WorldWideScience

Sample records for yeast clinical isolates

  1. Comparison of Three Commercial Systems for Identification of Yeasts Commonly Isolated in the Clinical Microbiology Laboratory

    Science.gov (United States)

    Wadlin, Jill K.; Hanko, Gayle; Stewart, Rebecca; Pape, John; Nachamkin, Irving

    1999-01-01

    We evaluated three commercial systems (RapID Yeast Plus System; Innovative Diagnostic Systems, Norcross, Ga.; API 20C Aux; bioMerieux-Vitek, Hazelwood, Mo.; and Vitek Yeast Biochemical Card, bioMerieux-Vitek) against an auxinographic and microscopic morphologic reference method for the ability to identify yeasts commonly isolated in our clinical microbiology laboratory. Two-hundred one yeast isolates were compared in the study. The RapID Yeast Plus System was significantly better than either API 20C Aux (193 versus 167 correct identifications; P clinically relevant yeasts. PMID:10325356

  2. Limitations of the Current Microbial Identification System for Identification of Clinical Yeast Isolates

    Science.gov (United States)

    Kellogg, James A.; Bankert, David A.; Chaturvedi, Vishnu

    1998-01-01

    The ability of the rapid, computerized Microbial Identification System (MIS; Microbial ID, Inc.) to identify a variety of clinical isolates of yeast species was compared to the abilities of a combination of tests including the Yeast Biochemical Card (bioMerieux Vitek), determination of microscopic morphology on cornmeal agar with Tween 80, and when necessary, conventional biochemical tests and/or the API 20C Aux system (bioMerieux Vitek) to identify the same yeast isolates. The MIS chromatographically analyzes cellular fatty acids and compares the results with the fatty acid profiles in its database. Yeast isolates were subcultured onto Sabouraud dextrose agar and were incubated at 28°C for 24 h. The resulting colonies were saponified, methylated, extracted, and chromatographically analyzed (by version 3.8 of the MIS YSTCLN database) according to the manufacturer’s instructions. Of 477 isolates of 23 species tested, 448 (94%) were given species names by the MIS and 29 (6%) were unidentified (specified as “no match” by the MIS). Of the 448 isolates given names by the MIS, only 335 (75%) of the identifications were correct to the species level. While the MIS correctly identified only 102 (82%) of 124 isolates of Candida glabrata, the predictive value of an MIS identification of unknown isolates as C. glabrata was 100% (102 of 102) because no isolates of other species were misidentified as C. glabrata. In contrast, while the MIS correctly identified 100% (15 of 15) of the isolates of Saccharomyces cerevisiae, the predictive value of an MIS identification of unknown isolates as S. cerevisiae was only 47% (15 of 32), because 17 isolates of C. glabrata were misidentified as S. cerevisiae. The low predictive values for accuracy associated with MIS identifications for most of the remaining yeast species indicate that the procedure and/or database for the system need to be improved. PMID:9574676

  3. [The in vitro antifungal activities of fluconazole against pathogenic yeasts recently isolated from clinical specimens].

    Science.gov (United States)

    Yamaguchi, H; Igari, J; Kume, H; Abe, M; Oguri, T; Kanno, H; Kawakami, S; Okuzumi, K; Fukayama, M; Ito, A; Kawata, K; Uchida, K

    1997-09-01

    The emergence of Candida albicans resistance to azole antifungal agents have been reported in the U. S. and Europe. We examined the in vitro antifungal activities of fluconazole against clinical isolates collected by seven investigators in three years to examine if a tendency existed toward the development of azole-resistance among fungal isolates in Japan. The following results were obtained: 1. Sensitivities to fluconazole (FLCZ) were determined for yeast-like fungi, including 113 strains isolated in 1993, 149 strains isolated in 1994 and 205 strains isolated in 1995. No significant differences in sensitivities in the three years were detected. 2. Minimum inhibitory concentrations of FLCZ were 0.1-0.78 microgram/ml for C. albicans and 3.13-25 micrograms/ml for C. glabrata. Strains with 25 micrograms/ml of FLCZ's MIC were detected; two strains of C. krusei and one strain each of C. krusei, Trichospron beigelii and Hansenula anomala. No strains with higher than 50 micrograms/ml MIC of FLCZ were detected. 3. In vitro activities of FLCZ were compared between clinical strains isolated between 1993 and 1995 and clinical strains isolated before the marketing of FLCZ (up to December 1987) or clinical yeasts isolated between 1991 and 1992. No significant differences were observed, suggesting that no tendency existed toward azole resistance among fungal strains examined.

  4. Yeast identification in routine clinical microbiology laboratory and its clinical relevance

    Directory of Open Access Journals (Sweden)

    S Agarwal

    2011-01-01

    Full Text Available Rapid identification of yeast infections is helpful in prompt appropriate antifungal therapy. In the present study, the usefulness of chromogenic medium, slide culture technique and Vitek2 Compact (V2C has been analysed. A total of 173 clinical isolates of yeast species were included in the study. An algorithm to identify such isolates in routine clinical microbiology laboratory was prepared and followed. Chromogenic medium was able to identify Candida albicans, C. tropicalis, C. krusei, C. parapsilosis and Trichosporon asahii. Chromogenic medium was also helpful in identifying "multi-species" yeast infections. The medium was unable to provide presumptive identification of C. pelliculosa, C. utilis, C. rugosa, C. glabrata and C. hemulonii. Vitek 2 compact (V2C differentiated all pseudohypae non-producing yeast species. The algorithm followed was helpful in timely presumptive identification and final diagnosis of yeast infections, including multi-species yeast infections.

  5. CHARACTERISATION OF YEASTS ISOLATED FROM VARIOUS CLINICAL SAMPLES WITH EMPHASIS ON RISK FACTORS AND CLINICAL OUTCOME OF CRYPTOCOCCAL INFECTION IN A TERTIARY CARE HOSPITAL

    Directory of Open Access Journals (Sweden)

    Zevita Venisha Furtado

    2017-12-01

    Full Text Available BACKGROUND Over the past decade, there has been a significant increase in the number of reports of systemic and mucosal yeast infections. These infections have a direct impact on the choice of empiric antifungal therapy and clinical outcome. The aim of the study is to determine the risk factors and characterisation of the yeasts from various clinical specimens. MATERIALS AND METHODS In a prospective study, a total of 200 yeasts isolated from various clinical specimens were processed and identified up to species level by germ tube test, growth on corn meal agar, sugar fermentation and assimilation test, India ink preparation, urease test and Candida differential agar. The demographic data and risk factors were recorded. Statistical Analysis- The data was analysed in terms of frequency percentage. RESULTS Candida species was the most predominant (97% among the yeasts. Majority of the isolates were C. tropicalis (44% followed by C. albicans (34%, C. glabrata, C. krusei, C. parapsilosis, Cryptococcus neoformans, C. dubliniensis, C. kefyr and Trichosporon asahii. Diabetes, broad-spectrum antibiotic therapy, prematurity, malignancy, steroids and AIDS were the risk factors. CONCLUSION There is increase in prevalence of non-albicans Candida species and increase in incidence of disseminated cryptococcosis in HIV seropositive patients. Thus, early isolation and speciation will aid the clinicians to institute proper antifungal therapy, thus decreasing morbidity and mortality.

  6. Prevalence of candida and non-candida yeasts isolated from patients with yeast fungal infections in Tehran labs

    Directory of Open Access Journals (Sweden)

    Hashemi SJ

    2011-04-01

    Full Text Available "n 800x600 Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman","serif";} Background: Infections caused by opportunistic yeasts such as Candida species, Trichosporon, Rhodotorula and Saccharomyces have increased in immunocompromis-ed patients and their identification is crucial as intrinsic and acquired resistance of some yeast species to antifungal agents are on the rise. The aim of this study was to identify the organisms to the species level in order to suggest accurate and effective antifungal therapies."n"nMethods: In this study that carried out in Tehran, Iran in 2009, 200 patients with yeast infection were medically examined and clinical specimens were prepared for direct examination and culture on Sabouraud dextrose agar. Subsequently, the isolated yeast colonies were identified using various tests including culture on Corn Meal agar with Tween 80, CHROMagar Candida and casein agar. For the definite identification of organisms some biochemical tests were done based on carbohydrate assimilation by RapID Yeast Plus System kit, and, finally, a molecular method, PCR-RFLP, using Hpa II enzyme, was performed for the remaining unknown yeast species."n"nResults: A total of 211 yeast isolates were identified in 200 patients with yeast infections. The most frequent isolated yeasts were Candida albicans, 124 (58.77%, followed by Candida parapsilosis, 36 (17.06%, Candida tropicalis, 17 (8.06%, Candida glabrata, 13 (6.16%, Candida krusei, 8 (3.79%, Candida guilliermondii, 2 (0.96%, Trichosporon, 3 (1.14%, Rhodotorula, 1 (0.47%, Saccaromyces cerevisiae, 1 (0.47% and other

  7. Comparison of Enzymatic Method Rapid Yeast Plus System with RFLP-PCR for Identification of Isolated Yeast from Vulvovaginal Candidiasis.

    Science.gov (United States)

    Hossein, Moallaei; Mirhendi, Seied Hossein; Brandão, João; Mirdashti, Reza; Rosado, Laura

    2011-09-01

    To compare two identification methods, i.e., restriction fragment length polymorphism (RFLP)-PCR analysis and enzymatic method Rapid TM Yeast Plus System to identify different species causing vulvovaginal candidiasis (VVC). Vaginal discharges of women who had attended the gynecology outpatient clinic of Mobini Hospital in Sabzevar, Iran were collected using cotton swabs and were cultured on Sabouraud dextrose agar. Isolated yeasts were identified by germ-tube testing and Rapid TM Yeast Plus System (Remel USA). For molecular identification, the isolated DNA was amplified with ITS1 and ITS4 universal primers and PCR products digested with the enzyme HpaІІ followed by agarose gel electrophoresis. Epidemiological and clinical features of women with respect to identified species were also evaluated. Out of 231 subjects enrolled, 62 VVC cases were detected. The isolated species were identified as follows: Candida albicans, 24 (38.7%), C. glabrata, 15 (24.2%), C. kefyr, 13 (21.0%) C. krusei, 9 (14.5%), and Saccharomyces cerevisiae, 1 (1.6%) by RFLP-PCR method; whereas findings by Rapid TM Yeast Plus System were C. albicans, 24 (38.7%), C. glabrata, 5 (8%), C. kefyr, 11 (17.7%) C. krusei, 2 (3.2%), S. cerevisiae, 9 (14.5%), and C. tropicalis, 6 (9.6%) as well as other nonpathogenic yeasts, 4 (6.9%). Statistical comparison showed that there is no significant difference in identification of C. albicans by the two methods; although, in this study, it was not true about other species of yeasts. A correlation between clinical and laboratory findings is important as it enables us to administer an appropriate treatment on time.

  8. Isolation and identification of radiation resistant yeasts from sea water

    International Nuclear Information System (INIS)

    Park, Jong Cheon; Jeong, Yong Uk; Kim, Du Hong; Jo, Eun A

    2011-12-01

    This study was conducted to isolate radiation-resistant yeasts from sea water for development of application technology of radiation-resistant microorganism. · Isolation of 656 yeasts from sea water and selection of 2 radiation-resistant yeasts (D 10 value >3) · Identification of isolated yeasts as Filobasidium elegans sharing 99% sequence similarity · Characterization of isolated yeast with ability to repair of the DNA damage and membrane integrity to irradiation

  9. Yeast Isolation for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    EKA RURIANI

    2012-09-01

    Full Text Available We have isolated 12 yeast isolates from five different rotten fruits by using a yeast glucose chloramphenicol agar (YGCA medium supplemented with tetracycline. From pre-screening assay, four isolates exhibited higher substrate (glucose-xylose consumption efficiency in the reaction tube fermentation compared to Saccharomyces cerevisiae dan Saccharomyces ellipsoids as the reference strains. Based on the fermentation process in gooseneck flasks, we observed that two isolates (K and SB showed high fermentation efficiency both in sole glucose and mixed glucose-xylose substrate. Moreover, isolates K and SB produced relatively identical level of ethanol concentration compared to the reference strains. Isolates H and MP could only produce high levels of ethanol in glucose fermentation, while only half of that amount of ethanol was detected in glucose-xylose fermentation. Isolate K and SB were identified as Pichia kudriavzeevii (100% based on large sub unit (LSU ribosomal DNA D1/D2 region.

  10. Antifungal Activity of Brazilian Propolis Microparticles against Yeasts Isolated from Vulvovaginal Candidiasis

    Directory of Open Access Journals (Sweden)

    Kelen Fátima Dalben Dota

    2011-01-01

    Full Text Available Propolis, a resinous compound produced by Apis mellifera L. bees, is known to possess a variety of biological activities and is applied in the therapy of various infectious diseases. The aim of this study was to evaluate the in vitro antifungal activity of propolis ethanol extract (PE and propolis microparticles (PMs obtained from a sample of Brazilian propolis against clinical yeast isolates of importance in the vulvovaginal candidiasis (VVC. PE was used to prepare the microparticles. Yeast isolates (n=89, obtained from vaginal exudates of patients with VVC, were exposed to the PE and the PMs. Moreover, the main antifungal drugs used in the treatment of VVC (Fluconazole, Voriconazole, Itraconazole, Ketoconazole, Miconazole and Amphotericin B were also tested. Minimum inhibitory concentration (MIC was determined according to the standard broth microdilution method. Some Candida albicans isolates showed resistance or dose-dependent susceptibility for the azolic drugs and Amphotericin B. Non-C. albicans isolates showed more resistance and dose-dependent susceptibility for the azolic drugs than C. albicans. However, all of them were sensitive or dose-dependent susceptible for Amphotericin B. All yeasts were inhibited by PE and PMs, with small variation, independent of the species of yeast. The overall results provided important information for the potential application of PMs in the therapy of VVC and the possible prevention of the occurrence of new symptomatic episodes.

  11. [Evaluation of common commercial systems for the identification of yeast isolates in microbiology laboratories: a multicenter study].

