD. We used this approach to estimate the number of female grizzly bears (Ursus arctos) with cubs-of-the-year in the Yellowstone ecosystem, for each year, 1986-1998. Akaike's Information Criteria (AIC) indicated that a negative binomial model with a constant level of heterogeneity across all years was best for characterizing the sighting frequencies of female grizzly bears. A lack-of-fit test indicated the model adequately described the collected data. Bootstrap techniques were used to estimate standard errors and 95% confidence intervals. We provide a Monte Carlo technique, which confirms that the Yellowstone ecosystem grizzly bear population increased during the period 1986-1998.

  18. Ultra-precision bearings

    CERN Document Server

    Wardle, F

    2015-01-01

    Ultra-precision bearings can achieve extreme accuracy of rotation, making them ideal for use in numerous applications across a variety of fields, including hard disk drives, roundness measuring machines and optical scanners. Ultraprecision Bearings provides a detailed review of the different types of bearing and their properties, as well as an analysis of the factors that influence motion error, stiffness and damping. Following an introduction to basic principles of motion error, each chapter of the book is then devoted to the basic principles and properties of a specific type of bearin

  19. Creating Conditions for Policy Change in National Parks: Contrasting Cases in Yellowstone and Yosemite

    Science.gov (United States)

    Yochim, Michael J.; Lowry, William R.

    2016-05-01

    Public agencies face significant political obstacles when they try to change long-standing policies. This paper examines efforts by the U.S. National Park Service to change long-term policies in Yellowstone and Yosemite national parks. We argue that, to be successful, the agency and pro-change allies must expand the sphere of conflict to engage the support of the broader American public through positive framing, supportive science, compelling economic arguments, consistent goals, and the commitment of other institutional actors. We show that the agency is capable of creating these conditions, as in the reintroduction of wolves to Yellowstone, but we argue that this is not always the outcome, as in reducing automobile congestion in Yosemite Valley.

  20. Magnetotelluric Investigations of the Yellowstone Caldera: Understanding the Emplacement of Crustal Magma Bodies

    Science.gov (United States)

    Gurrola, R. M.; Neal, B. A.; Bennington, N. L.; Cronin, R.; Fry, B.; Hart, L.; Imamura, N.; Kelbert, A.; Bowles-martinez, E.; Miller, D. J.; Scholz, K. J.; Schultz, A.

    2017-12-01

    Wideband magnetotellurics (MT) presents an ideal method for imaging conductive shallow magma bodies associated with contemporary Yellowstone-Snake River Plain (YSRP) magmatism. Particularly, how do these magma bodies accumulate in the mid to upper crust underlying the Yellowstone Caldera, and furthermore, what role do hydrothermal fluids play in their ascent? During the summer 2017 field season, two field teams from Oregon State University and the University of Wisconsin-Madison installed forty-four wideband MT stations within and around the caldera, and using data slated for joint 3-D inversion with existing seismic data, two 2-D vertical conductivity sections of the crust and upper mantle were constructed. These models, in turn, provide preliminary insight into the emplacement of crustal magma bodies and hydrothermal processes in the YSRP region.

  1. Tree-ring 14C links seismic swarm to CO2 spike at Yellowstone, USA

    Science.gov (United States)

    Evans, William C.; Bergfeld, D.; McGeehin, J.P.; King, J.C.; Heasler, H.

    2010-01-01

    Mechanisms to explain swarms of shallow seismicity and inflation-deflation cycles at Yellowstone caldera (western United States) commonly invoke episodic escape of magma-derived brines or gases from the ductile zone, but no correlative changes in the surface efflux of magmatic constituents have ever been documented. Our analysis of individual growth rings in a tree core from the Mud Volcano thermal area within the caldera links a sharp ~25% drop in 14C to a local seismic swarm in 1978. The implied fivefold increase in CO2 emissions clearly associates swarm seismicity with upflow of magma-derived fluid and shows that pulses of magmatic CO2 can rapidly traverse the 5-kmthick brittle zone, even through Yellowstone's enormous hydrothermal reservoir. The 1978 event predates annual deformation surveys, but recognized connections between subsequent seismic swarms and changes in deformation suggest that CO2 might drive both processes. ?? 2010 Geological Society of America.

  2. Monitoring Greater Yellowstone Ecosystem wetlands: Can long-term monitoring help us understand their future?

    Science.gov (United States)

    Ray, Andrew M.; Sepulveda, Adam; Hossack, Blake R.; Patla, Debra; Thoma, David; Al-Chokhachy, Robert K.; Litt, Andrea R.

    2015-01-01

    In the Greater Yellowstone Ecosystem (GYE), changes in the drying cycles of wetlands have been documented. Wetlands are areas where the water table is at or near the land surface and standing shallow water is present for much or all of the growing season. We discuss how monitoring data can be used to document variation in annual flooding and drying patterns of wetlands monitored across Yellowstone and Grand Teton national parks, investigate how these patterns are related to a changing climate, and explore how drying of wetlands may impact amphibians. The documented declines of some amphibian species are of growing concern to scientists and land managers alike, in part because disappearances have occurred in some of the most protected places. These disappearances are a recognized component of what is being described as Earth’s sixth mass extinction.

  3. Monitoring changes in Greater Yellowstone Lake water quality following the 1988 wildfires

    Science.gov (United States)

    Lathrop, Richard G., Jr.; Vande Castle, John D.; Brass, James A.

    1994-01-01

    The fires that burned the Greater Yellowstone Area (GYA) during the summer of 1988 were the largest ever recorded for the region. Wildfire can have profound indirect effects on associated aquatic ecosystems by increased nutrient loading, sediment, erosion, and runoff. Satellite remote sensing and water quality sampling were used to compare pre- versus post-fire conditions in the GYA's large oliotrophic (high transparency, low productivity) lakes. Inputs of suspended sediment to Jackson Lake appear to have increased. Yellowstone Lake has not shown any discernable shift in water quality. The insights gained separately from the Landsat Thematic and NOAA Advanced Very High Resolution Radiometer (AVHRR) remote sensing systems, along with conventional in-situ sampling, can be combined into a useful water quality monitoring tool.

  4. A Serological Survey of Infectious Disease in Yellowstone National Park?s Canid Community

    OpenAIRE

    Almberg, Emily S.; Mech, L. David; Smith, Douglas W.; Sheldon, Jennifer W.; Crabtree, Robert L.

    2009-01-01

    BACKGROUND: Gray wolves (Canis lupus) were reintroduced into Yellowstone National Park (YNP) after a >70 year absence, and as part of recovery efforts, the population has been closely monitored. In 1999 and 2005, pup survival was significantly reduced, suggestive of disease outbreaks. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed sympatric wolf, coyote (Canis latrans), and red fox (Vulpes vulpes) serologic data from YNP, spanning 1991-2007, to identify long-term patterns of pathogen exposure, i...

  5. Multiscale Genetic Structure of Yellowstone Cutthroat Trout in the Upper Snake River Basin.

    Energy Technology Data Exchange (ETDEWEB)

    Cegelski, Christine C.; Campbell, Matthew R.

    2006-05-30

    Populations of Yellowstone cutthroat trout Oncorhynchus clarkii bouvierii have declined throughout their native range as a result of habitat fragmentation, overharvest, and introductions of nonnative trout that have hybridized with or displaced native populations. The degree to which these factors have impacted the current genetic population structure of Yellowstone cutthroat trout populations is of primary interest for their conservation. In this study, we examined the genetic diversity and genetic population structure of Yellowstone cutthroat trout in Idaho and Nevada with data from six polymorphic microsatellite loci. A total of 1,392 samples were analyzed from 45 sample locations throughout 11 major river drainages. We found that levels of genetic diversity and genetic differentiation varied extensively. The Salt River drainage, which is representative of the least impacted migration corridors in Idaho, had the highest levels of genetic diversity and low levels of genetic differentiation. High levels of genetic differentiation were observed at similar or smaller geographic scales in the Portneuf River, Raft River, and Teton River drainages, which are more altered by anthropogenic disturbances. Results suggested that Yellowstone cutthroat trout are naturally structured at the major river drainage level but that habitat fragmentation has altered this structuring. Connectivity should be restored via habitat restoration whenever possible to minimize losses in genetic diversity and to preserve historical processes of gene flow, life history variation, and metapopulation dynamics. However, alternative strategies for management and conservation should also be considered in areas where there is a strong likelihood of nonnative invasions or extensive habitat fragmentation that cannot be easily ameliorated.

  6. Roller bearing geometry design

    Science.gov (United States)

    Savage, M.; Pinkston, B. H. W.

    1976-01-01

    A theory of kinematic stabilization of rolling cylinders is extended and applied to the design of cylindrical roller bearings. The kinematic stabilization mechanism puts a reverse skew into the rolling elements by changing the roller taper. Twelve basic bearing modification designs are identified amd modeled. Four have single transverse convex curvature in their rollers while eight have rollers which have compound transverse curvature made up of a central cylindrical band surrounded by symmetric bands with slope and transverse curvature. The bearing designs are modeled for restoring torque per unit axial displacement, contact stress capacity, and contact area including dynamic loading, misalignment sensitivity and roller proportion. Design programs are available which size the single transverse curvature roller designs for a series of roller slopes and load separations and which design the compound roller bearings for a series of slopes and transverse radii of curvature. The compound rollers are proportioned to have equal contact stresses and minimum size. Design examples are also given.

  7. DW_BEAR

    Data.gov (United States)

    Department of Homeland Security — Subset of BEAR (Bi-Weekly Examination Analysis and Reporting) data used for financial audit remediation reporting within the Coast Guard Business Intelligence (CGBI)...

  8. A Long-Term Comparison of Yellowstone Cutthroat Trout Abundance and Size Structure in Their Historical Range in Idaho.

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Kevin A.; Schill, Daniel J.; Elle, F. Steven

    2002-05-23

    We compared estimates of population abundance and size structure for Yellowstone cutthroat trout Oncorhynchus clarki bouvieri obtained by electrofishing 77 stream segments across southeastern Idaho in the 1980s and again in 1999-2000 to test whether populations of Yellowstone cutthroat trout had changed. Sites sampled in the 1980s were relocated in 1999-2000 by using maps and photographs or by finding original site-boundary stakes, so that the same reach of stream was sampled during both periods. Abundance of Yellowstone cutthroat trout longer than 10 cm did not change, averaging 41 fish/100 m of stream during both the 1980s and 1999-2000. The proportion of the total catch of trout composed of Yellowstone cutthroat trout also did not change, averaging 82% in the 1980s and 78% in 1999-2000. At the 48 sites where size structure could be estimated for both periods, the proportion of Yellowstone cutthroat trout that were 10-20 cm long declined slightly (74% versus 66%), but the change was due entirely to the shift in size structure at the Teton River sites. The number of sites that contained rainbow trout O. mykiss or cutthroat trout 3 rainbow trout hybrids rose from 23 to 37, but the average proportion of the catch composed of rainbow trout and hybrids did not increase (7% in both the 1980s and 1999-2000). Although the distribution and abundance of Yellowstone cutthroat trout have been substantially reduced in Idaho over the last century, our results indicate that Yellowstone cutthroat trout abundance and size structure in Idaho have remained relatively stable at a large number of locations for the last 10-20 years. The expanding distribution of rainbow trout and hybrids in portions of the upper Snake River basin, however, calls for additional monitoring and active management actions.

  9. Rolling bearing analysis

    CERN Document Server

    Harris, Tedric A

    2001-01-01

    One of the most well-known experts in the field brings cutting-edge research to practitioners in the new edition of this important reference. Covers the improved mathematical calculations for rolling bearing endurance developed by the American Society of Mechanical Engineers and the Society of Lubrication and Tribology Engineers. Updated with new material on Condition-Based Maintenance, new testing methods, and new bearing materials.

  10. Gear bearing drive

    Science.gov (United States)

    Mavroidis, Constantinos (Inventor); Vranish, John M. (Inventor); Weinberg, Brian (Inventor)

    2011-01-01

    A gear bearing drive provides a compact mechanism that operates as an actuator providing torque and as a joint providing support. The drive includes a gear arrangement integrating an external rotor DC motor within a sun gear. Locking surfaces maintain the components of the drive in alignment and provide support for axial loads and moments. The gear bearing drive has a variety of applications, including as a joint in robotic arms and prosthetic limbs.

  11. Simulation of water-rock interaction in the yellowstone geothermal system using TOUGHREACT

    International Nuclear Information System (INIS)

    Dobson, P.F.; Salah, S.; Spycher, N.; Sonnenthal, E.

    2003-01-01

    The Yellowstone geothermal system provides an ideal opportunity to test the ability of reactive transport models to accurately simulate water-rock interaction. Previous studies of the Yellowstone geothermal system have characterized water-rock interaction through analysis of rocks and fluids obtained from both surface and downhole samples. Fluid chemistry, rock mineralogy, permeability, porosity, and thermal data obtained from the Y-8 borehole in Upper Geyser Basin were used to constrain a series of reactive transport simulations of the Yellowstone geothermal system using TOUGHREACT. Three distinct stratigraphic units were encountered in the 153.4 m deep Y-8 drill core: volcaniclastic sandstone, perlitic rhyolitic lava, and nonwelded pumiceous tuff. The main alteration phases identified in the Y-8 core samples include clay minerals, zeolites, silica polymorphs, adularia, and calcite. Temperatures observed in the Y-8 borehole increase with depth from sub-boiling conditions at the surface to a maximum of 169.8 C at a depth of 104.1 m, with near-isothermal conditions persisting down to the well bottom. 1-D models of the Y-8 core hole were constructed to determine if TOUGHREACT could accurately predict the observed alteration mineral assemblage given the initial rock mineralogy and observed fluid chemistry and temperatures. Preliminary simulations involving the perlitic rhyolitic lava unit are consistent with the observed alteration of rhyolitic glass to form celadonite

  12. Growth, morphology, and developmental instability of rainbow trout, Yellowstone cutthroat trout, and four hybrid generations

    Science.gov (United States)

    Ostberg, C.O.; Duda, J.J.; Graham, J.H.; Zhang, S.; Haywood, K. P.; Miller, B.; Lerud, T.L.

    2011-01-01

    Hybridization of cutthroat trout Oncorhynchus clarkii with nonindigenous rainbow trout O. mykiss contributes to the decline of cutthroat trout subspecies throughout their native range. Introgression by rainbow trout can swamp the gene pools of cutthroat trout populations, especially if there is little selection against hybrids. We used rainbow trout, Yellowstone cutthroat trout O. clarkii bouvieri, and rainbow trout × Yellowstone cutthroat trout F1 hybrids as parents to construct seven different line crosses: F1 hybrids (both reciprocal crosses), F2 hybrids, first-generation backcrosses (both rainbow trout and Yellowstone cutthroat trout), and both parental taxa. We compared growth, morphology, and developmental instability among these seven crosses reared at two different temperatures. Growth was related to the proportion of rainbow trout genome present within the crosses. Meristic traits were influenced by maternal, additive, dominant, overdominant, and (probably) epistatic genetic effects. Developmental stability, however, was not disturbed in F1 hybrids, F2 hybrids, or backcrosses. Backcrosses were morphologically similar to their recurrent parent. The lack of developmental instability in hybrids suggests that there are few genetic incompatibilities preventing introgression. Our findings suggest that hybrids are not equal: that is, growth, development, character traits, and morphology differ depending on the genomic contribution from each parental species as well as the hybrid generation.

  13. Ferdinand Vandiveer Hayden and the founding of the Yellowstone National Park

    Science.gov (United States)

    ,

    1973-01-01

    Following the Civil War, the United States intensified the exploration of her western frontiers to gain a measure of the vast lands and natural resources in the region now occupied by our Rocky Mountain States. As part of this effort, the U.S. Geological and Geographical Survey of the Territories was formed and staffed under the leadership of geologist Ferdinand Vandiveer Hayden. Originally organized under the U.S. Public Land Office in 1861, the Hayden Survey (as it was most often identified) was placed under the Secretary of the Interior in 1869 and later, under the newly created U.S. Geological Survey. Its records, maps, and photographs were then transferred to the latter agency. In commemorating the centennial of Yellowstone National Park, the U.S. Geological Survey drew upon those items deposited by Hayden to describe the early exploration of the Yellowstone area and to recount events that led to the establishment of Yellowstone as the Nation's first national park.

  14. Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park.

    Science.gov (United States)

    McMenamin, Sarah K; Hadly, Elizabeth A; Wright, Christopher K

    2008-11-04

    Amphibians are a bellwether for environmental degradation, even in natural ecosystems such as Yellowstone National Park in the western United States, where species have been actively protected longer than anywhere else on Earth. We document that recent climatic warming and resultant wetland desiccation are causing severe declines in 4 once-common amphibian species native to Yellowstone. Climate monitoring over 6 decades, remote sensing, and repeated surveys of 49 ponds indicate that decreasing annual precipitation and increasing temperatures during the warmest months of the year have significantly altered the landscape and the local biological communities. Drought is now more common and more severe than at any time in the past century. Compared with 16 years ago, the number of permanently dry ponds in northern Yellowstone has increased 4-fold. Of the ponds that remain, the proportion supporting amphibians has declined significantly, as has the number of species found in each location. Our results indicate that climatic warming already has disrupted one of the best-protected ecosystems on our planet and that current assessments of species' vulnerability do not adequately consider such impacts.

  15. Load responsive hydrodynamic bearing

    Science.gov (United States)

    Kalsi, Manmohan S.; Somogyi, Dezso; Dietle, Lannie L.

    2002-01-01

    A load responsive hydrodynamic bearing is provided in the form of a thrust bearing or journal bearing for supporting, guiding and lubricating a relatively rotatable member to minimize wear thereof responsive to relative rotation under severe load. In the space between spaced relatively rotatable members and in the presence of a liquid or grease lubricant, one or more continuous ring shaped integral generally circular bearing bodies each define at least one dynamic surface and a plurality of support regions. Each of the support regions defines a static surface which is oriented in generally opposed relation with the dynamic surface for contact with one of the relatively rotatable members. A plurality of flexing regions are defined by the generally circular body of the bearing and are integral with and located between adjacent support regions. Each of the flexing regions has a first beam-like element being connected by an integral flexible hinge with one of the support regions and a second beam-like element having an integral flexible hinge connection with an adjacent support region. A least one local weakening geometry of the flexing region is located intermediate the first and second beam-like elements. In response to application of load from one of the relatively rotatable elements to the bearing, the beam-like elements and the local weakening geometry become flexed, causing the dynamic surface to deform and establish a hydrodynamic geometry for wedging lubricant into the dynamic interface.

  16. Removal of Lipid from Serum Increases Coherence between Brucellosis Rapid Agglutination Test and Enzyme-linked Immunosorbent Assay in Bears in Alaska, USA.

    Science.gov (United States)

    Godfroid, Jacques; Beckmen, Kimberlee; Helena Nymo, Ingebjørg

    2016-10-01

    In cases of chronic Brucella spp. infection, results of the rose bengal plate test (RBPT) and indirect enzyme-linked immunosorbent assay (ELISA) should be coherent, as reported in controlled conditions in the literature. We compared RBPT and ELISA results in 58 Alaska grizzly bears ( Ursus arctos horribilis), eight Kodiak brown bears ( Ursus arctos middendorffi), and six Alaska Peninsula brown bears ( Ursus arctos gyas). Of the 72 bears tested, 42 (58%) were ELISA positive and 53 (73%) were RBPT positive. However, the coherence between the tests was only fair (K=0.37, SE=0.11), suggesting that either the serologic results were not compatible with Brucella spp. infection or that there was a technical problem with the tests. To address a potential technical problem, we performed a 30-min chloroform/centrifugation cleanup. Following cleanup, the ELISA identified 43 positives (59%) and the RBPT identified 47 (65%), and the coherence between the tests was much improved (K=0.80, SE=0.07). We recommend cleaning wildlife sera with a high lipid content before performing RBPT and performing RBPT and ELISA in parallel to assess coherence. Our results suggest that Alaskan brown bears have been exposed to Brucella spp.

  17. Climate Drives Polar Bear Origins

    Science.gov (United States)

    In their provocative analysis of northern bears (“Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage,” Reports, 20 April, p. 344), F. Hailer et al. use independent nuclear loci to show that polar bears originated during the middle Pleistocene, rather than during t...

