WorldWideScience

Sample records for yellow phosphorus slag

  1. Crystallization Kinetics of Precipitating Calcium from Yellow Phosphorus Slag Lixivium

    Directory of Open Access Journals (Sweden)

    Li, G. -B.

    2014-11-01

    Full Text Available The crystallization dynamic parameters of calcium sulphate were determined in the course of the precipitation conversion process of calcium in lixivium. The crystallization dynamic equations of calcium sulphate were achieved by multiple linear regression. The study results indicate that CaSO4 · 2 H2O crystal nucleation-growth kinetics equation in nitric acid leaching liquid of yellow phosphorus slag at room temperature is expressed by B0 = 2.904 · 1011 · G0.83 · MT 0.167.

  2. Effect of Fe2O3 on the crystallization behavior of glass-ceramics produced from naturally cooled yellow phosphorus furnace slag

    Science.gov (United States)

    Liu, Hong-pan; Huang, Xiao-feng; Ma, Li-ping; Chen, Dan-li; Shang, Zhi-biao; Jiang, Ming

    2017-03-01

    CaO-Al2O3-SiO2 (CAS) glass-ceramics were prepared via a melting method using naturally cooled yellow phosphorus furnace slag as the main raw material. The effects of the addition of Fe2O3 on the crystallization behavior and properties of the prepared glass-ceramics were studied by differential thermal analysis, X-ray diffraction, and scanning electron microscopy. The crystallization activation energy was calculated using the modified Johnson-Mehl-Avrami equation. The results show that the intrinsic nucleating agent in the yellow phosphorus furnace slag could effectively promote the crystallization of CAS. The crystallization activation energy first increased and then decreased with increasing amount of added Fe2O3. At 4wt% of added Fe2O3, the crystallization activation energy reached a maximum of 676.374 kJ·mol-1. The type of the main crystalline phase did not change with the amount of added Fe2O3. The primary and secondary crystalline phases were identified as wollastonite (CaSiO3) and hedenbergite (CaFe(Si2O6)), respectively.

  3. STOCHASTIC MODELING OF COMPRESSIVE STRENGTH OF PHOSPHORUS SLAG CONTENT CEMENT

    Directory of Open Access Journals (Sweden)

    Ali Allahverdi

    2016-07-01

    Full Text Available One of the common methods for quick determination of compressive strength as one of the most important properties for assessment of cement quality is to apply various modeling approaches. This study is aimed at finding a model for estimating the compressive strength of phosphorus slag content cements. For this purpose, the compressive strengths of chemically activated high phosphorus slag content cement prepared from phosphorus slag (80 wt.%, Portland cement (14 wt.% and a compound chemical activator containing sodium sulfate and anhydrite (6 wt.% were measured at various Blaine finenesses and curing times. Based on the obtained results, a primary stochastic model in terms of curing time and Blaine fineness has been developed. Then, another different dataset was used to incorporate composition variable including weight fractions of phosphorus slag, cement, and activator in the model. This model can be effectively used to predict the compressive strength of phosphorus slag content cements at various Blaine finenesses, curing times, and compositions.

  4. Yellow phosphorus-induced Brugada phenocopy.

    Science.gov (United States)

    Dharanipradab, Mayakrishnan; Viswanathan, Stalin; Kumar, Gokula Raman; Krishnamurthy, Vijayalatchumy; Stanley, Daphene Divya

    Metallic phosphides (of aluminum and phosphide) and yellow phosphorus are commonly used rodenticide compounds in developing countries. Toxicity of yellow phosphorus mostly pertains to the liver, kidney, heart, pancreas and the brain. Cardiotoxicity with associated Brugada ECG pattern has been reported only in poisoning with metallic phosphides. Brugada phenocopy and hepatic dysfunction were observed in a 29-year-old male following yellow phosphorus consumption. He had both type 1 (day1) and type 2 (day2) Brugada patterns in the electrocardiogram, which resolved spontaneously by the third day without hemodynamic compromise. Toxins such as aluminum and zinc phosphide have been reported to induce Brugada ECG patterns due to the generation of phosphine. We report the first case of yellow phosphorus-related Brugada phenocopy, without hemodynamic compromise or malignant arrhythmia. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Processing of Phosphorus Slag with Recovery of Rare Earth Metals and Obtaining Silicon Containing Cake

    Science.gov (United States)

    Karshigina, Zaure; Abisheva, Zinesh; Bochevskaya, Yelena; Akcil, Ata; Sharipova, Aynash; Sargelova, Elmira

    2016-10-01

    The present research is devoted to the processing of slag generating during the yellow phosphorus production. In this paper are presented studies on leaching of phosphorus production slag by nitric acid with recovery of rare earth metals (REMs) into solution. REMs recovery into the solution achieved 98 % during the leaching process with using 7.5 mol/L of HNO3, liquid-to-solid ratio is 2.6:1, temperature is 60°C, process duration is 1 hour and stirrer speed is 500 rpm. Behaviour during the leaching of associated components such as calcium, aluminium, and iron was studied. After the leaching cake contains ∼⃒75-85 % of SiO2 and it might be useful for obtaining of precipitated silicon dioxide. With the purpose of separation from the impurities, recovery and concentrating of REMs, the obtained solution after leaching was subjected to extraction processing methods. The influence of ratio of organic and aqueous phases (O: A) on the extraction of rare earth metals by tributyl phosphate (TBP) with concentrations from 20 up to 100 % was studied. The REMs extraction with increasing TBP concentration under changes O:A ratio from 1:20 down to 1:1 into the organic phase from the solutions after nitric acid leaching increased from 22.2 up to 99.3%. The duration effect of REMs extraction process was studied by tributyl phosphate. It is revealed that with increasing of duration of the extraction process from 10 to 30 minutes REMs recovery into the organic phase almost did not changed. The behaviour of iron in the extraction process by TBP was studied. It was found that such accompanying components as calcium and aluminium by tributyl phosphate didn't extracted. To construct isotherm of REMs extraction of by tributyl phosphate was used variable volume method. It was calculated three-step extraction is needed for REMs recovery from the solutions after nitric acid leaching of phosphorus production slag. The process of the three-steps counter current extraction of rare earth

  6. ALKALI-ACTIVATION KINETICS OF PHOSPHORUS SLAG CEMENT USING COMPRESSIVE STRENGTH DATA

    Directory of Open Access Journals (Sweden)

    Hojjatollah Maghsoodloorad

    2015-09-01

    Full Text Available In this research, through compressive strength data, the order and kinetics of alkali-activation of phosphorus slag activated with two compound activators of NaOH + Na2CO3 and Na2CO3 + Ca(OH2, has been evaluated. The kinetics and order of alkali activation is a key factor to forecasting the mechanical behavior of alkali activated cement at different curing time and temperatures without carrying out experimental tests. The apparent activation energy was obtained as 35.6 kJ.mol-1 and 60.7 kJ.mol-1 for the two activators, respectively. Investigations proved that the alkali-activation kinetics of phosphorus slag resembles chemical reactions of second order. Moreover, the order of alkali-activation of phosphorus slag does not depend on the type of activator.

  7. Laboratory investigations of stormwater remediation via slag: Effects of metals on phosphorus removal

    International Nuclear Information System (INIS)

    Okochi, Nnaemeka C.; McMartin, Dena W.

    2011-01-01

    The use of electric arc furnace (EAF) slag for the removal of phosphorus (P) from various simulated stormwater blends was investigated in the laboratory. The form of P measured was the inorganic orthophosphate (PO 4 -P). The stormwater solutions used in this preliminary study were synthesized as blends of P and typical concentrations of some of the most common and abundant metals in stormwater (e.g. cadmium, copper, lead and zinc), and contacted with EAF slag to determine P removal efficiency and sorptive competition. Results showed that the presence of cadmium, lead and zinc had minimal effect on the removal process; copper was a significant inhibitor of P uptake by the EAF slag media. P removal was greatest in the metal-free and multi-metal stormwater solutions.

  8. Laboratory investigations of stormwater remediation via slag: Effects of metals on phosphorus removal.

    Science.gov (United States)

    Okochi, Nnaemeka C; McMartin, Dena W

    2011-03-15

    The use of electric arc furnace (EAF) slag for the removal of phosphorus (P) from various simulated stormwater blends was investigated in the laboratory. The form of P measured was the inorganic orthophosphate (PO(4)-P). The stormwater solutions used in this preliminary study were synthesized as blends of P and typical concentrations of some of the most common and abundant metals in stormwater (e.g. cadmium, copper, lead and zinc), and contacted with EAF slag to determine P removal efficiency and sorptive competition. Results showed that the presence of cadmium, lead and zinc had minimal effect on the removal process; copper was a significant inhibitor of P uptake by the EAF slag media. P removal was greatest in the metal-free and multi-metal stormwater solutions. Copyright © 2011 Elsevier B.V. All rights reserved.

  9. Laboratory investigations of stormwater remediation via slag: Effects of metals on phosphorus removal

    Energy Technology Data Exchange (ETDEWEB)

    Okochi, Nnaemeka C. [Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada); McMartin, Dena W., E-mail: dena.mcmartin@uregina.ca [Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan, S4S 0A2 (Canada)

    2011-03-15

    The use of electric arc furnace (EAF) slag for the removal of phosphorus (P) from various simulated stormwater blends was investigated in the laboratory. The form of P measured was the inorganic orthophosphate (PO{sub 4}-P). The stormwater solutions used in this preliminary study were synthesized as blends of P and typical concentrations of some of the most common and abundant metals in stormwater (e.g. cadmium, copper, lead and zinc), and contacted with EAF slag to determine P removal efficiency and sorptive competition. Results showed that the presence of cadmium, lead and zinc had minimal effect on the removal process; copper was a significant inhibitor of P uptake by the EAF slag media. P removal was greatest in the metal-free and multi-metal stormwater solutions.

  10. THE INFLUENCE OF PHOSPHORUS SLAG ADDITION ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF METAKAOLIN-BASED GEOPOLYMER PASTES

    Directory of Open Access Journals (Sweden)

    M. A. SOLEIMANI

    2013-03-01

    Full Text Available In this study, metakaolin plus different weight percent of phosphorus slag (10-100 wt. % were used in preparation of geopolymer. The compressive strength, phase analysis and microstructure changes were compared with a metakaolin based geopolymer control sample. Results showed that the substitution of slag up to 40 wt. % instead of metakaolin increase the 28 days compressive strength (14.5 % compared with control sample. This enhancement of strength is related to coexistence of geopolymeric gel and C‒S‒H gel or C‒A‒S‒H phase by XRD and FTIR study. In slag containing geopolymer samples some microcracks were observed at microstructure that established by volume change during formation of new phase or mismatching of unreacted particle with geopolymeric gel. These microcrack can dominate at high content of slag (above 40 wt. % substitution and decrease the strength of samples. These results show that it is possible to produce geopolymer cement from waste phosphorus slages.

  11. Active slag filters-simple and sustainable phosphorus removal from wastewater using steel industry byproduct.

    Science.gov (United States)

    Pratt, C; Shilton, A

    2010-01-01

    Active filtration, where effluent is passed through a reactive substrate such as steel slag, offers a simple and cost-effective option for removing phosphorus (P) from effluent. This work summarises a series of studies that focused on the world's only full-scale active slag filter operated through to exhaustion. The filter achieved 75% P-removal during its first 5 years, reaching a retention capacity of 1.23 g P/kg slag but then its performance sharply declined. Scanning electron microscopy, X-ray diffraction, X-ray fluorescence, and chemical extractions revealed that P sequestration was primarily achieved via adsorption onto iron (Fe) oxyhydroxides on the slag's surface. It was concluded that batch equilibrium tests, whose use has been repeatedly proposed in the literature, cannot be used as an accurate predictor of filter adsorption capacity because Fe oxyhydroxides form via chemical weathering in the field, and laboratory tests don't account for this. Research into how chemical conditions affect slag's P retention capacity demonstrated that near-neutral pH and high redox are optimal for Fe oxyhydroxide stability and overall filter performance. However, as Fe oxyhydroxide sites fill up, removal capacity becomes exhausted. Attempts to regenerate P removal efficiency using physical techniques proved ineffective contrary to dogma in the literature. Based on the newly-developed understanding of the mechanisms of P removal, chemical regeneration techniques were investigated and were shown to strip large quantities of P from filter adsorption sites leading to a regenerated P removal efficiency. This raises the prospect of developing a breakthrough technology that can repeatedly remove and recover P from effluent.

  12. Removal of phosphorus, fluoride and metals from a gypsum mining leachate using steel slag filters.

    Science.gov (United States)

    Claveau-Mallet, Dominique; Wallace, Scott; Comeau, Yves

    2013-03-15

    The objective of this work was to evaluate the capacity of steel slag filters to treat a gypsum mining leachate containing 11-107 mg P/L ortho-phosphates, 9-37 mg/L fluoride, 0.24-0.83 mg/L manganese, 0.20-3.3 zinc and 1.7-8.2 mg/L aluminum. Column tests fed with reconstituted leachates were conducted for 145-222 days and sampled twice a week. Two types of electric arc furnace (EAF) slags and three filter sequences were tested. The voids hydraulic retention time (HRT(v)) of columns ranged between 4.3 and 19.2 h. Precipitates of contaminants present in columns were sampled and analyzed with X-ray diffraction at the end of tests. The best removal efficiencies over a period of 179 days were obtained with sequential filters that were composed of Fort Smith EAF slag operated at a total HRT(v) of 34 h which removed 99.9% of phosphorus, 85.3% of fluoride, 98.0% of manganese and 99.3% of zinc. Mean concentration at this system's effluent was 0.04 mg P/L ortho-phosphates, 4 mg/L fluoride, 0.02 mg/L manganese, 0.02 zinc and 0.5 mg/L aluminum. Thus, slag filters are promising passive and economical systems for the remediation of mining effluents. Phosphorus was removed by the formation of apatite (hydroxyapatite, Ca(5)(PO(4))(3)OH or fluoroapatite, Ca(5)(PO(4))(3)F) as confirmed by visual and X-ray diffraction analyses. The growth rate of apatite was favored by a high phosphorus concentration. Calcite crystals were present in columns and appeared to be competing for calcium and volume needed for apatite formation. The calcite crystal growth rate was higher than that of apatite crystals. Fluoride was removed by precipitation of fluoroapatite and its removal was favored by a high ratio of phosphorus to fluoride in the wastewater. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Suitability of adsorption isotherms for predicting the retention capacity of active slag filters removing phosphorus from wastewater.

    Science.gov (United States)

    Pratt, C; Shilton, A

    2009-01-01

    Active slag filters are an emerging technology for removing phosphorus (P) from wastewater. A number of researchers have suggested that adsorption isotherms are a useful tool for predicting P retention capacity. However, to date the appropriateness of using isotherms for slag filter design remains unverified due to the absence of benchmark data from a full-scale, field filter operated to exhaustion. This investigation compared the isotherm-predicted P retention capacity of a melter slag with the P adsorption capacity determined from a full-scale, melter slag filter which had reached exhaustion after five years of successfully removing P from waste stabilization pond effluent. Results from the standard laboratory batch test showed that P adsorption correlated more strongly with the Freundlich Isotherm (R(2)=0.97, Pretention capacity of 0.014 gP/kg slag; markedly lower than the 1.23 gP/kg slag adsorbed by the field filter. Clearly, the result generated by the isotherm bears no resemblance to actual field capacity. Scanning electron microscopy analysis revealed porous, reactive secondary minerals on the slag granule surfaces from the field filter which were likely created by weathering. This slow weathering effect, which generates substantial new adsorption sites, is not accounted for by adsorption isotherms rendering them ineffective in slag filter design.

  14. Combination of Slag, Limestone and Sedimentary Apatite in Columns for Phosphorus Removal from Sludge Fish Farm Effluents

    Directory of Open Access Journals (Sweden)

    Florent Chazarenc

    2010-08-01

    Full Text Available Laboratory scale studies have repeatedly reported high P-retention in slag, a by-product of the steel manufacturing industry. Thus, it has emerged as a potential material to increase P-removal from constructed wetlands (CWs. However, several limitations were highlighted by field experiments, including the high pH of treated water and clogging. We hypothesized that the addition of sedimentary rocks to slag would preserve P-removal properties while reducing the pH of treated water. Four 2.5 L-columns were filled with 100% apatite (column A; a 50% weight each mixture of limestone with apatite (column B; 10% steel slag located at the inlet, plus 45% limestone mixed with 45% apatite (column C; and a mixture of steel slag (10%, limestone (45% apatite (45% (column D. A synthetic effluent (26 mg P/L and a reconstituted sludge fish farm effluent containing 97 mg/L total suspended solids (TSS, 220 mg/L chemical oxygen demand (COD and 23.5 mg P/L phosphorus (P were applied sequentially during 373 and 176 days, under saturated flow conditions and 12–24 hours hydraulic residence time (HRT, respectively. Treatment performance, P-removal, pH and calcium (Ca2+ were monitored. Results indicated that columns that contained 10% weight steel slag resulted in a higher P retention capacity than the columns without steel slag. The highest P removal was achieved in column C, containing a layer of slag in the inlet zone, 45% apatite and 45% limestone. Feeding the columns with a reconstituted fish farm effluent led to biofilm development, but this had little effect on the P-removal. A combination of slag and sedimentary rocks represents a promising filtration material that could be useful downstream of CWs to further increase P-removal.

  15. Numerical simulation of Venturi ejector reactor in yellow phosphorus purification system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao-jing; Tang, Lei, E-mail: alanleyfly@gmail.com; Jiang, Zeng

    2014-03-15

    Highlights: • Venturi ejector reactor is used in yellow phosphorus purification system to obtain high purity phosphorus. • We study the changes of vacuum region and the performances of Venturi ejector reactor with different operating pressure. • The whole study is aim to investigate the operating conditions, rather than to find out the small details of the chemical reaction. - Abstract: A novel type of Venturi ejector reactor, which was used in a pilot plant test in a factory in Guizhou in China, was developed to overcome the insufficiency of chemical reaction in the stirred-tank reactor in yellow phosphorus purification system. The effects of different working medium, the changes of vacuum region, and the performances of the Venturi ejector reactor with different operating pressure were investigated by FLUENT. Results show that the absolute value of vacuum pressure of single-phase flow was smaller than two-phase flow at the same operating conditions, which meat two-phase flow has a higher suction capability. Reflow phenomena occurred near the exit of suction pipe and nozzle. The former reflow which leads to energy loss of vacuum region was undesirable, and the latter was beneficial to the dispersion of liquid yellow phosphorus. With a flow rate ratio below 0.45, the performance of the Venturi ejector reactor was effective. By adjusting the operating pressure, a proper flow rate ratio could be satisfied to meet the production needs in yellow phosphorus purification system.

  16. The Use of Blast Furnace Slag for Removal of Phosphorus from Wastewater in Sweden—A Review

    Directory of Open Access Journals (Sweden)

    Lena Johansson Westholm

    2010-10-01

    Full Text Available Research on Phosphorus (P removal capacity by blast furnace slags (BFS has been undertaken in Sweden for the last decade. Both laboratory experiments and field trials have been carried out. While laboratory investigations revealed that BFS has a high P-sorption capacity (95–100%, P removal in field trials was much lower, ranging from 40 to 53%. In addition, a number of problems have been observed in BFS field testing including clogging, sulfuric odor and environmental (regulatory concerns about possible leaching of heavy metals from the slag. In spite of these problems, and questioning by the environmental regulatory authorities, research continues to provide evidence that BFS can be regarded as a suitable filter media, and attempts have also been undertaken in order to further improve the P-removal capacity of this adsorbing material.

  17. Yellow phosphorus process to convert toxic chemicals to non-toxic products

    Science.gov (United States)

    Chang, S.G.

    1994-07-26

    The present invention relates to a process for generating reactive species for destroying toxic chemicals. This process first contacts air or oxygen with aqueous emulsions of molten yellow phosphorus. This contact results in rapid production of abundant reactive species such as O, O[sub 3], PO, PO[sub 2], etc. A gaseous or liquid aqueous solution organic or inorganic chemicals is next contacted by these reactive species to reduce the concentration of toxic chemical and result in a non-toxic product. The final oxidation product of yellow phosphorus is phosphoric acid of a quality which can be recovered for commercial use. A process is developed such that the byproduct, phosphoric acid, is obtained without contamination of toxic species in liquids treated. A gas stream containing ozone without contamination of phosphorus containing species is also obtained in a simple and cost-effective manner. This process is demonstrated to be effective for destroying many types of toxic organic, or inorganic, compounds, including polychlorinated biphenyls (PCB), aromatic chlorides, amines, alcohols, acids, nitro aromatics, aliphatic chlorides, polynuclear aromatic compounds (PAH), dyes, pesticides, sulfides, hydroxyamines, ureas, dithionates and the like. 20 figs.

  18. Yellow structurally modified fluorescence in the longhorn beetles Celosterna pollinosa sulfurea and Phosphorus virescens (Cerambycidae)

    Energy Technology Data Exchange (ETDEWEB)

    Van Hooijdonk, Eloise, E-mail: eloise.vanhooijdonk@fundp.ac.be [Centre de recherche en Physique de la Matière et du Rayonnement (PMR) – Laboratoire de Physique du Solide (LPS), University of Namur - FUNDP, 61 rue de Bruxelles, Namur 5000 (Belgium); Institut des NanoSciences de Paris (INSP), Pierre and Marie Curie University – Paris 6 (UPMC), CNRS-UMR 7588, 4 Place Jussieu, Paris 75005 (France); Barthou, Carlos [Institut des NanoSciences de Paris (INSP), Pierre and Marie Curie University – Paris 6 (UPMC), CNRS-UMR 7588, 4 Place Jussieu, Paris 75005 (France); Vigneron, Jean Pol [Centre de recherche en Physique de la Matière et du Rayonnement (PMR) – Laboratoire de Physique du Solide (LPS), University of Namur - FUNDP, 61 rue de Bruxelles, Namur 5000 (Belgium); Berthier, Serge [Institut des NanoSciences de Paris (INSP), Pierre and Marie Curie University – Paris 6 (UPMC), CNRS-UMR 7588, 4 Place Jussieu, Paris 75005 (France)

    2013-04-15

    Celosterna pollinosa sulfurea and Phosphorus virescens are longhorn beetles which both have a sulphur-yellow pigmentary coloration and, more surprisingly, a yellow-green fluorescence coloration. In this study, we used a refined experimental examination to characterize the angular distribution of light and unveiled a different behavior between these reflection and emission processes. A key feature of these observations is the peculiar architecture of the scales (a three-dimensional photonic structure), which acts differently on each phenomenon. For reflection, this architecture can be viewed as a scattering device, while, for emission, it can be viewed as a waveguide. These effects were investigated by scanning electron microscopy (SEM), Bidirectional Reflectance Distribution Function (BRDF) diagrams and spectrophotometric measurements. Collection and analysis of data at every emergence direction was found to be crucial when studying optical properties in materials with spatial changes in composition at the scale of the light wavelength. -- Highlights: ► We examine structurally modified fluorescence in two longhorn beetles. ► Reflection and emission are complementary processes in the final visual aspect. ► The specific three-dimensional photonic structure of the scales is the keystone. ► Structure impacts the spatial angular distribution of reflected and emitted light.

  19. Yellow structurally modified fluorescence in the longhorn beetles Celosterna pollinosa sulfurea and Phosphorus virescens (Cerambycidae)

    International Nuclear Information System (INIS)

    Van Hooijdonk, Eloise; Barthou, Carlos; Vigneron, Jean Pol; Berthier, Serge

    2013-01-01

    Celosterna pollinosa sulfurea and Phosphorus virescens are longhorn beetles which both have a sulphur-yellow pigmentary coloration and, more surprisingly, a yellow-green fluorescence coloration. In this study, we used a refined experimental examination to characterize the angular distribution of light and unveiled a different behavior between these reflection and emission processes. A key feature of these observations is the peculiar architecture of the scales (a three-dimensional photonic structure), which acts differently on each phenomenon. For reflection, this architecture can be viewed as a scattering device, while, for emission, it can be viewed as a waveguide. These effects were investigated by scanning electron microscopy (SEM), Bidirectional Reflectance Distribution Function (BRDF) diagrams and spectrophotometric measurements. Collection and analysis of data at every emergence direction was found to be crucial when studying optical properties in materials with spatial changes in composition at the scale of the light wavelength. -- Highlights: ► We examine structurally modified fluorescence in two longhorn beetles. ► Reflection and emission are complementary processes in the final visual aspect. ► The specific three-dimensional photonic structure of the scales is the keystone. ► Structure impacts the spatial angular distribution of reflected and emitted light

  20. Clinical and Pathological Findings on Intoxication by Yellow Phosphorus After Ingesting Firework Cracker: A Rare Case of Autopsy.

    Science.gov (United States)

    Türkmen Şamdanci, Emine; Çakir, Ebru; Şahin, Nurhan; Elmali, Candan; Sayin, Sadegül

    2016-01-01

    Yellow phosphorus is a toxic substance used in the production of firework cracker, fireworks, ammunition and agricultural dung. When ingested, it shows its effects mainly in the liver, the kidneys, and the brain. A four-year-old girl had died as a result of acute hepatic failure caused by ingesting a firework cracker. The case showed high levels of hepatic enzymes, along with non-specific signs such as nausea, vomiting and diarrhea. Autopsy revealed diffuse microvesicular steatosis in the liver and disseminated degeneration in the proximal tubules of the kidneys. In cases with concomitant hepatorenal failure and cardiovascular collapse, death is inevitable. However, when only hepatic failure develops, hepatic transplantation may be lifesaving. Although intoxication from ingesting yellow phosphorus has a very high rate of mortality, forensic cases are extremely rare in the literature.

  1. Effects of Two Soil Amendments from Steel Slag on Rice Growth and Nitrogen, Phosphorus and Potassium Uptake

    Directory of Open Access Journals (Sweden)

    ZHANG Lu

    2017-08-01

    Full Text Available A pot experiment was conducted to investigate the effects of two soil amendments(W and Y derived from steel slag and their application rates(0.74, 1.47, 2.94, 5.88 g·kg-1 and 11.76 g·kg-1 for W; 1.47, 2.94, 5.88, 11.76 g·kg-1 and 23.52 g·kg-1 for Y on rice growth. The results showed that no significant change in rice yield was found following W amendments; conversely, a 20% increase in rice yield was observed following Y amendments at rates of 11.76 g·kg-1 and 23.52 g·kg-1 as compared with NPK treatments. Y amendment at rates of 5.88~23.52 g·kg-1 increased straw mass by 24.02%~35.23% when compared with NPK treatments. Combined application of Y amendments and NPK fertilizers increased subsequent N, P and K uptake by rice by 12.61%~21.55%, 7.63%~38.31% and 11.89%~54.13%, respectively. The results indicated Y amendments could effectively accelerate subsequent rice growth at high application rates by increasing nutrient uptake in the soil studied(pH 6.51; Conversely, we observed no significant effects with W amendments.

  2. Dissolving mechanism of strain P17 on insoluble phosphorus of yellow-brown soil

    Directory of Open Access Journals (Sweden)

    Zhong Chuan-qing

    2014-09-01

    Full Text Available Strain P17 was a bacterial strain identified as Bacillus megaterium isolated from ground accumulating phosphate rock powder. The fermentation broth of strain P17 and the yellow-brown soil from Nanjing Agricultural University garden were collected to conduct this study. The simulation of fixed insoluble phosphorous forms after applying calcium superphosphate into yellow-brown soil was performed in pots, while available P and total P of soil were extremely positive correlative with those of groundwater. Then the dissolving effect of strain P17 on insoluble P of yellow-brown soil was studied. Results showed that Bacillus megaterium strain P17 had notable solubilizing effect on insoluble phosphates formed when too much water-soluble phosphorous fertilizer used. During 100 days after inoculation, strain P17 was dominant. Until the 120th day, compared with water addition, available P of strain P17 inoculation treated soil increased by 3 times with calcium superphosphate addition. Besides available P, pH, activity of acid and alkaline phosphatase and population of P-solubilizing microbes were detected respectively. P-solubilizing mechanism of P-solubilizing bacteria strain P17 seems to be a synergetic effect of pH decrease, organic acids, phosphatase, etc.

  3. Particle-size distribution and phosphorus forms as a function of hydrological forcing in the Yellow River.

    Science.gov (United States)

    Yao, Qing-Zhen; Du, Jun-Tao; Chen, Hong-Tao; Yu, Zhi-Gang

    2016-02-01

    Samples were collected monthly from January to December in 2010, and daily observations were made during the water-sediment regulation event in June-July 2010. Sequential extractions were applied to determine the forms of P in different particle-size fractions and to assess the potential bioavailability of particulate phosphorus (PP). The results indicated that exchangeable phosphorus, organic phosphorus, authigenic phosphorus, and refractory phosphorus increased with the decreasing of particulate size; conversely, detrital phosphorus decreased with the decreasing of particulate size. The content of bioavailable particulate phosphorus (BAPP) varied greatly in different sizes of particles. In general, the smaller the particle size, the higher the content of bioavailable phosphorus and its proportion in total phosphorous was found in these particles. Hydrological forcing controlled the variability in the major P phases found in the suspended sediments via changes in the sources and the particle grain-size distribution. The variation of particle sizes can be attributed also to different total suspended sediment (TSS) sources. Water-sediment regulation (WSR) mobilized only particulate matter from the riverbed, while during the rainstorm soil erosion and runoff were the main source. The BAPP fluxes associated with the "truly suspended" fraction was approximately 200 times larger than the dissolved inorganic phosphorus (DIP) flux. Thus, the transfer of fine particles to the open sea is most probably accompanied by BAPP release to the DIP and can support greater primary and secondary production.

  4. Exploring spatiotemporal changes of the Yangtze River (Changjiang) nitrogen and phosphorus sources, retention and export to the East China Sea and Yellow Sea.

    Science.gov (United States)

    Liu, Xiaochen; Beusen, Arthur H W; Van Beek, Ludovicus P H; Mogollón, José M; Ran, Xiangbin; Bouwman, Alexander F

    2018-06-04

    Nitrogen (N) and phosphorus (P) flows from land to sea in the Yangtze River basin were simulated for the period 1900-2010, by combining models for hydrology, nutrient input to surface water, and an in-stream retention. This study reveals that the basin-wide nutrient budget, delivery to surface water, and in-stream retention increased during this period. Since 2004, the Three Gorges Reservoir has contributed 5% and 7% of N and P basin-wide retention, respectively. With the dramatic rise in nutrient delivery, even this additional retention was insufficient to prevent an increase of riverine export from 337 Gg N yr -1 and 58 Gg P yr -1 (N:P molar ratio = 13) to 5896 Gg N yr -1 and 381 Gg P yr -1 (N:P molar ratio = 35) to the East China Sea and Yellow Sea (ECSYS). The midstream and upstream subbasins dominate the N and P exports to the ECSYS, respectively, due to various human activities along the river. Our spatially explicit nutrient source allocation can aid in the strategic targeting of nutrient reduction policies. We posit that these should focus on improving the agricultural fertilizer and manure use efficiency in the upstream and midstream and better urban wastewater management in the downstream subbasin. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Evaluation of normal yellow dent corn and high available phosphorus corn in combination with reduced dietary phosphorus and phytase supplementation for broilers grown to market weights in litter pens.

    Science.gov (United States)

    Yan, F; Kersey, J H; Fritts, C A; Waldroup, P W; Stilborn, H L; Crum, R C; Rice, D W; Raboy, V

    2000-09-01

    A study was conducted to determine the extent fecal P levels could be reduced while maintaining performance. Various strategies were employed including the use of a high available phosphorus hybrid of corn (HAPC), supplementation with phytase enzyme, and reduced dietary P levels. The use of HAPC resulted in a 50% reduction in phytate-bound dietary P as compared with a normal yellow dent corn (YDC) diet. Dietary nonphytate P was maintained at either NRC (1994) recommendations for appropriate age periods or reduced by 0.075 or 0.15%. Portions of the diets were supplemented with 1,000 units of phytase/kg. Male chicks of a commercial strain were grown to 56 d on the test diets. Broilers fed diets with HAPC had BW, feed conversion, livability, and tibia ash that were equal to or superior to those fed diets with YDC with considerably reduced fecal P content at any dietary level of nonphytate P. Phytase supplementation enabled birds to maintain live performance at lower levels of nonphytate P, further reducing the fecal P output. One of the greatest contributions of phytase was a reduction in mortality at the lower levels of nonphytate P. Dietary P levels could be reduced by 0.075% under NRC (1994) recommendations without adversely affecting live performance; a reduction of 0.15% in conjunction with phytase supplementation maintained BW, feed conversion, and livability but reduced tibia ash. The extent to which dietary P levels can be reduced over the entire feeding program is subject to further research.

  6. Efeito da escória de siderurgia e calcário na disponibilidade de fósforo de um Latossolo Vermelho-Amarelo cultivado com cana-de-açúcar Effect of slag and limestone on the availability of phosphorus of an Oxisol planted with sugarcane

    Directory of Open Access Journals (Sweden)

    Renato de Mello Prado

    2001-09-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito da escória de siderurgia e calcário na concentração do P disponível em um Latossolo Vermelho-Amarelo, cultivado com cana-de-açúcar (Saccharum spp., em Ituverava, SP. Foram aplicados calcário calcítico e a escória de siderurgia, objetivando elevar a saturação por bases a 50%, 75% e 100%, e usou-se testemunha (sem correção. O efeito linear da escória de siderurgia no P disponível do solo, em contraste com a ausência de relação quando se aplicou calcário, sugere que o efeito positivo da escória de siderurgia se deve mais ao efeito do silicato, de saturar os sítios de adsorção de P, do que ao efeito de aumento do pH.The aim of this work was to evaluate the effect of slag and limestone, on the available P concentration of the soil planted with sugarcane. A field experiment was conducted in Ituverava, SP, Brazil, in a Red-Yellow Oxisol. Calcitic limestone and the slag were added in order to increase the base saturation to 50%, 75% and 100%, in addition to the control without correction. The linear effect of the slag on the soil available P, contrasting the lack of relationship when the limestone was applied, suggests that the positive effect of the slag is mainly due to the silicate effect than to the pH effect.

  7. EFFECT OF PHOSPHORUS AND ZINC ON THE GROWTH OF YELLOW PASSION FRUIT SEEDLINGS FÓSFORO E ZINCO NO CRESCIMENTO DE MUDAS DE MARACUJAZEIRO-AMARELO

    Directory of Open Access Journals (Sweden)

    Rogério Antônio de Freitas Lima

    2007-12-01

    Full Text Available

    The study was carried out to evaluate the effects of simultaneous application of triple superphosphate and zinc sulphate on growth of passion fruit (Passiflora edulis f. flavicarpa seedlings. A nursery experiment for seedling formation was conducted at the Department of Agricultural Production of the Mato Grosso do Sul State University, Cassilândia Unit (UEMS/UUC, Brazil. Four doses of phosphorus (0 mg dm-3, 150 mg dm-3, 300 mg dm-3 and 450 mg dm-3 and three doses of zinc (0 mg dm-3, 5 mg dm-3 and 10 mg dm-3 were tested. The phosphorus was used as triple superphosphate, and the zinc as zinc sulphate. A randomized block design was used, in a 4 x 3 factorial scheme with four replications and five plants per plot. The following traits were evaluated 92 days after sowing: height, root length, number of leaves per plant, dry matter of shoots and roots, and total dry matter. The application of triple superphosphate affected significantly height of plants, leaf number, shoots dry matter, and total dry matter. The zinc sulphate favored the variables height, shoot dry matter, and total dry matter. It was concluded that the use of triple superphosphate and zinc sulphate provided a better quality in the production of the yellow passion fruit seedlings.

    KEY WORDS: Passiflora edulis f. Flavicarpa; passion fruit; propagation; seedling.

    O trabalho foi desenvolvido para avaliar os efeitos da aplicação simultânea de superfosfato triplo e sulfato de zinco na formação de mudas de maracujazeiro-amarelo (Passiflora edulis f. flavicarpa. Para isso, foi conduzido um experimento em viveiro de formação de mudas, no setor de produção agrícola da Universidade Estadual do Mato Grosso do Sul (UEMS, Unidade Universitária de Cassilândia (UUC. Foram testadas quatro

  8. Yellow Fever

    Science.gov (United States)

    ... Testing Vaccine Information Testing for Vaccine Adverse Events Yellow fever Vaccine Continuing Education Course Yellow Fever Home Prevention Vaccine Vaccine Recommendations Reactions to Yellow Fever Vacine Yellow Fever Vaccine, Pregnancy, & ... Transmission Symptoms, Diagnosis, & Treatment Maps Africa ...

  9. Characterizing and evaluating the expression of the type IIb sodium-dependent phosphate cotransporter (slc34a2) gene and its potential influence on phosphorus utilization efficiency in yellow catfish (Pelteobagrus fulvidraco).

    Science.gov (United States)

    Chen, Pei; Tang, Qin; Wang, Chunfang

    2016-02-01

    A sodium-dependent phosphate cotransporter gene, NaPi-IIb (slc34a2), was isolated from yellow catfish (Pelteobagrus fulvidraco) intestine through homology cloning and the rapid amplification of cDNA ends. The full-length cDNA of slc34a2 consisted of 2326 bp with an open reading frame encoding 621 amino acids, a 160-bp 5' untranslated region, and a 300-bp 3' untranslated region. The deduced amino acid sequence showed 79.0 and 70.9% sequence identity to Astyanax mexicanus and Pundamilia nyererei, respectively. The membrane-spanning domains based on the hydrophilic and hydrophobic properties of the deduced amino acids were predicted, and results showed that the putative protein had eight transmembrane domains, with the intracellular NH2 and COOH termini. Two functional regions including first intracellular loop and third extracellular loop as well as the six N-glycosylation sites in second extracellular loop were found. The slc34a2 mRNA in the tested tissues was examined through semiquantitative reverse transcription polymerase chain reaction and quantitative real-time PCR, with the highest level found in the anterior intestine, followed by the posterior and middle intestines. The slc34a2 mRNA expression in the whole intestine under different dietary phosphorus (P) treatments was detected using qPCR. The results showed that the slc34a2 expression levels in the low-P groups (0.33 and 0.56%) were significantly higher (p < 0.05) than levels in the sufficient-P (0.81%) and high-P (1.15, 1.31, and 1.57%) groups. High expression of slc34a2 mRNA in low-P groups stimulated P utilization efficiency, indicating the close relationship between genotype and phenotype in yellow catfish. In contrast with conventional strategies (formula and feeding strategies), this study provided another possible approach by using molecular techniques to increase the P utilization in yellow catfish.

  10. Yellow fever

    Science.gov (United States)

    ... to thrive. Blood tests can confirm the diagnosis. Treatment There is no specific treatment for yellow fever. ... SJ, Endy TP, Rothman AL, Barrett AD. Flaviviruses (dengue, yellow fever, Japanese encephalitis, West Nile encephalitis, St. ...

  11. Macroalgal blooms favor heterotrophic diazotrophic bacteria in nitrogen-rich and phosphorus-limited coastal surface waters in the Yellow Sea

    Science.gov (United States)

    Zhang, Xiaoli; Song, Yanjing; Liu, Dongyan; Keesing, John K.; Gong, Jun

    2015-09-01

    Macroalgal blooms may lead to dramatic changes in physicochemical variables and biogeochemical cycling in affected waters. However, little is known about the effects of macroalgal blooms on marine bacteria, especially those functioning in nutrient cycles. We measured environmental factors and investigated bacterial diazotrophs in two niches, surface waters that were covered (CC) and non-covered (CF) with massive macroalgal canopies of Ulva prolifera, in the Yellow Sea in the summer of 2011 using real-time PCR and clone library analysis of nifH genes. We found that heterotrophic diazotrophs (Gammaproteobacteria) dominated the communities and were mostly represented by Vibrio-related phylotypes in both CC and CF. Desulfovibrio-related phylotypes were only detected in CC. There were significant differences in community composition in these two environments (p diazotrophic abundance and community composition and that vibrios and Desulfovibrio-related heterotrophic diazotrophs adapt well to the (N-rich but P-limited) environment during blooming. Potential ecological and microbiological mechanisms behind this scenario are discussed.

  12. Slag recycling of irradiated vanadium

    International Nuclear Information System (INIS)

    Gorman, P.K.

    1995-01-01

    An experimental inductoslag apparatus to recycle irradiated vanadium was fabricated and tested. An experimental electroslag apparatus was also used to test possible slags. The testing was carried out with slag materials that were fabricated along with impurity bearing vanadium samples. Results obtained include computer simulated thermochemical calculations and experimentally determined removal efficiencies of the transmutation impurities. Analyses of the samples before and after testing were carried out to determine if the slag did indeed remove the transmutation impurities from the irradiated vanadium

  13. Bacterial community structure and diversity responses to the direct revegetation of an artisanal zinc smelting slag after 5 years.

    Science.gov (United States)

    Luo, Youfa; Wu, Yonggui; Wang, Hu; Xing, Rongrong; Zheng, Zhilin; Qiu, Jing; Yang, Lian

    2018-05-01

    This comparative field study examined the responses of bacterial community structure and diversity to the revegetation of zinc (Zn) smelting waste slag with eight plant species after 5 years. The microbial community structure of waste slag with and without vegetation was evaluated using high-throughput sequencing. The physiochemical properties of Zn smelting slag after revegetation with eight plant rhizospheres for 5 years were improved compared to those of bulk slag. Revegetation significantly increased the microbial community diversity in plant rhizospheres, and at the phylum level, Proteobacteria, Acidobacteria, and Bacteroidetes were notably more abundant in rhizosphere slags than those in bulk waste slag. Additionally, revegetation increased the relative abundance of plant growth-promoting rhizobacteria such as Flavobacterium, Streptomyces, and Arthrobacter as well as symbiotic N 2 fixers such as Bradyrhizobium. Three dominant native plant species (Arundo donax, Broussonetia papyrifera, and Robinia pseudoacacia) greatly increased the quality of the rhizosphere slags. Canonical correspondence analysis showed that the differences in bacterial community structure between the bulk and rhizosphere slags were explained by slag properties, i.e., pH, available copper (Cu) and lead (Pb), moisture, available nitrogen (N), phosphorus (P), and potassium (K), and organic matter (OM); however, available Zn and cadmium (Cd) contents were the slag parameters that best explained the differences between the rhizosphere communities of the eight plant species. The results suggested that revegetation plays an important role in enhancing bacterial community abundance and diversity in rhizosphere slags and that revegetation may also regulate microbiological properties and diversity mainly through changes in heavy metal bioavailability and physiochemical slag characteristics.

  14. Slag Behavior in Gasifiers. Part II: Constitutive Modeling of Slag

    Energy Technology Data Exchange (ETDEWEB)

    Massoudi, Mehrdad [National Energy Technology Laboratory; Wang, Ping

    2013-02-07

    The viscosity of slag and the thermal conductivity of ash deposits are among two of the most important constitutive parameters that need to be studied. The accurate formulation or representations of the (transport) properties of coal present a special challenge of modeling efforts in computational fluid dynamics applications. Studies have indicated that slag viscosity must be within a certain range of temperatures for tapping and the membrane wall to be accessible, for example, between 1,300 °C and 1,500 °C, the viscosity is approximately 25 Pa·s. As the operating temperature decreases, the slag cools and solid crystals begin to form. Since slag behaves as a non-linear fluid, we discuss the constitutive modeling of slag and the important parameters that must be studied. We propose a new constitutive model, where the stress tensor not only has a yield stress part, but it also has a viscous part with a shear rate dependency of the viscosity, along with temperature and concentration dependency, while allowing for the possibility of the normal stress effects. In Part I, we reviewed, identify and discuss the key coal ash properties and the operating conditions impacting slag behavior.

  15. Using ferrosilicon production slags for reduction of open-hearth steel

    International Nuclear Information System (INIS)

    Grabeklis, A.A.; Vlasov, N.N.; Fadeev, I.G.; Zajchenko, M.V.; Aksenovich, V.I.

    1976-01-01

    Slags from the production of electric furnace ferrosilicon contain a considerable amount of silicon in recovered form (regulus and SiC) and can be used instead of standard ferroalloys (FS18, FS25 and FS45) for deoxidation with silicon in the furnace during the smelting of a number of carbon and alloyed steels. Test open-hearth heats show that highly dispersed SiC in the composition of this slag ensures active diffusion deoxidation and rapid suppression of bath boiling. The test metal can be compared with the conventional one in all the quality aspects, the recovery of phosphorus during deoxidation and tapping slightly increases

  16. Using ferrosilicon production slags for reduction of open-hearth steel

    Energy Technology Data Exchange (ETDEWEB)

    Grabeklis, A A; Vlasov, N N; Fadeev, I G; Zaichenko, M V; Aksenovich, V I [Ural' skij Nauchno-Issledovatel' skij Inst. Chernykh Metallov, Sverdlovsk (USSR)

    1976-05-01

    Slags from the production of electric furnace ferrosilicon contain a considerable amount of silicon in recovered form (regulus and SiC) and can be used instead of standard ferroalloys (FS18, FS25 and FS45) for deoxidation with silicon in the furnace during the smelting of a number of carbon and alloyed steels. Test open-hearth heats show that highly dispersed SiC in the composition of this slag ensures active diffusion deoxidation and rapid suppression of bath boiling. The test metal can be compared with the conventional one in all the quality aspects, the recovery of phosphorus during deoxidation and tapping slightly increases.

  17. Overview of Steel Slag Application and Utilization

    Directory of Open Access Journals (Sweden)

    Lim J.W.

    2016-01-01

    Full Text Available Significant quantities of steel slag are generated as waste material or byproduct every day from steel industries. Slag is produced from different types of furnaces with different operating conditions. Slag contains Ferrous Oxide, Calcium Oxide, Silica etc. Physical and chemical properties of slag are affected by different methods of slag solidification such as air cooled, steam, and injection of additives. Several material characterization methods, such as X-ray Diffraction (XRD, Scanned Electron Microscopy (SEM and Inductive Coupled Plasma (ICP-OES are used to determine elemental composition in the steel slag. Therefore, slags can become one of the promising materials in various applications such as in transportation industry, construction, cement production, waste water and water treatment. The various applications of steel slag indicate that it can be reused and utilized rather than being disposed to the landfill. This paper presents a review of its applications and utilization.

  18. Slag-based saltstone formulations

    International Nuclear Information System (INIS)

    Langton, C.A.

    1987-01-01

    Approximately 400 x 10 6 liters of low-level alkaline salt solution will be treated at the Savannah River Plant (SRP) Defense Waste Processing Facility (DWPF) prior to disposal in concrete vaults at SRP. Treatment involves removal of CS + and Sr +2 followed by solidification and stabilization of potential contaminants in saltstone, a hydrated ceramic waste form. Chromium, technetium, and nitrate releases from saltstone can be significantly reduced by substituting hydraulic blast furnace slag for portland cement in the formulation designs. Slag-based mixes are also compatible with Class F fly ash used in saltstone as a functional extender to control heat of hydration and reduce permeability. A monolithic waste form is produced by the hydration of the slag and fly ash. Soluble ion release (NO 3 - ) is controlled by the saltstone microstructure. Chromium and technetium are less leachable from slag mixes compared to cement-based waste forms because these species are chemically reduced to a lower valence state by ferrous iron in the slag and precipitated as relatively insoluble phases, such as CR(OH) 3 and TcO 2 . 5 refs., 4 figs., 4 tabs

  19. Slag-based saltstone formulations

    International Nuclear Information System (INIS)

    Langton, C.A.

    1987-08-01

    Approximately 400 x 10 6 L of low-level alkaline salt solution will be treated at the Savannah River Plant (SRP) Defense Waste Processing Facility (DWPF) prior to disposal in concrete vaults at SRP. Treatment involves removal of Cs + and Sr +2 , followed by solidification and stabilization of potential contaminants in saltstone, a hydrated ceramic wasteform. Chromium, technetium, and nitrate releases from saltstone can be significantly reduced by substituting hydraulic blast furnace slag for portland cement in the formulation designs. Slag-based mixes are also compatible with the Class F flyash used in saltstone as a functional extender to control heat of hydration and reduce permeability. (Class F flyash is also locally available at SRP.) A monolithic wasteform is produced by the hydration of the slag and flyash. Soluble ion release (NO 3- ) is controlled by the saltstone microstructure. Chromium and technetium are less leachable from slag mixes because these species are chemically reduced to a lower valence state by ferrous iron in the slag and are precipitated as relatively insoluble phases, such as Cr(OH) 3 and TcO 2 . 3 refs., 3 figs., 2 tabs

  20. Water Quality Criteria for White Phosphorus

    Science.gov (United States)

    1987-08-01

    the number of eggs produced per adult , Chronic tests using inidges exposed to elemental phosphorus through contaminated sediments were also performed by...hemoglobinemia, hemoglobinuria, hematuria, bilirubinemia, mild (Cases 2 and 3) to severe (Case 1) hypocalcemia , -61- r. ., TABLE 14. SUMMARY OF CASUALTIES...day yellow phosphorus in corn oil for 30 days or less, lost weight. Young adult rats injected with 0.5 mg/kg/day lost less weight than fully mature or

  1. performance of steel slag performance of steel slag as fine

    African Journals Online (AJOL)

    eobe

    Suitability of using steel slag (SS) as substitute for sand in concrete was ... The strength of SS concrete increased with increase in proporti. 10 mm. .... additives used. All other oxides ..... low lime coal fly ash in foamed concrete”, Fuel, Vol. 84,.

  2. Slags in steel making; Kuonat teraeksen valmistuksessa

    Energy Technology Data Exchange (ETDEWEB)

    Haerkki, J; Paeaetalo, M; Karhu, P; Jauhiainen, A; Alamaeki, P; Koski-Laine, S; Ollila, J [Oulu Univ. (Finland). Dept. of Process Engineering

    1997-12-31

    At the first step of the project all stages of the steelmaking processes were viewed from the blast furnace to the continuous casting. Slag knowledge of each processes were collected into a guide, which is meant to help both production and research. At the same time the essential problems caused by slags in steelmaking were focused. At the second step the focus of this slag-project were transferred into the desulphurization, converter, ladle and tundish slags. Wide slag knowledge has been divided into smaller parts and applied versatile into the steelmaking process taking into account the metallurgical, economical and qualitative aspects. (orig.) SULA 2 Research Programme; 13 refs.

  3. Slags in steel making; Kuonat teraeksen valmistuksessa

    Energy Technology Data Exchange (ETDEWEB)

    Haerkki, J.; Paeaetalo, M.; Karhu, P.; Jauhiainen, A.; Alamaeki, P.; Koski-Laine, S.; Ollila, J. [Oulu Univ. (Finland). Dept. of Process Engineering

    1996-12-31

    At the first step of the project all stages of the steelmaking processes were viewed from the blast furnace to the continuous casting. Slag knowledge of each processes were collected into a guide, which is meant to help both production and research. At the same time the essential problems caused by slags in steelmaking were focused. At the second step the focus of this slag-project were transferred into the desulphurization, converter, ladle and tundish slags. Wide slag knowledge has been divided into smaller parts and applied versatile into the steelmaking process taking into account the metallurgical, economical and qualitative aspects. (orig.) SULA 2 Research Programme; 13 refs.

  4. Study on cementitious properties of steel slag

    Directory of Open Access Journals (Sweden)

    Zhu G.

    2013-01-01

    Full Text Available The converter steel slag chemical and mineral components in China’s main steel plants have been analysed in the present paper. The electronic microscope, energy spectrum analysis, X-ray diffraction analysis confirmed the main mineral compositions in the converter slag. Converter slag of different components were grounded to obtain a powder with specific surface area over 400m2/kg, making them to take place some part of the cement in the concrete as the admixture and carry out the standard tests. The results indicate that the converter slag can be used as cementitious materials for construction. Furthermore, physical mechanic and durability tests on the concrete that certain amount of cement be substituted by converter steel slag powder from different steel plants are carried out, the results show that the concrete with partial substitution of steel slag powder has the advantages of higher later period strength, better frost resistance, good wear resistance and lower hydration heat, etc. This study can be used as the technical basis for “Steel Slag Powder Used For Cement And Concrete”, “Steel Slag Portland Cement”, “Low Heat Portland Steel Slag Cement”, “Steel Slag Road Cement” in China, as well as a driving force to the works of steel slag utilization with high-value addition, circular economy, energy conservation and discharge reduction in the iron and steel industry.

  5. Distribution of impurity elements in slag-silicon equilibria for oxidative refining of metallurgical silicon for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, M.D.; Barati, M. [Department of Materials Science and Engineering, The University of Toronto, 184 College Street, Toronto, Ont. (Canada)

    2010-12-15

    The possibility of refining metallurgical grade silicon to a high-purity product for solar cell applications by the slagging of impurity elements was investigated. Distribution coefficients were determined for B, Ca, Mg, Fe, K and P between magnesia or alumina saturated Al{sub 2}O{sub 3}-CaO-MgO-SiO{sub 2} and Al{sub 2}O{sub 3}-BaO-SiO{sub 2} slags and silicon at 1500 C. The partitioning of the impurity elements between molten silicon and slag was examined in terms of basicity and oxygen potential of the slag, with particular focus on the behaviour of boron and phosphorus. The experimental results showed that both of these aspects of slag chemistry have a significant influence on the distribution coefficient of B and P. Increasing the oxygen potential by additions of silica was found to increase the distribution coefficients for both B and P. Increasing the basicity of the slag was not always effective in achieving high removal of these elements from silicon as excess amounts of basic oxides lower the activity of silica and consequently the oxygen potential. The extent of this effect is such that increasing basicity can lead to a decrease in distribution coefficient. Increasing lime in the slag increased distribution coefficients for B and P, but this counterbalancing effect was such that distributions were the lowest in barium-containing slags, despite barium oxide being the most basic of the fluxes used in this study. The highest removal efficiencies achieved were of the order of 80% and 90% for B and P, respectively. It was demonstrated that for the removal of B and P from metallurgical-grade silicon to solar-grade levels, a slag mass about 5 times the mass of silicon would be required. (author)

  6. Yellow fever

    Directory of Open Access Journals (Sweden)

    Marcelo Nóbrega Litvoc

    Full Text Available Summary The yellow fever (YF virus is a Flavivirus, transmitted by Haemagogus, Sabethes or Aedes aegypti mosquitoes. The disease is endemic in forest areas in Africa and Latin America leading to epizootics in monkeys that constitute the reservoir of the disease. There are two forms of YF: sylvatic, transmitted accidentally when approaching the forests, and urban, which can be perpetuated by Aedes aegypti. In Brazil, the last case of urban YF occurred in 1942. Since then, there has been an expansion of transmission areas from the North and Midwest regions to the South and Southeast. In 2017, the country faced an important outbreak of the disease mainly in the states of Minas Gerais, Espírito Santo and Rio de Janeiro. In 2018, its reach extended from Minas Gerais toward São Paulo. Yellow fever has an incubation period of 3 to 6 days and sudden onset of symptoms with high fever, myalgia, headache, nausea/vomiting and increased transaminases. The disease ranges from asymptomatic to severe forms. The most serious forms occur in around 15% of those infected, with high lethality rates. These forms lead to renal, hepatic and neurological impairment, and bleeding episodes. Treatment of mild and moderate forms is symptomatic, while severe and malignant forms depend on intensive care. Prevention is achieved by administering the vaccine, which is an effective (immunogenicity at 90-98% and safe (0.4 severe events per 100,000 doses measure. In 2018, the first transplants in the world due to YF were performed. There is also an attempt to evaluate the use of active drugs against the virus in order to reduce disease severity.

  7. Steel desulphurization with synthetic slag

    Directory of Open Access Journals (Sweden)

    Heput, T.

    2007-02-01

    Full Text Available Generally speaking, sulphur is considered a harmful element for steel quality, reason why all the technological steps are being taken in order to eliminate it from the metal bath. This paper deals with the influence of the chemical composition, on the slag quantity and of the bath stirring condition upon the desulphurization process in the casting ladle by treatment with synthetic slag. The experiments were made at an open-hearth plant with the steel tapping in two ladles (the desulphurization was made with synthetic slag at one ladle while the other one was considered standard and at the electric steel plant and for the synthetic slag formation a mix was used, made, according to several receipts, of: lime (50-75%, fluorine (0-17%, bauxite (0-32% and aluminous slag (8-22%. The data were processed in the calculation programs EXCEL and MATLAB, which resulted in a series of correlations between the desulphurization degree and the chemical composition of the slag, respectively the slag quantity both for the charges bubbled with Argon and the unbubbled ones.

    En general, el azufre es considerado un elemento nocivo para la calidad del acero y, por eso, en la práctica, se toman todas las medidas de orden tecnológico para su eliminación del baño metálico. En este trabajo se analiza la influencia de la composición química, de la cantidad de escoria y del estado de agitación del baño sobre el proceso de desulfuración en la cuchara para fundir por tratamiento con escoria sintética. Los experimentos se han realizado en una acería evacuando el acero en dos ollas (en una cuchara se efectuó la desulfuración con escoria sintética y a la otra se consideró como patrón y en un acería eléctrica y para la formación de la escoria sintética se utilizó una mezcla producida según muchas recetas, formada por: cal (50-75%, fluorina (0-17%, bauxita (0-32% y escoria aluminosa (8-22%. Los datos han sido procesados en los programas de c

  8. NEW TECHNOLOGY OF ASH AND SLAG CONCRETES

    Directory of Open Access Journals (Sweden)

    PAVLENKO T. M.

    2017-03-01

    Full Text Available Summary. Purpose. Development of scientific-technical bases of manufacture and application of concrete on the basis of ash and slag mixes of thermal power plants. Methods. It is proposed a new technology of preparation of ash and slag concrete mixes. First the ash and slag mix is dispersed through the sieve with meshes 5 mm in a fine-grained fraction and slag. Then, in accordance with the composition of the concrete, obtained fine-grained fraction, slag, cement and tempering water are separately dosed into the mixer. Results. It is proven the high efficiency of the proposed technology of manufacture of ash and slag concretes. It is established that this technological solution allows to increase the strength of concrete by 20...30%, and in the preparation of full-strength concrete to reduce the cement consumption by 15...20%. Scientific novelty. It is developed the new technology of ash and slag mixes application. The concrete mix on the basis of ash and slag mix has an optimal particle size distribution, which ensures the best compaction and, accordingly, the greatest strength of ash and slag concrete with the given cement consumption. Practical significance. The research results promote the mass application of ash and slag mixes of thermal power plants in construction, obtaining of products from the proposed concretes of low cost with high physical-mechanical properties. Conclusion. It is proven the high efficiency of the proposed technology of production of ash and slag concretes. It is established that this technological solution allows increasing concrete strength, and obtaining full-strength concrete to reduce cement consumption. The extensive application of such concrete in construction makes it possible to solve the problem of aggregates for concrete, promotes recycling of TPP waste and consequently the protection of the environment.

  9. The use of blast furnace slag

    Directory of Open Access Journals (Sweden)

    V. Václavík

    2012-10-01

    Full Text Available The paper presents the results of experimental research that dealt with the substitution of finely ground blast furnace slag for Portland cement in the course of simple concrete manufacturing. Physical and mechanical properties of experimental concrete mixtures based on finely ground blast furnace slag were observed.

  10. Leaching of heavy metals from steelmaking slags

    International Nuclear Information System (INIS)

    Gomez, J. F. P.; Pino, C. G.

    2006-01-01

    Leaching tests with EAF and Ladle slags were performed, using a flow through tests and the standard batch test DIN 38414-S4. The previous method was used to simulate the leaching behaviour of steel slags under landfill. the chemical analysis of the leachates during this period shows, in general, for both types of slag, and increase of heavy metal releases with ageing. Standard test method DIN 38414-S4 was used to evaluate leachability of heavy metals by water in unprocessed slags. After more than one year of trials, slang samples submitted to these trials presented very low total leaching levels. The most extracted elements are calcium and magnesium. Nevertheless, in flow-though test, calcium and magnesium leached from solid slags are below 0.5% and all other metals below 0.1%. Leachates obtained with DIN 38414-S4 present, as expected, higher leaching values; however, these are inferior to 5% (Ca) and 1% (other elements). (Author) 12 refs

  11. Mechanism of Selenium Loss in Copper Slag

    Science.gov (United States)

    Desai, Bhavin; Tathavadkar, Vilas; Basu, Somnath

    2018-06-01

    During smelting of copper sulfide concentrate, selenium is distributed between silica-saturated iron-silicate slag and copper-iron sulfide matte. The recovery coefficients of selenium between slag and matte were determined as a function of the initial concentration of selenium at 1523 K (1250 °C) under an inert atmosphere in a vertical tubular furnace. The initial concentration of selenium was varied by the addition of metallic selenium as well as selenium dioxide to the mixture of slag and matte. Analysis of the results indicated high affinity of selenium for matte. The apparent loss of selenium with the slag was attributed to the presence of selenium-enriched matte particles entrapped in the slag, rather than dissolved SeO2. The mechanisms proposed by previous investigators were discussed and also compared with the results of the present investigation.

  12. Mechanism of Selenium Loss in Copper Slag

    Science.gov (United States)

    Desai, Bhavin; Tathavadkar, Vilas; Basu, Somnath

    2018-03-01

    During smelting of copper sulfide concentrate, selenium is distributed between silica-saturated iron-silicate slag and copper-iron sulfide matte. The recovery coefficients of selenium between slag and matte were determined as a function of the initial concentration of selenium at 1523 K (1250 °C) under an inert atmosphere in a vertical tubular furnace. The initial concentration of selenium was varied by the addition of metallic selenium as well as selenium dioxide to the mixture of slag and matte. Analysis of the results indicated high affinity of selenium for matte. The apparent loss of selenium with the slag was attributed to the presence of selenium-enriched matte particles entrapped in the slag, rather than dissolved SeO2. The mechanisms proposed by previous investigators were discussed and also compared with the results of the present investigation.

  13. Agronomic Use of Basic Slag

    Directory of Open Access Journals (Sweden)

    Fabio Oliveiri de Nobile

    2015-01-01

    Full Text Available Modern civilization, in recent years, has increased the requirement of products derived from iron and steel, stimulating the growth of the national siderurgical sector and, consequently, the generation of industrial residue called basic slag. In this context, the recycling of residues can contribute to solve problems of the industries that give priority to the excellence of the production with quality. On the other hand, there is a sector of primary production in Brazil, the agriculture, with a great cultivated area in acid ground and with low fertility, being these factors admittedly determinative for vegetal production, under tropical conditions. Thus, there is a scenery of two primary sectors of production, although distinct ones, that present interaction potential, for , on one hand, there is disponibility of a product with similar properties to the liming materials and traditional fertilizers and, on the other hand, a production sector that is highly dependent of these products. And the interaction between these two sectors helps in the preservation of the environment, bringing, thus, a certain sustainability in the production systems of the postmodern civilization that will be the challenge of this new century. Considering the current possibility of recycling these industrial residues in agriculture, three important factors have to be taken into account. The first would be the proper use of the abundant, available and promising industrial residue; the second, in a propitious agricultural environment, acid soil and low fertility; and third, in a responsive and important socio-economic culture, the sugar cane, considering its vast cultivated area. In national literature, few works have dealt with the use of the basic slag and have evaluated the reply of the cultures to its application. Thus, the present work had as its aim to gather information from literature concerning the characterization and production of basic slag in Brazil, as well

  14. Processing and utilization of metallurgical slag

    Directory of Open Access Journals (Sweden)

    Alena Pribulová

    2016-06-01

    Full Text Available Metallurgy and foundry industry create a huge amount of slags that are by-products in production of pig iron, steel and cast iron. Slag is produced in a very large amount in pyrometallurgical processes, and is a huge source of waste if not properly recycled and utilized. With rapid growth of industrialization, land available for land-filling of large quantity of metallurgical slag is being reduced all over the world and disposal cost is becoming increasingly higher. Metallurgical slag from different metallurgical processes treated and utilized in different ways based on different slag characteristics. The most economic and efficient option for reducing metallurgical waste is through recycling, which is a significant contribution to saving natural resources and reducing CO2 emissions. Characteristic of slags as well as its treatment and utilization are given in the paper. Slag from pig iron and steel production is used most frequently in building industry. From experiments using blast furnace slag and granulated blast furnace slag as gravel, and water glass as binder it can be concluded that that the best results – the best values of compression strength and tensile strength were reached by using of 18% of water glass as a solidification activating agent. According to cubic compression strength, mixture from 50% blast furnace gravel, 50% granulated blast furnace slag and 18% water glass falls into C35/45 class of concrete. Such concrete also fulfils strength requirements for road concrete, moreover, it even exceeds them considerably and, therefore, it can find an application in construction of road communications or in production of concrete slabs.

  15. Gravitational segregation of liquid slag in large ladle

    Directory of Open Access Journals (Sweden)

    J. Chen

    2012-04-01

    Full Text Available The process of gravitational segregation makes liquid steel slag components occur differentiation. And it shows that the upper part slag in the slag ladle contains higher CaO; and the lower part slag contains higher SiO2. The content of MgO (5,48 % in the upper part slag is higher than that of the lower part (2,50 %, and only Al2O3 content of the upper and the lower part slag is close to each other. The difference of chemical compositions in the slag ladle shows that there is gravitational segregation during slow solidification of liquid steel slag, which will has some impact of the steel slag processing on the large slag ladle.

  16. Uranium recovery from slags of metallic uranium

    International Nuclear Information System (INIS)

    Fornarolo, F.; Frajndlich, E.U.C.; Durazzo, M.

    2006-01-01

    The Center of the Nuclear Fuel of the Institute of Nuclear Energy Research - IPEN finished the program of attainment of fuel development for research reactors the base of Uranium Scilicet (U 3 Si 2 ) from Hexafluoride of Uranium (UF 6 ) with enrichment 20% in weight of 235 U. In the process of attainment of the league of U 3 Si 2 we have as Uranium intermediate product the metallic one whose attainment generates a slag contend Uranium. The present work shows the results gotten in the process of recovery of Uranium in slags of calcined slags of Uranium metallic. Uranium the metallic one is unstable, pyrophoricity and extremely reactive, whereas the U 3 O 8 is a steady oxide of low chemical reactivity, what it justifies the process of calcination of slags of Uranium metallic. The calcination of the Uranium slag of the metallic one in oxygen presence reduces Uranium metallic the U 3 O 8 . Experiments had been developed varying it of acid for Uranium control and excess, nitric molar concentration gram with regard to the stoichiometric leaching reaction of temperature of the leaching process. The 96,0% income proves the viability of the recovery process of slags of Uranium metallic, adopting it previous calcination of these slags in nitric way with low acid concentration and low temperature of leaching. (author)

  17. A numerical model for chemical reaction on slag layer surface and slag layer behavior in entrained-flow gasifier

    Directory of Open Access Journals (Sweden)

    Liu Sheng

    2013-01-01

    Full Text Available The paper concerns with slag layer accumulation, chemical reaction on slag layer surface, and slag layer flow, heat and mass transfer on the wall of entrained-flow coal gasifier. A slag layer model is developed to simulate slag layer behaviors in the coal gasifier. This 3-D model can predict temperature, slag particle disposition rate, disposition particle composition, and syngas distribution in the gasifier hearth. The model is used to evaluate the effects of O2/coal ratio on slag layer behaviors.