    Science.gov (United States)

    Karabıçak, Nilgün; Uludağ Altun, Hatice; Karatuna, Onur; Hazırolan, Gülşen; Aksu, Neriman; Adiloğlu, Ali; Akyar, Işın

    2015-04-01

    Accurate and rapid identification of yeast isolates have become important in recent years for not only antifungal susceptibility testing due to the species-specific clinical resistance breakpoints but also early initiation of appropriate antifungal therapy. In clinical microbiology laboratories species identification of yeasts is often performed with several commercial systems based on biochemical properties and rarely according to the physiological and morphological characteristics. The aim of this study was to compare the two common commercial systems, VITEK 2 YST ID Card (Vitek; bioMérieux, France) and API 20C AUX (API; bioMérieux, France) with conventional mycological methods. A total of 473 clinical yeast strains isolated from clinical specimens in different university and training/research hospitals and identified by Vitek system were included in the study. The isolates were re-identified with API and conventional methods including morphological identification in the Mycology Reference Laboratory of the Public Health Institute of Turkey. Candida dubliniensis MYA 583, Candida krusei ATCC 6258, Candida parapsilosis ATCC 22019, Candida albicans ATCC 10231 and Cryptococcus neoformans ATCC 32268 were used as quality control strains and those standard strains were studied consecutively 10 days with both of the methods. The results of identification by Vitek and API were compared with the results of conventional methods for those 473 yeast isolates [6 genus (Candida, Cryptococcus, Blastoshizomyces, Rhodotorula, Saccharomyces, Trichosporon), 17 species (5 common and 12 rarely isolated)]. The performances of the systems were better (Vitek: 95%; API: 96%) for the commonly detected species (C.albicans, C.parapsilosis, C.glabrata, C.tropicalis and C.krusei) than those for rarely detected species (Vitek: 78.4%; API: 71.6%) (p= 0.155). Misidentification or unidentification were mostly detected for C.parapsilosis (Vitek: 6/87; API: 7/87) and C.glabrata (Vitek: 9/104; API

  12. Differentiation of enzymatic activity of yeasts and yeast-like microorganisms isolated from various environments

    Directory of Open Access Journals (Sweden)

    Elżbieta Bogusławska-Wąs

    2014-08-01

    Full Text Available The aim of study was to determinate enzymatic activity of yeast-like organisms - Candida lipolytica, Rhodotorula rubra, Trichosporon beigelii, Zygosaccharomyces sp. - isolated from the Szczecin Lagoon and herring salads. We have shown that lipolytic activity was higher than protcolytic for every strain tested. The lowest activity level was found out for amylolytic hydrolases. The results also demonstrated that yeast-like organisms isolated from the Szczecin Lagoon revealed much higher average enzymatic activity compared to tbe same species isolated from herring salads, excepting C. lipolytica.

  13. Species Distribution and Susceptibility to Azoles of Vaginal Yeasts Isolated Prostitutes

    Directory of Open Access Journals (Sweden)

    Norma T. Gross

    2007-01-01

    Full Text Available Objective. We investigated the use of miconazole among female prostitutes in Costa Rica as well as the distribution of vaginal yeasts and the susceptibility pattern to azoles of strains obtained from this population. Our intention was to relate a frequent use of miconazole to occurrence of vaginal yeasts resistant to azoles. Methods. Vaginal samples were taken from 277 patients that have previously used azoles. Vaginal swabs were obtained for direct microscopy and culture. Yeast isolates were identified by germ tube test and assimilation pattern. Susceptibility testing was determined using a tablet diffusion method. Results. The number of clinical Candida isolates (one from each patient was 57 (20.6%. C. albicans was the predominant species (70%, followed by C. parapsilosis (12%, C. tropicalis (5.3%, C. glabrata and C. famata (3.5% each, C. krusei, C. inconspicua and C. guilliermondii (1.7% each. The majority of vaginal Candida isolates were susceptible to ketoconazole (91%, fluconazole (96.5%, and itraconazole (98%. A lower susceptibility of some isolates to miconazole (63% was observed as compared to the other azoles tested. Moreover, the strains, nonsusceptible to miconazole, were more often obtained from patients that have used this antifungal at least four times within the last year before taking the samples as compared to those with three or less treatments (P<.01. Conclusion. An indiscriminate use of miconazole, such as that observed among female prostitutes in Costa Rica, results in a reduced susceptibility of vaginal yeasts to miconazole but not to other azoles.

  14. Multicenter Evaluation of the Bruker MALDI Biotyper CA System for the Identification of Clinically Important Bacteria and Yeasts.

    Science.gov (United States)

    Wilson, Deborah A; Young, Stephen; Timm, Karen; Novak-Weekley, Susan; Marlowe, Elizabeth M; Madisen, Neil; Lillie, Jennifer L; Ledeboer, Nathan A; Smith, Rebecca; Hyke, Josh; Griego-Fullbright, Christen; Jim, Patricia; Granato, Paul A; Faron, Matthew L; Cumpio, Joven; Buchan, Blake W; Procop, Gary W

    2017-06-01

    A report on the multicenter evaluation of the Bruker MALDI Biotyper CA System (MBT-CA; Bruker Daltonics, Billerica, MA) for the identification of clinically important bacteria and yeasts. In total, 4,399 isolates of medically important bacteria and yeasts were assessed in the MBT-CA. These included 2,262 aerobic gram-positive (AGP) bacteria, 792 aerobic gram-negative (AGN) bacteria 530 anaerobic (AnA) bacteria, and 815 yeasts (YSTs). Three processing methods were assesed. Overall, 98.4% (4,329/4,399) of all bacterial and yeast isolates were correctly identified to the genus and species/species complex level, and 95.7% of isolates were identified with a high degree of confidence. The percentage correctly identified and the percentage identified correctly with a high level of confidence, respectively, were as follows: AGP bacteria (98.6%/96.5%), AGN bacteria (98.5%/96.8%), AnA bacteria (98.5%/97.4%), and YSTs (97.8%/87.6%). The extended direct transfer method was only minimally superior to the direct transfer method for bacteria (89.9% vs 86.8%, respectively) but significantly superior for yeast isolates (74.0% vs 48.9%, respectively). The Bruker MALDI Biotyper CA System accurately identifies most clinically important bacteria and yeasts and has optional processing methods to improve isolate characterization. © American Society for Clinical Pathology, 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

  15. Identification and Characterization of Yeast Isolates from Pharmaceutical Waste Water

    Directory of Open Access Journals (Sweden)

    Marjeta Recek

    2002-01-01

    Full Text Available In order to develop an efficient an system for waste water pretreatment, the isolation of indigenous population of microorganisms from pharmaceutical waste water was done. We obtained pure cultures of 16 yeast isolates that differed slightly in colony morphology. Ten out of 16 isolates efficiently reduced COD in pharmaceutical waste water. Initial physiological characterization failed to match the 10 yeast isolates to either Pichia anomala or Pichia ciferrii. Restriction analysis of rDNA (rDNA-RFLP using three different restriction enzymes: HaeIII, MspI and CfoI, showed identical patterns of the isolates and Pichia anomala type strain. Separation of chromosomal DNAs of yeast isolates by the pulsed field gel electrophoresis revealed that the 10 isolates could be grouped into 6 karyotypes. Growth characteristics of the 6 isolates with distinct karyotypes were then studied in batch cultivation in pharmaceutical waste water for 80 hours.

  16. Molecular Identification of Unusual Pathogenic Yeast Isolates by Large Ribosomal Subunit Gene Sequencing: 2 Years of Experience at the United Kingdom Mycology Reference Laboratory▿

    Science.gov (United States)

    Linton, Christopher J.; Borman, Andrew M.; Cheung, Grace; Holmes, Ann D.; Szekely, Adrien; Palmer, Michael D.; Bridge, Paul D.; Campbell, Colin K.; Johnson, Elizabeth M.

    2007-01-01

    Rapid identification of yeast isolates from clinical samples is particularly important given their innately variable antifungal susceptibility profiles. We present here an analysis of the utility of PCR amplification and sequence analysis of the hypervariable D1/D2 region of the 26S rRNA gene for the identification of yeast species submitted to the United Kingdom Mycology Reference Laboratory over a 2-year period. A total of 3,033 clinical isolates were received from 2004 to 2006 encompassing 50 different yeast species. While more than 90% of the isolates, corresponding to the most common Candida species, could be identified by using the AUXACOLOR2 yeast identification kit, 153 isolates (5%), comprised of 47 species, could not be identified by using this system and were subjected to molecular identification via 26S rRNA gene sequencing. These isolates included some common species that exhibited atypical biochemical and phenotypic profiles and also many rarer yeast species that are infrequently encountered in the clinical setting. All 47 species requiring molecular identification were unambiguously identified on the basis of D1/D2 sequences, and the molecular identities correlated well with the observed biochemical profiles of the various organisms. Together, our data underscore the utility of molecular techniques as a reference adjunct to conventional methods of yeast identification. Further, we show that PCR amplification and sequencing of the D1/D2 region reliably identifies more than 45 species of clinically significant yeasts and can also potentially identify new pathogenic yeast species. PMID:17251397

  17. Performance of matrix-assisted laser desorption-time of flight mass spectrometry for identification of clinical yeast isolates

    DEFF Research Database (Denmark)

    Rosenvinge, Flemming S; Dzajic, Esad; Knudsen, Elisa

    2013-01-01

    Accurate and fast yeast identification is important when treating patients with invasive fungal disease as susceptibility to antifungal agents is highly species related. Matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF-MS) provides a powerful tool with a clear potential...... spectra output, all 13 isolates were correctly identified, resulting in an overall identification performance of 92%. No misidentifications occurred with the two systems. Of the routine isolates one laboratory identified 99/99 (100%) and 90/99 (91%) to species level by Saramis/Axima and conventional...... identification, respectively, whereas the other laboratory identified 83/98 (85%) to species level by both BioTyper/Bruker and conventional identification. Both MALDI-TOF-MS systems are fast, have built-in databases that cover the majority of clinically relevant Candida species, and have an accuracy...

  18. Simple, Reliable, and Cost-Effective Yeast Identification Scheme for the Clinical Laboratory

    OpenAIRE

    Koehler, Ann P.; Chu, Kai-Cheong; Houang, Elizabeth T. S.; Cheng, Augustine F. B.

    1999-01-01

    The appearance of colonies on the chromogenic medium CHROMagar Candida combined with observation of morphology on corn meal–Tween 80 agar was used for the identification of 353 clinical yeast isolates. The results were compared with those obtained with API yeast identification kits. The accuracy of identification and the turnaround time were equivalent for each method, and our cultural method was less expensive.

  19. Isolation and characterization of phenol degrading yeast.

    Science.gov (United States)

    Patel, Riddhi; Rajkumar, Shalini

    2009-04-01

    A phenol degrading yeast isolate was identified and characterized from the soil sample collected from a landfill site, in Ahmedabad, India, by plating the soil dilutions on Sabouraud's Dextrose Agar. The microscopic studies and biochemical tests indicated the isolate to be Saccharomyces cerevisiae. The phenol degrading potential of the isolate was measured by inoculation of pure culture in the mineral medium containing various phenol concentrations ranging from 100 to 800 mg l(-1 )and monitoring phenol disappearance rate at regular intervals of time. Growth of the isolate in mineral medium with various phenol concentrations was monitored by measuring the turbidity (OD(600) nm). The results showed that the isolated yeast was tolerant to phenol up to 800 mg(-1). The phenol degradation ranged from 8.57 to 100% for the concentration of phenol from 800 mg l(-1 )to 200 mg l(-1), respectively. ((c) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).

  20. Comparison of Sabouraud dextrose and Pagano-Levin agar media for detection and isolation of yeasts from oral samples.

    OpenAIRE

    Samaranayake, L P; MacFarlane, T W; Williamson, M I

    1987-01-01

    The sensitivities of Sabouraud dextrose agar and modified Pagano-Levin agar for the primary isolation of yeasts and the recovery of multiple yeast species from single clinical samples were compared by using oral-rinse samples. Although there was a highly significant positive correlation between the numbers of yeasts recovered from both media, modified Pagano-Levin agar was far superior in detecting multiple yeast species in a single sample. Of 150 oral samples containing yeasts, 23 (15.3%) co...

  1. 'Killer' character of yeasts isolated from ethanolic fermentations

    Directory of Open Access Journals (Sweden)

    Ceccato-Antonini Sandra Regina

    1999-01-01

    Full Text Available The number of killer, neutral and sensitive yeasts was determined from strains isolated from substrates related to alcoholic fermentations. From 113 isolates, 24 showed killer activity against NCYC 1006 (standard sensitive strain, while 30 were sensitive to NCYC 738 (standard killer strain, and 59 had no reaction in assays at 25-27°C. Two wild yeast strains of Saccharomyces cerevisiae and one of Candida colliculosa were tested against 10 standard killer strains and one standard sensitive strain in a cell x cell and well-test assays at four different pHs. None of the isolates displayed strong killer activity or were sensitive to the standard strains. All belonged to the neutral type. It was concluded that although the number of killer strains was high, this character cannot be used to protect ethanol fermentation processes against yeast contaminants like those which form cell clusters.

  2. [Comparison of Phoenix™ Yeast ID Panel and API® ID 32C commercial systems for the identification of Candida species isolated from clinical samples].

    Science.gov (United States)

    Gayibova, Ülkü; Dalyan Cılo, Burcu; Ağca, Harun; Ener, Beyza

    2014-07-01

    Opportunistic fungal pathogens are one of the important causes of nosocomial infections, and several different types of yeasts, especially Candida species are increasingly recovered from immunocompromised patients. Since many of the yeasts are resistant to the commonly used antifungal agents, the introduction of appropriate therapy depends on rapid and accurate identification. The aims of this study were to compare the commercial identification systems namely API® ID 32C (bioMerieux, France) and Phoenix™ Yeast ID Panel (Becton Dickinson Diagnostics, USA) for the identification of Candida species and to evaluate the effect of morphological findings in the identification process. A total of 211 yeast strains isolated from different clinical samples (111 urine, 34 blood/vascular catheter, 27 upper/lower respiratory tract, 16 abscess/pus, 13 throat/vagina swabs and 10 sterile body fluids) of 137 patients hospitalized in Uludag University Health and Research Center between October 2013 to January 2014, were included in the study. Samples were cultured on blood agar, chromogenic agar (CHROMagar Candida, BD, USA) and Saboraud's dextrose agar (SDA), and isolated yeast colonies were evaluated with germ tube test and morphological examination by microscopy on cornmeal/Tween-80 agar. The isolates were identified as well by two commercial systems according to the manufacturers' recommendations. Discrepant results between the systems were tried to be resolved by using morphological characteristics of the yeasts. Of the isolates 159 were identified identical by both of the systems, and the concordance between those systems were estimated as 75.4%. According to the concordant identification, the most frequently isolated species was C.albicans (44.1%) followed by C.tropicalis (9.9%), C.glabrata (9.5%), C.parapsilosis (8.5%) and C.kefyr (8.1%). The concordance rate was 81.7% in identification of frequently isolated species (C.albicans, C.tropicalis, C.parapsilosis, C.glabrata, C

  3. Species distribution and in vitro antifungal susceptibility of oral yeast isolates from Tanzanian HIV-infected patients with primary and recurrent oropharyngeal candidiasis.

    NARCIS (Netherlands)

    Hamza, O.J.M.; Matee, M.I.N.; Moshi, M.J.; Simon, E.N.; Mugusi, F.; Mikx, F.H.M.; Palenstein Helderman, W.H. van; Rijs, A.J.M.M.; Ven, A.J.A.M. van der; Verweij, P.E.