  18. Tribology of alternative bearings.

    Science.gov (United States)

    Fisher, John; Jin, Zhongmin; Tipper, Joanne; Stone, Martin; Ingham, Eileen

    2006-12-01

    The tribological performance and biological activity of the wear debris produced has been compared for highly cross-linked polyethylene, ceramic-on-ceramic, metal-on-metal, and modified metal bearings in a series of in vitro studies from a single laboratory. The functional lifetime demand of young and active patients is 10-fold greater than the estimated functional lifetime of traditional polyethylene. There is considerable interest in using larger diameter heads in these high demand patients. Highly cross-linked polyethylene show a four-fold reduction in functional biological activity. Ceramic-on-ceramic bearings have the lowest wear rates and least reactive wear debris. The functional biological activity is 20-fold lower than with highly cross-linked polyethylene. Hence, ceramic-on-ceramic bearings address the tribological lifetime demand of highly active patients. Metal-on-metal bearings have substantially lower wear rates than highly cross-linked polyethylene and wear decreases with head diameter. Bedding in wear is also lower with reduced radial clearance. Differential hardness ceramic-on-metal bearings and the application of ceramic-like coatings reduce metal wear and ion levels.

  19. Partial tooth gear bearings

    Science.gov (United States)

    Vranish, John M. (Inventor)

    2010-01-01

    A partial gear bearing including an upper half, comprising peak partial teeth, and a lower, or bottom, half, comprising valley partial teeth. The upper half also has an integrated roller section between each of the peak partial teeth with a radius equal to the gear pitch radius of the radially outwardly extending peak partial teeth. Conversely, the lower half has an integrated roller section between each of the valley half teeth with a radius also equal to the gear pitch radius of the peak partial teeth. The valley partial teeth extend radially inwardly from its roller section. The peak and valley partial teeth are exactly out of phase with each other, as are the roller sections of the upper and lower halves. Essentially, the end roller bearing of the typical gear bearing has been integrated into the normal gear tooth pattern.

  20. Magnetically leviated superconducting bearing

    Science.gov (United States)

    Weinberger, Bernard R.; Lynds, Jr., Lahmer

    1993-01-01

    A magnetically levitated superconducting bearing includes a magnet (2) mounted on a shaft (12) that is rotatable around an axis of rotation and a Type II superconductor (6) supported on a stator (14) in proximity to the magnet (2). The superconductor (6) is positioned so that when it is cooled to its superconducting state in the presence of a magnetic field, it interacts with the magnet (2) to produce an attractive force that levitates the magnet (2) and supports a load on the shaft (12). The interaction between the superconductor (6) and magnet(2) also produces surface screening currents (8) that generate a repulsive force perpendicular to the load. The bearing also has means for maintaining the superconductor at a temperature below its critical temperature (16, 18). The bearing could also be constructed so the magnet (2) is supported on the stator (14) and the superconductor (6) is mounted on the shaft (12). The bearing can be operated by cooling the superconductor (6) to its superconducting state in the presence of a magnetic field.

  1. Phenotypic and genetic differentiation among yellow monkeyflower populations from thermal and non-thermal soils in Yellowstone National Park.

    Science.gov (United States)

    Lekberg, Ylva; Roskilly, Beth; Hendrick, Margaret F; Zabinski, Catherine A; Barr, Camille M; Fishman, Lila

    2012-09-01

    In flowering plants, soil heterogeneity can generate divergent natural selection over fine spatial scales, and thus promote local adaptation in the absence of geographic barriers to gene flow. Here, we investigate phenotypic and genetic differentiation in one of the few flowering plants that thrives in both geothermal and non-thermal soils in Yellowstone National Park (YNP). Yellow monkeyflowers (Mimulus guttatus) growing at two geothermal ("thermal") sites in YNP were distinct in growth form and phenology from paired populations growing nearby ( 0.34), which were only weakly differentiated from each other (all F (ST) geothermal gradient in Yellowstone.

  2. Travel Times, Streamflow Velocities, and Dispersion Rates in the Yellowstone River, Montana

    Science.gov (United States)

    McCarthy, Peter M.

    2009-01-01

    The Yellowstone River is a vital natural resource to the residents of southeastern Montana and is a primary source of water for irrigation and recreation and the primary source of municipal water for several cities. The Yellowstone River valley is the primary east-west transportation corridor through southern Montana. This complex of infrastructure makes the Yellowstone River especially vulnerable to accidental spills from various sources such as tanker cars and trucks. In 2008, the U.S. Geological Survey (USGS), in cooperation with the Montana Department of Environmental Quality, initiated a dye-tracer study to determine instream travel times, streamflow velocities, and dispersion rates for the Yellowstone River from Lockwood to Glendive, Montana. The purpose of this report is to describe the results of this study and summarize data collected at each of the measurement sites between Lockwood and Glendive. This report also compares the results of this study to estimated travel times from a transport model developed by the USGS for a previous study. For this study, Rhodamine WT dye was injected at four locations in late September and early October 2008 during reasonably steady streamflow conditions. Streamflows ranged from 3,490 to 3,770 cubic feet per second upstream from the confluence of the Bighorn River and ranged from 6,520 to 7,570 cubic feet per second downstream from the confluence of the Bighorn River. Mean velocities were calculated for each subreach between measurement sites for the leading edge, peak concentration, centroid, and trailing edge at 10 percent of the peak concentration. Calculated velocities for the centroid of the dye plume for subreaches that were completely laterally mixed ranged from 1.83 to 3.18 ft/s within the study reach from Lockwood Bridge to Glendive Bridge. The mean of the completely mixed centroid velocity for the entire study reach, excluding the subreach between Forsyth Bridge and Cartersville Dam, was 2.80 ft/s. Longitudinal

  3. Origin and Evolution of the Yellowstone Hotspot from Seismic-GPS Imaging and Geodynamic Modeling

    Science.gov (United States)

    Smith, R. B.; Jordan, M.; Puskas, C. M.; Farrell, J.; Waite, G. P.

    2006-12-01

    The Yellowstone hotspot resulted from interaction of a mantle plume with the overriding North America plate. This feature and related processes have influenced a large part of the western U.S., producing the 16 Ma Yellowstone-Snake River Plain-Newberry silicic-basalt volcanic field (YSRPN). We integrate results from a multi-institution experiment that deployed 80 seismic stations and 160 campaign and 21 permanent GPS stations for 1999-2003. Crust and mantle velocity models were derived from inversion of teleseismic and local earthquake data. Kinematic and dynamic models were derived from inversion of GPS velocities constrained by stresses associated the topography and the +15 m geoid anomaly. Tomography revealed a P- and S-wave low-velocity body at depths of 8-16 km beneath the caldera that is interpreted as partial melt of 8-15% that feeds the youthful Yellowstone volcanic field. Volume changes in the magma chamber are responsible for GPS-measured episodes of uplift and subsidence of the caldera at decadal scales with average rates of ~20 mm/yr but much higher short-term rates of up to 80 mm/yr. An upper-mantle low-velocity body was imaged by inverting teleseismic data constrained by the geoid structure, crustal structure, and the upper mantle discontinuities. This low P and S velocity body extends from 80 km to ~250 km directly beneath Yellowstone and then continues to 650 km with unexpected tilt to the west at ~60°. The tilt is consistent with the ascent of the buoyant magma entrained in eastward return-flow of the upper mantle. We estimate this body has an excess temperature from 85K to 120K, depending on the water content and with up to 1.5% melt. Using the inclined plume-geometry and plate motion history, we extrapolate the Yellowstone mantle source southwestward ~800 km as a plume-head in oceanic lithosphere centered beneath the Columbia Plateau basalt field at 16 Ma. Magma ascent was truncated there by the passage of thicker continental lithosphere over

  4. A fluid-driven earthquake swarm on the margin of the Yellowstone caldera

    Science.gov (United States)

    Shelly, David R.; Hill, David P.; Massin, Frederick; Farrell, Jamie; Smith, Robert B.; Taira, Taka'aki

    2013-01-01

    Over the past several decades, the Yellowstone caldera has experienced frequent earthquake swarms and repeated cycles of uplift and subsidence, reflecting dynamic volcanic and tectonic processes. Here, we examine the detailed spatial-temporal evolution of the 2010 Madison Plateau swarm, which occurred near the northwest boundary of the Yellowstone caldera. To fully explore the evolution of the swarm, we integrated procedures for seismic waveform-based earthquake detection with precise double-difference relative relocation. Using cross-correlation of continuous seismic data and waveform templates constructed from cataloged events, we detected and precisely located 8710 earthquakes during the three-week swarm, nearly four times the number of events included in the standard catalog. This high-resolution analysis reveals distinct migration of earthquake activity over the course of the swarm. The swarm initiated abruptly on January 17, 2010 at about 10 km depth and expanded dramatically outward (both shallower and deeper) over time, primarily along a NNW-striking, ~55º ENE-dipping structure. To explain these characteristics, we hypothesize that the swarm was triggered by the rupture of a zone of confined high-pressure aqueous fluids into a pre-existing crustal fault system, prompting release of accumulated stress. The high-pressure fluid injection may have been accommodated by hybrid shear and dilatational failure, as is commonly observed in exhumed hydrothermally affected fault zones. This process has likely occurred repeatedly in Yellowstone as aqueous fluids exsolved from magma migrate into the brittle crust, and it may be a key element in the observed cycles of caldera uplift and subsidence.

  5. The Yellowstone ‘hot spot’ track results from migrating Basin Range extension

    Science.gov (United States)

    Foulger, Gillian R.; Christiansen, Robert L.; Anderson, Don L.; Foulger, Gillian R.; Lustrino, Michele; King, Scott D.

    2015-01-01

    Whether the volcanism of the Columbia River Plateau, eastern Snake River Plain, and Yellowstone (western U.S.) is related to a mantle plume or to plate tectonic processes is a long-standing controversy. There are many geological mismatches with the basic plume model as well as logical flaws, such as citing data postulated to require a deep-mantle origin in support of an “upper-mantle plume” model. USArray has recently yielded abundant new seismological results, but despite this, seismic analyses have still not resolved the disparity of opinion. This suggests that seismology may be unable to resolve the plume question for Yellowstone, and perhaps elsewhere. USArray data have inspired many new models that relate western U.S. volcanism to shallow mantle convection associated with subduction zone processes. Many of these models assume that the principal requirement for surface volcanism is melt in the mantle and that the lithosphere is essentially passive. In this paper we propose a pure plate model in which melt is commonplace in the mantle, and its inherent buoyancy is not what causes surface eruptions. Instead, it is extension of the lithosphere that permits melt to escape to the surface and eruptions to occur—the mere presence of underlying melt is not a sufficient condition. The time-progressive chain of rhyolitic calderas in the eastern Snake River Plain–Yellowstone zone that has formed since basin-range extension began at ca. 17 Ma results from laterally migrating lithospheric extension and thinning that has permitted basaltic magma to rise from the upper mantle and melt the lower crust. We propose that this migration formed part of the systematic eastward migration of the axis of most intense basin-range extension. The bimodal rhyolite-basalt volcanism followed migration of the locus of most rapid extension, not vice versa. This model does not depend on seismology to test it but instead on surface geological observations.

  6. Thermal controls of Yellowstone cutthroat trout and invasive fishes under climate change

    Science.gov (United States)

    Al-Chokhachy, Robert K.; Alder, Jay R.; Hostetler, Steven W.; Gresswell, Robert E.; Shepard, Bradley

    2013-01-01

    We combine large observed data sets and dynamically downscaled climate data to explore historic and future (2050–2069) stream temperature changes over the topographically diverse Greater Yellowstone Ecosystem (elevation range = 824–4017 m). We link future stream temperatures with fish growth models to investigate how changing thermal regimes could influence the future distribution and persistence of native Yellowstone cutthroat trout (YCT) and competing invasive species. We find that stream temperatures during the recent decade (2000–2009) surpass the anomalously warm period of the 1930s. Climate simulations indicate air temperatures will warm by 1 °C to >3 °C over the Greater Yellowstone by mid-21st century, resulting in concomitant increases in 2050–2069 peak stream temperatures and protracted periods of warming from May to September (MJJAS). Projected changes in thermal regimes during the MJJAS growing season modify the trajectories of daily growth rates at all elevations with pronounced growth during early and late summer. For high-elevation populations, we find considerable increases in fish body mass attributable both to warming of cold-water temperatures and to extended growing seasons. During peak July to August warming, mid-21st century temperatures will cause periods of increased thermal stress, rendering some low-elevation streams less suitable for YCT. The majority (80%) of sites currently inhabited by YCT, however, display minimal loss (changes in total body mass by midcentury; we attribute this response to the fact that many low-elevation populations of YCT have already been extirpated by historical changes in land use and invasions of non-native species. Our results further suggest that benefits to YCT populations due to warmer stream temperatures at currently cold sites could be offset by the interspecific effects of corresponding growth of sympatric, non-native species, underscoring the importance of developing climate adaptation

  7. Agricultural implications of reduced water supplies in the Green and Upper Yellowstone River Basins

    Energy Technology Data Exchange (ETDEWEB)

    Lansford, R. R.; Roach, F.; Gollehon, N. R.; Creel, B. J.

    1982-02-01

    The growth of the energy sector in the energy-rich but water-restricted Western US has presented a potential conflict with the irrigated agricultural sector. This study measures the direct impacts on farm income and employment resulting from the transfer of water from agriculture to energy in two specific geographical areas - the Green and Upper Yellowstone River Basins. We used a linear programming model to evaluate the impacts of reduced water supplies. Through the use of regional multipliers, we expanded our analysis to include regional impacts. Volume I provides the major analysis of these impacts. Volume II provides further technical data.

  8. Density-dependent intraspecific aggression regulates survival in northern Yellowstone wolves (Canis lupus).

    Science.gov (United States)

    Cubaynes, Sarah; MacNulty, Daniel R; Stahler, Daniel R; Quimby, Kira A; Smith, Douglas W; Coulson, Tim

    2014-11-01

    Understanding the population dynamics of top-predators is essential to assess their impact on ecosystems and to guide their management. Key to this understanding is identifying the mechanisms regulating vital rates. Determining the influence of density on survival is necessary to understand the extent to which human-caused mortality is compensatory or additive. In wolves (Canis lupus), empirical evidence for density-dependent survival is lacking. Dispersal is considered the principal way in which wolves adjust their numbers to prey supply or compensate for human exploitation. However, studies to date have primarily focused on exploited wolf populations, in which density-dependent mechanisms are likely weak due to artificially low wolf densities. Using 13 years of data on 280 collared wolves in Yellowstone National Park, we assessed the effect of wolf density, prey abundance and population structure, as well as winter severity, on age-specific survival in two areas (prey-rich vs. prey-poor) of the national park. We further analysed cause-specific mortality and explored the factors driving intraspecific aggression in the prey-rich northern area of the park. Overall, survival rates decreased during the study. In northern Yellowstone, density dependence regulated adult survival through an increase in intraspecific aggression, independent of prey availability. In the interior of the park, adult survival was less variable and density-independent, despite reduced prey availability. There was no effect of prey population structure in northern Yellowstone, or of winter severity in either area. Survival was similar among yearlings and adults, but lower for adults older than 6 years. Our results indicate that density-dependent intraspecific aggression is a major driver of adult wolf survival in northern Yellowstone, suggesting intrinsic density-dependent mechanisms have the potential to regulate wolf populations at high ungulate densities. When low prey availability or high

  9. Beyond the Inventory: An Interagency Collaboration to Reduce Greenhouse Gas Emissions in the Greater Yellowstone Area

    Energy Technology Data Exchange (ETDEWEB)

    Kandt, A.; Hotchkiss, E.; Fiebig, M.

    2010-10-01

    As one of the largest, intact ecosystems in the continental United States, land managers within the Greater Yellowstone Area (GYA) have recognized the importance of compiling and understanding agency greenhouse gas (GHG) emissions. The 10 Federal units within the GYA have taken an active role in compiling GHG inventories on a unit- and ecosystem-wide level, setting goals for GHG mitigation, and identifying mitigation strategies for achieving those goals. This paper details the processes, methodologies, challenges, solutions, and lessons learned by the 10 Federal units within the GYA throughout this ongoing effort.

  10. History of pronghorn population monitoring, research, and management in Yellowstone National Park

    Science.gov (United States)

    Keating, Kim A.

    2002-01-01

    Pronghorn antelope in Yellowstone National Park (YNP) persist in a small population that historically has experienced recurrent, sometimes dramatic declines. They apparently are isolated from other pronghorns, depend partly on private lands for winter range, experience heavy predation of fawns, and concentrate during winter in a relatively small area, thereby increasing their vulnerability to factors like disease or locally extreme weather. Overall, the situation raises serious concerns about the long-term viability of this population. Although such concerns are not new, evidence of a dramatic population decline since 1991 and continued poor recruitment has created a renewed sense of urgency.

  11. Geomicrobiology of Hydrothermal Vents in Yellowstone Lake: Phylogenetic and Functional Analysis suggest Importance of Geochemistry (Invited)

    Science.gov (United States)

    Inskeep, W. P.; Macur, R.; Jay, Z.; Clingenpeel, S.; Tenney, A.; Lavalvo, D.; Shanks, W. C.; McDermott, T.; Kan, J.; Gorby, Y.; Morgan, L. A.; Yooseph, S.; Varley, J.; Nealson, K.

    2010-12-01

    Yellowstone Lake (Yellowstone National Park, WY, USA) is a large, high-altitude, fresh-water lake that straddles the most recent Yellowstone caldera, and is situated on top of significant hydrothermal activity. An interdisciplinary study is underway to evaluate the geochemical and geomicrobiological characteristics of several hydrothermal vent environments sampled using a remotely operated vehicle, and to determine the degree to which these vents may influence the biology of this young freshwater ecosystem. Approximately six different vent systems (locations) were sampled during 2007 and 2008, and included water obtained directly from the hydrothermal vents as well as biomass and sediment associated with these high-temperature environments. Thorough geochemical analysis of these hydrothermal environments reveals variation in pH, sulfide, hydrogen and other potential electron donors that may drive primary productivity. The concentrations of dissolved hydrogen and sulfide were extremely high in numerous vents sampled, especially the deeper (30-50 m) vents located in the Inflated Plain, West Thumb, and Mary Bay. Significant dilution of hydrothermal fluids occurs due to mixing with surrounding lake water. Despite this, the temperatures observed in many of these hydrothermal vents range from 50-90 C, and elevated concentrations of constituents typically associated with geothermal activity in Yellowstone are observed in waters sampled directly from vent discharge. Microorganisms associated with elemental sulfur mats and filamentous ‘streamer’ communities of Inflated Plain and West Thumb (pH range 5-6) were dominated by members of the deeply-rooted bacterial Order Aquificales, but also contain thermophilic members of the domain Archaea. Assembly of metagenome sequence from the Inflated Plain vent biomass and to a lesser extent, West Thumb vent biomass reveal the importance of Sulfurihydrogenibium-like organisms, also important in numerous terrestrial geothermal

  12. Beaver damming, fluvial geomorphology, and climate in Yellowstone National Park, Wyoming

    Science.gov (United States)

    Persico, L.; Meyer, G.