  18. Glassy slag from rotary hearth vitrification

    International Nuclear Information System (INIS)

    Eschenbach, R.C.; Simpson, M.D.; Paulson, W.S.; Whitworth, C.G.

    1995-01-01

    Use of a Plasma Arc Centrifugal Treatment (PACT) system for treating mixed wastes containing significant quantities of soil results in formation of a glassy slag which melts at significantly higher temperatures than the borosilicate glasses. The slag typically contains mostly crystalline material, frequently in an amorphous matrix, thus the appellation open-quotes glassy slag.close quotes Details of the PACT process are given. The process will be used for treating buried wastes from Pit 9 at the Idaho National Engineering Laboratory and low-level mixed wastes from nuclear power plants in Switzerland. Properties of the slag after cooling to room temperature are reported, in particular the Product Consistency Test, for a number of different feedstocks. In almost all cases, the results compare favorably with conventional borosilicate glasses. In the PACT system, a transferred arc carries current from the plasma torch to a rotating molten bed of slag, which is the material being heated. Thus this transferred arc adds energy where it is needed - at and near the surface of the molten bath. Material is fed into the furnace through a sealed feeder, and falls into a rotating tub which is heated by the arc. Any organic material is quickly vaporized into the space above the slag bed and burned by the oxygen in the furnace. Metal oxides in the charge are melted into the slag. Metal in the feed tends to melt and collect as a separate phase underneath the slag, but can be oxidized if desired. When oxidized, it unites with other constituents forming a homogeneous slag

  19. Uranium recovery from AVLIS slag

    International Nuclear Information System (INIS)

    D'Agostino, A.E.; Mycroft, J.R.; Oliver, A.J.; Schneider, P.G.; Richardson, K.L.

    2000-01-01

    Uranium metal for the Atomic Vapor Laser Isotope Separation (AVLIS) project was to have been produced by the magnesiothermic reduction of uranium tetrafluoride. The other product from this reaction is a magnesium fluoride slag, which contains fine and entrained natural uranium as metal and oxide. Recovery of the uranium through conventional mill leaching would not give a magnesium residue free of uranium but to achieve more complete uranium recovery requires the destruction of the magnesium fluoride matrix and liberation of the entrapped uranium. Alternate methods of carrying out such treatments and the potential for recovery of other valuable byproducts were examined. Based on the process flowsheets, a number of economic assessments were performed, conclusions were drawn and the preferred processing alternatives were identified. (author)

  20. Thermal and sintering characterization of IGCC slag

    Energy Technology Data Exchange (ETDEWEB)

    Acosta, A.; Iglesias, I.; Aineto, M.; Romero, M.; Rincon, J.M. [University of Castilla La Mancha, Ciudad Real (Spain)

    2002-07-01

    IGCC slag is a vitreous residual product from the new induction gasification combined cycle gasification thermal power plants. In order to characterize this waste as secondary raw material for the production of glasses and glass-ceramics as construction materials, slag from the Puertollano, Ciudad Real, Spain power plants was thermally investigated. After controlled heating this waste gives rise to hematite, anorthite, and cristobalite crystallized materials.

  1. The use of steel slag in concrete

    Science.gov (United States)

    Martauz, P.; Vaclavik, V.; Cvopa, B.

    2017-10-01

    This paper presents the results of a research dealing with the use of unstable steel slag as a 100% substitute for natural aggregate in the production of concrete. Portland cement CEM I 42.5N and alkali activated hybrid cement H-CEMENT were used as the binder. The test results confirm the possibility to use steel slag as the filler in the production of concrete.

  2. Slags from steel production: Properties and their utilization

    Directory of Open Access Journals (Sweden)

    J. Vlcek

    2013-07-01

    Full Text Available During steel production a considerable amount of slags is produced. In addition to its usual processing, as recycling in device for steel production and preparation of aggregates, it is also possible to apply less common slag processing ways. Depending on cooling mode of the steel slags these may show some binding properties. Geopolymer type binders can be prepared from the slag using alkali activators or the hydraulic properties of the dicalciumsilicate present in the slag can be induced by water. The paper summarizes present state of material utilisation of the steel slags with focus on emphasize of the possible sources of the slag volume instability. The influence of process of slag cooling on its phase composition is documented. It was also found that slags from real sources show different parameters compared to samples obtained for laboratory examination.

  3. Acid slag injection into the blast furnace tuyere zone

    Energy Technology Data Exchange (ETDEWEB)

    Haerkki, J; Tervola, K [Oulu Univ. (Finland). Dept. of Process Engineering

    1997-12-31

    The possibility of acid slag injection and its effect on the slag formation and on the melting behaviour of the charge materials are studied in the present work. The work is partly based on the literature evaluating the slag formation, slag properties and the basic slag injection. The possibility of acid slag injection is first examined by studying changes in the composition of the primary slag if the share of the acid slag component (Kostamus pellet/RR) of the charge material is lowered. Phase diagrams and viscosity charts are used to evaluate the viscosity, and solidus/liquidus temperature in the slag phase. The share of the slag phase of the pellet is evaluated by calculating the amount of the acid slag injection. The injection rate of some injectants is also examined. The primary slag formed of the sinter and the coke ash is in liquid form and its viscosity is close to the viscosity of the blast furnace slag. It is possible that the liquid slag phase can be formed in the blast furnace without the presence of the acid pellet because the melting point and the viscosity of the slag is lowered by alkalies, sulfur and the dissolved ironoxide of the slag. If high SiO{sub 2} content materials alone are used for injection there is a risk that the slag phase of the tuyere zone becomes too viscous. Olivine and some iron containing components such as fayalite are possible injection material. More information is needed to evaluate the effect of acid slag injection on the operation of the blast furnace. (orig.) SULA 2 Research Programme; 2 refs.

  4. Acid slag injection into the blast furnace tuyere zone

    Energy Technology Data Exchange (ETDEWEB)

    Tervola, K.; Haerkki, J.

    1996-12-31

    The possibility of acid slag injection and its effect on the slag formation and on the melting behaviour of the charge materials are studied in the present work. The work is partly based on the literature evaluating the slag formation, slag properties and the basic slag injection. The possibility of acid slag injection is first examined by studying changes in the composition of the primary slag if the share of the acid slag component (Kostamus pellet/RR) of the charge material is lowered. Phase diagrams and viscosity charts are used to evaluate the viscosity, and solidus/liquids temperature in the slag phase. The share of the slag phase of the pellet is evaluated by calculating the amount of the acid slag injection. The injection rate of some injectants is also examined. The primary slag formed of the sinter and the coke ash is in liquid form and its viscosity is close to the viscosity of the blast furnace slag. It is possible that the liquid slag phase can be formed in the blast furnace without the presence of the acid pellet because the melting point and the viscosity of the slag is lowered by alkalies, sulfur and the dissolved ironoxide of the slag. If high SiO{sub 2} content materials alone are used for injection there is a risk that the slag phase of the tuyere zone becomes too viscous. Olivine and some iron containing components such as fayalite are possible injection material. More information is needed to evaluate the effect of acid slag injection on the operation of the blast furnace. (orig.) (14 refs.)

  5. Acid slag injection into the blast furnace tuyere zone

    Energy Technology Data Exchange (ETDEWEB)

    Haerkki, J.; Tervola, K. [Oulu Univ. (Finland). Dept. of Process Engineering

    1996-12-31

    The possibility of acid slag injection and its effect on the slag formation and on the melting behaviour of the charge materials are studied in the present work. The work is partly based on the literature evaluating the slag formation, slag properties and the basic slag injection. The possibility of acid slag injection is first examined by studying changes in the composition of the primary slag if the share of the acid slag component (Kostamus pellet/RR) of the charge material is lowered. Phase diagrams and viscosity charts are used to evaluate the viscosity, and solidus/liquidus temperature in the slag phase. The share of the slag phase of the pellet is evaluated by calculating the amount of the acid slag injection. The injection rate of some injectants is also examined. The primary slag formed of the sinter and the coke ash is in liquid form and its viscosity is close to the viscosity of the blast furnace slag. It is possible that the liquid slag phase can be formed in the blast furnace without the presence of the acid pellet because the melting point and the viscosity of the slag is lowered by alkalies, sulfur and the dissolved ironoxide of the slag. If high SiO{sub 2} content materials alone are used for injection there is a risk that the slag phase of the tuyere zone becomes too viscous. Olivine and some iron containing components such as fayalite are possible injection material. More information is needed to evaluate the effect of acid slag injection on the operation of the blast furnace. (orig.) SULA 2 Research Programme; 2 refs.

  6. The hydration of slag, part 1: reaction models for alkali-activated slag

    NARCIS (Netherlands)

    Chen, Wei; Brouwers, H.J.H.

    2007-01-01

    Reaction models are proposed to quantify the hydration products and to determine the composition of C–S–H from alkali-activated slags (AAS). Products of the slag hydration are first summarized from observations in literature. The main hydration products include C–S–H, hydrotalcite, hydrogarnet, AFm

  7. Radiation load of the electro-thermal production of phosphorus. Part 1. The inhalation dose for operators

    International Nuclear Information System (INIS)

    Erkens, W.H.H.

    2003-01-01

    The phosphate ore which is processed by Thermphos International in Vlissingen, Netherlands, to produce element phosphorus contains circa 1 Bq per gram uranium 238. As a result of this production process radionuclides are emitted and slags that contain natural radioisotopes are formed. The slags can be used as a building material for roads and water works. During the production of phosphorus the waste material calcinate is formed as well. Operators, working in the production process of phosphorus and laborers, working in road construction and hydraulic engineering inhale radioisotopes. In two articles attention will be paid to the inhalation doses, how the doses are measured, measures that were taken to reduce and control the doses, and the ALARA-principles. This article is focused on the inhalation doses for operators in the phosphorus production industry [nl

  8. Spatial and seasonal distribution of carbon, nitrogen, phosphorus, and sulfur and their ecological stoichiometry in wetland soils along a water and salt gradient in the Yellow River Delta, China

    Science.gov (United States)

    Lu, Qiongqiong; Bai, Junhong; Zhang, Guangliang; Zhao, Qingqing; Wu, Jianjun

    2018-04-01

    Top soils (0-10 cm) were collected in three sampling belts during four seasons in 2014, including bare land (HN1), Calamagrostis epigeios (HN2), Typha orientalis (HN3), Phragmites australis (HN4), Tamarix chinensis (HN5) and Suaeda salsa (HN6) along a water and salinity gradient in the Yellow River Delta, China. Soil organic carbon (SOC), total nitrogen (TN), total phosphorous (TP), total sulfur (TS) and their ecological stoichiometry were measured to investigate their seasonal and horizontal distribution patterns, as well as their important influencing factors such as electric conductivity (EC) and water content (WC). Our results showed that the contents of SOC and TN exhibited similar changing tendency along the water and salinity gradient. The TP contents followed the order HN5 ≈ HN2 > HN3 ≈ HN6 > HN4 > HN1. TS levels generally increased with increasing salinity from HN1 to HN6. The higher levels of SOC and TP were mostly observed in October and August, respectively, while the seasonal variations in TN were heterogeneous under different plant covers. TS contents were lower in August compared with other sampling periods except for HN4. The mean values of the C/N, C/P and C/S ratios along a water-salinity gradient ranged from 26 to 72, 20 to 74, and 61 to 292, respectively. Generally, higher C/P ratios were observed in sampling sites with plant covers in October expect for HN1, whereas they were lower in January or August. SOC, TN and TP were significantly positively correlated with soil organic matter (SOM), silt, WC and cation exchange capacity (CEC) (p 0.05). Bulk density (BD) had a great influence on C/N ratio, C/P ratio were mainly effected by SOM, EC and silt, while C/S ratio showed a significant negative correlation with BD, EC, K+, Na+, and Mg2+ (p < 0.05).

  9. Facing slag glass and slag glass ceramic produced from thermal power plant ash

    Energy Technology Data Exchange (ETDEWEB)

    Buruchenko, A.E.; Kolesnikov, A.A.; Lukoyanov, A.G.

    1990-10-01

    Evaluates properties of fly ash and slags from the Krasnoyarsk coal-fired power plants and their utilization for glass and ceramic glass production. Composition of a mixture of fly ash and slag was: silica 40-55%, aluminium oxides 10-40%, ferric trioxide 6-14%, calcium oxides 20-35%, magnesium oxides 3-6%, potassium oxides 0.3-1.5%, sodium oxides 0.2-05%, sulfur trioxide 0.9-5.0%. The analyzed fly ash and slags from the Krasnoyarsk plant were an economic waste material for glass production. Properties of sand, clay and other materials used in glass production and properties of glass and ceramic glass produced on the basis of fly ash and slags are analyzed. Economic aspects of fly ash and slag utilization are also evaluated. 3 refs.

  10. EPR as a tool for studying slags and slag-like systems

    Energy Technology Data Exchange (ETDEWEB)

    Slezak, A.; Lech, J. [Institute of Physics, Technical University of Czestochowa, Czestochowa (Poland)

    1997-12-31

    Results of possible applications of the EPR method for studying of steelwork slags properties and sintering processes involving some slag components are presented. Comparative experimental studies have been carried out at X-band both industrial slags and synthetic slag-like systems obtained by sintering mixtures of pure reagents of Ca-Al{sub 2}O{sub 3}-Fe{sub 2}O{sub 3} phase diagram. Tests of evolution of EPR spectra during sintering process have also been done, including sintering row mixtures currently used in cement industry. EPR spectra of Mn{sup 2+} ions, which have been observed quite resolved in nearly all studied samples, have been established very useful for studying kinetics of sintering process in systems involving the slags and components of the CaO-Al{sub 2}O{sub 3}-SiO{sub 2} diagram. (author). 20 refs, 5 figs, 1 tab.

  11. Phytoextraction of excess soil phosphorus

    International Nuclear Information System (INIS)

    Sharma, Nilesh C.; Starnes, Daniel L.; Sahi, Shivendra V.

    2007-01-01

    In the search for a suitable plant to be used in P phytoremediation, several species belonging to legume, vegetable and herb crops were grown in P-enriched soils, and screened for P accumulation potentials. A large variation in P concentrations of different plant species was observed. Some vegetable species such as cucumber (Cucumis sativus) and yellow squash (Cucurbita pepo var. melopepo) were identified as potential P accumulators with >1% (dry weight) P in their shoots. These plants also displayed a satisfactory biomass accumulation while growing on a high concentration of soil P. The elevated activities of phosphomonoesterase and phytase were observed when plants were grown in P-enriched soils, this possibly contributing to high P acquisition in these species. Sunflower plants also demonstrated an increased shoot P accumulation. This study shows that the phytoextraction of phosphorus can be effective using appropriate plant species. - Crop plants such as cucumber, squash and sunflower accumulate phosphorus and thus can be used in the phytoextraction of excess phosphorus from soils

  12. Phytoextraction of excess soil phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Nilesh C. [Department of Biology, Western Kentucky University, 1906 College Heights Boulevard 11080, Bowling Green, KY 42101-1080 (United States); Starnes, Daniel L. [Department of Biology, Western Kentucky University, 1906 College Heights Boulevard 11080, Bowling Green, KY 42101-1080 (United States); Sahi, Shivendra V. [Department of Biology, Western Kentucky University, 1906 College Heights Boulevard 11080, Bowling Green, KY 42101-1080 (United States)]. E-mail: shiv.sahi@wku.edu

    2007-03-15

    In the search for a suitable plant to be used in P phytoremediation, several species belonging to legume, vegetable and herb crops were grown in P-enriched soils, and screened for P accumulation potentials. A large variation in P concentrations of different plant species was observed. Some vegetable species such as cucumber (Cucumis sativus) and yellow squash (Cucurbita pepo var. melopepo) were identified as potential P accumulators with >1% (dry weight) P in their shoots. These plants also displayed a satisfactory biomass accumulation while growing on a high concentration of soil P. The elevated activities of phosphomonoesterase and phytase were observed when plants were grown in P-enriched soils, this possibly contributing to high P acquisition in these species. Sunflower plants also demonstrated an increased shoot P accumulation. This study shows that the phytoextraction of phosphorus can be effective using appropriate plant species. - Crop plants such as cucumber, squash and sunflower accumulate phosphorus and thus can be used in the phytoextraction of excess phosphorus from soils.

  13. Decalcification resistance of alkali-activated slag

    Energy Technology Data Exchange (ETDEWEB)

    Komljenovic, Miroslav M., E-mail: miroslav.komljenovic@imsi.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade (Serbia); Bascarevic, Zvezdana, E-mail: zvezdana@imsi.bg.ac.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade (Serbia); Marjanovic, Natasa, E-mail: natasa@imsi.bg.ac.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade (Serbia); Nikolic, Violeta, E-mail: violeta@imsi.bg.ac.rs [Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade (Serbia)

    2012-09-30

    Highlights: Black-Right-Pointing-Pointer The effects of decalcification on properties of alkali-activated slag were studied. Black-Right-Pointing-Pointer Decalcification was performed by concentrated NH{sub 4}NO{sub 3} solution (accelerated test). Black-Right-Pointing-Pointer Portland-slag cement (CEM II/A-S 42.5 N) was used as a benchmark material. Black-Right-Pointing-Pointer Decalcification led to strength decrease and noticeable structural changes. Black-Right-Pointing-Pointer Alkali-activated slag showed significantly higher resistance to decalcification. - Abstract: This paper analyses the effects of decalcification in concentrated 6 M NH{sub 4}NO{sub 3} solution on mechanical and microstructural properties of alkali-activated slag (AAS). Portland-slag cement (CEM II/A-S 42.5 N) was used as a benchmark material. Decalcification process led to a decrease in strength, both in AAS and in CEM II, and this effect was more pronounced in CEM II. The decrease in strength was explicitly related to the decrease in Ca/Si atomic ratio of C-S-H gel. A very low ratio of Ca/Si {approx}0.3 in AAS was the consequence of coexistence of C-S-H(I) gel and silica gel. During decalcification of AAS almost complete leaching of sodium and tetrahedral aluminum from C-S-H(I) gel also took place. AAS showed significantly higher resistance to decalcification in relation to the benchmark CEM II due to the absence of portlandite, high level of polymerization of silicate chains, low level of aluminum for silicon substitution in the structure of C-S-H(I), and the formation of protective layer of polymerized silica gel during decalcification process. In stabilization/solidification processes alkali-activated slag represents a more promising solution than Portland-slag cement due to significantly higher resistance to decalcification.

  14. Influence of the slags treatment on the heavy metals binding

    Czech Academy of Sciences Publication Activity Database

    Blahová, L.; Navrátilová, Z.; Mucha, M.; Navrátilová, Eva; Neděla, Vilém

    2018-01-01

    Roč. 15, č. 4 (2018), s. 697-706 ISSN 1735-1472 Institutional support: RVO:68081731 Keywords : slag * binding * metal cations * slag modification Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.915, year: 2016

  15. Process-integrated slag treatment; Prozessintegrierte Schlackebehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Koralewska, R.; Faulstich, M. [Technische Univ., Garching (Germany). Lehrstuhl fuer Wasserguete- und Abfallwirtschaft

    1998-09-01

    The present study compares two methods of washing waste incineration slag, one with water only, and one which uses additives during wet deslagging. The presented aggregate offers ideal conditions for process-integrated slag treatment. The paper gives a schematic description of the integrated slag washing process. The washing liquid serves to wash out the readily soluble constituents and remove the fines, while the additives are for immobilising heavy metals in the slag material. The study is based on laboratory and semi-technical trials on the wet chemical treatment of grate slag with addition of carbon dioxide and phosphoric acid. [Deutsch] Die dargestellten Untersuchungen beziehen sich auf den Vergleich zwischen einer Waesche der Muellverbrennungsschlacke mit Wasser und unter Zugabe von Additiven im Nassentschlacker. In diesem Aggregat bieten sich optimale Voraussetzungen fuer eine prozessintegrierte Schlackebehandlung. Die Durchfuehrung der integrierten Schlackewaesche wird schematisch gezeigt. Durch die Waschfluessigkeit sollen die leichtloeslichen Bestandteile ausgewaschen und die Feinanteile ausgetragen sowie durch die Additive zusaetzlich die Schwermetalle im Schlackematerial immobilisiert werden. Dazu erfolgten Labor- und halbtechnische Versuche zur nasschemischen Behandlung der Rostschlacken unter Zugabe von Kohlendioxid und Phosphorsaeure. (orig./SR)

  16. Preparing hydraulic cement from oil-shale slag

    Energy Technology Data Exchange (ETDEWEB)

    1921-11-19

    A process for the preparation of hydraulic cementing material from oil shale or oil-shale slag according to Patent 411,584 is characterized by the fact that the oil-shale slag is added to burnt marl, blast-furnace slag, and the like, whereupon the mixture is milled to dust in the known way.

  17. Environmental characteristics and utilization potential of metallurgical slag: Chapter 19

    Science.gov (United States)

    Piatak, Nadine; De Vivo, Benedetto; Belkin, Harvey E.; Lima, Annamaria

    2018-01-01

    Slag, an abundant byproduct from the pyrometallurgical processing of ores, can be an environmental liability or a valuable resource. The most common environmental impact of slag is from the leaching of potentially toxic elements, acidity, or alkalinity that may impact nearby soils and surface water and groundwater. Factors that influence its environmental behavior include physical characteristics, such as grain size and porosity, chemical composition with some slag being enriched in certain elements, the mineralogy and partitioning of elements in more or less reactive phases, water-slag interactions, and site conditions. Many of these same factors also influence its resource potential. For example, crystalline ferrous slag is most commonly used as construction aggregate, whereas glassy (i.e., granulated) slag is used in cement. Also, the calcium minerals found in ferrous slag result in useful applications in water treatment. In contrast, the high trace-element content of some base-metal slags makes the slags economically attractive for extraction of residual elements. An evaluation tool is used to help categorize a particular slag as an environmental hazard or valuable byproduct. Results for one type of slag, legacy steelmaking slag from the Chicago area in the USA, suggest the material has potential to be used for treating phosphate-rich or acidic waters; however, the pH and trace-element content of resulting solutions may warrant further examination.

  18. Slag corrosion of gamma aluminium oxynitride

    Energy Technology Data Exchange (ETDEWEB)

    Wang Xidong; Li Wen Chao [Beijing Univ. of Science and Technology, BJ (China). Dept. of Physical Chemistry of Metals; Sichen Du; Seetharaman, S. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Materials Science and Technology

    2002-03-01

    Corrosion of {gamma}-aluminium oxynitride (AlON) by CaO-MgO-''FeO''-Al{sub 2}O{sub 3}-SiO{sub 2} melts corresponding to blast furnace slag was examined from 1693 to 1753 K under static and forced convection conditions. An intermediate layer was observed between the unreacted oxynitride and slag. After a certain time interval, the rate of the growth of this layer was found to be equal to the rate of the dissolution of the layer. Slag corrosion of AlON is a strongly thermally activated process, the overall activation energy being 1002 kJ/mol. The rate of corrosion was found to be significantly enhanced by the addition of ''FeO''. (orig.)

  19. Substoichiometric extraction of phosphorus

    International Nuclear Information System (INIS)

    Shigematsu, T.; Kudo, K.

    1981-01-01

    A study of the substoichiometric extraction of phosphorus is described. Phosphorus was extracted in the form of ternary compounds such as ammonium phosphomolybdate, 8-hydroxyquinolinium phosphomolybdate, tetraphenylarsonium phosphomolybdate and tri-n-octylamine phosphomolybdate. Consequently, phosphorus was extracted substoichiometrically by the addition of a substoichiometric amount of molybdenum for the four phosphomolybdate compounds. On the other hand, phosphorus could be separated substoichiometrically with a substoichiometric amount of tetraphenylarsonium chloride or tri-n-octylamine. Stoichiometric ratios of these ternary compounds obtained substoichiometrically were 1:12:3 for phosphorus, molybdenum and organic reagent. The applicability of these compounds to phosphorus determination is also discussed. (author)

  20. Applicability of slags as waste forms for hazardous waste

    International Nuclear Information System (INIS)

    Bates, J.K.; Buck, E.C.; Dietz, N.L.; Wronkiewicz, D.J.; Feng, X.; Whitworth, C.; Filius, K.; Battleson, D.

    1994-01-01

    Slags, which are a combination of glassy and ceramic phases, were produced by the Component Development and Integration Facility, using a combination of soil and metal feeds. The slags were tested for durability using accelerated test methods in both water vapor and liquid water for time periods up to 179 days. The results indicated that under both conditions there was little reaction of the slag, in terms of material released to solution, or the reaction of the slag to form secondary mineral phases. The durability of the slags tested exceeded that of current high-level nuclear glass formulations and are viable materials, for waste disposal

  1. Simulation of slag control for the Plasma Hearth Project

    International Nuclear Information System (INIS)

    Power, M.A.; Carney, K.P.; Peters. G.G.

    1996-01-01

    The goal of the Plasma Hearth Project is to stabilize alpha-emitting radionuclides in a vitreous slag and to reduce the effective storage volume of actinide-containing waste for long-term burial. The actinides have been shown to partition into the vitreous slag phase of the melt. The slag composition may be changed by adding glass-former elements to ensure that this removable slag has the most desired physical and chemical properties for long-term burial. A data acquisition and control system has been designed to regulate the composition of five elements in the slag

  2. Thermodynamic properties of chromium bearing slags and minerals. A review

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Yanping; Holappa, L.

    1996-12-31

    In this report, the thermodynamic properties of chromium bearing slags and minerals were reviewed based on the available information in the literature. It includes the analysing methods for oxidation state of chromium in slags, oxidation state of chromium and activities of chromium oxides in slags and minerals. The phase diagrams of chromium oxide systems and chromium distributions between slag and metal phases are also covered ill this review. Concerning the analysing methods, it was found that most of the available approaches are limited to iron free slag systems and the sample preparation is very sensitive to the analysing results. In silicate slags under reducing atmosphere, divalent and trivalent chromium co-exist in the slags. It is agreed that the fraction of divalent chromium to total chromium increases with higher temperature, lower slag basicity and oxygen potential. For the slags under oxidising atmosphere, trivalent, pentavalent and hexavalent states were reported to be stable. The activities of CrO and CrO{sub 1.5} were concluded to have positive deviation from ideal solution. Slag basicity has a positive effect and temperature has a negative effect on the activities of chromium oxides. The phase diagrams of the Cr-O, binary, and ternary chromium containing oxide systems have been examined systematically. The analysis shows that the data on the quaternary and quinary systems are insufficient, and require further investigation. The most important features of the chromium containing silicate slags are the large miscibility gaps and the stability of the chromite spinel. (orig.) (76 refs.)

  3. Modelling of slag emulsification and slag reduction in CAS-OB process

    OpenAIRE

    Sulasalmi, P. (Petri)

    2016-01-01

    Abstract Composition Adjustment by Sealed argon bubbling – Oxygen Blowing (CAS-OB) process is a ladle treatment process that was developed for chemical heating and alloying of steel. The main stages of the process are heating, (possible) alloying and reduction of slag. The CAS-OB process aims for homogenization and control of the composition and temperature of steel. In this dissertation, a mathematical reaction model was developed for the slag reduction stage of the CAS-OB process. Sl...

  4. Characteristics and environmental aspects of slag: a review

    Science.gov (United States)

    Piatak, Nadine M.; Parsons, Michael B.; Seal, Robert R.

    2015-01-01

    Slag is a waste product from the pyrometallurgical processing of various ores. Based on over 150 published studies, this paper provides an overview of mineralogical and geochemical characteristics of different types of slag and their environmental consequences, particularly from the release of potentially toxic elements to water. This chapter reviews the characteristics of both ferrous (steel and blast furnace Fe) and non-ferrous (Ag, Cu, Ni, Pb, Sn, Zn) slag. Interest in slag has been increasing steadily as large volumes, on the order of hundreds of millions of tonnes, are produced annually worldwide. Research on slag generally focuses on potential environmental issues related to the weathering of slag dumps or on its utility as a construction material or reprocessing for secondary metal recovery. The chemistry and mineralogy of slag depend on the metallurgical processes that create the material and will influence its fate as waste or as a reusable product.

  5. Yellow nail syndrome

    Directory of Open Access Journals (Sweden)

    Dixit Ramakant

    2007-01-01

    Full Text Available A case of yellow nail syndrome is described in a forty year old male patient who presented with classical triad of this syndrome i.e. deformed yellow nails, lymph-edema and chronic recurrent pleural effusion. The practical problems in the di-agnosis are also briefly discussed with emphasis on awareness of this rare clinical entity.

  6. Preliminary study of tin slag concrete mixture

    Science.gov (United States)

    Hashim, Mohd Jamil; Mansor, Ishak; Pauzi Ismail, Mohamad; Sani, Suhairy; Azmi, Azhar; Sayuti, Shaharudin; Zaidi Ibrahim, Mohd; Adli Anuar, Abul; Rahim, Abdul Adha Abdul

    2018-01-01

    The study focuses on practices to facilitate tin smelting industry to reduce radioactive waste product (Tin Slag) by diluting its radioactivity to a safe level and turning it to a safer infrastructural building product. In the process the concrete mix which include Portland cement, sand, tin slag, water and plasticizer are used to produce interlocking brick pavements, piles and other infrastructural products. The mixing method follows DOE (UK) standard method of mixing targeted at in selected compressive strength suitable for its function and durability. A batching machine is used in the mixing and six test cubes are produced for the test. The testing equipment used are a compressional machine, ultrasonic measurement and a Geiger Muller counter to evaluate of the concrete mix to find the lowest emission of radiation surface dose without compromising the strength of concrete mix. The result obtained indicated the radioactivity of tin slag in the mixing process has reduced to background level that is 0.5μSv/h while the strength and workability of the concrete has not been severely affected. In conclusion, the concrete mix with tin slag has shown the potential it can be turned into a safe beneficial infrastructural product with good strength.

  7. Phosphorus blood test

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003478.htm Phosphorus blood test To use the sharing features on this page, please enable JavaScript. The phosphorus blood test measures the amount of phosphate in the blood. ...

  8. Uranium in ancient slag from Rajasthan

    International Nuclear Information System (INIS)

    Pradeepkumar, T.B.; Fahmi, Sohail; Sharma, S.K.

    2008-01-01

    Anomalous radioactivity was recorded in two ancient slag dumps spread on the surface near Bansda (24 deg 35'N lat., 70 deg 09'E long.) and Dhavadiya (24 deg 30'N lat., 70 deg 05'E long.) villages, Udaipur District, Rajasthan. The slag, with a range of high to low radioactivity levels, is the remnant of ancient smelting in the area, probably for copper. Six samples showing low radioactivity in Bansda contain an average of 0.030% U 3 O 8 , while five moderately radioactive samples analysed contain 0.225% U 3 O 8 and four highly radioactive samples analysed contain 1.15% U 3 O 8 . The 15 samples contain on an average 0.627% copper, 719 ppm zinc, 329 ppm cobalt and 133 ppm vanadium. Fifteen samples from Dhavadiya slag assayed on an average contain 0.040% U 3 O 8 , 0.297% Cu, 292 ppm Zn and 250 ppm Co. The extent of crystallization seen in the slag is intriguing because an over-cooled melt generally forms glass. The high rate of crystal formation may be attributed to high amounts of volatiles, particularly CO 2 and SO 4 , released during the breakdown of limestone (added as flux during smelting) and sulphide minerals in the ore. The high order of radioactivity recorded in the slags of Bansda and Dhavadiya points to the presence of ore-grade uranium concentration associated with sulphide mineralization in the vicinity of the basement Banded Gneissic Complex, intrusive granites and the cover sequence of the Bhinder basin. (author)

  9. The leaching characteristics of vitrified slag

    International Nuclear Information System (INIS)

    Zhang, Jinlong; Li, Yaojian; Tian, Junguo; Sheng, Hongzhi; Xu, Yongxiang

    2010-01-01

    Full Text: Plasma-arc technology was developed to fix the heavy metal of flying ash by the Institute of Mechanics, Chinese Academy of Sciences (CAS-IMECH). A direct current (DC) experimental facility of 30 kW with plasma-arc technology was setup to form vitrified slag. The additives (CaO, SiO 2 ) were added into the reactor to form vitrified slag and fix the heavy metal (Cr, Pb), under dissimilar condition (long and short heating-up time, natural and water cooling). Vitrified slag was broken into different particle size, from 0.1 mm to 1 cm. The particles with different specific surface area were used to study the leaching of heavy metals in vitrified slag rate of speed. The pH value of leaching solution are from 2 to 12, the experiment was kept at different external temperature, from 4 degree Celsius to 70 degree celsius, for 1 week to 1 month. Heavy metal leaching concentration was used to measure the chemical stability of vitrified slag. The results show that the higher specific surface area, the higher heavy metal leaching concentration, but when the specific surface area reaches a certain value, little change in leaching concentration. The impact of temperature on leaching concentration was not significant, from 4 degree Celsius to 70 degree Celsius. The leaching concentration increases with decreasing of the pH value of leaching solution when the pH value of leaching solution less than 7, and little change in concentration increases with pH value when the pH value of leaching solution more than 7. Compared with the leaching concentration after 1 month, the leaching concentration after 1 week has not changed significantly. (Author)

  10. Radiation load of the electro-thermal production of phosphorus. Part 2. The inhalation dose in road construction

    International Nuclear Information System (INIS)

    Erkens, W.H.H.; Hermans, P.M.J.A.; Timmermans, C.W.M.

    2003-01-01

    The phosphate ore which is processed by Thermphos International in Vlissingen, Netherlands, to produce element phosphorus contains circa 1 Bq per gram uranium 238. As a result of this production process radionuclides are emitted and slags that contain natural radioisotopes are formed. The slags can be used as a building material for roads and water works. During the production of phosphorus the waste material calcinate is formed as well. Operators, working in the production process of phosphorus and laborers, working in road construction and hydraulic engineering inhale radioisotopes. In two articles attention will be paid to the inhalation doses, how the doses are measured, measures that were taken to reduce and control the doses, and the ALARA-principles. This article is focused on the inhalation doses for road construction workers [nl

  11. Reprocessing of metallurgical slag into materials for the building industry

    International Nuclear Information System (INIS)

    Pioro, L.S.; Pioro, I.L.

    2004-01-01

    Several methods of reprocessing metallurgical (blast furnace) slag into materials for the building industry, based on melting aggregates with submerged combustion, were developed and tested. The first method involves melting hot slag with some additives directly in a slag ladle with a submerged gas-air burner, with the objective of producing stabilized slag or glass-ceramic. The second method involves direct draining of melted slag from a ladle into the slag receiver, with subsequent control of the slag draining into the converter where special charging materials are added to the melt, with the objective of producing glass-ceramic. A third method involves melting cold slag with some additives inside a melting converter with submerged gas-air burners, with the objective of producing glass-ceramic fillers for use in road construction. Specific to the melting process is the use of a gas-air mixture with direct combustion inside the melt. This feature provides melt bubbling to help achieve maximum heat transfer from combustion products to the melt, improve mixing (and therefore homogeneity of the melt), and increases the rate of chemical reactions. The experimental data for different aspects of the proposed methods are presented. The reprocessed blast-furnace slag in the form of granules can be used as fillers for concretes, asphalts, and as additives in the production of cement, bricks and other building materials. As well, reprocessed blast-furnace slag can be poured into forms for the production of glass-ceramic tiles

  12. Influences of Steelmaking Slags on Hydration and Hardening of Concretes

    Science.gov (United States)

    Kirsanova, A. A.; Dildin, A. N.; Maksimov, S. P.

    2017-11-01

    It is shown that the slag of metallurgical production can be used in the construction industry as an active mineral additive for concrete. This approach allows us to solve environmental problems and reduce costs for the production of binder and concrete simultaneously. Most often slag is used in the form of a filler, an active mineral additive or as a part of a binder for artificial conglomerates. The introduction of slag allows one to notice a part of the cement, to obtain concretes that are more resistant to the impact of aggressive sulfate media. The paper shows the possibility of using recycled steel-smelting slags in the construction industry for the production of cement. An assessment was made of their effect on the hydration of the cement stone and hardening of the concrete together with the plasticizer under normal conditions. In the process of work, we used the slag of the Zlatoust Electrometallurgical Factory. Possible limitations of the content of steel-slag slag in concrete because of the possible presence of harmful impurities are shown. It is necessary to enter slag in conjunction with superplasticizers to reduce the flow of water mixing. Slags can be used as a hardening accelerator for cement concrete as they allow one to increase the degree of cement hydration and concrete strength. It is shown that slags can be used to produce fast-hardening concretes and their comparative characteristics with other active mineral additives are given.

  13. Remediation of phosphorus from electric furnace waste streams

    International Nuclear Information System (INIS)

    Hanna, J.; Jung, J.O.

    1992-01-01

    Electrothermal production of elemental phosphorus (P4) generates substantial amounts of highly toxic phossy water sludge, slag and other gaseous wastes. Because of their high phosphorus content the sludges pose potential fire hazards. In the absence of a reliable processing technology, large amounts of these hazardous wastes are accumulated at an annual rate of 1.5-2.5 million tons from current and past operations. The accumulated sludges are stored in ponds or in special containment vessels in 30 locations in 18 states including Alabama, California, Tennessee, Idaho and Montana. Serious water pollution problems will result unless these wastes are given extensive treatment to remove the elemental phosphorus. Federal regulations prohibit permanent storage of flammable wastes. This paper reports that recently, researchers at the University of Alabama have developed a two-step method for the treatment of phosphorus sludge that includes bulk removal of phosphorus by physical separation techniques followed by remediation of the residual P4 in the sludge using a novel wet air oxidation technique known as HSAD

  14. Leaching of heavy metals from steelmaking slags

    Directory of Open Access Journals (Sweden)

    Gomes, J. F. P

    2006-12-01

    Full Text Available Leaching tests with EAF and Ladle slags were performed, using a flow through test and the standard batch test DIN 38414-S4. The previous method was used to simulate the leaching behaviour of steel slags under landfill. The chemical analysis of the leachates during this period shows, in general, for both types of slag, an increase of heavy metal releases with ageing. Standard test method DIN 38414-S4 was used to evaluate leachability of heavy metals by water in unprocessed slags. After more than one year of trials, slag samples submitted to these trials presented very low total leaching levels. The most extracted elements are calcium and magnesium. Nevertheless, in flow-through test, calcium and magnesium leached from solid slags are below 0.5% and all other metals below 0.1%. Leachates obtained with DIN 38414-S4 present, as expected, higher leaching values; however, these are inferior to 5 % (Ca and 1% (other elements.

    Este articulo contiene los resultados obtenidos en ensayos de lixiviación de escorias de acero (horno electrico y cuchara ejecutados siguiendo la metodologia de flujo dinámico así como el ensayo normalizado DIN 38414-S4. El primer ensayo intenta simular el comportamiento de lixiviación de las escorias en vertedero. Para las escorias ensayadas se han complementado los ensayos con el análisis químico de los lixiviados y se ha verificado un aumento de la liberación de metales pesados. El ensayo DIN 38414-S4 se ha utilizado para evaluar la lixiviación por agua de metales pesados, en muestras de escorias originales. Despues de un año de ensayos, se han observado niveles muy bajos de lixiviación. Los elementos mas lixiviados han sido calcio y magnesio. No obstante, en los ensayos de flujo dinámico, el calcio y el magnesio lixiviados de las escorias sólidas era menor de 0,5% y el resto de los otros metales era inferior a 0,1%. Los lixiviados obtenidos con el ensayo DIN 38414-S4 presentan, como era de esperar, valores

  15. Fertilizer Effect of Phosphorus Recycling Products

    Directory of Open Access Journals (Sweden)

    Wilhelm Römer

    2018-04-01

    Full Text Available Between 2004 and 2011 the German Government funded 17 different projects to develop techniques of phosphorus recycling from wastewater, sewage sludges, and sewage sludge ashes. Several procedures had been tested, such as precipitation, adsorption, crystallization, nano-filtration, electro-dialysis, wet oxidation, pyrolysis, ion exchange, or bioleaching. From these techniques, 32 recycling products were tested by five different institutes for their agronomic efficiency, that is, their plant availability, mainly in pot experiments. This manuscript summarizes and compares these results to evaluate the suitability of different technical approaches to recycle P from wastes into applicable fertilizers. In total, 17 products of recycled sewage sludge ashes (SSA, one meat and bone meal ash, one sinter product of meat and bone meal, one cupola furnace slag, nine Ca phosphates from crystallization or from precipitation, Seaborne-Ca-phosphates, Seaborne-Mg-phosphate, and 3 different struvites were tested in comparison to controls with water soluble P, that is, either single super phosphate (SSP or triple super phosphate (TSP. Sandy and loamy soils (pH: 4.7–6.8; CAL-P: 33–49 ppm were used. The dominant test plant was maize. Phosphorus uptake from fertilizer was calculated by the P content of fertilized plants minus P content of unfertilized plants. Calculated uptake from all products was set in relation to uptake from water soluble P fertilizers (SSP or TSP as a reference value (=100%. The following results were found: (1 plants took up less than 25% P in 65% of all SSA (15 products; (2 6 products (26% resulted in P uptake of 25 and 50% relatively to water soluble P. Only one Mg-P product resulted in an uptake of 67%. With cupola furnace slag, 24% P uptake was reached on sandy soil and nearly the same value as TSP on loamy soil. The uptake results of Ca phosphates were between 0 and 50%. Mg-P products from precipitation processes consistently showed a

  16. HCl removal using cycled carbide slag from calcium looping cycles

    International Nuclear Information System (INIS)

    Xie, Xin; Li, Yingjie; Wang, Wenjing; Shi, Lei

    2014-01-01

    Highlights: • Cycled carbide slag from calcium looping cycles is used to remove HCl. • The optimum temperature for HCl removal of cycled carbide slag is 700 °C. • The presence of CO 2 restrains HCl removal of cycled carbide slag. • CO 2 capture conditions have important effects on HCl removal of cycled carbide slag. • HCl removal capacity of carbide slag drops with cycle number rising from 1 to 50. - Abstract: The carbide slag is an industrial waste from chlor-alkali plants, which can be used to capture CO 2 in the calcium looping cycles, i.e. carbonation/calcination cycles. In this work, the cycled carbide slag from the calcium looping cycles for CO 2 capture was proposed to remove HCl in the flue gas from the biomass-fired and RDFs-fired boilers. The effects of chlorination temperature, HCl concentration, particle size, presence of CO 2 , presence of O 2 , cycle number and CO 2 capture conditions in calcium looping cycles on the HCl removal behavior of the carbide slag experienced carbonation/calcination cycles were investigated in a triple fixed-bed reactor. The chlorination product of the cycled carbide slag from the calcium looping after absorbing HCl is not CaCl 2 but CaClOH. The optimum temperature for HCl removal of the cycled carbide slag from the carbonation/calcination cycles is 700 °C. The chlorination conversion of the cycled carbide slag increases with increasing the HCl concentration. The cycled carbide slag with larger particle size exhibits a lower chlorination conversion. The presence of CO 2 decreases the chlorination conversions of the cycled carbide slag and the presence of O 2 has a trifling impact. The chlorination conversion of the carbide slag experienced 1 carbonation/calcination cycle is higher than that of the uncycled calcined sorbent. As the number of carbonation/calcination cycles increases from 1 to 50, the chlorination conversion of carbide slag drops gradually. The high calcination temperature and high CO 2

  17. Improving Beneficiation of Copper and Iron from Copper Slag by Modifying the Molten Copper Slag

    Directory of Open Access Journals (Sweden)

    Zhengqi Guo

    2016-04-01

    Full Text Available In the paper, a new technology was developed to improve the beneficiation of copper and iron components from copper slag, by modifying the molten slag to promote the mineralization of valuable minerals and to induce the growth of mineral grains. Various parameters, including binary basicity, dosage of compound additive, modification temperature, cooling rate and the end point temperature of slow cooling were investigated. Meanwhile, optical microscope, scanning electron microscope and energy dispersive spectrometer (SEM-EDS was employed to determine the mineralogy of the modified and unmodified slag, as well as to reveal the mechanisms of enhancing beneficiation. The results show that under the proper conditions, the copper grade of rougher copper concentrate was increased from 6.43% to 11.04%, iron recovery of magnetic separation was increased significantly from 32.40% to 63.26%, and other evaluation indexes were changed slightly, in comparison with unmodified copper slag. Moreover, matte and magnetite grains in the modified slag aggregated together and grew obviously to the mean size of over 50 μm, resulting in an improvement of beneficiation of copper and iron.

  18. Investigation and assessment of lead slag concrete as nuclear shields

    International Nuclear Information System (INIS)

    Zaghloul, Y.R.

    2009-01-01

    The present work is concerned with the efficiency of heavy weight concrete as a shielding material in constructing nuclear installations as well as for radioactive wastes disposal facilities.In this context, lead slag was used as a replacement for fine aggregates in heavy concrete shields that include local heavy weight aggregates (namely; barite and ilmenite) as well as normal concrete includes dolomite and sand as coarse and fine aggregates, as a reference. The effect of different percentages of lead slag was investigated to assess the produced lead slag concrete as a nuclear shielding material. The different properties (physical, mechanical and nuclear) of the produced lead slag concrete were investigated. The results obtained showed that increasing the lead slag percentage improving the investigated properties of the different concrete mixes. In addition, ilmenite concrete with 20% lead slag showed the best results for all the investigated properties.

  19. Moderate Dilution of Copper Slag by Natural Gas

    Science.gov (United States)

    Zhang, Bao-jing; Zhang, Ting-an; Niu, Li-ping; Liu, Nan-song; Dou, Zhi-he; Li, Zhi-qiang

    2018-01-01

    To enable use of copper slag and extract the maximum value from the contained copper, an innovative method of reducing moderately diluted slag to smelt copper-containing antibacterial stainless steel is proposed. This work focused on moderate dilution of copper slag using natural gas. The thermodynamics of copper slag dilution and ternary phase diagrams of the slag system were calculated. The effects of blowing time, temperature, matte settling time, and calcium oxide addition were investigated. The optimum reaction conditions were identified to be blowing time of 20 min, reaction temperature of 1250°C, settling time of 60 min, CaO addition of 4% of mass of slag, natural gas flow rate of 80 mL/min, and outlet pressure of 0.1 MPa. Under these conditions, the Fe3O4 and copper contents of the residue were 7.36% and 0.50%, respectively.

  20. Nickel recovery from electric arc furnace slag by magnetic separation

    Directory of Open Access Journals (Sweden)

    Sakaroglou Marianna

    2017-01-01

    Full Text Available During the pyrometallurgical treatment of the nickel-bearing laterite in the plant of G.M.M. S.A. LARCO, slag is produced after treatment in electric-arc furnace (EAF that contains 0.10 to 0.20 % Ni. Taking into account the great quantity of slag produced per year, the recovery of nickel from the EAF slag will add benefits to the entire process. The target of the current work is to investigate the possibility of nickel recovery from EAF slag by magnetic separation. To meet the target, the effect of the following parameters was studied: grain size, magnetic field intensity, thickness of slag layer, moisture content, and re-grinding of the coarser slag particles. The results show that it is possible to obtain a magnetic product with nickel grade close to that of the primary raw material or even better, with sufficient nickel recovery.

  1. Yellow fever: an update.

    Science.gov (United States)

    Monath, T P

    2001-08-01

    Yellow fever, the original viral haemorrhagic fever, was one of the most feared lethal diseases before the development of an effective vaccine. Today the disease still affects as many as 200,000 persons annually in tropical regions of Africa and South America, and poses a significant hazard to unvaccinated travellers to these areas. Yellow fever is transmitted in a cycle involving monkeys and mosquitoes, but human beings can also serve as the viraemic host for mosquito infection. Recent increases in the density and distribution of the urban mosquito vector, Aedes aegypti, as well as the rise in air travel increase the risk of introduction and spread of yellow fever to North and Central America, the Caribbean and Asia. Here I review the clinical features of the disease, its pathogenesis and pathophysiology. The disease mechanisms are poorly understood and have not been the subject of modern clinical research. Since there is no specific treatment, and management of patients with the disease is extremely problematic, the emphasis is on preventative vaccination. As a zoonosis, yellow fever cannot be eradicated, but reduction of the human disease burden is achievable through routine childhood vaccination in endemic countries, with a low cost for the benefits obtained. The biological characteristics, safety, and efficacy of live attenuated, yellow fever 17D vaccine are reviewed. New applications of yellow fever 17D virus as a vector for foreign genes hold considerable promise as a means of developing new vaccines against other viruses, and possibly against cancers.

  2. Reduction of chromium oxide from slags

    Directory of Open Access Journals (Sweden)

    Gutiérrez-Paredes, J.

    2005-12-01

    Full Text Available Experimental and theoretical work were performed to estimate the effect of slag basicity and amount of reducing agents on the reduction of chromium oxide from the slag which interacted with molten steel at 1,600 °C. The slag system contained CaO, MgO, SiO2, CaF2 and Cr2O3 together with Fe-alloys (Fe-Si and Fe-Si-Mg. The CaF2 and MgO contents in the slags were 10 mass % each; Cr2O3 was 25%. The amount of the ferroalloys ranged from 12.5 to 50 g per 100 g of slag. The (CaO+MgO/SiO2 ratio was held at 1 and 2. The Cr yield was determined using both Fe-alloys as reducing agents. Some estimations were made to determine the theoretical effect of temperature, slag basicity, (CaO+MgO/SiO2, and amount of reducing agents in the slag on the chromium recovery. The FACT (Facility for the Analysis of Chemical Thermodynamics computational package is used to determine the equilibrium between the slag and molten steel.

    En el presente trabajo se realiza un estudio teórico y experimental para determinar el efecto de la basicidad de la escoria y la cantidad de agentes reductores sobre la reducción de óxidos de cromo contenidos en la escoria, la cual está en contacto con acero líquido a 1.600 °C. La escoria se prepara con los reactivos CaO, MgO, SiO2, CaF2 y ferroaleaciones (Fe-Si y Fe-Si-Mg. Los contenidos de CaF2 y MgO en la escoria son de 10 %, cada uno, y el de Cr2O3 es 25 %. La cantidad de la ferroaleación varía de 12,5 a 50 g por cada 100 g de escoria. La relación (CaO+MgO/SiO2 tiene los valores de 1 y 2. Se determina la eficiencia de recuperación de cromo empleando los dos tipos de ferroaleaciones. Se realizaron cálculos para determinar el efecto teórico de la temperatura, la basicidad de la escoria, (CaO+MgO/SiO2, y la cantidad de agentes reductores sobre la reducci

  3. Artificial neural network model to predict slag viscosity over a broad range of temperatures and slag compositions

    Energy Technology Data Exchange (ETDEWEB)

    Duchesne, Marc A. [Chemical and Biological Engineering Department, University of Ottawa, 161 Louis Pasteur, Ottawa, Ont. (Canada); CanmetENERGY, 1 Haanel Drive, Ottawa, Ontario (Canada); Macchi, Arturo [Chemical and Biological Engineering Department, University of Ottawa, 161 Louis Pasteur, Ottawa, Ont. (Canada); Lu, Dennis Y.; Hughes, Robin W.; McCalden, David; Anthony, Edward J. [CanmetENERGY, 1 Haanel Drive, Ottawa, Ontario (Canada)

    2010-08-15

    Threshold slag viscosity heuristics are often used for the initial assessment of coal gasification projects. Slag viscosity predictions are also required for advanced combustion and gasification models. Due to unsatisfactory performance of theoretical equations, an artificial neural network model was developed to predict slag viscosity over a broad range of temperatures and slag compositions. This model outperforms other slag viscosity models, resulting in an average error factor of 5.05 which is lower than the best obtained with other available models. Genesee coal ash viscosity predictions were made to investigate the effect of adding Canadian limestone and dolomite. The results indicate that magnesium in the fluxing agent provides a greater viscosity reduction than calcium for the threshold slag tapping temperature range. (author)

  4. Influência de calcário e fósforo no desenvolvimento e produção de variedades de maracujazeiro-amarelo Influence of limestone and phosphorus in development and production of varieties of yellow passion fruit

    Directory of Open Access Journals (Sweden)

    Edilson Carvalho Brasil

    2010-09-01

    used was randomized blocks, in factorial scheme 4x4x2 with 16 treatments and 4 repetitions. The factors studied had been four doses of phosphorus (0, 100, 200 and 300 mg dm-3 of P in the triple superphosphate form (SFT; four levels of saturation for bases (initial = 15%, 40%, 65%80 and 90% and two varieties of passion fruit, (yellow and Embrapa Oriental Amazônia. As corrective agent to soil acidity were used calcium (CaCO3 and magnesium (MgCO3 carbonate. At 50 days after planting, it was evaluated: plant height, stem diameter and dry matter of shoots. The liming and phosphorus application influenced positively the development and the dry mater of passion fruit plants. The greatest dry matter production was obtained with combined application of 160 mg dm-3 of P in soil with the base saturation of 47%, which was associated with concentrations of P and Ca of 143 mg dm-3 and 2,9 cmol c dm-3 in the soil, and contents of 2,6 and 10,8 g kg-1 in the shoot dry matter, respectively. The CPATU variety was superior in terms of average diameter of stem and dry matter production of shoots.

  5. Recovery of metal values from copper slag and reuse of residual secondary slag.

    Science.gov (United States)

    Sarfo, Prince; Das, Avimanyu; Wyss, Gary; Young, Courtney

    2017-12-01

    Resource and environmental factors have become major forces in mining and metallurgy sectors driving research for sustainability purposes. The concept of zero-waste processing has been gaining ground readily. The scant availability of high quality raw materials has forced the researchers to shift their focus to recycling while the exceedingly stringent environmental regulations have forced researchers to explore new frontiers of minimizing/eliminating waste generation. The present work is aimed at addressing both aspects by employing recycling to generate wealth from copper slag and producing utilizable materials at the same time thus restoring the ecosystem. Copper slag was characterized and processed. The pyro-metallurgical processing prospects to generate utilizable materials were arrived at through rigorous thermodynamic analysis. Carbothermal reduction at elevated temperature (near 1440°C) helped recover a majority of the metal values (e.g., Fe, Cu and Mo) into the iron-rich alloy product which can be a feed material for steel making. On the other hand, the non-metallic residue, the secondary slag, can be used in the glass and ceramic industries. Reduction time and temperature and carbon content were shown to be the most important process variables for the reaction which were optimized to identify the most favored operating regime that maximizes the metal recovery and simultaneously maximizes the hardness of the secondary slag and minimizes its density, the two major criteria for the secondary slag product to be utilizable. The flux addition level was shown to have relatively less impact on the process performance if these are maintained at an adequate level. The work established that the copper slag, a waste material, can be successfully processed to generate reusable products through pyrometallurgical processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Comparative results of copper flotation from smelter slag and granulated smelter slag

    OpenAIRE

    Milanović, Dragan; Stanujkić, Dragiša; Ignjatović, Miroslav R.

    2013-01-01

    Smelter slag is obtained in the process of metallurgical converting of copper concentrate in the Smelter Plant in Bor, Serbia. Today, the reserves of this material are evaluated at about more of a year, with the average copper content of 0.6-0.9%. Production of copper concentrate by flotation of smelter slag has started in 2001. Flotation concentrate goes to the Copper Smelter once more for production of copper cathodes and the rough flotation tailings go to the flotation tailing dump. Copper...

  7. Phosphorus poisoning in waterfowl

    Science.gov (United States)

    Coburn, D.R.; DeWitt, J.B.; Derby, J.V.; Ediger, E.

    1950-01-01

    Black ducks and mallards were found to be highly susceptible to phosphorus poisoning. 3 mg. of white phosphorus per kg. of body weight given in a single dose resulted in death of a black duck in 6 hours. Pathologic changes in both acute and chronic poisoning were studied. Data are presented showing that diagnosis can be made accurately by chemical analysis of stored tissues in cases of phosphorus poisoning.

  8. The slag original from the process of sewage sludge incineration selected properties characteristic

    Science.gov (United States)

    Głowacka, Anna; Rucińska, Teresa; Kiper, Justyna

    2017-11-01

    This work characterizes the physical and chemical properties of slag from combustion of municipal sewage sludge in "Pomorzany" waste treatment plant in Szczecin. The technology of sludge management is based on drying the sludge in low-temperature belt driers, to a content level of at least 90%, dry mass., and then burning in a grate boiler with mobile grate. The research of the slag resulting from combustion of municipal sewage sludge was conducted using reference methods, presenting images from a scanning electron microscope. The tested waste contained from 16.300 to 23.150% P2O5 completely soluble in strong acids, pH 8.03, mineral substance 98.73% dry mass. The content of heavy metals did not exceed the permissible amount specified in the Regulation of the Minister of Agriculture and Rural Development of 18 June 2008 on the implementation of certain provisions of the Act on fertilizers and fertilization (Journal of Laws of 2008 No. 119, item. 765). The screening trials showed that 48.4% are fractions of 630 µm-1.25 mm. The results show that the waste code 19 01 12 may be used as: alternative source of phosphorus for direct application to soil treatment, for production of organic - mineral fertilizers and as construction aggregate for production of concrete mortars.

  9. Yellow fever: epidemiology and prevention.

    Science.gov (United States)

    Barnett, Elizabeth D

    2007-03-15

    Yellow fever continues to occur in regions of Africa and South America, despite the availability of effective vaccines. Recently, some cases of severe neurologic disease and multiorgan system disease have been described in individuals who received yellow fever vaccine. These events have focused attention on the need to define criteria for judicious use of yellow fever vaccine and to describe the spectrum of adverse events that may be associated with yellow fever vaccine. Describing host factors that would increase risk of these events and identifying potential treatment modalities for yellow fever and yellow fever vaccine-associated adverse events are subjects of intense investigation.

  10. Yellow Fever Vaccine: What You Need to Know

    Science.gov (United States)

    ... How can I prevent yellow fever? Yellow fever vaccine Yellow fever vaccine can prevent yellow fever. Yellow fever vaccine ... such as those containing DEET. 3 Yellow fever vaccine Yellow fever vaccine is a live, weakened virus. It is ...

  11. Treatment of LF slag to prevent powdering during cooling

    Directory of Open Access Journals (Sweden)

    Ghorai S.

    2017-01-01

    Full Text Available The polymorphic transformation of the monoclinic β-polymorph to the orthorhombic γ-polymorph of di-calcium silicate at around 500°C during cooling results in disintegration of slag. The slag generated, during the production of thermo mechanically treated steel in ladle furnace at M/s Tata Steel Limited, Jamshedpur, India, behaves in similar manner. An attempt has been made to prevent the crumbling of ladle furnace slag. The experiments were conducted in 10 kg air induction furnace. Various types of silica source were used to prevent the disintegration of ladle furnace slag by reducing the basicity and optimizing the additives amount. Apart from silica sources, other additives like borax and barium carbonate were also used to stabilize the β phase. Present investigation reveals that disintegration of ladle furnace slag can be prevented either by addition of 0.2% boarx or 2% barium carbonate. Dust formation can also be prevented by decreasing the ladle furnace slag basicity to about 1.7. Toxicity Characteristic Leaching Procedure test, of the borax and barium carbonate treated slag samples, indicates that barium carbonate treated slag cannot be used for the dusting prevention as it contains high level of barium.

  12. Steel slag in hot mix asphalt concrete : final report

    Science.gov (United States)

    2000-04-01

    In September 1994, steel slag test and control sections were constructed in Oregon to evaluate the use of steel slag in hot mix asphalt concrete (HMAC). This report covers the construction and five-year performance of a pavement constructed with 30% ...

  13. ANALYSIS OF KINETICS OF CAST IRON ALLOYING THROUGH SLAG PHASE

    Directory of Open Access Journals (Sweden)

    O. S. Komarov

    2012-01-01

    Full Text Available The mechanism of cast iron alloying through slag phase due to use of nickel and copper oxides is considered and the analysis of kinetics regularity of alloying in case of absence of fuse in the form of milled cast-iron chips in slag and at their presence in it is carried out.

  14. The reaction of slag in cement, theory and computer modelling

    NARCIS (Netherlands)

    Chen, Wei; Brouwers, H.J.H.; Fischer, H.B

    2006-01-01

    For a better understanding of the performance of slag in concrete, evaluating the feasibility of using one certain type of slag and possible improvement of its use in practice, fundamental knowledge about its reaction and interaction with other constituents is important. While the researches on

  15. Modified DHTT Equipment for Crystallization Studies of Mold Slags

    Science.gov (United States)

    Kölbl, Nathalie; Harmuth, Harald; Marschall, Irmtraud

    2018-04-01

    The double hot thermocouple technique (DHTT) enables simulations of the temperature gradient at near-service conditions during continuous casting of steel. With the equipment applied so far, a rectangular slag film of even thickness often cannot be achieved. Further, the minimum temperature frequently lies within the slag film. Modified equipment can avoid these disadvantages via the following design features. The entire furnace chamber is heated to the selected temperature of the cold wire, and the minimum temperature is not located within the slag film. Furthermore, the shape of the heating wire is improved, which enables mounting of a thin, rectangular slag film between four platinum wires. This modification allows for investigations on transparent and translucent slags. So far, the results from DHTT investigations were represented via snapshots of the samples at certain experimental times. Therefore, appropriate methods for the graphical representation of the results were suggested: the maximum crystallinity, the time related to certain crystallinities with a dependence on the position within the slag film, and the crystal growth rate. The CaO-MgO-Al2O3-SiO2 slag investigated with this equipment was mineralogically examined additionally, and based on thermodynamic calculations, the allocation of temperatures to certain positions within the crystallized slag film was possible.

  16. ENERGY ASPECTS OF STEELMAKING SLAGS APPLICATION IN METALLURGY

    Directory of Open Access Journals (Sweden)

    V. L. Naydek

    2013-01-01

    Full Text Available A comparative assessment of energy intensity of converter steel production in different types of smelting with slag processing in the ladle was made. Analysis of the data shows that the use of liquid steel slag in steel production for its refining saves about 2.2 GJ or 75 kg of coal equivalent for each ton of metal.

  17. Phosphorus sorption-desorption and effects of temperature, pH and salinity on phosphorus sorption in marsh soils from coastal wetlands with different flooding conditions.

    Science.gov (United States)

    Bai, Junhong; Ye, Xiaofei; Jia, Jia; Zhang, Guangliang; Zhao, Qingqing; Cui, Baoshan; Liu, Xinhui

    2017-12-01

    Wetland soils act as a sink or source of phosphorus (P) to the overlaying water due to phosphorus sorption-desorption processes. Litter information is available on sorption and desorption behaviors of phosphorus in coastal wetlands with different flooding conditions. Laboratory experiments were conducted to investigate phosphorus sorption-desorption processes, fractions of adsorbed phosphorus, and the effects of salinity, pH and temperature on phosphorus sorption on soils in tidal-flooding wetlands (TW), freshwater-flooding wetlands (FW) and seasonal-flooding wetlands (SW) in the Yellow River Delta. Our results showed that the freshly adsorbed phosphorus dominantly exists in Occluded-P and Fe/AlP and their percentages increased with increasing phosphorus adsorbed. Phosphorus sorption isotherms could be better described by the modified Langmuir model than by the modified Freundlich model. A binomial equation could be properly used to describe the effects of salinity, pH, and temperature on phosphorus sorption. Phosphorus sorption generally increased with increasing salinity, pH, and temperature at lower ranges, while decreased in excess of some threshold values. The maximum phosphorus sorption capacity (Q max ) was larger for FW soils (256 mg/kg) compared with TW (218 mg/kg) and SW soils (235 mg/kg) (p < 0.05). The percentage of phosphorus desorption (P des ) in the FW soils (7.5-63.5%) was much lower than those in TW (27.7-124.9%) and SW soils (19.2-108.5%). The initial soil organic matter, pH and the exchangeable Al, Fe and Cd contents were important factors influencing P sorption and desorption. The findings of this study indicate that freshwater restoration can contribute to controlling the eutrophication status of water bodies through increasing P sorption. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Lime and rates and sources of phosphorus as influencing soybean yield and chemical properties of Pelotas soil (alfisol)

    International Nuclear Information System (INIS)

    Machado, M.O.

    1983-01-01

    The effect of five phosphates as sources of phosphorus for soybean (Bragg cultivar) was evaluated in two rates (100 and 200 Kg/ha of total P 2 O 5 ), on limed and unlimed soil condtions. The experiment was carried out under field conditions, during the soybean growing season of 1973/74, 1974/75, 1975/76 and 1976/77, at UEPAE Pelotas station. The pH and the exchangeable Ca + Mg content from the soil were increased with Gafsa phosphate, but mainly with lime, Thomas slag and Yoorin thermophosphate application. The exchangeable Al content was eliminated by lime application and decreased annually by application of Gafsa phosphate, Thomas slag and Yoorin thermophosphate, when the lime was not applied. Thomas slag and Yoorin thermophosphate were the best phosphates for grain yield and do without lime: however, under limed soil conditions all phosphates had some efficiency, except for the Gafsa phosphate in the first growing season. (Author) [pt

  19. Pyrochemical recovery of plutonium fluoride reduction slag

    International Nuclear Information System (INIS)

    Christensen, D.C.; Rayburn, J.A.