    2008-01-01

    BACKGROUND: In Tanzania, little is known on the species distribution and antifungal susceptibility profiles of yeast isolates from HIV-infected patients with primary and recurrent oropharyngeal candidiasis. METHODS: A total of 296 clinical oral yeasts were isolated from 292 HIV-infected patients

  4. Determination of antifungal susceptibility patterns among the clinical isolates of Candida species

    Directory of Open Access Journals (Sweden)

    Kamiar Zomorodian

    2011-01-01

    Full Text Available Context: Candida species are opportunistic yeasts that cause infections ranging from simple dermatosis to potentially life-threatening fungemia. The emergence of resistance to antifungal drugs has been increased in the past two decades. Aim: the present study we determined to find out the susceptibility profiles of clinical isolates of Candida species against four antifungal drugs, including amphotericin B, ketoconazole, fluconazole and itraconazole. Materials and Methods: Antifungal susceptibility testing of the yeasts was done in accordance with the proposed guidelines for antifungal disk diffusion susceptibility testing of yeasts based on the CLSI document M44-A. Results: A total of 206 yeast isolates were assessed. Among the evaluated Candida species, the highest rates of resistance to ketoconazole were seen in Candida glabrata (16.6% and Candida albicans (3.2%. Susceptibility and intermediate response to fluconazole were seen in 96.6% and 3.4% of the Candida isolates, respectively. A total of 19 (9.2% yeast isolates showed petite phenomenon including 11 C. glabrata, 3 C. albicans, 2 Candida dubliniensis and one isolate of each Candida krusei and Candida parapsilosis. Conclusion: The high number of petite mutation in the isolated yeasts should be seriously considered since it may be one of the reasons of antifungal treatment failure.

  5. The Slime Production by Yeasts Isolated from Subclinical Mastitic Cows

    Directory of Open Access Journals (Sweden)

    Süheyla Türkyılmaz

    2010-01-01

    Full Text Available The aim of this study was to isolate yeasts from subclinical mastitic cows and to investigate the slime production by the isolated yeasts. The material used in this study included 339 milk samples from 152 dairy cattle with subclinical mastitis. Milk was plated onto blood agar, MacConkey agar and Sabouraud dextrose agar. Forty-one samples (12.1% of total milk samples were found positive for the yeast by API 20 C AUX identification system. The isolated yeasts were classified into four genera of Candida, Trichosporon, Cryptococcus and Saccharomyces. The Candida species were following: C. krusei, C. kefyr, C. guilliermondii, C. famata, C. rugosa and C. utulis. Other yeasts were identified as Trichosporon mucoides, T. asahii, Cryptococcus laurentii, C.  neoformans and Saccharomyces cerevisiae. Slime production was tested on Congo red brain heart infusion agar and evaluated according to Congo red phenomenon. Fifteen (36.6% strains were slime factor positive: seven were C. krusei, four C. kefyr, one C. guilliermondii, one C. famata, one T. asahii, and one C. laurentii. The results of the present study indicate that yeast mastitis is significant for causing economic losses and slime production is mostly found in non-albicans Candida species. Therefore, non-albicans Candida species should be examined for slime production.

  6. Performance of optimized McRAPD in identification of 9 yeast species frequently isolated from patient samples: potential for automation.

    Science.gov (United States)

    Trtkova, Jitka; Pavlicek, Petr; Ruskova, Lenka; Hamal, Petr; Koukalova, Dagmar; Raclavsky, Vladislav

    2009-11-10

    Rapid, easy, economical and accurate species identification of yeasts isolated from clinical samples remains an important challenge for routine microbiological laboratories, because susceptibility to antifungal agents, probability to develop resistance and ability to cause disease vary in different species. To overcome the drawbacks of the currently available techniques we have recently proposed an innovative approach to yeast species identification based on RAPD genotyping and termed McRAPD (Melting curve of RAPD). Here we have evaluated its performance on a broader spectrum of clinically relevant yeast species and also examined the potential of automated and semi-automated interpretation of McRAPD data for yeast species identification. A simple fully automated algorithm based on normalized melting data identified 80% of the isolates correctly. When this algorithm was supplemented by semi-automated matching of decisive peaks in first derivative plots, 87% of the isolates were identified correctly. However, a computer-aided visual matching of derivative plots showed the best performance with average 98.3% of the accurately identified isolates, almost matching the 99.4% performance of traditional RAPD fingerprinting. Since McRAPD technique omits gel electrophoresis and can be performed in a rapid, economical and convenient way, we believe that it can find its place in routine identification of medically important yeasts in advanced diagnostic laboratories that are able to adopt this technique. It can also serve as a broad-range high-throughput technique for epidemiological surveillance.

  7. Species distribution and in vitro antifungal susceptibility of oral yeast isolates from Tanzanian HIV-infected patients with primary and recurrent oropharyngeal candidiasis

    Directory of Open Access Journals (Sweden)

    Rijs Antonius JMM

    2008-08-01

    Full Text Available Abstract Background In Tanzania, little is known on the species distribution and antifungal susceptibility profiles of yeast isolates from HIV-infected patients with primary and recurrent oropharyngeal candidiasis. Methods A total of 296 clinical oral yeasts were isolated from 292 HIV-infected patients with oropharyngeal candidiasis at the Muhimbili National Hospital, Dar es Salaam, Tanzania. Identification of the yeasts was performed using standard phenotypic methods. Antifungal susceptibility to fluconazole, itraconazole, miconazole, clotrimazole, amphotericin B and nystatin was assessed using a broth microdilution format according to the guidelines of the Clinical and Laboratory Standard Institute (CLSI; M27-A2. Results Candida albicans was the most frequently isolated species from 250 (84.5% patients followed by C. glabrata from 20 (6.8% patients, and C. krusei from 10 (3.4% patients. There was no observed significant difference in species distribution between patients with primary and recurrent oropharyngeal candidiasis, but isolates cultured from patients previously treated were significantly less susceptible to the azole compounds compared to those cultured from antifungal naïve patients. Conclusion C. albicans was the most frequently isolated species from patients with oropharyngeal candidiasis. Oral yeast isolates from Tanzania had high level susceptibility to the antifungal agents tested. Recurrent oropharyngeal candidiasis and previous antifungal therapy significantly correlated with reduced susceptibility to azoles antifungal agents.

  8. In Vitro Activities of Terbinafine against Cutaneous Isolates of Candida albicans and Other Pathogenic Yeasts

    Science.gov (United States)

    Ryder, Neil S.; Wagner, Sonja; Leitner, Ingrid

    1998-01-01

    Terbinafine is active in vitro against a wide range of pathogenic fungi, including dermatophytes, molds, dimorphic fungi, and some yeasts, but earlier studies indicated that the drug had little activity against Candida albicans. In contrast, clinical studies have shown topical and oral terbinafine to be active in cutaneous candidiasis and Candida nail infections. In order to define the anti-Candida activity of terbinafine, we tested the drug against 350 fresh clinical isolates and additional strains by using a broth dilution assay standardized according to the guidelines of the National Committee for Clinical Laboratory Standards (NCCLS) M27-A assay. Terbinafine was found to have an MIC of 1 μg/ml for reference C. albicans strains. For 259 clinical isolates, the MIC at which 50% of the isolates are inhibited (MIC50) of terbinafine was 1 μg/ml (fluconazole, 0.5 μg/ml), and the MIC90 was 4 μg/ml (fluconazole, 1 μg/ml). Terbinafine was highly active against Candida parapsilosis (MIC90, 0.125 μg/ml) and showed potentially interesting activity against isolates of Candida dubliniensis, Candida guilliermondii, Candida humicola, and Candida lusitaniae. It was not active against the Candida glabrata, Candida krusei, and Candida tropicalis isolates in this assay. Cryptococcus laurentii and Cryptococcus neoformans were highly susceptible to terbinafine, with MICs of 0.06 to 0.25 μg/ml. The NCCLS macrodilution assay provides reproducible in vitro data for terbinafine against Candida and other yeasts. The MICs for C. albicans and C. parapsilosis are compatible with the known clinical efficacy of terbinafine in cutaneous infections, while the clinical relevance of its activities against the other species has yet to be determined. PMID:9593126

  9. Starvation-associated genome restructuring can lead to reproductive isolation in yeast.

    Directory of Open Access Journals (Sweden)

    Evgueny Kroll

    Full Text Available Knowledge of the mechanisms that lead to reproductive isolation is essential for understanding population structure and speciation. While several models have been advanced to explain post-mating reproductive isolation, experimental data supporting most are indirect. Laboratory investigations of this phenomenon are typically carried out under benign conditions, which result in low rates of genetic change unlikely to initiate reproductive isolation. Previously, we described an experimental system using the yeast Saccharomyces cerevisiae where starvation served as a proxy to any stress that decreases reproduction and/or survivorship. We showed that novel lineages with restructured genomes quickly emerged in starved populations, and that these survivors were more fit than their ancestors when re-starved. Here we show that certain yeast lineages that survive starvation have become reproductively isolated from their ancestor. We further demonstrate that reproductive isolation arises from genomic rearrangements, whose frequency in starving yeast is several orders of magnitude greater than an unstarved control. By contrast, the frequency of point mutations is less than 2-fold greater. In a particular case, we observe that a starved lineage becomes reproductively isolated as a direct result of the stress-related accumulation of a single chromosome. We recapitulate this result by demonstrating that introducing an extra copy of one or several chromosomes into naïve, i.e. unstarved, yeast significantly diminishes their fertility. This type of reproductive barrier, whether arising spontaneously or via genetic manipulation, can be removed by making a lineage euploid for the altered chromosomes. Our model provides direct genetic evidence that reproductive isolation can arise frequently in stressed populations via genome restructuring without the precondition of geographic isolation.

  10. [Evaluation of mass spectrometry for the identification of clinically interesting yeasts].

    Science.gov (United States)

    Galán, Fátima; García-Agudo, Lidia; Guerrero, Inmaculada; Marín, Pilar; García-Tapia, Ana; García-Martos, Pedro; Rodríguez-Iglesias, Manuel

    2015-01-01

    Identification of yeasts is based on morphological, biochemical and nutritional characteristics, and using molecular methods. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry, a new method for the identification of microorganisms, has demonstrated to be very useful. The aim of this study is to evaluate this new method in the identification of yeasts. A total of 600 strains of yeasts isolated from clinical specimens belonging to 9 genera and 43 species were tested. Identification was made by sequencing of the ITS regions of ribosomal DNA, assimilation of carbon compounds (ID 32C), and mass spectrometry on a Microflex spectrometer (Bruker Daltonics GmbH, Germany). A total of 569 strains (94.8%) were identified to species level by ID 32C, and 580 (96.7%) by MALDI-TOF. Concordance between both methods was observed for 553 strains (92.2%), with 100% in clinically relevant species: C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, and almost 100% in C. krusei. MALDI-TOF identified species requiring molecular methods: Candida dubliniensis, C. nivariensis, C. metapsilosis and C. orthopsilosis. Some irregularities were observed in the identification of arthroconidia yeast and basidiomycetes. MALDI-TOF is a rapid, effective and economic method, which enables the identification of most clinically important yeasts and the differentiation of closely related species. It would be desirable to include more species in its database to expand its performance. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.

  11. The diversity, extracellular enzymatic activities and photoprotective compounds of yeasts isolated in Antarctica

    Directory of Open Access Journals (Sweden)

    Aline B. M Vaz

    2011-09-01

    Full Text Available The diversity of yeasts collected from different sites in Antarctica (Admiralty Bay, King George Island and Port Foster Bay and Deception Island and their ability to produce extracellular enzymes and mycosporines were studied. Samples were collected during the austral summer season, between November 2006 and January 2007, from the rhizosphere of Deschampsia antarctica, ornithogenic (penguin guano soil, soil, marine and lake sediments, marine water and freshwater from lakes. A total of 89 isolates belonging to the following genera were recovered: Bensingtonia, Candida, Cryptococcus, Debaryomyces, Dioszegia, Exophiala, Filobasidium, Issatchenkia (Pichia, Kodamaea, Leucosporidium, Leucosporidiella, Metschnikowia, Nadsonia, Pichia, Rhodotorula, and Sporidiobolus, and the yeast-like fungi Aureobasidium, Leuconeurospora and Microglossum. Cryptococcus victoriae was the most frequently identified species. Several species isolated in our study have been previously reported to be Antarctic psychophilic yeasts, including Cr. antarcticus, Cr. victoriae, Dioszegia hungarica and Leucosporidium scottii. The cosmopolitan yeast species A. pullulans, C. zeylanoides, D. hansenii, I. orientalis, K. ohmeri, P. guilliermondii, Rh. mucilaginosa, and S. salmonicolor were also isolated. Five possible new species were identified. Sixty percent of the yeasts had at least one detectable extracellular enzymatic activity. Cryptococcus antarcticus, D. aurantiaca, D. crocea, D. hungarica, Dioszegia sp., E. xenobiotica, Rh. glaciales, Rh. laryngis, Microglossum sp. 1 and Microglossum sp. 2 produced mycosporines. Of the yeast isolates, 41.7% produced pigments and/or mycosporines and could be considered adapted to survive in Antarctica. Most of the yeasts had extracellular enzymatic activities at 4ºC and 20ºC, indicating that they could be metabolically active in the sampled substrates.

  12. Mechanisms of azole resistance in a clinical isolate of Candida tropicalis.

    Science.gov (United States)

    Vandeputte, Patrick; Larcher, Gérald; Bergès, Thierry; Renier, Gilles; Chabasse, Dominique; Bouchara, Jean-Philippe

    2005-11-01

    Azole resistance has been insufficiently investigated in the yeast Candida tropicalis. Here we determined the molecular mechanisms responsible for azole resistance in a clinical isolate of this pathogenic yeast. Antifungal susceptibility testing performed by a disk diffusion method showed resistance or markedly decreased susceptibility to azoles, which was confirmed by determination of MICs. Considering the relationship between azole susceptibility and the respiration reported for other yeast species, the respiratory activity of this isolate was investigated. Flow cytometry using rhodamine 123 and oxygraphy demonstrated an increased respiratory activity, which was not linked to an overexpression or increased number of copies of the mitochondrial genome. Among previously described resistance mechanisms, an increased activity of efflux pumps was investigated by flow cytometry using rhodamine 6G. However, the efflux of rhodamine 6G was lower in the resistant isolate than in susceptible ones. Likewise, real-time reverse transcription-PCR quantification of the expression of C. tropicalis MDR1 (CtMDR1), which encodes an efflux protein belonging to the major facilitator superfamily, did not show overexpression of this gene. In contrast, the resistant isolate overexpressed the CtERG11 gene coding for lanosterol 14alpha-demethylase. This was in agreement with the larger amount of ergosterol found in this isolate. Moreover, sequencing of CtERG11 showed a point mutation leading to a tyrosine substitution in the protein sequence, which might lead to decreased binding affinity for azoles. In conclusion, overexpression of CtERG11 associated with a missense mutation in this gene seemed to be responsible for the acquired azole resistance of this clinical isolate.

  13. Molecular Characterization of Yeast Strains Isolated from Different Sources by Restriction Fragment Length Polymorphism

    International Nuclear Information System (INIS)

    Ali, M. S.; Latif, Z.

