Sample records for yeast glycoprotein shows

  1. An automated data-driven DSP development approach for glycoproteins from yeast.

    Rajamanickam, Vignesh; Krippl, Maximillian; Herwig, Christoph; Spadiut, Oliver


    Downstream process development for recombinant glycoproteins from yeast is cumbersome due to hyperglycosylation of target proteins. In a previous study, we purified three recombinant glycoproteins from Pichia pastoris using a simple two-step flowthrough mode approach using monolithic columns. In this study, we investigated a novel automated data science approach for identifying purification conditions for such glycoproteins using monolithic columns. We performed three sets of design of experiments in analytical scale to determine the separation efficiency of monolithic columns for three different recombinant horseradish peroxidase (HRP) isoenzymes. For ease of calculation, we introduced an arbitrary term, the relative impurity removal (IR), which is representative of the amount of impurities cleared. Both, the experimental part and the data analysis were automated and took less than 40 min for each HRP isoenzyme. We tested the identified purification conditions in laboratory scale and performed respective offline analyses to verify results from analytical scale. We found a clear correlation between the IR estimated online through our novel data-driven approach and the IR determined offline. Summarizing, we present a novel methodology, applying analytical scale advantages which can be used for fast and efficient DSP development for recombinant glycoproteins from yeast without offline analyses. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Enhancing expression of the pseudorabies virus glycoprotein E in yeast and its application in an indirect sandwich ELISA.

    Wu, C-Y; Wu, C-W; Liao, C-M; Chien, M-S; Huang, C


    The purpose of this study was to produce a recombinant pseudorabies virus (PRV) glycoprotein E (gE) protein with the correct antigenicity for use as a low-cost diagnostic antigen. The gene fragment encoding the amino-terminal immunodominant region of PRV gE (codons 31-270) (gEN31-270) was codon optimized and expressed constitutively and secreted using a Pichia pastoris expression system. Yeast-expressed gEN31-270 (ygEN31-270) was harvested from the culture supernatant, and ygEN31-270 was shown to exhibit N-linked glycosylation. An indirect sandwich enzyme-linked immunosorbent assay (ELISA) was developed using ygEN31-270 as a coating antigen, and the results showed that the assay had high sensitivity and specificity, as well as almost perfect concordance with a commercial gE ELISA kit. The immunodominant region (amino acids 31-270) of gE was expressed successfully in P. pastoris using a codon optimization strategy. ygEN31-270 was secreted and N-glycosylated. The ygEN31-270-based indirect sandwich ELISA showed high sensitivity and specificity to detect gE-specific antibodies in swine serum samples. The ygEN31-270-based indirect sandwich ELISA may provide an alternative method for developing a diagnostic kit with easy manipulation and low cost. © 2017 The Society for Applied Microbiology.

  3. Expression of Bovine Viral Diarrhea Virus Envelope Glycoprotein E2 in Yeast Pichia pastoris and its Application to an ELISA for Detection of BVDV Neutralizing Antibodies in Cattle.

    Behera, Sthita Pragnya; Mishra, Niranjan; Nema, Ram Kumar; Pandey, Pooja Dubey; Kalaiyarasu, Semmannan; Rajukumar, Katherukamem; Prakash, Anil


    The aim of this article is to express envelope glycoprotein E2 of bovine viral diarrhea virus (BVDV) in yeast Pichia pastoris and its utility as a diagnostic antigen in ELISA. The BVDV E2 gene was cloned into the pPICZαA vector followed by integration into the Pichia pastoris strain X-33 genome for methanol-induced expression. SDS-PAGE and Western blot results showed that the recombinant BVDV E2 protein (72 kDa) was expressed and secreted into the medium at a concentration of 40 mg/L of culture under optimized conditions. An indirect ELISA was then developed by using the yeast-expressed E2 protein. Preliminary testing of 300 field cattle serum samples showed that the E2 ELISA showed a sensitivity of 91.07% and a specificity of 92.02% compared to the reference virus neutralization test. The concordance between the E2 ELISA and VNT was 91.67%. This study demonstrates feasibility of BVDV E2 protein expression in yeast Pichia pastoris for the first time and its efficacy as an antigen in ELISA for detecting BVDV neutralizing antibodies in cattle.

  4. Common glycoproteins expressing polylactosamine-type glycans on matched patient primary and metastatic melanoma cells show different glycan profiles.

    Kinoshita, Mitsuhiro; Mitsui, Yosuke; Kakoi, Naotaka; Yamada, Keita; Hayakawa, Takao; Kakehi, Kazuaki


    Recently, we reported comparative analysis of glycoproteins which express cancer-specific N-glycans on various cancer cells and identified 24 glycoproteins having polylactosamine (polyLacNAc)-type N-glycans that are abundantly present in malignant cells [ Mitsui et al., J. Pharm. Biomed. Anal. 2012 , 70 , 718 - 726 ]. In the present study, we applied the technique to comparative studies on common glycoproteins present in the matched patient primary and metastatic melanoma cell lines. Metastatic melanoma cells (WM266-4) contained a large amount of polyLacNAc-type N-glycans in comparison with primary melanoma cells (WM115). To identify the glycoproteins expressing these N-glycans, glycopeptides having polyLacNAc-type N-glycans were captured by a Datura stramonium agglutinin (DSA)-immobilized agarose column. The captured glycopeptides were analyzed by LC/MS after removing N-glycans, and some glycoproteins such as basigin, lysosome-associated membrane protein-1 (LAMP-1), and chondroitin sulfate proteoglycan 4 (CSPG4) were identified in both WM115 and WM266-4 cells. The expression level of polyLacNAc of CSPG4 in WM266-4 cells was significantly higher than that in WM115 cells. In addition, sulfation patterns of chondroitin sulfate (CS) chains in CSPG4 showed dramatic changes between these cell lines. These data show that characteristic glycans attached to common proteins observed in different stages of cancer cells will be useful markers for determining degree of malignancies of tumor cells.

  5. Structure of Acidic pH Dengue Virus Showing the Fusogenic Glycoprotein Trimers

    Zhang, Xinzheng; Sheng, Ju; Austin, S. Kyle; Hoornweg, Tabitha E.; Smit, Jolanda M.; Kuhn, Richard J.; Diamond, Michael S.; Rossmann, Michael G.


    Flaviviruses undergo large conformational changes during their life cycle. Under acidic pH conditions, the mature virus forms transient fusogenic trimers of E glycoproteins that engage the lipid membrane in host cells to initiate viral fusion and nucleocapsid penetration into the cytoplasm. However,

  6. Human yeast-specific CD8 T lymphocytes show a nonclassical effector molecule profile.

    Breinig, Tanja; Scheller, Nicoletta; Glombitza, Birgit; Breinig, Frank; Meyerhans, Andreas


    Pathogenic yeast and fungi represent a major group of human pathogens. The consequences of infections are diverse and range from local, clinically uncomplicated mycosis of the skin to systemic, life-threatening sepsis. Despite extensive MHC class I-restricted frequencies of yeast-specific CD8 T lymphocytes in healthy individuals and the essential role of the cell-mediated immunity in controlling infections, the characteristics and defense mechanisms of antifungal effector cells are still unclear. Here, we describe the direct analysis of yeast-specific CD8 T lymphocytes in whole blood from healthy individuals. They show a unique, nonclassical phenotype expressing granulysin and granzyme K in lytic granules instead of the major effector molecules perforin and granzyme B. After stimulation in whole blood, yeast-specific CD8 T cells degranulated and, upon cultivation in the presence of IL-2, their granula were refilled with granulysin rather than with perforin and granzyme B. Moreover, yeast-specific stimulation through dendritic cells but not by yeast cells alone led to degranulation of the effector cells. As granulysin is the only effector molecule in lytic granules known to have antifungal properties, our data suggest yeast-specific CD8 T cells to be a nonclassical effector population whose antimicrobial effector machinery seems to be tailor-made for the efficient elimination of fungi as pathogens.

  7. A screen for deficiencies in GPI-anchorage of wall glycoproteins in yeast.

    Gonzalez, Marlyn; Goddard, Noel; Hicks, Charles; Ovalle, Rafael; Rauceo, Jason M; Jue, Chong K; Lipke, Peter N


    Many of the genes and enzymes critical for assembly and biogenesis of yeast cell walls remain unidentified or poorly characterized. Therefore, we designed a high throughput genomic screen for defects in anchoring of GPI-cell wall proteins (GPI-CWPs), based on quantification of a secreted GFP-Sag1p fusion protein. Saccharomyces cerevisiae diploid deletion strains were transformed with a plasmid expressing the fusion protein under a GPD promoter, then GFP fluorescence was determined in culture supernatants after mid-exponential growth. Variability in the amount of fluorescent marker secreted into the medium was reduced by growth at 18 degrees C in buffered defined medium in the presence of sorbitol. Secondary screens included immunoblotting for GFP, fluorescence emission spectra, cell surface fluorescence, and cell integrity. Of 167 mutants deleted for genes affecting cell wall biogenesis or structure, eight showed consistent hyper-secretion of GFP relative to parental strain BY4743: tdh3 (glyceraldehyde-3-phosphate dehydrogenase), gda1 (guanosine diphosphatase), gpi13 and mcd4 (both ethanolamine phosphate-GPI-transferases), kre5 and kre1 (involved in synthesis of beta1,6 glucan), dcw1(implicated in GPI-CWP cross-linking to cell wall glucan), and cwp1 (a major cell wall protein). In addition, deletion of a number of genes caused decreased secretion of GFP. These results elucidate specific roles for specific genes in cell wall biogenesis, including differentiating among paralogous genes.

  8. Surface-exposed glycoproteins of hyperthermophilic Sulfolobus solfataricus P2 show a common N-glycosylation profile.

    Palmieri, Gianna; Balestrieri, Marco; Peter-Katalinić, Jasna; Pohlentz, Gottfried; Rossi, Mosè; Fiume, Immacolata; Pocsfalvi, Gabriella


    Cell surface proteins of hyperthermophilic Archaea actively participate in intercellular communication, cellular uptake, and energy conversion to sustain survival strategies in extreme habitats. Surface (S)-layer glycoproteins, the major component of the S-layers in many archaeal species and the best-characterized prokaryotic glycoproteins, were shown to have a large structural diversity in their glycan compositions. In spite of this, knowledge on glycosylation of proteins other than S-layer proteins in Archaea is quite limited. Here, the N-glycosylation pattern of cell-surface-exposed proteins of Sulfolobus solfataricus P2 were analyzed by lectin affinity purification, HPAEC-PAD, and multiple mass spectrometry-based techniques. Detailed analysis of SSO1273, one of the most abundant ABC transporters present in the cell surface fraction of S. solfataricus, revealed a novel glycan structure composed of a branched sulfated heptasaccharide, Hex4(GlcNAc)2 plus sulfoquinovose where Hex is d-mannose and d-glucose. Having one monosaccharide unit more than the glycan of the S-layer glycoprotein of S. acidocaldarius, this is the most complex archaeal glycan structure known today. SSO1273 protein is heavily glycosylated and all 20 theoretical N-X-S/T (where X is any amino acid except proline) consensus sequence sites were confirmed. Remarkably, we show that several other proteins in the surface fraction of S. solfataricus are N-glycosylated by the same sulfated oligosaccharide and we identified 56 N-glycosylation sites in this subproteome.

  9. Expression and Characterization of HIV-1 Envelope Glycoprotein in Pichia Pastoris

    ZHAO Li-hui; YU Xiang-hui; JIANG Chun-lai; WU Yong-ge; SHEN Jia-cong; KONG Wei


    To obtain a sufficient amount of glycoprotein for further studying the structure and function of HIV-1 envelope glycoprotein, amplified and modified HIV-1 envelope glycoprotein gene which recombined subtypes(850amino acids) from Guangxi in China was inserted into Pichiapastoris expression vector pPICZaB; then the recombinant plasmid was transported into the yeast cells to induce the expression of Env protein with methanol. The results of SDS-PAGE and Western blot indicate that the envelope glycoprotein could be expressed in Pichia pastoris with productions of a 120000 glycoprotein and a 41000 glycoprotein, which showed satisfactory immunogenicity by indirect ELISA.

  10. Thermotolerant Yeast Strains Adapted by Laboratory Evolution Show Trade-Off at Ancestral Temperatures and Preadaptation to Other Stresses

    Caspeta, Luis; Nielsen, Jens


    . Thermotolerant yeast strains showed horizontal displacement of their thermal reaction norms to higher temperatures. Hence, their optimal and maximum growth temperatures increased by about 3°C, whereas they showed a growth trade-off at temperatures below 34°C. Computational analysis of the physical properties...... in the ancestral strain. The latter is an advantageous attribute for acquiring thermotolerance and correlates with the reduction of yeast functions associated with loss of respiration capacity. This trait caused glycerol overproduction that was associated with the growth trade-off at ancestral temperatures....... In combination with altered sterol composition of cellular membranes, glycerol overproduction was also associated with yeast osmotolerance and improved tolerance of high concentrations of glucose and ethanol. Our study shows that thermal adaptation of yeast is suitable for improving yeast resistance...

  11. Mannosylerythritol lipid, a yeast extracellular glycolipid, shows high binding affinity towards human immunoglobulin G

    Ikegami Toru


    Full Text Available Abstract Background There have been many attempts to develop new materials with stability and high affinity towards immunoglobulins. Some of glycolipids such as gangliosides exhibit a high affinity toward immunoglobulins. However, it is considerably difficult to develop these glycolipids into the practical separation ligand due to their limited amounts. We thus focused our attention on the feasible use of "mannosylerythritol lipid A", a yeast glycolipid biosurfactant, as an alternative ligand for immunoglobulins, and undertook the investigation on the binding between mannosylerythritol lipid A (MEL-A and human immunoglobulin G (HIgG. Results In ELISA assay, MEL-A showed nearly the same binding affinity towards HIgG as that of bovine ganglioside GM1. Fab of human IgG was considered to play a more important role than Fc in the binding of HIgG by MEL-A. The bound amount of HIgG increased depending on the attached amount of MEL-A onto poly (2-hydroxyethyl methacrylate (polyHEMA beads, whereas the amount of human serum albumin slightly decreased. Binding-amount and -selectivity of HIgG towards MEL-A were influenced by salt species, salt concentration and pH in the buffer solution. The composite of MEL-A and polyHEMA, exhibited a significant binding constant of 1.43 × 106 (M-1 for HIgG, which is approximately 4-fold greater than that of protein A reported. Conclusions MEL-A shows high binding-affinity towards HIgG, and this is considered to be due to "multivalent effect" based on the binding molar ratio. This is the first report on the binding of a natural human antibody towards a yeast glycolipid.

  12. Interactive optical trapping shows that confinement is a determinant of growth in a mixed yeast culture

    Arneborg, N.; Siegumfeldt, H.; Andersen, G.H.;


    Applying a newly developed user-interactive optical trapping system, we controllably surrounded individual cells of one yeast species, Hanseniaspora uvarum, with viable cells of another yeast species, Saccharomyces cerevisiae, thus creating a confinement of the former. Growth of surrounded and no...... of the latter. This study is the first to demonstrate that confinement is a determinant of growth in a microbial ecosystem. (c) 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved....

  13. Mannosylerythritol lipid, a yeast extracellular glycolipid, shows high binding affinity towards human immunoglobulin G

    Ikegami Toru; Yanagishita Hiroshi; Nakane Takashi; Im Jae Hong; Kitamoto Dai


    Abstract Background There have been many attempts to develop new materials with stability and high affinity towards immunoglobulins. Some of glycolipids such as gangliosides exhibit a high affinity toward immunoglobulins. However, it is considerably difficult to develop these glycolipids into the practical separation ligand due to their limited amounts. We thus focused our attention on the feasible use of "mannosylerythritol lipid A", a yeast glycolipid biosurfactant, as an alternative ligand...

  14. An Analysis of Trafficking Receptors Shows that CD44 and P-Selectin Glycoprotein Ligand-1 Collectively Control the Migration of Activated Human T-Cells

    Ali, Amal J.


    Selectins guide the traffic of activated T-cells through the blood stream by mediating their tethering and rolling onto inflamed endothelium, in this way acting as beacons to help navigate them to sites of inflammation. Here, we present a comprehensive analysis of E-selectin ligands expressed on activated human T-cells. We identified several novel glycoproteins that function as E-selectin ligands. Specifically, we compared the role of P-selectin glycoprotein ligand-1 (PSGL-1) and CD43, known E-selectin ligands, to CD44, a ligand that has not previously been characterized as an E-selectin ligand on activated human T-cells. We showed that CD44 acts as a functional E-selectin ligand when expressed on both CD4+ and CD8+ T-cells. Moreover, the CD44 protein carries a binding epitope identifying it as hematopoietic cell E- and/or L-selectin ligand (HCELL). Furthermore, by knocking down these ligands individually or together in primary activated human T-cells, we demonstrated that CD44/HCELL, and not CD43, cooperates with PSGL-1 as a major E-selectin ligand. Additionally, we demonstrated the relevance of our findings to chronic autoimmune disease, by showing that CD44/HCELL and PSGL-1, but not CD43, from T-cells isolated from psoriasis patients, bind E-selectin.

  15. New species of Ehrlichia isolated from Rhipicephalus (Boophilus microplus shows an ortholog of the E. canis major immunogenic glycoprotein gp36 with a new sequence of tandem repeats

    Cruz Alejandro Cabezas


    Full Text Available Abstract Background Ehrlichia species are the etiological agents of emerging and life-threatening tick-borne human zoonoses that inflict serious and fatal infections in companion animals and livestock. The aim of this paper was to phylogeneticaly characterise a new species of Ehrlichia isolated from Rhipicephalus (Boophilus microplus from Minas Gerais, Brazil. Methods The agent was isolated from the hemolymph of Rhipicephalus (B. microplus engorged females that had been collected from naturally infested cattle in a farm in the state of Minas Gerais, Brazil. This agent was then established and cultured in IDE8 tick cells. The molecular and phylogenetic analysis was based on 16S rRNA, groEL, dsb, gltA and gp36 genes. We used the maximum likelihood method to construct the phylogenetic trees. Results The phylogenetic trees based on 16S rRNA, groEL, dsb and gltA showed that the Ehrlichia spp isolated in this study falls in a clade separated from any previously reported Ehrlichia spp. The molecular analysis of the ortholog of gp36, the major immunoreactive glycoproteins in E. canis and ortholog of the E. chaffeensis gp47, showed a unique tandem repeat of 9 amino acids (VPAASGDAQ when compared with those reported for E. canis, E. chaffeensis and the related mucin-like protein in E. ruminantium. Conclusions Based on the molecular and phylogenetic analysis of the 16S rRNA, groEL, dsb and gltA genes we concluded that this tick-derived microorganism isolated in Brazil is a new species, named E. mineirensis (UFMG-EV, with predicted novel antigenic properties in the gp36 ortholog glycoprotein. Further studies on this new Ehrlichia spp should address questions about its transmissibility by ticks and its pathogenicity for mammalian hosts.

  16. Glycoprotein biosynthesis in calf kidney. Glycoprotein sialyltransferase activities towards serum glycoproteins and calf Tamm-Horsfall glycoprotein.

    van Dijk, W; Lasthuis, A M; van den Eijnden, D H


    CMP-AcNeu:glycoprotein sialyltransltransltransltransltransferase of calf kidney cortex was characterized using serum glycoproteins and Tamm-Horsfall glycoprotein, obtained from calf urine, as acceptors. Native calf Tamm-Horsfall glycoprotein showed the best acceptor properties, followed by desialylated calf fetuin and desialylated human alpha 1-acid glycoprotein exhibiting V values of, respectively, 114, 63 and 41 nmol/h per g wet wt. of kidney cortex and Km values of 0.12, 0.16 and 0.26 mM glycoprotein acceptor. Desialylated ovine submaxillary mucine appeared to be a very poor acceptor. Tamm-Horsfall glycoprotein sialyltransferase could be distinguished from serum glycoprotein sialyltransferase by competition studies. In addition the two glycoprotein sialyltransferase activities showed different distributions over the three regions of the calf kidney: the ratios of the Tamm-Horsfall to serum glycoprotein sialyltransferase activities decreased from 3.3 in the cortex to 0.8 and 0.4 in the medulla and the papilla, respectively. It was concluded that in calf kidney at least two different sialyltransferases exist. The high cortical Tamm-Horsfall glycoprotein sialyltransferases activity corresponds markedly to the origin of the urinary Tamm-Horsfall glycoprotein, namely the distal part of the kidney tubule. Inactivation of glycoprotein sialyltransferase activity by preincubation at various temperatures and during storage at 0 degree C, could be reduced by the addition of CMP-AcNeu. The possible relevance towards the in vivo sialylation of this finding is discussed.

  17. Analysis of cosmid clones of nuclear DNA from Trypanosome brucei shows that the genes for variant surface glycoproteins are clustered in the genome.

    D. Valerio (Dinko); T. de Lange; P. Borst (Piet); F.G. Grosveld (Frank); L.H.T. van der Ploeg


    textabstractTrypanosoma brucei contains more than a hundred genes coding for the different variant surface glycoproteins (VSGs). Activation of some of these genes involves the duplication of the gene (the basic copy or BC) and transposition of the duplicate to an expression site (yielding the expres

  18. Mutational analysis of the vacuolar sorting signal of procarboxypeptidase Y in yeast shows a low requirement for sequence conservation

    van Voorst, F; Kielland-Brandt, Morten; Winther, Jakob R.


    The core of the vacuolar targeting signal of yeast carboxypeptidase Y (CPY) is recognized by the receptor Vps10p and consists of four contiguous amino acid residues, Gln24-Arg-Pro-Leu27, near the amino terminus of the propeptide (Valls, L.A., Winther, J. R., and Stevens, T. H. (1990) J. Cell Biol...

  19. High level expression and secretion of truncated forms of herpes simplex virus type I and type 2 glycoprotein D by the methylotrophic yeast Pichia pastoris

    van Kooij, A; Middel, J; Jakab, F; Elfferich, P; Koedijk, DGAM; Feijlbrief, M; Scheffer, AJ; Degener, JE; The, TH; Scheek, RM; Welling, GW; Welling-Wester, S

    Herpes simplex virus type I and 2 (HSV-1 and -2) glycoproteins D (gD-1 and gD-2) play a role in the entry of the virus into the host cell. Availability of substantial amounts of these proteins, or large fragments thereof. will he needed to allow studies at the molecular level. We studied the potency

  20. Sesquiterpene glucosides from Shenzhou honey peach fruit showed the anti-aging activity in the evaluation system using yeasts.

    Wang, Yanhui; Lin, Yanfei; Xiang, Lan; Osada, Hiroyuki; Qi, Jianhua


    One new (1, SZMT01) and one known (2) anti-aging substances were isolated from Shenzhou honey peach fruit. Their structures were elucidated by spectroscopic methods and chemical derivatization, and the result reveals that these two compounds are sesquiterpene glucosides. SZMT01 possesses a new glycosylation with an ester linkage at one terminal in an acyclic sesquiterpenoid which is the end of a double bond at another terminal. Both compounds extend the replicative lifespan of K6001 yeast strain at doses of 7.5 and 25 μM. Then, to understand the action mechanism involved, we performed an anti-oxidative experiment on SZMT01. The result revealed that treatment with SZMT01 increased the survival rate of yeast under oxidative stress. Moreover, the lifespans of sod1 and sod2 mutant yeast strains with a K6001 background were not affected by SZMT01. These results demonstrate that anti-oxidative stress performs important roles in anti-aging effects of SZMT01.

  1. Fusion proteins of HIV-1 envelope glycoprotein gp120 with CD4-induced antibodies showed enhanced binding to CD4 and CD4 binding site antibodies

    Chen, Weizao, E-mail: [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Feng, Yang [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Wang, Yanping [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); The Basic Research Program, Science Applications International Corporation-Frederick, Inc., National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States); Zhu, Zhongyu; Dimitrov, Dimiter S. [Protein Interactions Group, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702 (United States)


    Highlights: Black-Right-Pointing-Pointer Some recombinant HIV-1 gp120s do not preserve their conformations on gp140s. Black-Right-Pointing-Pointer We hypothesize that CD4i antibodies could induce conformational changes in gp120. Black-Right-Pointing-Pointer CD4i antibodies enhance binding of CD4 and CD4bs antibodies to gp120. Black-Right-Pointing-Pointer CD4i antibody-gp120 fusion proteins could have potential as vaccine immunogens. -- Abstract: Development of successful AIDS vaccine immunogens continues to be a major challenge. One of the mechanisms by which HIV-1 evades antibody-mediated neutralizing responses is the remarkable conformational flexibility of its envelope glycoprotein (Env) gp120. Some recombinant gp120s do not preserve their conformations on gp140s and functional viral spikes, and exhibit decreased recognition by CD4 and neutralizing antibodies. CD4 binding induces conformational changes in gp120 leading to exposure of the coreceptor-binding site (CoRbs). In this study, we test our hypothesis that CD4-induced (CD4i) antibodies, which target the CoRbs, could also induce conformational changes in gp120 leading to better exposed conserved neutralizing antibody epitopes including the CD4-binding site (CD4bs). We found that a mixture of CD4i antibodies with gp120 only weakly enhanced CD4 binding. However, such interactions in single-chain fusion proteins resulted in gp120 conformations which bound to CD4 and CD4bs antibodies better than the original or mutagenically stabilized gp120s. Moreover, the two molecules in the fusion proteins synergized with each other in neutralizing HIV-1. Therefore, fusion proteins of gp120 with CD4i antibodies could have potential as components of HIV-1 vaccines and inhibitors of HIV-1 entry, and could be used as reagents to explore the conformational flexibility of gp120 and mechanisms of entry and immune evasion.

  2. Detection of Multiple Budding Yeast Cells and a Partial Sequence of 43-kDa Glycoprotein Coding Gene of Paracoccidioides brasiliensis from a Case of Lacaziosis in a Female Pacific White-Sided Dolphin (Lagenorhynchus obliquidens).

    Minakawa, Tomoko; Ueda, Keiichi; Tanaka, Miyuu; Tanaka, Natsuki; Kuwamura, Mitsuru; Izawa, Takeshi; Konno, Toshihiro; Yamate, Jyoji; Itano, Eiko Nakagawa; Sano, Ayako; Wada, Shinpei


    Lacaziosis, formerly called as lobomycosis, is a zoonotic mycosis, caused by Lacazia loboi, found in humans and dolphins, and is endemic in the countries on the Atlantic Ocean, Indian Ocean and Pacific Ocean of Japanese coast. Susceptible Cetacean species include the bottlenose dolphin (Tursiops truncatus), the Indian Ocean bottlenose dolphin (T. aduncus), and the estuarine dolphin (Sotalia guianensis); however, no cases have been recorded in other Cetacean species. We diagnosed a case of Lacaziosis in a Pacific white-sided dolphin (Lagenorhynchus obliquidens) nursing in an aquarium in Japan. The dolphin was a female estimated to be more than 14 years old at the end of June 2015 and was captured in a coast of Japan Sea in 2001. Multiple, lobose, and solid granulomatous lesions with or without ulcers appeared on her jaw, back, flipper and fluke skin, in July 2014. The granulomatous skin lesions from the present case were similar to those of our previous cases. Multiple budding and chains of round yeast cells were detected in the biopsied samples. The partial sequence of 43-kDa glycoprotein coding gene confirmed by a nested PCR and sequencing, which revealed a different genotype from both Amazonian and Japanese lacaziosis in bottlenose dolphins, and was 99 % identical to those derived from Paracoccidioides brasiliensis; a sister fungal species to L. loboi. This is the first case of lacaziosis in Pacific white-sided dolphin.

  3. Glycoprotein synthesis

    Schultz, Peter G. (La Jolla, CA); Wang, Lei (San Diego, CA); Zhang, Zhiwen (San Diego, CA)


    Methods for making glycoproteins, both in vitro and in vivo, are provided. One method involves incorporating an unnatural amino acid into a protein and attaching one or more saccharide moieties to the unnatural amino acid. Another method involves incorporating an unnatural amino acid that includes a saccharide moiety into a protein. Proteins made by both methods can be further modified with additional sugars.

  4. Glycoprotein synthesis

    Schultz, Peter G. (La Jolla, CA); Wang, Lei (San Diego, CA); Zhang, Zhiwen (San Diego, CA)


    Methods for making glycoproteins, both in vitro and in vivo, are provided. One method involves incorporating an unnatural amino acid into a protein and attaching one or more saccharide moieties to the unnatural amino acid. Another method involves incorporating an unnatural amino acid that includes a saccharide moiety into a protein. Proteins made by both methods can be further modified with additional sugars.

  5. Glycoprotein synthesis

    Methods for making glycoproteins, both in vitro and in vivo, are provided. One method involves incorporating an unnatural amino acid into a protein and attaching one or more saccharide moieties to the unnatural amino acid. Another method involves incorporating an unnatural amino acid that includes a saccharide moiety into a protein. Proteins made by both methods can be further modified with additional sugars.


    Methods for making glycoproteins, both in vitro and in vivo, are provided. One method involves incorporating an unnatural amino acid into a protein and attaching one or more saccharide moieties to the unnatural amino acid. Another method involves incorporating an unnatural amino acid that includes a saccharide moiety into a protein. Proteins made by both methods can be further modified with additional sugars.

  6. The exchangeable yeast ribosomal acidic protein YP2beta shows characteristics of a partly folded state under physiological conditions.

    Zurdo, J; Sanz, J M; González, C; Rico, M; Ballesta, J P


    The eukaryotic acidic ribosomal P proteins, contrary to the standard r-proteins which are rapidly degraded in the cytoplasm, are found forming a large cytoplasmic pool that exchanges with the ribosome-bound proteins during translation. The native structure of the P proteins in solution is therefore an essential determinant of the protein-protein interactions that take place in the exchange process. In this work, the structure of the ribosomal acidic protein YP2beta from Saccharomyces cerevisiae has been investigated by fluorescence spectroscopy, circular dichroism (CD), nuclear magnetic resonance (NMR), and sedimentation equilibrium techniques. We have established the fact that YP2beta bears a 22% alpha-helical secondary structure and a noncompact tertiary structure under physiological conditions (pH 7.0 and 25 degrees C); the hydrophobic core of the protein appears to be solvent-exposed, and very low cooperativity is observed for heat- or urea-induced denaturation. Moreover, the 1H-NMR spectra show a small signal dispersion, and virtually all the amide protons exchange with the solvent on a very short time scale, which is characteristic of an open structure. At low pH, YP2beta maintains its secondary structure content, but there is no evidence for tertiary structure. 2,2,2-Trifluoroethanol (TFE) induces a higher amount of alpha-helical structure but also disrupts any trace of the remaining tertiary fold. These results indicate that YP2beta may have a flexible structure in the cytoplasmic pool, with some of the characteristics of a "molten globule", and also point out the physiological relevance of such flexible protein states in processes other than protein folding.

  7. Yeast Exoglycoproteins Produced Under NaCl-Stress Conditions as Efficient Cryoprotective Agents

    Breierova Emilia


    Full Text Available Six extracellular yeast glycoproteins were prepared from three yeast species in osmotic equilibrium and unequilibrium environments and used as non-penetrating cryoadditives. Glycoproteins secreted by the strain Dipodascus australiensis into growth medium containing NaCl (8% w/v were found to be the most effective cryoadditives. It was possible to use these glycoproteins alone (without DMSO as penetrating agent for the cryoprotection of the studied yeasts.

  8. Recombinant, rice-produced yeast phytase shows the ability to hydrolyze phytate derived from seed-based feed, and extreme stability during ensilage treatment.

    Hamada, Akira; Yamaguchi, Ken-Ichi; Harada, Michiko; Horiguchi, Ken-Ichi; Takahashi, Toshiyoshi; Honda, Hideo


    When fresh rice leaves producing yeast Schwanniomyces occidentalis phytase were grounded and mixed with the whole extract of seed-based feed for pigs, the release of orthophosphate increased significantly. More specifically, phytate, a major source of phosphorus in the seeds, was hydrolyzed by heterologous phytase. Moreover, when transgenic rice plants were ensiled for up to 12 weeks, no decrease in the phytase activity of the heterologous enzyme was observed. This result strongly suggests that transgenic rice plants producing yeast phytase can be stored as silage without any loss of enzyme activity until usage as a feed additive.

  9. Ammonia secretion from fish gill depends on a set of Rh glycoproteins.

    Nakada, Tsutomu; Westhoff, Connie M; Kato, Akira; Hirose, Shigehisa


    Ammonia excretion from the gill in teleost fish is essential for nitrogen elimination. Although numerous physiological studies have measured ammonia excretion, the mechanism of ammonia movement through the membranes of gill epithelial cells is still unknown. Mammalian Rh glycoproteins are members of a family of proteins that mediate ammonia transport in bacteria, yeast, and plants. We identified the Rh glycoprotein homologs, fRhag, fRhbg, fRhcg1, and fRhcg2, of the pufferfish, Takifugu rubripes. Northern blot, in situ hybridization, and immunohistochemistry revealed that the pufferfish erythroid Rh glycoprotein homologue fRhag was present in red blood cells and the hematological organs (spleen and kidney) in fish. All four pufferfish Rh glycoproteins are specifically localized in the gill and line the pillar cells, pavement cells, and the mitochondrion-rich cells. Heterologous expression in Xenopus oocytes showed that they mediate methylammonium (an analog of ammonium) transport. These results suggest that pufferfish Rh glycoproteins are involved in ammonia excretion from the gill. These findings challenge the classic view that ammonia excretion in the fish gill occurs by passive diffusion.

  10. Yeast cytochrome c peroxidase: mutagenesis and expression in Escherichia coli show tryptophan-51 is not the radical site in compound I

    Fishel, L.A.; Villafranca, J.E.; Mauro, J.M.; Kraut, J.


    Using oligonucleotide-directed site-specific mutagenesis, they have constructed a system for the mutation and expression of yeast cytochrome c peroxidase (CCP, EC in Escherichia coli and applied it to test the hypothesis that Trp-51 is the locus of the free radical observed in compound I of CCP. The system was created by substituting a CCP gene modified by site-directed mutagenesis, CCP(MI), for the fol gene in a vector previously used for mutagenesis and overexpression of dihydrofolate reductase. E. coli transformed with the resulting plasmid produced the CCP(MI) enzyme in large quantities, more than 15 mg/L of cell culture, of which 10% is holo- and 90% is apo-CCP(MI). The apoenzyme was easily converted to holoenzyme by the addition of bovine hemin. Purified CCP(MI) has the same catalytic activity and spectra as bakers' yeast CCP. A mutation has been made in CCP(MI), Trp-51 to Phe. The Phe-51 mutant protein CCP(MI,F51) is fully active, and the electron paramagnetic resonance (EPR) spectrum, at 89 K, of its oxidized intermediate, compound I, displays a strong sharp resonance at g = 2.004, which is very similar to the signal observed for compound I of both bakers' yeast CCP and CCP(MI). However, UV-visible and EPR spectroscopy revealed that the half-life of CCP(MI,F51) compound I at 23 /sup 0/C is only 1.4% of that observed for the compound I forms of CCP(MI) or bakers' yeast CCP. Thus, Trp-51 is not necessary for the formation of the free radical observed in compound I but appears to exert a significant influence on its stability.

  11. Propriedades funcionais (tecnológicas da parede celular de leveduras da fermentação alcoólica e das frações glicana, manana e glicoproteína Functional (technological properties of yeast cellular wall of alcoholic fermentation and its glycan, mannan, and glycoprotein fractions

    Saula Goulart Chaud


    glycan, mannan and glycoprotein. Fractionation was realized by the physico-chemical processes of extraction, centrifugation and spray drying; chemical characterization, by determination of centesimal composition and the functional properties through well-known techniques. In the cellular wall (CW, predominated protein (19% and soluble fiber (74%. Glycoprotein presented 35.5% protein and 56% soluble fiber. In the mannnan (M and soluble glycan (SG, the soluble fiber (70% was predominant, whereas in the insoluble glycan (IG predominated the insoluble fiber (70.7%. Solubility of the various fractions in aqueous media ranged from 40% to 100% and was not pH dependent. Soluble glycan showed the highest water retention capacity (14.4 g H2O/g sample and the higher water solubility indices (WSI were found for mannan (60% and for glycoprotein (83.8%. The glycans (soluble and insoluble presented good gelling properties at 12 and 14% solid concentrations. Glycoprotein, mannan and soluble glycan presented excellent emulsifying capacity (1,500 to 2,000 ml oil/g sample. The glycoprotein and soluble glycan emulsitions were the most stable. Addition of ovalbumin (0.2% in the emulsifying media increased significantly the cellular wall and soluble glycan emulsifying capacity. It also contributed for the stabilization of the mannan (M and glycans (IG and SG emultions.

  12. The radial immunodiffusion assay for plasma Histidine-rich Glycoprotein (HRG) based on a polyclonal antibody, shows a different specificity towards the two variants of a common amino acid polymorphism

    Hennis, B.C.; Hoffmann, J.J.M.L.; Kluft, C.


    Recently, two molecular weight forms of Histidine-rich Glycoprotein have been described which explain 59% of the variation in plasma HRG levels. Here, we demonstrate that this can partly be ascribed to a difference in specificity of the immuno assay for HRG towards the two alleles of the polymorphis

  13. Mice deficient for the extracellular matrix glycoprotein tenascin-r show physiological and structural hallmarks of increased hippocampal excitability, but no increased susceptibility to seizures in the pilocarpine model of epilepsy.

    Brenneke, F; Bukalo, O; Dityatev, A; Lie, A A


    Recognition molecules provide important cues for neuronal survival, axonal fasciculation, axonal pathfinding, synaptogenesis, synaptic plasticity, and regeneration. Our previous studies revealed a link between perisomatic inhibition and the extracellular matrix glycoprotein tenascin-R (TN-R). Therefore, we here studied neuronal excitability and epileptic susceptibility in mice constitutively deficient in TN-R. In vitro analysis of populational spikes in hippocampal slices of TN-R-deficient mice revealed a significant increase in multiple spikes in the CA1 region, as compared with wild-type mice. This difference between genotypes was only partially reduced after blockade of GABA(A) receptors with picrotoxin, indicating a deficit in GABAergic inhibition and an increase in intrinsic excitability of CA1 pyramidal cells in TN-R-deficient mice. Using a battery of immunohistochemical markers and histological stainings, we were able to identify two abnormalities in the hippocampus of TN-R-deficient mice possibly related to increased excitability: the high number of glial fibrillary acidic protein-positive astrocytes and low number of calretinin-positive interneurons in the CA1 and CA3 regions. In order to test whether the revealed abnormalities give rise to increased susceptibility to seizures in TN-R-deficient mice, we used the pilocarpine model of epilepsy. No genotype-specific differences were found with regard to the time-course of pilocarpine-induced and spontaneous seizures, neuronal cell loss, aberrant sprouting and distribution of synaptic and inhibitory interneuron markers. However, pilocarpine-induced astrogliosis and reduction in calretinin-positive interneurons were less pronounced in TN-R mutants, thereby resulting in an occlusion of effects induced by TN-R deficiency and pilocarpine. Thus, TN-R-deficient mutants show several electrophysiological and morphological hallmarks of increased neuronal excitability, which, however, do not give rise to more

  14. Glycoproteins: Occurrence and Significance

    Wittmann, Valentin

    Protein glycosylation is regarded as the most complex form of post-translational modification leading to a heterogeneous expression of glycoproteins as mixtures of glycoforms. This chapter describes the structure and occurrence of glycoproteins with respect to their glycan chains. Discussed are different carbohydrate-peptide linkages including GPI anchors, common structures of N- and O-glycans, and the structure of glycosaminoglycans contained in proteoglycans. Also covered are the bacterial cell wall polymer peptidoglycan and the glycopeptide antibiotics of the vancomycin group. Properties and functions of the glycans contained in glycoproteins are dealt with in the next chapter of this book.

  15. A high-affinity inhibitor of yeast carboxypeptidase Y is encoded by TFS1 and shows homology to a family of lipid binding proteins

    Bruun, A W; Svendsen, I; Sørensen, S O;


    degree of specificity, showing a 200-fold higher Ki toward a carboxypeptidase from Candida albicans which is highly homologous to carboxypeptidase Y. The TFS1 gene product shows extensive similarity to a class of proteins termed "21-23-kDa lipid binding proteins", members of which are found in several...

  16. Adapting Yeast as Model to Study Ricin Toxin A Uptake and Trafficking

    Björn Becker


    Full Text Available The plant A/B toxin ricin represents a heterodimeric glycoprotein belonging to the family of ribosome inactivating proteins, RIPs. Its toxicity towards eukaryotic cells results from the depurination of 28S rRNA due to the N-glycosidic activity of ricin toxin A chain, RTA. Since the extention of RTA by a mammalian-specific endoplasmic reticulum (ER retention signal (KDEL significantly increases RTA in vivo toxicity against mammalian cells, we here analyzed the phenotypic effect of RTA carrying the yeast-specific ER retention motif HDEL. Interestingly, such a toxin (RTAHDEL showed a similar cytotoxic effect on yeast as a corresponding RTAKDEL variant on HeLa cells. Furthermore, we established a powerful yeast bioassay for RTA in vivo uptake and trafficking which is based on the measurement of dissolved oxygen in toxin-treated spheroplast cultures of S. cerevisiae. We show that yeast spheroplasts are highly sensitive against external applied RTA and further demonstrate that its toxicity is greatly enhanced by replacing the C-terminal KDEL motif by HDEL. Based on the RTA resistant phenotype seen in yeast knock-out mutants defective in early steps of endocytosis (∆end3 and/or in RTA depurination activity on 28S rRNA (∆rpl12B we feel that the yeast-based bioassay described in this study is a powerful tool to dissect intracellular A/B toxin transport from the plasma membrane through the endosomal compartment to the ER.

  17. Adapting yeast as model to study ricin toxin a uptake and trafficking.

    Becker, Björn; Schmitt, Manfred J


    The plant A/B toxin ricin represents a heterodimeric glycoprotein belonging to the family of ribosome inactivating proteins, RIPs. Its toxicity towards eukaryotic cells results from the depurination of 28S rRNA due to the N-glycosidic activity of ricin toxin A chain, RTA. Since the extention of RTA by a mammalian-specific endoplasmic reticulum (ER) retention signal (KDEL) significantly increases RTA in vivo toxicity against mammalian cells, we here analyzed the phenotypic effect of RTA carrying the yeast-specific ER retention motif HDEL. Interestingly, such a toxin (RTA(HDEL)) showed a similar cytotoxic effect on yeast as a corresponding RTA(KDEL) variant on HeLa cells. Furthermore, we established a powerful yeast bioassay for RTA in vivo uptake and trafficking which is based on the measurement of dissolved oxygen in toxin-treated spheroplast cultures of S. cerevisiae. We show that yeast spheroplasts are highly sensitive against external applied RTA and further demonstrate that its toxicity is greatly enhanced by replacing the C-terminal KDEL motif by HDEL. Based on the RTA resistant phenotype seen in yeast knock-out mutants defective in early steps of endocytosis (∆end3) and/or in RTA depurination activity on 28S rRNA (∆rpl12B) we feel that the yeast-based bioassay described in this study is a powerful tool to dissect intracellular A/B toxin transport from the plasma membrane through the endosomal compartment to the ER.

  18. HIV-1 envelope glycoprotein

    Caulfield, Michael; Cupo, Albert; Dean, Hansi; Hoffenberg, Simon; King, C. Richter; Klasse, P. J.; Marozsan, Andre; Moore, John P.; Sanders, Rogier W.; Ward, Andrew; Wilson, Ian; Julien, Jean-Philippe


    The present application relates to novel HIV-1 envelope glycoproteins, which may be utilized as HIV-1 vaccine immunogens, and antigens for crystallization, electron microscopy and other biophysical, biochemical and immunological studies for the identification of broad neutralizing antibodies. The present invention encompasses the preparation and purification of immunogenic compositions, which are formulated into the vaccines of the present invention.

  19. Expression of glycoprotein gp43 in stage-specific forms and during dimorphic differentiation of Paracoccidioides brasiliensis.

    Mattar-Filho, R; Azevedo, M O; Pereira, M; Jesuino, R S; Salem-Izacc, S M; Brito, W A; Gesztesi, J L; Soares, R B; Felipe, M S; Soares, C M


    Expression of the 43 kDa glycoprotein (gp43) was analysed in several Paracoccidioides brasiliensis isolates. Using one- and two-dimensional analysis of crude cellular extracts, it was shown that protein expression in yeast and mycelium was dependent on the isolate analysed. In two strains, in both yeast and mycelium cells. gp43 was present, whereas expression was restricted to the yeast phase of two other strains. The clinical implications of this phase-specific gp43 expression are uncertain.

  20. A yeast glycolipid biosurfactant, mannosylerythritol lipid, shows potential moisturizing activity toward cultured human skin cells: the recovery effect of MEL-A on the SDS-damaged human skin cells.

    Morita, Tomotake; Kitagawa, Masaru; Suzuki, Michiko; Yamamoto, Shuhei; Sogabe, Atsushi; Yanagidani, Shusaku; Imura, Tomohiro; Fukuoka, Tokuma; Kitamoto, Dai


    Mannosylerythritol lipids (MELs) are produced in large amounts from renewable vegetable oils by Pseudozyma antarctica, and are the most promising biosurfactants known due to its versatile interfacial and biochemical actions. In order to broaden the application in cosmetics and pharmaceuticals, the skin care property of MEL-A, the major component of MELs, was investigated using a three-dimensional cultured human skin model. The skin cells were cultured and treated with sodium dodecyl sulfate (SDS) solution of 1 wt%, and the effects of different lipids on the SDS-damaged cells were then evaluated on the basis of the cell viability. The viability of the damaged cells was markedly recovered by the addition of MEL-A in a dose-dependent manner. Compared to the control, MEL-A solutions of 5 wt% and 10 wt% gave the recovery rate of 73% and 91%, respectively, while ceramide solution of 1 wt% gave the rate of over 100%. This revealed that MEL-A shows a ceramide-like moisturizing activity toward the skin cells. Considering the drawbacks of natural ceramides, namely limited amount and high production cost, the yeast biosurfactants should have a great potential as a novel moisturizer for treating the damaged skin.

  1. Forces in yeast flocculation.

    El-Kirat-Chatel, Sofiane; Beaussart, Audrey; Vincent, Stéphane P; Abellán Flos, Marta; Hols, Pascal; Lipke, Peter N; Dufrêne, Yves F


    In the baker's yeast Saccharomyces cerevisiae, cell-cell adhesion ("flocculation") is conferred by a family of lectin-like proteins known as the flocculin (Flo) proteins. Knowledge of the adhesive and mechanical properties of flocculins is important for understanding the mechanisms of yeast adhesion, and may help controlling yeast behaviour in biotechnology. We use single-molecule and single-cell atomic force microscopy (AFM) to explore the nanoscale forces engaged in yeast flocculation, focusing on the role of Flo1 as a prototype of flocculins. Using AFM tips labelled with mannose, we detect single flocculins on Flo1-expressing cells, showing they are widely exposed on the cell surface. When subjected to force, individual Flo1 proteins display two distinct force responses, i.e. weak lectin binding forces and strong unfolding forces reflecting the force-induced extension of hydrophobic tandem repeats. We demonstrate that cell-cell adhesion bonds also involve multiple weak lectin interactions together with strong unfolding forces, both associated with Flo1 molecules. Single-molecule and single-cell data correlate with microscale cell adhesion behaviour, suggesting strongly that Flo1 mechanics is critical for yeast flocculation. These results favour a model in which not only weak lectin-sugar interactions are involved in yeast flocculation but also strong hydrophobic interactions resulting from protein unfolding.

  2. Biosorption of nickel by yeasts in an osmotically unsuitable environment

    Breierova, Emilia; Kovarova, Annamaria [SAS, Bratislava (Slovakia). Inst. of Chemistry; Certik, Milan [SUT, Bratislava (Slovakia). Dept. of Biochemical Technology; Gregor, Tomas [Mendel Univ. of Agriculture and Forestry, Brno (Czech Republic)


    The tolerance, sorption of nickel(II) ions, and changes in the production and composition of exopolymers of eight yeast strains grown under nickel presence with/without NaCl were studied. Strains of Pichia anomala and Candida maltosa known as the most resistant yeasts against nickel tolerated up to 3 mm Ni{sup 2+}. NaCl addition decreased both the resistance ofthe yeast strains toward nickel ions and the sorption of metal ions into cells. All yeasts absorbed nickel predominantly into exopolymers (glycoproteins) and on the surface of cells. However, while the amount of polysaccharide moieties of exoglycoproteins of most of the resistant yeasts was induced by stress conditions, the ratio polysaccharide/protein in the exopolymers remained unchanged in the sensitive species Cystofilobasidium. The exopolymer composition might play a key role in yeast adaptation to stress conditions caused by heavy metal ions. (orig.)

  3. Evolutionary History of Ascomyceteous Yeasts

    Haridas, Sajeet; Riley, Robert; Salamov, Asaf; Goker, Markus; Klenk, Hans-Peter; Kurtzman, Cletus P.; Blackwell, Meredith; Grigoriev, Igor; Jeffries, Thomas W.


    Yeasts are important for many industrial and biotechnological processes and show remarkable diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. A comparison of these with several other previously published yeast genomes have added increased confidence to the phylogenetic positions of previously poorly placed species including Saitoella complicata, Babjeviella inositovora and Metschnikowia bicuspidata. Phylogenetic analysis also showed that yeasts with alternative nuclear codon usage where CUG encodes serine instead of leucine are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with a large fraction of single exon genes with Lipomyces starkeyi and the previously published Pneumocystis jirovecii being notable exceptions. Intron analysis suggests that early diverging species have more introns. We also observed a large number of unclassified lineage specific non-simple repeats in these genomes.

  4. Discovery of a nucleocytoplasmic O-mannose glycoproteome in yeast

    Halim, Adnan; Larsen, Ida Signe Bohse; Neubert, Patrick;


    developed a sensitive lectin enrichment and mass spectrometry workflow for identification of the human O-linked mannose (O-Man) glycoproteome and used this to identify a pleothora of O-Man glycoproteins in human cell lines including the large family of cadherins and protocadherins. Here, we applied...... the workflow to yeast with the aim to characterize the yeast O-Man glycoproteome, and in doing so, we discovered hitherto unknown O-Man glycosites on nuclear, cytoplasmic, and mitochondrial proteins in S. cerevisiae and S. pombe. Such O-Man glycoproteins were not found in our analysis of human cell lines....... However, the type of yeast O-Man nucleocytoplasmic proteins and the localization of identified O-Man residues mirror that of the O-GlcNAc glycoproteome found in other eukaryotic cells, indicating that the two different types of O-glycosylations serve the same important biological functions. The discovery...

  5. Yeast Lab

    Lewis, Matt; Powell, Jim


    Yeast are grown in a small, capped ask, generating carbon dioxide which is trapped in an inverted jar full of colored water. The volume of carbon dioxide produced can either be measured directly or using time-lapse imagery on an iPad or similar. Students are then challenged to model the resulting data. From this exercise students gain greater understand- ing of ODE compartment models, parameter estimation, population dynamics and limiting factors.

  6. Herpesvirus glycoproteins undergo multiple antigenic changes before membrane fusion.

    Daniel L Glauser

    Full Text Available Herpesvirus entry is a complicated process involving multiple virion glycoproteins and culminating in membrane fusion. Glycoprotein conformation changes are likely to play key roles. Studies of recombinant glycoproteins have revealed some structural features of the virion fusion machinery. However, how the virion glycoproteins change during infection remains unclear. Here using conformation-specific monoclonal antibodies we show in situ that each component of the Murid Herpesvirus-4 (MuHV-4 entry machinery--gB, gH/gL and gp150--changes in antigenicity before tegument protein release begins. Further changes then occurred upon actual membrane fusion. Thus virions revealed their final fusogenic form only in late endosomes. The substantial antigenic differences between this form and that of extracellular virions suggested that antibodies have only a limited opportunity to block virion membrane fusion.

  7. Envelope glycoprotein of arenaviruses.

    Burri, Dominique J; da Palma, Joel Ramos; Kunz, Stefan; Pasquato, Antonella


    Arenaviruses include lethal human pathogens which pose serious public health threats. So far, no FDA approved vaccines are available against arenavirus infections, and therapeutic options are limited, making the identification of novel drug targets for the development of efficacious therapeutics an urgent need. Arenaviruses are comprised of two RNA genome segments and four proteins, the polymerase L, the envelope glycoprotein GP, the matrix protein Z, and the nucleoprotein NP. A crucial step in the arenavirus life-cycle is the biosynthesis and maturation of the GP precursor (GPC) by cellular signal peptidases and the cellular enzyme Subtilisin Kexin Isozyme-1 (SKI-1)/Site-1 Protease (S1P) yielding a tripartite mature GP complex formed by GP1/GP2 and a stable signal peptide (SSP). GPC cleavage by SKI-1/S1P is crucial for fusion competence and incorporation of mature GP into nascent budding virion particles. In a first part of our review, we cover basic aspects and newer developments in the biosynthesis of arenavirus GP and its molecular interaction with SKI-1/S1P. A second part will then highlight the potential of SKI-1/S1P-mediated processing of arenavirus GPC as a novel target for therapeutic intervention to combat human pathogenic arenaviruses.

  8. Envelope Glycoprotein of Arenaviruses

    Antonella Pasquato


    Full Text Available Arenaviruses include lethal human pathogens which pose serious public health threats. So far, no FDA approved vaccines are available against arenavirus infections, and therapeutic options are limited, making the identification of novel drug targets for the development of efficacious therapeutics an urgent need. Arenaviruses are comprised of two RNA genome segments and four proteins, the polymerase L, the envelope glycoprotein GP, the matrix protein Z, and the nucleoprotein NP. A crucial step in the arenavirus life-cycle is the biosynthesis and maturation of the GP precursor (GPC by cellular signal peptidases and the cellular enzyme Subtilisin Kexin Isozyme-1 (SKI-1/Site-1 Protease (S1P yielding a tripartite mature GP complex formed by GP1/GP2 and a stable signal peptide (SSP. GPC cleavage by SKI-1/S1P is crucial for fusion competence and incorporation of mature GP into nascent budding virion particles. In a first part of our review, we cover basic aspects and newer developments in the biosynthesis of arenavirus GP and its molecular interaction with SKI-1/S1P. A second part will then highlight the potential of SKI-1/S1P-mediated processing of arenavirus GPC as a novel target for therapeutic intervention to combat human pathogenic arenaviruses.

  9. Sensitivity of P-glycoprotein tryptophan residues to benzodiazepines and ATP interaction.

    Lima, Sofia A C; Cordeiro-da-Silva, Anabela; de Castro, Baltazar; Gameiro, Paula


    Plasma membrane P-glycoprotein is a member of the ATP-binding cassette family of membrane transporters. In the present study tryptophan intrinsic fluorescence was used to understand the P-glycoprotein response to three benzodiazepines (bromazepam, chlordiazepoxide and flurazepam) in the presence and absence of ATP. Fluorescence emission spectra showed a red shift on the maximal emission wavelength upon interaction of P-glycoprotein with all benzodiazepines. Benzodiazepine association with nucleotide-bound P-glycoprotein also showed this trend and the quenching profile was attributed to a sphere-of-action model, for static fluorescence. Furthermore, quenching data of benzodiazepine-bound P-glycoprotein with ATP were concentration dependent and saturable, indicating that nucleotide binds to P-glycoprotein whether drug is present or not. These results seems in agreement with the proposal of the ATP-switch model by Higgins and Linton, where substrate binding to the transporters initiates the transport cycle by increasing the ATP binding affinity.

  10. Engineering the yeast Yarrowia lipolytica for the production of therapeutic proteins homogeneously glycosylated with Man8GlcNAc2 and Man5GlcNAc2

    De Pourcq Karen


    Full Text Available Abstract Background Protein-based therapeutics represent the fastest growing class of compounds in the pharmaceutical industry. This has created an increasing demand for powerful expression systems. Yeast systems are widely used, convenient and cost-effective. Yarrowia lipolytica is a suitable host that is generally regarded as safe (GRAS. Yeasts, however, modify their glycoproteins with heterogeneous glycans containing mainly mannoses, which complicates downstream processing and often interferes with protein function in man. Our aim was to glyco-engineer Y. lipolytica to abolish the heterogeneous, yeast-specific glycosylation and to obtain homogeneous human high-mannose type glycosylation. Results We engineered Y. lipolytica to produce homogeneous human-type terminal-mannose glycosylated proteins, i.e. glycosylated with Man8GlcNAc2 or Man5GlcNAc2. First, we inactivated the yeast-specific Golgi α-1,6-mannosyltransferases YlOch1p and YlMnn9p; the former inactivation yielded a strain producing homogeneous Man8GlcNAc2 glycoproteins. We tested this strain by expressing glucocerebrosidase and found that the hypermannosylation-related heterogeneity was eliminated. Furthermore, detailed analysis of N-glycans showed that YlOch1p and YlMnn9p, despite some initial uncertainty about their function, are most likely the α-1,6-mannosyltransferases responsible for the addition of the first and second mannose residue, respectively, to the glycan backbone. Second, introduction of an ER-retained α-1,2-mannosidase yielded a strain producing proteins homogeneously glycosylated with Man5GlcNAc2. The use of the endogenous LIP2pre signal sequence and codon optimization greatly improved the efficiency of this enzyme. Conclusions We generated a Y. lipolytica expression platform for the production of heterologous glycoproteins that are homogenously glycosylated with either Man8GlcNAc2 or Man5GlcNAc2 N-glycans. This platform expands the utility of Y. lipolytica as a

  11. Proteolytic activities in yeast.

    Saheki, T; Holzer, H


    Studies on the mechanism and time course of the activation of proteinases A (EC, B (EC and C (EC 3.4.12.--) in crude yeast extracts at pH 5.1 and 25 degrees C showed that the increase in proteinase B activity is paralleled with the disappearance of proteinase B inhibitor. Addition of purified proteinase A to fresh crude extracts accelerates the inactivation of the proteinase B inhibitor and the appearance of maximal activities of proteinases B and C. The decrease of proteinase B inhibitor activity and the increase of proteinase B activity are markedly retarded by the addition of pepstatin. Because 10-minus 7 M pepstatin completely inhibits proteinase A without affecting proteinase B activity, this is another indication for the role of proteinase A during the activation of proteinase B. Whereas extracts of yeast grown on minimal medium reached maximal activation of proteinases B and C after 20 h of incubation at pH 5.1 and 25 degrees C, extracts of yeast grown on complete medium had to be incubated for about 100 h. In the latter case, the addition of proteinas A results in maximal activation of proteinases B and C and disappearance of proteinase B inhibitor activity only after 10--20 h of incubation. With the optimal conditions, the maximal activities of proteinases A, B and C, as well as of the proteinase B inhibitor, were determined in crude extracts of yeast that had been grown batchwise for different lengths of time either on minimal or on complete medium. Upon incubation, all three proteinases were activated by several times their initial activity. This reflects the existence of proteolytically degradable inhibitors of the three proteinases and together with the above mentioned observations it demonstrates that the "activation" of yeast proteinases A, B and C upon incubation results from the proteolytic digestion of inhibitors rather than from activation of inactive zymogens by limited proteolysis.

  12. A highly efficient recombinant laccase from the yeast Yarrowia lipolytica and its application in the hydrolysis of biomass.

    Dayanand Kalyani

    Full Text Available A modified thermal asymmetric interlaced polymerase chain reaction was performed to obtain the first yeast laccase gene (YlLac from the isolated yeast Yarrowia lipolytica. The 1557-bp full-length cDNA of YlLac encoded a mature laccase protein containing 519 amino acids preceded by a signal peptide of 19 amino acids, and the YlLac gene was expressed in the yeast Pichia pastoris. YlLac is a monomeric glycoprotein with a molecular mass of ~55 kDa as determined by polyacrylamide-gel electrophoresis. It showed a higher catalytic efficiency towards 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonate (kcat/Km = 17.5 s(-1 μM(-1 and 2,6-dimethoxyphenol (kcat/Km = 16.1 s(-1 μM(-1 than other reported laccases. The standard redox potential of the T1 site of the enzyme was found to be 772 mV. The highest catalytic efficiency of the yeast recombinant laccase, YlLac, makes it a good candidate for industrial applications: it removes phenolic compounds in acid-pretreated woody biomass (Populus balsamifera and enhanced saccharification.

  13. Role of zona pellucida glycoproteins during fertilization in humans.

    Gupta, Satish Kumar


    In the last decade, scientific investigations pertaining to the role of zona pellucida (ZP) glycoproteins during fertilization in humans have led to new insights. This has been achieved using purified native/recombinant human zona proteins and transgenic mice expressing human ZP glycoproteins. The proposed model in mice of ZP glycoprotein-3 (ZP3) acting as primary sperm receptor and ZP glycoprotein-2 (ZP2) as secondary sperm receptor has been modified for sperm-egg binding in humans. ZP glycoprotein-1 (ZP1), ZP3, and ZP glycoprotein-4 (ZP4) have been shown to bind to the capacitated human sperm. ZP2 binds to the acrosome-reacted human spermatozoa. Further, the eggs obtained from transgenic mice expressing human ZP2 alone or in conjunction with other human instead of mouse zona proteins showed binding of human sperm, suggesting that ZP2 might also play a role in sperm-egg binding. This function has been mapped to a domain corresponding to amino acid residues 51-144 of ZP2. In contrast to mice, where ZP3 is the primary agonist for inducing the acrosome reaction, in humans, the acrosome reaction can be mediated by ZP1, ZP3, and ZP4. The effect of mutations in the genes encoding zona proteins on the ZP morphology and infertility has not been established. Further, the role of autoantibodies against ZP in women with 'unexplained infertility' leading to poor outcome of in vitro fertilization is currently controversial and needs further investigations. Understanding the role of ZP glycoproteins during human fertilization facilitates the development of new contraceptives and strategies to overcome the problem of infertility.

  14. Biotechnological Applications of Dimorphic Yeasts

    Doiphode, N.; Joshi, C.; Ghormade, V.; Deshpande, M. V.

    The dimorphic yeasts have the equilibrium between spherical growth (budding) and polarized (hyphal or pseudohyphal tip elongation) which can be triggered by change in the environmental conditions. The reversible growth phenomenon has made dimorphic yeasts as an useful model to understand fungal evolution and fungal differentiation, in general. In nature dimorphism is clearly evident in plant and animal fungal pathogens, which survive and most importantly proliferate in the respective hosts. However, number of organisms with no known pathogenic behaviour also show such a transition, which can be exploited for the technological applications due to their different biochemical make up under different morphologies. For instance, chitin and chitosan production using dimorphic Saccharomyces, Mucor, Rhizopus and Benjaminiella, oil degradation and biotransformation with yeast-form of Yarrowia species, bioremediation of organic pollutants, exopolysac-charide production by yeast-phase of Aureobasidium pullulans, to name a few. Myrothecium verrucaria can be used for seed dressing in its yeast form and it produces a mycolytic enzyme complex in its hyphal-form for the biocontrol of fungal pathogens, while Beauveria bassiana and other entomopathogens kill the insect pest by producing yeast- like cells in the insect body. The form-specific expression of protease, chitinase, lipase, ornithine decarboxylase, glutamate dehydrogenases, etc. make Benjaminiella poitrasii, Basidiobolus sp., and Mucor rouxii strains important in bioremediation, nanobiotechnology, fungal evolution and other areas.

  15. Structural analysis of N- and O-glycans released from glycoproteins

    Jensen, Pia Hønnerup; Karlsson, Niclas G; Kolarich, Daniel;


    This protocol shows how to obtain a detailed glycan compositional and structural profile from purified glycoproteins or protein mixtures, and it can be used to distinguish different isobaric glycan isomers. Glycoproteins are immobilized on PVDF membranes before the N-glycans are enzymatically...

  16. Recent Progress in Electrochemical Biosensors for Glycoproteins.

    Akiba, Uichi; Anzai, Jun-Ichi


    This review provides an overview of recent progress in the development of electrochemical biosensors for glycoproteins. Electrochemical glycoprotein sensors are constructed by combining metal and carbon electrodes with glycoprotein-selective binding elements including antibodies, lectin, phenylboronic acid and molecularly imprinted polymers. A recent trend in the preparation of glycoprotein sensors is the successful use of nanomaterials such as graphene, carbon nanotube, and metal nanoparticles. These nanomaterials are extremely useful for improving the sensitivity of glycoprotein sensors. This review focuses mainly on the protocols for the preparation of glycoprotein sensors and the materials used. Recent improvements in glycoprotein sensors are discussed by grouping the sensors into several categories based on the materials used as recognition elements.

  17. Recent Progress in Electrochemical Biosensors for Glycoproteins

    Uichi Akiba


    Full Text Available This review provides an overview of recent progress in the development of electrochemical biosensors for glycoproteins. Electrochemical glycoprotein sensors are constructed by combining metal and carbon electrodes with glycoprotein-selective binding elements including antibodies, lectin, phenylboronic acid and molecularly imprinted polymers. A recent trend in the preparation of glycoprotein sensors is the successful use of nanomaterials such as graphene, carbon nanotube, and metal nanoparticles. These nanomaterials are extremely useful for improving the sensitivity of glycoprotein sensors. This review focuses mainly on the protocols for the preparation of glycoprotein sensors and the materials used. Recent improvements in glycoprotein sensors are discussed by grouping the sensors into several categories based on the materials used as recognition elements.

  18. Show Time


    <正> Story: Show Time!The whole class presents the story"Under the Sea".Everyone is so excited and happy.Both Leo and Kathy show their parentsthe characters of the play."Who’s he?"asks Kathy’s mom."He’s the prince."Kathy replies."Who’s she?"asks Leo’s dad."She’s the queen."Leo replieswith a smile.

  19. Snobbish Show



    @@ The State Administration of Radio,Film and Television (SARFT),China's media watchdog,issued a new set of mles on June 9 that strictly regulate TV match-making shows,which have been sweeping the country's primetime programming. "Improper social and love values such as money worship should not be presented in these shows.Humiliation,verbal attacks and sex-implied vulgar content are not allowed" the new roles said.

  20. Glycosylation in secreted proteins from yeast Kluyveromyces lactis

    Santos, A.V.; Passos, F.M.L. [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Microbiologia. Lab. de Fisiologia de Microrganismos; Azevedo, B.R.; Pimenta, A.M.C.; Santoro, M.M. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Bioquimica e Imunologia. Lab. de Enzimologia e Fisico-Quimica de Proteina


    Full text: The nutritional status of a cell culture affects either the expression or the traffic of a number of proteins. The identification of the physiological conditions which favor protein secretion has important biotechnological consequences in designing systems for recombinant extracellular protein industrial production. Yeast Kluyvromyces lactis has been cultured in a continuous stirring tank bioreactor (CSTR) under nitrogen limitation at growth rates (0.03 h{sup -1} and 0.09 h{sup -1}) close to either exponential or stationary batch growth phases, respectively the objective was to investigate the extracellular glycoproteins at these two level of nitrogen limitation. Proteins from free cell extracts were separated by gradient SDS-PAGE (5-15%) and two-dimensional chromatography, and were analyzed by mass spectrometry (MALDI-TOF-TOF-MS). In SDS-PAGE analysis, differences in extracellular proteome were visualized: different proteins profiles at these two growth rates. The 0.09 h-1 growth rate showed larger number of bands using colloidal Coma ssie Blue staining. Different bands were detected at these two growth rates when the PAS assay for glycoprotein detection in polyacrylamide gel was used. The two-dimensional chromatogram profiles were comparatively distinguished between the 0.03 h{sup -1} and 0.09 h{sup -1} growth rate samples. Protein peaks from the second dimension, were subjected to mass spectrometry. The mass spectrums visualized showed glycosylated proteins with N-acetylglucosamine molecules and 8, 9 or 15 hexoses molecules. Comparisons between the proteins averaged mass values with the deduced proteins masses from K. lactis secreted proteins database indicated possible post-translational modifications, such as post-translational proteolysis, acetylation, deamidation and myristoylation.

  1. Histochemical and structural analysis of mucous glycoprotein secreted by the gill of Mytilus edulis

    Ahn, Hae-Young.


    Studies were carried out to characterized various mucous cells in the gill filament, to ascertain structural characteristics of the secreted mucous glycoproteins, and to determine the ability of the gill epithelium to incorporate ({sup 14}C)glucosamine as a precursor in the biosynthesis and secretion of mucous glycoproteins. Using histochemical staining techniques, mucous cells containing neutral and acidic mucins were found in the lateral region, whereas mucous cells containing primarily neutral or sulfated mucins were found in the postlateral region. Serotonin, but not dopamine, stimulated the mucous secretion. In tissues pretreated with ({sup 14}C)glucosamine, the secreted glycoproteins contain incorporated radiolabel. Analysis by column chromatography using Bio-Gel P-2 and P-6 shows that the secretion contains two glycoprotein populations. Glycoprotein II has a molecular weight of 2.3 {times} 10{sup 4} daltons. Upon alkaline reductive borohydride cleavage of the O-glycosidic linkages of glycoprotein I, about 70% of the radiolabel was removed from the protein. Gas chromatographic analysis of the carbohydrate composition shows that the glycoproteins contains N-acetylglucosamine (GluNAc), N-acetylgalactosamine (GalNAc), and galactose, fucose and mannose. Amino acid analysis shows that the glycoproteins are rich in serine, threonine and proline.



    Visitors look at plane models of the Commercial Aircraft Corp. of China, developer of the count,s first homegrown large passenger jet C919, during the Singapore Airshow on February 16. The biennial event is the largest airshow in Asia and one of the most important aviation and defense shows worldwide. A number of Chinese companies took part in the event during which Okay Airways, the first privately owned aidine in China, signed a deal to acquire 12 Boeing 737 jets.

  3. Characterization of Lassa virus glycoprotein oligomerization and influence of cholesterol on virus replication.

    Schlie, Katrin; Maisa, Anna; Lennartz, Frank; Ströher, Ute; Garten, Wolfgang; Strecker, Thomas


    Mature glycoprotein spikes are inserted in the Lassa virus envelope and consist of the distal subunit GP-1, the transmembrane-spanning subunit GP-2, and the signal peptide, which originate from the precursor glycoprotein pre-GP-C by proteolytic processing. In this study, we analyzed the oligomeric structure of the viral surface glycoprotein. Chemical cross-linking studies of mature glycoprotein spikes from purified virus revealed the formation of trimers. Interestingly, sucrose density gradient analysis of cellularly expressed glycoprotein showed that in contrast to trimeric mature glycoprotein complexes, the noncleaved glycoprotein forms monomers and oligomers spanning a wide size range, indicating that maturation cleavage of GP by the cellular subtilase SKI-1/S1P is critical for formation of the correct oligomeric state. To shed light on a potential relation between cholesterol and GP trimer stability, we performed cholesterol depletion experiments. Although depletion of cholesterol had no effect on trimerization of the glycoprotein spike complex, our studies revealed that the cholesterol content of the viral envelope is important for the infectivity of Lassa virus. Analyses of the distribution of viral proteins in cholesterol-rich detergent-resistant membrane areas showed that Lassa virus buds from membrane areas other than those responsible for impaired infectivity due to cholesterol depletion of lipid rafts. Thus, derivation of the viral envelope from cholesterol-rich membrane areas is not a prerequisite for the impact of cholesterol on virus infectivity.