    2008-12-01

    Beaver habitation is an important component of many fluvial landscapes that can impact a variety of hydrologic, geomorphic, and ecologic processes. Beaver damming, via long term valley aggradation, is thought to be important to the postglacial geomorphic evolution of many smaller mountain stream networks in the western United States. Loss of beaver dams can also cause rapid channel incision. Although several studies have documented rapid short-term aggradation of channels behind single beaver dams, there is little actual data on the long-term cumulative effect of beaver damming. In Yellowstone''s Northern Range, field surveys and stratigraphic section along six streams in the Northern Range reveal net thickness of mostly beaver-pond deposits. We estimate that reaches with clear morphologic and stratigraphic evidence for beaver-related aggradation constitute about 19% of the total stream network length. Reaches with probable and possible beaver-related aggradation make up an additional 8% and 2% of the network, respectively. The remaining 71% of the network has no clear evidence for beaver-related aggradation. Thirty-nine radiocarbon ages on beaver-pond deposits in northern Yellowstone fall primarily within the last 4000 yr, but gaps in dated beaver occupation from 2200-1800 and 950-750 cal yr BP correspond with severe and persistent droughts that likely caused low to ephemeral discharges in smaller streams. In the last two decades, severe drought has also caused streams that were occupied by beaver in the 1920s to become ephemeral. Beaver have been largely absent from the Northern Range since the mid-20th century, probably due to multiple ecological and climatic factors. This loss of beaver is thought to have led to widespread degradation of stream and riparian habitat via channel incision. Although 20th-century beaver loss has caused significant channel incision at some former dam sites, downcutting elsewhere in northern Yellowstone is unrelated to beaver dams or

  13. GRIZZLY Model of Multi-Reactive Species Diffusion, Moisture/Heat Transfer and Alkali-Silica Reaction for Simulating Concrete Aging and Degradation

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hai [Idaho National Lab. (INL), Idaho Falls, ID (United States); Spencer, Benjamin W. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cai, Guowei [Vanderbilt Univ., Nashville, TN (United States)

    2015-09-01

    Concrete is widely used in the construction of nuclear facilities because of its structural strength and its ability to shield radiation. The use of concrete in nuclear power plants for containment and shielding of radiation and radioactive materials has made its performance crucial for the safe operation of the facility. As such, when life extension is considered for nuclear power plants, it is critical to have accurate and reliable predictive tools to address concerns related to various aging processes of concrete structures and the capacity of structures subjected to age-related degradation. The goal of this report is to document the progress of the development and implementation of a fully coupled thermo-hydro-mechanical-chemical model in GRIZZLY code with the ultimate goal to reliably simulate and predict long-term performance and response of aged NPP concrete structures subjected to a number of aging mechanisms including external chemical attacks and volume-changing chemical reactions within concrete structures induced by alkali-silica reactions and long-term exposure to irradiation. Based on a number of survey reports of concrete aging mechanisms relevant to nuclear power plants and recommendations from researchers in concrete community, we’ve implemented three modules during FY15 in GRIZZLY code, (1) multi-species reactive diffusion model within cement materials; (2) coupled moisture and heat transfer model in concrete; and (3) anisotropic, stress-dependent, alkali-silica reaction induced swelling model. The multi-species reactive diffusion model was implemented with the objective to model aging of concrete structures subjected to aggressive external chemical attacks (e.g., chloride attack, sulfate attack, etc.). It considers multiple processes relevant to external chemical attacks such as diffusion of ions in aqueous phase within pore spaces, equilibrium chemical speciation reactions and kinetic mineral dissolution/precipitation. The moisture

  14. Actuators for Active Magnetic Bearings

    Directory of Open Access Journals (Sweden)

    Eric H. Maslen

    2017-10-01

    Full Text Available The literature of active magnetic bearing (AMB technology dates back to at least 1937 when the earliest work that clearly describes an active magnetic bearing system was published by Jesse Beams [...

  15. Delayed child-bearing.

    Science.gov (United States)

    Johnson, Jo-Ann; Tough, Suzanne

    2012-01-01

    To provide an overview of delayed child-bearing and to describe the implications for women and health care providers. Delayed child-bearing, which has increased greatly in recent decades, is associated with an increased risk of infertility, pregnancy complications, and adverse pregnancy outcome. This guideline provides information that will optimize the counselling and care of Canadian women with respect to their reproductive choices. Maternal age is the most important determinant of fertility, and obstetric and perinatal risks increase with maternal age. Many women are unaware of the success rates or limitations of assisted reproductive technology and of the increased medical risks of delayed child-bearing, including multiple births, preterm delivery, stillbirth, and Caesarean section. This guideline provides a framework to address these issues. Studies published between 2000 and August 2010 were retrieved through searches of PubMed and the Cochrane Library using appropriate key words (delayed child-bearing, deferred pregnancy, maternal age, assisted reproductive technology, infertility, and multiple births) and MeSH terms (maternal age, reproductive behaviour, fertility). The Internet was also searched using similar key words, and national and international medical specialty societies were searched for clinical practice guidelines and position statements. Data were extracted based on the aims, sample, authors, year, and results. The quality of evidence was rated using the criteria described in the Report of the Canadian Task Force on Preventive Health Care (Table 1). The Society of Obstetricians and Gynaecologists of Canada. RECOMMENDATIONS 1. Women who delay child-bearing are at increased risk of infertility. Prospective parents, especially women, should know that their fecundity and fertility begin to decline significantly after 32 years of age. Prospective parents should know that assisted reproductive technologies cannot guarantee a live birth or completely

  16. Government Risk-Bearing

    CERN Document Server

    1993-01-01

    The u.s. government bulks large in the nation's financial markets. The huge volume of government-issued and -sponsored debt affects the pricing and volume ofprivate debt and, consequently, resource allocation between competing alternatives. What is often not fully appreciated is the substantial influence the federal government wields overresource allocation through its provisionofcreditandrisk-bearing services to the private economy. Because peopleand firms generally seekto avoid risk, atsomeprice they are willing to pay another party to assume the risk they would otherwise face. Insurance companies are a class of private-sector firms one commonly thinks of as providing these services. As the federal government has expanded its presence in the U.S. economy during this century, it has increasingly developed programs aimed at bearing risks that the private sector either would not take on at any price, or would take on but atapricethoughtto besogreatthatmostpotentialbeneficiarieswouldnotpurchase the coverage. To...

  17. Passive magnetic bearing system

    Science.gov (United States)

    Post, Richard F.

    2014-09-02

    An axial stabilizer for the rotor of a magnetic bearing provides external control of stiffness through switching in external inductances. External control also allows the stabilizer to become a part of a passive/active magnetic bearing system that requires no external source of power and no position sensor. Stabilizers for displacements transverse to the axis of rotation are provided that require only a single cylindrical Halbach array in its operation, and thus are especially suited for use in high rotation speed applications, such as flywheel energy storage systems. The elimination of the need of an inner cylindrical array solves the difficult mechanical problem of supplying support against centrifugal forces for the magnets of that array. Compensation is provided for the temperature variation of the strength of the magnetic fields of the permanent magnets in the levitating magnet arrays.

  18. Stacked magnet superconducting bearing

    International Nuclear Information System (INIS)

    Rigney, T.K. II; Saville, M.P.

    1993-01-01

    A superconducting bearing is described, comprising: a plurality of permanent magnets magnetized end-to-end and stacked side-by-side in alternating polarity, such that flux lines flow between ends of adjacent magnets; isolating means, disposed between said adjacent magnets, for reducing flux leakage between opposing sides of said adjacent magnets; and a member made of superconducting material having at least one surface in communication with said flux lines

  19. Radium bearing waste disposal

    International Nuclear Information System (INIS)

    Tope, W.G.; Nixon, D.A.; Smith, M.L.; Stone, T.J.; Vogel, R.A.; Schofield, W.D.

    1995-01-01

    Fernald radium bearing ore residue waste, stored within Silos 1 and 2 (K-65) and Silo 3, will be vitrified for disposal at the Nevada Test Site (NTS). A comprehensive, parametric evaluation of waste form, packaging, and transportation alternatives was completed to identify the most cost-effective approach. The impacts of waste loading, waste form, regulatory requirements, NTS waste acceptance criteria, as-low-as-reasonably-achievable principles, and material handling costs were factored into the recommended approach

  20. Magnetic translator bearings

    Science.gov (United States)

    Hockney, Richard L. (Inventor); Downer, James R. (Inventor); Eisenhaure, David B. (Inventor); Hawkey, Timothy J. (Inventor); Johnson, Bruce G. (Inventor)

    1990-01-01

    A magnetic bearing system for enabling translational motion includes a carriage and a shaft for movably supporting the carriage; a first magnetic bearing fixed to one of the carriage and shaft and slidably received in a first channel of the other of the carriage and shaft. The first channel is generally U shaped with two side walls and a back wall. The magnetic bearing includes a pair of spaced magnetic pole pieces, each pole piece having a pair of electromagnetic coils mounted on poles on opposite ends of the pole piece proximate the side walls, and a third electromagnetic coil mounted on a pole of the pole piece proximate the backwall; a motion sensor for sensing translational motion along two axes and rotationally about three axes of the carriage and shaft relative to each other; and a correction circuit responsive to the sensor for generating a correction signal to drive the coils to compensate for any misalignment sensed between the carriage and the shaft.

  1. Vegetation monitoring to detect and predict vegetation change: Connecting historical and future shrub/steppe data in Yellowstone National Park

    Science.gov (United States)

    Geneva Chong; David Barnett; Benjamin Chemel; Roy Renkin; Pamela Sikkink

    2011-01-01

    A 2002 National Research Council (NRC) evaluation of ungulate management practices in Yellowstone specifically concluded that previous (1957 to present) vegetation monitoring efforts were insufficient to determine whether climate or ungulates were more influential on shrub/steppe dynamics on the northern ungulate winter range. The NRC further recommended that the...

  2. The battle for Yellowstone: Morality and the  sacred roots of environmental conflict, by Justin Farrell

    Science.gov (United States)

    John Schelhas

    2017-01-01

    A growing number of intractable environmental conflicts involving interest groups with deeply held beliefs are resisting resolution in spite of extensive scientific analysis and legal and bureaucratic attention. Justin Farrell addresses three such conflicts in the Greater Yellowstone Ecosystem (GYE) as moral and spiritual conflicts, each uniquely animated by history,...

  3. Chemical analyses of waters from geysers, hot springs, and pools in Yellowstone National Park, Wyoming from 1974 to 1978

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, J.M.; Yadav, S.

    1979-01-01

    Waters from geysers, hot springs, and pools of Yellowstone National Park have been analyzed. We report 422 complete major ion analyses from 330 different locations of geysers, hot springs, and pools, collected from 1974 to 1978. Many of the analyses from Upper, Midway, Lower, and Norris Geyser Basin are recollections of features previously reported.

  4. What is “natural”? : Yellowstone elk population - A case study

    Science.gov (United States)

    Keigley, R.B.; Wagner, Frederic H.

    2000-01-01

    Ecology analyzes the structure and function of ecosystems at all points along the continuum of human disturbance, from so-called pristine forests to urban backyards. Undisturbed systems provide reference points at one end of the spectrum, and nature reserves and parks are highly valued because they can provide unique examples of such ecosystems. Unfortunately the concept of “natural” or pristine is not that easy to define. Indeed, although ecologists have considered pre-Columbian, western-hemisphere ecosystems to have been largely unaltered by human action, and have termed their state “natural” or “pristine,” evidence from archaeology challenges this view. U.S. and Canadian national parks are charged with preserving the “natural,” and thus need to be able to understand and manage for the “natural.” A pivotal “natural” question in Yellowstone National Park management is the size of the northern-range, wintering elk population at Park establishment in 1872, argued both to have been small and large. Integrating and quantifying several sources of evidence provides a consistent picture of a low population (ca. 5,000–6,000), largely migrating out of the northern range in winter, with little vegetation impact. If we accept this conclusion about what is natural for the Yellowstone ecosystem, then it dramatically alters how we view management alternatives for the Park, which currently supports a northern wintering herd of up to ˜ 25,000 elk.

  5. Population viability of Arctic grayling in the Gibbon River, Yellowstone National Park

    Science.gov (United States)

    Steed, Amber C.; Zale, Alexander V.; Koel, Todd M.; Kalinowski, Steven T.

    2010-01-01

    The fluvial Arctic grayling Thymallus arcticus is restricted to less than 5% of its native range in the contiguous United States and was relisted as a category 3 candidate species under the U.S. Endangered Species Act in 2010. Although fluvial Arctic grayling of the lower Gibbon River, Yellowstone National Park, Wyoming, were considered to have been extirpated by 1935, anglers and biologists have continued to report catching low numbers of Arctic grayling in the river. Our goal was to determine whether a viable population of fluvial Arctic grayling persisted in the Gibbon River or whether the fish caught in the river were downstream emigrants from lacustrine populations in headwater lakes. We addressed this goal by determining relative abundances, sources, and evidence for successful spawning of Arctic grayling in the Gibbon River. During 2005 and 2006, Arctic grayling comprised between 0% and 3% of the salmonid catch in riverwide electrofishing (mean Back-calculated lengths at most ages were similar among all fish, and successful spawning within the Gibbon River below the headwater lakes was not documented. Few Arctic grayling adults and no fry were detected in the Gibbon River, implying that a reproducing fluvial population does not exist there. These findings have implications for future Endangered Species Act considerations and management of fluvial Arctic grayling within and outside of Yellowstone National Park. Our comprehensive approach is broadly applicable to the management of sparsely detected aquatic species worldwide.

  6. The YNP Metagenome Project: Environmental Parameters Responsible for Microbial Distribution in the Yellowstone Geothermal Ecosystem

    Directory of Open Access Journals (Sweden)

    William P. Inskeep

    2013-05-01

    Full Text Available The Yellowstone geothermal complex contains over 10,000 diverse geothermal features that host numerous phylogenetically deeply-rooted and poorly understood archaea, bacteria and viruses. Microbial communities in high-temperature environments are generally less diverse than soil, marine, sediment or lake habitats and therefore offer a tremendous opportunity for studying the structure and function of different model microbial communities using environmental metagenomics. One of the broader goals of this study was to establish linkages among microbial distribution, metabolic potential and environmental variables. Twenty geochemically distinct geothermal ecosystems representing a broad spectrum of Yellowstone hot-spring environments were used for metagenomic and geochemical analysis and included approximately equal numbers of: (1 phototrophic mats, (2 ‘filamentous streamer’ communities, and (3 archaeal-dominated sediments. The metagenomes were analyzed using a suite of complementary and integrative bioinformatic tools, including phylogenetic and functional analysis of both individual sequence reads and assemblies of predominant phylotypes. This volume identifies major environmental determinants of a large number of thermophilic microbial lineages, many of which have not been fully described in the literature nor previously cultivated to enable functional and genomic analyses. Moreover, protein family abundance comparisons and in-depth analyses of specific genes and metabolic pathways relevant to these hot-spring environments reveal hallmark signatures of metabolic capabilities that parallel the distribution of phylotypes across specific types of geochemical environments.

  7. Rapid heterogeneous assembly of multiple magma reservoirs prior to Yellowstone supereruptions.

    Science.gov (United States)

    Wotzlaw, Jörn-Frederik; Bindeman, Ilya N; Stern, Richard A; D'Abzac, Francois-Xavier; Schaltegger, Urs

    2015-09-10

    Large-volume caldera-forming eruptions of silicic magmas are an important feature of continental volcanism. The timescales and mechanisms of assembly of the magma reservoirs that feed such eruptions as well as the durations and physical conditions of upper-crustal storage remain highly debated topics in volcanology. Here we explore a comprehensive data set of isotopic (O, Hf) and chemical proxies in precisely U-Pb dated zircon crystals from all caldera-forming eruptions of Yellowstone supervolcano. Analysed zircons record rapid assembly of multiple magma reservoirs by repeated injections of isotopically heterogeneous magma batches and short pre-eruption storage times of 10(3) to 10(4) years. Decoupled oxygen-hafnium isotope systematics suggest a complex source for these magmas involving variable amounts of differentiated mantle-derived melt, Archean crust and hydrothermally altered shallow-crustal rocks. These data demonstrate that complex magma reservoirs with multiple sub-chambers are a common feature of rift- and hotspot related supervolcanoes. The short duration of reservoir assembly documents rapid crustal remelting and two to three orders of magnitude higher magma production rates beneath Yellowstone compared to continental arc volcanoes. The short pre-eruption storage times further suggest that the detection of voluminous reservoirs of eruptible magma beneath active supervolcanoes may only be possible prior to an impending eruption.

  8. Yellowstone as an Analog for Thermal-Hydrological-Chemical Processes at Yucca Mountain

    International Nuclear Information System (INIS)

    Dobson, P. F.; Kneafsey, T. J.; Simmons, A.; Hulen, J.

    2001-01-01

    Enhanced water-rock interaction resulting from the emplacement of heat-generating nuclear waste in the potential geologic repository at Yucca Mountain, Nevada, may result in changes to fluid flow (resulting from mineral dissolution and precipitation in condensation and boiling zones, respectively). Studies of water-rock interaction in active and fossil geothermal systems (natural analogs) provide evidence for changes in permeability and porosity resulting from thermal-hydrological-chemical (THC) processes. The objective of this research is to document the effects of coupled THC processes at Yellowstone and then examine how differences in scale could influence the impact that these processes may have on the Yucca Mountain system. Subsurface samples from Yellowstone National Park, one of the largest active geothermal systems in the world, contain some the best examples of hydrothermal self-sealing found in geothermal systems. We selected core samples from two USGS research drill holes from the transition zone between conductive and convective portions of the geothermal system (where sealing was reported to occur). We analyzed the core, measuring the permeability, porosity, and grain density of selected samples to evaluate how lithology, texture, and degree of hydrothermal alteration influence matrix and fracture permeability

  9. Yersinia enterocolitica: an unlikely cause of positive brucellosis tests in greater yellowstone ecosystem bison (Bison bison).

    Science.gov (United States)

    See, Wade; Edwards, William H; Dauwalter, Stacey; Almendra, Claudia; Kardos, Martin D; Lowell, Jennifer L; Wallen, Rick; Cain, Steven L; Holben, William E; Luikart, Gordon

    2012-07-01

    Yersinia enterocolitica serotype O:9 has identical O-antigens to those of Brucella abortus and has apparently caused false-positive reactions in numerous brucellosis serologic tests in elk (Cervus canadensis) from southwest Montana. We investigated whether a similar phenomenon was occurring in brucellosis antibody-positive bison (Bison bison) using Y. enterocolitica culturing techniques and multiplex PCR of four diagnostic loci. Feces from 53 Yellowstone bison culled from the population and 113 free-roaming bison from throughout the Greater Yellowstone Ecosystem (GYE) were tested. Yersinia enterocolitica O:9 was not detected in any of 53 the bison samples collected at slaughter facilities or in any of the 113 fecal samples from free-ranging bison. One other Y. enterocolitica serotype was isolated; however, it is not known to cause cross-reaction on B. abortus serologic assays because it lacks the perosamine synthetase gene and thus the O-antigens. These findings suggest that Y. enterocolitica O:9 cross-reactivity with B. abortus antigens is unlikely to have been a cause of false-positive serology tests in GYE bison and that Y. enterocolitica prevalence was low in bison in the GYE during this study.

  10. Bearing for liquid metal pump

    International Nuclear Information System (INIS)

    Dickinson, R.J.; Pennell, W.E.; Wasko, J.

    1984-01-01

    A liquid metal pump bearing support comprises a series of tangentially oriented spokes that connect the bearing cylinder to the pump internals structure. The spokes may be arranged in a plurality of planes extending from the bearing cylinder to the pump internals with the spokes in one plane being arranged alternately with those in the next plane. The bearing support structure provides the pump with sufficient lateral support for the bearing structure together with the capability of accommodating differential thermal expansion without adversely affecting pump performance

  11. Bearing construction for refrigeration compresssor

    Science.gov (United States)

    Middleton, Marc G.; Nelson, Richard T.

    1988-01-01

    A hermetic refrigeration compressor has a cylinder block and a crankshaft rotatable about a vertical axis to reciprocate a piston in a cylinder on the cylinder block. A separate bearing housing is secured to the central portion of the cylinder block and extends vertically along the crankshaft, where it carries a pair of roller bearings to journal the crankshaft. The crankshaft has a radially extending flange which is journaled by a thrust-type roller bearing above the bearing housing to absorb the vertical forces on the crankshaft so that all three of the roller bearings are between the crankshaft and the bearing housing to maintain and control the close tolerances required by such bearings.

  12. 77 FR 70423 - Black Bear Hydro Partners, LLC and Black Bear Development Holdings, LLC and Black Bear SO, LLC...

    Science.gov (United States)

    2012-11-26

    ... Bear Hydro Partners, LLC and Black Bear Development Holdings, LLC and Black Bear SO, LLC; Notice of..., 2012, Black Bear Hydro Partners, LLC, sole licensee (transferor) and Black Bear Development Holdings, LLC and Black Bear SO, LLC (transferees) filed an application for the partial the transfer of licenses...

  13. Introgressive hybridization: brown bears as vectors for polar bear alleles.

    Science.gov (United States)

    Hailer, Frank

    2015-03-01

    The dynamics and consequences of introgression can inform about numerous evolutionary processes. Biologists have therefore long been interested in hybridization. One challenge, however, lies in the identification of nonadmixed genotypes that can serve as a baseline for accurate quantification of admixture. In this issue of Molecular Ecology, Cahill et al. (2015) analyse a genomic data set of 28 polar bears, eight brown bears and one American black bear. Polar bear alleles are found to be introgressed into brown bears not only near a previously identified admixture zone on the Alaskan Admiralty, Baranof and Chichagof (ABC) Islands, but also far into the North American mainland. Elegantly contrasting admixture levels at autosomal and X chromosomal markers, Cahill and colleagues infer that male-biased dispersal has spread these introgressed alleles away from the Late Pleistocene contact zone. Compared to a previous study on the ABC Island population in which an Alaskan brown bear served as a putatively admixture-free reference, Cahill et al. (2015) utilize a newly sequenced Swedish brown bear as admixture baseline. This approach reveals that brown bears have been impacted by introgression from polar bears to a larger extent (up to 8.8% of their genome), than previously known, including the bear that had previously served as admixture baseline. No evidence for introgression of brown bear into polar bear is found, which the authors argue could be a consequence of selection. Besides adding new exciting pieces to the puzzle of polar/brown bear evolutionary history, the study by Cahill and colleagues highlights that wildlife genomics is moving from analysing single genomes towards a landscape genomics approach. © 2015 John Wiley & Sons Ltd.