    1983-07-01

    A process was developed for the pyrochemical recovery of plutonium from residues resulting from the PuF 4 reduction process. The process involves crushing the CaF 2 slag and dissolving it at 800 0 C in a CaCl 2 solvent. The plutonium, which exists either as finely divided metal or as incompletely reduced fluoride salt, is reduced to metal and/or allowed to coalesce as a massive button in the bottom of the reaction crucible. The recovery of plutonium in a 1-day cycle averaged 96%; all of the resulting residues were discardable

  20. Investigations on steel slag re-utilization in developing countries; Hatten tojokoku ni okeru tekko slag sairiyo ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    In order to promote steel slag re-utilization in developing countries, a possibility was presented for technical cooperation to India, Indonesia and Thailand upon putting the status of slag utilization in Japan into order. Blast furnace slag produced in Japan (having a re-utilization rate of 95%) is re-utilized and processed as cement aggregates and road beds, and converter slag as civil engineering materials and ores. Steel making slag (having a re-utilization rate of 80%) is re-utilized as road, processing and civil engineering materials. Since the steel making slag faces intensifying competition with ash made by incinerating construction and general wastes, it is important to improve its price competitiveness or mixed utilization with other materials. Re-utilization has not advanced to a recognizable level in developing countries because of having no difficulty for availability of lands for wastes. However, growth of full-scale steel industries and elevation in tendency of environment preservation now urge increase in the slag re-utilization rate. Required to achieve the goal would include wider use of re-utilization technologies, quality control on slag, joint use of facilities to produce re-utilization products, and governmental assistance on burdens of transportation cost. Assistance from Japan is expected to help meet these requirements. 25 figs., 31 tabs.

  1. Yellow substance (gelbstoff)

    International Nuclear Information System (INIS)

    Medina, A.

    1988-04-01

    The different values of the mean slope (S) of the absorption coefficient a(λ) of gelbstoff (yellow substance) for each region under the same hydrological conditions and the correlation between the quantity of absorption (CA) of gelbstoff and sea water parameter is discussed. 12 refs, 6 figs, 3 tabs

  2. Introducing the Yellow Laser

    Science.gov (United States)

    Lincoln, James

    2018-01-01

    The author has acquired a yellow laser with the specific wavelength of 589 nm. Because this is the first time such a laser has been discussed in this journal, I feel it is appropriate to provide a discussion of its function and capabilities. Normal laser safety should be employed, such as not pointing it into eyes or at people, and using eye…

  3. To the problem of nonmetallic inclusions assimilation by slags in the course of steel casting

    International Nuclear Information System (INIS)

    Klimov, Yu.V.; Krupman, L.I.; Medzhibozhskij, M.Ya.; Povkh, Yu.I.; Belanenko, A.A.

    1975-01-01

    The effect of slag viscosity as well as a method of steel pouring with slag-forming mixtures used upon the slag assimilation of oxide inclusions has been studied with a radioactive tracer method. The inclusions are absorbed by slag primarily in the course of filling casting moulds when a relatively intensive metal circulation occurs. The ensuing decrease of slag viscosity results in better purification of steel from inclusions. In the period of natural convection the inclusions are not removed irrespective of the slag properties. The bottom pouring results in the lowest degree of steel purification from inclusions due to the limited surface of a slag-metal contact

  4. Phosphorus dendrimers for nanomedicine.

    Science.gov (United States)

    Caminade, Anne-Marie

    2017-08-31

    From biomaterials to imaging, and from drug delivery to drugs by themselves, phosphorus-containing dendrimers offer a large palette of biological properties, depending essentially on their types of terminal functions. The most salient examples of phosphorus dendrimers used for the elaboration of bio-chips and of supports for cell cultures, for imaging biological events, and for carrying and delivering drugs or biomacromolecules are presented in this feature article. Several phosphorus dendrimers can be considered also as drugs per se (by themselves) in particular to fight against cancers, neurodegenerative diseases, and inflammation, both in vitro and in vivo. Toxicity assays are also reported.

  5. An Assessment of the General Applicability of the Relationship Between Nucleation of CO Bubbles and Mass Transfer of Phosphorus in Liquid Iron Alloys

    Science.gov (United States)

    Gu, Kezhuan; Dogan, Neslihan; Coley, Kenneth S.

    2018-06-01

    The current paper seeks to demonstrate the general applicability of the authors' recently developed treatment of surface renewal during decarburization of Fe-C-S alloys and its effect on the mass transport of phosphorus in the metal phase. The proposed model employs a quantitative model of CO bubble nucleation in the metal to predict the rate of surface renewal, which can then in turn be used to predict the mass-transfer coefficient for phosphorus. A model of mixed transport control in the slag and metal phases was employed to investigate the dephosphorization kinetics between a liquid iron alloy and oxidizing slag. Based on previous studies of the mass-transfer coefficient of FeO in the slag, it was possible to separate the mass transfer coefficient of phosphorus in metal phase, km , from the overall mass-transfer coefficient k_{{o}} . Using this approach, km was investigated under a wide range of conditions and shown to be represented reasonably by the mechanism proposed. The mass-transfer model was tested against results from the literature over a wide range of conditions. The analysis showed that the FeO content in the slag, silicon in the metal and the experimental temperature have strong impact on, km , almost entirely because of their effect on decarburization behavior.

  6. Utilizing steel slag in environmental application - An overview

    Science.gov (United States)

    Lim, J. W.; Chew, L. H.; Choong, T. S. Y.; Tezara, C.; Yazdi, M. H.

    2016-06-01

    Steel slags are generated as waste material or byproduct every day from steel making industries.The potential environmental issues which are related with the slag dump or reprocessing for metal recovery are generally being focused in the research. However the chemistry and mineralogy of slag depends on metallurgical process which is able to determine whether the steel slag can be the reusable products or not. Nowadays, steel slag are well characterized by using several methods, such as X-ray Diffraction, ICP-OES, leaching test and many more. About the industrial application, it is mainly reused as aggregate for road construction, as armour stones for hydraulic engineering constructions and as fertilizers for agricultural purposes. To ensure the quality of steel slag for the end usage, several test methods are developed for evaluating the technical properties of steel slag, especially volume stability and environmental behaviour. In order to determine its environmental behaviour, leaching tests have been developed. The focus of this paper however is on those applications that directly affect environmental issues including remediation, and mitigation of activities that negatively impact the environment.

  7. Calibration-free electrical conductivity measurements for highly conductive slags

    International Nuclear Information System (INIS)

    Macdonald, Christopher J.; Gao, Huang; Pal, Uday B.; Van den Avyle, James A.; Melgaard, David K.

    2000-01-01

    This research involves the measurement of the electrical conductivity (K) for the ESR (electroslag remelting) slag (60 wt.% CaF 2 - 20 wt.% CaO - 20 wt.% Al 2 O 3 ) used in the decontamination of radioactive stainless steel. The electrical conductivity is measured with an improved high-accuracy-height-differential technique that requires no calibration. This method consists of making continuous AC impedance measurements over several successive depth increments of the coaxial cylindrical electrodes in the ESR slag. The electrical conductivity is then calculated from the slope of the plot of inverse impedance versus the depth of the electrodes in the slag. The improvements on the existing technique include an increased electrochemical cell geometry and the capability of measuring high precision depth increments and the associated impedances. These improvements allow this technique to be used for measuring the electrical conductivity of highly conductive slags such as the ESR slag. The volatilization rate and the volatile species of the ESR slag measured through thermogravimetric (TG) and mass spectroscopy analysis, respectively, reveal that the ESR slag composition essentially remains the same throughout the electrical conductivity experiments

  8. Characterization and recovery of copper values from discarded slag.

    Science.gov (United States)

    Das, Bisweswar; Mishra, Barada Kanta; Angadi, Shivakumar; Pradhan, Siddharth Kumar; Prakash, Sandur; Mohanty, Jayakrushna

    2010-06-01

    In any copper smelter large quantities of copper slag are discarded as waste material causing space and environmental problems. This discarded slag contains important amounts of metallic values such as copper and iron. The recovery of copper values from an Indian smelter slag that contains 1.53% Cu, 39.8% Fe and 34.65% SiO(2) was the focus of the present study. A complete investigation of the different phases present in the slag has been carried out by means of optical microscopy, Raman spectroscopy, scanning electron microscopy (SEM), and X-ray diffraction (XRD) techniques. It is observed that iron and silica are mostly associated with the fayalite phase whereas copper is present in both oxide and sulfide phases. These oxide and sulfide phases of copper are mostly present within the slag phase and to some extent the slag is also embedded inside the oxide and sulfide phases. The recovery of copper values from the discarded slag has been explored by applying a flotation technique using conventional sodium isopropyl xanthate (SIX) as the collector. The effects of flotation parameters such as pH and collector concentration are investigated. Under optimum flotation conditions, it is possible to achieve 21% Cu with more than 80% recovery.

  9. Alkali-slag cements for the immobilization of radioactive wastes

    International Nuclear Information System (INIS)

    Shi, C.; Day, R.L.

    1996-01-01

    Alkali-slag cements consist of glassy slag and an alkaline activator and can show both higher early and later strengths than Type III Portland cement, if a proper alkaline activator is used. An examination of microstructure of hardened alkali-slag cement pastes with the help of XRD and SEM with EDAX shows that the main hydration product is C-S-H (B) with low C/S ratio and no crystalline substances exist such as Ca(OH) 2 , Al (OH) 3 and sulphoaluminates. Mercury intrusion tests indicate that hardened alkali-slag cement pastes have a lower porosity than ordinary Portland cement, and contain mainly gel pores. The fine pore structure of hardened alkali-slag cement pastes will restrict the ingress of deleterious substances and the leaching of harmful species such as radionuclides. The leachability of Cs + from hardened alkali-slag cement pastes is only half of that from hardened Portland cement. From all these aspects, it is concluded that alkali-slag cements are a better solidification matrix than Portland cement for radioactive wastes

  10. Vanadium bioavailability in soils amended with blast furnace slag

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Maja A., E-mail: maja.larsson@slu.se [Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 750 07 Uppsala (Sweden); Baken, Stijn, E-mail: stijn.baken@ees.kuleuven.be [Department of Earth and Environmental Sciences, Leuven University, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven (Belgium); Smolders, Erik, E-mail: erik.smolders@ees.kuleuven.be [Department of Earth and Environmental Sciences, Leuven University, Kasteelpark Arenberg 20 bus 2459, 3001 Leuven (Belgium); Cubadda, Francesco, E-mail: francesco.cubadda@iss.it [Department of Food Safety and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome 00161 (Italy); Gustafsson, Jon Petter, E-mail: jon-petter.gustafsson@slu.se [Department of Soil and Environment, Swedish University of Agricultural Sciences, P.O. Box 7014, 750 07 Uppsala (Sweden); Division of Land and Water Resources Engineering, KTH Royal Institute of Technology, Brinellvägen 28, 100 44 Stockholm (Sweden)

    2015-10-15

    Blast furnace (BF) slags are commonly applied as soil amendments and in road fill material. In Sweden they are also naturally high in vanadium. The aim of this study was to assess the vanadium bioavailability in BF slags when applied to soil. Two soils were amended with up to 29% BF slag (containing 800 mg V kg{sup −1}) and equilibrated outdoors for 10 months before conducting a barley shoot growth assay. Additional soil samples were spiked with dissolved vanadate(V) for which assays were conducted two weeks (freshly spiked) and 10 months (aged) after spiking. The BF slag vanadium was dominated by vanadium(III) as shown by V K-edge XANES spectroscopy. In contrast, results obtained by HPLC-ICP-MS showed that vanadium(V), the most toxic vanadium species, was predominant in the soil solution. Barley shoot growth was not affected by the BF slag additions. This was likely due to limited dissolution of vanadium from the BF slag, preventing an increase of dissolved vanadium above toxic thresholds. The difference in vanadium bioavailability among treatments was explained by the vanadium concentration in the soil solution. It was concluded that the vanadium in BF slag is sparingly available. These findings should be of importance in environmental risk assessment.

  11. Thermodynamic modelling of alkali-activated slag cements

    International Nuclear Information System (INIS)

    Myers, Rupert J.; Lothenbach, Barbara; Bernal, Susan A.; Provis, John L.

    2015-01-01

    Highlights: • A thermodynamic modelling analysis of alkali-activated slag cements is presented. • Thermodynamic database describes zeolites, alkali carbonates, C–(N–)A–S–H gel. • Updated thermodynamic model for Mg–Al layered double hydroxides. • Description of phase assemblages in Na 2 SiO 3 - and Na 2 CO 3 -activated slag cements. • Phase diagrams for NaOH-activated and Na 2 SiO 3 -activated slag cements are simulated. - Abstract: This paper presents a thermodynamic modelling analysis of alkali-activated slag-based cements, which are high performance and potentially low-CO 2 binders relative to Portland cement. The thermodynamic database used here contains a calcium (alkali) aluminosilicate hydrate ideal solid solution model (CNASH-ss), alkali carbonate and zeolite phases, and an ideal solid solution model for a hydrotalcite-like Mg–Al layered double hydroxide phase. Simulated phase diagrams for NaOH- and Na 2 SiO 3 -activated slag-based cements demonstrate the high stability of zeolites and other solid phases in these materials. Thermodynamic modelling provides a good description of the chemical compositions and types of phases formed in Na 2 SiO 3 -activated slag cements over the most relevant bulk chemical composition range for these cements, and the simulated volumetric properties of the cement paste are consistent with previously measured and estimated values. Experimentally determined and simulated solid phase assemblages for Na 2 CO 3 -activated slag cements were also found to be in good agreement. These results can be used to design the chemistry of alkali-activated slag-based cements, to further promote the uptake of this technology and valorisation of metallurgical slags

  12. Introducing the yellow laser

    Science.gov (United States)

    Lincoln, James

    2018-02-01

    The author has acquired a yellow laser with the specific wavelength of 589 nm. Because this is the first time such a laser has been discussed in this journal, I feel it is appropriate to provide a discussion of its function and capabilities. Normal laser safety should be employed, such as not pointing it into eyes or at people, and using eye protection for the young and inexperienced. It is important to note that 589 nm is the same wavelength as the Sodium-D line (doublet). This allows for the laser to serve as a replacement for sodium lamps, and, considering its rather high price, this added value should be balanced against its cost. What follows is a list of activities that showcase the yellow laser's unique promise as an engaging piece of technology that can be used in the teaching of physics.

  13. Minimizing lead release levels in secondary smelters slags

    International Nuclear Information System (INIS)

    Shenkler, E.S.; Graham, S.; Ghosh, R.; Greenhut, V.A.

    1991-01-01

    Five lead-containing slags and four mattes were analyzed to reveal microstructure, semi-quantitative microchemistry, and phases present. To determine if the slags could be incorporated as a glass so that lead release levels could be stabilized, glass batches were formulated based on slag compositions. Leaching tests showed that all materials that were fritted in a glass batch had lower lead release levels than non-adjusted materials, and all could satisfy EPA test requirements. The mole ratio of glass modifiers to glass formers played an important role in the extent of lead release. Small additions of phosphate to a batch had a significant effect on lowering lead release levels

  14. Moessbauer study of ancient iron smelting slag in Japan

    International Nuclear Information System (INIS)

    Nakanishi, A.

    2008-01-01

    For an investigation of the ancient iron manufacturing technique, a reproducing experiment was carried out by archaeologists, where ancient type of iron smelting furnace was built and iron sand with high titanium contents was used as the raw material. During the operation of furnace, a large amount of slag flowed away from the furnace. In order to investigate the possibility for the estimation about the operative condition of furnace and the raw material, 57 Fe Moessbauer spectroscopy was applied for characterizing these slags and it was found that these slags mainly consisted of ferropseudobrookite (FeTi 2 O 5 ).

  15. Numerical Investigations on the Slag Eye in Steel Ladles

    Directory of Open Access Journals (Sweden)

    Yan-He Liu

    2014-04-01

    Full Text Available A numerical model has been developed to analyze the transient three-dimensional and three-phase flow in a bottom stirring ladle with a centered porous plug, which takes into account the steel, gas, and slag phases; it enables us to predict the fluid flow and heat transfer in the very important steel/slag region. The numerical results of the present model show that the obtained relationship between nondimensional areas of slag eye and the Froude number is in good agreement with the reported data.

  16. Optimizing of Work Arc Furnace to Decopperisation of Flash Slag

    Directory of Open Access Journals (Sweden)

    Bydałek A.W.

    2015-09-01

    Full Text Available Discusses an attempt to optimize the operation of an electric furnace slag to be decopperisation suspension of the internal recycling process for the production of copper. The paper presents a new method to recover copper from metallurgical slags in arc-resistance electric furnace. It involves the use of alternating current for a first period reduction, constant or pulsed DC in the final stage of processing. Even distribution of the electric field density in the final phase of melting caused to achieve an extremely low content of metallic copper in the slag phase. They achieved by including the economic effects by reducing the time reduction.

  17. Energy crops cultivated on the slag from incineration of the sewage sludge energy value assessment

    Science.gov (United States)

    Głowacka, Anna; Tarnowski, Krzysztof; Bering, Sławomira; Mazur, Jacek; Kiper, Justyna; Wołoszyk, Czesław

    2017-11-01

    In 2011-2013, research on the fertilizer value of slag from the incineration of municipal sewage sludge as an alternative source of phosphorus was carried out. The research scheme included 5 variants (in 4 repetitions) fertilization cultivated for grain with mineral fertilizers and ash. (P1, P2 and P3 - consecutive doses of phosphorus from ash) from municipal sewage sludge combustion: NK, NPK, NK+P1, NK+P2 and NK+P3. The obtained results indicate that the average of the three years of research, the value for the straw spring rape heat of combustion was 15.99 MJ/kg d.m., corn straw 16.20 MJ/kg d.m., triticale straw 17.06 MJ/kg d.m. and Miscanthus 17.34 MJ/kg d.m. The highest value of combustion heat for spring rape straw and miscanthus performed for objects fertilized with NK + P3 - 16.08 MJ/kg d.m. (Spring rape) and 17.57 MJ/kg d.m. (Miscanthus); For corn straw objects fertilized with nitrogen and potassium - 16.35 MJ/kg d.m. and triticale straw objects fertilized with NPK and NK + P2 - 17.10 MJ/kg d.m. Straw calorific value of tested plants was lower than the combustion heat by an average of 6.97% (triticale) to 7.38% (spring rape).

  18. Pilot experience yellow tariff

    International Nuclear Information System (INIS)

    Cassanti, W.A.; Esteves Junior, L.

    1990-01-01

    In the search for alternatives to reduce the probability of a electric energy shortage, the National Electric Sector decided to apply Real Cost Supply Tariff. The implementation of this tariff method to consumers supplied on low tension, Group B (lower than 2300 Volts), demands a better knowledge of measurement equipment, tariff values and consumers receptivity for energy modulation and/or conservation, all objects of this Yellow Tariff Experience. (author)

  19. Isotopically exchangeable phosphorus

    International Nuclear Information System (INIS)

    Barbaro, N.O.

    1984-01-01

    A critique revision of isotope dilution is presented. The concepts and use of exchangeable phosphorus, the phosphate adsorption, the kinetics of isotopic exchange and the equilibrium time in soils are discussed. (M.A.C.) [pt

  20. Production of precipitated calcium carbonate from industrial byproduct slags; Saostetun kalsiumkarbonaatin tuotanto karbonaattivapaista kuonatuotteista (SLAG2PCC)

    Energy Technology Data Exchange (ETDEWEB)

    Zevenhoven, R. [Aabo Akademi, Turku (Finland). Heat Engineering Lab.; Teir, S.; Eloneva, S.; Savolahti, J. [Helsinki Univ. of Technology, Espoo (Finland). Energy Technology and Environmental Protection

    2006-12-19

    Production of precipitate calcium carbonate from industrial by- product slags-project, 'SLAG2PCC', is a spin-off from ClimBus technology programme CO{sub 2} Nordic Plus-project, financed by the Finnish Technology Agency Tekes and the Finnish Recovery Boiler Committee. 'SLAG2PCC'-project is financed by Tekes, Ruukki Productions, UPM Kymmene and Waertsilae Finland. The possibility to produce precipitated calcium carbonate, PCC, from carbonate free industrial by-products (slags), combined with binding of carbon dioxide for climate change mitigation is studied in this project. The suitability of a process found from the literature, in which calcium used for carbonation is dissolved from calcium silicates using acetic acid as a solvent, is investigated for the carbonation of slags from the steel industry. During the calcium extraction experiments performed in the CO2 Nordic Plus - project it was found out that calcium is rapidly extracted from blast furnace and basic oxygen furnace slags. Atmospheric carbonation of the solution containing the dissolved slag and acetic acid directly has not succeeded yet due to low pH of the solution. Addition of NaOH, to increase of the solution pH, resulted in calcium carbonate precipitate in atmospheric pressure. The future goal of the project is to optimize process conditions so that the formed calcium carbonate is suitable for use as PCC. (orig.)

  1. Yellow cake product practice

    International Nuclear Information System (INIS)

    Bosina, B.

    1980-01-01

    The flow sheets of uranium ore processing plants at present operating throughout the world terminate with the production of yellow cake. The demands of the refineries on the quality of this commodity have become more stringent with time. The impurity content of yellow cake depends to a considerable extent on the nature of the technical operations preceding precipitation. As a rule the purity of the final product is greater when the uranium is precipitated from re-extractants or regenerators consisting of weakly basic resins. An analysis of 80 uranium precipitation flow sheets demonstrates the advantages of using ammonia, while to some extent use is made of caustic soda, magnesium oxide, hydrogen peroxide or calcium oxide; precipitation is carried out in one or two stages at high temperature. Use of a particular chemical is governed by its availability, price, effect on the environment, degree of filtrate utilization, etc. It may be anticipated that the perfecting of precipitation flow sheets will be directed towards achieving maximum concentration of uranium in the solutions before precipitation, reduction in the volume of liquid flows through the equipment, an improvement in the filtration qualities of the precipitate, etc. The paper gives the flow sheet for precipitation of uranium by means of gaseous ammonia from sulphate-carbonate solutions. For drying yellow cake use has been made of spray driers. The dry product is easily sampled and transported. (author)

  2. Effect of additives in reducing ash sintering and slagging in biomass combustion applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Liang

    2012-07-01

    The objective of this study was to investigate sintering and slagging behaviors of biofuels during combustion processes. Biofuels tested are derived from the agricultural sector, wood and furniture industry as well as from municipal sewage sludge. It was also the aim to test and evaluate additives that can prevent and abate biomass ash sintering by conducting laboratory and industrial scale tests. Sintering characteristics of sewage sludge ashes at elevated temperatures were investigated by means of different laboratory methods. Utilizing of phosphorus participation agents Al2(SO4)3 or Fe2(SO4)3 caused substantially high contents of aluminum or iron in the studied sewage sludge ashes, respectively. High initial melting temperatures over 1100 degrees C and low sintering tendencies were observed from the sewage sludge ashes rich in aluminum. It was related to presence and formation of the inert mineral phases such as aluminum oxide, quartz and calcium aluminum silicates in the aluminum rich sewage sludge ashes at elevated temperatures. A low melting temperature, about 994 degree C, was detected from the iron rich sewage sludge ash. Severe sintering of this sewage sludge ash was mainly due to generation of low temperature melting iron silicates, as results of interaction and re-assemblage of hematite (Fe2O3), quartz (SiO2) and alkali feldspars under heating. Fusion behaviors of corn cob ashes under rising temperatures were characterized. The work revealed that chemical compositions of corn cob ashes are dominated by potassium, silicon, chlorine and phosphorus. However, the relative concentrations of these principal elements are considerably different for three studied corn cob ashes, which have major influence on ash transformation reactions and sintering tendencies. Compared with the other two, the chemical composition of the Waimanalo corn cob (WCob) was characterized with the highest K/Cl, Si/(Ca+Mg) and (Si+P+K)/(Ca+Mg) molar ratios, which was favorable for

  3. Characteristic of wet method of phosphorus recovery from polish sewage sludge ash with nitric acid

    Directory of Open Access Journals (Sweden)

    Gorazda Katarzyna

    2016-01-01

    Full Text Available Sewage Sludge Ash (SSA is a concentrated source of phosphorus and can be successfully recycled via a number of different routes. This paper presents research results on phosphorus recovery from differently combusted sewage sludge with the use of nitric acid extraction. Different SSA forms from Polish thermal utilization stations were compared. It was revealed that sewage treatment technology as well as combustion technology influence many physical and chemical parameters of ashes that are crucial for further phosphorus recovery from such waste according to the proposed method. Presented research defines extraction efficiency, characterized extracts composition and verifies the possibility of using SSA as cheaper and alternative sources of phosphorus compounds. Gdynia, Kielce and Kraków SSA have the best properties for the proposed technology of phosphorus recovery with high extraction efficiency greater than 86%. Unsuitable results were obtained for Bydgoszcz, Szczecin Slag and Warszawa SSA. Extraction process for Łódź and Szczecin Dust SSA need to be improved for a higher phosphorus extraction efficiency greater than 80%.

  4. Characterization of ancient Indian iron and entrapped slag ...

    Indian Academy of Sciences (India)

    year old Indian iron using microprobe techniques (EDS, XRD and PIXE). Several different local locations in the iron matrix and in the entrapped slag inclusions were analyzed. The P content of the metallic iron matrix was very heterogeneous.

  5. Evaluation of Grade 120 Granulated Ground blast Furnace Slag.

    Science.gov (United States)

    1999-06-01

    This study evaluates Grade 120 Granulated Ground Blast Furnace Slag (GGBFS) and its effect on the properties of hydraulic cement concretes used in structural and pavement construction. Several mix designs, structural and pavement, were used for this ...

  6. Brief summary of slag handling options reviewed for the slagging pyrolysis incinerator in the transuranic waste treatment facility (TWIF) at the INEL

    International Nuclear Information System (INIS)

    Darnell, G.R.

    1980-06-01

    This report summarizes the technical problems associated with molten transuranic waste slag as it flows from the incinerator shaft (gasifier) of the slagging pyrolysis incinerator. It addresses essential gasifier seals, slag casting and pouring technology, and transportation and packaging problems. Areas requiring further study and testing are identified

  7. THERMAL AND SINTERING CHARACTERIZATION OF A IGCC SLAG

    OpenAIRE

    Acosta, Anselmo; Iglesias, Isabel; Aineto, Mónica; Romero, Maximina; Rincón López, Jesús María

    2002-01-01

    IGCC slag is a vitreous residual product from the new induction gasification combined cycle gasification thermal power plants. In order to characterize this waste as secondary new material for the production of new glasses and glass-ceramics as construction materials; this slag from the Puertollano, Ciudad Real, Spain power plants has been fully thermally investigated. After controlled heating this waste gives rise to hematite, anorthite, and cristobalite crystallized materials.

  8. Slag Evaluation to Reduce Energy Consumption and EAF Electrical Instability

    OpenAIRE

    Vieira,Deisi; Almeida,Rodolfo Arnaldo Montecinos de; Bielefeldt,Wagner Viana; Vilela,Antônio Cezar Faria

    2016-01-01

    In steel mills that operate with electric arc furnaces (EAF), it is interesting to ensure greater stability to the electric arc to aim at less distortion in the electrical system, with consequent reduction in electric power consumption. The slag foaming increases electric arc stability by reducing the total harmonic distortion (THD) between EAF phases. In this study, information about the chemical composition of the slag and electrical parameters of an EAF were collected. With the composition...

  9. Determination of phosphorus in gold or silver brazing alloys

    International Nuclear Information System (INIS)

    Antepenko, R.J.

    1976-01-01

    A spectrophotometric method has been devised for measuring microgram levels of phosphorus in brazing alloys of gold or silver alloys is normally measured by solid mass spectrometry, but the high nickel concentration produces a double ionized nickel spectral interference. The described procedures is based upon the formation of molybdovandophosphoric acid when a molybdate solution is added to an acidic solution containing orthophosphate and vanadate ions. The optimum acidity for forming the yellow colored product is 0.5 N hydrochloric acid. The working concentration range is from 0.1 to 1 ppm phosphorus using 100-mm cells and measuring the absorbance at 460 nm. The sample preparation procedure employs aqua regia to dissolve the alloy oxidize the phosphorus to orthophosphate. Cation-exchange chromatography is used to remove nickel ions and anion-exchange and chromatography to remove gold ions as the chloride complex. Excellent recoveries are obtained for standard phosphorus solutions run through the sample procedure. The procedure is applicable to a variety of gold or silver braze alloys requiring phosphorus analysis

  10. Organic chemistry of elemental phosphorus

    International Nuclear Information System (INIS)

    Milyukov, V A; Budnikova, Yulia H; Sinyashin, Oleg G

    2005-01-01

    The principal achievements and the modern trends in the development of the chemistry of elemental phosphorus are analysed, described systematically and generalised. The possibilities and advantages of the preparation of organophosphorus compounds directly from white phosphorus are demonstrated. Attention is focused on the activation and transformation of elemental phosphorus in the coordination sphere of transition metal complexes. The mechanisms of the reactions of white phosphorus with nucleophilic and electrophilic reagents are discussed. Electrochemical approaches to the synthesis of organic phosphorus derivatives based on white phosphorus are considered.

  11. Reuse of steel slag in bituminous paving mixtures.

    Science.gov (United States)

    Sorlini, Sabrina; Sanzeni, Alex; Rondi, Luca

    2012-03-30

    This paper presents a comprehensive study to evaluate the mechanical properties and environmental suitability of electric arc furnace (EAF) steel slag in bituminous paving mixtures. A variety of tests were executed on samples of EAF slag to characterize the physical, geometrical, mechanical and chemical properties as required by UNI EN specifications, focusing additionally on the volumetric expansion associated with hydration of free CaO and MgO. Five bituminous mixtures of aggregates for flexible road pavement were designed containing up to 40% of EAF slag and were tested to determine Marshall stability and indirect tensile strength. The leaching behaviour of slag samples and bituminous mixtures was evaluated according to the UNI EN leaching test. The tested slag showed satisfactory physical and mechanical properties and a release of pollutants generally below the limits set by the Italian code. Tests on volume stability of fresh materials confirmed that a period of 2-3 months is necessary to reduce effects of oxides hydration. The results of tests performed on bituminous mixtures with EAF slag were comparable with the performance of mixtures containing natural aggregates and the leaching tests provided satisfactory results. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Stabilization of Black Cotton Soil Using Micro-fine Slag

    Science.gov (United States)

    Shukla, Rajesh Prasad; Parihar, Niraj Singh

    2016-09-01

    This work presents the results of laboratory tests conducted on black cotton soil mixed with micro-fine slag. Different proportions of micro-fine slag, i.e., 3, 6, 9, 12 and 15 % were mixed with the black cotton soil to improve soil characteristics. The improvement in the characteristics of stabilized soil was assessed by evaluating the changes in the physical and strength parameters of the soil, namely, the Atterberg limits, free swell, the California Bearing Ratio (CBR), compaction parameters and Unconfined Compressive Strength (UCS). The mixing of micro-fine slag decreases the liquid limit, plasticity index and Optimum Moisture Contents (OMC) of the soil. Micro-fine slag significantly increases the plastic limit, UCS and CBR of the soil up to 6-7 % mixing, but mixing of more slag led to decrease in the UCS and CBR of the soil. The unsoaked CBR increased by a substantial amount unlike soaked CBR value. The swell potential of the soil is reduced from medium to very low. The optimum amount of micro-fine slag is found to be approximately 6-7 % by the weight of the soil.

  13. Properties and hydration of blended cements with steelmaking slag

    International Nuclear Information System (INIS)

    Kourounis, S.; Tsivilis, S.; Tsakiridis, P.E.; Papadimitriou, G.D.; Tsibouki, Z.

    2007-01-01

    The present research study investigates the properties and hydration of blended cements with steelmaking slag, a by-product of the conversion process of iron to steel. For this purpose, a reference sample and three cements containing up to 45% w/w steel slag were tested. The steel slag fraction used was the '0-5 mm', due to its high content in calcium silicate phases. Initial and final setting time, standard consistency, flow of normal mortar, autoclave expansion and compressive strength at 2, 7, 28 and 90 days were measured. The hydrated products were identified by X-ray diffraction while the non-evaporable water was determined by TGA. The microstructure of the hardened cement pastes and their morphological characteristics were examined by scanning electron microscopy. It is concluded that slag can be used in the production of composite cements of the strength classes 42.5 and 32.5 of EN 197-1. In addition, the slag cements present satisfactory physical properties. The steel slag slows down the hydration of the blended cements, due to the morphology of contained C 2 S and its low content in calcium silicates

  14. Applicability of Carbonated Electric Arc Furnace Slag to Mortar

    International Nuclear Information System (INIS)

    Yokoyama, S; Izaki, M; Arisawa, R; Hisyamudin, M N N; Murakami, K; Maegawa, A

    2012-01-01

    Authors have been studying the absorption of CO 2 in the steelmaking slag. In this study, an application of the electric arc furnace slag after the carbonation to admixture of mortar was investigated with the JIS (A6206-1997) method for ground granulated blast-furnace slag for concrete. The percent flows for the test mortar were smaller than that for the standard mortar. The percent flow of the carbonated slag whose average particle size of more than approximately 4 μm increased with an increase in the average size of the particles. Because the compressive strengths of the test mortar cured for 91 days were almost the same as those cured 28 days, the slag after the carbonation was thought not to have self-hardening property for a medium and long term. The compressive strength for the test mortar was almost unchanged within a range of approximately 2 to 7 μm of the average particle size, and it in this range was highest. The activity indexes for the test mortar prepared with the slag after the carbonation ranged from approximately 40 to 60%.

  15. Stabilization of carbon dioxide and chromium slag via carbonation.

    Science.gov (United States)

    Wu, Xingxing; Yu, Binbin; Xu, Wei; Fan, Zheng; Wu, Zucheng; Zhang, Huimin

    2017-08-01

    As the main greenhouse gas, CO 2 is considered as a threat in the context of global warming. Many available technologies to reduce CO 2 emission was about CO 2 separation from coal combustion and geological sequestration. However, how to deal with the cost-effective storage of CO 2 has become a new challenge. Moreover, chromium pollution, the treatment of which requires huge energy consumption, has attracted people's widespread attention. This study is aimed to develop the sequestration of CO 2 via chromium slag. A dynamic leaching experiment of chromium slag was designed to testify the ability of CO 2 adsorption onto chromium slag and to release Cr(VI) for stabilization. The results showed that the accumulative amounts of Cr(VI) were ca. 2.6 mg/g released from the chromium slag after 24 h of leaching. In addition, ca. 89 mg/g CO 2 was adsorbed by using pure CO 2 in the experiment at 12 h. Calcite is the only carbonate species in the post-carbonated slag analyzed by powder X-ray diffraction and thermal analysis. The approach provides the feasibility of the utilization of chromium slag and sequestration of the carbon dioxide at the same time at ordinary temperatures and pressures.

  16. Influence of slag-seed interaction on MHD generator performance

    International Nuclear Information System (INIS)

    Luongo, C.A.; Kruger, C.M.

    1984-01-01

    An overview of past work in the field of slag/seed interaction is presented. The ideal solution model for the slag and its failure to lead to accurate predictions are discussed. The non-ideal solution model is introduced. Data on potassium vapor pressure over slags taken at the National Bureau of Standards and Montana State University were compiled and compared. Large disagreement between these sources was observed. The shortcomings of the complete thermodynamic equilibrium models led to over predictions in the fraction of seed lost to the slag. A model including non-equilibrium effects is introduced. The heat/mass transfer analogy is invoked to calculate the mass transfer rate of potassium towards the slag. Using typical conditions for a large MHD generator, an integral method is used to evaluate the potassium concentration boundary layer thickness. The calculations are performed with the slag runoff (ash rejection) as a parameter. The increase in boundary layer resistance due to potassium depletion is calculated

  17. Long term mechanical properties of alkali activated slag

    Science.gov (United States)

    Zhu, J.; Zheng, W. Z.; Xu, Z. Z.; Leng, Y. F.; Qin, C. Z.

    2018-01-01

    This article reports a study on the microstructural and long-term mechanical properties of the alkali activated slag up to 180 days, and cement paste is studied as the comparison. The mechanical properties including compressive strength, flexural strength, axis tensile strength and splitting tensile strength are analyzed. The results showed that the alkali activated slag had higher compressive and tensile strength, Slag is activated by potassium silicate (K2SiO3) and sodium hydroxide (NaOH) solutions for attaining silicate modulus of 1 using 12 potassium silicate and 5.35% sodium hydroxide. The volume dosage of water is 35% and 42%. The results indicate that alkali activated slag is a kind of rapid hardening and early strength cementitious material with excellent long-term mechanical properties. Single row of holes block compressive strength, single-hole block compressive strength and standard solid brick compressive strength basically meet engineering requirements. The microstructures of alkali activated slag are studied by X-ray diffraction (XRD). The hydration products of alkali-activated slag are assured as hydrated calcium silicate and hydrated calcium aluminate.

  18. phosphorus sorption capacity as a guide for phosphorus availability

    African Journals Online (AJOL)

    Prof. Adipala Ekwamu

    drained, light yellowish brown, loamy sand ... Dongola 2 Akked series: Deep, dark grayish brown, clay ... energy. Statistical analysis. Data collected were statistically analysed using ANOVA of MStatc ... phosphorus sorbed versus phosphorus.

  19. Preparation of phosphorus targets using the compound phosphorus nitride

    International Nuclear Information System (INIS)

    Maier-Komor, P.

    1987-01-01

    Commercially available phosphorus nitride (P 3 N 5 ) shows a high oxygen content. Nevertheless, this material is attractive for use as phosphorus targets in experiments where red phosphorus would disappear due to its high vapor pressure and where a metal partner in the phosphide must be excluded due to its high atomic number. Methods are described to produce phosphorus nitride targets by vacuum evaporation condensation. (orig.)

  20. Study on the Effect of Straw Fiber on the Performance of Volcanic Slag Concrete

    Science.gov (United States)

    Xiao, Li-guang; Liu, Xi-xu

    2018-03-01

    In this paper, the effects of straw fiber on the working performance, mechanical properties and frost resistance of volcanic slag lightweight aggregate concrete were studied. The experimental results show that the straw fiber is subjected to surface carbonization treatment and mixed into the volcanic slag light aggregate concrete. The flexural strength and fracture pressure ratio of volcanic slag lightweight aggregate concrete are improved obviously Improved volcanic slag lightweight aggregate concrete brittleness improves toughness. Carbonized straw fiber greatly improves the frost resistance of volcanic slag lightweight aggregate concrete. So that the volcanic slag light aggregate concrete freeze-thaw cycle can reach 300 times.

  1. Chemical durability of slag produced by thermal plasma melting of low-level miscellaneous solid wastes. Effects of slag composition

    International Nuclear Information System (INIS)

    Amakawa, Tadashi; Yasui, Shinji

    2001-01-01

    Low-level radioactive miscellaneous solid wastes are generated from commercial operation of nuclear power plants and will be generated from decommissioning of nuclear power plants in future. Static leaching tests were carried out in deionized water of 10degC on slag obtained by thermal plasma melting of simulating materials of the miscellaneous solids wastes with surrogate elements of radionuclides. It is found that logarithm of normalized elemental mass loss from the slag is proportional to the basicity represented by mole fractions of main structural oxides of the slag, such as SiO 2 , Al 2 O 3 , CaO, FeO and MgO. The range of static leaching rates from the slag is determined based on the above results and the basicity range of the miscellaneous solid wastes. Then we compared the leaching rates form the slag and from high level waste glasses. On these grounds, we concluded that the slag obtained by thermal plasma melting of miscellaneous solid wastes can stabilize radio-nuclides in it by no means inferior to the high level waste glasses. (author)

  2. III. Quantitative aspects of phosphorus excretionin ruminants

    OpenAIRE

    Bravo , David; Sauvant , Daniel; Bogaert , Catherine; Meschy , François

    2003-01-01

    International audience; Ruminant phosphorus excretion and metabolism were studied through a database. Faecal endogenous phosphorus is the main pathway of phosphorus excretion and averages 0.85 of total faecal phosphorus. The remaining 0.15 is unabsorbed dietary phosphorus. Faecal endogenous phosphorus is mainly unabsorbed phosphorus, with saliva being the major source, and is correlated to factors influencing saliva secretion (DM intake, physical dietary characteristics and dietary phosphorus...

  3. Alteration of municipal and industrial slags under atmospheric conditions

    Science.gov (United States)

    Rafał Kowalski, Piotr; Michalik, Marek

    2014-05-01

    The Waste Management System in Poland is being consequently built since 1998. After important changes in legislation, local governments have taken over the duty of waste collection. New points of selective collection of wastes have been opened and new sorting and composting plants were built. The last stage of introducing the Waste Management System is construction of waste incineration power plants. From nine installations which were planned, six are now under construction and they will start operating within the next two years. It is assumed that the consumption of raw wastes for these installations will reach 974 thousand tons per year. These investments will result in increased slags and ashes production. Now in Poland several local waste incinerators are operating and predominant amount of produced incineration residues is landfilled. These materials are exposed to atmospheric conditions in time of short term storage (just after incineration) and afterwards for a longer period of time on the landfill site. During the storage of slags low temperature mineral transformations and chemical changes may occur and also some components can be washed out. These materials are stored wet because of the technological processes. The aim of this study is to investigate the influence of storage in atmospheric conditions on slags from incineration of industrial and municipal wastes. The experiment started in January 2013. During this period slag samples from incineration of industrial and municipal wastes were exposed to atmospheric conditions. Samples were collected after 6 and 12 months. Within this time the pH value was measured monthly, and during the experimental period remained constant on the level of 9.5. After 6 months of exposure only slight changes in mineral compositions were observed in slags. The results of XRD analysis of municipal slags showed increase in content of carbonate minerals in comparison to the raw slag samples. In industrial slags, a decrease in

  4. UTILIZATION OF LIGHTWEIGHT MATERIALS MADE FROM COAL GASIFICATION SLAGS

    International Nuclear Information System (INIS)

    None

    1998-01-01

    The integrated-gasification combined-cycle (IGCC) process is an emerging technology that utilizes coal for power generation and production of chemical feedstocks. However, the process generates large amounts of solid waste, consisting of vitrified ash (slag) and some unconverted carbon. In previous projects, Praxis investigated the utilization of ''as-generated'' slags for a wide variety of applications in road construction, cement and concrete production, agricultural applications, and as a landfill material. From these studies, we found that it would be extremely difficult for ''as-generated'' slag to find large-scale acceptance in the marketplace even at no cost because the materials it could replace were abundantly available at very low cost. It was further determined that the unconverted carbon, or char, in the slag is detrimental to its utilization as sand or fine aggregate. It became apparent that a more promising approach would be to develop a variety of value-added products from slag that meet specific industry requirements. This approach was made feasible by the discovery that slag undergoes expansion and forms a lightweight material when subjected to controlled heating in a kiln at temperatures between 1400 and 1700 F. These results confirmed the potential for using expanded slag as a substitute for conventional lightweight aggregates (LWA). The technology to produce lightweight and ultra-lightweight aggregates (ULWA) from slag was subsequently developed by Praxis with funding from the Electric Power Research Institute (EPRI), Illinois Clean Coal Institute (ICCI), and internal resources. The major objectives of the subject project are to demonstrate the technical and economic viability of commercial production of LWA and ULWA from slag and to test the suitability of these aggregates for various applications. The project goals are to be accomplished in two phases: Phase I, comprising the production of LWA and ULWA from slag at the large pilot scale, and

  5. Traps for phosphorus adsorption

    International Nuclear Information System (INIS)

    Montoya, Nawer D; Villegas, Wilson E; Rodriguez, Lino M; Taborda, Nelson; Montes de C, Consuelo

    2001-01-01

    Several AL 2 O 3 supported oxides such as: NiO, CuO, Co 2 O 3 BaO, CeO 2 and ZnO were investigated for phosphorus adsorption. Zno/y-Al 2 O 3 exhibited the highest phosphorus adsorption capacity. However, since it diminishes the activity of to the reaction mixture it should be located upstream of the NoX catalyst, i.e. 0,3% Pd-H-MOR, in order to protect it against p poisoning. The treatment procedure with citric acid was effective for the removal of more than 70% phosphorus from the adsorbent, ZnO/y-Al 2 O 3

  6. Febre amarela Yellow fever

    Directory of Open Access Journals (Sweden)

    Pedro Fernando da Costa Vasconcelos

    2003-04-01

    Full Text Available A febre amarela é doenca infecciosa não-contagiosa causada por um arbovírus mantido em ciclos silvestres em que macacos atuam como hospedeiros amplificadores e mosquitos dos gêneros Aedes na África, e Haemagogus e Sabethes na América, são os transmissores. Cerca de 90% dos casos da doença apresentam-se com formas clínicas benignas que evoluem para a cura, enquanto 10% desenvolvem quadros dramáticos com mortalidade em torno de 50%. O problema mostra-se mais grave em África onde ainda há casos urbanos. Nas Américas, no período de 1970-2001, descreveram-se 4.543 casos. Os países que mais diagnosticaram a doença foram o Peru (51,5%, a Bolívia (20,1% e o Brasil (18,7%. Os métodos diagnósticos utilizados incluem a sorologia (IgM, isolamento viral, imunohistoquímica e RT-PCR. A zoonose não pode ser erradicada, mas, a doença humana é prevenível mediante a vacinação com a amostra 17D do vírus amarílico. A OMS recomenda nova vacinação a cada 10 anos. Neste artigo são revistos os principais conceitos da doença e os casos de mortes associados à vacina.Yellow fever is an infectious and non-contagious disease caused by an arbovirus, the yellow fever virus. The agent is maintained in jungle cycles among primates as vertebrate hosts and mosquitoes, especially Aedes in Africa, and Haemagogus and Sabethes in America. Approximately 90% of the infections are mild or asymptomatic, while 10% course to a severe clinical picture with 50% case-fatality rate. Yellow fever is largely distributed in Africa where urban epidemics are still reported. In South America, between 1970-2001, 4,543 cases were reported, mostly from Peru (51.5%, Bolivia (20.1% and Brazil (18.7%. The disease is diagnosed by serology (detection of IgM, virus isolation, immunohistochemistry and RT-PCR. Yellow fever is a zoonosis and cannot be eradicated, but it is preventable in man by using the 17D vaccine. A single dose is enough to protect an individual for at least

  7. Elemental properties of copper slag and measured airborne exposures at a copper slag processing facility.

    Science.gov (United States)

    Mugford, Christopher; Gibbs, Jenna L; Boylstein, Randy

    2017-08-01

    In 1974, the National Institute for Occupational Safety and Health recommended a ban on the use of abrasives containing >1% silica, giving rise to abrasive substitutes like copper slag. We present results from a National Institute for Occupational Safety and Health industrial hygiene survey at a copper slag processing facility that consisted of the collection of bulk samples for metals and silica; and full-shift area and personal air samples for dust, metals, and respirable silica. Carcinogens, suspect carcinogens, and other toxic elements were detected in all bulk samples, and area and personal air samples. Area air samples identified several areas with elevated levels of inhalable and respirable dust, and respirable silica: quality control check area (236 mg/m 3 inhalable; 10.3 mg/m 3 respirable; 0.430 mg/m 3 silica), inside the screen house (109 mg/m 3 inhalable; 13.8 mg/m 3 respirable; 0.686 mg/m 3 silica), under the conveyor belt leading to the screen house (19.8 mg/m 3 inhalable), and inside a conveyor access shack (11.4 mg/m 3 inhalable; 1.74 mg/m 3 respirable; 0.067 mg/m 3 silica). Overall, personal dust samples were lower than area dust samples and did not exceed published occupational exposure limits. Silica samples collected from a plant hand and a laborer exceeded the American Conference of Governmental Industrial Hygienist Threshold Limit Value of 0.025 µg/m 3 . All workers involved in copper slag processing (n = 5) approached or exceeded the Occupational Safety and Health Administration permissible exposure limit of 10 µg/m 3 for arsenic (range: 9.12-18.0 µg/m 3 ). Personal total dust levels were moderately correlated with personal arsenic levels (R s = 0.70) and personal respirable dust levels were strongly correlated with respirable silica levels (R s = 0.89). We identified multiple areas with elevated levels of dust, respirable silica, and metals that may have implications for personal exposure at other facilities if preventive

  8. Chromatography of phosphorus oxoacids

    International Nuclear Information System (INIS)

    Ohashi, S.

    1975-01-01

    The present state of studies on the chromatographic separation of phosphorus oxoacids is surveyed. In this paper, chromatographic techniques are divided into four groups, i.e. paper and thin-layer chromatography, paper electrophoresis, ion-exchange chromatography, and gel chromatography. The separation mechanisms and characteristics for these chromatographic methods are discussed and some examples for the separation of phosphorus oxoacids are described. As examples of the application of ion-exchange and gel chromatography, studies on the hot atom chemistry of 32 P in solid inorganic phosphates and those on the substitution reactions between diphosphonate (diphosphite) and polyphosphates are reported. (author)

  9. Analysis of the Optimum Usage of Slag for the Compressive Strength of Concrete.

    Science.gov (United States)

    Lee, Han-Seung; Wang, Xiao-Yong; Zhang, Li-Na; Koh, Kyung-Taek

    2015-03-18

    Ground granulated blast furnace slag is widely used as a mineral admixture to replace partial Portland cement in the concrete industry. As the amount of slag increases, the late-age compressive strength of concrete mixtures increases. However, after an optimum point, any further increase in slag does not improve the late-age compressive strength. This optimum replacement ratio of slag is a crucial factor for its efficient use in the concrete industry. This paper proposes a numerical procedure to analyze the optimum usage of slag for the compressive strength of concrete. This numerical procedure starts with a blended hydration model that simulates cement hydration, slag reaction, and interactions between cement hydration and slag reaction. The amount of calcium silicate hydrate (CSH) is calculated considering the contributions from cement hydration and slag reaction. Then, by using the CSH contents, the compressive strength of the slag-blended concrete is evaluated. Finally, based on the parameter analysis of the compressive strength development of concrete with different slag inclusions, the optimum usage of slag in concrete mixtures is determined to be approximately 40% of the total binder content. The proposed model is verified through experimental results of the compressive strength of slag-blended concrete with different water-to-binder ratios and different slag inclusions.

  10. Characterization of Ladle Furnace Slag from Carbon Steel Production as a Potential Adsorbent

    Directory of Open Access Journals (Sweden)

    Ankica Rađenović

    2013-01-01

    Full Text Available A promising type of steel slag for applications is the ladle furnace (LF slag, which is also known as the basic slag, the reducing slag, the white slag, and the secondary refining slag. The LF slag is a byproduct from further refining molten steel after coming out of a basic oxygen furnace (BOF or an electric arc furnace (EAF. The use of the LF slag in further applications requires knowledge of its characteristics. The LF slag characterization in this paper has been performed using the following analytical methods: chemical analysis by energy dispersive spectrometry (EDS, mineralogical composition by X-ray diffraction (XRD, surface area properties by the Brunauer-Emmett-Teller (BET and the Barrett-Joyner-Halenda (BJH methods, surface chemistry by infrared absorption (FTIR spectroscopy, and morphological analysis by scanning electron microscopy (SEM. The results showed that the main compounds are calcium, silicon, magnesium, and aluminium oxides, and calcium silicates under their various allotropic forms are the major compounds in the LF slag. Surface area properties have shown that the LF slag is a mesoporous material with relatively great BET surface area. The ladle furnace slag is a nonhazardous industrial waste because the ecotoxicity evaluation by its eluate has shown that the LF slag does not contain constituents which might in any way affect the environment harmfully.

  11. Need yellow fever vaccine? Plan ahead

    Science.gov (United States)

    ... Submit What's this? Submit Button Past Emails Need yellow fever vaccine? Plan ahead. Language: English (US) Español (Spanish) ... none were from the United States). What is yellow fever? Yellow fever is caused by a virus that ...

  12. Artificial neural networks application for solid fuel slagging intensity predictions

    Directory of Open Access Journals (Sweden)

    Kakietek Sławomir

    2017-01-01

    Full Text Available Slagging issues present in pulverized steam boilers very often lead to heat transfer problems, corrosion and not planned outages of boilers which increase the cost of energy production and decrease the efficiency of energy production. Slagging especially occurs in regions with reductive atmospheres which nowadays are very common due to very strict limitations in NOx emissions. Moreover alternative fuels like biomass which are also used in combustion systems from two decades in order to decrease CO2 emissions also usually increase the risk of slagging. Thus the prediction of slagging properties of fuels is not the minor issue which can be neglected before purchasing or mixing of fuels. This however is rather difficult to estimate and even commonly known standard laboratory methods like fusion temperature determination or special indexers calculated on the basis of proximate and ultimate analyses, very often have no reasonable correlation to real boiler fuel behaviour. In this paper the method of determination of slagging properties of solid fuels based on laboratory investigation and artificial neural networks were presented. A fuel data base with over 40 fuels was created. Neural networks simulations were carried out in order to predict the beginning temperature and intensity of slagging. Reasonable results were obtained for some of tested neural networks, especially for hybrid feedforward networks with PCA technique. Consequently neural network model will be used in Common Intelligent Boiler Operation Platform (CIBOP being elaborated within CERUBIS research project for two BP-1150 and BB-1150 steam boilers. The model among others enables proper fuel selection in order to minimize slagging risk.

  13. Phosphorus in Agriculture : 100 % Zero

    NARCIS (Netherlands)

    Schnug, Ewald; De Kok, Luit J.

    2016-01-01

    Phosphorus is essential for all living organisms, reserves in geogenic deposits are finite, and phosphorus nutrient mining and oversupply are common phenomenons on agricultural soils. Only if the agricultural phosphorus cycle can be closed and the fertilized nutrient been utilized completely,

  14. High temperature slagging incineration of hazardous waste

    International Nuclear Information System (INIS)

    Vanbrabant, R.; Van de Voorde, N.

    1987-01-01

    The SCK/CEN, as the treatment center for the low level radioactive waste in Belgium, develops appropriate treatment systems for different kinds of wastes. The technical concept of the high temperature slagging incineration system has been developed and improved. The construction of the first demonstration plant was initiated in 1974. Since then the system has been operated regularly and further developed with the view to industrial operations. Now it handles about 5 tons of waste in a week. The waste which is treated consists of low level beta/gamma and alpha-contaminated radioactive waste. Because of the special characteristics the system is thought to be an excellent incineration system for industrial hazardous waste as well. Recently the SCK/CEN has received the authorization to treat industrial hazardous waste in the same installation. Preliminary tests have been executed on special waste products, such as PCB-contaminated liquids, with excellent incineration results. Incineration efficiency up to 99.9999% could be obtained. The paper presents the state of the art of this original The SCK/CEN-technology and gives the results of the tests done with special hazard

  15. Use of soil-steel slag-class-C fly ash mixtures in subgrade applications.

    Science.gov (United States)

    2012-12-07

    In Indiana, large quantities of recyclable : materials - such as steel slag, blast furnace : slag and fly ash - are generated each year as : by-products of various industries. Instead of : disposing these by-products into landfills, : we can recycle ...

  16. Phosphorus in agricultural soils:

    NARCIS (Netherlands)

    Ringeval, Bruno; Augusto, Laurent; Monod, Hervé; Apeldoorn, van D.F.; Bouwman, A.F.; Yang, X.; Achat, D.L.; Chini, L.P.; Oost, van K.; Guenet, Bertrand; Wang, R.; Decharme, B.; Nesme, T.; Pellerin, S.

    2017-01-01

    Phosphorus (P) availability in soils limits crop yields in many regions of the World, while excess of soil P triggers aquatic eutrophication in other regions. Numerous processes drive the global spatial distribution of P in agricultural soils, but their relative roles remain unclear. Here, we

  17. Crystallization characteristics of iron-rich glass ceramics prepared from nickel slag and blast furnace slag

    Science.gov (United States)

    Wang, Zhong-Jie; Ni, Wen; Li, Ke-Qing; Huang, Xiao-Yan; Zhu, Li-Ping

    2011-08-01

    The crystallization process of iron-rich glass-ceramics prepared from the mixture of nickel slag (NS) and blast furnace slag (BFS) with a small amount of quartz sand was investigated. A modified melting method which was more energy-saving than the traditional methods was used to control the crystallization process. The results show that the iron-rich system has much lower melting temperature, glass transition temperature ( T g), and glass crystallization temperature ( T c), which can result in a further energy-saving process. The results also show that the system has a quick but controllable crystallization process with its peak crystallization temperature at 918°C. The crystallization of augite crystals begins from the edge of the sample and invades into the whole sample. The crystallization process can be completed in a few minutes. A distinct boundary between the crystallized part and the non-crystallized part exists during the process. In the non-crystallized part showing a black colour, some sphere-shaped augite crystals already exist in the glass matrix before samples are heated to T c. In the crystallized part showing a khaki colour, a compact structure is formed by augite crystals.

  18. Products of steel slags an opportunity to save natural resources.

    Science.gov (United States)

    Motz, H; Geiseler, J

    2001-01-01

    In Germany, and in the most industrial countries, the use of blast furnace and steel slags as an aggregate for civil engineering, for metallurgical use and as fertiliser has a very long tradition. Since the introduction of the basic oxygen steel making furnace (BOF) process and the electric arc furnace (EAF) process the German steel industry started extensive research on the development of fields of application for BOF and EAF slags. These investigations have been mainly performed by Forschungsgemeinschaft Eisenhüttenschlacken e. V. (FEhS), the Research Association for blast furnace and steel slags. Today steel slags are well characterised and long-term experienced materials mainly used as aggregates for road construction (e.g. asphaltic or unbound layers), as armour-stones for hydraulic engineering constructions (e.g. stabilisation of shores), and as fertiliser for agriculture purposes. These multifarious fields of application could only be achieved because the steelworks influence the quality of slags by a careful selection of raw materials and a suitable process route. Furthermore, subsequent procedures like a treatment of the liquid slag, an appropriate heat treatment and a suitable processing have been developed to ensure that the quality of steel slags is always adequate for the end use. Depending on the respective field of application, the suitability of steel slags has to be proven by determining the technical properties, as well as the environmental compatibility. For this reason test methods have been developed to evaluate the technical properties especially the volume stability and the environmental behaviour. To evaluate the volume stability a suitable test (steam test) has been developed and the results from laboratory tests were compared with the behaviour of steel slags under practical conditions, e.g. in a road. To determine the environmental behaviour leaching tests have been developed. In the meanwhile most of these test methods are drafted or

  19. Nickel, copper and cobalt coalescence in copper cliff converter slag

    Directory of Open Access Journals (Sweden)

    Wolf A.

    2016-01-01

    Full Text Available The aim of this investigation is to assess the effect of various additives on coalescence of nickel, copper and cobalt from slags generated during nickel extraction. The analyzed fluxes were silica and lime while examined reductants were pig iron, ferrosilicon and copper-silicon compound. Slag was settled at the different holding temperatures for various times in conditions that simulated the industrial environment. The newly formed matte and slag were characterized by their chemical composition and morphology. Silica flux generated higher partition coefficients for nickel and copper than the addition of lime. Additives used as reducing agents had higher valuable metal recovery rates and corresponding partition coefficients than fluxes. Microstructural studies showed that slag formed after adding reductants consisted of primarily fayalite, with some minute traces of magnetite as the secondary phase. Addition of 5 wt% of pig iron, ferrosilicon and copper-silicon alloys favored the formation of a metallized matte which increased Cu, Ni and Co recoveries. Addition of copper-silicon alloys with low silicon content was efficient in copper recovery but coalescence of the other metals was low. Slag treated with the ferrosilicon facilitated the highest cobalt recovery while copper-silicon alloys with silicon content above 10 wt% resulted in high coalescence of nickel and copper, 87 % and 72 % respectively.

  20. BUILDING MATERIALS AND PRODUCTS BASED ON SILICON MANGANESE SLAGS

    Directory of Open Access Journals (Sweden)

    BOLSHAKOV V. I.

    2016-05-01

    Full Text Available Raising of problem. Currently of particular relevance was given to the matter of introduction in manufacture of building materials and products, resource-saving techniques and technologies; integrated use of raw materials and materials that prevent or significantly reduce their harmful impact on the environment. This allows you to recycle hundreds of thousands of tons of the fiery liquid slags of silicon manganese and to develop effective structural materials that can replace metals, non-metallic building materials of natural origin, concretes, cast stone, plastics and refractories. Purpose. The study of the structure and properties of building materials and products from electric furnace slag of silicon manganese. Conclusion. Slags from the smelting of silicon manganese are classified as acidic. Their lime factor is in the range of 0.47–0.52. The composition of the slag located in the heterogeneous region SiO2 near the line of separation of cristobalite spread to the crystallization of wollastonite, according to the ternary system MnO-CaO-SiO2, which in consideration of their stability, allows the development of technology of building materials (gravel, sand, granulated slag, etc. and products (foundation blocks, road slabs, containers for transportation and storage of hazardous waste, and others.

  1. Pyrometallurgical slags as a potential source of selected metals recovery

    Directory of Open Access Journals (Sweden)

    K. Nowińska

    2014-10-01

    Full Text Available Complex analysis of concentration and form of occurrence such metals as Zn, Pb, Fe and Cu in slags formed during a current zinc production in the Imperial Smelting Process (ISP is a possible basis for development of optimal recovery technology. For this purpose studies of slags from the current production of the Shaft Furnace Unit and of the Lead Refining of the “Miasteczko Śląskie” Zinc Smelting Plant were carried out. The studies results show that slags includes high concentrations of: Zn from 0,064 % to 1,680 %, Pb from 10,56 % to 50,71 %, Fe from 0,015 % to 2,576 %, Cu from 7,48 % to 64,95 %, and change in a broad range. This slags show significant heterogeneity, caused by intermetallic phases (Zn - Pb, Cu - Zn, Cu - Pb formed on the surface thereof. It is so possible that slag can be a potential source of this metals recovery.

  2. Plant Growth and Water Purification of Porous Vegetation Concrete Formed of Blast Furnace Slag, Natural Jute Fiber and Styrene Butadiene Latex

    Directory of Open Access Journals (Sweden)

    Hwang-Hee Kim

    2016-04-01

    Full Text Available The purpose of this study is to investigate porous vegetation concrete formed using the industrial by-products blast furnace slag powder and blast furnace slag aggregates. We investigated the void ratio, compressive strength, freeze–thaw resistance, plant growth and water purification properties using concretes containing these by-products, natural jute fiber and latex. The target performance was a compressive strength of ≥12 MPa, a void ratio of ≥25% and a residual compressive strength of ≥80% following 100 freeze–thaw cycles. Using these target performance metrics and test results for plant growth and water purification, an optimal mixing ratio was identified. The study characterized the physical and mechanical properties of the optimal mix, and found that the compressive strength decreased compared with the default mix, but that the void ratio and the freeze–thaw resistance increased. When latex was used, the compressive strength, void ratio and freeze–thaw resistance all improved, satisfying the target performance metrics. Vegetation growth tests showed that plant growth was more active when the blast furnace slag aggregate was used. Furthermore, the use of latex was also found to promote vegetation growth, which is attributed to the latex forming a film coating that suppresses leaching of toxic components from the cement. Water purification tests showed no so significant differences between different mixing ratios; however, a comparison of mixes with and without vegetation indicated improved water purification in terms of the total phosphorus content when vegetation had been allowed to grow.

  3. Experimental Study on the Utilization of Fine Steel Slag on Stabilizing High Plastic Subgrade Soil

    OpenAIRE

    Hussien Aldeeky; Omar Al Hattamleh

    2017-01-01

    The three major steel manufacturing factories in Jordan dump their byproduct, steel slag, randomly in open areas, which causes many environmental hazardous problems. This study intended to explore the effectiveness of using fine steel slag aggregate (FSSA) in improving the geotechnical properties of high plastic subgrade soil. First soil and fine steel slag mechanical and engineering properties were evaluating. Then 0%, 5%, 10%, 15%, 20%, and 25% dry weight of soil of fine steel slag (FSSA) w...

  4. The hydration of slag, part 2: reaction models for blended cement

    NARCIS (Netherlands)

    Chen, Wei; Brouwers, H.J.H.

    2007-01-01

    The hydration of slag-blended cement is studied by considering the interaction between the hydrations of slag and Portland cement clinker. Three reaction models for the slag-blended cement are developed based on stoichiometric calculations. These models correlate the compositions of the unhydrated

  5. Determination of natural radionuclide level in industrial waste slags and evaluation of comprehensive utilization

    International Nuclear Information System (INIS)

    Li Ruixiang; Liu Xinhua; Gan Lin

    1994-09-01

    Natural radionuclide contents were measured in various industrial waste slags in China by a low background HPGe γ spectrometer and the radiological impact was estimated for some comprehensive utilization of these slags. Most waste slags can be used for building materials except for tailing and waste rock form nuclear industry

  6. Field test on sand compaction pile method with copper slag sand; Dosuisai slag wo mochiita SCP koho no shiken seko

    Energy Technology Data Exchange (ETDEWEB)

    Minami, K.; Matsui, H.; Naruse, E.; Kitazume, M. [Port and Harbour Research Inst., Kanagawa (Japan)

    1997-09-20

    This paper describes the sand compaction pile (SCP) method using copper slag sand. The SCP method is a method by which sand compaction piles are constructed in the ground, and improvement can be obtained in a short period. This method has been widely used even in the port areas for enhancing the bearing power of soft clay ground and the lateral resistance of sheet pile. A great deal of sand is required as a material. The sand requires high permeability, proper size distribution with less fine particle fraction content, easy compaction property with enough strength, and easy discharging property from the casing of construction machines as required properties. Recently, it becomes hard to secure proper sand materials. The copper slag sand is obtained from refining process of copper as a by-product which is quenched in water flow and crushed in water. The copper slag sand has higher particle density than that of sand, excellent permeability, and similar size distribution to that of sand. From compaction drainage triaxial compression test and permeability test, it was found that the mechanical properties of copper slag sand did not change by the crushing of grains with keeping excellent permeability. Through the test construction, applicability of the copper slag sand to the SCP method could be confirmed as an alternate material of sand. 17 refs., 9 figs., 4 tabs.

  7. High-Temperatures Rheometric Analysis Of Selected Heterogeneous Slag Systems

    Directory of Open Access Journals (Sweden)

    Migas P.

    2015-06-01

    Full Text Available It is known that the dynamic viscosity coefficient of slag – with an increased titanium compounds content in the reducing conditions of the blast furnace - may rapidly change. The products of the reduction reaction, precipitation and separation of titanium compounds are responsible for the thickening effect of the slag and the problems of permeability of blast furnace, causing anomalies in the dipping zone. The presence of solid components (particles in the melts determines the rheological character of the entire system. Identifying the rheological character of semi-solid slag systems provides opportunities for the development of mathematical modeling of liquid phase flows in a dripping zone of the blast furnace, allowing e.g to indentify the unstable parts of a metallurgical aggregate.

  8. Pyrochemical recovery of plutonium from calcium fluoride reduction slag

    Science.gov (United States)

    Christensen, D.C.