  4. Glycoproteins of mouse vaginal epithelium: differential expression related to estrous cyclicity

    Horvat, B; Multhaupt, H A; Damjanov, I


    We used lectin overlay blotting and SDS-PAGE to analyze the estrous cycle-specific expression of mouse vaginal epithelial glycoproteins. Seven lectins chosen for their differential carbohydrate-binding specificity revealed 15 glycoproteins that showed cycle-related expression. Each lectin had...... a unique binding pattern different from the patterns revealed by other lectins. However, several estrous cycle phase-specific glycoproteins reacted with more than one lectin. The most prominent of these glycoproteins (M(r) 92-95 KD) was weakly expressed in late diestrus and fully expressed only...... in proestrus, coincident with the transformation of two superficial layers of vaginal squamous epithelium into mucinous cuboidal cells. Electron microscopic lectin histochemistry revealed the glycoproteins in the mucinous granules of surface cuboidal cells and in the lumen of the vagina. Our results illustrate...

  5. The Use of Chimeric Virus-like Particles Harbouring a Segment of Hantavirus Gc Glycoprotein to Generate a Broadly-Reactive Hantavirus-Specific Monoclonal Antibody

    Aurelija Zvirbliene


    Full Text Available Monoclonal antibodies (MAbs against viral glycoproteins have important diagnostic and therapeutic applications. In most cases, the MAbs specific to viral glycoproteins are raised against intact virus particles. The biosynthesis of viral glycoproteins in heterologous expression systems such as bacteria, yeast, insect or mammalian cells is often problematic due to their low expression level, improper folding and limited stability. To generate MAbs against hantavirus glycoprotein Gc, we have used initially a recombinant yeast-expressed full-length Puumala virus (PUUV Gc protein. However, this approach was unsuccessful. As an alternative recombinant antigen, chimeric virus-like particles (VLPs harboring a segment of PUUV Gc glycoprotein were generated in yeast Saccharomyces cerevisiae. A 99 amino acid (aa-long segment of Gc protein was inserted into the major capsid protein VP1 of hamster polyomavirus at previously defined positions: either site #1 (aa 80–89 or site #4 (aa 280–289. The chimeric proteins were found to self-assemble to VLPs as evidenced by electron microscopy. Chimeric VLPs induced an efficient insert-specific antibody response in immunized mice. Monoclonal antibody (clone #10B8 of IgG isotype specific to hantavirus Gc glycoprotein was generated. It recognized recombinant full-length PUUV Gc glycoprotein both in ELISA and Western blot assay and reacted specifically with hantavirus-infected cells in immunofluorescence assay. Epitope mapping studies revealed the N-terminally located epitope highly conserved among different hantavirus strains. In conclusion, our approach to use chimeric VLPs was proven useful for the generation of virus-reactive MAb against hantavirus Gc glycoprotein. The generated broadly-reactive MAb #10B8 might be useful for various diagnostic applications.

  6. Surface plasmon resonance for real-time study of lectin-carbohydrate interactions for the differentiation and identification of glycoproteins.

    Safina, Gulnara; Duran, Iu Benet; Alasel, Mohammed; Danielsson, Bengt


    A study of specific interactions between lectins and glycoproteins has been carried out using surface plasmon resonance (SPR) in a flow-injection mode. Lectins were covalently immobilised on the surfaces of the microfluidic sensor chip via amine coupling and serum glycoproteins were injected into the flow channels. Specific lectin-glycoprotein interactions caused the shift of refractive index proportional to the mass concentration accumulated on the channel surface. Lectins showed different affinity to the tested glycoproteins and each glycoprotein displayed its own lectin-binding pattern. It is possible to distinguish and identify even glycoproteins with similar sugar structures by simple and quick screening. The working conditions of the assay were optimised. The lectin-based SPR made it possible to carry out the label-free detection of glycoproteins within a broad concentration range with a good linearity. Regeneration conditions for the surface of the sensor chip were found and optimised. Combination of 10mM HCl and 10mM glycine-HCl (pH 2.5) removes the bound glycoproteins from the lectin surface without damaging it. The kinetic and affinity parameters of lectin-glycoprotein binding were evaluated. The proposed method was tested on human glycosylated serum. Combination of the lectin panel with SPR is suitable both for specific screening and for sensitive assay of serum glycoproteins.

  7. Yeast That Smell

    Eugenia Y Xu


    Full Text Available The fundamental mechanism of olfactory receptor activation has been conserved from yeast to humans. Engineered yeast cells can smell some of the same odorants as humans can, which makes yeast an ideal model system for studying human olfaction. Furthermore, if engineered yeast cells are incorporated into sensory arrays, they can be used as biosensors or artificial noses.Keywords: Yeast, olfactory receptor, G protein-coupled receptor, biosensor, smellReceived: 31 July 2008 / Received in revised form: 6 August 2008, Accepted: 13 August 2008, Published online: 17 August 2008

  8. A multivariate approach using attenuated total reflectance mid-infrared spectroscopy to measure the surface mannoproteins and β-glucans of yeast cell walls during wine fermentations.

    Moore, John P; Zhang, Song-Lei; Nieuwoudt, Hélène; Divol, Benoit; Trygg, Johan; Bauer, Florian F


    Yeast cells possess a cell wall comprising primarily glycoproteins, mannans, and glucan polymers. Several yeast phenotypes relevant for fermentation, wine processing, and wine quality are correlated with cell wall properties. To investigate the effect of wine fermentation on cell wall composition, a study was performed using mid-infrared (MIR) spectroscopy coupled with multivariate methods (i.e., PCA and OPLS-DA). A total of 40 yeast strains were evaluated, including Saccharomyces strains (laboratory and industrial) and non-Saccharomyces species. Cells were fermented in both synthetic MS300 and Chardonnay grape must to stationery phase, processed, and scanned in the MIR spectrum. PCA of the fingerprint spectral region showed distinct separation of Saccharomyces strains from non-Saccharomyces species; furthermore, industrial wine yeast strains separated from laboratory strains. PCA loading plots and the use of OPLS-DA to the data sets suggested that industrial strains were enriched with cell wall proteins (e.g., mannoproteins), whereas laboratory strains were composed mainly of mannan and glucan polymers.

  9. Yeasts are essential for cocoa bean fermentation.

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham


    Cocoa beans (Theobroma cacao) are the major raw material for chocolate production and fermentation of the beans is essential for the development of chocolate flavor precursors. In this study, a novel approach was used to determine the role of yeasts in cocoa fermentation and their contribution to chocolate quality. Cocoa bean fermentations were conducted with the addition of 200ppm Natamycin to inhibit the growth of yeasts, and the resultant microbial ecology and metabolism, bean chemistry and chocolate quality were compared with those of normal (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii and Kluyveromyces marxianus, the lactic acid bacteria Lactobacillus plantarum and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in the control fermentation. In fermentations with the presence of Natamycin, the same bacterial species grew but yeast growth was inhibited. Physical and chemical analyses showed that beans fermented without yeasts had increased shell content, lower production of ethanol, higher alcohols and esters throughout fermentation and lesser presence of pyrazines in the roasted product. Quality tests revealed that beans fermented without yeasts were purplish-violet in color and not fully brown, and chocolate prepared from these beans tasted more acid and lacked characteristic chocolate flavor. Beans fermented with yeast growth were fully brown in color and gave chocolate with typical characters which were clearly preferred by sensory panels. Our findings demonstrate that yeast growth and activity were essential for cocoa bean fermentation and the development of chocolate characteristics.

  10. Effect of expression of P-glycoprotein on technetium-99m methoxyisobutylisonitrile single photon emission computed tomography of brain tumors

    Shibata, Yasushi; Matsumura, Akira; Nose, Tadao [Tsukuba Univ., Ibaraki (Japan). Inst. of Clinical Medicine


    The expression of P-glycoprotein was investigated imunohistochemically in 26 brain tumor tissues and compared with the findings of technetium-99m methoxyisobutylisonitrile single photon emission computed tomography ({sup 99m}Tc-MIBI SPECT) to clarify the effect of P-glycoprotein on the diagnostic accuracy. P-glycoprotein labeling index of both tumor cells and vascular endothelial cells showed no clear relationship with the findings of {sup 99m}Tc-MIBI SPECT imaging. Expression of P-glycoprotein has no effect on the diagnostic accuracy of {sup 99m}Tc-MIBI SPECT. (author)

  11. Transmembrane envelope glycoproteins of human immunodeficiency virus type 2 and simian immunodeficiency virus SIV-mac exist as homodimers.

    Rey, M A; Laurent, A G; McClure, J; Krust, B; Montagnier, L; Hovanessian, A G


    An 80-kilodalton glycoprotein (gp80) was produced in human immunodeficiency virus type 2 (HIV-2)-infected cells along with three envelope glycoproteins that we have recently reported: the extracellular glycoprotein (gp125), the envelope glycoprotein precursor (gp140), and the transient dimeric form of the precursor (gp300). gp125 and gp80 were detectable after the synthesis of gp140 and the formation of gp300. Using a specific monoclonal antibody, we showed here that gp80 is a dimeric form of...

  12. Pumping of drugs by P-glycoprotein

    Litman, Thomas; Skovsgaard, Torben; Stein, Wilfred D


    The apparent inhibition constant, Kapp, for the blockade of P-glycoprotein (P-gp) by four drugs, verapamil, cyclosporin A, XR9576 (tariquidar), and vinblastine, was measured by studying their ability to inhibit daunorubicin and calcein-AM efflux from four strains of Ehrlich cells with different...... levels of drug resistance and P-gp content. For daunorubicin as a transport substrate, Kapp was independent of [P-gp] for verapamil but increased strictly linearly with [P-gp] for vinblastine, cyclosporin A, and XR9576. A theoretical analysis of the kinetics of drug pumping and its reversal shows...... but rather, in serial, i.e., a drug that is pumped from the cytoplasmic phase has to pass the preemptive route upon leaving the cell. Our results are consistent with the Sauna-Ambudkar two-step model for pumping by P-gp. We suggest that the vinblastine/cyclosporin A/XR9576-binding site accepts daunorubicin...

  13. Preparation of Concanavalin A-Chelating Magnetic Nanoparticles for Selective Enrichment of Glycoproteins.

    Dong, Liping; Feng, Shun; Li, Shanshan; Song, Peipei; Wang, Jide


    In this work, a soft and nondestructive approach was developed to prepare concanavalin A-chelating magnetic nanoparticles (Con A-MNPs) for selective enrichment of glycoproteins. Ethylenediamine tetraacetic acid-modified-MNPs (EDTA-MNPs) were prepared by a one-pot chemical coprecipitation method first, and then, Cu(II) cations were used as bridge groups to immobilize Con A on EDTA-MNPs. The as-prepared absorbents with a mean diameter of 15 nm showed a strong magnetic response to an externally applied magnetic field. The results of thermogravimetric analysis showed the content of immobilized Con A was up to 28 wt %. For glycoprotein ovalbumin, the maximum capacity and equilibrium constant were 72.41 mg/g and 0.6035 L/mg, respectively. The as-prepared nanocomposites exhibited a remarkable selectivity for glycoproteins and can enrich glycoproteins specifically from a mixture of glycoprotein and nonglycoprotein even at a molar ratio of 1:600. It was also successfully applied for the enrichment of glycoproteins from real egg white samples. We expect that our finding will serve as a helpful template for others to design new adsorbents for enriching glycoproteins.

  14. Pseudoporphyria associated with consumption of brewers' yeast.

    Lim, C K; Rideout, J M; Peters, T J


    A case of pseudoporphyria associated with excessive consumption of brewers ' yeast was studied. Detailed analysis of the yeast tablets by high performance liquid chromatography showed the presence of dicarboxylic deuteroporphyrin , mesoporphyrin, and protoporphyrin; coproporphyrin I and III isomers; and uroporphyrin I and III isomers. The faecal porphyrin concentration of the patient taking yeast tablets was significantly increased, resembling the excretion pattern in variegate porphyria. Any patient showing an unusual porphyrin excretion pattern on high performance liquid chromatography should be investigated for a possible dietary cause.

  15. NetPhosYeast: prediction of protein phosphorylation sites in yeast

    Ingrell, C.R.; Miller, Martin Lee; Jensen, O.N.


    We here present a neural network-based method for the prediction of protein phosphorylation sites in yeast-an important model organism for basic research. Existing protein phosphorylation site predictors are primarily based on mammalian data and show reduced sensitivity on yeast phosphorylation s...

  16. Protective Role of α2HS-Glycoprotein in HBV-Associated Liver Failure

    Xue-Gong Fan


    Full Text Available n this study, levels of plasma α2-Heremans-Schmid glycoprotein, serum tumor necrosis factor-α, serum liver function parameters and short-term mortality were measured in 100 hepatitis B patients. Release of interleukin-6 and tumor necrosis factor-α from the lipopolysaccharide-stimulated peripheral blood mononuclear cells in the presence/absence of spermine and α2-Heremans-Schmid glycoprotein were analyzed by enzyme-linked immunosorbent assay to determine the significance and potential mechanism of α2-Heremans-Schmid glycoprotein in hepatitis B virus-associated liver damage. Results showed that serum α2-Heremans-Schmid glycoprotein levels in acute-on-chronic liver failure patients were significantly lower than that in chronic hepatitis B patients or healthy controls (p < 0.05. A negative dependence between serum human α2-Heremans-Schmid glycoprotein and tumor necrosis factor-α levels was observed. Interleukin-6 and tumor necrosis factor-α levels in the lipopolysaccharide-induced peripheral blood mononuclear cell supernates were significantly reduced by spermine and/or α2-Heremans-Schmid glycoprotein. The latter two proteins jointly inhibited cytokine release. These observations suggest that plasma α2-Heremans-Schmid glycoprotein is an independent marker of liver damage and a prognostic indicator of hepatitis B virus chronicity. It may reduce liver inflammation by partially inhibiting release of inflammatory factors from activated peripheral blood mononuclear cells.

  17. Glycoproteins of the carcinoembryonic antigen (CEA) family are expressed in sweat and sebaceous glands of human fetal and adult skin.

    Metze, D; Bhardwaj, R; Amann, U; Eades-Perner, A M; Neumaier, M; Wagener, C; Jantscheff, P; Grunert, F; Luger, T A


    The carcinoembryonic antigen (CEA) family comprises a group of glycoproteins including the classical CEA, nonspecific cross-reacting antigens (NCA), and biliary glycoprotein (BGP). CEA glycoproteins have been identified in many glandular and mucosal tissues. In view of their putative role in cell adhesion, protein sorting, and signal transduction, CEA glycoproteins are thought to be involved in embryogenesis, architectual integrity, and secretory mechanisms of glandular epithelia. Since there are few data available on the expression of CEA-like proteins in human skin, the aim of this study was to immunohistochemically specify and localize the CEA glycoproteins in cutaneous adult and fetal glands using a panel of well-characterized antibodies. The secretory parts of eccrine sweat glands expressed CEA, NCA-90, and BGP, whereas apocrine glands remained unreactive for CEA glycoproteins. The ductal epithelia of both eccrine and apocrine glands contained CEA and NCA-90. Sebaceous glands were stained for BGP only. Electron microscopy of sweat glands showed CEA glycoprotein expression in cytoplasmic organelles and on microvilli lining the ductal surface. In sebaceous glands, BGP were demonstrated in small vesicles and along the cell membranes of differentiating sebocytes. Fetal development of cutaneous glands was associated with early expression of CEA glycoproteins. Additionally, mice transgenic for human CEA were shown to express CEA in sweat glands. The overall distribution of CEA glycoproteins in cutaneous glands was consistent with that in epithelia of other glandular tissues.

  18. Bioprotective Role of Yeasts

    Serena Muccilli


    Full Text Available The yeasts constitute a large group of microorganisms characterized by the ability to grow and survive in different and stressful conditions and then to colonize a wide range of environmental and human ecosystems. The competitive traits against other microorganisms have attracted increasing attention from scientists, who proposed their successful application as bioprotective agents in the agricultural, food and medical sectors. These antagonistic activities rely on the competition for nutrients, production and tolerance of high concentrations of ethanol, as well as the synthesis of a large class of antimicrobial compounds, known as killer toxins, which showed clearly a large spectrum of activity against food spoilage microorganisms, but also against plant, animal and human pathogens. This review describes the antimicrobial mechanisms involved in the antagonistic activity, their applications in the processed and unprocessed food sectors, as well as the future perspectives in the development of new bio-drugs, which may overcome the limitations connected to conventional antimicrobial and drug resistance.

  19. Boolean Model of Yeast Apoptosis as a Tool to Study Yeast and Human Apoptotic Regulations

    Kazemzadeh, Laleh; Cvijovic, Marija; Petranovic, Dina


    Programmed cell death (PCD) is an essential cellular mechanism that is evolutionary conserved, mediated through various pathways and acts by integrating different stimuli. Many diseases such as neurodegenerative diseases and cancers are found to be caused by, or associated with, regulations in the cell death pathways. Yeast Saccharomyces cerevisiae, is a unicellular eukaryotic organism that shares with human cells components and pathways of the PCD and is therefore used as a model organism. Boolean modeling is becoming promising approach to capture qualitative behavior and describe essential properties of such complex networks. Here we present large literature-based and to our knowledge first Boolean model that combines pathways leading to apoptosis (a type of PCD) in yeast. Analysis of the yeast model confirmed experimental findings of anti-apoptotic role of Bir1p and pro-apoptotic role of Stm1p and revealed activation of the stress protein kinase Hog proposing the maximal level of activation upon heat stress. In addition we extended the yeast model and created an in silico humanized yeast in which human pro- and anti-apoptotic regulators Bcl-2 family and Valosin-contain protein (VCP) are included in the model. We showed that accumulation of Bax in silico humanized yeast shows apoptotic markers and that VCP is essential target of Akt Signaling. The presented Boolean model provides comprehensive description of yeast apoptosis network behavior. Extended model of humanized yeast gives new insights of how complex human disease like neurodegeneration can initially be tested. PMID:23233838

  20. Boolean model of Yeast Apoptosis as a tool to study yeast and human apoptotic regulations

    Laleh eKazemzadeh


    Full Text Available Programmed cell death (PCD is an essential cellular mechanism that is evolutionary conserved, mediated through various pathways and acts by integrating different stimuli. Many diseases such as neurodegenerative diseases and cancers are found to be caused by, or associated with, regulations in the cell death pathways. Yeast Saccharomyces cerevisiae, is a unicellular eukaryotic organism that shares with human cells components and pathways of the PCD and is therefore used as a model organism. Boolean modelling is becoming promising approach to capture qualitative behaviour and describe essential properties of such complex networks. Here we present large literature-based and to our knowledge first Boolean model that combines pathways leading to apoptosis (a type of PCD in yeast. Analysis of the yeast model confirmed experimental findings of anti-apoptotic role of Bir1p and pro-apoptotic role of Stm1p and revealed activation of the stress protein kinase Hog proposing the maximal level of activation upon heat stress. In addition we extended the yeast model and created an in silico humanized yeast in which human pro- and anti-apoptotic regulators Bcl-2 family and Valosin-contain protein (VCP are included in the model. We showed that accumulation of Bax in in silico humanized yeast shows apoptotic markers and that VCP is essential target of Akt Signaling. The presented Boolean model provides comprehensive description of yeast apoptosis network behaviour. Extended model of humanized yeast gives new insights of how complex human disease like neurodegenration can initially be tested.

  1. Role of sialidase in glycoprotein utilization by Tannerella forsythia.

    Roy, Sumita; Honma, Kiyonobu; Douglas, C W Ian; Sharma, Ashu; Stafford, Graham P


    The major bacterial pathogens associated with periodontitis include Tannerella forsythia. We previously discovered that sialic acid stimulates biofilm growth of T. forsythia, and that sialidase activity is key to utilization of sialoconjugate sugars and is involved in host-pathogen interactions in vitro. The aim of this work was to assess the influence of the NanH sialidase on initial biofilm adhesion and growth in experiments where the only source of sialic acid was sialoglycoproteins or human oral secretions. After showing that T. forsythia can utilize sialoglycoproteins for biofilm growth, we showed that growth and initial adhesion with sialylated mucin and fetuin were inhibited two- to threefold by the sialidase inhibitor oseltamivir. A similar reduction (three- to fourfold) was observed with a nanH mutant compared with the wild-type. Importantly, these data were replicated using clinically relevant serum and saliva samples as substrates. In addition, the ability of the nanH mutant to form biofilms on glycoprotein-coated surfaces could be restored by the addition of purified NanH, which we show is able to cleave sialic acid from the model glycoprotein fetuin and, much less efficiently, 9-O-acetylated bovine submaxillary mucin. These data show for the first time that glycoprotein-associated sialic acid is likely to be a key in vivo nutrient source for T. forsythia when growing in a biofilm, and suggest that sialidase inhibitors might be useful adjuncts in periodontal therapy.

  2. Oxygen Consumption by Postfermentation Wine Yeast Lees: Factors Affecting Its Rate and Extent under Oenological Conditions

    Schneider, Volker; Müller, Jonas; Schmidt, Dominik


    Postfermentation wine yeast lees show antioxidant properties based on their ability to consume dissolved oxygen. The oxygen consumption capacity of suspended yeast lees obtained after fermentations with six commercial active dry yeast strains was investigated in model, white and red wines using fluorescence-based oxygen sensors operating in a nondestructive way. In model solution, the oxygen consumption rate of yeast lees was shown to depend on their amount, yeast strain, sulfur dioxide and t...

  3. The yeast Golgi apparatus.

    Suda, Yasuyuki; Nakano, Akihiko


    The Golgi apparatus is an organelle that has been extensively studied in the model eukaryote, yeast. Its morphology varies among yeast species; the Golgi exists as a system of dispersed cisternae in the case of the budding yeast Saccharomyces cerevisiae, whereas the Golgi cisternae in Pichia pastoris and Schizosaccharomyces pombe are organized into stacks. In spite of the different organization, the mechanism of trafficking through the Golgi apparatus is believed to be similar, involving cisternal maturation, in which the resident Golgi proteins are transported backwards while secretory cargo proteins can stay in the cisternae. Questions remain regarding the organization of the yeast Golgi, the regulatory mechanisms that underlie cisternal maturation of the Golgi and transport machinery of cargo proteins through this organelle. Studies using different yeast species have provided hints to these mechanisms.

  4. Inventions on baker's yeast strains and specialty ingredients.

    Gélinas, Pierre


    Baker's yeast is one of the oldest food microbial starters. Between 1927 and 2008, 165 inventions on more than 337 baker's yeast strains were patented. The first generation of patented yeast strains claimed improved biomass yield at the yeast plant, higher gassing power in dough or better survival to drying to prepare active dry baker's yeast. Especially between 1980 and 1995, a major interest was given to strains for multiple bakery applications such as dough with variable sugar content and stored at refrigeration (cold) or freezing temperatures. During the same period, genetically engineered yeast strains became very popular but did not find applications in the baking industry. Since year 2000, patented baker's yeast strains claimed aroma, anti-moulding or nutritive properties to better meet the needs of the baking industry. In addition to patents on yeast strains, 47 patents were issued on baker's yeast specialty ingredients for niche markets. This review shows that patents on baker's yeast with improved characteristics such as aromatic or nutritive properties have regularly been issued since the 1920's. Overall, it also confirms recent interest for a very wide range of tailored-made yeast-based ingredients for bakery applications.

  5. Distribution of surface glycoproteins on influenza A virus determined by electron cryotomography.

    Wasilewski, Sebastian; Calder, Lesley J; Grant, Tim; Rosenthal, Peter B


    We use electron cryotomography to reconstruct virions of two influenza A H3N2 virus strains. The maps reveal the structure of the viral envelope containing hemagglutinin (HA) and neuraminidase (NA) glycoproteins and the virus interior containing a matrix layer and an assembly of ribonucleoprotein particles (RNPs) that package the genome. We build a structural model for the viral surface by locating copies of the X-ray structure of the HA ectodomain into density peaks on the virus surface. We calculate inter-glycoprotein distances and the fractional volume occupied by glycoproteins. The models suggest that for typical HA densities on virus, Fabs can bind to epitopes on the HA stem domain. The models also show how membrane curvature may influence the number of glycoproteins that can simultaneously interact with a target surface of receptors.

  6. Thyroid hormone upregulates zinc-α2-glycoprotein production in the liver but not in adipose tissue.

    Simó, Rafael; Hernández, Cristina; Sáez-López, Cristina; Soldevila, Berta; Puig-Domingo, Manel; Selva, David M


    Overproduction of zinc-α2-glycoprotein by adipose tissue is crucial in accounting for the lipolysis occurring in cancer cachexia of certain malignant tumors. The main aim of this study was to explore whether thyroid hormone could enhance zinc-α2-glycoprotein production in adipose tissue. In addition, the regulation of zinc-α2-glycoprotein by thyroid hormone in the liver was investigated. We performed in vitro (HepG2 cells and primary human adipocytes) and in vivo (C57BL6/mice) experiments addressed to examine the effect of thyroid hormone on zinc-α2-glycoprotein production (mRNA and protein levels) in liver and visceral adipose tissue. We also measured the zinc-α2-glycoprotein serum levels in a cohort of patients before and after controlling their hyperthyroidism. Our results showed that thyroid hormone up-regulates zinc-α2-glycoprotein production in HepG2 cells in a dose-dependent manner. In addition, the zinc-α2-glycoprotein proximal promoter contains functional thyroid hormone receptor binding sites that respond to thyroid hormone treatment in luciferase reporter gene assays in HepG2 cells. Furthermore, zinc-α2-glycoprotein induced lipolysis in HepG2 in a dose-dependent manner. Our in vivo experiments in mice confirmed the up-regulation of zinc-α2-glycoprotein induced by thyroid hormone in the liver, thus leading to a significant increase in zinc-α2-glycoprotein circulating levels. However, thyroid hormone did not regulate zinc-α2-glycoprotein production in either human or mouse adipocytes. Finally, in patients with hyperthyroidism a significant reduction of zinc-α2-glycoprotein serum levels was detected after treatment but was unrelated to body weight changes. We conclude that thyroid hormone up-regulates the production of zinc-α2-glycoprotein in the liver but not in the adipose tissue. The neutral effect of thyroid hormones on zinc-α2-glycoprotein expression in adipose tissue could be the reason why zinc-α2-glycoprotein is not related to weight

  7. A double responsive smart upconversion fluorescence sensing material for glycoprotein.

    Guo, Ting; Deng, Qiliang; Fang, Guozhen; Yun, Yaguang; Hu, Yongjin; Wang, Shuo


    A novel strategy was developed to prepare double responsive smart upconversion fluorescence material for highly specific enrichment and sensing of glycoprotein. The novel double responsive smart sensing material was synthesized by choosing Horse radish peroxidase (HRP) as modal protein, the grapheme oxide (GO) as support material, upconversion nanoparticles (UCNPs) as fluorescence signal reporter, N-isopropyl acrylamide (NIPAAM) and 4-vinylphenylboronic acid (VPBA) as functional monomers. The structure and component of smart sensing material was investigated by transmission electron microscopy (TEM), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopic (XPS) and Fourier transform infrared (FTIR), respectively. These results illustrated the smart sensing material was prepared successfully. The recognition characterizations of smart sensing material were evaluated, and results showed that the fluorescence intensity of smart sensing material was reduced gradually, as the concentration of protein increased, and the smart sensing material showed selective recognition for HRP among other proteins. Furthermore, the recognition ability of the smart sensing material for glycoprotein was regulated by controlling the pH value and temperature. Therefore, this strategy opens up new way to construct smart material for detection of glycoprotein.

  8. Genomic Evolution of the Ascomycete Yeasts

    Riley, Robert; Haridas, Sajeet; Salamov, Asaf; Boundy-Mills, Kyria; Goker, Markus; Hittinger, Chris; Klenk, Hans-Peter; Lopes, Mariana; Meir-Kolthoff, Jan P.; Rokas, Antonis; Rosa, Carlos; Scheuner, Carmen; Soares, Marco; Stielow, Benjamin; Wisecaver, Jennifer H.; Wolfe, Ken; Blackwell, Meredith; Kurtzman, Cletus; Grigoriev, Igor; Jeffries, Thomas


    Yeasts are important for industrial and biotechnological processes and show remarkable metabolic and phylogenetic diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. Phylogenetic analysis of these and previously published yeast genomes helped resolve the placement of species including Saitoella complicata, Babjeviella inositovora, Hyphopichia burtonii, and Metschnikowia bicuspidata. Moreover, we find that alternative nuclear codon usage, where CUG encodes serine instead of leucine, are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with a large fraction of single exon genes, and a tendency towards more introns in early-diverging species. Analysis of enzyme phylogeny gives insights into the evolution of metabolic capabilities such as methanol utilization and assimilation of alternative carbon sources.

  9. P-glycoprotein targeted nanoscale drug carriers

    Li, Wengang


    Multi-drug resistance (MDR) is a trend whereby tumor cells exposed to one cytotoxic agent develop cross-resistance to a range of structurally and functionally unrelated compounds. P -glycoprotein (P -gp) efflux pump is one of the mostly studied drug carrying processes that shuttle the drugs out of tumor cells. Thus, P -gp inhibitors have attracted a lot of attention as they can stop cancer drugs from being pumped out of target cells with the consumption of ATP. Using quantitive structure activity relationship (QSAR), we have successfully synthesized a series of novel P -gp inhibitors. The obtained dihydropyrroloquinoxalines series were fully characterized and then tested against bacterial and tumor assays with over-expressed P -gps. All compounds were bioactive especially compound 1c that had enhanced antibacterial activity. Furthermore, these compounds were utilized as targeting vectors to direct drug delivery vehicles such as silica nanoparticles (SNPs) to cancerous Hela cells with over expressed P -gps. Cell uptake studies showed a successful accumulation of these decorated SNPs in tumor cells compared to undecorated SNPs. The results obtained show that dihydropyrroloquinoxalines constitute a promising drug candidate for targeting cancers with MDR. Copyright © 2013 American Scientific Publishers All rights reserved.

  10. Regulation of P-glycoprotein efflux activity by Z-guggulsterone of Commiphora mukul at the blood-brain barrier.

    Xu, Hong-Bin; Yu, Jing; Xu, Lu-Zhong; Fu, Jun


    The present study was to investigate whether Z-guggulsterone had the regulatory effect on the activity and expression of P-glycoprotein in rat brain microvessel endothelial cells (rBMECs) and in rat brain. Inorganic phosphate liberation assay, high performance liquid chromatography, and western blot analysis were performed to assess the P-glycoprotein ATPase activity, the accumulation of NaF and rhodamine 123, and P-glycoprotein and MRP1 expression. The results showed that Z-guggulsterone (0-100 μM) significantly enhanced basal P-glycoprotein ATPase activity in a concentration-dependent manner. Tetrandrine (0.1, 0.3, 1 μM) or cyclosporine A (0.1, 0.3, 1 μM) had non-competitively inhibitory manner on Z-guggulsterone-stimulated P-glycoprotein ATPase activity, suggesting that Z-guggulsterone might have unique binding site or regulating site on P-glycoprotein. However, Z-guggulsterone (30, 100 μM) had almost no influence on MRP1 expression in rBMECs. Further results revealed that Z-guggulsterone (50mg/kg) significantly increased the accumulation of rhodamine 123 by down-regulating P-glycoprotein expression in rat brain, as compared with control (PZ-guggulsterone potentially inhibited the activity and expression of P-glycoprotein in rBMECs and in rat brain.

  11. Influence of Substrate Conformation on the Deglycosylation of Ribonuclease B by Recombinant Yeast Peptide:N-glycanase

    Shengjun WANG; Peng George WANG; Qingsheng QI


    Peptide:N-glycanase has been thought to be responsible for proteasome-dependent degradation of misfolded glycoproteins translocated from the endoplasmic reticulum (ER) to the cytosol. Therefore, the enzyme was supposed to be able to distinguish between native and non-native glycoproteins. In the present study, a recombinant, yeast peptide:N-glycanase, Pnglp, was expressed in Escherichia coli as inclusion bodies and was purified, refolded and characterized. The results showed that the recombinant enzyme has a broad pH range adaptation, from pH 4.0 to pH 10.0, and has an optimum temperature of 30 ℃.This enzyme is a zinc metalloenzyme. Its activity was abolished with the addition of EDTA and not restored by adding metal ions. Furthermore, the deglycosylation efficiency of recombinant Pnglp from E. coli was investigated with respect to the substrate conformation in vitro. When ribonuclease B(RNase B) was denatured at 60-65 ℃ or by 40-60 mM dithiothreitol, indicated by its obvious structural change and sharpest activity change, its deglycosylation by Pnglp was most prominent. The deglycosylation efficiency of RNase B by Pnglp was found to be related to its structural conformation and enzymatic activity.

  12. Yeast Interacting Proteins Database: YMR294W, YLL049W [Yeast Interacting Proteins Database

    Full Text Available YMR294W JNM1 Component of the yeast dynactin complex, consisting of Nip100p, Jnm1p,... for nuclear migration; null mutant shows a reduced affinity for the alcian blue dye...M1 Bait description Component of the yeast dynactin complex, consisting of Nip100...nknown function; required for nuclear migration; null mutant shows a reduced affinity for the alcian blue dye

  13. Yeast genome sequencing:

    Piskur, Jure; Langkjær, Rikke Breinhold


    For decades, unicellular yeasts have been general models to help understand the eukaryotic cell and also our own biology. Recently, over a dozen yeast genomes have been sequenced, providing the basis to resolve several complex biological questions. Analysis of the novel sequence data has shown...... of closely related species helps in gene annotation and to answer how many genes there really are within the genomes. Analysis of non-coding regions among closely related species has provided an example of how to determine novel gene regulatory sequences, which were previously difficult to analyse because...... they are short and degenerate and occupy different positions. Comparative genomics helps to understand the origin of yeasts and points out crucial molecular events in yeast evolutionary history, such as whole-genome duplication and horizontal gene transfer(s). In addition, the accumulating sequence data provide...

  14. Vaginal Yeast Infections

    ... tight or made of materials like nylon that trap heat and moisture might make yeast infections more ... Nemours Foundation, iStock, Getty Images, Corbis, Veer, Science Photo Library, Science Source Images, Shutterstock, and

  15. Bile canalicular cationic dye secretion as a model for P-glycoprotein mediated transport.

    Thalhammer, T; Stapf, V; Gajdzik, L; Graf, J


    This study explores properties of P-glycoprotein dependent membrane transport in rat liver with the use of acridine orange as the substrate. We studied the biliary secretion of the dye, its binding to canalicular membrane P-glycoprotein, and effects of the inhibitor cyclosporin A: acridine orange is excreted into bile together with less hydrophobic and glucuronidated metabolites. Cyclosporin A inhibited both the secretion of acridine orange and of its metabolites. In TR- animals, a rat strain that is deficient of the canalicular multi-specific organic anion transport system, non-metabolized acridine orange is the predominant species in bile and its secretion is also inhibited by cyclosporin A. Binding of acridine orange to liver P-glycoprotein was analyzed by photoaffinity labeling with azidopine, a substrate of P-glycoprotein dependent transport in multi-drug resistant tumor cells. Labeling of the immunoprecipitated P-glycoprotein was inhibited by acridine orange, verapamil, and by cyclosporin A. The results show that biliary secretion of acridine orange is highly analogous to P-glycoprotein mediated membrane drug transport in tumor cells that exhibit multi-drug resistance.

  16. Modeling brewers' yeast flocculation

    van Hamersveld EH; van der Lans RG; Caulet; Luyben


    Flocculation of yeast cells occurs during the fermentation of beer. Partway through the fermentation the cells become flocculent and start to form flocs. If the environmental conditions, such as medium composition and fluid velocities in the tank, are optimal, the flocs will grow in size large enough to settle. After settling of the main part of the yeast the green beer is left, containing only a small amount of yeast necessary for rest conversions during the next process step, the lagering. The physical process of flocculation is a dynamic equilibrium of floc formation and floc breakup resulting in a bimodal size distribution containing single cells and flocs. The floc size distribution and the single cell amount were measured under the different conditions that occur during full scale fermentation. Influences on flocculation such as floc strength, specific power input, and total number of yeast cells in suspension were studied. A flocculation model was developed, and the measured data used for validation. Yeast floc formation can be described with the collision theory assuming a constant collision efficiency. The breakup of flocs appears to occur mainly via two mechanisms, the splitting of flocs and the erosion of yeast cells from the floc surface. The splitting rate determines the average floc size and the erosion rate determines the number of single cells. Regarding the size of the flocs with respect to the scale of turbulence, only the viscous subrange needs to be considered. With the model, the floc size distribution and the number of single cells can be predicted at a certain point during the fermentation. For this, the bond strength between the cells, the fractal dimension of the yeast, the specific power input in the tank and the number of yeast cells that are in suspension in the tank have to be known. Copyright 1998 John Wiley & Sons, Inc.

  17. Nitrile Metabolizing Yeasts

    Bhalla, Tek Chand; Sharma, Monica; Sharma, Nitya Nand

    Nitriles and amides are widely distributed in the biotic and abiotic components of our ecosystem. Nitrile form an important group of organic compounds which find their applications in the synthesis of a large number of compounds used as/in pharmaceutical, cosmetics, plastics, dyes, etc>. Nitriles are mainly hydro-lyzed to corresponding amide/acid in organic chemistry. Industrial and agricultural activities have also lead to release of nitriles and amides into the environment and some of them pose threat to human health. Biocatalysis and biotransformations are increasingly replacing chemical routes of synthesis in organic chemistry as a part of ‘green chemistry’. Nitrile metabolizing organisms or enzymes thus has assumed greater significance in all these years to convert nitriles to amides/ acids. The nitrile metabolizing enzymes are widely present in bacteria, fungi and yeasts. Yeasts metabolize nitriles through nitrilase and/or nitrile hydratase and amidase enzymes. Only few yeasts have been reported to possess aldoxime dehydratase. More than sixty nitrile metabolizing yeast strains have been hither to isolated from cyanide treatment bioreactor, fermented foods and soil. Most of the yeasts contain nitrile hydratase-amidase system for metabolizing nitriles. Transformations of nitriles to amides/acids have been carried out with free and immobilized yeast cells. The nitrilases of Torulopsis candida>and Exophiala oligosperma>R1 are enantioselec-tive and regiospecific respectively. Geotrichum>sp. JR1 grows in the presence of 2M acetonitrile and may have potential for application in bioremediation of nitrile contaminated soil/water. The nitrilase of E. oligosperma>R1 being active at low pH (3-6) has shown promise for the hydroxy acids. Immobilized yeast cells hydrolyze some additional nitriles in comparison to free cells. It is expected that more focus in future will be on purification, characterization, cloning, expression and immobilization of nitrile metabolizing

  18. Combined effects of epileptic seizure and phenobarbital induced overexpression of P-glycoprotein in brain of chemically kindled rats

    Jing, Xinyue; Liu, Xiang; Wen, Tao; Xie, Shanshan; Yao, Dan; Liu, Xiaodong; Wang, Guangji; Xie, Lin


    Background and purpose: The multidrug resistance of epilepsy may result from the overexpression of P-glycoprotein, but the mechanisms are unclear. We investigated whether the overexpression of P-glycoprotein in the brains of subjects with pharmacoresistant epilepsy resulted from both drug effects and seizure activity. Experimental approach: Kindled rats were developed by injecting a subconvulsive dose of pentylenetetrazole (33 mg·kg−1·day−1, i.p.) for 28 days. Groups were then treated with an oral dose of phenobarbital (45 mg·kg−1·day−1) for 40 days. In accord with behavioural observations, P-glycoprotein activity in brain was assessed using brain-to-plasma concentration ratios of rhodamine 123. P-glycoprotein levels in the brain regions were further evaluated using RT-PCR and Western blot analysis. The distribution of phenobarbital in the brain was assessed by measuring phenobarbital concentrations 1 h following its oral administration. Key results: The kindling significantly increased P-glycoprotein activity and expression. Good associations were found among P-glycoprotein activity, expression and phenobarbital concentration in the hippocampus. Short-term treatment with phenobarbital showed good anti-epileptic effect; the maximum effect occurred on day 14 when overexpression of P-glycoprotein was reversed. Continuous treatment with phenobarbital had a gradually reduced anti-epileptic effect and on day 40, phenobarbital exhibited no anti-epileptic effect; this was accompanied by both a re-enhancement of P-glycoprotein expression and decreased phenobarbital concentration in the hippocampus. P-glycoprotein function and expression were also increased in age-matched normal rats treated with phenobarbital. Conclusions and implications: The overexpression of P-glycoprotein in the brain of subjects with pharmacoresistant epilepsy is due to a combination of drug effects and epileptic seizures. PMID:20233212

  19. Stable isotope labeling of glycoprotein expressed in silkworms using immunoglobulin G as a test molecule

    Yagi, Hirokazu [Nagoya City University, Faculty and Graduate School of Pharmaceutical Sciences (Japan); Nakamura, Masatoshi [National Institute of Agrobiological Sciences, Genetic Resources Conservation Research Unit, Genetic Resources Center (Japan); Yokoyama, Jun [Taiyo Nippon Sanso Corporation, Tsukuba Laboratories (Japan); Zhang, Ying; Yamaguchi, Takumi [National Institutes of Natural Sciences, Institute for Molecular Science and Okazaki Institute for Integrative Bioscience (Japan); Kondo, Sachiko [Nagoya City University, Faculty and Graduate School of Pharmaceutical Sciences (Japan); Kobayashi, Jun [Yamaguchi University, Department of Biological and Environmental Sciences, Faculty of Agriculture (Japan); Kato, Tatsuya; Park, Enoch Y. [Shizuoka University, Laboratory of Biotechnology, Research Institute of Green Science and Technology (Japan); Nakazawa, Shiori [Nagoya University, Sugashima Marine Biological Laboratory, Graduate School of Science (Japan); Hashii, Noritaka; Kawasaki, Nana [National Institute of Health Sciences, Division of Biological Chemistry and Biologicals (Japan); Kato, Koichi, E-mail: [Nagoya City University, Faculty and Graduate School of Pharmaceutical Sciences (Japan)


    Silkworms serve as promising bioreactors for the production of recombinant proteins, including glycoproteins and membrane proteins, for structural and functional protein analyses. However, lack of methodology for stable isotope labeling has been a major deterrent to using this expression system for nuclear magnetic resonance (NMR) structural biology. Here we developed a metabolic isotope labeling technique using commercially available silkworm larvae. The fifth instar larvae were infected with baculoviruses for co-expression of recombinant human immunoglobulin G (IgG) as a test molecule, with calnexin as a chaperone. They were subsequently reared on an artificial diet containing {sup 15}N-labeled yeast crude protein extract. We harvested 0.1 mg of IgG from larva with a {sup 15}N-enrichment ratio of approximately 80 %. This allowed us to compare NMR spectral data of the Fc fragment cleaved from the silkworm-produced IgG with those of an authentic Fc glycoprotein derived from mammalian cells. Therefore, we successfully demonstrated that our method enables production of isotopically labeled glycoproteins for NMR studies.

  20. Isolation and characterization of ethanol tolerant yeast strains

    Tikka, Chiranjeevi; Osuru, Hari Prasad; Atluri, Navya; Raghavulu, Praveen Chakravarthi Veera; yellapu, Nanda Kumar; Mannur, Ismail Shaik; Prasad, Uppu Venkateswara; Aluru, Sudheer; K, Narasimha Varma; Bhaskar, Matcha


    Yeast strains are commonly associated with sugar rich environments. Various fruit samples were selected as source for isolating yeast cells. The isolated cultures were identified at Genus level by colony morphology, biochemical characteristics and cell morphological characters. An attempt has been made to check the viability of yeast cells under different concentrations of ethanol. Ethanol tolerance of each strain was studied by allowing the yeast to grow in liquid YEPD (Yeast Extract Peptone Dextrose) medium having different concentrations of ethanol. A total of fifteen yeast strains isolated from different samples were used for the study. Seven strains of Saccharomyces cerevisiae obtained from different fruit sources were screened for ethanol tolerance. The results obtained in this study show a range of tolerance levels between 7%-12% in all the stains. Further, the cluster analysis based on 22 RAPD (Random Amplified polymorphic DNA) bands revealed polymorphisms in these seven Saccharomyces strains. PMID:23750092

  1. Genetic aspects of targeted insertion mutagenesis in yeasts.

    Klinner, U; Schäfer, B


    Targeted insertion mutagenesis is a main molecular tool of yeast science initially applied in Saccharomyces cerevisiae. The method was extended to fission yeast Schizosaccharomyces pombe and to "non-conventional" yeast species, which show specific properties of special interest to both basic and applied research. Consequently, the behaviour of such non-Saccharomyces yeasts is reviewed against the background of the knowledge of targeted insertion mutagenesis in S. cerevisiae. Data of homologous integration efficiencies obtained with circular, ends-in or ends-out vectors in several yeasts are compared. We follow details of targeted insertion mutagenesis in order to recognize possible rate-limiting steps. The route of the vector to the target and possible mechanisms of its integration into chromosomal genes are considered. Specific features of some yeast species are discussed. In addition, similar approaches based on homologous recombination that have been established for the mitochondrial genome of S. cerevisiae are described.

  2. Roles of tyrosine-rich precursor glycoproteins and dityrosine- and 3,4-dihydroxyphenylalanine-mediated protein cross-linking in development of the oocyst wall in the coccidian parasite Eimeria maxima

    Belli, Sabina I; Wallach, Michael G; Luxford, Catherine


    (macrogamete) of Eimeria maxima are proteolytically processed into smaller glycoproteins, which are then incorporated into the developing oocyst wall. The identification of high concentrations of dityrosine and 3,4-dihydroxyphenylalanine (DOPA) in oocyst extracts by high-pressure liquid chromatography...... cuticles, yeast cell walls, mussel byssal threads, and sea urchin fertilization membranes....

  3. Mapping yeast transcriptional networks.

    Hughes, Timothy R; de Boer, Carl G


    The term "transcriptional network" refers to the mechanism(s) that underlies coordinated expression of genes, typically involving transcription factors (TFs) binding to the promoters of multiple genes, and individual genes controlled by multiple TFs. A multitude of studies in the last two decades have aimed to map and characterize transcriptional networks in the yeast Saccharomyces cerevisiae. We review the methodologies and accomplishments of these studies, as well as challenges we now face. For most yeast TFs, data have been collected on their sequence preferences, in vivo promoter occupancy, and gene expression profiles in deletion mutants. These systematic studies have led to the identification of new regulators of numerous cellular functions and shed light on the overall organization of yeast gene regulation. However, many yeast TFs appear to be inactive under standard laboratory growth conditions, and many of the available data were collected using techniques that have since been improved. Perhaps as a consequence, comprehensive and accurate mapping among TF sequence preferences, promoter binding, and gene expression remains an open challenge. We propose that the time is ripe for renewed systematic efforts toward a complete mapping of yeast transcriptional regulatory mechanisms.

  4. [Fructose transporter in yeasts].

    Lazar, Zbigniew; Dobrowolski, Adam; Robak, Małgorzata


    Study of hexoses transporter started with discovery of galactose permease in Saccharomyces cerevisiae. Glucose, fructose and mannose assimilation is assumed by numerous proteins encoded by different genes. To date over 20 hexoses transporters, belonging to Sugar Porter family and to Major Facilitator Superfamily, were known. Genome sequence analysis of Candida glabrata, Kluyveromyces lactis, Yarrowia lipolytica, S. cerevisaie and Debaryomyces hansenii reveled potential presence of 17-48 sugar porter proteins. Glucose transporters in S. cerevisiae have been already characterized. In this paper, hexoses transporters, responsible for assimilation of fructose by cells, are presented and compared. Fructose specific transporter are described for yeasts: Zygosaccharomyces rouxii, Zygosaccharomyces bailli, K. lactis, Saccharomyces pastorianus, S. cerevisiae winemaking strain and for fungus Botritys cinerea and human (Glut5p). Among six yeasts transporters, five are fructose specific, acting by facilitated diffusion or proton symport. Yeasts monosaccharides transporter studies allow understanding of sugars uptake and metabolism important aspects, even in higher eukaryotes cells.

  5. Yeasts associated with Sardinian ewe's dairy products.

    Cosentino, S; Fadda, M E; Deplano, M; Mulargia, A F; Palmas, F


    In the present work, the occurrence of yeasts in different types of typical Sardinian ewe's cheeses (32 samples of pecorino, 32 of caciotta, 40 of feta, 56 of ricotta) was determined. For the strains isolated the following properties were studied: proteolytic and lipolytic activities, the ability to grow at different temperatures, different concentrations of salt, and to assimilate and/or ferment compounds like lactate, citrate, lactose, glucose, galactose, lactic acid. Of 160 samples analysed, 76.2% yielded growth of yeasts. Yeast counts showed a certain variability among the samples. The highest levels were observed in caciotta and feta cheeses. A total of 281 strains belonging to 16 genera and 25 species were identified. In general, Debaryomyces hansenii was the dominant species, representing 28.8% of the total isolates. Other frequently appearing species were Geotrichum candidum, Kluyveromyces lactis and K. marxianus. Other genera encountered were Pichia, Candida, Dekkera, Yarrowia and Rhodotorula. With regard to the biochemical and technological properties of the yeasts, only K. lactis, K. marxianus and Dek. anomala assimilated and fermented lactose, whereas the majority of the species assimilated lactic acid. The assimilation of citrate was a characteristic of D. hansenii, R. rubra and Y. lipolytica. On the whole, the yeasts were weakly proteolytic while lipolytic activity was present in several species. A high percentage of strains showed a certain tolerance to low temperatures while only some strains of D. hansenii and K. lactis were able to grow at a 10% NaCl concentration.

  6. Progesterone-adenine hybrids as bivalent inhibitors of P-glycoprotein-mediated multidrug efflux: design, synthesis, characterization and biological evaluation.

    Zeinyeh, Waël; Mahiout, Zahia; Radix, Sylvie; Lomberget, Thierry; Dumoulin, Axel; Barret, Roland; Grenot, Catherine; Rocheblave, Luc; Matera, Eva-Laure; Dumontet, Charles; Walchshofer, Nadia


    Bivalent ligands were designed on the basis of the described close proximity of the ATP-site and the putative steroid-binding site of P-glycoprotein (ABCB1). The syntheses of 19 progesterone-adenine hybrids are described. Their abilities to inhibit P-glycoprotein-mediated daunorubicin efflux in K562/R7 human leukemic cells overexpressing P-glycoprotein were evaluated versus progesterone. The hybrid with a hexamethylene linker chain showed the best inhibitory potency. The efficiency of these progesterone-adenine hybrids depends on two main factors: (i) the nature of the linker and (ii) its attachment point on the steroid skeleton.

  7. Aboveground Deadwood Deposition Supports Development of Soil Yeasts

    Thorsten Wehde


    Full Text Available Unicellular saprobic fungi (yeasts inhabit soils worldwide. Although yeast species typically occupy defined areas on the biome scale, their distribution patterns within a single type of vegetation, such as forests, are more complex. In order to understand factors that shape soil yeast communities, soils collected underneath decaying wood logs and under forest litter were analyzed. We isolated and identified molecularly a total of 25 yeast species, including three new species. Occurrence and distribution of yeasts isolated from these soils provide new insights into ecology and niche specialization of several soil-borne species. Although abundance of typical soil yeast species varied among experimental plots, the analysis of species abundance and community composition revealed a strong influence of wood log deposition and leakage of organic carbon. Unlike soils underneath logs, yeast communities in adjacent areas harbored a considerable number of transient (phylloplane-related yeasts reaching 30% of the total yeast quantity. We showed that distinguishing autochthonous community members and species transient in soils is essential to estimate appropriate effects of environmental factors on soil fungi. Furthermore, a better understanding of species niches is crucial for analyses of culture-independent data, and may hint to the discovery of unifying patterns of microbial species distribution.

  8. Performance of baker's yeast produced using date syrup substrate ...



    May 24, 2010 ... 1Date Palm Research Center, King Faisal University, Al-Hassa, 31982, Saudi Arabia. 2King Abdulaziz City ... relationship between total Arabic bread quality and yeast gassing power. ... showed that higher productivity of baker's yeast was observed ..... American Association of Cereal Chemists.. Approved.

  9. HSV-1 Glycoproteins Are Delivered to Virus Assembly Sites Through Dynamin-Dependent Endocytosis.

    Albecka, Anna; Laine, Romain F; Janssen, Anne F J; Kaminski, Clemens F; Crump, Colin M


    Herpes simplex virus-1 (HSV-1) is a large enveloped DNA virus that belongs to the family of Herpesviridae. It has been recently shown that the cytoplasmic membranes that wrap the newly assembled capsids are endocytic compartments derived from the plasma membrane. Here, we show that dynamin-dependent endocytosis plays a major role in this process. Dominant-negative dynamin and clathrin adaptor AP180 significantly decrease virus production. Moreover, inhibitors targeting dynamin and clathrin lead to a decreased transport of glycoproteins to cytoplasmic capsids, confirming that glycoproteins are delivered to assembly sites via endocytosis. We also show that certain combinations of glycoproteins colocalize with each other and with the components of clathrin-dependent and -independent endocytosis pathways. Importantly, we demonstrate that the uptake of neutralizing antibodies that bind to glycoproteins when they become exposed on the cell surface during virus particle assembly leads to the production of non-infectious HSV-1. Our results demonstrate that transport of viral glycoproteins to the plasma membrane prior to endocytosis is the major route by which these proteins are localized to the cytoplasmic virus assembly compartments. This highlights the importance of endocytosis as a major protein-sorting event during HSV-1 envelopment.

  10. Isolation of glycoproteins from brown algae


    The present invention relates to a novel process for the isolation of unique anti-oxidative glycoproteins from the pH precipitated fractions of enzymatic extracts of brown algae. Two brown seaweeds viz, Fucus serratus and Fucus vesiculosus were hydrolysed by using 3 enzymes viz, Alcalase, Viscozyme...

  11. L-arabinose fermenting yeast

    Zhang, Min; Singh, Arjun; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric; Suominen, Pirkko


    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. Methods of producing ethanol include utilizing these modified yeast strains. ##STR00001##

  12. Spore surface glycoproteins of Colletotrichum lindemuthianum are recognized by a monoclonal antibody which inhibits adhesion to polystyrene.

    Hughes, H B; Carzaniga, R; Rawlings, S L; Green, J R; O'Connell, R J


    Conidia (spores) of Colletotrichum lindemuthianum, a fungal plant pathogen causing bean anthracnose, adhere to the aerial parts of host plants to initiate the infection process. These spores possess a fibrillar 'spore coat' as well as a cell wall. In a previous study a mAb, UB20, was raised that recognized glycoproteins on the spore surface. In this study UB20 was used to localize and characterize these glycoproteins and to investigate their possible role in adhesion. Glycoproteins recognized by UB20 were concentrated on the outer surface of the spore coat and, to a lesser extent, at the plasma membrane/cell wall interface. Extraction of spores with hot water or 0.2% SDS resulted in removal of the spore coat. Western blotting with UB20 showed that a relatively small number of glycoproteins were extracted by these procedures, including a major component at 110 kDa. Biotinylation of carbohydrate moieties, together with cell fractionation, confirmed that these glycoproteins were exposed at the surface of the spores. In adhesion assays, > 90% of ungerminated conidia attached to polystyrene Petri dishes within 30 min. UB20 IgG at low concentrations inhibited attachment in an antigen-specific manner. This suggests that the glycoproteins recognized by this mAb may function in the initial rapid attachment of conidia to hydrophobic substrata. Polystyrene microspheres bound selectively to the 110 kDa glycoprotein in Western blots, providing further evidence that this component could mediate interactions with hydrophobic substrata.

  13. Acrosome reaction: relevance of zona pellucida glycoproteins

    Satish K Gupta; Beena Bhandari


    During mammalian fertilisation,the zona pellucida(ZP)matrix surrounding the oocyte is responsible for the binding of the spermatozoa to the oocyte and induction of the acrosome reaction(AR)in the ZP-bound spermatozoon.The AR is crucial for the penetration of the ZP matrix by spermatozoa.The ZP matrix in mice is composed of three glycoproteins designated ZP1,ZP2 and ZP3,whereas in humans,it is composed of four(ZP1,ZP2,ZP3 and ZP4).ZP3 acts as the putative primary sperm receptor and is responsible for AR induction in mice,whereas in humans(in addition to ZP3),ZP1 and ZP4 also induce the AR.The ability of ZP3 to induce the AR resides in its C-terminal fragment.O-linked glycans are critical for the murine ZP3-mediated AR.However,N-linked glycans of human ZP1,ZP3 and ZP4 have important roles in the induction of the AR.Studies with pharmacological inhibitors showed that the ZP3-induced AR involves the activation of the G1-coupled receptor pathway,whereas ZP1-and ZP4-mediated ARs are independent of this pathway.The ZP3-induced AR involves the activation of T-type voltage-operated calcium channels(VOCCs),whereas ZP1-and ZP4-induced ARs involve both T-and L-type VOCCs.To conclude,in mice,ZP3 is primarily responsible for the binding of capacitated spermatozoa to the ZP matrix and induction of the AR,whereas in humans(in addition to ZP3),ZP1 and ZP4 also participate in these stages of fertilisation.

  14. Influence of N-glycosylation on the morphogenesis and growth of Paracoccidioides brasiliensis and on the biological activities of yeast proteins.

    Fausto Bruno Dos Reis Almeida

    Full Text Available The fungus Paracoccidioides brasiliensis is a human pathogen that causes paracoccidioidomycosis, the most prevalent systemic mycosis in Latin America. The cell wall of P. brasiliensis is a network of glycoproteins and polysaccharides, such as chitin, that perform several functions. N-linked glycans are involved in glycoprotein folding, intracellular transport, secretion, and protection from proteolytic degradation. Here, we report the effects of tunicamycin (TM-mediated inhibition of N-linked glycosylation on P. brasiliensis yeast cells. The underglycosylated yeasts were smaller than their fully glycosylated counterparts and exhibited a drastic reduction of cell budding, reflecting impairment of growth and morphogenesis by TM treatment. The intracellular distribution in TM-treated yeasts of the P. brasiliensis glycoprotein paracoccin was investigated using highly specific antibodies. Paracoccin was observed to accumulate at intracellular locations, far from the yeast wall. Paracoccin derived from TM-treated yeasts retained the ability to bind to laminin despite their underglycosylation. As paracoccin has N-acetyl-β-d-glucosaminidase (NAGase activity and induces the production of TNF-α and nitric oxide (NO by macrophages, we compared these properties between glycosylated and underglycosylated yeast proteins. Paracoccin demonstrated lower NAGase activity when underglycosylated, although no difference was detected between the pH and temperature optimums of the two forms. Murine macrophages stimulated with underglycosylated yeast proteins produced significantly lower levels of TNF-α and NO. Taken together, the impaired growth and morphogenesis of tunicamycin-treated yeasts and the decreased biological activities of underglycosylated fungal components suggest that N-glycans play important roles in P. brasiliensis yeast biology.

  15. Extension of yeast chronological lifespan by methylamine.

    Sanjeev Kumar

    Full Text Available BACKGROUND: Chronological aging of yeast cells is commonly used as a model for aging of human post-mitotic cells. The yeast Saccharomyces cerevisiae grown on glucose in the presence of ammonium sulphate is mainly used in yeast aging research. We have analyzed chronological aging of the yeast Hansenula polymorpha grown at conditions that require primary peroxisome metabolism for growth. METHODOLOGY/PRINCIPAL FINDINGS: The chronological lifespan of H. polymorpha is strongly enhanced when cells are grown on methanol or ethanol, metabolized by peroxisome enzymes, relative to growth on glucose that does not require peroxisomes. The short lifespan of H. polymorpha on glucose is mainly due to medium acidification, whereas most likely ROS do not play an important role. Growth of cells on methanol/methylamine instead of methanol/ammonium sulphate resulted in further lifespan enhancement. This was unrelated to medium acidification. We show that oxidation of methylamine by peroxisomal amine oxidase at carbon starvation conditions is responsible for lifespan extension. The methylamine oxidation product formaldehyde is further oxidized resulting in NADH generation, which contributes to increased ATP generation and reduction of ROS levels in the stationary phase. CONCLUSION/SIGNIFICANCE: We conclude that primary peroxisome metabolism enhanced chronological lifespan of H. polymorpha. Moreover, the possibility to generate NADH at carbon starvation conditions by an organic nitrogen source supports further extension of the lifespan of the cell. Consequently, the interpretation of CLS analyses in yeast should include possible effects on the energy status of the cell.

  16. Immunological responses to envelope glycoprotein 120 from subtypes of human immunodeficiency virus type 1.

    Gilljam, G; Svensson, A; Ekström, A; Wahren, B


    The outer envelope glycoprotein (gp120) from subtypes A-E of HIV-1 was purified using a specific high mannose-binding lectin, Galanthus nivalis agglutinin. All isolates were grown in peripheral blood lymphocyte cells in order to avoid selection in cell lines. A comparison of the reactivities of the envelope proteins was made using sera from patients infected with the different subtypes. In this study, the B and C subtype envelope glycoproteins showed the strongest immunological reactivity, when reacted with sera from patients infected with the same subtype of virus. On the other hand, sera of patients infected with subtype A or C virus had the strongest and broadest reactivities, to envelope glycoproteins of many subtypes. The purified gp120 proteins from all five subtypes stimulated mononuclear cells from HIV-1 (subtype B)-infected patients, indicating conserved T cell-activating epitopes. The immunological reactivities indicate that strong antigenicity does not always predict the broadest immunogenicity of an envelope glycoprotein. Glycoprotein 120 from foreign subtypes may serve to induce strong cross-reactive immune responses.

  17. Biochemical reconstitution of hemorrhagic-fever arenavirus envelope glycoprotein-mediated membrane fusion.

    Celestine J Thomas

    Full Text Available The membrane-anchored proteins of enveloped viruses form labile spikes on the virion surface, primed to undergo large-scale conformational changes culminating in virus-cell membrane fusion and viral entry. The prefusion form of these envelope glycoproteins thus represents an important molecular target for antiviral intervention. A critical roadblock to this endeavor has been our inability to produce the prefusion envelope glycoprotein trimer for biochemical and structural analysis. Through our studies of the GPC envelope glycoprotein of the hemorrhagic fever arenaviruses, we have shown that GPC is unique among class I viral fusion proteins in that the mature complex retains a stable signal peptide (SSP in addition to the conventional receptor-binding and transmembrane fusion subunits. In this report we show that the recombinant GPC precursor can be produced as a discrete native-like trimer and that its proteolytic cleavage generates the mature glycoprotein. Proteoliposomes containing the cleaved GPC mediate pH-dependent membrane fusion, a characteristic feature of arenavirus entry. This reaction is inhibited by arenavirus-specific monoclonal antibodies and small-molecule fusion inhibitors. The in vitro reconstitution of GPC-mediated membrane-fusion activity offers unprecedented opportunities for biochemical and structural studies of arenavirus entry and its inhibition. To our knowledge, this report is the first to demonstrate functional reconstitution of membrane fusion by a viral envelope glycoprotein.

  18. Recognition of glycoprotein peroxidase via Con A-carrying self-assembly layer on gold.

    Liu, Songqin; Wang, Kewei; Du, Dan; Sun, Yueming; He, Lin


    We have successfully fabricated a self-assembled layer of concanavalin A (Con A) on a gold surface for recognition of glycoproteins. The type IV Con A is covalently bound to 11-mercaptoundecanoic acid (MUA) on gold with a 2-(5-norbornene-2,3-dicarboximido)-1,1,3,3-tetramethyluronium tetrafluoroborate (TNTU) linkage. The binding interaction between glycoproteins and self-assembled Con A is studied using horseradish peroxidase (HRP) as a model glycoprotein. Voltammetric, electrochemical impedance studies, and photometric activity measurements show the presence of both specific and nonspecific bindings of HRP to the Con A interface. The specific binding is attributed to the Con A-sugar interaction where Con A selectively recognizes the glycosylation sites of HRP. The catalytic current of the HRP-loaded electrode, because of catalytic oxidation of thionine in the presence of hydrogen peroxide (H2O2), is found to be proportional to the HRP concentrations in the incubation solution. A linear correlation coefficient of 0.993 was obtained over a wide HRP concentration range of 12.5 microg/mL to 1 mg/mL. The approach described in this study provides a simple yet selective means to immobilize glycoproteins on a solid support. The specific binding achieved is desirable in biosensor fabrication, glycoprotein separation, recognition, and purification as well as in drug-releasing systems.

  19. Co-treatment by docetaxel and vinblastine breaks down P-glycoprotein mediated chemo-resistance

    Mahsa Mohseni


    Results: Combination treatment of the cells with docetaxel and vinblastine decreased the IC50 values for docetaxel from (30±3.1 to (15±2.6 nM and for vinblastine from (30±5.9 to (5±5.6 nM (P≤0.05.               P-glycoprotein mRNA expression level showed a significant up-regulation in the cells incubated with each drug alone (P≤0.001. Incubation of the cells with combined concentrations of both agents neutralized P-glycoprotein overexpression (P≤0.05. Adding verapamil, a P-glycoprotein inhibitor caused a further increase in the percentage of apoptotic cells when the cells were treated with both agents.  Conclusion:Our results suggest that combination therapy along with P-glycoprotein inhibition can be considered as a novel approach to improve the efficacy of chemotherapeutics in cancer patients with high P-glycoprotein expression.

  20. Defence sugarcane glycoproteins disorganize microtubules and prevent nuclear polarization and germination of Sporisorium scitamineum teliospores.

    Sánchez-Elordi, Elena; Baluška, František; Echevarría, Clara; Vicente, Carlos; Legaz, M Estrella


    Microtubules (MTs) are involved in the germination of Sporisorium scitamineum teliospores. Resistant varieties of sugar cane plants produce defence glycoproteins that prevent the infection of the plants by the filamentous fungi Sporisorium scitamineum. Here, we show that a fraction of these glycoproteins prevents the correct arrangement of MTs and causes nuclear fragmentation defects. As a result, nuclei cannot correctly migrate through the growing hyphae, causing germinative failure. Arginase activity contained in defence glycoproteins is already described for preventing fungal germination. Now, its enzymatically active form is presented as a link between the defensive capacity of glycoproteins and the MT disorganization in fungal cells. Active arginase is produced in healthy and resistant plants; conversely, it is not detected in the juice from susceptible varieties, which explains why MT depolarization, nuclear disorganization as well as germination of teliospores are not significantly affected by glycoproteins from non-resistant plants. Our results also suggest that susceptible plants try to increase their levels of arginase after detecting the presence of the pathogen. However, this signal comes "too late" and such defensive mechanism fails.

  1. Exploring Catalase and Invertase Activity Using Sodium Alginate-Encapsulated Yeast (Yeast Spheres

    Pamela J. Bryer


    Full Text Available Finding the right enzyme experiment can be problematic, depending what one is trying to show, what supplies and equipment are available, and the time one can devote to the topic.  I’ve developed simple and inexpensive labs for looking at catalase and invertase activity using yeast encapsulated in sodium alginate.  Single-celled yeast, Saccharomyces cerevisiae, are encapsulated in sodium alginate, a readily available extract from brown algae that, when it comes in contact with calcium chloride (CaCl2, forms a sphere or “bead.”  These spheres may then be put into a solution containing substrate to test for enzyme activity.  The spheres are easy to manipulate, one doesn’t have the variability and mess of a yeast solution, and since there are no cells in solution, there is nothing to interfere with the various assay methods one might want to use to test for product.  The graduated cylinder method for testing catalase activity introduced here is especially good for collecting large amounts of data that enable students to use statistics and, unlike similar yeast catalase experiments using paper disks and a yeast solution, the yeast spheres are easy to manipulate and there is very little variability.  I have used this procedure with students in class and with teachers in workshops with positive results and comments.

  2. L-arabinose fermenting yeast

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric


    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  3. L-arabinose fermenting yeast

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric


    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  4. Metallic Biosorption Using Yeasts in Continuous Systems

    Karla Miriam Hernández Mata


    Full Text Available Mining effluents were found to be the main source of pollution by heavy metals of the surface water in the San Pedro River in Sonora, Mexico. The overall objective of this study was to determine the biosorption of Zn, Cu, Mn, and Fe with yeasts isolated from San Pedro River in a continuous system. The tests conducted in two reactors packed with zeolite connected in series. The first reactor was inoculated mixing two yeasts species, and the effluent of the first reactor was fed to second reactor. Subsequently, the first reactor was fed with contaminated water of San Pedro River and effluent from this was the second reactor influent. After 40 days of the experiment a reduction of 81.5% zinc, 76.5% copper, manganese 95.5%, and 99.8% of iron was obtained. These results show that the selected yeasts are capable of biosorbing zinc, copper, manganese, and iron under these conditions.

  5. Flavour-active wine yeasts.

    Cordente, Antonio G; Curtin, Christopher D; Varela, Cristian; Pretorius, Isak S


    The flavour of fermented beverages such as beer, cider, saké and wine owe much to the primary fermentation yeast used in their production, Saccharomyces cerevisiae. Where once the role of yeast in fermented beverage flavour was thought to be limited to a small number of volatile esters and higher alcohols, the discovery that wine yeast release highly potent sulfur compounds from non-volatile precursors found in grapes has driven researchers to look more closely at how choice of yeast can influence wine style. This review explores recent progress towards understanding the range of 'flavour phenotypes' that wine yeast exhibit, and how this knowledge has been used to develop novel flavour-active yeasts. In addition, emerging opportunities to augment these phenotypes by engineering yeast to produce so-called grape varietal compounds, such as monoterpenoids, will be discussed.