  14. Mapping temperature and radiant geothermal heat flux anomalies in the Yellowstone geothermal system using ASTER thermal infrared data

    Science.gov (United States)

    Vaughan, R. Greg; Lowenstern, Jacob B.; Keszthelyi, Laszlo P.; Jaworowski, Cheryl; Heasler, Henry

    2012-01-01

    The purpose of this work was to use satellite-based thermal infrared (TIR) remote sensing data to measure, map, and monitor geothermal activity within the Yellowstone geothermal area to help meet the missions of both the U.S. Geological Survey Yellowstone Volcano Observatory and the Yellowstone National Park Geology Program. Specifically, the goals were to: 1) address the challenges of remotely characterizing the spatially and temporally dynamic thermal features in Yellowstone by using nighttime TIR data from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and 2) estimate the temperature, geothermal radiant emittance, and radiant geothermal heat flux (GHF) for Yellowstone’s thermal areas (both Park wide and for individual thermal areas). ASTER TIR data (90-m pixels) acquired at night during January and February, 2010, were used to estimate surface temperature, radiant emittance, and radiant GHF from all of Yellowstone’s thermal features, produce thermal anomaly maps, and update field-based maps of thermal areas. A background subtraction technique was used to isolate the geothermal component of TIR radiance from thermal radiance due to insolation. A lower limit for the Yellowstone’s total radiant GHF was established at ~2.0 GW, which is ~30-45% of the heat flux estimated through geochemical (Cl-flux) methods. Additionally, about 5 km2 was added to the geodatabase of mapped thermal areas. This work provides a framework for future satellite-based thermal monitoring at Yellowstone as well as exploration of other volcanic / geothermal systems on a global scale.

  15. Cognitive Factors that Impact Learning in the Field: Observations from an REU Project on Precambrian Rocks of Yellowstone National Park

    Science.gov (United States)

    Henry, D.; Mogk, D. W.; Goodwin, C.

    2011-12-01

    Field work requires cognitive processing on many different levels, and constitutes a powerful and important learning environment. To be effective and meaningful, the context of field work must be fully understood in terms of key research questions, earlier published work, regional geology, geologic history, and geologic processes. Scale(s) of observation and sample selection methods and strategies must be defined. Logistical decisions must be made about equipment needed, points of access, and navigation in the field. Professional skills such as field note-taking, measuring structural data, and rock descriptions must be employed, including appropriate use of field tools. Interpretations of geologic features in the field must be interpreted through recall of concepts from the geologic knowledge base (e.g. crystallization history of igneous rocks interpreted through phase diagrams). Field workers need to be able to self-monitor and self-regulate their actions (metacognitively), and make adjustments to daily plans as needed. The results of field work must be accurately and effectively communicated to other geoscientists. Personal and professional ethics and values are brought to bear as decisions are made about whether or not the work has been satisfactorily completed at a field site. And, all of this must be done against a back drop of environmental factors that affect the ability to do this work (e.g. inclement weather, bears, impassable landscapes). The simultaneous relevance of all these factors creates a challenging, but rewarding environment for learning on many different scales. During our REU project to study the Precambrian rocks in the back country of Yellowstone National Park (YNP), we considered these cognitive factors in designing our project curriculum. To reduce the "novelty space" of the project a website was developed that described the project goals and expected outcomes, introduced primary literature, and alerted students about the physical demands

  16. Assessing Nutritional Parameters of Brown Bear Diets among Ecosystems Gives Insight into Differences among Populations.

    Science.gov (United States)

    López-Alfaro, Claudia; Coogan, Sean C P; Robbins, Charles T; Fortin, Jennifer K; Nielsen, Scott E

    2015-01-01

    Food habit studies are among the first steps used to understand wildlife-habitat relationships. However, these studies are in themselves insufficient to understand differences in population productivity and life histories, because they do not provide a direct measure of the energetic value or nutritional composition of the complete diet. Here, we developed a dynamic model integrating food habits and nutritional information to assess nutritional parameters of brown bear (Ursus arctos) diets among three interior ecosystems of North America. Specifically, we estimate the average amount of digestible energy and protein (per kilogram fresh diet) content in the diet and across the active season by bears living in western Alberta, the Flathead River (FR) drainage of southeast British Columbia, and the Greater Yellowstone Ecosystem (GYE). As well, we estimate the proportion of energy and protein in the diet contributed by different food items, thereby highlighting important food resources in each ecosystem. Bear diets in Alberta had the lowest levels of digestible protein and energy through all seasons, which might help explain the low reproductive rates of this population. The FR diet had protein levels similar to the recent male diet in the GYE during spring, but energy levels were lower during late summer and fall. Historic and recent diets in GYE had the most energy and protein, which is consistent with their larger body sizes and higher population productivity. However, a recent decrease in consumption of trout (Oncorhynchus clarki), whitebark pine nuts (Pinus albicaulis), and ungulates, particularly elk (Cervus elaphus), in GYE bears has decreased the energy and protein content of their diet. The patterns observed suggest that bear body size and population densities are influenced by seasonal availability of protein an energy, likely due in part to nutritional influences on mass gain and reproductive success.

  17. Assessing Nutritional Parameters of Brown Bear Diets among Ecosystems Gives Insight into Differences among Populations.

    Directory of Open Access Journals (Sweden)

    Claudia López-Alfaro

    Full Text Available Food habit studies are among the first steps used to understand wildlife-habitat relationships. However, these studies are in themselves insufficient to understand differences in population productivity and life histories, because they do not provide a direct measure of the energetic value or nutritional composition of the complete diet. Here, we developed a dynamic model integrating food habits and nutritional information to assess nutritional parameters of brown bear (Ursus arctos diets among three interior ecosystems of North America. Specifically, we estimate the average amount of digestible energy and protein (per kilogram fresh diet content in the diet and across the active season by bears living in western Alberta, the Flathead River (FR drainage of southeast British Columbia, and the Greater Yellowstone Ecosystem (GYE. As well, we estimate the proportion of energy and protein in the diet contributed by different food items, thereby highlighting important food resources in each ecosystem. Bear diets in Alberta had the lowest levels of digestible protein and energy through all seasons, which might help explain the low reproductive rates of this population. The FR diet had protein levels similar to the recent male diet in the GYE during spring, but energy levels were lower during late summer and fall. Historic and recent diets in GYE had the most energy and protein, which is consistent with their larger body sizes and higher population productivity. However, a recent decrease in consumption of trout (Oncorhynchus clarki, whitebark pine nuts (Pinus albicaulis, and ungulates, particularly elk (Cervus elaphus, in GYE bears has decreased the energy and protein content of their diet. The patterns observed suggest that bear body size and population densities are influenced by seasonal availability of protein an energy, likely due in part to nutritional influences on mass gain and reproductive success.

  18. Assessing Nutritional Parameters of Brown Bear Diets among Ecosystems Gives Insight into Differences among Populations

    Science.gov (United States)

    López-Alfaro, Claudia; Coogan, Sean C. P.; Robbins, Charles T.; Fortin, Jennifer K.; Nielsen, Scott E.

    2015-01-01

    Food habit studies are among the first steps used to understand wildlife-habitat relationships. However, these studies are in themselves insufficient to understand differences in population productivity and life histories, because they do not provide a direct measure of the energetic value or nutritional composition of the complete diet. Here, we developed a dynamic model integrating food habits and nutritional information to assess nutritional parameters of brown bear (Ursus arctos) diets among three interior ecosystems of North America. Specifically, we estimate the average amount of digestible energy and protein (per kilogram fresh diet) content in the diet and across the active season by bears living in western Alberta, the Flathead River (FR) drainage of southeast British Columbia, and the Greater Yellowstone Ecosystem (GYE). As well, we estimate the proportion of energy and protein in the diet contributed by different food items, thereby highlighting important food resources in each ecosystem. Bear diets in Alberta had the lowest levels of digestible protein and energy through all seasons, which might help explain the low reproductive rates of this population. The FR diet had protein levels similar to the recent male diet in the GYE during spring, but energy levels were lower during late summer and fall. Historic and recent diets in GYE had the most energy and protein, which is consistent with their larger body sizes and higher population productivity. However, a recent decrease in consumption of trout (Oncorhynchus clarki), whitebark pine nuts (Pinus albicaulis), and ungulates, particularly elk (Cervus elaphus), in GYE bears has decreased the energy and protein content of their diet. The patterns observed suggest that bear body size and population densities are influenced by seasonal availability of protein an energy, likely due in part to nutritional influences on mass gain and reproductive success. PMID:26083536

  19. Self lubricating fluid bearings

    International Nuclear Information System (INIS)

    Kapich, D.D.

    1980-01-01

    The invention concerns self lubricating fluid bearings, which are used in a shaft sealed system extending two regions. These regions contain fluids, which have to be isolated. A first seal is fluid tight for the first region between the carter shaft and the shaft. The second seal is fluid tight between the carter and the shaft, it communicates with the second region. The first fluid region is the environment surrounding the shaft carter. The second fluid region is a part of a nuclear reactor which contains the cooling fluid. The shaft is conceived to drive a reactor circulating and cooling fluid [fr

  20. Nanoprecipitation in bearing steels

    International Nuclear Information System (INIS)

    Barrow, A.T.W.; Rivera-Diaz-del-Castillo, P.E.J.

    2011-01-01

    θ-phase is the main hardening species in bearing steels and appears in both martensitically and bainitically hardened microstructures. This work presents a survey of the microstrucural features accompanying nanoprecipitation in bearing steels. Nanoprecipitate structures formed in 1C-1.5Cr wt.% with additions of Cr, Mn, Mo, Si and Ni are studied. The work is combined with thermodynamic calculations and neural networks to predict the expected matrix composition, and whether this will transform martensitically or bainitically. Martensite tetragonality, composition and the amount of retained austenite are related to hardness and the type of nanoprecipitate structures in martensitic grades. The θ-phase volume fraction, the duration of the bainite to austenite transformation and the amount of retained austenite are related to hardness and a detailed quantitative description of the precipitate nanostructures. Such description includes compositional studies using energy-dispersive spectroscopy, which shows that nanoprecipitate formation takes place under paraequilibrium. Special attention is devoted to a novel two-step bainite tempering process which shows maximum hardness; we prove that this is the most effective process for incorporating solute into the precipitates, which are finer than those resulting from one-step banitic transformation processes.

  1. Superconducting bearings in flywheels

    Energy Technology Data Exchange (ETDEWEB)

    Coombs, T.A.; Campbell, A.M.; Ganney, I.; Lo, W. [Cambridge Univ. (United Kingdom). Interdisciplinary Research Centre in Superconductivity (IRC); Twardowski, T. [International Energy Systems, Chester High Road, Neston, South Wirral (United Kingdom); Dawson, B. [British Nuclear Fuels, Capenhurst, South Wirral (United Kingdom)

    1998-05-01

    Investigations are being carried out into the use of superconducting magnetic bearings to levitate energy storage flywheels. In a planned program of work, Cambridge University are aiming to produce a practical bearing system for Pirouette(TM). The Pirouette(TM) system is designed to provide 5 kWh of recoverable energy which is currently recoverable at a rate of 5 kW (future revisions will provide up to 50 kW). IES (a British Nuclear Fuels subsidiary) the owners of the Pirouette(TM) machine have supplied Cambridge with a flywheel. This flywheel weighs >40 kg and is being levitated using an Evershed-type arrangement in which the superconductor is being used to stabilize the interaction between two magnets. To date we have demonstrated stable levitation in static and low speed tests in a rig designed for low speeds of rotation in air. A second rig which is currently under construction at BNFL will run in vacuum at speeds of up to 50 (orig.) 5 refs.

  2. Carbon fluxes in ecosystems of Yellowstone National Park predicted from remote sensing data and simulation modeling.

    Science.gov (United States)

    Potter, Christopher; Klooster, Steven; Crabtree, Robert; Huang, Shengli; Gross, Peggy; Genovese, Vanessa

    2011-08-11

    A simulation model based on remote sensing data for spatial vegetation properties has been used to estimate ecosystem carbon fluxes across Yellowstone National Park (YNP). The CASA (Carnegie Ames Stanford Approach) model was applied at a regional scale to estimate seasonal and annual carbon fluxes as net primary production (NPP) and soil respiration components. Predicted net ecosystem production (NEP) flux of CO2 is estimated from the model for carbon sinks and sources over multi-year periods that varied in climate and (wildfire) disturbance histories. Monthly Enhanced Vegetation Index (EVI) image coverages from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) instrument (from 2000 to 2006) were direct inputs to the model. New map products have been added to CASA from airborne remote sensing of coarse woody debris (CWD) in areas burned by wildfires over the past two decades. Model results indicated that relatively cooler and wetter summer growing seasons were the most favorable for annual plant production and net ecosystem carbon gains in representative landscapes of YNP. When summed across vegetation class areas, the predominance of evergreen forest and shrubland (sagebrush) cover was evident, with these two classes together accounting for 88% of the total annual NPP flux of 2.5 Tg C yr-1 (1 Tg = 1012 g) for the entire Yellowstone study area from 2000-2006. Most vegetation classes were estimated as net ecosystem sinks of atmospheric CO2 on annual basis, making the entire study area a moderate net sink of about +0.13 Tg C yr-1. This average sink value for forested lands nonetheless masks the contribution of areas burned during the 1988 wildfires, which were estimated as net sources of CO2 to the atmosphere, totaling to a NEP flux of -0.04 Tg C yr-1 for the entire burned area. Several areas burned in the 1988 wildfires were estimated to be among the lowest in overall yearly NPP, namely the Hellroaring Fire, Mink Fire, and Falls Fire areas. Rates of

  3. Survey of selected pathogens and blood parameters of northern yellowstone elk: Wolf sanitation effect implications

    Science.gov (United States)

    Barber-Meyer, S. M.; White, P.J.; Mech, L.D.

    2007-01-01

    The restoration or conservation of predators could reduce seroprevalences of certain diseases in prey if predation selectively removes animals exhibiting clinical signs. We assessed disease seroprevalences and blood parameters of 115 adult female elk (Cervus elaphus) wintering on the northern range of Yellowstone National Park [YNP] during 2000-2005 and compared them to data collected prior to wolf (Canis lupus) restoration (WR) in 1995 and to two other herds in Montana to assess this prediction. Blood parameters were generally within two standard deviations of the means observed in other Montana herds (Gravelly-Snowcrest [GS] and Garnet Mountain [GM]), but Yellowstone elk had higher seroprevalences of parainfluenza-3 virus (95% CI YNP = 61.1-78.6, GS = 30.3-46.5) and bovine-virus-diarrhea virus type 1 (95% CI YNP = 15.9-31.9, GM = 0). In comparisons between pre-wolf restoration [pre-WR] (i.e., prior to 1995) seroprevalences with those post-wolf restoration [post-WR] in Yellowstone, we found lower seroprevalences for some disease-causing agents post-wolf restoration (e.g., bovine-virus-diarrhea virus type-1 [95% CI pre-WR = 73.1-86.3, post-WR = 15.9-31.9] and bovine-respiratory syncytial virus [95% CI pre-WR = 70.0-83.8, post-WR = 0]), but similar (e.g., Brucella abortus [95% CI pre-WR = 0-4.45, post-WR = 0-4.74] and epizootic hemorrhagic disease virus [95% CI pre-WR = 0, post-WR = 0]) or higher for others (e.g., Anaplasma marginale [95% CI pre-WR = 0, post-WR = 18.5-38.7] and Leptospira spp. [95% CI pre-WR = 0.5-6.5, post-WR = 9.5-23.5]). Though we did not detect an overall strong predation effect through reduced disease seroprevalence using retrospective comparisons with sparse data, our reference values will facilitate future assessments of this issue.

  4. State-space modeling to support management of brucellosis in the Yellowstone bison population

    Science.gov (United States)

    Hobbs, N. Thompson; Geremia, Chris; Treanor, John; Wallen, Rick; White, P.J.; Hooten, Mevin B.; Rhyan, Jack C.

    2015-01-01

    The bison (Bison bison) of the Yellowstone ecosystem, USA, exemplify the difficulty of conserving large mammals that migrate across the boundaries of conservation areas. Bison are infected with brucellosis (Brucella abortus) and their seasonal movements can expose livestock to infection. Yellowstone National Park has embarked on a program of adaptive management of bison, which requires a model that assimilates data to support management decisions. We constructed a Bayesian state-space model to reveal the influence of brucellosis on the Yellowstone bison population. A frequency-dependent model of brucellosis transmission was superior to a density-dependent model in predicting out-of-sample observations of horizontal transmission probability. A mixture model including both transmission mechanisms converged on frequency dependence. Conditional on the frequency-dependent model, brucellosis median transmission rate was 1.87 yr−1. The median of the posterior distribution of the basic reproductive ratio (R0) was 1.75. Seroprevalence of adult females varied around 60% over two decades, but only 9.6 of 100 adult females were infectious. Brucellosis depressed recruitment; estimated population growth rate λ averaged 1.07 for an infected population and 1.11 for a healthy population. We used five-year forecasting to evaluate the ability of different actions to meet management goals relative to no action. Annually removing 200 seropositive female bison increased by 30-fold the probability of reducing seroprevalence below 40% and increased by a factor of 120 the probability of achieving a 50% reduction in transmission probability relative to no action. Annually vaccinating 200 seronegative animals increased the likelihood of a 50% reduction in transmission probability by fivefold over no action. However, including uncertainty in the ability to implement management by representing stochastic variation in the number of accessible bison dramatically reduced the probability of

  5. Linking rapid magma reservoir assembly and eruption trigger mechanisms at evolved Yellowstone-type supervolcanoes

    Science.gov (United States)

    Wotzlaw, J.F.; Bindeman, I.N.; Watts, Kathryn E.; Schmitt, A.K.; Caricchi, L.; Schaltegger, U.

    2014-01-01

    The geological record contains evidence of volcanic eruptions that were as much as two orders of magnitude larger than the most voluminous eruption experienced by modern civilizations, the A.D. 1815 Tambora (Indonesia) eruption. Perhaps nowhere on Earth are deposits of such supereruptions more prominent than in the Snake River Plain–Yellowstone Plateau (SRP-YP) volcanic province (northwest United States). While magmatic activity at Yellowstone is still ongoing, the Heise volcanic field in eastern Idaho represents the youngest complete caldera cycle in the SRP-YP, and thus is particularly instructive for current and future volcanic activity at Yellowstone. The Heise caldera cycle culminated 4.5 Ma ago in the eruption of the ∼1800 km3 Kilgore Tuff. Accessory zircons in the Kilgore Tuff display significant intercrystalline and intracrystalline oxygen isotopic heterogeneity, and the vast majority are 18O depleted. This suggests that zircons crystallized from isotopically distinct magma batches that were generated by remelting of subcaldera silicic rocks previously altered by low-δ18O meteoric-hydrothermal fluids. Prior to eruption these magma batches were assembled and homogenized into a single voluminous reservoir. U-Pb geochronology of isotopically diverse zircons using chemical abrasion–isotope dilution–thermal ionization mass spectrometry yielded indistinguishable crystallization ages with a weighted mean 206Pb/238U date of 4.4876 ± 0.0023 Ma (MSWD = 1.5; n = 24). These zircon crystallization ages are also indistinguishable from the sanidine 40Ar/39Ar dates, and thus zircons crystallized close to eruption. This requires that shallow crustal melting, assembly of isolated batches into a supervolcanic magma reservoir, homogenization, and eruption occurred extremely rapidly, within the resolution of our geochronology (103–104 yr). The crystal-scale image of the reservoir configuration, with several isolated magma batches, is very similar to the

  6. Evaluation of ML-MC as a Depth Discriminant in Yellowstone, USA and Italy

    Science.gov (United States)

    Li, Z.; Koper, K. D.; Burlacu, R.; Sun, D.; D'Amico, S.