    2016-01-01

    Various molecular techniques like analysis of the amplified rDNA internal transcribed spacers (ITS), intragenic spacers and total ITS region analysis by restriction fragment length polymorphism (RFLP) has been introduced for yeast identification but there are limited databases to identify yeast species on the basis of 5.8S rDNA. In this study, twenty nine yeast strains from various sources including spoiled fruits, vegetables, foodstuffs, and concentrated juices were characterized by PCR-RFLP. PCR-RFLP has been used to characterize yeasts present in different spoiled food samples after isolation of the yeasts. By using this technique, the isolated yeast strains were characterized by direct 5.8S-ITS rDNA region amplification. RFLP analysis was applied to each of the amplification products (varied from 400bp to 800bp) detected, and the corresponding yeast identifications were made according to each specific restriction patterns obtained after treatment with two endonucleases TaqI and HaeIII which yielded a specific banding pattern for each species. For further confirmation amplified products of eleven selected isolates were sequenced and blast on NCBI. Both RFLP and sequence analyses of the strains with accession nos. KF472163, KF472164, KF472165, KF472166, KF472167, KF472168, KF472169, KF472170, KF472171, KF472172, KF472173 gave significantly similar results. The isolates were found to belong five different yeast species including; Candida spp., Pichia spp., Kluyveromyces spp., Clavispora spp. and Hanseniaspora spp. This method provides a fast, easy, reliable and authentic way for determining yeast population present in different type of samples, as compared to traditional characterization technique. (author)

  14. Effect of edible sesame oil on growth of clinical isolates of Candida albicans.

    Science.gov (United States)

    Ogawa, Toshiko; Nishio, Junko; Okada, Shinobu

    2014-07-01

    Elderly individuals are at increased risk of oral thrush (oral candidiasis) due to decreased saliva secretion. Due to their antimicrobial properties, edible oils can be effective natural agents for oral care. The objective of the present study was to compare the effects of sesame oil, which is widely used for cooking in Asian countries, and two other edible oils on the growth of both mycelial and yeast forms of five clinical isolates of Candida albicans, a causative microorganism of oral thrush. We assessed the effect of each oil in concentrations of 0.078%, 0.156%, and 0.313% on growth of the mycelial forms of the clinical isolates over 24 hr using the crystal violet method. We also evaluated the effect of each oil on growth of the yeast forms by counting the number of viable yeast cells after culturing in the oils for 24 hr. Sesame oil inhibited the growth of both mycelial and yeast forms. Safflower and olive oil also inhibited the growth of both forms of C. albicans but to a lesser extent than sesame oil. The ability to inhibit the growth of the mycelial form correlated with sesame oil concentration. Roasting influenced growth inhibition ability and high-roasted sesame oil most effectively inhibited the yeast form. The growth inhibitory effect differed among the five isolates. We hypothesize that the sesamin and fatty acid components of sesame oil are involved in its antifungal activity. © The Author(s) 2013.

  15. Ethanol production potential of local yeast strains isolated from ripe ...

    African Journals Online (AJOL)

    The ability of different yeast strains isolated from ripe banana peels to produce ethanol was investigated. Of the 8 isolates screened for their fermentation ability, 5 showed enhanced performance and were subsequently identified and assessed for important ethanol fermentation attributes such as ethanol producing ability, ...

  16. [Susceptibility of yeasts to antifungal agents in Kaunas University of Medicine Hospital].

    Science.gov (United States)

    Skrodeniene, Erika; Dambrauskiene, Asta; Vitkauskiene, Astra

    2006-01-01

    The aim of this study was to determine the species of yeast and their susceptibility to antifungal agents isolated from clinical specimens of patients treated in Kaunas University of Medicine Hospital. A total of 142 yeasts isolated from various clinical specimens of patients hospitalized in Kaunas University of Medicine Hospital were included in this study. All yeasts were cultivated on Sabouraud dextrose agar and identified using either CHROM agar or API 20C AUX system. The minimum inhibitory concentrations of fluconazole, itraconazole, and amphotericin B were determined by the ATB FUNGUS 2 agar microdilution test. In all clinical specimens except blood, Candida albicans was the most frequently isolated yeast (65.5%, pyeast strains showed resistance to fluconazole. Nearly one-fourth of Candida albicans strains (24.7%) and 23.2% of all isolated yeast strains showed resistance to itraconazole. Almost all of fluconazole-resistant (93.3%) and 12.6% of fluconazole-susceptible yeast were found to be resistant to itraconazole (pyeast strains were susceptible to amphotericin B. Candida albicans strains were significantly frequently resistant to fluconazole than non-albicans Candida species (15.1% and 4.1%, respectively, pyeast isolated in Kaunas University of Medicine Hospital. There was determined that yeasts resistant to fluconazole were commonly resistant to itraconazole too. All isolated yeast strains were susceptible to amphotericin B.

  17. Identification and enzymatic characterization of the yeasts isolated from Erzincan tulum cheese

    Directory of Open Access Journals (Sweden)

    S. Karasu-Yalcin

    2012-03-01

    Full Text Available In this study, 146 yeast isolates were obtained from 45 Erzincan tulum cheese samples. By using API ID 32C test system and some complementary morphological, physiological and biochemica tests, 121 of the isolates could be identified at species level, while 12 of them were identified at genus level. The identified yeast isolates belonged to six different genera which were Candida, Geotrichum, Kluyveromyces, Pichia, Saccharomyces and Zygosaccharomyces. The most aboundant species was C. lambica, followed by C. zeylanoides, C. famata var. famata, G. candidum and C. kefyr. Enzymatic characterization of the strains was determined by using API-ZYM test system. All of the isolates had leucin arylamidase activity. Eight strains belonging to S. cerevisiae, Z. mellis, G. candidum and P. fermentans were found to have high leucin arylamidase activities. Most of the isolates had β-galactosidase, acid phosphatase and esterase lipase (C8 activities. Eight investigated C. lambica strains had high acid phosphatase activities. Such enzymatic properties of investigated yeast isolates could be fundamental factor for their application as starter culture candidates in production of Erzincan tulum cheese. It was demonstrated that the strain C. lambica T103 had superior enzymatic characteristics with the potential to be used in further technological investigations as an adjunct starter.

  18. Evaluation of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of clinically important yeast species.

    Science.gov (United States)

    Stevenson, Lindsay G; Drake, Steven K; Shea, Yvonne R; Zelazny, Adrian M; Murray, Patrick R

    2010-10-01

    We evaluated the use of matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) for the rapid identification of yeast species. Using Bruker Daltonics MALDI BioTyper software, we created a spectral database library with m/z ratios of 2,000 to 20,000 Da for 109 type and reference strains of yeast (44 species in 8 genera). The database was tested for accuracy by use of 194 clinical isolates (23 species in 6 genera). A total of 192 (99.0%) of the clinical isolates were identified accurately by MALDI-TOF MS. The MALDI-TOF MS-based method was found to be reproducible and accurate, with low consumable costs and minimal preparation time.

  19. Rhodotorula portillonensis sp. nov., a basidiomycetous yeast isolated from Antarctic shallow-water marine sediment.

    Science.gov (United States)

    Laich, Federico; Vaca, Inmaculada; Chávez, Renato

    2013-10-01

    During the characterization of the mycobiota associated with shallow-water marine environments from Antarctic sea, a novel pink yeast species was isolated. Sequence analysis of the D1/D2 domain of the LSU rDNA gene and 5.8S-ITS regions revealed that the isolated yeast was closely related to Rhodotorula pallida CBS 320(T) and Rhodotorula benthica CBS 9124(T). On the basis of morphological, biochemical and physiological characterization and phylogenetic analyses, a novel basidiomycetous yeast species, Rhodotorula portillonensis sp. nov., is proposed. The type strain is Pi2(T) ( = CBS 12733(T)  = CECT 13081(T)) which was isolated from shallow-water marine sediment in Fildes Bay, King George Island, Antarctica.

  20. Plant growth-promoting traits of yeasts isolated from the phyllosphere and rhizosphere of Drosera spatulata Lab.

    Science.gov (United States)

    Fu, Shih-Feng; Sun, Pei-Feng; Lu, Hsueh-Yu; Wei, Jyuan-Yu; Xiao, Hong-Su; Fang, Wei-Ta; Cheng, Bai-You; Chou, Jui-Yu

    2016-03-01

    Microorganisms can promote plant growth through direct and indirect mechanisms. Compared with the use of bacteria and mycorrhizal fungi, the use of yeasts as plant growth-promoting (PGP) agents has not been extensively investigated. In this study, yeast isolates from the phyllosphere and rhizosphere of the medicinally important plant Drosera spatulata Lab. were assessed for their PGP traits. All isolates were tested for indole-3-acetic acid-, ammonia-, and polyamine-producing abilities, calcium phosphate and zinc oxide solubilizing ability, and catalase activity. Furthermore, the activities of siderophore, 1-aminocyclopropane-1-carboxylate deaminase, and fungal cell wall-degrading enzymes were assessed. The antagonistic action of yeasts against pathogenic Glomerella cingulata was evaluated. The cocultivation of Nicotiana benthamiana with yeast isolates enhanced plant growth, indicating a potential yeast-plant interaction. Our study results highlight the potential use of yeasts as plant biofertilizers under controlled and field conditions. Copyright © 2016 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  1. Spectrum and the In Vitro Antifungal Susceptibility Pattern of Yeast Isolates in Ethiopian HIV Patients with Oropharyngeal Candidiasis.

    Science.gov (United States)

    Moges, Birhan; Bitew, Adane; Shewaamare, Aster

    2016-01-01

    Background. In Ethiopia, little is known regarding the distribution and the in vitro antifungal susceptibility profile of yeasts. Objective. This study was undertaken to determine the spectrum and the in vitro antifungal susceptibility pattern of yeasts isolated from HIV infected patients with OPC. Method. Oral pharyngeal swabs taken from oral lesions of study subjects were inoculated onto Sabouraud Dextrose Agar. Yeasts were identified by employing conventional test procedures and the susceptibility of yeasts to antifungal agents was evaluated by disk diffusion assay method. Result. One hundred and fifty-five yeast isolates were recovered of which 91 isolates were from patients that were not under HAART and 64 were from patients that were under HAART. C. albicans was the most frequently isolated species followed by C. glabrata, C. tropicalis, C. krusei, C. kefyr, Cryptococcus laurentii, and Rhodotorula species. Irrespective of yeasts isolated and identified, 5.8%, 5.8%, 12.3%, 8.4%, 0.6%, and 1.3% of the isolates were resistant to amphotericin B, clotrimazole, fluconazole, ketoconazole, miconazole, and nystatin, respectively. Conclusion. Yeast colonization rate of 69.2% and 31% resistance to six antifungal agents was documented. These highlight the need for nationwide study on the epidemiology of OPC and resistance to antifungal drugs.

  2. Spectrum and the In Vitro Antifungal Susceptibility Pattern of Yeast Isolates in Ethiopian HIV Patients with Oropharyngeal Candidiasis

    Directory of Open Access Journals (Sweden)

    Birhan Moges

    2016-01-01

    Full Text Available Background. In Ethiopia, little is known regarding the distribution and the in vitro antifungal susceptibility profile of yeasts. Objective. This study was undertaken to determine the spectrum and the in vitro antifungal susceptibility pattern of yeasts isolated from HIV infected patients with OPC. Method. Oral pharyngeal swabs taken from oral lesions of study subjects were inoculated onto Sabouraud Dextrose Agar. Yeasts were identified by employing conventional test procedures and the susceptibility of yeasts to antifungal agents was evaluated by disk diffusion assay method. Result. One hundred and fifty-five yeast isolates were recovered of which 91 isolates were from patients that were not under HAART and 64 were from patients that were under HAART. C. albicans was the most frequently isolated species followed by C. glabrata, C. tropicalis, C. krusei, C. kefyr, Cryptococcus laurentii, and Rhodotorula species. Irrespective of yeasts isolated and identified, 5.8%, 5.8%, 12.3%, 8.4%, 0.6%, and 1.3% of the isolates were resistant to amphotericin B, clotrimazole, fluconazole, ketoconazole, miconazole, and nystatin, respectively. Conclusion. Yeast colonization rate of 69.2% and 31% resistance to six antifungal agents was documented. These highlight the need for nationwide study on the epidemiology of OPC and resistance to antifungal drugs.

  3. Biosurfactant production by yeasts isolated from hydrocarbon polluted environments.

    Science.gov (United States)

    Kaur, Kamalpreet; Sangwan, Seema; Kaur, Harpreet

    2017-11-03

    Thirty-two yeast isolates were retrieved from four soil samples collected from hydrocarbon-polluted locations of Hisar, Haryana, using enrichment culture technique with 1% (v/v) diesel as carbon source. Total nine isolates showing blood agar haemolysis were screened further for biosurfactant production. Yeast isolate, YK32, gave highest 8.4-cm oil displacement which was found to be significantly higher as compared to positive control, 0.2% (w/v) SDS (6.6 cm), followed by 6.2 and 6.0 cm by isolates YK20 and YK21, respectively. Maximum emulsification index was obtained in case of isolates YK20 and YK21 measuring 53.8%, after 6 days of incubation utilizing glucose as carbon source, whereas isolate YK32 was found to be reducing surface tension up to 93 dynes/cm and presented 99.6% degree of hydrophobicity. Olive oil has supported maximum surface tension reduction in isolates YK32 and YK21 equivalent to 53 and 48 dynes/cm and gave 88.3 and 88.5% degree of hydrophobicity, respectively. Diesel was not preferred as carbon source by most of the isolates except YK28 which generated 5.5-cm oil displacement, 25% emulsification index, reduced surface tension to the level of 38 dynes/cm and presented 89% degree of hydrophobicity. Conclusively, isolates YK20, YK21, YK22 and YK32 were marked as promising biosurfactant producers and were subjected to identification. Based on microscopic examination and biochemical peculiarities, isolates YK21 and YK22 might be identified as Candida spp., whereas, isolates YK20 and YK32 might be identified as Saccharomycopsis spp. and Brettanomyces spp., respectively. Interestingly it is the first report indicating Saccharomycopsis spp. and Brettanomyces spp. as a potential biosurfactant producer.

  4. Comparison of the accuracy of two conventional phenotypic methods and two MALDI-TOF MS systems with that of DNA sequencing analysis for correctly identifying clinically encountered yeasts.

    Science.gov (United States)

    Chao, Qiao-Ting; Lee, Tai-Fen; Teng, Shih-Hua; Peng, Li-Yun; Chen, Ping-Hung; Teng, Lee-Jene; Hsueh, Po-Ren

    2014-01-01

    We assessed the accuracy of species-level identification of two commercially available matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) systems (Bruker Biotyper and Vitek MS) and two conventional phenotypic methods (Phoenix 100 YBC and Vitek 2 Yeast ID) with that of rDNA gene sequencing analysis among 200 clinical isolates of commonly encountered yeasts. The correct identification rates of the 200 yeast isolates to species or complex (Candida parapsilosis complex, C. guilliermondii complex and C. rugosa complex) levels by the Bruker Biotyper, Vitek MS (using in vitro devices [IVD] database), Phoenix 100 YBC and Vitek 2 Yeast ID (Sabouraud's dextrose agar) systems were 92.5%, 79.5%, 89%, and 74%, respectively. An additional 72 isolates of C. parapsilosis complex and 18 from the above 200 isolates (30 in each of C. parapsilosis, C. metapsilosis, and C. orthopsilosis) were also evaluated separately. Bruker Biotyper system could accurately identify all C. parapsilosis complex to species level. Using Vitek 2 MS (IVD) system, all C. parapsilosis but none of C. metapsilosis, or C. orthopsilosis could be accurately identified. Among the 89 yeasts misidentified by the Vitek 2 MS (IVD) system, 39 (43.8%), including 27 C. orthopsilosis isolates, could be correctly identified Using the Vitek MS Plus SARAMIS database for research use only. This resulted in an increase in the rate of correct identification of all yeast isolates (87.5%) by Vitek 2 MS. The two species in C. guilliermondii complex (C. guilliermondii and C. fermentati) isolates were correctly identified by cluster analysis of spectra generated by the Bruker Biotyper system. Based on the results obtained in the current study, MALDI-TOF MS systems present a promising alternative for the routine identification of yeast species, including clinically commonly and rarely encountered yeast species and several species belonging to C. parapsilosis complex, C. guilliermondii complex

  5. [Comparison of methods for the identification of the most common yeasts in the clinical microbiology laboratory].