  6. Nonlinear Dielectric Properties of Yeast Cells Cultured in Different Environmental Conditions

    Kawanishi, Gomon; Fukuda, Naoki; Muraji, Masafumi

    The harmonics of the electric current through yeast suspensions, the nonlinear dielectric properties of yeast cells, have particular patterns according to the biological activity of the cells and the measurement of these patterns is a technique for determining the activity of living cells. The concentration of glucose and oxygen in yeast culture medium influences the manifestation of fermentation or respiration of yeast cells. Measurements were made with yeast cells (Saccharomyces cerevisiae) cultured aerobically and anaerobically in sufficient glucose concentration, aerobic fermentation and anaerobic fermentation, and aerobically in limited glucose concentration, respiration. The results showed that the harmonics were barely apparent for yeast cells in aerobic fermentation and respiratory; however, cells in the anaerobic fermentation displayed substantial third and fifth harmonics. We can say that environmental condition affects the yeast cells' nonlinear properties, from another viewpoint, the measurements of the nonlinear properties are available to determine the activity of yeast cells adjusted to the conditions of their cultivation.

  7. Complement inhibition enables tumor delivery of LCMV glycoprotein pseudotyped viruses in the presence of antiviral antibodies

    Laura Evgin


    Full Text Available The systemic delivery of therapeutic viruses, such as oncolytic viruses or vaccines, is limited by the generation of neutralizing antibodies. While pseudotyping of rhabdoviruses with the lymphocytic choriomeningitis virus glycoprotein has previously allowed for multiple rounds of delivery in mice, this strategy has not translated to other animal models. For the first time, we provide experimental evidence that antibodies generated against the lymphocytic choriomeningitis virus glycoprotein mediate robust complement-dependent viral neutralization via activation of the classical pathway. We show that this phenotype can be capitalized upon to deliver maraba virus pseudotyped with the lymphocytic choriomeningitis virus glycoprotein in a Fischer rat model in the face of neutralizing antibody through the use of complement modulators. This finding changes the understanding of the humoral immune response to arenaviruses, and also describes methodology to deliver viral vectors to their therapeutic sites of action without the interference of neutralizing antibody.

  8. Complement inhibition enables tumor delivery of LCMV glycoprotein pseudotyped viruses in the presence of antiviral antibodies

    Evgin, Laura; Ilkow, Carolina S; Bourgeois-Daigneault, Marie-Claude; de Souza, Christiano Tanese; Stubbert, Lawton; Huh, Michael S; Jennings, Victoria A; Marguerie, Monique; Acuna, Sergio A; Keller, Brian A; Lefebvre, Charles; Falls, Theresa; Le Boeuf, Fabrice; Auer, Rebecca A; Lambris, John D; McCart, J Andrea; Stojdl, David F; Bell, John C


    The systemic delivery of therapeutic viruses, such as oncolytic viruses or vaccines, is limited by the generation of neutralizing antibodies. While pseudotyping of rhabdoviruses with the lymphocytic choriomeningitis virus glycoprotein has previously allowed for multiple rounds of delivery in mice, this strategy has not translated to other animal models. For the first time, we provide experimental evidence that antibodies generated against the lymphocytic choriomeningitis virus glycoprotein mediate robust complement-dependent viral neutralization via activation of the classical pathway. We show that this phenotype can be capitalized upon to deliver maraba virus pseudotyped with the lymphocytic choriomeningitis virus glycoprotein in a Fischer rat model in the face of neutralizing antibody through the use of complement modulators. This finding changes the understanding of the humoral immune response to arenaviruses, and also describes methodology to deliver viral vectors to their therapeutic sites of action without the interference of neutralizing antibody. PMID:27909702

  9. Proteomic dataset for altered glycoprotein expression upon GALNT3 knockdown in ovarian cancer cells.

    Sheta, Razan; Roux-Dalvai, Florence; Woo, Christina M; Fournier, Frédéric; Bourassa, Sylvie; Bertozzi, Carolyn R; Droit, Arnaud; Bachvarov, Dimcho


    This article contains raw and processed data related to research published in "Role of the polypeptide N-acetylgalactosaminyltransferase 3 in ovarian cancer progression: possible implications in abnormal mucin O-glycosylation" [1]. The data presented here was obtained with the application of a bioorthogonal chemical reporter strategy analyzing differential glycoprotein expression following the knock-down (KD) of the GALNT3 gene in the epithelial ovarian cancer (EOC) cell line A2780s. LC-MS/MS mass spectrometry analysis was then performed and the processed data related to the identified glycoproteins show that several hundred proteins are differentially expressed between control and GALNT3 KD A2780s cells. The obtained data also uncover numerous novel glycoproteins; some of which could represent new potential EOC biomarkers and/or therapeutic targets.

  10. A Comparison of the Beneficial Effects of Live and Heat-Inactivated Baker's Yeast on Nile Tilapia: Suggestions on the Role and Function of the Secretory Metabolites Released from the Yeast.

    Ran, Chao; Huang, Lu; Liu, Zhi; Xu, Li; Yang, Yalin; Tacon, Philippe; Auclair, Eric; Zhou, Zhigang


    Yeast is frequently used as a probiotic in aquaculture with the potential to substitute for antibiotics. In this study, the involvement and extent to which the viability of yeast cells and thus the secretory metabolites released from the yeast contribute to effects of baker's yeast was investigated in Nile tilapia. No yeast, live yeast or heat-inactivated baker's yeast were added to basal diets high in fishmeal and low in soybean (diet A) or low in fishmeal and high in soybean (diet B), which were fed to fish for 8 weeks. Growth, feed utilization, gut microvilli morphology, and expressions of hsp70 and inflammation-related cytokines in the intestine and head kidney were assessed. Intestinal microbiota was investigated using 16S rRNA gene pyrosequencing. Gut alkaline phosphatase (AKP) activity was measured after challenging the fish with Aeromonas hydrophila. Results showed that live yeast significantly improved FBW and WG (P yeast). No significant differences were observed between inactivated yeast and control. Live yeast improved gut microvilli length (P yeast did not. The hsp70 expression level in both the intestine and head kidney of fish was significantly reduced by live yeast (P yeast. Live yeast but not inactivated yeast reduced intestinal expression of tnfα (P Intestinal Lactococcus spp. numbers were enriched by both live and inactivated yeast. Lastly, both live and inactivated yeast reduced the gut AKP activity compared to the control (P yeast. Nevertheless, secretory metabolites were the major contributing factor towards improved gut microvilli morphology, relieved stress status, and reduced intestinal inflammation of Nile tilapia fed diets supplemented with baker's yeast.

  11. Phenotypic Diagnosis of Lineage and Differentiation During Sake Yeast Breeding.

    Ohnuki, Shinsuke; Okada, Hiroki; Friedrich, Anne; Kanno, Yoichiro; Goshima, Tetsuya; Hasuda, Hirokazu; Inahashi, Masaaki; Okazaki, Naoto; Tamura, Hiroyasu; Nakamura, Ryo; Hirata, Dai; Fukuda, Hisashi; Shimoi, Hitoshi; Kitamoto, Katsuhiko; Watanabe, Daisuke; Schacherer, Joseph; Akao, Takeshi; Ohya, Yoshikazu


    Sake yeast was developed exclusively in Japan. Its diversification during breeding remains largely uncharacterized. To evaluate the breeding processes of the sake lineage, we thoroughly investigated the phenotypes and differentiation of 27 sake yeast strains using high-dimensional, single-cell, morphological phenotyping. Although the genetic diversity of the sake yeast lineage is relatively low, its morphological diversity has expanded substantially compared to that of the Saccharomycescerevisiae species as a whole. Evaluation of the different types of breeding processes showed that the generation of hybrids (crossbreeding) has more profound effects on cell morphology than the isolation of mutants (mutation breeding). Analysis of phenotypic robustness revealed that some sake yeast strains are more morphologically heterogeneous, possibly due to impairment of cellular network hubs. This study provides a new perspective for studying yeast breeding genetics and micro-organism breeding strategies. Copyright © 2017 Ohnuki et al.

  12. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure

    Shibata, M.; Torigoe, M.; Matsumoto, Y.; Yamamoto, M.; Takizawa, N.; Hada, Y.; Mori, Y.; Takarabe, K.; Ono, F.


    Our studies on the tolerance of plants and animals against very high pressure of several GPa have been extended to a smaller sized fungus, the budding yeast Saccharomyces cerevisiae. Several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate, and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar. It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for longer than 12 h were found dead. The high pressure tolerance of budding yeast is a little weaker than that of tardigrades.

  13. A vaccine grade of yeast Saccharomyces cerevisiae expressing mammalian myostatin

    Zhang Tingting


    Full Text Available Abstract Background Yeast Saccharomyces cerevisiae is a widely-used system for protein expression. We previously showed that heat-killed whole recombinant yeast vaccine expressing mammalian myostatin can modulate myostatin function in mice, resulting in increase of body weight and muscle composition in these animals. Foreign DNA introduced into yeast cells can be lost soon unless cells are continuously cultured in selection media, which usually contain antibiotics. For cost and safety concerns, it is essential to optimize conditions to produce quality food and pharmaceutical products. Results We developed a simple but effective method to engineer a yeast strain stably expressing mammalian myostatin. This method utilized high-copy-number integration of myostatin gene into the ribosomal DNA of Saccharomyces cerevisiae. In the final step, antibiotic selection marker was removed using the Cre-LoxP system to minimize any possible side-effects for animals. The resulting yeast strain can be maintained in rich culture media and stably express mammalian myostatin for two years. Oral administration of the recombinant yeast was able to induce immune response to myostatin and modulated the body weight of mice. Conclusions Establishment of such yeast strain is a step further toward transformation of yeast cells into edible vaccine to improve meat production in farm animals and treat human muscle-wasting diseases in the future.

  14. Platelet Glycoprotein lb-1X and Malignancy


    patient with systemic lupus erythematosus . Am J Hematol 2001; 67:262-67. 20. Arthur JF, Dunkley S and Andrews RK. Platelet glycoprotein VI-related...Moroi M. Antibody against platelet membrane glyco- protein VI in a patient with systemic lupus erythematosus . Am J Hematol 2001; 67: 262–7. 9 Arthur JF...Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the

  15. Mapping Yeast Transcriptional Networks

    Hughes, Timothy R; de Boer, Carl G.


    The term “transcriptional network” refers to the mechanism(s) that underlies coordinated expression of genes, typically involving transcription factors (TFs) binding to the promoters of multiple genes, and individual genes controlled by multiple TFs. A multitude of studies in the last two decades have aimed to map and characterize transcriptional networks in the yeast Saccharomyces cerevisiae. We review the methodologies and accomplishments of these studies, as well as challenges we now face....

  16. Glutathione Production in Yeast

    Bachhawat, Anand K.; Ganguli, Dwaipayan; Kaur, Jaspreet; Kasturia, Neha; Thakur, Anil; Kaur, Hardeep; Kumar, Akhilesh; Yadav, Amit

    Glutathione, γ -glutamyl-cysteinyl-glycine, is the most abundant non-protein thiol found in almost all eukaryotic cells (and in some prokaryotes). The tripeptide, which is synthesized non-ribosomally by the consecutive action of two soluble enzymes, is needed for carrying out numerous functions in the cell, most important of which is the maintenance of the redox buffer. The cycle of glutathione biosynthesis and degradation forms part of the γ -glutamyl cycle in most organisms although the latter half of the pathway has not been demonstrated in yeasts. Our current understanding of how glutathione levels are controlled at different levels in the cell is described. Several different routes and processes have been attempted to increase commercial production of glutathione using both yeast and bacteria. In this article we discuss the history of glutathione production in yeast. The current bottlenecks for increased glutathione production are presented based on our current understanding of the regulation of glutathione homeostasis, and possible strategies for overcoming these limitations for further enhancing and improving glutathione production are discussed

  17. Introducing a New Breed of Wine Yeast: Interspecific Hybridisation between a Commercial Saccharomyces cerevisiae Wine Yeast and Saccharomyces mikatae

    Bellon, Jennifer R.; Schmid, Frank; Capone, Dimitra L.; Dunn, Barbara L.; Chambers, Paul J.


    Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade), has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment. PMID:23614011

  18. Introducing a new breed of wine yeast: interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast and Saccharomyces mikatae.

    Jennifer R Bellon

    Full Text Available Interspecific hybrids are commonplace in agriculture and horticulture; bread wheat and grapefruit are but two examples. The benefits derived from interspecific hybridisation include the potential of generating advantageous transgressive phenotypes. This paper describes the generation of a new breed of wine yeast by interspecific hybridisation between a commercial Saccharomyces cerevisiae wine yeast strain and Saccharomyces mikatae, a species hitherto not associated with industrial fermentation environs. While commercially available wine yeast strains provide consistent and reliable fermentations, wines produced using single inocula are thought to lack the sensory complexity and rounded palate structure obtained from spontaneous fermentations. In contrast, interspecific yeast hybrids have the potential to deliver increased complexity to wine sensory properties and alternative wine styles through the formation of novel, and wider ranging, yeast volatile fermentation metabolite profiles, whilst maintaining the robustness of the wine yeast parent. Screening of newly generated hybrids from a cross between a S. cerevisiae wine yeast and S. mikatae (closely-related but ecologically distant members of the Saccharomyces sensu stricto clade, has identified progeny with robust fermentation properties and winemaking potential. Chemical analysis showed that, relative to the S. cerevisiae wine yeast parent, hybrids produced wines with different concentrations of volatile metabolites that are known to contribute to wine flavour and aroma, including flavour compounds associated with non-Saccharomyces species. The new S. cerevisiae x S. mikatae hybrids have the potential to produce complex wines akin to products of spontaneous fermentation while giving winemakers the safeguard of an inoculated ferment.

  19. Interaction of mouse hepatitis virus (MHV) spike glycoprotein with receptor glycoprotein MHVR is required for infection with an MHV strain that expresses the hemagglutinin-esterase glycoprotein

    Gagneten, S; Gout, O; Dubois-Dalcq, M; Rottier, P; Rossen, J; Holmes, K V


    In addition to the spike (S) glycoprotein that binds to carcinoembryonic antigen-related receptors on the host cell membrane, some strains of mouse coronavirus (mouse hepatitis virus [MHV]) express a hemagglutinin esterase (HE) glycoprotein with hemagglutinating and acetylesterase activity. Virions

  20. Regulation of P-glycoprotein expression in brain capillaries in Huntington's disease and its impact on brain availability of antipsychotic agents risperidone and paliperidone.

    Kao, Yu-Han; Chern, Yijuang; Yang, Hui-Ting; Chen, Hui-Mei; Lin, Chun-Jung


    Huntington's disease (HD) is a neurodegenerative disease marked by an expanded polyglutamine (polyQ) tract on the huntingtin (HTT) protein that may cause transcriptional dysfunction. This study aimed to investigate the regulation and function of P-glycoprotein, an important efflux transporter, in brain capillaries in HD. The results showed that, compared with the littermate controls, R6/2 HD transgenic mice with the human mutant HTT gene had higher levels of P-glycoprotein mRNA and protein and enhanced NF-κB activity in their brain capillaries. Higher P-glycoprotein expression was also observed in the brain capillaries of human HD patients. Consistent with this enhanced P-glycoprotein expression, brain extracellular levels and brain-to-plasma ratios of the antipsychotic agents risperidone and paliperidone were significantly lower in R6/2 mice than in their littermate controls. Exogenous expression of human mutant HTT protein with expanded polyQ (mHTT-109Q) in HEK293T cells enhanced the levels of P-glycoprotein transcripts and NF-κB activity compared with cells expressing normal HTT-25Q. Treatment with the IKK inhibitor, BMS-345541, decreased P-glycoprotein mRNA level in cells transfected with mHTT-109Q or normal HTT-25Q In conclusion, mutant HTT altered the expression of P-glycoprotein through the NF-κB pathway in brain capillaries in HD and markedly affected the availability of P-glycoprotein substrates in the brain.

  1. Analgesic effects of glycoproteins from Panax ginseng root in mice.

    Wang, Ying; Chen, Yinghong; Xu, Hong; Luo, Haoming; Jiang, Ruizhi


    The root of Panax ginseng C.A. Mey has various beneficial pharmacological effects. The present study aimed to evaluate the analgesic activities of glycoproteins from the root of Panax ginseng C.A. Mey in mice. Glycoproteins were isolated and purified from the root of Panax ginseng C.A. Mey. Physicochemical properties and molecular mass were determined by chemical assay and HPLC. Acetic acid-induced writhing and hot-plate tests were employed to study the analgesic effect of glycoproteins and compared with that of aspirin or morphine. The locomotor activity was tested in mice by using actophometer. Four glycoproteins were obtained. The glycoproteins which protein content was the highest (73.04%) displayed dose-dependent analgesic effect. In writhing test, the glycoproteins significantly inhibited writhes (PPanax ginseng C.A. Mey exhibited significant analgesic activities and the proteins were the active site, providing evidence for its pharmacal use. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  2. Yeast identification in the clinical microbiology laboratory: phenotypical methods.

    Freydiere, A M; Guinet, R; Boiron, P


    Emerging yeast pathogens are favoured by increasing numbers of immunocompromised patients and by certain current medical practices. These yeasts differ in their antifungal drug susceptibilities, and rapid species identification is imperative. A large variety of methods have been developed with the aim of facilitating rapid, accurate yeast identification. Significant recent commercial introductions have included species-specific direct enzymatic colour tests, differential chromogenic isolation plates, direct immunological tests, and enhanced manual and automated biochemical and enzymatic panels. Chromogenic isolation media demonstrate better detection rates of yeasts in mixed cultures than traditional media, and allow the direct identification of Candida albicans by means of colony colour. Comparative evaluation of rapid methods for C. albicans identification, including the germ tube test, shows that chromogenic media may be economically advantageous. Accurate tests for single species include the Bichrolatex Albicans and Krusei Color tests, both immunologically based, as well as the Remel Rapid Trehalose Assimilation Broth for C. glabrata. Among broad-spectrum tests, the RapID Yeast Plus system gives same-day identification of clinical yeasts, but performance depends on inoculum density and geographic isolate source. The API 20 C AUX system is considered a reference method, but newer systems such as Auxacolor and Fungichrom are as accurate and are more convenient. Among automated systems, the ID 32 C strip, the Vitek Yeast Biochemical Card and the Vitek 2 ID-YST system correctly identify >93% of common yeasts, but the ID-YST is the most accurate with uncommon yeasts, including C. dubliniensis. Spectroscopic methods such as Fourier transformed-infrared spectroscopy offer potential advantages for the future. Overall, the advantages of rapid yeast identification methods include relative simplicity and low cost. For all rapid methods, meticulous, standardized

  3. Antimicrobial activity of yeasts against some pathogenic bacteria

    Gamal Younis


    Full Text Available Aim: This study was designed to isolate and identify yeast species from milk and meat products, and to test their antimicrobial activity against some bacterial species. Materials and Methods: A total of 160 milk and meat products samples were collected from random sellers and super markets in New Damietta city, Damietta, Egypt. Samples were subjected to yeast isolation procedures and tested for its antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. In addition, all yeast species isolates were subjected to polymerase chain reaction (PCR for detection of khs (kievitone hydratase and pelA (pectate degrading enzyme genes. Results: The recovery rate of yeasts from sausage was 20% (2/10 followed by kareish cheese, processed cheese, and butter 10% (1/10 each as well as raw milk 9% (9/100, and fruit yoghurt 30% (6/20. Different yeast species were recovered, namely, Candida kefyr (5 isolates, Saccharomyces cerevisiae (4 isolates, Candida intermedia (3 isolates, Candida tropicalis (2 isolates, Candida lusitaniae (2 isolates, and Candida krusei (1 isolate. khs gene was detected in all S. cerevisiae isolates, however, pelA gene was not detected in all identified yeast species. Antimicrobial activity of recovered yeasts against the selected bacterial species showed high activity with C. intermedia against S. aureus and E. coli, C. kefyr against E. coli, and C. lusitaniae against S. aureus. Moderate activities were obtained with C. tropicalis, C. lusitaniae, and S. cerevisiae against E. coli; meanwhile, all the tested yeasts revealed a very low antimicrobial activity against P. aeruginosa. Conclusion: The obtained results confirmed that some kinds of yeasts have the ability to produce antimicrobial compounds that could inhibit some pathogenic and spoilage bacteria and these antimicrobial activity of yeasts enables them to be one of the novel agents in controlling spoilage of food.

  4. P-glycoprotein alters blood–brain barrier penetration of antiepileptic drugs in rats with medically intractable epilepsy

    Ma A


    Full Text Available Aimei Ma,1,* Cuicui Wang,2,3,* Yinghui Chen,2,3 Weien Yuan4 1Department of Neurology, The People's Hospital of Shanxi Province, Taiyuan, 2Department of Neurology, Jinshan Hospital, Fudan University, 3Department of Neurology, Shanghai Medical College, Shanghai, 4School of Pharmacy, Shanghai JiaoTong University, Shanghai, People's Republic of China *These authors contributed equally to this work Abstract: P-glycoprotein is one of the earliest known multidrug transporters and plays an important role in resistance to chemotherapeutic drugs. In this study, we detected levels of P-glycoprotein and its mRNA expression in a rat brain model of medically intractable epilepsy established by amygdala kindling and drug selection. We investigated whether inhibition of P-glycoprotein affects the concentration of antiepileptic drugs in cortical extracellular fluid. We found that levels of P-glycoprotein and its mRNA expression were upregulated in epileptic cerebral tissue compared with cerebral tissue from normal rats. The concentrations of two antiepileptic drugs, carbamazepine and phenytoin, were very low in the cortical extracellular fluid of rats with medically intractable epilepsy, and were restored after blockade of P-glycoprotein by verapamil. These results show that increased P-glycoprotein levels alter the ability of carbamazepine and phenytoin to penetrate the blood–brain barrier and reduce the concentrations of these agents in extracellular cortical fluid. High P-glycoprotein levels may be involved in resistance to antiepileptic drugs in medically intractable epilepsy. Keywords: P-glycoprotein, medically intractable epilepsy, antiepileptic drugs, amygdala kindling, verapamil

  5. A vesicular stomatitis pseudovirus expressing the surface glycoproteins of influenza A virus.

    Cheresiz, S V; Kononova, A A; Razumova, Yu V; Dubich, T S; Chepurnov, A A; Kushch, A A; Davey, R; Pokrovsky, A G


    Pseudotyped viruses bearing the glycoprotein(s) of a donor virus over the nucleocapsid core of a surrogate virus are widely used as safe substitutes for infectious virus in virology studies. Retroviral particles pseudotyped with influenza A virus glycoproteins have been used recently for the study of influenza hemagglutinin and neuraminidase-dependent processes. Here, we report the development of vesicular-stomatitis-virus-based pseudotypes bearing the glycoproteins of influenza A virus. We show that pseudotypes bearing the hemagglutinin and neuraminidase of H5N1 influenza A virus mimic the wild-type virus in neutralization assays and sensitivity to entry inhibitors. We demonstrate the requirement of NA for the infectivity of pseudotypes and show that viruses obtained with different NA proteins are significantly different in their transduction activities. Inhibition studies with oseltamivir carboxylate show that neuraminidase activity is required for pseudovirus production, but not for the infection of target cells with H5N1-VSV pseudovirus. The HA-NA-VSV pseudoviruses have high transduction titers and better stability than the previously reported retroviral pseudotypes and can replace live influenza virus in the development of neutralization assays, screening of potential antivirals, and the study of different HA/NA reassortants.

  6. Structure of a Major Antigenic Site on the Respiratory Syncytial Virus Fusion Glycoprotein in Complex with Neutralizing Antibody 101F

    McLellan, Jason S.; Chen, Man; Chang, Jung-San; Yang, Yongping; Kim, Albert; Graham, Barney S.; Kwong, Peter D. (NIH)


    Respiratory syncytial virus (RSV) is a major cause of pneumonia and bronchiolitis in infants and elderly people. Currently there is no effective vaccine against RSV, but passive prophylaxis with neutralizing antibodies reduces hospitalizations. To investigate the mechanism of antibody-mediated RSV neutralization, we undertook structure-function studies of monoclonal antibody 101F, which binds a linear epitope in the RSV fusion glycoprotein. Crystal structures of the 101F antigen-binding fragment in complex with peptides from the fusion glycoprotein defined both the extent of the linear epitope and the interactions of residues that are mutated in antibody escape variants. The structure allowed for modeling of 101F in complex with trimers of the fusion glycoprotein, and the resulting models suggested that 101F may contact additional surfaces located outside the linear epitope. This hypothesis was supported by surface plasmon resonance experiments that demonstrated 101F bound the peptide epitope {approx}16,000-fold more weakly than the fusion glycoprotein. The modeling also showed no substantial clashes between 101F and the fusion glycoprotein in either the pre- or postfusion state, and cell-based assays indicated that 101F neutralization was not associated with blocking virus attachment. Collectively, these results provide a structural basis for RSV neutralization by antibodies that target a major antigenic site on the fusion glycoprotein.

  7. The impact of yeast fermentation on dough matrix properties.

    Rezaei, Mohammad N; Jayaram, Vinay B; Verstrepen, Kevin J; Courtin, Christophe M


    Most studies on dough properties are performed on yeastless dough to exclude the complicating, time-dependent effect of yeast. Baker's yeast, however, impacts dough matrix properties during fermentation, probably through the production of primary (CO2 and ethanol) and secondary (glycerol, acetic acid and succinic acid) metabolites. The aim of this study is to obtain a better understanding of the changes in yeasted dough behavior introduced by fermentation, by investigating the impact of yeast fermentation on Farinograph dough consistency, dough spread, Kieffer rig dough extensibility and gluten agglomeration behavior in a fermented dough-batter gluten starch separation system. Results show that fermentation leads to a dough with less flow and lower extensibility that breaks more easily under stress and strain. The dough showed less elastic and more plastic deformation behavior. Gluten agglomerates were smaller for yeasted dough than for the unyeasted control. These changes probably have to be attributed to metabolites generated during fermentation. Indeed, organic acids and also ethanol in concentrations produced by yeast were previously shown to have similar effects in yeastless dough. These findings imply the high importance of yeast fermentation metabolites on dough matrix properties in industrial bread production. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  8. The postmitotic Saccharomyces cerevisiae after spaceflight showed higher viability

    Yi, Zong-Chun; Li, Xiao-Fei; Wang, Yan; Wang, Jie; Sun, Yan; Zhuang, Feng-Yuan


    The budding yeast Saccharomyces cerevisiae has been proposed as an ideal model organism for clarifying the biological effects caused by spaceflight conditions. The postmitotic S. cerevisiae cells onboard Practice eight recoverable satellite were subjected to spaceflight for 15 days. After recovery, the viability, the glycogen content, the activities of carbohydrate metabolism enzymes, the DNA content and the lipid peroxidation level in yeast cells were analyzed. The viability of the postmitotic yeast cells after spaceflight showed a three-fold increase as compared with that of the ground control cells. Compared to the ground control cells, the lipid peroxidation level in the spaceflight yeast cells markedly decreased. The spaceflight yeast cells also showed an increase in G2/M cell population and a decrease in Sub-G1 cell population. The glycogen content and the activities of hexokinase and succinate dehydrogenase significantly decreased in the yeast cells after spaceflight. In contrast, the activity of malate dehydrogenase showed an obvious increase after spaceflight. These results suggested that microgravity or spaceflight could promote the survival of postmitotic S. cerevisiae cells through regulating carbohydrate metabolism, ROS level and cell cycle progression.

  9. Effect of Yeast : Saccharomyces cerevisiae and Marine Yeast as probiotic supplement on performance of poultry

    I Putu Kompiang


    Full Text Available An experiment had been conducted to evaluate the effect of marine yeast and Saccharomyces cerevisiae (Sc as probiotic supplement on poultry performance. Marine yeast isolated from rotten sea-weed and commercial Saccharomyces cerevisiae were used. Evaluation was conducted by comparing performance of broiler chicken supplemented with marine yeast or Sc, which were given through drinking water (5 ml/l to negative control (feed without antibiotic growth promotor/GPA, positive control (feed with GPA, and reference commercial probiotic. Forty DOC broiler birds were used for each treatment, divided into 4 replicates (10 birds/replicate and raised in wire cages for 5 weeks. Body weight and feed consumption were measured weekly and mortality was recorded during the trial. The results showed that there were no significant difference on the birds performance among marine yeast, Sc, positive control and probiotic reference control treatments. However their effects on bird performance were better (P<0.05 than treatment of negative control. It is concluded that marine yeast or Saccharomyces cerevisiae could replace the function of antibiotic as a growth promotant.

  10. Genomics and the making of yeast biodiversity

    Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model system, Saccharomyces ...

  11. Studies on the immuno-modulating and antitumor activities of Ganoderma lucidum (Reishi) polysaccharides: functional and proteomic analyses of a fucose-containing glycoprotein fraction responsible for the activities.

    Wang, Yuan-Yuan; Khoo, Kay-Hooi; Chen, Shui-Tein; Lin, Chun-Cheng; Wong, Chi-Huey; Lin, Chun-Hung


    A fucose-containing glycoprotein fraction which stimulates spleen cell proliferation and cytokine expression has been identified from the water-soluble extract of Ganoderma lucidum. Proteomic analysis of mouse spleen cells treated with this glycoprotein fraction showed approximately 50% change of the proteome. Further studies on the activities of this glycoprotein fraction through selective proteolysis and glycosidic cleavage indicate that a fucose containing polysaccharide fraction is responsible for stimulating the expression of cytokines, especially IL-1, IL-2 and INF-gamma.

  12. The inhibitory and combinative mechanism of HZ08 with P-glycoprotein expressed on the membrane of Caco-2 cell line

    Zhang, Yanyan; Hu, Yahui; Feng, Yidong; Kodithuwakku, Nandani Darshika; Fang, Weirong [State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009 (China); Li, Yunman, E-mail: [State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing 210009 (China); Huang, Wenlong [Center of Drug Discovery, China Pharmaceutical University, Nanjing 210009 (China)


    Recently, the research and development of agents to reverse the phenomenon of multidrug resistance has been an attractive goal as well as a key approach to elevating the clinical survival of cancer patients. Although three generations of P-glycoprotein modulators have been identified, poor clearance and metabolism render these agents too toxic to be used in clinical application. HZ08, which has been under investigation for several years, shows a dramatic reversal effect with low cytotoxicity. For the first time, we aimed to describe the interaction between HZ08 and P-glycoprotein in Caco-2 cell line in which P-glycoprotein is overexpressed naturally. Cytotoxicity and multidrug resistance reversal assays, together with flow cytometry, fluorescence microscopy and siRNA interference as well as Caco-2 monolayer transport model were employed in this study to evaluate the interaction between HZ08 and P-glycoprotein. This study revealed that HZ08 was capable of reversing adriamycin resistance mediated by P-glycoprotein as a result of intracellular enhancement of adriamycin accumulation, which was found to be superior to verapamil. In addition, we confirmed that HZ08 suppressed the transport of Rhodamine123 in the Caco-2 monolayer model but had little effect on P-glycoprotein expression. The transport of HZ08 was diminished by P-glycoprotein inhibitors (verapamil and LY335979) and its accumulation was increased via siRNA targeting MDR1 in Caco-2 cells. Furthermore, considering the binding site of P-glycoprotein, verapamil performed as a competitive inhibitor with HZ08. In conclusion, as a P-glycoprotein substrate, HZ08 inhibited P-glycoprotein activity and may share the same binding site of verapamil to P-glycoprotein. - Highlights: • The cytotoxicity and reversing effect of HZ08 was measured in Caco-2 cell line. • HZ08 inhibited the transport of Rhodamine123 across Caco-2 cell monolayer. • The efflux ratio of HZ08 was dropped when combined with P-glycoprotein

  13. Diversity and the role of yeast in spontaneous cocoa bean fermentation from Southeast Sulawesi, Indonesia



    Full Text Available Abstract. Jamili, Yanti NA, Susilowati PE. 2016. Diversity and the role of yeast in spontaneous cocoa bean fermentation from Southeast Sulawesi, Indonesia. Biodiversitas 17: 90-95. Yeast is one of the microbial group which is role in the process of cocoa spontaneously fermentation. The objective of this study was to determinate and to know the diversity of yeast that role on cocoa bean fermentation. Yeast was isolated by pour plate method from cocoa bean that was naturally fermented by a cocoa farmer in Kolaka District, Southeast Sulawesi using yeast mannitol agar (YMA media. Yeast was characterized and identified using phenotypic characters based on numeric-phenetic analysis. Yeast isolates applied to cocoa bean to determine its role in cocoa bean fermentation. The result was obtained seven isolates the dominant yeast during cocoa bean fermentation in Kolaka District, Southeast Sulawesi. The result of numerical-phenetic analysis based on phenotypic characters to seven yeast isolates showed that 1 isolates (Klk1 identical with Candida krusei. Three isolates (Klk4, Klk5 and Klk7 identical with Candida tropicalis, one isolate (Klk2 identical with Saccharomycopsis fibuligera, one isolate (Klk3 identical with Kloeckera sp. and one isolate (Klk6 identical with Saccharomyces cerevisiae. The result also showed that fermentation of cocoa with seeding of yeast inoculums served to increase the quality of cocoa beans than spontaneous fermentation. Therefore, the seven yeast isolates potentially be used as an inoculum to improve the cocoa quality.

  14. Ethanol tolerance in yeasts.

    Casey, G P; Ingledew, W M


    It is now certain that the inherent ethanol tolerance of the Saccharomyces strain used is not the prime factor regulating the level of ethanol that can be produced in a high sugar brewing, wine, sake, or distillery fermentation. In fact, in terms of the maximum concentration that these yeasts can produce under batch (16 to 17% [v/v]) or fed-batch conditions, there is clearly no difference in ethanol tolerance. This is not to say, however, that under defined conditions there is no difference in ethanol tolerance among different Saccharomyces yeasts. This property, although a genetic determinant, is clearly influenced by many factors (carbohydrate level, wort nutrition, temperature, osmotic pressure/water activity, and substrate concentration), and each yeast strain reacts to each factor differently. This will indeed lead to differences in measured tolerance. Thus, it is extremely important that each of these be taken into consideration when determining "tolerance" for a particular set of fermentation conditions. The manner in which each alcohol-related industry has evolved is now known to have played a major role in determining traditional thinking on ethanol tolerance in Saccharomyces yeasts. It is interesting to speculate on how different our thinking on ethanol tolerance would be today if sake fermentations had not evolved with successive mashing and simultaneous saccharification and fermentation of rice carbohydrate, if distillers' worts were clarified prior to fermentation but brewers' wort were not, and if grape skins with their associated unsaturated lipids had not been an integral part of red wine musts. The time is now ripe for ethanol-related industries to take advantage of these findings to improve the economies of production. In the authors' opinion, breweries could produce higher alcohol beers if oxygenation (leading to unsaturated lipids) and "usable" nitrogen source levels were increased in high gravity worts. White wine fermentations could also, if

  15. Partial purification and characterization of a mannosyl transferase involved in O -linked mannosylation of glycoproteins in Candida albicans.

    Arroyo-Flores, Blanca L; Calvo-Méndez, Carlos; Flores-Carreón, Arturo; López-Romero, Everardo


    Incubation of a mixed membrane fraction of C. albicans with the nonionic detergents Nonidet P-40 or Lubrol solubilized a fraction that catalyzed the transfer of mannose either from endogenously generated or exogenously added dolichol-P-[14C]Man onto endogenous protein acceptors. The protein mannosyl transferase solubilized with Nonidet P-40 was partially purified by a single step of preparative nondenaturing electrophoresis and some of its properties were investigated. Although transfer activity occurred in the absence of exogenous mannose acceptors and thus depended on acceptor proteins isolated along with the enzyme, addition of the protein fraction obtained after chemical de-mannosylation of glycoproteins synthesized in vitro stimulated mannoprotein labeling in a concentration-dependent manner. Other de-mannosylated glycoproteins, such as yeast invertase or glycoproteins extracted from C. albicans, failed to increase the amount of labeled mannoproteins. Mannosyl transfer activity was not influenced by common metal ions such as Mg(2+), Mn(2+) and Ca(2+), but it was stimulated up to 3-fold by EDTA. Common phosphoglycerides such as phosphatidylglycerol and, to a lower extent, phosphatidylinositol and phosphatidylcholine enhanced transfer activity. Interestingly, coupled transfer activity between dolichol phosphate mannose synthase, i.e., the enzyme responsible for Dol-P-Man synthesis, and protein mannosyl transferase could be reconstituted in vitro from the partially purified transferases, indicating that this process can occur in the absence of cell membranes.

  16. Inheritance of the yeast mitochondrial genome

    Piskur, Jure


    Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast......Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast...

  17. [Study on mechanism of inactivated cider yeast adsorbing patulin by Fourier transform infrared spectroscopy].

    Guo, Cai-Xia; Yue, Tian-Li; Yuan, Ya-Hong; Wang, Zhou-Li; Wang, Ling; Cai, Rui


    The mechanism of patulin adsorption by inactivated cider yeast was studied by chemical modification and FTIR The results of patulin removal by various modified yeast biomass showed that the ability of patulin biosorption by acetone-treated yeast and NaOH-treated yeast increased siginificantly, while the methylation of amino group and esterification of carboxylate functionalities of yeast cell surface caused a decrease in patulin binding, which indicated that amino group and carboxyl group presented in the cell walls of yeast might be involved in the binding of patulin to the yeast. The FTIR analysis indicated that the main functional groups were amino group, carboxyl group and hydroxy group which are associated with protein and polysaccharides.

  18. Microbiology and Epidemiology of Oral Yeast Colonization in Hemopoietic Progenitor Cell Transplant Recipients

    Westbrook, Steven D.; Kirkpatrick, William R.; Wiederhold, Nathan P.; Freytes, Cesar O.; Toro, Juan J.; Patterson, Thomas F.; Redding, Spencer W.


    Objective We monitored the epidemiology and microbiology of oral yeast colonization in patients undergoing hemopoietic progenitor cell transplantation (HPCT) to examine associations between yeast colonization and oral mucositis. Study Design One hundred twenty-one consecutive HPCT patients were sampled for oral yeasts prior to fluconazole (FLC) prophylaxis, at transplant, and weekly until discharge. Clinical oral mucositis screenings were performed tri-weekly. Results Yeast colonization was evident at 216 of 510 total visits. Candida albicans and C. glabrata were the predominate organisms. Eight patients showed elevated MICs to FLC. One patient developed fungal septicemia. Patients with OMAS mucositis scores <20 had higher colonization rates than those with higher scores. Conclusions FLC is very effective in controlling a variety of oral yeasts in HPCT recipients. FLC resistant yeasts do emerge and can be the source of fungal sepsis. A positive association was not shown between yeast colonization and presence or severity of oral mucositis. PMID:23312542

  19. Yeast two-hybrid screen.

    Makuch, Lauren


    Yeast two-hybrid is a method for screening large numbers of gene products (encoded by cDNA libraries) for their ability to interact with a protein of interest. This system can also be used for characterizing and manipulating candidate protein: protein interactions. Interactions between proteins are monitored by the growth of yeast plated on selective media.

  20. Developmental localization and the role of hydroxyproline rich glycoproteins during somatic embryogenesis of banana (Musa spp. AAA

    Menzel Diedrik


    Full Text Available Abstract Background Hydroxyproline rich glycoproteins (HRGPs are implicated to have a role in many aspects of plant growth and development but there is limited knowledge about their localization and function during somatic embryogenesis of higher plants. In this study, the localization and function of hydroxyproline rich glycoproteins in embryogenic cells (ECs and somatic embryos of banana were investigated by using immunobloting and immunocytochemistry with monoclonal JIM11 and JIM20 antibodies as well as by treatment with 3,4-dehydro-L-proline (3,4-DHP, an inhibitor of extensin biosynthesis, and by immunomodulation with the JIM11 antibody. Results Immunofluorescence labelling of JIM11 and JIM20 hydroxyproline rich glycoprotein epitopes was relatively weak in non-embryogenic cells (NECs, mainly on the edge of small cell aggregates. On the other hand, hydroxyproline rich glycoprotein epitopes were found to be enriched in early embryogenic cells as well as in various developmental stages of somatic embryos. Embryogenic cells (ECs, proembryos and globular embryos showed strong labelling of hydroxyproline rich glycoprotein epitopes, especially in their cell walls and outer surface layer, so-called extracellular matrix (ECM. This hydroxyproline rich glycoprotein signal at embryo surfaces decreased and/or fully disappeared during later developmental stages (e.g. pear-shaped and cotyledonary stages of embryos. In these later developmental embryogenic stages, however, new prominent hydroxyproline rich glycoprotein labelling appeared in tri-cellular junctions among parenchymatic cells inside these embryos. Overall immunofluorescence labelling of late stage embryos with JIM20 antibody was weaker than that of JIM11. Western blot analysis supported the above immunolocalization data. The treatment with 3,4-DHP inhibited the development of embryogenic cells and decreased the rate of embryo germination. Embryo-like structures, which developed after 3,4-DHP

  1. Rapid isolation of yeast genomic DNA: Bust n' Grab

    Peterson Kenneth R


    Full Text Available Abstract Background Mutagenesis of yeast artificial chromosomes (YACs often requires analysis of large numbers of yeast clones to obtain correctly targeted mutants. Conventional ways to isolate yeast genomic DNA utilize either glass beads or enzymatic digestion to disrupt yeast cell wall. Using small glass beads is messy, whereas enzymatic digestion of the cells is expensive when many samples need to be analyzed. We sought to develop an easier and faster protocol than the existing methods for obtaining yeast genomic DNA from liquid cultures or colonies on plates. Results Repeated freeze-thawing of cells in a lysis buffer was used to disrupt the cells and release genomic DNA. Cell lysis was followed by extraction with chloroform and ethanol precipitation of DNA. Two hundred ng – 3 μg of genomic DNA could be isolated from a 1.5 ml overnight liquid culture or from a large colony. Samples were either resuspended directly in a restriction enzyme/RNase coctail mixture for Southern blot hybridization or used for several PCR reactions. We demonstrated the utility of this method by showing an analysis of yeast clones containing a mutagenized human β-globin locus YAC. Conclusion An efficient, inexpensive method for obtaining yeast genomic DNA from liquid cultures or directly from colonies was developed. This protocol circumvents the use of enzymes or glass beads, and therefore is cheaper and easier to perform when processing large numbers of samples.

  2. Domestication and Divergence of Saccharomyces cerevisiae Beer Yeasts.

    Gallone, Brigida; Steensels, Jan; Prahl, Troels; Soriaga, Leah; Saels, Veerle; Herrera-Malaver, Beatriz; Merlevede, Adriaan; Roncoroni, Miguel; Voordeckers, Karin; Miraglia, Loren; Teiling, Clotilde; Steffy, Brian; Taylor, Maryann; Schwartz, Ariel; Richardson, Toby; White, Christopher; Baele, Guy; Maere, Steven; Verstrepen, Kevin J


    Whereas domestication of livestock, pets, and crops is well documented, it is still unclear to what extent microbes associated with the production of food have also undergone human selection and where the plethora of industrial strains originates from. Here, we present the genomes and phenomes of 157 industrial Saccharomyces cerevisiae yeasts. Our analyses reveal that today's industrial yeasts can be divided into five sublineages that are genetically and phenotypically separated from wild strains and originate from only a few ancestors through complex patterns of domestication and local divergence. Large-scale phenotyping and genome analysis further show strong industry-specific selection for stress tolerance, sugar utilization, and flavor production, while the sexual cycle and other phenotypes related to survival in nature show decay, particularly in beer yeasts. Together, these results shed light on the origins, evolutionary history, and phenotypic diversity of industrial yeasts and provide a resource for further selection of superior strains. PAPERCLIP.

  3. Production of Food Grade Yeasts

    Argyro Bekatorou


    Full Text Available Yeasts have been known to humans for thousands of years as they have been used in traditional fermentation processes like wine, beer and bread making. Today, yeasts are also used as alternative sources of high nutritional value proteins, enzymes and vitamins, and have numerous applications in the health food industry as food additives, conditioners and flavouring agents, for the production of microbiology media and extracts, as well as livestock feeds. Modern scientific advances allow the isolation, construction and industrial production of new yeast strains to satisfy the specific demands of the food industry. Types of commercial food grade yeasts, industrial production processes and raw materials are highlighted. Aspects of yeast metabolism, with respect to carbohydrate utilization, nutritional aspects and recent research advances are also discussed.

  4. Reverse lectin ELISA for detecting fucosylated forms of α1-acid glycoprotein associated with hepatocellular carcinoma

    Stål, Per; Zenlander, Robin; Edenvik, Pia; Alexandersson, Catharina; Haglund, Mats; Rydén, Ingvar; Påhlsson, Peter


    Altered fucosylation of glycoproteins is associated with development of hepatocellular carcinoma (HCC). Lectins have been commonly used to assay changes in fucosylation of plasma glycoproteins. In the present study a recombinantly engineered form of the fucose binding lectin Aleuria aurantia (AAL) consisting of a single binding site for fucose (S2), was used to construct a reverse lectin ELISA method. Microtiter plates coated with the S2 lectin were used to capture glycoproteins from plasma samples followed by antibody detection of S2-bound fucosylated α1-acid glycoprotein (S2-bound AGP). The method was used to compare the level of S2-bound AGP in serum samples from a small cohort of patients with hepatitis, cirrhosis or HCC. Using the reverse S2 lectin ELISA it was shown that the levels of S2-bound AGP was significantly higher in HCC patients compared to non-cancer patients and that there was also a significant elevation of S2-bound AGP in HCC patients compared to cirrhosis patients. There was no correlation between the level of S2-bound AGP and total AGP concentration. The performance of S2-bound AGP in differentiating HCC from cirrhosis samples or hepatitis samples were compared to other markers. A combination of S2-bound AGP, α-fetoprotein and AGP concentration showed performances giving area under receiver operating curves of 0.87 and 0.95 respectively. PMID:28296934

  5. Isolation and characterization of phenol degrading yeasts from wastewater in the coking plant of Zarand, Kerman.

    Karimi, Maryam; Hassanshahian, Mehdi


    Phenol and phenolic compounds are environmental pollutants present in industrial wastewaters such as coal tar, oil refineries and petrochemical plants. Phenol removal from industrial effluents is extremely important for the protection of environment. Usually, phenol degradation is carried out by physicochemical methods that are costly and produce hazardous metabolites. Recently, phenol biodegradation has been considered. Yeasts are the most important phenol biodegraders. In this study, the phenol-degrading yeast from environmental samples (soil and wastewater) was isolated from the coking plant of Zarand, Kerman. Then total heterotrophic yeasts were counted. The soil samples had higher rates of yeast degrader, in comparison to wastewater samples. After three passages, four yeasts (K1, K2, K7 and K11) that had the highest growth rate were selected for further study. Also, these yeasts were able to remove phenol measured by Gibbs reagent. The effect of four different concentrations of phenol (50, 125, 200 and 275) mgL(-1) was measured and three degradation patterns in these yeasts were observed. The hydrophobicity and emulsification activity were measured in all eleven yeasts. Finally, strong yeasts in phenol degrading yeasts were identified by molecular method using amplification of 18S rRNA gene region. The sequencing results showed that these isolated yeasts belonged to Candida tropicalis strain K1, Pichia guilliermondii strain K2, Meyerozyma guilliermondii strain K7 and C. tropicalis strain K11.

  6. Isolation and characterization of phenol degrading yeasts from wastewater in the coking plant of Zarand, Kerman

    Maryam Karimi


    Full Text Available Abstract Phenol and phenolic compounds are environmental pollutants present in industrial wastewaters such as coal tar, oil refineries and petrochemical plants. Phenol removal from industrial effluents is extremely important for the protection of environment. Usually, phenol degradation is carried out by physicochemical methods that are costly and produce hazardous metabolites. Recently, phenol biodegradation has been considered. Yeasts are the most important phenol biodegraders. In this study, the phenol-degrading yeast from environmental samples (soil and wastewater was isolated from the coking plant of Zarand, Kerman. Then total heterotrophic yeasts were counted. The soil samples had higher rates of yeast degrader, in comparison to wastewater samples. After three passages, four yeasts (K1, K2, K7 and K11 that had the highest growth rate were selected for further study. Also, these yeasts were able to remove phenol measured by Gibbs reagent. The effect of four different concentrations of phenol (50, 125, 200 and 275 mg L−1 was measured and three degradation patterns in these yeasts were observed. The hydrophobicity and emulsification activity were measured in all eleven yeasts. Finally, strong yeasts in phenol degrading yeasts were identified by molecular method using amplification of 18S rRNA gene region. The sequencing results showed that these isolated yeasts belonged to Candida tropicalis strain K1, Pichia guilliermondii strain K2, Meyerozyma guilliermondii strain K7 and C. tropicalis strain K11.


    Davis F. Ferreira


    Full Text Available We have previously observed that interferon (recIFNa2b blocks the process of morphogenesis of Mayaro virus in TC7 cells (monkey kidney. In this work we show that IFNa inhibits preferentially virus glycoproteins and their precursors, and this effect is probably correlated to the alterations in the morphogenesis process previously observed.Observamos anteriormente que o Interferon (IFN recombinante a2b bloqueia o processo de morfogênese do vírus Mayaro em células TC7 (rim de macaco. Neste trabalho demonstramos que o IFNa inibe preferencialmente as glicoproteínas virais e seus precursores e que este efeito está, provavelmente, correlacionado com as alterações no processo de morfogênese previamente observadas.

  8. Immunoglobulin-E reactivity to wine glycoproteins in heavy drinkers

    Gonzalez-Quintela, Arturo; Gomez-Rial, Jose; Valcarcel, Catalina;


    and biological significance of IgE antibodies to N-glycans from wine glycoproteins in heavy drinkers. A structured questionnaire, skin prick tests, serum IgE levels, IgE-immunoblotting to wine extracts, and basophil activation tests were used to characterize 20 heavy drinkers and 10 control subjects. Eleven...... heavy drinkers (55%) showed IgE binding to proteins in wine extracts. The proteins were identified by mass spectrometry as grape-derived vacuolar invertase and thaumatin-like protein. Immunoblot reactivity was closely associated with the presence of IgE to CCDs and was inhibited by preincubation...... with a glycoconjugate containing bromelain-type N-glycans. The same conjugate, CCD-bearing allergens, and wine extracts activated basophils in patients with high-titer CCD-specific IgE but not in healthy controls. There was no relationship between immunoblot reactivity and consumption of any specific type of wine...

  9. Inflammatory glycoproteins in cardiometabolic disorders, autoimmune diseases and cancer

    Connelly, Margery A.; Gruppen, Eke G.; Otvos, James D.; Dullaart, Robin P. F.


    The physiological function initially attributed to the oligosaccharide moieties or glycans on inflammatory glycoproteins was to improve protein stability. However, it is now clear that glycans play a prominent role in glycoprotein structure and function and in some cases contribute to disease

  10. Isolation and partial characterization of rat gastric mucous glycoprotein

    Spee-Brand, R.; Strous, G.J.A.M.; Kramer, M.F.


    Mucus glycoproteins from the rat stomach were characterized after their isolation from homogenates of the superficial gastric mucosa by equilibrium centrifugation in CsCl density gradients. Water-soluble as well as water-insoluble glycoproteins were studied. The latter were solubilized by 2-mercapto

  11. New insight into translation during yeast programmed cell death

    Silva, Maria Alexandra Oliveira da


    Tese de doutoramento em Ciências da Saúde Global mRNA translation impairment has been described during the course of apoptosis in both mammalian and yeast. Nevertheless, the molecular pathways modulating translation during different scenarios of yeast apoptosis are still largely unexplored. Here we show by polysome profile analysis an impairment in capdependent translation initiation, correlated with alterations in translation machinery, such as the decrease in eIF4A levels ...

  12. Solubilization of glycoproteins of envelope viruses by detergents

    Berezin, V.E.; Zaides, V.M.; Artamsnov, A.F.; Isaeva, E.S.; Zhdanov, V.M.


    The action of a number of known ionic and nonionic detergents, as well as the new nonionic detergent MESK, on envelope viruses was investigated. It was shown that the nonionic detergents MESK, Triton X-100, and octyl-..beta..-D-glucopyranoside selectively solubilize the outer glycoproteins of the virus particles. The nonionic detergent MESK has the mildest action. Using MESK, purified glycoproteins of influenza, parainfluenza, Venezuelan equine encephalomyelitis, vesicular stomatitis, rabies, and herpes viruses were obtained. The procedure for obtaining glycoproteins includes incubation of the virus suspension with the detergent MESK, removal of subvirus structures by centrifuging, and purification of glycoproteins from detergents by dialysis. Isolated glycoproteins retain a native structure and biological activity and possess high immunogenicity. The detergent MESK is promising for laboratory tests and with respect to the production of subunit vaccines.

  13. The DNA sequence of the equine herpesvirus 4 gene encoding glycoprotein gp17/18, the homologue of herpes simplex virus glycoprotein gD.

    Cullinane, A A; Neilan, J; Wilson, L; Davison, A J; Allen, G


    The nucleotide sequence of the gene to the left of the gI gene of equine herpesvirus 4 (EHV-4) was determined. The gene encodes a peptide of 402 amino acids with an unprocessed M(r) of 45,323. The predicted polypeptide has several features of a glycoprotein including a hydrophobic signal sequence, a membrane spanning domain and four potential N-linked glycosylation sites within the proposed external domain. The predicted amino acid sequence of EHV-4 gD shows 83% identity with that of equine herpesvirus 1 gD. Conservation of the tertiary structure is suggested by the alignment of six cysteine residues with those of the gD of six other alphaherpesviruses. Screening a lambda gt11/EHV-4 expression library with monoclonal antibodies against several of the most abundant EHV-4 glycoproteins unequivocally identified the protein encoded by the EHV-4 gD gene as gp17/18.

  14. Secretion of invertase in mitotic yeast cells.

    Makarow, M


    In mammalian cells intracellular transport is inhibited during mitosis. Here we show that in the yeast Saccharomyces cerevisiae secretion continues uninterrupted during mitosis. S. cerevisiae cells were arrested in mitosis by treating wild-type cells with the microtubule-inhibitor nocodazole, or by incubating a temperature-sensitive cell division cycle mutant (cdc16) at the restrictive temperature. Secretion of invertase into the periplasmic space was equally efficient in mitotic and in unsyn...

  15. Impact of protease activity of yeasts on wine fermentation and formation of volatile and non-volatile metabolites

    Chomsri, Ni-orn


    Fifty yeast strains previously isolated from grapes and wines were investigated for extracellular protease activity. Saccharomyces yeasts showed no detectable protease activity, while most of the non-Saccharomyces yeasts exhibited proteolytic activity. Nine of the fifty yeast strains were cultivated in grape juice and were analysed for the production of extracellular proteases. The proteolytic activity of Metschnikowia pulcherrima (M 004) was as high as that of Rhodotolura sp. (R3). Very low ...

  16. Fatty acid accumulation in the yeast Sporidiobolus salmonicolor during batch production of gamma-decalactone.

    Feron, G; Dufossé, L; Mauvais, G; Bonnarme, P; Spinnler, H E


    This paper provides new information about the metabolism of various fatty acids and gamma-decalactone production by yeast. An analysis of the fatty acid composition of the yeast Sporidiobolus salmonicolor during batch production of lactone with ricinoleic acid methyl ester as a precursor showed an accumulation of the gamma-decalactone precursor inside the cells. Electron microscopy of the yeasts showed the presence of large internal inclusions leading to membrane and organelle lysis and, consequently, death of the yeast. S. salmonicolor cultivated with methyl oleate did not produce gamma-decalactone and is viable during the whole culture. Analysis of the long chain fatty acid fraction showed incorporation of methyl oleate.


    Simpson, Kenneth L.; Nakayama, T. O. M.; Chichester, C. O.


    Simpson, Kenneth L. (University of California, Davis), T. O. M. Nakayama, and C. O. Chichester. Biosynthesis of yeast carotenoids. J. Bacteriol. 88:1688–1694. 1964.—The biosynthesis of carotenoids was followed in Rhodotorula glutinis and in a new strain, 62-506. The treatment of the growing cultures by methylheptenone, or ionone, vapors permitted observations of the intermediates in the biosynthetic pathway. On the basis of concentration changes and accumulation in blocked pathways, the sequence of carotenoid formation is postulated as phytoene, phytofluene, ζ-carotene, neurosporene, β-zeacarotene, γ-carotene, torulin, a C40 aldehyde, and torularhodin. Torulin and torularhodin were established as the main carotenoids of 62-506. PMID:14240958

  18. Cell Polarity in Yeast.

    Chiou, Jian-Geng; Balasubramanian, Mohan K; Lew, Daniel J


    A conserved molecular machinery centered on the Cdc42 GTPase regulates cell polarity in diverse organisms. Here we review findings from budding and fission yeasts that reveal both a conserved core polarity circuit and several adaptations that each organism exploits to fulfill the needs of its lifestyle. The core circuit involves positive feedback by local activation of Cdc42 to generate a cluster of concentrated GTP-Cdc42 at the membrane. Speciesspecific pathways regulate the timing of polarization during the cell cycle, as well as the location and number of polarity sites. Expected final online publication date for the Annual Review of Cell and Developmental Biology Volume 33 is October 6, 2017. Please see for revised estimates.

  19. Interaction Between Yeasts and Zinc

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  20. Yeasts: from genetics to biotechnology.

    Russo, S; Berkovitz Siman-Tov, R; Poli, G


    Yeasts have been known and used in food and alcoholic fermentations ever since the Neolithic Age. In more recent times, on the basis of their peculiar features and history, yeasts have become very important experimental models in both microbiological and genetic research, as well as the main characters in many fermentative production processes. In the last 40 years, advances in molecular biology and genetic engineering have made possible not only the genetic selection of organisms, but also the genetic modification of some of them, especially the simplest of them, such as bacteria and yeasts. These discoveries have led to the availability of new yeast strains fit to fulfill requests of industrial production and fermentation. Moreover, genetically modified and transformed yeasts have been constructed that are able to produce large amounts of biologically active proteins and enzymes. Thus, recombinant yeasts make it easier to produce drugs, biologically active products, diagnostics, and vaccines, by inexpensive and relatively simple techniques. Yeasts are going to become more and more important in the "biotechnological revolution" by virtue of both their features and their very long and safe use in human nutrition and industry.

  1. P-glycoprotein regulating biphasic insulin secretion in rat pancreatic beta cells

    TANG Yun-zhao; LI Dai-qing; SUN Fu-jun; LI Li; YU De-min


    Background A 65-kD mdr1(multi-drug resistance protein 1,P-glycoprotein)-like protein has been suggested to be the regulatory protein to the chloride channel protein 3(CIC-3)mediating insulin granules acidification and release in mouse pancreatic beta cells.But the protein has not been deeply investigated.In this study,we identified existence of the 65-kda protein in rat islets and preliminarily explored its biological functions.Methods Total RNAs of rat kidneys served as positive controls,and pancreas,islets and INS-1 cells were extracted for reverse-transcript PCR(RT-PCR),respectively.The cDNAs were run with specific primers selected from the mRNA of abcblb encoding P-glycoprotein.All PCR products were visualized in agarose gel electrophoresis and sequenced.Homogenates of rat islets and INS-1 cells were applied to SDS-PAGE.P-glycoprotein was detected by a specific monoclonal antibody,C219.Biphasic insulin release was measured in static incubations of rat islets with radioimmunology assay.Results Compared with positive control,expression of the P-glycoprotein mRNA segments were detected in the islets,INS-1 cells and pancreas.Sequence analysis confirmed that the PCR products were matched with mRNA of P-glycoprotein.A 65-kda protein was recognized by the antibody in the islets homogenate but not in that of INS-1 cells in Western-blotting.Instead,the homogenate of INS-1 cells contained a 160-kda protein recognized by the antibody.Insulin secretion of rat islets were stimulated by high glucose(16.7mmol/L),and showed biphasic curve during 60-minute incubation.After co-incubation with cyclosporine A(CsA),specific inhibitor to P-glycoprotein,the second phase of insulin secretion was reduced significantly while the first phase was not influenced.Conclusions The 65-kda protein expressed in rat islets is most likely a mini-P-glycoprotein.It may play a key role regulating biphasic insulin release.

  2. Blood-brain barrier P-glycoprotein function in Alzheimer's disease.

    van Assema, Daniëlle M E; Lubberink, Mark; Bauer, Martin; van der Flier, Wiesje M; Schuit, Robert C; Windhorst, Albert D; Comans, Emile F I; Hoetjes, Nikie J; Tolboom, Nelleke; Langer, Oliver; Müller, Markus; Scheltens, Philip; Lammertsma, Adriaan A; van Berckel, Bart N M


    A major pathological hallmark of Alzheimer's disease is accumulation of amyloid-β in senile plaques in the brain. Evidence is accumulating that decreased clearance of amyloid-β from the brain may lead to these elevated amyloid-β levels. One of the clearance pathways of amyloid-β is transport across the blood-brain barrier via efflux transporters. P-glycoprotein, an efflux pump highly expressed at the endothelial cells of the blood-brain barrier, has been shown to transport amyloid-β. P-glycoprotein function can be assessed in vivo using (R)-[(11)C]verapamil and positron emission tomography. The aim of this study was to assess blood-brain barrier P-glycoprotein function in patients with Alzheimer's disease compared with age-matched healthy controls using (R)-[(11)C]verapamil and positron emission tomography. In 13 patients with Alzheimer's disease (age 65 ± 7 years, Mini-Mental State Examination 23 ± 3), global (R)-[(11)C]verapamil binding potential values were increased significantly (P = 0.001) compared with 14 healthy controls (aged 62 ± 4 years, Mini-Mental State Examination 30 ± 1). Global (R)-[(11)C]verapamil binding potential values were 2.18 ± 0.25 for patients with Alzheimer's disease and 1.77 ± 0.41 for healthy controls. In patients with Alzheimer's disease, higher (R)-[(11)C]verapamil binding potential values were found for frontal, parietal, temporal and occipital cortices, and posterior and anterior cingulate. No significant differences between groups were found for medial temporal lobe and cerebellum. These data show altered kinetics of (R)-[(11)C]verapamil in Alzheimer's disease, similar to alterations seen in studies where P-glycoprotein is blocked by a pharmacological agent. As such, these data indicate that P-glycoprotein function is decreased in patients with Alzheimer's disease. This is the first direct evidence that the P-glycoprotein transporter at the blood-brain barrier is compromised in sporadic

  3. The simple detection of neuraminic acid-containing urinary oligosaccharides in patients with glycoprotein storage diseases.

    Sewell, A C


    Urine samples from patients with different types of glycoprotein storage disease were chromatographed by gel filtration and the fractions analysed for sialic acid. Patients with mucolipidoses I and II excreted the largest amounts of bound sialic acid. One patient with GM1 gangliosidosis showed an abnormal level of sialyloligosaccharide excretion. Other patients showed normal results. With the present method mucolipidoses I and II, together with GM1 gangliosidosis, are readily distinguished from other possible oligosaccharidurias.

  4. Ivermectin induces P-glycoprotein expression and function through mRNA stabilization in murine hepatocyte cell line.

    Ménez, Cécile; Mselli-Lakhal, Laïla; Foucaud-Vignault, Magali; Balaguer, Patrick; Alvinerie, Michel; Lespine, Anne


    Ivermectin is widely used in human and veterinary medicine for the control of helminth infections. Ivermectin is known to interact with P-glycoprotein (P-gp/MDR1), being a good substrate and a potent inhibitor, however, the influence of ivermectin on the expression of the transporter has not been investigated. Expression of P-glycoprotein was investigated in cultured mouse hepatocytes acutely exposed to ivermectin. The two P-glycoprotein murine isoforms, Mdr1a and Mdr1b, mRNA levels were assessed by real-time RT-PCR. Ivermectin induced a clear time- and concentration-dependent up-regulation of Mdr1a and Mdr1b mRNA levels (as early as a 12-h exposure and up to 2.5-fold at 10μM). Moreover, ivermectin-treated cells displayed enhanced cellular efflux of the P-glycoprotein substrate calcein that was inhibited by the P-glycoprotein blocker valspodar, providing evidence that the ivermectin-induced P-glycoprotein was functional. The mechanisms underlying these effects were investigated. Ivermectin-mediated Mdr1 mRNA induction was independent of the two nuclear receptors CAR and PXR, which are known to be involved in drug transporters regulation. Moreover, by using reporter cell lines that detects specific ligand-activated transcription factors, we showed that ivermectin did not displayed CAR, PXR or AhR ligand activities. However, studies with actinomycin D revealed that the half-life of Mdr1a and Mdr1b mRNA were significantly prolonged by two-fold in ivermectin-treated cells suggesting a post-transcriptional mode of ivermectin regulation. This study demonstrates for the first time that ivermectin induces P-glycoprotein overexpression through post-transcriptional mRNA stabilization, thus offering insight into the mechanism of reduced therapeutic efficacy and development of ivermectin-resistant parasites.

  5. Ceramide 1-Phosphate Increases P-Glycoprotein Transport Activity at the Blood-Brain Barrier via Prostaglandin E2 Signaling.

    Mesev, Emily V; Miller, David S; Cannon, Ronald E


    P-glycoprotein, an ATP-driven efflux pump, regulates permeability of the blood-brain barrier (BBB). Sphingolipids, endogenous to brain tissue, influence inflammatory responses and cell survival in vitro. Our laboratory has previously shown that sphingolipid signaling by sphingosine 1-phosphate decreases basal P-glycoprotein transport activity. Here, we investigated the potential for another sphingolipid, ceramide 1-phosphate (C1P), to modulate efflux pumps at the BBB. Using confocal microscopy and measuring luminal accumulation of fluorescent substrates, we assessed the transport activity of several efflux pumps in isolated rat brain capillaries. C1P treatment induced P-glycoprotein transport activity in brain capillaries rapidly and reversibly. In contrast, C1P did not affect transport activity of two other major efflux transporters, multidrug resistance protein 2 and breast cancer resistance protein. C1P induced P-glycoprotein transport activity without changing transporter protein expression. Inhibition of the key signaling components in the cyclooxygenase-2 (COX-2)/prostaglandin E2 signaling cascade (phospholipase A2, COX-2, multidrug resistance protein 4, and G-protein-coupled prostaglandin E2 receptors 1 and 2), abolished P-glycoprotein induction by C1P. We show that COX-2 and prostaglandin E2 are required for C1P-mediated increases in P-glycoprotein activity independent of transporter protein expression. This work describes how C1P activates a signaling cascade to dynamically regulate P-glycoprotein transport at the BBB and offers potential clinical targets to modulate neuroprotection and drug delivery to the CNS.

  6. [Overexpression of FKS1 to improve yeast autolysis-stress].

    Li, Jia; Wang, Jinjing; Li, Qi


    With the development of high gravity brewing, yeast cells are exposed to multiple brewing-associated stresses, such as increased osmotic pressure, enhanced alcohol concentration and nutritional imbalance. These will speed up yeast autolysis, which seriously influence beer flavor and quality. To increase yeast anti-autolytic ability, FKS1 overexpression strain was constructed by 18S rDNA. The concentration of β-1,3-glucan of overexpression strain was 62% higher than that of wild type strain. Meantime, FKS1 overexpression strain increased anti-stress ability at 8% ethanol, 0.4 mol/L NaCl and starvation stress. Under simulated autolysis, FKS1 showed good anti-autolytic ability by slower autolysis. These results confirms the potential of FKS1 overexpression to tackle yeast autolysis in high-gravity brewing.

  7. Baculovirus Coinfection Strategy for Improved Galactosylation of Recombinant Glycoprotein Produced by Insect Cell Culture

    Ney, Yap Wei; Rahman, Badarulhisam Abdul; Aziz, Azila Abdul

    Baculovirus Expression Vector System (BEVS) is widely used for the production of recombinant glycoproteins, but it is not ideal for pharmaceutical glycoprotein production due to incomplete glycosylation. The factors that ensure successful glycosylation are the presence of sufficient amount of glycosyltransferases, sugar nucleotides as the substrate donor and the recombinant protein as the substrate acceptor. In this study, we analyzed the galactosylation process by the introduction of ß-1,4galactosyltransferase (ß-1,4GalT) as the glycosyltransferase of interest and uridine-5`-diphosphogalactose (UDP-Gal) as the substrate donor. Recombinant human transferrin (rhTf) as a model protein was used as the substrate acceptor. Insect cell lines have been reported to produce a small amount of ß-1,4GalT and thus insufficient for effective galactosylation. In this study, we developed a method to produce galactosylated rhTf and optimized the expression of rhTf with better N-glycan quality. Recombinant ß-1,4GalT was introduced during protein expression by the coinfection of the BEVS with baculovirus carrying bovine ß-1,4GalT. To evaluate the extent of galactosylation by the coinfection strategy, a binding assay was established. In this binding assay, glycoprotein acceptor was absorbed onto ELISA plate surface. A lectin known as Ricinus communis agglutinin-I (RCA-I) labeled with peroxidase, was added and allowed to recognize Gal ß1>4GlcNAc group on the N-glycan of the glycoprotein, followed by appropriate color reaction measurements. Coexpression between rhTf and ß-1,4GalT did not show encouraging results due to the reduction of UDP-Gal upon baculovirus infection. This interesting finding suggested that the introduction of ß-1,4GalT alone was not sufficient for successful galactosylation. Alternatively, post harvest glycosylation method strategy seems to be a promising technique in the improvement of glycoprotein quality.

  8. Interactions between Drosophila and its natural yeast symbionts—Is Saccharomyces cerevisiae a good model for studying the fly-yeast relationship?

    Don Hoang


    preference of D. melanogaster when given the choice between a naturally associated yeast and S. cerevisiae. We do not find a correlation between preferred yeasts and those that persist in the intestine. Notably, in no instances is S. cerevisiae preferred over the naturally associated strains. Overall, our results show that D. melanogaster-yeast interactions are more complex than might be revealed in experiments that use only S. cerevisiae. We propose that future research utilize other yeasts, and especially those that are naturally associated with Drosophila, to more fully understand the role of yeasts in Drosophila biology. Since the genetic basis of host–microbe interactions is shared across taxa and since many of these genes are initially discovered in D. melanogaster, a more realistic fly-yeast model system will benefit our understanding of host–microbe interactions throughout the animal kingdom.

  9. Salivary agglutinin/glycoprotein-340/DMBT1

    Ligtenberg, Antoon J M; Veerman, Enno C I; Nieuw Amerongen, Arie V


    Salivary agglutinin (SAG), lung glycoprotein-340 (gp-340) and Deleted in Malignant Brain Tumours 1 (DMBT1) are three names for identical proteins encoded by the dmbt1 gene. DMBT1/SAG/gp-340 belongs to the scavenger receptor cysteine-rich (SRCR) superfamily of proteins, a superfamily of secreted...... or membrane-bound proteins with SRCR domains that are highly conserved down to sponges, the most ancient metazoa. On the one hand, DMBT1 may represent an innate defence factor acting as a pattern recognition molecule. It interacts with a broad range of pathogens, including cariogenic streptococci...... and Helicobacter pylori, influenza viruses and HIV, but also with mucosal defence proteins, such as IgA, surfactant proteins and MUC5B. Stimulation of alveolar macrophage migration, suppression of neutrophil oxidative burst and activation of the complement cascade point further to an important role...