    A pyrochemical method of recovering finely dispersed plutonium metal from calcium fluoride reduction slag is claimed. The plutonium-bearing slag is crushed and melted in the presence of at least an equimolar amount of calcium chloride and a few percent metallic calcium. The calcium chloride reduces the melting point and thereby decreases the viscosity of the molten mixture. The calcium reduces any oxidized plutonium in the mixture and also causes the dispersed plutonium metal to coalesce and settle out as a separate metallic phase at the bottom of the reaction vessel. Upon cooling the mixture to room temperature, the solid plutonium can be cleanly separated from the overlying solid slag, with an average recovery yield on the order of 96 percent.

  9. A Review of Granulation Process for Blast Furnace Slag

    Directory of Open Access Journals (Sweden)

    Yu Pengfei

    2016-01-01

    Full Text Available Molten slags of blast furnace is a second resources with great value of 1600~1 800 MJ sensible heat per ton. At present, water-quenching process plays a leading role in recovering waste heat of the molten slags. However, this method not only cost lots of water, but also recover little sensible heat and can pollute the surrounding environment. Dry granulation process, as an environmentally friendly method with high-efficiency heat recovery, have attracted widespread attentions. In this paper, the water quenching and dry granulation processes were discussed in detail. After a thorough comparative analysis of various treatment technologies, it can be concluded that centrifugal granulation affiliated with dry granulation is the optimum process, with smaller slag particle size (about 2mm, more glassy phase and higher recovery rate.

  10. Use of steel slag as a new material for roads

    Science.gov (United States)

    Ochoa Díaz, R.; Romero Farfán, M.; Cardenas, J.; Forero, J.

    2017-12-01

    This research paper aims to analyse the behaviour of MDC-19 hot dense asphalt mixtures with steel slag as coarse aggregate, by using asphalt 80-100, in order to verify if this residue has suitable characteristics that allow its use. The physical and mechanical characterization was accomplished using phosphorous slag from the company Acerías Paz del Río S.A. The working formula was then determined for each mixture using the RAMCODES methodology, the briquettes were produced in the laboratory and then, the design verification was performed. Taking into account the results obtained, it is concluded that the use of phosphorous slag as coarse aggregate in asphalt mixtures is workable, since acceptable design parameters and verification are obtained that meet the specifications for use as a rolling layer.

  11. Case cluster of pneumoconiosis at a coal slag processing facility.

    Science.gov (United States)

    Fagan, Kathleen M; Cropsey, Erin B; Armstrong, Jenna L

    2015-05-01

    During an inspection by the Occupational Safety and Health Administration (OSHA) of a small coal slag processing plant with 12 current workers, four cases of pneumoconiosis were identified among former workers. The OSHA investigation consisted of industrial hygiene sampling, a review of medical records, and case interviews. Some personal sampling measurements exceeded the OSHA Permissible Exposure Limit (PEL) for total dust exposures of 15 mg/m(3), and the measured respirable silica exposure of 0.043 mg/m(3), although below OSHA's current PEL for respirable dust containing silica, was above the American Conference of Governmental Industrial Hygienists' Threshold Limit Value (TLV). Chest x-rays for all four workers identified small opacities consistent with pneumoconiosis. This is the first known report of lung disease in workers processing coal slag and raises concerns for workers exposed to coal slag dust. © 2015 Wiley Periodicals, Inc.

  12. Numerical simulations of slagging dynamics using a meshmeshless strategy

    Energy Technology Data Exchange (ETDEWEB)

    Losurdo, M.; Spliethoff, H. [Technische Universitaet Muenchen (Germany). Lehrstuhl fuer Energiesysteme

    2009-07-01

    In pulverized co-firing and gasification facilities such as coal and biomass power plants, ash deposition, fouling and slagging, may significantly affect heat exchange and gasification per-formance Deposit growth dramatically increases production loss and may lead to the shut-down of the facility. Computational Fluid Dynamics (CFD) calculations can be used as a valid 'non-intrusive' investigation tool in an efficient problem solving strategy. At TU Munich, an ongoing project aims to develop a dedicated numerical tool to monitor and predict deposition, deposit growth and slagging dynamics in pulverized solid fuel furnaces and gasifiers. A novel in-house code was developed to track solid particles and predict deposit growth and slag dynamics. The adopted numerical strategy uses a Mesh-Meshless approach combined with a Lagrangian particle tracking. Ash particles are tracked in a Lagrangian frame post-processing CFD gas phase results (RANS or LES). Growth and thermo-mechanical proper-ties of the deposit are simultaneously evaluated. Slag dynamics is computed by using a meshless approach: deposit mesh nodes are considered point-mass particles interacting only with mesh connected node-particle neighbours. Forces are modelled applying a visco-elastic model and calculated by means of a Galerking weight (kernel) function. The final goal is to mathematically describe both particle adhesion and slag dynamics applying visco-elastic models using a mesh-meshless approach aiming to investigate slag/slurry dynamics. Pre-liminary numerical results on one layer encourage further development on this subject. (orig.)

  13. Quality of structural steel melted by single-slag process

    International Nuclear Information System (INIS)

    Levin, A.M.; Andreev, V.I.; Monastyrskij, A.V.; Drozdova, M.F.; Pashchenko, V.E.; Orzhekh, M.B.

    1982-01-01

    The 40Kh and 12KhN3A steels were used to compare the quality of the metal manufactured according to several variants of a single-slag process with the metal of a conventional melting technology. Investigation results show, that a single-slag process metal has higher sulfides and oxides contents as well as an increased anisotropy of mechanical properties while its tendency to flake formation is weaker due to a less degree of gas saturation. It is marked that anisotropy in the properties and a sulfide content may be decreased by out-of-furnace treatment of steels

  14. High temperature slagging incinerator for alpha contaminated wastes

    International Nuclear Information System (INIS)

    Van de Voorde, N.

    1985-01-01

    This report describes the experiences collected by the treatment of plutonium-contaminated wastes, in the High Temperature Slagging Incinerator at the C.E.N./S.C.K. at Mol, with the support of the Commission of the European Communities. The major objective of the exercise is to demonstrate the operability of this facility for the treatment of mixed transuranic (TRU) and beta-gamma solid waste material. The process will substantially reduce the TRU waste volume by burning the combustibles and converting the non-combustibles into a chemically inert and physically stable basalt-like slag product, suitable for safe transport and final disposal. (Auth.)

  15. Attenuation of Gamma Rays by Concrete . Lead Slag Composites

    International Nuclear Information System (INIS)

    Ismail, I.M.; Sweelam, M.H.; Zaghloul, Y.R.; Aly, H.F.

    2008-01-01

    Using of wastes and industrial by-products as concrete aggregate to be used as structural and radiation shielded material has increased in the recent years. Concrete was mixed with different amounts of lead slag extracted from recycling of the spent automotive batteries as fine aggregates. The lead slag was used as partial replacement of sand in the studied composites. The concrete composites obtained were characterized in terms of density, water absorption, porosity, compressive strength and attenuation of γ- rays with different energies. The attenuation coefficient and the half value thickness of the different matrices were calculated and discussed

  16. Phylogeny of Yellow Fever Virus, Uganda, 2016.

    Science.gov (United States)

    Hughes, Holly R; Kayiwa, John; Mossel, Eric C; Lutwama, Julius; Staples, J Erin; Lambert, Amy J

    2018-08-17

    In April 2016, a yellow fever outbreak was detected in Uganda. Removal of contaminating ribosomal RNA in a clinical sample improved the sensitivity of next-generation sequencing. Molecular analyses determined the Uganda yellow fever outbreak was distinct from the concurrent yellow fever outbreak in Angola, improving our understanding of yellow fever epidemiology.

  17. Substoichiometric determination of phosphorus

    International Nuclear Information System (INIS)

    Shigematsu, T.; Kudo, K.

    1981-01-01

    Phosphorus in orchard leaves (NBS SRM-1571) and spinach (SRM-1570) was determined by various substoichiometric analytical methods such as the direct method, Gravshchenko's method and the method of carrier amount variation. All samples were labelled with 32 P radioisotope. The data obtained by the method of carrier amount variation were also treated by the method of least squares instead of De Voe's method. Phosphorus concentration in orchard leaves was 0.206+-0.011% by the direct method, 0.219+-0.011% by Gravshchenko's method, 0.211+-0.011% by the method of carrier amount variation and 0.207+-0.007% by the method of least squares, respectively. These values agree with the value reported by NBS (0.21+-0.01%). Furthermore, these concentrations obtained by various substoichiometric methods were compared with those by radioactivation reported in a previous paper. (author)

  18. Preparation of fly ash-granulated blast furnace slag-carbide slag binder and application in total tailings paste backfill

    Science.gov (United States)

    Li, Chao; Hao, Ya-fei; Zhao, Feng-qing

    2018-03-01

    Based on activation and synergistic effect among various materials, a low-cost mine backfill cementing material, FGC binder, was prepared by using fly ash, granulated blast-furnace slag (GBFS), carbide slag and composite activator. The proper proportioning of FGC binder is obtained by response surface experiment optimization method: fly ash 62 %, GBFS 20 %, carbide slag 8 % and compound activators 10 %. Adjusting the material ratio obtains different cementing material which could satisfy requirements of different mined-out areas. With the mass ratio of cementing material and tailings 1:4∼1:8, the concentration of total solid 70 %, the compressive strength values of total tailings filling body at 28 d reaches 1.64∼4.14 MPa, and the backfilling cost is 20 % lower than using OPC cement.

  19. Phosphorus Transport in Rivers.

    Science.gov (United States)

    1978-11-01

    be attributed to excessive nutrient inputs to the lake. These nutrients sti- mulate the phytoplankton (algae) growth which yields excess growth. The...phosphorus in relation to the restoration of Lake Erie. The various computational techniques presented herein aid in the understanding of total...as caused by the absorption on clay materials and by assimilation by periphyton . Other investigators have found correlations between flow and other

  20. Influence of lithium slag from lepidolite on the durability of concrete

    Science.gov (United States)

    Qi, Luo; Shaowen, Huang; Yuxuan, Zhou; Jinyang, Li; Weiliang, Peng; Yufeng, Wen

    2017-04-01

    This paper mainly studies the effect of lithium slag from lepidolite on the property of concrete including dry shrinkage, anti-carbonation, wear resistance and chloride ion resistance. Concrete interface structure has been observed with SEM. The results show that adding lithium slag to concrete can improve concrete property including dry shrinkage, wear resistance and chloride ion resistance. However, the wear resistance tends to decrease when the amount of lithium slag reach 20%. Lithium slag also has negative effect on anti-carbonation property. With the increasing amount of lithium slag, anti-carbonation property of concrete decrease gradually.

  1. Steelmaking slag beneficiation by magnetic separator and impacts on sinter quality

    Directory of Open Access Journals (Sweden)

    Bölükbaşı Ö.S.

    2014-01-01

    Full Text Available Basic oxygen furnaces (BOF slag is the main problem at all iron and steel factories. About more than 6 million tons/year of BOF slag has been accumulated from the waste stockyards in Turkey. Dumps slags can be revaluated by a processing technology which makes it possible to obtain products that meet the requirements of sintering and blast furnace production. The slags with particle size of -10 mm were enriched by the magnetic separator resulting and increase in Fe grade from 18% to 33%. The use of BOF slag in sinter blend provided additional Mn, CaO, MgO and introduced a good solution to environmental problems.

  2. The electrical characteristics of copper slags in a 270 kVA DC arc furnace

    International Nuclear Information System (INIS)

    Derin, Bora; Sahin, Filiz Cinar; Yucel, Onuralp

    2003-01-01

    The electrical resistance of slags is the main criteria to determine the design and the operation conditions of slag resistance furnace (SRF) depending on temperature and composition. In this study, a 270 kVA DC electric arc furnace were used to determine the electrical characteristic of molten ancient copper slags. The specific conductivity of the slag was estimated by using furnace geometric factor given in the literature as an empirical formula and by using furnace resistance measured during smelting of the copper slag with or without different additives such as coke, CaO and Al 2 O 3 . (Original)

  3. Study of phosphorus retention in a quartz ferralitic u soil devoted to citrus cultivation

    International Nuclear Information System (INIS)

    Nuviola, A.; Garcia, A.; Vallin, G.; Gonzalez, A.; Alvarez, C.

    1988-01-01

    Samples of a ferralitic quartz yellow-reddish lixiviated soil cultivated with valencia late orange were taken at two depths. Five different doses of phosphorus fertilization were applied there. These samples were worked out in the laboratory by using P 32 radioactive tracers so as to know the characteristics of retention and release of phosphorus. The effect of fertilization on the phosphates forms present in the soil were studied and the influence of each considered variant could be established trough the main components analysis

  4. Blast furnace dust and phosphorous slag, new materials for use in road engineering

    Science.gov (United States)

    Ochoa Díaz, R.

    2017-12-01

    This article proposes an alternative to the use of phosphorus slag and blast furnace dust, by-products of the steel industry, due to the negative environmental impact caused by its accumulation. Taking into account the above, the pertinence of the use of these by-products in asphalt mixtures for the construction of roads is studied. In this way, the origin and its properties are presented, as well as their physical and chemical characteristics. Once the tests have been carried out, it is determined that these by-products have adequate characteristics for their use since they do not present toxicity problems. Following this, the design of the mixtures is carried out to determine the mechanical and dynamic properties and thus determine the proportion to be replaced with the conventional materials. Taking into account the results it is concluded that its use is feasible since the mixture with these by-products presents acceptable resilient modulus parameters and improvement in some verification parameters.

  5. In situ observation of the role of alumina particles on the crystallization behavior of slags

    Energy Technology Data Exchange (ETDEWEB)

    Orrling, C.

    2000-09-01

    The confocal laser scanning microscope (CLSM) allows crystallization behavior in liquid slags to he observed in situ at high temperatures. Slags in the lime-silica-alumina-magnesia system are easily tinder cooled and it is possible to construct time temperature transformation (TTT) diagrams for this system. The presence of solid alumina particles its these liquid slags was studied to determine if these particles act as heterogeneous nucleation sites that cause she precipitation of solid material within slags. The introduction of alumina particles reduced the incubation time for the onset of crystallization and increased the temperature at which crystallization was observed in the slags to close to the liquidus temperature for the slag. Crystal growth rates are in a good agreement with Ivantsov's solution of the problem of diffusion controlled dendritic growth. Alumina appears to be a potent nucleating agent in the slag systems that were studied. (author)

  6. Sustainable Phosphorus Measures: Strategies and Technologies for Achieving Phosphorus Security

    Directory of Open Access Journals (Sweden)

    Stuart White

    2013-01-01

    Full Text Available Phosphorus underpins the world’s food systems by ensuring soil fertility, maximising crop yields, supporting farmer livelihoods and ultimately food security. Yet increasing concerns around long-term availability and accessibility of the world’s main source of phosphorus—phosphate rock, means there is a need to investigate sustainable measures to buffer the world’s food systems against the long and short-term impacts of global phosphorus scarcity. While the timeline of phosphorus scarcity is contested, there is consensus that more efficient use and recycling of phosphorus is required. While the agricultural sector will be crucial in achieving this, sustainable phosphorus measures in sectors upstream and downstream of agriculture from mine to fork will also need to be addressed. This paper presents a comprehensive classification of all potential phosphorus supply- and demand-side measures to meet long-term phosphorus needs for food production. Examples range from increasing efficiency in the agricultural and mining sector, to technologies for recovering phosphorus from urine and food waste. Such measures are often undertaken in isolation from one another rather than linked in an integrated strategy. This integrated approach will enable scientists and policy-makers to take a systematic approach when identifying potential sustainable phosphorus measures. If a systematic approach is not taken, there is a risk of inappropriate investment in research and implementation of technologies and that will not ultimately ensure sufficient access to phosphorus to produce food in the future. The paper concludes by introducing a framework to assess and compare sustainable phosphorus measures and to determine the least cost options in a given context.

  7. Phosphorus containing sintered alloys (review)

    International Nuclear Information System (INIS)

    Muchnik, S.V.

    1984-01-01

    Phosphorus additives are considered for their effect on the properties of sintered alloys of different applications: structural, antifriction, friction, magnetic, hard, superhard, heavy etc. Data are presented on compositions and properties of phosphorus-containing materials produced by the powder metallurgy method. Phosphorus is shown to be an effective activator of sintering in some cases. When its concentration in the material is optimal it imparts the material such properties as strength, viscosity, hardness, wear resistance. Problems concerning powder metallurgy of amorphous phosphorus-containing alloys are reported

  8. Phosphorus and the dairy cow

    OpenAIRE

    Ekelund, Adrienne

    2003-01-01

    The general aim of the present work was to investigate phosphorus balance in the dairy cow, with reference to the amount and source of phosphorus. Furthermore, biochemical bone markers were used to study the bone turnover during the lactation and dry period. Phosphorus is located in every cell of the body and has more known functions than any other mineral element in the animal body. Phosphorus is also an important constituent of milk, and is therefore required in large amounts in a high yiel...

  9. Concrete with steel furnace slag and fractionated reclaimed asphalt pavement.

    Science.gov (United States)

    2014-09-01

    Steel furnace slag (SFS) is an industrial by-product material that can contain free calcium oxide (CaO) and free magnesium oxide (MgO), both : of which can cause significant expansion when hydrated. SFS aggregates are therefore not commonly used in c...

  10. Design and evaluation of a heat recuperator for steel slags

    International Nuclear Information System (INIS)

    Gutiérrez Trashorras, Antonio J.; Álvarez, Eduardo Álvarez; Río González, José Luis; Suarez Cuesta, José Manuel; Bernat, Jorge Xiberta

    2013-01-01

    New techniques for emissions reduction and energy efficiency are important challenges of the steel industry. Although great advantages have been reached in these fields, there are still new opportunities. One of them is the possible development of systems to recover energy from slags. The recent policies that encourage the use of renewable and alternative energies determine a favorable scenario for the development of new techniques of heat recovering. In this context, this article presents a new heat recuperation system for the slags produced in the factories of Arcelor–Mittal in Asturias (Spain) and study in detail the design of an innovative slags heat exchanger. To adjust its performance and to determine the influence of the geometric and flow design parameters, the heat exchanger has been simulated using numerical analysis software (CFD). -- Highlights: • A new design of a heat recuperator for slags energy recovery is presented. • The effects of the design parameters have been studied with a numerical model. • Refractory materials with high thermal conductivity improve heat recuperation

  11. Environmental and economic implications of slag disposal practices ...

    African Journals Online (AJOL)

    2003-01-01

    Jan 1, 2003 ... pollution prevention, control or remediation measures. ... Total elimination of the production of slag is impossible at this stage ... issues, for example, relevant usage of the two different methods for classification and ascribing a higher ...... LIDE DR (1994) CRC Handbook of Chemistry and Physics(75th edn.) ...

  12. Slagging in a pulverised-coal-fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    Devir, G.P.; Pohl, J.H.; Creelman, R.A. [University of Queensland, St. Lucia, Qld. (Australia). Dept. of Chemical Engineering

    2000-07-01

    This paper describes a technique to evaluate the severity of slagging of a coal in a pulverised-coal-fired boiler. There are few data in the literature on the nature of in-situ boiler slags, their rate of growth and/or their strength properties relevant to sootblowing. The latter is thought to be of more concern to boiler operators and gives rise to the significance of selecting suitable strength tests. As well as standardised methods for characterising pulverised coal performance in a boiler, several novel and less popular techniques are discussed in detail. A suite of three sub-bituminous coals from the Callide Coalfields, Biloela (600 km north of Brisbane), has been selected for slagging tests in the 350 MW{sub e} units of Callide 'B' power station. Disposable air-cooled mild steel slagging probes have been constructed to simulate the conditions for deposit formation in the boiler region. To date, tests for one of these coals has been completed and preliminary results are presented. Once testing for the remaining coals has been completed, it is anticipated that the differences exhibited in deposit growth and strength may be correlated with typical variations in physical and chemical properties of the pulverised coal.

  13. Utilization of steel slag for Portland cement clinker production.

    Science.gov (United States)

    Tsakiridis, P E; Papadimitriou, G D; Tsivilis, S; Koroneos, C

    2008-04-01

    The aim of the present research work is to investigate the possibility of adding steel slag, a by-product of the conversion of iron to steel process, in the raw meal for the production of Portland cement clinker. Two samples of raw meals were prepared, one with ordinary raw materials, as a reference sample ((PC)(Ref)), and another with 10.5% steel slag ((PC)(S/S)). Both raw meals were sintered at 1450 degrees C. The results of chemical and mineralogical analyses as well as the microscopic examination showed that the use of the steel slag did not affect the mineralogical characteristics of the so produced Portland cement clinker. Furthermore, both clinkers were tested by determining the grindability, setting times, compressive strengths and soundness. The hydration products were examined by XRD analysis at 2, 7, 28 and 90 days. The results of the physico-mechanical tests showed that the addition of the steel slag did not negatively affect the quality of the produced cement.

  14. Granulated blast furnace slag – A boon for foundry industry

    African Journals Online (AJOL)

    Keywords: Silica sand; Blast Furnace Slag; Mould properties; Ferrous and nonferrous ... raw material for the production of cast components in foundry industries. ... applications for conserving natural resources and reduce the cost of the raw .... in an elevated temperature melting furnace with temperature values of 750 to.

  15. The Interfacial Transition Zone in Alkali-Activated Slag Mortars

    Directory of Open Access Journals (Sweden)

    Rackel eSan Nicolas

    2015-12-01

    Full Text Available The interfacial transition zone (ITZ is known to strongly influence the mechanical and transport properties of mortars and concretes. This paper studies the ITZ between siliceous (quartz aggregates and alkali activated slag binders in the context of mortar specimens. Backscattered electron images (BSE generated in an environmental scanning electron microscope (ESEM are used to identify unreacted binder components, reaction products and porosity in the zone surrounding aggregate particles, by composition and density contrast. X-ray mapping is used to exclude the regions corresponding to the aggregates from the BSE image of the ITZ, thus enabling analysis of only the binder phases, which are segmented into binary images by grey level discrimination. A distinct yet dense ITZ region is present in the alkali-activated slag mortars, containing a reduced content of unreacted slag particles compared to the bulk binder. The elemental analysis of this region shows that it contains a (C,N-A-S-H gel which seems to have a higher content of Na (potentially deposited through desiccation of the pore solution and a lower content of Ca than the bulk inner and outer products forming in the main binding region. These differences are potentially important in terms of long-term concrete performance, as the absence of a highly porous interfacial transition zone region is expected to provide a positive influence on the mechanical and transport properties of alkali-activated slag concretes.

  16. ECOLOGICAL AND TECHNOLOGYCAL ASPECTS OF ASH AND SLAG WASTES UTILIZATION

    Directory of Open Access Journals (Sweden)

    Tatyana Aleksandrova

    2017-07-01

    Full Text Available The article presents the results of investigation focused on the utilization of ash and slag wastes (ASW in Russia including investigation of chemical and physical properties of ASW and processing products. Many factors influence the technological properties of ash and slag materials: naturals, processes and environments. The integrated treatment of ash and slag wastes of both stored and re-formed types will allow obtaining the following commercial products: coal concentrate, iron concentrate, aluminosilicate cenospheres, aluminosilicate product. In this study we have analyzed the methods for separation of ASW iron-containing part using the different types of the magnetic separation from the ash and slag material from one of the combined heat and power plant (CHPP in the Russian Far East Federal District. The greatest interest is the dry magnetic separation with travelling electromagnetic field. The subject of research was a sample taken from one of ash dump of CHPP in the Far East. In the study iron concentrate containing Fetotal = 64% was obtained recovery 68% in the low intensity (up to 5 kOe travelling magnetic field.

  17. Copper recovery from slag by indirect bio leaching

    International Nuclear Information System (INIS)

    Mazuelos, A.; Iglesias, N.; Romero, R.; Forcat, O.; Carranza, F.

    2009-01-01

    The main source of copper loss from a smelter is copper in discard slag. Slag can contain Cu in concentrations very much higher than those of many ores. Cu is present in slag entrained in very small drops of matte, white metal and blister copper occluded in fayalitic phase. In this work, the technical viability of the BRISA process, that is based on the indirect bio leaching, for this residue has been proved. A sample of slag, containing 2 % of copper, has been chemical, granulometric and metallographic characterized and it has been leached with ferric sulphate solutions in agitated reactors. The influence of several variables have been investigated. Once the best operating conditions had been selecting and an economic estimation had been done (with very really attractive results), the leaching stage has been designed for a plant of 30 tonnes per hour capacity. Cu extractions higher than 70% can be achieved with a residence time of only five hours. Despite of Cu(II) concentration in fed is as high as 30 g/l, bio oxidation stage can supply Fe(III) demanded by ferric leaching stage. (Author) 17 refs

  18. Application of aluminum slag incorporated in lightweigh aggregate

    International Nuclear Information System (INIS)

    Takahashi, Elisa Akiko Nakano

    2006-01-01

    The use of industrial waste materials as additives in the manufacture of ceramic product has been attracting a growing interest in the last few years and is becoming common practice. The main purpose of this work is to evaluate the possibility of incorporation of aluminum slag into clay materials. Expansive clays are obtained from a pyro plastic expansion, and are usually employed like lightweight aggregate in structural concrete as ornamental garden products. The characterization of the aluminum slag and clay materials was carried out by Xray fluorescence spectrometry, Xray diffraction, granulometry, differential thermal analysis, thermal gravimetry (DTA and TG) and scanning electron microscopy. The studied compositions contained 5, 10, 15 and 20 weight % of aluminum slag into clay mass. The linear expansion, mass variation, apparent specific mass and water absorption of all compositions were determined. Leaching and solubilization experiments were also performed. The main results show the viability of using up to 5 wt% aluminum slag for producing expansive clays with characteristics within the accepted standards. (author)

  19. Aan de slag met honors : praktijklessen uit Europa

    NARCIS (Netherlands)

    Wolfensberger, Marca; Hogenstijn, Maarten

    2015-01-01

    In de brochure ‘Aan de slag met honors’ worden onderzoeksresultaten van het onderzoeksproject Honors in Europe hertaald naar tips voor succesvol en inspirerend honorsonderwijs. De brochure is grotendeels gebaseerd op het boek Talent Development in European Higher Education – Honors programs in the

  20. Chemical characterization and local dispersion of slag generated by ...

    African Journals Online (AJOL)

    SAM

    2014-05-07

    May 7, 2014 ... Pb from acid batteries includes their rupture, draining of the acid, separation of the components containing Pb and its recovery by smelting (Faé et al., 2011). During the smelting process, a solid material called "slag" is generated. It contains a high concentration of Pb, among other toxic elements (Coya et al.

  1. Kinetics of steel slag leaching: Batch tests and modeling

    International Nuclear Information System (INIS)

    De Windt, Laurent; Chaurand, Perrine; Rose, Jerome

    2011-01-01

    Reusing steel slag as an aggregate for road construction requires to characterize the leaching kinetics and metal releases. In this study, basic oxygen furnace (BOF) steel slag were subjected to batch leaching tests at liquid to solid ratios (L/S) of 10 and 100 over 30 days; the leachate chemistry being regularly sampled in time. A geochemical model of the steel slag is developed and validated from experimental data, particularly the evolution with leaching of mineralogical composition of the slag and trace element speciation. Kinetics is necessary for modeling the primary phase leaching, whereas a simple thermodynamic equilibrium approach can be used for secondary phase precipitation. The proposed model simulates the kinetically-controlled dissolution (hydrolysis) of primary phases, the precipitation of secondary phases (C-S-H, hydroxide and spinel), the pH and redox conditions, and the progressive release of major elements as well as the metals Cr and V. Modeling indicates that the dilution effect of the L/S ratio is often coupled to solubility-controlled processes, which are sensitive to both the pH and the redox potential. A sensitivity analysis of kinetic uncertainties on the modeling of element releases is performed.

  2. Hydrology and geochemistry of a slag-affected aquifer and chemical characteristics of slag-affected ground water, northwestern Indiana and northeastern Illinois

    Science.gov (United States)

    Bayless, E. Randall; Greeman, T.K.; Harvey, C.C.

    1998-01-01

    Slag is a by-product of steel manufacturing and a ubiquitous fill material in northwestern Indiana. Ground water associated with slag deposits generally is characterized by high pH and elevated concentrations of many inorganic water-quality constituents. The U.S. Geological Survey, in cooperation with the Indiana Department of Environmental Management, conducted a study in northwestern Indiana from June 1995 to September 1996 to improve understanding of the effects of slag deposits on the water quality of a glacial-outwash aquifer. The Bairstow Landfill, a slag-fill deposit overlying the Calumet aquifer near Hammond, Indiana, was studied to represent conditions in slag-deposit settings that are common in northwestern Indiana. Ground water from 10 observation wells, located in four nests at the site, and surface water from the adjacent Lake George were analyzed for values of field-measured parameters and concentrations of major ions, nutrients, trace elements, and bulk properties. Solid-phase samples of slag and aquifer sediment collected during drilling were examined with X-ray diffraction and geochemical digestion and analysis. Concentrations of calcium, potassium, sodium, and sulfate were highest in wells screened partly or fully in slag. Potassium concentrations in ground water ranged from 2.9 to 120 milligrams per liter (mg/L), were highest in water from slag deposits, and decreased with depth. The highest concentrations for aluminum, barium, molybdenum, nickel, and selenium were in water from the slag. Silica concentrations were highest in wells screened directly beneath the slag?aquifer interface, and magnesium concentrations were highest in intermediate and deep aquifer wells. Silica concentrations in shallow and intermediate aquifer wells ranged from 27 to 41 mg/L and were about 10 times greater than those in water from slag deposits. The highest concentrations for chromium, lead, and zinc were in ground water from immediately below the slag

  3. Cold experiments on ligament formation for blast furnace slag granulation

    International Nuclear Information System (INIS)

    Liu Junxiang; Yu Qingbo; Li Peng; Du Wenya

    2012-01-01

    Rotary cup atomization for molten slag granulation is an attractive alternative to water quenching. However, the mechanism of disintegration of molten slag must be assessed. In the present study, a glycerol/water mixture was substituted for molten slag, and the mechanism of ligament formation in a rotary cup was investigated using photos taken by a high-speed camera. The effects of the angular speed and inner depth of the rotary cup on ligament disintegration was investigated. The results showed that one state of disintegration may transform into another state as the angular speed of the rotary cup increases at a given liquid flow rate. During ligament formation, the number of ligaments increased with an increase in the angular speed of the rotary cup, and a decrease in the diameter of ligament and liquid drop was observed. Moreover, the initial point of disintegration of the ligament moved to the lip of the rotary cup as the angular speed increased. An equation describing the relationship between the diameter of the liquid drop and various factors was used to predict the diameter of the liquid drop. A rotary cup with an inner depth of 30 mm was the best choice for granulation. The results of the present study will be useful for designing devices used in molten slag granulation. - Highlights: ►The results can be used in the granulation of molten blast furnace slag. ► The three different states of disintegration occur as the angular speed of rotary cup increases. ► The mechanism of ligament disintegration is analyzed. ► Eq. can be used to predict the diameter of liquid drop. ► A rotary cup with an inner depth of 30 mm is optimal for granulation.

  4. Wetting Behavior of Calcium Ferrite Slags on Cristobalite Substrates

    Science.gov (United States)

    Yang, Mingrui; Lv, Xuewei; Wei, Ruirui; Xu, Jian; Bai, Chenguang

    2018-03-01

    Calcium ferrite (CF) is a significant intermediate adhesive phase in high-basicity sinters. The wettability between calcium ferrite (CF) and gangue plays an important role in the assimilation process. The wettability of CF-based slags, in which a constant amount (2 mass pct.) of Al2O3, MgO, SiO2, and TiO2 was added, on solid SiO2 (cristobalite) substrates at 1523 K (1250 °C) was investigated. The interfacial microstructure and spreading mechanisms were discussed for each sample. All the tested slag samples exhibited good wettability on the SiO2 substrate. The initial apparent contact angles were in the range of 20 to 50 deg, while the final apparent contact angles were 5 deg. The wetting process could be divided into three stages on the basis of the change in diameter, namely the "linear spreading" stage, "spreading rate reduction" stage, and "wetting equilibrium" stage. It was found that the CF-SiO2 wetting system exhibits dissolutive wetting and the dissolution of SiO2 into slag influences its spreading process. The spreading rate increases with a decrease in the ratio of viscosity to interfacial tension, which is a result of the addition of Al2O3, MgO, SiO2, and TiO2. After cooling, a deep corrosion pit was formed in the substrate and a diffusion layer was generated in front of the residual slag zone; further, some SiO2 and Fe2O3 solid solutions precipitated in the slag.

  5. Experimental study and simulation of phosphorus purification effects of bioretention systems on urban surface runoff.

    Directory of Open Access Journals (Sweden)

    Jiake Li

    Full Text Available Excessive phosphorus (P contributes to eutrophication by degrading water quality and limiting human use of water resources. Identifying economic and convenient methods to control soluble reactive phosphorus (SRP pollution in urban runoff is the key point of rainwater management strategies. Through three series of different tests involving influencing factors, continuous operation and intermittent operation, this study explored the purification effects of bioretention tanks under different experimental conditions, it included nine intermittent tests, single field continuous test with three groups of different fillers (Fly ash mixed with sand, Blast furnace slag, and Soil, and eight intermittent tests with single filler (Blast furnace slag mixed with sand. Among the three filler combinations studied, the filler with fly ash mixed with sand achieved the best pollution reduction efficiency. The setting of the submerged zone exerted minimal influence on the P removal of the three filler combinations. An extension of the dry period slightly promoted the P purification effect. The combination of fly ash mixed with sand demonstrated a positive purification effect on SRP during short- or long-term simulated rainfall duration. Blast furnace slag also presented a positive purification effect in the short term, although its continuous purification effect on SRP was poor in the long term. The purification abilities of soil in the short and long terms were weak. Under intermittent operations across different seasons, SRP removal was unstable, and effluent concentration processes were different. The purification effect of the bioretention system on SRP was predicted through partial least squares regression (PLS modeling analysis. The event mean concentration removal of SRP was positively related to the adsorption capacity of filler and rainfall interval time and negatively related to submerged zones, influent concentration and volume.

  6. Smog Yellows Taj Mahal

    Science.gov (United States)

    2007-01-01

    Built as a monument to the favorite wife of the Mughal Emperor Shah Jahan, the Taj Mahal has watched over the city of Agra, India, since the mid-seventeenth century with its pillars of gleaming white marble. By the spring of 2007, however, one of the world's most visited landmarks was turning yellow, and a panel of India's parliament had little trouble identifying the culprit: pollution. The panel blamed particles of soot and dirt suspended high in the atmosphere for the Taj Mahal's dinginess. The Taj Mahal's home, Agra, sits not far from the base of the Himalaya, and smog regularly collects along the southern side of the mountain range. On May 16, 2007, the Moderate Resolution Imaging Spectroradiometer (MODIS) on NASA's Terra satellite captured this image of the area around Agra, India. The closeup image shows the immediate vicinity of the Taj Majal. The larger image shows the surrounding area. In both pictures, dingy, gray-beige haze obscures the satellite's view of the land surface. India had tried to minimize the adverse impact of air pollution on the famous landmark. According to the BBC, in the late 1990s, India's Supreme Court ordered the closure of thousands of iron foundries and kilns that had belched smoke near the monument. Many of the 3 million tourists who visited the Taj Majal each year approached the monument on horse-drawn carriages or battery-operated buses as fossil-fuel-powered vehicles could not drive within 2 kilometers (1.5 miles). Since those efforts have failed to save the Taj Majal's complexion, Indian officials have considered applying a cleansing mud pack to the monument's surface to draw out the dirt. As India industrializes, smog results, and the Taj Mahal's gleaming whiteness is only one casualty. Pollution has been blamed for a decrease in Indian rice harvests, which had soared during the 'Green Revolution' of the 1960s and 1970s. Haze and dust also appear to bring on the region's monsoon rains earlier than normal.

  7. 17DD yellow fever vaccine

    Science.gov (United States)

    Martins, Reinaldo M.; Maia, Maria de Lourdes S.; Farias, Roberto Henrique G.; Camacho, Luiz Antonio B.; Freire, Marcos S.; Galler, Ricardo; Yamamura, Anna Maya Yoshida; Almeida, Luiz Fernando C.; Lima, Sheila Maria B.; Nogueira, Rita Maria R.; Sá, Gloria Regina S.; Hokama, Darcy A.; de Carvalho, Ricardo; Freire, Ricardo Aguiar V.; Filho, Edson Pereira; Leal, Maria da Luz Fernandes; Homma, Akira

    2013-01-01

    Objective: To verify if the Bio-Manguinhos 17DD yellow fever vaccine (17DD-YFV) used in lower doses is as immunogenic and safe as the current formulation. Results: Doses from 27,476 IU to 587 IU induced similar seroconversion rates and neutralizing antibodies geometric mean titers (GMTs). Immunity of those who seroconverted to YF was maintained for 10 mo. Reactogenicity was low for all groups. Methods: Young and healthy adult males (n = 900) were recruited and randomized into 6 groups, to receive de-escalating doses of 17DD-YFV, from 27,476 IU to 31 IU. Blood samples were collected before vaccination (for neutralization tests to yellow fever, serology for dengue and clinical chemistry), 3 to 7 d after vaccination (for viremia and clinical chemistry) and 30 d after vaccination (for new yellow fever serology and clinical chemistry). Adverse events diaries were filled out by volunteers during 10 d after vaccination. Volunteers were retested for yellow fever and dengue antibodies 10 mo later. Seropositivity for dengue was found in 87.6% of volunteers before vaccination, but this had no significant influence on conclusions. Conclusion: In young healthy adults Bio-Manguinhos/Fiocruz yellow fever vaccine can be used in much lower doses than usual. International Register ISRCTN 38082350. PMID:23364472

  8. Phosphorus, sulfur and pyridine

    OpenAIRE

    Schönberger, Stefanie

    2013-01-01

    The synthesis of distinct neutral or anionic P,S compounds in solution provides a great challenge for chemists. Due to the similarity in the energies of the P–P, P–S and S–S bonds nearly solely a mixture of compounds with different composition and charge is obtained. Our interest focuses on the system consisting of phosphorus, sulfur and pyridine, with the aim of a greater selectivity of P,S compounds in solution. The combination of these three components offers the opportunity...

  9. Towards a closed phosphorus cycle

    NARCIS (Netherlands)

    Keyzer, M.A.

    2010-01-01

    Summary: This paper stresses the need to address upcoming scarcity of phosphorus, a mineral nutrient that is essential for all life on Earth. Agricultural crops obtain phosphorus from the pool in the soil that can be replenished by recycling of organic material, or by application of inorganic

  10. A novel comprehensive utilization of vanadium slag: As gamma ray shielding material

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Mengge [School of Metallurgy, Northeastern University, Shenyang 110004 (China); Liaoning Key Laboratory of Metallurgical Resources Recycling Science, Shenyang 110004 (China); Xue, Xiangxin, E-mail: xuexx@mail.neu.edu.cn [School of Metallurgy, Northeastern University, Shenyang 110004 (China); Liaoning Key Laboratory of Metallurgical Resources Recycling Science, Shenyang 110004 (China); Yang, He; Liu, Dong [School of Metallurgy, Northeastern University, Shenyang 110004 (China); Liaoning Key Laboratory of Metallurgical Resources Recycling Science, Shenyang 110004 (China); Wang, Chao [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Zhefu [Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-11-15

    Highlights: • A novel comprehensive utilization method for vanadium slag is proposed. • Shielding properties of vanadium slag are better than ordinary concrete. • HVL of vanadium slag is between Lead and concrete to shield {sup 60}Co gamma ray. • HVL of composite is higher than concrete when adding amount of vanadium slag is 900. • Composite can be used as injecting mortar for cracks developed in concrete shields. - Abstract: New exploration of vanadium slag as gamma ray shielding material was proposed, the shielding properties of vanadium slag was higher than concrete when the energy of photons was in 0.0001 MeV–100000 MeV. Vanadium slag/epoxy resin composites were prepared, shielding and material properties of materials were tested by {sup 60}Co gamma ray, simultaneous DSC-TGA, electronic universal testing machine and scanning electron microscopy, respectively. The results showed that the shielding properties of composite would be better with the increase of vanadium slag addition amount. The HVL (half value layer thickness) of vanadium slag was between Lead and concrete while composite was higher than concrete when the addition amount of vanadium slag was 900 used as material to shield {sup 60}Co gamma ray, also the resistance temperature of composite was about 215 °C and the bending strength was over 10 MPa. The composites could be used as injecting mortar for cracks developed in biological concrete shields, coating for the floor of the nuclear facilities, and shielding materials by itself.

  11. Corrosion Behavior of Ceramic Cup of Blast Furnace Hearth by Liquid Iron and Slag

    Science.gov (United States)

    Li, Yanglong; Cheng, Shusen; Wang, Zhifeng

    2016-10-01

    Three kinds of sample bricks of ceramic cups for blast furnace hearth were studied by dynamic corrosion tests based on different corrosion systems, i.e., liquid iron system, liquid slag system and liquid iron-slag system. Considering the influence of temperature and sample rotational speed, the corrosion profiles and mass loss of the samples were analyzed. In addition, the microstructure of the corroded samples was observed by optical microscope (OM) and scanning electron microscope (SEM). It was found that the corrosion profiles could be divided into iron corrosion region, slag corrosion region and iron-slag corrosion region via corrosion degree after iron-slag corrosion experiment. The most serious corrosion occurred in iron-slag corrosion region. This is due to Marangoni effect, which promotes a slag film formed between liquid iron and ceramic cup and results in local corrosion. The corrosion of the samples deepened with increasing temperature of liquid iron and slag from 1,623 K to 1,823 K. The variation of slag composition had greater influence on the erosion degree than that of rotational speed in this experiment. Taking these results into account the ceramic cup composition should be close to slag composition to decrease the chemical reaction. A microporous and strong material should be applied for ceramic cup.

  12. A discussion on improving hydration activity of steel slag by altering its mineral compositions.

    Science.gov (United States)

    Wang, Qiang; Yan, Peiyu; Feng, Jianwen

    2011-02-28

    This study aims to investigate the ways to improve the cementitious properties of steel slag. The results show that the cementitious phase of steel slag is composed of silicate and aluminate, but the large particles of these phases make a very small contribution to the cementitious properties of steel slag. RO phase (CaO-FeO-MnO-MgO solid solution), Fe(3)O(4), C(2)F and f-CaO make no contribution to the cementitious properties of steel slag. A new kind of steel slag with more cementitious phase and less RO phase can be obtained by removing some large particles. This new steel slag possesses better cementitious properties than the original steel slag. The large particles can be used as fine aggregates for concrete. Adding regulating agent high in CaO and SiO(2) during manufacturing process of steel slag to increase the cementitious phase to inert phase ratio is another way to improve its cementitious properties. The regulating agent should be selected to adapt to the specific steel slag and the alkalinity should be increased as high as possible on the premise that the f-CaO content does not increase. The cooling rate should be enhanced to improve the hydration activity of the cementitious phase at the early ages and the grindability of steel slag. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Disintegration and size reduction of slags and metals after melt refining of contaminated metallic wastes

    International Nuclear Information System (INIS)

    Heshmatpour, B.; Copeland, G.L.; Heestand, R.L.

    1981-04-01

    Melting under an oxidizing slag is an attractive method of decontaminating and reducing the volume of radioactively contaminated metal scrap. The contaminants are concentrated in a relatively small volume of slag, which leaves the metal essentially clean. A potential method of permanently disposing of the resulting slags (and metals if necessary) is emplacing them into deep shale by grout hydrofracture. Suspension in grout mixtures requires that the slag and metal be granular. The feasibility of size-reducing slags and disintegrating metals and subsequently incorporating both into grout mixtures was demonstrated. Various types of slags were crushed with a small jaw crusher into particles smaller than 3 mm. Several metals were also melted and water-blasted into coarse metal powder or shot ranging in size from 0.05 to 3 mm. A simple low-pressure water atomizer having a multiple nozzle with a converging-line jet stream was developed and used for this purpose. No significant slag dust and steam were generated during slag crushing and liquid-metal water-blasting tests, indicating that contamination can be well contained within the system. The crushed slags and the coarse metal powders were suspendable in group fluids, which indicates probable disposability by shale hydrofracture. The granulation of slags and metals facilitates their containment, transport, and storage

  14. Evaluation of copper slag to catalyze advanced oxidation processes for the removal of phenol in water

    International Nuclear Information System (INIS)

    Huanosta-Gutiérrez, T.; Dantas, Renato F.; Ramírez-Zamora, R.M.; Esplugas, S.

    2012-01-01

    Highlights: ► We evaluate the use of an industrial residue (copper slag) as catalyst in water treatment. ► The copper slag was effective to remove organic pollutants (phenol) from water. ► During experimentation, Cu and Fe leaching were not higher than the acceptable levels. ► Slag/H 2 O 2 /UV and slag/H 2 O 2 treatments promoted biodegradability increment of the contaminated water. ► The control of the reaction time would minimize the environmental impact of the produced effluents in terms of acute toxicity. - Abstract: The aim of this work was to evaluate the use of copper slag to catalyze phenol degradation in water by advanced oxidation processes (AOPs). Copper slag was tested in combination with H 2 O 2 (slag/H 2 O 2 ) and H 2 O 2 /UV (slag/H 2 O 2 /UV). The studied methods promoted the complete photocatalytic degradation of phenol. Besides, they were able to reduce about 50% the TOC content in the samples. Slag/H 2 O 2 /UV and slag/H 2 O 2 treatments have favored biodegradability increment along the reaction time. Nevertheless, the irradiated method achieved higher values of the biodegradability indicator (BOD 5 /TOC). The toxicity assessment indicated the formation of more toxic compounds in both treatments. However, the control of the reaction time would minimize the environmental impact of the effluents.

  15. Rheological behavior and constitutive equations of heterogeneous titanium-bearing molten slag

    Science.gov (United States)

    Jiang, Tao; Liao, De-ming; Zhou, Mi; Zhang, Qiao-yi; Yue, Hong-rui; Yang, Song-tao; Duan, Pei-ning; Xue, Xiang-xin

    2015-08-01

    Experimental studies on the rheological properties of a CaO-SiO2-Al2O3-MgO-TiO2-(TiC) blast furnace (BF) slag system were conducted using a high-temperature rheometer to reveal the non-Newtonian behavior of heterogeneous titanium-bearing molten slag. By measuring the relationships among the viscosity, the shear stress and the shear rate of molten slags with different TiC contents at different temperatures, the rheological constitutive equations were established along with the rheological parameters; in addition, the non-Newtonian fluid types of the molten slags were determined. The results indicated that, with increasing TiC content, the viscosity of the molten slag tended to increase. If the TiC content was less than 2wt%, the molten slag exhibited the Newtonian fluid behavior when the temperature was higher than the critical viscosity temperature of the molten slag. In contrast, the molten slag exhibited the non-Newtonian pseudoplastic fluid characteristic and the shear thinning behavior when the temperature was less than the critical viscosity temperature. However, if the TiC content exceeded 4wt%, the molten slag produced the yield stress and exhibited the Bingham and plastic pseudoplastic fluid behaviors when the temperature was higher and lower than the critical viscosity temperature, respectively. When the TiC content increased further, the yield stress of the molten slag increased and the shear thinning phenomenon became more obvious.

  16. FUNGISTATIC PROPERTIES OF GRANULATED BLASTFURNACE SLAG AND RELATED SLAG-CONTAINING CEMENTS

    Directory of Open Access Journals (Sweden)

    Julius Strigac

    2016-03-01

    Full Text Available The article deals with studying the antifungal effect of ground granulated blastfurnace slag (GGBS and the cements made from it. Antifungal effects were tested on the fungi using the procedure given in the Czech national standard CSN 72 4310: 1977 - Testing the mould proofness properties of building products and materials. A mixture of the fungi Aspergillus niger, Chaetomium globosum, Penicillium funiculosum, Paecilomyces variotii and Gliocladium virens was used for testing. The scale for evaluating mould proofness properties according to CSN 72 4310: 1977 is from 0 to 5 in degree of fungi growth, where a value of 0 means that no growth of fungi occurs and the building products and materials possess fungistatic properties. The study confirms the fungistatic propeties of GGBS with mould proofness property 0. The addition of GGBS to cements from 65 wt.% to 95 wt.% ensures the achieving of a fungistatic environment, which enables the production of fungistatic blastfurnace cements CEM III/A 32.5 N (with GGBS content of 65 wt.%, CEM III/B 32.5 N and CEM III/C 32.5 N with mould proofness property 0.

  17. Method and Apparatus for Assessing the Properties of Slags

    Directory of Open Access Journals (Sweden)

    Biernat S.

    2017-09-01

    Full Text Available A special Slag-Prop Cu database has been developed to archive data from laboratory and industrial tests related to post-reduction slags. In order to enrich the data areas, it was decided to design a system for measuring the temperature of the liquid slag and its viscosity. Objectives of research work are to gather information on the properties of post-slags such as the temperature of liquid slag and its viscosity. The discussed issues are especially important in the foundry practice. Designed research stand and using of database applications can greatly facilitate the work of metallurgists, foundrymen, technologists and scientists. The viscosity measurement was developed and presented earlier. The author’s analytical methodology was supplemented by a thyristor measuring system (described in the article. The system temperature measurement can be performed simultaneously in 3 ways to reduce the measurement error. Measurement of the voltage mV - using the Seebeck effect can be measured throughout the entire range of thermocouple resistance, up to 1300 °C. Direct temperature measurement °C - measurement only below 1000 °C. Additional measurement - the measurement can also be read from the pyrometer set above the bath. The temperature and the reading frequency depend on the device itself. The principle of measurement is that in a molten metal / slag crucible, we put a N-type thermocouple. The thermocouples are hung by means of a tripod above the crucible and placed in a crucible. The thermocouple is connected to a compensating line dedicated to this type of thermocouple. The cable is in turn connected to a special multimeter that has the ability to connect to a computer and upload results. Temperature measurement can be performed simultaneously in 3 ways to reduce the measurement error. The Sn-Pb alloy has been subjected to testing for proper operation of the device. In this foot should be observed the supercooling of the liquid, which initiates

  18. Effects of Design/Operating Parameters and Physical Properties on Slag Thickness and Heat Transfer during Coal Gasification

    Directory of Open Access Journals (Sweden)

    Insoo Ye

    2015-04-01

    Full Text Available The behaviors of the slag layers formed by the deposition of molten ash onto the wall are important for the operation of entrained coal gasifiers. In this study, the effects of design/operation parameters and slag properties on the slag behaviors were assessed in a commercial coal gasifier using numerical modeling. The parameters influenced the slag behaviors through mechanisms interrelated to the heat transfer, temperature, velocity, and viscosity of the slag layers. The velocity profile of the liquid slag was less sensitive to the variations in the parameters. Therefore, the change in the liquid slag thickness was typically smaller than that of the solid slag. The gas temperature was the most influential factor, because of its dominant effect on the radiative heat transfer to the slag layer. The solid slag thickness exponentially increased with higher gas temperatures. The influence of the ash deposition rate was diminished by the high-velocity region developed near the liquid slag surface. The slag viscosity significantly influenced the solid slag thickness through the corresponding changes in the critical temperature and the temperature gradient (heat flux. For the bottom cone of the gasifier, steeper angles were favorable in reducing the thickness of the slag layers.

  19. Palm yellows phytoplasmas and their genetic classification

    African Journals Online (AJOL)

    ntushk

    African Journal of Biotechnology. Review. Palm yellows phytoplasmas and their genetic ... lethal yellowing-type phytoplasma disease was recorded on a number of palm species of mainly ..... Immunodominant membrane protein (imp) Gene.

  20. X-ray diffractometry of steam cured ordinary Portland and blast-furnace-slag cements

    International Nuclear Information System (INIS)

    Camarini, G.; Djanikian, J.G.

    1994-01-01

    This work studies some aspects of the phases produced by hydration of ordinary and blast-furnace-slag cements, at normal conditions and steam cured (60 and 95 0 C), using an X-ray diffraction technique. The blast-furnace-slag cement was a mixture of 50% of ordinary Portland cement and 50% of blast-furnace-slag (separately grinding). After curing the X-ray diffraction reveals that, in relation to ordinary Portland cement, the main phases in blast-furnace-slag cement are hydrated silicates and aluminates, hydro garnet, etringitte and mono sulphate. After steam curing the hydration of blast-furnace-slag cement proceeds. This is a result of the slag activation by the curing temperature. (author). 8 refs., 3 figs., 1 tab

  1. Utilization of High-Temperature Slags From Metallurgy Based on Crystallization Behaviors

    Science.gov (United States)

    Sun, Yongqi; Zhang, Zuotai

    2018-05-01

    Here, following the principle of modifying crystallization behaviors, including avoidance and optimization, we review recent research on the utilization of hot slags. Because of the high-temperature property (1450-1650°C), the utilization of hot slags are much different from that of other wastes. We approach this issue from two main directions, namely, material recycling and heat utilization. From the respect of material recycling, the utilization of slags mainly follows total utilization and partial utilization, whereas the heat recovery from slags follows two main paths, namely, physical granulation and chemical reaction. The effective disposal of hot slags greatly depends on clarifying the crystallization behaviors, and thus, we discuss some optical techniques and their applicable scientific insights. For the purpose of crystallization avoidance, characterizing the glass-forming ability of slags is of great significance, whereas for crystallization modification, the selection of chemical additives and control of crystallization conditions comprise the central routes.

  2. The effect of primary copper slag cooling rate on the copper valorization in the flotation process

    Directory of Open Access Journals (Sweden)

    Aleksandar Mihajlović

    2015-06-01

    Full Text Available Technological procedure of slow cooling slag from primary copper production is applied in the purpose of copper recovery in the level of 98.5% to blister. This technological procedure is divided into two phases, first slow cooling of slag on the air for 24 hours, and then accelerated cooling with water for 48 hours. Within the research following methods were used: calculation of nonstationary slag cooling, verification of the calculation using computer simulation of slag cooling in the software package COMSOL Multiphysics and experimental verification of simulation results. After testing of the experimentally gained samples of slowly cooled slag it was found that this technological procedure gives the best results in promoting growth or coagulation of dispersed particles of copper sulfide and copper in the slag, thereby increasing the utilization of the flotation process with a decrease of copper losses through very fine particles.

  3. Effect of Iron Redox Equilibrium on the Foaming Behavior of MgO-Saturated Slags

    Science.gov (United States)

    Park, Youngjoo; Min, Dong Joon

    2018-04-01

    In this study, the foaming index of CaO-SiO2-FetO and CaO-SiO2-FetO-Al2O3 slags saturated with MgO was measured to understand the relationship between their foaming behavior and physical properties. The foaming index of MgO-saturated slags increases with the FetO content due to the redox equilibrium of FetO. Experimental results indicated that MgO-saturated slag has relatively high ferric ion concentration, and the foaming index increases due to the effect of ferric ion. Therefore, the foaming behavior of MgO-saturated slag is more reasonably explained by considering the effect of ferric ion on the estimation of slag properties such as viscosity, surface tension, and density. Specifically, the estimation of slag viscosity was additionally verified by NBO/T, and this is experimentally obtained through Raman spectroscopy.

  4. The half-yellow man

    African Journals Online (AJOL)

    The half-yellow man. BJ Merwitza* and FJ Raala. aFaculty of Health Sciences, Carbohydrate and Lipid Metabolism Research Unit, University of the Witswaterand, Johannesburg, South Africa. *Corresponding author, emails: bmerwitz@hotmail.com, brad.merwitz@gmail.com. Keywords: diffuse normolipaemic planar ...

  5. Marble waste characterization as a desulfurizing slag component for steel

    International Nuclear Information System (INIS)

    Coleti, J.L.; Grillo, F.F.; Tenorio, J.A.S.; De Oliveira, J.R.

    2014-01-01

    The current steel market requires from steel plants better quality of its products. As a result, steel plants need to search for improvements and costs reduction in its process. Hence, the residue of marble containing significant quantities of calcium and magnesium carbonates, raw materials of steel refining slag, was characterized in order to replace the conventional lime used. Therefore, it will be possible to reduce the cost and volume of waste produced by the ornamental rock industry. The following methods were applied to test the waste potential: SEM with EDS, x-ray diffraction, x-ray fluorescence (EDX), Thermogravimetry (TG) and analysis of surface area and particle size by the BET method using dispersion leisure. The results indicated the feasibility of waste as raw material in the composition of desulfurizing slags. (author)

  6. Slag processing system for direct coal-fired gas turbines

    Science.gov (United States)

    Pillsbury, Paul W.

    1990-01-01

    Direct coal-fired gas turbine systems and methods for their operation are provided by this invention. The gas turbine system includes a primary zone for burning coal in the presence of compressed air to produce hot combustion gases and debris, such as molten slag. The turbine system further includes a secondary combustion zone for the lean combustion of the hot combustion gases. The operation of the system is improved by the addition of a cyclone separator for removing debris from the hot combustion gases. The cyclone separator is disposed between the primary and secondary combustion zones and is in pressurized communication with these zones. In a novel aspect of the invention, the cyclone separator includes an integrally disposed impact separator for at least separating a portion of the molten slag from the hot combustion gases.

  7. Alkali based slagging: a case study from Leigh Creek

    Energy Technology Data Exchange (ETDEWEB)

    R.A. Creelman; J. Bamberry; L.A. Juniper; C. Ward [University of Western Sydney, Penrith South, NSW (Australia)

    2003-07-01

    A systematic study was undertaken at NRG Port Augusta Power station in South Australia to determine the cause of ash deposition (slagging) in the boilers. Conventional wisdom suggests that iron in the ash is generally a major player in furnace ash deposition; however, mineralogical and chemical analyses of the deposits showed that the binding phase was plagioclase feldspar, dominated by the sodic feldspar albite. The study resulted in recognition that the cause of the formation of ash deposits in the North Flinders furnaces was the result of the ingestion of sodium and calcium into the melt that bound the deposits. This finding was a breakthrough in understanding the deposition process within these furnaces, and emphasises that not all slagging is iron related and that systematic studies of deposits, coal and ash make fundamental contributions to understanding the ash deposition mechanisms. 9 refs., 5 figs., 2 tabs.

  8. Simulation of petcoke gasification in slagging moving bed reactors

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, Soumitro; Sarkar, T.K.; Sen, P.K. [Research and Development Center, Engineers India Limited, Gurgaon 122001 (India)

    2005-03-25

    A mathematical model for simulation of moving bed petcoke gasifiers was developed. The model introduces a new feed characterization method, gas-phase resistance and volatilization models. The model is validated using reported data for a slagging gasifier. Effect of feed oxygen-to-coke and steam-to-coke ratios and feed coke rates on gasification performance was examined. Slagging zone moving bed gasifier operation with very high petcoke fluxes of over 4000 kg/m{sup 2}/h was possible with high petcoke conversion. Peak gas temperatures exceeded 1500 {sup o}C. Fluxes higher than 5000 kg/m{sup 2}/h are limited by an approach to fluidization of small particles in the combustion zone. The moving bed gasifier performance was found superior to performance of an entrained flow gasifier (EFG) with respect to energy efficiency and oxygen consumption.

  9. Control system for high-temperature slagging incinerator plant

    International Nuclear Information System (INIS)

    Matsuzaki, Yuji

    1986-01-01

    Low-level radioactive wastes generated in the nuclear generating plants are increasing year by year and to dispose them safely constitutes a big problem for the society. A few years ago, as the means of reducing them to as little volume as possible by incinerating and fusing the wastes, a high-temperature slagging incinerating method was developed, and this method is highly assessed. JGC Corp. has introduced that system technology and in order to prove the capacity of disposal and salubrity of the plant, and have constructed a full-sized pilot plant, then obtained the operational record and performance as they had planned. This report introduces the general processing of the wastes from their incineration and fusion as well as process control technology characteristic to high-temperature slagging incinerator furnaces and sensor technology. (author)

  10. Characterization of Al-coated and Uncoated Steel Slags in Flow-through Experiments: An Approach to Evaluate the Potential Efficiency of P Sorption Materials in P Removal Structures

    Science.gov (United States)

    Chagas, I. S. P.; Penn, C. J.; Huang, C. H.

    2017-12-01

    Excessive phosphorus (P) in surface waters is one of the key drivers of eutrophication. P removal structures are an emerging technology developed to reduce excessive dissolved P in runoff and drainage water, preventing or mitigating P delivery to water systems. One of the determining factors for the success of these structures is the type of P sorption material (PSM) being used. Steel slag, a residue of the steel industry, is an example of PSM proven to be efficient in sequestering dissolved P from water. However, its P sorption capacity can significantly vary, mostly because different steel-making processes generate this PSM. Aluminum-coating is a technology aiming to improve the P sorptive qualities of steel slag. In this study, we characterized eighteen different slag samples from different plants and steel-making processes. Safety, i.e., presence of trace metals, as well as chemical and physical properties were evaluated through digestions, metal-extractions and general chemical and physical characterization (e.g.: pH, buffer index, bulk density). We conducted flow-through experiments, a dynamic sorption approach, on coated and uncoated slag samples in order to evaluate differences in P removal efficiency and the effects of Al-coating. For the Al-coating, a solution of Al2(SO4)3 at two concentrations (94.5 or 66.2 g L-1) was used to coat the slag samples. After 48 hours in contact with the solution, flow-through experiments were performed. All samples were tested with an incoming P concentration of 0.5 mg L-1. Hydraulic residence time was regulated for each steel slag sample, alternating between 9.85 minutes or 0.28 minutes. This study will provide essential information about intrinsic differences in steel slag composition and its efficiency in sequestering P from flowing waters. Moreover, we explore the effects of the Al-coating technique, which can in turn enhance P removal structures efficacy and broaden its adoption.

  11. Plant Guide: Yellow beeplant (Cleome lutea Hook)

    Science.gov (United States)

    Derek Tilley; Jim Cane; Loren St. John; Dan Ogle; Nancy Shaw

    2012-01-01

    Yellow beeplant is a valuable native forage species for bees wasps and butterflies. Over 140 species of native bees have been observed foraging for nectar or pollen on yellow beeplant in southern Utah (Cane, 2008). Yellow beeplant is an annual forb which could provide food to insects in the first growing season of a range seeding (Ogle and others, 2011a). This...

  12. Using mineralogy as a guide to understanding slagging: a case study

    Energy Technology Data Exchange (ETDEWEB)

    Creelman, R.A. [R.A. Creelman & Associates (Australia)

    1994-12-31

    This paper details the mineralogy that accompanied the Callide B Power station slagging investigations. Investigations were made of coal mineral matter, particles collected from the furnace, flyash and the slag deposits. Objectives were to characterise the particles formed from burning Callide coal, to relate them to the slag deposits and flyash, and by applying thermodynamics gain an understanding of the underlying mechanisms that lead to attachment and accumulation of particles in the furnace. 9 refs., 2 figs., 7 tabs.

  13. Effects of slag-based silicon fertilizer on rice growth and brown-spot resistance.

    Science.gov (United States)

    Ning, Dongfeng; Song, Alin; Fan, Fenliang; Li, Zhaojun; Liang, Yongchao

    2014-01-01

    It is well documented that slag-based silicon fertilizers have beneficial effects on the growth and disease resistance of rice. However, their effects vary greatly with sources of slag and are closely related to availability of silicon (Si) in these materials. To date, few researches have been done to compare the differences in plant performance and disease resistance between different slag-based silicon fertilizers applied at the same rate of plant-available Si. In the present study both steel and iron slags were chosen to investigate their effects on rice growth and disease resistance under greenhouse conditions. Both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to examine the effects of slags on ultrastructural changes in leaves of rice naturally infected by Bipolaris oryaze, the causal agent of brown spot. The results showed that both slag-based Si fertilizers tested significantly increased rice growth and yield, but decreased brown spot incidence, with steel slag showing a stronger effect than iron slag. The results of SEM analysis showed that application of slags led to more pronounced cell silicification in rice leaves, more silica cells, and more pronounced and larger papilla as well. The results of TEM analysis showed that mesophyll cells of slag-untreated rice leaf were disorganized, with colonization of the fungus (Bipolaris oryzae), including chloroplast degradation and cell wall alterations. The application of slag maintained mesophyll cells relatively intact and increased the thickness of silicon layer. It can be concluded that applying slag-based fertilizer to Si-deficient paddy soil is necessary for improving both rice productivity and brown spot resistance. The immobile silicon deposited in host cell walls and papillae sites is the first physical barrier for fungal penetration, while the soluble Si in the cytoplasm enhances physiological or induced resistance to fungal colonization.

  14. Experimental investigation of basic oxygen furnace slag used as aggregate in asphalt mixture.

    Science.gov (United States)

    Xue, Yongjie; Wu, Shaopeng; Hou, Haobo; Zha, Jin

    2006-11-16

    Chinese researchers have commenced a great deal of researches on the development of application fields of basic oxygen steel making furnace slag (BOF slag) for many years. Lots of new applications and properties have been found, but few of them in asphalt mixture of road construction engineering. This paper discussed the feasibility of BOF steel slag used as aggregate in asphalt pavement by two points of view including BOF steel slag's physical and micro-properties as well as steel slag asphalt materials and pavement performances. For the former part, this paper mainly concerned the mechanochemistry and physical changes of the steel slag and studied it by performing XRD, SEM, TG and mercury porosimeter analysis and testing method. In the second part, this paper intended to use BOF steel slag as raw material, and design steel slag SMA mixture. By using traditional rutting test, soak wheel track and modified Lottman test, the high temperature stability and water resistance ability were tested. Single axes compression test and indirect tensile test were performed to evaluate the low temperature crack resistance performance and fatigue characteristic. Simultaneously, by observing steel slag SMA pavement which was paved successfully. A follow-up study to evaluate the performance of the experimental pavement confirmed that the experimental pavement was comparable with conventional asphalt pavement, even superior to the later in some aspects. All of above test results and analysis had only one main purpose that this paper validated the opinion that using BOF slag in asphalt concrete is feasible. So this paper suggested that treated and tested steel slag should be used in a more extensive range, especially in asphalt mixture paving projects in such an abundant steel slag resource region.

  15. Low-Chrome/Chrome Free Refractories for Slagging Gasifiers

    International Nuclear Information System (INIS)

    Bennett, J.P.; Kwong, K.-S.; Powell, C.P.; Thomas, H.; Petty, A.V. Jr.