    2017-12-01

    Recent work has shown that the difference between two magnitude scales, ML (local Richter magnitude) and MC (coda/duration magnitude), acts as a depth discriminant in Utah. Shallow seismic sources, such as mining induced earthquakes and explosions, have strongly negative ML-MC values, while deeper tectonic earthquakes have ML-MC values near zero. These observations imply that ML-MC might be effective at discriminating small explosions from deeper natural earthquakes at local distances. In this work, we examine seismicity catalogs for the Yellowstone region and Italy to determine if ML-MCacts as a depth discriminant in these regions as well. We identified 4,780 earthquakes that occurred in the Yellowstone region between Sept. 24, 1994 and March 31, 2017 for which both ML and MC were calculated. The ML-MC distribution is well described by a Gaussian function with a mean of 0.102 and a standard deviation of 0.326. We selected a subset of these events with accurate depths and determined mean ML-MC values in various depth bins. An event depth was considered accurate if the formal depth error was less than 2 km and either (1) the nearest station was within one focal depth or (2) the distance to the nearest station was smaller than the bin size. We find that ML-MC decreases as event depths become shallower than about 10 km. Similar to the results for Utah, the decrease is statistically significant and is robust with respect to small changes in bin size and the criteria used to define accurate depths. We used a similar process to evaluate whether ML-MC was a function of source depth for 63,555 earthquakes that occurred between April 16, 2005 and April 30, 2012 in Italy. The ML-MC values in Italy are also well described by a normal distribution, with a mean of -0.477 and standard deviation of 0.315. We again find a statistically significant decrease in ML-MC for shallow earthquakes. In contrast to the Yellowstone results, for Italy ML-MC decreases at a nearly constant rate

  7. Computational design of rolling bearings

    CERN Document Server

    Nguyen-Schäfer, Hung

    2016-01-01

    This book comprehensively presents the computational design of rolling bearings dealing with many interdisciplinary difficult working fields. They encompass elastohydrodynamics (EHD), Hertzian contact theory, oil-film thickness in elastohydrodynamic lubrication (EHL), bearing dynamics, tribology of surface textures, fatigue failure mechanisms, fatigue lifetimes of rolling bearings and lubricating greases, Weibull distribution, rotor balancing, and airborne noises (NVH) in the rolling bearings. Furthermore, the readers are provided with hands-on essential formulas based on the up-to-date DIN ISO norms and helpful examples for computational design of rolling bearings. The topics are intended for undergraduate and graduate students in mechanical and material engineering, research scientists, and practicing engineers who want to understand the interactions between these working fields and to know how to design the rolling bearings for automotive industry and many other industries.

  8. Grease lubrication in rolling bearings

    CERN Document Server

    Lugt, Piet M

    2012-01-01

    The definitive book on the science of grease lubrication for roller and needle bearings in industrial and vehicle engineering. Grease Lubrication in Rolling Bearings provides an overview of the existing knowledge on the various aspects of grease lubrication (including lubrication systems) and the state of the art models that exist today. The book reviews the physical and chemical aspects of grease lubrication, primarily directed towards lubrication of rolling bearings. The first part of the book covers grease composition, properties and rheology, including thermal

  9. Hydrostatic and hybrid bearing design

    CERN Document Server

    Rowe, W B

    1983-01-01

    Hydrostatic and Hybrid Bearing Design is a 15-chapter book that focuses on the bearing design and testing. This book first describes the application of hydrostatic bearings, as well as the device pressure, flow, force, power, and temperature. Subsequent chapters discuss the load and flow rate of thrust pads; circuit design, flow control, load, and stiffness; and the basis of the design procedures and selection of tolerances. The specific types of bearings, their design, dynamics, and experimental methods and testing are also shown. This book will be very valuable to students of engineering des

  10. Faunal isotope records reveal trophic and nutrient dynamics in twentieth century Yellowstone grasslands.

    Science.gov (United States)

    Fox-Dobbs, Kena; Nelson, Abigail A; Koch, Paul L; Leonard, Jennifer A

    2012-10-23

    Population sizes and movement patterns of ungulate grazers and their predators have fluctuated dramatically over the past few centuries, largely owing to overharvesting, land-use change and historic management. We used δ(13)C and δ(15)N values measured from bone collagen of historic and recent gray wolves and their potential primary prey from Yellowstone National Park to gain insight into the trophic dynamics and nutrient conditions of historic and modern grasslands. The diet of reintroduced wolves closely parallels that of the historic population. We suggest that a significant shift in faunal δ(15)N values over the past century reflects impacts of anthropogenic environmental changes on grassland ecosystems, including grazer-mediated shifts in grassland nitrogen cycle processes.

  11. A spatially explicit model for an Allee effect: why wolves recolonize so slowly in Greater Yellowstone.

    Science.gov (United States)

    Hurford, Amy; Hebblewhite, Mark; Lewis, Mark A

    2006-11-01

    A reduced probability of finding mates at low densities is a frequently hypothesized mechanism for a component Allee effect. At low densities dispersers are less likely to find mates and establish new breeding units. However, many mathematical models for an Allee effect do not make a distinction between breeding group establishment and subsequent population growth. Our objective is to derive a spatially explicit mathematical model, where dispersers have a reduced probability of finding mates at low densities, and parameterize the model for wolf recolonization in the Greater Yellowstone Ecosystem (GYE). In this model, only the probability of establishing new breeding units is influenced by the reduced probability of finding mates at low densities. We analytically and numerically solve the model to determine the effect of a decreased probability in finding mates at low densities on population spread rate and density. Our results suggest that a reduced probability of finding mates at low densities may slow recolonization rate.

  12. Yellowstone wolf (Canis lupus) denisty predicted by elk (Cervus elaphus) biomass

    Science.gov (United States)

    Mech, L. David; Barber-Meyer, Shannon

    2015-01-01

    The Northern Range (NR) of Yellowstone National Park (YNP) hosts a higher prey biomass density in the form of elk (Cervus elaphus L., 1758) than any other system of gray wolves (Canis lupus L., 1758) and prey reported. Therefore, it is important to determine whether that wolf–prey system fits a long-standing model relating wolf density to prey biomass. Using data from 2005 to 2012 after elk population fluctuations dampened 10 years subsequent to wolf reintroduction, we found that NR prey biomass predicted wolf density. This finding and the trajectory of the regression extend the validity of the model to prey densities 19% higher than previous data and suggest that the model would apply to wolf–prey systems of even higher prey biomass.

  13. Population size estimation in Yellowstone wolves with error-prone noninvasive microsatellite genotypes.

    Science.gov (United States)

    Creel, Scott; Spong, Goran; Sands, Jennifer L; Rotella, Jay; Zeigle, Janet; Joe, Lawrence; Murphy, Kerry M; Smith, Douglas

    2003-07-01

    Determining population sizes can be difficult, but is essential for conservation. By counting distinct microsatellite genotypes, DNA from noninvasive samples (hair, faeces) allows estimation of population size. Problems arise because genotypes from noninvasive samples are error-prone, but genotyping errors can be reduced by multiple polymerase chain reaction (PCR). For faecal genotypes from wolves in Yellowstone National Park, error rates varied substantially among samples, often above the 'worst-case threshold' suggested by simulation. Consequently, a substantial proportion of multilocus genotypes held one or more errors, despite multiple PCR. These genotyping errors created several genotypes per individual and caused overestimation (up to 5.5-fold) of population size. We propose a 'matching approach' to eliminate this overestimation bias.

  14. Disparate stakeholder management: the case of elk and bison feeding in southern Greater Yellowstone

    Science.gov (United States)

    Koontz, Lynne; Hoag, Dana; DeLong, Don

    2012-01-01

    For resource decisions to make the most possible progress toward achieving agency mandates, managers must work with stakeholders and may need to at least partially accommodate some of their key underlying interests. To accommodate stakeholder interests, while also substantively working toward fulfilling legal mandates, managers must understand the sociopolitical factors that influence the decision-making process. We coin the phrase disparate stakeholder management (DSM) to describe situations with disparate stakeholders and disparate management solutions. A DSM approach (DSMA) requires decision makers to combine concepts from many sciences, thus releasing them from disciplinary bonds that often constrain innovation and effectiveness. We combined three distinct approaches to develop a DSMA that assisted in developing a comprehensive range of elk and bison management alternatives in the Southern Greater Yellowstone Area. The DSMA illustrated the extent of compromise between meeting legal agency mandates and accommodating the preferences of certain stakeholder groups.

  15. Are wolves saving Yellowstone's aspen? A landscape-level test of a behaviorally mediated trophic cascade.

    Science.gov (United States)

    Kauffman, Matthew J; Brodie, Jedediah F; Jules, Erik S

    2010-09-01

    Behaviorally mediated trophic cascades (BMTCs) occur when the fear of predation among herbivores enhances plant productivity. Based primarily on systems involving small-bodied predators, BMTCs have been proposed as both strong and ubiquitous in natural ecosystems. Recently, however, synthetic work has suggested that the existence of BMTCs may be mediated by predator hunting mode, whereby passive (sit-and-wait) predators have much stronger effects than active (coursing) predators. One BMTC that has been proposed for a wide-ranging active predator system involves the reintroduction of wolves (Canis lupus) to Yellowstone National Park, USA, which is thought to be leading to a recovery of trembling aspen (Populus tremuloides) by causing elk (Cervus elaphus) to avoid foraging in risky areas. Although this BMTC has been generally accepted and highly popularized, it has never been adequately tested. We assessed whether wolves influence aspen by obtaining detailed demographic data on aspen Stands using tree rings and by monitoring browsing levels in experimental elk exclosures arrayed across a gradient of predation risk for three years. Our study demonstrates that the historical failure of aspen to regenerate varied widely among stands (last recruitment year ranged from 1892 to 1956), and our data do not indicate an abrupt cessation of recruitment. This pattern of recruitment failure appears more consistent with a gradual increase in elk numbers rather than a rapid behavioral shift in elk foraging following wolf extirpation. In addition, our estimates of relative survivorship of young browsable aspen indicate that aspen are not currently recovering in Yellowstone, even in the presence of a large wolf population. Finally, in an experimental test of the BMTC hypothesis we found that the impacts of elk browsing on aspen demography are not diminished in sites where elk are at higher risk of predation by wolves. These findings suggest the need to further evaluate how trophic

  16. Plumbing the depths of Yellowstone's hydrothermal system from helicopter magnetic and electromagnetic data

    Science.gov (United States)

    Finn, C.; Bedrosian, P.; Holbrook, W. S.; Auken, E.; Lowenstern, J. B.; Hurwitz, S.; Sims, K. W. W.; Carr, B.; Dickey, K.

    2017-12-01

    Although Yellowstone's iconic hydrothermal systems and lava flows are well mapped at the surface, their groundwater flow systems and thickness are almost completely unknown. In order to track the geophysical signatures of geysers, hot springs, mud pots, steam vents, hydrothermal explosion craters and lava flows at depths to hundreds of meters, we collected helicopter electromagnetic and magnetic (HEM) data. The data cover significant portions of the caldera including a majority of the known thermal areas. HEM data constrain electrical resistivity which is sensitive to groundwater salinity and temperature, phase distribution (liquid-vapor), and clay formed during chemical alteration of rocks. The magnetic data are sensitive to variations in the magnetization of lava flows, faults and hydrothermal alteration. The combination of electromagnetic and magnetic data is ideal for mapping zones of cold fresh water, hot saline water, steam, clay, and altered and unaltered rock. Preliminary inversion of the HEM data indicates very low resistivity directly beneath the northern part of Yellowstone Lake, intersecting with the lake bottom in close correspondence with mapped vents, fractures and hydrothermal explosion craters and are also associated with magnetic lows. Coincident resistivity and magnetic lows unassociated with mapped alteration occur, for example, along the southeast edge of the Mallard Lake dome and along the northeastern edge of Sour Creek Dome, suggesting the presence of buried alteration. Low resistivities unassociated with magnetic lows may relate to hot and/or saline groundwater or thin (<50 m) layers of early lake sediments to which the magnetic data are insensitive. Resistivity and magnetic lows follow interpreted caldera boundaries in places, yet deviate in others. In the Norris-Mammoth Corridor, NNE-SSW trending linear resistivity and magnetic lows align with mapped faults. This pattern of coincident resistivity and magnetic lows may reflect fractures

  17. Anomalous shear wave delays and surface wave velocities at Yellowstone Caldera, Wyoming

    International Nuclear Information System (INIS)

    Daniel, R.G.; Boore, D.M.

    1982-01-01

    To investigate the effects of a geothermal area on the propagation of intermediate-period (1--30 s) teleseismic body waves and surface waves, a specially designed portable seismograph system was operated in Yellowstone Caldera, Wyoming. Travel time residuals, relative to a station outside the caldera, of up to 2 s for compressional phases are in agreement with short-period residuals for P phases measured by other investigators. Travel time delays for shear arrivals in the intermediate-period band range from 2 to 9 s and decrease with increasing dT/dΔ. Measured Rayleigh wave phase velocities are extremely low, ranging from 3.2 km/s at 27-s period to 2.0 km/s at 7-s period; the estimated uncertainty associated with these values is 15%. We propose a model for compressional and shear velocities and Poisson's ratio beneath the Yellowstone caldera which fits the teleseismic body and surface wave data: it consists of a highly anomalous crust with an average shear velocity of 3.0 km/s overlying an upper mantle with average velocity of 4.1 km/s. The high average value of Poisson's ratio in the crust (0.34) suggests the presence of fluids there; Poisson's ratio in the mantle between 40 and approximately 200 km is more nearly normal (0.29) than in the crust. A discrepancy between normal values of Poisson's ratio in the crust calculated from short-period data and high values calculated from teleseismic data can be resolved by postulating a viscoelastic crustal model with frequency-dependent shear velocity and attenuation

  18. Eruptions at Lone Star Geyser, Yellowstone National Park, USA, part 1: energetics and eruption dynamics

    Science.gov (United States)

    Karlstrom, Leif; Hurwitz, Shaul; Sohn, Robert; Vandemeulebrouck, Jean; Murphy, Fred; Rudolph, Maxwell L.; Johnston, Malcolm J.S.; Manga, Michael; McCleskey, R. Blaine

    2013-01-01

    Geysers provide a natural laboratory to study multiphase eruptive processes. We present results from a four–day experiment at Lone Star Geyser in Yellowstone National Park, USA. We simultaneously measured water discharge, acoustic emissions, infraredintensity, and visible and infrared video to quantify the energetics and dynamics of eruptions, occurring approximately every three hours. We define four phases in the eruption cycle: 1) a 28 ± 3 minute phase with liquid and steam fountaining, with maximum jet velocities of 16–28 m s− 1, steam mass fraction of less than ∼ 0.01. Intermittently choked flow and flow oscillations with periods increasing from 20 to 40 s are coincident with a decrease in jet velocity and an increase of steam fraction; 2) a 26 ± 8 minute post–eruption relaxation phase with no discharge from the vent, infrared (IR) and acoustic power oscillations gliding between 30 and 40 s; 3) a 59 ± 13 minute recharge period during which the geyser is quiescent and progressively refills, and 4) a 69 ± 14 minute pre–play period characterized by a series of 5–10 minute–long pulses of steam, small volumes of liquid water discharge and 50–70 s flow oscillations. The erupted waters ascend froma 160 − 170° C reservoir and the volume discharged during the entire eruptive cycle is 20.8 ± 4.1 m3. Assuming isentropic expansion, we calculate a heat output from the geyser of 1.4–1.5 MW, which is < 0.1% of the total heat output from Yellowstone Caldera.

  19. Cougar survival and source-sink structure on Greater Yellowstone's Northern Range

    Science.gov (United States)

    Ruth, T.K.; Haroldson, M.A.; Murphy, K.M.; Buotte, P.C.; Hornocker, M.G.; Quigley, H.B.

    2011-01-01

    We studied survival and causes of mortality of radiocollared cougars (Puma concolor) on the Greater Yellowstone Northern Range (GYNR) prior to (1987–1994) and after wolf (Canis lupus) reintroduction (1998–2005) and evaluated temporal, spatial, and environmental factors that explain variation in adult, subadult, and kitten survival. Using Program MARK and multimodel inference, we modeled cougar survival based on demographic status, season, and landscape attributes. Our best models for adult and independent subadults indicated that females survived better than males and survival increased with age until cougars reached older ages. Lower elevations and increasing density of roads, particularly in areas open to cougar hunting north of Yellowstone National Park (YNP), increased mortality risks for cougars on the GYNR. Indices of ungulate biomass, cougar and wolf population size, winter severity, rainfall, and individual characteristics such as the presence of dependent young, age class, and use of Park or Wilderness were not important predictors of survival. Kitten survival increased with age, was lower during winter, increased with increasing minimum estimates of elk calf biomass, and increased with increasing density of adult male cougars. Using our best model, we mapped adult cougar survival on the GYNR landscape. Results of receiver operating characteristic (ROC) analysis indicated a good model fit for both female (area under the curve [AUC] = 0.81, 95%CI = 0.70–0.92, n = 35 locations) and male cougars (AUC = 0.84, 95%CI = 0.74–0.94, n = 49 locations) relative to hunter harvest locations in our study area. Using minimum estimates of survival necessary to sustain the study population, we developed a source-sink surface and we identify several measures that resource management agencies can take to enhance cougar population management based on a source-sink strategy.

  20. Superconducting bearings for flywheel applications

    Energy Technology Data Exchange (ETDEWEB)

    Abrahamsen, Asger Bech

    2001-05-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found on the applications of superconducting bearings in flywheels. (au)

  1. Superconducting bearings for flywheel applications

    DEFF Research Database (Denmark)

    Abrahamsen, A.B.

    2001-01-01

    A literature study on the application of superconducting bearings in energy storage flywheel systems. The physics of magnetic levitation and superconductors are presented in the first part of the report, followed by a discussion of the literature found onthe applications of superconducting bearings...

  2. Predation risk, elk, and aspen: tests of a behaviorally mediated trophic cascade in the Greater Yellowstone Ecosystem.

    Science.gov (United States)

    Winnie, John A

    2012-12-01

    Aspen in the Greater Yellowstone Ecosystem are hypothesized to be recovering from decades of heavy browsing by elk due to a behaviorally mediated trophic cascade (BMTC). Several authors have suggested that wolves interact with certain terrain features, creating places of high predation risk at fine spatial scales, and that elk avoid these places, which creates refugia for plants. This hypothesized BMTC could release aspen from elk browsing pressure, leading to a patchy recovery in places of high risk. I tested whether four specific, hypothesized fine-scale risk factors are correlated with changes in current elk browsing pressure on aspen, or with aspen recruitment since wolf reintroduction, in the Daly Creek drainage in Yellowstone National Park, and near two aspen enclosures outside of the park boundary. Aspen were not responding to hypothesized fine-scale risk factors in ways consistent with the current BMTC hypothesis.

  3. Space Station alpha joint bearing

    Science.gov (United States)

    Everman, Michael R.; Jones, P. Alan; Spencer, Porter A.

    1987-01-01

    Perhaps the most critical structural system aboard the Space Station is the Solar Alpha Rotary Joint which helps align the power generation system with the sun. The joint must provide structural support and controlled rotation to the outboard transverse booms as well as power and data transfer across the joint. The Solar Alpha Rotary Joint is composed of two transition sections and an integral, large diameter bearing. Alpha joint bearing design presents a particularly interesting problem because of its large size and need for high reliability, stiffness, and on orbit maintability. The discrete roller bearing developed is a novel refinement to cam follower technology. It offers thermal compensation and ease of on-orbit maintenance that are not found in conventional rolling element bearings. How the bearing design evolved is summarized. Driving requirements are reviewed, alternative concepts assessed, and the selected design is described.

  4. Flywheel Challenge: HTS Magnetic Bearing

    International Nuclear Information System (INIS)

    Werfel, F N; Floegel-Delor, U; Riedel, T; Rothfeld, R; Wippich, D; Goebel, B

    2006-01-01

    A 200 mm cylindrical engineering prototype high temperature superconducting (HTS) was designed and fabricated. Measurements show that the 17 kg PM rotor can suspend safely 1000 kg in axial direction and 470 kg radially. The rationale for the bearing performance is to stabilize a 400 kg rotor of a new compact 5 kWh/280 kW flywheel energy storage system (COM - FESS). Measurements of the magnetic bearing force, stiffness and drag-torque are presented indicated the successful targeting a milestone in the HTS bearing technology. The influence of the PM configuration and the YBCO temperature on the bearing performance was experimentally studied, providing high-force or high-stiffness behaviour. The axial stiffness 5 kN/mm at 0.5 mm displacement is the highest value of a HTS bearing we know

  5. Journal bearing impedance descriptions for rotordynamic applications

    NARCIS (Netherlands)

    Childs, D.W.; Moes, H.; Leeuwen, van H.J.