  10. In vitro antifungal activity of fluconazole and voriconazole against non-Candida yeasts and yeast-like fungi clinical isolates.

    Mandras, Narcisa; Roana, Janira; Scalas, Daniela; Fucale, Giacomo; Allizond, Valeria; Banche, Giuliana; Barbui, Anna; Li Vigni, Nicolò; Newell, Vance A; Cuffini, Anna Maria; Tullio, Vivian


    The risk of opportunistic infections caused by non-Candida yeasts and yeast-like fungi is increasingly common, mainly in immunocompromised patients. Appropriate first-line therapy has not been defined and standardized, mainly due to the low number of cases reported. To improve empirical treatment guidelines, we describe the susceptibility profile to fluconazole and voriconazole of 176 non-Candida yeasts and yeast-like fungi collected from hospitals in Piedmont, North West Italy from January 2009 to December 2013. The results showed that most isolates are susceptible to voriconazole (94%), but less susceptible to fluconazole (78%), suggesting that voriconazole could be used as first-line therapy in infections caused by these fungi.

  11. Immunological aspects of pregnancy-associated glycoproteins.

    Dosogne, H; Massart-Leën, A M; Burvenich, C


    The incidence of severe cases of acute E. coli mastitis in dairy cows is highest during early lactation. This phenomenon has been associated with a decreased function and decreased numbers of circulating polymorphonuclear neutrophil leukocytes (PMN). The cause of this impaired function and decreased number is poorly understood. Stress, hormonal and metabolic alterations around parturition and the onset of lactation may play a role in this phenomenon. Several molecules, such as cortisol and beta-hydroxybutyrate have been found to alter the oxidative burst activity of circulating PMN around parturition. Pregnancy-Associated Glycoprotein (bPAG) could also be involved. The theory of immunosuppression by bPAG was investigated because analogous glycoproteins produced by the placenta of other species exert local immunosuppression in order to maintain the histoincompatible feto-maternal unit. The production and subsequent release into the maternal circulation of bPAG is ensured by the binucleate cells from the trophoblast and starts already at implantation. However, peak levels are only reached 1 week before parturition. Due to the long half-life time of this molecule, high levels are found in plasma until 2 weeks after calving. The co-occurrence of the impairment of PMN oxidative burst activity in the early postpartum period and a peak in plasma bPAG concentrations might support the hypothesis of an immunosuppressive effect of PAG. Moreover, an inhibitory effect of bPAG on the proliferation of bovine bone marrow progenitor cells has been found recently in our laboratory. bPAG occurs in colostrum, but its effect on milk cells has not been clarified. It is concluded that interaction between the physiology of reproduction and lactation on the one side and immune function on the other side in dairy cattle requires further research.

  12. Marine Yeasts and Their Applications in Mariculture

    CHI Zhenming; LIU Zhiqiang; GAO Lingmei; GONG Fang; MA Chunling; WANG Xianghong; LI Haifeng


    The terrestrial yeasts have been receiving great attention in science and industry for over one hundred years because they can produce many kinds of bioactive substances. However, little is known about the bioactive substances of marine yeasts. In recent years, it has been found that marine yeasts have wide applications in mariculture and other fields.Therefore, marine yeasts, the bioactive substances from them and the applications of marine yeasts themselves and the bioactive substances they produced are reviewed in this paper.

  13. Applications of yeast flocculation in biotechnological processes

    Domingues, Lucília; Vicente, A.A.; Lima, Nelson; Teixeira, J. A.


    A review on the main aspects associated with yeast flocculation and its application in biotechnological processes is presented. This subject is addressed following three main aspects – the basics of yeast flocculation, the development of “new” flocculating yeast strains and bioreactor development. In what concerns the basics of yeast flocculation, the state of the art on the most relevant aspects of mechanism, physiology and genetics of yeast flocculation is reported. The const...

  14. A facile strategy for fabrication of nano-ZnO/yeast composites and their adsorption mechanism towards lead (II) ions

    Zhang, Wei; Meng, Lingyin [College of Science, Sichuan Agricultural University, Yaan 625014 (China); Mu, Guiqin [Maize Research Institute of Sichuan Agricultural University, Wenjiang 611130 (China); Zhao, Maojun; Zou, Ping [College of Science, Sichuan Agricultural University, Yaan 625014 (China); Zhang, Yunsong, E-mail: [College of Science, Sichuan Agricultural University, Yaan 625014 (China)


    Highlights: • Nano-ZnO/yeast composites were fabricated by alkali hydrothermal method. • Nano-ZnO was in-situ achieved and anchored on the yeast surface. • Alkali and hydrothermal process cause more exposed funcitional groups on yeast. • Nano-ZnO/yeast composites show higher Pb{sup 2+} adsorption ability than pristine yeast. • Nano-ZnO and exposed functional groups synergistically participate in adsorption. - Abstract: Nano-ZnO/yeast composites were successfully fabricated by one-step alkali hydrothermal method, and their adsorption properties for Pb{sup 2+} ions were also evaluated. Various influencing parameters of nano-ZnO/yeast composites, such as initial pH, contact time and initial Pb{sup 2+} concentration were investigated, respectively. The maximum adsorption capacity of nano-ZnO/yeast composites for Pb{sup 2+} (31.72 mg g{sup −1}) is 2.03 times higher than that of pristine yeast (15.63 mg g{sup −1}). The adsorption mechanism of nano-ZnO/yeast composites was studied by a series of techniques. Scanning electron microscopy (SEM) showed that nano-ZnO is evenly deposited on yeast surface. Atomic force microscopy (AFM) analysis exhibited that the yeast surface is rougher than that of pristine yeast. Energy dispersive X-ray detector (EDX) and X-ray diffraction (XRD) indicated the existence of nano-ZnO on yeast surface. Additionally, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) measurements further illustrated that alkali hydrothermal method causes not only the generation and anchorage of nano-ZnO on yeast surface but also the exposure of more functional groups (such as amino, carboxyl groups etc.) on yeast surface, both of which could adsorb Pb{sup 2+} via synergistic effect.

  15. Sexual differentiation in fission yeast

    Egel, R; Nielsen, O; Weilguny, D


    The regulation of sexual reproduction in yeast constitutes the highest level of differentiation observed in these unicellular organisms. The various ramifications of this system involve DNA rearrangement, transcriptional control, post-translational modification (such as protein phosphorylation...

  16. Biotechnical Microbiology, yeast and bacteria

    Villadsen, Ingrid Stampe


    This section contains the following single lecture notes: Eukaryotic Cell Biology. Kingdom Fungi. Cell Division. Meiosis and Recombination. Genetics of Yeast. Organisation of the Chromosome. Organization and genetics of the mitochondrial Geneme. Regulatio of Gene Expression. Intracellular...

  17. Biotechnical Microbiology, yeast and bacteria

    Villadsen, Ingrid Stampe


    This section contains the following single lecture notes: Eukaryotic Cell Biology. Kingdom Fungi. Cell Division. Meiosis and Recombination. Genetics of Yeast. Organisation of the Chromosome. Organization and genetics of the mitochondrial Geneme. Regulatio of Gene Expression. Intracellular Compart...

  18. Assimilation of nitrate by yeasts.

    Siverio, José M


    Nitrate assimilation has received much attention in filamentous fungi and plants but not so much in yeasts. Recently the availability of classical genetic and molecular biology tools for the yeast Hansenula polymorpha has allowed the advance of the study of this metabolic pathway in yeasts. The genes YNT1, YNR1 and YNI1, encoding respectively nitrate transport, nitrate reductase and nitrite reductase, have been cloned, as well as two other genes encoding transcriptional regulatory factors. All these genes lie closely together in a cluster. Transcriptional regulation is the main regulatory mechanism that controls the levels of the enzymes involved in nitrate metabolism although other mechanisms may also be operative. The process involved in the sensing and signalling of the presence of nitrate in the medium is not well understood. In this article the current state of the studies of nitrate assimilation in yeasts as well as possible venues for future research are reviewed.

  19. Engineering antibodies by yeast display.

    Boder, Eric T; Raeeszadeh-Sarmazdeh, Maryam; Price, J Vincent


    Since its first application to antibody engineering 15 years ago, yeast display technology has been developed into a highly potent tool for both affinity maturing lead molecules and isolating novel antibodies and antibody-like species. Robust approaches to the creation of diversity, construction of yeast libraries, and library screening or selection have been elaborated, improving the quality of engineered molecules and certainty of success in an antibody engineering campaign and positioning yeast display as one of the premier antibody engineering technologies currently in use. Here, we summarize the history of antibody engineering by yeast surface display, approaches used in its application, and a number of examples highlighting the utility of this method for antibody engineering.

  20. Evaluation of [18F]MC225 as a PET radiotracer for measuring P-glycoprotein function at the blood-brain barrier in rats: Kinetics, metabolism, and selectivity.

    Savolainen, Heli; Windhorst, Albert D.; Elsinga, Philip H.; Cantore, Mariangela; Colabufo, Nicola A.; Willemsen, Antoon T.M.; Luurtsema, Geert


    P-glycoprotein is a protective efflux transporter at the blood-brain barrier showing altered function in many neurological disorders. The purpose of this study was to validate [18F]MC225 as a radiotracer for measuring P-glycoprotein function with positron emission tomography. Three groups of Sprague

  1. Sociobiology of the budding yeast

    Dominika M Wloch-Salamon


    Social theory has provided a useful framework for research with microorganisms. Here I describe the advantages and possible risks of using a well-known model organism, the unicellular yeast Saccharomyces cerevisiae, for sociobiological research. I discuss the problems connected with clear classification of yeast behaviour based on the fitness-based Hamilton paradigm. Relevant traits include different types of communities, production of flocculins, invertase and toxins, and the presence of apoptosis.

  2. Study of amyloids using yeast

    Wickner, Reed B.; Kryndushkin, Dmitry; Shewmaker, Frank; McGlinchey, Ryan; Edskes, Herman K.


    Saccharomyces cerevisiae has been a useful model organism in such fields as the cell cycle, regulation of transcription, protein trafficking and cell biology, primarily because of its ease of genetic manipulation. This is no less so in the area of amyloid studies. The endogenous yeast amyloids described to date include prions, infectious proteins (Table 1), and some cell wall proteins (1). and amyloids of humans and a fungal prion have also been studied using the yeast system. Accordingly, th...

  3. Effects of natural nuclear factor-kappa B inhibitors on anticancer drug efflux transporter human P-glycoprotein.

    Nabekura, Tomohiro; Hiroi, Takashi; Kawasaki, Tatsuya; Uwai, Yuichi


    Drug efflux transporter P-glycoprotein plays an important role in cancer chemotherapy. The nuclear factor-κB (NF-κB) transcription factors play critical roles in development and progression of cancer. In this study, the effects of natural compounds that can inhibit NF-κB activation on the function of P-glycoprotein were investigated using human MDR1 gene-transfected KB/MDR1 cells. The accumulation of daunorubicin or rhodamine 123, fluorescent substrates of P-glycoprotein, in KB/MDR1 cells increased in the presence of caffeic acid phenetyl ester (CAPE), licochalcone A, anacardic acid, celastrol, xanthohumol, magnolol, and honokiol in a concentration-dependent manner. In contrast, lupeol, zerumbone, thymoquinone, emodin, and anethol had no effects. The ATPase activities of P-glycoprotein were stimulated by CAPE, licochalcone A, anacardic acid, celastrol, xanthohumol, magnolol, and honokiol. Tumor necrosis factor (TNF)-α stimulated NF-κB activation was inhibited by CAPE, licochalcone A, anacardic acid, and xanthohumol. KB/MDR1 cells were sensitized to vinblastine cytotoxicity by CAPE, licochalcone A, anacardic acid, xanthohumol, magnolol, and honokiol, showing that these natural NF-κB inhibitors reverse multidrug resistance. These results suggest that natural compounds, such as CAPE, licochalcone A, and anacardic acid, have dual inhibitory effects on the anticancer drug efflux transporter P-glycoprotein and NF-κB activation, and may become useful to enhance the efficacy of cancer chemotherapy.

  4. [Glycoprotein hexoses in feces of infants with lactose intolerance].

    Filippvskiĭ, G K; Klimov, L Ia


    A modified method for estimation of total glycoprotein hexoses in feces, based on their measurements in the blood serum, is presented. Sixty-six nursing children with lactose intolerance, breastfed or formula fed, were examined; formula fed babies were kept on mixtures with high and low lactose content. Glycoprotein hexose parameters were as follows (X +/- m): 13.51 +/- 1.93, 12.05 +/- 2.20, and 3.69 +/- 0.47 g/l feces. In control children without lactose intolerance (n = 33) this value was 3.6 +/- 0.79 g/l. Increased glycoprotein excretion is connected with glycocalix and small intestinal enterocyte alteration.

  5. Utilization of spent brewer’s yeast Saccharomyces cerevisiae for the production of yeast enzymatic hydrolysate

    M Bayarjargal


    Full Text Available Spent brewer’s yeast (Saccharomyces cerevisiae is a rich source of protein, vitamins and widely used as a raw material for production of food supplements. The autolysis and enzymatic treatment of spent brewer’s yeast using Pancreatin (2.5% and Flavourzyme (2.5% were performed at 45 °C and 50 °C, respectively. The autolysis and hydrolysis processes were evaluated by determining a soluble solids, soluble protein concentration and α-amino nitrogen content in a reaction mixture. The yield of pancreatic digest and α-amino nitrogen content was high in comparison with autolysis and Flavourzyme treatment. The total solids recovery in dry Yeast hydrolysate was about 50%, a protein and α-amino nitrogen content was 55.9 and 4.8%, respectively. These results show the possibility of utilizing the spent brewer’s yeast as hydrolysate using hydrolytic enzymes and use it as a food supplement after biological experiments.DOI: Mongolian Journal of Chemistry Vol.12 2011: 88-91

  6. Evidence for a Far East Asian origin of lager beer yeast.

    Bing, Jian; Han, Pei-Jie; Liu, Wan-Qiu; Wang, Qi-Ming; Bai, Feng-Yan


    Lager-brewing arose in 15th century Bavaria [1] and is nowadays the most popular technique for alcoholic beverage production in the world. The technique is characterized by low temperature fermentation using the domesticated yeast Saccharomyces pastorianus (synonym S. carlsbergensis). It has been clear that the lager yeast is a hybrid with one portion of its genome having originated from S. cerevisiae ale yeast [2]. However, the source of the non-ale subgenome, which endows lager yeast with cold tolerance, had been a matter of debate [3]. Recently, a Patagonian origin hypothesis of lager yeast has been proposed based on the discovery of a new cryotolerant Saccharomyces species from Patagonian native forests of Argentina [4]. This yeast, named S. eubayanus, exhibited the closest known match (99.56%) to the non-ale portion of lager yeast and, thus, was believed to be its progenitor. However, we now show that this yeast species is likely native to the Tibetan Plateau. One of the Tibetan populations of the species exhibits closer affinity with lager yeast than the Patagonian population as inferred from population genetics and genome sequence analyses. We thus provide strong evidence for a Far East Asian origin hypothesis of lager yeast, which apparently corresponds better with geography and world trade history. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Extracellular enzymatic activities and physiological profiles of yeasts colonizing fruit trees.

    Molnárová, Jana; Vadkertiová, Renáta; Stratilová, Eva


    Yeasts form a significant and diverse part of the phyllosphere microbiota. Some yeasts that inhabit plants have been found to exhibit extracellular enzymatic activities. The aim of the present study was to investigate the ability of yeasts isolated from leaves, fruits, and blossoms of fruit trees cultivated in Southwest Slovakia to produce extracellular enzymes, and to discover whether the yeasts originating from these plant organs differ from each other in their physiological properties. In total, 92 strains belonging to 29 different species were tested for: extracellular protease, β-glucosidase, lipase, and polygalacturonase activities; fermentation abilities; the assimilation of xylose, saccharose and alcohols (methanol, ethanol, glycerol); and for growth in a medium with 33% glucose. The black yeast Aureobasidium pullulans showed the largest spectrum of activities of all the species tested. Almost 70% of the strains tested demonstrated some enzymatic activity, and more than 90% utilized one of the carbon compounds tested. Intraspecies variations were found for the species of the genera Cryptococcus and Pseudozyma. Interspecies differences of strains exhibiting some enzymatic activities and utilizing alcohols were also noted. The largest proportion of the yeasts exhibited β-glucosidase activity and assimilated alcohols independently of their origin. The highest number of strains positive for all activities tested was found among the yeasts associated with leaves. Yeasts isolated from blossoms assimilated saccharose and D-xylose the most frequently of all the yeasts tested. The majority of the fruit-inhabiting yeasts grew in the medium with higher osmotic pressure.

  8. Study of amyloids using yeast

    Wickner, Reed B.; Kryndushkin, Dmitry; Shewmaker, Frank; McGlinchey, Ryan; Edskes, Herman K.


    Summary Saccharomyces cerevisiae has been a useful model organism in such fields as the cell cycle, regulation of transcription, protein trafficking and cell biology, primarily because of its ease of genetic manipulation. This is no less so in the area of amyloid studies. The endogenous yeast amyloids described to date include prions, infectious proteins (Table 1), and some cell wall proteins (1). and amyloids of humans and a fungal prion have also been studied using the yeast system. Accordingly, the emphasis of this chapter will be on genetic, biochemical, cell biological and physical methods particularly useful in the study of yeast prions and other amyloids studied in yeast. We limit our description of these methods to those aspects which have been most useful in studying yeast prions, citing more detailed expositions in the literature. Volumes on yeast genetics methods (2–4), and on amyloids and prions (5, 6) are useful, and Masison has edited a volume of Methods on “Identification, analysis and characterization of fungal prions” which covers some of this territory (7). We also outline some useful physical methods, pointing the reader to more extensive and authoratative descriptions. PMID:22528100

  9. The Fermentative and Aromatic Ability of Kloeckera and Hanseniaspora Yeasts

    Díaz-Montaño, Dulce M.; de Jesús Ramírez Córdova, J.

    Spontaneous alcoholic fermentation from grape, agave and others musts into an alcoholic beverage is usually characterized by the presence of several non-Saccharomyces yeasts. These genera yeasts are dominant in the early stages of the alcoholic fermentation. However the genera Hanseniaspora and Kloeckera may survive at a significant level during fermentation and can influence the chemical composition of the beverage. Several strains belonging to the species Kloeckera api-culata and Hanseniaspora guilliermondii have been extensively studied in relation to the formation of some metabolic compounds affecting the bouquet of the final product. Indeed some apiculate yeast showed positive oenological properties and their use in the alcoholic fermentations has been suggested to enhance the aroma and flavor profiles. The non- Saccharomyces yeasts have the capability to produce and secrete enzymes in the medium, such as β -glucosidases, which release monoterpenes derived from their glycosylated form. These compounds contribute to the higher fruit-like characteristic of final product. This chapter reviews metabolic activity of Kloeckera and Hanseniaspora yeasts in several aspects: fermentative capability, aromatic compounds production and transformation of aromatic precursor present in the must, also covers the molecular methods for identifying of the yeast

  10. Biochemical characterization and growth patterns of new yeast isolates.

    Djegui, Kadjogbé Y; Gachomo, Emma W; Hounhouigan, Djidjoho J; Kayodé, Adéchola P P; Kotchoni, Simeon O


    African sorghum opaque beers play a vital role in the diet of millions of consumers. In the current study we investigated the growth profiles of yeast strains isolated from kpete-kpete, a traditional starter used to produce tchoukoutou, an opaque sorghum beer in Benin. 10 yeast strains were isolated from sorghum beer starters and cultivated under both liquid and solid media for phenotypic growth characterization. All yeast isolates were able to grow both on solid and liquid media. Based on their growth profiles, the isolates were clustered into three groups: (i) the aggressive growth pattern (30%), (ii) the moderate growth pattern (50%), and (iii) the slow growth pattern (20%). Based on gene expression pattern, absorbance (A(600 nm)) and diameter of growth in both liquid and solid media respectively, yeast strains YK34, YK15 and YK48 were clustered in the first group, and referred to as the most aggressive growth strains, followed by group 2 (YK24, YK5, YK12, YK20, YK2) and group 3 (YK37, YK41). This growth pattern was confirmed by Invertase gene expression profiling of the yeasts showing group 1 with high level of Invertase gene expression followed by group 2 and group 3 respectively. Our results suggest that YK34, YK15 and YK48 and YK2 yeast strains constitute the best candidates in fermentation of sorghum beer production based on growth rate and assimilation of carbon and nitrogen sources.

  11. Red Yeast Rice

    Nguyen, Thu; Karl, Mitchell; Santini, Antonello


    Red yeast rice (RYR), produced by the fermentation of the Monascus purpureus mold, has been used for a long time in Asian cuisine and traditional medicine. It consists of multiple bioactive substances, including monacolins, which potentially can be used as a nutraceutical. Monacolin K, which is chemically identical to lovastatin, has been recognized as responsible for the cholesterol-reducing effect of this compound. While the European Food Safety Authority maintains that the use of monacolin K from RYR preparations of at least 10 mg can produce a normal blood cholesterol level, the United States Food and Drug Administration considers monacolin K, due to its similarity with lovastatin, an unapproved drug, and therefore marketing of products that label the monacolin content is prohibited. This mini-review summarizes the benefit of RYR in hyperlipidemia, maintains RYR use as a food, and addresses the importance of regulation regarding RYR and the need for clinical data and clear label information for consumers with reference to a toxin-free, non-augmented, standardized amount of monacolins. PMID:28257063

  12. Red Yeast Rice

    Thu Nguyen


    Full Text Available Red yeast rice (RYR, produced by the fermentation of the Monascus purpureus mold, has been used for a long time in Asian cuisine and traditional medicine. It consists of multiple bioactive substances, including monacolins, which potentially can be used as a nutraceutical. Monacolin K, which is chemically identical to lovastatin, has been recognized as responsible for the cholesterolreducing effect of this compound. While the European Food Safety Authority maintains that the use of monacolin K from RYR preparations of at least 10 mg can produce a normal blood cholesterol level, the United States Food and Drug Administration considers monacolin K, due to its similarity with lovastatin, an unapproved drug, and therefore marketing of products that label the monacolin content is prohibited. This mini-review summarizes the benefit of RYR in hyperlipidemia, maintains RYR use as a food, and addresses the importance of regulation regarding RYR and the need for clinical data and clear label information for consumers with reference to a toxin-free, nonaugmented, standardized amount of monacolins.

  13. Hantavirus Gn and Gc glycoproteins self-assemble into virus-like particles.

    Acuña, Rodrigo; Cifuentes-Muñoz, Nicolás; Márquez, Chantal L; Bulling, Manuela; Klingström, Jonas; Mancini, Roberta; Lozach, Pierre-Yves; Tischler, Nicole D


    How hantaviruses assemble and exit infected cells remains largely unknown. Here, we show that the expression of Andes (ANDV) and Puumala (PUUV) hantavirus Gn and Gc envelope glycoproteins lead to their self-assembly into virus-like particles (VLPs) which were released to cell supernatants. The viral nucleoprotein was not required for particle formation. Further, a Gc endodomain deletion mutant did not abrogate VLP formation. The VLPs were pleomorphic, exposed protrusions and reacted with patient sera.

  14. QTL mapping of sake brewing characteristics of yeast.

    Katou, Taku; Namise, Masahiro; Kitagaki, Hiroshi; Akao, Takeshi; Shimoi, Hitoshi


    A haploid sake yeast strain derived from the commercial diploid sake yeast strain Kyokai no. 7 showed better characteristics for sake brewing compared to the haploid laboratory yeast strain X2180-1B, including higher production of ethanol and aromatic components. A hybrid of these two strains showed intermediate characteristics in most cases. After sporulation of the hybrid strain, we obtained 100 haploid segregants of the hybrid. Small-scale sake brewing tests of these segregants showed a smooth continuous distribution of the sake brewing characteristics, suggesting that these traits are determined by multiple quantitative trait loci (QTLs). To examine these sake brewing characteristics at the genomic level, we performed QTL analysis of sake brewing characteristics using 142 DNA markers that showed heterogeneity between the two parental strains. As a result, we identified 25 significant QTLs involved in the specification of sake brewing characteristics such as ethanol fermentation and the production of aromatic components.

  15. Prioritization of gene regulatory interactions from large-scale modules in yeast

    Bringas Ricardo


    Full Text Available Abstract Background The identification of groups of co-regulated genes and their transcription factors, called transcriptional modules, has been a focus of many studies about biological systems. While methods have been developed to derive numerous modules from genome-wide data, individual links between regulatory proteins and target genes still need experimental verification. In this work, we aim to prioritize regulator-target links within transcriptional modules based on three types of large-scale data sources. Results Starting with putative transcriptional modules from ChIP-chip data, we first derive modules in which target genes show both expression and function coherence. The most reliable regulatory links between transcription factors and target genes are established by identifying intersection of target genes in coherent modules for each enriched functional category. Using a combination of genome-wide yeast data in normal growth conditions and two different reference datasets, we show that our method predicts regulatory interactions with significantly higher predictive power than ChIP-chip binding data alone. A comparison with results from other studies highlights that our approach provides a reliable and complementary set of regulatory interactions. Based on our results, we can also identify functionally interacting target genes, for instance, a group of co-regulated proteins related to cell wall synthesis. Furthermore, we report novel conserved binding sites of a glycoprotein-encoding gene, CIS3, regulated by Swi6-Swi4 and Ndd1-Fkh2-Mcm1 complexes. Conclusion We provide a simple method to prioritize individual TF-gene interactions from large-scale transcriptional modules. In comparison with other published works, we predict a complementary set of regulatory interactions which yields a similar or higher prediction accuracy at the expense of sensitivity. Therefore, our method can serve as an alternative approach to prioritization for

  16. Yeasts present during spontaneous fermentation of Lake Erie Chardonnay, Pinot Gris and Riesling.

    van Keulen, Harry; Lindmark, Donald G; Zeman, Kathleen E; Gerlosky, Wes


    The composition of wine yeast populations, present during spontaneous fermentation of Chardonnay, Pinot Gris and Riesling from the Lake Erie Region was studied. A combination of biochemical and molecular techniques was used to identify non-Saccharomyces and Saccharomyces yeast isolates. The biochemical techniques included analysis of yeast isolates by sugar fermentation and carbon and nitrogen assimilation. Molecular techniques involved ribotyping of a highly variable segment in the 26S rRNA gene using DNA sequence analysis and restriction fragment length polymorphism of amplified DNA. The results show that of the non-Saccharomyces yeasts, several related species of Hanseniaspora, were the most abundant yeasts present during early stages of fermentation. Later in fermentation S. cerevisiae dominated, and based on biochemical analyses consisted of a heterogeneous group of genotypes. There were no major differences in yeast populations among the three types of juice analyzed.

  17. Detection of glycoproteins in the Acanthamoeba plasma membrane

    Paatero, G.I.L. (Abo Akademi (Finland)); Gahmberg, C.G. (Univ. of Helsinki (Finland))


    In the present study the authors have shown that glycoproteins are present in the plasma membrane of Acanthamoeba castellanii by utilizing different radioactive labeling techniques. Plasma membrane proteins in the amoeba were iodinated by {sup 125}I-lactoperoxidase labeling and the solubilized radiolabeled glycoproteins were separated by lectin-Sepharose affinity chromatography followed by polyacrylamide gel electrophoresis. The periodate/NaB{sup 3}H{sub 4} and galactose oxidase/NaB{sup 3}H{sub 4} labeling techniques were used for labeling of surface carbohydrates in the amoeba. Several surface-labeled glycoproteins were observed in addition to a diffusely labeled region with M{sub r} of 55,000-75,000 seen on electrophoresis, which could represent glycolipids. The presence of glycoproteins in the plasma membrane of Acanthamoeba castellanii was confirmed by metabolic labeling with ({sup 35}S)methionine followed by lectin-Sepharose affinity chromatography and polyacrylamide gel electrophoresis.

  18. L-histidine inhibits biofilm formation and FLO11-associated phenotypes in Saccharomyces cerevisiae flor yeasts.

    Bou Zeidan, Marc; Zara, Giacomo; Viti, Carlo; Decorosi, Francesca; Mannazzu, Ilaria; Budroni, Marilena; Giovannetti, Luciana; Zara, Severino


    Flor yeasts of Saccharomyces cerevisiae have an innate diversity of Flo11p which codes for a highly hydrophobic and anionic cell-wall glycoprotein with a fundamental role in biofilm formation. In this study, 380 nitrogen compounds were administered to three S. cerevisiae flor strains handling Flo11p alleles with different expression levels. S. cerevisiae strain S288c was used as the reference strain as it cannot produce Flo11p. The flor strains generally metabolized amino acids and dipeptides as the sole nitrogen source, although with some exceptions regarding L-histidine and histidine containing dipeptides. L-histidine completely inhibited growth and its effect on viability was inversely related to Flo11p expression. Accordingly, L-histidine did not affect the viability of the Δflo11 and S288c strains. Also, L-histidine dramatically decreased air-liquid biofilm formation and adhesion to polystyrene of the flor yeasts with no effect on the transcription level of the Flo11p gene. Moreover, L-histidine modified the chitin and glycans content on the cell-wall of flor yeasts. These findings reveal a novel biological activity of L-histidine in controlling the multicellular behavior of yeasts [corrected].

  19. Characterization of an equine herpesvirus type 1 gene encoding a glycoprotein (gp13) with homology to herpes simplex virus glycoprotein C.

    Allen, G P; Coogle, L D


    The molecular structure of the equine herpesvirus type 1 (EHV-1) gene encoding glycoprotein 13 (gp13) was analyzed. The gene is contained within a 1.8-kilobase AccI-EcoRI restriction fragment mapping at map coordinates 0.136 to 0.148 in the UL region of the EHV-1 genome and is transcribed from right to left. Determination of the nucleotide sequence of the DNA fragment revealed a complete transcriptional unit composed of typical regulatory promoter elements upstream to a long open reading frame (1,404 base pairs) that encoded a 468-amino-acid primary translation product of 51 kilodaltons. The predicted protein has the characteristic features of a membrane-spanning protein: an N-terminal signal sequence, a hydrophobic membrane anchor region, a charged C-terminal cytoplasmic tail, and an exterior domain with nine potential N-glycosylation sites. The EHV-1 DNA sequences expressed in lambda gt11 as gp13 epitopes were present in the open reading frame. Amino acid sequences composing a major antigenic site, recognized by 35% of a panel of 42 anti-gp13 monoclonal antibodies, were identified in the N-terminal surface domain of the deduced gp13 molecule. Comparison of the EHV-1 gp13 DNA sequence with that encoding glycoproteins of other alphaherpesviruses revealed no detectable homology. However, a search for homology at the amino acid level showed regions of significant sequence similarity between the amino acids of the carboxy half of EHV-1 gp13 and those of the same region of gC-like glycoproteins of herpes simplex virus (gC-1 and gC-2), pseudorabies herpesvirus (gIII), and varicella-zoster virus (gp66). The sequences of the N-terminal portion of gp13, by contrast, were much less conserved. The results of these studies indicate that EHV-1 gp13 is the structural homolog of herpes simplex virus glycoprotein C and further suggest that the epitope-containing N-terminal amino acid sequences of the herpesvirus gC-like glycoproteins have undergone more extensive evolutionary

  20. KDN-containing glycoprotein from loach skin mucus.

    Nakagawa, H; Hama, Y; Sumi, T; Li, S C; Li, Y T


    It has been widely recognized that the mucus coat of fish plays a variety of important physical, chemical, and physiological functions. One of the major constituents of the mucus coat is mucus glycoprotein. We found that sialic acids in the skin mucus of the loach, Misgurnus anguillicaudatus, consisted predominantly of KDN. Subsequently, we isolated KDN-containing glycoprotein from loach skin mucus and characterized its chemical nature and structure. Loach mucus glycoprotein was purified from the Tris-HCl buffer extract of loach skin mucus by DEAE-cellulose chromatography, Nuclease P1 treatment, and Sepharose CL-6B gel filtration. The purified mucus glycoprotein was found to contain 38.5 KDN, 0.5% NeuAc, 25.0% GalNAc, 3.5% Gal, 0.5% GlcNAc and 28% amino acids. Exhaustive Actinase digestion of the glycoprotein yielded a glycopeptide with a higher sugar content and higher Thr and Ser contents. The molecular size of this glycopeptide was approximately 1/12 of the intact glycoprotein. These results suggest that approximately 11 highly glycosylated polypeptide units are linked in tandem through nonglycosylated peptides to form the glycoporotein molecule. The oligosaccharide alditols liberated from the loach mucus glycoprotein by alkaline borohydride treatment were separated by Sephadex G-25 gel filtration and HPLC. The purified sugar chains were analyzed b --> 6GalNAc-ol, KDNalpha2 --> 3(GalNAcbeta1 --> 14)GalNAc-ol, KDNalpha2 --> 6(GalNAcalpha1 --> 3)GalNAc-ol, KDNalpha2 --> 6(Gal3alpha1--> 3)GalNAc-ol, and NeuAcalpha2 --> 6Gal NAc-ol. It is estimated that one loach mucus glycoprotein molecule contains more than 500 KDN-containing sugar chains that are linked to Thr and Ser residues of the protein core through GalNAc.

  1. Inactivation of MET10 in brewer's yeast specifically increases SO2 formation during beer production.

    Hansen, J; Kielland-Brandt, M C


    Sulfite is widely used as an antioxidant in food production. In beer brewing, sulfite has the additional role of stabilizing the flavor by forming adducts with aldehydes. Inadequate amounts of sulfite are sometimes produced by brewer's yeasts, so means of controlling the sulfite production are desired. In Saccharomyces yeasts, MET10 encodes a subunit of sulfite reductase. Partial or full elimination of MET10 gene activity in a brewer's yeast resulted in increased sulfite accumulation. Beer produced with such yeasts was quite satisfactory and showed increased flavor stability.

  2. Improved Monosynaptic Neural Circuit Tracing Using Engineered Rabies Virus Glycoproteins

    Euiseok J. Kim


    Full Text Available Monosynaptic rabies virus tracing is a unique and powerful tool used to identify neurons making direct presynaptic connections onto neurons of interest across the entire nervous system. Current methods utilize complementation of glycoprotein gene-deleted rabies of the SAD B19 strain with its glycoprotein, B19G, to mediate retrograde transsynaptic spread across a single synaptic step. In most conditions, this method labels only a fraction of input neurons and would thus benefit from improved efficiency of transsynaptic spread. Here, we report newly engineered glycoprotein variants to improve transsynaptic efficiency. Among them, oG (optimized glycoprotein is a codon-optimized version of a chimeric glycoprotein consisting of the transmembrane/cytoplasmic domain of B19G and the extracellular domain of rabies Pasteur virus strain glycoprotein. We demonstrate that oG increases the tracing efficiency for long-distance input neurons up to 20-fold compared to B19G. oG-mediated rabies tracing will therefore allow identification and study of more complete monosynaptic input neural networks.

  3. Recent advances in the study of active endogenous retrovirus envelope glycoproteins in the mammalian placenta

    Yufei; Zhang; Jing; Shi; Shuying; Liu


    Endogenous retroviruses(ERVs) are a component of the vertebrate genome and originate from exogenous infections of retroviruses in the germline of the host. ERVs have coevolved with their hosts over millions of years. Envelope glycoproteins of endogenous retroviruses are often expressed in the mammalian placenta, and their potential function has aroused considerable research interest, including the manipulation of maternal physiology to benefit the fetus. In most mammalian species, trophoblast fusion in the placenta is an important event, involving the formation of a multinucleated syncytiotrophoblast layer to fulfill essential fetomaternal exchange functions. The key function in this process derives from the envelope genes of endogenous retroviruses, namely syncytins, which show fusogenic properties and placenta-specific expression. This review discusses the important role of the recognized endogenous retrovirus envelope glycoproteins in the mammalian placenta.

  4. Pseudotyping of vesicular stomatitis virus with the envelope glycoproteins of highly pathogenic avian influenza viruses.

    Zimmer, Gert; Locher, Samira; Berger Rentsch, Marianne; Halbherr, Stefan J


    Pseudotype viruses are useful for studying the envelope proteins of harmful viruses. This work describes the pseudotyping of vesicular stomatitis virus (VSV) with the envelope glycoproteins of highly pathogenic avian influenza viruses. VSV lacking the homotypic glycoprotein (G) gene (VSVΔG) was used to express haemagglutinin (HA), neuraminidase (NA) or the combination of both. Propagation-competent pseudotype viruses were only obtained when HA and NA were expressed from the same vector genome. Pseudotype viruses containing HA from different H5 clades were neutralized specifically by immune sera directed against the corresponding clade. Fast and sensitive reading of test results was achieved by vector-mediated expression of GFP. Pseudotype viruses expressing a mutant VSV matrix protein showed restricted spread in IFN-competent cells. This pseudotype system will facilitate the detection of neutralizing antibodies against virulent influenza viruses, circumventing the need for high-level biosafety containment. © 2014 The Authors.

  5. Yeast vitality during cider fermentation: assessment by energy metabolism.

    Dinsdale, M G; Lloyd, D; McIntyre, P; Jarvis, B


    In an apple juice-based medium, an ethanol-tolerant Australian wine-yeast used for cider manufacture produced more than 10% ethanol over a 5 week period. Growth of the inoculum (10(6) organisms ml(-1)) occurred to a population of 3.1 x 10(7) ml(-1) during the first few days; at the end of the fermentation only 5 x 10(5) yeasts ml(-1) could be recovered as colony-forming units on plates. Respiratory and fermentative activities were measured by mass spectrometric measurements (O2 consumption and CO2 and ethanol production) of washed yeast suspensions taken from the cider fermentation at intervals. Both endogenous and glucose-supported energy-yielding metabolism declined, especially during the first 20 days. Levels of adenine nucleotides also showed decreases after day 1, as did adenylate energy charge, although in a prolonged (16.5 week) fermentation the lowest value calculated was 0.55. AMP was released into the medium. 31P-NMR spectra showed that by comparison with aerobically grown yeast, that from the later stages of the cider fermentation showed little polyphosphate. However, as previously concluded from studies of 'acidification power' and fluorescent oxonol dye exclusion (Dinsdale et al., 1995), repitching of yeast indicated little loss of viability despite considerable loss of vitality.

  6. Analysis on effect of separation and purification of glycoprotein extracted from Camellia seeds and its functional activity as basis for the economic development of Camellia oleifera industry

    Feng Aiguo


    Full Text Available Taking Camellia oleifera seeds as raw materials, this study explored extraction and purification of glycoprotein separated from Camellia seeds as well as its antitumor activity, aiming to provide a theoretical basis for the economic development of Camellia oleifera industry. Key impact factors of Camellia seed glycoprotein were extracted using buffer solution method and water extraction method and a regression model was set up. Methyl thiazolyl tetrazolium was used to evaluate the in vitro antitumor activity of glycoprotein extracted from Camellia seeds and Differential Scanning Calorimetry (DSC was used to measure its denaturation enthalpy value. Results indicated that protein and sugar yields were 8.96% and 17.05% respectively under optimal conditions when water extraction method was used. Crude glycoprotein extracted from Camellia oleifera had a certain inhibitory effect on human hepatoma cell HepG2, gastric cancer cell MGC-803 and breast cancer cell MCF-7 and crude glycoprotein extracted from Camellia oleifera by water-extraction and alcohol-precipitation method had a strong antitumor effect. Crude glycoprotein obtained in the two different ways was capable of scavenging DPPH, •OH and O2g- free radicals and also showed good reducing capacity. DSC measurement results revealed that specific rotation of COGP2a[α]n20${\\rm{COGP}}2{\\rm{a}}\\left[ \\alpha \\right]_n^{20} $ was - 32.5. Antitumor experiment in vitro showed that glycoprotein extracted from Camellia seeds in the two different ways had a certain inhibitory effect on HepG2, MGC-803 and MCF-7, which has important theoretical and realistic significances to promoting utilization value of camellia resources, strengthening Camellia oleifera’s comprehensive development and utilization of high added value as well as enriching types and functions of active glycoprotein.

  7. Nucleic acid-binding glycoproteins which solubilize nucleic acids in dilute acid: re-examination of the Ustilago maydis glycoproteins

    Unrau, P.; Champ, D.R.; Young, J.L.; Grant, C.E.


    Holloman reported the isolation from Ustilago maydis of a glycoprotein which prevented the precipitation of nucleic acids in cold 5% trichloroacetic acid. Two glycoprotein fractions from U. maydis with this nucleic acid-solubilizing activity were isolated in our laboratory using improved purification procedures. The activity was not due to nuclease contamination. The glycoproteins are distinguished by: their ability to bind to concanavalin A-Sepharose; their differential binding to double- and single-stranded deoxyribonucleic acid, and to ribonucleic acid; their molecular weights (46,000 and 69,000); and the relative amounts present in growing versus nongrowing cells. Both fractions required sulfhydryl-reducing conditions for optimal yields, specific activity, and stability. Nucleic acid binding was cooperative, the minimum number of glycoproteins required to make a native T7 DNA molecule soluble in dilute acid being estimated at 2 and 15, respectively.

  8. Yeast Genetics and Biotechnological Applications

    Mishra, Saroj; Baranwal, Richa

    Yeast can be recognized as one of the very important groups of microorganisms on account of its extensive use in the fermentation industry and as a basic eukaryotic model cellular system. The yeast Saccharomyces cerevisiae has been extensively used to elucidate the genetics and regulation of several key functions in the cell such as cell mating, electron transport chain, protein trafficking, cell cycle events and others. Even before the genome sequence of the yeast was out, the structural organization and function of several of its genes was known. With the availability of the origin of replication from the 2 μm plasmid and the development of transformation system, it became the host of choice for expression of a number of important proteins. A large number of episomal and integrative shuttle vectors are available for expression of mammalian proteins. The latest developments in genomics and micro-array technology have allowed investigations of individual gene function by site-specific deletion method. The application of metabolic profiling has also assisted in understanding the cellular network operating in this yeast. This chapter is aimed at reviewing the use of this system as an experimental tool for conducting classical genetics. Various vector systems available, foreign genes expressed and the limitations as a host will be discussed. Finally, the use of various yeast enzymes in biotechnology sector will be reviewed.

  9. Glycoprotein emulsifiers from two marine Halomonas species: chemical and physical characterization.

    Gutiérrez, T; Mulloy, B; Black, K; Green, D H


    To partially purify and characterize bioemulsifiers produced by two new marine Halomonas species, TG39 and TG67, and to compare their emulsifying activities with those of commercial emulsifiers. The production of emulsifiers HE39 and HE67 was achieved from glucose-supplemented marine broth, and recovered by cell removal, concentration by ultrafiltration, precipitation with salt and ethanol, and lyophilization. Purification and chemical analysis revealed both emulsifiers to be glycoproteins of high molecular weight with a notably high content of protein and uronic acids. Physical characterization showed both glycoproteins to effectively emulsify a wide range of food oils under both neutral and acidic pH conditions and withstand acid and high temperature treatment. The emulsifying activities of these two new glycoprotein emulsifiers were comparable and, under certain conditions, superior to those produced by commercial emulsifiers tested (xanthan gum, gum arabic and lecithin). They show the highest reported emulsifying activities derived from a Halomonas species. These strains, and the emulsifiers produced, appear to be promising candidates for further development in applications requiring emulsifiers that are natural and compatible to the existing commercial emulsifiers.

  10. Serum concentrations of anthraquinones after intake of Folium Sennae and potential modulation on P-glycoprotein.

    Peng, Yu-Hsuan; Lin, Shiuan-Pey; Yu, Chung-Ping; Tsai, Shang-Yuan; Chen, Min-Yu; Hou, Yu-Chi; Chao, Pei-Dawn Lee


    Folium Sennae (leaves of Cassia angustifolia or senna) is a laxative and a component in diets for weight control. It contains a variety of anthranoids such as sennosides, aloe-emodin, and rhein. In order to measure the serum concentrations of senna anthranoids, Sprague-Dawley rats were orally administered with single dose and multiple doses of Folium Sennae. The concentrations of anthranoids in serum were determined by HPLC method before and after hydrolysis with sulfatase and β-glucuronidase. The results showed that in the serum, aloe-emodin glucuronides and rhein glucuronides were the major metabolites. Traces of rhein free form were present transiently during the early phase, whereas the free form of aloe-emodin was not detected. We also evaluated the modulation effect of Folium Sennae on P-glycoprotein by using the LS 180 cell model which showed that it significantly inhibited P-glycoprotein by 16-46 %. In conclusion, senna anthranoids were rapidly and extensively metabolized to rhein glucuronides and aloe-emodin glucuronides in rats. Folium Sennae ingestion inhibited the efflux function of P-glycoprotein in the intestine.

  11. The N-glycan glycoprotein deglycosylation complex (Gpd from Capnocytophaga canimorsus deglycosylates human IgG.

    Francesco Renzi


    Full Text Available C. canimorsus 5 has the capacity to grow at the expenses of glycan moieties from host cells N-glycoproteins. Here, we show that C. canimorsus 5 also has the capacity to deglycosylate human IgG and we analyze the deglycosylation mechanism. We show that deglycosylation is achieved by a large complex spanning the outer membrane and consisting of the Gpd proteins and sialidase SiaC. GpdD, -G, -E and -F are surface-exposed outer membrane lipoproteins. GpdDEF could contribute to the binding of glycoproteins at the bacterial surface while GpdG is a endo-β-N-acetylglucosaminidase cleaving the N-linked oligosaccharide after the first N-linked GlcNAc residue. GpdC, resembling a TonB-dependent OM transporter is presumed to import the oligosaccharide into the periplasm after its cleavage from the glycoprotein. The terminal sialic acid residue of the oligosaccharide is then removed by SiaC, a periplasm-exposed lipoprotein in direct contact with GpdC. Finally, most likely degradation of the oligosaccharide proceeds sequentially from the desialylated non reducing end by the action of periplasmic exoglycosidases, including β-galactosidases, β-N-Acetylhexosaminidases and α-mannosidases.

  12. Beta-hexosaminidase activity of the oral pathogen Tannerella forsythia influences biofilm formation on glycoprotein substrates.

    Roy, Sumita; Phansopa, Chatchawal; Stafford, Prachi; Honma, Kiyonobu; Douglas, C W Ian; Sharma, Ashu; Stafford, Graham P


    Tannerella forsythia is an important pathogen in periodontal disease. Previously, we showed that its sialidase activity is key to utilization of sialic acid from a range of human glycoproteins for biofilm growth and initial adhesion. Removal of terminal sialic acid residues often exposes β-linked glucosamine or galactosamine, which may also be important adhesive molecules. In turn, these residues are often removed by a group of enzymes known as β-hexosaminidases. We show here that T. forsythia has the ability to cleave glucosamine and galactosamine from model substrates and that this activity can be inhibited by the hexosaminidase inhibitor PugNAc (O-(2-acetamido-2-deoxy-d-glucopyranosylidene)amino N-phenyl carbamate). We now demonstrate for the first time that β-hexosaminidase activity plays a role in biofilm growth on glycoprotein-coated surfaces because biofilm growth and initial cell adhesion are inhibited by PugNAc. In contrast, adhesion to siallo-glycoprotein-coated surfaces is unaltered by PugNAc in the absence of sialidase activity (using a sialidase-deficient mutant) or surprisingly on the clinically relevant substrates saliva or serum. These data indicate that β-hexosaminidase activity has a significant role in biofilm formation in combination with sialidase activity in the biofilm lifestyle of T. forsythia.

  13. 与人巨细胞病毒UL128两种不同结构蛋白相互作用蛋白的筛选与分析%Screening of protein interacting with the transcript of UL128 gene showed two protein patterns by yeast two-hybrid from human fetus brain cDNA library

    任高伟; 崔鑫; 马艳萍; 齐莹; 阮强; 孙峥嵘


    Objective Using yeast two-hybrid system to screen the proteins which can interact with the human cytomegalovirus (HCMV) UL128 which have two difference transcription structure from human fetus brain cDNA library, and compare the difference with structure and function of interacting proteins. Methods Two fragments of UL128 were amplified by 3'RACE and 5'RACE technology, the length are 519 bp and 642 bp, respectively. The "bait plasmid" (named as pGBKT7-UL128-519 bp and pGBKT7-UL128-642 bp) was constructed successfully. Using pGBKT7-UL128-519 bp and pGBKT7-UL128-642 bp as a bait, a human fetus brain cDNA was screened and the proteins interacting with UL128-519 bp and UL128-642 bp encoded protein were searched, and the positive clones were sequenced and analyzed by bioinformatic methods. Results EFEMP2 interacting with HCMV UL128-519 bp were identified, THY-1 interacting with HCMV UL128-642 bp were identified. Conclusion EFEMP2 and THY-1 proteins interacting with HCMV UL128-519 bp and UL128-642 bp in human fetus brain cDNA library were successfully screened, but same proteins weren't found from the proteins interacting with UL128-519 bp and UL128-642 bp protein, UL128-519 bp and UL128-642 bp protein may be play an different effect in the process of infect by HCMV.%目的 利用酵母双杂交系统从人胎脑cDNA文库中筛选与两种不同转录结构的人巨细胞病毒(HCMV)UL128编码蛋白相互作用的蛋白,比较两者相互作用蛋白之间的异同点.方法 通过3'RACE和5'RACE技术扩增出两种HCMV UL128片段,其大小分别为519 bp和642 bp,并将其成功构建到酵母诱饵表达载体pGBKT7中.将以上两种酵母表达载体分别转化到酵母菌AH109中,再将文库DNA转化到已含有酵母表达载体的AH109中,筛选与两种片段大小不同的UL128编码蛋白相互作用的人胎脑蛋白,并对筛选得到的阳性克隆进行测序和生物信息学分析.结果 筛出EFEMP2与UL128-519 bp编码蛋白相互作用,THY-1

  14. The Health Show

    Swann, David


    Dr David Swann interviewed on The Health Show, Series 1, Episode 5, 2011 for BBC World about the award-winning 21st Century Nursing Bag. BBC World News reaches 241million people every week, available in 296 million homes, 1.8 million hotel rooms and has the highest average viewership on a weekday of any international news channel. The Health Show is a new 26-part series for BBC World News covering the most important news stories from around the world.

  15. New monoclonal antibodies to the Ebola virus glycoprotein: Identification and analysis of the amino acid sequence of the variable domains.

    Panina, A A; Aliev, T K; Shemchukova, O B; Dement'yeva, I G; Varlamov, N E; Pozdnyakova, L P; Bokov, M N; Dolgikh, D A; Sveshnikov, P G; Kirpichnikov, M P


    We determined the nucleotide and amino acid sequences of variable domains of three new monoclonal antibodies to the glycoprotein of Ebola virus capsid. The framework and hypervariable regions of immunoglobulin heavy and light chains were identified. The primary structures were confirmed using massspectrometry analysis. Immunoglobulin database search showed the uniqueness of the sequences obtained.

  16. Genomic organization of a receptor from sea anemones, structurally and evolutionary related to glycoprotein hormone receptors from mamals

    Vibede, N; Hauser, Frank; Williamson, M


    glycoprotein hormone receptors, indicating that the cnidarian and mammalian receptor genes are evolutionarily related. As with the mammalian receptor genes, the sea anemone receptor gene does not contain introns in the region coding for the transmembrane and intracellular domains. Southern blot analyses show...

  17. Four zona pellucida glycoproteins are expressed in the human.

    Lefièvre, L; Conner, S J; Salpekar, A; Olufowobi, O; Ashton, P; Pavlovic, B; Lenton, W; Afnan, M; Brewis, I A; Monk, M; Hughes, D C; Barratt, C L R


    The zona pellucida (ZP) is an extracellular glycoprotein matrix which surrounds all mammalian oocytes. Recent data have shown the presence of four human zona genes (ZP1, ZP2, ZP3 and ZPB). The aim of the study was to determine if all four ZP proteins are expressed and present in the human. cDNA derived from human oocytes were used to amplify by PCR the four ZP genes. In addition, isolated native human ZP were heat-solubilized, trypsin-digested and subjected to tandem mass spectrometry (MS/MS). All four genes were expressed and the respective proteins present in the human ZP. Moreover, a bioinformatics approach showed that the mouse ZPB gene, although present, is likely to encode a non-functional protein. Four ZP genes are expressed in human oocytes (ZP1, ZP2, ZP3 and ZPB) and preliminary data show that the four corresponding ZP proteins are present in the human ZP. Therefore, this is a fundamental difference with the mouse model

  18. A Fashion Show


    <正>Story: The yearly fashion show day.The children take turns to walk on the stage and show the class their favorite clothes.Now it’s Joe’s and Phoebe’s turn.Joe walks on the stage and says,“My shorts are blue.Do you like my blue shorts?”On the other side of the stage, Phoebe is wearing her favorite pink skirt.“My skirt is pink.Do you like my pink skirt?”asks

  19. On not showing scalps

    Marselis, Randi Lorenz


    proposed by Janet Marstine, the editor of the Routledge Companion to Museum Ethics, I show how the museum succeeded in engaging users in questions of museum ethics. However, this specific debate on human remains in museums developed into an encounter between a global, museological discourse...

  20. Violence and TV Shows

    ÖZTÜRK, Yrd. Doç. Dr. Şinasi


    This study aims to discuss theories on theviolent effects of TV shows on viewers, especiallyon children. Therefore, this study includes a briefdiscussion of definitions of violence, discussionof violence theories, main results of researcheson televised violence, measuring TV violence,perception of televised violence, individualdifferences and reactions to TV violence,aggressiveness and preferences for TV violence.

  1. Honored Teacher Shows Commitment.

    Ratte, Kathy


    Part of the acceptance speech of the 1985 National Council for the Social Studies Teacher of the Year, this article describes the censorship experience of this honored social studies teacher. The incident involved the showing of a videotape version of the feature film entitled "The Seduction of Joe Tynan." (JDH)

  2. A Visionary Show


    Seduction. Distinction. Relax. Pulsation. These are the "style universes" on display at Première Vision, heralded as "The World’s Premiere Fabric Show." Started more than 35 years ago by 15 French weavers, Première Vision has expanded beyond its

  3. Honored Teacher Shows Commitment.

    Ratte, Kathy


    Part of the acceptance speech of the 1985 National Council for the Social Studies Teacher of the Year, this article describes the censorship experience of this honored social studies teacher. The incident involved the showing of a videotape version of the feature film entitled "The Seduction of Joe Tynan." (JDH)

  4. Isolation and identification of a riboflavin producer yeast from Nectarine

    Roya Daneshazari


    Full Text Available   Introduction : Many microorganisms like fungi , bacteria and yeasts, have a natural ability to produce vitamins included vitamin B2 or riboflavin. In this regard, the present study was performed to isolation and screening for riboflavin producing yeasts from various sources of soil, leaf and fruit s.   Materials and method s: samples of leaf , soil and fruits were prepared for the presence of yeasts and by its ability to produce riboflavin . After purification and enrichment of samples , in order to assay riboflavin production, spectrometry , thin layer chromatography and high performance liquid chromatography were used . Finally, the best selected isolate was identified using conventional morphological , biochemical and molecular techniques .   Results : In this study , 26 yeast strains were isolated from environmental samples, that 6 isolates showed the ability to produce riboflavin . Identification results of the best selected isolate by biochemical and phenotypic characteristics revealed that this isolate is related to Clavispora lusitaniae and considering isolation of it from nectarine, has named it Clavispora lusitaniae strain N3 (Gene accession no: JQ586258 .   Discussion and conclusion : Although only one of the six producing strains was studied and identified , observation of ability to produce among 23% of strains showed necessity for further investigation. And according to the result of absence of viewing report about production by investigated strain, it can be said that Iran has potentiality for isolation of yeasts and is capable of producing riboflavin.

  5. Technological properties of bakers' yeasts in durum wheat semolina dough.

    Giannone, Virgilio; Longo, Chiara; Damigella, Arcangelo; Raspagliesi, Domenico; Spina, Alfio; Palumbo, Massimo


    Properties of 13 Saccharomyces cerevisiae strains isolated from different sources (traditional sourdoughs, industrial baking yeasts etc.) were studied in dough produced with durum wheat (Sicilian semolina, variety Mongibello). Durum wheat semolina and durum wheat flour are products prepared from grain of durum wheat (Triticum durum Desf.) by grinding or milling processes in which the bran and germ are essentially removed and the remainder is comminuted to a suitable degree of fineness. Acidification and leavening properties of the dough were evaluated. Strains isolated from traditional sourdoughs (DSM PST18864, DSM PST18865 and DSM PST18866) showed higher leavening power, valuable after the first and second hours of fermentation, than commercial baking yeasts. In particular the strain DSM PST 18865 has also been successfully tested in bakery companies for the improvement of production processes. Baking and staling tests were carried out on five yeast strains to evaluate their fermentation ability directly and their resistance to the staling process. Amplified fragment length polymorphism (fAFLP) was used to investigate genetic variations in the yeast strains. This study showed an appreciable biodiversity in the microbial populations of both wild and commercial yeast strains.

  6. Dietary glucose regulates yeast consumption in adult Drosophila males

    Sebastien eLebreton


    Full Text Available The adjustment of feeding behavior in response to hunger and satiety contributes to homeostatic regulation in animals. The fruit fly Drosophila melanogaster feeds on yeasts growing on overripe fruit, providing nutrients required for adult survival, reproduction and larval growth. Here, we present data on how the nutritional value of food affects subsequent yeast consumption in Drosophila adult males. After a period of starvation, flies showed intensive yeast consumption. In comparison, flies stopped feeding after having access to a nutritive cornmeal diet. Interestingly, dietary glucose was equally efficient as the complex cornmeal diet. In contrast, flies fed with sucralose, a non-metabolizable sweetener, behaved as if they were starved. The adipokinetic hormone and insulin-like peptides regulate metabolic processes in insects. We did not find any effect of the adipokinetic hormone pathway on this modulation. Instead, the insulin pathway was involved in these changes. Flies lacking the insulin receptor did not respond to nutrient deprivation by increasing yeast consumption. Together these results show the importance of insulin in the regulation of yeast consumption in response to starvation in adult D. melanogaster males.

  7. N-glycoprotein analysis discovers new up-regulated glycoproteins in colorectal cancer tissue.

    Nicastri, Annalisa; Gaspari, Marco; Sacco, Rosario; Elia, Laura; Gabriele, Caterina; Romano, Roberto; Rizzuto, Antonia; Cuda, Giovanni


    Colorectal cancer is one of the leading causes of death due to cancer worldwide. Therefore, the identification of high-specificity and -sensitivity biomarkers for the early detection of colorectal cancer is urgently needed. Post-translational modifications, such as glycosylation, are known to play an important role in cancer progression. In the present work, we used a quantitative proteomic technique based on (18)O stable isotope labeling to identify differentially expressed N-linked glycoproteins in colorectal cancer tissue samples compared with healthy colorectal tissue from 19 patients undergoing colorectal cancer surgery. We identified 54 up-regulated glycoproteins in colorectal cancer samples, therefore potentially involved in the biological processes of tumorigenesis. In particular, nine of these (PLOD2, DPEP1, SE1L1, CD82, PAR1, PLOD3, S12A2, LAMP3, OLFM4) were found to be up-regulated in the great majority of the cohort, and, interestingly, the association with colorectal cancer of four (PLOD2, S12A2, PLOD3, CD82) has not been hitherto described.

  8. Specificity of transmembrane protein palmitoylation in yeast.

    Ayelén González Montoro

    Full Text Available Many proteins are modified after their synthesis, by the addition of a lipid molecule to one or more cysteine residues, through a thioester bond. This modification is called S-acylation, and more commonly palmitoylation. This reaction is carried out by a family of enzymes, called palmitoyltransferases (PATs, characterized by the presence of a conserved 50- aminoacids domain called "Asp-His-His-Cys- Cysteine Rich Domain" (DHHC-CRD. There are 7 members of this family in the yeast Saccharomyces cerevisiae, and each of these proteins is thought to be responsible for the palmitoylation of a subset of substrates. Substrate specificity of PATs, however, is not yet fully understood. Several yeast PATs seem to have overlapping specificity, and it has been proposed that the machinery responsible for palmitoylating peripheral membrane proteins in mammalian cells, lacks specificity altogether.Here we investigate the specificity of transmembrane protein palmitoylation in S. cerevisiae, which is carried out predominantly by two PATs, Swf1 and Pfa4. We show that palmitoylation of transmembrane substrates requires dedicated PATs, since other yeast PATs are mostly unable to perform Swf1 or Pfa4 functions, even when overexpressed. Furthermore, we find that Swf1 is highly specific for its substrates, as it is unable to substitute for other PATs. To identify where Swf1 specificity lies, we carried out a bioinformatics survey to identify amino acids responsible for the determination of specificity or Specificity Determination Positions (SDPs and showed experimentally, that mutation of the two best SDP candidates, A145 and K148, results in complete and partial loss of function, respectively. These residues are located within the conserved catalytic DHHC domain suggesting that it could also be involved in the determination of specificity. Finally, we show that modifying the position of the cysteines in Tlg1, a Swf1 substrate, results in lack of palmitoylation, as

  9. Emulsifying activity of hydrocarbonoclastic marine yeasts

    Gupta, R.

    Marine yeast growth on four petroleum hydrocarbons induced the production of extracellular emulsifying agents (biosurfactants). Out of the 17 marine yeast isolates tested, 7 isolates, i.e., Candida parapsilosis, C. cantarelli, C. membranae...

  10. Directed metabolomic approaches for the characterization and development of new yeast strains

    Belda Ignacio


    Full Text Available Analyzing the influence of different yeast species on several compounds with enological interest, it becomes possible to identify metabolic determinants of the incidence of yeasts on wine quality. Contrary to Saccharomyces cerevisiae, understand- ing genetic regulation, enzymatic properties and physiology of non-Saccharomyces species in enological conditions is far from being known. Because of this, the commercialization of industrial non-Saccharomyces strains on wine industry is showing a really slow pace. In order to determine the enzymatic properties of wine-related yeast species it is necessary to evaluate hundreds of yeast isolates enabling us to robustly attribute specific enzymatic activities to a specific group of yeast species. The contri- bution of yeasts to wine flavour is greatly determined by their impact on aromatic compounds release. Different glycosidases, β-lyase, pectinase, cellulase and protease activities are described as responsible for changes in wine composition, so determining inter- and intraspecific variability in these enzymatic properties in yeast species seems to be a useful tool for innovative yeast selection process. With the aim of relating enzymatic activities with a specific impact in wine properties we developed combined fermentations with non-Saccharomyces selected strains and industrial S. cerevisiae strains. The use of rational metabolomic analysis allows us to explain the physiology of non-Saccharomyces yeasts during wine fermentation and its incidence on wine quality.

  11. Independent and additive effects of glutamic acid and methionine on yeast longevity.

    Wu, Ziyun; Song, Lixia; Liu, Shao Quan; Huang, Dejian


    It is established that glucose restriction extends yeast chronological and replicative lifespan, but little is known about the influence of amino acids on yeast lifespan, although some amino acids were reported to delay aging in rodents. Here we show that amino acid composition greatly alters yeast chronological lifespan. We found that non-essential amino acids (to yeast) methionine and glutamic acid had the most significant impact on yeast chronological lifespan extension, restriction of methionine and/or increase of glutamic acid led to longevity that was not the result of low acetic acid production and acidification in aging media. Remarkably, low methionine, high glutamic acid and glucose restriction additively and independently extended yeast lifespan, which could not be further extended by buffering the medium (pH 6.0). Our preliminary findings using yeasts with gene deletion demonstrate that glutamic acid addition, methionine and glucose restriction prompt yeast longevity through distinct mechanisms. This study may help to fill a gap in yeast model for the fast developing view that nutrient balance is a critical factor to extend lifespan.

  12. Distribution of yeast complexes in the profiles of different soil types

    Glushakova, A. M.; Kachalkin, A. V.; Tiunov, A. V.; Chernov, I. Yu.


    The number and taxonomic structure of the yeast complexes were investigated in the full profiles of the soddy-podzolic soil (Central Forest State Nature Biosphere Reserve), dark gray forest soil (Kaluzhskie Zaseki Reserve), and chernozem (Privolzhskaya Forest-Steppe Reserve). In all these soils, the number of yeasts was maximal (104 CFU/g) directly under the litter; it drastically decreased with the depth. However, at the depth of 120-160 cm, the number of yeasts significantly increased in all the soils; their maximum was found in the illuvial horizon of the soddy-podzolic soil. Such a statistically significant increase in the number of yeasts at a considerable depth was found for the first time. Different groups of yeasts were present in the yeast communities of different soils. The species structure of yeast communities changed little in each soil: the same species were isolated both from the soil surface and from the depth of more than 2 m. The results showed that yeasts could be used for soil bioindication on the basis of specific yeast complexes in the profiles of different soil types rather than individual indicative species.

  13. Nectar sugars and bird visitation define a floral niche for basidiomycetous yeast on the Canary Islands.

    Mittelbach, Moritz; Yurkov, Andrey M; Nocentini, Daniele; Nepi, Massimo; Weigend, Maximilian; Begerow, Dominik


    Studies on the diversity of yeasts in floral nectar were first carried out in the late 19th century. A narrow group of fermenting, osmophilous ascomycetes were regarded as exclusive specialists able to populate this unique and species poor environment. More recently, it became apparent that microorganisms might play an important role in the process of plant pollination. Despite the importance of these nectar dwelling yeasts, knowledge of the factors that drive their diversity and species composition is scarce. In this study, we linked the frequencies of yeast species in floral nectars from various host plants on the Canary Islands to nectar traits and flower visitors. We estimated the structuring impact of pollination syndromes (nectar volume, sugar concentration and sugar composition) on yeast diversity.The observed total yeast diversity was consistent with former studies, however, the present survey yielded additional basidiomycetous yeasts in unexpectedly high numbers. Our results show these basidiomycetes are significantly associated with ornithophilous flowers. Specialized ascomycetes inhabit sucrose-dominant nectars, but are surprisingly rare in nectar dominated by monosaccharides. There are two conclusions from this study: (i) a shift of floral visitors towards ornithophily alters the likelihood of yeast inoculation in flowers, and (ii) low concentrated hexose-dominant nectar promotes colonization of flowers by basidiomycetes. In the studied floral system, basidiomycete yeasts are acknowledged as regular members of nectar. This challenges the current understanding that nectar is an ecological niche solely occupied by ascomycetous yeasts.

  14. Harvesting yeast (Saccharomyces cerevisiae) at different physiological phases significantly affects its functionality in bread dough fermentation.

    Rezaei, Mohammad N; Dornez, Emmie; Jacobs, Pieter; Parsi, Anali; Verstrepen, Kevin J; Courtin, Christophe M


    Fermentation of sugars into CO2, ethanol and secondary metabolites by baker's yeast (Saccharomyces cerevisiae) during bread making leads to leavening of dough and changes in dough rheology. The aim of this study was to increase our understanding of the impact of yeast on dough related aspects by investigating the effect of harvesting yeast at seven different points of the growth profile on its fermentation performance, metabolite production, and the effect on critical dough fermentation parameters, such as gas retention potential. The yeast cells harvested during the diauxic shift and post-diauxic growth phase showed a higher fermentation rate and, consequently, higher maximum dough height than yeast cells harvested in the exponential or stationary growth phase. The results further demonstrate that the onset of CO2 loss from fermenting dough is correlated with the fermentation rate of yeast, but not with the amount of CO2 that accumulated up to the onset point. Analysis of the yeast metabolites produced in dough yielded a possible explanation for this observation, as they are produced in different levels depending on physiological phase and in concentrations that can influence dough matrix properties. Together, our results demonstrate a strong effect of yeast physiology at the time of harvest on subsequent dough fermentation performance, and hint at an important role of yeast metabolites on the subsequent gas holding capacity.

  15. Yeast-based microporous carbon materials for carbon dioxide capture.

    Shen, Wenzhong; He, Yue; Zhang, Shouchun; Li, Junfen; Fan, Weibin


    A hierarchical microporous carbon material with a Brunauer-Emmett-Teller surface area of 1348 m(2) g(-1) and a pore volume of 0.67 cm(3) g(-1) was prepared from yeast through chemical activation with potassium hydroxide. This type of material contains large numbers of nitrogen-containing groups (nitrogen content >5.3 wt%), and, consequently, basic sites. As a result, this material shows a faster adsorption rate and a higher adsorption capacity of CO(2) than the material obtained by directly carbonizing yeast under the same conditions. The difference is more pronounced in the presence of N(2) or H(2)O, showing that chemical activation of discarded yeast with potassium hydroxide could afford high-performance microporous carbon materials for the capture of CO(2).

  16. Advances in yeast genome engineering.

    David, Florian; Siewers, Verena


    Genome engineering based on homologous recombination has been applied to yeast for many years. However, the growing importance of yeast as a cell factory in metabolic engineering and chassis in synthetic biology demands methods for fast and efficient introduction of multiple targeted changes such as gene knockouts and introduction of multistep metabolic pathways. In this review, we summarize recent improvements of existing genome engineering methods, the development of novel techniques, for example for advanced genome redesign and evolution, and the importance of endonucleases as genome engineering tools.

  17. Analysis of Arabidopsis glutathione-transferases in yeast.

    Krajewski, Matthias P; Kanawati, Basem; Fekete, Agnes; Kowalski, Natalie; Schmitt-Kopplin, Philippe; Grill, Erwin


    The genome of Arabidopsis thaliana encodes 54 functional glutathione transferases (GSTs), classified in seven clades. Although plant GSTs have been implicated in the detoxification of xenobiotics, such as herbicides, extensive redundancy within this large gene family impedes a functional analysis in planta. In this study, a GST-deficient yeast strain was established as a system for analyzing plant GSTs that allows screening for GST substrates and identifying substrate preferences within the plant GST family. To this end, five yeast genes encoding GSTs and GST-related proteins were simultaneously disrupted. The resulting yeast quintuple mutant showed a strongly reduced conjugation of the GST substrates 1-chloro-2,4-dinitrobenzene (CDNB) and 4-chloro-7-nitro-2,1,3-benzoxadiazole (NBD-Cl). Consistently, the quintuple mutant was hypersensitive to CDNB, and this phenotype was complemented by the inducible expression of Arabidopsis GSTs. The conjugating activity of the plant GSTs was assessed by in vitro enzymatic assays and via analysis of exposed yeast cells. The formation of glutathione adducts with dinitrobenzene was unequivocally verified by stable isotope labeling and subsequent accurate ultrahigh-resolution mass spectrometry (ICR-FTMS). Analysis of Arabidopsis GSTs encompassing six clades and 42 members demonstrated functional expression in yeast by using CDNB and NBD-Cl as model substrates. Subsequently, the established yeast system was explored for its potential to screen the Arabidopsis GST family for conjugation of the fungicide anilazine. Thirty Arabidopsis GSTs were identified that conferred increased levels of glutathionylated anilazine. Efficient anilazine conjugation was observed in the presence of the phi, tau, and theta clade GSTs including AtGSTF2, AtGSTF4, AtGSTF6, AtGSTF8, AtGSTF10, and AtGSTT2, none of which had previously been known to contribute to fungicide detoxification. ICR-FTMS analysis of yeast extracts allowed the simultaneous detection and

  18. Shanghai Shows Its Heart


    The city known as China’s economic powerhouse showed a more caring face as host of the Special Olympic Games Between October 2 and 11,the Special Olympics Summer Games were hosted in Shanghai,the first time the 40-year-old athletic com- petition for people with intellectual disabilities came to a developing country. This Special Olympics was also larger than all previous games in temps of the number of athletes.