    Science.gov (United States)

    Guelfand, L; Grisolía, P; Bozzano, C; Kaufman, S

    2003-01-01

    We evaluated different methods for the routine identification of medically important yeasts. A total of 150 clinical isolates: 25 C. albicans, 25 C. tropicalis, 25 C. glabrata, 25 C. parapsilosis, 8 C. guilliermondii, 11 C. krusei and 31 Cryptococcus neoformans were tested by Yeast Biochemical Card bioMerieux Vitek (YBC), CHROMagar Candida (CHR). The addition of yeast morphology in Corn Meal agar-Tween 80 (AM) to YBC and CHR was also evaluated. The reference methods used were: API 20C, germ tube formation, AM, Christensen urea and Birdseed agar. YBC identified 135 yeasts with an overall accuracy of 90%. Sensitivity (S) and specificity (E) were: 92-98% for C. albicans and C. tropicalis; 84-99% for C. papapsilosis; 100-99% for C. glabrata; 91-100% for C. krusei; 63-98% for C. guilliermondii and 90-99% for Cryptococcus neoformans, respectively. CHR identified correctly 100% for C. albicans, 92% for C. tropicalis and 91% for C. krusei. Both methods combined with AM provided 100% S and E. We found that YBC system was appropriate for identification of yeasts isolated from human sources. CHR was effective and easy to use for identification of C. albicans, C. tropicalis and C. krusei. The routine use of AM with both methods is recommended.

  6. Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater

    Science.gov (United States)

    Gargouri, Boutheina; Mhiri, Najla; Karray, Fatma; Aloui, Fathi; Sayadi, Sami

    2015-01-01

    Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons. PMID:26339653

  7. Isolation and Characterization of Hydrocarbon-Degrading Yeast Strains from Petroleum Contaminated Industrial Wastewater

    Directory of Open Access Journals (Sweden)

    Boutheina Gargouri

    2015-01-01

    Full Text Available Two yeast strains are enriched and isolated from industrial refinery wastewater. These strains were observed for their ability to utilize several classes of petroleum hydrocarbons substrates, such as n-alkanes and aromatic hydrocarbons as a sole carbon source. Phylogenetic analysis based on the D1/D2 variable domain and the ITS-region sequences indicated that strains HC1 and HC4 were members of the genera Candida and Trichosporon, respectively. The mechanism of hydrocarbon uptaking by yeast, Candida, and Trichosporon has been studied by means of the kinetic analysis of hydrocarbons-degrading yeasts growth and substrate assimilation. Biodegradation capacity and biomass quantity were daily measured during twelve days by gravimetric analysis and gas chromatography coupled with mass spectrometry techniques. Removal of n-alkanes indicated a strong ability of hydrocarbon biodegradation by the isolated yeast strains. These two strains grew on long-chain n-alkane, diesel oil, and crude oil but failed to grow on short-chain n-alkane and aromatic hydrocarbons. Growth measurement attributes of the isolates, using n-hexadecane, diesel oil, and crude oil as substrates, showed that strain HC1 had better degradation for hydrocarbon substrates than strain HC4. In conclusion, these yeast strains can be useful for the bioremediation process and decreasing petroleum pollution in wastewater contaminated with petroleum hydrocarbons.

  8. Isolation and identification of yeasts in milk samples from cows' mammary glands

    Directory of Open Access Journals (Sweden)

    Vesna Jaki

    2007-06-01

    Full Text Available The purpose of this study was to isolate fungi from the milk of cow udder quarters with clinical mastitis. The samples were delivered in Veterinary laboratory in Križevci during a routine mastitis diagnostics. Milk samples were cultured on Columbia agar (Merck, KgaA, Darmstadt, Germany with 5 % ovine blood, Sabouraud 4 % maltose agar (Merck, KgaA, Darmstadt, Germany and Rice extract agar (Merck, KgaA, Darmstadt, Germany. The final diagnosis was established regarding to the results of the API 20 C AUX systems (bioMerieux, Lyon, France. All of the fungal isolates were yeasts, genera Candida spp. (76.2 % and Trichosporon spp. (23.8 %. The most prevalent species were: C. quilliermondi (21.4 %, C. krusei/inconspicua (11.9 % and Trichosporon mucoides (14.3 %.

  9. Screening of β-Glucosidase and β-Xylosidase Activities in Four Non-Saccharomyces Yeast Isolates.

    Science.gov (United States)

    López, María Consuelo; Mateo, José Juan; Maicas, Sergi

    2015-08-01

    The finding of new isolates of non-Saccharomyces yeasts, showing beneficial enzymes (such as β-glucosidase and β-xylosidase), can contribute to the production of quality wines. In a selection and characterization program, we have studied 114 isolates of non-Saccharomyces yeasts. Four isolates were selected because of their both high β-glucosidase and β-xylosidase activities. The ribosomal D1/D2 regions were sequenced to identify them as Pichia membranifaciens Pm7, Hanseniaspora vineae Hv3, H. uvarum Hu8, and Wickerhamomyces anomalus Wa1. The induction process was optimized to be carried on YNB-medium supplemented with 4% xylan, inoculated with 106 cfu/mL and incubated 48 h at 28 °C without agitation. Most of the strains had a pH optimum of 5.0 to 6.0 for both the β-glucosidase and β-xylosidase activities. The effect of sugars was different for each isolate and activity. Each isolate showed a characteristic set of inhibition, enhancement or null effect for β-glucosidase and β-xylosidase. The volatile compounds liberated from wine incubated with each of the 4 yeasts were also studied, showing an overall terpene increase (1.1 to 1.3-folds) when wines were treated with non-Saccharomyces isolates. In detail, terpineol, 4-vinyl-phenol and 2-methoxy-4-vinylphenol increased after the addition of Hanseniaspora isolates. Wines treated with Hanseniaspora, Wickerhamomyces, or Pichia produced more 2-phenyl ethanol than those inoculated with other yeasts. © 2015 Institute of Food Technologists®

  10. Isolation of a tyrosine-activating enzyme from baker's yeast

    NARCIS (Netherlands)

    Ven, A.M. van de; Koningsberger, V.V.; Overbeek, J.Th.G.

    1958-01-01

    The extracts of ether-CO2-frozen baker's yeast contain enzymes that catalyze the ATP-linked amino acid activation by way of pyrophosphate elimination. From the extract a tyrosine-activating enzyme could be isolated, which, judging from ultracentrifugation and electrophoretic data, was about 70% pure

  11. Identification of cultured isolates of clinically important yeast species using fluorescent fragment length analysis of the amplified internally transcribed rRNA spacer 2 region

    Directory of Open Access Journals (Sweden)

    Muylaert An

    2002-07-01

    Full Text Available Abstract Background The number of patients with yeast infection has increased during the last years. Also the variety of species of clinical importance has increased. Correct species identification is often important for efficient therapy, but is currently mostly based on phenotypic features and is sometimes time-consuming and depends largely on the expertise of technicians. Therefore, we evaluated the feasibility of PCR-based amplification of the internally transcribed spacer region 2 (ITS2, followed by fragment size analysis on the ABI Prism 310 for the identification of clinically important yeasts. Results A rapid DNA-extraction method, based on simple boiling-freezing was introduced. Of the 26 species tested, 22 could be identified unambiguously by scoring the length of the ITS2-region. No distinction could be made between the species Trichosporon asteroides and T. inkin or between T. mucoides and T. ovoides. The two varieties of Cryptococcus neoformans (var. neoformans and var. gattii could be differentiated from each other due to a one bp length difference of the ITS2 fragment. The three Cryptococcus laurentii isolates were split into two groups according to their ITS2-fragment lengths, in correspondence with the phylogenetic groups described previously. Since the obtained fragment lengths compare well to those described previously and could be exchanged between two laboratories, an internationally usable library of ITS2 fragment lengths can be constructed. Conclusions The existing ITS2 size based library enables identification of most of the clinically important yeast species within 6 hours starting from a single colony and can be easily updated when new species are described. Data can be exchanged between laboratories.

  12. Yeast α-Glucosidase Inhibitory Phenolic Compounds Isolated from Gynura medica Leaf

    Directory of Open Access Journals (Sweden)

    Chao Tan

    2013-01-01

    Full Text Available Gynura medica leaf extract contains significant amounts of flavonols and phenolic acids and exhibits powerful hypoglycemic activity against diabetic rats in vivo. However, the hypoglycemic active constituents that exist in the plant have not been fully elaborated. The purpose of this study is to isolate and elaborate the hypoglycemic activity compounds against inhibition the yeast α-glucosidase in vitro. Seven phenolic compounds including five flavonols and two phenolic acids were isolated from the leaf of G. medica. Their structures were identified by the extensive NMR and mass spectral analyses as: kaempferol (1, quercetin (2, kaempferol-3-O-β-D-glucopyranoside (3, kaempferol-3-O-rutinoside (4, rutin (5, chlorogenic acid (6 and 3,5-dicaffeoylquinic acid methyl ester (7. All of the compounds except 1 and 3 were isolated for the first time from G. medica. Compounds 1–7 were also assayed for their hypoglycemic activity against yeast α-glucosidase in vitro. All of the compounds except 1 and 6 showed good yeast α-glucosidase inhibitory activity with the IC50 values of 1.67 mg/mL, 1.46 mg/mL, 0.38 mg/mL, 0.10 mg/mL and 0.53 mg/mL, respectively.

  13. Identification of clinical yeasts by Vitek MS system compared with API ID 32 C.

    Science.gov (United States)

    Durán-Valle, M Teresa; Sanz-Rodríguez, Nuria; Muñoz-Paraíso, Carmen; Almagro-Moltó, María; Gómez-Garcés, José Luis

    2014-05-01

    We performed a clinical evaluation of the Vitek MS matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) system with the commercial database version 2.0 for rapid identification of medically important yeasts as compared with the conventional phenotypic method API ID 32 C. We tested 161 clinical isolates, nine isolates from culture collections and five reference strains. In case of discrepant results or no identification with one or both methods, molecular identification techniques were employed. Concordance between both methods was observed with 160/175 isolates (91.42%) and misidentifications by both systems occurred only when taxa were not included in the respective databases, i.e., one isolate of Candida etchellsii was identified as C. globosa by Vitek MS and two isolates of C. orthopsilosis were identified as C. parapsilosis by API ID 32 C. Vitek MS could not identify nine strains (5.14%) and API ID 32 C did not identify 13 (7.42%). Vitek MS was more reliable than API ID 32 C and reduced the time required for the identification of clinical isolates to only a few minutes.

  14. No evidence for extrinsic post-zygotic isolation in a wild Saccharomyces yeast system.

    Science.gov (United States)

    Charron, Guillaume; Landry, Christian R

    2017-06-01

    Although microorganisms account for the largest fraction of Earth's biodiversity, we know little about how their reproductive barriers evolve. Sexual microorganisms such as Saccharomyces yeasts rapidly develop strong intrinsic post-zygotic isolation, but the role of extrinsic isolation in the early speciation process remains to be investigated. We measured the growth of F 1 hybrids between two incipient species of Saccharomyces paradoxus to assess the presence of extrinsic post-zygotic isolation across 32 environments. More than 80% of hybrids showed either partial dominance of the best parent or over-dominance for growth, revealing no fitness defects in F 1 hybrids. Extrinsic reproductive isolation therefore likely plays little role in limiting gene flow between incipient yeast species and is not a requirement for speciation. © 2017 The Author(s).

  15. Comparison of the accuracy of two conventional phenotypic methods and two MALDI-TOF MS systems with that of DNA sequencing analysis for correctly identifying clinically encountered yeasts.

    Directory of Open Access Journals (Sweden)

    Qiao-Ting Chao

    Full Text Available We assessed the accuracy of species-level identification of two commercially available matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS systems (Bruker Biotyper and Vitek MS and two conventional phenotypic methods (Phoenix 100 YBC and Vitek 2 Yeast ID with that of rDNA gene sequencing analysis among 200 clinical isolates of commonly encountered yeasts. The correct identification rates of the 200 yeast isolates to species or complex (Candida parapsilosis complex, C. guilliermondii complex and C. rugosa complex levels by the Bruker Biotyper, Vitek MS (using in vitro devices [IVD] database, Phoenix 100 YBC and Vitek 2 Yeast ID (Sabouraud's dextrose agar systems were 92.5%, 79.5%, 89%, and 74%, respectively. An additional 72 isolates of C. parapsilosis complex and 18 from the above 200 isolates (30 in each of C. parapsilosis, C. metapsilosis, and C. orthopsilosis were also evaluated separately. Bruker Biotyper system could accurately identify all C. parapsilosis complex to species level. Using Vitek 2 MS (IVD system, all C. parapsilosis but none of C. metapsilosis, or C. orthopsilosis could be accurately identified. Among the 89 yeasts misidentified by the Vitek 2 MS (IVD system, 39 (43.8%, including 27 C. orthopsilosis isolates, could be correctly identified Using the Vitek MS Plus SARAMIS database for research use only. This resulted in an increase in the rate of correct identification of all yeast isolates (87.5% by Vitek 2 MS. The two species in C. guilliermondii complex (C. guilliermondii and C. fermentati isolates were correctly identified by cluster analysis of spectra generated by the Bruker Biotyper system. Based on the results obtained in the current study, MALDI-TOF MS systems present a promising alternative for the routine identification of yeast species, including clinically commonly and rarely encountered yeast species and several species belonging to C. parapsilosis complex, C. guilliermondii

  16. Ethanol production potential of local yeast strains isolated from ripe ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... ... of these studies, the preferred candidate for industrial production of ethanol ... The yeast strains were isolated using the method of Ameh et al. (1989), on ... gas in the Durham tube during the incubation period. Fermentation ...

  17. Isolation and Characterization of melanized yeast form of Aureobasidium pullulans and physiological studies on the melanization process

    International Nuclear Information System (INIS)

    El-Gamal, M.S.; El-Bialy, H.A.; Elsayed, M.A.; Khalifa, M.A.