    1977-01-01

    Bearing impedance vectors are introduced for plain journal bearings which define the bearing reaction force components as a function of the bearing motion. Impedance descriptions are developed directly for the approximate Ocvirk (short) and Sommerfeld (long) bearing solutions. The impedance vector

  6. Population Dynamics of Wolves and Coyotes at Yellowstone National Park: Modeling Interference Competition with an Infectious Disease

    OpenAIRE

    Blanco, Krystal; Barley, Kamal; Mubayi, Anuj

    2014-01-01

    Gray wolves were reintroduced to Yellowstone National Park (YNP) in 1995. The population initially flourished, but since 2003 the population has experience significant reductions due to factors that may include disease-induced mortality, illegal hunting, park control pro- grams, vehicle induced deaths and intra-species aggression. Despite facing similar conditions, and interference competition with the wolves, the coyote population at YNP has persisted. In this paper we introduce an epidemiol...

  7. Geoarchaeota: a new candidate phylum in the Archaea from high-temperature acidic iron mats in Yellowstone National Park

    OpenAIRE

    Kozubal, Mark A; Romine, Margaret; Jennings, Ryan deM; Jay, Zack J; Tringe, Susannah G; Rusch, Doug B; Beam, Jacob P; McCue, Lee Ann; Inskeep, William P

    2012-01-01

    Geothermal systems in Yellowstone National Park (YNP) provide an outstanding opportunity to understand the origin and evolution of metabolic processes necessary for life in extreme environments including low pH, high temperature, low oxygen and elevated concentrations of reduced iron. Previous phylogenetic studies of acidic ferric iron mats from YNP have revealed considerable diversity of uncultivated and undescribed archaea. The goal of this study was to obtain replicate de novo genome assem...

  8. Ghosts of yellowstone: multi-decadal histories of wildlife populations captured by bones on a modern landscape.

    Directory of Open Access Journals (Sweden)

    Joshua H Miller

    Full Text Available Natural accumulations of skeletal material (death assemblages have the potential to provide historical data on species diversity and population structure for regions lacking decades of wildlife monitoring, thereby contributing valuable baseline data for conservation and management strategies. Previous studies of the ecological and temporal resolutions of death assemblages from terrestrial large-mammal communities, however, have largely focused on broad patterns of community composition in tropical settings. Here, I expand the environmental sampling of large-mammal death assemblages into a temperate biome and explore more demanding assessments of ecological fidelity by testing their capacity to record past population fluctuations of individual species in the well-studied ungulate community of Yellowstone National Park (Yellowstone. Despite dramatic ecological changes following the 1988 wildfires and 1995 wolf re-introduction, the Yellowstone death assemblage is highly faithful to the living community in species richness and community structure. These results agree with studies of tropical death assemblages and establish the broad capability of vertebrate remains to provide high-quality ecological data from disparate ecosystems and biomes. Importantly, the Yellowstone death assemblage also correctly identifies species that changed significantly in abundance over the last 20 to ∼80 years and the directions of those shifts (including local invasions and extinctions. The relative frequency of fresh versus weathered bones for individual species is also consistent with documented trends in living population sizes. Radiocarbon dating verifies the historical source of bones from Equus caballus (horse: a functionally extinct species. Bone surveys are a broadly valuable tool for obtaining population trends and baseline shifts over decadal-to-centennial timescales.

  9. Protecting the Geyser Basins of Yellowstone National Park: Toward a New National Policy for a Vulnerable Environmental Resource

    Science.gov (United States)

    Barrick, Kenneth A.

    2010-01-01

    Geyser basins provide high value recreation, scientific, economic and national heritage benefits. Geysers are globally rare, in part, because development activities have quenched about 260 of the natural endowment. Today, more than half of the world’s remaining geysers are located in Yellowstone National Park, northwest Wyoming, USA. However, the hydrothermal reservoirs that supply Yellowstone’s geysers extend well beyond the Park borders, and onto two “Known Geothermal Resource Areas”—Island Park to the west and Corwin Springs on the north. Geysers are sensitive geologic features that are easily quenched by nearby geothermal wells. Therefore, the potential for geothermal energy development adjacent to Yellowstone poses a threat to the sustainability of about 500 geysers and 10,000 hydrothermal features. The purpose here is to propose that Yellowstone be protected by a “Geyser Protection Area” (GPA) extending in a 120-km radius from Old Faithful Geyser. The GPA concept would prohibit geothermal and large-scale groundwater wells, and thereby protect the water and heat supply of the hydrothermal reservoirs that support Yellowstone’s geyser basins and important hot springs. Proactive federal leadership, including buyouts of private groundwater development rights, can assist in navigating the GPA through the greater Yellowstone area’s “wicked” public policy environment. Moreover, the potential impacts on geyser basins from intrusive research sampling techniques are considered in order to facilitate the updating of national park research regulations to a precautionary standard. The GPA model can provide the basis for protecting the world’s few remaining geyser basins.

  10. The duration of a Yellowstone super-eruption cycle and implications for the age of the Olduvai subchron

    Science.gov (United States)

    Rivera, Tiffany A.; Darata, Rachel; Lippert, Peter C.; Jicha, Brian R.; Schmitz, Mark D.

    2017-12-01

    Small-volume rhyolitic eruptions preceding and following a caldera-forming eruption can provide insights into the tempo of eruption cycles and timing of magmatic recharge. In this contribution, high-precision 40Ar/39Ar eruption ages were obtained on the three effusive eruptions bracketing the Huckleberry Ridge Tuff, which comprise Yellowstone's first volcanic cycle. These dates are supplemented with detailed paleomagnetic and rock magnetic analyses to resolve discrepancies with previous reported stratigraphy. The Huckleberry Ridge Tuff (2.08 Ma) was preceded by an eruption at 2.14 Ma, and followed by eruptions at 1.98 and 1.95 Ma, all of which occurred during four distinct periods of geomagnetic instability within the Matuyama chron. The first volcanic cycle of Yellowstone has now been constrained to within a 200 kyr timespan, or half of the previously proposed duration, and similar to the duration of volcanic activity for caldera-forming systems in the Jemez Volcanic Field. The maximum duration for magmatic recharge for the first Yellowstone volcanic cycle is no greater than 100 kyr, and likely closer to 40 kyr. Furthermore, the combined 40Ar/39Ar eruption ages and paleomagnetic results provide polarity anchors for the Pre-Olduvai excursion and Olduvai subchron, which are often used as tie-points in studies of early Pleistocene hominin evolution.

  11. Chemical analyses of hot springs, pools, geysers, and surface waters from Yellowstone National Park, Wyoming, and vicinity, 1974-1975

    Science.gov (United States)

    Ball, James W.; Nordstrom, D. Kirk; Jenne, Everett A.; Vivit, Davison V.

    1998-01-01

    This report presents all analytical determinations for samples collected from Yellowstone National Park and vicinity during 1974 and 1975. Water temperature, pH, Eh, and dissolved O2 were determined on-site. Total alkalinity and F were determined on the day of sample collection. Flame atomic-absorption spectrometry was used to determine concentrations of Li, Na, K, Ca, and Mg. Ultraviolet/visible spectrophotometry was used to determine concentrations of Fe(II), Fe(III), As(III), and As(V). Direct-current plasma-optical-emission spectrometry was used to determine the concentrations of B, Ba, Cd, Cs, Cu, Mn, Ni, Pb, Rb, Sr, and Zn. Two samples collected from Yellowstone Park in June 1974 were used as reference samples for testing the plasma analytical method. Results of these tests demonstrate acceptable precision for all detectable elements. Charge imbalance calculations revealed a small number of samples that may have been subject to measurement errors in pH or alkalinity. These data represent some of the most complete analyses of Yellowstone waters available.

  12. Thermomechanical Modeling of the Formation of a Multilevel, Crustal-Scale Magmatic System by the Yellowstone Plume

    Science.gov (United States)

    Colón, D. P.; Bindeman, I. N.; Gerya, T. V.

    2018-05-01

    Geophysical imaging of the Yellowstone supervolcano shows a broad zone of partial melt interrupted by an amagmatic gap at depths of 15-20 km. We reproduce this structure through a series of regional-scale magmatic-thermomechanical forward models which assume that magmatic dikes stall at rheologic discontinuities in the crust. We find that basaltic magmas accumulate at the Moho and at the brittle-ductile transition, which naturally forms at depths of 5-10 km. This leads to the development of a 10- to 15-km thick midcrustal sill complex with a top at a depth of approximately 10 km, consistent with geophysical observations of the pre-Yellowstone hot spot track. We show a linear relationship between melting rates in the mantle and rhyolite eruption rates along the hot spot track. Finally, melt production rates from our models suggest that the Yellowstone plume is 175°C hotter than the surrounding mantle and that the thickness of the overlying lithosphere is 80 km.

  13. EFFECT OF BEARING MACROGEOMETRY ON BEARING PERFORMANCE IN ELASTOHYDRODYNAMIC LUBRICATION

    Directory of Open Access Journals (Sweden)

    Emin GÜLLÜ

    2000-01-01

    Full Text Available During manufacturing, ideal dimension and mutual positioning of machine elements proposed in project desing can be achieved only within certain range of tolerances. These tolerances, being classified in two groups, related to micro and macro geometry of machine elements, don't have to effect the functioning of these elements. So, as for all machine elements, investigation of the effects of macro and micro tolerances for journal bearings is important. In this study, we have investigated the effect of macro geometric irregularities of journal bearings on performance characteristics. In this regard, we have studied the change of bearing performance in respect to deviation from ideal circle for an elliptic shaft with small ovality rolling in circular journal bearing.

  14. Non-contacting "snubber bearing" for passive magnetic bearing systems

    Science.gov (United States)

    Post, Richard F

    2017-08-22

    A new non-contacting magnetic "snubber" bearing is provided for application to rotating systems such as vehicular electromechanical battery systems subject to frequent accelerations. The design is such that in the equilibrium position the drag force of the snubber is very small (milliwatts). However in a typical case, if the rotor is displaced by as little as 2 millimeters a large restoring force is generated without any physical contact between the stationary and rotating parts of the snubber bearing.

  15. Use of ASTER and MODIS thermal infrared data to quantify heat flow and hydrothermal change at Yellowstone National Park

    Science.gov (United States)

    Vaughan, R. Greg; Keszthelyi, Laszlo P.; Lowenstern, Jacob B.; Jaworowski, Cheryl; Heasler, Henry

    2012-01-01

    The overarching aim of this study was to use satellite thermal infrared (TIR) remote sensing to monitor geothermal activity within the Yellowstone geothermal area to meet the missions of both the U.S. Geological Survey and the Yellowstone National Park Geology Program. Specific goals were to: 1) address the challenges of monitoring the surface thermal characteristics of the > 10,000 spatially and temporally dynamic thermal features in the Park (including hot springs, pools, geysers, fumaroles, and mud pots) that are spread out over ~ 5000 km2, by using satellite TIR remote sensing tools (e.g., ASTER and MODIS), 2) to estimate the radiant geothermal heat flux (GHF) for Yellowstone's thermal areas, and 3) to identify normal, background thermal changes so that significant, abnormal changes can be recognized, should they ever occur (e.g., changes related to tectonic, hydrothermal, impending volcanic processes, or human activities, such as nearby geothermal development). ASTER TIR data (90-m pixels) were used to estimate the radiant GHF from all of Yellowstone's thermal features and update maps of thermal areas. MODIS TIR data (1-km pixels) were used to record background thermal radiance variations from March 2000 through December 2010 and establish thermal change detection limits. A lower limit for the radiant GHF estimated from ASTER TIR temperature data was established at ~ 2.0 GW, which is ~ 30–45% of the heat flux estimated through geochemical thermometry. Also, about 5 km2 of thermal areas was added to the geodatabase of mapped thermal areas. A decade-long time-series of MODIS TIR radiance data was dominated by seasonal cycles. A background subtraction technique was used in an attempt to isolate variations due to geothermal changes. Several statistically significant perturbations were noted in the time-series from Norris Geyser Basin, however many of these did not correspond to documented thermal disturbances. This study provides concrete examples of the

  16. Water-bearing explosive compositions

    Energy Technology Data Exchange (ETDEWEB)

    Gay, G M

    1970-12-21

    An explosive water-bearing composition, with high detonation velocity, comprises a mixture of (1) an inorganic oxidizer salt; (2) nitroglycerine; (3) nitrocellulose; (4) water; and (5) a water thickening agent. (11 claims)

  17. Failure analysis of superconducting bearings

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, Amit; Campbell, A M; Coombs, T A [Department of Engineering, University of Cambridge, Cambridge CB2 1PZ (United Kingdom)

    2006-06-01

    The dynamics of superconductor bearings in a cryogenic failure scenario have been analyzed. As the superconductor warms up, the rotor goes through multiple resonance frequencies, begins to slow down and finally touches down when the superconductor goes through its transition temperature. The bearing can be modelled as a system of springs with axial, radial and cross stiffness. These springs go through various resonant modes as the temperature of the superconductor begins to rise. We have presented possible explanations for such behavio0008.

  18. Superconducting composite for magnetic bearings

    International Nuclear Information System (INIS)

    Rigney, T.K. II.

    1995-01-01

    A composite includes granules of Type II superconducting material and granules of rare-earth permanent magnets that are distributed in a binder. The composite is a two-phase structure that combines the properties of the superconductor and magnets with the flexibility and toughness of a polymeric material. A bearing made from this composite has the load capacity and stiffness of a permanent magnet bearing with added stability from a Type II superconducting material. 7 figs

  19. Sulfur geochemistry of hydrothermal waters in Yellowstone National Park: IV Acid-sulfate waters

    Science.gov (United States)

    Nordstrom, D. Kirk; McCleskey, R. Blaine; Ball, J.W.

    2009-01-01

    Many waters sampled in Yellowstone National Park, both high-temperature (30-94 ??C) and low-temperature (0-30 ??C), are acid-sulfate type with pH values of 1-5. Sulfuric acid is the dominant component, especially as pH values decrease below 3, and it forms from the oxidation of elemental S whose origin is H2S in hot gases derived from boiling of hydrothermal waters at depth. Four determinations of pH were obtained: (1) field pH at field temperature, (2) laboratory pH at laboratory temperature, (3) pH based on acidity titration, and (4) pH based on charge imbalance (at both laboratory and field temperatures). Laboratory pH, charge imbalance pH (at laboratory temperature), and acidity pH were in close agreement for pH ??10%, a selection process was used to compare acidity, laboratory, and charge balance pH to arrive at the best estimate. Differences between laboratory and field pH can be explained based on Fe oxidation, H2S or S2O3 oxidation, CO2 degassing, and the temperature-dependence of pK2 for H2SO4. Charge imbalances are shown to be dependent on a speciation model for pH values 350 mg/L Cl) decrease as the Cl- concentration increases from boiling which appears inconsistent with the hypothesis of H2S oxidation as a source of hydrothermal SO4. This trend is consistent with the alternate hypothesis of anhydrite solubility equilibrium. Acid-sulfate water analyses are occasionally high in As, Hg, and NH3 concentrations but in contrast to acid mine waters they are low to below detection in Cu, Zn, Cd, and Pb concentrations. Even concentrations of SO4, Fe, and Al are much lower in thermal waters than acid mine waters of the same pH. This difference in water chemistry may explain why certain species of fly larvae live comfortably in Yellowstone's acid waters but have not been observed in acid rock drainage of the same pH.

  20. Yellowstone-Snake River Plain seismic profilling experiment: Crustal structure of the eastern Snake River Plain

    International Nuclear Information System (INIS)

    Braile, L.W.; Smith, R.B.; Ansorge, J.; Baker, M.R.; Sparlin, M.A.; Prodehl, C.; Schilly, M.M.; Healy, J.H.; Mueller, S.; Olsen, K.H.

    1982-01-01

    Seismic refraction profiles recorded along the eastern Snake River Plain (ESRP) in southeastern Idaho during the 1978 Yellowstone-Snake River Plain cooperative seismic profiling experiment are interpreted to infer the crustal velocity and attenuation (Q-1) structure of the ESRP. Travel-time and synthetic seismogram modeling of a 250 km reversed refraction profile as well as a 100 km detailed profile indicate that the crust of the ESRP is highly anomalous. Approximately 3 to 6 km of volcanic rocks (with some interbedded sediments) overlie an upper-crustal layer (compressional velocity approx. =6.1 km/s) which thins southwestward along the ESRP from a thickness of 10 km near Island Park Caldera to 2 to 3 km beneath the central and southwestern portions of the ESRP. An intermediate-velocity (approx. =6.5 km/s) layer extends from approx. =10 to approx. =20 km depth. a thick (approx. =22 km) lower crust of compressional velocity 6.8 km/s, a total crustall thickness of approx. =42 km, and a P/sub n/ velocity of approx. =7.9 km/s is observed in the ESRP, similar to the western Snake River Plain and the Rocky Mountains Provinces. High attenuation is evident on the amplitude corrected seismic data due to low-Q values in the volcanic rocks (Q/sub p/ = 20 to 200) and throughout the crust (Q/sub p/ = 160 to 300). Based on these characteristics of the crustal structure and volcanic-age progression data, it is suggested that the ESRP has resulted from an intensitive period of intrusion of mantle-derived basaltic magma into the upper crust generating explosive silicic volcanism and associated regional uplift and caldera collapse. This activity began about 15 m.y. ago in southwestern Idaho and has migrated northeast to its present position at Yellowstone. Subsequent cooling of the intruded upper crust results in the 6.5 km/s velocity intermediate layer. Crustal subsidence and periodic basaltic volcanism as represented by the ESRP complete the sequence of crustal evolution

  1. Molecular Studies of Filamentous and Biofilm-Forming Hyperthermophilic Communities in Yellowstone National Park

    Science.gov (United States)

    Summons, R. E.; Meyer-Dombard, D. R.; Bradley, A. S.; Dibbell, A. K.; Fredricks, H. F.; Hinrichs, K.; Jahnke, L. L.; Shock, E.; Amend, J. P.

    2005-12-01

    The Aquificales, the most deeply-branching order of Bacteria in the phylogenetic tree of life, comprises eight recognized thermophilic genera, including Aquifex, Hydrogenobacter, and Thermocrinis. The common metabolism for these Bacteria, when grown in culture, is the oxidation of hydrogen with molecular oxygen (Knallgas reaction). Aquificales have been identified by molecular techniques (16S rRNA gene surveys, fluorescent in situ hybridization) in Yellowstone National Park (YNP), sea vent chimneys and fluids, and many other terrestrial and marine locations. In situ, Aquificales can reside as biofilms on vent sinters but they also commonly form filamentous communities, otherwise known as pink streamers, which attach to solid substrates. Initial 16S rRNA gene surveys conducted on streamer communities from Octopus Spring YNP indicated that these were low diversity ecosystems dominated by a few phylotypes including Thermocrinis sp., Thermotoga sp. and one other bacterial clade (Reysenbach et al 1994). Archaea were notable for their absence. In one of the first geobiological studies of pink streamers and vent biofilms in Yellowstone National Park, Jahnke and coworkers (2001) used classical lipidological techniques to compare Aquificales cultures with environmental samples to show that YNP pink filaments were more phylogenetically diverse and physiologically more complex than the early genomic studies indicated. The presence of archaeol, the range and structures of other lipids and a wide dispersion in the carbon isotopic signatures of biomass and individual lipids (-15 to -27%) showed that Archaea were present in pink filament communities and that there was, at least, one additional bacterial group besides the dominant Aquificales component. New molecular studies that comprise analyses of 16S rRNA genes and total lipid extracts by liquid chromatography and mass spectrometry and chemical degradation with gas chromatography and mass spectrometry now show that Crenarchaea

  2. Advancing Site-Based Data Curation for Geobiology: The Yellowstone Exemplar (Invited)

    Science.gov (United States)

    Palmer, C. L.; Fouke, B. W.; Rodman, A.; Choudhury, G. S.

    2013-12-01

    While advances in the management and archiving of scientific digital data are proceeding apace, there is an urgent need for data curation services to collect and provide access to high-value data fit for reuse. The Site-Based Data Curation (SBDC) project is establishing a framework of guidelines and processes for the curation of research data generated at scientifically significant sites. The project is a collaboration among information scientists, geobiologists, data archiving experts, and resource managers at Yellowstone National Park (YNP). Based on our previous work with the Data Conservancy on indicators of value for research data, several factors made YNP an optimal site for developing the SBDC framework, including unique environmental conditions, a permitting process for data collection, and opportunities for geo-located longitudinal data and multiple data sources for triangulation and context. Stakeholder analysis is informing the SBDC requirements, through engagement with geologists, geochemists, and microbiologists conducting research at YNP and personnel from the Yellowstone Center for Resources and other YNP units. To date, results include data value indicators specific to site-based research, minimum and optimal parameters for data description and metadata, and a strategy for organizing data around sampling events. New value indicators identified by the scientists include ease of access to park locations for verification and correction of data, and stable environmental conditions important for controlling variables. Researchers see high potential for data aggregated from the many individual investigators conducting permitted research at YNP, however reuse is clearly contingent on detailed and consistent sampling records. Major applications of SBDC include identifying connections in dynamic systems, spatial temporal synthesis, analyzing variability within and across geological features, tracking site evolution, assessing anomalies, and greater awareness

  3. Volcanism at 1.45 Ma within the Yellowstone Volcanic Field, United States

    Science.gov (United States)

    Rivera, Tiffany A.; Furlong, Ryan; Vincent, Jaime; Gardiner, Stephanie; Jicha, Brian R.; Schmitz, Mark D.; Lippert, Peter C.