  19. Affinity-purified antibodies of defined specificity for use in a solid-phase microplate radioimmunoassay of human Tamm-Horsfall glycoprotein in urine.

    Hunt, J S; McGiven, A R; Groufsky, A; Lynn, K L; Taylor, M C


    Rabbit antibodies to human Tamm-Horsfall glycoprotein (prepared by salt precipitation from normal urine) were purified by affinity chromatography using columns containing Tamm-Horsfall glycoprotein linked to CNBr-activated Sepharose 4B. The specificity of these antibodies was determined by analysis of their binding characteristics on Western blots of Tamm-Horsfall protein from sodium dodecyl sulphate/polyacrylamide gradient gels and comparison with the reactivity of monoclonal antibodies to this glycoprotein. Optimal conditions of adsorption to poly(vinyl chloride) microtitre plates were established such that these purified antibodies could be used in a solid-phase radioimmunoassay for the determination of urinary Tamm-Horsfall-glycoprotein concentration. The specificity of the immunoassay was confirmed by competitive inhibition of the urinary Tamm-Horsfall glycoprotein by purified freeze-dried material in solution. A standard curve obtained with this material showed the radioimmunoassay to have a sensitivity of at least 5 ng/ml, with linearity between 30 and 600 ng/ml. The mean coefficient of variation over the linear section of the curve was 11.3 +/- 2.2% (n = 13). The effects of dialysis and freezing of urine samples before determination of Tamm-Horsfall-glycoprotein concentrations were investigated and the mean 24 h urinary excretion rate in 60 normal donors was shown to be 84.9 +/- 44.1 mg.

  20. Inhibitory effect of glycoprotein isolated from Opuntia ficus-indica var. saboten MAKINO on activities of allergy-mediators in compound 48/80-stimulated mast cells.

    Lim, Kye-Taek


    The present study was performed to investigate the anti-allergy potentials of glycoprotein (90kDa) isolated from Opuntia ficus-indica var. saboten MAKINO (OFI glycoprotein) in vivo (ICR mice) and in vitro (RBL-2H3 cells). At first, to know whether the OFI glycoprotein has an inhibitory ability for allergy in vivo, we evaluated the activities of allergy-related factors such as histamine and beta-hexosaminidase release, lactate dehydrogenase (LDH), and interleukin 4 (IL-4) in compound 48/80 (8 ml/kg BW)-treated ICR mice. After that, we studied to found the effect for anti-allergy in vitro such as nuclear factor kappa B (NF-kappaB) and inducible nitric oxide synthase (iNOS), extracellular signal-regulated kinase (ERK) 1/2, arachidonic acid, and cyclooxygenase-2 (COX-2) in compound 48/80 (5 microg/ml)-treated RBL-2H3 cells. Our results showed that the OFI glycoprotein (5 mg/kg) inhibited histamine and beta-hexosaminidase release, lactate dehydrogenase (LDH), and interleukin 4 (IL-4) in mice serum. Also OFI glycoprotein (25 microg/ml) has suppressive effects on the expression of MAPK (ERK1/2), and on protein expression of anti-allergic proteins (iNOS and COX-2). Thus, we speculate that the OFI glycoprotein is an example of natural compound that blocks anti-allergic signal transduction pathways.

  1. St. John's Wort reduces beta-amyloid accumulation in a double transgenic Alzheimer's disease mouse model-role of P-glycoprotein.

    Brenn, Anja; Grube, Markus; Jedlitschky, Gabriele; Fischer, Andrea; Strohmeier, Barbara; Eiden, Martin; Keller, Markus; Groschup, Martin H; Vogelgesang, Silke


    The adenosine triphosphate-binding cassette transport protein P-glycoprotein (ABCB1) is involved in the export of beta-amyloid from the brain into the blood, and there is evidence that age-associated deficits in cerebral P-glycoprotein content may be involved in Alzheimer's disease pathogenesis. P-glycoprotein function and expression can be pharmacologically induced by a variety of compounds including extracts of Hypericum perforatum (St. John's Wort). To clarify the effect of St. John's Wort on the accumulation of beta-amyloid and P-glycoprotein expression in the brain, St. John's Wort extract (final hyperforin concentration 5%) was fed to 30-day-old male C57BL/6J-APP/PS1(+/-) mice over a period of 60 or 120 days, respectively. Age-matched male C57BL/6J-APP/PS1(+/-) mice receiving a St. John's Wort-free diet served as controls. Mice receiving St. John's Wort extract showed (i) significant reductions of parenchymal beta-amyloid 1-40 and 1-42 accumulation; and (ii) moderate, but statistically significant increases in cerebrovascular P-glycoprotein expression. Thus, the induction of cerebrovascular P-glycoprotein may be a novel therapeutic strategy to protect the brain from beta-amyloid accumulation, and thereby impede the progression of Alzheimer's disease.

  2. A Comparison of the Beneficial Effects of Live and Heat-Inactivated Baker's Yeast on Nile Tilapia: Suggestions on the Role and Function of the Secretory Metabolites Released from the Yeast.

    Chao Ran

    Full Text Available Yeast is frequently used as a probiotic in aquaculture with the potential to substitute for antibiotics. In this study, the involvement and extent to which the viability of yeast cells and thus the secretory metabolites released from the yeast contribute to effects of baker's yeast was investigated in Nile tilapia. No yeast, live yeast or heat-inactivated baker's yeast were added to basal diets high in fishmeal and low in soybean (diet A or low in fishmeal and high in soybean (diet B, which were fed to fish for 8 weeks. Growth, feed utilization, gut microvilli morphology, and expressions of hsp70 and inflammation-related cytokines in the intestine and head kidney were assessed. Intestinal microbiota was investigated using 16S rRNA gene pyrosequencing. Gut alkaline phosphatase (AKP activity was measured after challenging the fish with Aeromonas hydrophila. Results showed that live yeast significantly improved FBW and WG (P < 0.05, and tended to improve FCR (P = 0.06 of fish compared to the control (no yeast. No significant differences were observed between inactivated yeast and control. Live yeast improved gut microvilli length (P < 0.001 and density (P < 0.05 while inactivated yeast did not. The hsp70 expression level in both the intestine and head kidney of fish was significantly reduced by live yeast (P < 0.05 but not inactivated yeast. Live yeast but not inactivated yeast reduced intestinal expression of tnfα (P < 0.05, tgfβ (P < 0.05 under diet A and il1β (P = 0.08. Intestinal Lactococcus spp. numbers were enriched by both live and inactivated yeast. Lastly, both live and inactivated yeast reduced the gut AKP activity compared to the control (P < 0.001, indicating protection of the host against infection by A. hydrophila. In conclusion, secretory metabolites did not play major roles in the growth promotion and disease protection effects of yeast. Nevertheless, secretory metabolites were the major contributing factor towards improved gut

  3. Mannosidase IA is in Quality Control Vesicles and Participates in Glycoprotein Targeting to ERAD.

    Ogen-Shtern, Navit; Avezov, Edward; Shenkman, Marina; Benyair, Ron; Lederkremer, Gerardo Z


    Endoplasmic reticulum-associated degradation (ERAD) of a misfolded glycoprotein in mammalian cells requires the removal of 3-4 alpha 1,2 linked mannose residues from its N-glycans. The trimming and recognition processes are ascribed to ER Mannosidase I, the ER-degradation enhancing mannosidase-like proteins (EDEMs), and the lectins OS-9 and XTP3-B, all residing in the ER, the ER-derived quality control compartment (ERQC), or quality control vesicles (QCVs). Folded glycoproteins with untrimmed glycans are transported from the ER to the Golgi complex, where they are substrates of other alpha 1,2 mannosidases, IA, IB, and IC. The apparent redundancy of these enzymes has been puzzling for many years. We have now determined that, surprisingly, mannosidase IA is not located in the Golgi but resides in QCVs. We had recently described this type of vesicles, which carry ER α1,2 mannosidase I (ERManI). We show that the overexpression of alpha class I α1,2 mannosidase IA (ManIA) significantly enhances the degradation of ERAD substrates and its knockdown stabilizes it. Our results indicate that ManIA trims mannose residues from Man9GlcNAc2 down to Man5GlcNAc2, acting in parallel with ERManI and the EDEMs, and targeting misfolded glycoproteins to ERAD.

  4. Cytoplasmic tail domain of glycoprotein B is essential for HHV-6 infection

    Mahmoud, Nora F. [Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe (Japan); Faculty of Pharmacy, Suez Canal University, Ismailia (Egypt); Jasirwan, Chyntia [Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe (Japan); Division of Hepatobiliary, Department of Internal Medicine, Faculty of Medicine, University of Indonesia (Indonesia); Kanemoto, Satoshi; Wakata, Aika; Wang, Bochao; Hata, Yuuki [Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe (Japan); Nagamata, Satoshi [Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe (Japan); Department of Obstetrics and Gynecology, Kobe University Graduate School of Medicine, Kobe (Japan); Kawabata, Akiko [Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe (Japan); Tang, Huamin [Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe (Japan); Department of Immunology, Nanjing Medical University, Nanjing (China); Mori, Yasuko, E-mail: [Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe (Japan)


    Human herpesvirus 6 (HHV-6) glycoprotein B (gB) is an abundantly expressed viral glycoprotein required for viral entry and cell fusion, and is highly conserved among herpesviruses. The present study examined the function of HHV-6 gB cytoplasmic tail domain (CTD). A gB CTD deletion mutant was constructed which, in contrast to its revertant, could not be reconstituted. Moreover, deletion of gB cytoplasmic tail impaired the intracellular transport of gB protein to the trans-Golgi network (TGN). Taken together, these results suggest that gB CTD is critical for HHV-6 propagation and important for intracellular transportation. - Highlights: • Glycoprotein B (gB) is highly conserved among herpesviruses. • HHV-6 gB is also abundantly expressed in virions. • In the present study, we showed the function of HHV-6 gB cytoplasmic tail domain (CTD). • We found that deletion of gB CTD impairs the intracellular transport of gB protein to the trans-Golgi network (TGN), and CTD of gB is critical for HHV-6 propagation.

  5. Crystal Structure of Glycoprotein C from a Hantavirus in the Post-fusion Conformation

    Willensky, Shmuel; Bignon, Eduardo A.; Tischler, Nicole D.; Dessau, Moshe


    Hantaviruses are important emerging human pathogens and are the causative agents of serious diseases in humans with high mortality rates. Like other members in the Bunyaviridae family their M segment encodes two glycoproteins, GN and GC, which are responsible for the early events of infection. Hantaviruses deliver their tripartite genome into the cytoplasm by fusion of the viral and endosomal membranes in response to the reduced pH of the endosome. Unlike phleboviruses (e.g. Rift valley fever virus), that have an icosahedral glycoprotein envelope, hantaviruses display a pleomorphic virion morphology as GN and GC assemble into spikes with apparent four-fold symmetry organized in a grid-like pattern on the viral membrane. Here we present the crystal structure of glycoprotein C (GC) from Puumala virus (PUUV), a representative member of the Hantavirus genus. The crystal structure shows GC as the membrane fusion effector of PUUV and it presents a class II membrane fusion protein fold. Furthermore, GC was crystallized in its post-fusion trimeric conformation that until now had been observed only in Flavi- and Togaviridae family members. The PUUV GC structure together with our functional data provides intriguing evolutionary and mechanistic insights into class II membrane fusion proteins and reveals new targets for membrane fusion inhibitors against these important pathogens. PMID:27783673

  6. A Universal Chemical Enrichment Method for Mapping the Yeast N-glycoproteome by Mass Spectrometry (MS)*

    Chen, Weixuan; Smeekens, Johanna M.; Wu, Ronghu


    Glycosylation is one of the most common and important protein modifications in biological systems. Many glycoproteins naturally occur at low abundances, which makes comprehensive analysis extremely difficult. Additionally, glycans are highly heterogeneous, which further complicates analysis in complex samples. Lectin enrichment has been commonly used, but each lectin is inherently specific to one or several carbohydrates, and thus no single or collection of lectin(s) can bind to all glycans. Here we have employed a boronic acid-based chemical method to universally enrich glycopeptides. The reaction between boronic acids and sugars has been extensively investigated, and it is well known that the interaction between boronic acid and diols is one of the strongest reversible covalent bond interactions in an aqueous environment. This strong covalent interaction provides a great opportunity to catch glycopeptides and glycoproteins by boronic acid, whereas the reversible property allows their release without side effects. More importantly, the boronic acid-diol recognition is universal, which provides great capability and potential for comprehensively mapping glycosylation sites in complex biological samples. By combining boronic acid enrichment with PNGase F treatment in heavy-oxygen water and MS, we have identified 816 N-glycosylation sites in 332 yeast proteins, among which 675 sites were well-localized with greater than 99% confidence. The results demonstrated that the boronic acid-based chemical method can effectively enrich glycopeptides for comprehensive analysis of protein glycosylation. A general trend seen within the large data set was that there were fewer glycosylation sites toward the C termini of proteins. Of the 332 glycoproteins identified in yeast, 194 were membrane proteins. Many proteins get glycosylated in the high-mannose N-glycan biosynthetic and GPI anchor biosynthetic pathways. Compared with lectin enrichment, the current method is more cost

  7. Saccharomyces cerivisiae as a model system for kidney disease: what can yeast tell us about renal function?

    Kolb, Alexander R; Buck, Teresa M; Brodsky, Jeffrey L


    Ion channels, solute transporters, aquaporins, and factors required for signal transduction are vital for kidney function. Because mutations in these proteins or in associated regulatory factors can lead to disease, an investigation into their biogenesis, activities, and interplay with other proteins is essential. To this end, the yeast, Saccharomyces cerevisiae, represents a powerful experimental system. Proteins expressed in yeast include the following: 1) ion channels, including the epithelial sodium channel, members of the inward rectifying potassium channel family, and cystic fibrosis transmembrane conductance regulator; 2) plasma membrane transporters, such as the Na(+)-K(+)-ATPase, the Na(+)-phosphate cotransporter, and the Na(+)-H(+) ATPase; 3) aquaporins 1-4; and 4) proteins such as serum/glucocorticoid-induced kinase 1, phosphoinositide-dependent kinase 1, Rh glycoprotein kidney, and trehalase. The variety of proteins expressed and studied emphasizes the versatility of yeast, and, because of the many available tools in this organism, results can be obtained rapidly and economically. In most cases, data gathered using yeast have been substantiated in higher cell types. These attributes validate yeast as a model system to explore renal physiology and suggest that research initiated using this system may lead to novel therapeutics.

  8. Biocavity laser spectroscopy of genetically altered yeast cells and isolated yeast mitochondria

    Gourley, Paul L.; Hendricks, Judy K.; McDonald, Anthony E.; Copeland, R. Guild; Naviaux, Robert K.; Yaffe, Michael P.


    We report an analysis of 2 yeast cell mutants using biocavity laser spectroscopy. The two yeast strains differed only by the presence or absence of mitochondrial DNA. Strain 104 is a wild-type (ρ +) strain of the baker's yeast, Saccharomyces cerevisiae. Strain 110 was derived from strain 104 by removal of its mitochondrial DNA (mtDNA). Removal of mtDNA causes strain 110 to grow as a "petite" (ρ -), named because it forms small colonies (of fewer cells because it grows more slowly) on agar plates supplemented with a variety of different carbon sources. The absence of mitochondrial DNA results in the complete loss of all the mtDNA-encoded proteins and RNAs, and loss of the pigmented, heme-containing cytochromes a and b. These cells have mitochondria, but the mitochondria lack the normal respiratory chain complexes I, III, IV, and V. Complex II is preserved because its subunits are encoded by genes located in nuclear DNA. The frequency distributions of the peak shifts produced by wild-type and petite cells and mitochondria show striking differences in the symmetry and patterns of the distributions. Wild-type ρ + cells (104) and mitochondria produced nearly symmetric, Gaussian distributions. The ρ - cells (110) and mitochondria showed striking asymmetry and skew that appeared to follow a Poisson distribution.

  9. A facile strategy for fabrication of nano-ZnO/yeast composites and their adsorption mechanism towards lead (II) ions

    Zhang, Wei; Meng, Lingyin; Mu, Guiqin; Zhao, Maojun; Zou, Ping; Zhang, Yunsong


    Nano-ZnO/yeast composites were successfully fabricated by one-step alkali hydrothermal method, and their adsorption properties for Pb2+ ions were also evaluated. Various influencing parameters of nano-ZnO/yeast composites, such as initial pH, contact time and initial Pb2+ concentration were investigated, respectively. The maximum adsorption capacity of nano-ZnO/yeast composites for Pb2+ (31.72 mg g-1) is 2.03 times higher than that of pristine yeast (15.63 mg g-1). The adsorption mechanism of nano-ZnO/yeast composites was studied by a series of techniques. Scanning electron microscopy (SEM) showed that nano-ZnO is evenly deposited on yeast surface. Atomic force microscopy (AFM) analysis exhibited that the yeast surface is rougher than that of pristine yeast. Energy dispersive X-ray detector (EDX) and X-ray diffraction (XRD) indicated the existence of nano-ZnO on yeast surface. Additionally, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) measurements further illustrated that alkali hydrothermal method causes not only the generation and anchorage of nano-ZnO on yeast surface but also the exposure of more functional groups (such as amino, carboxyl groups etc.) on yeast surface, both of which could adsorb Pb2+ via synergistic effect.

  10. Analysis of Determinants in Filovirus Glycoproteins Required for Tetherin Antagonism

    Kerstin Gnirß


    Full Text Available The host cell protein tetherin can restrict the release of enveloped viruses from infected cells. The HIV-1 protein Vpu counteracts tetherin by removing it from the site of viral budding, the plasma membrane, and this process depends on specific interactions between the transmembrane domains of Vpu and tetherin. In contrast, the glycoproteins (GPs of two filoviruses, Ebola and Marburg virus, antagonize tetherin without reducing surface expression, and the domains in GP required for tetherin counteraction are unknown. Here, we show that filovirus GPs depend on the presence of their authentic transmembrane domains for virus-cell fusion and tetherin antagonism. However, conserved residues within the transmembrane domain were dispensable for membrane fusion and tetherin counteraction. Moreover, the insertion of the transmembrane domain into a heterologous viral GP, Lassa virus GPC, was not sufficient to confer tetherin antagonism to the recipient. Finally, mutation of conserved residues within the fusion peptide of Ebola virus GP inhibited virus-cell fusion but did not ablate tetherin counteraction, indicating that the fusion peptide and the ability of GP to drive host cell entry are not required for tetherin counteraction. These results suggest that the transmembrane domains of filoviral GPs contribute to tetherin antagonism but are not the sole determinants.

  11. Effect of Urea on Activity and Conformation of a Glycoprotein

    WEI Xiang; WANG Xiaoyun; ZHOU Bo; ZHOU Haimeng


    The changes of the activity and conformation of Aspergillus niger phytase in urea were detected by farultraviolet circular dichroism (CD) spectra, fluorescence spectra, and enzyme activity assays. The results show that no enzyme activity can be detected after phytase is incubated for 10 h in 3.0 mol/L urea, even though at this urea concentration, less than 20% of the tertiary and secondary structures in the native enzyme changed. The inactivation reaction kinetics is found to be a monophasic first-order reaction, but the unfolding is a biphasic process consisting of two first-order reactions. The inactivation rates of the free enzyme and the substrate-enzyme complex are much faster than the conformational changes during urea denaturation. All of the results indicate that, as a glycoprotein, phytase's activity is strongly dependent on its conformational integrity. The phytase active sites seem to be located in a limited region in the molecule and display more conformational fragility and flexibility to denaturants than enzyme molecular structure as a whole.

  12. Polyphenolic substrates and dyes degradation by yeasts from 25 de Mayo/King George Island (Antarctica).

    Rovati, José I; Pajot, Hipólito F; Ruberto, Lucas; Mac Cormack, Walter; Figueroa, Lucía I C


    Antarctica offers a range of extreme climatic conditions, such as low temperatures, high solar radiation and low nutrient availability, and constitutes one of the harshest environments on Earth. Despite that, it has been successfully colonized by ’cold-loving’ fungi, which play a key role in decomposition cycles in cold ecosystems. However, knowledge about the ecological role of yeasts in nutrient or organic matter recycling/mineralization remains highly fragmentary. The aim of this work was to study the yeast microbiota in samples collected on 25 de Mayo/King George Island regarding the scope of their ability to degrade polyphenolic substrates such as lignin and azo dyes. Sixty-one yeast isolates were obtained from 37 samples, including soil, rocks, wood and bones. Molecular analyses based on rDNA sequences revealed that 35 yeasts could be identified at the species level and could be classified in the genera Leucosporidiella, Rhodotorula, Cryptococcus, Bullera and Candida. Cryptococcus victoriae was by far the most ubiquitous species. In total, 33% of the yeast isolates examined showed significant activity for dye decolorization, 25% for laccase activity and 38% for ligninolytic activity. Eleven yeasts did not show positive activity in any of the assays performed and no isolates showed positive activity across all tested substrates. A high diversity of yeasts were isolated in this work, possibly including undescribed species and conspicuous Antarctic yeasts, most of them belonging to oligotrophic, slow-growing and metabolically diverse basidiomycetous genera.

  13. Effect of selenium on growth and antioxidant enzyme activities of wine related yeasts.

    Assunção, M; Martins, L L; Mourato, M P; Baleiras-Couto, M M


    The use of supplements in the diet is a common practice to address nutritional deficiencies. Selenium is an essential micronutrient with an antioxidant and anti-carcinogenic role in human and animal health. There is increasing interest in developing nutritional supplements such as yeast cells enriched with selenium. The possibility of producing beverages, namely wine, with selenium-enriched yeasts, led us to investigate the selenium tolerance of six wine related yeasts. The production of such cells may hamper selenium toxicity problems. Above certain concentrations selenium can be toxic inducing oxidative stress and yeast species can show different tolerance. This work aimed at studying selenium tolerance of a diversity of wine related yeasts, thus antioxidant response mechanisms with different concentrations of sodium selenite were evaluated. Viability assays demonstrated that the yeast Torulaspora delbrueckii showed the highest tolerance for the tested levels of 100 µg mL(-1) of sodium selenite. The evaluation of antioxidative enzyme activities showed the best performance for concentrations of 250 and 100 µg mL(-1), respectively for the yeast species Saccharomyces cerevisiae and Hanseniaspora guilliermondii. These results encourage future studies on the possibility to use pre-enriched yeast cells as selenium supplement in wine production.

  14. Not a "reality" show.

    Wrong, Terence; Baumgart, Erica


    The authors of the preceding articles raise legitimate questions about patient and staff rights and the unintended consequences of allowing ABC News to film inside teaching hospitals. We explain why we regard their fears as baseless and not supported by what we heard from individuals portrayed in the filming, our decade-long experience making medical documentaries, and the full un-aired context of the scenes shown in the broadcast. The authors don't and can't know what conversations we had, what documents we reviewed, and what protections we put in place in each televised scene. Finally, we hope to correct several misleading examples cited by the authors as well as their offhand mischaracterization of our program as a "reality" show.

  15. Yeasts associated with an abandoned mining area in Pernek and their tolerance to different chemical elements.

    Vadkertiová, Renáta; Molnárová, Jana; Lux, Alexander; Vaculík, Marek; Lišková, Desana


    Four plants, Cirsium arvense (creeping thistle), Equisetum arvense (field horsetail), Oxalis acetosella (wood sorrel) and Phragmites australis (common reed), which grew in an abandoned Sb-mining area in Pernek (Malé Karpaty Mts., Slovakia), were investigated for the yeast species. Yeasts were isolated from both the leaves of the plants and the soil adjacent to the plants. In total, 65 yeast cultures, belonging to 11 ascomycetous and 5 basidiomycetous yeast species, were isolated. The species most frequently isolated from both the soil and leaf samples were Trichosporon porosum, Galactomyces candidus and Candida solani, whereas Aureobasidium pullulans, Candida tsuchiyae and Sporidiobolus metaroseus were isolated exclusively from the plant leaves. All the yeast species isolated were tested for their tolerance to two heavy metals (Cd, Zn) and three metalloids (As, Sb and Si). The yeasts isolated from both the leaves and soils exhibited a high tolerance level to both As and Sb, present in elevated concentrations at the locality. Among the yeast species tested, Cryptococcus musci, a close relative to Cryptococcus humicola, was the species most tolerant to all the chemical elements tested, with the exception of Si. It grew in the presence of 200 mmol/L Zn, 200 mmol/L Cd, 60 mmol/L As and 50 mmol/L Sb, and therefore, it can be considered as a multi-tolerant species. Some of the yeast species were tolerant to the individual chemical elements. The yeast-like species Trichosporon laibachii exhibited the highest tolerance to Si of all yeasts tested, and Cryptococcus flavescens and Lindnera saturnus showed the same tolerance as Cryptococcus musci to Zn and As, respectively. The majority of the yeasts showed a notably low tolerance to Cd (not exceeded 0.5 mmol/L), which was present in small amounts in the soil. However, Candida solani, isolated from the soil, exhibited a higher tolerance to Cd (20 mmol/L) than to As (2 mmol/L).

  16. Yeast selection for fuel ethanol production in Brazil.

    Basso, Luiz C; de Amorim, Henrique V; de Oliveira, Antonio J; Lopes, Mario L


    Brazil is one of the largest ethanol biofuel producers and exporters in the world and its production has increased steadily during the last three decades. The increasing efficiency of Brazilian ethanol plants has been evident due to the many technological contributions. As far as yeast is concerned, few publications are available regarding the industrial fermentation processes in Brazil. The present paper reports on a yeast selection program performed during the last 12 years aimed at selecting Saccharomyces cerevisiae strains suitable for fermentation of sugar cane substrates (cane juice and molasses) with cell recycle, as it is conducted in Brazilian bioethanol plants. As a result, some evidence is presented showing the positive impact of selected yeast strains in increasing ethanol yield and reducing production costs, due to their higher fermentation performance (high ethanol yield, reduced glycerol and foam formation, maintenance of high viability during recycling and very high implantation capability into industrial fermenters). Results also suggest that the great yeast biodiversity found in distillery environments could be an important source of strains. This is because during yeast cell recycling, selective pressure (an adaptive evolution) is imposed on cells, leading to strains with higher tolerance to the stressful conditions of the industrial fermentation.

  17. Yeast prions: structure, biology, and prion-handling systems.

    Wickner, Reed B; Shewmaker, Frank P; Bateman, David A; Edskes, Herman K; Gorkovskiy, Anton; Dayani, Yaron; Bezsonov, Evgeny E


    A prion is an infectious protein horizontally transmitting a disease or trait without a required nucleic acid. Yeast and fungal prions are nonchromosomal genes composed of protein, generally an altered form of a protein that catalyzes the same alteration of the protein. Yeast prions are thus transmitted both vertically (as genes composed of protein) and horizontally (as infectious proteins, or prions). Formation of amyloids (linear ordered β-sheet-rich protein aggregates with β-strands perpendicular to the long axis of the filament) underlies most yeast and fungal prions, and a single prion protein can have any of several distinct self-propagating amyloid forms with different biological properties (prion variants). Here we review the mechanism of faithful templating of protein conformation, the biological roles of these prions, and their interactions with cellular chaperones, the Btn2 and Cur1 aggregate-handling systems, and other cellular factors governing prion generation and propagation. Human amyloidoses include the PrP-based prion conditions and many other, more common amyloid-based diseases, several of which show prion-like features. Yeast prions increasingly are serving as models for the understanding and treatment of many mammalian amyloidoses. Patients with different clinical pictures of the same amyloidosis may be the equivalent of yeasts with different prion variants.

  18. Yeasts in table olive processing: desirable or spoilage microorganisms?

    Arroyo-López, F N; Romero-Gil, V; Bautista-Gallego, J; Rodríguez-Gómez, F; Jiménez-Díaz, R; García-García, P; Querol, A; Garrido-Fernández, A


    Yeasts are unicellular eukaryotic microorganisms isolated from many foods, and are commonly found in table olive processing where they can play a double role. On one hand, these microorganisms can produce spoilage of fruits due to the production of bad odours and flavours, the accumulation of CO(2) leading to swollen containers, the clouding of brines, the softening of fruits and the degradation of lactic acid, which is especially harmful during table olive storage and packaging. But on the other hand, fortunately, yeasts also possess desirable biochemical activities (lipase, esterase, β-glucosidase, catalase, production of killer factors, etc.) with important technological applications in this fermented vegetable. Recently, the probiotic potential of olive yeasts has begun to be evaluated because many species are able to resist the passage through the gastrointestinal tract and show beneficial effects on the host. In this way, yeasts may improve consumers' health by decreasing cholesterol levels, inhibiting pathogens, degrading non assimilated compounds, producing antioxidants and vitamins, adhering to intestinal cells or by maintaining epithelial barrier integrity. Many yeast species, usually also found in table olive processing, such as Wicherhamomyces anomalus, Saccharomyces cerevisiae, Pichia membranifaciens and Kluyveromyces lactis, have been reported to exhibit some of these properties. Thus, the selection of the most appropriate strains to be used as starters, alone or in combination with lactic acid bacteria, is a promising research line to develop in a near future which might improve the added value of the commercialized product.

  19. Immobilized yeast bioreactor systems for continuous beer fermentation

    Tata; Bower; Bromberg; Duncombe; Fehring; Lau; Ryder; Stassi


    Two different types of immobilized yeast bioreactors were examined for continuous fermentation of high-gravity worts. One of these is a fluidized bed reactor (FBR) that employs porous glass beads for yeast immobilization. The second system is a loop reactor containing a porous silicon carbide cartridge (SCCR) for immobilizing the yeast cells. Although there was some residual fermentable sugar in the SCCR system product, nearly complete attenuation of the wort sugars was achieved in either of the systems when operated as a two-stage process. Fermentation could be completed in these systems in only half the time required for a conventional batch process. Both the systems showed similar kinetics of extract consumption, and therefore similar volumetric productivity. As compared to the batch fermentation, total fusel alcohols were lower; total esters, while variable, were generally higher. The yeast biomass production was similar to that in a conventional fermentation process. As would be expected in an accelerated fermentation system, the levels of vicinal diketones (VDKs) were higher. To remove the VDKs, the young beer was heat-treated to convert the VDK precursors and processed through a packed bed immobilized yeast bioreactor for VDK assimilation. The finished product from the FBR system was found to be quite acceptable from a flavor perspective, albeit different from the product from a conventional batch process. Significantly shortened fermentation times demonstrate the feasibility of this technology for beer production.

  20. Performance of dairy females fed dried yeast from sugar cane

    Marcia de Oliveira Franco


    Full Text Available This study was performed in order to evaluate the effect of dried yeast from sugar cane when replacing soybean meal in dairy heifers’ diets. Twenty-four heifers, with an initial body weight (BW of 178 kg, were distributed in a completely randomized design. The treatments were four levels of inclusion of dried yeast from sugar cane replacing to soybean meal (0, 33, 67 and 100% on a dry matter (DM basis. While there was no difference in DM, neutral detergent fiber (NDF, metabolizable energy or roughage intakes, the intakes of non-fiber carbohydrates and concentrate were increased. The crude protein intake decreased according to the dried yeast from sugar cane when replacing soybean meal. The digestibility coefficients of DM and NDF showed no difference. Replacement of soybean meal with dried yeast from sugar cane had no effect on performance, because average daily gain and body measurements studied were similar for all animals and inclusion levels. Soybean meal can be completely replaced with dried yeast from sugar cane in diets for growing dairy heifers without restrictions; this will not affect the intake, digestibility, physical development of animals or metabolization of protein compounds.

  1. Proteolysis of specific porcine zona pellucida glycoproteins by boar acrosin.

    Dunbar, B S; Dudkiewicz, A B; Bundman, D S


    The morphologic and biochemical effects on the structure and constituent glycoproteins of the zona pellucida (ZP) by a specific sperm enzyme, acrosin, and a nonsperm enzyme, trypsin, have been evaluated. Intact porcine ZP matricies, exposed to either acrosin or trypsin, were analyzed microscopically. Changes in specific glycoproteins were monitored by high-resolution two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and the silver-based color stain, GELCODE. Although these enzymes did not alter the macroscopic properties of the ZP matrix, the 2D-PAGE ZP protein patterns were markedly altered. The high molecular weight glycoprotein families (II and III) were sensitive to proteolytic digestion, whereas the major glycoprotein family (I) of the porcine zona was only partially proteolyzed by acrosin and trypsin. Furthermore, it was demonstrated that acrosin had unique substrate specificity compared to that of trypsin, since the ZP peptide patterns were found to be different. These studies are the first to demonstrate which integral glycoproteins of the native porcine ZP matrix are specifically proteolyzed by acrosin from the homologous species and that this proteolysis occurs without the dissolution of the native porcine matrix.

  2. Glycoprotein labeling with click chemistry (GLCC) and carbohydrate detection.

    Wu, Zhengliang L; Huang, Xinyi; Burton, Andrew J; Swift, Karl A D


    Molecular labeling and detection techniques are essential to research in life science. Here, a method for glycoprotein labeling/carbohydrate detection through glycan replacement, termed glycoprotein labeling with click chemistry (GLCC), is described. In this method, a glycoprotein is first treated with specific glycosidases to remove certain sugar residues, a procedure that creates acceptor sites for a specific glycosyltransferase. A 'clickable' monosaccharide is then installed onto these sites by the glycosyltransferase. This modified glycoprotein is then conjugated to a reporter molecule using a click chemistry reaction. For glycoproteins that already contain vacant glycosylation sites, deglycosylation is not needed before the labeling step. As a demonstration, labeling on fetal bovine fetuin, mouse immunoglobulin IgG and bacterial expressed human TNFα and TNFβ are shown. Compared to traditional ways of protein labeling, labeling at glycosylation sites with GLCC is considerably more specific and less likely to have adverse effects, and, when utilized as a method for carbohydrate detection, this method is also highly specific and sensitive.

  3. Structures and Functions of Pestivirus Glycoproteins: Not Simply Surface Matters

    Fun-In Wang


    Full Text Available Pestiviruses, which include economically important animal pathogens such as bovine viral diarrhea virus and classical swine fever virus, possess three envelope glycoproteins, namely Erns, E1, and E2. This article discusses the structures and functions of these glycoproteins and their effects on viral pathogenicity in cells in culture and in animal hosts. E2 is the most important structural protein as it interacts with cell surface receptors that determine cell tropism and induces neutralizing antibody and cytotoxic T-lymphocyte responses. All three glycoproteins are involved in virus attachment and entry into target cells. E1-E2 heterodimers are essential for viral entry and infectivity. Erns is unique because it possesses intrinsic ribonuclease (RNase activity that can inhibit the production of type I interferons and assist in the development of persistent infections. These glycoproteins are localized to the virion surface; however, variations in amino acids and antigenic structures, disulfide bond formation, glycosylation, and RNase activity can ultimately affect the virulence of pestiviruses in animals. Along with mutations that are driven by selection pressure, antigenic differences in glycoproteins influence the efficacy of vaccines and determine the appropriateness of the vaccines that are currently being used in the field.

  4. Yeast as factory and factotum.

    Dixon, B


    After centuries of vigorous activity in making fine wines, beers and breads, Saccharomyces cerevisiae is now acquiring a rich new portfolio of skills, bestowed by genetic manipulation. As shown in a recent shop-window of research supported by the European Commission, yeasts will soon be benefiting industries as diverse as fish farming, pharmaceuticals and laundering.

  5. Black yeasts in cold habitats

    Selbmann, L.; de Hoog, G.S.; Zucconi, L.; Isola, D.; Onofri, S.; Buzzini, B.; Margesin, E.


    Black yeasts have already been known since the end of the nineteenth century, but for a number of reasons, only few workers were familiar with them. That was since recently, until the wealth of biodiversity, stunning ecologies and potential applications have become apparent. Some remote and extreme

  6. Nucleotide excision repair in yeast

    Eijk, Patrick van


    Nucleotide Excision Repair (NER) is a conserved DNA repair pathway capable of removing a broad spectrum of DNA damage. In human cells a defect in NER leads to the disorder Xeroderma pigmentosum (XP). The yeast Saccharomyces cerevisiae is an excellent model organism to study the mechanism of NER. The

  7. Showing Value (Editorial

    Denise Koufogiannakis


    Full Text Available When Su Cleyle and I first decided to start Evidence Based Library and Information Practice, one of the things we agreed upon immediately was that the journal be open access. We knew that a major obstacle to librarians using the research literature was that they did not have access to the research literature. Although Su and I are both academic librarians who can access a wide variety of library and information literature from our institutions, we belong to a profession where not everyone has equal access to the research in our field. Without such access to our own body of literature, how can we ever hope for practitioners to use research evidence in their decision making? It would have been contradictory to the principles of evidence based library and information practice to do otherwise.One of the specific groups we thought could use such an open access venue for discovering research literature was school librarians. School librarians are often isolated and lacking access to the research literature that may help them prove to stakeholders the importance of their libraries and their role within schools. Certainly, school libraries have been in decline and the use of evidence to show value is needed. As Ken Haycock noted in his 2003 report, The Crisis in Canada’s School Libraries: The Case for Reform and Reinvestment, “Across the country, teacher-librarians are losing their jobs or being reassigned. Collections are becoming depleted owing to budget cuts. Some principals believe that in the age of the Internet and the classroom workstation, the school library is an artifact” (9. Within this context, school librarians are looking to our research literature for evidence of the impact that school library programs have on learning outcomes and student success. They are integrating that evidence into their practice, and reflecting upon what can be improved locally. They are focusing on students and showing the impact of school libraries and

  8. Public medical shows.

    Walusinski, Olivier


    In the second half of the 19th century, Jean-Martin Charcot (1825-1893) became famous for the quality of his teaching and his innovative neurological discoveries, bringing many French and foreign students to Paris. A hunger for recognition, together with progressive and anticlerical ideals, led Charcot to invite writers, journalists, and politicians to his lessons, during which he presented the results of his work on hysteria. These events became public performances, for which physicians and patients were transformed into actors. Major newspapers ran accounts of these consultations, more like theatrical shows in some respects. The resultant enthusiasm prompted other physicians in Paris and throughout France to try and imitate them. We will compare the form and substance of Charcot's lessons with those given by Jules-Bernard Luys (1828-1897), Victor Dumontpallier (1826-1899), Ambroise-Auguste Liébault (1823-1904), Hippolyte Bernheim (1840-1919), Joseph Grasset (1849-1918), and Albert Pitres (1848-1928). We will also note their impact on contemporary cinema and theatre.

  9. The Great Cometary Show


    its high spatial and spectral resolution, it was possible to zoom into the very heart of this very massive star. In this innermost region, the observations are dominated by the extremely dense stellar wind that totally obscures the underlying central star. The AMBER observations show that this dense stellar wind is not spherically symmetric, but exhibits a clearly elongated structure. Overall, the AMBER observations confirm that the extremely high mass loss of Eta Carinae's massive central star is non-spherical and much stronger along the poles than in the equatorial plane. This is in agreement with theoretical models that predict such an enhanced polar mass-loss in the case of rapidly rotating stars. ESO PR Photo 06c/07 ESO PR Photo 06c/07 RS Ophiuchi in Outburst Several papers from this special feature focus on the later stages in a star's life. One looks at the binary system Gamma 2 Velorum, which contains the closest example of a star known as a Wolf-Rayet. A single AMBER observation allowed the astronomers to separate the spectra of the two components, offering new insights in the modeling of Wolf-Rayet stars, but made it also possible to measure the separation between the two stars. This led to a new determination of the distance of the system, showing that previous estimates were incorrect. The observations also revealed information on the region where the winds from the two stars collide. The famous binary system RS Ophiuchi, an example of a recurrent nova, was observed just 5 days after it was discovered to be in outburst on 12 February 2006, an event that has been expected for 21 years. AMBER was able to detect the extension of the expanding nova emission. These observations show a complex geometry and kinematics, far from the simple interpretation of a spherical fireball in extension. AMBER has detected a high velocity jet probably perpendicular to the orbital plane of the binary system, and allowed a precise and careful study of the wind and the shockwave

  10. Patagonian wines: the selection of an indigenous yeast starter.

    Lopes, Christian A; Rodríguez, María E; Sangorrín, Marcela; Querol, Amparo; Caballero, Adriana C


    The use of selected yeasts for winemaking has clear advantages over the traditional spontaneous fermentation. The aim of this study was to select an indigenous Saccharomyces cerevisiae yeast isolate in order to develop a regional North Patagonian red wine starter culture. A two-step selection protocol developed according to physiological, technological and ecological criteria based on killer interactions was used. Following this methodology, S. cerevisiae isolate MMf9 was selected among 32 indigenous yeasts previously characterized as belonging to different strains according to molecular patterns and killer biotype. This isolate showed interesting technological and qualitative features including high fermentative power and low volatile acidity production, low foam and low sulphide production, as well as relevant ecological characteristics such as resistance to all indigenous and commercial S. cerevisiae killer strains assayed. Red wines with differential volatile profiles and interesting enological features were obtained at laboratory scale by using this selected indigenous strain.

  11. 'Killer' character of yeasts isolated from ethanolic fermentations

    Ceccato-Antonini Sandra Regina


    Full Text Available The number of killer, neutral and sensitive yeasts was determined from strains isolated from substrates related to alcoholic fermentations. From 113 isolates, 24 showed killer activity against NCYC 1006 (standard sensitive strain, while 30 were sensitive to NCYC 738 (standard killer strain, and 59 had no reaction in assays at 25-27°C. Two wild yeast strains of Saccharomyces cerevisiae and one of Candida colliculosa were tested against 10 standard killer strains and one standard sensitive strain in a cell x cell and well-test assays at four different pHs. None of the isolates displayed strong killer activity or were sensitive to the standard strains. All belonged to the neutral type. It was concluded that although the number of killer strains was high, this character cannot be used to protect ethanol fermentation processes against yeast contaminants like those which form cell clusters.

  12. Dynamical Analysis of Protein Regulatory Network in Budding Yeast Nucleus

    LI Fang-Ting; JIA Xun


    @@ Recent progresses in the protein regulatory network of budding yeast Saccharomyces cerevisiae have provided a global picture of its protein network for further dynamical research. We simplify and modularize the protein regulatory networks in yeast nucleus, and study the dynamical properties of the core 37-node network by a Boolean network model, especially the evolution steps and final fixed points. Our simulation results show that the number of fixed points N(k) for a given size of the attraction basin k obeys a power-law distribution N(k)∝k-2.024. The yeast network is more similar to a scale-free network than a random network in the above dynamical properties.

  13. Genetic Analysis of Haploids from Industrial Strains of Baker's Yeast.

    Oda, Y; Ouchi, K


    Strains of baker's yeast conventionally used by the baking industry in Japan were tested for the ability to sporulate and produce viable haploid spores. Three isolates which possessed the properties of baker's yeasts were obtained from single spores. Each strain was a haploid, and one of these strains, YOY34, was characterized. YOY34 fermented maltose and sucrose, but did not utilize galactose, unlike its parental strain. Genetic analysis showed that YOY34 carried two MAL genes, one functional and one cryptic; two SUC genes; and one defective gal gene. The genotype of YOY34 was identified as MATalpha MAL1 MAL3g SUC2 SUC4 gall. The MAL1 gene from this haploid was constitutively expressed, was dominant over other wild-type MAL tester genes, and gave a weak sucrose fermentation. YOY34 was suitable for both bakery products, like conventional baker's yeasts, and for genetic analysis, like laboratory strains.

  14. Antifungal chitinase against human pathogenic yeasts from Coprinellus congregatus.

    Yoo, Yeeun; Choi, Hyoung T


    The inky cap, Coprinellus congregatus, produces mushrooms which become autolyzed rapidly to generate black liquid droplets, in which no cell wall is detected by microscopy. A chitinase (Chi2) which is synthesized during the autolytic phase of C. congregatus inhibits the growths of Candida albicans and Cryptococcus neoformans up to 10% at the concentration of 10 μg/ml, about 50% at concentration of 20 μg/ml, and up to 95% at the concentration of 70 μg/ml. Upon treatment these yeast cells are observed to be severely deformed, with the formation of large holes in the cell wall. The two yeast species show no growth inhibition at the concentration of 5 μg/ml, which means the minimum inhibitory concentrations for both yeast species are 10 μg/ml under these experimental conditions.

  15. Random Boolean network models and the yeast transcriptional network

    Kauffman, Stuart; Peterson, Carsten; Samuelsson, Björn; Troein, Carl


    The recently measured yeast transcriptional network is analyzed in terms of simplified Boolean network models, with the aim of determining feasible rule structures, given the requirement of stable solutions of the generated Boolean networks. We find that for ensembles of generated models, those with canalyzing Boolean rules are remarkably stable, whereas those with random Boolean rules are only marginally stable. Furthermore, substantial parts of the generated networks are frozen, in the sense that they reach the same state regardless of initial state. Thus, our ensemble approach suggests that the yeast network shows highly ordered dynamics.

  16. Utilization of hexamethylenetetramine (urotropine) by bacteria and yeasts.

    Middelhoven, Wouter J; van Doesburg, Wim


    A slow growing bacterial population able to utilize hexamethylelenetetramine (urotropine) as sole source of carbon, nitrogen and energy was isolated from soil. From this crude enrichment culture two bacteria were isolated and identified as Brevundimonas diminuta and a Phyllobacterium sp. by sequencing of 16S ribosomal DNA. These bacteria also grew on urotropine but at a lower rate than the enrichment culture. Addition of glucose to the latter resulted in growth of some yeasts that overgrew the bacteria. Assimilation of urotropine as sole nitrogen source is very common among yeasts, 46 out of 60 species tested showed this characteristic.

  17. Reduction of hepatic lipid deposition in laying hens by dietary selenium-yeast interaction.

    Maurice, D V; Jensen, L S


    Experiments were conducted to study the effect of chromiun and selenium on liver lipid deposition and incidence of liver hemorrhage in caged layers. Commercial strains of layers were fed ad libitum equicaloric and isonitrogenous diets. Corn-torula dried yeast diets containing added selenium (.1 microgram/g) with or without supplementary chromium (10 microgram/g) significantly reduced total liver lipid and liver hemorrhage. The effects of protein source (soybean meal vs. yeast) and selenium were separated in a factorial experiment which showed that the hepatic lipid response to selenium results from an interaction of selenium with an unidentified factor in torula yeast. The addition of selenium to diets with each protein source significantly elevated glutathione peroxidase (GSHPx) activity. Inclusion of 5% brewers yeast in the corn-soy diet or vitamin E (50 IU/kg) to the corn-torula dried yeast reduced liver lipid similar to that seen in birds fed the torula-yeast diet containing .1 microgram Se/g. Comparison of oral glucose tolerance of birds fed corn-soy and corn-soy brewers yeast diets showed no significant difference. None of the dietary treatments significantly altered body weight, egg production, egg weight, or feed consumption. The results indicate that the metabolic role of selenium in relation to its role in hepatic lipid metabolism is mediated through an interaction with a dietary factor(s) present in yeast.

  18. How does yeast respond to pressure?

    P.M.B. Fernandes


    Full Text Available The brewing and baking yeast Saccharomyces cerevisiae has been used as a model for stress response studies of eukaryotic cells. In this review we focus on the effect of high hydrostatic pressure (HHP on S. cerevisiae. HHP exerts a broad effect on yeast cells characteristic of common stresses, mainly associated with protein alteration and lipid bilayer phase transition. Like most stresses, pressure induces cell cycle arrest. Below 50 MPa (500 atm yeast cell morphology is unaffected whereas above 220 MPa wild-type cells are killed. S. cerevisiae cells can acquire barotolerance if they are pretreated with a sublethal stress due to temperature, ethanol, hydrogen peroxide, or pressure. Nevertheless, pressure only leads to protection against severe stress if, after pressure pretreatment, the cells are also re-incubated at room pressure. We attribute this effect to the inhibition of the protein synthesis apparatus under HHP. The global genome expression analysis of S. cerevisiae cells submitted to HHP revealed a stress response profile. The majority of the up-regulated genes are involved in stress defense and carbohydrate metabolism while most repressed genes belong to the cell cycle progression and protein synthesis categories. However, the signaling pathway involved in the pressure response is still to be elucidated. Nitric oxide, a signaling molecule involved in the regulation of a large number of cellular functions, confers baroprotection. Furthermore, S. cerevisiae cells in the early exponential phase submitted to 50-MPa pressure show induction of the expression level of the nitric oxide synthase inducible isoform. As pressure becomes an important biotechnological tool, studies concerning this kind of stress in microorganisms are imperative.

  19. Retroviral Env Glycoprotein Trafficking and Incorporation into Virions

    Tsutomu Murakami


    Full Text Available Together with the Gag protein, the Env glycoprotein is a major retroviral structural protein and is essential for forming infectious virus particles. Env is synthesized, processed, and transported to certain microdomains at the plasma membrane and takes advantage of the same host machinery for its trafficking as that used by cellular glycoproteins. Incorporation of Env into progeny virions is probably mediated by the interaction between Env and Gag, in some cases with the additional involvement of certain host factors. Although several general models have been proposed to explain the incorporation of retroviral Env glycoproteins into virions, the actual mechanism for this process is still unclear, partly because structural data on the Env protein cytoplasmic tail is lacking. This paper presents the current understanding of the synthesis, trafficking, and virion incorporation of retroviral Env proteins.

  20. Processing of virus-specific glycoproteins of varicella zoster virus

    Namazue, J.; Campo-Vera, H.; Kitamura, K.; Okuno, T.; Yamanishi, K.


    Monoclonal antibodies to varicella zoster virus (VZV) glycoproteins were used to study the processing of three glycoproteins with molecular weights of 83K-94K (gp 2), 64K (gp 3), and 55K (gp 5). Immunoprecipitation experiments performed with VZV-infected cells, pulse labeled with (/sup 3/H)glucosamine in the presence of tunicamycin, suggest that O-linked oligosaccharide is present on the glycoprotein of gp 2. Use of the enzyme endo-beta-N-acetylglucosaminidase H revealed that the fully processed form of gp 3 had high-mannose type and that of gp 5 had only complex type of N-linked oligosaccharides. Experiments with monensin suggest that the precursor form (116K) of gp 3 is cleaved during the processing from Golgi apparatus to cell surface membrane. The extension of O-linked oligosaccharide chain and the complex type of N-linked oligosaccharide chains also occurs during this processing.

  1. Production of glycolipid biosurfactants by basidiomycetous yeasts.

    Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai


    BSs (biosurfactants) produced by various micro-organisms show unique properties (e.g. mild production conditions, lower toxicity, higher biodegradability and environmental compatibility) compared with chemically synthesized surfactants. The numerous advantages of BSs have prompted applications not only in the food, cosmetic and pharmaceutical industries but also in environmental protection and energy-saving technology. Among BSs, glycolipid types are the most promising, owing to their high productivity from renewable resources and versatile biochemical properties. MELs (mannosylerythritol lipids), which are glycolipid BSs abundantly produced by basidiomycetous yeasts such as strains of Pseudozyma, exhibit not only excellent interfacial properties, but also remarkable differentiation-inducing activities against human leukaemia cells. MELs also show high binding affinity towards different immunoglobulins and lectins. Recently, a cationic liposome bearing MEL has been demonstrated to increase dramatically the efficiency of gene transfection into mammalian cells. These features of BSs should broaden their application in new advanced technologies. In the present review the current status of research and development on glycolipid BSs, especially their production by Pseudozyma yeasts, is described.

  2. Vegemite Beer: yeast extract spreads as nutrient supplements to promote fermentation

    Edward D. Kerr


    Full Text Available Vegemite is an iconic Australian food spread made from spent brewers’ yeast extract, which has been reported to be used as an ingredient in illegal home brewing. In this study, we tested the utility of Vegemite and the similar spread Marmite in promoting fermentation. We could not culture microorganisms from either Vegemite or Marmite, consistent with these food-grade spreads being essentially sterile. To test if the addition of Vegemite or Marmite could assist in fermentation when additional viable yeast was also present, solutions containing glucose and a range of concentrations of either Vegemite or Marmite were inoculated with brewers’ yeast. No fermentation occurred in any condition without addition of extra brewer’s yeast. Fermentation did not occur when yeast was inoculated into solutions containing only glucose, but progressed efficiently with when Vegemite or Marmite was also added. Gas Chromatography confirmed that ethanol was present at ∼3% v/v post-fermentation in all samples which contained glucose, Vegemite or Marmite, and brewers’ yeast. Trace amounts of methanol were also detected. Mass spectrometry proteomics identified abundant intracellular yeast proteins and barley proteins in Vegemite and Marmite, and abundant secreted yeast proteins from actively growing yeast in those samples to which extra brewers’ yeast had been added. We estimate that the real-world cost of home brewed “Vegemite Beer” would be very low. Our results show that Vegemite or other yeast extract spreads could provide cheap and readily available sources of nutrient supplementation to increase the efficiency of fermentation in home brewing or other settings.

  3. Vegemite Beer: yeast extract spreads as nutrient supplements to promote fermentation.

    Kerr, Edward D; Schulz, Benjamin L


    Vegemite is an iconic Australian food spread made from spent brewers' yeast extract, which has been reported to be used as an ingredient in illegal home brewing. In this study, we tested the utility of Vegemite and the similar spread Marmite in promoting fermentation. We could not culture microorganisms from either Vegemite or Marmite, consistent with these food-grade spreads being essentially sterile. To test if the addition of Vegemite or Marmite could assist in fermentation when additional viable yeast was also present, solutions containing glucose and a range of concentrations of either Vegemite or Marmite were inoculated with brewers' yeast. No fermentation occurred in any condition without addition of extra brewer's yeast. Fermentation did not occur when yeast was inoculated into solutions containing only glucose, but progressed efficiently with when Vegemite or Marmite was also added. Gas Chromatography confirmed that ethanol was present at ∼3% v/v post-fermentation in all samples which contained glucose, Vegemite or Marmite, and brewers' yeast. Trace amounts of methanol were also detected. Mass spectrometry proteomics identified abundant intracellular yeast proteins and barley proteins in Vegemite and Marmite, and abundant secreted yeast proteins from actively growing yeast in those samples to which extra brewers' yeast had been added. We estimate that the real-world cost of home brewed "Vegemite Beer" would be very low. Our results show that Vegemite or other yeast extract spreads could provide cheap and readily available sources of nutrient supplementation to increase the efficiency of fermentation in home brewing or other settings.

  4. Quantifying Variation in the Ability of Yeasts to Attract Drosophila melanogaster

    Palanca, Loida; Gaskett, Anne C.; Günther, Catrin S.; Newcomb, Richard D.; Goddard, Matthew R.


    Yeasts that invade and colonise fruit significantly enhance the volatile chemical diversity of this ecosystem. These modified bouquets are thought to be more attractive to Drosophila flies than the fruit alone, but the variance of attraction in natural yeast populations is uncharacterised. Here we investigate how a range of yeast isolates affect the attraction of female D. melanogaster to fruit in a simple two choice assay comparing yeast to sterile fruit. Of the 43 yeast isolates examined, 33 were attractive and seven repellent to the flies. The results of isolate-versus-isolate comparisons provided the same relative rankings. Attractiveness varied significantly by yeast, with the strongly fermenting Saccharomyces species generally being more attractive than the mostly respiring non-Saccharomyces species (P = 0.0035). Overall the habitat (fruit or other) from which the isolates were directly sampled did not explain attraction (P = 0.2352). However, yeasts isolated from fruit associated niches were more attractive than those from non-fruit associated niches (P = 0.0188) regardless of taxonomic positioning. These data suggest that while attractiveness is primarily correlated with phylogenetic status, the ability to attract Drosophila is a labile trait among yeasts that is potentially associated with those inhabiting fruit ecosystems. Preliminary analysis of the volatiles emitted by four yeast isolates in grape juice show the presence/absence of ethanol and acetic acid were not likely explanations for the observed variation in attraction. These data demonstrate variation among yeasts for their ability to attract Drosophila in a pattern that is consistent with the hypothesis that certain yeasts are manipulating fruit odours to mediate interactions with their Drosophila dispersal agent. PMID:24086510

  5. Identification and characterization of yeasts isolated from sedimentary rocks of Union Glacier at the Antarctica.

    Barahona, Salvador; Yuivar, Yassef; Socias, Gabriel; Alcaíno, Jennifer; Cifuentes, Víctor; Baeza, Marcelo


    The study of the yeasts that inhabit cold environments, such as Antarctica, is an active field of investigation oriented toward understanding their ecological roles in these ecosystems. In a great part, the interest in cold-adapted yeasts is due to several industrial and biotechnological applications that have been described for them. The aim of this work was to isolate and identify yeasts from sedimentary rock samples collected at the Union Glacier, Antarctica. Furthermore, the yeasts were physiologically characterized, including the production of metabolites of biotechnological interest. The yeasts isolated that were identified at the molecular level belonged to genera Collophora (1 isolate), Cryptococcus (2 isolates), Sporidiobolus (4 isolates), Sporobolomyces (1 isolate) and Torrubiella (2 isolates). The majority of yeasts were basidiomycetous and psychrotolerant. By cross-test assays for anti-yeast activity, it was determined that Collophora sp., Sporidiobolus salmonicolor, and Sporobolomyces roseus secreted a protein factor that kills Sporidiobolus metaroseus. The colored yeasts Sp. salmonicolor, Sp. metaroseus and Collophora sp. produced several carotenoid pigments that were identified as 2,3 dihydroxy-γ-carotene, -carotene, 4-ketotorulene, torulene β-cryptoxanthin and spirilloxanthin. Concerning analysis of mycosporines, these metabolites were only found in the yeasts Torrubiella sp. and Cryptococcus sp. T11-10-1. Furthermore, the yeasts were evaluated for the production of extracellular hydrolytic activities. Of the twelve activities analyzed, alkaline phosphatase, invertase, gelatinase, cellulase, amylase, and protease enzyme activities were detected. The yeasts Cryptococcus sp. T11-10-1 and Sporidiobolus metaroseus showed the highest number of different enzyme activities.

  6. Square-wave voltammetry assays for glycoproteins on nanoporous gold

    Pandey, Binod; Bhattarai, Jay K.; Pornsuriyasak, Papapida; Fujikawa, Kohki; Catania, Rosa; Demchenko, Alexei V.; Stine, Keith J.


    Electrochemical enzyme-linked lectinsorbent assays (ELLA) were developed using nanoporous gold (NPG) as a solid support for protein immobilization and as an electrode for the electrochemical determination of the product of the reaction between alkaline phosphatase (ALP) and p-aminophenyl phosphate (p-APP), which is p-aminophenol (p-AP). Glycoproteins or concanavalin A (Con A) and ALP conjugates were covalently immobilized onto lipoic acid self-assembled monolayers on NPG. The binding of Con A – ALP (or soybean agglutinin – ALP) conjugate to glycoproteins covalently immobilized on NPG and subsequent incubation with p-APP substrate was found to result in square-wave voltammograms whose peak difference current varied with the identity of the glycoprotein. NPG presenting covalently bound glycoproteins was used as the basis for a competitive electrochemical assay for glycoproteins in solution (transferrin and IgG). A kinetic ELLA based on steric hindrance of the enzyme-substrate reaction and hence reduced enzymatic reaction rate after glycoprotein binding is demonstrated using immobilized Con A–ALP conjugates. Using the immobilized Con A-ALP conjugate, the binding affinity of immunoglobulin G (IgG) was found to be 105 nM, and that for transferrin was found to be 650 nM. Minimal interference was observed in the presence of 5 mg mL−1 BSA as a model serum protein in both the kinetic and competitive ELLA. Inhibition studies were performed with methyl D-mannoside for the binding of TSF and IgG to Con A-ALP; IC50 values were found to be 90 μM and 286 μM, respectively. Surface coverages of proteins were estimated using solution depletion and the BCA protein concentration assay. PMID:24611035

  7. Generic sorting of raft lipids into secretory vesicles in yeast

    Surma, Michal A; Klose, Christian; Klemm, Robin W;


    a complete lipid overview of the yeast late secretory pathway. We could show that vesicles captured with different baits carry the same cargo and have almost identical lipid compositions; being highly enriched in ergosterol and sphingolipids. This finding indicates that lipid raft sorting is a generic...... feature of vesicles carrying PM cargo and suggests a common lipid-based mechanism for their formation....

  8. Monitoring of yeast cell concentration using a micromachnined impedance sensor

    Krommenhoek, E.E.; Gardeniers, Johannes G.E.; Bomer, Johan G.; van den Berg, Albert; Li, X.; Li, X.; Ottens, M.; van der Wielen, L.A.M.; van Dedem, G.W.K.; van Leeuwen, M.; van Gulik, W.M.; Heijnen, J.J.


    This paper describes the design, modeling and experimental characterization of a micromachined impedance sensor for on-line monitoring of the viable yeast cell concentration (biomass) in a miniaturized cell assay. Measurements in Saccharomyces cerevisiae cell culture show that the characteristic fre

  9. Monitoring of yeast cell concentration using a micromachined impedance sensor

    Krommenhoek, E.E.; Gardeniers, Johannes G.E.; Bomer, Johan G.; van den Berg, Albert; Li, X.; Ottens, M.; van der Wielen, L.A.M.; van Dedem, G.W.K.; van Leeuwen, M.; van Gulik, W.M.; Heijnen, J.J.


    The paper describes the design, modelling and experimental characterization of a micromachined impedance sensor for on-line monitoring of the viable yeast cell concentration (biomass) in a miniaturized cell assay. Measurements in a Saccharomyces cerevisiae cell culture show that the permittivity of

  10. Peroxisomal catalase deficiency modulates yeast lifespan depending on growth conditions

    Kawalek, Adam; Lefevre, Sophie D.; Veenhuis, Marten; van der Klei, Ida J.


    We studied the role of peroxisomal catalase in chronological aging of the yeast Hansenula polymorpha in relation to various growth substrates. Catalase-deficient (cat) cells showed a similar chronological life span (CLS) relative to the wild-type control upon growth on carbon and nitrogen sources th

  11. An Electron Microscope Study of the Yeast Pityrosporum ovale

    Kreger-van Rij, N.J.W.; Veenhuis, M.


    Cells of Pityrosporum ovale were prepared for electron microscopy by different methods of fixation and embedding, all of them causing some degree of damage to the cells. Apart from the usual organelles seen in other yeast cells, a body was found which showed an electron-dense outer layer and an elec

  12. nES GEMMA Analysis of Lectins and Their Interactions with Glycoproteins - Separation, Detection, and Sampling of Noncovalent Biospecific Complexes

    Engel, Nicole Y.; Weiss, Victor U.; Marchetti-Deschmann, Martina; Allmaier, Günter


    In order to better understand biological events, lectin-glycoprotein interactions are of interest. The possibility to gather more information than the mere positive or negative response for interactions brought mass spectrometry into the center of many research fields. The presented work shows the potential of a nano-electrospray gas-phase electrophoretic mobility molecular analyzer (nES GEMMA) to detect weak, noncovalent, biospecific interactions besides still unbound glycoproteins and unreacted lectins without prior liquid phase separation. First results for Sambucus nigra agglutinin, concanavalin A, and wheat germ agglutinin and their retained noncovalent interactions with glycoproteins in the gas phase are presented. Electrophoretic mobility diameters (EMDs) were obtained by nES GEMMA for all interaction partners correlating very well with molecular masses determined by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of the individual molecules. Moreover, EMDs measured for the lectin-glycoprotein complexes were in good accordance with theoretically calculated mass values. Special focus was laid on complex formation for different lectin concentrations and binding specificities to evaluate the method with respect to results obtained in the liquid phase. The latter was addressed by capillary electrophoresis on-a-chip (CE-on-a-chip). Of exceptional interest was the fact that the formed complexes could be sampled according to their size onto nitrocellulose membranes after gas-phase separation. Subsequent immunological investigation further proved that the collected complex actually retained its native structure throughout nES GEMMA analysis and sampling.

  13. Retinal glycoprotein enrichment by concanavalin a enabled identification of novel membrane autoantigen synaptotagmin-1 in equine recurrent uveitis.

    Swadzba, Margarete E; Hauck, Stefanie M; Naim, Hassan Y; Amann, Barbara; Deeg, Cornelia A


    Complete knowledge of autoantigen spectra is crucial for understanding pathomechanisms of autoimmune diseases like equine recurrent uveitis (ERU), a spontaneous model for human autoimmune uveitis. While several ERU autoantigens were identified previously, no membrane protein was found so far. As there is a great overlap between glycoproteins and membrane proteins, the aim of this study was to test whether pre-enrichment of retinal glycoproteins by ConA affinity is an effective tool to detect autoantigen candidates among membrane proteins. In 1D Western blots, the glycoprotein preparation allowed detection of IgG reactions to low abundant proteins in sera of ERU patients. Synaptotagmin-1, a Ca2+-sensing protein in synaptic vesicles, was identified as autoantigen candidate from the pre-enriched glycoprotein fraction by mass spectrometry and was validated as a highly prevalent autoantigen by enzyme-linked immunosorbent assay. Analysis of Syt1 expression in retinas of ERU cases showed a downregulation in the majority of ERU affected retinas to 24%. Results pointed to a dysregulation of retinal neurotransmitter release in ERU. Identification of synaptotagmin-1, the first cell membrane associated autoantigen in this spontaneous autoimmune disease, demonstrated that examination of tissue fractions can lead to the discovery of previously undetected novel autoantigens. Further experiments will address its role in ERU pathology.

  14. Laurus nobilis L. Seed Extract Reveals Collateral Sensitivity in Multidrug-Resistant P-Glycoprotein-Expressing Tumor Cells.

    Saab, Antoine M; Guerrini, Alessandra; Zeino, Maen; Wiench, Benjamin; Rossi, Damiano; Gambari, Roberto; Sacchetti, Gianni; Greten, Henry Johannes; Efferth, Thomas


    The frequent failure of standard cancer chemotherapy requires the development of novel drugs capable of killing otherwise drug-resistant tumors. Here, we have investigated a chloroform extract of Laurus nobilis seeds. Fatty acids and 23 constituents of the volatile fraction were identified by gas chromotography/flame ionization detection (GC/FID) and gas chromatography/mass spectrometry (GC/MS), in good agreement with (1)H NMR (nuclear magnetic resonance) spectrum. Multidrug-resistant P-glycoprotein-expressing CEM/ADR5000 leukemia cells were hypersensitive (collaterally sensitive) toward this extract compared to drug-sensitive CCRF-CEM cells, whereas CEM/ADR5000 cells were 2586-fold resistant to doxorubicin as control drug. Collateral sensitivity was verified by measurement of apoptotic cells by flow cytometry. The log10IC50 values of 3 compounds in the extract (limonene, eucalyptol, oleic acid) did not correlate with mRNA expression of the P-glycoprotein-coding ABCB1/MDR1 gene and accumulation of the P-glycoprotein substrate rhodamine in the NCI panel of tumor cell lines. A microarray-based profile of 20 genes predicted resistance to doxorubicin and 7 other anticancer drugs involved in the multidrug resistance phenotype but not to limonene, eucalyptol and oleic acid. In conclusion, our results show that Laurus nobilis seed extract is suitable to kill multidrug-resistant P-glycoprotein expressing tumor cells.

  15. A Functional Henipavirus Envelope Glycoprotein Pseudotyped Lentivirus Assay System

    Broder Christopher C


    Full Text Available Abstract Background Hendra virus (HeV and Nipah virus (NiV are newly emerged zoonotic paramyxoviruses discovered during outbreaks in Queensland, Australia in 1994 and peninsular Malaysia in 1998/9 respectively and classified within the new Henipavirus genus. Both viruses can infect a broad range of mammalian species causing severe and often-lethal disease in humans and animals, and repeated outbreaks continue to occur. Extensive laboratory studies on the host cell infection stage of HeV and NiV and the roles of their envelope glycoproteins have been hampered by their highly pathogenic nature and restriction to biosafety level-4 (BSL-4 containment. To circumvent this problem, we have developed a henipavirus envelope glycoprotein pseudotyped lentivirus assay system using either a luciferase gene or green fluorescent protein (GFP gene encoding human immunodeficiency virus type-1 (HIV-1 genome in conjunction with the HeV and NiV fusion (F and attachment (G glycoproteins. Results Functional retrovirus particles pseudotyped with henipavirus F and G glycoproteins displayed proper target cell tropism and entry and infection was dependent on the presence of the HeV and NiV receptors ephrinB2 or B3 on target cells. The functional specificity of the assay was confirmed by the lack of reporter-gene signals when particles bearing either only the F or only G glycoprotein were prepared and assayed. Virus entry could be specifically blocked when infection was carried out in the presence of a fusion inhibiting C-terminal heptad (HR-2 peptide, a well-characterized, cross-reactive, neutralizing human mAb specific for the henipavirus G glycoprotein, and soluble ephrinB2 and B3 receptors. In addition, the utility of the assay was also demonstrated by an examination of the influence of the cytoplasmic tail of F in its fusion activity and incorporation into pseudotyped virus particles by generating and testing a panel of truncation mutants of NiV and HeV F

  16. Multiple genes encode the major surface glycoprotein of Pneumocystis carinii

    Kovacs, J A; Powell, F; Edman, J C;


    this antigen is a good candidate for development as a vaccine to prevent or control P. carinii infection. We have cloned and sequenced seven related but unique genes encoding the major surface glycoprotein of rat P. carinii. Partial amino acid sequencing confirmed the identity of these genes. Based on Southern...... hydrophobic region at the carboxyl terminus. The presence of multiple related msg genes encoding the major surface glycoprotein of P. carinii suggests that antigenic variation is a possible mechanism for evading host defenses. Further characterization of this family of genes should allow the development...