    2017-01-01

    Melanin pigments have immense application potentials in the fields of agriculture , cosmetics and pharmaceutical industries . Isolation and characterization of melanin producer from local resources is the main aim of the present study . Six melanized yeast isolates were selected from seventeen isolation resources including natural sources (Eucalyptus globules plant), industrial wastes (Tomato paste processing) and surface contaminants (Bathrooms). The selected yeasts were screened for melanin production in an individual experiment , results revealed the ability of yeast isolate selected from wastes of tomato paste processing (W 3 ) to produce melanin at 300 mM concentration . The selected melanized yeast was identified as Aureobasidium pullulans according to the morphological characteristics and 18S rRNA . Melanin production by the selected yeast was maximized by optimization of the cultural conditions and nutritional parameters by nearly two folds ( 550 mM ). The highest melanin yield was achieved in the fermentation medium contains 30 gl -1 sucrose , 35 gl -1 peptone and 1 mM L - DOPA concentration after nine days of incubation at 30°C and its pH value is adjusted at 7.0. Melanin characterization by FTIR and NMR resemble aliphatic and aromatic composition of A . pullulans ’ s melanin . In conclusion, the selected yeast is a promising candidate for melanin production in a semipilot scale

  18. Antimicrobial Effect of Bacteriocin produced Pediococcus pentosaceus on some clinical isolates

    Directory of Open Access Journals (Sweden)

    Nehad A. Taher

    2017-07-01

    Full Text Available About 10 isolates of Pediococcus sp were isolated from different cheese made in Iraq, These isolates were identified morphologically and biochemically and Api20 kit, thus there was only 6 isolate were identified as Pediococcus pentosaceus (60%.In this study, we investigate, the effect of crude Bacteriocin from Pediococcus pentosaceus on 30 clinical isolates (5 E.coli, 5 Klepsiella pneumoniae, 5 Staphylococcus aureus, 5 Pseudomonas aeroginosa, 5 Bacillus subtilis, 5 Candida albicans. The protein concentration of this Bacteriocin was measured 67mg\\ml by Bradford method and used as (1:2 by vol during the measuring the antimicrobial activity against the above clinical isolates by two methods wells and  agar plug assay. The results showed that  the inhibitory activity of this Bacteriocin was higher by wells method than agar pluq assay against Gram–positive bacteria or Gram-negative bacteria and yeast under this study.

  19. Multicenter study evaluating the Vitek MS system for identification of medically important yeasts.

    Science.gov (United States)

    Westblade, Lars F; Jennemann, Rebecca; Branda, John A; Bythrow, Maureen; Ferraro, Mary Jane; Garner, Omai B; Ginocchio, Christine C; Lewinski, Michael A; Manji, Ryhana; Mochon, A Brian; Procop, Gary W; Richter, Sandra S; Rychert, Jenna A; Sercia, Linda; Burnham, Carey-Ann D

    2013-07-01

    The optimal management of fungal infections is correlated with timely organism identification. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) is revolutionizing the identification of yeasts isolated from clinical specimens. We present a multicenter study assessing the performance of the Vitek MS system (bioMérieux) in identifying medically important yeasts. A collection of 852 isolates was tested, including 20 Candida species (626 isolates, including 58 C. albicans, 62 C. glabrata, and 53 C. krusei isolates), 35 Cryptococcus neoformans isolates, and 191 other clinically relevant yeast isolates; in total, 31 different species were evaluated. Isolates were directly applied to a target plate, followed by a formic acid overlay. Mass spectra were acquired using the Vitek MS system and were analyzed using the Vitek MS v2.0 database. The gold standard for identification was sequence analysis of the D2 region of the 26S rRNA gene. In total, 823 isolates (96.6%) were identified to the genus level and 819 isolates (96.1%) were identified to the species level. Twenty-four isolates (2.8%) were not identified, and five isolates (0.6%) were misidentified. Misidentified isolates included one isolate of C. albicans (n = 58) identified as Candida dubliniensis, one isolate of Candida parapsilosis (n = 73) identified as Candida pelliculosa, and three isolates of Geotrichum klebahnii (n = 6) identified as Geotrichum candidum. The identification of clinically relevant yeasts using MS is superior to the phenotypic identification systems currently employed in clinical microbiology laboratories.

  20. Pathogenic characteristics of yeasts isolated from vaginal secretion preserved under mineral oil

    Directory of Open Access Journals (Sweden)

    B Severo Gomes

    2011-01-01

    Full Text Available In order to evaluate the pathogenicity of yeasts isolated from vaginal secretion of pregnant and non-pregnant women - stored in mineral oil at the URM Mycology Collection, Department of Mycology, Federal University of Pernambuco - 30 samples belonging to the genera Candida, Rhodotorula, Trichosporon, and Kloeckera, were studied regarding their pathogenic characteristics, ability to grow at room temperature (28°C ± 1°C, 37°C, and 42°C for 72 hours, and production of both phospholipase and proteinase. Results showed that all 30 isolates (100% were able to grow at room temperature and 37°C, and that 17 samples (57% were able to grow at 42°C. Evaluation of enzymatic activity showed protease activity in only two isolates (7%, namely C. maritima and C. obtusa. Phospholipase activity was detected in 20 isolates (67% using soy lecithin as substrate at different temperatures. The characterization of yeasts isolated from vaginal secretion and determination of their enzymatic activity may contribute to understanding the epidemiology of vulvovaginitis and assist in the treatment of patients.

  1. Isolation and identification of aromatic hydrocarbon degrading yeasts present in gasoline tanks of urbans vehicles

    Directory of Open Access Journals (Sweden)

    Nathalia Catalina Delgadillo-Ordoñez

    2017-07-01

    Full Text Available Yeast isolates were obtained from fuel tanks of vehicles in order to assess their potential use in the degradation of aromatic hydrocarbons. Growth assays were performed in minimum mineral medium using different aromatic hydrocarbons (benzene, toluene, naphthalene, phenanthrene, and pyrene as the sole carbon source. Isolates that showed growth in any of the tested polycyclic aromatic hydrocarbons were identified by Sanger sequencing of the ITS1 and ITS2 rDNA molecular markers. A total of 16 yeasts strains were isolated, and three showed remarkable growth in media with aromatic hydrocarbons as the sole carbon source. These strains belong to the genus Rhodotorula, and correspond to the species Rhodotorula calyptogenae (99,8% identity and Rhodotorula dairenensis (99,8% identity.  These strains grew in benzene, toluene, naphthalene, phenanthrene and pyrene. This study demonstrates for the first time that yeasts of the genus Rhodotorula inhabit pipelines and fuel tanks of vehicles and that remove   aromatic hydrocarbons that are environmental pollutants. Our results suggest that these yeasts are potential candidates for aromatic hydrocarbon degradation as part of bioremediation strategies.

  2. Fructanase and fructosyltransferase activity of non-Saccharomyces yeasts isolated from fermenting musts of Mezcal.

    Science.gov (United States)

    Arrizon, Javier; Morel, Sandrine; Gschaedler, Anne; Monsan, Pierre

    2012-04-01

    Fructanase and fructosyltransferase are interesting for the tequila process and prebiotics production (functional food industry). In this study, one hundred thirty non-Saccharomyces yeasts isolated from "Mezcal de Oaxaca" were screened for fructanase and fructosyltransferase activity. On solid medium, fifty isolates grew on Agave tequilana fructans (ATF), inulin or levan. In liquid media, inulin and ATF induced fructanase activities of between 0.02 and 0.27U/ml depending of yeast isolate. High fructanase activity on sucrose was observed for Kluyveromyces marxianus and Torulaspora delbrueckii, while the highest fructanase activity on inulin and ATF was observed for Issatchenkia orientalis, Cryptococcus albidus, and Candida apicola. Zygosaccharomyces bisporus and Candida boidinii had a high hydrolytic activity on levan. Sixteen yeasts belonging to K. marxianus, T. delbrueckii and C. apicola species were positive for fructosyltransferase activity. Mezcal microbiota proved to showed to be a source for new fructanase and fructosyltransferases with potential application in the tequila and food industry. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Distribution of tannin-'tolerant yeasts isolated from Miang, a traditional fermented tea leaf (Camellia sinensis var. assamica) in northern Thailand.

    Science.gov (United States)

    Kanpiengjai, Apinun; Chui-Chai, Naradorn; Chaikaew, Siriporn; Khanongnuch, Chartchai

    2016-12-05

    Miang is a fermented food product prepared from the tea leaves of Camellia sinensis var. assamica, and is traditionally produced in mountainous areas of northern Thailand. Although Miang has a long history and reveals deep-rooted cultural involvement with local people in northern Thailand, little is known regarding its microbial diversity. Yeasts were isolated from 47 Miang samples collected from 28 sampling sites, including eight provinces in upper northern Thailand. A hundred and seven yeast isolates were recovered and identified within 14 species based on the comparison of the D1/D2 sequence of the large subunit (LSU) rRNA gene. Candida ethanolica was determined to be the dominant species that was frequently found in Miang together with minor resident yeast species. All yeast isolates demonstrated their tannin-tolerant capability when cultivated on yeast malt agar (YMA) containing 50g/l tannin, but nine isolates displayed clear zones forming around their colonies, e.g., Debaryomyces hansenii, Cyberlindnera rhodanensis, and Sporidiobolus ruineniae. The results obtained from a visual reading method of tannase revealed that all yeast isolates were positive for methyl gallate, indicating that they possess tannase activity. It is assumed that a tannin-tolerant ability is one of the most important factors for developing a yeast community in Miang. This research study is the first report to describe tannin-tolerant yeasts and yeast communities in traditionally fermented tea leaves. Copyright © 2016. Published by Elsevier B.V.

  4. Isolation of glutathione-deficient mutants of the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Kistler, M.; Eckardt, F.; Summer, K.-H.

    1986-01-01

    Glutathione-deficient (gsh - ) mutants of the yeast Saccharomyces cerevisiae were isolated after UV treatment using MNNG as selective agent. For genetic and biochemical characterization 5 mutant strains were chosen which exhibited considerably decreased residual GSH contents varying from 2 to 6% of the wild-type levels. All 5 isolates showed a 2:2 segregation of the gsh - :GSH + phenotypes alluding to a monogenic recessive mutation. Complementation analysis indicates that all gsh - mutants belong to one complementation group. (Auth.)

  5. Isolation and Identification of Spoilage Yeasts in Wine Samples by MALDI-TOF MS Biotyper

    Directory of Open Access Journals (Sweden)

    Attila Kántor

    2015-05-01

    Full Text Available Many genera and species of microorganisms can be found in grape musts and wines at various times during the winemaking process. For instance, Saccharomyces, Brettanomyces, and Pediococcus can be found together in wine. There are many species of yeast involved in wine spoilage during storage. Aim of this study was to isolate the spoilage yeasts from wine samples with using special selective agar media and identified on species level by Matrix-Assisted Laser Desorption/Ionization-Time of Fly Mass Spectrometry (MALDI-TOF MS. Six red wines used in this study. We identified 10 yeast species from 152 isolates. The most common species in wine samples was Saccharomyces cerevisiae. We also identified four Candida species, two Zygosaccharomyces species and one species from genus Rhodotorula, Saccharomycodes and Dekkera.

  6. Ethanol and sugar tolerance of wine yeasts isolated from fermenting ...

    African Journals Online (AJOL)

    Seventeen wine yeasts isolated from fermenting cashew apple juice were screened for ethanol and sugar tolerance. Two species of Saccharomyces comprising of three strains of S. cerevisiae and one S. uvarum showed measurable growth in medium containing 9% (v/v) ethanol. They were equally sugar-tolerant having ...

  7. Collaborative evaluation of the Abbott yeast identification system.

    OpenAIRE

    Cooper, B H; Prowant, S; Alexander, B; Brunson, D H

    1984-01-01

    The Abbott yeast identification system (Abbott Laboratories, Diagnostics Division, Irving, Tex.) is a 24-h, instrumental method for identifying medically important yeasts, based on matrix analysis of 19 biochemical reactions and the germ tube test. The system was evaluated in two clinical laboratories by using 179 coded isolates, which included a high percentage of the less frequently encountered species. Based upon results with these coded isolates and from previously obtained laboratory dat...

  8. Isolation and identification of mold and yeast in medombae, a rice wine starter culture from Kompong Cham Province, Cambodia

    Directory of Open Access Journals (Sweden)

    Chay, C.,

    2017-07-01

    Full Text Available Medombae is a dried starter culture used for traditional rice wine processing in Cambodia. However, studies on the role of mold and yeast present and their efficacy for rice wine fermentation are still limited. Cultural and morphological tests revealed that the isolated representative mold strains were isolated based on the method of identification used as Mucor spp and Rhizopus oryzae. On the other hand, the biochemical properties of the first yeast isolate using the Vitek 2 identification system and YST Card identification suggests its identity as Candida tropicalis. The second yeast strain examined for its morphological and cultural characteristic using agar slide technique, and its protein profile which was compared to the reference and sample protein masses using Biomerieux Vitek MS (MALD-TOF showed the presence of Saccharomyces cerevisiae. The biochemical characteristics and cellular characteristics of the third yeast isolate as described by Lodder (1970 and Kreger-Van Rij (1984 confirmed its identity as Saccharomycopsis spp. The DNA test of identification of the isolates should be conducted to further confirm the identity of the isolates.

  9. Application of MALDI-TOF MS for requalification of a Candida clinical isolates culture collection

    Directory of Open Access Journals (Sweden)

    Reginaldo Lima-Neto

    2014-06-01

    Full Text Available Microbial culture collections underpin biotechnology applications and are important resources for clinical microbiology by supplying reference strains and/or performing microbial identifications as a service. Proteomic profiles by MALDI-TOF MS have been used for Candida spp. identification in clinical laboratories and demonstrated to be a fast and reliable technique for the routine identification of pathogenic yeasts. The main aim of this study was to apply MALDI-TOF MS combined with classical phenotypic and molecular approaches to identify Candida clinical isolates preserved from 1 up to 52 years in a Brazilian culture collection and assess its value for the identification of yeasts preserved in this type of collections. Forty Candida spp. clinical isolates were identified by morphological and biochemical analyses. Identifications were also performed by the new proteomic approach based on MALDI-TOF MS. Results demonstrated 15% discordance when compared with morphological and biochemical analyses. Discordant isolates were analysed by ITS sequencing, which confirmed the MALDI-TOF MS identifications and these strains were renamed in the culture collection catalogue. In conclusion, proteomic profiles by MALDI-TOF MS represents a rapid and reliable method for identifying clinical Candida species preserved in culture collections and may present clear benefits when compared with the performance of existing daily routine methods applied at health centres and hospitals.