    2007-01-01

    Gasifiers are containment vessels used to react carbon-containing materials with oxygen and water, producing syngas (CO and H2) that is used in chemical and power production. It is also a potential source of H2 in a future hydrogen economy. Air cooled slagging gasifiers are one type of gasifier, operating at temperatures from 1275-1575 C and at pressures of 400 psi or higher. They typically use coal or petroleum coke as the carbon source, materials which contain ash impurities that liquefy at the gasification temperatures, producing liquid slag in quantities of 100 or more tons/day, depending on the carbon fed rate and the percent ash present in the feedstock. The molten slag is corrosive to refractory linings, causing chemical dissolution and spalling. The refractory lining is composed of chrome oxide, alumina, and zirconia; and is replaced every 3-24 months. Gasifier users would like greater on-line availability and reliability of gasifier liners, something that has impacted gasifier acceptance by industry. Research is underway at NETL to improve refractory service life and to develop a no-chrome or low-chrome oxide alternative refractory liner. Over 250 samples of no- or low-chrome oxide compositions have been evaluated for slag interactions by cup testing; with potential candidates for further studies including those with ZrO2, Al2O3, and MgO materials. The development of improved liner materials is necessary if technologies such as IGCC and DOE's Near Zero Emissions Advanced Fossil Fuel Power Plant are to be successful and move forward in the marketplace

  16. Research and development plan for the Slagging Pyrolysis Incinerator

    International Nuclear Information System (INIS)

    Hedahl, T.G.; McCormack, M.D.

    1979-01-01

    Objective is to develop an incinerator for processing disposed transuranium waste. This R and D plan describes the R and D efforts required to begin conceptual design of the Slagging Pyrolysis Incinerator (Andco-Torrax). The program includes: incinerator, off-gas treatment, waste handling, instrumentation, immobilization analyses, migration studies, regulations, Belgium R and D test plan, Disney World test plan, and remote operation and maintenance

  17. Reducing treatment of coppersmelting slag: Thermodynamic analysis of impurities behavior

    Science.gov (United States)

    Komkov, Alexey; Kamkin, Rostislav

    2011-01-01

    A thermodynamic mathematical model, describing behavior of Pb, Zn, and As during reducing slag cleaning in the Vanyukov furnace has been developed. Using a developed model, the influence of different factors, such as temperature, oxygen partial pressure, the ratio of the formed phases on the behavior of impurities, was analyzed. It was found that arsenic can significantly move to the bottom phase, and zinc can be significantly vaporized under conditions in the Vanyukov furnace.

  18. Blasted copper slag as fine aggregate in Portland cement concrete.

    Science.gov (United States)

    Dos Anjos, M A G; Sales, A T C; Andrade, N

    2017-07-01

    The present work focuses on assessing the viability of applying blasted copper slag, produced during abrasive blasting, as fine aggregate for Portland cement concrete manufacturing, resulting in an alternative and safe disposal method. Leaching assays showed no toxicity for this material. Concrete mixtures were produced, with high aggregate replacement ratios, varying from 0% to 100%. Axial compressive strength, diametrical compressive strength, elastic modulus, physical indexes and durability were evaluated. Assays showed a significant improvement in workability, with the increase in substitution of fine aggregate. With 80% of replacement, the concrete presented lower levels of water absorption capacity. Axial compressive strength and diametrical compressive strength decreased, with the increase of residue replacement content. The greatest reductions of compressive strength were found when the replacement was over 40%. For tensile strength by diametrical compression, the greatest reduction occurred for the concrete with 80% of replacement. After the accelerated aging, results of mechanic properties showed a small reduction of the concrete with blasted copper slag performance, when compared with the reference mixture. Results indicated that the blasted copper slag is a technically viable material for application as fine aggregate for concrete mixtures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The use of activated slags as immobilisation matrices for ILW

    International Nuclear Information System (INIS)

    Milestone, N. B.; Bai, Y.; Yang, C. H.; Shi, Y. J.; Li, X. C.

    2008-01-01

    Composite cements where large amounts of blast furnace slag (BFS) replace Portland cement are currently used for immobilisation of ILW. Hydration of BFS is activated by the small amount of OPC present but the amount of reaction that occurs is limited at ambient temperatures. Increasing the temperature increases the hydration of the BFS but large amounts still remain unreacted, leaving a porous matrix where the capillary pores remain filled with a highly alkaline solution. This solution causes corrosion of reactive metals giving rise to expansive reactions and hydrogen release, and it can destroy the structure of zeolites releasing the adsorbed species. Apart from OPC, BFS hydration can be activated by other compounds such as hydroxides, sulphates, silicates, and calcium aluminate cements. The use of these alternatives gives rise to binders such as ettringite and straetlingite which have a different chemistry where the pore solution has a lower pH. Corrosion of metals does not readily occur in these binders. This may be due to the reduced pH but could also arise from the lack of pore water, as these binders bind more water in their structure so that it is not available for transport of ionic species. This extra water binding also has potential for immobilisation of sludges where high w/s ratios are necessitated by the need to transport the sludge. This paper will review some of the alternative activators for slag hydration and present experimental results on several systems where slag has been activated with compounds other than OPC. (authors)

  20. Estimation of slagging in furnaces; Kuonaavuuden ennustaminen kivihiilen poelypoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, T; Jaeaeskelaeinen, K; Oeini, J; Koskiahde, A; Jokiniemi, J; Pyykkoenen, J [Imatran Voima Oy, Vantaa (Finland)

    1997-10-01

    Understanding and estimation of slagging in furnaces is essential in the design of new power plants with high steam values or in modifications like low-NO{sub x} retrofits in existing furnaces. Major slagging yields poor efficiency, difficult operation and high maintenance costs of the plant. The aim of the project is to develop a computational model for slagging in pulverized coal combustion. The model is based on Computer Controlled Scanning Electron Microscopy (CCSEM) analysis of mineral composition of the coal and physical models for behaviour of minerals inside a furnace. The analyzed mineral particles are classified to five composition classes and distributed to calculational coal particles if internal minerals of coal. The calculational coal particles and the external minerals are traced in the furnace to find out the behaviour of minerals inside the furnace. If the particle tracing indicates that the particle hits the heat transfer surface of the furnace the viscosity of the particle is determined to see if particle is sticky. The model will be implemented to 3D computational fluid dynamics based furnace simulation environment Ardemus which predicts the fluid dynamics, heat transfer and combustion in a furnace. (orig.)

  1. Properties of slag concrete for low-level waste containment

    International Nuclear Information System (INIS)

    Langton, C.A.; Wong, P.B.

    1991-01-01

    Ground granulated blast furnace slag was incorporated in the concrete mix used for construction of low-level radioactive waste disposal vaults. The vaults were constructed as six 100 x 100 x 25 ft cells with each cell sharing internal walls with the two adjacent cells. The vaults were designed to contain a low-level radioactive wasteform called saltstone and to isolate the saltstone from the environment until the landfill is closed. Closure involves backfilling with native soil, installation of clay cap, and run-off control. The design criteria for the slag-substituted concrete included compressive strength, 4000 psi after 28 days; slump, 6 inch; permeability, less than 10 -7 cm/sec; and effective nitrate, chromium and technetium diffusivities of 10 -8 , 10 -12 and 10 -12 cm 2 /sec, respectively. The reducing capacity of the slag resulted in chemically reducing Cr +6 to Cr +3 and Tc +7 to Tc +4 and subsequent precipitation of the respective hydroxides in the alkaline pore solution. Consequently, the concrete vault enhances containment of otherwise mobile waste ions and contributes to the overall protection of the groundwater at the disposal site

  2. Selective Sulfidation of Lead Smelter Slag with Sulfur

    Science.gov (United States)

    Han, Junwei; Liu, Wei; Wang, Dawei; Jiao, Fen; Qin, Wenqing

    2016-02-01

    The selective sulfidation of lead smelter slag with sulfur was studied. The effects of temperature, sulfur dosage, carbon, and Na salts additions were investigated based on thermodynamic calculation. The results indicated that more than 96 pct of zinc in the slag could be converted into sulfides. Increasing temperature, sulfur dosage, or Na salts dosage was conducive to the sulfidation of the zinc oxides in the slag. High temperature and excess Na salts would result in the more consumption of carbon and sulfur. Carbon addition not only promoted the selective sulfidation but reduced the sulfur dosage and eliminated the generation of SO2. Iron oxides had a buffering role on the sulfur efficient utilization. The transformation of sphalerite to wurtzite was feasible under reducing condition at high temperature, especially above 1273 K (1000 °C). The growth of ZnS particles largely depended upon the roasting temperature. They were significantly increased when the temperature was above 1273 K (1000 °C), which was attributed to the formation of a liquid phase.

  3. SLAG CHARACTERIZATION AND REMOVAL USING PULSE DETONATION TECHNOLOGY DURING COAL GASIFICATION

    Energy Technology Data Exchange (ETDEWEB)

    DR. DANIEL MEI; DR. JIANREN ZHOU; DR. PAUL O. BINEY; DR. ZIAUL HUQUE

    1998-07-30

    Pulse detonation technology for the purpose of removing slag and fouling deposits in coal-fired utility power plant boilers offers great potential. Conventional slag removal methods including soot blowers and water lances have great difficulties in removing slags especially from the down stream areas of utility power plant boilers. The detonation wave technique, based on high impact velocity with sufficient energy and thermal shock on the slag deposited on gas contact surfaces offers a convenient, inexpensive, yet efficient and effective way to supplement existing slag removal methods. A slight increase in the boiler efficiency, due to more effective ash/deposit removal and corresponding reduction in plant maintenance downtime and increased heat transfer efficiency, will save millions of dollars in operational costs. Reductions in toxic emissions will also be accomplished due to reduction in coal usage. Detonation waves have been demonstrated experimentally to have exceptionally high shearing capability, important to the task of removing slag and fouling deposits. The experimental results describe the parametric study of the input parameters in removing the different types of slag and operating condition. The experimental results show that both the single and multi shot detonation waves have high potential in effectively removing slag deposit from boiler heat transfer surfaces. The results obtained are encouraging and satisfactory. A good indication has also been obtained from the agreement with the preliminary computational fluid dynamics analysis that the wave impacts are more effective in removing slag deposits from tube bundles rather than single tube. This report presents results obtained in effectively removing three different types of slag (economizer, reheater, and air-heater) t a distance of up to 20 cm from the exit of the detonation tube. The experimental results show that the softer slags can be removed more easily. Also closer the slag to the exit of

  4. X-ray diffraction study of slags forming during corrosion resistant steel production

    International Nuclear Information System (INIS)

    Slavov, V.I.; Zadorozhnaya, V.N.; Shurygina, A.V.

    1990-01-01

    Using X-ray diffraction analysis slags, forming during corrosion-resistant 12Kh18N10T grade steel production by two flowsheets, are studied. Standard two-slag technology of steel production does not provide efficient disintegration of chromospinelides in slags, gives high steel contamination with respect to nonmetallic impurities, coarse structure and, as a consequence, presence of macrodefects on rolled products surface. One-slag steel melting technology with titanium alloying of the steel at vacuum causes fast removal of chromospinelides at the beginning of reduction period, promotes titanium absorption by the steel, refines nonmetallic inclusions, provides more fine structure and steel plasticity, removes surface defects

  5. Comparison of possibilities the blast furnace and cupola slag utilization by concrete production

    Directory of Open Access Journals (Sweden)

    D. Baricová

    2010-04-01

    Full Text Available In process of pig iron and cast iron production secondary raw materials and industrial wastes are formed The most abundant secondaryproduct originating in these processes are furnace slag. Blast furnace slag and cupola furnace slag originates from melting of gangue parts of metal bearing materials, slag forming additions and coke ash. In general, slag are compounds of oxides of metallic and non-metallic elements, which form chemical compounds and solutions with each other and also contain small volume of metals, sulfides of metals and gases. Chemical, mineralogical and physical properties of slag determinate their utilisation in different fields of industry.The paper presents results from the research of the blast furnace and cupola furnace slag utilization in the concrete production. Pilotexperiments of the concrete production were performed, by that the blast furnace and cupola furnace slag with a fractions of 0–4mm;4–8mm; 8–16mm were used as a natural substitute. A cupola furnace slag and combination of the blast furnace and cupola furnace slagwere used in the experiments. The analysis results show that such concretes are suitable for less demanding applications.

  6. Visualisation and quantification of heavy metal accessibility in smelter slags: The influence of morphology on availability

    International Nuclear Information System (INIS)

    Morrison, Anthony L.; Swierczek, Zofia; Gulson, Brian L.

    2016-01-01

    The Imperial Smelting Furnace (ISF) for producing lead and zinc simultaneously has operated on four continents and in eleven countries from the 1950's. One of the process changes that the ISF introduced was the production of a finely granulated slag waste. Although this slag contained significant amounts of residual lead (Pb) and zinc (Zn), because of its glassy nature it was considered environmentally benign. From the Cockle Creek smelter near Boolaroo at the northern end of Lake Macquarie, NSW, Australia, it is estimated that around 2.1 million tonnes of the fine slag was distributed into the community and most remains where it was originally utilised. Residual tonnages of slag of this magnitude are common worldwide wherever the ISF operated. Studies of base metal smelting slags have concluded that mineralogical and morphological characteristics of the slag play a critical role in moderating environmental release of toxic elements. Scanning electron microscopy (SEM) and microanalysis of the ISF slags has shown that the Pb and associated elements are present as discrete nodules (∼6–22 μm) in the slag and that they are not associated with Zn which is contained in the glass slag phase. Using an automated SEM and analysis technique (QEMSCAN"®) to “map” the mineralogical structure of the particles, it was possible to quantitatively determine the degree of access infiltrating fluids might have to the reaction surface of the Pb phases. The level of access decreases with increasing particle size, but in even the largest sized particles (−3350 + 2000 μm) nearly 80% of the Pb-containing phases were totally or partially accessible. These results provide evidence that the toxic elements in the slags are not contained by the glassy phase and will be vulnerable to leaching over time depending on their individual phase reactivity. - Highlights: • QEMSCAN"® allowed determination of access to infiltrating fluids to Pb in smelter slags. • Pb and associated

  7. Partitioning of heavy metals in a soil contaminated by slag: A redistribution study

    International Nuclear Information System (INIS)

    Bunzl, K.; Trautmannsheimer, M.; Schramel, P.

    1999-01-01

    In order to interpret reasonably the partitioning of heavy metals in a contaminated soil as observed from applying a sequential extraction procedure, information on possible redistribution processes of the metals during the various extraction steps is essential. For this purpose, sequential extraction was used to study the chemical partitioning of Ag, Cu, Ni, Pb, and Zn in a soil contaminated wither by a slag from coal firing or by a slag from pyrite roasting. Through additional application of sequential extraction to the pure slags as well as to the uncontaminated soil, it was shown that during the various extraction steps applied to the soil/slag mixtures, substantial redistribution processes of the metals between the slag- and soil particles can occur. In many cases, metals ions released during the extraction with acid hydroxylamine or acid hydrogen peroxide are partially readsorbed by solid constituents of the mixture and will therefore be found in the subsequent fractions extracted. As a result, one has to realize that (1) it will be difficult to predict the chemical partitioning of these metals in contaminated soils by investigating pure slags only, and (2) information on the partitioning of a metal in a slag contaminated soil will not necessarily give any relevant information on the form of this metal in the slag or in the slag/soil mixture, because the redistribution processes during sequential extraction will not be the same as those occurring in the soil solution under natural conditions

  8. An Analysis of the Mechanical Characteristics and Constitutive Relation of Cemented Mercury Slag

    Directory of Open Access Journals (Sweden)

    Xinwei Li

    2017-01-01

    Full Text Available This study focuses on mercury slag in the Tongren area of Guizhou Province, China. Computed tomography (CT is used with uniaxial and triaxial compression tests to examine the mechanical changes in cemented mercury slag and its formation. The CT results for the uniaxial compression test reveal the overall failure process of the mercury slag structure. Based on the coarse-grained soil triaxial test, a modified Duncan-Chang model is compared with the actual monitoring results and is found to be suitable for the analysis of the slag constitutive model.

  9. Reclamation and reuse of MWI slags under the aspect of ground water protection

    International Nuclear Information System (INIS)

    Lahl, U.; Struth, R.

    1993-01-01

    Some importants aspects of ground water protection are discussed, with regard to MWI-slag reclamation and reuse as construction material. The effects of a treatment process on residual organic compounds of slag material have to be regarded as very positive. Directed chemical influencing of the hydratation process directly after incineration offers new perspectives for generating slag with potentially little and constant elution behaviour. The authors welcome the new, sharpened demands on reuse of MWI-slag in Northrhine-Westfalia. This challenge can be met by the proposed treatment procedure without problems. (orig.) [de

  10. Study of the Mechanism of Liquid Slag Infiltration for Lubrication in Slab Continuous Casting

    Science.gov (United States)

    Zhang, Shaoda; Wang, Qiangqiang; He, Shengping; Wang, Qian

    2018-04-01

    Consistent and uniform lubrication of the solidifying shell, especially in the meniscus, is crucial for the smooth continuous casting operation and production of strands free of surface defects. Thus, the current study established a coupled model to study the inflow behavior of liquid slag to the mold-strand channel, taking the solidification of steel and slag and the periodic oscillation of mold into account. The difficulties and solutions for the simulation were described in detail. The predicted profiles of the slag rim and initial shell were in good agreement with the reports. The main results indicated that liquid slag could be squeezed out and back into the slag pool in a negative strip period while a large amount of liquid slag could infiltrate into the mold-strand channel. Thus, the amount of slag consumed in the negative strip period was relatively small compared with that in the positive strip period. The predicted variation of slag consumption during mold oscillation was periodic, and the average value was 0.274 kg/m2, which agreed well with the slag consumption in industrial practice. The current model can predict and optimize the oscillation parameters aiming at stable lubrication conditions.

  11. Total Phosphorus in Surface Water

    Data.gov (United States)

    U.S. Environmental Protection Agency — Excess phosphorus in surface water can result in eutrophication. TOTALP is reported in kilograms/hectare/year. More information about these resources, including the...

  12. Phosphorus chemistry in everyday living

    National Research Council Canada - National Science Library

    Toy, Arthur D. F

    1976-01-01

    The author has drawn on his 35 years of experience as a research scientist in phosphorus chemistry to produce a book that is not only readable to the non-chemist but sophisticated enough to interest...

  13. phosphorus retention data and metadata

    Science.gov (United States)

    phosphorus retention in wetlands data and metadataThis dataset is associated with the following publication:Lane , C., and B. Autrey. Phosphorus retention of forested and emergent marsh depressional wetlands in differing land uses in Florida, USA. Wetlands Ecology and Management. Springer Science and Business Media B.V;Formerly Kluwer Academic Publishers B.V., GERMANY, 24(1): 45-60, (2016).

  14. Evaluation of the suitability of tin slag in cementitious materials: Mechanical properties and Leaching behaviour

    Science.gov (United States)

    Rustandi, Andi; Wafa' Nawawi, Fuad; Pratesa, Yudha; Cahyadi, Agung

    2018-01-01

    Tin slag, a by-product of tin production has been used in cementitious application. The present investigation focuses on the suitability of tin slag as primary component in cement and as component that substitute some amount of Portland Cement. The tin slags studied were taken from Bangka, Indonesia. The main contents of the tin slag are SiO2, Al2O3, and Fe2O3 according to the XRF investigation. The aim of this article was to study the mechanical behaviour (compressive strength), microstructure and leaching behaviour of tin slag blended cement. This study used air-cooled tin slag that had been passed through 400# sieve to replace Portland Cement with ratio 0, 10, 20, 30, 40 by weight. Cement pastes and tin slag blended cement pastes were prepared by using water/cement ratio (W/C) of 0.40 by weight and hydrated for various curing ages of 3, 7, 14 days The microstructure of the raw tin slag was investigated using Scanning Electron Microscope (SEM). The phase composition of each cement paste was investigated using X-ray Diffraction (XRD). The aim of the leachability test was to investigate the environmental impacts of tin slag blended cement product in the range 4-8 pH by using static pH-dependent leaching test. The result show that the increase of the tin slag content decreasing the mortar compressive strength at early ages. The use of tin slag in cement provide economic benefits for all related industries.

  15. Accelerated Carbonation of Steel Slag Compacts: Development of High-Strength Construction Materials

    Energy Technology Data Exchange (ETDEWEB)

    Quaghebeur, Mieke; Nielsen, Peter, E-mail: peter.nielsen@vito.be; Horckmans, Liesbeth [Sustainable Materials Management, VITO, Mol (Belgium); Van Mechelen, Dirk [RECMIX bvba, Genk (Belgium)

    2015-12-17

    Mineral carbonation involves the capture and storage of carbon dioxide in carbonate minerals. Mineral carbonation presents opportunities for the recycling of steel slags and other alkaline residues that are currently landfilled. The Carbstone process was initially developed to transform non-hydraulic steel slags [stainless steel (SS) slag and basic oxygen furnace (BOF) slags] in high-quality construction materials. The process makes use of accelerated mineral carbonation by treating different types of steel slags with CO{sub 2} at elevated pressure (up to 2 MPa) and temperatures (20–140°C). For SS slags, raising the temperature from 20 to 140°C had a positive effect on the CO{sub 2} uptake, strength development, and the environmental properties (i.e., leaching of Cr and Mo) of the carbonated slag compacts. For BOF slags, raising the temperature was not beneficial for the carbonation process. Elevated CO{sub 2} pressure and CO{sub 2} concentration of the feed gas had a positive effect on the CO{sub 2} uptake and strength development for both types of steel slags. In addition, the compaction force had a positive effect on the strength development. The carbonates that are produced in situ during the carbonation reaction act as a binder, cementing the slag particles together. The carbonated compacts (Carbstones) have technical properties that are equivalent to conventional concrete products. An additional advantage is that the carbonated materials sequester 100–150 g CO{sub 2}/kg slag. The technology was developed on lab scale by the optimization of process parameters with regard to compressive strength development, CO{sub 2} uptake, and environmental properties of the carbonated construction materials. The Carbstone technology was validated using (semi-)industrial equipment and process conditions.

  16. Recycling of residual IGCC slags and their benefits as degreasers in ceramics.

    Science.gov (United States)

    Iglesias Martín, I; Acosta Echeverría, A; García-Romero, E

    2013-11-15

    This work studies the evolution of IGCC slag grains within a ceramic matrix fired at different temperatures to investigate the effect of using IGCC slag as a degreaser. Pressed ceramic specimens from two clay mixtures are used in this study. The M1 mixture is composed of standard clays, whereas the M2 mixture is composed of the same clay mixture as M1 mixture but contains 15% by weight IGCC slag. The amount of IGCC slag added coincides with the amount of slag typically used as a degreaser in the ceramic industry. Specimens are fired at 950 °C, 1000 °C, 1050 °C, 1100 °C and 1150 °C. The mineralogical composition and the IGCC slag grain shape within the ceramic matrix are determined by X-ray diffraction, polarized light microscopy and scanning electron microscopy. The results reveal that the surface of the slag grains is welded to the ceramic matrix while the quartz grains are separated, which causes increased water absorption and reduces the mechanical strength. IGCC slag, however, reduces water absorption. This behaviour is due to the softening temperature of the slag. This property is quite important from an industrial viewpoint because IGCC slag can serve as an alternative to traditional degreasing agents in the ceramic building industry. Additionally, using IGCC slag allows for the transformation of waste into a secondary raw material, thereby avoiding disposal at landfills; moreover, these industrial wastes are made inert and improve the properties of ceramics. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Computational Fluid Dynamic Modeling of Zinc Slag Fuming Process in Top-Submerged Lance Smelting Furnace

    Science.gov (United States)

    Huda, Nazmul; Naser, Jamal; Brooks, Geoffrey; Reuter, Markus A.; Matusewicz, Robert W.

    2012-02-01

    Slag fuming is a reductive treatment process for molten zinciferous slags for extracting zinc in the form of metal vapor by injecting or adding a reductant source such as pulverized coal or lump coal and natural gas. A computational fluid dynamic (CFD) model was developed to study the zinc slag fuming process from imperial smelting furnace (ISF) slag in a top-submerged lance furnace and to investigate the details of fluid flow, reaction kinetics, and heat transfer in the furnace. The model integrates combustion phenomena and chemical reactions with the heat, mass, and momentum interfacial interaction between the phases present in the system. A commercial CFD package AVL Fire 2009.2 (AVL, Graz, Austria) coupled with a number of user-defined subroutines in FORTRAN programming language were used to develop the model. The model is based on three-dimensional (3-D) Eulerian multiphase flow approach, and it predicts the velocity and temperature field of the molten slag bath, generated turbulence, and vortex and plume shape at the lance tip. The model also predicts the mass fractions of slag and gaseous components inside the furnace. The model predicted that the percent of ZnO in the slag bath decreases linearly with time and is consistent broadly with the experimental data. The zinc fuming rate from the slag bath predicted by the model was validated through macrostep validation process against the experimental study of Waladan et al. The model results predicted that the rate of ZnO reduction is controlled by the mass transfer of ZnO from the bulk slag to slag-gas interface and rate of gas-carbon reaction for the specified simulation time studied. Although the model is based on zinc slag fuming, the basic approach could be expanded or applied for the CFD analysis of analogous systems.

  18. Evaluation of the use of steelmaking slag as an aggregate in concrete mix: A factorial design approach

    Directory of Open Access Journals (Sweden)

    Aljbour Salah H.

    2017-01-01

    Full Text Available Slag is investigated towards its potential use as an aggregate in concrete mix production. Full factorial design methodology is applied to study the effect of two process input variables, namely: slag as coarse aggregate and slag as medium aggregate on the properties of concrete mix. Additionally, the interaction between input variables is also examined. Incorporating steel slag aggregate in the concrete mix affected its compressive strength. Enhanced compressive strength concrete mix was obtained with 70 wt.% coarse slag aggregate and 70 wt.% medium slag aggregate. Under these proportions, the 28-days compressive strength was higher than the 28-days compressive strength of a concrete mix prepared from normal aggregate. Strong interaction effect exists between slag aggregate size on the compressive strength at 7-days curing. Lower compressive strength for the concrete mix might be obtained if improper proportions of mixed medium and coarse slag aggregate were employed.

  19. Growth responses of Ulva prolifera to inorganic and organic nutrients: Implications for macroalgal blooms in the southern Yellow Sea, China

    Science.gov (United States)

    Li, Hongmei; Zhang, Yongyu; Han, Xiurong; Shi, Xiaoyong; Rivkin, Richard B.; Legendre, Louis

    2016-05-01

    The marine macrophyte Ulva prolifera is the dominant green-tide-forming seaweed in the southern Yellow Sea, China. Here we assessed, in the laboratory, the growth rate and nutrient uptake responses of U. prolifera to different nutrient treatments. The growth rates were enhanced in incubations with added organic and inorganic nitrogen [i.e. nitrate (NO3-), ammonium (NH4+), urea and glycine] and phosphorus [i.e. phosphate (PO43-), adenosine triphosphate (ATP) and glucose 6-phosphate (G-6-P)], relative to the control. The relative growth rates of U. prolifera were higher when enriched with dissolved organic nitrogen (urea and glycine) and phosphorus (ATP and G-6-P) than inorganic nitrogen (NO3- and NH4+) and phosphorus (PO43-). In contrast, the affinity was higher for inorganic than organic nutrients. Field data in the southern Yellow Sea showed significant inverse correlations between macroalgal biomass and dissolved organic nutrients. Our laboratory and field results indicated that organic nutrients such as urea, glycine and ATP, may contribute to the development of macroalgal blooms in the southern Yellow Sea.

  20. Tracer studies on the effect of different methods of phosphorus application on fertilizer P uptake by Sunnhemp (Crotolaria juncea L.)

    International Nuclear Information System (INIS)

    Chaudhury, J.; Ray, P.K.

    1994-01-01

    The relative efficacy of seven methods of phosphorus application on dry matter yield, and fertilizer phosphorus uptake and its utilization by Sunnhemp (var. K-12 yellow) was studied under field conditions using 32 P tagged superphosphate (SSP). Fertilizer was least utilized by the traditional method of application of fertilizer i.e. broadcasting, whereas placement below the seed was significantly superior to all other methods in relation to dry matter yield, total and fertilizer P uptake by Sunnhemp. The per cent utilization of fertilizer P added and per cent Pdff followed the similar pattern as that of the dry matter yield. (author). 7 refs., 1 tab

  1. Evaluation of the use of steelmaking slag as an aggregate in concrete mix: A factorial design approach

    OpenAIRE

    Aljbour Salah H.; Tarawneh Sultan A.; Al-Harahsheh Adnan M.

    2017-01-01

    Slag is investigated towards its potential use as an aggregate in concrete mix production. Full factorial design methodology is applied to study the effect of two process input variables, namely: slag as coarse aggregate and slag as medium aggregate on the properties of concrete mix. Additionally, the interaction between input variables is also examined. Incorporating steel slag aggregate in the concrete mix affected its compressive strength. Enhanced compressive strength concrete mix was obt...

  2. The hydration of slag, part 1: reaction models for blended cement

    NARCIS (Netherlands)

    Chen, Wei; Brouwers, Jos

    2007-01-01

    Reaction models are proposed to quantify the hydration products and to determine the composition of C–S–H from alkali-activated slags (AAS). Products of the slag hydration are first summarized from observations in literature. The main hydration products include C–S–H, hydrotalcite, hydrogarnet, AFm

  3. Slag Treatment Followed by Acid Leaching as a Route to Solar-Grade Silicon

    NARCIS (Netherlands)

    Meteleva-Fischer, Y.V.; Yang, Y.; Boom, R.; Kraaijveld, B.; Kuntzel, H.

    2012-01-01

    Refining of metallurgical-grade silicon was studied using a process sequence of slag treatment, controlled cooling, and acid leaching. A slag of the Na2O-CaO-SiO2 system was used. The microstructure of grain boundaries in the treated silicon showed enhanced segregation of impurities, and the

  4. Design of a continuous process setup for precipitated calcium carbonate production from steel converter slag.

    Science.gov (United States)

    Mattila, Hannu-Petteri; Zevenhoven, Ron

    2014-03-01

    A mineral carbonation process "slag2PCC" for carbon capture, utilization, and storage is discussed. Ca is extracted from steel slag by an ammonium salt solvent and carbonated with gaseous CO2 after the separation of the residual slag. The solvent is reused after regeneration. The effects of slag properties such as the content of free lime, fractions of Ca, Si, Fe, and V, particle size, and slag storage on the Ca extraction efficiency are studied. Small particles with a high free-lime content and minor fractions of Si and V are the most suitable. To limit the amount of impurities in the process, the slag-to-liquid ratio should remain below a certain value, which depends on the slag composition. Also, the design of a continuous test setup (total volume ∼75 L) is described, which enables quick process variations needed to adapt the system to the varying slag quality. Different precipitated calcium carbonate crystals (calcite and vaterite) are generated in different parts of the setup. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Behaviour of fibre reinforced concrete using steel slag coarse aggregate produced in Qatar

    Directory of Open Access Journals (Sweden)

    Alnahhal Wael

    2017-01-01

    Full Text Available The state of Qatar suffers from the shortage of natural resources needed for concrete production. Therefore, it is essential to investigate the feasibility of using by-product recycled materials as aggregates to maintain the concrete construction industry. Several types of recyclable materials are currently used in concrete. One of the potential resources of recycled concrete is steel slag. Knowing that Steel slag is the most significant solid waste generated by Qatar Steel Company in Qatar, replacing of natural coarse aggregate with steel slag aggregate will have a significant environmental and economic impact to the state of Qatar. This paper presents the compression and flexural test results of different concrete mixes made of steel slag coarse aggregate combined with a newly developed basalt chopped fibres. The parameters investigated included the volume fraction of the fibre used and the type of coarse aggregates (natural aggregates “Gabbro” and steel slag aggregates. Plain concrete specimens containing natural coarse aggregates and steel slag aggregates with no fibres added were also tested to serve as control. Test results showed that adding the basalt chopped fibres to the concrete mixes enhanced their flexural tensile strengths at different percentages. In addition, the compressive strength of concrete made with steel slag aggregate was higher than that made with natural gabbro aggregate. Test results clearly showed that steel slag aggregates can be used as sustainable and eco-friendly alternative materials in concrete structures.

  6. Treatment of metallurgical wastes : recovery of metal values from smelter slags by pressure oxidative leaching

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Perederiy, I.; Papangelakis, V.G. [Toronto Univ., ON (Canada). Dept. of Chemical Engineering and Applied Chemistry

    2008-07-01

    Vast quantities of slag are produced and dumped as waste by-products during the production of base metals by smelting operations. These slags contain large amounts of valuable metals which lead to a decrease in metal yield and, combined with the entrapped sulphur, pose a danger to the environment. The dissolution of fayalite is important for the selective recovery of valuable metals and the cleanup of slags in high pressure oxidative leaching. The nature of base metals and iron in solidified slag must be investigated in order to understand the mechanism of the process. This paper discussed the application of powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) for the characterization of a smelter slag microstructure. The study used leaching tests with the same smelter slag to measure and monitor the results of leaching, including metal extraction levels, the extent of iron dissolution as well as impurity contents. The paper provided information on the experiment with particular reference to slag leaching, chemical analysis, and characterization. It was concluded that slag consists of several solid phases with base metal sulfide and oxide droplets entrapped in the fayalite matrix or silica regions. Therefore, nickel, copper, cobalt, and zinc need to be exposed either chemically or mechanically to promote their recovery. 21 refs., 4 tabs., 5 figs.

  7. Substrate pH and butterfly bush response to dolomitic lime or steel slag amendment

    Science.gov (United States)

    Steel slag is a fertilizer amendment with a high concentration of calcium oxide, and thus capable of raising substrate pH similar to dolomitic lime. Steel slag, however, contains higher concentrations of some nutrients, such as iron, manganese, and silicon, compared to dolomitic lime. The objectiv...

  8. Heat Recovery from High Temperature Slags: A Review of Chemical Methods

    Directory of Open Access Journals (Sweden)

    Yongqi Sun

    2015-03-01

    Full Text Available Waste heat recovery from high temperature slags represents the latest potential way to remarkably reduce the energy consumption and CO2 emissions of the steel industry. The molten slags, in the temperature range of 1723–1923 K, carry large amounts of high quality energy. However, the heat recovery from slags faces several fundamental challenges, including their low thermal conductivity, inside crystallization, and discontinuous availability. During past decades, various chemical methods have been exploited and performed including methane reforming, coal and biomass gasification, and direct compositional modification and utilization of slags. These methods effectively meet the challenges mentioned before and help integrate the steel industry with other industrial sectors. During the heat recovery using chemical methods, slags can act as not only heat carriers but also as catalysts and reactants, which expands the field of utilization of slags. Fuel gas production using the waste heat accounts for the main R&D trend, through which the thermal heat in the slag could be transformed into high quality chemical energy in the fuel gas. Moreover, these chemical methods should be extended to an industrial scale to realize their commercial application, which is the only way by which the substantial energy in the slags could be extracted, i.e., amounting to 16 million tons of standard coal in China.

  9. Industrial Tests to Modify Molten Copper Slag for Improvement of Copper Recovery

    Science.gov (United States)

    Guo, Zhengqi; Zhu, Deqing; Pan, Jian; Zhang, Feng; Yang, Congcong

    2018-04-01

    In this article, to improve the recovery of copper from copper slag by flotation process, industrial tests of the modification process involving addition of a composite additive into molten copper slag were conducted, and the modified slag was subjected to the flotation process to confirm the modification effect. The phase evolution of the slag in the modification process was revealed by thermodynamic calculations, x-ray diffraction, optical microscopy and scanning electron microscopy. The results show that more copper was transformed and enriched in copper sulfide phases. The magnetite content in the modified slag decreased, and that of "FeO" increased correspondingly, leading to a better fluidity of the molten slag, which improved the aggregation and growth of fine particles of the copper sulfide minerals. Closed-circuit flotation tests of the original and modified slags were conducted, and the results show that the copper recovery increased obviously from 69.15% to 73.38%, and the copper grade of concentrates was elevated slightly from 20.24% to 21.69%, further confirming that the industrial tests of the modification process were successful. Hence, the modification process has a bright future in industrial applications for enhancing the recovery of copper from the copper slag.

  10. Superconducting magnetic separation of ground steel slag powder for recovery of resources

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, H. W.; Kim, J. J.; Kim, Young Hun [Andong National University, Andong (Korea, Republic of); Ha, D. W. [Korea Electrotechnology Research Institute, Changwon (Korea, Republic of); Choi, J. H. [Dept. of Environmental Engineering, Catholic University of Pusan, Pusan (Korea, Republic of)

    2017-03-15

    Steel slag has been considered as an industrial waste. A huge amount of slag is produced as a byproduct and the steel slag usually has been dumped in a landfill site. However the steel slag contains valuable resources such as iron, copper, manganese, and magnesium. Superconducting magnetic separation has been applied on recovery of the valuable resources from the steel slag and this process also has intended to reduce the waste to be dumped. Cryo-cooled Nb-Ti superconducting magnet with 100 mm bore and 600 mm of height was used as the magnetic separator. The separating efficiency was evaluated in the function of magnetic field. A steel slag was ground and analyzed for the composition. Iron containing minerals were successfully concentrated from less iron containing portion. The separation efficiency was highly dependent on the particle size giving higher separating efficiency with finer particle. The magnetic field also effects on the separation ratio. Current study showed that an appropriate grinding of slag and magnetic separation lead to the recovery of metal resources from steel slag waste rather than dumping all of the volume.

  11. [Effects of phosphorus sources on phosphorus fractions in rhizosphere soil of wild barley genotypes with high phosphorus utilization efficiency].

    Science.gov (United States)

    Cai, Qiu-Yan; Zhang, Xi-Zhou; Li, Ting-Xuan; Chen, Guang-Deng

    2014-11-01

    High P-efficiency (IS-22-30, IS-22-25) and low P-efficiency (IS-07-07) wild barley cultivars were chosen to evaluate characteristics of phosphorus uptake and utilization, and properties of phosphorus fractions in rhizosphere and non-rhizosphere in a pot experiment with 0 (CK) and 30 mg P · kg(-1) supplied as only Pi (KH2PO4), only Po (phytate) or Pi + Po (KH2PO4+ phytate). The results showed that dry matter and phosphorus accumulation of wild barley in the different treatments was ranked as Pi > Pi + Po > Po > CK. In addition, dry matter yield and phosphorus uptake of wild barley with high P-efficiency exhibited significantly greater than that with low P-efficiency. The concentration of soil available phosphorus was significantly different after application of different phosphorus sources, which was presented as Pi > Pi + Po > Po. The concentration of soil available phosphorus in high P-efficiency wild barley was significantly higher than that of low P-efficiency in the rhizosphere soil. There was a deficit in rhizosphere available phosphorus of high P-efficiency wild barley, especially in Pi and Pi+Po treatments. The inorganic phosphorus fractions increased with the increasing Pi treatment, and the concentrations of inorganic phosphorus fractions in soil were sorted as follows: Ca10-P > O-P > Fe-P > Al-P > Ca2-P > Ca8-P. The contents of Ca2-P and Ca8-P for high P-efficiency wild barley showed deficits in rhizosphere soil under each phosphorus source treatment. In addition, enrichment of Al-P and Fe-P was observed in Pi treatment in rhizosphere soil. The concentrations of organic phosphorus fractions in soil were sorted as follows: moderate labile organic phosphorus > moderate resistant, resistant organic phosphorus > labile organic phosphorus. The labile and moderate labile organic phosphorus enriched in rhizosphere soil and the greatest enrichment appeared in Pi treatment. Furthermore, the concentrations of moderate resistant organic phosphorus and resistant

  12. Artificial intelligence-based computer modeling tools for controlling slag foaming in electric arc furnaces

    Science.gov (United States)

    Wilson, Eric Lee

    Due to increased competition in a world economy, steel companies are currently interested in developing techniques that will allow for the improvement of the steelmaking process, either by increasing output efficiency or by improving the quality of their product, or both. Slag foaming is one practice that has been shown to contribute to both these goals. However, slag foaming is highly dynamic and difficult to model or control. This dissertation describes an effort to use artificial intelligence-based tools (genetic algorithms, fuzzy logic, and neural networks) to both model and control the slag foaming process. Specifically, a neural network is trained and tested on slag foaming data provided by a steel plant. This neural network model is then controlled by a fuzzy logic controller, which in turn is optimized by a genetic algorithm. This tuned controller is then installed at a steel plant and given control be a more efficient slag foaming controller than what was previously used by the steel plant.

  13. Heavy metal recovery from electric arc furnace steel slag by using hydrochloric acid leaching

    Science.gov (United States)

    Wei, Lim Jin; Haan, Ong Teng; Shean Yaw, Thomas Choong; Chuah Abdullah, Luqman; Razak, Mus'ab Abdul; Cionita, Tezara; Toudehdehghan, Abdolreza

    2018-03-01

    Electric Arc Furnace steel slag (EAFS) is the waste produced in steelmaking industry. Environmental problem such as pollution will occur when dumping the steel slag waste into the landfill. These steel slags have properties that are suitable for various applications such as water treatment and wastewater. The objective of this study is to develop efficient and economical chlorination route for EAFS extraction by using leaching process. Various parameters such as concentration of hydrochloric acid, particle size of steel slag, reaction time and reaction temperature are investigated to determine the optimum conditions. As a result, the dissolution rate can be determined by changing the parameters, such as concentration of hydrochloric acid, particle size of steel slag, reaction time and reaction temperature. The optimum conditions for dissolution rates for the leaching process is at 3.0 M hydrochloric acid, particle size of 1.18 mm, reaction time of 2.5 hour and the temperature of 90°C.

  14. Precipitation of metallic chromium during rapid cooling of Cr2O3 slags

    Directory of Open Access Journals (Sweden)

    J. Burja

    2017-01-01

    Full Text Available The slag systems of CaO-SiO2- Cr2O3 and Al2O3-CaO-MgO-SiO2- Cr2O3 were analyzed. These slag systems occur in the production of stainless steel and are important from the process metallurgy point of view. Synthetic slag samples with different chromium oxide content were prepared and melted. The melted slag samples where then rapidly cooled on large steel plates, so that the high temperature microstructure was preserved. The samples were analyzed by scanning electron microscopy (SEM and X-ray diffraction (XRD. The precipitation of different chromium oxide phases was studied, but most importantly the precipitation of metallic chromium was observed. These findings help us interpret industrial slag samples.

  15. Research on the compressive strength of basic magnesium salts and cyanide slag solidified body

    Science.gov (United States)

    Tu, Yubo; Han, Peiwei; Ye, Shufeng; Wei, Lianqi; Zhang, Xiaomeng; Fu, Guoyan; Yu, Bo

    2018-02-01

    The solidification of cyanide slag by using basic magnesium salts could reduce pollution and protect the environment. Experiments were carried out to investigate the effects of age, mixing amount of cyanide slag, water cement ratio and molar ratio of MgO to MgSO4 on the compressive strength of basic magnesium salts and cyanide slag solidified body in the present paper. It was found that compressive strength of solidified body increased with the increase of age, and decreased with the increase of mixing amount of cyanide slag and water cement ratio. The molar ratio of MgO to MgSO4 should be controlled in the range from 9 to 11 when the mixing amount of cyanide slag was larger than 80 mass%.

  16. Strength and Drying Shrinkage of Alkali-Activated Slag Paste and Mortar

    Directory of Open Access Journals (Sweden)

    Mao-chieh Chi

    2012-01-01

    Full Text Available The aim of this study is to investigate the strengths and drying shrinkage of alkali-activated slag paste and mortar. Compressive strength, tensile strength, and drying shrinkage of alkali-activated slag paste and mortar were measured with various liquid/slag ratios, sand/slag ratios, curing ages, and curing temperatures. Experimental results show that the higher compressive strength and tensile strength have been observed in the higher curing temperature. At the age of 56 days, AAS mortars show higher compressive strength than Portland cement mortars and AAS mortars with liquid/slag ratio of 0.54 have the highest tensile strength in all AAS mortars. In addition, AAS pastes of the drying shrinkage are higher than AAS mortars. Meanwhile, higher drying shrinkage was observed in AAS mortars than that observed comparable Portland cement mortars.

  17. Phosphorus oxide gate dielectric for black phosphorus field effect transistors

    Science.gov (United States)

    Dickerson, W.; Tayari, V.; Fakih, I.; Korinek, A.; Caporali, M.; Serrano-Ruiz, M.; Peruzzini, M.; Heun, S.; Botton, G. A.; Szkopek, T.

    2018-04-01

    The environmental stability of the layered semiconductor black phosphorus (bP) remains a challenge. Passivation of the bP surface with phosphorus oxide, POx, grown by a reactive ion etch with oxygen plasma is known to improve photoluminescence efficiency of exfoliated bP flakes. We apply phosphorus oxide passivation in the fabrication of bP field effect transistors using a gate stack consisting of a POx layer grown by reactive ion etching followed by atomic layer deposition of Al2O3. We observe room temperature top-gate mobilities of 115 cm2 V-1 s-1 in ambient conditions, which we attribute to the low defect density of the bP/POx interface.

  18. Fabrication of slag-glass composite with controlled porosity

    Directory of Open Access Journals (Sweden)

    Ranko Adziski

    2008-06-01

    Full Text Available The preparation and performance of porous ceramics made from waste materials were investigated. Slag from thermal electrical plant Kakanj (Bosnia and Herzegovina with defined granulations: (0.500÷0.250 mm; (0.250÷0.125 mm; (0.125÷0.063 mm; (0.063÷0.045 mm and 20/10 wt.% of the waste TV screen glass with a granulation <0.063 mm were used for obtaining slag-glass composites with controlled porosity. The one produced from the slag powder fraction (0.125÷0.063 mm and 20 wt.% TV screen glass, sintered at 950°C/2h, was considered as the optimal. This system possesses open porosity of 26.8±1.0%, and interconnected pores with the size of 250–400 μm. The values of E-modulus and bending strength of this composite were 10.6±0.6 GPa and 45.7±0.7 MPa, respectively. The coefficient of thermal expansion was 8.47·10-6/°C. The mass loss in 0.1M HCl solution after 30 days was 1.2 wt.%. The permeability and the form coefficient of the porous composite were K0=0.12 Da and C0=4.53·105 m-1, respectively. The porous composite shows great potential to be used as filters, diffusers for water aeration, dust collectors, acoustic absorbers, etc.

  19. ESR hollows molten metal/slag interface detection

    International Nuclear Information System (INIS)

    Harris, B.; Klein, H.J.

    1983-01-01

    A system for detecting the location of a molten metal/slag interface during the casting of electroslag remelted hollows includes a gamma ray radiation source and a scintillation counter. The source and counter reside outside the casting mould and are held in fixed spatial relationships with respect to one another and with respect to the mandrel. The radiation from the source is directed chordally through the mould and through the annular casting zone, defined between the sidewalls of the upwardly driven mandrel and the mould without contacting said mandrel. The counter provides an electrical signal responsive to the rate of radiation events detected thereby. (author)

  20. Alkali-activated blast furnace slag-zeolite cements and concretes

    International Nuclear Information System (INIS)

    Rakhimov, R.; Rakhimova, N.

    2012-01-01

    The aim of this work has been the study of alkali-activated slag-zeolite cements and concretes based on them. Various compositions have been tested and some characteristics such as the compressive strength have been measured versus zeolite additions. A table lists the specific surface area and particle size distributions of different cements. The conclusions of the study are the following. First, alkali-activated slag cements and concretes based on them are effective for immobilization of radioactive wastes and the production of building structures, designed for high radiation load. Secondly, zeolite-containing mineral additions are able to increase the immobilization capacity and radiation resistance of alkali-activated blast furnace slag cements and concretes. Thirdly, the efficiency of different zeolite-containing additions - 10% to increase alkali-activated blast furnace slag-zeolite cement strength was established. It is with alkaline components of water-glass, sodium carbonate, sodium sulphate. Fourth, the effective way of introducing zeolite additions in alkali-activated blast furnace slag-zeolite cement is inter-grinding of the slag and addition. Increase in strength of alkali-activated blast furnace slag-zeolite cement stone is 40% higher than that of the stone of a mixture of separately milled components. Fifth, Alkali-activated blast furnace slag-zeolite cements with zeolite-containing additions with a compressive strength of 10.1 to 140 MPa; alkali-activated blast furnace slag-zeolite cements mortars with compressive strength from 35.2 to 97.7 MPa; alkali-activated blast furnace slag-zeolite cements concretes with compressive strength up to 84.5 MPa and frost resistant up to 800 cycles were obtained

  1. Evaluation of copper slag to catalyze advanced oxidation processes for the removal of phenol in water

    Energy Technology Data Exchange (ETDEWEB)

    Huanosta-Gutierrez, T. [Instituto de Ingenieria, Coordinacion de Ingenieria Ambiental, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Coyoacan 04510, Mexico, D.F. (Mexico); Dantas, Renato F., E-mail: falcao@angel.qui.ub.es [Departament d' Enginyeria Quimica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain); Ramirez-Zamora, R.M. [Instituto de Ingenieria, Coordinacion de Ingenieria Ambiental, Universidad Nacional Autonoma de Mexico, Cd. Universitaria, Coyoacan 04510, Mexico, D.F. (Mexico); Esplugas, S. [Departament d' Enginyeria Quimica, Universitat de Barcelona, Marti i Franques 1, 08028 Barcelona (Spain)

    2012-04-30

    Highlights: Black-Right-Pointing-Pointer We evaluate the use of an industrial residue (copper slag) as catalyst in water treatment. Black-Right-Pointing-Pointer The copper slag was effective to remove organic pollutants (phenol) from water. Black-Right-Pointing-Pointer During experimentation, Cu and Fe leaching were not higher than the acceptable levels. Black-Right-Pointing-Pointer Slag/H{sub 2}O{sub 2}/UV and slag/H{sub 2}O{sub 2} treatments promoted biodegradability increment of the contaminated water. Black-Right-Pointing-Pointer The control of the reaction time would minimize the environmental impact of the produced effluents in terms of acute toxicity. - Abstract: The aim of this work was to evaluate the use of copper slag to catalyze phenol degradation in water by advanced oxidation processes (AOPs). Copper slag was tested in combination with H{sub 2}O{sub 2} (slag/H{sub 2}O{sub 2}) and H{sub 2}O{sub 2}/UV (slag/H{sub 2}O{sub 2}/UV). The studied methods promoted the complete photocatalytic degradation of phenol. Besides, they were able to reduce about 50% the TOC content in the samples. Slag/H{sub 2}O{sub 2}/UV and slag/H{sub 2}O{sub 2} treatments have favored biodegradability increment along the reaction time. Nevertheless, the irradiated method achieved higher values of the biodegradability indicator (BOD{sub 5}/TOC). The toxicity assessment indicated the formation of more toxic compounds in both treatments. However, the control of the reaction time would minimize the environmental impact of the effluents.

  2. Visualisation and quantification of heavy metal accessibility in smelter slags: The influence of morphology on availability.

    Science.gov (United States)

    Morrison, Anthony L; Swierczek, Zofia; Gulson, Brian L

    2016-03-01

    The Imperial Smelting Furnace (ISF) for producing lead and zinc simultaneously has operated on four continents and in eleven countries from the 1950's. One of the process changes that the ISF introduced was the production of a finely granulated slag waste. Although this slag contained significant amounts of residual lead (Pb) and zinc (Zn), because of its glassy nature it was considered environmentally benign. From the Cockle Creek smelter near Boolaroo at the northern end of Lake Macquarie, NSW, Australia, it is estimated that around 2.1 million tonnes of the fine slag was distributed into the community and most remains where it was originally utilised. Residual tonnages of slag of this magnitude are common worldwide wherever the ISF operated. Studies of base metal smelting slags have concluded that mineralogical and morphological characteristics of the slag play a critical role in moderating environmental release of toxic elements. Scanning electron microscopy (SEM) and microanalysis of the ISF slags has shown that the Pb and associated elements are present as discrete nodules (∼6-22 μm) in the slag and that they are not associated with Zn which is contained in the glass slag phase. Using an automated SEM and analysis technique (QEMSCAN(®)) to "map" the mineralogical structure of the particles, it was possible to quantitatively determine the degree of access infiltrating fluids might have to the reaction surface of the Pb phases. The level of access decreases with increasing particle size, but in even the largest sized particles (-3350 + 2000 μm) nearly 80% of the Pb-containing phases were totally or partially accessible. These results provide evidence that the toxic elements in the slags are not contained by the glassy phase and will be vulnerable to leaching over time depending on their individual phase reactivity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The prediction and representation of phase equilibria and physicochemical properties in complex coal ash slag systems

    Energy Technology Data Exchange (ETDEWEB)

    E. Jak; A. Kondratiev; S. Christie; P.C. Hayes [Centre for Coal in Sustainable Development (CCSD), Brisbane (Australia)

    2003-07-01

    A range of problems in coal utilisation technologies, including ash slag flow in slagging gasifiers, deposit formation, slagging, fouling, fusibility tests, fluxing, blending etc, are related to the melting behaviour of the mineral matter in the coal. To assist with solving these practical issues i) thermodynamic modelling of phase equilibria, and ii) viscosity modelling studies are being undertaken at the Pyrometallurgy Research Centre (The University of Queensland, Australia) with support from the Collaborative Research Centre for Coal in Sustainable Development (CCSD). The thermodynamic modelling has been carried out using the computer system FactSage, which is used for the calculation of multi-phase slag / solid / gas / matte / alloy / salt equilibria in multi-component systems of industrial interest. A modified quasi-chemical solution model is used for the liquid slag phase. New model optimisations have been carried out, which have significantly improved the accuracy of the thermodynamic models for coal combustion processes. Viscosity modelling, using a modified Urbain formalism, is carried out in conjunction with FactSage calculations to predict the viscosities of fully liquid as well as heterogeneous, partly crystallised slags. Custom designed software packages are developed using these fundamental models for wider use by industrial researchers and engineers, and for incorporation as process control modules. The new custom-designed computer software package can be used to produce limiting operability diagrams for slag systems. These diagrams are used to describe phase equilibria and physico-chemical properties in complex slag systems. The approach is illustrated with calculations on the system SiO{sub 2}-Al{sub 2}O{sub 3}-FeO-Fe{sub 2}O{sub 3}-CaO at metallic iron saturation, slags produced in coal slagging gasifiers. 28 refs., 7 figs., 1 tab.

  4. INFLUENCE OF CURING TEMPERATURE ON THE PHYSICO-MECHANICAL, CHARACTERISTICS OF CALCIUM ALUMINATE CEMENT WITH AIR-COOLED SLAG OR WATER-COOLED SLAG

    Directory of Open Access Journals (Sweden)

    M. Heikal

    2004-12-01

    Full Text Available The nature, sequence, crystallinity and microstructure of hydrated phases were analyzed using differential scanning calorimetry (DSC, X-ray diffraction (XRD and scanning electron microscopy (SEM. The results showed that the formation of different hydrated phases was temperature dependence. The physico-mechanical and microstructural characteristics were investigated after curing at 20, 40 and 60° C. The results indicated that for the substitution of calcium aluminate cement (CAC by air-cooled slag (AS or water-cooled slag (WS at 20° C, the compressive strength increases with slag content up to 10 wt.%, then followed by a decrease with further slag substitution up to 25 wt.%; but the values are still higher than those of the neat CAC pastes at different curing ages up to 60 days. After 28 days of hydration at 40-60° C, the compressive strength increases with the slag content. This is attributed to the prevention of the conversion reaction, which was confirmed by XRD, DSC and SEM techniques, and the preferential formation of stratlingite (gehleinte-like phase. The SEM micrographs showed a close texture of hydrated CAC/slag blends made with AS or WS at 40°C due to the formation of C2ASH8 and C-S-H phases.

  5. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag - Part I: Effect of MgO

    International Nuclear Information System (INIS)

    Ben Haha, M.; Lothenbach, B.; Le Saout, G.; Winnefeld, F.

    2011-01-01

    The hydration and the microstructure of three alkali activated slags (AAS) with MgO contents between 8 and 13 wt.% are investigated. The slags were hydrated in the presence of two different alkaline activators, NaOH and Na 2 SiO 3 .5H 2 O (WG). Higher MgO content of the slag resulted in a faster reaction and higher compressive strengths during the first days. The formation of C(- A)-S-H and of a hydrotalcite-like phase was observed in all samples by X-ray diffraction (XRD), thermal analysis (TGA) and scanning electron microscopy (SEM) techniques. Increasing the MgO content of the slag from 8 to 13% increased the amount of hydrotalcite and lowered the Al uptake by C-S-H resulting in 9% higher volume of the hydrates and a 50 to 80% increase of the compressive strength after 28 days and longer for WG activated slag pastes. For NaOH activated slags only a slight increase of the compressive strength was measured.

  6. Impact of steel slag on the ammonium adsorption by zeolite and a new configuration of zeolite-steel slag substrate for constructed wetlands.

    Science.gov (United States)

    Shi, Pengbo; Jiang, Yingbo; Zhu, Hongtao; Sun, Dezhi

    2017-07-01

    The CaO dissolution from slag, as well as the effects of influencing parameters (i.e. pH and Ca 2+ concentration) on the ammonium adsorption onto zeolite, was systematically studied in this paper. Modeling results of Ca 2+ and OH - release from slag indicated that pseudo-second-order reaction had a better fitness than pseudo-first-order reaction. Changing pH value from 7 to 12 resulted in a drastic reduction of the ammonium adsorption capacity on zeolite, from the peak adsorption capacity at pH 7. High Ca 2+ concentration in solution also inhibited the adsorption of ammonium onto zeolite. There are two proposed mechanisms for steel slag inhibiting the ammonium adsorption capacity of zeolite. On the one hand, OH - released from steel slag can react with ammonium ions to produce the molecular form of ammonia (NH 3 ·H 2 O), which would cause the dissociation of NH 4 + from zeolite. On the other hand, Ca 2+ could replace the NH 4 + ions to adhere onto the surface of zeolite. An innovative substrate filling configuration with zeolite placed upstream of the steel slag was then proposed to eliminate the disadvantageous effects of steel slag. Experimental results showed that this novel filling configuration was superior to two other filling configurations in terms of ammonium removal.

  7. Perinatal Yellow Fever: A Case Report.

    Science.gov (United States)

    Diniz, Lilian Martins Oliveira; Romanelli, Roberta Maia Castro; de Carvalho, Andréa Lucchesi; Teixeira, Daniela Caldas; de Carvalho, Luis Fernando Andrade; Cury, Verônica Ferreira; Filho, Marcelo Pereira Lima; Perígolo, Graciele; Heringer, Tiago Pires

    2018-04-09

    An outbreak of yellow fever in Brazil made it possible to assess different presentations of disease such as perinatal transmission. A pregnant woman was admitted to hospital with yellow fever symptoms. She was submitted to cesarean section and died due to fulminant hepatitis. On the 6th day the newborn developed liver failure and died 13 days later. Yellow fever PCR was positive for both.

  8. AHP 47: YELLOW-HEAD HORSE

    Directory of Open Access Journals (Sweden)

    Sangs rgyas bkra shis སངས་རྒྱས་བཀྲ་ཤིས།

    2017-04-01

    Full Text Available My family had a stallion we called Rta mgo ser 'Yellow-Head Horse'. Father and two of his brothers occasionally rode it. Father said that Yellow-Head was very wild when it was taken to join local horseraces. I didn't believe that because Yellow-Head was very gentle when Mother rode it to the local monastery and also when I rode it.

  9. Titanium exposure and yellow nail syndrome

    Directory of Open Access Journals (Sweden)

    Ali Ataya

    2015-01-01

    Full Text Available Yellow nail syndrome is a rare disease of unclear etiology. We describe a patient who develops yellow nail syndrome, with primary nail and sinus manifestations, shortly after amalgam dental implants. A study of the patient's nail shedding showed elevated nail titanium levels. The patient had her dental implants removed and had complete resolution of her sinus symptoms with no change in her nail findings. Since the patient's nail findings did not resolve we do not believe titanium exposure is a cause of her yellow nail syndrome but perhaps a possible relationship exists between titanium exposure and yellow nail syndrome that requires further studies.

  10. Electric Conductivity of Phosphorus Nanowires

    International Nuclear Information System (INIS)

    Jing-Xiang, Zhang; Hui, Li; Xue-Qing, Zhang; Kim-Meow, Liew

    2009-01-01

    We present the structures and electrical transport properties of nanowires made from different strands of phosphorus chains encapsulated in carbon nanotubes. Optimized by density function theory, our results indicate that the conductance spectra reveal an oscillation dependence on the size of wires. It can be seen from the density of states and current-voltage curves that the structure of nanowires affects their properties greatly. Among them, the DNA-like double-helical phosphorus nanowire exhibits the distinct characteristic of an approximately linear I – V relationship and has a higher conductance than others. The transport properties of phosphorus nanowires are highly correlated with their microstructures. (condensed matter: structure, mechanical and thermal properties)

  11. Novel sintered ceramic materials incorporated with EAF carbon steel slag

    Science.gov (United States)

    Karayannis, V.; Ntampegliotis, K.; Lamprakopoulos, S.; Papapolymerou, G.; Spiliotis, X.

    2017-01-01

    In the present research, novel sintered clay-based ceramic materials containing electric arc furnace carbon steel slag (EAFC) as a useful admixture were developed and characterized. The environmentally safe management of steel industry waste by-products and their valorization as secondary resources into value-added materials towards circular economy have attracted much attention in the last years. EAF Carbon steel slag in particular, is generated during the manufacture of carbon steel. It is a solid residue mainly composed of rich-in- Fe, Ca and Si compounds. The experimental results show that the beneficial incorporation of lower percentages of EAFC up to 6%wt. into ceramics sintered at 950 °C is attained without significant variations in sintering behavior and physico-mechanical properties. Further heating up to 1100 °C strongly enhances the densification of the ceramic microstructures, thus reducing the porosity and strengthening their mechanical performance. On the other side, in terms of thermal insulation behavior as well as energy consumption savings and production cost alleviation, the optimum sintering temperature appears to be 950 °C.

  12. Atmospheric particulate emissions from dry abrasive blasting using coal slag

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskar Kura; Kalpalatha Kambham; Sivaramakrishnan Sangameswaran; Sandhya Potana [University of New Orleans, New Orleans, LA (United States). Department of Civil and Environmental Engineering

    2006-08-15

    Coal slag is one of the widely used abrasives in dry abrasive blasting. Atmospheric emissions from this process include particulate matter (PM) and heavy metals, such as chromium, lead, manganese, nickel. Quantities and characteristics of PM emissions depend on abrasive characteristics and process parameters. Emission factors are key inputs to estimate emissions. Experiments were conducted to study the effect of blast pressure, abrasive feed rate, and initial surface contamination on total PM (TPM) emission factors for coal slag. Rusted and painted mild steel surfaces were used as base plates. Blasting was carried out in an enclosed chamber, and PM was collected from an exhaust duct using U.S. Environment Protection Agency source sampling methods for stationary sources. Results showed that there is significant effect of blast pressure, feed rate, and surface contamination on TPM emissions. Mathematical equations were developed to estimate emission factors in terms of mass of emissions per unit mass of abrasive used, as well as mass of emissions per unit of surface area cleaned. These equations will help industries in estimating PM emissions based on blast pressure and abrasive feed rate. In addition, emissions can be reduced by choosing optimum operating conditions. 40 refs., 5 figs., 2 tabs.

  13. UTYLIZATION METHODS OF SLAGS AND ASH FROM WASTE INCINERATION PLANTS

    Directory of Open Access Journals (Sweden)

    Janusz Mikuła

    2017-06-01

    Full Text Available The paper presents modern management methods, solidification and immobilization of ash and slag from waste incineration plants. The innovative technologies for solving this kind of problem were described. Results focused on the most promising technologies of solidification, among others geopolymerization processes. The paper presents examples of the results of solidified ash and slag in the geopolymer matrix. The studies showed that the leachable of heavy metals from the geopolymer matrix containing ashes from the incineration of municipal waste qualifies them for storage in landfills for non-hazardous and inert. Moreover, these studies demonstrated practically 100% effectiveness for immobilization of the elements: bar (Ba, cadmium (Cd, zinc (Zn, mercury (Hg, nickel (Ni, lead (Pb. In the case of chromium III (Cr+3 97% level of effectiveness of the immobilization was achieved. In order to immobilize chromium VI (Cr+6 introduced additions of sulfur compounds. The study confirmed the low efficiency of the immobilization of: arsenic (As, selenium (Se and molybdenum (Mo.

  14. Experimental study on combustion and slagging characteristics of tannery sludge

    International Nuclear Information System (INIS)

    Li, Chunyu; Jiang, Xuguang; Fei, Zhenwei; Chi, Yong; Yan, Jianhua

    2010-01-01

    Incineration is the most reasonable technique for tannery sludge disposal. The combustion and gaseous products emission characteristics of tannery sludge were investigated in this study. Tendency of slagging for combustion residue was also investigated based on the composition and microscopic scanning analysis. The high content of volatile matters and ash in tannery sludge was discovered. It was shown that the thermal decomposition and combustion of tannery sludge mainly occurs in a temperature frame between 150 degree Celsius and 780 degree Celsius. Organic acid was determined as the most important gaseous pollutant at low temperature combustion. The combustion residue from a specially designed furnace was analyzed by X-ray diffractometer (XRD) and energy dispersion spectroscopy (EDS) microprobe coupled in a scanning electron micro-scope (SEM). There is large amount of Ca in the combustion residue, and CaO was the main inorganic composition in these residues. The tannery sludge studied in this paper has a strong tendency of slagging, and the fusion of the residue began at 900 degree Celsius in combustion. It was further discovered that almost all the zinc (Zn) in tannery sludge is volatilized at 900 degree Celsius. The degree of volatilization for heavy metals at 900 degree Celsius followed the order of Zn > Cd >Cu > Mn > Pb > Cr. Most of Cr in tannery sludge is enriched in the residue during combustion. The present study reveals that it is critical to control the combustion temperature for optimal combustion efficiency and minimization of pollutants emission. (author)

  15. High temperature slagging incinerator for TRU-waste treatment

    International Nuclear Information System (INIS)

    Van De Voorde, N.; Hennart, D.; Gijbels, J.; Mergan, L.