  17. Yeast Interacting Proteins Database: YLL049W, YMR294W [Yeast Interacting Proteins Database

    Full Text Available ant shows a reduced affinity for the alcian blue dye suggesting a decreased net negative charge of the cell ...surface Rows with this bait as bait (3) Rows with this bait as prey (1) YMR294W JNM1 Component of the yeast ... null mutant shows a reduced affinity for the alcian blue dye suggesting a decreased net negative charge of ...s with this bait as prey (1) Prey ORF YMR294W Prey gene name JNM1 Prey description Component of the ye

  18. Interaction of the P-Glycoprotein Multidrug Transporter with Sterols.

    Clay, Adam T; Lu, Peihua; Sharom, Frances J


    The ABC transporter P-glycoprotein (Pgp, ABCB1) actively exports structurally diverse substrates from within the lipid bilayer, leading to multidrug resistance. Many aspects of Pgp function are altered by the phospholipid environment, but its interactions with sterols remain enigmatic. In this work, the functional interaction between purified Pgp and various sterols was investigated in detergent solution and proteoliposomes. Fluorescence studies showed that dehydroergosterol, cholestatrienol, and NBD-cholesterol interact intimately with Pgp, resulting in both quenching of protein Trp fluorescence and enhancement of sterol fluorescence. Kd values indicated binding affinities in the range of 3-9 μM. Collisional quenching experiments showed that Pgp-bound NBD-cholesterol was protected from the external milieu, resonance energy transfer was observed between Pgp Trp residues and the sterol, and the fluorescence emission of bound sterol was enhanced. These observations suggested an intimate interaction of bound sterols with the transporter at a protected nonpolar site. Cholesterol hemisuccinate altered the thermal unfolding of Pgp and greatly stabilized its basal ATPase activity in both a detergent solution and reconstituted proteoliposomes of certain phospholipids. Other sterols, including dehydroergosterol, did not stabilize the basal ATPase activity of detergent-solubilized Pgp, which suggests that this is not a generalized sterol effect. The phospholipid composition and cholesterol hemisuccinate content of Pgp proteoliposomes altered the basal ATPase and drug transport cycles differently. Sterols may interact with Pgp and modulate its structure and function by occupying part of the drug-binding pocket or by binding to putative consensus cholesterol-binding (CRAC/CARC) motifs located within the transmembrane domains.

  19. Structural mechanism of trimeric HIV-1 envelope glycoprotein activation.

    Erin E H Tran

    Full Text Available HIV-1 infection begins with the binding of trimeric viral envelope glycoproteins (Env to CD4 and a co-receptor on target T-cells. Understanding how these ligands influence the structure of Env is of fundamental interest for HIV vaccine development. Using cryo-electron microscopy, we describe the contrasting structural outcomes of trimeric Env binding to soluble CD4, to the broadly neutralizing, CD4-binding site antibodies VRC01, VRC03 and b12, or to the monoclonal antibody 17b, a co-receptor mimic. Binding of trimeric HIV-1 BaL Env to either soluble CD4 or 17b alone, is sufficient to trigger formation of the open quaternary conformation of Env. In contrast, VRC01 locks Env in the closed state, while b12 binding requires a partial opening in the quaternary structure of trimeric Env. Our results show that, despite general similarities in regions of the HIV-1 gp120 polypeptide that contact CD4, VRC01, VRC03 and b12, there are important differences in quaternary structures of the complexes these ligands form on native trimeric Env, and potentially explain differences in the neutralizing breadth and potency of antibodies with similar specificities. From cryo-electron microscopic analysis at ∼9 Å resolution of a cleaved, soluble version of trimeric Env, we show that a structural signature of the open Env conformation is a three-helix motif composed of α-helical segments derived from highly conserved, non-glycosylated N-terminal regions of the gp41 trimer. The three N-terminal gp41 helices in this novel, activated Env conformation are held apart by their interactions with the rest of Env, and are less compactly packed than in the post-fusion, six-helix bundle state. These findings suggest a new structural template for designing immunogens that can elicit antibodies targeting HIV at a vulnerable, pre-entry stage.

  20. Yeast lipids can phase separate into micrometer-scale membrane domains

    Klose, Christian; Ejsing, Christer S; Garcia-Saez, Ana J;


    The lipid raft concept proposes that biological membranes have the potential to form functional domains based on a selective interaction between sphingolipids and sterols. These domains seem to be involved in signal transduction and vesicular sorting of proteins and lipids. Although...... there is biochemical evidence for lipid raft-dependent protein and lipid sorting in the yeast Saccharomyces cerevisiae, direct evidence for an interaction between yeast sphingolipids and the yeast sterol ergosterol, resulting in membrane domain formation, is lacking. Here we show that model membranes formed from yeast...... total lipid extracts possess an inherent self-organization potential resulting in Ld-Lo phase coexistence at physiologically relevant temperature. Analyses of lipid extracts from mutants defective in sphingolipid metabolism as well as reconstitution of purified yeast lipids in model membranes of defined...

  1. High-accuracy identification and bioinformatic analysis of in vivo protein phosphorylation sites in yeast

    Gnad, Florian; de Godoy, Lyris M F; Cox, Jürgen


    mapped to 1118 proteins, representatively covering the yeast kinome and a multitude of transcription factors. We show that a single false discovery rate for all peptide identifications significantly overestimates occurrence of rare modifications, such as tyrosine phosphorylation in yeast. The identified...... phosphorylation sites are predominantly located on irregularly structured and accessible protein regions. We found high evolutionary conservation of phosphorylated proteins and a large overlap of significantly over-represented motifs with the human phosphoproteome. Nevertheless, phosphorylation events at the site...... level were not highly conserved between yeast and higher eukaryotes, which points to metazoan-specific kinase and substrate families. We constructed a yeast-specific phosphorylation sites predictor on the basis of a support vector machine, which - together with the yeast phosphorylation data...

  2. A comparative hybridization analysis of yeast DNA with Paramecium parafusin- and different phosphoglucomutase-specific probes.

    Wyroba, E; Satir, B H


    Molecular probes designed for the parafusin (PFUS), the Paramecium exocytic-sensitive phosphoglycoprotein, gave distinct hybridization patterns in Saccharomyces cerevisiae genomic DNA when compared with different phosphoglucomutase specific probes. These include two probes identical to segments of yeast phosphoglucomutase (PGM) genes 1 and 2. Neither of the PGM probes revealed the 7.4 and 5.9 kb fragments in Bgl II-cut yeast DNA digest detected with the 1.6 kb cloned PFUS cDNA and oligonucleotide constructed to the PFUS region (insertion 3--I-3) not found in other species. PCR amplification with PFUS-specific primers generated yeast DNA-species of the predicted molecular size which hybridized to the I-3 probe. A search of the yeast genome database produced an unassigned nucleotide sequence that showed 55% identity to parafusin gene and 37% identity to PGM2 (the major isoform of yeast phosphoglucomutase) within the amplified region.

  3. Structure of a trimeric variant of the Epstein–Barr virus glycoprotein B


    Epstein–Barr virus (EBV) is a herpesvirus that is associated with development of malignancies of lymphoid tissue. EBV infections are life-long and occur in >90% of the population. Herpesviruses enter host cells in a process that involves fusion of viral and cellular membranes. The fusion apparatus is comprised of envelope glycoprotein B (gB) and a heterodimeric complex made of glycoproteins H and L. Glycoprotein B is the most conserved envelope glycoprotein in human herpesviruses, and the str...

  4. Long Telomeres Do Not Affect Cellular Fitness in Yeast.

    Harari, Yaniv; Zadok-Laviel, Shira; Kupiec, Martin


    Telomeres, the ends of the eukaryotic chromosomes, help to maintain the genome's integrity and thus play important roles in aging and cancer. Telomere length is strictly controlled in all organisms. In humans, telomeres shorten with age, and it has been proposed that telomere shortening may play a causal role in aging. We took advantage of the availability of yeast strains with genetically or physiologically generated differences in telomere length to measure the effect that telomere length may have on cellular growth. By comparing the growth rates affecting telomere length of various yeast mutants we show that there is no correlation between their telomere length and cellular fitness. We also show that wild-type yeast cells carrying extremely long telomeres (~5 times longer than the average) showed no signs of mitotic or meiotic defects, and competition experiments found no differences in growth between strains with normal telomeres and strains with long telomeres. No advantage or disadvantage of cells with long telomeres was detected under stress conditions either. Finally, telomere length had no effect in a chronological life span assay, which measures survival of post-mitotic-stage cells. We conclude that extreme telomere length has no effects (positive or negative) on the fitness of yeast cells.IMPORTANCE Telomeres protect the chromosomal ends from fusion, degradation, and unwanted repair. Therefore, telomeres preserve genome stability and cell viability. In humans, telomeres shorten with each cell duplication event and with age. It has thus been proposed that telomere shortening may be responsible for human aging and that elongation of telomeres may be a way to rejuvenate cells and to combat aging. However, it is difficult to prove this hypothesis in human cells. Yeasts are easy to manipulate and have telomeres whose length is strictly maintained. Here we show that yeast cells manipulated to have extremely long telomeres (~5-fold those of normal cells) did

  5. Enumeration and rapid identification of yeasts during extraction processes of extra virgin olive oil in Tuscany.

    Mari, Eleonora; Guerrini, Simona; Granchi, Lisa; Vincenzini, Massimo


    The aim of this study was to evaluate the occurrence of yeast populations during different olive oil extraction processes, carried out in three consecutive years in Tuscany (Italy), by analysing crushed pastes, kneaded pastes, oil from decanter and pomaces. The results showed yeast concentrations ranging between 10(3) and 10(5) CFU/g or per mL. Seventeen dominant yeast species were identified by random amplified polymorphic DNA with primer M13 and their identification was confirmed by restriction fragments length polymorphism of ribosomal internal transcribed spacer and sequencing rRNA genes. The isolation frequencies of each species in the collected samples pointed out that the occurrence of the various yeast species in olive oil extraction process was dependent not only on the yeasts contaminating the olives but also on the yeasts colonizing the plant for oil extraction. In fact, eleven dominant yeast species were detected from the washed olives, but only three of them were also found in oil samples at significant isolation frequency. On the contrary, the most abundant species in oil samples, Yamadazyma terventina, did not occur in washed olive samples. These findings suggest a phenomenon of contamination of the plant for oil extraction that selects some yeast species that could affect the quality of olive oil.

  6. The flavoprotein Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells

    Nishimura, Akira; Kawahara, Nobuhiro [Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Takagi, Hiroshi, E-mail: [Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan)


    Highlights: Black-Right-Pointing-Pointer NO is produced from L-arginine in response to elevated temperature in yeast. Black-Right-Pointing-Pointer Tah18 was first identified as the yeast protein involved in NO synthesis. Black-Right-Pointing-Pointer Tah18-dependent NO synthesis confers tolerance to high-temperature on yeast cells. -- Abstract: Nitric oxide (NO) is a ubiquitous signaling molecule involved in the regulation of a large number of cellular functions. In the unicellular eukaryote yeast, NO may be involved in stress response pathways, but its role is poorly understood due to the lack of mammalian NO synthase (NOS) orthologues. Previously, we have proposed the oxidative stress-induced L-arginine synthesis and its physiological role under stress conditions in yeast Saccharomyces cerevisiae. Here, our experimental results indicated that increased conversion of L-proline into L-arginine led to NO production in response to elevated temperature. We also showed that the flavoprotein Tah18, which was previously reported to transfer electrons to the Fe-S cluster protein Dre2, was involved in NO synthesis in yeast. Gene knockdown analysis demonstrated that Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells. As it appears that such a unique cell protection mechanism is specific to yeasts and fungi, it represents a promising target for antifungal activity.

  7. Effects of Dietary Yeast (Saccharomyces cerevisia Supplementation in Practical Diets of Tilapia (Oreochromis niloticus

    José E. P. Cyrino


    Full Text Available A 51-day feeding trial was carried out to determine the effects of various dietary levels of brewer’s yeast, Saccharomyces cerevisiae, in the growth performance, body composition and nutrient utilization in Nile tilapia, Oreochromis niloticus, juveniles. Fish (7.6 ± 0.3 g were stocked into eighteen 1,000-L tanks (100 fish per tank; n = 3 and fed to apparent satiation six isonitrogenous (27% crude protein and isoenergetic (19 kJ/g diets, formulated to contain different dried yeast levels (0%, 10%, 15%, 20%, 30% or 40% diet in substitution to fishmeal. Body weight tripled at the end of the feeding trial for fish fed up to 20% dietary yeast incorporation. Daily growth coefficient (DGC, % body weight/day decreased with increasing dietary yeast level (P < 0.0001. Voluntary feed intake (VFI, %BW/day did not vary significantly with increasing yeast level. Fish fed 40% yeast showed significant reduction in protein efficiency rate, protein retention and nitrogen gain. Increasing levels of dietary yeast did not significantly affect protein or lipid digestibility. Dietary dried yeast was seemingly palatable to tilapia juveniles and was suitable up to 15% inclusion to promote growth and efficient diet utilization, without affecting body composition.

  8. Remanence and survival of commercial yeast in different ecological niches of the vineyard.

    Cordero-Bueso, Gustavo; Arroyo, Teresa; Serrano, Ana; Valero, Eva


    The use of commercial wine yeast strains as starters has been grown extensively over the past three decades. Wine yeasts are annually released in winery environments; however, little is known about the fate of these strains in the vineyard. To evaluate the industrial starter yeasts' ability to survive in nature and become part of the natural microbiota of musts, commercial yeast was disseminated voluntarily in an experimental vineyard in the Madrid region (Spain). A large sampling plan was devised over 3 years, including samples of grapes, leaves, bark and soil. The disseminated yeast was well represented in the vineyard during the first 8 months. After 2 years, the commercial yeast strain had not survived in the sprayed plants, but a residual population was found in plants situated 50 m east of the sprayed area. After 3 years, commercial yeast disseminated was not found in the sampled vineyard. Grapes and soil showed the highest number of yeasts isolated in the vegetative period, the bark being the main natural reservoir during the resting stages. The result of analysis of population variations from year to year indicated that permanent implantation of commercial strain (K1M) in the vineyard did not occur and its presence was limited in time.

  9. Oxygen Consumption by Postfermentation Wine Yeast Lees: Factors Affecting Its Rate and Extent under Oenological Conditions

    Jonas Müller


    Full Text Available Postfermentation wine yeast lees show antioxidant properties based on their ability to consume dissolved oxygen. The oxygen consumption capacity of suspended yeast lees obtained after fermentations with six commercial active dry yeast strains was investigated in model, white and red wines using fluorescence-based oxygen sensors operating in a nondestructive way. In model solution, the oxygen consumption rate of yeast lees was shown to depend on their amount, yeast strain, sulfur dioxide and temperature. It is slightly lower in red than in white wines. It is strongly decreased by current levels of free sulfur dioxide, thus excluding the complementary use of both as antioxidants in wine. However, in 25 randomly sampled white wines produced under commercial conditions, the rate and extent of oxygen consumption during the first six months of postfermentation had no significant correlation with any of these interacting factors, making it difficult to predict the actual antioxidant effect of yeast lees. In these wines, yeast lees consumed 0 to 47 % of the dissolved oxygen. Although total oxygen consumption capacity of yeast lees is not a limiting factor under commercial winemaking conditions, their oxygen consumption proceeds at a limited rate that reduces but cannot totally prevent concomitant chemical oxidation of the wine.

  10. Oxygen Consumption by Postfermentation Wine Yeast Lees: Factors Affecting Its Rate and Extent under Oenological Conditions

    Müller, Jonas; Schmidt, Dominik


    Summary Postfermentation wine yeast lees show antioxidant properties based on their ability to consume dissolved oxygen. The oxygen consumption capacity of suspended yeast lees obtained after fermentations with six commercial active dry yeast strains was investigated in model, white and red wines using fluorescence-based oxygen sensors operating in a nondestructive way. In model solution, the oxygen consumption rate of yeast lees was shown to depend on their amount, yeast strain, sulfur dioxide and temperature. It is slightly lower in red than in white wines. It is strongly decreased by current levels of free sulfur dioxide, thus excluding the complementary use of both as antioxidants in wine. However, in 25 randomly sampled white wines produced under commercial conditions, the rate and extent of oxygen consumption during the first six months of postfermentation had no significant correlation with any of these interacting factors, making it difficult to predict the actual antioxidant effect of yeast lees. In these wines, yeast lees consumed 0 to 47% of the dissolved oxygen. Although total oxygen consumption capacity of yeast lees is not a limiting factor under commercial winemaking conditions, their oxygen consumption proceeds at a limited rate that reduces but cannot totally prevent concomitant chemical oxidation of the wine. PMID:28115896

  11. Reconstitution of the mitochondrial calcium uniporter in yeast.

    Kovács-Bogdán, Erika; Sancak, Yasemin; Kamer, Kimberli J; Plovanich, Molly; Jambhekar, Ashwini; Huber, Robert J; Myre, Michael A; Blower, Michael D; Mootha, Vamsi K


    The mitochondrial calcium uniporter is a highly selective calcium channel distributed broadly across eukaryotes but absent in the yeast Saccharomyces cerevisiae. The molecular components of the human uniporter holocomplex (uniplex) have been identified recently. The uniplex consists of three membrane-spanning subunits--mitochondrial calcium uniporter (MCU), its paralog MCUb, and essential MCU regulator (EMRE)--and two soluble regulatory components--MICU1 and its paralog MICU2. The minimal components sufficient for in vivo uniporter activity are unknown. Here we consider Dictyostelium discoideum (Dd), a member of the Amoebazoa outgroup of Metazoa and Fungi, and show that it has a highly simplified uniporter machinery. We show that D. discoideum mitochondria exhibit membrane potential-dependent calcium uptake compatible with uniporter activity, and also that expression of DdMCU complements the mitochondrial calcium uptake defect in human cells lacking MCU or EMRE. Moreover, expression of DdMCU in yeast alone is sufficient to reconstitute mitochondrial calcium uniporter activity. Having established yeast as an in vivo reconstitution system, we then reconstituted the human uniporter. We show that coexpression of MCU and EMRE is sufficient for uniporter activity, whereas expression of MCU alone is insufficient. Our work establishes yeast as a powerful in vivo reconstitution system for the uniporter. Using this system, we confirm that MCU is the pore-forming subunit, define the minimal genetic elements sufficient for metazoan and nonmetazoan uniporter activity, and provide valuable insight into the evolution of the uniporter machinery.

  12. Concentration measurement of yeast suspensions using high frequency ultrasound backscattering.

    Elvira, Luis; Vera, Pedro; Cañadas, Francisco Jesús; Shukla, Shiva Kant; Montero, Francisco


    This work proposes the use of an ultrasound based technique to measure the concentration of yeasts in liquid suspension. This measurement was achieved by the detection and quantification of ultrasonic echoes backscattered by the cells. More specifically, the technique was applied to the detection and quantification of Saccharomyces cerevisiae. A theoretical approach was proposed to get the average density and sound speed of the yeasts, which were found to be 1116 kg/m(3) and 1679 m/s, respectively. These parameters were needed to model the waves backscattered by each single cell. A pulse-echo arrangement working around 50 MHz, being able to detect echoes from single yeasts was used to characterize experimentally yeast solutions from 10(2) to 10(7)cells/ml. The Non-negative Matrix Factorization denoising technique was applied for data analysis. This technique required a previous learning of the spectral patterns of the echoes reflected from yeasts in solution and the base noise from the liquid medium. Comparison between pulse correlation (without denoising) and theoretical and experimental pattern learning was made to select the best signal processing. A linear relation between ultrasound output and concentration was obtained with correlation coefficient R(2)=0.996 for the experimental learning. Concentrations from 10(4) to 10(7)cells/ml were detected above the base noise. These results show the viability of using the ultrasound backscattering technique to detect yeasts and measure their concentration in liquid cultures, improving the sensitivity obtained using spectrophotometric methods by one order of magnitude.

  13. Genotyping 1000 yeast strains by next-generation sequencing

    Wilkening Stefan


    Full Text Available Abstract Background The throughput of next-generation sequencing machines has increased dramatically over the last few years; yet the cost and time for library preparation have not changed proportionally, thus representing the main bottleneck for sequencing large numbers of samples. Here we present an economical, high-throughput library preparation method for the Illumina platform, comprising a 96-well based method for DNA isolation for yeast cells, a low-cost DNA shearing alternative, and adapter ligation using heat inactivation of enzymes instead of bead cleanups. Results Up to 384 whole-genome libraries can be prepared from yeast cells in one week using this method, for less than 15 euros per sample. We demonstrate the robustness of this protocol by sequencing over 1000 yeast genomes at ~30x coverage. The sequence information from 768 yeast segregants derived from two divergent S. cerevisiae strains was used to generate a meiotic recombination map at unprecedented resolution. Comparisons to other datasets indicate a high conservation of recombination at a chromosome-wide scale, but differences at the local scale. Additionally, we detected a high degree of aneuploidy (3.6% by examining the sequencing coverage in these segregants. Differences in allele frequency allowed us to attribute instances of aneuploidy to gains of chromosomes during meiosis or mitosis, both of which showed a strong tendency to missegregate specific chromosomes. Conclusions Here we present a high throughput workflow to sequence genomes of large number of yeast strains at a low price. We have used this workflow to obtain recombination and aneuploidy data from hundreds of segregants, which can serve as a foundation for future studies of linkage, recombination, and chromosomal aberrations in yeast and higher eukaryotes.

  14. Surplus yeast tank failing catastrophically

    Hedlund, Frank Huess


    GOOD REASON FOR CAUTION I A large surplus yeast tank shot into the air leaving the floor plate and the contents behind. Although not designed for overpressure, the tank was kept at “very slight overpressure” to suppress nuisance foaming. The brewery was unaware of the hazards of compressed air. T....... The accident described in this article serves to illustrate that care should be taken if a tank originally designed for atmospheric pressure is modified to operate at slight overpressure.......GOOD REASON FOR CAUTION I A large surplus yeast tank shot into the air leaving the floor plate and the contents behind. Although not designed for overpressure, the tank was kept at “very slight overpressure” to suppress nuisance foaming. The brewery was unaware of the hazards of compressed air...

  15. Optimization of Fermentation Condition of Yeast Culture

    WANG Qiuju; XU Li; CUI Yizhe


    Culture condition of every phase for fermentation of yeast culture was studied, and its solid and liquid conditions of elaboration were optimized to improve the total counts of living cells.Results showed that microzyme grew best at 30℃ when solid fermented,and the count of the living cells reached the tiptop with pH 5.5.The count of Candida tropicalis could reach 137.96×109 cfu·g-1,the count of Saccharomyces cerevisia could reach 134.62×109 cfu·g-1;the best liquid fermentation condition for cell-wall broken was 50℃ for 28 h,the rate of cell-wall broken could reach 80% at least;the rate of vitamin loss in yeast could be the minimun, the loss rate of vitamin B1 in Candida tropicalis and Saccharomyces cerevisiae was 8.71% and 19.54% respectively, the loss rate of vitamin B2 was 19.39% and 13.18%,respectively,and the loss rate of vitamin B6 was 6.3% and 3.04%,respectively.

  16. Mycotoxins - prevention and decontamination by yeasts.

    Pfliegler, Walter P; Pusztahelyi, Tünde; Pócsi, István


    The application of yeasts has great potential in reducing the economic damage caused by toxigenic fungi in the agriculture. Some yeasts may act as biocontrol agents inhibiting the growth of filamentous fungi. These species may also gain importance in the preservation of agricultural products and in the reduction of their mycotoxin contamination, yet the extent of mycotoxin production in the presence of biocontrol agents is relatively less understood. The application of yeasts in various technological processes may have a direct inhibitory effect on the toxin production of certain molds, which is independent of their growth suppressing effect. Furthermore, several yeast species are capable of accumulating mycotoxins from agricultural products, thereby effectively decontaminating them. Probiotic yeasts or products containing yeast cell wall are also applied to counteract mycotoxicosis in livestock. Several yeast strains are also able to degrade toxins to less-toxic or even non-toxic substances. This intensively researched field would greatly benefit from a deeper knowledge on the genetic and molecular basis of toxin degradation. Moreover, yeasts and their biotechnologically important enzymes may exhibit sensitivity to certain mycotoxins, thereby mounting a considerable problem for the biotechnological industry. It is noted that yeasts are generally regarded as safe; however, there are reports of toxin degrading species that may cause human fungal infections. The aspects of yeast-mycotoxin relations with a brief consideration of strain improvement strategies and genetic modification for improved detoxifying properties and/or mycotoxin resistance are reviewed here.

  17. Structural and quantitative comparison of cerebrospinal fluid glycoproteins in Alzheimer's disease patients and healthy individuals.

    Sihlbom, C.; Davidsson, P.; Sjogren, M.; Wahlund, L.O.; Nilsson, C.L.


    Glycoproteins in cerebrospinal fluid (CSF) are altered in Alzheimer's Disease (AD) patients compared to control individuals. We have utilized albumin depletion prior to 2D gel electrophoresis to enhance glycoprotein concentration for image analysis as well as structural glycoprotein determination wi

  18. Yeast diversity in the extreme acidic environments of the Iberian Pyrite Belt.

    Gadanho, Mário; Libkind, Diego; Sampaio, José Paulo


    In the Iberian Pyrite Belt (IPB), acid rock drainage gives rise to aquatic habitats with low pH and high concentrations of heavy metals, a situation that causes important environmental problems. We investigated the occurrence and diversity of yeasts in two localities of the IPB: São Domingos (Portugal) and Rio Tinto (Spain). Yeast isolation was performed on conventional culture media (MYP), acidified (pH 3) media (MYP3), and on media prepared with water from the study sites (MYPw). The main goal of the study was to determine the structure of the yeast community; a combination of molecular methods was used for accurate species identifications. Our results showed that the largest fraction of the yeast community was recovered on MYPw rather than on MYP and MYP3. Twenty-seven yeast species were detected, 48% of which might represent undescribed taxa. Among these, an undescribed species of the genus Cryptococcus required low pH for growth, a property that has not been observed before in yeasts. The communities of S. Domingos and R. Tinto showed a considerable resemblance, and eight yeast species were simultaneously found in both localities. Taking into consideration the physicochemical parameters studied, we propose a hierarchic organization of the yeast community in terms of high-, intermediate-, or low-stress conditions of the environment. According to this ranking, the acidophile yeast Cryptococcus sp. 5 is considered the most tolerant species, followed by Cryptococcus sp. 3 and Lecytophora sp. Species occurring in situations of intermediate environmental stress were Candida fluviatilis, Rhodosporidium toruloides, Williopsis californica, and three unidentified yeasts belonging to Rhodotorula and Cryptococcus.

  19. Yeast: A new oil producer?

    Beopoulos Athanasios


    Full Text Available The increasing demand of plant oils or animal fat for biodiesel and specific lipid derivatives for the oleochemical field (such as lubricants, adhesives or plastics have created price imbalance in both the alimentary and energy field. Moreover, the lack of non-edible oil feedstock has given rise to concerns on land-use practices and on oil production strategies. Recently, much attention has been paid to the exploitation of microbial oils. Most of them present lipid profiles similar in type and composition to plants and could therefore have many advantages as are no competitive with food, have short process cycles and their cultivation is independent of climate factors. Among microorganisms, yeasts seem to be very promising as they can be easily genetically enhanced, are suitable for large-scale fermentation and are devoid of endotoxins. This review will focus on the recent understanding of yeasts lipid metabolism, the succeeding genetic engineering of the lipid pathways and the recent developments on fermentation techniques that pointed out yeasts as promising alternative producers for oil or plastic.

  20. Immunization with Cytomegalovirus Envelope Glycoprotein M and Glycoprotein N DNA Vaccines can Provide Mice with Complete Protection against a Lethal Murine Cytomegalovirus Challenge

    Huadong Wang; Yanfeng Yao; Chaoyang Huang; Quanjiao Chen; Jianjun Chen; Ze Chen


    Human cytomegalovirus virions contain three major glycoprotein complexes (gC Ⅰ,Ⅱ,Ⅲ),all of which are required for CMV infectivity.These complexes also represent major antigenic targets for anti-viral immune responses.The gC Ⅱ complex consists of two glycoproteins,gM and gN.In the current study,DNA vaccines expressing the murine cytomegalovirus (MCMV) homologs of the gM and gN proteins were evaluated for protection against lethal MCMV infection in a mouse model.Humoral and cellular immune responses,spleen viral titers,and mice survival and body-weight changes were examined.The results showed that immunization with gM or gN DNA vaccine alone was not able to offer good protection,whereas co-immunization with both gM and gN induced an effective neutralizing antibody response and cellular immune response,and provided mice with complete protection against a lethal MCMV challenge.This study provides the first in vivo evidence that the gC Ⅱ (gM-gN) complex may be able to serve as a protective subunit antigen for future HCMV vaccine development.

  1. Behavioral effects and central nervous system levels of the broadly available κ-agonist hallucinogen salvinorin A are affected by P-glycoprotein modulation in vivo.

    Butelman, Eduardo R; Caspers, Michael; Lovell, Kimberly M; Kreek, Mary Jeanne; Prisinzano, Thomas E


    Active blood-brain barrier mechanisms, such as the major efflux transporter P-glycoprotein (mdr1), modulate the in vivo/central nervous system (CNS) effects of many pharmacological agents, whether they are used for nonmedical reasons or in pharmacotherapy. The powerful, widely available hallucinogen salvinorin A (from the plant Salvia divinorum) is a high-efficacy, selective κ-opioid agonist and displays fast-onset behavioral effects (e.g., within 1 min of administration) and relatively short duration of action. In vitro studies suggest that salvinorin A may be a P-glycoprotein substrate; thus, the functional status of P-glycoprotein may influence the behavioral effects of salvinorin A or its residence in CNS after parenteral administration. We therefore studied whether a competing P-glycoprotein substrate (the clinically available agent loperamide; 0.032-0.32 mg/kg) or a selective P-glycoprotein blocker, tariquidar (0.32-3.2 mg/kg) could enhance unconditioned behavioral effects (ptosis and facial relaxation, known to be caused by κ-agonists in nonhuman primates) of salvinorin A, as well as its entry and residence in the CNS, as measured by cerebrospinal fluid sampling. Pretreatment with either loperamide or tariquidar dose-dependently enhanced salvinorin A-induced ptosis, but not facial relaxation. In a control study, loperamide and tariquidar were inactive when given as a pretreatment to ((+)-(5α,7α,8β)-N-methyl-N-[7-(1-pyrrolidinyl)-1-oxaspiro[4.5]dec-8-yl]-benzeneacetamide (U69,593), a κ-agonist known to be a very poor P-glycoprotein substrate. Furthermore, pretreatment with tariquidar (3.2 mg/kg) also enhanced peak levels of salvinorin A in cerebrospinal fluid after intravenous administration. These are the first studies in vivo showing the sensitivity of salvinorin A effects to modulation by the P-glycoprotein transporter, a major functional component of the blood-brain barrier.

  2. Pollen tube access to the ovule is mediated by glycoprotein secretion on the obturator of apple (Malus × domestica, Borkh).

    Losada, Juan M; Herrero, Maria


    Within the ovary, the obturator bridges the pathway of the pollen tube from the style to the ovule. Despite its widespread presence among flowering plants, its function has only been studied in a handful of species, and the molecules involved in pollen tube-obturator cross-talk have not been explored hitherto. This work evaluates the involvement of glucans and glycoproteins on pollen tube growth in the obturator of apple flowers ( Malus × domestica) . Pollen tube kinetics were sequentially examined in the pistil and related to changes occurring on the obturator using histochemistry and inmunocytochemistry. To discriminate between changes in the obturator induced by pollen tubes from those developmentally regulated, both pollinated and unpollinated pistils were examined. Pollen tube growth rates were slow in the stigma, faster in the style and slow again in the ovary. The arrival of pollen tubes at the obturator was concomitant with the secretion of proteins, saccharides and glycoprotein epitopes belonging to extensins and arabinogalactan proteins (AGPs). While some of these secretions - extensins and AGPs labelled by JIM13 - were developmentally regulated, others - AGPs labelled by JIM8 - were elicited by the presence of pollen tubes. Following pollen tube passage, all these glycoproteins were depleted. The results show a timely secretion of glycoproteins on the obturator surface concomitant with pollen tube arrival at this structure. The fact that their secretion is depleted following pollen tube passage strongly suggests their role in regulating pollen tube access to the ovule. Remarkably, both the regulation of the secretion of the different glycoproteins, as well as their association with the performance of pollen tubes exhibit similarities with those observed in the stigma, in line with their common developmental origin.

  3. Evaluating the Effects of Cytomegalovirus Glycoprotein B on the Maturation and Function of Monocyte-derived dendritic cells

    Afsson shariat


    Full Text Available Background & Objectives: Interaction of cytomegalovirus glycoprotein B with toll-like receptors of dendritic cells leads to early signaling and innate immune responses. The aim of this study is to evaluate the effects of cytomegalovirus glycoprotein B on the maturation and function of monocyte-derived dendritic cells in treated groups in comparison with control groups. Materials & Methods: Blood samples were taken from 5 healthy volunteers. Following the generation of monocyte-derived dendritic cells on the fifth day of cell culture, half of the immature dendritic cells were treated with cytomegalovirus glycoprotein B, and the rest of them were induced to mature dendritic untreated cells and were used as the control group. The maturation and function of dendritic cells were evaluated in these two groups. Results: The gene expression level of toll-like receptor-4 significantly increased in the group treated with glycoprotein B (p < 0.05, whereas there were no significant differences in the expression rates of CD83, CD86, CD1a, and HLA-DR and the secretion of IL-23 from monocyte-derived dendritic cells between the treated groups and the controls. Conclusion: The increase in the gene expression of toll-like receptor-4 in monocyte-derived dendritic cells treated with cytomegalovirus glycoprotein B showed that cell contact is required to elicit cellular antiviral response and toll-like receptor activation. Thus, it is critical to recognize the viral and cellular determinants of the immune system in order to develop new therapeutic strategies against cytomegalovirus.

  4. Relation between the secondary structure of carbohydrate residues of alpha1-acid glycoprotein (orosomucoid) and the fluorescence of the protein.

    Albani, Jihad R


    We studied in this work the relation that exists between the secondary structure of the glycans of alpha(1)-acid glycoprotein and the fluorescence of the Trp residues of the protein. We calculated for that the efficiency of quenching and the radiative and non-radiative constants. Our results indicate that the glycans display a spatial structure that is modified upon asialylation. The asialylated conformation is closer to the protein matrix than the sialylated form, inducing by that a decrease in the fluorescence parameters of the Trp residues. In fact, the mean quantum yield of Trp residues in sialylated and asialylated alpha(1)-acid glycoprotein are 0.0645 and 0.0385, respectively. Analysis of the fluorescence emission of alpha(1)-acid glycoprotein as the result of two contributions (surface and hydrophobic domains) indicates that quantum yields of both classes of Trp residues are lower when the protein is in the asialylated form. Also, the mean fluorescence lifetime of Trp residues decreases from 2.285 ns in the sialylated protein to 1.948 ns in the asialylated one. The radiative rate constant k(r) of the Trp residues in the sialylated alpha(1)-acid glycoprotein is higher than that in the asialylated protein. Thus, the carbohydrate residues are closer to the Trp residues in the absence of sialic acid. The modification of the spatial conformation of the glycans upon asialylation is confirmed by the decrease of the fluorescence lifetimes of Calcofluor, a fluorophore that binds to the carbohydrate residues. Finally, thermal intensity quenching of Calcofluor bound to alpha(1)-acid glycoprotein shows that the carbohydrate residues have slower residual motions in the absence of sialic acid residues.

  5. Identification of Potential Glycoprotein Biomarkers in Estrogen Receptor Positive (ER+ and Negative (ER- Human Breast Cancer Tissues by LC-LTQ/FT-ICR Mass Spectrometry

    Suzan M. Semaan, Xu Wang, Alan G. Marshall, Qing-Xiang Amy Sang


    Full Text Available Breast cancer is the second most fatal cancer in American women. To increase the life expectancy of patients with breast cancer new diagnostic and prognostic biomarkers and drug targets must be identified. A change in the glycosylation on a glycoprotein often causes a change in the function of that glycoprotein; such a phenomenon is correlated with cancerous transformation. Thus, glycoproteins in human breast cancer estrogen receptor positive (ER+ tissues and those in the more advanced stage of breast cancer, estrogen receptor negative (ER- tissues, were compared. Glycoproteins showing differences in glycosylation were examined by 2-dimensional gel electrophoresis with double staining (glyco- and total protein staining and identified by reversed-phase nano-liquid chromatography coupled with a hybrid linear quadrupole ion trap/ Fourier transform ion cyclotron resonance mass spectrometer. Among the identified glycosylated proteins are alpha 1 acid glycoprotein, alpha-1-antitrypsin, calmodulin, and superoxide dismutase mitochondrial precursor that were further verified by Western blotting for both ER+ and ER- human breast tissues. Results show the presence of a possible glycosylation difference in alpha-1-antitrypsin, a potential tumor-derived biomarker for breast cancer progression, which was expressed highest in the ER- samples.

  6. Folding of viral envelope glycoproteins in the endoplasmic reticulum

    Braakman, L.J.; Anken, E. van


    Viral glycoproteins fold and oligomerize in the endoplasmic reticulum of the host cell. They employ the cellular machinery and receive assistance from cellular folding factors. During the folding process, they are retained in the compartment and their structural quality is checked by the quality con

  7. Spinosad is a potent inhibitor of canine P-glycoprotein

    Schrickx, Johannes A


    Inhibition of the drug transporter P-glycoprotein (P-gp) by the oral flea preventative spinosad has been suggested as the underlying cause of the drug-drug interaction with ivermectin. In this study, an in vitro model consisting of canine cells was validated to describe the inhibitory effect of drug

  8. beta(2)-Glycoprotein I : evolution, structure and function

    de Groot, P. G.; Meijers, J. C. M.


    beta(2)-Glycoprotein I (beta(2)-GPI) is a protein that circulates in blood at high concentrations. The function of beta(2)-GPI has long been an enigma. More than 20 years ago, it was discovered that beta(2)-GPI is the major antigen for the circulating antibodies in the antiphospholipid syndrome. How

  9. Glycoprotein expression by adenomatous polyps of the colon

    Roney, Celeste A.; Xie, Jianwu; Xu, Biying; Jabour, Paul; Griffiths, Gary; Summers, Ronald M.


    Colon cancer is the second leading cause of cancer related deaths in the United States. Specificity in diagnostic imaging for detecting colorectal adenomas, which have a propensity towards malignancy, is desired. Adenomatous polyp specimens of the colon were obtained from the mouse model of colorectal cancer called adenomatous polyposis coli-multiple intestinal neoplasia (APC Min). Histological evaluation, by the legume protein Ulex europaeus agglutinin I (UEA-1), determined expression of the glycoprotein α-L-fucose. FITC-labelled UEA-1 confirmed overexpression of the glycoprotein by the polyps on fluorescence microscopy in 17/17 cases, of which 13/17 included paraffin-fixed mouse polyp specimens. In addition, FITC-UEA-1 ex vivo multispectral optical imaging of 4/17 colonic specimens displayed over-expression of the glycoprotein by the polyps, as compared to non-neoplastic mucosa. Here, we report the surface expression of α-L-fucosyl terminal residues by neoplastic mucosal cells of APC specimens of the mouse. Glycoprotein expression was validated by the carbohydrate binding protein UEA-1. Future applications of this method are the development of agents used to diagnose cancers by biomedical imaging modalities, including computed tomographic colonography (CTC). UEA-1 targeting to colonic adenomas may provide a new avenue for the diagnosis of colorectal carcinoma by CT imaging.

  10. Glycoprotein Ibalpha signalling in platelet apoptosis and clearance

    van der Wal, E.


    Storage of platelets at low temperature reduces bacterial growth and might better preserve the haemostatic function of platelets than current procedures. Incubation at 0C is known to expose ?-N-acetyl-D-glucosamine-residues on glycoprotein (GP)Ibalpha inducing receptor-clustering and platelet destru

  11. Engineered CHO cells for production of diverse, homogeneous glycoproteins

    Yang, Zhang; Wang, Shengjun; Halim, Adnan;


    genes controlling N-glycosylation in CHO cells and constructed a design matrix that facilitates the generation of desired glycosylation, such as human-like alpha 2,6-linked sialic acid capping. This engineering approach will aid the production of glycoproteins with improved properties and therapeutic...

  12. Glycoprotein Ibα clustering in platelet storage and function

    Gitz, E.


    Platelets are anucleated, discoid-shaped cells that play an essential role in the formation of a hemostatic plug to prevent blood loss from injured vessels. Initial platelet arrest at the damaged arterial vessel wall is mediated through the interaction between the platelet receptor glycoprotein (GP)

  13. Magnetic enzyme reactors for isolation and study of heterogeneous glycoproteins

    Korecka, Lucie [Department of Analytical Chemistry, University of Pardubice, Namesti Cs. Legii 565, 532 10 Pardubice (Czech Republic)]. E-mail:; Jezova, Jana [Department of Analytical Chemistry, University of Pardubice, Namesti Cs. Legii 565, 532 10 Pardubice (Czech Republic); Bilkova, Zuzana [Department of Biological and Biochemical Sciences, University of Pardubice, Namesti Cs. Legii 565, 532 10 Pardubice (Czech Republic); Benes, Milan [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovskeho Namesti 2, 162 06 Prague (Czech Republic); Horak, Daniel [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovskeho Namesti 2, 162 06 Prague (Czech Republic); Hradcova, Olga [Department of Biological and Biochemical Sciences, University of Pardubice, Namesti Cs. Legii 565, 532 10 Pardubice (Czech Republic); Slovakova, Marcela [Department of Biological and Biochemical Sciences, University of Pardubice, Namesti Cs. Legii 565, 532 10 Pardubice (Czech Republic); Laboratoire Physicochimie Curie, UMR 168 CNRS/Institute Curie, Paris Cedex 05 (France); Viovy, Jean-Louis [Laboratoire Physicochimie Curie, UMR 168 CNRS/Institute Curie, Paris Cedex 05 (France)


    The newly developed magnetic micro- and nanoparticles with defined hydrophobicity and porosity were used for the preparation of magnetic enzyme reactors. Magnetic particles with immobilized proteolytic enzymes trypsin, chymotrypsin and papain and with enzyme neuraminidase were used to study the structure of heterogeneous glycoproteins. Factors such as the type of carrier, immobilization procedure, operational and storage stability, and experimental conditions were optimized.

  14. Glycoprotein Ibα clustering in platelet storage and function

    Gitz, E.


    Platelets are anucleated, discoid-shaped cells that play an essential role in the formation of a hemostatic plug to prevent blood loss from injured vessels. Initial platelet arrest at the damaged arterial vessel wall is mediated through the interaction between the platelet receptor glycoprotein (GP)

  15. [Obtaining monoclonal antibodies against outer membrane glycoproteins of Entamoeba histolytica].

    Agundis, C; Isibasi, A; Ortíz, V; Reyes, J L; Paniagua, J; Ramírez, A; Kumate, J


    The goal of this paper was the production of monoclonal antibodies capable of detecting relevant antigens from the surface of Entamoeba histolytica trophozoites, with the purpose of using them as a diagnostic test. The cellular fusion for obtaining the monoclonal antibodies (mAb) was done with spleen cells from BALB/c mice, previously immunized with glycoproteins from the membrane, as well as Sp2/0 cells. The hybridoma supernatants were tested with ELISA, using glycoproteins and lipopeptide phosphoglycans (LPPG) as antigens. Seven hybridomas producing mAb against the glycoproteins were found. Among these, three recognize LPPG. The ability of reacting with the mAb against two molecules disappeared for all the LPPG positive ones when were treated with meta-periodate, and only three reacted against the glycoproteins. All of the mAb were of the Ig M isotypes. They were characterized by Dot blot and Western blot assays. From the results, one may deduce that some mAb recognize as epitopes the polysaccharide portion, and thus infer that they are directed of against the surface and therefore, in the future, could be used with a diagnostic purpose.

  16. The HIV-1 envelope glycoproteins: folding, function and vaccin design

    Sanders, Rogier W.


    The need for a vaccine against HIV is obvious, but the development of an effective vaccine has met with frustrations. The HIV envelope glycoproteins, residing in the viral membrane, are the sole viral proteins exposed on the outside of virus particles and are therefore major targets for vaccine

  17. Cancer Biomarker Discovery: Lectin-Based Strategies Targeting Glycoproteins

    David Clark


    Full Text Available Biomarker discovery can identify molecular markers in various cancers that can be used for detection, screening, diagnosis, and monitoring of disease progression. Lectin-affinity is a technique that can be used for the enrichment of glycoproteins from a complex sample, facilitating the discovery of novel cancer biomarkers associated with a disease state.

  18. Multiple Drug Transport Pathways through Human P-Glycoprotein.

    McCormick, James W; Vogel, Pia D; Wise, John G


    P-Glycoprotein (P-gp) is a plasma membrane efflux pump that is commonly associated with therapy resistances in cancers and infectious diseases. P-gp can lower the intracellular concentrations of many drugs to subtherapeutic levels by translocating them out of the cell. Because of the broad range of substrates transported by P-gp, overexpression of P-gp causes multidrug resistance. We reported previously on dynamic transitions of P-gp as it moved through conformations based on crystal structures of homologous ABCB1 proteins using in silico targeted molecular dynamics techniques. We expanded these studies here by docking transport substrates to drug binding sites of P-gp in conformations open to the cytoplasm, followed by cycling the pump through conformations that opened to the extracellular space. We observed reproducible transport of two substrates, daunorubicin and verapamil, by an average of 11-12 Å through the plane of the membrane as P-gp progressed through a catalytic cycle. Methylpyrophosphate, a ligand that should not be transported by P-gp, did not show this movement through P-gp. Drug binding to either of two subsites on P-gp appeared to determine the initial pathway used for drug movement through the membrane. The specific side-chain interactions with drugs within each pathway seemed to be, at least in part, stochastic. The docking and transport properties of a P-gp inhibitor, tariquidar, were also studied. A mechanism of inhibition by tariquidar that involves stabilization of an outward open conformation with tariquidar bound in intracellular loops or at the drug binding domain of P-gp is presented.

  19. [Metabolomics analysis of taxadiene producing yeasts].

    Yan, Huifang; Ding, Mingzhu; Yuan, Yingjin


    In order to study the inherent difference among terpenes producing yeasts from the point of metabolomics, we selected taxadiene producing yeasts as the model system. The changes of cellular metabolites during fermentation log phase of artificial functional yeasts were determined using metabolomics methods. The results represented that compared to W303-1A as a blank control, the metabolites in glycolysis, tricarboxylic acid cycle (TCA) cycle and several amino acids were influenced. And due to the changes of metabolites, the growth of cells was inhibited to a certain extent. Among the metabolites identified, citric acid content in taxadiene producing yeasts changed the most, the decreasing amplitude reached 90% or more. Therefore, citric acid can be a marker metabolite for the future study of artificial functional yeasts. The metabolomics analysis of taxadiene producing yeasts can provide more information in further studies on optimization of terpenes production in heterologous chassis.

  20. Yeasts Diversity in Fermented Foods and Beverages

    Tamang, Jyoti Prakash; Fleet, Graham H.

    People across the world have learnt to culture and use the essential microorganisms for production of fermented foods and alcoholic beverages. A fermented food is produced either spontaneously or by adding mixed/pure starter culture(s). Yeasts are among the essential functional microorganisms encountered in many fermented foods, and are commercially used in production of baker's yeast, breads, wine, beer, cheese, etc. In Asia, moulds are predominant followed by amylolytic and alcohol-producing yeasts in the fermentation processes, whereas in Africa, Europe, Australia and America, fermented products are prepared exclusively using bacteria or bacteria-yeasts mixed cultures. This chapter would focus on the varieties of fermented foods and alcoholic beverages produced by yeasts, their microbiology and role in food fermentation, widely used commercial starters (pilot production, molecular aspects), production technology of some common commercial fermented foods and alcoholic beverages, toxicity and food safety using yeasts cultures and socio-economy

  1. Tracer studies of nitrogen assimilation in yeast.



    By using N(15) as a tracer the assimilation of ammonia by the yeast, Torulopsis utilis, has been studied. It has been shown that: 1. There was no measurable incorporation of N in the protein or polynucleotide purine of carbon-starved yeast. 2. When ammonia is added to nitrogen-starved yeast there is a long lag period before division begins during which the yeast rapidly synthesizes protein, this process being accompanied by a turnover of polynucleotide purine. There was no significant dilution of the N(15)H(4) (+) of the medium by ordinary NH(4) (+). 3. When yeast containing N(15) is allowed to divide and grow in ordinary ammonia, the total amount of N(15) in the yeast remains constant. The dicarboxylic amino acids are most diluted, while arginine and nucleic acid guanine are not diluted at all.

  2. Beer brewing using a fusant between a sake yeast and a brewer's yeast.

    Mukai, N; Nishimori, C; Fujishige, I W; Mizuno, A; Takahashi, T; Sato, K


    Beer brewing using a fusant between a sake yeast (a lysine auxotrophic mutant of sake yeast K-14) and a brewer's yeast (a respiratory-deficient mutant of the top fermentation yeast NCYC1333) was performed to take advantage of the beneficial characteristics of sake yeasts, i.e., the high productivity of esters, high tolerance to ethanol, and high osmotolerance. The fusant (F-32) obtained was different from the parental yeasts regarding, for example, the assimilation of carbon sources and tolerance to ethanol. A brewing trial with the fusant was carried out using a 100-l pilot-scale plant. The fusant fermented wort more rapidly than the parental brewer's yeast. However, the sedimentation capacity of the fusant was relatively low. The beer brewed using the fusant contained more ethanol and esters compared to that brewed using the parental brewer's yeast. The fusant also obtained osmotolerance in the fermentation of maltose and fermented high-gravity wort well.

  3. Assembly of eukaryotic algal chromosomes in yeast

    Karas, Bogumil J.; Molparia, Bhuvan; Jablanovic, Jelena; Hermann, Wolfgang J; Lin, Ying-Chi; Dupont, Christopher L.; Tagwerker, Christian; Yonemoto, Isaac T.; Noskov, Vladimir N.; Chuang, Ray-Yuan; Allen, Andrew E; Glass, John I.; Hutchison, Clyde A; Smith, Hamilton O; Venter, J Craig


    Background Synthetic genomic approaches offer unique opportunities to use powerful yeast and Escherichia coli genetic systems to assemble and modify chromosome-sized molecules before returning the modified DNA to the target host. For example, the entire 1 Mb Mycoplasma mycoides chromosome can be stably maintained and manipulated in yeast before being transplanted back into recipient cells. We have previously demonstrated that cloning in yeast of large (> ~ 150 kb), high G + C (55%) prokaryoti...

  4. 21 CFR 73.355 - Phaffia yeast.


    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Phaffia yeast. 73.355 Section 73.355 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.355 Phaffia yeast. (a) Identity. (1) The color additive phaffia yeast consists of the killed, dried cells...

  5. Platelet receptor expression and shedding: glycoprotein Ib-IX-V and glycoprotein VI.

    Gardiner, Elizabeth E; Andrews, Robert K


    Quantity, quality, and lifespan are 3 important factors in the physiology, pathology, and transfusion of human blood platelets. The aim of this review is to discuss the proteolytic regulation of key platelet-specific receptors, glycoprotein(GP)Ib and GPVI, involved in the function of platelets in hemostasis and thrombosis, and nonimmune or immune thrombocytopenia. The scope of the review encompasses the basic science of platelet receptor shedding, practical aspects related to laboratory analysis of platelet receptor expression/shedding, and clinical implications of using the proteolytic fragments as platelet-specific biomarkers in vivo in terms of platelet function and clearance. These topics can be relevant to platelet transfusion regarding both changes in platelet receptor expression occurring ex vivo during platelet storage and/or clinical use of platelets for transfusion. In this regard, quantitative analysis of platelet receptor profiles on blood samples from individuals could ultimately enable stratification of bleeding risk, discrimination between causes of thrombocytopenia due to impaired production vs enhanced clearance, and monitoring of response to treatment prior to change in platelet count.

  6. Yeasts in malting, with special emphasis on Wickerhamomyces anomalus (synonym Pichia anomala).

    Laitila, Arja; Sarlin, Tuija; Raulio, Mari; Wilhelmson, Annika; Kotaviita, Erja; Huttunen, Timo; Juvonen, Riikka


    Malted barley is a major raw material of beer, as well as distilled spirits and several food products. The production of malt (malting) exploits the biochemical reactions of a natural process, grain germination. In addition to germinating grain, the malting process includes another metabolically active component: a diverse microbial community that includes various types of bacteria and fungi. Therefore, malting can be considered as a complex ecosystem involving two metabolically active groups. Yeasts and yeast-like fungi are an important part of this ecosystem, but previously the significance of yeasts in malting has been largely underestimated. Characterization and identification of yeasts in industrial processes revealed 25 ascomycetous yeasts belonging to 10 genera, and 18 basidiomycetous yeasts belonging to 7 genera. In addition, two ascomycetous yeast-like fungi belonging to the genera Aureobasidium and Exophiala were commonly detected. Yeasts and yeast-like fungi produced extracellular hydrolytic enzymes with a potentially positive contribution to the malt enzyme spectrum. Several ascomycetous yeast strains showed strong antagonistic activity against field and storage moulds, Wickerhamomyces anomalus (synonym Pichia anomala) being the most effective species. Malting studies revealed that W. anomalus VTT C-04565 effectively restricted Fusarium growth and hydrophobin production during malting and prevented beer gushing. In order to broaden the antimicrobial spectrum and to improve malt brewhouse performance, W. anomalus could be combined with other starter cultures such as Lactobacillus plantarum. Well-characterized microbial mixtures consisting of barley and malt-derived microbes open up several possibilities to improve malt properties and to ensure the safety of the malting process.

  7. Potential probiotic yeasts isolated from the fish gut protect zebrafish (Danio rerio from a Vibrio anguillarum challenge

    Mario eCaruffo


    Full Text Available Due to the negative consequences associated with the use of antibiotics, researchers and food producers have studied alternatives, such as probiotics, for the control of fish diseases. The probiotic properties of yeasts in aquaculture have been scarcely considered. The present study investigated the probiotic properties of local yeast strains for aquaculture application in the protection of bacterial diseases. Yeast strains (n=15, previously isolated from the intestinal gut of healthy salmonids, yellowtail and croaker, were evaluated for their protection of zebrafish larvae following a Vibrio anguillarum challenge. We developed an infection model on zebrafish larvae with V. anguillarum, observing rapid mortality (≥50% 5 days post immersion challenge. Infection of Tg(Lyz:DsRednz50 larvae with fluorescent-marked V. anguillarum showed the oro-intestinal as the natural route of infection concomitant with an inflammatory response of the larvae reflected by neutrophil migration outside the hematopoietic tissue. Thirteen of 15 strains increased the percentage of larvae survival after the V. anguillarum challenge, although no yeast showed in vitro anti-V. anguillarum activity. In a subset of yeasts, we explored yeast-larvae interactions using fluorescent yeast and evaluated larvae colonization by culture analysis. All fluorescent yeasts were located in the gastrointestinal tract until 5 days post inoculation (dpi. Yeasts reached 103 CFU/larvae at 0 dpi, although the persistence until 5 dpi of the viable yeast in the gut was different among the strains. These results reveal that some yeasts isolated from the gut of fish could be potential probiotics, reducing the mortality associated to V. anguillarum challenge, and suggest that gut colonization could be involved in the protective effect. Future studies should elucidate other mechanisms involved in yeast protection and verify the beneficial effects of probiotic use in commercial fish species.

  8. Human platelet glycoprotein Ia. One component is only expressed on the surface of activated platelets and may be a granule constituent

    Bienz, D.; Clemetson, K.J.


    Glycoprotein Ia (GP Ia) is a relatively minor component of human blood platelets thought to be a receptor involved in collagen-induced platelet activation. However, some difficulties exist with the definition of this glycoprotein. The expression of GP Ia on resting (prostacyclin analogue-treated) and thrombin-activated platelets was compared by surface labeling with /sup 125/I-lactoperoxidase. Intact platelets or platelets solubilized in sodium dodecyl sulfate were labeled with periodate/(/sup 3/H)NaBH/sub 4/. Analysis on two-dimensional isoelectric focusing/sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels showed that GP Ia is very poorly labeled in resting platelets. After activation a new spot (GP Ia*) appears with the same relative molecular mass as GP Ia under reducing conditions. GP Ia and Ia* can be clearly separated by two-dimensional nonreduced/reduced gel electrophoresis. Therefore, two glycoproteins which have been termed GP Ia exist in platelets with similar molecular weight and pI under reducing conditions. One of these (GP Ia*) is only surface-labeled when platelets are activated, indicating that it is only exposed on the surface of activated platelets. Supernatant from activated platelets contains this glycoprotein as well as other granule components. This glycoprotein is missing in platelets from two patients with collagen-response defects.

  9. Yeast Associated with the Ambrosia Beetle, Platypus koryoensis, the Pest of Oak Trees in Korea.

    Yun, Yeo Hong; Suh, Dong Yeon; Yoo, Hun Dal; Oh, Man Hwan; Kim, Seong Hwan


    Oak tree death caused by symbiosis of an ambrosia beetle, Platypus koryoensis, and an ophiostomatoid filamentous fungus, Raffaelea quercus-mongolicae, has been a nationwide problem in Korea since 2004. In this study, we surveyed the yeast species associated with P. koryoensis to better understand the diversity of fungal associates of the beetle pest. In 2009, a total of 195 yeast isolates were sampled from larvae and adult beetles (female and male) of P. koryoensis in Cheonan, Goyang, and Paju; 8 species were identified by based on their morphological, biochemical and molecular analyses. Meyerozyma guilliermondii and Candida kashinagacola were found to be the two dominant species. Among the 8 species, Candida homilentoma was a newly recorded yeast species in Korea, and thus, its mycological characteristics were described. The P. koryoensis symbiont R. quercusmongolicae did not show extracelluar CM-cellulase, xylanase and avicelase activity that are responsible for degradation of wood structure; however, C. kashinagacola and M. guilliermondii did show the three extracellular enzymatic activities. Extracelluar CM-cellulase activity was also found in Ambrosiozyma sp., C. homilentoma, C. kashinagacola, and Candida sp. Extracelluar pectinase activity was detected in Ambrosiozyma sp., C. homilentoma, Candida sp., and M. guilliermondii. All the 8 yeast species displayed compatible relationships with R. quercus-mongolicae when they were co-cultivated on yeast extract-malt extract plates. Overall, our results demonstrated that P. koryoensis carries the yeast species as a symbiotic fungal associate. This is first report of yeast diversity associated with P. koryoensis.

  10. Roles of Glycoproteins in the Diagnosis and Differential Diagnosis of Chronic and Latent Keshan Disease

    Sen Wang


    Full Text Available We aimed to explore the roles of glycoproteins in the pathogenesis of chronic and latent Keshan disease (CKD and LKD, and screen the lectins as indicators of significant differences in glycoproteins of KD saliva and serum. Blood and saliva were collected from 50 CKD, 50 LKD patients and 54 normal individuals. Saliva and serum lectin microarrays and saliva and serum microarrays were used to screen and verify the differences in the levels of lectin among the three groups. In the male saliva lectin microarray, Solanum tuberosum (potato lectin (STL and other 9 lectins showed differences between CKD and normal; STL and other 9 lectins showed differences between LKD and normal; Aleuria aurantia lectin (AAL and other 15 lectins showed differences between CKD and LKD. In the female saliva microarray, Griffonia (Bandeiraea simplicifolia lectin I (GSL-I and other 9 lectins showed differences between CKD and normal; STL and other 7 lectins showed differences between LKD and normal; Maackia amurensis lectin I (MAL-I and Triticum vulgaris (WGA showed difference between CKD and LKD. In the male serum lectin microarray, Psophocarpus tetragonolobus lectin I (PTL-I and other 16 lectins showed differences between CKD and normal; Ulexeuropaeus agglutinin I (UEA-I and other 9 lectins showed differences between LKD and normal; AAL and other 13 lectins showed differences between CKD and LKD. In the female serum lectin microarray, WGA and other 13 lectins showed differences between CKD and normal; Euonymus europaeus lectin (EEL and other 6 lectins showed differences between LKD and normal; MAL-I and other 14 lectins showed differences between CKD and LKD. Carbohydrate chain GlcNAc and α-Gal may play crucial roles in the pathogenesis of KD. STL may be considered the diagnostic biomarker for male CKD and LKD, while WGA may be useful in distinguishing between the two stages. STL may be considered the diagnostic biomarker for female LKD.

  11. Isolation and characterization of bacteria and yeasts from contaminated soil

    Karličić Vera M.


    Full Text Available Plant growth promoting (PGP bacteria and yeasts play an important role in bioremediation processes. Thirty bacterial and ten yeast isolates were obtained from PAH and PCB contaminated soil with an aim of determining the presence of PGP mechanisms (production of ammonia, indoleacetic acid, siderophores and solubilization of inorganic phosphate. As a result, three bacterial (Serratia liquefaciens, Micrococcus sp. and Serratia sp. and two yeast isolates (Candida utilis and Candida tropicalis were recognized as PGP strains. Among them, Serratia sp. showed the highest indole production (25.5 μg/ml. Analyses of metal tolerance (Cu+2, Cr+6 and Ni+2 revealed that Serratia liquefaciens, Micrococcus sp., Serratia sp. and Candida tropicalis were capable to tolerate significant concentration of metals. As a result of this study several bacterial and yeast strains were attributed as potential plant growth promoters which can be applied in future remediation activities and environmental quality improvements. [Projekat ministarstva nauke Republike Srbije, br. TR 31080 i FP-7 project AREA (316004

  12. Long-chain alkane production by the yeast Saccharomyces cerevisiae.

    Buijs, Nicolaas A; Zhou, Yongjin J; Siewers, Verena; Nielsen, Jens


    In the past decade industrial-scale production of renewable transportation biofuels has been developed as an alternative to fossil fuels, with ethanol as the most prominent biofuel and yeast as the production organism of choice. However, ethanol is a less efficient substitute fuel for heavy-duty and maritime transportation as well as aviation due to its low energy density. Therefore, new types of biofuels, such as alkanes, are being developed that can be used as drop-in fuels and can substitute gasoline, diesel, and kerosene. Here, we describe for the first time the heterologous biosynthesis of long-chain alkanes by the yeast Saccharomyces cerevisiae. We show that elimination of the hexadecenal dehydrogenase Hfd1 and expression of a redox system are essential for alkane biosynthesis in yeast. Deletion of HFD1 together with expression of an alkane biosynthesis pathway resulted in the production of the alkanes tridecane, pentadecane, and heptadecane. Our study provides a proof of principle for producing long-chain alkanes in the industrial workhorse S. cerevisiae, which was so far limited to bacteria. We anticipate that these findings will be a key factor for further yeast engineering to enable industrial production of alkane based drop-in biofuels, which can allow the biofuel industry to diversify beyond bioethanol.

  13. Effects of yeast, fermentation time, and preservation methods on tarhana.

    Gurbuz, Ozan; Gocmen, Duygu; Ozmen, Nese; Dagdelen, Fatih


    The physicochemical properties of tarhana soup produced with different dough treatments, fermentation times, and preservation methods were examined. Tarhana doughs were prepared with yogurt (control) or baker's yeast (Saccharomyces cerevisiae) and fermented for 3 days. Samples were taken at 24, 48, and 72 hr. Samples were then preserved via one of four methods: sun dried, dried in the shade, vacumn dried, and frozen. Frozen samples produced lower organic acid levels after 72 hr of fermentation in both control (0.68 g/100 g) and yeast (0.61 g/100 g) applications than samples that were dried (0.94 g/100 g control samples; 0.81 g/100 g samples with yeast). Increasing fermentation time resulted in a significant effect on the formation of organic acid in the tarhana (p .01). However, sensory scores for tarhana prepared from the samples dried in a sheltered area showed a reduction in color desireablilty as the fermentation time increased. The soup prepared from frozen tarhana (72 hr fermentation, with yeast) had the highest scores with respect to color, mouth feel, flavor, and overall acceptability. Vacuum-dried samples' scores in these areas were also high in comparison to the two other drying methods.

  14. Air-drying kinetics affect yeast membrane organization and survival.

    Lemetais, Guillaume; Dupont, Sébastien; Beney, Laurent; Gervais, Patrick


    The plasma membrane (PM) is a key structure for the survival of cells during dehydration. In this study, we focused on the concomitant changes in survival and in the lateral organization of the PM in yeast strains during desiccation, a natural or technological environmental perturbation that involves transition from a liquid to a solid medium. To evaluate the role of the PM in survival during air-drying, a wild-type yeast strain and an osmotically fragile mutant (erg6Δ) were used. The lateral organization of the PM (microdomain distribution) was observed using a fluorescent marker related to a specific green fluorescent protein-labeled membrane protein (Sur7-GFP) after progressive or rapid desiccation. We also evaluated yeast behavior during a model dehydration experiment performed in liquid medium (osmotic stress). For both strains, we observed similar behavior after osmotic and desiccation stresses. In particular, the same lethal magnitude of dehydration and the same lethal kinetic effect were found for both dehydration methods. Thus, yeast survival after progressive air-drying was related to PM reorganization, suggesting the positive contribution of passive lateral rearrangements of the membrane components. This study also showed that the use of glycerol solutions is an efficient means to simulate air-drying desiccation.

  15. Effect of chromosome tethering on nuclear organization in yeast.

    Barış Avşaroğlu

    Full Text Available Interphase chromosomes in Saccharomyces cerevisiae are tethered to the nuclear envelope at their telomeres and to the spindle pole body (SPB at their centromeres. Using a polymer model of yeast chromosomes that includes these interactions, we show theoretically that telomere attachment to the nuclear envelope is a major determinant of gene positioning within the nucleus only for genes within 10 kb of the telomeres. We test this prediction by measuring the distance between the SPB and the silent mating locus (HML on chromosome III in wild-type and mutant yeast strains that contain altered chromosome-tethering interactions. In wild-type yeast cells we find that disruption of the telomere tether does not dramatically change the position of HML with respect to the SPB, in agreement with theoretical predictions. Alternatively, using a mutant strain with a synthetic tether that localizes an HML-proximal site to the nuclear envelope, we find a significant change in the SPB-HML distance, again as predicted by theory. Our study quantifies the importance of tethering at telomeres on the organization of interphase chromosomes in yeast, which has been shown to play a significant role in determining chromosome function such as gene expression and recombination.

  16. Characterization of Yeasts and Filamentous Fungi using MALDI Lipid Phenotyping.

    Stübiger, Gerald; Wuczkowski, Michael; Mancera, Luis; Lopandic, Ksenija; Sterflinger, Katja; Belgacem, Omar


    Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) becomes the method of choice for the rapid identification of microorganisms (i.e. protein biotyping). Although bacterial identification is already quite advanced, biotyping of other microbes including yeasts and fungi are still under development. In this context, lipids (e.g. membrane phospholipids) represent a very important group of molecules with essential functions for cell survival and adaptation to specific environments and habitats of the microorganisms. Therefore, lipids show the potential to serve as additional molecular parameters to be used for biotyping purposes. In this paper we present a molecular characterisation of yeasts and filamentous fungi based on the analysis of lipid composition by MALDI-MS (i.e. MALDI lipid phenotyping). Using a combination of Principal Component Analysis (PCA) and Hierarchical Clustering we could demonstrate that this approach allowed a classification and differentiation of several groups of yeasts (e.g. Saccharomyces) and filamentous fungi (e.g. Aspergillus, Penicillium, Trichoderma) at the species/strain level. By analysing the MALDI lipid profiles we were able to differentiate 26 closely related yeast strains, for which discrimination via genotypic methods like AFLP in this case are relatively more elaborate. Moreover, employing statistical analysis we could identify those lipid parameters (e.g. PCs and LPCs), which were responsible for the differentiation of the strains, thus providing insights into the molecular basis of our results. In summary, MALDI lipid phenotyping represents a suitable method for fungal characterization and shows the potential to be used as companion tool to genotyping and/or protein biotyping for the characterization and identification of yeasts and fungi in diverse areas (e.g. environmental, pharmaceutical, clinical applications, etc.). Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Effects of gamma radiation on Sporothrix schenckii yeast cells

    Lacerda, Camila M. de Sousa; Martins, Estefania Mara Nascimento; Andrade, Antero S.R. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail:, e-mail:, e-mail:; Resende, Maria Aparecida de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Microbiologia], e-mail:


    Sporotrichosis is a subacute or chronic infection caused by the fungus Sporothrix schenckii. Zoonotic transmission can occur after scratches or bites of animals, mainly cats, rodents, and armadillos. Up to the moment, no approved vaccine was reported for S. schenckii or to any important pathogenic fungi infection in humans, indicating the need to expand the research in this field and to explore new alternatives. The aim of this study was to evaluate the effects of gamma radiation in the viability, metabolic activity and reproductive ability of S. schenckii yeast cells for further studies on the development of a vaccine for immunization of cats and dogs. The culture of S. schenckii, in solid medium, was irradiated at doses ranging from 1.0 to 9.0 kGy. After each dose the reproductive capacity, viability and protein synthesis were estimated. The results showed that a reduction of 6 log{sub 10} cycles in the number of colonies was achieved at 6.0 kGy and after 8.0 kGy no colonies could be recovered. The viability analysis indicated that yeast cells remained viable up to 9.0 kGy. The results of protein synthesis analysis showed that the yeast cells, irradiated up to 9.0 kGy, were able to synthesize proteins. Our preliminary results indicated that for the yeast cells of S. schenckii, it is possible to find an absorbed dose in which the pathogen loses its reproductive ability, while retaining its viability, a necessary condition for the development of a radioattenuated yeast vaccine. (author)

  18. Yeast effects on Pinot noir wine phenolics, color, and tannin composition.

    Carew, Anna L; Smith, Paul; Close, Dugald C; Curtin, Chris; Dambergs, Robert G


    Extraction and stabilization of wine phenolics can be challenging for wine makers. This study examined how yeast choice affected phenolic outcomes in Pinot noir wine. Five yeast treatments were applied in replicated microvinification, and wines were analyzed by UV-visible spectrophotometry. At bottling, yeast treatment Saccharomyces cerevisiae RC212 wine had significantly higher concentrations of total pigment, free anthocyanin, nonbleachable pigment, and total tannin and showed high color density. Some phenolic effects were retained at 6 months' bottle age, and RC212 and S. cerevisae EC1118 wines showed increased mean nonbleachable pigment concentrations. Wine tannin composition analysis showed three treatments were associated with a higher percentage of trihydroxylated subunits (skin tannin indicator). A high degree of tannin polymerization was observed in wines made with RC212 and Torulaspora delbruekii , whereas tannin size by gel permeation chromatography was higher only in the RC212 wines. The results emphasize the importance of yeast strain choice for optimizing Pinot noir wine phenolics.