  10. Species distribution and susceptibility profile to fluconazole, voriconazole and MXP-4509 of 551 clinical yeast isolates from a Romanian multi-centre study

    NARCIS (Netherlands)

    Minea, B; Nastasa, V; Moraru, R F; Kolecka, A; Flonta, M M; Marincu, I; Man, A; Toma, F; Lupse, M; Doroftei, B; Marangoci, N; Pinteala, M; Boekhout, T; Mares, M

    This is the first multi-centre study regarding yeast infections in Romania. The aim was to determine the aetiological spectrum and susceptibility pattern to fluconazole, voriconazole and the novel compound MXP-4509. The 551 isolates were identified using routine laboratory methods, matrix-assisted

  11. FUNCTIONAL PROPERTIES OF YEASTS ISOLATED FROM SOME NIGERIAN TRADITIONAL FERMENTED FOODS

    Directory of Open Access Journals (Sweden)

    Tolulope P. Alakeji

    2015-04-01

    Full Text Available Yeasts play important roles in confering some desirable qualities such as nutritional value in traditional fermented foods. This study was carried out to investigate the potentials of yeasts isolated from some Nigerian traditional fermented foods for functional characteristics such as growth at pH 2.5 and 2% bile salts concentration and ability to lower cholesterol in culture medium. A total of 40 yeast strains were isolated from burukutu, ogi and pito. They were characterized phenotypically. Fifteen strains were selected based on the ability to tolerate pH 2.5 and 2% bile salts and they were further identified using API 20C AUX (Biomerieux, France to be Debaryomyces hansenii (5, Candida krusei (4, Candida glabrata (2, Candida colliculosa (1, Pichia anomala (1, Pichia farinosa (1 and Pichia membranefaciens (1. At pH 2.5, C. glabrata SA2 showed the highest increase in viable cells count after 24h (6.31 log10 cfu ml-1 while the most sensitive strain was P. membranefaciens BA2 (0.70 log10 cfu ml-1. P. membranefaciens BA2 survived in 2% bile salts than other yeast strains, with viable cell increase of 0.84 log10 cfu ml-1 after 24 h while the least tolerance was observed for D. hansenii OA1 with an increase in viable cells of 7.76 log10 cfu ml-1. C. krusei OB1 exhibited the greatest reduction of cholesterol of 91.34% while the least reduction of 24.28% was observed for D. hansenii OA1 after 48h incubation. The yeast strains in this study demonstrated functional attributes which can be employed as dietary adjuncts for the development of non-dairy beverages with hypocholesterolemic attributes.

  12. Brewing characteristics of haploid strains isolated from sake yeast Kyokai No. 7.

    Science.gov (United States)

    Katou, Taku; Kitagaki, Hiroshi; Akao, Takeshi; Shimoi, Hitoshi

    2008-11-01

    Sake yeast exhibit various characteristics that make them more suitable for sake brewing compared to other yeast strains. Since sake yeast strains are Saccharomyces cerevisiae heterothallic diploid strains, it is likely that they have heterozygous alleles on homologous chromosomes (heterozygosity) due to spontaneous mutations. If this is the case, segregation of phenotypic traits in haploid strains after sporulation and concomitant meiosis of sake yeast strains would be expected to occur. To examine this hypothesis, we isolated 100 haploid strains from Kyokai No. 7 (K7), a typical sake yeast strain in Japan, and compared their brewing characteristics in small-scale sake-brewing tests. Analyses of the resultant sake samples showed a smooth and continuous distribution of analytical values for brewing characteristics, suggesting that K7 has multiple heterozygosities that affect brewing characteristics and that these heterozygous alleles do segregate after sporulation. Correlation and principal component analyses suggested that the analytical parameters could be classified into two groups, indicating fermentation ability and sake flavour. (c) 2008 John Wiley & Sons, Ltd.

  13. [A comparative study between the Vitek YBC and Microscan Walk Away RYID automated systems with conventional phenotypic methods for the identification of yeasts of clinical interest].

    Science.gov (United States)

    Ferrara, Giuseppe; Mercedes Panizol, Maria; Mazzone, Marja; Delia Pequeneze, Maria; Reviakina, Vera

    2014-12-01

    The aim of this study was to compare the identification of clin- ically relevant yeasts by the Vitek YBC and Microscan Walk Away RYID automated methods with conventional phenotypic methods. One hundred and ninety three yeast strains isolated from clinical samples and five controls strains were used. All the yeasts were identified by the automated methods previously mentioned and conventional phenotypic methods such as carbohydrate assimilation, visualization of microscopic morphology on corn meal agar and the use of chromogenic agar. Variables were assessed by 2 x 2 contingency tables, McNemar's Chi square, the Kappa index, and concordance values were calculated, as well as major and minor errors for the automated methods. Yeasts were divided into two groups: (1) frequent isolation and (2) rare isolation. The Vitek YBC and Microscan Walk Away RYID systems were concordant in 88.4 and 85.9% respectively, when compared to conventional phenotypic methods. Although both automated systems can be used for yeasts identification, the presence of major and minor errors indicates the possibility of misidentifications; therefore, the operator of this equipment must use in parallel, phenotypic tests such as visualization of microscopic morphology on corn meal agar and chromogenic agar, especially against infrequently isolated yeasts. Automated systems are a valuable tool; however, the expertise and judgment of the microbiologist are an important strength to ensure the quality of the results.

  14. Sporulation genes associated with sporulation efficiency in natural isolates of yeast.

    Science.gov (United States)

    Tomar, Parul; Bhatia, Aatish; Ramdas, Shweta; Diao, Liyang; Bhanot, Gyan; Sinha, Himanshu

    2013-01-01

    Yeast sporulation efficiency is a quantitative trait and is known to vary among experimental populations and natural isolates. Some studies have uncovered the genetic basis of this variation and have identified the role of sporulation genes (IME1, RME1) and sporulation-associated genes (FKH2, PMS1, RAS2, RSF1, SWS2), as well as non-sporulation pathway genes (MKT1, TAO3) in maintaining this variation. However, these studies have been done mostly in experimental populations. Sporulation is a response to nutrient deprivation. Unlike laboratory strains, natural isolates have likely undergone multiple selections for quick adaptation to varying nutrient conditions. As a result, sporulation efficiency in natural isolates may have different genetic factors contributing to phenotypic variation. Using Saccharomyces cerevisiae strains in the genetically and environmentally diverse SGRP collection, we have identified genetic loci associated with sporulation efficiency variation in a set of sporulation and sporulation-associated genes. Using two independent methods for association mapping and correcting for population structure biases, our analysis identified two linked clusters containing 4 non-synonymous mutations in genes - HOS4, MCK1, SET3, and SPO74. Five regulatory polymorphisms in five genes such as MLS1 and CDC10 were also identified as putative candidates. Our results provide candidate genes contributing to phenotypic variation in the sporulation efficiency of natural isolates of yeast.

  15. Identification of yeast strains isolated from marcha in Sikkim, a microbial starter for amylolytic fermentation.

    Science.gov (United States)

    Tsuyoshi, Naoko; Fudou, Ryosuke; Yamanaka, Shigeru; Kozaki, Michio; Tamang, Namrata; Thapa, Saroj; Tamang, Jyoti P

    2005-03-15

    Marcha or murcha is a traditional amylolytic starter used to produce sweet-sour alcoholic drinks, commonly called jaanr in the Himalayan regions of India, Nepal, Bhutan, and Tibet (China). The aim of this study was to examine the microflora of marcha collected from Sikkim in India, focusing on yeast flora and their roles. Twenty yeast strains were isolated from six samples of marcha and identified by genetic and phenotypic methods. They were first classified into four groups (Group I, II, III, and IV) based on physiological features using an API test. Phylogenetic, morphological, and physiological characterization identified the isolates as Saccharomyces bayanus (Group I); Candida glabrata (Group II); Pichia anomala (Group III); and Saccharomycopsis fibuligera, Saccharomycopsis capsularis, and Pichia burtonii (Group IV). Among them, the Group I, II, and III strains produced ethanol. The isolates of Group IV had high amylolytic activity. Because all marcha samples tested contained both starch degraders and ethanol producers, it was hypothesized that all four groups of yeast (Group I, II, III, and IV) contribute to starch-based alcohol fermentation.

  16. Thermal inactivation of polyphenoloxidase and peroxidase in Jubileu clingstone peach and yeast isolated from its spoiled puree

    Directory of Open Access Journals (Sweden)

    Andréa Menezes Lopes

    2014-03-01

    Full Text Available The thermal inactivation of yeast isolated from spoiled Jubileu peach puree and that of polyphenoloxidase (PPO and peroxidase (POD in cv. Jubileu, which is widely cultivated in southern Rio Grande do Sul state, Brazil, were studied. PPO and POD were extracted using the protein powder method and submitted to partial purification by precipitation followed by dialysis. The enzymatic activity was determined measuring the increase in absorbance at 420 nm for PPO and 470 nm for POD. The yeast used in this investigation was isolated from spoiled Jubileu peach puree at 22 °Brix, with total initial microbial count of 22 × 10² UFCmL- 1. Stock cultures were maintained on potato dextrose agar (PDA slants at 4 °C and pH 5 for later use for microbial growth. In all cases, kinetic analysis of the results suggests that the thermal inactivation was well described by a first-order kinetic model, and the temperature dependence was significantly represented by the Arrhenius law. Both enzymes were affected by heat denaturation, and PPO was more thermostable. PPO was also more thermosTable than the yeast isolated from peach puree. The D60-values were 1.53 and 1.87 min for PPO and yeast isolated from spoiled Jubileu peach puree, respectively.

  17. Production of Sophorolipid from an Identified Current Yeast, Lachancea thermotolerans BBMCZ7FA20, Isolated from Honey Bee.

    Science.gov (United States)

    Mousavi, Fereshteh; Beheshti-Maal, Keivan; Massah, Ahmadreza

    2015-08-01

    Biosurfactants are a family of diverse amphipathic molecules that are produced by several microorganisms such as bacteria, molds, and yeasts. These surface active agents have several applications in agriculture, oil processing, food, and pharmaceutical industries. In this research using YMG and YUG culture media, a native yeast strain, HG5, was isolated from honey bee. The oil spread test as a screening method was used to evaluate biosurfactant production by the yeast HG5 isolate. The 5.8s-rDNA analysis confirmed that the isolated yeast was related to Lachancea thermotolerans. We named this strain Lachancea thermotolerans strain BBMCZ7FA20 and its 5.8s-rDNA sequence was deposited in GenBank, NCBI under accession number of KM042082.1. The best precursor of biosurfactant production was canola oil and the sophorolipid amount was measured for 24.2 g/l. The thin layer chromatography and Fourier Transform Infrared Spectroscopy analysis showed that the extracted biosurfactant from Lachancea thermotolerans was sophorolipid. In conclusion, this is the first report of sophorolipid production by a native yeast Lachancea thermotolerans BBMCZ7FA20 we isolated from the honey bee gut collected from an apiary farm in Saman, Chaharmahal Bakhtiari province, Iran. We suggested that some cost-effective supplements such as canola oil, sunflower oil, and corn oils could be applied for increasing the sophorolipid production by this native yeast strain. According to several applications of biosurfactants in today world, the production of sophorolipid by Lachancea thermotolerans could be considered as a potential in the current industrial microbiology and modern microbial biotechnology.

  18. Isolation and molecular identification of yeast strains from “Rabilé” a ...

    African Journals Online (AJOL)

    Isolation and molecular identification of yeast strains from “Rabilé” a starter of local fermented drink. Ibrahim Keita, Marius K Somda, Aly Savadogo, Iliassou Mogmenga, Ousmane Koita, Alfred S Traore ...

  19. Isolation of Blastomyces dermatitidis yeast from lung tissue during murine infection for in vivo transcriptional profiling.

    Science.gov (United States)

    Marty, Amber J; Wüthrich, Marcel; Carmen, John C; Sullivan, Thomas D; Klein, Bruce S; Cuomo, Christina A; Gauthier, Gregory M

    2013-07-01

    Blastomyces dermatitidis belongs to a group of thermally dimorphic fungi that grow as sporulating mold in the soil and convert to pathogenic yeast in the lung following inhalation of spores. Knowledge about the molecular events important for fungal adaptation and survival in the host remains limited. The development of high-throughput analytic tools such as RNA sequencing (RNA-Seq) has potential to provide novel insight on fungal pathogenesis especially if applied in vivo during infection. However, in vivo transcriptional profiling is hindered by the low abundance of fungal cells relative to mammalian tissue and difficulty in isolating fungal cells from the tissues they infect. For the purpose of obtaining B. dermatitidis RNA for in vivo transcriptional analysis by RNA-Seq, we developed a simple technique for isolating yeast from murine lung tissue. Using a two-step approach of filtration and centrifugation following lysis of murine lung cells, 91% of yeast cells causing infection were isolated from lung tissue. B. dermatitidis recovered from the lung yielded high-quality RNA with minimal murine contamination and was suitable for RNA-Seq. Approximately 87% of the sequencing reads obtained from the recovered yeast aligned with the B. dermatitidis genome. This was similar to 93% alignment for yeast grown in vitro. The use of near-freezing temperature along with short ex vivo time minimized transcriptional changes that would have otherwise occurred with higher temperature or longer processing time. In conclusion, we have developed a technique that recovers the majority of yeast causing pulmonary infection and yields high-quality fungal RNA with minimal contamination by mammalian RNA. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Yeast diversity isolated from grape musts during spontaneous fermentation from a Brazilian winery.

    Science.gov (United States)

    Bezerra-Bussoli, Carolina; Baffi, Milla Alves; Gomes, Eleni; Da-Silva, Roberto

    2013-09-01

    Saccharomyces and non-Saccharomyces yeast species from a winery located in Brazil were identified by ribosomal gene-sequencing analysis. A total of 130 yeast strains were isolated from grape surfaces and musts during alcoholic fermentation from Isabel, Bordeaux, and Cabernet Sauvignon varieties. Samples were submitted to PCR-RFLP analysis and genomic sequencing. Thirteen species were identified: Candida quercitrusa, Candida stellata, Cryptococcus flavescens, Cryptococcus laurentii, Hanseniaspora uvarum, Issatchenkia occidentalis, Issatchenkia orientalis, Issatchenkia terricola, Pichia kluyveri, Pichia guilliermondii, Pichia sp., Saccharomyces cerevisiae, and Sporidiobolus pararoseus. A sequential substitution of species during the different stages of fermentation, with a dominance of non-Saccharomyces yeasts at the beginning, and a successive replacement of species by S. cerevisiae strains at the final steps were observed. This is the first report about the yeast distribution present throughout the alcoholic fermentation in a Brazilian winery, providing supportive information for future studies on their contribution to wine quality.

  1. Yeast identification: reassessment of assimilation tests as sole universal identifiers.

    Science.gov (United States)

    Spencer, J; Rawling, S; Stratford, M; Steels, H; Novodvorska, M; Archer, D B; Chandra, S

    2011-11-01

    To assess whether assimilation tests in isolation remain a valid method of identification of yeasts, when applied to a wide range of environmental and spoilage isolates. Seventy-one yeast strains were isolated from a soft drinks factory. These were identified using assimilation tests and by D1/D2 rDNA sequencing. When compared to sequencing, assimilation test identifications (MicroLog™) were 18·3% correct, a further 14·1% correct within the genus and 67·6% were incorrectly identified. The majority of the latter could be attributed to the rise in newly reported yeast species. Assimilation tests alone are unreliable as a universal means of yeast identification, because of numerous new species, variability of strains and increasing coincidence of assimilation profiles. Assimilation tests still have a useful role in the identification of common species, such as the majority of clinical isolates. It is probable, based on these results, that many yeast identifications reported in older literature are incorrect. This emphasizes the crucial need for accurate identification in present and future publications. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  2. Identification and susceptibility of clinical isolates of Candida spp. to killer toxins

    Directory of Open Access Journals (Sweden)

    E. Robledo-Leal

    2018-02-01

    Full Text Available Abstract Although invasive infections and mortality caused by Candida species are increasing among compromised patients, resistance to common antifungal agents is also an increasing problem. We analyzed 60 yeasts isolated from patients with invasive candidiasis using a PCR/RFLP strategy based on the internal transcribed spacer (ITS2 region to identify different Candida pathogenic species. PCR analysis was performed from genomic DNA with a primer pair of the ITS2-5.8S rDNA region. PCR-positive samples were characterized by RFLP. Restriction resulted in 23 isolates identified as C. albicans using AlwI, 24 isolates as C. parapsilosis using RsaI, and 13 as C. tropicalis using XmaI. Then, a group of all isolates were evaluated for their susceptibility to a panel of previously described killer yeasts, resulting in 75% being susceptible to at least one killer yeast while the remaining were not inhibited by any strain. C. albicans was the most susceptible group while C. tropicalis had the fewest inhibitions. No species-specific pattern of inhibition was obtained with this panel of killer yeasts. Metschnikowia pulcherrima, Pichia kluyveri and Wickerhamomyces anomalus were the strains that inhibited the most isolates of Candida spp.