    1984-01-01

    Since 1974 the Belgian Nuclear Study Center (SCK/CEN) at Mol, with the support of the European Communities, has developed an ''integral'' system for the treatment and the conditioning of radioactive contaminated wastes. The system converts directly, at high temperature (1500 0 C), mixtures of combustibles (paper, plastics, rubber etc.) and non-combustibles (metals, soil, sludge, concrete.) contaminated with transuranium elements as well as beta-gamma emitting isotopes, into a chemically inert and physically stable slag. More than 4000 hours of successful operation, with wide variety of simulated waste composition as well as real waste, have confirmed the safe operability of the high temperature sl'Gging incinerator and the connected installations, such as sorting cells, waste shredder, off-gas purification train, slag extraction system, remoted control, and the alpha-containment building. During the fall of 1983, a final confirmation of the performance of the installation was given by the successful accomplishment of an incineration campaign of 16 to 17 tons of simulated solid plutonium contaminated wastes

  16. Sintering mechanism of blast furnace slag-kaolin ceramics

    International Nuclear Information System (INIS)

    Mostafa, Nasser Y.; Shaltout, Abdallah A.; Abdel-Aal, Mohamed S.; El-maghraby, A.

    2010-01-01

    A general ceramics processing scheme by cold uniaxial pressing and conventional sintering process have been used to prepare ceramics from mixtures of blast furnace slag (BFS) and kaolin (10%, 30% and 50% kaolin). The properties of the ceramics were studied by measuring linear shrinkage, bulk density, apparent porosity and mechanical properties of samples heated at temperatures from 800 o C to 1100 o C. The formed crystalline phases were characterized using X-ray diffraction (XRD) and scanning electron microscope (SEM). Slag melt formed at relatively low temperatures (800-900 o C) modified the sintering process to liquid phase sintering mechanism. Combination of BFS with 10% kaolin gave the highest mechanical properties, densification and shrinkage at relatively low firing temperatures. The crystalline phases were identified as gehlenite (Ca 2 Al 2 SiO 7 ) in both BFS and BFS with 10% kaolin samples. Anorthite (CaAl 2 Si 2 O 8 ) phase increased with increasing kaolin contents. In the case of kaolin-rich mixtures (30% and 50% kaolin), increased expansion took place during firing at temperatures in the range 800-1000 o C. This effect could be attributed to the entrapment of released gases.

  17. Corrosion Behavior of Carbon Steel in Concrete Material Composed of Tin Slag Waste in Aqueous Chloride Solution

    Science.gov (United States)

    Rustandi, Andi; Cahyadi, Agung; Taruli Siallagan, Sonia; Wafa' Nawawi, Fuad; Pratesa, Yudha

    2018-01-01

    Tin slag is a byproduct of tin ore smelting process which is rarely utilized. The main purpose of this work is to investigate the use of tin slag for concrete cement material application compared to the industrial Ordinary Portland Cement (OPC). Tin slag composition was characterized by XRD and XRF analysis. The characterization results showed the similar chemical composition of tin slag and OPC. It also revealed the semi crystalline structure of tin slag sample. Several electrochemical tests were performed to evaluate corrosion behavior of tin slag, OPC and various mixed composition of both materials and the addition of CaO. The corrosion behavior of OPC and tin slag were evaluated by using Cyclic Polarization, Electrochemical Impedance Spectroscopy (EIS) and Electrochemical Frequency Modulation (EFM) methods. Aqueous sodium chloride (NaCl) solution with 3.5% w.t concentration which similar to seawater was used as the electrolyte in this work. The steel specimen used as the reinforce bar (rebar) material of the concrete was carbon steel AISI 1045. The rebar was embedded in the concrete cement which composed of OPC and the various composition of tin slag including slag without addition of CaO and slag mixed with addition of 50 % CaO. The electrochemical tests results revealed that tin slag affected its corrosion behavior which becoming more active and increasing the corrosion rate as well as decreasing the electrochemical impedance.

  18. Guiding phosphorus stewardship for multiple ecosystem services

    Science.gov (United States)

    Phosphorus is vital to agricultural production and water quality regulation. While the role of phosphorus in agriculture and water quality has been studied for decades, the benefits of sustainable phosphorus use and management for society due to its downstream impacts on multiple ecosystem services...

  19. Denitrifying woodchip bioreactor and phosphorus filter pairing to minimize pollution swapping

    Science.gov (United States)

    Christianson, Laura E.; Lepine, Christine; Sibrell, Philip; Penn, Chad J.; Summerfelt, Steven T.

    2017-01-01

    Pairing denitrifying woodchip bioreactors and phosphorus-sorbing filters provides a unique, engineered approach for dual nutrient removal from waters impaired with both nitrogen (N) and phosphorus (P). This column study aimed to test placement of two P-filter media (acid mine drainage treatment residuals and steel slag) relative to a denitrifying system to maximize N and P removal and minimize pollution swapping under varying flow conditions (i.e., woodchip column hydraulic retention times (HRTs) of 7.2, 18, and 51 h; P-filter HRTs of 7.6–59 min). Woodchip denitrification columns were placed either upstream or downstream of P-filters filled with either medium. The configuration with woodchip denitrifying systems placed upstream of the P-filters generally provided optimized dissolved P removal efficiencies and removal rates. The P-filters placed upstream of the woodchip columns exhibited better P removal than downstream-placed P-filters only under overly long (i.e., N-limited) retention times when highly reduced effluent exited the woodchip bioreactors. The paired configurations using mine drainage residuals provided significantly greater P removal than the steel slag P-filters (e.g., 25–133 versus 8.8–48 g P removed m−3 filter media d−1, respectively), but there were no significant differences in N removal between treatments (removal rates: 8.0–18 g N removed m−3 woodchips d−1; N removal efficiencies: 18–95% across all HRTs). The range of HRTs tested here resulted in various undesirable pollution swapping by-products from the denitrifying bioreactors: nitrite production when nitrate removal was not complete and sulfate reduction, chemical oxygen demand production and decreased pH during overly long retention times. The downstream P-filter placement provided a polishing step for removal of chemical oxygen demand and nitrite.

  20. Reproducing ten years of road ageing - Accelerated carbonation and leaching of EAF steel slag

    International Nuclear Information System (INIS)

    Suer, Pascal; Lindqvist, Jan-Erik; Arm, Maria; Frogner-Kockum, Paul

    2009-01-01

    Reuse of industrial aggregates is still hindered by concern for their long-term properties. This paper proposes a laboratory method for accelerated ageing of steel slag, to predict environmental and technical properties, starting from fresh slag. Ageing processes in a 10-year old asphalt road with steel slag of electric arc furnace (EAF) type in the subbase were identified by scanning electron microscopy (SEM) and leaching tests. Samples from the road centre and the pavement edge were compared with each other and with samples of fresh slag. It was found that slag from the pavement edge showed traces of carbonation and leaching processes, whereas the road centre material was nearly identical to fresh slag, in spite of an accessible particle structure. Batches of moisturized road centre material exposed to oxygen, nitrogen or carbon dioxide (CO 2 ) were used for accelerated ageing. Time (7-14 days), temperature (20-40 o C) and initial slag moisture content (8-20%) were varied to achieve the carbonation (decrease in pH) and leaching that was observed in the pavement edge material. After ageing, water was added to assess leaching of metals and macroelements. 12% moisture, CO 2 and seven days at 40 o C gave the lowest pH value. This also reproduced the observed ageing effect for Ca, Cu, Ba, Fe, Mn, Pb, Ca (decreased leaching) and for V, Si, and Al (increased leaching). However, ageing effects on SO 4 , DOC and Cr were not reproduced.

  1. Fresh and mechanical properties of self compacting concrete containing copper slag as fine aggregates

    Directory of Open Access Journals (Sweden)

    Rahul Sharma

    2017-03-01

    Full Text Available An investigation is carried out on the development of Self Compacting Concrete (SCC using copper slag (CS as fine aggregates with partial and full replacement of sand. Six different SCC mixes (60% OPC and 40% Fly Ash with 0% as control mix, 20%, 40%, 60%, 80% and 100% of copper slag substituting sand with constant w/b ratio of 0.45 were cast and tested for fresh properties of SCC. Compressive strength and splitting tensile strength were evaluated at different ages and microstructural analysis was observed at 120 days. It has been observed that the fluidity of SCC mixes was significantly enhanced with the increment of copper slag. The test results showed that the compressive strength increases up to 60% copper slag as replacement of sand, beyond which decrease in strength was observed. The highest compressive strength was obtained at 20% copper slag substitution at different curing ages among all the mixes, except for 7 days curing. The splitting tensile strength of the CS substituted mixes in comparison to control concrete was found to increase at all the curing ages but the remarkable achievement of strength was detected at 60% copper slag replacement. The microscopic view from Scanning electron microscopy (SEM demonstrated more voids, capillary channels, and micro cracks with the increment of copper slag as substitution of sand as compared to the control mix.

  2. Toxicity assessment and geochemical model of chromium leaching from AOD slag.

    Science.gov (United States)

    Liu, Bao; Li, Junguo; Zeng, Yanan; Wang, Ziming

    2016-02-01

    AOD (Argon Oxygen Decarburization) slag is a by-product of the stainless steel refining process. The leaching toxicity of chromium from AOD slag cannot be ignored in the recycling process of the AOD slag. To assess the leaching toxicity of the AOD slag, batch leaching tests have been performed. PHREEQC simulations combined with FactSage were carried out based on the detailed mineralogical analysis and petrophysical data. Moreover, Pourbaix diagram of the Cr-H2O system was protracted by HSC 5.0 software to explore the chromium speciation in leachates. It was found that AOD slag leachate is an alkaline and reductive solution. The Pourbaix diagram of the Cr-H2O system indicated that trivalent chromium, such as Cr(OH)4(-), is the major chromium species in the experimental Eh-pH region considered. However, toxic hexavalent chromium was released with maximum concentrations of 30 µg L(-1) and 18 µg L(-1) at L/S 10 and 100, respectively, during the earlier leaching stage. It concluded that the AOD slag possessed a certain leaching toxicity. After 10 d of leaching, trivalent chromium was the dominant species in the leachates, which corresponded to the results of PHREEQC simulation. Leaching toxicity of AOD slag is based on the chromium speciation and its transformation. Great attention should be focused on such factors as aging, crystal form of chromium-enriched minerals, and electrochemical characteristics of the leachates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Reductive-sulfurizing smelting treatment of smelter slag for copper and cobalt recovery

    Directory of Open Access Journals (Sweden)

    Li Y.

    2018-01-01

    Full Text Available Recovery of copper and cobalt from smelter slag using reductive-sulfurizing smelting method was performed in this study. The effects of reductive agent (coke, sulfurizing agent (pyrite, slag modifier (CaO and smelting temperature and duration on the extractive efficiencies of Cu, Co and Fe were discussed. The phase compositions and microstructure of the materials, copper-cobalt matte and cleaned slag were determined. The results showed that copper and cobalt contents in cleaned slag could decrease averagely to 0.18% and 0.071% respectively after cleaning. 91.99% Cu and 92.94% Co and less than 38.73% Fe were recovered from the smelter slag under the optimum conditions: 6 wt.% coke, 20 wt.% pyrite and 6 wt.% CaO addition to the smelter slag, smelting temperature of 1350°C and smelting duration of 3h. The addition of CaO can increase the selectivity of Co recovery. The cleaning products were characterized by XRD and SEM-EDS analysis. The results showed that the main phases of copper-cobalt matte were iron sulfide (FeS, geerite (Cu8S5, iron cobalt sulfide (Fe0.92Co0.08S and Fe-Cu-Co alloy. The cleaned slag mainly comprised fayalite (Fe2SiO4, hedenbergite (CaFe(Si2O6 and magnetite (Fe3O4.

  4. Some Insights to the Reuse of Dredged Marine Soils by Admixing with Activated Steel Slag

    Directory of Open Access Journals (Sweden)

    Chee-Ming Chan

    2014-01-01

    Full Text Available Regular dredging is necessary for the development of coastal regions and the maintenance of shipping channels. The dredging process dislodges sediments from the seabed, and the removed materials, termed dredged marine soils, are generally considered a geowaste for dumping. However, disposal of the dredged soils offshores can lead to severe and irreversible impact on the marine ecosystem, while disposal on land often incurs exorbitant costs with no guarantee of zero-contamination. It is therefore desirable to reuse the material, and one option is solidification with another industrial waste, that is, steel slag. This paper describes the exploratory work of admixing dredged marine soil with activated steel slag for improvement of the mechanical properties. An optimum activation concentration of NaOH was introduced to the soil-slag mixture for uniform blending. Specimens were prepared at different mix ratios then left to cure for up to 4 weeks. The unconfined compressive strength test was conducted to monitor the changes in strength at predetermined intervals. It was found that the strength does not necessarily increase with higher steel slag content, indicating an optimum slag content required for the maximum solidification effect to take place. Also, regardless of the slag content, longer curing time produces greater strength gain. In conclusion, steel slag addition to dredged sediments can effectively strengthen the originally weak soil structure by both the “cementation” and “filler” effects, though the combined effects were not distinguished in the present study.

  5. Synthesis of inorganic polymers using fly ash and primary lead slag.

    Science.gov (United States)

    Onisei, S; Pontikes, Y; Van Gerven, T; Angelopoulos, G N; Velea, T; Predica, V; Moldovan, P

    2012-02-29

    The present work reports on the synthesis and properties of inorganic polymers ("geopolymers") made of 100% fly ash from lignite's combustion, 100% primary lead slag and mixtures of the two. In the inorganic polymers with both fly ash and lead slag the main crystalline phases detected are wüstite, magnetite, sodium zinc silicate, quartz, anorthite, and gehlenite; litharge partially dissolves. FTIR analysis in these samples revealed that the main peaks and bands of end members also exist, along with a new amorphous reaction product. In terms of microstructure, both fly ash and lead slag dissolve and contribute in the binding phase whereas the larger particles act as aggregates. For an increasing lead slag in the composition, the binding phase is changing in chemistry and reaches PbO values higher than 50 wt.% for the 100% lead slag inorganic polymer. Regarding the properties of fly ash and lead slag inorganic polymers, compressive strength is higher than 35 MPa in all cases and water absorption diminishes as the lead slag content increases. A comparison of leaching results before and after polymerisation reveals that pH is an important factor as Pb is immobilised in the binding phase, unlike Zn and As. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. STEEL-SLAG AS SUBSTITUTE TO NATURAL AGGREGATES, PROPERTIES AND THE INTERFACIAL TRANSITION ZONE

    Directory of Open Access Journals (Sweden)

    Han Ay Lie

    2012-02-01

    Full Text Available Steel-slag is a residual product of the steel industry that has potential ability to pollute the ground water and soil containing heavy metals. To overcome this problem, attempts have been made for using the slag as substitute for both coarse and fine aggregates in concrete. The solidification process will prevent the metal components from polluting the water and soil. Test results on the mechanical properties of slag-concrete showed that while the compression strength of slag-concrete increased significantly as a function of slag-to-natural aggregate’s use, the tensile strength dropped accordingly. The substitution of fine-slag to Muntilan sand was even more negative, the compression strength decreased as a function of slag use. Research into the influences of the Interfacial Transition Zone was conducted, since the ITZ itself forms a weak link within the concrete matrix. The SEM tests were performed at the Quarter Laboratory, Department of Geology in Bandung using a Scanning Electron Microscope type JEOL.

  7. Investigation of using steel slag in hot mix asphalt for the surface course of flexible pavements

    Science.gov (United States)

    Nguyen, Hien Q.; Lu, Dai X.; Le, Son D.

    2018-04-01

    The rapid development of heavy industry in Vietnam leads to the establishments of steel industry. Steel slag, a by-product of steelwork industry, under Vietnamese’s law, was considered as a deleterious solid waste which needed to be processed and landfilled. However, this has changed recently, and steel slag is now seen as a normal or non-deleterious solid waste, and has been studied for reuse in the construction industry. In this study, steel slag was used, as a replacement for mineral aggregate, in hot mix asphalt. Two hot mix asphalt mixtures with an equivalent nominal aggregate size of 12.5 (C12.5) and 19 mm (C19) were produced using steel slag. In addition, one conventional hot mix asphalt mixture of C19 was produced using mineral aggregate for comparison purpose. Investigation in laboratory condition and trial sections was carried out on Marshall tests, surface roughness, skid resistance, and modulus of the pavement before and after applying a new surface course of hot mix asphalt. The study showed that all steel slag asphalt mixtures passed the Marshall stability and flow test requirements. The skid resistance of steel slag hot mix asphalt mixtures for the surface course satisfied the Vietnamese specification for asphalt. Moreover, the pavement sections with the surface course of steel slag hot mix asphalt showed a considerable higher modulus than that of the conventional one. Only the roughness of the surface course paved with C19 did not pass the requirement of the specification.

  8. Effect of blast furnace slag on self-healing of microcracks in cementitious materials

    International Nuclear Information System (INIS)

    Huang, Haoliang; Ye, Guang; Damidot, Denis

    2014-01-01

    The physico-chemical process of self-healing in blast furnace slag cement paste was investigated in this paper. With a high slag content i.e., 66% in cement paste and saturated Ca(OH) 2 solution as activator, it was found that the reaction products formed in cracks are composed of C-S-H, ettringite, hydrogarnet and OH–hydrotalcite. The fraction of C-S-H in the reaction products is much larger than the other minerals. Large amount of ettringite formed in cracks indicates the leaching of SO 4 2− ions from the bulk paste and consequently the recrystallization. Self-healing proceeds fast within 50 h and then slows down. According to thermodynamic modeling, when the newly formed reaction products are carbonated, the filling fraction of crack increases first and then decreases. Low soluble minerals such as silica gel, gibbsite and calcite are formed. Compared to Portland cement paste, the potential of self-healing in slag cement paste is higher when the percentage of slag is high. - Highlights: • Self-healing reaction products in slag cement paste were characterized. • Self-healing reaction products formed in time were quantified with image analysis. • Self-healing in slag cement paste was simulated with a reactive transport model. • Effect of carbonation on self-healing was investigated by thermodynamic modeling. • Effect of slag on self-healing was discussed based on experiments and simulation

  9. Slag Behavior in Gasifiers. Part I: Influence of Coal Properties and Gasification Conditions

    Directory of Open Access Journals (Sweden)

    Ping Wang

    2013-02-01

    Full Text Available In the entrained-flow gasifiers used in integrated gasification combined cycle (IGCC plants, the majority of mineral matter transforms to liquid slag on the wall of the gasifier and flows out the bottom. However, a small fraction of the mineral matter is entrained (as fly ash with the raw syngas out of the gasifier to downstream processing. This molten/sticky fly ash could cause fouling of the syngas cooler. To improve gasification availability through better design and operation of the gasification process, a better understanding of slag behavior and the characteristics of the slagging process is needed. Char/ash properties, gas compositions in the gasifier, the gasifier wall structure, fluid dynamics, and plant operating conditions (mainly temperature and oxygen/carbon ratio all affect slagging behavior. Because coal has varying ash content and composition, different operating conditions are required to maintain the slag flow and limit problems downstream. In Part I, we review the main types and the operating conditions of entrained-flow gasifiers and coal properties used in IGCC plants; we identify and discuss the key coal ash properties and the operating conditions impacting slag behavior; finally, we summarize the coal quality criteria and the operating conditions in entrained-flow gasifiers. In Part II, we discuss the constitutive modeling related to the rheological studies of slag flow.

  10. NONEQUILIBRIUM SULFUR CAPTURE & RETENTION IN AN AIR COOLED SLAGGING COAL COMBUSTOR

    Energy Technology Data Exchange (ETDEWEB)

    Bert Zauderer

    2003-04-21

    Calcium oxide injected in a slagging combustor reacts with the sulfur from coal combustion to form sulfur-bearing particles. The reacted particles impact and melt in the liquid slag layer on the combustor wall by the centrifugal force of the swirling combustion gases. Due to the low solubility of sulfur in slag, it must be rapidly drained from the combustor to limit sulfur gas re-evolution. Prior analyses and laboratory scale data indicated that for Coal Tech's 20 MMBtu/hour, air-cooled, slagging coal combustor slag mass flow rates in excess of 400 lb/hr should limit sulfur re-evolution. The objective of this 42-month project was to validate this sulfur-in-slag model in a group of combustor tests. A total of 36 days of testing on the combustor were completed during the period of performance of this project. This was more that double the 16 test days that were required in the original work statement. The extra tests were made possible by cost saving innovations that were made in the operation of the combustor test facility and in additional investment of Coal Tech resources in the test effort. The original project plan called for two groups of tests. The first group of tests involved the injection of calcium sulfate particles in the form of gypsum or plaster of Paris with the coal into the 20 MMBtu/hour-combustor. The second group of tests consisted of the entire two-step process, in which lime or limestone is co-injected with coal and reacts with the sulfur gas released during combustion to form calcium sulfate particles that impact and dissolve in the slag layer. Since this sulfur capture process has been validated in numerous prior tests in this combustor, the primary effort in the present project was on achieving the high slag flow rates needed to retain the sulfur in the slag.

  11. Perspectives regarding the use of metallurgical slags as secondary metal resources - A review of bioleaching approaches.

    Science.gov (United States)

    Potysz, Anna; van Hullebusch, Eric D; Kierczak, Jakub

    2018-05-05

    Smelting activity by its very nature produces large amounts of metal-bearing waste, often called metallurgical slag(s). In the past, industry used to dispose of these waste products at dumping sites without the appropriate environmental oversight. Once there, ongoing biogeochemical processes affect the stability of the slags and cause the release of metallic contaminants. Rather than viewing metallurgical slags as waste, however, such deposits should be viewed as secondary metal resources. Metal bioleaching is a "green" treatment route for metallurgical slags, currently being studied under laboratory conditions. Metal-laden leachates obtained at the bioleaching stage have to be subjected to further recovery operations in order to obtain metal(s) of interest to achieve the highest levels of purity possible. This perspective paper considers the feasibility of the reuse of base-metal slags as secondary metal resources. Special focus is given to current laboratory bioleaching approaches and associated processing obstacles. Further directions of research for development of more efficient methods for waste slag treatment are also highlighted. The optimized procedure for slag treatment is defined as the result of this review and should include following steps: i) slag characterization (chemical and phase composition and buffering capacity) following the choice of initial pH, ii) the choice of particle size, iii) the choice of the liquid-to-solid ratio, iv) the choice of microorganisms, v) the choice of optimal nutrient supply (growth medium composition). An optimal combination of all these parameters will lead to efficient extraction and generation of metal-free solid residue. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Study of controlled leaching process of steel slag in Soxhlet extractor aiming employment in pavements

    International Nuclear Information System (INIS)

    Costa, Kissyla Avila; Guimaraes, Antonio Carlos Rodrigues; Reis, Marcelo de Miranda; Santana, Claudeny Simone Alves

    2017-01-01

    This work addresses the characterization of physical, chemical and mechanical properties of steel slag as an alternative aggregation before and after leaching testing controlled Soxhlet extractor. The material it was characterized before going through the natural leaching process and after controlled leaching in different periods of 24, 56, 96, 120 hours. The steel slag was subjected in the laboratory to simulate the precipitation in Soxhlet equipment to evaluate its physical, chemical and mechanical properties after each period described. The study of the process of leaching in steel slag searched to understand the influence of the washing process in a slag behavior in such a process. The physical characterization occurred through traditional testing of coarse aggregates, the chemical characterization through the testing of Scanning Electron Microscopy (SEM) completed by Dispersive Spectroscopy Energy (DSE) and X- ray diffraction and the mechanical characterization through testing of standardized expansion and adapted. The sample virgin, without receiving process of stabilization by controlled leaching, showed satisfactory results in the physics characterization when compared to conventional aggregates, the chemical characterization proved to be a steel slag with high contents of CaO, MgO and FeO, the mechanical characterization demonstrated that, although the degree of expansibility of the slag is low demonstrated that this should not be disregarded in the paving work. After controlled leaching the steel slag showed no significant loss of its physical properties. As the mechanical testing of expansion had decreased the potential of expansibility after leaching periods. It is concluded that the leaching process in a Soxhlet extractor is of importance in the study the properties of steel slag, once covering several days of leaching was reduced potential for expansion, limiting feature in the use of steel slag for paving. (author)

  13. Phosphorus requirement in laying hens

    NARCIS (Netherlands)

    Lambert, W.; Krimpen, van M.M.; Star, L.

    2014-01-01

    It was hypothesized that P supply by feed in alternative housing systems can be lowered without negative effects on bone quality and production performance. Therefore, the objectives of the current study were 1) to update the retainable phosphorus (rP) needs of two modern laying hen breeds from 36

  14. Greening the global phosphorus cycle

    NARCIS (Netherlands)

    Withers, Paul J.A.; Elser, James J.; Hilton, Julian; Ohtake, Hisao; Schipper, Willem J.; Dijk, Van Kimo C.

    2015-01-01

    The sustainability of global phosphorus (P) use is emerging as a major societal goal to secure future food, energy, and water security for a growing population. Phosphate rock (PR) is a critical raw material whose inefficiency of use is leading to widespread eutrophication and uncertainties about

  15. Anthropogenic phosphorus flows in Denmark

    DEFF Research Database (Denmark)

    Klinglmair, Manfred

    Phosphorus (P) is an essential plant nutrient mined from the earth’s crust as phosphate rock. It cannot be substituted, making it a crucial resource for food production. For the EU, future phosphate scarcity is a potential geopolitical and strategic threat. An increasing worldwide phosphate demand...

  16. Dimension yields from yellow-poplar lumber

    Science.gov (United States)

    R. C. Gilmore; J. D. Danielson

    1984-01-01

    The available supply of yellow poplar (Liriodendron tulipifera L.), its potential for new uses, and its continuing importance to the furniture industry have created a need to accumulate additional information about this species. As an aid to better utilization of this species, charts for determining cutting stock yields from yellow poplar lumber are presented for each...

  17. Palm yellows phytoplasmas and their genetic classification ...

    African Journals Online (AJOL)

    Palm yellows phytoplasmas have been a subject of debate because of two recent outbreaks. Firstly, a lethal yellowing-type phytoplasma disease was recorded on a number of palm species of mainly the genus Phoenix in Florida in 2008. Shortly afterwards, Sabal palmetto which has never been threatened by a ...

  18. Yellow nail syndrome and bronchiectasis | Adegboye | Nigerian ...

    African Journals Online (AJOL)

    The Yellow Nail Syndrome includes slow growing, opaque yellow nails with exaggerated lateral curvature, associated with lymphoedema and chronic respiratory disorders. The nail changes may precede the lymphoedema by a number of years. Bronchiectasis may be the only chronic respiratory disorder; others include ...

  19. Few-layer black phosphorus nanoparticles.

    Science.gov (United States)

    Sofer, Zdenek; Bouša, Daniel; Luxa, Jan; Mazanek, Vlastimil; Pumera, Martin

    2016-01-28

    Herein, black phosphorus quantum dots and nanoparticles of a few layer thickness were prepared and characterized using STEM, AFM, dynamic light scattering, X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectroscopy and photoluminescence. Impact electrochemistry of the induvidual black phosphorus nanoparticles allows their size determination. The centrifugation of colloidal black phosphorus nanoparticles allowed separation of quantum dots with sizes up to 15 nm. These black phosphorus nanoparticles exhibit a large band gap and are expected to find a wide range of applications from semiconductors to biomolecule tags. The use of black phosphorus nanoparticles for vapour sensing was successfully demonstrated.

  20. SEQUENTIAL ELECTRODIALYTIC EXTRACTION OF PHOSPHORUS COMPOUNDS

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention relates to an apparatus for electrodialytic extraction of phosphorus from a particulate material in suspension and to a method for electrodialytic phosphorus recovery, which uses the apparatus. The method may be applied for wastewater treatment, and/or treatment of particulate...... material rich in phosphorus. The present invention provides an apparatus for electrodialytic extraction of phosphorus from a particulate material comprising acidic and/or alkaline soluble phosphorus compounds, in suspension, comprising: • a first electrodialytic cell comprising a first anolyte compartment...

  1. Autoclave-hardening slag-alkali binder with high water content

    International Nuclear Information System (INIS)

    Korenevskij, V.V.; Kozyrin, N.A.; Melikhova, N.I.; Narkevich, N.K.; Ryabov, G.G.

    1987-01-01

    The results of investigations into properties of slag-alkali binder, that may be used for concretes of reactor radiation and thermal shieldings, are presented. These concretes have increased chemical stability and mechanical strength, high content of chemically bound water (approximately 14%), that is not lost under heating up to 550 deg C. Dumping and granulated slags of blast-furnace process, sodium-bicarbonate-alkali fusion cake formed at burning of adipic acid residues, technical sodium hydroxide and sodium liquid glass are used as raw material for slag-alkali binder

  2. Recovery of americium from slag and crucible wastes and its purification

    International Nuclear Information System (INIS)

    Michael, K.M.; Dabholkar, G.M.; Vijayan, K.; Ramamoorthy, N.; Narayanan, C.V.; Jambunathan, U.; Kapoor, S.C.

    1990-01-01

    A method of recovery and purification of americium-241 from slag waste streams is described. Extraction of Am from slag solution of 0.16 M HNO 3 was carried out by tri-n-butyl phosphate. After stripping with acetic acid, Am was precipitated at pH 1. This was followed by metathesis to remove Ca. Final separation of Pu from Am solution was achieved by anion exchange method using Dowex 1x4 anion exchange resin. Details of large scale recovery of Am from slag are also described. (author). 12 refs., 11 tabs., 1 fig

  3. Mineralogy and environmental stability of slags from the Tsumeb smelter, Namibia

    International Nuclear Information System (INIS)

    Ettler, Vojtech; Johan, Zdenek; Kribek, Bohdan; Sebek, Ondrej; Mihaljevic, Martin

    2009-01-01

    Three types of smelting slags originating from historically different smelting technologies in the Tsumeb area (Namibia) were studied: (i) slags from processing of carbonate/oxide ore in a Cu-Pb smelter (1907-1948), (ii) slags from Cu and Pb smelting of sulphide ores (1963-1970) and (iii) granulated Cu smelting slags (1980-2000). Bulk chemical analyses of slags were combined with detailed mineralogical investigation using X-ray diffraction analysis (XRD), scanning electron microscopy (SEM/EDS) and electron microprobe (EPMA). The slags are significantly enriched in metals and metalloids: Pb (0.97-18.4 wt.%), Cu (0.49-12.2 wt.%), Zn (2.82-12.09 wt.%), Cd (12-6940 mg/kg), As (930-75,870 mg/kg) and Sb (67-2175 mg/kg). Slags from the oldest technology are composed of primary Ca- and Pb-bearing feldspars, spinels, complex Cu-Fe and Cu-Cr oxides, delafossite-mcconnellite phases and Ca-Pb arsenates. The presence of arsenates indicates that these slags underwent long-term alteration. More recent slags are composed of high-temperature phases: Ca-Fe alumosilicates (olivine, melilite), Pb- and Zn-rich glass, spinel oxides and small sulphide/metallic inclusions embedded in glass. XRD and SEM/EDS were used to study secondary alteration products developed on the surface of slags exposed for decades to weathering on the dumps. Highly soluble complex Cu-Pb-(Ca) arsenates (bayldonite, lammerite, olivenite, lavendulan) associated with litharge and hydrocerussite were detected. To determine the mineralogical and geochemical parameters governing the release of inorganic contaminants from slags, two standardized short-term batch leaching tests (European norm EN 12457 and USEPA TCLP), coupled with speciation-solubility modelling using PHREEQC-2 were performed. Arsenic in the leachate exceeded the EU regulatory limit for hazardous waste materials (2.5 mg/L). The toxicity limits defined by USEPA for the TCLP test were exceeded for Cd, Pb and As. The PHREEQC-2 calculation predicted that

  4. Basalt Fiber for Volcanic Slag Lightweight Aggregate Concrete Research on the Impact of Performance

    Science.gov (United States)

    Xiao, Li-guang; Li, Gen-zhuang

    2018-03-01

    In order to study the effect of basalt fiber on the mechanical properties and durability of volcanic slag lightweight aggregate concrete, the experimental study on the flexural strength, compressive strength and freeze-thaw resistance of volcanic slag concrete with different basalt fiber content were carried out, the basalt fiber was surface treated with NaOH and water glass, the results show that the surface treatment of basalt fiber can significantly improve the mechanical properties, durability and other properties of volcanic slag lightweight aggregate concrete.

  5. Comparisons Study of Phosphate Removal in Unaerated and Aerated High Calcium Steel Slag Filter System of Different pH Feed

    Directory of Open Access Journals (Sweden)

    Ahmad Siti Zu Nurain

    2017-01-01

    Full Text Available Excess phosphorus in water body will lead to eutrophication. This study investigated the phosphate removal efficiencies of unaerated and aerated filter systems using high composition of Calcium (Ca steel slag as the filter media at different pH values of the wastewater influents. Lab-scale filters were developed using 25 mg/L synthetic wastewater and weekly sampling was done to monitor the phosphate removal efficiencies together with the concentration of metals (Calcium (Ca and Magnesium (Mg. The results show that both unaerated and aerated systems have excellent phosphate removal efficiency at all acidic, neutral and alkaline pH feed, though unaerated systems removed slightly better compared to aerated systems; 76-98% and 69-97% respectively. The dominant phosphate removal mechanism for aerated systems was adsorption, meanwhilefor unaerated systems; both adsorption and precipitation for acidic and neutral pH, whileprecipitation was more dominant at basic pH. The performance of unaerated systems are slightly better compared to aerated systems, however, aerated systems are recommended to be applied when simultaneous removal of nutrients (phosphorus and nitrogen are concerned.

  6. Composite cements containing natural pozzolan and granulated blast furnace slag

    Directory of Open Access Journals (Sweden)

    Irassar, E. F.

    2006-09-01

    Full Text Available For reasons of market demand and Portland cement production,the manufacture of cements with two or more separately ground additions to produce customized cements is becoming common practice.When pozzolan or slag content in this type of cements is high, however, the initial strength of the resulting product may be adversely impacted. This problem can be minimized by activating one or both of the replacement materials. The present study analyzes the effect of Portland cement additions such as physically activated natural pozzolan(up to 20% and/or granulated blast furnace slag (up to 35% on mortar flexural and compressive strength. The results show that higher strength is attained in ternary than binary cements. Initially (2 and 7 days, the highest compressive strengths are reached by mortars with up to 13% natural pozzolan and 5% slag, whereas at later ages mortars with larger proportions of additions are found to perform best.Debido a las exigencias del mercado y de la producción de cemento Portland, es cada vez más frecuente la elaboración de cementos con dos o más adiciones a partir de la molienda separada de sus constituyentes, dando origen a la formulación de los cementos a medida.Cuando el contenido de adiciones es alto, la utilización de puzolana y escoria en este tipo de cementos presenta la peculiaridad de disminuir la resistencia inicial del cemento resultante. Sin embargo, si algunas o ambas adiciones se activan, este problema puede minimizarse. En este trabajo se analiza la influencia de la incorporación al cemento Portland de puzolana natural (hasta 20% activada físicamente y/o escoria granulada de alto horno (hasta 35% sobre la resistencia a flexión y a compresión de morteros. Los resultados indican que los cementos ternarios presentan un mejor comportamiento resistente que los cementos binarios. Las máximas resistencias a compresión en las primeras edades (2 y 7 díasse alcanzan con hasta 13% de puzolana natural y 5% de

  7. Environmental Phosphorus Recovery Based on Molecular Bioscavengers

    DEFF Research Database (Denmark)

    Gruber, Mathias Felix

    Phosphorus is a ubiquitous element of all known life and as such it is found throughout numerous key molecules related to various cellular functions. The supply of phosphorus is tightly linked to global food security, since phosphorus is used to produce agricultural fertilizers, without which...... it would not be possible to feed the world population. Sadly, the current supply of phosphorus is based on the gradual depletion of limited fossil reserves, and some estimates predict that within 15-25 years we will consume more phosphorus than we can produce. There is therefore a strong international...... pressure to develop sustainable phosphorus practices as well as new technologies for phosphorus recovery. Nature has spent billions of years refining proteins that interact with phosphates. This has inspired the present work where the overall ambitions are: to facilitate the development of a recovery...

  8. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag — Part II: Effect of Al2O3

    International Nuclear Information System (INIS)

    Ben Haha, M.; Lothenbach, B.; Le Saout, G.; Winnefeld, F.

    2012-01-01

    The hydration and microstructural evolution of three alkali activated slags (AAS) with Al 2 O 3 contents between 7 and 17% wt.% have been investigated. The slags were hydrated in the presence of two different alkaline activators, NaOH and Na 2 SiO 3 ·5H 2 O. The formation of C(-A)–S–H and hydrotalcite was observed in all samples by X-ray diffraction, thermal analysis and scanning electron microscopy. Higher Al 2 O 3 content of the slag decreased the Mg/Al ratio of hydrotalcite, increased the Al incorporation in the C(-A)-S-H and led to the formation of strätlingite. Increasing Al 2 O 3 content of the slag slowed down the early hydration and a lower compressive strength during the first days was observed. At 28 days and longer, no significant effects of slag Al 2 O 3 content on the degree of hydration, the volume of the hydrates, the coarse porosity or on the compressive strengths were observed.

  9. Methods and systems for utilizing carbide lime or slag

    Science.gov (United States)

    Devenney, Martin; Fernandez, Miguel; Chen, Irvin; Calas, Guillaume; Weiss, Michael Joseph; Tester, Chantel Cabrera

    2018-02-27

    Provided herein are methods comprising a) treating a slag solid or carbide lime suspension with an ammonium salt in water to produce an aqueous solution comprising calcium salt, ammonium salt, and solids; b) contacting the aqueous solution with carbon dioxide from an industrial process under one or more precipitation conditions to produce a precipitation material comprising calcium carbonate and a supernatant aqueous solution wherein the precipitation material and the supernatant aqueous solution comprise residual ammonium salt; and c) removing and optionally recovering ammonia and/or ammonium salt using one or more steps of (i) recovering a gas exhaust stream comprising ammonia during the treating and/or the contacting step; (ii) recovering the residual ammonium salt from the supernatant aqueous solution; and (iii) removing and optionally recovering the residual ammonium salt from the precipitation material.

  10. Hydrothermal metallurgy for recycling of slag and glass

    International Nuclear Information System (INIS)

    Tanaka, Toshihiro; Yoshikawa, Takeshi; Hirai, Nobumitsu; Katsuyama, Shigeru

    2009-01-01

    The authors have applied hydrothermal reactions to develop recycling processing of slag or glass. As an example, under hydrothermal conditions such as 200 300 deg. C and 30 40MPa with H 2 O, powders made of glass can be sintered to become solidified glass materials containing about 10mass% H 2 O. When the glass containing H 2 O is heated again under normal pressure, the glass expands releasing H 2 O to make porous microstructure. H 2 O starts to emit just above the glass transition temperature. Therefore, when we have a glass with low glass transition temperature, we can make low temperature foaming glass. The SiO 2 -Na 2 O-B 2 O 3 glass is a candidate to be such a foaming glass. In this paper, we describe our recent trial on the fabrication of the low temperature foaming glass by using hydrothermal reaction.

  11. Greener durable concretes through geopolymerisation of blast furnace slag

    International Nuclear Information System (INIS)

    Rajamane, N P; Nataraja, M C; Jeyalakshmi, R; Nithiyanantham, S

    2015-01-01

    The eco-friendliness of concrete is quantified by parameters such as ‘embodied energy’ (EE) and ‘embodied CO 2 emission’ (ECO 2 e), besides duration of designed ‘service life’. It may be noted that ECO 2 e is also referred as carbon footprint (CF) in the literature. Geopolymer (GP) is an inorganic polymeric gel, a type of amorphous alumino-silicate product, which can be synthesised by polycondensation reactions. The concrete reported in this paper was prepared using industrial wastes in the form of blast furnace slag, fly ash as geopolymeric source materials and sodium silicate and sodium hydroxide as activators. Many mechanical properties such as compressive strength, chloride diffusion, steel corrosion, rapid chloride permeability test and rapid migration test are compared with Portland cement. (paper)

  12. TRU waste processing comparison: slagging pyrolysis versus modified glassmaker

    International Nuclear Information System (INIS)

    Bonner, W.F.; Cox, N.D.; Hootman, H.E.; Nelson, D.C.; Pye, D.

    1980-03-01

    A task force was assembled to make a technical comparison of the expected performance of two processing systems potentially applicable for treating TRU waste at the Idaho National Engineering Laboratory. One system contained a slagging pyrolysis incinerator; the other a modified Penberthy Electromelt glassmaker. Although the glassmaker technology is essentially undeveloped, it was assumed that the glassmaker could eventually be modified to operate as a combined waste incinerator and melter; that is, to perform the same functions as a slagger. Using a decision analysis methodology to evaluate figures-of-merit, the task force found no significant difference in the performance of the two systems. Some areas for future R and D efforts are recommended for both types of incinerators

  13. Orgin of Slag from Early Medieval Age Furnaces in Nitra

    Directory of Open Access Journals (Sweden)

    Julius Dekan

    2005-01-01

    Full Text Available Two types of archaeological artefacts from remains of Early Medieval Age furnaces excavated in Nitra are analysed. They are supposed to originate from slag of glass and iron production. Employing Mossbauer spectrometry, iron crystallographic sites are identified and compared. In all samples, Fe2+ and Fe3+ structural positions were revealed. Some of the archeological artefacts including those that were supposed to originate from glass production show a presence of metallic iron and/or magnetic oxides. Based on the results of Mossbauer effect measurements performed at room temperature as well as 77 K (liquid nitrogen temperature analytical evidence is provided that the iron sites identified are not as those usually encountered in glasses. Consequently, a conclusion is proposed that neither of the investigated furnaces was used for glass production.

  14. Computational Modeling of Arc-Slag Interaction in DC Furnaces

    Science.gov (United States)

    Reynolds, Quinn G.

    2017-02-01

    The plasma arc is central to the operation of the direct-current arc furnace, a unit operation commonly used in high-temperature processing of both primary ores and recycled metals. The arc is a high-velocity, high-temperature jet of ionized gas created and sustained by interactions among the thermal, momentum, and electromagnetic fields resulting from the passage of electric current. In addition to being the primary source of thermal energy, the arc jet also couples mechanically with the bath of molten process material within the furnace, causing substantial splashing and stirring in the region in which it impinges. The arc's interaction with the molten bath inside the furnace is studied through use of a multiphase, multiphysics computational magnetohydrodynamic model developed in the OpenFOAM® framework. Results from the computational solver are compared with empirical correlations that account for arc-slag interaction effects.

  15. Behaviour of slag HPC submitted to immersion-drying cycles

    Directory of Open Access Journals (Sweden)

    Rabah Chaid

    2016-04-01

    Full Text Available This article is part of a summary of the work developed in conjunction with the Laboratory of Civil Engineering and Mechanical Engineering from INSA Rennes and Research Unit: Materials, Processes and Environment, University of Boumerdes. One of the objectives was indeed to promote, through studies of variants, the use of local cementitious additions in the formulation of high performance concretes (HPC. The binding contribution of mineral additions to the physical, mechanical and durability of concrete was evaluated by an experimental methodology to subjugate their original granular and pozzolanic effect. The results show that the contribution of couple cement -slag intensification of the matrix is higher than that obtained when the cement is not substituted by addition. Therefore, a significant improvement in performance of concretes was observed, despite the adverse action immersion cycles - drying maintained for 365 days.

  16. Mineral CO2 sequestration by steel slag carbonation

    International Nuclear Information System (INIS)

    Huijgen, W.J.J.; Comans, R.N.J.; Witkamp, G.J.

    2005-12-01

    Mineral CO2 sequestration, i.e., carbonation of alkaline silicate Ca/Mg minerals, analogous to natural weathering processes, is a possible technology for the reduction of carbon dioxide emissions to the atmosphere. In this paper, alkaline Ca-rich industrial residues are presented as a possible feedstock for mineral CO2 sequestration. These materials are cheap, available near large point sources of CO2, and tend to react relatively rapidly with CO2 due to their chemical instability. Ground steel slag was carbonated in aqueous suspensions to study its reaction mechanisms. Process variables, such as particle size, temperature, carbon dioxide pressure, and reaction time, were systematically varied, and their influence on the carbonation rate was investigated. The maximum carbonation degree reached was 74% of the Ca content in 30 min at 19 bar pressure, 100C, and a particle size of <38 μm. The two must important factors determining the reaction rare are particle size (<2 mm to <38 μm) and reaction temperature (25-225C). The carbonation reaction was found to occur in two steps: (1) leaching of calcium from the steel slag particles into the solution; (2) precipitation of calcite on the surface of these particles. The first step and, more in particular, the diffusion of calcium through the solid matrix toward the surface appeared to be the rate-determining reaction step, The Ca diffusion was found to be hindered by the formation of a CaCO3-coating and a Ca-depleted silicate zona during the carbonation process. Research on further enhancement of the reaction rate, which would contribute to the development of a cost-effective CO2-sequestration process, should focus particularly on this mechanism

  17. Use of copper slag in the manufacture of Portland cement

    Directory of Open Access Journals (Sweden)

    Aquilar Elguézabal, A.

    2006-03-01

    Full Text Available Given its chemical and mineralogical characteristics, copper slag, a solid industrial by-product, may serve as a partial substitute for silica and hematite in raw mixes used to manufacture Portland cement clinker. The benefits of such substitution include lower production costs and energy savings. The effect of slag-containing raw mixes on the reactivity of the CaO-Si02-Al203-Fe203 system was studied at three temperatures (1,350, 1,400 and 1,450ºC. Four mixes were used: M-1 and M-2 prepared with conventional prime materials and M-3 and M-4, in which ignimbrite and hematite were substituted for slag. In M-3 the slag replaced 45.54% of the ignimbrite and 100% of the hematite, and in M-4 100% of the mineral iron. The samples were clinkerized at 1,350, 1,400 and 1,450ºC. At 1,400ºC, clinker M-3 was found to have 10.7% less free lime than M-1, while the level in M-4 it was 15.93% lower than in M-2. The presence of the main clinker phases was confirmed by X-ray diffraction, which also showed that adding slag during c/inker manufacture slightly improves raw mix burnability without generating new unwanted phases. Consequently, recovery in cement kilns would appear to be an economically and environmentally feasible alternative to coprocessing such waste, although the industrial use of slag depends on its heavy metal content.En acuerdo con las características químicas y mineralógicas de la escoria de cobre, este residuo sólido industrial puede ser utilizado en el proceso de fabricación de clínker Portland como sustituto parcial de los minerales de sílice y hematita en la formación de mezclas crudas cuyos beneficios serían: disminución de los costos de producción de mezclas crudas y del consumo calorífico. El efecto de la adición de la escoria en las mezclas crudas sobre la reactividad del sistema CaO-Si02-Al203-Fe20 3 se estudió en tres niveles de temperatura (1.350, 1.400 Y 1.450ºC. Se trabajó con cuatro mezclas crudas, M-1 y M

  18. Efficiency of open-hearth slag under different levels of nitrogen nutrition

    Energy Technology Data Exchange (ETDEWEB)

    Merzlyakov, L A

    1979-01-01

    Field and vegetational experiments have been carried out in the turf-podsolic soil in 1974-1977. Efficiency of open-hearth slag from the Izhevsk metallurgical plant depends on the level of nitrogen nutrition. The greatest addition from the slag is received at the elevated level of nitrogen nutrition. The maximum total addition for 3 years resulting from the use of slag in the field experiment constituted 54.5 double centner forage units which is higher than the addition resulting from lime by 52.7 %. Besides, the slag produced a positive effect upon the balance of the labelled /sup 15/N nitrogen in fertilizer: coefficient of the use of nitrogen in fertilizer during 2 years in the average increased by 7.1 and 11.2 % according to the nitrogen background of 230 and 460 mg/vessel.

  19. Efficiency of open-hearth slag under different levels of nitrogen nutrition

    International Nuclear Information System (INIS)

    Merzlyakov, L.A.

    1979-01-01

    Field and vegetational experiments have been carried out in the turf-podsolic soil in 1974-1977. Efficiency of open-hearth slag from Izhevsk metallurgical plant depends on the level of nitrogen nutrition. The greatest addition from the slag is received at the elevated level of nitrogen nutrition. The maximum total addition for 3 years resulting from the use of slag in the field experiment constituted 54.5 double centner forage units which is higher than the addition resulting from lime by 52.7 %. Besides, the slag produced positive effect upon the balance of the labelled 15 N nitrogen in fertilizer: coefficient of the use of nitrogen in fertilizer during 2 years in the average increased by 7.1 and 11.2 % according to the nitrogen background of 230 and 460 mg/vessel

  20. Short review on the origin and countermeasure of biomass slagging in grate furnace

    Directory of Open Access Journals (Sweden)

    Yiming eZhu

    2014-02-01

    Full Text Available Given the increasing demand for energy consumption, biomass has been more and more important as a new type of clean renewable energy source. Biomass direct firing is the most mature and promising utilization method to date, while it allows a timely solution to slagging problems. Alkali metal elements in the biomass fuel and the ash fusion behavior, as the two major origins contributing to slagging during biomass combustion, are analyzed in this paper. The slag presents various layered structures affected by the different compositions of ash particles. Besides, the high-temperature molten material which provides a supporting effect on the skeletal structure in biomass ash was proposed to evaluate the ash fusion characteristics. In addition, numerous solutions to biomass slagging, such as additives, fuel pretreatment and biomass co-firing, were also discussed.

  1. Utilizing of the metallurgical slag for production of cementless concrete mixtures

    Directory of Open Access Journals (Sweden)

    D. Baricová

    2012-10-01

    Full Text Available In process of pig iron, steel and cast iron production besides main product, also secondary products are formed, that have character of secondary raw materials and industrial wastes. The most abundant secondary product originating in the metallurgical process is furnace slag. Total amount of accured slag, also its chemical, mineralogical, physical – chemical properties and similarity with natural stones predestinate its utilisation in different fields of industry. The contribution deals with production of cementless concrete mixtures, where the main parts were formed by blast furnace granulated slag grinded and different gravel slag from blast furnace, oxygen converter and electric arc furnace. As activators of solidification different kinds of water glass were tested.

  2. Characteristics and properties of oil-well cements auditioned with blast furnace slag

    International Nuclear Information System (INIS)

    Sanchez, R.; Palacios, M.; Puertas, F.

    2011-01-01

    The present paper addresses the alkali activation of Portland cements containing blast furnace slag (20 and 30% by cement weight) with a view to the possible use of these materials in oil well construction. The hydration studies conducted showed that in cement/slag blends, the sodium silicate activator partially inhibited the dissolution of the silicate phases in the Portland cement, retarding cement hydration and reducing the precipitation of reaction products. Due to such partial inhibition, the cement/slag blends had significantly lower mechanical strength than Portland cements hydrated with water. 2 9Si and 2 7Al MAS NMR and BSE/EDX studies, in turn, showed that the CSH gel forming in the alkali-activated cement/slag pastes contained Al in tetrahedral positions and low Ca/Si ratios. (Author) 29 refs.

  3. Study on the ratio and properties of the slurry of light insulation masonry with volcanic slag

    Science.gov (United States)

    Liguang, Xiao; Dawei, Jiang

    2017-12-01

    Volcanic slag is a kind of natural high quality porous material, and it has a good thermal insulation effect, and it is an extremely rich natural resource. Therefore, this paper adopts the natural volcanic slag as the aggregate to build the insulation mortar mix design for the slag masonry, and tests the related performance of the mortar. The results show that adopts natural volcanic slag as the aggregate and the cement use fly ash to replace, and the appropriate uniform sealing pores were introduced into the mortar mix. The performance of the manufactured products can meet the requirements of JC/T890. The coefficient of thermal conductivity of lightweight masonry mortar is less than 0.14W/(m•K), and the frost resistance is greater than 100 times, and it is with a low price.

  4. Foaming Index of CaO-SiO2-FeO-MgO Slag System

    Science.gov (United States)

    Park, Youngjoo; Min, Dong Joon

    A study on the effect of FeO and MgO content on foaming index in EAF slag system was carried out. The height of the slag foam was measured by electric probe maintaining steady state in gas formation and escape. Foaming index, which is the measurement of gas capturing potential of the slag, is calculated from the foam height and gas flow rate. Viscosity and surface tension, which are the key properties for the foaming index, are calculated by Urbain's model and additive method, respectively. Dimensional analysis also performed to determine the dominancy of properties and resulted that the important factor was a ratio between viscosity and surface tension. The effect of each component on the viscosity, surface tension and foaming index of the slag is evaluated to be in strong relationship.

  5. A fitness-for-purpose evaluation of fracture critical electro-slag welds.

    Science.gov (United States)

    2009-03-01

    A fitness-for-purpose evaluation was performed on the electro-slag flange welds of the West Fremont bridge approach : superstructures, per the request of FHWA. This evaluation required gathering knowledge of the material properties, fabrication : def...

  6. Characterization Report on Sand, Slag, and Crucible Residues and on Fluoride Residues

    International Nuclear Information System (INIS)

    Murray, A.M.

    1999-01-01

    This paper reports on the chemical characterization of the sand, slag, and crucible (SS and C) residues and the fluoride residues that may be shipped from the Rocky Flats Environmental Technology Site (RFETS) to Savannah River Site (SRS)

  7. Elementary composition of the siderurgy slag by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    Oliveira, Helder de; Piau, Wilson Caixeta; Mortatti, Jefferson; Sarries, Gabriel Adrian

    2000-01-01

    The slag has been applied to the ground to neutralize its acidity, in similar way to the calcareous rock, contributing in the agriculture as corrective of the acidity alone it and source of nutrients for the plants. However, the alternative for the agricultural slag exploitation is related to metal texts heavy gifts in the slag. The objective of the present work was to survey of the chemical composition of trashes generated in blast high-oven, steel, oven of pan and fertilizers that had used in its manufacture slag of siderurgy for the technique of instrumental neutron activation analysis. The results had evidenced the existence of high variations in the elements Ce, Cr, In, K, Sb and Zn in the distinct analyzed samples. (author)

  8. Statistical approach to predict compressive strength of high workability slag-cement mortars

    International Nuclear Information System (INIS)

    Memon, N.A.; Memon, N.A.; Sumadi, S.R.

    2009-01-01

    This paper reports an attempt made to develop empirical expressions to estimate/ predict the compressive strength of high workability slag-cement mortars. Experimental data of 54 mix mortars were used. The mortars were prepared with slag as cement replacement of the order of 0, 50 and 60%. The flow (workability) was maintained at 136+-3%. The numerical and statistical analysis was performed by using database computer software Microsoft Office Excel 2003. Three empirical mathematical models were developed to estimate/predict 28 days compressive strength of high workability slag cement-mortars with 0, 50 and 60% slag which predict the values accurate between 97 and 98%. Finally a generalized empirical mathematical model was proposed which can predict 28 days compressive strength of high workability mortars up to degree of accuracy 95%. (author)

  9. A Brief Review of Viscosity Models for Slag in Coal Gasification

    Energy Technology Data Exchange (ETDEWEB)

    Massoudi, Mehrdad; Wang, Ping

    2011-11-01

    Many researchers have defined the phenomenon of 'slagging' as the deposition of ash in the radiative section of a boiler, while 'fouling' refers to the deposition of ash in the convective-pass region. Among the important parameters affecting ash deposition that need to be studied are ash chemistry, its transport, deposit growth, and strength development; removability of the ash deposit; heat transfer mechanisms; and the mode of operation for boilers. The heat transfer at the walls of a combustor depends on many parameters including ash deposition. This depends on the processes or parameters controlling the impact efficiency and the sticking efficiency. For a slagging combustor or furnace, however, the temperatures are so high that much of the coal particles are melted and the molten layer, in turn, captures more particles as it flows. The main problems with ash deposition are reduced heat transfer in the boiler and corrosion of the tubes. Common ways of dealing with these issues are soot blowing and wall blowing on a routine basis; however, unexpected or uncontrolled depositions can also complicate the situation, and there are always locations inaccessible to the use of such techniques. Studies have indicated that slag viscosity must be within a certain range of temperatures for tapping and the membrane wall to be accessible, for example, between 1300 C and 1500 C, the viscosity is approximately 25 Pa {center_dot} s. As the operating temperature decreases, the slag cools and solid crystals begin to form. In such cases the slag should be regarded as a non-Newtonian suspension, consisting of liquid silicate and crystals. A better understanding of the rheological properties of the slag, such as yield stress and shear-thinning, are critical in determining the optimum operating conditions. To develop an accurate heat transfer model in any type of coal combustion or gasification process, the heat transfer and to some extent the rheological properties

  10. NONEQUILIBRIUM SULFUR CAPTURE AND RETENTION IN AN AIR COOLED SLAGGING COAL COMBUSTOR

    International Nuclear Information System (INIS)

    Dr. Bert Zauderer

    1999-01-01

    Calcium oxide injected in a slagging combustor reacts with the sulfur from coal combustion to form sulfur-bearing particles. They are deposited on the liquid slag layer on the combustor wall. Due to the low solubility of sulfur in slag, slag must be rapidly drained from the combustor to limit sulfur gas re-evolution. Analysis indicated that slag mass flow rates in excess of 400 lb/hr should limit sulfur re-evolution. The objective of this 42-month project was to perform a series of tests to determine the factors that control the retention of the sulfur in the slag. 36 days of testing on the combustor were completed prior to the end of this reporting period, 12/31/98. This compares with 16 tests required in the original project plan. Combustor tests in early 1997 with high (37%) ash, Indian coal confirmed that high slag mass flow rates of about 500 lb/hr resulted in retention in the slag of up to 20% of the injected sulfur content mineral matter. To further increase the slag flow rate, rice husks, which contain 20% ash, and rice husk char, which contain 70% ash, were co-fired with coal in the combustor. A series of 13 combustor tests were performed in fourth quarter of 1997 and a further 6 tests were performed in January 1998 and in the summer of 1998. The test objective was to achieve slag flow rates between 500 and 1,000 lb/hr. Due to the very low bulk density of rice husk, compared to pulverized coal, almost the entire test effort focused on developing methods for feeding the rice husks into combustor. In the last test of December 1997, a peak mineral matter, injection rate of 592 lb/hr was briefly achieved by injection of coal, rice husk char, gypsum, and limestone into the combustor. However, no significant sulfur concentration was measured in the slag removed from the combustor. The peak injection rate reached with biomass in the 1997 tests was 310 lb/hr with rice husk, and 584 lb/hr with rice husk char

  11. Study on properties of mortar using silica fume and ground blast furnace slag. Silica fume oyobi koro slag funmatsu wo mochiita mortar no tokusei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Shiiba, H; Honda, S; Araki, A [Fukuoka University, Fukuoka (Japan). Faculty of Engineering

    1992-09-01

    The effect of silica fume and ground blast furnace slag in concrete on the content of superplasticizer, and dynamic properties of hardened mortar with such admixtures were studied experimentally. Although the dependence of a flow value on the superplasticizer was dominated by kinds of superplasticizers, blast furnace slag enhanced the flow value resulting in a high fluidity. Adsorption of superplasticizers onto admixtures was dependent on kinds of superplasticizers, and adsorption onto blast furnace slag was 1.3-2 times that onto normal Portland cement (NPC). The compressive strength of mortar increased by mixing admixtures, while the bending strength was enhanced only by mixing silica fume. Mixing mortar was lower in dynamic elastic modulus than NPC mortar at the same compressive strength, and the velocity of supersonic wave in mortar was scarcely affected by mixing. 11 refs., 14 figs., 3 tabs.

  12. Metal droplet holdup in the thick slag layer subjected to bottom gas injection; Gas sokofuki wo tomonau atsui slag sonai ni okeru metal teki no holdup

    Energy Technology Data Exchange (ETDEWEB)

    Takashima, S; Iguchi, M [Hokkaido University, Sapporo (Japan)

    2000-04-01

    Model experiments were carried out to investigate the bubble and liquid flow characteristics in a bottom blowing bath covered with a thick slag layer typical of in-bath smelting reduction processes. An aqueous ZnCl{sub 2} solution and silicone oil were used as the models for molten metal and molten slag, respectively. The density ratio of the solution to the silicone oil was 1.7, being close to a steel/slag density ratio of 2.0 to 2.2 in practice. The diameter of a vessel containing the two liquids was changed over a wide range. The holdup of the solution carried up by bubbles into the upper silicone oil layer was measured with a suction tube. The volume of the solution, V{sub m}, was dependent mainly on the density difference. Empirical correlations of V{sub m} and the penetration height of the solution were derived. (author)

  13. Processing of copper converter slag for metals reclamation: Part II: mineralogical study.

    Science.gov (United States)

    Deng, Tong; Ling, Yunhan

    2004-10-01

    Chemical and mineralogical characterizations of a copper converter slag, and its products obtained by curing with strong sulphuric acid and leaching with hot water, were carried out using ore microscopy, scanning electronic microscopy with energy dispersive spectrometry, wave-length dispersive X-ray fluorescence spectrometry, X-ray diffractometry and chemical phase analysis, which provided necessary information to develop a new process for treating such slag and further understanding of the chemical and mineralogical changes in the process.

  14. Adsorption Study of Electric Arc Furnace Slag for the Removal of Manganese from Solution

    OpenAIRE

    C. L. Beh; Luqman Chuah; Thomas S.Y. Choong; Mohd. Z.B. Kamarudzaman; Khalina Abdan

    2010-01-01

    Problem statement: Steel making slag from Electric Arc Furnace (EAF) is an abundant by-product in Malaysia steel making industry. It has potential to be used for heavy metal removal from contaminated water or waste water. Approach: The aim of this study was to investigate the characteristic and behavior of manganese removal by using EAF slag for efficient metal removal. The removal characteristics of manganese were investigated in term of sorption kinetics and isotherm. The batch adsorption k...

  15. The influence of compound admixtures on the properties of high-content slag cement

    Energy Technology Data Exchange (ETDEWEB)

    Dongxu, L.; Xuequan, W.; Jinlin, S.; Yujiang, W.

    2000-01-01

    Based on the activation theory of alkali and sulfate, the influence of compound admixtures on the properties of high-content slag cement was studied by testing the strength, pore structure, hydrates, and microstructure, Test results show that compound admixtures can obviously improve the properties of high-content slag cement. The emphasis of the present research is two-fold: substituting gypsum with anhydrite and calcining gypsum. These both can improve early and later performance.

  16. Steel Slag as an Aggregate Replacement in Malaysian Hot Mix Asphalt

    OpenAIRE

    Hainin, Mohd Rosli; Yusoff, Nur Izzi Md.; Mohammad Sabri, Mohd Fahmi; Abdul Aziz, Mohd Azizi; Sahul Hameed, Mohd Anwar; Farooq Reshi, Wasid

    2012-01-01

    As natural aggregate sources are becoming depleted due to high demand in road construction and the amount of disposed waste material keeps increasing, researchers are exploring the use of alternative materials which could preserve natural sources and save the environment. In this study, steel slag was used as an aggregate replacement in conventional dense graded asphalt mixes (ACW14 and ACB28). Steel slag was selected due to its characteristics, which are almost similar to conventional aggreg...

  17. Effects of slag composition and process variables on decontamination of metallic wastes by melt refining

    International Nuclear Information System (INIS)

    Heshmatpour, B.; Copeland, G.L.

    1981-01-01

    Melt refining has been suggested as an alternative for decontamination and volume reduction of low-level-contaminated metallic wastes. Knowledge of metallurgical and thermochemical aspects of the process is essential for effective treatment of various metals. Variables such as slag type and composition, melting technique, and refractory materials need to be identified for each metal or alloy. Samples of contaminated metals were melted with fluxes by resistance furnace or induction heating. The resulting ingots as well as the slags were analyzed for their nuclide contents, and the corresponding partition ratios were calculated. Compatibility of slags and refractories was also investigated, and proper refractory materials were identified. Resistance furnace melting appeared to be a better melting technique for nonferrous scrap, while induction melting was more suitable for ferrous metals. In general uranium contents of the metals, except for aluminum, could be reduced to as low as 0.01 to 0.1 ppM by melt refining. Aluminum could be decontaminated to about 1 to 2 ppM U when certain fluoride slags were used. The extent of decontamination was not very sensitive to slag type and composition. However, borosilicate and basic oxidizing slags were more effective on ferrous metals and Cu; NaNO 3 -NaCl-NaOH type fluxes were desirable for Zn, Pb, and Sn; and fluoride type slags were effective for decontamination of Al. Recrystallized alumina proved to be the most compatible refractory for melt refining both ferrous and nonferrous metals, while graphite was suitable for nonferrous metal processing. In conclusion, melt refining is an effective technique for volume reduction ad decontamination of contaminated metal scrap when proper slags, melting technique, and refractories are used

  18. On the problem of zinc extraction from the slags of lead heat

    Science.gov (United States)

    Kozyrev, V. V.; Besser, A. D.; Paretskii, V. M.

    2013-12-01

    The possibilities of zinc extraction from the slags of lead heat are studied as applied to the ZAO Karat-TsM lead plant to be built for processing ore lead concentrates. The process of zinc extraction into commercial fumes using the technology of slag fuming by natural gas developed in Gintsvetmet is recommended for this purpose. Technological rules are developed for designing a commercial fuming plant, as applied to the conditions of the ZAO Karat-TsM plant.

  19. Mass transfer and slag-metal reaction in ladle refining : a CFD approach

    OpenAIRE

    Ramström, Eva

    2009-01-01

      In order to optimise the ladle treatment mass transfer modelling of aluminium addition and homogenisation time was carried out. It was stressed that incorporating slag-metal reactions into the mass transfer modelling strongly would enhance the reliability and amount of information to be analyzed from the CFD calculations.   In the present work, a thermodynamic model taking all the involved slag metal reactions into consideration was incorporated into a 2-D fluid flow model of an argon stirr...

  20. ASPEN Plus simulation of coal integrated gasification combined blast furnace slag waste heat recovery system

    International Nuclear Information System (INIS)

    Duan, Wenjun; Yu, Qingbo; Wang, Kun; Qin, Qin; Hou, Limin; Yao, Xin; Wu, Tianwei

    2015-01-01

    Highlights: • An integrated system of coal gasification with slag waste heat recovery was proposed. • The goal of BF slag heat saving and emission reduction was achieved by this system. • The optimal parameters were obtained and the waste heat recovery rate reached 83.08%. • About 6.64 kmol/min syngas was produced when using one ton BF slag to provide energy. - Abstract: This article presented a model for the system of coal gasification with steam and blast furnace slag waste heat recovery by using the ASPEN Plus as the simulating and modeling tool. Constrained by mass and energy balance for the entire system, the model included the gasifier used to product syngas at the chemical equilibrium based on the Gibbs free energy minimization approach and the boiler used to recover the heat of the blast furnace slag (BF slag) and syngas. Two parameters of temperature and steam to coal ratio (S/C) were considered to account for their impacts on the Datong coal (DT coal) gasification process. The carbon gasification efficiency (CE), cold gasification efficiency (CGE), syngas product efficiency (PE) and the heating value of syngas produced by 1 kg pulverized coal (HV) were adopted as the indicators to examine the gasification performance. The optimal operating temperature and S/C were 800 °C and 1.5, respectively. At this condition, CE reached above 90% and the maximum values of the CGE, PE and HV were all obtained. Under the optimal operating conditions, 1000 kg/min BF slag, about 40.41 kg/min DT pulverized coal and 77.94 kg/min steam were fed into the gasifier and approximate 6.64 kmol/min syngas could be generated. Overall, the coal was converted to clean syngas by gasification reaction and the BF slag waste heat was also recovered effectively (reached up to 83.08%) in this system, achieving the objective of energy saving and emission reduction

  1. Design of a Subscale Propellant Slag Evaluation Motor Using Two-Phase Fluid Dynamic Analysis

    Science.gov (United States)

    Whitesides, R. Harold; Dill, Richard A.; Purinton, David C.; Sambamurthi, Jay K.