  19. Cyanohydrin reactions enhance glycolytic oscillations in yeast

    Hald, Bjørn Olav; Nielsen, Astrid Gram; Tortzen, Christian


    Synchronous metabolic oscillations can be induced in yeast by addition of glucose and removal of extracellular acetaldehyde (ACAx). Compared to other means of ACAx removal, cyanide robustly induces oscillations, indicating additional cyanide reactions besides ACA to lactonitrile conversion. Here......, (13)C NMR is used to confirm our previous hypothesis, that cyanide directly affects glycolytic fluxes through reaction with carbonyl-containing compounds. Intracellularly, at least 3 cyanohydrins were identified. Extracellularly, all signals could be identified and lactonitrile was found to account...... for ~66% of total cyanide removal. Simulations of our updated computational model show that intracellular cyanide reactions increase the amplitude of oscillations and that cyanide addition lowers [ACA] instantaneously. We conclude that cyanide provides the following means of inducing global oscillations...

  20. Phyllosphere yeasts rapidly break down biodegradable plastics.

    Kitamoto, Hiroko K; Shinozaki, Yukiko; Cao, Xiao-Hong; Morita, Tomotake; Konishi, Masaaki; Tago, Kanako; Kajiwara, Hideyuki; Koitabashi, Motoo; Yoshida, Shigenobu; Watanabe, Takashi; Sameshima-Yamashita, Yuka; Nakajima-Kambe, Toshiaki; Tsushima, Seiya


    The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily isolated from plant surfaces, displayed strong degradation activity on films made from poly-butylene succinate or poly-butylene succinate-co-adipate. Strains of P. antarctica isolated from leaves and husks of paddy rice displayed strong degradation activity on these films at 30°C. The type strain, P. antarctica JCM 10317, and Pseudozyma spp. strains from phyllosphere secreted a biodegradable plastic-degrading enzyme with a molecular mass of about 22 kDa. Reliable source of biodegradable plastic-degrading microorganisms are now in our hands.

  1. Organic growth factor requirements of some yeasts.

    Madan, M; Gulati, N


    Some sporogenous yeasts (Brettanomyces bruxellensis, Debaryomyces hansenii, Hansenula ciferrii, Hansenula polymorpha, Pichia polymorpha, Saccharomycopsis guttulata, and Saccharomyces chevalieri), isolated from various fruits have been examined for their organic growth factor requisites. H. ciferrii was completely deficient in thiamine, biotin, inositol, riboflavin, niacin, and partially deficient in pantothenic acid. It required an external supply of 0.1-1.0 ppm thiamine, 0.01-0.1 ppm biotin, 10.0 ppm inositol, 0.10 ppm niacin and riboflavin for its optimum growth. H. polymorpha showed partial deficiency only in xanthine. P. polymorpha gave indications of partial deficiencies in thiamine and biotin. S. guttulata was completely deficient in biotin, and partially deficient in adenine sulphate. It required 0.01 ppm biotin for optimum growth. S chevalieri was completely deficient in pyridoxine and partially deficient in thiamine. It required 0.1 ppm pyridoxine for maximum growth. D. hansenii and B bruxellensis were auxoautotrophic for the various growth factors studied.

  2. Functional differences in yeast protein disulfide isomerases

    Nørgaard, P; Westphal, V; Tachibana, C


    PDI1 is the essential gene encoding protein disulfide isomerase in yeast. The Saccharomyces cerevisiae genome, however, contains four other nonessential genes with homology to PDI1: MPD1, MPD2, EUG1, and EPS1. We have investigated the effects of simultaneous deletions of these genes. In several...... cases, we found that the ability of the PDI1 homologues to restore viability to a pdi1-deleted strain when overexpressed was dependent on the presence of low endogenous levels of one or more of the other homologues. This shows that the homologues are not functionally interchangeable. In fact, Mpd1p...... was the only homologue capable of carrying out all the essential functions of Pdi1p. Furthermore, the presence of endogenous homologues with a CXXC motif in the thioredoxin-like domain is required for suppression of a pdi1 deletion by EUG1 (which contains two CXXS active site motifs). This underlines...

  3. Import of ribosomal proteins into yeast mitochondria.

    Woellhaf, Michael W; Hansen, Katja G; Garth, Christoph; Herrmann, Johannes M


    Mitochondrial ribosomes of baker's yeast contain at least 78 protein subunits. All but one of these proteins are nuclear-encoded, synthesized on cytosolic ribosomes, and imported into the matrix for biogenesis. The import of matrix proteins typically relies on N-terminal mitochondrial targeting sequences that form positively charged amphipathic helices. Interestingly, the N-terminal regions of many ribosomal proteins do not closely match the characteristics of matrix targeting sequences, suggesting that the import processes of these proteins might deviate to some extent from the general import route. So far, the biogenesis of only two ribosomal proteins, Mrpl32 and Mrp10, was studied experimentally and indeed showed surprising differences to the import of other preproteins. In this review article we summarize the current knowledge on the transport of proteins into the mitochondrial matrix, and thereby specifically focus on proteins of the mitochondrial ribosome.

  4. Adhesive interactions between medically important yeasts and bacteria

    Millsap, KW; van der Mei, HC; Busscher, HJ; Bos, R.R.M.

    Yeasts are being increasingly identified as important organisms in human infections. Adhesive interactions between yeasts and bacteria may contribute to yeast retention al body sites. Methods for studying adhesive interactions between bacterial strains are well known, and range from simple

  5. Structural characterization of the N-linked pentasaccharide decorating glycoproteins of the halophilic archaeon Haloferax volcanii.

    Kandiba, Lina; Lin, Chia-Wei; Aebi, Markus; Eichler, Jerry; Guerardel, Yann


    N-Glycosylation is a post-translational modification performed in all three domains of life. In the halophilic archaea Haloferax volcanii, glycoproteins such as the S-layer glycoprotein are modified by an N-linked pentasaccharide assembled by a series of Agl (archaeal glycosylation) proteins. In the present study, mass spectrometry (MS) and nuclear magnetic resonance spectroscopy were used to define the structure of this glycan attached to at least four of the seven putative S-layer glycoprotein N-glycosylation sites, namely Asn-13, Asn-83, Asn-274 and Asn-279. Such approaches detected a trisaccharide corresponding to glucuronic acid (GlcA)-β1,4-GlcA-β1,4-glucose-β1-Asn, a tetrasaccharide corresponding to methyl-O-4-GlcA-β-1,4-galacturonic acid-α1,4-GlcA-β1,4-glucose-β1-Asn, and a pentasaccharide corresponding to hexose-1,2-[methyl-O-4-]GlcA-β-1,4-galacturonic acid-α1,4-GlcA-β1,4-glucose-β1-Asn, with previous MS and radiolabeling experiments showing the hexose at the non-reducing end of the pentasaccharide to be mannose. The present analysis thus corrects the earlier assignment of the penultimate sugar as a methyl ester of a hexuronic acid, instead revealing this sugar to be a methylated GlcA. The assignments made here are in good agreement with what was already known of the Hfx. volcanii N-glycosylation pathway from previous genetic and biochemical efforts while providing new insight into the process.

  6. Cryo-electron Microscopy Structure of the Native Prototype Foamy Virus Glycoprotein and Virus Architecture.

    Grégory Effantin


    Full Text Available Foamy viruses (FV belong to the genus Spumavirus, which forms a distinct lineage in the Retroviridae family. Although the infection in natural hosts and zoonotic transmission to humans is asymptomatic, FVs can replicate well in human cells making it an attractive gene therapy vector candidate. Here we present cryo-electron microscopy and (cryo-electron tomography ultrastructural data on purified prototype FV (PFV and PFV infected cells. Mature PFV particles have a distinct morphology with a capsid of constant dimension as well as a less ordered shell of density between the capsid and the membrane likely formed by the Gag N-terminal domain and the cytoplasmic part of the Env leader peptide gp18LP. The viral membrane contains trimeric Env glycoproteins partly arranged in interlocked hexagonal assemblies. In situ 3D reconstruction by subtomogram averaging of wild type Env and of a Env gp48TM- gp80SU cleavage site mutant showed a similar spike architecture as well as stabilization of the hexagonal lattice by clear connections between lower densities of neighboring trimers. Cryo-EM was employed to obtain a 9 Å resolution map of the glycoprotein in its pre-fusion state, which revealed extensive trimer interactions by the receptor binding subunit gp80SU at the top of the spike and three central helices derived from the fusion protein subunit gp48TM. The lower part of Env, presumably composed of interlaced parts of gp48TM, gp80SU and gp18LP anchors the spike at the membrane. We propose that the gp48TM density continues into three central transmembrane helices, which interact with three outer transmembrane helices derived from gp18LP. Our ultrastructural data and 9 Å resolution glycoprotein structure provide important new insights into the molecular architecture of PFV and its distinct evolutionary relationship with other members of the Retroviridae.

  7. A platelet monoclonal antibody inhibition assay for detection of glycoprotein IIb/IIIa-related platelet alloantibodies.

    Reiner, A P; Teramura, G; Nelson, K A; Slichter, S J


    Post-transfusion purpura (PTP) and neonatal alloimmune thrombocytopenia (NAT) result from formation of alloantibodies to platelet membrane glycoprotein-associated antigens. The detection and identification of platelet-specific alloantibodies in patient sera is often complicated by the presence of co-existing HLA antibodies and/or more than one platelet specificity in the same serum. We describe a solid phase assay that specifically detects antibodies to platelet membrane associated alloantigens by measuring the ability of patient antisera to inhibit the binding of glycoprotein GPIIb or GPIIIa monoclonal antibodies to intact platelets. When tested in the GPIIIa assay against a panel of random platelet donors, the reactivities of two known PLAI antisera that also contained different HLA antibodies were highly correlated (r = 0.99) and allowed PLA phenotyping of the population. A standard direct binding platelet ELISA, on the other hand, was unable to accurately PLA phenotype the same population. The reactivities of two known Baka antisera (one containing additional anti-PLA2 and the other anti-Brb specificities) were highly correlated (r = 0.95) in the GPIIb assay, and Bak phenotype determination was similarly accomplished for a random platelet panel. Furthermore, a comparison of platelet phenotype results (using the monoclonal inhibition assay) and genotype results (using DNA analysis) for the PLA and Bak systems showed a concordance of 98% for 146 alleles tested. In conclusion, the platelet monoclonal antibody inhibition assay: (1) allows determination of platelet-specific alloantibodies in the presence of contaminating HLA antibodies and/or in sera containing multiple platelet alloantibodies; (2) allows accurate platelet phenotyping for the GPIIIa-associated PLA and GPIIb-associated Bak antigen systems; and (3) may be applicable to the detection of other known or even novel platelet glycoprotein-associated antigens.

  8. Genetic characterization of complete open reading frame of glycoprotein C gene of bovine herpesvirus 1

    Saurabh Majumder


    Full Text Available Aim: To characterize one of the major glycoprotein genes viz., glycoprotein C (gC; UL44, unique long region 44 of bovineherpesvirus 1(BoHV1 of Indian origin at genetic and phylogenetic level.Materials and Methods: A bovine herpesvirus 1 isolate viz., (BoHV1/IBR 216 II/ 1976/ India maintained at Division ofVirology, IVRI, Mukteswar was used for the current study. The DNA was extracted using commercial kit and the completeORF of gC gene was amplified, cloned, and sequenced by conventional Sanger sequencing method. The sequence wasgenetically and phylogenetically analysed using various bioinformatic tools. The sequence was submitted in the Genbankwith accession number Kc756965.Results: The complete ORF of gC gene was amplified and sequenced. It showed 100% sequence homology with referencecooper strain of BoHV1 and divergence varied from 0% to 2.7% with other isolates of BoHV1. The isolate under study haddivergence of 9.2%, 13%, 26.6%, and 9.2% with BoHV5 (Bovine herpesvirus 5, CvHV1 (Cervid herpesvirus 1, CpHV1(Caprine herpesvirus 1, and BuHV1 (Bubaline herpesvirus 1, respectively.Conclusion: This is the first genetic characterization of complete open reading frame (ORF of glycoprotein C gene (UL44 ofIndian isolate of BoHV1. The gC gene of BoHV1 is highly conserved among all BoHV1 isolates and it can be used as a targetfor designing diagnostic primers for the specific detection of BoHV1.

  9. Lack of homozygotes for the most frequent disease allele in carbohydrate-deficient glycoprotein syndrome type 1A.

    MATTHIJS, G; Schollen, E.; van Schaftingen, E; Cassiman, J. J.; Jaeken, J.


    Carbohydrate-deficient-glycoprotein syndrome type 1 (CDG1; also known as "Jaeken syndrome") is an autosomal recessive disorder characterized by defective glycosylation. Most patients show a deficiency of phosphomannomutase (PMM), the enzyme that converts mannose 6-phosphate to mannose 1-phosphate in the synthesis of GDP-mannose. The disease is linked to chromosome 16p13, and mutations have recently been identified in the PMM2 gene in CDG1 patients with a PMM deficiency (CDG1A). The availabili...

  10. Shedding of soluble glycoprotein 1 detected during acute Lassa virus infection in human subjects

    Momoh Mambu


    detection of sGP1 as the sole protein shed during early arenaviral biogenesis. This phenomenon was clearly distinguishable from virion-associated GP1 only prior to the emergence of de novo viral particles. Despite this restricted time frame, in 2/46 suspected cases in two studies performed in late 2009 and early 2010, soluble glycoprotein component shedding was identified. Differential detection of viral antigens GP1, GP2, and NP by western blot yielded five different scenarios: whole LASV virions (GP1, GP2, NP; i.e. active viremia, different combinations of these three proteins, sGP1 only, NP only, and absence of all three proteins. Four additional samples showed inconclusive evidence for sGP1 shedding due to lack of detection of GP2 and NP by western blot; however, a sensitive LASV NP antigen capture ELISA generated marginally positive signals Conclusions During a narrow window following active infection with LASV, soluble GP1 can be detected in patient sera. This phenomenon parallels other VHF infection profiles, with the actual role of a soluble viral glycoprotein component in vivo remaining largely speculative. The expenditure of energy and cellular resources toward secretion of a critical protein during viral biogenesis without apparent specific function requires further investigation. Future studies will be aimed at systematically identifying the role of LASV sGP1 in the infection process and outcome in vitro and in vivo.

  11. Protein and glycoprotein abnormalities in platelets from human Chediak-Higashi syndrome: polyacrylamide gel electrophoretic study of platelets from five patients.

    Ledezma, E; Apitz-Castro, R


    Polyacrylamide electrophoretic analysis of proteins and Tritium-labelled glycoproteins of the platelets from five patients with Chediak-Higashi Syndrome shows the existence of marked quantitative differences when compared to normal platelets. While the glycoprotein abnormalities are solely related to the plasma membrane, some of the abnormalities detected in the Coomasie blue pattern are probably representative of defects related to the dense bodies and the alpha-granules. Some of the abnormalities found may, in part, explain the variability of aggregatory responses described in these patients, as well as the marked tendency towards desaggregation exhibited by platelets from humans with the Chediak-Higashi Syndrome.

  12. Antioxidant activity of glycoprotein purified from Undaria pinnatifida measured by an in vitro digestion model.

    Rafiquzzaman, S M; Kim, Eun-Young; Kim, Yu-Ri; Nam, Taek-Jeong; Kong, In-Soo


    The present study was performed to investigate the chemical composition and antioxidant activity of glycoprotein purified from Undaria pinnatifida Harvey (UPGP). On SDS-PAGE, UPGP migrated as a single band with a molecular weight of approximately 10 kDa and confirmed by staining with Schiff's reagent as glycoprotein. It consists of a carbohydrate component (42.53%) and protein component (57.47%). Amino acid profile, FT-IR spectrum and enzymatic glycosylation analysis suggested that protein is linked with carbohydrate by O-glycosylation. UPGP showed dose-dependent antioxidant activities as detected by different assays before and after in vitro digestion. The IC50 values of undigested UPGP were 0.25 ± 0.03, 0.08 ± 0.005, 0.69 ± 0.12, and 0.25 ± 0.08 mg/mL for DPPH, ABTS, FRAP, and NO, respectively. Following in vitro digestion, the antioxidant activities of UPGP were decreased during the gastric phase compared to those of undigested UPGP, with an increase occurring during the duodenal phase in all assays. However, the reducing power was unchanged after in vitro digestion. Furthermore, UPGP showed protective activity against oxidative DNA damage both undigested, after saliva and duodenal phase of digestion. These results indicate that the antioxidant and DNA protection activities of UPGP may be pH-dependent and assay specific.

  13. A glycoprotein with anti-inflammatory properties secreted by an Aspergillus nidulans modified strain

    J. C. F. Queiroz


    Full Text Available Total RNA from lipopolysaccharide (LPS-stimulated rat macrophages used to treat protoplasts from an Aspergillus nidulans strain originated the RT2 regenerated strain, whose culture supernatant showed anti-inflammatory activity in Wistar rats. The protein fraction presenting such anti-inflammatory activity was purified and biochemically identified. The screening of the fraction responsible for such anti-inflammatory property was performed by evaluating the inhibition of carrageenan-induced paw edema in male Swiss mice. Biochemical analyses of the anti-inflammatory protein used chromatography, carbohydrates quantification of the protein sample, amino acids content analysis and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE. Total sugar quantification revealed 32% glycosylation of the protein fraction. Amino acid analysis of such fraction showed a peculiar pattern presenting 29% valine. SDS-PAGE revealed that the protein sample is pure and its molecular weight is about 40kDa. Intravenous injection of the isolated substance into mice significantly inhibited carrageenan-induced paw edema. The isolated glycoprotein decreased carrageenan-induced paw edema in a prostaglandin-dependent phase, suggesting an inhibitory effect of the isolated glycoprotein on prostaglandin synthesis.

  14. Prokaryotic Expression of Glycoprotein Gene of Infectious Hnematopoietic Necrosis Virus and Polyclonal Antibody Preparation

    Liu; Xueguang; Zheng; Huaidong; Guo; Xinshuo; Luo; Jin; Lin; Cuicui; Wang; Qiuyu


    [Objective]The aim is to perform prokaryotic expression of the glycoprotein gene of infectious hnematopoietic necrosis virus and polyclonal antibody preparation. [Methods]Glycoprotein gene( G) of infectious hematopoietic tissue( IHNV) was synthesized,cloned to prokaryotic expression system pET-30a vector,yielding the recombinant plasmid pET-30a-IHNV-G. The yielded pET-30a-IHNV-G was transformed into E. coli strain BL21( DE3) plySs. [Results] SDSPAGE and Western blot results showed that protein G successfully expressed in E. coli at 37 ℃,1 mmol /L IPTG induction for 4 h. The molecular weight of fusion G protein was 57 KD. The polyclonal antibody was prepared by immunizing mice with the product of gel purification. ELISA analysis showed that the serum titer reached 1∶10 000. [Conclusion]The expressed G protein and the serum with polyclonal antibody obtained in this study provided the theoretical basis for the development of IHNV vaccine and detection of colloidal gold test strip.

  15. Influence of different floor management strategies of the vineyard on the natural yeast population associated with grape berries.

    Cordero-Bueso, Gustavo; Arroyo, Teresa; Serrano, Ana; Valero, Eva


    Some oenological practices, such as the massive utilisation of commercial yeast and the consequent colonisation of wineries, can contribute to reducing the native yeast biodiversity. In this context, the vineyard could be a reservoir of autochthonous yeasts of oenological interest. Thus, the evaluation of the influence of different agricultural parameters on the biodiversity of yeast population in the vineyard is necessary. This work shows the results of the influence of some floor management strategies of the vineyard in the natural yeast population associated with the grape-berries. With this objective, a three year sampling plan was designed in the Shiraz vineyards of the Madrid region using three floor management strategies: bare soil by tillage, bare soil maintained with herbicides and soil maintained with cover crop. The results of this study have shown that bare soil by tillage could be a sustainable alternative for managing the soil, due to the reduced use of agrochemicals and the resulting high yeasts biodiversity. Nevertheless, the presence of herbicides in the vineyard has a minor impact on the diversity of grape associated yeast communities, and this could have increased the yeast populations. Hence, from the fermentative yeasts' (like Saccharomyces) point of view, in hot and arid environments where soils may be affected by the tillage management, the best option could be the maintenance of the bare soil with the use of herbicides.

  16. Yeasts in nectar of an early-blooming herb: sought by bumble bees, detrimental to plant fecundity.

    Herrera, Carlos M; Pozo, María I; Medrano, Mónica


    Through their effects on physicochemical features of floral nectar, nectar-dwelling yeasts can alter pollinator behavior, but the effect of such changes on pollination success and plant reproduction is unknown. We present results of experiments testing the effects of nectar yeasts on foraging patterns of captive and free-ranging bumble bees, and also on pollination success and fecundity of the early-blooming, bumble bee-pollinated Helleborus foetidus (Ranunculaceae). Under controlled experimental conditions, inexperienced Bombus terrestris workers responded positively to the presence of yeasts in artificial sugar solutions mimicking floral nectar by visiting proportionally more yeast-containing artificial flowers. Free-ranging bumble bees also preferred yeast-containing nectar in the field. Experiments conducted in two different years consistently showed that natural and artificial nectars containing yeasts were more thoroughly removed than nectars without yeasts. Experimental yeast inoculation of the nectar of H. foetidus flowers was significantly associated with reductions in number of pollen tubes in the style, fruit set, seed set, and mass of individual seeds produced. These results provide the first direct evidence to date that nectar yeasts can modify pollinator foraging patterns, pollination success, and the quantity and quality of seeds produced by insect-pollinated plants.

  17. Metals uptake by live yeast and heat-modified yeast residue

    Geórgia Labuto


    Full Text Available This study evaluated the biosorption of Cd2+, Cr3+, Pb2+ and Cu2+ at pHs 3, 4, 5 and 6 for Saccharomyces cerevisiae both alive and biologically inactivated by different heating procedures (oven, autoclave or spray dry technique originated from alcohol industry. The material inactivated by autoclave (IA, at 120°C, 30 min had the best performance for metals uptake: 1.88 ± 0.07 (Cu2+, 2.22 ± 0.02 (Cr3+ and 1.57 ± 0.08 g kg-1 (Pb2+. For Cd2+; while the material inactivated by spray dry (RY presented the higher sorption capacity, 2.30 ± 0.08 g kg-1. The sorption studies showed that the biosorbent materials presented different sorption capacities and an ideal sorption pH. The sorption sites were investigated by potentiometric titration and FT-IR and showed that different heating processes used to inactivate biological samples produce materials with different characteristics and with a diverse sorption capacity due to modification of the available sorption sites. This suggests that inactivation by heating can be an alternative to improve the performance of biosorbents. The main sorption sites for each material were phenolic for live yeast (LY and carboxylic for yeast inactivated by heating in an autoclave (IA.

  18. Yeast cell factories on the horizon

    Nielsen, Jens


    For thousands of years, yeast has been used for making beer, bread, and wine. In modern times, it has become a commercial workhorse for producing fuels, chemicals, and pharmaceuticals such as insulin, human serum albumin, and vaccines against hepatitis virus and human papillomavirus. Yeast has al...

  19. Yeasts in sustainable bioethanol production: A review

    Siti Hajar Mohd Azhar


    Full Text Available Bioethanol has been identified as the mostly used biofuel worldwide since it significantly contributes to the reduction of crude oil consumption and environmental pollution. It can be produced from various types of feedstocks such as sucrose, starch, lignocellulosic and algal biomass through fermentation process by microorganisms. Compared to other types of microoganisms, yeasts especially Saccharomyces cerevisiae is the common microbes employed in ethanol production due to its high ethanol productivity, high ethanol tolerance and ability of fermenting wide range of sugars. However, there are some challenges in yeast fermentation which inhibit ethanol production such as high temperature, high ethanol concentration and the ability to ferment pentose sugars. Various types of yeast strains have been used in fermentation for ethanol production including hybrid, recombinant and wild-type yeasts. Yeasts can directly ferment simple sugars into ethanol while other type of feedstocks must be converted to fermentable sugars before it can be fermented to ethanol. The common processes involves in ethanol production are pretreatment, hydrolysis and fermentation. Production of bioethanol during fermentation depends on several factors such as temperature, sugar concentration, pH, fermentation time, agitation rate, and inoculum size. The efficiency and productivity of ethanol can be enhanced by immobilizing the yeast cells. This review highlights the different types of yeast strains, fermentation process, factors affecting bioethanol production and immobilization of yeasts for better bioethanol production.

  20. The wine and beer yeast Dekkera bruxellensis

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P; Piškur, Jure


    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model for the study of yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas that are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history. © 2014 The Authors. Yeast published by John Wiley & Sons, Ltd. PMID:24932634

  1. The wine and beer yeast Dekkera bruxellensis.

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P; Piškur, Jure


    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model for the study of yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas that are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history. © 2014 The Authors. Yeast published by John Wiley & Sons, Ltd.

  2. Growth requirements of san francisco sour dough yeasts and bakers' yeast.

    Henry, N


    The growth requirements of several yeasts isolated from San Francisco sour dough mother sponges were compared with those of bakers' yeast. The sour dough yeasts studied were one strain of Saccharomyces uvarum, one strain of S. inusitatus, and four strains of S. exiguus. S. inusitatus was the only yeast found to have an amino acid requirement, namely, methionine. All of the yeasts had an absolute requirement for pantothenic acid and a partial requirement for biotin. Inositol was stimulatory to all except bakers' yeast. All strains of S. exiguus required niacin and thiamine. Interestingly, S. inusitatus, the only yeast that required methionine, also needed folic acid. For optimal growth of S. exiguus in a molasses medium, supplementation with thiamine was required.

  3. Microbial Terroir in Chilean Valleys: Diversity of Non-conventional Yeast

    Jara, Carla; Laurie, V. Felipe; Mas, Albert; Romero, Jaime


    In this study, the presence of non-conventional yeast associated with vineyards located between latitudes 30°S and 36°S was examined, including the valleys of Limarí, Casablanca, Maipo, Colchagua, Maule, and Itata. The microbial fingerprinting in each valley was examined based on the specific quantification of yeast of enological interest. Grape–berries were sampled to evaluate the presence and load of non-conventional yeast with enological potential, such as Metschnikowia, Hanseniaspora, Torulaspora, Debaryomyces, Meyerozyma, and Rhodotorula. These yeasts were present in all vineyards studied but with varying loads depending on the valley sampled. No identical fingerprints were observed; however, similarities and differences could be observed among the microbial profiles of each valley. A co-variation in the loads of Metschnikowia and Hanseniaspora with latitude was observed, showing high loads in the Casablanca and Itata valleys, which was coincident with the higher relative humidity or rainfall of those areas. Non-conventional yeasts were also isolated and identified after sequencing molecular markers. Potentially good aromatic properties were also screened among the isolates, resulting in the selection of mostly Metschnikowia and Hanseniaspora isolates. Finally, our results suggest that microbial terroir might be affected by climatic conditions such as relative humidity and rainfall, especially impacting the load of non-conventional yeast. In this study, the microbial fingerprint for yeast in Chilean vineyards is reported for the first time revealing an opportunity to study the contribution of this assembly of microorganisms to the final product. PMID:27242693

  4. Isolation and characterization of yeasts from fermented apple bagasse as additives for ruminant feeding

    Y. Castillo-Castillo

    Full Text Available Abstract Solid-state fermentation can be used to produce feeds for ruminants, which can provide an enriched population of yeasts to improve ruminal fermentation. Fermentation of apple bagasse was performed to obtain a yeast-rich product, with the objective of isolating, identifying, and characterizing yeast strains and testing their capability to enhance in vitro ruminal fermentation of fibrous feeds. Yeasts were isolated from apple bagasse fermented under in vitro conditions, using rumen liquor obtained from cannulated cows and alfalfa as a fibrous substrate. A total of 16 new yeast strains were isolated and identified by biochemical and molecular methods. The strains were designated Levazot, followed by the isolate number. Their fermentative capacity was assessed using an in vitro gas production method. Strain Levazot 15 (Candida norvegensis showed the greatest increase in gas production (p < 0.05 compared with the yeast-free control and positively affected in vitro ruminal fermentation parameters of alfalfa and oat straw. Based on these results, it was concluded that the Levazot 15 yeast strain could be potentially used as an additive for ruminants consuming high-fiber diets. However, further studies of effects of these additives on rumen digestion, metabolism, and productive performance of ruminants are required.




    Full Text Available ABSTRACT: Wine is one of the end products of fermentation of respiratory substrates, while, yeast is one of the principal fermenting microorganisms. Changes in the substrate composition and yeast strains could vary in the quality of the wine. Two yeast isolates (Y4 and Y7 from date palm juice and standard yeast “Y33”,an isolate of Saccharomyces cerevisiae (MTCC-170 from Institute of MicrobiAl Technology, IMTECH, Chandigarh where used for studying the comparative fermentation of Molasses without nutrient supplementation, and separately with nutrient supplementation by KH2PO4 and NaNO3 @ 1g/l. Though, with nutrient supplement KH2PO4, Y33 yields higher alcohol%, both Y4 and Y7 strains produce wine with better efficiency and acceptability without the nutrient supplements unlike Y33 strains. All the three strains impart better flavour and colour in the medium without nutrient supplement in terms of hedonic scale. Further, Y4 yields higher alcohol than Y7 and Y33. Therefore, palm juice yeast isolates particularly, Y4 strains show the highest overall fermentation efficiency and acceptability among the three yeasts isolates, moreover, since its highest efficiency occurs in the absence of nutrient supplementation, unlike the standard strain, it can be recommendedas a better substitute of the standard Y33 strains. KEY WORDS: Fermentation, Yeast,  Nutrient supplements.

  6. Non-Conventional Yeast Strains Increase the Aroma Complexity of Bread.

    Aslankoohi, Elham; Herrera-Malaver, Beatriz; Rezaei, Mohammad Naser; Steensels, Jan; Courtin, Christophe M; Verstrepen, Kevin J


    Saccharomyces cerevisiae is routinely used yeast in food fermentations because it combines several key traits, including fermentation efficiency and production of desirable flavors. However, the dominance of S. cerevisiae in industrial fermentations limits the diversity in the aroma profiles of the end products. Hence, there is a growing interest in non-conventional yeast strains that can help generate the diversity and complexity desired in today's diversified and consumer-driven markets. Here, we selected a set of non-conventional yeast strains to examine their potential for bread fermentation. Here, we tested ten non-conventional yeasts for bread fermentation, including two Saccharomyces species that are not currently used in bread making and 8 non-Saccharomyces strains. The results show that Torulaspora delbrueckii and Saccharomyces bayanus combine satisfactory dough fermentation with an interesting flavor profile. Sensory analysis and HS-SPME-GC-MS analysis confirmed that these strains produce aroma profiles that are very different from that produced by a commercial bakery strain. Moreover, bread produced with these yeasts was preferred by a majority of a trained sensory panel. These results demonstrate the potential of T. delbrueckii and S. bayanus as alternative yeasts for bread dough leavening, and provide a general experimental framework for the evaluation of more yeasts and bacteria.

  7. Local climatic conditions constrain soil yeast diversity patterns in Mediterranean forests, woodlands and scrub biome.

    Yurkov, Andrey M; Röhl, Oliver; Pontes, Ana; Carvalho, Cláudia; Maldonado, Cristina; Sampaio, José Paulo


    Soil yeasts represent a poorly known fraction of the soil microbiome due to limited ecological surveys. Here, we provide the first comprehensive inventory of cultivable soil yeasts in a Mediterranean ecosystem, which is the leading biodiversity hotspot for vascular plants and vertebrates in Europe. We isolated and identified soil yeasts from forested sites of Serra da Arrábida Natural Park (Portugal), representing the Mediterranean forests, woodlands and scrub biome. Both cultivation experiments and the subsequent species richness estimations suggest the highest species richness values reported to date, resulting in a total of 57 and 80 yeast taxa, respectively. These values far exceed those reported for other forest soils in Europe. Furthermore, we assessed the response of yeast diversity to microclimatic environmental factors in biotopes composed of the same plant species but showing a gradual change from humid broadleaf forests to dry maquis. We observed that forest properties constrained by precipitation level had strong impact on yeast diversity and on community structure and lower precipitation resulted in an increased number of rare species and decreased evenness values. In conclusion, the structure of soil yeast communities mirrors the environmental factors that affect aboveground phytocenoses, aboveground biomass and plant projective cover.

  8. Genetic constitution of industrial yeast.

    Benítez, T; Martínez, P; Codón, A C


    Saccharomyces cerevisiae industrial yeast strains are highly heterogeneous. These industrial strains, including bakers', wine, brewing and distillers', have been compared with respect to their DNA content, number and size of chromosomes, homologies between their genes and those of laboratory strains, and restriction fragment lengths of their mitDNA. A high variability, and the presence of multigenic families, were observed in some industrial yeast groups. The occurrence or the lack of chromosomal polymorphism, as well as the presence of multiple copies of some genes, could be related to a selective process occurring under specific industrial conditions. This polymorphism is generated by reorganization events, that take place mainly during meiosis and are mediated by repetitive Y' and Ty elements. These elements give rise to ectopic and asymmetric recombination and to gene conversion. The polymorphism displayed by the mitDNA could also result from specific industrial conditions. However, in enological strains the selective process is masked by the mutagenic effect that ethanol exerts on this DNA.

  9. Antifungal resistance in yeast vaginitis.

    Dun, E.


    The increased number of vaginal yeast infections in the past few years has been a disturbing trend, and the scientific community has been searching for its etiology. Several theories have been put forth to explain the apparent increase. First, the recent widespread availability of low-dosage, azole-based over-the-counter antifungal medications for vaginal yeast infections encourages women to self-diagnose and treat, and women may be misdiagnosing themselves. Their vaginitis may be caused by bacteria, parasites or may be a symptom of another underlying health condition. As a result, they may be unnecessarily and chronically expose themselves to antifungal medications and encourage fungal resistance. Second, medical technology has increased the life span of seriously immune compromised individuals, yet these individuals are frequently plagued by opportunistic fungal infections. Long-term and intense azole-based antifungal treatment has been linked to an increase in resistant Candida and non-Candida species. Thus, the future of limiting antifungal resistance lies in identifying the factors promoting resistance and implementing policies to prevent it. PMID:10907778

  10. A rhomboid protease gene deletion affects a novel oligosaccharide N-linked to the S-layer glycoprotein of Haloferax volcanii.

    Parente, Juliana; Casabuono, Adriana; Ferrari, María Celeste; Paggi, Roberto Alejandro; De Castro, Rosana Esther; Couto, Alicia Susana; Giménez, María Inés


    Rhomboid proteases occur in all domains of life; however, their physiological role is not completely understood, and nothing is known of the biology of these enzymes in Archaea. One of the two rhomboid homologs of Haloferax volcanii (RhoII) is fused to a zinc finger domain. Chromosomal deletion of rhoII was successful, indicating that this gene is not essential for this organism; however, the mutant strain (MIG1) showed reduced motility and increased sensitivity to novobiocin. Membrane preparations of MIG1 were enriched in two glycoproteins, identified as the S-layer glycoprotein and an ABC transporter component. The H. volcanii S-layer glycoprotein has been extensively used as a model to study haloarchaeal protein N-glycosylation. HPLC analysis of oligosaccharides released from the S-layer glycoprotein after PNGase treatment revealed that MIG1 was enriched in species with lower retention times than those derived from the parent strain. Mass spectrometry analysis showed that the wild type glycoprotein released a novel oligosaccharide species corresponding to GlcNAc-GlcNAc(Hex)2-(SQ-Hex)6 in contrast to the mutant protein, which contained the shorter form GlcNAc2(Hex)2-SQ-Hex-SQ. A glycoproteomics approach of the wild type glycopeptide fraction revealed Asn-732 peptide fragments linked to the sulfoquinovose-containing oligosaccharide. This work describes a novel N-linked oligosaccharide containing a repeating SQ-Hex unit bound to Asn-732 of the H. volcanii S-layer glycoprotein, a position that had not been reported as glycosylated. Furthermore, this study provides the first insight on the biological role of rhomboid proteases in Archaea, suggesting a link between protein glycosylation and this protease family.

  11. Participation of the 39-kDa glycoprotein (gp39) of the vitelline envelope of Bufo arenarum eggs in sperm-egg interaction.

    Barrera, Daniel; Llanos, Ricardo J; Miceli, Dora C


    The acquisition of egg fertilizability in Bufo arenarum takes place during the oviductal transit and during this process the extracellular coelomic envelope (CE) of the eggs is converted into the vitelline envelope (VE). It has been stated that one of the necessary events leading to a fertilizable state is the proteolytic cleavage of CE glycoproteins in the oviductal pars recta by oviductin, a serine protease. Consequently, there is a marked increase in the relative quantity of glycoproteins with 39 (gp39) and 42 kDa (gp42) in the VE. In the present study, sperm-VE binding assays using heat-solubilized biotin-conjugated VE glycoproteins revealed that both gp39 and gp42 have sperm binding capacity. According to this result, our study was focused on gp39, a glycoprotein that we have previously reported as a homologue of mammalian ZPC. For this purpose, rabbit polyclonal antibodies against gp39 were generated at our laboratory. The specificity of the antibodies was confirmed with western blot of VE glycoproteins separated on SDS-PAGE. Immunohistochemical and immunoelectron studies showed gp39 distributed throughout the width of the VE. In addition, immunofluorescence assays probed that gp39 bound to the sperm head. Finally, as an approach to elucidate the possible involvement of gp39 in fertilization, inhibition assays showed that pretreatment of eggs with antibodies against gp39 generated a significant decrease in the fertilization rate. Therefore, our findings suggest that gp39, which is modified by oviductal action, participates as a VE glycoprotein ligand for sperm in Bufo arenarum fertilization.

  12. Tailor-Made Boronic Acid Functionalized Magnetic Nanoparticles with a Tunable Polymer Shell-Assisted for the Selective Enrichment of Glycoproteins/Glycopeptides.

    Zhang, Xihao; Wang, Jiewen; He, Xiwen; Chen, Langxing; Zhang, Yukui


    Biomedical sciences, and in particular biomarker research, demand efficient glycoproteins enrichment platforms. In this work, we present a facile and time-saving method to synthesize phenylboronic acid and copolymer multifunctionalized magnetic nanoparticles (NPs) using a distillation-precipitation polymerization (DPP) technique. The polymer shell is obtained through copolymerization of two monomers-affinity ligand 3-acrylaminophenylboronic acid (AAPBA) and a hydrophilic functional monomer. The resulting hydrophilic Fe3O4@P(AAPBA-co-monomer) NPs exhibit an enhanced binding capacity toward glycoproteins by an additional functional monomer complementary to the surface presentation of the target protein. The effects of monomer ratio of AAPBA to hydrophilic comonomers on the binding of glycoproteins are systematically investigated. The morphology, structure, and composition of all the synthesized microspheres are characterized by transmission electron microscopy (TEM), X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and vibrating sample magnetometer (VSM). The hydrophilic Fe3O4@P(AAPBA-co-monomer) microspheres show an excellent performance in the separation of glycoproteins with high binding capacity; And strong magnetic response allows them to be easily separated from solution in the presence of an external magnetic field. Moreover, both synthetic Fe3O4@P(AAPBA) and copolymeric NPs show good adsorption to glycoproteins in physiological conditions (pH 7.4). The Fe3O4@P(AAPBA-co-monomer) NPs are successfully utilized to selectively capture and identify the low-abundance glycopeptides from the tryptic digest of horseradish peroxidase (HRP). In addition, the selective isolation and enrichment of glycoproteins from the egg white samples at physiological condition is obtained by Fe3O4@P(AAPBA-co-monomer) NPs as adsorbents.


    R. N. Bogdanovich


    Full Text Available Abstract. The level of trophoblastic β1 – glycoprotein (SP–1 was determined in the blood sera of 200 healthy pregnant women and 184 women with threatened abortions in term till 20 weeks of pregnancy. In group of women experiencing recurrent abortions in 38 % cases antibodies to chorionic gonadotropin, in 39,5 % cases antibodies to phospholipids, in 25,5 % – antibodies to tireoglobulin were revealed in significant amounts. In 20,65 % lupus anticoagulant was found. The majority of women in this group had changes in homeostasis. The presence of autoantibodies during pregnancy is the unfavourable factor in the development of placental insufficiency. This is proved by the decreased secretion of trophoblastic β1 – glycoprotein – a marker of the fetal part of placenta. (Med. Immunol., 2005, vol.7, № 1, pp. 85588

  14. Incorporation of Spike and Membrane Glycoproteins into Coronavirus Virions

    Makoto Ujike


    Full Text Available The envelopes of coronaviruses (CoVs contain primarily three proteins; the two major glycoproteins spike (S and membrane (M, and envelope (E, a non-glycosylated protein. Unlike other enveloped viruses, CoVs bud and assemble at the endoplasmic reticulum (ER-Golgi intermediate compartment (ERGIC. For efficient virion assembly, these proteins must be targeted to the budding site and to interact with each other or the ribonucleoprotein. Thus, the efficient incorporation of viral envelope proteins into CoV virions depends on protein trafficking and protein–protein interactions near the ERGIC. The goal of this review is to summarize recent findings on the mechanism of incorporation of the M and S glycoproteins into the CoV virion, focusing on protein trafficking and protein–protein interactions.

  15. Comparison of glycoprotein expression between ovarian and colon adenocarcinomas

    Multhaupt, H A; Arenas-Elliott, C P; Warhol, M J


    OBJECTIVE: Tumor-associated antigens may be expressed as surface glycoproteins. These molecules undergo qualitative and quantitative modifications during cell differentiation and malignant transformation. During malignant transformation, incomplete glycosylation is common, and certain glycosylation...... pathways are preferred. These antigens might help distinguish between ovarian and colonic adenocarcinomas in the primary and metastatic lesions. Different cytokeratins have been proposed as relatively organ-specific antigens. DESIGN: We used monoclonal antibodies against T1, Tn, sialosyl-Tn, B72.3, CA125......, carcinoembryonic antigen, and cytokeratins 7 and 20 to detect tumor-associated glycoproteins and keratin proteins in ovarian and colonic carcinomas. RESULTS: CA125, carcinoembryonic antigen, and cytokeratins 7 and 20 can distinguish between colonic and serous or endometrioid adenocarcinomas of the ovary in both...

  16. Rheologic studies on middle ear effusions and their mucus glycoproteins.

    FitzGerald, J E; Green, G G; Birchall, J P; Pearson, J P


    The properties of pooled thick and thin middle ear effusions, from children with otitis media with effusion, were studied by viscometry. Mucus glycoproteins were responsible for effusion viscosity. Their percentage by weight in thick and thin effusions was 25% and 8.2%, respectively. N-acetylcysteine and 0.2 mol/L of mercaptoethanol caused a 39% viscosity drop in a 5-mg/mL glycoprotein solution, whereas S-carboxymethylcysteine had no effect. Treatment of thick effusions with 0.2 mol/L of mercaptoethanol initially caused a viscosity decrease followed by a gradual increase. Higher reducing agent concentrations (0.5 mol/L) caused a more rapid decrease followed by a rapid increase, presumably by causing nonspecific aggregation of reduced protein molecules. These results suggest that the concentration of and the time that a mucolytic is in the middle ear would be of prime importance in achieving the desired decrease in viscosity.

  17. Investigating the interactions of yeast prions: [SWI+], [PSI+], and [PIN+].

    Du, Zhiqiang; Li, Liming


    Multiple prion elements, which are transmitted as heritable protein conformations and often linked to distinct phenotypes, have been identified in the budding yeast, Saccharomyces cerevisiae. It has been shown that overproduction of a prion protein Swi1 can promote the de novo conversion of another yeast prion [PSI(+)] when Sup35 is co-overproduced. However, the mechanism underlying this Pin(+) ([PSI(+)] inducible) activity is not clear. Moreover, how the Swi1 prion ([SWI(+)]) interacts with other yeast prions is unknown. Here, we demonstrate that the Pin(+) activity associated with Swi1 overproduction is independent of Rnq1 expression or [PIN(+)] conversion. We also show that [SWI(+)] enhances the appearance of [PSI(+)] and [PIN(+)]. However, [SWI(+)] significantly compromises the Pin(+) activity of [PIN(+)] when they coexist. We further demonstrate that a single yeast cell can harbor three prions, [PSI(+)], [PIN(+)], and [SWI(+)], simultaneously. However, under this condition, [SWI(+)] is significantly destabilized. While the propensity to aggregate underlies prionogenesis, Swi1 and Rnq1 aggregates resulting from overproduction are usually nonheritable. Conversely, prion protein aggregates formed in nonoverexpressing conditions or induced by preexisting prion(s) are more prionogenic. For [PSI(+)] and [PIN(+)] de novo formation, heterologous "facilitators," such as preexisting [SWI(+)] aggregates, colocalize only with the newly formed ring-/rod-shaped Sup35 or Rnq1 aggregates, but not with the dot-shaped mature prion aggregates. Their colocalization frequency is coordinated with their prion inducibility, indicating that prion-prion interactions mainly occur at the early initiation stage. Our results provide supportive evidence for the cross-seeding model of prionogenesis and highlight a complex interaction network among prions in yeast.

  18. PGASO: A synthetic biology tool for engineering a cellulolytic yeast

    Chang Jui-Jen


    Full Text Available Abstract Background To achieve an economical cellulosic ethanol production, a host that can do both cellulosic saccharification and ethanol fermentation is desirable. However, to engineer a non-cellulolytic yeast to be such a host requires synthetic biology techniques to transform multiple enzyme genes into its genome. Results A technique, named Promoter-based Gene Assembly and Simultaneous Overexpression (PGASO, that employs overlapping oligonucleotides for recombinatorial assembly of gene cassettes with individual promoters, was developed. PGASO was applied to engineer Kluyveromycesmarxianus KY3, which is a thermo- and toxin-tolerant yeast. We obtained a recombinant strain, called KR5, that is capable of simultaneously expressing exoglucanase and endoglucanase (both of Trichodermareesei, a beta-glucosidase (from a cow rumen fungus, a neomycin phosphotransferase, and a green fluorescent protein. High transformation efficiency and accuracy were achieved as ~63% of the transformants was confirmed to be correct. KR5 can utilize beta-glycan, cellobiose or CMC as the sole carbon source for growth and can directly convert cellobiose and beta-glycan to ethanol. Conclusions This study provides the first example of multi-gene assembly in a single step in a yeast species other than Saccharomyces cerevisiae. We successfully engineered a yeast host with a five-gene cassette assembly and the new host is capable of co-expressing three types of cellulase genes. Our study shows that PGASO is an efficient tool for simultaneous expression of multiple enzymes in the kefir yeast KY3 and that KY3 can serve as a host for developing synthetic biology tools.

  19. Improved inhibitor tolerance in xylose-fermenting yeast Spathaspora passalidarum by mutagenesis and protoplast fusion

    Hou, Xiaoru; Yao, Shuo


    The xylose-fermenting yeast Spathaspora passalidarum showed excellent fermentation performance utilizing glucose and xylose under anaerobic conditions. But this yeast is highly sensitive to the inhibitors such as furfural present in the pretreated lignocellulosic biomass. In order to improve...... final ethanol than the wild-type strain in a synthetic xylose medium containing 2 g/l furfural. However, this mutant was unable to grow in a medium containing 75% liquid fraction of pretreated wheat straw (WSLQ), in which furfural and many other inhibitors were present. Hybrid yeast strains, obtained...... from fusion of the protoplasts of S. passalidarum M7 and a robust yeast, Saccharomyces cerevisiae ATCC 96581, were able to grow in 75% WSLQ and produce around 0.4 g ethanol/g consumed xylose. Among the selected hybrid strains, the hybrid FS22 showed the best fermentation capacity in 75% WSLQ...

  20. Identification and characterization of yeast isolated from the elaboration of seasoned green table olives.

    Hernández, Alejandro; Martín, Alberto; Aranda, Emilio; Pérez-Nevado, Francisco; Córdoba, María G


    The purpose of this study was to investigate the yeast population during the processing of green table olives. In the fresh olives, yeast were found at concentrations of around 3.0 log cfu/g, with Cryptococcus spp. being predominant. In the brine, the yeast concentrations were greater than 4.9 log cfu/ml, with Pichia anomala, Kluyveromyces marxianus, and Saccharomyces cerevisiae being the predominant species. Unlike the yeast isolated from the fresh olives, the strains obtained from the olive brine mostly showed low pectolytic but high catalase activities. Some of these strains also exhibited other biochemical desirable properties for the fermentation of green table olives, including their lipolytic activities and their assimilation or production of organic acids in the brine. Seven strains in particular of P. anomala, K. marxianus, S. cerevisiae, and Candida maris showed the best properties for use in trials as starter culture in pilot fermenters.

  1. Harnessing yeast organelles for metabolic engineering.

    Hammer, Sarah K; Avalos, José L


    Each subcellular compartment in yeast offers a unique physiochemical environment and metabolite, enzyme, and cofactor composition. While yeast metabolic engineering has focused on assembling pathways in the cell cytosol, there is growing interest in embracing subcellular compartmentalization. Beyond harnessing distinct organelle properties, physical separation of organelles from the cytosol has the potential to eliminate metabolic crosstalk and enhance compartmentalized pathway efficiency. In this Perspective we review the state of the art in yeast subcellular engineering, highlighting the benefits of targeting biosynthetic pathways to subcellular compartments, including mitochondria, peroxisomes, the ER and/or Golgi, vacuoles, and the cell wall, in different yeast species. We compare the performances of strains developed with subcellular engineering to those of native producers or yeast strains previously engineered with cytosolic pathways. We also identify important challenges that lie ahead, which need to be addressed for organelle engineering to become as mainstream as cytosolic engineering in academia and industry.

  2. Comet assay on tetraploid yeast cells

    Rank, Jette; Syberg, Kristian; Jensen, Klara


    Tetraploid yeast cells (Saccharomyces cerevisiae) were used in the comet assay with the intention of developing a new, fast and easy assay for detecting environmental genotoxic agents without using higher organisms. Two DNA-damaging chemicals, H2O2 and acrylamide, together with wastewater from...... three municipal treatment plants were tested for their effect on the yeast-cell DNA. The main problem with using yeast in the comet assay is the necessity to degrade the cell wall. This was achieved by using Zymolase 100 T twice during the procedure, since Zymolase 20 T did not open the cell wall....... Analytical problems that arose due to the small amount of DNA in the yeast nuclei in haploid and diploid cells, which contain 13 Mbp and 26 Mbp DNA per cell, respectively, were solved by using tetraploid yeast cells (52 Mbp) instead. DNA damage was shown after exposure to H2O2 and acrylamide. The lowest dose...

  3. Yeasts associated with Cheddar and Gouda making.

    Viljoen, B C; Greyling, T


    Sources of yeast contamination which may lead to contamination of the curd during Cheddar and Gouda cheese making, were examined in a single cheese factory. A total of 187 representative yeast isolates present in the factory environment, on working surfaces, the brine and on workers' hands and aprons were identified according to conventional methods and cellular long-chain fatty acid analyses. Product line samples were taken at critical control points in the manufacturing process and analysed after incubation at 25 degrees C for 96 h. The most prevalent isolates belonged to the genera Debaryomyces and Candida. Other genera encountered were Cryptococcus, Rhodotorula, Yarrowia, Pichia, Trichosporon, Torulaspora, Issatchenkia, Saccharomyces and Zygosaccharomyces. Characterization of the predominant yeast isolates indicated that the cheese brine was responsible for the largest variety and number of yeast isolates yielding a total of 64 yeast strains belonging to nine different genera.

  4. Yeast community survey in the Tagus estuary.

    de Almeida, João M G C F


    The yeast community in the waters of the Tagus estuary, Portugal, was followed for over a year in order to assess its dynamics. Yeast occurrence and incidence were measured and this information was related to relevant environmental data. Yeast occurrence did not seem to depend upon tides, but river discharge had a dramatic impact both on the density and diversity of the community. The occurrence of some yeasts was partially correlated with faecal pollution indicators. Yeast isolates were characterized by microsatellite primed PCR (MSP-PCR) fingerprinting and rRNA gene sequencing. The principal species found were Candida catenulata, C. intermedia, C. parapsilosis, Clavispora lusitaniae, Debaryomyces hansenii, Pichia guilliermondii, Rhodotorula mucilaginosa and Rhodosporidium diobovatum. The incidence of these species was evaluated against the environmental context of the samples and the current knowledge about the substrates from which they are usually isolated.

  5. An analysis of amino acid sequences surrounding archaeal glycoprotein sequons

    Mehtap Abu-Qarn; Jerry Eichler


    Despite having provided the first example of a prokaryal glycoprotein, little is known of the rules governing the N-glycosylation process in Archaea. As in Eukarya and Bacteria, archaeal N-glycosylation takes place at the Asn residues of Asn-X-Ser/Thr sequons. Since not all sequons are utilized, it is clear that other factors, including the context in which a sequon exists, affect glycosylation efficiency. As yet, t...

  6. Method for analysing glycoprotein isoforms by capillary electrophoresis

    Frutos, Mercedes de; Díez-Masa, José Carlos; Morales-Cid, Gabriel


    [EN] The present invention relates to a new method for the purification, concentration, separation and determination of the isoforms of alpha-1-acid glycoprotein (AGP) in human blood serum samples using capillary electrophoresis. The new method is based on the immunocapture and preconcentration of the sample within the separation capillary by using an immunoadsorbent phase magnetically immobilized within the electrophoresis capillary and the subsequent desorption and separation of the glycopr...

  7. Pneumocystis carinii glycoprotein A binds macrophage mannose receptors.

    O'Riordan, D.M.; Standing, J E; Limper, A H


    Pneumocystis carinii causes life-threatening pneumonia in patients with impaired immunity. Recent studies suggest that alveolar macrophages interact with P. carinii through macrophage mannose receptors. However, the ligand(s) on P. carinii that is recognized by these receptors has not been fully defined. P. carinii contains a major mannose-rich surface antigen complex termed glycoprotein A (gpA). It was therefore hypothesized that gpA binds directly to macrophage mannose receptors and mediate...

  8. Reelin glycoprotein: structure, biology and roles in health and disease.

    Fatemi, S H


    Reelin glycoprotein is a secretory serine protease with dual roles in mammalian brain: embryologically, it guides neurons and radial glial cells to their corrected positions in the developing brain; in adult brain, Reelin is involved in a signaling pathway which underlies neurotransmission, memory formation and synaptic plasticity. Disruption of Reelin signaling pathway by mutations and selective hypermethylation of the Reln gene promoter or following various pre- or postnatal insults may lead to cognitive deficits present in neuropsychiatric disorders like autism or schizophrenia.

  9. Isolation of a surface glycoprotein from Myxococcus xanthus.

    Maeba, P Y


    The isolation of a glycoprotein from vegetative cells of Myxococcus xanthus is reported. The protein, abbreviated VGP, was first identified during a survey of surface proteins as a major protein that could be radioiodinated in vegetative, but not developing, cells (P.Y. Maeba, J. Bacteriol. 155:1033-1041, 1983). The protein was extracted from membranes with Triton X-100 and subsequently purified by DEAE-cellulose chromatography, chromatofocusing, and gel filtration. The protein has an Mr of a...

  10. Antibody Derived Peptides for Detection of Ebola Virus Glycoprotein

    Luis Mario Rodríguez-Martínez; Alan Roberto Marquez-Ipiña; Felipe López-Pacheco; Roberto Pérez-Chavarría; Juan Carlos González-Vázquez; Everardo González-González; Grissel Trujillo-de Santiago; César Alejandro Ponce-Ponce de León; Yu Shrike Zhang; Mehmet Remzi Dokmeci; Ali Khademhosseini; Mario Moisés Alvarez


    Background: Current Ebola virus (EBOV) detection methods are costly and impractical for epidemic scenarios. Different immune-based assays have been reported for the detection and quantification of Ebola virus (EBOV) proteins. In particular, several monoclonal antibodies (mAbs) have been described that bind the capsid glycoprotein (GP) of EBOV GP. However, the currently available platforms for the design and production of full-length mAbs are cumbersome and costly. The use of antibody fragment...

  11. Characterization of an estrogen-induced oviduct membrane glycoprotein

    Poola, I.; Lucas, J.J.


    During estrogen-induced chick oviduct differentiation a number of N-linked membrane glycoproteins are induced as judged by GDP-(/sup 14/C)Man labeling of endogenous acceptors, /sup 125/I-con A labeling as well as coomassie blue and PAS staining of SDS polyacrylamide gels. The authors have begun to characterize one of these glycoproteins having an M/sub r/ of 91 KDa. The protein has been purified via preparative SDS-PAGE and electroelution. The purified protein migrates as a single band on analytical SDS-PAGE and comigrates with an endogenous membrane glycoprotein labeled with GDP-(/sup 14/C)Man. Amino acid analysis indicates a high proportion of GLU and ASP residues (110 and 66 moles respectively). N-terminal sequence analysis by gas phase instrumentation yielded the following: X-X-VAL-ASP-VAL-ASP-ALA-THR-VAL-GLU-GLU-ASP-GLU. The protein contains about 2% neutral sugar including 6 mol Man, 2 mol Gal, 1 mol Fuc, 4 mol GlcNAc, 1 mol GalNAc and 1 mol sialic acid per mole of protein. The presence of the GalNAc residue suggests the protein contains an O-linked oligosaccharide moiety in addition to the N-linked chain(s). The detailed structure of the carbohydrate moieties is currently under investigation.

  12. Australine, a pyrrolizidine alkaloid that inhibits amyloglucosidase and glycoprotein processing

    Tropea, J.E.; Molyneux, R.J.; Kaushal, G.P.; Pan, Y.T.; Mitchell, M.; Elbein, A.D. (Univ. of Texas Health Science Center, San Antonio (USA))


    Australine is a polyhydroxylated pyrrolizidine alkaloid that was isolated from the seeds of the Australian tree Castanospermum australe and characterized by NMR and X-ray diffraction analysis. Since swainsonine and catanospermine are polyhydroxylated indolizidine alkaloids that inhibit specific glycosidases, the authors tested australine against a variety of exoglycosidases to determine whether it would inhibit any of these enzymes. This alkaloid proved to be a good inhibitor of the {alpha}-glucosidase amyloglucosidase (50% inhibition at 5.8 {mu}M), but it did not inhibit {beta}-glucosidase, {alpha}- or {beta}-mannosidase, or {alpha}- or {beta}-galactosidase. The inhibition of amyloglucosidase was of a competitive nature. Australine also inhibited the glycoprotein processing enzyme glucosidase I, but had only slight activity toward glucosidase II. When incubated with cultured cells, this alkaloid inhibited glycoprotein processing at the glucosidase I step and caused the accumulation of glycoproteins with Glc{sub 3}Man{sub 7-9}(GlcNAc){sub 2}-oligosaccharides.

  13. Glycoprotein fucosylation is increased in seminal plasma of subfertile men

    Beata Olejnik


    Full Text Available Fucose, the monosaccharide frequent in N- and O-glycans, is a part of Lewis-type antigens that are known to mediate direct sperm binding to the zona pellucida. Such interaction was found to be inhibited in vitroby fucose-containing oligo- and polysaccharides, as well as neoglycoproteins. The objective of this study was to screen seminal plasma proteins of infertile/subfertile men for the content and density of fucosylated glycoepitopes, and compare them to samples of fertile normozoospermic subjects. Seminal proteins were separated in polyacrylamide gel electrophoresis and blotted onto nitrocellulose membrane and probed with fucose-specific Aleuria aurantia lectin (AAL. Twelve electrophoretic bands were selected for quantitative densitometric analysis. It was found that the content, and especially the density of fucosylated glycans, were higher in glycoproteins present in seminal plasma of subfertile men. No profound differences in fucosylation density were found among the groups of normozoospermic, oligozoospermic, asthenozoospermic, and oligoasthenozoospermic subfertile men. According to the antibody probing, AAL-reactive bands can be attributed to male reproductive tract glycoproteins, including prostate-specific antigen, prostatic acid phosphatase, glycodelin and chorionic gonadotropin. Fibronectin, α1 -acid glycoprotein, α1 -antitrypsin, immunoglobulin G and antithrombin III may also contribute to this high fucosylation. It is suggested that the abundant fucosylated glycans in the sperm environment could interfere with the sperm surface and disturb the normal course of the fertilization cascade.

  14. Platelet membrane glycoproteins and their function: an overview.

    Kunicki, T J


    The membrane glycoproteins (GP) of human platelets act as receptors that mediate two important functions, adhesion to the subendothelial matrix and platelet-platelet cohesion, or aggregation. Many of these glycoprotein receptors exist as noncovalently linked heterodimers, including those that belong to the supergene family of adhesion receptors called the integrins. Human platelets contain at least five members of this integrin family, including a collagen receptor (GP Ia-IIa; alpha 2, beta 1), a fibronectin receptor (GP Ic-IIa; alpha 5, beta 1), a laminin receptor (GP Ic'-IIa; alpha 6, beta 1), a vitronectin receptor (VnR; alpha v, beta 3), and a promiscuous, activation-dependent receptor that is thought to be the receptor most responsible for fibrinogen-dependent, platelet-platelet cohesion (GP IIb-IIIa; alpha IIb, beta 3). Some, but not all, of the integrins bind to a tripeptide sequence, arginine-glycine-aspartic acid (RGD), on the adhesive proteins. In addition to the integrins, platelets contain other membrane glyco-proteins: GP Ib-IX, a receptor for von Willebrand factor, which is thought to be the receptor most responsible for platelet adhesion to the subendothelial matrix in a flowing system; GP V, which may be associated with GP Ib-IX and whose function remains unknown; and GP IV (GP IIIb), which functions as a receptor for thrombospondin and collagen.

  15. VSV-G Viral Envelope Glycoprotein Prepared from Pichia pastoris Enhances Transfection of DNA into Animal Cells.

    Liu, Xin; Dong, Ying; Wang, Jingquan; Li, Long; Zhong, Zhenmin; Li, Yun-Pan; Chen, Shao-Jun; Fu, Yu-Cai; Xu, Wen-Can; Wei, Chi-Ju


    Vesicular stomatitis virus G glycoprotein (VSV-G) has been widely used for pseudotyping retroviral, lentiviral, and artificial viral vectors. The objective of this study was to establish a potential approach for large-scale production of VSV-G. To this end, VSV-G was cloned with an N-terminal His-tag into Pichia pastoris expression vector pPIC3.5K. Three clones (Mut(s)) containing the VSV-G expression cassette were identified by PCR. All clones proliferated normally in expansion medium, whereas the proliferation was reduced significantly under induction conditions. VSV-G protein was detected in cell lysates by western blot analysis, and the highest expression level was observed at 96 h post induction. VSV-G could also be obtained from the condition medium of yeast protoplasts. Furthermore, VSV-G could be incorporated into Ad293 cells and was able to induce cell fusion, leading to the transfer of cytoplasmic protein. Finally, VSV-G-mediated DNA transfection was assayed by flow cytometry and luciferase measurement. Incubation of VSV-G lysate with the pGL3-control DNA complex increased the luciferase activity in Ad293 and HeLa cells by about 3-fold. Likewise, incubation of VSV-G lysate with the pCMV-DsRed DNA complex improved the transfection efficiency into Ad293 by 10% and into HeLa cells by about 1-fold. In conclusion, these results demonstrate that VSV-G could be produced from P. pastoris with biofunctionalities, demonstrating that large-scale production of the viral glycoprotein is feasible.

  16. Yeast extract with blood plasma in diets for piglets from 21 to 35 days of age

    Cinthia Maria Carlos Pereira


    Full Text Available The objective of this study was to evaluate the inclusion of yeast extract as a partial replacemer of blood plasma in piglet diets and its effect on the performance and intestinal morphometry of pigs weaned at 21 days of age. One hundred and twenty animals were randomized into blocks, with five diets (4.0% blood plasma; 2.0% blood plasma with 0.0; 1.0; 2.0 or 3.0% yeast extract, six replicates and four pigs per experimental unit. At 35 days of age, one pig per experimental unit was slaughtered in order to evaluate duodenal and jejunal morphometry. The levels of yeast extract had a quadratic impact on daily feed intake and final weight, which increased up to the estimated level of 1.91%. Daily weight gain and feed conversion rate were not affected. A comparison between diets containing different levels of yeast extract and the basal diet showed that the diets containing 2.0% and 1.0% yeast extract provided the highest final weight and the worst feed conversion rate, respectively. Duodenal villus height and crypt depth were quadratically affected by yeast extract levels and the best results were achieved with the estimated levels of 1.64 and 1.16%, respectively. The levels of yeast extract provided a linear increase in the duodenal villus:crypt ratio, but did not change the morphometric variables of the jejunum. No difference was found in the morphometric variables of the duodenum and jejunum when diets containing different levels of yeast extract were compared with the basal diet. The results suggest that the inclusion of 1.91% yeast extract allows for a partial replacement for plasma in the diet, decreasing plasma inclusion from 4.0 to 2.0%.

  17. Toward low-cost affinity reagents: lyophilized yeast-scFv probes specific for pathogen antigens.

    Sean A Gray

    Full Text Available The generation of affinity reagents, usually monoclonal antibodies, remains a critical bottleneck in biomedical research and diagnostic test development. Recombinant antibody-like proteins such as scFv have yet to replace traditional monoclonal antibodies in antigen detection applications, in large part because of poor performance of scFv in solution. To address this limitation, we have developed assays that use whole yeast cells expressing scFv on their surfaces (yeast-scFv in place of soluble purified scFv or traditional monoclonal antibodies. In this study, a nonimmune library of human scFv displayed on the surfaces of yeast cells was screened for clones that bind to recombinant cyst proteins of Entamoeba histolytica, an enteric pathogen of humans. Selected yeast-scFv clones were stabilized by lyophilization and used in detection assay formats in which the yeast-scFv served as solid support-bound monoclonal antibodies. Specific binding of antigen to the yeast-scFv was detected by staining with rabbit polyclonal antibodies. In flow cytometry-based assays, lyophilized yeast-scFv reagents retained full binding activity and specificity for their cognate antigens after 4 weeks of storage at room temperature in the absence of desiccants or stabilizers. Because flow cytometry is not available to all potential assay users, an immunofluorescence assay was also developed that detects antigen with similar sensitivity and specificity. Antigen-specific whole-cell yeast-scFv reagents can be selected from nonimmune libraries in 2-3 weeks, produced in vast quantities, and packaged in lyophilized form for extended shelf life. Lyophilized yeast-scFv show promise as low cost, renewable alternatives to monoclonal antibodies for diagnosis and research.

  18. Extracellular superoxide dismutase protects Histoplasma yeast cells from host-derived oxidative stress.

    Brian H Youseff

    Full Text Available In order to establish infections within the mammalian host, pathogens must protect themselves against toxic reactive oxygen species produced by phagocytes of the immune system. The fungal pathogen Histoplasma capsulatum infects both neutrophils and macrophages but the mechanisms enabling Histoplasma yeasts to survive in these phagocytes have not been fully elucidated. We show that Histoplasma yeasts produce a superoxide dismutase (Sod3 and direct it to the extracellular environment via N-terminal and C-terminal signals which promote its secretion and association with the yeast cell surface. This localization permits Sod3 to protect yeasts specifically from exogenous superoxide whereas amelioration of endogenous reactive oxygen depends on intracellular dismutases such as Sod1. While infection of resting macrophages by Histoplasma does not stimulate the phagocyte oxidative burst, interaction with polymorphonuclear leukocytes (PMNs and cytokine-activated macrophages triggers production of reactive oxygen species (ROS. Histoplasma yeasts producing Sod3 survive co-incubation with these phagocytes but yeasts lacking Sod3 are rapidly eliminated through oxidative killing similar to the effect of phagocytes on Candida albicans yeasts. The protection provided by Sod3 against host-derived ROS extends in vivo. Without Sod3, Histoplasma yeasts are attenuated in their ability to establish respiratory infections and are rapidly cleared with the onset of adaptive immunity. The virulence of Sod3-deficient yeasts is restored in murine hosts unable to produce superoxide due to loss of the NADPH-oxidase function. These results demonstrate that phagocyte-produced ROS contributes to the immune response to Histoplasma and that Sod3 facilitates Histoplasma pathogenesis by detoxifying host-derived reactive oxygen thereby enabling Histoplasma survival.

  19. Yeast profilin complements profilin deficiency in transgenic tomato fruits and allows development of hypoallergenic tomato fruits.

    Le, Lien Q; Mahler, Vera; Scheurer, Stephan; Foetisch, Kay; Braun, Yvonne; Weigand, Daniela; Enrique, Ernesto; Lidholm, Jonas; Paulus, Kathrin E; Sonnewald, Sophia; Vieths, Stefan; Sonnewald, Uwe


    Gene silencing of Lyc e 1 leads to reduced allergenicity of tomato fruits but impaired growth of transgenic tomato plants. The aim of the study was to restore growth of Lyc e 1-deficient tomato plants while retaining reduced allergenicity by simultaneous complementation of profilin deficiency by expression of nonallergenic yeast profilin. Transgenic plants were generated and tested by RT-PCR and immunoblotting; allergenicity of yeast profilin and transgenic fruits was investigated by IgE binding, basophil activation, and skin-prick tests. Lyc e 1 content of transgenic tomato fruits was wild-type plants, causing significantly reduced IgE antibody binding. Simultaneous coexpression of yeast profilin restored growth and biomass production almost to wild-type levels. Yeast profilin, sharing 32.6% amino acid sequence identity with Lyc e 1, displayed low IgE-binding capacity and allergenic potency. Among 16 tomato-allergic patients preselected for sensitization to Lyc e 1, none showed significant reactivity to yeast profilin. Yeast profilin did not induce mediator release, and coexpression of yeast profilin did not enhance the allergenicity of Lyc e 1-reduced fruits. Simultanous coexpression of yeast profilin allows silencing of tomato profilin and generation of viable plants with Lyc e 1-deficient tomato fruits. Therefore, a novel approach to allergen avoidance, genetically modified foods with reduced allergen accumulation, can be generated even if the allergen fulfills an essential cellular function in the plant. In summary, our findings of efficiently complementing profilin-deficient tomato plants by coexpression of low allergenic yeast profilin demonstrate the feasibility of creating low-allergenic food even if the allergen fulfills essential cellular functions.