    2018-05-01

    Rhyolitic volcanism in the Yellowstone Volcanic Field has spanned over two million years and consisted of both explosive caldera-forming eruptions and smaller effusive flows and domes. Effusive eruptions have been documented preceding and following caldera-forming eruptions, however the temporal and petrogenetic relationships of these magmas to the caldera-forming eruptions are relatively unknown. Here we present new 40Ar/39Ar dates for four small-volume eruptions located on the western rim of the second-cycle caldera, the source of the 1.300 ± 0.001 Ma Mesa Falls Tuff. We supplement our new eruption ages with whole rock major and trace element chemistry, Pb isotopic ratios of feldspar, and paleomagnetic and rock magnetic analyses. Eruption ages for the effusive Green Canyon Flow (1.299 ± 0.002 Ma) and Moonshine Mountain Dome (1.302 ± 0.003 Ma) are in close temporal proximity to the eruption age of the Mesa Falls Tuff. In contrast, our results indicate a period of volcanism at ca 1.45 Ma within the Yellowstone Volcanic Field, including the eruption of the Bishop Mountain Flow (1.458 ± 0.002 Ma) and Tuff of Lyle Spring (1.450 ± 0.003 Ma). These high-silica rhyolites are chemically and isotopically distinct from the Mesa Falls Tuff and related 1.3 Ma effusive eruptions. The 40Ar/39Ar data from the Tuff of Lyle Spring demonstrate significant antecrystic inheritance, prevalent within the upper welded ash-flow tuff matrix, and minimal within individual pumice. Antecrysts are up to 20 kyr older than the eruption, with subpopulations of grains occurring every few thousand years. We interpret these results as an indicator for the timing of magmatic pulses into a growing magmatic system that would ultimately erupt the Tuff of Lyle Spring, and which we more broadly interpret as the tempo of crustal accumulation associated with bimodal magmatism. We propose a system whereby chemically, isotopically, and temporally distinct, isolated small-volume magma batches are

  4. Community analysis of plant biomass-degrading microorganisms from Obsidian Pool, Yellowstone National Park.

    Science.gov (United States)

    Vishnivetskaya, Tatiana A; Hamilton-Brehm, Scott D; Podar, Mircea; Mosher, Jennifer J; Palumbo, Anthony V; Phelps, Tommy J; Keller, Martin; Elkins, James G

    2015-02-01

    The conversion of lignocellulosic biomass into biofuels can potentially be improved by employing robust microorganisms and enzymes that efficiently deconstruct plant polysaccharides at elevated temperatures. Many of the geothermal features of Yellowstone National Park (YNP) are surrounded by vegetation providing a source of allochthonic material to support heterotrophic microbial communities adapted to utilize plant biomass as a primary carbon and energy source. In this study, a well-known hot spring environment, Obsidian Pool (OBP), was examined for potential biomass-active microorganisms using cultivation-independent and enrichment techniques. Analysis of 33,684 archaeal and 43,784 bacterial quality-filtered 16S rRNA gene pyrosequences revealed that archaeal diversity in the main pool was higher than bacterial; however, in the vegetated area, overall bacterial diversity was significantly higher. Of notable interest was a flooded depression adjacent to OBP supporting a stand of Juncus tweedyi, a heat-tolerant rush commonly found growing near geothermal features in YNP. The microbial community from heated sediments surrounding the plants was enriched in members of the Firmicutes including potentially (hemi)cellulolytic bacteria from the genera Clostridium, Anaerobacter, Caloramator, Caldicellulosiruptor, and Thermoanaerobacter. Enrichment cultures containing model and real biomass substrates were established at a wide range of temperatures (55-85 °C). Microbial activity was observed up to 80 °C on all substrates including Avicel, xylan, switchgrass, and Populus sp. Independent of substrate, Caloramator was enriched at lower (65 °C) temperatures.

  5. Parasite invasion following host reintroduction: a case study of Yellowstone's wolves.

    Science.gov (United States)

    Almberg, Emily S; Cross, Paul C; Dobson, Andrew P; Smith, Douglas W; Hudson, Peter J

    2012-10-19

    Wildlife reintroductions select or treat individuals for good health with the expectation that these individuals will fare better than infected animals. However, these individuals, new to their environment, may also be particularly susceptible to circulating infections and this may result in high morbidity and mortality, potentially jeopardizing the goals of recovery. Here, using the reintroduction of the grey wolf (Canis lupus) into Yellowstone National Park as a case study, we address the question of how parasites invade a reintroduced population and consider the impact of these invasions on population performance. We find that several viral parasites rapidly invaded the population inside the park, likely via spillover from resident canid species, and we contrast these with the slower invasion of sarcoptic mange, caused by the mite Sarcoptes scabiei. The spatio-temporal patterns of mange invasion were largely consistent with patterns of host connectivity and density, and we demonstrate that the area of highest resource quality, supporting the greatest density of wolves, is also the region that appears most susceptible to repeated disease invasion and parasite-induced declines. The success of wolf reintroduction appears not to have been jeopardized by infectious disease, but now shows signs of regulation or limitation modulated by parasites.

  6. Group composition effects on aggressive interpack interactions of gray wolves in Yellowstone National Park

    Science.gov (United States)

    Cassidy, Kira A.; MacNulty, Daniel R.; Stahler, Daniel R.; Smith, Douglas W.; Mech, L. David

    2015-01-01

    Knowledge of characteristics that promote group success during intraspecific encounters is key to understanding the adaptive advantages of sociality for many group-living species. In addition, some individuals in a group may be more likely than others to influence intergroup conflicts, a relatively neglected idea in research on social animals. Here we use observations of aggressive interactions between wolf (Canis lupus) packs over an extended period and use pack characteristics to determine which groups had an advantage over their opponents. During 16 years of observation in Yellowstone National Park from 1995 to 2010, we documented 121 interpack aggressive interactions. We recorded pack sizes, compositions, and spatial orientation related to residency to determine their effects on the outcomes of interactions between packs. Relative pack size (RPS) improved the odds of a pack displacing its opponent. However, pack composition moderated the effect of RPS as packs with relatively more old members (>6.0 years old) or adult males had higher odds of winning despite a numerical disadvantage. The location of the interaction with respect to pack territories had no effect on the outcome of interpack interactions. Although the importance of RPS in successful territorial defense suggests the evolution and maintenance of group living may be at least partly due to larger packs’ success during interpack interactions, group composition is also an important factor, highlighting that some individuals are more valuable than others during interpack conflicts.

  7. Bottom-up factors influencing riparian willow recovery in Yellowstone National Park

    Science.gov (United States)

    Tercek, M.T.; Stottlemyer, R.; Renkin, R.

    2010-01-01

    After the elimination of wolves (Canis lupis L.) in the 1920s, woody riparian plant communities on the northern range of Yellowstone National Park (YNP) declined an estimated 50%. After the reintroduction of wolves in 19951996, riparian willows (Salix spp.) on YNP's northern range showed significant growth for the first time since the 1920s. However, the pace of willow recovery has not been uniform. Some communities have exceeded 400 cm, while others are still at pre-1995 levels of 250 cm max. height) willow sites where willows had escaped elk (Cervus elaphus L.) browsing with "short" willow sites that could still be browsed. Unlike studies that manipulated willow height with fences and artificial dams, we examined sites that had natural growth differences in height since the reintroduction of wolves. Tall willow sites had greater water availability, more-rapid net soil nitrogen mineralization, greater snow depth, lower soil respiration rates, and cooler summer soil temperatures than nearby short willow sites. Most of these differences were measured both in herbaceous areas adjacent to the willow patches and in the willow patches themselves, suggesting that they were not effects of varying willow height recovery but were instead preexisting site differences that may have contributed to increased plant productivity. Our results agree with earlier studies in experimental plots which suggest that the varying pace of willow recovery has been influenced by abiotic limiting factors that interact with top-down reductions in willow browsing by elk. ?? 2010 Western North American Naturalist.

  8. Monitoring super-volcanoes: geophysical and geochemical signals at Yellowstone and other large caldera systems.

    Science.gov (United States)

    Lowenstern, Jacob B; Smith, Robert B; Hill, David P

    2006-08-15

    Earth's largest calderas form as the ground collapses during immense volcanic eruptions, when hundreds to thousands of cubic kilometres of magma are explosively withdrawn from the Earth's crust over a period of days to weeks. Continuing long after such great eruptions, the resulting calderas often exhibit pronounced unrest, with frequent earthquakes, alternating uplift and subsidence of the ground, and considerable heat and mass flux. Because many active and extinct calderas show evidence for repetition of large eruptions, such systems demand detailed scientific study and monitoring. Two calderas in North America, Yellowstone (Wyoming) and Long Valley (California), are in areas of youthful tectonic complexity. Scientists strive to understand the signals generated when tectonic, volcanic and hydrothermal (hot ground water) processes intersect. One obstacle to accurate forecasting of large volcanic events is humanity's lack of familiarity with the signals leading up to the largest class of volcanic eruptions. Accordingly, it may be difficult to recognize the difference between smaller and larger eruptions. To prepare ourselves and society, scientists must scrutinize a spectrum of volcanic signals and assess the many factors contributing to unrest and toward diverse modes of eruption.

  9. Whitebark pine vulnerability to climate-driven mountain pine beetle disturbance in the Greater Yellowstone Ecosystem.

    Science.gov (United States)

    Logan, Jesse A; MacFarlane, William W; Willcox, Louisa

    2010-06-01

    Widespread outbreaks of mountain pine beetles (MPB) are occurring throughout the range of this native insect. Episodic outbreaks are a common occurrence in the beetles' primary host, lodgepole pine. Current outbreaks, however, are occurring in habitats where outbreaks either did not previously occur or were limited in scale. Herein, we address widespread, ongoing outbreaks in high-elevation, whitebark pine forests of the Greater Yellowstone Ecosystem, where, due to an inhospitable climate, past outbreaks were infrequent and short lived. We address the basic question: are these outbreaks truly unprecedented and a threat to ecosystem continuity? In order to evaluate this question we (1) present evidence that the current outbreak is outside the historic range of variability; (2) examine system resiliency to MPB disturbance based on adaptation to disturbance and host defenses to MPB attack; and (3) investigate the potential domain of attraction to large-scale MPB disturbance based on thermal developmental thresholds, spatial structure of forest types, and the confounding influence of an introduced pathogen. We conclude that the loss of dominant whitebark pine forests, and the ecological services they provide, is likely under continuing climate warming and that new research and strategies are needed to respond to the crisis facing whitebark pine.

  10. Microbial communities and chemosynthesis in Yellowstone Lake sublacustrine hydrothermal vent waters

    Directory of Open Access Journals (Sweden)

    Tingting eYang

    2011-06-01

    Full Text Available Abstract. Five sublacustrine hydrothermal vent locations from 1-109 m water depth in Yellowstone Lake were surveyed by ribosomal RNA sequencing in relation to their chemical composition and dark CO2 fixation rates. They harbor distinct chemosynthetic bacterial communities, depending on temperature (16 - 110ºC and electron donor supply (H2S <1 - >100µM; NH3 <0.5 - >10µM. Members of the Aquificales, most closely affiliated with the genus Sulfurihydrogenibium, are the most frequently recovered bacterial 16S rRNA gene phylotypes in the hottest samples; the detection of these thermophilic sulfur-oxidizing autotrophs coincided with maximal dark CO2 fixation rates reaching near 9 µM C h-1 at temperatures of 50 to 60°C. Vents at lower temperatures yielded mostly phylotypes related to the mesophilic gammaproteobacterial sulfur oxidizer Thiovirga. In contrast, cool vent water with low chemosynthetic activity yielded predominantly phylotypes related to freshwater Actinobacterial clusters with a cosmopolitan distribution.

  11. Effects of management and climate on elk brucellosis in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Cross, P.C.; Edwards, W.H.; Scurlock, B.M.; Maichak, E.J.; Rogerson, J.D.

    2007-01-01

    Every winter, government agencies feed ???6000 metric tons (6 ?? 106 kg) of hay to elk in the southern Greater Yellowstone Ecosystem (GYE) to limit transmission of Brucella abortus, the causative agent of brucellosis, from elk to cattle. Supplemental feeding, however, is likely to increase the transmission of brucellosis in elk, and may be affected by climatic factors, such as snowpack. We assessed these possibilities using snowpack and feeding data from 1952 to 2006 and disease testing data from 1993 to 2006. Brucellosis seroprevalence was strongly correlated with the timing of the feeding season. Longer feeding seasons were associated with higher seroprevalence, but elk population size and density had only minor effects. In other words, the duration of host aggregation and whether it coincided with peak transmission periods was more important than just the host population size. Accurate modeling of disease transmission depends upon incorporating information on how host contact rates fluctuate over time relative to peak transmission periods. We also found that supplemental feeding seasons lasted longer during years with deeper snowpack. Therefore, milder winters and/or management strategies that reduce the length of the feeding season may reduce the seroprevalence of brucellosis in the elk populations of the southern GYE. ?? 2007 by the Ecological Society of America.

  12. Archaeal and bacterial community analysis of several Yellowstone National Park hot springs

    Science.gov (United States)

    Colman, D. R.; Takacs-Vesbach, C. D.

    2012-12-01

    The hot springs of Yellowstone National Park (YNP) are home to a diverse assemblage of microorganisms. Culture-independent studies have significantly expanded our understanding of the diversity of both Bacteria and Archaea present in YNP springs as well as the geochemical and ecological controls on communities. While the ecological analysis of Bacteria among the physicochemically heterogenous springs of YNP has been previously conducted, less is known about the extent of diversity of Archaeal communities and the chemical and ecological controls on their populations. Here we report a culture-independent analysis of 31 hot spring archaeal and bacterial communities of YNP springs using next generation sequencing. We found the phylogenetic diversity of Archaea to be generally comparable to that of co-occurring bacterial communities although overall, in the springs we investigated, diversity was higher for Bacteria than Archaea. Chemical and physical controls were similar for both domains with pH correlating most strongly with community composition. Community differences reflected the partitioning of taxonomic groups in low or high pH springs for both domains. Results will be discussed in a geochemical and ecological context.

  13. Research Coordination Network: Geothermal Biology and Geochemistry in Yellowstone National Park

    Science.gov (United States)

    Inskeep, W. P.; Young, M. J.; Jay, Z.

    2006-12-01

    The number and diversity of geothermal features in Yellowstone National Park (YNP) represent a fascinating array of high temperature geochemical environments that host a corresponding number of unique and potentially novel organisms in all of the three recognized domains of life: Bacteria, Archaea and Eukarya. The geothermal features of YNP have long been the subject of scientific inquiry, especially in the fields of microbiology, geochemistry, geothermal hydrology, microbial ecology, and population biology. However, there are no organized forums for scientists working in YNP geothermal areas to present research results, exchange ideas, discuss research priorities, and enhance synergism among research groups. The primary goal of the YNP Research Coordination Network (GEOTHERM) is to develop a more unified effort among scientists and resource agencies to characterize, describe, understand and inventory the diverse biota associated with geothermal habitats in YNP. The YNP RCN commenced in January 2005 as a collaborative effort among numerous university scientists, governmental agencies and private industry. The YNP RCN hosted a workshop in February 2006 to discuss research results and to form three working groups focused on (i) web-site and digital library content, (ii) metagenomics of thermophilic microbial communities and (iii) development of geochemical methods appropriate for geomicrobiological studies. The working groups represent one strategy for enhancing communication, collaboration and most importantly, productivity among the RCN participants. If you have an interest in the geomicrobiology of geothermal systems, please feel welcome to join and or participate in the YNP RCN.

  14. Tracking hydrothermal feature changes in response to seismicity and deformation at Mud Volcano thermal area, Yellowstone

    Science.gov (United States)

    Diefenbach, A. K.; Hurwitz, S.; Murphy, F.; Evans, W.

    2013-12-01

    The Mud Volcano thermal area in Yellowstone National Park comprises many hydrothermal features including fumaroles, mudpots, springs, and thermal pools. Observations of hydrothermal changes have been made for decades in the Mud Volcano thermal area, and include reports of significant changes (the appearance of new features, increased water levels in pools, vigor of activity, and tree mortality) following an earthquake swarm in 1978 that took place beneath the area. However, no quantitative method to map and measure surface feature changes through time has been applied. We present an analysis of aerial photographs from 1954 to present to track temporal changes in the boundaries between vegetated and thermally barren areas, as well as location, extent, color, clarity, and runoff patterns of hydrothermal features within the Mud Volcano thermal area. This study attempts to provide a detailed, long-term (>50 year) inventory of hydrothermal features and change detection at Mud Volcano thermal area that can be used to identify changes in hydrothermal activity in response to seismicity, uplift and subsidence episodes of the adjacent Sour Creek resurgent dome, or other potential causes.

  15. Anatomy of Old Faithful from subsurface seismic imaging of the Yellowstone Upper Geyser Basin

    KAUST Repository

    Wu, Sin-Mei

    2017-10-03

    The Upper Geyser Basin in Yellowstone National Park contains one of the highest concentrations of hydrothermal features on Earth including the iconic Old Faithful geyser. Although this system has been the focus of many geological, geochemical, and geophysical studies for decades, the shallow (<200 m) subsurface structure remains poorly characterized. To investigate the detailed subsurface geologic structure including the hydrothermal plumbing of the Upper Geyser Basin, we deployed an array of densely spaced three-component nodal seismographs in November of 2015. In this study, we extract Rayleigh-wave seismic signals between 1-10 Hz utilizing non-diffusive seismic waves excited by nearby active hydrothermal features with the following results. 1) imaging the shallow subsurface structure by utilizing stationary hydrothermal activity as a seismic source, 2) characterizing how local geologic conditions control the formation and location of the Old Faithful hydrothermal system, and 3) resolving a relatively shallow (10-60 m) and large reservoir located ~100 m southwest of Old Faithful geyser.

  16. Heat‐tolerant Flowering Plants of Active Geothermal Areas in Yellowstone National Park

    Science.gov (United States)

    STOUT, RICHARD G.; AL‐NIEMI, THAMIR S.

    2002-01-01

    A broad survey of most of the major geyser basins within Yellowstone National Park (Wyoming, USA) was conducted to identify the flowering plants which tolerate high rhizosphere temperatures (≥40 °C) in geothermally heated environments. Under such conditions, five species of monocots and four species of dicots were repeatedly found. The predominant flowering plants in hot soils (>40 °C at 2–5 cm depth) were grasses, primarily Dichanthelium lanuginosum. Long‐term (weeks to months) rhizosphere temperatures of individual D. lanuginosum above 40 °C were recorded at several different locations, both in the summer and winter. The potential role of heat shock proteins (HSPs) in the apparent adaptation of these plants to chronically high rhizosphere temperatures was examined. Antibodies to cytoplasmic class I small heat shock proteins (sHSPs) and to HSP101 were used in Western immunoblot analyses of protein extracts from plants collected from geothermally heated soils. Relatively high levels of proteins reacting with anti‐sHSP antibodies were consistently detected in root extracts from plants experiencing rhizosphere temperatures above 40 °C, though these proteins were usually not highly expressed in leaf extracts from the same plants. Proteins reacting with antibodies to HSP101 were also present both in leaf and root extracts from plants collected from geothermal soils, but their levels of expression were not as closely related to the degree of heat exposure as those of sHSPs. PMID:12197524

  17. Methylmercury enters an aquatic food web through acidophilic microbial mats in Yellowstone National Park, Wyoming.

    Science.gov (United States)

    Boyd, Eric S; King, Susan; Tomberlin, Jeffery K; Nordstrom, D Kirk; Krabbenhoft, David P; Barkay, Tamar; Geesey, Gill G

    2009-04-01

    Microbial mats are a visible and abundant life form inhabiting the extreme environments in Yellowstone National Park (YNP), WY, USA. Little is known of their role in food webs that exist in the Park's geothermal habitats. Eukaryotic green algae associated with a phototrophic green/purple Zygogonium microbial mat community that inhabits low-temperature regions of acidic (pH approximately 3.0) thermal springs were found to serve as a food source for stratiomyid (Diptera: Stratiomyidae) larvae. Mercury in spring source water was taken up and concentrated by the mat biomass. Monomethylmercury compounds (MeHg(+)), while undetectable or near the detection limit (0.025 ng l(-1)) in the source water of the springs, was present at concentrations of 4-7 ng g(-1) dry weight of mat biomass. Detection of MeHg(+) in tracheal tissue of larvae grazing the mat suggests that MeHg(+) enters this geothermal food web through the phototrophic microbial mat community. The concentration of MeHg(+) was two to five times higher in larval tissue than mat biomass indicating MeHg(+) biomagnification occurred between primary producer and primary consumer trophic levels. The Zygogonium mat community and stratiomyid larvae may also play a role in the transfer of MeHg(+) to species in the food web whose range extends beyond a particular geothermal feature of YNP.