    1996-01-01

    Small pressure perturbations in the Space Shuttle Reusable Solid Rocket Motor (RSRM) are caused by the periodic expulsion of molten aluminum oxide slag from a pool that collects in the aft end of the motor around the submerged nozzle nose during the last half of motor operation. It is suspected that some motors produce more slag than others due to differences in aluminum oxide agglomerate particle sizes that may relate to subtle differences in propellant ingredient characteristics such as particle size distributions or processing variations. A subscale motor experiment was designed to determine the effect of propellant ingredient characteristics on the propensity for slag production. An existing 5 inch ballistic test motor was selected as the basic test vehicle. The standard converging/diverging nozzle was replaced with a submerged nose nozzle design to provide a positive trap for the slag that would increase the measured slag weights. Two-phase fluid dynamic analyses were performed to develop a nozzle nose design that maintained similitude in major flow field features with the full scale RSRM. The 5 inch motor was spun about its longitudinal axis to further enhance slag collection and retention. Two-phase flow analysis was used to select an appropriate spin rate along with other considerations, such as avoiding bum rate increases due to radial acceleration effects. Aluminum oxide particle distributions used in the flow analyses were measured in a quench bomb for RSRM type propellants with minor variations in ingredient characteristics. Detailed predictions for slag accumulation weights during motor bum compared favorably with slag weight data taken from defined zones in the subscale motor and nozzle. The use of two-phase flow analysis proved successful in gauging the viability of the experimental program during the planning phase and in guiding the design of the critical submerged nose nozzle.

  2. Treatment of radioactive metallic waste by the electro-slag melting method

    International Nuclear Information System (INIS)

    Ochiai, Atsuhiro; Nagura, Kanetake; Noura, Tsuyoshi

    1983-01-01

    The applicability of the electro-slag melting method for treating plutonuim contaminated metallic waste was studied. A 100kg test furnace was built and simulated metallic waste was melted and solidified in this furnace. Waste volume was reduced to 1/25 with a decontamination factor of 25 and the slag and the copper mold are repeatedly usable. The process is expected to be employed in the project of PWTF (Plutonium contaminated Wate Treatment Facilities). (author)

  3. Dietary phosphorus acutely impairs endothelial function.

    Science.gov (United States)

    Shuto, Emi; Taketani, Yutaka; Tanaka, Rieko; Harada, Nagakatsu; Isshiki, Masashi; Sato, Minako; Nashiki, Kunitaka; Amo, Kikuko; Yamamoto, Hironori; Higashi, Yukihito; Nakaya, Yutaka; Takeda, Eiji

    2009-07-01

    Excessive dietary phosphorus may increase cardiovascular risk in healthy individuals as well as in patients with chronic kidney disease, but the mechanisms underlying this risk are not completely understood. To determine whether postprandial hyperphosphatemia may promote endothelial dysfunction, we investigated the acute effect of phosphorus loading on endothelial function in vitro and in vivo. Exposing bovine aortic endothelial cells to a phosphorus load increased production of reactive oxygen species, which depended on phosphorus influx via sodium-dependent phosphate transporters, and decreased nitric oxide production via inhibitory phosphorylation of endothelial nitric oxide synthase. Phosphorus loading inhibited endothelium-dependent vasodilation of rat aortic rings. In 11 healthy men, we alternately served meals containing 400 mg or 1200 mg of phosphorus in a double-blind crossover study and measured flow-mediated dilation of the brachial artery before and 2 h after the meals. The high dietary phosphorus load increased serum phosphorus at 2 h and significantly decreased flow-mediated dilation. Flow-mediated dilation correlated inversely with serum phosphorus. Taken together, these findings suggest that endothelial dysfunction mediated by acute postprandial hyperphosphatemia may contribute to the relationship between serum phosphorus level and the risk for cardiovascular morbidity and mortality.

  4. Hippocrates, cardiology, Confucius and the Yellow Emperor.

    Science.gov (United States)

    Cheng, T O

    2001-12-01

    Although Hippocrates (460-c.375 BC) has been traditionally recognized as the Father of Medicine, the fact that he was seminal in the development of cardiology is much less well known. Evidence is presented to support the notion that Hippocrates could also be considered the Father of Cardiology. Hippocrates also had many of the teachings and practices in common with Confucius (c.551-c.479 BC) and the Yellow Emperor of China (2695-2589 BC). Whereas Confucius was not a physician, the Yellow Emperor was an ancient Chinese physician whose Huang Di Neijing, the Yellow Emperor's Canon of Internal Medicine, is the oldest known treatise of medicine in existence.

  5. Effect of Temperature and Graphite Immersion Method on Carbothermic Reduction of Fayalite Slag

    Science.gov (United States)

    Mitrašinović, Aleksandar

    2017-09-01

    In this work, graphite flakes were used to reduce fayalite slag originated from the pyrometallurgical copper extraction process. Experiments were conducted with a significantly different contact area between graphite and slag at two temperatures, 1300°C and 1400°C. The process was continuously monitored via the concentration change of CO and CO2 in off-gas. Reduction rate values in experiments where 150-micron-diameter graphite flakes were submerged into the slag and left to float slowly to the top are about four times higher compared with when graphite flakes were dispersed at the top surface of liquid slag. The activation energy for instigating reduction was 302.61 kJ mol-1 and 306.67 kJ mol-1 in the case where graphite flakes were submerged into the slag and dispersed at the surface, respectively. The reduction process is characterized by two distinctive periods: an initial steep increase in the concentration of CO and CO2 controlled by the Boudouard reaction and a subsequent slow decrease of CO and CO2 concentrations in the off-gas controlled by mass transfer of reducible oxides from bulk to the gas-slag interface.

  6. EFFECT OF REACTIVE MAGNESIUM OXIDE ON PROPERTIES OF ALKALI ACTIVATED SLAG GEOPOLYMER CEMENT PASTES

    Directory of Open Access Journals (Sweden)

    H. A. Abdel-Gawwad

    2015-03-01

    Full Text Available The effect of different proportions and different reactivities of MgO on the drying shrinkage and compressive strength of alkali activated slag pastes (AAS has been investigated. The slag was activated by 6 wt.% sodium hydroxide and liquid sodium silicate at ratio of 3:3 (wt.. The different reactivities of MgOs were produced from the calcination of hydromagnesite at different temperatures (550, 1000, 1250 C. The results showed that the reactivity of magnesium oxide decreases with increasing the calcination temperature. Also, the drying shrinkage of AAS was reduced by the replacement of slag with MgOs. The highly reactive MgO accelerated the hydration of AAS at early ages. The replacement of slag with 5% MgO550 increased one day compressive strength by ~26 % while MgO1250 had little effect. A significant increase in strength was observed after 7 days in case of replacement of slag with 5 % MgO1250. The MgO reacts with slag to form hydrotalcite likephases (Ht as detected by XRD, FTIR spectroscopy, TGA/DTG analysis and SEM.

  7. Remediation of TCE-contaminated groundwater using acid/BOF slag enhanced chemical oxidation.

    Science.gov (United States)

    Tsai, T T; Kao, C M; Wang, J Y

    2011-04-01

    The objective of this study was to evaluate the potential of applying acid/H(2)O(2)/basic oxygen furnace slag (BOF slag) and acid/S(2)O(8)(2-)/BOF slag systems to enhance the chemical oxidation of trichloroethylene (TCE)-contaminated groundwater. Results from the bench-scale study indicate that TCE oxidation via the Fenton-like oxidation process can be enhanced with the addition of BOF slag at low pH (pH=2-5.2) and neutral (pH=7.1) conditions. Because the BOF slag has iron abundant properties (14% of FeO and 6% of Fe(2)O(3)), it can be sustainably reused for the supplement of iron minerals during the Fenton-like or persulfate oxidation processes. Results indicate that higher TCE removal efficiency (84%) was obtained with the addition of inorganic acid for the activation of Fenton-like reaction compared with the experiments with organic acids addition (with efficiency of 10-15% lower) (BOF slag=10gL(-1); initial pH=5.2). This could be due to the fact that organic acids would compete with TCE for available oxidants. Results also indicate that the pH value had a linear correlation with the observed first-order decay constant of TCE, and thus, lower pH caused a higher TCE oxidation rate. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Influence of the soluble fraction of blast furnace slag on the growth of some algae

    Energy Technology Data Exchange (ETDEWEB)

    Tokuda, H.

    1977-01-01

    The sea water-soluble fraction of the pulverized slag was prepared in anaerobic condition, and mixed with a basal medium in various ratios for preparation of a culture medium, on which the growth of a diatom, Skeletonema costatum, was suppressed. The inhibitory effect of the soluble fraction to this alga was reduced to a certain degree when the culture medium had been aerated with nitrogen preceding inoculation. The growth of Skel. costatum was also inhibited on the basal medium containing the untreated slag powder in various amounts, while it was stimulated when the slag powder was washed for several days before addition to the basal medium. The soluble fraction of the slag affected unfavorably the growth of a laver, Porphyra yezoensis, also. A diatom, Nitzschia closterium, was able to grow closely adhering to the slag powder. The inhibitory effect of the soluble fraction of the slag to algae seems to be caused largely by potassium or sodium sulfide, and slightly by sulfur oxides and some heavy metals dissolved in trace amounts.

  9. EAF Slag Aggregate in Roller-Compacted Concrete Pavement: Effects of Delay in Compaction

    Directory of Open Access Journals (Sweden)

    My Ngoc-Tra Lam

    2018-04-01

    Full Text Available This study investigates the effect of delay in compaction on the optimum moisture content and the mechanical propertie s (i.e., compressive strength, ultrasonic pulse velocity, splitting tensile strength, and modulus of elasticity of roller-compacted concrete pavement (RCCP made of electric arc furnace (EAF slag aggregate. EAF slag with size in the range of 4.75–19 mm was used to replace natural coarse aggregate in RCCP mixtures. A new mixing method was proposed for RCCP using EAF slag aggregate. The optimum moisture content of RCCP mixtures in this study was determined by a soil compaction method. The Proctor test assessed the optimum moisture content of mixtures at various time after mixing completion (i.e., 0, 15, 30, 60, and 90 min. Then, the effect of delay in compaction on the mechanical properties of RCCP mixtures at 28 days of age containing EAF slag aggregate was studied. The results presented that the negative effect on water content in the mixture caused by the higher water absorption characteristic of EAF slag was mitigated by the new mixing method. The optimum water content and maximum dry density of RCCP experience almost no effect from the delay in compaction. The compressive strength and splitting tensile strength of RCCP using EAF slag aggregate fulfilled the strength requirements for pavement with 90 min of delay in compaction.

  10. Connection between radon emanation and some structural properties of coal-slag as building material

    International Nuclear Information System (INIS)

    Somlai, J.; Jobbagy, V.; Somlai, K.; Kovacs, J.; Nemeth, Cs.; Kovacs, T.

    2008-01-01

    Radionuclides of natural origin may accumulate in different industrial waste materials and by-products. The use of coal bottom ash or coal-slag as building material in Hungary is widespread. Because of the elevated radium content of coal-slag, high radon concentration has been detected in buildings containing coal-slag as building material. In two towns, where buildings contain coal-slag with almost the same radium concentration, the indoor radon concentrations have been found to differ significantly. In order to investigate the cause of the difference in the emanation coefficients, slag samples from the two locations were examined for grain-size distribution, density, pore volume, and specific surface. The applied methods were: gamma spectrometry for the radium concentration of the samples; Lucas cell method for the radon emanation; nitrogen absorption-desorption isotherms analyzed using the BET theory and mercury poremeter for the specific surface and pore volume. It was found that the great difference in the emanation coefficients (1.35±0.13% and 14.3±0.92%) of the coal-slag samples is primarily influenced by the pore volume and the specific surface

  11. Studies on use of Copper Slag as Replacement Material for River Sand in Building Constructions

    Science.gov (United States)

    Madheswaran, C. K.; Ambily, P. S.; Dattatreya, J. K.; Rajamane, N. P.

    2014-09-01

    This work focuses on the use of copper slag, as a partial replacement of sand for use in cement concrete and building construction. Cement mortar mixtures prepared with fine aggregate made up of different proportions of copper slag and sand were tested for use as masonry mortars and plastering. Three masonry wall panels of dimensions 1 × 1 m were plastered. The studies showed that although copper slag based mortar is suitable for plastering, with the increase in copper slag content, the wastage due to material rebounding from the plastered surfaces increases. It is therefore suggested that the copper slag can be used for plastering of floorings and horizontal up to 50 % by mass of the fine aggregate, and for vertical surfaces, such as, brick/block walls it can be used up to 25 %. In this study on concrete mixtures were prepared with two water cement ratios and different proportions of copper slag ranging from 0 % (for the control mix) to 100 % of fine aggregate. The Concrete mixes were evaluated for workability, density, and compressive strength.

  12. [Hygienic assessment of metal-lurgical slag crushed stone for its use in road-building].

    Science.gov (United States)

    Tikhomirov, Iu P; Ippolitova, V P; Bezrokov, M E

    2010-01-01

    The increasing amount of industrial waste generates a need for its use as recycled materials. The paper presents the results of hygienic assessment of metallurgic slag crushed stone to be added to natural materials in highway building. The research program has included the measurement of content of water-soluble forms of metals, the evaluation of the acute toxicity of waste after oral administration to mice and rats, the study of the toxicity of waste by biotesting and the activity of natural radionuclides. The slag crushed stone virtually lacks water-soluble elements when it contains a high level of bulk forms of metals. According to acute toxicity for warm-blooded animals, the slag crushed stone belongs to Hazard Class IV by GOST 12.1.007-76 (low hazard substances). The biotesting on hydrocoles, the slag crushed stone is also referred to as Class IV (low hazard substances). In terms of the level of natural radionuclides, the slag crushed stone poses no hazard to the environment. The performed studies give grounds to recommend metallurgical slag crushed stone to be added to natural materials for highway building.

  13. Kinetic Investigations of SiMn Slags From Different Mn Sources

    Science.gov (United States)

    Kim, Pyunghwa Peace; Tangstad, Merete

    2018-03-01

    The kinetics of MnO and SiO2 reduction were investigated for Silicomanganese (SiMn) slags using a Thermogravimetric analysis (TGA) between 1773 K and 1923 K (1500 °C and 1650 °C) under CO atmospheric pressure. The charge materials were based on Assmang ore and HC FeMn Slag. Rate models for MnO and SiO2 reduction were applied to describe the metal-producing rates, as shown by the following equations: r_{MnO} = k_{MnO} × A × ( {a_{MnO} - {a_{Mn} }/{K_{T }}} ) r_{{{SiO}2 }} = k_{SiO2} × A × ( {a_{{{SiO}2 }} - {a_{Si} }/{K_{T }}} ). The results show that the choice of raw materials in the charge considerably affected the reduction rate of MnO and SiO2. The highest reduction rate was found to be from charges using HC FeMn slag. The difference in the driving forces was insignificant among the SiMn slags, and the similar slag viscosities could not explain the different reduction rates. Instead, the difference is attributed to small amounts of sulfur and the amount of iron in the charge. In addition, the rate models were applicable to describe the reduction of MnO and SiO2 in SiMn slags.

  14. Investigation of compressive strength of concrete with slag and silica fu

    International Nuclear Information System (INIS)

    Mostofinejad, D.; Mirtalee, K.; Sadeghi, M.

    2002-01-01

    Without doubt, concrete has special place in construction of different types of structures, and used as one of the most important materials in construction industry. Today, with development and modernization of human knowledge in construction industry, it is possible to reach h igh performance concrete . Mechanical properties and durability of high performance concrete is quite better than that of conventional concrete. In present, the use of supplementary cementitious materials, mainly silica fume, fly ash and blast furnace slag has become increasingly common for reasons of economy and technical benefits imparted by these materials. The aim of present research is investigation and comparison compressive strength of concrete specimens due to variation of water to cementitious materials ratio (W/C M), silica fume and slag percent and their proportions as cement replacement. Furthermore, it is intended to determine best combination of these materials with cement in concrete (optimum percent) to reach to maximum compressive strength. In the current study, specimens were made in 0.5,0.4 and 0.3 W/C M ratio contained 0,20,35 and 50 percent of slag as cement replacement, where in each slag replacement percent, 0, 5, 10 and 15 percent of of silica fume were used as cement replacement. Results of the current study show that the combination effect of slag and silica fume replacement in concrete leads to the maximum compressive strength in concrete; also there are some optimum percents for replacement of slag and silica fume to cement to get the best results

  15. 21 CFR 137.285 - Degerminated yellow corn meal.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Degerminated yellow corn meal. 137.285 Section 137... Cereal Flours and Related Products § 137.285 Degerminated yellow corn meal. Degerminated yellow corn meal, degermed yellow corn meal, conforms to the definition and standard of identity prescribed by § 137.265 for...

  16. 21 CFR 137.215 - Yellow corn flour.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Yellow corn flour. 137.215 Section 137.215 Food... Flours and Related Products § 137.215 Yellow corn flour. Yellow corn flour conforms to the definition and standard of identity prescribed by § 137.211 for white corn flour except that cleaned yellow corn is used...

  17. Potential Phosphorus Mobilisation in Peat Soils

    DEFF Research Database (Denmark)

    Forsmann, Ditte M.; Kjærgaard, Charlotte

    2012-01-01

    Re-establishment of wetlands on peat soils containing phosphorus bound to iron(III)-oxides can lead to an undesirable phosphorus loss to the aquatic environment due to the reductive dissolution of iron(III)-oxides. Thus it is important to be able to assess the potential phosphorus mobilisation from...... peat soils before a re-establishment takes place. The potential phosphorus mobilisation from a peat soil depends not only on the geochemical characteristics but also on the redox conditions, the hydrological regime in the area as well as the hydro-physical properties of the soil. The hypothesis...... for this study is (i) the release of phosphorus in peat is controlled by the geochemistry; (ii) the mobilisation of phosphorus is controlled by both geochemistry and hydro-physics of the soil. For this study, 10 Danish riparian lowland areas with peat soil were selected based on their geochemical characteristics...

  18. Environmental risk assessment of steel-making slags and the potential use of LD slag in mitigating methane emissions and the grain arsenic level in rice (Oryza sativa L.).

    Science.gov (United States)

    Gwon, Hyo Suk; Khan, Muhammad Israr; Alam, Muhammad Ashraful; Das, Suvendu; Kim, Pil Joo

    2018-04-13

    Over the past decades, with increasing steel manufacturing, the huge amount of by-products (slags) generated need to be reused in an efficient way not only to reduce landfill slag sites but also for sustainable and eco-friendly agriculture. Our preliminary laboratory study revealed that compared to blast furnace slag, electric arc furnace slag and ladle furnace slag, the Linz-Donawitz converter (LD) slag markedly decreased CH 4 production rate and increased microbial activity. In the greenhouse experiment, the LD slag amendment (2.0 Mg ha -1 ) significantly (p < 0.05) increased grain yield by 10.3-15.2%, reduced CH 4 emissions by 17.8-24.0%, and decreased inorganic As concentrations in grain by 18.3-19.6%, compared to the unamended control. The increase in yield is attributed to the increased photosynthetic rates and increased availability of nutrients to the rice plant. Whereas, the decrease in CH 4 emissions could be due to the higher Fe availability in the slag amended soil, which acted as an alternate electron acceptor, thereby, suppressed CH 4 emissions. The more Fe-plaque formation which could adsorb more As and the competitive inhibition of As uptake with higher availability of Si could be the reason for the decrease in As uptake by rice cultivated with LD slag amendment. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. A “Yellow Submarine” in Dermoscopy

    Directory of Open Access Journals (Sweden)

    Francesca Satolli

    2018-01-01

    CONCLUSION: HS is usually diagnosed at an already advanced clinical stage and it has a high mortality rate even today. Dermoscopy, showing a yellow and distributed homogeneously colour, can facilitate its hard diagnosis.

  20. Mineralogical characterization of uranium yellow cake concentrates

    International Nuclear Information System (INIS)

    Hausen, D.M.

    1992-01-01

    Uranium yellow cake concentrates have been analyzed and characterized mineralogically by means of differential thermal analysis, X-ray diffraction, infrared spectra and wet chemical methods. On the basis of mineralogical methods of characterization, the following four major structural types of yellow cake may be classified: Uranyl Hydroxide Hydrate, UO 2 (OH) 2 nH 2 O; Basic Uranyl Sulfate Hydrate, (UO 2 ) x (SO 4 ) y (OH) s(x-y ).nH 2 O; Sodium Para-Uranate, Na 5 U 7 O 24 and Uranyl Peroxide Hydrate, UO 4 .nH 2 O. In this paper conditions of yellow cake preparation and characterization are described, along with discussion of significance of structural types to the physical and chemical properties of yellow cake production

  1. Repulsion forces of superplasticizers on ground granulated blast furnace slag in alkaline media, from AFM measurements to rheological properties

    OpenAIRE

    Palacios, M.; Bowen, P.; Kappl, M.; Butt, H. J.; Stuer, M.; Pecharromán, C.; Aschauer, U.; Puertas, F.

    2012-01-01

    The electrostatic and steric repulsion induced by different superplasticizers on ground granulated blast furnace slag in alkaline media have been studied. The superplasticizers were sulfonated naphthalene, sulfonated melamine, vinyl copolymer, and polycarboxylate- based admixtures. With these superplasticizers the slag suspensions had negative zeta potentials, ranging from -3 to -10 mV. For the first time the adsorbed layer thicknesses for superplasticizers on slag using colloidal probe atomi...

  2. Cleaning of a copper matte smelting slag from a water-jacket furnace by direct reduction of heavy metals.

    Science.gov (United States)

    Maweja, Kasonde; Mukongo, Tshikele; Mutombo, Ilunga

    2009-05-30

    Cleaning experiments of a copper matte smelting slag from the water-jacket furnace was undertaken by direct reduction in a laboratory-scale electric furnace. The effects of coal-to-slag ratio, w, and the reduction time, t, were considered for two different coal/slag mixing procedures. In the first procedure, metallurgical coal was added to the molten slag, whereas in the second procedure, coal was premixed with the solid slag before charging into the furnace. The recovery of heavy metals (Cu, Co), and the fuming of Pb and Zn were investigated. Contamination of the metal phase by iron and the acidity index of the final slag were analysed as these may impede the economical viability of the process. The lower w value of 2.56% yielded a recovery rate of less than 60% for copper and less than 50% for cobalt, and around 70% for zinc. However, increasing w to 5% allowed the recovery of 70-90% for Cu, Co and Zn simultaneously after 30-60 min reduction of the molten slag. After reduction, the cleaned slags contained only small amounts of copper and cobalt (zinc was efficient as the %Pb of the residual slag dropped to levels lower than 0.04% after 30 min of reduction. Ninety percent of the lead was removed from the initial slag and collected in the dusts. The zinc content of the cleaned slags quickly dropped to between 1 and 3 wt% from the initial 8.2% after 30 min reduction for w value of 5 and after 60 min reduction for w value of 2.56. The dusts contained about 60% Zn and 10% Pb. Recovery of lead from fuming of the slag was higher than 90% in all the experimental conditions considered in this study.

  3. STUDIES ON SOUTH AMERICAN YELLOW FEVER

    Science.gov (United States)

    Davis, Nelson C.; Shannon, Raymond C.

    1929-01-01

    Yellow fever virus from M. rhesus has been inoculated into a South American monkey (Cebus macrocephalus) by blood injection and by bites of infected mosquitoes. The Cebus does not develop the clinical or pathological signs of yellow fever. Nevertheless, the virus persists in the Cebus for a time as shown by the typical symptoms and lesions which develop when the susceptible M. rhesus is inoculated from a Cebus by direct transfer of blood or by mosquito (A. aegypti) transmission. PMID:19869607

  4. Silvical characteristics of yellow birch (Betula alleghaniensis)

    Science.gov (United States)

    Adrian M. Gilbert

    1960-01-01

    Of the birches in the Northeast, the yellow birch is the elite species, by far the most valuable as a timber tree. More than that, it is one of the largest deciduous trees of northeastern America. It may reach 100 feet in height and more than 3 feet in diameter, and may live to 300 years of age. Pioneers told tales of the gigantic yellow birches they saw.

  5. Extraction and purification of yellow cake

    International Nuclear Information System (INIS)

    Yousif, E.H.

    2006-01-01

    This dissertation has reviewed current studies on production and purification of yellow cake from uranium ores by both acid and alkaline leaching processes. It comprises three chapters, the first one deal with uranium minerals, uranium deposits, geology of uranium and uranium isotopes. The second chapter covers mining and milling methods, uranium leaching chemistry, precipitation, and purification of uranium concentrate by solvent extraction and possible impurities that commonly interfered with yellow cake. The last chapter presented ongoing literature review.(Author)

  6. Recycling of Malaysia's electric arc furnace (EAF) slag waste into heavy-duty green ceramic tile.

    Science.gov (United States)

    Teo, Pao-Ter; Anasyida, Abu Seman; Basu, Projjal; Nurulakmal, Mohd Sharif

    2014-12-01

    Recently, various solid wastes from industry such as glass waste, fly ash, sewage sludge and slag have been recycled into various value-added products such as ceramic tile. The conventional solutions of dumping the wastes in landfills or incineration, including in Malaysia are getting obsolete as the annual huge amount of the solid wastes would boost-up disposal cost and may cause permanent damage to the flora and fauna. This recent waste recycling approach is much better and greener as it can resolve problems associated with over-limit storage of industrial wastes and reduce exploration of natural resources for ceramic tile to continuously sustain the nature. Therefore, in this project, an attempt was made to recycle electric arc furnace (EAF) slag waste, obtained from Malaysia's steel making industry, into ceramic tile via conventional powder compaction method. The research work was divided into two stages. The first stage was to evaluate the suitability of EAF slag in ceramic tile by varying weight percentage of EAF slag (40 wt.%, 50 wt.% and 60 wt.%) and ball clay (40 wt.%, 50 wt.% and 60 wt.%), with no addition of silica and potash feldspar. In the second stage, the weight percentage of EAF slag was fixed at 40 wt.% and the percentage of ball clay (30 wt.% and 40 wt.%), feldspar (10 wt.% and 20 wt.%) and silica (10 wt.% and 20 wt.%) added was varied accordingly. Results obtained show that as weight percentage of EAF slag increased up to 60 wt.%, the percentage of apparent porosity and water absorption also rose, with a reduction in tile flexural strength and increased porosity. On the other hand, limiting the weight percentage of EAF slag to 40 wt.% while increasing the weight percentage of ball clay led to a higher total percentage of anorthite and wollastonite minerals, resulting in higher flexural strength. It was found that introduction of silica and feldspar further improved the flexural strength due to optimization of densification process. The highest

  7. Fertilizer phosphorus in some Finnish soils

    Directory of Open Access Journals (Sweden)

    Armi Kaila

    1961-01-01

    Full Text Available In the present paper it is tried to trace the fate of fertilizer phosphorus in soil by comparing the analyses of soils from treated and untreated plots of field trials. This indirect approach cannot be expected to provide exact values, but it is likely to give an approximate answer. The results reported above do not in any marked degree change our present conception of the forms in which fertilizer phosphorus accumulates in soils. In the acid soils studied (pH 4—6.4 in 0.02 N CaCl2 superphosphate tended to increase the fractions which were extracted by NH4F or NaOH. Hyperphosphate phosphorus was mostly found in the acid-soluble fraction. During a longer period of dressing with phosphate an increase in the organic phosphorus content of a peat soil could be detected. In the incubation experiments the mineralization of organic phosphorus occurred at a higher rate in the samples from the plots treated with superphosphate than in those from the untreated one. It might be supposed that the organic phosphorus mineralized mainly originated from the plant residues. It seems that the fractionation method developed by CHANG and JACKSON (4 for the estimation of discrete forms of soil phosphorus is not quite satisfactory for tracing the fertilizer phosphorus in soils recently dressed with phosphates. In particular, it may be fallacious to conclude that the fraction extracted by NH4F would only represent phosphorus bound to aluminium and its compounds. At least in the absence of soil, a large part of phosphorus in dicalcium phosphate dihydrate falls into this fraction, and also a small amount of hyperphosphate phosphorus may be found in it. The test values for »available» phosphorus showed the effect of fertilizers in accordance with previous observations (9, 13. Acetic acid soluble P revealed the treatment with hyperphosphate, but only slightly the application of superphosphate. The test value for the sorbed P of BRAY and KURTZ (2, or phosphorus

  8. Phosphorus and Nutrition in Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Emilio González-Parra

    2012-01-01

    Full Text Available Patients with renal impairment progressively lose the ability to excrete phosphorus. Decreased glomerular filtration of phosphorus is initially compensated by decreased tubular reabsorption, regulated by PTH and FGF23, maintaining normal serum phosphorus concentrations. There is a close relationship between protein and phosphorus intake. In chronic renal disease, a low dietary protein content slows the progression of kidney disease, especially in patients with proteinuria and decreases the supply of phosphorus, which has been directly related with progression of kidney disease and with patient survival. However, not all animal proteins and vegetables have the same proportion of phosphorus in their composition. Adequate labeling of food requires showing the phosphorus-to-protein ratio. The diet in patients with advanced-stage CKD has been controversial, because a diet with too low protein content can favor malnutrition and increase morbidity and mortality. Phosphorus binders lower serum phosphorus and also FGF23 levels, without decreasing diet protein content. But the interaction between intestinal dysbacteriosis in dialysis patients, phosphate binder efficacy, and patient tolerance to the binder could reduce their efficiency.

  9. Characterization of Iron and Steel Industry Slags to be Recycled under Ecological Aspects as a Recycling Concept for Waste Treatment

    International Nuclear Information System (INIS)

    Khalil, T.K.; Aly, H.F.; Bossert, J.

    1999-01-01

    The recycling and final disposal of different types of industrial waste play an important role in decreasing environmental pollution all over the world. Three different solid waste slags from steel industries situated in the Helwan area (Cairo-Egypt), namely blast furnace slags, oxygen converter slags arc furnace slags were studied. The morphology of the collected slag powders was examined using scanning electron microscopy (SEM). Surface characteristics of the slag powders were measured through nitrogen gas adsorption and application of the BET equation at 77 K. The thermal behaviour of the slag powders was studied with the help of differential thermal analysis (DTA) and thermogravimetry(TG)> Due to the presence of some changes in the DTA base lines, possibly as a result of phase transformations, X-ray diffraction was applied to identify these phases. The sintering behaviour of the compact slag powders after isostatic pressing was evaluated using dilatometry. The sintering and melting temperature of the studied samples were determined using heating microscopy. The effect of changing sintering temperature and of applying different isostatic pressures on the density and porosity of the slag powder compacts was investigated

  10. Comparison of glassy slag waste forms produced in laboratory crucibles and in a bench-scale plasma furnace

    International Nuclear Information System (INIS)

    Feng, X.; Wronkiewicz, D.J.; Brown, N.R.; Gong, M.; Whitworth, C.; Filius, K.; Battleson, D.

    1994-01-01

    Vitrification is currently the best demonstrated available technology for the disposal of high-level radioactive wastes. An innovative vitrification approach known as minimum additive waste stabilization (MAWS) is being developed. Both homogeneous glass and glassy slags have been used in implementing MAWS. Glassy slags (vitro-ceramics) are glass-crystal composites, and they are composed of various metal oxide crystalline phases embedded in an aluminosilicate glass matrix. Glassy slags with compositions developed in crucible melts at Argonne National Laboratory (ANL) were successfully produced in a bench-scale Retech plasma centrifugal furnace (PCF) by MSE, Inc. Detailed examinations of these materials showed that the crucible melts and the PCF produced similar glass and crystalline phases. The two sets of glassy slags exhibited similar chemical durability in terms of normalized releases of their major components. The slags produced in the PCF furnace using metals were usually less oxidized, although this had no effect on the corrosion behavior of the major components of the slags. However, the normalized release rate of cerium was initially lower for the PCF slags. This difference diminished with time as the redox sates of the metal oxides in slags began to be controlled by exposure to air in the tests. Thus, the deference in cerium release due to the differences in slag redox state may be transitory. The cerium solubility is a complex function of redox state and solution pH and Eh

  11. Reactivation properties of carbide slag as a CO{sub 2} sorbent during calcination/carbonation cycles

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yingjie; Sun, Rongyue; Liu, Hongling; Lu, Chunmei [Shandong Univ., Jinan (China). School of Energy and Power Engineering

    2013-07-01

    The carbide slag from polyvinyl chloride production as industry hazardous wastes was proposed as CO{sub 2} sorbent at high temperature in calcium looping cycle. The cyclic CO{sub 2} capture behavior and the microstructure characteristics of the carbide slag as one of the typical calcium-based industrial wastes during the multiple calcination/carbonation cycles. Also, the comparisons between the carbide slag and the natural limestone in cyclic CO{sub 2} capture behavior were made. XRD analysis demonstrates that the predominating constituent of the carbide slag is Ca(OH){sub 2}. The carbonation temperature ranging from 650 to 700 C is favourable to cyclic carbonation of the carbide slag. The cyclic carbonation conversions of the carbide slag is lower than that of the limestone before a certain time, but the situation is converse after that time in a thermogravimetric analyzer. The carbide slag has better cyclic CO{sub 2} capture capacity. The carbonation conversion of the carbide slag retains 0.28 after 100 calcination/carbonation cycles, while the two limestones achieve 0.08 and 0.14 respectively at the same reaction conditions in a dual fixed-bed reactor. The microstructure of the carbide slag by SEM reveals the reason why it possesses better CO{sub 2} capture capacity.

  12. The production of hydrogen-rich gas by wet sludge pyrolysis using waste heat from blast-furnace slag

    International Nuclear Information System (INIS)

    Luo, Siyi; Feng, Yu

    2016-01-01

    Blast furnace (BF) slag, a byproduct of steelmaking industry, contains a large amount of sensible heat and is composed of some metal oxides, which exhibits preferable catalytic performance in improving tar cracking and C_nH_m reforming. This paper presents a heat recovery system from the heat of BF slag, which generates hydrogen-rich gas via the endothermic reactions of sludge pyrolysis. The effects of various parameters including the slag temperature, the mass ratio of slag to sludge (B/S), particle size and feed moisture on product yields and gas characteristics were evaluated separately. It was found that the pyrolysis products distribution was significantly influenced by the BF slag temperature. The differences resulting from varying B/S practically disappear as higher temperature heat carrier is approached. The optimum feed moisture was in favour of sludge pyrolysis by getting char and tar participate in gasification reactions, improving gas yield and quality. BF slag as catalyst can greatly increase H_2 and CO contents of gas by improving tar degradation and reforming of biogas (CO_2 and CH_4). Decreasing the slag particles size was helpful to sludge primary pyrolysis to produce more light gases, less char and condensate, while its effects on gas compositions was not evident. - Highlights: • The sensible heat of molten slag was recovered and converted into combustible gas. • A novel rotary pyrolysis reactor using BF slag as heat carrier was presented. • The moisture in sludge was used as the gasification medium and hydrogen source.

  13. Role of a gas phase in the kinetics of zinc and iron reduction with carbon from slag melts

    Science.gov (United States)

    Chumarev, V. M.; Selivanov, E. N.

    2013-03-01

    The influence of the mass transfer conditions in the gas phase having formed at the carbon-slag melt interface on CO regeneration is approximately estimated in the framework of a two-stage scheme of metal reduction from slag melts by carbon. The effect of zinc vapors on the combined reduction of iron and zinc from slags is considered. The influence of the slag composition and temperature on the critical concentration of zinc oxide above which no iron forms as an individual phase is explained.

  14. Criteria determining the selection of slags for the melt decontamination of radioactively contaminated stainless steel by electroslag remelting

    International Nuclear Information System (INIS)

    Buckentin, J.M.R.; Damkroger, B.K.; Shelmidine, G.J.; Atteridge, D.G.

    1997-01-01

    Electroslag remelting is an excellent process choice for the melt decontamination of radioactively contaminated metals. ESR furnaces are easily enclosed and do not make use of refractories which could complicate thermochemical interactions between molten metal and slag. A variety of cleaning mechanisms are active during melting; radionuclides may be partitioned to the slag by means of thermochemical reaction, electrochemical reaction, or mechanical entrapment. At the completion of melting, the slag is removed from the furnace in solid form. The electroslag process as a whole is greatly affected by the chemical and physical properties of the slag used. When used as a melt decontamination scheme, the ESR process may be optimized by selection of the slag. In this research, stainless steel bars were coated with non-radioactive surrogate elements in order to simulate surface contamination. These bars were electroslag remelted using slags of various chemistries. The slags investigated were ternary mixtures of calcium fluoride, calcium oxide, and alumina. The final chemistries of the stainless steel ingots were compared with those predicted by the use of a Free Energy Minimization Modeling technique. Modeling also provided insight into the chemical mechanisms by which certain elements are captured by a slag. Slag selection was also shown to have an impact on the electrical efficiency of the process as well as the surface quality of the ingots produced

  15. Towards global phosphorus security: A systems framework for phosphorus recovery and reuse options

    NARCIS (Netherlands)

    Cordell, D.; Rosemarin, A.; Schroder, J.J.; Smit, A.L.

    2011-01-01

    Human intervention in the global phosphorus cycle has mobilised nearly half a billion tonnes of the element from phosphate rock into the hydrosphere over the past half century. The resultant water pollution concerns have been the main driver for sustainable phosphorus use (including phosphorus

  16. Alkali-Activated Natural Pozzolan/Slag Binder for Sustainable Concrete

    Science.gov (United States)

    Najimi, Meysam

    This study aimed to fully replace Portland cement (PC) with environmentally friendly binders capable of improving longevity of concrete. The new binders consisted of different proportions of natural Pozzolan and slag which were alkaline-activated with various combinations of sodium hydroxide and sodium silicate. A step-by-step research program was designed to (1) develop alkali-activated natural Pozzolan/slag pastes with adequate fresh and strength properties, (2) produce alkali-activated natural Pozzolan/slag mortars to assess the effects of dominant variables on their plastic and hardened properties, and (3) finally produce and assess fresh, mechanical, dimensional, transport and durability properties of alkali-activated natural Pozzolan/slag concretes. The major variables included in this study were binder combination (natural Pozzolan/slag combinations of 70/30, 50/50 and 30/70), activator combination (sodium silicate/sodium hydroxide combinations of 20/80, 25/75 and 30/70), and sodium hydroxide concentration (1, 1.75 and 2.5M). The experimental program assessed performance of alkali-activated natural Pozzolan/slag mixtures including fresh properties (flow and setting times), unit weights (fresh, demolded and oven-dry), mechanical properties (compressive and tensile strengths, and modulus of elasticity), transport properties (absorption, rapid chloride penetration, and rapid chloride migration), durability (frost resistance, chloride induced corrosion, and resistance to sulfuric acid attack), and dimensional stability (drying shrinkage). This study also compared the performance of alkali-activated natural Pozzolan/slag concretes with that of an equivalent reference Portland cement concrete having a similar flow and strength characteristics. The results of this study revealed that it was doable to find optimum binder proportions, activator combinations and sodium hydroxide concentrations to achieve adequate plastic and hardened properties. Nearly for all studied

  17. Dusts, scale, slags, sludges... Not wastes, but sources of profits

    Science.gov (United States)

    Koros, Peter J.

    2003-12-01

    Historically, the steel industry has focused on the need for and the many benefits of recycling steel that is discarded either in its own or in its customers’ manufacturing processes, as well as in recovery and reuse of steel scrap that arises after the product has served its intended purpose. In fact, modern steelmaking relies on the use of recycled iron units for at least half of its production. The other side of the story is the fate of the non-steel by-products (e.g., oxide dusts, sludges, scales, slags, spent refractories and the contained “low grade” energy units that are generated as natural adjuncts to iron and steelmaking processes). These valuable by-products often are classified as “wastes” and are discarded to landfills, at significant cost, although in reality they offer significant potential for cost savings or profit if reintroduced into the industrial arena via well planned programs. Examples of such instances will be presented, including energy credit issues, in the hope of pointing the way for future expansion of benefits from these opportunities. Preparing for a challenge and honor such as the Howe Memorial Lecture, one has to stand in awe of the accomplishments of the predecessor we honor in this forum. He worked in the early days of our industry without the benefits of the many technological improvements he and his successors brought to play as the years went by. John Stubbles, in his Howe Memorial Lecture in 1997,[1] presented a masterful and entertaining biography of Howe and his very active and prolific life. Perhaps the most telling quotation he attributed to Howe is very pertinent to the topic we will address presently: “Metallurgy lives by profit, not logic,” to which I would like to add a comment that bears on the topic of this lecture from the 1991 Howe lecturer, my friend and mentor Bill Dennis, “Where there is muck, there is money.” There are numerous examples of “one hand washes the other” in this business; that

  18. Reproducing ten years of road ageing - Accelerated carbonation and leaching of EAF steel slag

    Energy Technology Data Exchange (ETDEWEB)

    Suer, Pascal, E-mail: pascal.suer@swedgeo.se [Swedish Geotechnical Institute, Linkoeping (Sweden); Lindqvist, Jan-Erik [Swedish Cement and Concrete Research Institute, Boras (Sweden); Arm, Maria; Frogner-Kockum, Paul [Swedish Geotechnical Institute, Linkoeping (Sweden)

    2009-09-01

    Reuse of industrial aggregates is still hindered by concern for their long-term properties. This paper proposes a laboratory method for accelerated ageing of steel slag, to predict environmental and technical properties, starting from fresh slag. Ageing processes in a 10-year old asphalt road with steel slag of electric arc furnace (EAF) type in the subbase were identified by scanning electron microscopy (SEM) and leaching tests. Samples from the road centre and the pavement edge were compared with each other and with samples of fresh slag. It was found that slag from the pavement edge showed traces of carbonation and leaching processes, whereas the road centre material was nearly identical to fresh slag, in spite of an accessible particle structure. Batches of moisturized road centre material exposed to oxygen, nitrogen or carbon dioxide (CO{sub 2}) were used for accelerated ageing. Time (7-14 days), temperature (20-40 {sup o}C) and initial slag moisture content (8-20%) were varied to achieve the carbonation (decrease in pH) and leaching that was observed in the pavement edge material. After ageing, water was added to assess leaching of metals and macroelements. 12% moisture, CO{sub 2} and seven days at 40 {sup o}C gave the lowest pH value. This also reproduced the observed ageing effect for Ca, Cu, Ba, Fe, Mn, Pb, Ca (decreased leaching) and for V, Si, and Al (increased leaching). However, ageing effects on SO{sub 4}, DOC and Cr were not reproduced.

  19. Research on the use of Ferro-Chrome slag in civil engineering applications

    Directory of Open Access Journals (Sweden)

    Al-Jabri Khalifa S.

    2018-01-01

    Full Text Available Over recent decades there has been rapid increase in the industrial waste materials and by-products yields due to the progressive growth rate of population, development of industry and technology and the growth of consumerism. With the growing environmental pressures to reduce waste and pollution, Intensive research studies have been conducted to explore all suitable reuse methods. Wastes such as construction waste, blast furnace, steel slag, coal fly ash and bottom ash have been approved in many places as alternative materials in bridges, roads, pavements, foundations and building construction. The use of industrial solid waste as a partial replacement of raw materials in construction activities not only saves landfill space but also reduces the demand for extraction of natural raw materials. Ferrochrome slag is a by-product from the production of chrome. There are environmental and economic advantages in seeing slags as a potentially useful resource rather than as waste products. Slag management at ferrochrome producing companies has been influenced by the limited space available and financial cost implications of the slag dumps. Internationally, e.g. South Africa, India, Norway, Turkey, East Europe, China, Sweden and USA, ferrochrome slag is used commercially in the road and construction Industries. This material is being used for road construction, as aggregates in concrete industry, brick manufacturing, and in pavement construction as engineering fill and has recently been tried in cement. This paper presents an overview of the recent advances of the use of ferrochrome slag in various civil engineering applications such as road construction, and cement and concrete industries.

  20. Steel slag carbonation in a flow-through reactor system: the role of fluid-flux.

    Science.gov (United States)

    Berryman, Eleanor J; Williams-Jones, Anthony E; Migdisov, Artashes A

    2015-01-01

    Steel production is currently the largest industrial source of atmospheric CO2. As annual steel production continues to grow, the need for effective methods of reducing its carbon footprint increases correspondingly. The carbonation of the calcium-bearing phases in steel slag generated during basic oxygen furnace (BOF) steel production, in particular its major constituent, larnite {Ca2SiO4}, which is a structural analogue of olivine {(MgFe)2SiO4}, the main mineral subjected to natural carbonation in peridotites, offers the potential to offset some of these emissions. However, the controls on the nature and efficiency of steel slag carbonation are yet to be completely understood. Experiments were conducted exposing steel slag grains to a CO2-H2O mixture in both batch and flow-through reactors to investigate the impact of temperature, fluid flux, and reaction gradient on the dissolution and carbonation of steel slag. The results of these experiments show that dissolution and carbonation of BOF steel slag are more efficient in a flow-through reactor than in the batch reactors used in most previous studies. Moreover, they show that fluid flux needs to be optimized in addition to grain size, pressure, and temperature, in order to maximize the efficiency of carbonation. Based on these results, a two-stage reactor consisting of a high and a low fluid-flux chamber is proposed for CO2 sequestration by steel slag carbonation, allowing dissolution of the slag and precipitation of calcium carbonate to occur within a single flow-through system. Copyright © 2014. Published by Elsevier B.V.

  1. Recycling of the rare earth oxides from spent rechargeable batteries using waste metallurgical slags

    Directory of Open Access Journals (Sweden)

    Tang K.

    2013-01-01

    Full Text Available A high temperature process for recycling spent nickel-metal hydride rechargeable batteries has been recently developed at SINTEF/NTNU. The spent battery modules were first frozen with liquid nitrogen for the de-activation and brittle fracture treatment. The broken steel scraps and plastics were then separated by the mechanical classification and magnetic separation. The remaining positive and negative electrodes, together with the polymer separator, were heated to 600-800oC in order to remove the organic components and further separate the Ni-based negative electrode. XRF analyses indicate that the heat-treated materials consist mainly of nickel, rare earth and cobalt oxides. The valuable rare earth oxides were further recovered by the high-temperature slagging treatment. The waste metallurgical slags, consist mainly of SiO2 and CaO, were used as the rare earth oxide absorbent. After the high temperature slagging treatment, over 98% of nickel and cobalt oxides were reduced to the metal phase; meanwhile almost all rare earth oxides remain in the molten slags. Furthermore, EPMA and XRF analyses of the slag samples indicate that the rare earth oxides selectively precipitate in the forms of solid xSiO2•yCaO•zRe2O3. The matrix of slag phase is Re2O3 deficient, typically being less than 5 wt%. This provides a sound basis to further develop the high-temperature process of concentrating the Re2O3 oxides in slags.

  2. The setting time of a clay-slag geopolymer matrix: the influence of blast-furnace-slag addition and the mixing method

    Czech Academy of Sciences Publication Activity Database

    Perná, Ivana; Hanzlíček, Tomáš

    112, Part 1, JAN 20 (2016), s. 1150-1155 ISSN 0959-6526 Institutional support: RVO:67985891 Keywords : blast-furnace slag * geopolymer * setting time * mixing method * solidification * recycling Subject RIV: DM - Solid Waste and Recycling Impact factor: 5.715, year: 2016

  3. Effects of Temperature, Oxygen Partial Pressure, and Materials Selection on Slag Infiltration into Porous Refractories for Entrained-Flow Gasifiers

    Science.gov (United States)

    Kaneko, Tetsuya Kenneth

    The penetration rate of molten mineral contents (slag) from spent carbonaceous feedstock into porous ceramic-oxide refractory linings is a critical parameter in determining the lifecycle of integrated gasification combined cycle energy production plants. Refractory linings that withstand longer operation without interruption are desirable because they can mitigate consumable and maintenance costs. Although refractory degradation has been extensively studied for many other high-temperature industrial processes, this work focuses on the mechanisms that are unique to entrained-flow gasification systems. The use of unique feedstock mixtures, temperatures from 1450 °C to 1600 °C, and oxygen partial pressures from 10-7 atm to 10-9 atm pose engineering challenges in designing an optimal refractory material. Experimentation, characterization, and modeling show that gasifier slag infiltration into porous refractory is determined by interactions between the slag and the refractory that either form a physical barrier that impedes fluid flow or induce an increased fluid viscosity that decelerates the velocity of the fluid body. The viscosity of the slag is modified by the thermal profile of the refractory along the penetration direction as well as reactions between the slag and refractory that alter the chemistry, and thereby the thermo-physical properties of the fluid. Infiltration experiments reveal that the temperature gradient inherently present along the refractory lining limits penetration. A refractory in near-isothermal conditions demonstrates deeper slag penetration as compared to one that experiences a steeper thermal profile. The decrease in the local temperatures of the slag as it travels deeper into the refractory increases the viscosity of the fluid, which in turn slows the infiltration velocity of fluid body into the pores of the refractory microstructure. With feedstock mixtures that exhibit high iron-oxide concentrations, a transition-metal-oxide, the oxygen

  4. Phosphorus-32: practical radiation protection

    International Nuclear Information System (INIS)

    Ballance, P.E.; Morgan, J.

    1987-01-01

    This monograph offers practical advice to Radiation Protection Advisors, Radiation Protection Supervisors and Research Supervisors, together with research workers, particularly those in the field of molecular biological research. The subject is dealt with under the following headings: physical properties, radiation and measurement methods, radiation units, phosphorus metabolism and health risks, protection standards and practical radiation protection, administrative arrangements, accidents, decontamination, emergency procedures, a basic written system for radiochemical work, with specialised recommendations for 32 P, and guidance notes of accident situations involving 32 P. (U.K.)

  5. Microstructure of ultra high performance concrete containing lithium slag.

    Science.gov (United States)

    He, Zhi-Hai; Du, Shi-Gui; Chen, Deng

    2018-04-03

    Lithium slag (LS) is discharged as a byproduct in the process of the lithium carbonate, and it is very urgent to explore an efficient way to recycle LS in order to protect the environments and save resources. Many available supplementary cementitious materials for partial replacement of cement and/or silica fume (SF) can be used to prepare ultra high performance concrete (UHPC). The effect of LS to replace SF partially by weight used as a supplementary cementitious material (0%, 5%, 10% and 15% of binder) on the compressive strengths and microstructure evolution of UHPC has experimentally been studied by multi-techniques including mercury intrusion porosimetry, scanning electron microscope and nanoindentation technique. The results show that the use of LS degrades the microstructure of UHPC at early ages, and however, the use of LS with the appropriate content improves microstructure of UHPC at later ages. The hydration products of UHPC are mainly dominated by ultra-high density calcium-silicate-hydrate (UHD C-S-H) and interfacial transition zone (ITZ) in UHPC has similar compact microstructure with the matrix. The use of LS improves the hydration degree of UHPC and increases the elastic modulus of ITZ in UHPC. LS is a promising substitute for SF for preparation UHPC. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Slagging gasifier refractories. A new pathway to longer refractory life

    Energy Technology Data Exchange (ETDEWEB)

    Schnake, Mark [Harbinson-Walker Refractories Company, Mexico, MO (United States)

    2013-07-01

    Solid fuel slagging gasification to convert coal or petroleum coke feedstocks into syngas has rapidly evolved over the last 25 years. The gasifier is a high temperature, high pressure reaction chamber. Operating temperatures are between 1250 and 1575 C. Pressures will be between 20.4 and 68 atm. Syngas has been typically used for chemical feedstocks, fuel for power plants, or for steam and hydrogen generation in other industrial applications. Ash which comes from the solid fuel during gasification has many impurities. It melts during the gasifier reactor operation forming a liquid that penetrates the refractory lining. Given time, the refractory will wear away from thermal spalling, structural spalling, or overheating of the refractory. In some cases, all three wear mechanisms are seen in the same gasifier lining. Industry users have identified refractory life as one major limiting factor in worldwide use of this technology. Users have stated if the refractory liner can increase on-line availability of the gasifier operation, more industry acceptance of this technology is possible. Harbison-Walker Refractories Company will review destructive factors affecting lining life and discuss new refractory materials that have dramatically increased gasifier lining life and reliability. New refractory materials will be presented and supported by field trial results and post mortem analysis.

  7. Prompt gamma-ray analysis of steel slag in concrete

    International Nuclear Information System (INIS)

    Naqvi, Akhtar Abbas; Garwan, Muhammad Ahmad; Nagadi, Mahmoud Mohammad; Rehman, Khateeb-ur; Raashid, Mohammad; Masalehuddin Mohiuddin, Mohammad; Al-Amoudi, Omar Saeed Baghabra

    2009-01-01

    Blast furnace slag (BFS) is added to Portland cement concrete to increase its durability, particularly its corrosion resistance. Monitoring the concentration of BFS in concrete for quality control purposes is desired. In this study, the concentration of BFS in concrete was measured by utilizing an accelerator-based prompt gamma-ray neutron activation analysis (PGNAA) setup. The optimum size of the BFS cement concrete specimen that produces the maximum intensity of gamma rays at the detector location was calculated through Monte Carlo simulations. The simulation results were experimentally validated through the gamma-ray yield measurement from BFS cement concrete specimens having different radii. The concentration of BFS in the cement concrete specimens was assessed through calcium and silicon gamma-ray yield measurement from cement concrete specimens containing 5 to 80 wt% BFS. The yield of calcium gamma rays decreases with increasing BFS concentration in concrete while the yield of silicon gamma rays increases with increasing BFS concentration in concrete. The calcium-to-silicon gamma-ray yield ratio has an inverse relation with BFS concentration in concrete. (author)

  8. Global Fertilizer and Manure, Version 1: Phosphorus Fertilizer Application

    Data.gov (United States)

    National Aeronautics and Space Administration — The Phosphorus Fertilizer Application dataset of the Global Fertilizer and Manure, Version 1 Data Collection represents the amount of phosphorus fertilizer nutrients...

  9. Determination Total Phosphour of Maize Plant Samples by Continuous Flow Analyzer in Comparison with Vanadium Molybdate Yellow Colorimetric Method

    OpenAIRE

    LIU Yun-xia; WEN Yun-jie; HUANG Jin-li; LI Gui-hua; CHAI Xiao; WANG Hong

    2015-01-01

    The vanadium molybdate yellow colorimetric method(VMYC method) is regarded as one of conventional methods for determining total phosphorus(P) in plants, but it is time consuming procedure. Continuous flow analyzer(CFA) is a fluid stream segmentation technique with air segments. It is used to measure P concentration based on the molybdate-antimony-ascorbic acid method of Murphy and Riley. Sixty nine of maize plant samples were selected and digested with H2SO4-H2O2. P concentrations in the dige...

  10. The pH-dependent leaching behavior of slags from various stages of a copper smelting process: Environmental implications.

    Science.gov (United States)

    Jarošíková, Alice; Ettler, Vojtěch; Mihaljevič, Martin; Kříbek, Bohdan; Mapani, Ben

    2017-02-01

    The leaching behaviors of primary copper (Cu) slags originating from Ausmelt, reverbatory, and converter furnaces operating under a single technological process were compared to a residual slag tailing obtained by slag re-processing via flotation and metal recovery. The EN 12457-2 leaching test, used for assessment of the hazardous properties, was followed by the CEN/TS 14997 pH-static leaching test (pH range 3-12). Both leaching experiments were coupled with a mineralogical investigation of the primary and secondary phases as well as geochemical modeling. Metals (Cd, Cu, Pb, Zn) exhibit the highest leaching at low pH. Under acidic conditions (pH 3-6), Ausmelt slag and slag tailing exhibited higher metal leaching compared to other slag types. Very low leaching of metals (far below EU limits for non-hazardous waste) was observed at natural pH (7.9-9.0) for all the studied slag samples. In contrast, relatively high leaching of As was observed over the entire pH range, especially for Ausmelt slag (exceeding the EU limit for hazardous waste by 1.7×). However, geochemical modeling and scanning electron microscopy indicated that formation of stable Ca-Cu-Pb arsenates and the binding of As to newly formed Fe (oxyhydr)oxides play an important role in efficient As immobilization at the slag-water interface. In contrast, no controls were predicted for Sb, whose leaching was almost pH-independent. Nevertheless Sb leached concentrations at natural pH were below EU limit for hazardous waste. Re-processing of primary Cu slags for metal recovery, and subsequent co-disposal of the resulting slag tailing with dolomite-rich mine tailing and local laterite is suitable for stabilizing the remaining contaminants (except Sb) and limiting their leaching into the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Sustainable use of phosphorus: a finite resource.

    Science.gov (United States)

    Scholz, Roland W; Ulrich, Andrea E; Eilittä, Marjatta; Roy, Amit

    2013-09-01

    Phosphorus is an essential element of life and of the modern agricultural system. Today, science, policy, agro-industry and other stakeholder groups are increasingly concerned about the sustainable use of this resource, given the dissipative nature of phosphorus and difficulties in assessing, evaluating, and coping with phosphorus pollution in aquatic and terrestrial systems. We argue that predictions about a forthcoming peak, followed by a quick reduction (i.e., physical phosphate rock scarcity) are unreasoned and stress that access to phosphorus (economic scarcity) is already, and may increasingly become critical, in particular for smallholders farmers in different parts of the world. The paper elaborates on the design, development, goals and cutting-edge contributions of a global transdisciplinary process (i.e. mutual learning between science and society including multiple stakeholders) on the understanding of potential contributions and risks related to the current mode of using phosphorus on multiple scales (Global TraPs). While taking a global and comprehensive view on the whole phosphorus-supply chain, Global TraPs organizes and integrates multiple transdisciplinary case studies to better answer questions which inform sustainable future phosphorus use. Its major goals are to contribute to four issues central to sustainable resource management: i) long-term management of biogeochemical cycles, in particular the challenge of closing the phosphorus cycle, ii) achieving food security, iii) avoiding environmental pollution and iv) sustainability learning on a global level by transdisciplinary processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Characterization of the lead smelter slag in Santo Amaro, Bahia, Brazil

    International Nuclear Information System (INIS)

    Andrade Lima, L.R.P. de; Bernardez, L.A.

    2011-01-01

    For 33 years, a primary lead smelter operated in Santo Amaro (Brazil). Since the 1970s, large amounts of Pb and Cd have been widely documented in the blood and hair of people living near the smelter. The plant closed down in 1993, and several years later, the Pb levels in the blood of children under 4 years of age living near the smelter were high, where the disposed lead slag was suspected to be the main source of this contamination. The objective of this study is to elucidate the source of the Pb contamination and any other potentially toxic contamination, focusing on the characterization of the slag. The samples used for this characterization study were taken from the slag heaps. The results of the chemical analysis showed that the major constituents of the slag, in decreasing order of wt%, were the following: Fe 2 O 3 (28.10), CaO (23.11), SiO 2 (21.39), ZnO (9.47), MgO (5.44), PbO (4.06), Al 2 O 3 (3.56), C (2.26), MnO (1.44), Na 2 O (0.27), S (0.37), K 2 O (0.26), and TiO 2 (0.25). The Cd content of the slag was 57.3 mg/kg, which is relatively low. The X-ray diffraction and the electron probe microanalyzer X-ray mapping indicated that the major phases in the slag were wuestite, olivine, kirschsteinite, and franklinite. Only spheroidal metallic Pb was found in the slag. The leaching study showed that the slag was stable at a pH greater than 2.8, and only in an extremely acidic environment was the solubilization of the Pb enhanced significantly. The solubilization of Zn was very limited in the acidic and alkaline environments. These results can be explained by the limited leachability of the metallic Pb and Zn-bearing compounds. The leaching study used TCLP, SPLP, and SWEP and indicated that the lead slag was stable in weak acidic environments for short contact times.

  13. Characterization of the lead smelter slag in Santo Amaro, Bahia, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Andrade Lima, L.R.P. de, E-mail: lelo@ufba.br [Department of Materials Science and Technology, Federal University of Bahia, C.P. 6974, Salvador, BA 41810-971 (Brazil); Bernardez, L.A. [Ingenium Consultoria em Engenharia Ltda (Brazil)

    2011-05-30

    For 33 years, a primary lead smelter operated in Santo Amaro (Brazil). Since the 1970s, large amounts of Pb and Cd have been widely documented in the blood and hair of people living near the smelter. The plant closed down in 1993, and several years later, the Pb levels in the blood of children under 4 years of age living near the smelter were high, where the disposed lead slag was suspected to be the main source of this contamination. The objective of this study is to elucidate the source of the Pb contamination and any other potentially toxic contamination, focusing on the characterization of the slag. The samples used for this characterization study were taken from the slag heaps. The results of the chemical analysis showed that the major constituents of the slag, in decreasing order of wt%, were the following: Fe{sub 2}O{sub 3} (28.10), CaO (23.11), SiO{sub 2} (21.39), ZnO (9.47), MgO (5.44), PbO (4.06), Al{sub 2}O{sub 3} (3.56), C (2.26), MnO (1.44), Na{sub 2}O (0.27), S (0.37), K{sub 2}O (0.26), and TiO{sub 2} (0.25). The Cd content of the slag was 57.3 mg/kg, which is relatively low. The X-ray diffraction and the electron probe microanalyzer X-ray mapping indicated that the major phases in the slag were wuestite, olivine, kirschsteinite, and franklinite. Only spheroidal metallic Pb was found in the slag. The leaching study showed that the slag was stable at a pH greater than 2.8, and only in an extremely acidic environment was the solubilization of the Pb enhanced significantly. The solubilization of Zn was very limited in the acidic and alkaline environments. These results can be explained by the limited leachability of the metallic Pb and Zn-bearing compounds. The leaching study used TCLP, SPLP, and SWEP and indicated that the lead slag was stable in weak acidic environments for short contact times.

  14. Characterization study of heavy metal-bearing phases in MSW slag

    International Nuclear Information System (INIS)

    Saffarzadeh, Amirhomayoun; Shimaoka, Takayuki; Motomura, Yoshinobu; Watanabe, Koichiro

    2009-01-01

    Slag products derived from the pyrolysis/melting and plasma/melting treatment of municipal solid waste (MSW) in Japan were examined for the characterization study of heavy metal-bearing phases using petrographic techniques. Detailed microscopic observations revealed that the shapes of heavy metal-rich inclusions are generally spherical to semi-spherical and their sizes range from submicron to scarcely large size spheres (over 100 μm). The experiments (both optical microscopy and electron probe microanalysis) indicated that Fe and Cu participate in mutual substitution and different proportions, and form mainly two-phase Fe-Cu alloys that bound in the silicate glass. This alloy characterizes the composition of more than 80% of the metal-rich inclusions. Other metals and non-metals (such as Pb, Ni, Sb, Sn, P, Si, Al and S) with variable amounts and uneven distributions are also incorporated in the Fe-Cu alloy. In average, the bulk concentration of heavy metals in samples from pyrolysis/melting type is almost six times greater than samples treated under plasma/arc processing. The observations also confirmed that slag from pyrolysis origin contains remarkably higher concentration of metallic inclusions than slag from plasma treatment. In the latter, the metallic compounds are separately tapped from molten slag during the melting treatment that might lead to the generation of safer slag product for end users from environmental viewpoint.

  15. EFFECTS OF BLAST-FURNACE SLAG ON NATURAL POZZOLAN-BASED GEOPOLYMER CEMENT

    Directory of Open Access Journals (Sweden)

    MAHSHAD YAZDANIPOUR

    2011-03-01

    Full Text Available A number of geopolymer cement mixes were designed and produced by alkali-activation of a pumice-type natural pozzolan. Effects of blast-furnace slag on basic engineering properties of the mixes were studied. Different engineering properties of the mixes such as setting times and 28-day compressive strength were studied at different amounts of blast-furnace slag, sodium oxide content, and water-to-cement ratio. The mix comprising of 5 wt.% blast-furnace slag and 8 wt.% Na2O with a water-to-dry binder ratio of 0.30 exhibits the highest 28-day compressive strength, i.e. 36 MPa. Mixes containing 5 wt.% of ground granulated blast furnace slag showed the least efflorescence or best soundness. Laboratory techniques of X-ray diffractometry (XRD, fourier transform infrared spectroscopy (FTIR, and scanning electron microscopy (SEM were utilized for characterizing a number of mixes and studying their molecular and micro-structure. Investigations done by scanning electron microscopy confirm that smaller blast-furnace slag particles react totally while the larger ones react partially with alkaline activators and contribute to the formation of a composite microstructure.