  20. A gene optimization strategy that enhances production of fully functional P-glycoprotein in Pichia pastoris.

    Jiangping Bai

    Full Text Available BACKGROUND: Structural and biochemical studies of mammalian membrane proteins remain hampered by inefficient production of pure protein. We explored codon optimization based on highly expressed Pichia pastoris genes to enhance co-translational folding and production of P-glycoprotein (Pgp, an ATP-dependent drug efflux pump involved in multidrug resistance of cancers. METHODOLOGY/PRINCIPAL FINDINGS: Codon-optimized "Opti-Pgp" and wild-type Pgp, identical in primary protein sequence, were rigorously analyzed for differences in function or solution structure. Yeast expression levels and yield of purified protein from P. pastoris (∼130 mg per kg cells were about three-fold higher for Opti-Pgp than for wild-type protein. Opti-Pgp conveyed full in vivo drug resistance against multiple anticancer and fungicidal drugs. ATP hydrolysis by purified Opti-Pgp was strongly stimulated ∼15-fold by verapamil and inhibited by cyclosporine A with binding constants of 4.2±2.2 µM and 1.1±0.26 µM, indistinguishable from wild-type Pgp. Maximum turnover number was 2.1±0.28 µmol/min/mg and was enhanced by 1.2-fold over wild-type Pgp, likely due to higher purity of Opti-Pgp preparations. Analysis of purified wild-type and Opti-Pgp by CD, DSC and limited proteolysis suggested similar secondary and ternary structure. Addition of lipid increased the thermal stability from T(m ∼40 °C to 49 °C, and the total unfolding enthalpy. The increase in folded state may account for the increase in drug-stimulated ATPase activity seen in presence of lipids. CONCLUSION: The significantly higher yields of protein in the native folded state, higher purity and improved function establish the value of our gene optimization approach, and provide a basis to improve production of other membrane proteins.

  1. Directed metabolomic approaches for the characterization and development of new yeast strains

    Belda Ignacio; Benito Santiago; Ruiz Javier; Conchillo Lorena B.; Alonso Alejandro; Marquina Domingo; Calderón Fernando; Navascués Eva; Santos Antonio


    Analyzing the influence of different yeast species on several compounds with enological interest, it becomes possible to identify metabolic determinants of the incidence of yeasts on wine quality. Contrary to Saccharomyces cerevisiae, understand- ing genetic regulation, enzymatic properties and physiology of non-Saccharomyces species in enological conditions is far from being known. Because of this, the commercialization of industrial non-Saccharomyces strains on wine industry is showing a re...

  2. The yeast peroxiredoxin Tsa1 protects against protein-aggregate-induced oxidative stress


    ABSTRACT Peroxiredoxins are ubiquitous thiol-specific proteins that have multiple functions in stress protection, including protection against oxidative stress. Tsa1 is the major yeast peroxiredoxin and we show that it functions as a specific antioxidant to protect the cell against the oxidative stress caused by nascent-protein misfolding and aggregation. Yeast mutants lacking TSA1 are sensitive to misfolding caused by exposure to the proline analogue azetidine-2-carboxylic acid (AZC). AZC pr...

  3. Destabilization and recovery of a yeast prion after mild heat shock

    Newnam, Gary P.; Birchmore, Jennifer L.; Chernoff, Yury O.


    Yeast prion [PSI+] is a self-perpetuating amyloid of the translational termination factor Sup35. Although [PSI+] propagation is modulated by heat shock proteins (Hsps), high temperature was previously reported to have little or no effect on [PSI+]. Our results show that short-term exposure of exponentially growing yeast culture to mild heat shock, followed by immediate resumption of growth, leads to [PSI+] destabilization, sometimes persisting for several cell divisions after heat shock. Prio...

  4. Biosynthesis of ascites sialoglycoprotein-1, the major O-linked glycoprotein of 13762 rat mammary adenocarcinoma ascites cells

    Spielman, J.


    The present studies were undertaken to determine the timing of the major events in biosynthesis, and to characterize the contributions of chain initiation and elongation in maturation of the glycoprotein. Initiation of the earliest O-linked chains was detected by analysis of conversion of {sup 3}H-thr to {sup 3}H 2-aminobutyrate following mild alkaline borohydride elimination of O-linked sugars from peanut lectin-precipitated ASGP-1. Initiation was detected within 5 min of translation; amino sugar analysis of GlcNH{sub 2}-labeled, trypsinized cells also showed that GalNAc was added as late as 5 min prior to arrival of ASGP-1 at the cell surface. Thus initiation occurs throughout biosynthesis. Maturation of the glycoprotein from a lightly-glycosylated immature form to the heavily-glycosylated mature from involved both continued initiation of new chains and chain elongation, and occurred with a half-time of about 30 min. Analysis of labeled ASGP-1 released from the cell surface by trypsinization showed that although some newly-synthesized ASGP-1 reached the cell surface within 70-80 min of protein synthesis, the half-time for appearance of mature glycoprotein was in excess of 4 hr, indicating that most molecules reside in an intracellular compartment(s) for a considerable time.

  5. The Snf1 Protein Kinase in the Yeast Saccharomyces cerevisiae

    Usaite, Renata


    . Failure in the AMPK regulatory cascade leads to metabolic disorders, such as obesity or type 2 diabetes. The knowledge about the Snf1 protein kinase remains to be of much interest in studying yeast carbon metabolism and human biology. To investigate the effect of Snf1 kinase and its regulatory subunit Snf......4 on the regulation of glucose and galactose metabolism, I physiologically characterized Δsnf1, Δsnf4, and Δsnf1Δsnf4 CEN.PK background yeast strains in glucose and glucose-galactose mixture batch cultivations (chapter 2). The results of this study showed that delayed induction of galactose...... proteome datasets (2388 proteins) to date was generated using Multidimensional Protein Identification Technology followed by quantitation using stable isotope labeling approach (chapter 3). The stable isotope labeling was compared to the spectral counting quantitative approach and the study showed...

  6. Mate choice among yeast gametes can purge deleterious mutations.

    Tazzyman, S J; Seymour, R M; Pomiankowski, A; Greig, D


    Meiosis in Saccharomyces yeast produces four haploid gametes that usually fuse with each other, an extreme form of self-fertilization among the products of a single meiosis known as automixis. The gametes signal to each other with sex pheromone. Better-quality gametes produce stronger signals and are preferred as mates. We suggest that the function of this signalling system is to enable mate choice among the four gametes from a single meiosis and so to promote the clearance of deleterious mutations. To support this claim, we construct a mathematical model that shows that signalling during automixis (i) improves the long-term fitness of a yeast colony and (ii) lowers its mutational load. We also show that the benefit to signalling is greater with larger numbers of segregating mutations.

  7. Characterization of a hydroxyproline-rich glycoprotein in pearl millet and its differential expression in response to the downy mildew pathogen Sclerospora graminicola

    Sujeeth, Neerakkal; Kini, Ramachandra K.; Shailasree, Sekhar; Wallaart, Eelco; Shetty, Shekar H.; Hille, Jacques; Barna, B.


    A monoclonal antibody, JIM 20, derived against an extensin type of hydroxyproline-rich glycoprotein (HRGP) from pea, showed high affinity for HRGP in pearl millet [Pennisetum glaucum (L.) R. Br.]. Electrophoretic separation of Tris-SDS extracted proteins from suspension cells of pearl millet reveale

  8. Effect of Chromosome Tethering on Nuclear Organization in Yeast

    Barış Avşaroğlu; Gabriel Bronk; Susannah Gordon-Messer; Jungoh Ham; Debra A Bressan; Haber, James E; Jane Kondev


    Interphase chromosomes in Saccharomyces cerevisiae are tethered to the nuclear envelope at their telomeres and to the spindle pole body (SPB) at their centromeres. Using a polymer model of yeast chromosomes that includes these interactions, we show theoretically that telomere attachment to the nuclear envelope is a major determinant of gene positioning within the nucleus only for genes within 10 kb of the telomeres. We test this prediction by measuring the distance between the SPB and the sil...

  9. The Role of P-Glycoprotein in Transport of Danshensu across the Blood-Brain Barrier

    Peng-Fei Yu


    Full Text Available Danshensu (3-(3, 4-dihydroxyphenyl lactic acid, a water-soluble active component isolated from the root of Salvia miltiorrhiza Bunge, is widely used for the treatment of cerebrovascular diseases. The present study aims to investigate the role of P-glycoprotein in transport of Danshensu across the blood-brain barrier. Sprague-Dawley rats were pretreated with verapamil at a dose of 20 mg kg−1 (verapamil group or the same volume of normal saline (control group. Ninety minutes later, the animals were administrated with Danshensu (15 mg kg−1 by intravenous injection. At 15 min, 30 min, and 60 min after Danshensu administration, the levels of Danshensu in the blood and brain were detected by high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS. The results showed that Danshensu concentrations in the brain of the rats pretreated with verapamil were significantly increased. In addition, the brain-plasma ratios of the group pretreated with verapamil were much higher than that of the control group. There was no difference in Danshensu level in plasma between the verapamil group and control group. The findings indicated that Danshensu can pass the blood-brain barrier, and P-glycoprotein plays an important role in Danshensu transportation in brain.

  10. Synthesis of mucin-type glycoprotein; Muchingata to tanbakushitsu no gosei

    Kitamura, M. [Tokyo Inst. of Tech., Tokyo (Japan)


    A mucin-type glycoprotein has a configuration in which serine or threonine is bonded at 1-position of N-acetyl galactosamine (GalNAc) with a sugar chain of galactose or sialic acid bonded thereto. The mucin-type glycoprotein is paid attention in researches in respect to the progress and dislocation of carcinoma. A method used in conventional synthesis of such a kind of compounds is to introduce an amino acid residue after the whole sugar chain portion is constructed. However, there is risk in this synthesis that great loss in yield may occur in the final stage. Danishefsky et al. noticed that, for a mucin-type protein, the first sugar bonded to the amino acid is GalNAc, and therefore suggested a new synthesizing method named mucin-type cassette approach. Specifically, this method is characterized in introducing serine or threonine to 1-position of a GalNAc derivative to obtain GalNAc{alpha}l-Ser/Thr derivative, and then extending a sugar chain thereto. As a consequence, cassette approach shows effectiveness in syntheses of mucin-type proteins. (NEDO)

  11. Murine and human b locus pigmentation genes encode a glycoprotein (gp75) with catalase activity

    Halaban, R.; Moellmann, G. (Yale Univ. School of Medicine, New Haven, CT (USA))


    Melanogenesis is regulated in large part by tyrosinase, and defective tyrosinase leads to albinism. The mechanisms for other pigmentation determinants (e.g., those operative in tyrosinase-positive albinism and in murine coat-color mutants) are not yet known. One murine pigmentation gene, the brown (b) locus, when mutated leads to a brown (b/b) or hypopigmentated (B{sup lt}/B{sup lt}) coat versus the wild-type black (B/B). The authors show that the b locus codes for a glycoprotein with the activity of a catalase (catalase B). Only the c locus protein is a tyrosinase. Because peroxides may be by-products of melanogenic activity and hydrogen peroxide in particular is known to destroy melanin precursors and melanin, they conclude that pigmentation is controlled not only by tyrosinase but also by a hydroperoxidase. The studies indicate that catalase B is identical with gp75, a known human melanosomal glycoprotein; that the b mutation is in a heme-associated domain; and that the B{sup lt} mutation renders the protein susceptible to rapid proteolytic degradation.

  12. Curcumin as a Modulator of P-Glycoprotein in Cancer: Challenges and Perspectives

    Lopes-Rodrigues, Vanessa; Sousa, Emília; Vasconcelos, M. Helena


    Multidrug resistance (MDR) presents a serious challenge to the efficiency of cancer treatment, and may be associated with the overexpression of drug efflux pumps. P-glycoprotein (P-gp) is a drug efflux pump often found overexpressed in cases of acquired MDR. Nevertheless, there are no P-gp inhibitors being used in the current clinical practice, due to toxicity problems, drug interactions, or pharmacokinetic issues. Therefore, it is important to identify novel inhibitors of P-gp activity or expression. Curcumin is a secondary metabolite isolated from the turmeric of Curcuma longa L. which has been associated with several biological activities, particularly P-gp modulatory activity (by inhibiting both P-gp function and expression). However, curcumin shows extensive metabolism and instability, which has justified the recent and intensive search for analogs of curcumin that maintain the P-gp modulatory activity but have enhanced stability. This review summarizes and compares the effects of curcumin and several curcumin analogs on P-glycoprotein function and expression, emphasizing the potential of these molecules for the possible development of safe and effective inhibitors of P-gp to overcome MDR in human cancer. PMID:27834897

  13. Interaction of a human blood group Sd(a-) Tamm-Horsfall glycoprotein with applied lectins.

    Wu, J H; Watkins, W M; Chen, C P; Song, S C; Wu, A M


    Unlike the human blood group Sd(a+) Tamm-Horsfall glycoprotein (THGP), the Sd(a-) one lacks terminal GalNAcbeta1--> residues at the nonreducing ends. The binding properties of this glycoprotein and its asialo product with lectins were characterized by quantitative precipitin (QPA) and precipitin inhibition assays. Among 20 lectins tested by QPA, both native and asialo Sd(a-) THGP reacted best with Abrus precatorius and Ricinus communis and completely precipitated the lectin added. They also precipitated well Wistaria floribunda (WFA), Glycine max (SBA), Bauhinia purpurea alba, abrin-a and ricin, all of which recognize the Galbeta1--> 4GlcNAcbeta1--> sequence, although at different strength. The lectin-glycan interactions were inhibited by Galbeta1--> 4GlcNAc and Galbeta1--> 4Glc. When the precipitability of Sd(a-) THGP was compared with that of the Sd(a+) phenotype, the native Sd(a-) THGP exhibited a 40% lesser affinity for WFA, SBA, WGA and mistletoe lectin-I (ML-I). Mapping the precipitation and inhibition profiles of the present study and the results of THGP Sd(a+), it is concluded that Sd(a-) THGP showed a strongly diminished affinity for GalNAcbeta1--> active lectins (SBA and WFA) than the Sd(a+) phenotype.

  14. Conformational Flexibility in the Immunoglobulin-Like Domain of the Hepatitis C Virus Glycoprotein E2

    Ieva Vasiliauskaite


    Full Text Available The hepatitis C virus (HCV glycoprotein E2 is the major target of neutralizing antibodies and is therefore highly relevant for vaccine design. Its structure features a central immunoglobulin (Ig-like β-sandwich that contributes to the binding site for the cellular receptor CD81. We show that a synthetic peptide corresponding to a β-strand of this Ig-like domain forms an α-helix in complex with the anti-E2 antibody DAO5, demonstrating an inside-out flip of hydrophobic residues and a secondary structure change in the composite CD81 binding site. A detailed interaction analysis of DAO5 and cross-competing neutralizing antibodies with soluble E2 revealed that the Ig-like domain is trapped by different antibodies in at least two distinct conformations. DAO5 specifically captures retrovirus particles bearing HCV glycoproteins (HCVpp and infectious cell culture-derived HCV particles (HCVcc. Infection of cells by DAO5-captured HCVpp can be blocked by a cross-competing neutralizing antibody, indicating that a single virus particle simultaneously displays E2 molecules in more than one conformation on its surface. Such conformational plasticity of the HCV E2 receptor binding site has important implications for immunogen design.

  15. Silencing of P-glycoprotein increases mortality in temephos-treated Aedes aegypti larvae.

    Figueira-Mansur, J; Ferreira-Pereira, A; Mansur, J F; Franco, T A; Alvarenga, E S L; Sorgine, M H F; Neves, B C; Melo, A C A; Leal, W S; Masuda, H; Moreira, M F


    Re-emergence of vector-borne diseases such as dengue and yellow fever, which are both transmitted by the Aedes aegypti mosquito, has been correlated with insecticide resistance. P-glycoproteins (P-gps) are ATP-dependent efflux pumps that are involved in the transport of substrates across membranes. Some of these proteins have been implicated in multidrug resistance (MDR). In this study, we identified a putative P-glycoprotein in the Ae. aegypti database based on its significantly high identity with Anopheles gambiae, Culex quinquefasciatus, Drosophila melanogaster and human P-gps. The basal ATPase activity of ATP-binding cassette transporters in larvae was significantly increased in the presence of MDR modulators (verapamil and quinidine). An eightfold increase in Ae. aegypti P-gp (AaegP-gp) gene expression was detected in temephos-treated larvae as determined by quantitative PCR. To analyse the potential role of AaegP-gp in insecticide efflux, a temephos larvicide assay was performed in the presence of verapamil. The results showed an increase of 24% in temephos toxicity, which is in agreement with the efflux reversing effect. RNA interference (RNAi)-mediated silencing of the AaegP-gp gene caused a significant increase in temephos toxicity (57%). In conclusion, we have demonstrated for the first time in insects that insecticide-induced P-gp expression can be involved in the modulation of insecticide efflux.

  16. Curcumin as a Modulator of P-Glycoprotein in Cancer: Challenges and Perspectives

    Vanessa Lopes-Rodrigues


    Full Text Available Multidrug resistance (MDR presents a serious challenge to the efficiency of cancer treatment, and may be associated with the overexpression of drug efflux pumps. P-glycoprotein (P-gp is a drug efflux pump often found overexpressed in cases of acquired MDR. Nevertheless, there are no P-gp inhibitors being used in the current clinical practice, due to toxicity problems, drug interactions, or pharmacokinetic issues. Therefore, it is important to identify novel inhibitors of P-gp activity or expression. Curcumin is a secondary metabolite isolated from the turmeric of Curcuma longa L. which has been associated with several biological activities, particularly P-gp modulatory activity (by inhibiting both P-gp function and expression. However, curcumin shows extensive metabolism and instability, which has justified the recent and intensive search for analogs of curcumin that maintain the P-gp modulatory activity but have enhanced stability. This review summarizes and compares the effects of curcumin and several curcumin analogs on P-glycoprotein function and expression, emphasizing the potential of these molecules for the possible development of safe and effective inhibitors of P-gp to overcome MDR in human cancer.

  17. A major stress-inducible Mr-42000 wall glycoprotein of French bean (Phaseolus vulgaris L.).

    Millar, D J; Slabas, A R; Sidebottom, C; Smith, C G; Allen, A K; Bolwell, G P


    A major wall protein of suspension-cultured cells of French bean has been isolated and characterised. It can be prepared from walls or the culture filtrate and in composition it is particularly rich in proline, valine and glutamic acid/glutamine and contains appreciable amounts of hydroxyproline. The N-terminus shows some glycosylation, while following chemical deglycosylation the first 38 residues were found to be identical to those of proline-rich proteins from soybean. However, the composition of the highly purified Mr-42000 bean protein differs considerably from the soybean proteins and must contain its own specific domains. An antibody was raised and used to demonstrate the inducibility of the Mr-42000 bean protein in response to elicitor action. The protein was found to be mainly localised in the intercellular spaces of the cortical cells of bean hypocotyls and at the wall-plasmalemma interface of xylem vessels, another potentially accessible compartment for pathogens. Following wounding, the protein was found to be generally distributed in the wall of epidermal and cortical cells of the hypocotyls. The Mr-42000 protein is cross reactive with antibodies raised to glycoproteins of the Rhizobium infection thread and the chitin-binding hydroxyproline-rich glycoprotein, potato lectin. These common epitopes together with the previously demonstrated chitin-binding properties of the bean protein indicate a role in host-microbial interactions. Furthermore, the Mr-42000 protein itself bound to the growing hyphal tips of the bean pathogen, Colletotrichum lindemuthianum.

  18. A directed molecular evolution approach to improved immunogenicity of the HIV-1 envelope glycoprotein.

    Sean X Du

    Full Text Available A prophylactic vaccine is needed to slow the spread of HIV-1 infection. Optimization of the wild-type envelope glycoproteins to create immunogens that can elicit effective neutralizing antibodies is a high priority. Starting with ten genes encoding subtype B HIV-1 gp120 envelope glycoproteins and using in vitro homologous DNA recombination, we created chimeric gp120 variants that were screened for their ability to bind neutralizing monoclonal antibodies. Hundreds of variants were identified with novel antigenic phenotypes that exhibit considerable sequence diversity. Immunization of rabbits with these gp120 variants demonstrated that the majority can induce neutralizing antibodies to HIV-1. One novel variant, called ST-008, induced significantly improved neutralizing antibody responses when assayed against a large panel of primary HIV-1 isolates. Further study of various deletion constructs of ST-008 showed that the enhanced immunogenicity results from a combination of effective DNA priming, an enhanced V3-based response, and an improved response to the constant backbone sequences.

  19. Recombinant vesicular stomatitis virus vaccine vectors expressing filovirus glycoproteins lack neurovirulence in nonhuman primates.

    Chad E Mire

    Full Text Available The filoviruses, Marburg virus and Ebola virus, cause severe hemorrhagic fever with high mortality in humans and nonhuman primates. Among the most promising filovirus vaccines under development is a system based on recombinant vesicular stomatitis virus (rVSV that expresses an individual filovirus glycoprotein (GP in place of the VSV glycoprotein (G. The main concern with all replication-competent vaccines, including the rVSV filovirus GP vectors, is their safety. To address this concern, we performed a neurovirulence study using 21 cynomolgus macaques where the vaccines were administered intrathalamically. Seven animals received a rVSV vector expressing the Zaire ebolavirus (ZEBOV GP; seven animals received a rVSV vector expressing the Lake Victoria marburgvirus (MARV GP; three animals received rVSV-wild type (wt vector, and four animals received vehicle control. Two of three animals given rVSV-wt showed severe neurological symptoms whereas animals receiving vehicle control, rVSV-ZEBOV-GP, or rVSV-MARV-GP did not develop these symptoms. Histological analysis revealed major lesions in neural tissues of all three rVSV-wt animals; however, no significant lesions were observed in any animals from the filovirus vaccine or vehicle control groups. These data strongly suggest that rVSV filovirus GP vaccine vectors lack the neurovirulence properties associated with the rVSV-wt parent vector and support their further development as a vaccine platform for human use.

  20. Prediction and identification of mouse cytotoxic T lymphocyte epitopes in Ebola virus glycoproteins

    Wu Shipo


    Full Text Available Abstract Background Ebola viruses (EBOVs cause severe hemorrhagic fever with a high mortality rate. At present, there are no licensed vaccines or efficient therapies to combat EBOV infection. Previous studies have shown that both humoral and cellular immune responses are crucial for controlling Ebola infection. CD8+ T cells play an important role in mediating vaccine-induced protective immunity. The objective of this study was to identify H-2d-specific T cell epitopes in EBOV glycoproteins (GPs. Results Computer-assisted algorithms were used to predict H-2d-specific T cell epitopes in two species of EBOV (Sudan and Zaire GP. The predicted peptides were synthesized and identified in BALB/c mice immunized with replication-deficient adenovirus vectors expressing the EBOV GP. Enzyme-linked immunospot assays and intracellular cytokine staining showed that the peptides RPHTPQFLF (Sudan EBOV, GPCAGDFAF and LYDRLASTV (Zaire EBOV could stimulate splenoctyes in immunized mice to produce large amounts of interferon-gamma. Conclusion Three peptides within the GPs of two EBOV strains were identified as T cell epitopes. The identification of these epitopes should facilitate the evaluation of vaccines based on the Ebola virus glycoprotein in a BALB/c mouse model.

  1. Molecular analysis of red wine yeast diversity in the Ribera del Duero D.O. (Spain) area.

    Muñoz-Bernal, Eugenia; Rodríguez, María Esther; Benítez, Patricia; Fernández-Acero, Francisco Javier; Rebordinos, Laureana; Cantoral, Jesús Manuel


    Molecular characterization of wine yeast population during spontaneous fermentation in biodynamic wines from Ribera del Duero D.O. located at northern plateau of Spain has been carried out during two consecutive years. A total of 829 yeast strains were isolated from the samples and characterized by electrophoretic karyotype. The results show the presence of three population of yeast differentiated by their electrophoretic karyotypes, (1) non-Saccharomyces yeast dominant in the initial phase of the fermentations (NS); (2) Saccharomyces bayanus var uvarum detected mainly mid-way through the fermentation process at 20-25 °C; and (3) Saccharomyces cerevisiae which remained dominant until the end of the fermentation. This is the first study showing the population dynamic of S. bayanus var. uvarum in red wines produced in Ribera del Duero that could represent an important source of autochthonous wine yeasts with novel oenological properties.

  2. Human ribosomal protein L9 is a Bax suppressor that promotes cell survival in yeast.

    Eid, Rawan; Sheibani, Sara; Gharib, Nada; Lapointe, Jason F; Horowitz, Avital; Vali, Hojatollah; Mandato, Craig A; Greenwood, Michael T


    The identification of a human ribosomal protein L9 (hRPL9) cDNA as a sequence capable of suppressing the lethal effects of heterologously expressed murine Bax in yeast led us to investigate its antiapoptotic potential. Using growth and viability assays, we show that yeast cells heterologously expressing hRPL9 are resistant to the growth inhibitory and lethal effects of exogenously supplied copper, indicating that it has pro-survival properties. To explore potential mechanisms, we used yeast mutants defective in all three types of programmed cell death (apoptosis, necrosis, and autophagy). The ability to retain pro-survival function in all the mutants suggests that hRPL9 may regulate a common pro-death process. In contrast, the yeast RPL9 orthologues, RPL9A and RPL9B, have opposite effects when overexpressed in yeast. In effect, instead of showing resistance to stress, RPL9A and RPL9B overexpressing cells show reduced cell growth. Further analysis indicates that the effects of overexpressed RPL9A and RPL9B are not in themselves lethal, instead, they serve to increase cell doubling time. Thus, yeast RPL9s are more representative of RPs whose extra-ribosomal function is similar to that of tumor suppressors. Taken together, our results demonstrate that RPL9 represents a species- and sequence-specific regulator of cell growth and survival.

  3. Oenological prefermentation practices strongly impact yeast population dynamics and alcoholic fermentation kinetics in Chardonnay grape must.

    Albertin, Warren; Miot-Sertier, Cécile; Bely, Marina; Marullo, Philippe; Coulon, Joana; Moine, Virginie; Colonna-Ceccaldi, Benoit; Masneuf-Pomarede, Isabelle


    Yeast species of Hanseniaspora and Candida genus are predominant during the early stages of winemaking, while species of Metschnikowia, Pichia, Zygoascus, Issatchenkia, Torulaspora and other genera are present at lower population levels. The impact of common oenological practices on yeast dynamics during the prefermentative stage and the early stage of alcoholic fermentation (AF) remains elusive. In this work, the effect of four prefermentative oenological practices (clarification degree, temperature, sulphite and starter yeast addition) on yeast dynamics was evaluated in a Chardonnay grape must. The growth curves of four genus or species, namely Saccharomyces spp., Hanseniaspora spp., Candida zemplinina and Torulaspora delbrueckii, were followed by quantitative PCR. The fermentation kinetics were also recorded, as well as the production of acetic acid. Variance analysis allowed determining the effect of each practice and their interaction factors, as well as their relative importance on yeast dynamics and fermentation kinetics. Our experimental design showed that the population dynamics of the four species were differently impacted by the oenological practices, with some species being more sensitive than others to the clarification degree (C. zemplinina), sulphite addition (Saccharomyces spp.), starter yeast inoculation (Hanseniaspora spp.) or prefermentation temperature (T. delbrueckii). Significant interaction effects between practices were revealed, highlighting the interest of experimental design allowing interaction analysis, as some factors may buffer the effect of other ones. Hanseniaspora genus showed atypical behaviour: growth dynamics showed a decrease during AF that we interpreted as early cellular lysis. In conclusion, this study provides new insights on the impact of common oenological practices on the dynamics of non-Saccharomyces yeast that will be useful for a better management of mixed fermentation between S. cerevisiae and non

  4. Accelerating Yeast Prion Biology using Droplet Microfluidics

    Ung, Lloyd; Rotem, Assaf; Jarosz, Daniel; Datta, Manoshi; Lindquist, Susan; Weitz, David


    Prions are infectious proteins in a misfolded form, that can induce normal proteins to take the misfolded state. Yeast prions are relevant, as a model of human prion diseases, and interesting from an evolutionary standpoint. Prions may also be a form of epigenetic inheritance, which allow yeast to adapt to stressful conditions at rates exceeding those of random mutations and propagate that adaptation to their offspring. Encapsulation of yeast in droplet microfluidic devices enables high-throughput measurements with single cell resolution, which would not be feasible using bulk methods. Millions of populations of yeast can be screened to obtain reliable measurements of prion induction and loss rates. The population dynamics of clonal yeast, when a fraction of the cells are prion expressing, can be elucidated. Furthermore, the mechanism by which certain strains of bacteria induce yeast to express prions in the wild can be deduced. Integrating the disparate fields of prion biology and droplet microfluidics reveals a more complete picture of how prions may be more than just diseases and play a functional role in yeast.

  5. Effect of the carbohydrate moiety on the secondary structure of beta 2-glycoprotein. I. Implications for the biosynthesis and folding of glycoproteins.

    Walsh, M T; Watzlawick, H; Putnam, F W; Schmid, K; Brossmer, R


    By use of six highly purified exoglycosidases with well-defined specificity, the oligosaccharide units of human plasma beta 2-glycoprotein I (beta 2I) were modified by sequential enzymatic degradation. The released monosaccharides (NeuAc, Gal, GlcNAc, and Man) were quantified, and the carbohydrate compositions of the resulting glycoprotein (gp) derivatives were determined. The gp was found to be both partially sialylated and galactosylated. These findings which are in agreement with earlier reports suggest that the carbohydrate moiety of beta 2I possesses more bi- than tri-antennas, probably three of the former and two of the latter carbohydrate units. Circular dichroic (CD) spectra of native beta 2I and its derivatives were measured in aqueous buffer and 2-chloroethanol (2-CE). Analysis of these spectra for elements of secondary structure showed beta 2I and most of the derivatives to contain predominantly beta-sheet and beta-turn structures. The lack of alpha-helical structures in aqueous buffer was noted. Removal of a large portion of the carbohydrate moiety did not alter the CD spectra or secondary structure of beta 2I in either aqueous buffer or in 2-CE. However, after enzymatic removal of approximately 96% of the carbohydrate moiety, large significant changes in the spectra and secondary structures were observed. In aqueous buffer a shift in the wavelength minimum occurred, accompanied by an increase in the magnitude of the molar ellipticity and the amount of beta-turn, with a reduction in random coil. One-third of the amino acids which were originally in random coil conformation assumed beta-turns after removal of 96% of the carbohydrate moiety.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Functional Interplay Between Murine Leukemia Virus Glycogag, Serinc5, and Surface Glycoprotein Governs Virus Entry, with Opposite Effects on Gammaretroviral and Ebolavirus Glycoproteins

    Yadvinder S. Ahi


    Full Text Available Gammaretroviruses, such as murine leukemia viruses (MLVs, encode, in addition to the canonical Gag, Pol, and Env proteins that will form progeny virus particles, a protein called “glycogag” (glycosylated Gag. MLV glycogag contains the entire Gag sequence plus an 88-residue N-terminal extension. It has recently been reported that glycogag, like the Nef protein of HIV-1, counteracts the antiviral effects of the cellular protein Serinc5. We have found, in agreement with prior work, that glycogag strongly enhances the infectivity of MLVs with some Env proteins but not those with others. In contrast, however, glycogag was detrimental to MLVs carrying Ebolavirus glycoprotein. Glycogag could be replaced, with respect to viral infectivity, by the unrelated S2 protein of equine infectious anemia virus. We devised an assay for viral entry in which virus particles deliver the Cre recombinase into cells, leading to the expression of a reporter. Data from this assay showed that both the positive and the negative effects of glycogag and S2 upon MLV infectivity are exerted at the level of virus entry. Moreover, transfection of the virus-producing cells with a Serinc5 expression plasmid reduced the infectivity and entry capability of MLV carrying xenotropic MLV Env, particularly in the absence of glycogag. Conversely, Serinc5 expression abrogated the negative effects of glycogag upon the infectivity and entry capability of MLV carrying Ebolavirus glycoprotein. As Serinc5 may influence cellular phospholipid metabolism, it seems possible that all of these effects on virus entry derive from changes in the lipid composition of viral membranes.

  7. Glucose tolerance and antioxidant activity of spent brewer's yeast hydrolysate with a high content of Cyclo-His-Pro (CHP).

    Jung, Eun Young; Lee, Hyun-Sun; Choi, Jang Won; Ra, Kyung Soo; Kim, Mi-Ryung; Suh, Hyung Joo


    To elevate the Cyclo-His-Pro (CHP) content in yeast, the yeast hydrolysate that was obtained from enzymatic hydrolysis was subjected to various treatments. Flavourzyme-treated hydrolysate showed the highest CHP content (674.0 μg/g) among the various proteases treatments. Ultrafiltration was selected as the best method for concentrating CHP in yeast hydrolysate, based on the yields and CHP contents. In addition, we evaluated the radical scavenge and glucose tolerance of yeast hydrolysate with a high content of CHP. Yeast hydrolysate showed intense scavenging abilities of both 1, 1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radicals. The IC(50) values of yeast hydrolysate on DPPH and ABTS radicals were 1.9 and 0.9 mg/mL, respectively. There were significant differences in glucose level between the diabetes-control and yeast hydrolysate group at 30, 60, 90, and 120 min after injection in a type 1 diabetes model (P CHP as an antioxidative and/or antidiabetic material for the preparation of functional foods. This study tried to develop a material containing a high content of CHP using yeast for possible applications of this cyclic dipeptide in the therapy of metabolic disorders. The yeast hydrolysate prepared with Flavourzyme showed a high level of CHP. The hydrolysate with a high content of CHP showed high levels of radical scavenging activities and oral glucose tolerance activity. Therefore, it is possible to use the yeast hydrolysate with high levels of CHP as an antioxidative and/or antidiabetic material for the preparation of functional foods.

  8. Alcoholic fermentation by the wild yeasts under thermal, osmotic and ethanol stress

    Rosimeire Oenning da Silva


    Full Text Available This study aimed to explore the variability in the metabolism of nine wild yeasts isolated from the sugarcane juice from a distillery in the Brazilian State of Mato Grosso. Cell viability under the stress conditions was evaluated. The yeasts were inoculated in the test tubes containing sugarcane juice adjusted from 12 to 21º Brix, ethanol from 6 to 12% in volume and temperature at 30, 35 and 40ºC. The viability was established by the growth in Petri dishes and visually by the CO2 production in the test tubes. None of the evaluated yeasts showed simultaneous resistance to the three stress conditions. The potential of yeast BB.09 could be emphasized due to its ability to ferment up to12% ethanol at 30°C.

  9. The role of lager beer yeast in oxidative stability of model beer

    Berner, Torben Sune; Arneborg, Nils


    AIMS: In this study, we investigated the relationship between the ability of lager brewing yeast strains to tolerate oxidative stress and their ability to produce oxidative stable model beer. METHODS AND RESULTS: Screening of 21 lager brewing yeast strains against diamide and paraquat showed...... that the oxidative stress resistance was strain dependent. Fermentation of model wort in European Brewing Convention tubes using three yeast strains with varying oxidative stress resistances resulted in three model beers with different rates of radical formation as measured by electron spin resonance in forced...... in the model beers. CONCLUSIONS: A more oxidative stable beer is not obtained by a more-oxidative-stress-tolerant lager brewing yeast strain, exhibiting a higher secretion of thioredoxin, but rather by a less-oxidative-stress-tolerant strain, exhibiting a higher iron uptake. SIGNIFICANCE AND IMPACT...

  10. Induction of Autophagy by Second-Fermentation Yeasts during Elaboration of Sparkling Wines

    Cebollero, Eduardo; Gonzalez, Ramon


    Autophagy is a transport system mediated by vesicles, ubiquitous in eukaryotic cells, by which bulk cytoplasm is targeted to a lysosome or vacuole for degradation. In the yeast Saccharomyces cerevisiae, autophagy is triggered by nutritional stress conditions (e.g., carbon- or nitrogen-depleted medium). In this study we showed that there is induction of autophagy in second-fermentation yeasts during sparkling wine making. Two methods were employed to detect autophagy: a biochemical approach based on depletion of the protein acetaldehyde dehydrogenase Ald6p and a morphological strategy consisting of visualization of autophagic bodies and autophagosomes, which are intermediate vesicles in the autophagic process, by transmission electron microscopy. This study provides the first demonstration of autophagy in second-fermentation yeasts under enological conditions. The correlation between autophagy and yeast autolysis during sparkling wine production is discussed, and genetic engineering of autophagy-related genes in order to accelerate the aging steps in wine making is proposed. PMID:16751523

  11. Inositol and Phosphatidylinositol Mediated Glucose Derepression, Gene Expression and Invertase Secretion in Yeasts

    Zhen-Ming CHI; Jun-Feng LI; Xiang-Hong WANG; Shu-Min YAO


    Glucose repression occurs in many yeast species and some filamentous fungi, and it represses the expression and secretion of many intracellular and extracellular proteins. In recent years, it has been found that many biochemical reactions in yeast cells are mediated by phosphatidylinositol (PI)-type signaling pathway. However, little is known about the relationships between PI-type signaling and glucose repression,gene expression and invertase secretion in yeasts. Many evidences in our previous studies showed that glucose repression, invertase secretion, gene expression and cell growth were mediated by inositol and PI in Saccharomyces and Schizosaccharomyces. The elucidation of the new regulatory mechanisms of protein secretion, gene expression and glucose repression would be an entirely new aspect of inositol and PI-type signaling regulation in yeasts.

  12. Distribution of the trehalase activation response and the regulatory trehalase gene among yeast species.

    Soto, T; Fernández, J; Cansado, J; Vicente, J; Gacto, M


    In Saccharomyces cerevisiae and other yeasts the activity of regulatory trehalases increases in response to the addition of glucose and to thermal changes in the extracellular medium. We have performed an screening on the extent of this response among different representative yeast species and the results show that this ability is displayed only by a few members of the Saccharomycetaceae family. However, all yeasts examined contain a gene related to that coding for regulatory trehalase in S. cerevisiae. This finding reveals that the operational distinction between regulatory and nonregulatory trehalase in yeasts is not a property of the enzyme by itself but relays on the expression of accompanying mechanisms able to modulate trehalase activity.

  13. Yeast-like fungi isolated from indoor air in school buildings and the surrounding outdoor air

    Elżbieta Ejdys


    Full Text Available A total of 111 isolates of yeast-like fungi and yeasts belonging to 40 species of 19 genera were identified in indoor air and outdoor air. Only one species, Kluyveromyces marxianus, was recorded in both types of air and seasons (spring and autumn. Kluyveromyces lactis and Yarrowia lipolytica, a species having the greatest symbiotic abilities, dominated in indoor air and outdoor air, respectively. Intensely used rooms, especially those with limited access of air, have the broadest range of species of yeast-like fungi. A comparison of both habitats shows that school rooms pose a greater epidemiological risk of yeast-like infections than outdoor air. The indoor as well as outdoor mycobiota undergoes phenological changes although it is determined by other biotic and abiotic factors.

  14. Expression of the glycoprotein gene from a fish rhabdovirus by using baculovirus vectors

    Koener, J.F.; Leong, J.A.C. (Oregon State Univ., Corvallis (United States))


    A cDNA fragment containing the gene encoding the glycoprotein of infectious hematopoietic necrosis virus was inserted into Autographa californica baculovirus vectors under the control of the polyhedrin promoter. A 66-kilodalton protein, identical in size to the glycosylated glycoprotein of infectious hematopoietic necrosis virus, was expressed at high levels in Spodoptera frugiperda cells infected with the recombinant viruses. The expressed protein reacted with antiserum to the glycoprotein on Western blots.

  15. Monensin and FCCP inhibit the intracellular transport of alphavirus membrane glycoproteins

    Kaariainen, L; Hashimoto, K.; Saraste, J; Virtanen, I; Penttinen, K


    Temperature-sensitive mutants of semliki forest virus (SFV) and sindbis virus (SIN) were used to study the intracellular transport of virus membrane glycoproteins in infected chicken embryo fibroblasts. When antisera against purified glycoproteins and (125)I- labeled protein A from staphylococcus aureus were used only small amounts of virus glycoproteins were detected at the surface of SFV ts-1 and SIN Ts-10 infected cells incubated at the restrictive temperature (39 degrees C). When the muta...

  16. Glycoprotein (90 kDa) isolated from Opuntia ficus-indica var. saboten MAKINO lowers plasma lipid level through scavenging of intracellular radicals in Triton WR-1339-induced mice.

    Oh, Phil-Sun; Lim, Kye-Taek


    The Opuntia ficus-indica var. saboten MAKINO (OFI) has been traditionally used as health food and herbal agent in folk medicine in Korea. In this study, we investigated whether the OFI glycoprotein has antioxidative activity and hypolipidemic effect on Triton WR-1339-induced A/J mice. The OFI glycoprotein inhibits the production of reactive oxygen species (ROS) generated by glucose/glucose oxidase (G/GO) in BNL CL.2 cells. With its antioxidative property, the mice were orally administered in the OFI glycoprotein [50 mg/kg body weight (BW)] for two weeks. Our finding resulted in a significant decrease of plasma lipid levels in Triton WR-1339-treated mice such as total cholesterol (TC), triglyceride (TG), and low-density lipoprotein (LDL). Indeed, mice which induced by Triton WR-1339 were significantly increased the levels of TC, TG and LDL, whereas the high-density lipoprotein (HDL) level obviously decreased. However, the values were reversed at pretreatment with OFI glycoprotein in Triton WR-1339-treated mice. The data also showed that pretreatment with OFI glycoprotein resulted in decrease of thiobarbituric acid-reactive substances (TBARS) level and in increase of nitric oxide (NO) amount in presence of Triton WR-1339-treated mice, while the activities of antioxidant enzyme [superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)] were augmented. Therefore, we speculate that the OFI glycoprotein would be effective in lowering of plasma lipid levels.

  17. Corning and Kroger turn whey to yeast


    It is reported that Corning and Kroger intend to build a 35,000 sq. ft. plant in Winchester, Ky., that will turn whey into bakers' yeast. The plant will convert whey from Kroger's dairies into bakers' yeast, supplying about 60% of the yeast needed for nine Kroger bakeries. It will also produce syrups and whey protein concentrate for use in other food processing activities. In addition to making useful products, the project will convert the whey to glucose and galactose. The protein component of the whey will be concentrated and used in various foods and feeds.

  18. Brain penetration of ivermectin and selamectin in mdr1a,b P-glycoprotein- and bcrp- deficient knockout mice.

    Geyer, J; Gavrilova, O; Petzinger, E


    P-glycoprotein, which is encoded by the multi-drug resistance gene (MDR1), highly restricts the entry of ivermectin into the brain by an ATP-driven efflux mechanism at the blood-brain barrier. In dogs with a homozygous MDR1 mutation though, ivermectin accumulates in the brain and provokes severe signs of neurotoxicosis and even death. In contrast to ivermectin, selamectin is safer in the treatment of MDR1 mutant dogs, suggesting that selamectin is transported differently by P-glycoprotein across the blood-brain barrier. To test this, we applied selamectin to mdr1-deficient mdr1a,b(-/-) knockout mice and wild-type mice. Brain penetration, organ distribution, and plasma kinetics were analyzed after intravenous, oral, and dermal spot-on application in comparison with ivermectin. We found that in vivo both macrocyclic lactone compounds are substrates of P-glycoprotein and that these strongly accumulate in the brain of mdr1a,b(-/-) knockout mice compared with wild-type mice at therapeutic doses of 12 mg/kg selamectin and 0.2 mg/kg ivermectin. However, selamectin accumulates to a much lesser degree (5-10 times) than ivermectin (36-60 times) in the absence of P-glycoprotein. This could explain the broader margin of safety of selamectin in MDR1 mutant dogs. In liver, kidney, and testes, ivermectin and selamectin accumulated less than four times as much in mdr1a,b mutant mice as in wild-type mice. Breast cancer resistance protein (Bcrp)-deficient bcrp(-/-) knockout mice were also included in the application studies, but showed no differences in brain concentrations or organ distribution of either ivermectin or selamectin compared with wild-type mice. This indicates that Bcrp is not a relevant efflux carrier for these macrocyclic lactone compounds in vivo at the blood-brain barrier.

  19. 21 CFR 172.325 - Bakers yeast protein.


    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bakers yeast protein. 172.325 Section 172.325 Food... Special Dietary and Nutritional Additives § 172.325 Bakers yeast protein. Bakers yeast protein may be safely used in food in accordance with the following conditions: (a) Bakers yeast protein is the...

  20. Screening of extraction methods for glycoproteins from jellyfish ( Rhopilema esculentum) oral-arms by high performance liquid chromatography

    Ren, Guoyan; Li, Bafang; Zhao, Xue; Zhuang, Yongliang; Yan, Mingyan; Hou, Hu; Zhang, Xiukun; Chen, Li


    In order to select an optimum extraction method for the target glycoprotein (TGP) from jellyfish ( Rhopilema esculentum) oral-arms, a high performance liquid chromatography (HPLC)-assay for the determination of the TGP was developed. Purified target glycoprotein was taken as a standard glycoprotein. The results showed that the calibration curves for peak area plotted against concentration for TGP were linear ( r = 0.9984, y = 4.5895 x+47.601) over concentrations ranging from 50 to 400 mgL-1. The mean extraction recovery was 97.84% (CV2.60%). The fractions containing TGP were isolated from jellyfish ( R. esculentum) oral-arms by four extraction methods: 1) water extraction (WE), 2) phosphate buffer solution (PBS) extraction (PE), 3) ultrasound-assisted water extraction (UA-WE), 4) ultrasound-assisted PBS extraction (UA-PE). The lyophilized extract was dissolved in Milli-Q water and analyzed directly on a short TSK-GEL G4000PWXL (7.8 mm×300 mm) column. Our results indicated that the UA-PE method was the optimum extraction method selected by HPLC.

  1. Preparation of boronate-functionalized molecularly imprinted monolithic column with polydopamine coating for glycoprotein recognition and enrichment.

    Lin, Zian; Wang, Juan; Tan, Xiaoqing; Sun, Lixiang; Yu, Ruifang; Yang, Huanghao; Chen, Guonan


    A novel imprinting strategy using reversible covalent complexation of glycoprotein was described for creating glycoprotein-specific recognition cavities on boronate-functionalized monolithic column. Based on it, a molecularly imprinted monolithic column was prepared by self-polymerization of dopamine (DA) on the surface of 4-vinylphenylboronic acid (VPBA)-based polymeric skeletons after reversible immobilization of horseradish peroxidase (HRP). Due to the combination of boronate affinity and surface imprinting of DA, the stable and accessible recognition sites in the as-prepared imprinted monolith could be obtained after the removal of the template, which facilitated the rebinding of the template and provided good reproducibility and lifetime of use. The recognition behaviors of proteins on the bare VPBA-based, HRP-imprinted and nonimprinted monolithic columns were evaluated in detail and the results showed that the HRP-imprinted monolith exhibited higher recognition ability toward the template than another two monolithic columns. Not only nonglycoproteins but also glycoproteins can be well separated with the HRP-imprinted monolith. In addition, the feasibility of the HRP-imprinted monolith, adopted as an in-tube solid phase microextraction (in-tube SPME), was further assessed by selective extraction and enrichment of HRP from human serum. The good results demonstrated its potential in glycoproteome analysis. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. The Human Glycoprotein Salivary Agglutinin Inhibits the Interaction of DC-SIGN and Langerin with Oral Micro-Organisms.

    Boks, Martine A; Gunput, Sabrina T G; Kosten, Ilona; Gibbs, Susan; van Vliet, Sandra J; Ligtenberg, Antoon J M; van Kooyk, Yvette


    Salivary agglutinin (SAG), also known as gp340 or SALSA, is a glycoprotein encoded by the Deleted in Malignant Brain Tumours 1 gene and is abundantly present in human saliva. SAG aggregates bacteria and viruses, thereby promoting their clearance from the oral cavity. The mucosa lining the oral cavity contains dendritic cells (DC) and Langerhans cells (LC), which express the C-type lectin receptors (CLR) DC-SIGN and Langerin, respectively. Both DC-SIGN and Langerin recognise mannose and fucose carbohydrate structures on pathogens and self-glycoproteins to regulate immunity and homeostasis. The purpose of this study was to investigate whether SAG interacts with these CLR and whether this interferes with the binding to oral pathogens. We show that whole parotid saliva and SAG, when coated to microplates, strongly interact with DC-SIGN and Langerin, probably via mannose and fucose structures. Also, primary human DC and LC bind parotid saliva and SAG via DC-SIGN and Langerin, respectively. Furthermore, SAG binding to DC-SIGN or Langerin prevented binding to the micro-organisms Candida albicans and Escherichia coli which express mannose and fucose-containing glycan structures. Thus, binding of saliva glycoprotein SAG to DC-SIGN and Langerin may inhibit pathogen-DC/LC interactions, and could prove to be a new immunomodulatory mechanism of SAG.

  3. Altered (neo-) lacto series glycolipid biosynthesis impairs α2-6 sialylation on N-glycoproteins in ovarian cancer cells

    Alam, Shahidul; Anugraham, Merrina; Huang, Yen-Lin; Kohler, Reto S.; Hettich, Timm; Winkelbach, Katharina; Grether, Yasmin; López, Mónica Núñez; Khasbiullina, Nailia; Bovin, Nicolai V.; Schlotterbeck, Götz; Jacob, Francis


    The (neo-) lacto series glycosphingolipids (nsGSLs) comprise of glycan epitopes that are present as blood group antigens, act as primary receptors for human pathogens and are also increasingly associated with malignant diseases. Beta-1, 3-N-acetyl-glucosaminyl-transferase 5 (B3GNT5) is suggested as the key glycosyltransferase for the biosynthesis of nsGSLs. In this study, we investigated the impact of CRISPR-Cas9 -mediated gene disruption of B3GNT5 (∆B3GNT5) on the expression of glycosphingolipids and N-glycoproteins by utilizing immunostaining and glycomics-based PGC-UHPLC-ESI-QTOF-MS/MS profiling. ∆B3GNT5 cells lost nsGSL expression coinciding with reduction of α2-6 sialylation on N-glycoproteins. In contrast, disruption of B4GALNT1, a glycosyltransferase for ganglio series GSLs did not affect α2-6 sialylation on N-glycoproteins. We further profiled all known α2-6 sialyltransferase-encoding genes and showed that the loss of α2-6 sialylation is due to silencing of ST6GAL1 expression in ∆B3GNT5 cells. These results demonstrate that nsGSLs are part of a complex network affecting N-glycosylation in ovarian cancer cells. PMID:28358117

  4. BAD-lectins: boronic acid-decorated lectins with enhanced binding affinity for the selective enrichment of glycoproteins.

    Lu, Ying-Wei; Chien, Chih-Wei; Lin, Po-Chiao; Huang, Li-De; Chen, Chang-Yang; Wu, Sz-Wei; Han, Chia-Li; Khoo, Kay-Hooi; Lin, Chun-Cheng; Chen, Yu-Ju


    The weak and variable binding affinities exhibited by lectin-carbohydrate interactions have often compromised the practical utility of lectin in capturing glycoproteins for glycoproteomic applications. We report here the development and applications of a new type of hybrid biomaterial, namely a boronic acid-decorated lectin (BAD-lectin), for efficient bifunctional glycoprotein labeling and enrichment. Our binding studies showed an enhanced affinity by BAD-lectin, likely to be mediated via the formation of boronate ester linkages between the lectin and glycan subsequent to the initial recognition process and thus preserving its glycan-specificity. Moreover, when attached to magnetic nanoparticles (BAD-lectin@MNPs), 2 to 60-fold improvement on detection sensitivity and enrichment efficiency for specific glycoproteins was observed over the independent use of either lectin or BA. Tested at the level of whole cell lysates for glycoproteomic applications, three different types of BAD-lectin@MNPs exhibited excellent specificities with only 6% overlapping among the 295 N-linked glycopeptides identified. As many as 236 N-linked glycopeptides (80%) were uniquely identified by one of the BAD-lectin@MNPs. These results indicated that the enhanced glycan-selective recognition and binding affinity of BAD-lectin@MNPs will facilitate a complementary identification of the under-explored glycoproteome.

  5. Biotin- and glycoprotein-coated microspheres: potential surrogates for studying filtration of cryptosporidium parvum in porous media.

    Pang, Liping; Nowostawska, Urszula; Weaver, Louise; Hoffman, Gabrielle; Karmacharya, Anjuman; Skinner, Alexandra; Karki, Naveena


    Cryptosporidium parvum is a waterborne pathogen, yet no suitable surrogate has been established for quantifying its filtration removal in porous media. Carboxyl polystyrene microspheres with size, density, and shape similar to C. parvum were coated with biotin (free and containing amine, NH(2)) and glycoprotein. These biomolecules have isoelectric points similar to C. parvum (pH ≈ 2), and glycoprotein is a major type of surface protein that oocysts possess. Zeta potential (ζ) and filtration removal of particles in sand of two different grain sizes were examined. Compared to unmodified microspheres, modified microspheres achieved a superior match to the oocysts in ζ, concentration, mass recovery, and collision coefficient. They showed the same log reduction in concentration as oocysts, whereas results from unmodified microspheres deviated by 1 order of magnitude. Of the three types of modified microspheres, glycoprotein-coated microspheres best resembled oocyst concentration, despite having ζ similar to NH(2)-biotin-coated microspheres, suggesting that surface protein also played an important role in particle attachment on solid surfaces. With further validation in environmental conditions, the surrogates developed here could be a cost-effective new tool for assessing oocyst filtration in porous media, for example, to evaluate the performance of sand filters in water and wastewater treatment, water recycling through riverbank filtration, and aquifer recharge.

  6. Screening of Extraction Methods for Glycoproteins from Jellyfish (Rhopilema esculentum) Oral-Arms by High Performance Liquid Chromatography

    REN Guoyan; LI Bafang; ZHAO Xue; ZHUANG Yongliang; YAN Mingyan; HOU Hu; ZHANG Xiukun; CHEN Li


    In order to select an optimum extraction method for the target glycoprotein (TGP) from jellyfish (Rhopilema esculentum) oral-arms, a high performance liquid chromatography (HPLC)-assay for the determination of the TGP was developed. Purified target glycoprotein was taken as a standard glycoprotcin. The results showed that the calibration curves for peak area plotted against con-centration for TGP were linear (r=0.9984, y=4.5895x+47.601) over concentrations ranging from 50 to 400mgL-1. The mean extrac-tion recovery was 97.84% (CV2.60%). The fractions containing TGP were isolated from jellyfish (R. esculentum) oral-arms bv four extraction methods: 1) water extraction (WE), 2) phosphate buffer solution (PBS) extraction (PE), 3) ultrasound-assisted water ex-traction (UA-WE), 4) ultrasound-assisted PBS extraction (UA-PE). The lyophtlized extract was dissolved in Milli-Q water and ana-lyzed directly on a short TSK-GEL G4000PWXL (7.8mm×300mm) column. Our results indicated that the UA-PE method was the optimum extraction method selected by HPLC.Kay words HPLC; glycoprotein; jellyfish; extraction method

  7. Production of Recombinant β-Hexosaminidase A, a Potential Enzyme for Replacement Therapy for Tay-Sachs and Sandhoff Diseases, in the Methylotrophic Yeast Ogataea minuta▿

    Akeboshi, Hiromi; Chiba, Yasunori; Kasahara, Yoshiko; Takashiba, Minako; Takaoka, Yuki; Ohsawa, Mai; Tajima, Youichi; Kawashima, Ikuo; Tsuji, Daisuke; Itoh, Kohji; Sakuraba, Hitoshi; Jigami, Yoshifumi


    Human β-hexosaminidase A (HexA) is a heterodimeric glycoprotein composed of α- and β-subunits that degrades GM2 gangliosides in lysosomes. GM2 gangliosidosis is a lysosomal storage disease in which an inherited deficiency of HexA causes the accumulation of GM2 gangliosides. In order to prepare a large amount of HexA for a treatment based on enzyme replacement therapy (ERT), recombinant HexA was produced in the methylotrophic yeast Ogataea minuta instead of in mammalian cells, which are common...

  8. Seasonal and altitudinal changes of culturable bacterial and yeast diversity in Alpine forest soils.

    França, Luís; Sannino, Ciro; Turchetti, Benedetta; Buzzini, Pietro; Margesin, Rosa


    The effect of altitude and season on abundance and diversity of the culturable heterotrophic bacterial and yeast community was examined at four forest sites in the Italian Alps along an altitude gradient (545-2000 m). Independently of altitude, bacteria isolated at 0 °C (psychrophiles) were less numerous than those recovered at 20 °C. In autumn, psychrophilic bacterial population increased with altitude. The 1194 bacterial strains were primarily affiliated with the classes Alpha-, Beta-, Gammaproteobacteria, Spingobacteriia and Flavobacteriia. Fifty-seven of 112 operational taxonomic units represented potential novel species. Strains isolated at 20 °C had a higher diversity and showed similarities in taxa composition and abundance, regardless of altitude or season, while strains isolated at 0 °C showed differences in community composition at lower and higher altitudes. In contrast to bacteria, yeast diversity was season-dependent: site- and altitude-specific effects on yeast diversity were only detected in spring. Isolation temperature affected the relative proportions of yeast genera. Isolations recovered 719 strains, belonging to the classes Dothideomycetes, Saccharomycetes, Tremellomycetes and Mycrobotryomycetes. The presence of few dominant bacterial OTUs and yeast species indicated a resilient microbial population that is not affected by season or altitude. Soil nutrient contents influenced significantly abundance and diversity of culturable bacteria, but not of culturable yeasts.

  9. Functional coupling of a nematode chemoreceptor to the yeast pheromone response pathway.

    Muhammad Tehseen

    Full Text Available Sequencing of the Caenorhabditis elegans genome revealed sequences encoding more than 1,000 G-protein coupled receptors, hundreds of which may respond to volatile organic ligands. To understand how the worm's simple olfactory system can sense its chemical environment there is a need to characterise a representative selection of these receptors but only very few receptors have been linked to a specific volatile ligand. We therefore set out to design a yeast expression system for assigning ligands to nematode chemoreceptors. We showed that while a model receptor ODR-10 binds to C. elegans Gα subunits ODR-3 and GPA-3 it cannot bind to yeast Gα. However, chimaeras between the nematode and yeast Gα subunits bound to both ODR-10 and the yeast Gβγ subunits. FIG2 was shown to be a superior MAP-dependent promoter for reporter expression. We replaced the endogenous Gα subunit (GPA1 of the Saccharomyces cerevisiae (ste2Δ sst2Δ far1Δ triple mutant ("Cyb" with a Gpa1/ODR-3 chimaera and introduced ODR-10 as a model nematode GPCR. This strain showed concentration-dependent activation of the yeast MAP kinase pathway in the presence of diacetyl, the first time that the native form of a nematode chemoreceptor has been functionally expressed in yeast. This is an important step towards en masse de-orphaning of C. elegans chemoreceptors.

  10. Subgingival distribution of yeast and their antifungal susceptibility in immunocompetent subjects with and without dental devices.

    Jewtuchowicz, Virginia M; Brusca, Maria I; Mujica, Maria T; Gliosca, Laura A; Finquelievich, Jorge L; Lovannitti, Cristina A; Rosa, Alcira C


    Yeasts colonize the subgingival biofilm, which becomes a reservoir that favors their reproduction. The purpose of the present work was to determine the prevalence of yeasts of the Candida genus in the subgingival biofilm of gingivoperiodontal disease patients, including users and non-users of dental devices, and their susceptibility to fluconazole and voriconazole. Samples of subgingival pockets of immunocompetent nonsmokers showing gingivitis and periodontitis were inoculated in a differential chromogenic medium. Sixty three percent of subjects used dental devices. Yeasts were identified and susceptibility to fluconazole and voriconazole was tested following CLSI M44-A standards. The prevalence of yeasts in the subgingival biofilm was 40% CI 95% (30.5-50.3); 10% were patients who did not use dental appliances. The most frequently observed yeasts were C. albicans, and C. parapsilosis, C. dubliniensis, C. tropicalis and C. guilliermondii. Only C. dubliniensis and C. guilliermondii showed resistance to azoles. The use of dental devices significantly increased the prevalence of yeasts in periodontal pockets inpatients presenting gingivitis. It is noteworthy that non albicans Candida species, such as C. dubliniensis and C. guilliermondii, considered emerging species, which have a diminished susceptibility to antifungal agents were found in the crevicular fluid of immunocompetent patients.

  11. Breeding of lager yeast with Saccharomyces cerevisiae improves stress resistance and fermentation performance.

    Garcia Sanchez, Rosa; Solodovnikova, Natalia; Wendland, Jürgen


    Lager beer brewing relies on strains collectively known as Saccharomyces carlsbergensis, which are hybrids between S. cerevisiae and S. eubayanus-like strains. Lager yeasts are particularly adapted to low-temperature fermentations. Selection of new yeast strains for improved traits or fermentation performance is laborious, due to the allotetraploid nature of lager yeasts. Initially, we have generated new F1 hybrids by classical genetics, using spore clones of lager yeast and S. cerevisiae and complementation of auxotrophies of the single strains upon mating. These hybrids were improved on several parameters, including growth at elevated temperature and resistance against high osmolarity or high ethanol concentrations. Due to the uncertainty of chromosomal make-up of lager yeast spore clones, we introduced molecular markers to analyse mating-type composition by PCR. Based on these results, new hybrids between a lager and an ale yeast strain were isolated by micromanipulation. These hybrids were not subject to genetic modification. We generated and verified 13 hybrid strains. All of these hybrid strains showed improved stress resistance as seen in the ale parent, including improved survival at the end of fermentation. Importantly, some of the strains showed improved fermentation rates using 18° Plato at 18-25°C. Uniparental mitochondrial DNA inheritance was observed mostly from the S. cerevisiae parent.

  12. Functional coupling of a nematode chemoreceptor to the yeast pheromone response pathway.

    Tehseen, Muhammad; Dumancic, Mira; Briggs, Lyndall; Wang, Jian; Berna, Amalia; Anderson, Alisha; Trowell, Stephen


    Sequencing of the Caenorhabditis elegans genome revealed sequences encoding more than 1,000 G-protein coupled receptors, hundreds of which may respond to volatile organic ligands. To understand how the worm's simple olfactory system can sense its chemical environment there is a need to characterise a representative selection of these receptors but only very few receptors have been linked to a specific volatile ligand. We therefore set out to design a yeast expression system for assigning ligands to nematode chemoreceptors. We showed that while a model receptor ODR-10 binds to C. elegans Gα subunits ODR-3 and GPA-3 it cannot bind to yeast Gα. However, chimaeras between the nematode and yeast Gα subunits bound to both ODR-10 and the yeast Gβγ subunits. FIG2 was shown to be a superior MAP-dependent promoter for reporter expression. We replaced the endogenous Gα subunit (GPA1) of the Saccharomyces cerevisiae (ste2Δ sst2Δ far1Δ) triple mutant ("Cyb") with a Gpa1/ODR-3 chimaera and introduced ODR-10 as a model nematode GPCR. This strain showed concentration-dependent activation of the yeast MAP kinase pathway in the presence of diacetyl, the first time that the native form of a nematode chemoreceptor has been functionally expressed in yeast. This is an important step towards en masse de-orphaning of C. elegans chemoreceptors.

  13. Identification and antigenicity of the major envelope glycoprotein of lymphadenopathy-associated virus

    Montagnier, L.; Clavel, F.; Krust, B.; Chamaret, S.; Rey, F.; Barre-Sinoussi, F.; Chermann, J.C.


    The major envelope glycoprotein of the causative agent of Acquired Immune Deficiency Syndrome (AIDS) lymphadenopathy-associated virus (LAV) has been identified and characterized. The glycoprotein has an apparent molecular weight of 110,000-120,000 under denaturing conditions in polyacrylamide gel electrophoresis. Upon deglycosylation by a specific endoglycosydase, its size is reduced to 80,000. Cellular precursors of this glycoprotein have been detected with apparent molecular weight of 150,000 and 135,000. Nearly all AIDS and pre-AIDS patients have detectable antibodies against this viral glycoprotein.

  14. Analysis of lectin-bound glycoproteins in snake venom from the Elapidae and Viperidae families.

    Nawarak, Jiraporn; Phutrakul, Suree; Chen, Shui-Tein


    This paper describes an efficient method of studying the glycoproteins found in snake venom. The glycosylation profiles of the Elapidae and Viperidae snake families were analyzed using FITC-labeled lectin glycoconjugates. The Con A-agarose affinity enrichment technique was used to fractionate glycoproteins from the N. naja kaouthia venom. The results revealed a large number of Con A binding glycoproteins, most of which have moderate to high molecular weights. To identify the proteins, the isolated glycoprotein fractions were subjected to two-dimensional electrophoresis and MALDI-TOF MS. Protein sequences were compared with published protein databases to determine for their biological functions.

  15. Selective suppression of bacterial contaminants by process conditions during lignocellulose based yeast fermentations

    Albers Eva


    Full Text Available Abstract Background Contamination of bacteria in large-scale yeast fermentations is a serious problem and a threat to the development of successful biofuel production plants. Huge research efforts have been spent in order to solve this problem, but additional ways must still be found to keep bacterial contaminants from thriving in these environments. The aim of this project was to develop process conditions that would inhibit bacterial growth while giving yeast a competitive advantage. Results Lactic acid bacteria are usually considered to be the most common contaminants in industrial yeast fermentations. Our observations support this view but also suggest that acetic acid bacteria, although not so numerous, could be a much more problematic obstacle to overcome. Acetic acid bacteria showed a capacity to drastically reduce the viability of yeast. In addition, they consumed the previously formed ethanol. Lactic acid bacteria did not show this detrimental effect on yeast viability. It was possible to combat both types of bacteria by a combined addition of NaCl and ethanol to the wood hydrolysate medium used. As a result of NaCl + ethanol additions the amount of viable bacteria decreased and yeast viability was enhanced concomitantly with an increase in ethanol concentration. The successful result obtained via addition of NaCl and ethanol was also confirmed in a real industrial ethanol production plant with its natural inherent yeast/bacterial community. Conclusions It is possible to reduce the number of bacteria and offer a selective advantage to yeast by a combined addition of NaCl and ethanol when cultivated in lignocellulosic medium such as wood hydrolysate. However, for optimal results, the concentrations of NaCl + ethanol must be adjusted to suit the challenges offered by each hydrolysate.

  16. Basidiomycete yeasts in the cortex of ascomycete macrolichens.

    Spribille, Toby; Tuovinen, Veera; Resl, Philipp; Vanderpool, Dan; Wolinski, Heimo; Aime, M Catherine; Schneider, Kevin; Stabentheiner, Edith; Toome-Heller, Merje; Thor, Göran; Mayrhofer, Helmut; Johannesson, Hanna; McCutcheon, John P


    For over 140 years, lichens have been regarded as a symbiosis between a single fungus, usually an ascomycete, and a photosynthesizing partner. Other fungi have long been known to occur as occasional parasites or endophytes, but the one lichen-one fungus paradigm has seldom been questioned. Here we show that many common lichens are composed of the known ascomycete, the photosynthesizing partner, and, unexpectedly, specific basidiomycete yeasts. These yeasts are embedded in the cortex, and their abundance correlates with previously unexplained variations in phenotype. Basidiomycete lineages maintain close associations with specific lichen species over large geographical distances and have been found on six continents. The structurally important lichen cortex, long treated as a zone of differentiated ascomycete cells, appears to consistently contain two unrelated fungi.

  17. Chromatin Assembly in a Yeast Whole-Cell Extract

    Schultz, Michael C.; Hockman, Darren J.; Harkness, Troy A. A.; Garinther, Wendy I.; Altheim, Brent A.


    A simple in vitro system that supports chromatin assembly was developed for Saccharomyces cerevisiae. The assembly reaction is ATP-dependent, uses soluble histones and assembly factors, and generates physiologically spaced nucleosomes. We analyze the pathway of histone recruitment into nucleosomes, using this system in combination with genetic methods for the manipulation of yeast. This analysis supports the model of sequential recruitment of H3/H4 tetramers and H2A/H2B dimers into nucleosomes. Using a similar approach, we show that DNA ligase I can play an important role in template repair during assembly. These studies demonstrate the utility of this system for the combined biochemical and genetic analysis of chromatin assembly in yeast.

  18. Functional state modelling approach validation for yeast and bacteria cultivations

    Roeva, Olympia; Pencheva, Tania


    In this paper, the functional state modelling approach is validated for modelling of the cultivation of two different microorganisms: yeast (Saccharomyces cerevisiae) and bacteria (Escherichia coli). Based on the available experimental data for these fed-batch cultivation processes, three different functional states are distinguished, namely primary product synthesis state, mixed oxidative state and secondary product synthesis state. Parameter identification procedures for different local models are performed using genetic algorithms. The simulation results show high degree of adequacy of the models describing these functional states for both S. cerevisiae and E. coli cultivations. Thus, the local models are validated for the cultivation of both microorganisms. This fact is a strong structure model verification of the functional state modelling theory not only for a set of yeast cultivations, but also for bacteria cultivation. As such, the obtained results demonstrate the efficiency and efficacy of the functional state modelling approach. PMID:26740778

  19. Kinetic and Stochastic Models of 1D yeast ``prions"

    Kunes, Kay


    Mammalian prion proteins (PrP) are of public health interest because of mad cow and chronic wasting diseases. Yeasts have proteins, which can undergo similar reconformation and aggregation processes to PrP; yeast ``prions" are simpler to experimentally study and model. Recent in vitro studies of the SUP35 protein (1), showed long aggregates and pure exponential growth of the misfolded form. To explain this data, we have extended a previous model of aggregation kinetics along with our own stochastic approach (2). Both models assume reconformation only upon aggregation, and include aggregate fissioning and an initial nucleation barrier. We find for sufficiently small nucleation rates or seeding by small dimer concentrations that we can achieve the requisite exponential growth and long aggregates.

  20. Functional state modelling approach validation for yeast and bacteria cultivations.

    Roeva, Olympia; Pencheva, Tania


    In this paper, the functional state modelling approach is validated for modelling of the cultivation of two different microorganisms: yeast (Saccharomyces cerevisiae) and bacteria (Escherichia coli). Based on the available experimental data for these fed-batch cultivation processes, three different functional states are distinguished, namely primary product synthesis state, mixed oxidative state and secondary product synthesis state. Parameter identification procedures for different local models are performed using genetic algorithms. The simulation results show high degree of adequacy of the models describing these functional states for both S. cerevisiae and E. coli cultivations. Thus, the local models are validated for the cultivation of both microorganisms. This fact is a strong structure model verification of the functional state modelling theory not only for a set of yeast cultivations, but also for bacteria cultivation. As such, the obtained results demonstrate the efficiency and efficacy of the functional state modelling approach.