  18. Cyanobacterial Community Structure In Lithifying Mats of A Yellowstone Hotspring-Implications for Precambrian Stromatolite Biocomplexity

    Science.gov (United States)

    Lau, Evan; Nash, C. Z.; Vogler, D. R.; Cullings, K.; DeVincenzi, Donald (Technical Monitor)

    2002-01-01

    Denaturing Gradient Gel Electrophoresis (DGGE) of partial 16S rRNA gene sequences was used to investigate the molecular biodiversity of cyanobacterial communities inhabiting various lithified morpho-structures in two hotsprings of Yellowstone National Park. These morpho-structures - flat-topped columns, columnar cones, and ridged cones - resemble ancient stromatolites, which are possibly biogenic in origin. The top, middle and bottom sections of these lithified morpho-structures, as well as surrounding non-lithified mats were analyzed to determine the vertical and spatial distribution of cyanobacterial communities. Results from DGGE indicate that the cyanobacterial community composition of lithified morpho-structures (flat-topped columns, columnar cones, and ridged cones) were largely similar in vertical distribution as well as among the morpho-structures being studied. Preliminary results indicate that the cyanobacterial communities in these lithified morpho-structures were significantly different from communities in surrounding non-lithified mats. These results provide additional support to the theory that certain Phormidium/Leptolyngbya species are involved in the morphogenesis of lithifying morpho-structures in hotsprings and may have played a role in the formation of ancient stromatolites.

  19. Eruptions at Lone Star geyser, Yellowstone National Park, USA: 2. Constraints on subsurface dynamics

    Science.gov (United States)

    Vandemeulebrouck, Jean; Sohn, Robert A.; Rudolph, Maxwell L.; Hurwitz, Shaul; Manga, Michael; Johnston, Malcolm J.S.; Soule, S. Adam; McPhee, Darcy K.; Glen, Jonathan M.G.; Karlstrom, Leif; Murphy, Fred

    2014-01-01

    We use seismic, tilt, lidar, thermal, and gravity data from 32 consecutive eruption cycles of Lone Star geyser in Yellowstone National Park to identify key subsurface processes throughout the geyser's eruption cycle. Previously, we described measurements and analyses associated with the geyser's erupting jet dynamics. Here we show that seismicity is dominated by hydrothermal tremor (~5–40 Hz) attributed to the nucleation and/or collapse of vapor bubbles. Water discharge during eruption preplay triggers high-amplitude tremor pulses from a back azimuth aligned with the geyser cone, but during the rest of the eruption cycle it is shifted to the east-northeast. Moreover, ~4 min period ground surface displacements recur every 26 ± 8 min and are uncorrelated with the eruption cycle. Based on these observations, we conclude that (1) the dynamical behavior of the geyser is controlled by the thermo-mechanical coupling between the geyser conduit and a laterally offset reservoir periodically filled with a highly compressible two-phase mixture, (2) liquid and steam slugs periodically ascend into the shallow crust near the geyser system inducing detectable deformation, (3) eruptions occur when the pressure decrease associated with overflow from geyser conduit during preplay triggers an unstable feedback between vapor generation (cavitation) and mass discharge, and (4) flow choking at a constriction in the conduit arrests the runaway process and increases the saturated vapor pressure in the reservoir by a factor of ~10 during eruptions.

  20. Brucellosis Transmission between Wildlife and Livestock in the Greater Yellowstone Ecosystem: Inferences from DNA Genotyping.

    Science.gov (United States)

    O'Brien, Michael P; Beja-Pereira, Albano; Anderson, Neil; Ceballos, Ruben M; Edwards, William H; Harris, Beth; Wallen, Rick L; Costa, Vânia

    2017-04-01

    The wildlife of the Greater Yellowstone Ecosystem carries brucellosis, which was first introduced to the area by cattle in the 19th century. Brucellosis transmission between wildlife and livestock has been difficult to study due to challenges in culturing the causative agent, Brucella abortus . We examined B. abortus transmission between American bison ( Bison bison ), Rocky Mountain elk ( Cervus elaphus nelsoni), and cattle ( Bos taurus ) using variable number tandem repeat (VNTR) markers on DNA from 98 B. abortus isolates recovered from populations in Idaho, Montana, and Wyoming, US. Our analyses reveal interspecies transmission. Two outbreaks (2007, 2008) in Montana cattle had B. abortus genotypes similar to isolates from both bison and elk. Nevertheless, similarity in elk and cattle isolates from the 2008 outbreak suggest that elk are the likely source of brucellosis transmission to cattle in Montana and Wyoming. Brucella abortus isolates from sampling in Montana appear to be divided in two clusters: one found in local Montana elk, cattle, and bison; and another found mainly in elk and a bison from Wyoming, which is consistent with brucellosis having entered Montana via migration of infected elk from Wyoming. Our findings illustrate complex patterns of brucellosis transmission among elk, bison, and cattle as well as the utility of VNTRs to infer the wildlife species of origin for disease outbreaks in livestock.

  1. 49 CFR 229.69 - Side bearings.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Side bearings. 229.69 Section 229.69....69 Side bearings. (a) Friction side bearings with springs designed to carry weight may not have more than 25 percent of the springs in any one nest broken. (b) Friction side bearings may not be run in...

  2. Superconductor bearings, flywheels and transportation

    International Nuclear Information System (INIS)

    Werfel, F N; Floegel-Delor, U; Rothfeld, R; Riedel, T; Goebel, B; Wippich, D; Schirrmeister, P

    2012-01-01

    This paper describes the present status of high temperature superconductors (HTS) and of bulk superconducting magnet devices, their use in bearings, in flywheel energy storage systems (FESS) and linear transport magnetic levitation (Maglev) systems. We report and review the concepts of multi-seeded REBCO bulk superconductor fabrication. The multi-grain bulks increase the averaged trapped magnetic flux density up to 40% compared to single-grain assembly in large-scale applications. HTS magnetic bearings with permanent magnet (PM) excitation were studied and scaled up to maximum forces of 10 kN axially and 4.5 kN radially. We examine the technology of the high-gradient magnetic bearing concept and verify it experimentally. A large HTS bearing is tested for stabilizing a 600 kg rotor of a 5 kWh/250 kW flywheel system. The flywheel rotor tests show the requirement for additional damping. Our compact flywheel system is compared with similar HTS–FESS projects. A small-scale compact YBCO bearing with in situ Stirling cryocooler is constructed and investigated for mobile applications. Next we show a successfully developed modular linear Maglev system for magnetic train operation. Each module levitates 0.25t at 10 mm distance during one-day operation without refilling LN 2 . More than 30 vacuum cryostats containing multi-seeded YBCO blocks are fabricated and are tested now in Germany, China and Brazil.

  3. Noise estimation of oil lubricated journal bearings

    International Nuclear Information System (INIS)

    Rho, Byoung Hoo; Kim, Kyung Woong

    2003-01-01

    Noise estimating procedures of oil lubricated journal bearings are presented. Nonlinear analysis of rotor-bearing system including unbalance mass of the rotor is performed in order to obtain acoustical properties of the bearing. Acoustical properties of the bearing are investigated through frequency analysis of the pressure fluctuation of the fluid film calculated from the nonlinear analysis. Noise estimating procedures presented in this paper could aid in the evaluation and understanding of acoustical properties of oil lubricated journal bearings

  4. Grizzly Staus Report

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Benjamin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Zhang, Yongfeng [Idaho National Lab. (INL), Idaho Falls, ID (United States); Chakraborty, Pritam [Idaho National Lab. (INL), Idaho Falls, ID (United States); Backman, Marie [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hoffman, William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schwen, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Biner, S. Bulent [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bai, Xianming [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    This report summarizes work during FY 2014 to develop capabilities to predict embrittlement of reactor pressure vessel steel, and to assess the response of embrittled reactor pressure vessels to postulated accident conditions. This work has been conducted a three length scales. At the engineering scale, 3D fracture mechanics capabilities have been developed to calculate stress intensities and fracture toughnesses, to perform a deterministic assessment of whether a crack would propagate at the location of an existing flaw. This capability has been demonstrated on several types of flaws in a generic reactor pressure vessel model. Models have been developed at the scale of fracture specimens to develop a capability to determine how irradiation affects the fracture toughness of material. Verification work has been performed on a previously-developed model to determine the sensitivity of the model to specimen geometry and size effects. The effects of irradiation on the parameters of this model has been investigated. At lower length scales, work has continued in an ongoing to understand how irradiation and thermal aging affect the microstructure and mechanical properties of reactor pressure vessel steel. Previously-developed atomistic kinetic monte carlo models have been further developed and benchmarked against experimental data. Initial work has been performed to develop models of nucleation in a phase field model. Additional modeling work has also been performed to improve the fundamental understanding of the formation mechanisms and stability of matrix defects caused.

  5. Changes in plain bearing technology

    CERN Document Server

    Koring, Rolf

    2012-01-01

    A unique fusion of theoretical and practical knowledge, Changes in Plain Bearing Technology, by Rolf Koring, covers a meaningful range of expertise in this field.Drawing from years of experience in design development, materials selection, and their correlation to real-life part failure, this title, co-published by SAE International and expert Verlag (Germany), concentrates on hydrodynamic bearings lined with white metals, also known as Babbits.Written under the assumption that even the most mature body of knowledge can be revisited and improved, Changes in Plain Bearing Technology is a courageous and focused approach to questioning accepted test results and looking at alternative material compounds, and their application suitability.The process, which leads to innovative answers on how the technology is transforming itself to respond to new market requirements, shows how interdisciplinary thinking can recognize new potential in long-established industrial modus operandi.Tackling the highly complex issue of co...

  6. 'Dodo' and 'Baby Bear' Trenches

    Science.gov (United States)

    2008-01-01

    NASA's Phoenix Mars Lander's Surface Stereo Imager took this image on Sol 11 (June 5, 2008), the eleventh day after landing. It shows the trenches dug by Phoenix's Robotic Arm. The trench on the left is informally called 'Dodo' and was dug as a test. The trench on the right is informally called 'Baby Bear.' The sample dug from Baby Bear will be delivered to the Phoenix's Thermal and Evolved-Gas Analyzer, or TEGA. The Baby Bear trench is 9 centimeters (3.1 inches) wide and 4 centimeters (1.6 inches) deep. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  7. Migrations and swimming capabilities of endangered pallid sturgeon (Scaphirhynchus albus) to guide passage designs in the fragmented Yellowstone River

    Science.gov (United States)

    Braaten, P. J.; Elliott, Caroline M.; Rhoten, Jason C.; Fuller, D. B.; McElroy, Brandon J.

    2015-01-01

    Fragmentation of the Yellowstone River is hypothesized to preclude recruitment of endangered Scaphirhynchus albus (pallid sturgeon) by impeding upstream spawning migrations and access to upstream spawning areas, thereby limiting the length of free-flowing river required for survival of early life stages. Building on this hypothesis, the reach of the Yellowstone River affected by Intake Diversion Dam (IDD) is targeted for modification. Structures including a rock ramp and by-pass channel have been proposed as restoration alternatives to facilitate passage. Limited information on migrations and swimming capabilities of pallid sturgeon is available to guide engineering design specifications for the proposed structures. Migration behavior, pathways (channel routes used during migrations), and swimming capabilities of free-ranging wild adult pallid sturgeon were examined using radiotelemetry, and complemented with hydraulic data obtained along the migration pathways. Migrations of 12–26% of the telemetered pallid sturgeon population persisted to IDD, but upstream passage over the dam was not detected. Observed migration pathways occurred primarily through main channel habitats; however, migrations through side channels up to 3.9 km in length were documented. The majority of pallid sturgeon used depths of 2.2–3.4 m and mean water velocities of 0.89–1.83 m/s while migrating. Results provide inferences on depths, velocities, and habitat heterogeneity of reaches successfully negotiated by pallid sturgeon that may be used to guide designs for structures facilitating passage at IDD. Passage will provide connectivity to potential upstream spawning areas on the Yellowstone River, thereby increasing the likelihood of recruitment for this endangered species.

  8. Hydrogeology of the Old Faithful area, Yellowstone National Park, Wyoming, and its relevance to natural resources and infrastructure

    Science.gov (United States)

    ,; Foley, Duncan; Fournier, Robert O.; Heasler, Henry P.; Hinckley, Bern; Ingebritsen, Steven E.; Lowenstern, Jacob B.; Susong, David D.

    2014-01-01

    A panel of leading experts (The Old Faithful Science Review Panel) was convened by Yellowstone National Park (YNP) to review and summarize the geological and hydrological understanding that can inform National Park Service management of the Upper Geyser Basin area. We give an overview of present geological and hydrological knowledge of the Old Faithful hydrothermal (hot water) system and related thermal areas in the Upper Geyser Basin. We prioritize avenues for improving our understanding of key knowledge gaps that limit informed decision-making regarding human use in this fragile natural landscape. Lastly, we offer guidelines to minimize impacts to the hydrothermal system that could be used to aid decisions by park management.

  9. Drainage and Landscape Evolution in the Bighorn Basin Accompanying Advection of the Yellowstone Hotspot Swell Through North America

    Science.gov (United States)

    Guerrero, E. F.; Meigs, A.

    2012-12-01

    Mantle plumes have been recognized to express themselves on the surface as long wavelength and low amplitude topographic swells. These swells are measured as positive geoid anomalies and include shorter wavelength topographic features such as volcanic edifices and pre-exisitng topography. Advection of the topographic swell is expected as the lithosphere passes over the plume uplift source. The hot spot swell occurs in the landscape as transient signal that is expressed with waxing and waning topography. Waxing topography occurs at the leading edge of the swell and is expressed as an increase in rock uplift that is preserved by rivers and landscapes. Advection of topography predicts a shift in a basin from deposition to incision, an increase in convexity of a transverse river's long profile and a lateral river migration in the direction of advection. The Yellowstone region has a strong positive geoid anomaly and the volcanic signal, which have been interpreted as the longer and shorter wavelength topographic expressions of the hot spot. These expressions of the hot spot developed in a part of North America with a compounded deformation and topographic history. Previous studies of the Yellowstone topographic swell have concentrated on the waning or trailing signal preserved in the Snake River Plain. Our project revisits the classic geomorphology study area in the Bighorn Basin of Wyoming and Montana, which is in leading edge of the swell. Present models identify the swell as having a 400 km in diameter and that it is centered on the Yellowstone caldera. If we assume advection to occur in concert with the caldera eruptive track, the Yellowstone swell has migrated to the northeast at a rate of 3 cm yr-1 and began acting on the Bighorn Basin's landscape between 3 and 2 Ma. The Bighorn Basin has an established history of a basin-wide switch from deposition to incision during the late Pliocene, yet the age control on the erosional evolution of the region is relative. This

  10. Get fit with the Grizzlies: a community-school-home initiative to fight childhood obesity led by a professional sports organization.

    Science.gov (United States)

    Irwin, Carol; Irwin, Richard; Richey, Phyllis; Miller, Maureen; Boddie, Justin; Dickerson, Teresa

    2012-01-01

    Professional sports organizations in the United States have notable celebrity status, and several teams have used this "star power" to collaborate with local schools toward the goal of affecting childhood obesity (e.g., NFL Play 60). Program effectiveness is unknown owing to the absence of comprehensive evaluations for any of these initiatives. In 2006, the Memphis Grizzlies, the city's National Basketball Association (NBA) franchise, launched "Get Fit with the Grizzlies," a 6-week, curricular addition focusing on nutrition and physical activity for the 4th and 5th grades in Memphis City Schools. The health-infused mini-unit was delivered by the physical education teachers during their classes. National and local sponsors whose business objectives matched the "Get Fit" objectives were solicited to fund the program. Here we highlight the program evaluation results from the first year of "Get Fit" and the Journal of School Health article. However, the "Get Fit" program has now taken place in Memphis area schools for 5 years. During the 2010-11 school-year, "Get Fit" evolved into a new program called "Healthy Home Court" with Kellogg's as the primary sponsor. "Healthy Home Court" included the original fitness part of the program and added a breakfast component at high schools where data indicated great need. Kellogg's sponsored special "carts" with healthy breakfast options (i.e., fruit, protein bars) for students to grab and eat. This program matched their existing program "Food Away from Home." Research supports the objectives of these programs and has shown that breakfast consumption can have a positive impact on academic achievement, behavior in school, and overall health status. Survey research employed over the first 4 years measured health knowledge acquisition and health behavior change using a matched pre/post test design (n=2210) in randomly chosen schools (n=18) from all elementary schools in the Memphis area. McNemar's test for significance (<05) was

  11. Beaver Activity, Holocene Climate and Riparian Landscape Change Across Stream Scales in the Greater Yellowstone Ecosystem

    Science.gov (United States)

    Levine, R.; Meyer, G. A.

    2013-12-01

    Beaver (Castor canadensis) have been part of the fluvial and riparian landscape across much of North America since the Pleistocene, increasing channel habitat complexity and expanding riparian landscapes. The fur trade, however, decimated beaver populations by the 1840s, and other human activities have limited beaver in many areas, including parts of the Greater Yellowstone Ecosystem (GYE). Understanding fluctuations in beaver occupation through the Holocene will aid in understanding the natural range of variability in beaver activity as well as climatic and anthropogenic impacts to fluvial systems. We are developing a detailed chronology of beaver-assisted sedimentation and overall fluvial activity for Odell and Red Rock Creeks (basin areas 83 and 99 km2) in Centennial Valley (CV), Montana, to augment related studies on the long-term effects of beaver on smaller GYE fluvial systems (basin areas 0.1-50 km2). In developing the CV chronology, we use the presence of concentrations of beaver-chewed sticks as a proxy for beaver occupancy. Beaver-stick deposits are found in paleochannel and fluvial terrace exposures. The relative ages of exposures were determined by elevation data from airborne LiDAR and ground surveys. Numerical ages were obtained from 36 14C ages (~30 more are pending) of beaver-stick wood collected during investigation of the stratigraphy. Most beaver-stick deposits are associated with ~ 1 meter of fine-grained sediment, interpreted as overbank deposits, commonly overlying gravelly sand or pebble gravel channel deposits which is consistent with enhanced overbank sedimentation associated with active beaver dams in CV streams. The CV deposits differ from those on smaller GYE streams where beaver-stick deposits are associated with abandoned dams (berms), infilled ponds and laminated sediments. The lack of pond-related deposition associated with CV beaver-stick deposits is consistent with frequent dam breaching (≤ 5 years) in the modern channel of Odell

  12. The correct "ball bearings" data.

    Science.gov (United States)

    Caroni, C

    2002-12-01

    The famous data on fatigue failure times of ball bearings have been quoted incorrectly from Lieblein and Zelen's original paper. The correct data include censored values, as well as non-fatigue failures that must be handled appropriately. They could be described by a mixture of Weibull distributions, corresponding to different modes of failure.

  13. Little Bear Fire Summary Report

    Science.gov (United States)

    Sarah McCaffrey; Melanie Stidham; Hannah. Brenkert-Smith

    2013-01-01

    In June 2012, immediately after the Little Bear Fire burned outside Ruidoso, New Mexico, a team of researchers interviewed fire managers, local personnel, and residents to understand perceptions of the event itself, communication, evacuation, and pre-fire preparedness. The intensity of fire behavior and resulting loss of 242 homes made this a complex fire with a...

  14. Satellite monitoring of black bear.

    Science.gov (United States)

    Craighead, J. J.; Craighead, F. C., Jr.; Varney, J. R.; Cote, C. E.

    1971-01-01

    Description of a feasibility experiment recently performed to test the use of a satellite system for telemetering environmental and physiological data from the winter den of a 'hibernating' black bear, Ursus americanus. The instrumentation procedure and evaluations of the equipment performance and sensory data obtained are discussed in detail.