  16. Mechanism of Phase Formation in the Batch Mixtures for Slag-Bearing Glass Ceramics - 12207

    Energy Technology Data Exchange (ETDEWEB)

    Stefanovsky, Sergey V.; Stefanovsky, Olga I.; Malinina, Galina A. [SIA Radon, 7th Rostovskii lane 2/14, Moscow 119121 (Russian Federation)

    2012-07-01

    Slag surrogate was produced from chemicals by heating to 900 deg. C and keeping at this temperature for 1 hr. The product obtained was intermixed with either sodium di-silicate (75 wt.% waste loading) or borax (85 wt.% slag loading). The mixtures were heat-treated within a temperature range of 25 to 1300 deg. C. The products were examined by X-ray diffraction and infrared spectroscopy. The products prepared at temperatures of up to 1000 deg. C contained both phase typical of the source slag and intermediate phases as well as phases typical of the materials melted at 1350 deg. C such as nepheline, britholite, magnetite and matrix vitreous phase. Vitrification process in batch mixtures consisting of slag surrogate and either sodium di-silicate or sodium tetraborate runs through formation of intermediate phases mainly silico-phosphates capable to incorporate Sm as trivalent actinides surrogate. Reactions in the batch mixtures are in the whole completed by ∼1000 deg. C but higher temperatures are required to homogenize the products. If in the borate-based system the mechanism is close to simple dissolution of slag constituents in the low viscous borate melt, then in the silicate-based system the mechanism was found to be much complicated and includes re-crystallization during melting with segregation of newly-formed nepheline type phase. (authors)

  17. Rare earth elements leaching from Tin slag using Acid Chloride after Alkaline fusion process

    International Nuclear Information System (INIS)

    Kurnia Trinopiawan; Budi Yuli Ani; June Mellawati; Mohammad Zaki Mubarok

    2016-01-01

    Tin slag, a waste product from tin smelting process, has a potency to be utilized further by extracting the valuable metals inside, such as rare earth elements(REE). The objective of this study is to determine the optimum leaching condition of REE from tin slag after alkali fusion. Silica structure in slag is causing the direct leaching uneffectively. Therefore, pre-treatment step using alkali fusion is required to break the structure of silica and to increase the porosity of slag. Fusion is conducted in 2 hours at 700°C, with ratio of natrium hydroxide (NaOH) : slag = 2 : 1. Later, frit which is leached by water then leached by chloride acid to dissolve REE. As much as 87,5% of REE is dissolved at 2 M on chloride acid (HCl) concentration, in 40°C temperature, -325 mesh particle size, 15 g/100 ml of S/L, 150 rpm of agitation speed, and 5 minutes of leaching time. (author)

  18. Alkali activated slag mortars provide high resistance to chloride-induced corrosion of steel

    Science.gov (United States)

    Criado, Maria; Provis, John L.

    2018-06-01

    The pore solutions of alkali-activated slag cements and Portland-based cements are very different in terms of their chemical and redox characteristics, particularly due to the high alkalinity and high sulfide content of alkali-activated slag cement. Therefore, differences in corrosion mechanisms of steel elements embedded in these cements could be expected, with important implications for the durability of reinforced concrete elements. This study assesses the corrosion behaviour of steel embedded in alkali-activated blast furnace slag (BFS) mortars exposed to alkaline solution, alkaline chloride-rich solution, water, and standard laboratory conditions, using electrochemical techniques. White Portland cement (WPC) mortars and blended cement mortars (white Portland cement and blast furnace slag) were also tested for comparative purposes. The steel elements embedded in immersed alkali-activated slag mortars presented very negative redox potentials and high apparent corrosion current values; the presence of sulfide reduced the redox potential, and the oxidation of the reduced sulfur-containing species within the cement itself gave an electrochemical signal that classical electrochemical tests for reinforced concrete durability would interpret as being due to steel corrosion processes. However, the actual observed resistance to chloride-induced corrosion was very high, as measured by extraction and characterisation of the steel at the end of a 9-month exposure period, whereas the steel embedded in white Portland cement mortars was significantly damaged under the same conditions.

  19. Physicochemical characterization of copper slag and alternatives of friendly environmental management

    Directory of Open Access Journals (Sweden)

    Sánchez M.

    2013-01-01

    Full Text Available Copper slags are usually considered a waste and characterized only by the final copper content. Large and increasing quantities are being produced and disposed of by stockpiling near the metallurgical plants. This paper stresses the importance of physico-chemical characterization when considering uses for slags and the possibility of recovering the valuable metals still remaining in this phase. The purpose of this work is to support and encourage a change in the classical perception of slag from a ‘waste’ to a ‘resource’; promote the development of new technologies for treatment to recover residual values and encourage a search for new uses; with the ultimate objective of eliminating slag stockpiles thereby diminishing the environmental impact of smelting operations. Some of the results of experimental laboratory work done by the authors and examples of commercial applications will be shown. A promising future for valorization and utilization of slags is expected and will provide an example when considering the use of all the other large quantities of wastes generated by the mining industry.

  20. Construction material properties of slag from the high temperature arc gasification of municipal solid waste.

    Science.gov (United States)

    Roessler, Justin G; Olivera, Fernando D; Wasman, Scott J; Townsend, Timothy G; McVay, Michael C; Ferraro, Christopher C; Blaisi, Nawaf I

    2016-06-01

    Slag from the high temperature arc gasification (HTAG) of municipal solid waste (MSW) was tested to evaluate its material properties with respect to use as a construction aggregate. These data were compared to previously compiled values for waste to energy bottom ash, the most commonly produced and beneficially used thermal treatment residue. The slag was tested using gradations representative of a base course and a course aggregate. Los Angeles (LA) abrasion testing demonstrated that the HTAG slag had a high resistance to fracture with a measured LA loss of 24%. Soundness testing indicated a low potential for reactivity and good weathering resistance with a mean soundness loss of 3.14%. The modified Proctor compaction testing found the slag to possess a maximum dry density (24.04kN/m(3)) greater than conventionally used aggregates and WTE BA. The LBR tests demonstrated a substantial bearing capacity (>200). Mineralogical analysis of the HTAG suggested the potential for self cementing character which supports the elevated LBR results. Preliminary material characterization of the HTAG slag establishes potential for beneficial use; larger and longer term studies focusing on the material's possibility for swelling and performance at the field scale level are needed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Room temperature zeolitization of boiler slag from a Bulgarian thermal power plant

    Directory of Open Access Journals (Sweden)

    Pascova Radost D.

    2017-01-01

    Full Text Available A simple and cost-effective method was applied for the synthesis of zeolite composites utilising wet bottom boiler slag from the Bulgarian coal-fired thermal power plant “Sviloza”, near the town of Svishtov. The method consisted of a prolonged alkali treatment at room temperature of this waste. Experimental techniques, such as scanning electron microscopy, energy-dispersive X-ray and X-ray diffraction analyses, are employed to characterize the initial slag and the final products with respect to their morphology, and elemental and mineral compositions. The composites synthesized in this way contained two Na-type zeolite phases: zeolite X (type FAU and zeolite Linde F (type EDI. The zeolited products and the starting slag were tested as adsorbents for a textile dye (Malachite Green from aqueous solutions. In comparison with the initial slag, the zeolite composite possessed substantially better adsorption properties: it almost completely adsorbs the dye in much shorter times. The results of this investigations revealed a new, easy and low cost route for recycling boiler slag into a material with good adsorption characteristics, which could find different applications, e.g., for purifying polluted waters, including those from the textile industry.

  2. Synergetic use of lignite fly ash and metallurgical converter slag in geopolymer concrete

    Directory of Open Access Journals (Sweden)

    Gábor Mucsi

    2014-08-01

    Full Text Available The application and utilization of the industrial wastes and by-products in the construction industry is a key issue from an environmental and economic point of view. The increased use of lignite has substantially increased the available quantities of lignite fired power plant fly ash, which can be mainly classified as class C fly ash. The utilization of such raw material however has some difficulties. In the present paper lignite fired power station fly ash and metallurgical converter slag were used for the production of geopolymer concrete. The fly ash was used as a geopolymer based binder material, and a converter slag as aggregate, thus created a geopolymer concrete which contains mainly industrial wastes. As preliminary test experimental series were carried out using andesite as aggregate. The optimal aggregate/binder ratio was determined. The effect of the amount of alkaline activator solution in the binder, the aggregate type on the geopolymer concretes’ compressive strength and density was investigated. Furthermore, the physical properties - freeze-thaw resistance and particle size distribution - of the applied aggregates were measured as well. As a result of the experiments it was found that physical properties of the andesite and converter slag aggregate was close. Therefore andesite can be replaced by converter slag in the concrete mixture. Additionally, geopolymer concrete with nearly 20 MPa compressive strength was produced from class C fly ash and converter slag.

  3. Environmental and Geotechnical Assessment of the Steel Slags as a Material for Road Structure

    Directory of Open Access Journals (Sweden)

    Wojciech Sas

    2015-07-01

    Full Text Available Slags are the final solid wastes from the steel industry. Their production from waste and associated materials is a proper implementation of the basic objectives and principles of the waste management. This study aims to investigate the chemical and selected significant geotechnical parameters of steel slag as the alternative materials used in road construction. These investigations are strongly desired for successful application in engineering. Young’s modules E, and resilient modules Mr showed that their values corresponding with requirements for subbase (principal or auxiliary and riding surface as well. Tested mechanical properties were conducted in soaked and un-soaked (optimal moisture content conditions. The designated high content of chromium and zinc are strongly associated with the internal crystal structure of steel slag. The results do not lead to threats when they are applied in roads’ structures. Mechanical characterization was obtained by performing California bearing ratio (CBR tests for steel slag in fixed compaction and moisture content conditions. Moreover, cyclic loading of steel slag was conducted with the application of cyclic California bearing ratio (cCBR apparatus to characterization of this material as a controlled low-strength material. Finally, field studies that consist of static load plate VSS tests were presented.

  4. Environmental and Geotechnical Assessment of the Steel Slags as a Material for Road Structure.

    Science.gov (United States)

    Sas, Wojciech; Głuchowski, Andrzej; Radziemska, Maja; Dzięcioł, Justyna; Szymański, Alojzy

    2015-07-30

    Slags are the final solid wastes from the steel industry. Their production from waste and associated materials is a proper implementation of the basic objectives and principles of the waste management. This study aims to investigate the chemical and selected significant geotechnical parameters of steel slag as the alternative materials used in road construction. These investigations are strongly desired for successful application in engineering. Young's modules E , and resilient modules M r showed that their values corresponding with requirements for subbase (principal or auxiliary) and riding surface as well. Tested mechanical properties were conducted in soaked and un-soaked (optimal moisture content) conditions. The designated high content of chromium and zinc are strongly associated with the internal crystal structure of steel slag. The results do not lead to threats when they are applied in roads' structures. Mechanical characterization was obtained by performing California bearing ratio (CBR) tests for steel slag in fixed compaction and moisture content conditions. Moreover, cyclic loading of steel slag was conducted with the application of cyclic California bearing ratio (cCBR) apparatus to characterization of this material as a controlled low-strength material. Finally, field studies that consist of static load plate VSS tests were presented.

  5. Friction and Braking Application of Unhazardous Palm Slag Brake Pad Composite

    Science.gov (United States)

    Khoni, Norizzahthul Ainaa Abdul; Ruzaidi Ghazali, Che Mohd; Bakri Abdullah, Mohd Mustafa Al

    2018-03-01

    This paper reveals new alternative friction materials for brake pads. Palm slag was studied as new friction materials in brake pads but its much harder made it difficult to be applied. As a way to reduce the hardness, tire dust was including as purpose on stabilizing the hardness of brake pads. The palm slag was sieves to get desired size that is 150 μm, 300 μm and 600 μm. The percentage weight of materials used are 20% graphite, 20% aluminium oxide, 20% steel fiber, 20% polyester resin and another 40% are varied between tire dust and palm slag. All of materials were blend and compress by using hot pressed machine. The composites properties that were examined are density, porosity, hardness, compressive strength, microstructure analysis and wear rate. The composition of 30% palm slag, 10% tire dust and larger size of filler give better result of mechanical properties and less wear rate of brake pads composites. Then, palm slag can be used in producing of non asbestos brake pads.

  6. Lignite air-steam gasification in the fluidized bed of iron-containing slag catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Kuznetsov, B.N.; Shchipko, M.L.; Golovin, Yu. [Inst. of Chemistry of Natural Organic Materials, Academgorodok, Krasnoyarsk (Russian Federation)

    1995-12-01

    The influence of fluidized bed of iron-containing slag particles on air-steam gasification of powdered Kansk-Achinsk lignite in entrained flow was studied in pilot installation with productivity about 60 kg per hour. Slag of Martin process and boiler slag were used as catalytic active materials until their complete mechanical attrition. Two following methods of catalytic gasification of lignite were compared: the partial gasification in stationary fluidized bed of slag particles with degree of fuel conversion 40-70% and complete gasification in circulating bed of slag particles. In the first case only the most reactive part of fuel is gasified with the simultaneously formation of porous carbon residue with good sorption ability. It was found the catalytic fluidized bed improves heat transfer from combustion to reduction zone of gas-generator and increases the rate of fuel conversion at the temperature range 900-1000{degrees}C. At these temperatures the degree of conversion is depended considerably on the duration time of fuel particles in the catalytic fluidized bed. The influence of catalytic fluidized bed height and velocity of reaction mixture on the temperature profiles in the gas-generator was studied. The optimal relationship was found between the fluidized bed height and velocity of flow which makes possible to produce the gas with higher calorific value at maximum degree of fuel conversion.

  7. Production of brown and black pigments by using flotation waste from copper slag.

    Science.gov (United States)

    Ozel, Emel; Turan, Servet; Coruh, Semra; Ergun, Osman Nuri

    2006-04-01

    One of the major problems in copper-producing countries is the treatment of the large amount of copper slag or copper flotation waste generated from copper slag which contains significant amounts of heavy metals such as Cu, Zn, Pb and Co. Dumping or disposal of such large quantities of flotation waste from copper slag causes environmental and space problems. In this study, the treatment of flotation waste from copper slag by a thermal method and its use as an iron source in the production of inorganic brown and black pigments that are used in the ceramic industry were investigated. The pigments were produced by calcining different amounts of flotation waste and chromite, Cr2O3, ZnO and CoO mixtures. The pigments obtained were added to transparent ceramic glazes and porcelainized tile bodies. Their colours were defined by L*a*b* measurements with a spectrophotometer. The results showed that flotation waste from copper slag could be used as an iron source to produce brown and black pigments in both ceramic body and glazes.

  8. Radiation dose contribution from coal-slag from the Ajka region used as structural building material

    Energy Technology Data Exchange (ETDEWEB)

    Somali, J.; Kanyar, B.; Lendvai, Z.; Nemeth, C.; Bodnar, R. [Veszpremi Egyetem, Veszprem (Hungary). Radiokemia Tanszek

    1997-10-01

    A significant dose contribution on the population could be derived from coal slags used as material in buildings. Extremely high natural activities are measured in the coal slag from the region of Ajka, Hungary. The main conclusions based on the results of the monitoring of the gamma-dose rate and the radon concentration in the air in nearly 240 houses are as follows: (1) for individuals, such as children, spending a long time at home (19.2 h/day) the external annual dose is 1.7-4.5 mSv; (2) in the majority of houses with local slag the estimated annual average value of indoor-radon concentration was above 400 Bq/m{sup 3}, and in several cases there were buildings with values over 1200 Bq/m{sup 3}. In these cases the internal annual dose of the dwellers can be estimated between 6-20 mSv; (3) due to the elevated gamma-exposure and the radon concentration in the dwellings the total annual dose was estimated as 8-24 mSv, more than 5-10 times the world average value; and (4) some of the houses were built after the 1960s, when the use of slags from the region of Ajka as building material was already banned by the authorities. In addition to the regulations an effective radiological control should be introduced and a practice for testing the use of slag as building material.

  9. Rheological Characterization of Warm-Modified Asphalt Mastics Containing Electric Arc Furnace Steel Slags

    Directory of Open Access Journals (Sweden)

    M. Pasetto

    2016-01-01

    Full Text Available The environmental sustainability of road materials and technologies plays a key role in pavement engineering. In this sense, the use of Warm Mix Asphalt (WMA, that is, a modified asphalt concrete that can be produced and applied at lower temperature, is considered an effective solution leading to environmental and operational benefits. The environmental sustainability of WMA can be further enhanced with the inclusion of steel slag in partial substitution of natural aggregates. Nevertheless, such innovative material applied at lower temperatures containing warm additives and steel slag should be able to guarantee at least the same performance of traditional hot mix asphalts, thus assuring acceptable mechanical properties and durability. Therefore, the purpose of this study is to investigate the rheological behaviour of bituminous mastics obtained combining a warm-modified binder and a filler (material passing to 0.063 mm coming from electric arc furnace steel slag. To evaluate the influence of both warm additive and steel slag, a plain binder and limestone filler were also used for comparison purposes. Complex modulus and permanent deformation resistance of bitumens and mastics were assessed using a dynamic shear rheometer. Experimental results showed that steel slag warm mastics assure enhanced performance demonstrating promising applicability.

  10. Combined Performance of Polypropylene Fibre and Weld Slag in High Performance Concrete

    Science.gov (United States)

    Ananthi, A.; Karthikeyan, J.

    2017-12-01

    The effect of polypropylene fibre and weld slag on the mechanical properties of High Performance Concrete (HPC) containing silica fume as the mineral admixtures was experimentally verified in this study. Sixteen series of HPC mixtures(70 MPa) were designed with varying fibre fractions and Weld Slag (WS). Fibre added at different proportion (0, 0.1, 0.3 and 0.6%) to the weight of cement. Weld slag was substituted to the fine aggregate (0, 10, 20 and 30%) at volume. The addition of fibre decreases the slump at 5, 9 and 14%, whereas the substitution of weld slag decreases by about 3, 11 and 21% with respect to the control mixture. Mechanical properties like compressive strength, split tensile strength, flexural strength, Ultrasonic Pulse Velocity test (UPV) and bond strength were tested. Durability studies such as Water absorption and Sorptivity test were conducted to check the absorption of water in HPC. Weld slag of 10% and fibre dosage of 0.3% in HPC, attains the maximum strength and hence this combination is most favourable for the structural applications.

  11. Recovery of uranium and lining material from magnesium fluoride slag at UMP

    International Nuclear Information System (INIS)

    Bandyopadhyay, P.K.; Singh, H.; Shadakshari, B.M.; Meghal, A.M.

    1991-01-01

    At Uranium Metal Plant, uranium metal is produced by reduction of UF 4 with magnesium metal, in a closed reactor lined with refractory MgF 2 lining material. During this reduction, more MgF 2 is produced as the slag. This slag generally contains 2-4% uranium and hence is processed to recover these values and part of the slag, free from uranium is reused for lining the reactor. This paper describes the process parameters finalised for crushing and grinding of the slag and for leaching uranium with nitric acid. The leach liquor contains appreciable amount of fluoride and hence is processed through a separate solvent extraction cycle with tributyl phosphate. The resultant purified uranyl nitrate solution is mixed with the main stream crude solution for final purification. The conditions optimised for the solvent extraction step, the problems faced during the regular operation over the last few years and the experience gained are described. An outline of the scheme to treat larger quantities of the slag on a regular basis is presented. (author). 6 refs., 1 fig., 1 tab

  12. Design and properties of plaster mortars manufactured with ladle furnace slag

    International Nuclear Information System (INIS)

    Rodríguez, A.; Gutiérrez-González, S.; Horgnies, M.; Calderón, V.

    2013-01-01

    Highlights: • This study analyses plaster with ladle furnace slag as a mineral aggregate. • Tests are completed by characterizing the influences of two admixtures. • Microstructure, physical and mechanical results confirm the feasibility of these materials. • These new materials are potentially useful as plaster mortars for use in masonry. - Abstract: This study deals with the properties of a series of plasters containing different proportions of ladle furnace slag used as mineral aggregate. The tests characterise the influences of two admixtures: a superfluidifier to reduce the water absorption (SikaMix®) of mortar plaster and an adhesive emulsion to improve the surface adherence (SikaLatex®). The physical and mechanical results confirm the feasibility of employing ladle furnace slag as a mineral aggregate, which induces an increase in density, in vapour permeability and in porosity. The results highlight also a decrease of adherence, durability and mechanical strength, proportionally to the amount of plaster substituted by slag. Scanning electron microscopy imaging and elemental mapping show good interaction between the various constituents. The thermal degradation of the mixtures reflects an improvement in strength resistance in relation to temperature, as further slag is incorporated. The economical study suggests that these recycled materials are cost-effectively viable and may be applied as plaster mortars for use in masonry

  13. Determination of phosphorus using derivative neutron activation

    International Nuclear Information System (INIS)

    Scindia, Y.M.; Nair, A.G.C.; Reddy, A.V.R.; Manohar, S.B.

    2002-01-01

    For the determination of phosphorus in different matrices, the derivative neutron activation analysis is especially applicable to aqueous samples, since the conventional neutron activation analysis is not useful for the determination of phosphorus. Phosphorus when reacted with ammonium molybdate 4 hydrate and ammonium metavanadate forms molybdo vanado phosphoric acid. This complex is preconcentrated by extracting into methyl isobutyl ketone. The organic phase containing the molybdo vanado phosphoric acid is neutron activated and the phosphorus is determined through the activation product of 52 V. Preparation of this complex, its stoichiometry, application to trace level determination of phosphorus and improved detection limit are discussed. This method was applied for the analysis of industrial effluent samples. (author)

  14. Adaptive Evolution of Phosphorus Metabolism in Prochlorococcus

    DEFF Research Database (Denmark)

    Casey, John R; Mardinoglu, Adil; Nielsen, Jens

    2016-01-01

    Inorganic phosphorus is scarce in the eastern Mediterranean Sea, where the high-light-adapted ecotype HLI of the marine picocyanobacterium Prochlorococcus marinus thrives. Physiological and regulatory control of phosphorus acquisition and partitioning has been observed in HLI both in culture...... and in the field; however, the optimization of phosphorus metabolism and associated gains for its phosphorus-limited-growth (PLG) phenotype have not been studied. Here, we reconstructed a genome-scale metabolic network of the HLI axenic strain MED4 (iJC568), consisting of 568 metabolic genes in relation to 794...... through drastic depletion of phosphorus-containing biomass components but also through network-wide reductions in phosphate-reaction participation and the loss of a key enzyme, succinate dehydrogenase. These alterations occur despite the stringency of having relatively few pathway redundancies...

  15. Phosphorus Regulation in Chronic Kidney Disease.

    Science.gov (United States)

    Suki, Wadi N; Moore, Linda W

    2016-01-01

    Serum phosphorus levels stay relatively constant through the influence of multiple factors-such as parathyroid hormone, fibroblast growth factor 23, and vitamin D-on the kidney, bone, and digestive system. Whereas normal serum phosphorus ranges between 3 mg/dL to 4.5 mg/dL, large cross-sectional studies have shown that even people with normal kidney function are sometimes found to have levels ranging between 1.6 mg/dL and 6.2 mg/dL. While this may partially be due to diet and the factors mentioned above, total understanding of these atypical ranges of serum phosphorus remains uncertain. Risks for bone disease are high in people aged 50 and older, and this group comprises a large proportion of people who also have chronic kidney disease. Consuming diets low in calcium and high in phosphorus, especially foods with phosphate additives, further exacerbates bone turnover. Existing bone disease increases the risk for high serum phosphorus, and higher serum phosphorus has been associated with increased adverse events and cardiovascular-related mortality both in people with chronic kidney disease and in those with no evidence of disease. Once kidney function has deteriorated to end-stage disease (Stage 5), maintaining normal serum phosphorus requires dietary restrictions, phosphate-binding medications, and dialysis. Even so, normal serum phosphorus remains elusive in many patients with Stage 5 kidney disease, and researchers are testing novel targets that may inhibit intestinal transport of phosphorus to achieve better phosphate control. Protecting and monitoring bone health should also aid in controlling serum phosphorus as kidney disease advances.

  16. Effects of slag and fly ash on reinforcement corrosion in concrete in chloride environment. Research from the Netherlands

    NARCIS (Netherlands)

    Polder, R.B.

    2012-01-01

    A review is given of research on the durability performance of concrete made with blast furnace slag and fly ash related to chloride induced reinforcement corrosion, carried out in the Netherlands, where slag has been used in cement for almost a century. Results are presented from field studies on

  17. Effects of slag and fly ash on reinforcement corrosion in concrete in chloride environment : Research from the Netherlands

    NARCIS (Netherlands)

    Polder, R.B.

    2012-01-01

    A review is given of research on the durability performance of concrete made with blast furnace slag and fly ash related to chloride induced reinforcement corrosion, carried out in the Netherlands, where slag has been used in cement for almost a century. Results are presented from field studies on

  18. Treatment of petroleum-hydrocarbon contaminated soils using hydrogen peroxide oxidation catalyzed by waste basic oxygen furnace slag

    International Nuclear Information System (INIS)

    Tsai, T.T.; Kao, C.M.

    2009-01-01

    The contamination of subsurface soils with petroleum hydrocarbons is a widespread environmental problem. The objective of this study was to evaluate the potential of applying waste basic oxygen furnace slag (BOF slag) as the catalyst to enhance the Fenton-like oxidation to remediate fuel oil or diesel contaminated soils. The studied controlling factors that affect the removal efficiency of petroleum hydrocarbons included concentrations of H 2 O 2 , BOF slag dosages, types of petroleum hydrocarbons (e.g., fuel oil and diesel), and types of iron mineral. Experimental results indicate that oxidation of petroleum hydrocarbon via the Fenton-like process can be enhanced with the addition of BOF slag. Results from the X-ray powder diffraction analysis reveal that the major iron type of BOF slag/sandy loam system was iron mineral (e.g., α-Fe 2 O 3 and α-FeOOH). Approximately 76% and 96% of fuel oil and diesel removal were observed (initial total petroleum hydrocarbon (TPH) concentration = 10,000 mg kg -1 ), respectively, with the addition of 15% of H 2 O 2 and 100 g kg -1 of BOF slag after 40 h of reaction. Because BOF slag contains extractable irons such as amorphous iron and soluble iron, it can act as an iron sink to supply iron continuously for Fenton-like oxidation. Results demonstrate that Fenton-like oxidation catalyzed by BOF slag is a potential method to be able to remediate petroleum-hydrocarbon contaminated soils efficiently and effectively.

  19. Water security evaluation in Yellow River basin

    Science.gov (United States)

    Jiang, Guiqin; He, Liyuan; Jing, Juan

    2018-03-01

    Water security is an important basis for making water security protection strategy, which concerns regional economic and social sustainable development. In this paper, watershed water security evaluation index system including 3 levels of 5 criterion layers (water resources security, water ecological security and water environment security, water disasters prevention and control security and social economic security) and 24 indicators were constructed. The entropy weight method was used to determine the weights of the indexes in the system. The water security index of 2000, 2005, 2010 and 2015 in Yellow River basin were calculated by linear weighting method based on the relative data. Results show that the water security conditions continue to improve in Yellow River basin but still in a basic security state. There is still a long way to enhance the water security in Yellow River basin, especially the water prevention and control security, the water ecological security and water environment security need to be promoted vigorously.

  20. Bronx River bed sediments phosphorus pool and phosphorus compound identification

    Science.gov (United States)

    Wang, J.; Pant, H. K.

    2008-12-01

    Phosphorus (P) transport in the Bronx River degraded water quality, decreased oxygen levels, and resulted in bioaccumulation in sediment potentially resulting in eutrophication, algal blooms and oxygen depletion under certain temperature and pH conditions. The anthropogenic P sources are storm water runoff, raw sewage discharge, fertilizer application in lawn, golf course and New York Botanical Garden; manure from the Bronx zoo; combined sewoverflows (CSO's) from parkway and Hunts Point sewage plant; pollutants from East River. This research was conducted in the urban river system in New York City area, in order to control P source, figure out P transport temporal and spatial variations and the impact on water quality; aimed to regulate P application, sharing data with Bronx River Alliance, EPA, DEP and DEC. The sediment characteristics influence the distribution and bioavailbility of P in the Bronx River. The P sequential extraction gave the quantitative analysis of the P pool, quantifying the inorganic and organic P from the sediments. There were different P pool patterns at the 15 sites, and the substantial amount of inorganic P pool indicated that a large amount P is bioavailable. The 31P- NMR (Nuclear Magnetic Resonance Spectroscopy) technology had been used to identify P species in the 15 sites of the Bronx River, which gave a qualitative analysis on phosphorus transport in the river. The P compounds in the Bronx River bed sediments are mostly glycerophophate (GlyP), nucleoside monophosphates (NMP), polynucleotides (PolyN), and few sites showed the small amount of glucose-6-phosphate (G6P), glycerophosphoethanoamine (GPEA), phosphoenopyruvates (PEP), and inosine monophosphate (IMP). The land use spatial and temporal variations influence local water P levels, P distributions, and P compositions.

  1. Phosphorus metabolism and estimation of phosphorus requirements for sheep

    International Nuclear Information System (INIS)

    Louvandini, H.; Vitti, D.M.S.S.

    1996-01-01

    The main objective of the present work was to determine the effects of different dietary phosphorus (P) levels on endogenous faecal loss and to estimate the minimum daily requirement of P for sheep. The study was conducted with 24 Suffolk sheep which received a basic diet consisting of a hay-concentrate mixture. The treatment consisted of different amounts of bone meal, added to the basic diet, so as to obtain supplementary P levels of 0, 2 and 3 g/day. Twenty-one days after the introduction of the experimental diet, 7.4 MBq radioactive P ( 32 P) was injected in the left jugular vein of each sheep and blood, feces and urine were collected daily for 8 days at 24-hour intervals. The samples were analysed for inorganic P and for radioactive specific activities. Mean endogenous faecal losses of P were 10.00, 31.79, 39.35 and 38.06 mg/kg live weight (LW) per day in sheep supplemented with 0, 1, 2 and 3 g respectively. A positive linear relation ship was observed between endogenous faecal loss and consumed P, indicating that this loss was linked to dietary P. Total P excretion in the faeces, as well as P absorption, retention urinary excretion and salivary secretion were also directly related to P intake, as part of the mechanism of homeostatic control of organism animal. The minimum endogenous faecal loss for zero P intake, calculated by interpolation, was 8.27 mg/kg LW per day, and for zero balance, the calculated phosphorus consumption was 21.36 mg/kg LW per day. (author)

  2. Radiation dose contribution from coal-slags used as structural building material

    International Nuclear Information System (INIS)

    Somlai, J.; Kanyar, B.; Bodnar, R.; Lendvai, Z.; Nemeth, Cs.

    1996-01-01

    A significant dose distribution on the population could be derived from coal slags used as isolation material. Extremely high natural activities are measured in the coal slag, derived from the region of the settlement Ajka, Hungary. In some buildings monitored, the elevated γ-doses were nearly 5-10 times higher than the world average ones. The annual average indoor radon concentrations from the slag exceeded 400 Bq/m 3 and in some cases up to 1200 Bq/m 3 . Due to the elevated exposure and the radon concentrations in the dwellings the annual dose was estimated to 8-24 mSv/y more than 5-10 times of the world average one. (author). 10 refs., 1 fig., 3 tabs

  3. Evaluation of steel slag and crushed limestone mixtures as subbase material in flexible pavement

    Directory of Open Access Journals (Sweden)

    Ahmed Ebrahim Abu El-Maaty Behiry

    2013-03-01

    Full Text Available Steel slag is produced as a by-product during the oxidation of steel pellets in an electric arc furnace. This by-product that mainly consists of calcium carbonate is broken down to smaller sizes to be used as aggregates in pavement layers. They are particularly useful in areas where a good-quality aggregate is scarce. This research study was conducted to evaluate the effect of quantity of steel slag on the mechanical properties of blended mixes with crushed limestone aggregates, which used as subbase material in Egypt. Moreover, a theoretical analysis was employed to estimate the resistance for failure factors such as vertical deformations, vertical and radial stresses and vertical strains of subbase under overweight trucks loads. These loads cause severe deterioration to the pavement and thus reduce its life. The results indicated that the mechanical characteristics, and the resistance factors were improved by adding steel slag to the crushed limestone.

  4. Experiment research of slag renovation in the corner-fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Zhijun; Wu, Wenfei [Inner Mongolia Univ. of Science and Technology, Baotou (China). School of Energy and Environment

    2013-07-01

    Aiming at serious slag on the water wall around the burner of corner-fired boiler with low-ash-fusion-point coal, cold experimental model has been established. In this experiment, particle image velocimetry (PIV) has been employed to accurately measure aerodynamic field of burner region, and the experimental research of furnace slag renovation has been conducted through changing the burner jet arrangement. The experiment results show that it has significantly effect on aerodynamic field in the furnace by changing burner jet deflection angle. A reasonable actual tangential circle diameter can be formed through adjusting the burner jet deflection angle, to prevent primary air attacking the wall, and further more, to effectively prevent serious slag on the water wall around the burner.

  5. Analysis of the possibility of estimation ecological slag propriety with use the database

    Directory of Open Access Journals (Sweden)

    S. Biernat

    2012-01-01

    Full Text Available This article contains information concerning of the analysis the possibility of defi ning refi nery qualities of the slag based of the thermo-physical and thermodynamical data. The isues presented deals not only with refi ning copper and melting stages, but also of the idea building an optimization program. In its assumption the program is supposed to check and search specifi c data very quickly on the particular types of slag. There are possible and purposeful the construction optimization programme engaging all of the physics chemical infl uence the slag in processes of melting metals alloys. The proposed results, ranges of areas on graphs of phase equilibria’s, demonstrative on the optimum values, will be verifi ed in laboratory conditions and industrial. The initiation the new data the gathered base will be built in system of open base enabling.

  6. Thermophysical Property Measurements of Molten Slag and Welding Flux by Aerodynamic Levitator

    Science.gov (United States)

    Onodera, Kenta; Nakamura, Airi; Hakamada, Shinya; Watanabe, Masahito; Kargl, Florian

    Molten slag and welding flux are important materials for steel processing. Due to lack of durable refractory materials, there is limited publication data on the thermophysical properties of these slags. Therefore, in this study, we measured density and viscosity of CaO-Al2O3-SiO2 slag and welding flux using Aerodynamic Levitation (ADL) with CO2-laser heating in which can be achieve containerless and non-contacting conditions for measurements. For density measurements, in order to obtain correct shape of the droplet we used high-speed camera with the extended He-Ne laser to project the shadow image without the influence of the selfluminescence at the high temperature. For viscosity measurement, we also have a unique vibration method; it caused oscillation in a sample by letting gas for levitation vibrate by an acoustic speaker. Using these techniques, we succeeded to measure systematically density and viscosity of molten oxides system.

  7. A Differential Scanning Calorimetry Method for Construction of Continuous Cooling Transformation Diagram of Blast Furnace Slag

    Science.gov (United States)

    Gan, Lei; Zhang, Chunxia; Shangguan, Fangqin; Li, Xiuping

    2012-06-01

    The continuous cooling crystallization of a blast furnace slag was studied by the application of the differential scanning calorimetry (DSC) method. A kinetic model describing the correlation between the evolution of the degree of crystallization with time was obtained. Bulk cooling experiments of the molten slag coupled with numerical simulation of heat transfer were conducted to validate the results of the DSC methods. The degrees of crystallization of the samples from the bulk cooling experiments were estimated by means of the X-ray diffraction (XRD) and the DSC method. It was found that the results from the DSC cooling and bulk cooling experiments are in good agreement. The continuous cooling transformation (CCT) diagram of the blast furnace slag was constructed according to crystallization kinetic model and experimental data. The obtained CCT diagram characterizes with two crystallization noses at different temperature ranges.

  8. Brief report on thermodynamics of chromium slags and kinetic modelling of chromite reduction (1995-96)

    Energy Technology Data Exchange (ETDEWEB)

    Yamping, Xiao; Holappa, L [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Metallurgy

    1997-12-31

    This article summaries the research work on thermodynamics of chromium slags and kinetic modelling of chromite reduction. The thermodynamic properties of FeCr slag systems were calculated with the regular solution model. The effects of CaO/MgO ratio, Al{sub 2}0{sub 3} amount as well as the slag basicity on the activities of chromium oxides and the oxidation state of chromium were examined. The calculated results were compared to the experimental data in the literature. In the kinetic modelling of the chromite reduction, the reduction possibilities and tendencies of the chromite constitutes with CO were analysed based on the thermodynamic calculation. Two reaction models, a structural grain model and a multi-layers reaction model, were constructed and applied to simulate the chromite pellet reduction and chromite lumpy ore reduction, respectively. The calculated reduction rates were compared with the experimental measurements and the reaction mechanisms were discussed. (orig.) SULA 2 Research Programme; 4 refs.

  9. Smelting reduction of MgO in molten slag by liquid ferrosilicon

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Q.; Gao, J.; Chen, X.; Wei, X.

    2016-10-01

    The smelting reduction of magnesium oxide was researched in this paper. The effect of molten slag composition and reduction temperature on percent reduction of magnesium oxide were discussed, and kinetics of smelting reduction of magnesium oxide in molten slag was studied. The results showed that the reduction extent of magnesium oxide increased by increasing either one of the following factors: the initial mass ratio of Al{sub 2}O{sub 3}/SiO{sub 2}, the addition of CaF{sub 2}, the initial molar ratio of Si/2MgO, and reaction temperature. The overall smelting reduction was controlled by mass transfer in slag with an apparent activation energy 586 kJ mol{sup -}1. (Author)

  10. Reusing pretreated desulfurization slag to improve clinkerization and clinker grindability for energy conservation in cement manufacture.

    Science.gov (United States)

    Chen, Ying-Liang; Chang, Juu-En; Shih, Pai-Haung; Ko, Ming-Sheng; Chang, Yi-Kuo; Chiang, Li-Choung

    2010-09-01

    The purpose of this study was to combine the physical pretreatments of grinding, sieving, and magnetic-separation processes to reclaim iron-rich materials from the desulfurization slag, and to use the remainder for cement clinker production. The iron-rich materials can be separated out efficiently by grinding for 30 min and sieving with a 0.3 mm mesh. The non-magnetic fraction of the particles smaller than 0.3 mm was in the majority, and proved to be suitable for use as a cement raw material. The raw mixes prepared with a pretreated desulfurization slag had a relatively high reactivity, and the temperature at which alite forms was significantly reduced during the clinkerization process. The clinkers produced with 10% desulfurization slag had a high level of alite and good grindability. Generally, the improvements in clinkerization and clinker grindability are beneficial to energy conservation in cement manufacture. 2010 Elsevier Ltd. All rights reserved.

  11. Electrical properties of alkali-activated slag composite with combined graphite/CNT filler

    Science.gov (United States)

    Rovnaník, P.; Míková, M.; Kusák, I.

    2017-10-01

    Alkali-activated industrial by-products such as blast furnace slag are known to possess properties which are comparable to or even better than those observed for ordinary Portland cement. The combination of alkali-activated slag matrix with conductive filler introduces new functionalities which are commonly known for self-sensing or self-heating concrete. The present paper discusses the effect of the mixture of two different conductive fillers, graphite powder and carbon nanotubes (CNTs), on the electrical properties of alkali-activated slag mortars. Prepared samples were also tested for their mechanical properties and microstructure was investigated by means of mercury intrusion porosimetry and scanning electron microscopy. The percolation threshold for the resistance was reached for the mixture containing 0.1% CNTs and 8% graphite powder.

  12. Brief report on thermodynamics of chromium slags and kinetic modelling of chromite reduction (1995-96)

    Energy Technology Data Exchange (ETDEWEB)

    Xiao Yamping; Holappa, L. [Helsinki Univ. of Technology, Otaniemi (Finland). Lab. of Metallurgy

    1996-12-31

    This article summaries the research work on thermodynamics of chromium slags and kinetic modelling of chromite reduction. The thermodynamic properties of FeCr slag systems were calculated with the regular solution model. The effects of CaO/MgO ratio, Al{sub 2}0{sub 3} amount as well as the slag basicity on the activities of chromium oxides and the oxidation state of chromium were examined. The calculated results were compared to the experimental data in the literature. In the kinetic modelling of the chromite reduction, the reduction possibilities and tendencies of the chromite constitutes with CO were analysed based on the thermodynamic calculation. Two reaction models, a structural grain model and a multi-layers reaction model, were constructed and applied to simulate the chromite pellet reduction and chromite lumpy ore reduction, respectively. The calculated reduction rates were compared with the experimental measurements and the reaction mechanisms were discussed. (orig.) SULA 2 Research Programme; 4 refs.

  13. Chemical acceleration of a neutral granulated blast-furnace slag activated by sodium carbonate

    International Nuclear Information System (INIS)

    Kovtun, Maxim; Kearsley, Elsabe P.; Shekhovtsova, Julia

    2015-01-01

    This paper presents results of a study on chemical acceleration of a neutral granulated blast-furnace slag activated using sodium carbonate. As strength development of alkali-activated slag cements containing neutral GBFS and sodium carbonate as activator at room temperature is known to be slow, three accelerators were investigated: sodium hydroxide, ordinary Portland cement and a combination of silica fume and slaked lime. In all cements, the main hydration product is C–(A)–S–H, but its structure varies between tobermorite and riversideite depending on the accelerator used. Calcite and gaylussite are present in all systems and they were formed due to either cation exchange reaction between the slag and the activator, or carbonation. With accelerators, compressive strength up to 15 MPa can be achieved within 24 h in comparison to 2.5 MPa after 48 h for a mix without an accelerator

  14. Process for selectively concentrating the radioactivity of thorium containing magnesium slag

    International Nuclear Information System (INIS)

    Wilson, D.A.; Christiansen, S.H.; Simon, J.; Morin, D.W.

    1993-01-01

    In a process for separating magnesium from a magnesium slag using water and carbon dioxide, the improvement described comprises: (a) forming an aqueous magnesium slurry from the magnesium slag, which slag contains radioactive thorium and its daughters, and water; (b) solubilizing magnesium from the magnesium slurry by reacting the aqueous magnesium slurry with carbon dioxide wherein the carbon dioxide is at a pressure from greater than ambient to about 1,000 psig (about 7,000 kPa); (c) selectively concentrating by filtering the radioactive thorium and its daughters such that the radioactive thorium and its daughters are separated from the solubilized magnesium filtrate; and (d) reducing volume and/or weight of radioactive solids for disposal as radioactive waste

  15. Heat transfer including radiation and slag particles evolution in MHD channel-I

    International Nuclear Information System (INIS)

    Im, K.H.; Ahluwalia, R.K.

    1980-01-01

    Accurate estimates of convective and radiative heat transfer in the magnetohydrodynamic channel are provided. Calculations performed for a base load-size channel indicate that heat transfer by gas radiation almost equals that by convection for smooth walls, and amounts to 70% as much as the convective heat transfer for rough walls. Carbon dioxide, water vapor, and potassium atoms are the principal participating gases. The evolution of slag particles by homogeneous nucleation and condensation is also investigated. The particle-size spectrum so computed is later utilized to analyze the radiation enhancement by slag particles in the MHD diffuser. The impact of the slag particle spectrum on the selection of a workable and design of an efficient seed collection system is discussed

  16. Preparation of Autoclaved Foamed Concrete Block from Fly Ash and Carbide Slag

    Directory of Open Access Journals (Sweden)

    Tan Xing

    2018-01-01

    Full Text Available To achieve the comprehensive utilization of solid waste and reduce costs, fly ash, carbide slag, and low-clinker cement were used to produce lightweight foamed concrete block. Granulated blast-furnace slag (GBFS was used as composition correction material in the block. The effects of curing temperature and dosage of low-clinker cement on the performance of foamed concrete block were investigated. The optimal material proportioning is obtained: fly ash 58.5%, carbide slag 20%, GBFS 10%, gypsum 1.5% and low-clinker cement 10%. The proper curing regime is “temperature rising 4h-180°C constant temperature 4h-natural cooling”. The results indicate that the compressive strength of the block reaches 3.55 MPa while the density is 616.9 kg/m3. The performance of the product meets JC/T 1062-2007 (China professional standard of foamed concrete block.

  17. Development of Composite Materials Under Ecological Aspects as Recycling Concept For Borosilicate Glass Containing Iron Slags

    International Nuclear Information System (INIS)

    Khalil, T.K.; Bossert, J.; Aly, H.F.; Bossert, J.

    1999-01-01

    Composite concept in materials science can be conveniently applied in the waste treatment technology to construct specific t ailor made c omposite materials, in which at least one of the phases is built by the waste material. In this work the applicability of this concept for the fixation and recycling of slags wastes is done, whereby different mixtures of blast furnace slags are mixed with two different borosilicate glasses, which serve as matrix material. Thermal behaviour of the produced compacts were studied. Both melting and powder technology are applied for the fabrication of dense products. The microstructure of sintered samples is investigated by electron microscopy. The mechanical properties such as hardness and fracture toughness are determined by a Vickers technique. An improvement of the fracture toughness of more than 50% over the value for the original glass VG 98 is achieved by slag addition

  18. Statistical modeling of copper losses in the silicate slag of the sulfide concentrate smelting process

    Directory of Open Access Journals (Sweden)

    Savic Marija V.

    2015-09-01

    Full Text Available This article presents the results of the statistical modeling of copper losses in the silicate slag of the sulfide concentrates smelting process. The aim of this study was to define the correlation dependence of the degree of copper losses in the silicate slag on the following parameters of technological processes: SiO2, FeO, Fe3O4, CaO and Al2O3 content in the slag and copper content in the matte. Multiple linear regression analysis (MLRA, artificial neural networks (ANNs and adaptive network based fuzzy inference system (ANFIS were used as tools for mathematical analysis of the indicated problem. The best correlation coefficient (R2 = 0.719 of the final model was obtained using the ANFIS modeling approach.

  19. Effect of the microstructure of mortars with low hydraulicity slag on their behavior in aggressive environments

    Directory of Open Access Journals (Sweden)

    Ahmed Hadj sadok

    2018-01-01

    Full Text Available Slag is one of the most used cement additives. Due to its latent hydraulic nature, attached to its hydraulicity, it can contribute to a microstructural modification and an improvement of the durability of the concrete face of aggressive environments. In this study, a low active slag is used in the manufacture of mortars as a substitute for cement, at a maximum rate of 50%. Firstly, a study of the microstructure with mercury porosimetry was used for determination of microstructural parameters (porosity, diameters and volume distribution. The behavior of mortars in aggressive environments (sodium and magnesium sulphate and seawater was studied later. Despite the low reactivity of studied slag, its presence especially at 50% rate, in the long term, has led to a refinement of the microstructure. This effect, among others, led to better resistivity of the mortars in the sulphate environnements.

  20. Effect of aspherical and yellow tinted intraocular lens on blue-on-yellow perimetry

    Directory of Open Access Journals (Sweden)

    Rodrigo França de Espíndola

    2012-10-01

    Full Text Available PURPOSE: To investigate the possible effect of aspherical or yellow tinted intraocular lens (IOL on contrast sensitivity and blue-on-yellow perimetry. METHODS: This prospective randomized bilateral double-masked clinical study included 52 patients with visually significant bilateral cataracts divided in two groups; 25 patients (50 eyes received aspherical intraocular lens in one eye and spherical intraocular lens in the fellow eye; and 27 patients (54 eyes received ultraviolet and blue light filter (yellow tinted IOL implantation in one eye and acrylic ultraviolet filter IOL in the fellow eye. The primary outcome measures were contrast sensitivity and blue-on-yellow perimetry values (mean deviation [MD] and pattern standard deviation [PSD] investigated two years after surgery. The results were compared intra-individually. RESULTS: There was a statistically significant between-group (aspherical and spherical intraocular lens difference in contrast sensitivity under photopic conditions at 12 cycles per degree and under mesopic conditions at all spatial frequencies. There were no between-group significant differences (yellow tinted and clear intraocular lens under photopic or mesopic conditions. There was no statistically significant difference between all intraocular lens in MD or PSD. CONCLUSION: Contrast sensitivity was better under mesopic conditions with aspherical intraocular lens. Blue-on-yellow perimetry did not appear to be affected by aspherical or yellow tinted intraocular lens. Further studies with a larger sample should be carried out to confirm or not that hypotheses.

  1. Evaluation of some self-sustained capillary effects taking place in slag at the interface during desulphurization process

    International Nuclear Information System (INIS)

    Nita, Petre Stelian

    2008-01-01

    In the paper are presented and analyzed some specific problems of instability and of Marangoni convection in desulphurizing slags at 1873.15 K, due to the presence of sulphur, during liquid steel treatments. Starting from the quantity sulphide capacity, a limit of sulphur solubility in a homogeneous liquid slag is established. The thermodynamic effect of sulphur in the slag is evaluated using an enthalpy of interaction of sulphur containing the balance of the partial molar enthalpy of mixing for CaS and CaO. The sulphur effect in slag, on the enhancement of the mass transfer coefficient through the interface is evaluated based on the expression of the concentration coefficient of the surface tension related to the mole fraction, the solutal Marangoni number and of the sulphur mass transfer enhancement parameters. It is concluded that during desulphurization, self-sustained capillary effects are present in slags

  2. Electrorheological effect of Ti-bearing blast furnace slag with different TiC contents at 1500°C

    Science.gov (United States)

    Yue, Hong-rui; Jiang, Tao; Zhang, Qiao-yi; Duan, Pei-ning; Xue, Xiang-xin

    2017-07-01

    The electrorheological properties of CaO-SiO2-Al2O3-MgO-TiO2-TiC slags were investigated to enhance understanding of the effect of TiC addition on the viscosity, yield stress, and fluid pattern of Ti-bearing slags in a direct-current electric field. The viscosities and shear stresses of 4wt% and 8wt% TiC slags were found to increase substantially with increasing electric field intensity, whereas virtually no rheological changes were observed in the 0wt% TiC slag. The Herschel-Bulkley model was applied to demonstrate that the fluid pattern of the 4wt% TiC slag was converted from that of a Newtonian fluid to that of a Bingham fluid in response to the applied electric field; and the static yield stress increased linearly with the square of the electric field intensity.

  3. Study on the relation between uranium content and total phosphorus in some sudanese phosphate ore samples

    International Nuclear Information System (INIS)

    Eltayeb, M. A. H.; Mohammed, A. A.

    2003-01-01

    In the present work uranium content and total phosphorus were determined in 30 phosphate ore samples collected from Kurun and Uro areas in Nuba Mountains in Sudan. Spectrophotometry technique was used for this purpose. Uranium analysis is based on the use of nitrogen (V) acid for leaching the rock, and treatment with ammonium carbonate solution, whereby uranium (Vi) is kept in solution as its carbonate complex. The ion exchange technique was used for the recovery of uranium. Uranium was eluted from the resin with 1 M hydrochloric acid. In the elute, uranium was determined spectrophotometrically by measurement of absorbance of the yellow uranium (Vi)-8-hydroxyquinolate complex at λ 400 nm. The total phosphorus was measured as (P 2 O 5 %) by treatment of the total liquor with ammonium molybdate solution. The absorbance of the blue complex was measured at λ 880 nm. The results show that a limited relation is existed between uranium content and total phosphorus in phosphate samples from kurun area, which contain 58.8 ppm uranium in average, where there are no relation is existed in phosphate samples from uro area, which contain 200 ppm uranium in average. (Author)

  4. Performance of alkaline activated slag at high temperatures

    Directory of Open Access Journals (Sweden)

    Mejía de Gutiérrez, R.

    2004-12-01

    Full Text Available This paper presents an investigation into the performance of alkali-activated slag (AAS mortar exposed to elevated temperatures. Sodium silicate, sodium hydroxide and a mix (waterglass with a modulus (SiO2/Na20 of 1.5 were used as activators. The specimens were heated in an electric furnace up to 1000 ºC in steps of 200 ºC for a constant period of 2 hours. The weight loss, residual compressive strength, resistance to chloride ion penetration, porosity and capillary sorption were evaluated and the results were compared with those of ordinary and blended Portland cement mortar

    En el presente traba jo se estudió el comportamiento frente a ¡a temperatura de morteros producidos a partir de escorias siderúrgicas activadas alcalinamente (EAA, utilizando diferentes activantes tales como silicato sódico, hidróxido de sodio y sus correspondientes mezclas. Cada espécimen se expuso por dos horas a temperaturas hasta de 1.000 ºC, en intervalos de 200 °C y en cada caso se determinaron los cambios de color peso, resistencia mecánica y durabilidad. Esta última propiedad se evaluó determinando las modificaciones de porosidad y permeabilidad a cloruros. Los resultados se comparan con los obtenidos en morteros de cemento Portland con y sin adición, específicamente con aquéllos que incorporan humo de sílice.

  5. [The fourth horseman: The yellow fever].

    Science.gov (United States)

    Vallejos-Parás, Alfonso; Cabrera-Gaytán, David Alejandro

    2017-01-01

    Dengue virus three, Chikunguya and Zika have entered the national territory through the south of the country. Cases and outbreaks of yellow fever have now been identified in the Americas where it threatens to expand. Although Mexico has a robust epidemiological surveillance system for vector-borne diseases, our country must be alert in case of its possible introduction into the national territory. This paper presents theoretical assumptions based on factual data on the behavior of yellow fever in the Americas, as well as reflections on the epidemiological surveillance of vector-borne diseases.

  6. Yellow Nail Syndrome - a Case Report

    Directory of Open Access Journals (Sweden)

    Paravina Mirjana

    2015-06-01

    Full Text Available Yellow nail syndrome is a rare disease of unknown etiology. It is clinically characterized by a triad of yellow nails, lymphedema at one or more sites, and chronic respiratory disease (bronchitis, bronchiectasis and rhinosinusitis. All nails may be affected, but some may be spared. The nail plates are yellowish green, thickened, occasionally with transverse ridging and onycholysis, with increased longitudinal and transversal over-curvature, with partial or complete separation of the nail plate from the nail bed, without lunula and cuticle and slow nail growth rate. The lymphedema is usually peripheral, affecting the lower limbs, or in the form of pleural effusion.

  7. Comparison of Grinding Characteristics of Converter Steel Slag with and without Pretreatment and Grinding Aids

    Directory of Open Access Journals (Sweden)

    Jihui Zhao

    2016-10-01

    Full Text Available The converter steel slag cannot be widely used in building materials for its poor grindability. In this paper, the grinding characteristics of untreated and pretreated (i.e., magnetic separation steel slag were compared. Additionally, the grinding property of pretreated steel slag was also studied after adding grinding aids. The results show that the residues (i.e., oversize substance that passed a 0.9 mm square-hole screen can be considered as the hardly grinding phases (HGP and its proportion is about 1.5%. After the initial 20 min grinding, the RO phase (RO phase is a continuous solid solution which is composed of some divalent metal oxides, such as FeO, MgO, MnO, CaO, etc., calcium ferrite, and metallic iron phase made up most of the proportion of the HGP, while the metallic iron made up the most component after 70 min grinding. The D50 of untreated steel slag could only reach 32.89 μm after 50 min grinding, but that of pretreated steel slag could reach 18.16 μm after the same grinding time. The grinding efficiency of steel slag was obviously increased and the particle characteristics were improved after using grinding aids (GA, especially the particle proportions of 3–32 μm were obviously increased by 7.24%, 7.22%, and 10.63% after 40 min, 50 min, and 60 min grinding, respectively. This is mainly because of the reduction of agglomeration and this effect of GA was evidenced by SEM (scanning electron microscope images.

  8. Bacterially-mediated weathering of crystalline and amorphous Cu-slags

    International Nuclear Information System (INIS)

    Potysz, Anna; Grybos, Malgorzata; Kierczak, Jakub; Guibaud, Gilles; Lens, Piet N.L.; Hullebusch, Eric D. van

    2016-01-01

    Two types of Cu-slags (CS: crystalline massive slag and GS: granulated amorphous slag) exhibiting a different chemical and mineral phase composition were compared with respect to their susceptibility to bacterial weathering using Pseudomonas aeruginosa (n° CIP 105094). Abiotic conditions e.g. sterile growth medium and ultrapure water were used for comparison. The experiments were extended up to 112 days with a systematic liquid phase renewal every 14 days. The results revealed significant release of elements in the bacterially mediated weathering experiments. Concentrations of elements (Si, Fe, Cu, Zn and Pb) in the biotic solutions were increased at least by 20% up to 99% compared to abiotic ones. From 3 to 77% of the leached elements were associated to the fraction >0.22 μm. Scanning electron microscope observations demonstrated greater weathering of mineral phases in biotic experiments than in abiotic ones which is in accordance with the solution chemistry exhibiting higher concentrations of elements leached in biotic set-ups. In the case of CS, glass and sulfides weathering was yet observed in abiotic experiment, whereas partial dissolution of fayalite (Fe_2SiO_4) was solely affected by the presence of bacteria. GS having a higher bulk content of metallic elements was found to be more stable than sulfide-bearing CS, while its (GS) glass matrix was found to weather easier under biotic conditions. - Highlights: • Pseudomonas aeruginosa significantly enhance the release of elements from Cu-slags. • Bacteria and/or associated metabolites assist as biosorbent (e.g. Zn). • Amorphous slag is more susceptible to bio-weathering. • Metal carriers of crystalline slag are prone to dissolution. • Fe-bearing fayalite is altered solely due to the presence of bacteria.

  9. Phosphorus determination by various substoichiometric methods

    International Nuclear Information System (INIS)

    Shigematsu, Toshio; Kudo, Kiyoshi

    1981-01-01

    Various substoichiometric methods have been classified from a view point of the substoichiometric separation. Based upon the substoichiometric separation, phosphorus was determined substoichiometrically by a direct method, a method of carrier amount variation and a comparison method for the irradiated sample. The direct method was applied to the determination of phosphorus in orchard leaves (SRM-1571). The analytical value was 0.23 +- 0.01%. Phosphorus in orchard leaves and spinach (SRM-1570) was determined by an ordinary method which devided the sample into equal parts in the method of carrier amount variation. Analytical values of orchard leaves and spinach were 0.22 +- 0.02% and 0.56 +- 0.04%, respectively. Moreover, a new modification of the method of carrier amount variation was studied by the use of various standard samples such as red phosphorus, spinach and orchard leaves. These standard samples were also employed for the determination of phosphorus in orchard leaves and 0.21 +- 0.01% was obtained. All these results are in good agreement with the value reported by NBS. The comparison method was applied to the determination of phosphorus in a semiconductor silicon single crystal. As a result of the correction of 32 P activity induced by the secondary nuclear reaction of 30 Si, 7.9 ppb and 3.1 ppb were obtained for the phosphorus concentrations in the single crystal silicon. (author)

  10. Production of highly porous glass-ceramics from metallurgical slag, fly ash and waste glass

    OpenAIRE

    Mangutova Bianka V.; Fidancevska Emilija M.; Milosevski Milosav I.; Bossert Joerg H.

    2004-01-01

    Glass-ceramics composites were produced based on fly-ash obtained from coal power stations, metallurgical slag from ferronickel industry and waste glass from TV monitors, windows and flasks. Using 50% waste flask glass in combination with fly ash and 20% waste glass from TV screens in combination with slag, E-modulus and bending strength values of the designed systems are increased (system based on fly ash: E-modulus from 6 to 29 GPa, and bending strength from 9 to 75 MPa). The polyurethane f...

  11. Hydration characteristics and environmental friendly performance of a cementitious material composed of calcium silicate slag

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Na; Li, Hongxu [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Key Laboratory of Rare and Precious Metals Green Recycling and Extraction, University of Science and Technology Beijing, Beijing 100083 (China); Zhao, Yazhao [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Liu, Xiaoming, E-mail: liuxm@ustb.edu.cn [School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083 (China); Beijing Key Laboratory of Rare and Precious Metals Green Recycling and Extraction, University of Science and Technology Beijing, Beijing 100083 (China)

    2016-04-05

    Highlights: • Cementitious material was designed according to [SiO{sub 4}] polymerization degree of raw materials. • The cementitious material composed of calcium silicate slag yields excellent physical and mechanical properties. • Amorphous C–A–S–H gel and rod-like ettringite are predominantly responsible for the strength development. • Leaching toxicity and radioactivity tests show the cementitious material is environmentally acceptable. - Abstract: Calcium silicate slag is an alkali leaching waste generated during the process of extracting Al{sub 2}O{sub 3} from high-alumina fly ash. In this research, a cementitious material composed of calcium silicate slag was developed, and its mechanical and physical properties, hydration characteristics and environmental friendly performance were investigated. The results show that an optimal design for the cementitious material composed of calcium silicate slag was determined by the specimen CFSC7 containing 30% calcium silicate slag, 5% high-alumina fly ash, 24% blast furnace slag, 35% clinker and 6% FGD gypsum. This blended system yields excellent physical and mechanical properties, confirming the usefulness of CFSC7. The hydration products of CFSC7 are mostly amorphous C–A–S–H gel, rod-like ettringite and hexagonal-sheet Ca(OH){sub 2} with small amount of zeolite-like minerals such as CaAl{sub 2}Si{sub 2}O{sub 8}·4H{sub 2}O and Na{sub 2}Al{sub 2}Si{sub 2}O{sub 8}·H{sub 2}O. As the predominant hydration products, rod-like ettringite and amorphous C–A–S–H gel play a positive role in promoting densification of the paste structure, resulting in strength development of CFSC7 in the early hydration process. The leaching toxicity and radioactivity tests results indicate that the developed cementitious material composed of calcium silicate slag is environmentally acceptable. This study points out a promising direction for the proper utilization of calcium silicate slag in large quantities.

  12. Synthesis of Titanium Oxycarbide from Titanium Slag by Methane-Containing Gas

    Science.gov (United States)

    Dang, Jie; Fatollahi-Fard, Farzin; Pistorius, Petrus Christiaan; Chou, Kuo-Chih

    2018-02-01

    In this study, reaction steps of a process for synthesis of titanium oxycarbide from titanium slag were demonstrated. This process involves the reduction of titanium slag by a methane-hydrogen-argon mixture at 1473 K (1200 °C) and the leaching of the reduced products by hydrofluoric acid near room temperature to remove the main impurity (Fe3Si). Some iron was formed by disproportionation of the main M3O5 phase before gaseous reduction started. Upon reduction, more iron formed first, followed by reduction of titanium dioxide to suboxides and eventually oxycarbide.

  13. Leaching of Carbothermic Reduced Titanium-bearing Blast Furnace Slag by Acid

    Institute of Scientific and Technical Information of China (English)

    ZHEN Yulan; ZHANG Guohua; CHOU Kuochih

    2016-01-01

    The kinetics of the leaching of carbothermic reduced titanium-bearing blast furnace slag in Panzhihua Iron and Steel Company with acid system under atmosphere pressure was studied. The results show that the temperature and concentration have significant influence on leaching of carbothermic reduced titanium-bearing blast furnace slag by ac-id. The experimental data of leaching indicate that the shrinking core model with chemical reaction controlled process is most applicable for the acid leaching. The apparent activation energy can be estimated to be from 23 to 32 kJ/mol. Fur-thermore, the main products are TiC and SiO2 after leaching.

  14. Analysis and selection of a system for hydraulic transport of slags in the Mironovskii power plant

    Energy Technology Data Exchange (ETDEWEB)

    Mirgorodskii, V.G.; Mova, M.E.; Korenev, V.E.; Grechikhin, Yu.A. (Donetskii Politekhnicheskii Institut (USSR))

    1991-01-01

    Discusses systems for hydraulic transport of ashes and slags from combustion of black coal (with an ash content of 40.5%) in the Mironovskii power plant. Three systems are comparatively evaluated: hydraulic transport under influence of gravity, hydraulic transport with a system of dredging pumps, or an airlift pump system. Design of each system, its operation and types of pumps or airlift systems are discussed. The evaluation concentrates on the hydraulic transport system with 1 to 3 airlift pumps each with a capacity ranging from 110 to 890 m{sup 3}/h. Optimum design of the airlift hydraulic system for slag and ash transport is described.

  15. Properties of Foamed Mortar Prepared with Granulated Blast-Furnace Slag

    OpenAIRE

    Zhao, Xiao; Lim, Siong-Kang; Tan, Cher-Siang; Li, Bo; Ling, Tung-Chai; Huang, Runqiu; Wang, Qingyuan

    2015-01-01

    Foamed mortar with a density of 1300 kg/m3 was prepared. In the initial laboratory trials, water-to-cement (w/c) ratios ranging from 0.54 to 0.64 were tested to determine the optimal value for foamed mortar corresponding to the highest compressive strength without compromising its fresh state properties. With the obtained optimal w/c ratio of 0.56, two types of foamed mortar were prepared, namely cement-foamed mortar (CFM) and slag-foamed mortar (SFM, 50% cement was replaced by slag weight). ...

  16. Comparison of slagging pyrolysis and molten salt incinerators for treating TRU waste at the INEL

    International Nuclear Information System (INIS)

    1977-11-01

    For the comparison, it is assumed that the waste product is required to meet the acceptance criteria of the Waste Isolation Pilot Plant, i.e., low leachability. Slagging pyrolysis incinerates combustible waste and melts noncombustible waste; the resulting slag forms a glass of low leachability. In the molten salt incinerator, combustion occurs at low temperatures with no accumulation of explosive gases, but the waste must have been previously sorted into combustibles and noncombustibles and then shredded. The economics, safety, and technical features are compared. Advantages, disadvantages, and areas of technical uncertainty of the two systems are listed. Development costs and schedules for the two types of incinerators are discussed

  17. Geological Sequestration of CO2 by Hydrous Carbonate Formation with Reclaimed Slag

    Energy Technology Data Exchange (ETDEWEB)

    Von L. Richards; Kent Peaslee; Jeffrey Smith

    2008-02-06

    The concept of this project is to develop a process that improves the kinetics of the hydrous carbonate formation reaction enabling steelmakers to directly remove CO2 from their furnace exhaust gas. It is proposed to bring the furnace exhaust stream containing CO2 in contact with reclaimed steelmaking slag in a reactor that has an environment near the unit activity of water resulting in the production of carbonates. The CO2 emissions from the plant would be reduced by the amount sequestered in the formation of carbonates. The main raw materials for the process are furnace exhaust gases and specially prepared slag.

  18. Incorporation of ladle furnace slag in ceramic formulations: study of extrusion zones

    International Nuclear Information System (INIS)

    Feitosa, E.F.; Santana, C.M.; Luna, D.S.; Santos, D.M.S.; Silva, G.S.; Noleto, L.T.; Almeida, N.C.; Rabelo, A.A.; Fagury Neto, E.

    2016-01-01

    This study aimed to investigate the effect of incorporation of ladle furnace slag (LFS) in two clays with higher and lower plasticity, used for the manufacture of structural ceramics. The LFS from a local steel making plant was added to ceramic compositions in proportions of 8 %, 14 % and 16 %. The formulations were tested in appropriate equipment that measures the liquid limit and plastic limit. The property examined was the plasticity index, in order to make a study of the extrusion zones. Results showed that the addition of slag into clay mixtures alters the plasticity; however, the extrusion process was not hampered. (author)

  19. Influence of integrated phosphorus supply and plant growth ...

    African Journals Online (AJOL)

    To guarantee a sufficient phosphorus supply for plants, a rapid and permanent mobilization of phosphorus from the labile phosphorus fractions is necessary, because phosphorus concentrations in soil solution are generally low. Several plant growth-promoting rhizobacteria (PGPR) have shown potential to enhance ...

  20. Prevalence of phosphorus containing food additives in grocery stores

    Directory of Open Access Journals (Sweden)

    Janeen B. Leon

    2012-06-01

    In conclusion, phosphorus additives are commonly present in groceries and contribute significantly to the phosphorus content of foods. Moreover, phosphorus additive foods are less costly than additive-free foods. As a result, phosphorus additives may be an important contributor to hyperphosphatemia among persons with chronic kidney disease