  3. Classification of Cryptococcus neoformans and yeast-like fungus isolates from pigeon droppings by colony phenotyping and ITS genotyping and their seasonal variations in Korea.

    Science.gov (United States)

    Chae, H S; Jang, G E; Kim, N H; Son, H R; Lee, J H; Kim, S H; Park, G N; Jo, H J; Kim, J T; Chang, K S

    2012-03-01

    Cryptococcus neoformans (C neoformans) is a frequent cause of invasive fungal disease in immunocompromised human hosts. Ninety-eight samples of pigeon droppings were collected from the pigeon shelters in Seoul, and cultured on birdseed agar (BSA) and Sabouraud dextrose agar (SDA). One hundred yeast-like colonies were selected and identified via phenotype characteristics, such as colony morphology and biochemical characteristics. This was then followed with genotyping via sequencing of the internal transcribed spacer (ITS) region. The colonies were classified into four kinds of colony color types: brown type (BrT), beige type (BeT), pink type (PT), and white type (WT). Numbers of isolated BrT, BeT, PT, and WT colonies were 22 (22%), 30 (30%), 19 (19%), and 39 (39%), respectively. All BrT colonies were identified as C neoformans. BeT were identified as 19 isolates of Cryptococcus laurentii, 10 isolates of Malassezia furfur, and 1 isolate of Cryptococcus uniguttulatus. PT was divided into two colony color types: light-PT (l-PT) and deep-PT (d-PT). Eighteen of l-PT and one of d-PT were identified as Rhodotorula glutinis and Rhodotorula mucilaginosa, respectively. WT were identified as 34 isolates of Cryptococcus guilliermondii, 3 isolates of Cryptococcus zeylanoides, 1 isolate of Cryptococcus sake, and 1 isolate of Stephanoascus ciferrii. Most strains were classified identically with the use of either phenotype or genotyping techniques, but C uniguttulatus and C sake classified by phenotyping were Pseudozyma aphidis and Cryptococcus famata by genotyping. This rapid screening technique of pathogenic yeast-like fungi by only colony characteristics is also expected to be very useful for primary yeast screening. Additionally, we investigated the seasonal variations of C neoformans and other yeast-like fungi from 379 pigeon-dropping samples that were collected from February 2011 to March 2011. We isolated 685 yeast-like fungi from the samples. Almost all C neoformans and

  4. Isolation and expression of a pea vicilin cDNA in the yeast Saccharomyces cerevisiae.

    OpenAIRE

    Watson, M D; Lambert, N; Delauney, A; Yarwood, J N; Croy, R R; Gatehouse, J A; Wright, D J; Boulter, D

    1988-01-01

    A cDNA clone containing the complete coding sequence for vicilin from pea (Pisum sativum L.) was isolated. It specifies a 50,000-Mr protein that in pea is neither post-translationally processed nor glycosylated. The cDNA clone was expressed in yeast from a 2 micron plasmid by using the yeast phosphoglycerate kinase promoter and initiator codon. The resultant fusion protein, which contains the first 16 amino acid residues of phosphoglycerate kinase in addition to the vicilin sequence, was puri...

  5. The production of arabitol by a novel plant yeast isolate Candida parapsilosis 27RL-4

    Directory of Open Access Journals (Sweden)

    Kordowska-Wiater Monika

    2017-10-01

    Full Text Available Polyalcohol arabitol can be used in the food and pharmaceutical industries as a natural sweetener, a dental caries reducer, and texturing agent. Environmental samples were screened to isolate effective yeast producers of arabitol. The most promising isolate 27RL-4, obtained from raspberry leaves, was identified genetically and biochemically as Candida parapsilosis. It secreted 10.42– 10.72 g l-1 of product from 20 g l-1 of L-arabinose with a yield of 0.51 - 0.53 g g-1 at 28°C and a rotational speed of 150 rpm. Batch cultures showed that optimal pH value for arabitol production was 5.5. High yields and productivities of arabitol were obtained during incubation of the yeast at 200 rpm, or at 32°C, but the concentrations of the polyol did not exceed 10 g l-1. In modified medium, with reduced amounts of nitrogen compounds and pH 5.5-6.5, lower yeast biomass produced a similar concentration of arabitol, suggesting higher efficiency of yeast cells. This strain also produced arabitol from glucose, with much lower yields. The search for new strains able to successfully produce arabitol is important for allowing the utilization of sugars abundant in plant biomass.

  6. Induction and isolation of DNA transformation mutants in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Hegerich, P.A.; Bruschi, C.V.

    1987-01-01

    The objective of this research was to induce and isolate mutants of the yeast Saccharomyces cerevisiae which have become transformable by purified plasmid DNA. Non-transformable yeast cells were mutagenized by ultraviolet light using a 65% lethal dose (480 ergs/mm 2 ). After a period of overnight liquid holding recovery, the irradiated cells were subjected to DNA transformation using our CaCl 2 protocol with the multi-marker shuttle plasmid pBB carrying the LEU 2 leucine gene. Following transformation the colonies that grew on selective leucineless medium were identified and subjected to further genetic analysis. From a total of 1 x 10 9 cells the authors have isolated 7 colonies deriving from putative mutants that have acquired the capability to uptake plasmid DNA. The transformants were cured from the plasmid by its mitotic loss on non-selective medium, then re-transformed to verify their genetic competence to give rise to a number of transformants comparable to transformable strains. We have identified and isolated one mutant, coded trs-1, which is able to reproduce a frequency of transformation comparable with the tranformable control. They, therefore, conclude that this mutant is specific for plasmid DNA transformation and that the mutation is mitotically stable

  7. Oral Yeast Colonization and Fungal Infections in Peritoneal Dialysis Patients: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Liliana Simões-Silva

    2017-01-01

    Full Text Available Peritonitis and exit-site infections are important complications in peritoneal dialysis (PD patients that are occasionally caused by opportunistic fungi inhabiting distant body sites. In this study, the oral yeast colonization of PD patients and the antifungal susceptibility profile of the isolated yeasts were accessed and correlated with fungal infection episodes in the following 4 years. Saliva yeast colonization was accessed in 21 PD patients and 27 healthy controls by growth in CHROMagar-Candida® and 18S rRNA/ITS sequencing. PD patients presented a lower oral yeast prevalence when compared to controls, namely, Candida albicans. Other species were also isolated, Candida glabrata and Candida carpophila. The antifungal susceptibility profiles of these isolates revealed resistance to itraconazole, variable susceptibility to caspofungin, and higher MIC values of posaconazole compared to previous reports. The 4-year longitudinal evaluation of these patients revealed Candida parapsilosis and Candida zeylanoides as PD-related exit-site infectious agents, but no correlation was found with oral yeast colonization. This pilot study suggests that oral yeast colonization may represent a limited risk for fungal infection development in PD patients. Oral yeast isolates presented a variable antifungal susceptibility profile, which may suggest resistance to some second-line drugs, highlighting the importance of antifungal susceptibility assessment in the clinical practice.

  8. Comparison of isolate dadih with yeast dadih in improving nutrition quality of Cassava Waste (CW)

    Science.gov (United States)

    Ginting, N.

    2018-03-01

    The cassava industry in North Sumatra Province was one of the most significant agricultural industries. Waste from the cassava industry which was called cassava waste/CW/Onggok was used as feed for ruminants such as cattle, sheep and monogastric such as pigs. The low nutrients in CW caused the need to find a way for improving the nutrients quality. This research was conducted with the aim to help livestockers to ferment their livestock feed. This study compared the ability of fermentation between dadih isolate with dadih yeast. Dadih is traditional food in Indonesia where milk is fermented in bamboo tube. Dadih yeast was made by mixing dadih and whey with flour, made in around shape and sun dried. The results showed that pH of CW by dadih isolate was the lowest while crude protein, crude fiber and fat in CW treated with dadih isolate were improved significantly compared either to control or to dadih starter while fermented CW was better than non-fermented CW. It was recommended livestockers to ferment CW by using either by dadih isolate or dadih starter.

  9. Investigation of Antibacterial Properties of Yeast Strains Isolated from Iranian Richal and Traditional Dairy Products in Armenia

    Directory of Open Access Journals (Sweden)

    F Karimpour

    2016-09-01

    Full Text Available Background & aim:The use of bio preservative or strains as sources are interesting for food bioprocessing technologist,   and is one of the latest methods to increase the shelf life of food by the health authorities . The present study aimed to investigate the antibacterial activity of supernatants of yeasts isolated from Richal as a traditional dairy product and fermented dairy products in Armenia. Methods: In the present experimental study, the purified supernatant of 77 strains of Armenian yeast products and 12 strains from Iranian Richal were isolated. The purified supernatant were tested against three strains as food spoilages bacteria includes: B. subtilis 17-89, B. Thuringensis17-89, S.typhimuium G-38 , on 3media in 2 condition as aerobic and anaerobic. The inhibition zone of the supernatant were measured   and reported as antibacterial activity. Data were analyzed using statistical tests. Result: A total of 89 strains of yeasts, three species of Rachel and 9 strains of Armenian products (13.5% percent had demonstrated antibacterial activity. T86 strains of Armenian yeasts and FA1 (25 of Rachel had shown more ZOI and antibacterial activity on three media at both aerobic and anaerobic conditions. Comparing the mean of ZOI upon three corruption factors, Rachel strains were significantly different (p <0.05. The highest and lowest effect was observed on Bacillus subtilis effect and Salmonella typhimurium respectively. Conclusion: The results indicated that the yeast strains isolated in anaerobic and aerobic conditions on spoilage bacteria had antibacterial activity effect. Thus, it could be concluded that adding the yeast or its supernatant to food as a bio preservative, may introduce a operative product to the food industry.

  10. Diversity and physiological characterization of D-xylose-fermenting yeasts isolated from the Brazilian Amazonian Forest.

    Science.gov (United States)

    Cadete, Raquel M; Melo, Monaliza A; Dussán, Kelly J; Rodrigues, Rita C L B; Silva, Silvio S; Zilli, Jerri E; Vital, Marcos J S; Gomes, Fátima C O; Lachance, Marc-André; Rosa, Carlos A

    2012-01-01

    This study is the first to investigate the Brazilian Amazonian Forest to identify new D-xylose-fermenting yeasts that might potentially be used in the production of ethanol from sugarcane bagasse hemicellulosic hydrolysates. A total of 224 yeast strains were isolated from rotting wood samples collected in two Amazonian forest reserve sites. These samples were cultured in yeast nitrogen base (YNB)-D-xylose or YNB-xylan media. Candida tropicalis, Asterotremella humicola, Candida boidinii and Debaryomyces hansenii were the most frequently isolated yeasts. Among D-xylose-fermenting yeasts, six strains of Spathaspora passalidarum, two of Scheffersomyces stipitis, and representatives of five new species were identified. The new species included Candida amazonensis of the Scheffersomyces clade and Spathaspora sp. 1, Spathaspora sp. 2, Spathaspora sp. 3, and Candida sp. 1 of the Spathaspora clade. In fermentation assays using D-xylose (50 g/L) culture medium, S. passalidarum strains showed the highest ethanol yields (0.31 g/g to 0.37 g/g) and productivities (0.62 g/L · h to 0.75 g/L · h). Candida amazonensis exhibited a virtually complete D-xylose consumption and the highest xylitol yields (0.55 g/g to 0.59 g/g), with concentrations up to 25.2 g/L. The new Spathaspora species produced ethanol and/or xylitol in different concentrations as the main fermentation products. In sugarcane bagasse hemicellulosic fermentation assays, S. stipitis UFMG-XMD-15.2 generated the highest ethanol yield (0.34 g/g) and productivity (0.2 g/L · h), while the new species Spathaspora sp. 1 UFMG-XMD-16.2 and Spathaspora sp. 2 UFMG-XMD-23.2 were very good xylitol producers. This study demonstrates the promise of using new D-xylose-fermenting yeast strains from the Brazilian Amazonian Forest for ethanol or xylitol production from sugarcane bagasse hemicellulosic hydrolysates.

  11. Rapid identification of ascomycetous yeasts from clinical specimens by a molecular method based on flow cytometry and comparison with identifications from phenotypic assays.

    Science.gov (United States)

    Page, Brent T; Shields, Christine E; Merz, William G; Kurtzman, Cletus P

    2006-09-01

    This study was designed to compare the identification of ascomycetous yeasts recovered from clinical specimens by using phenotypic assays (PA) and a molecular flow cytometric (FC) method. Large-subunit rRNA domains 1 and 2 (D1/D2) gene sequence analysis was also performed and served as the reference for correct strain identification. A panel of 88 clinical isolates was tested that included representatives of nine commonly encountered species and six infrequently encountered species. The PA included germ tube production, fermentation of seven carbohydrates, morphology on corn meal agar, urease and phenoloxidase activities, and carbohydrate assimilation tests when needed. The FC method (Luminex) employed species-specific oligonucleotides attached to polystyrene beads, which were hybridized with D1/D2 amplicons from the unidentified isolates. The PA identified 81 of 88 strains correctly but misidentified 4 of Candida dubliniensis, 1 of C. bovina, 1 of C. palmioleophila, and 1 of C. bracarensis. The FC method correctly identified 79 of 88 strains and did not misidentify any isolate but did not identify nine isolates because oligonucleotide probes were not available in the current library. The FC assay takes approximately 5 h, whereas the PA takes from 2 h to 5 days for identification. In conclusion, PA did well with the commonly encountered species, was not accurate for uncommon species, and takes significantly longer than the FC method. These data strongly support the potential of FC technology for rapid and accurate identification of medically important yeasts. With the introduction of new antifungals, rapid, accurate identification of pathogenic yeasts is more important than ever for guiding antifungal chemotherapy.

  12. Distribution of yeast-like fungi at a university hospital in Turkey.

    Science.gov (United States)

    Ece, Gulfem

    2014-12-01

    The increased life span has led to application of more invasive procedures for diagnosis and treatment of particularly immunosuppressed individuals. This situation drew more attention to fungal infections due to existence of yeast-like fungi. Candida infections have increased due to transplant in patients, prolonged intensive care unit (ICU) stays, and invasive procedures. Recently, identification of yeast-like fungi as well as antifungal susceptibility test has been gaining more importance. In our study, we aimed to evaluate the distribution of yeast-like fungi strains isolated from blood, urine, wound and respiratory specimens, which were sent from various departments of Izmir University School of Medicine University Hospital. The 262 yeast strains (of 13860 clinical specimens), isolated during 30.05.2012-20.05.2013, which were sent from various departments of Izmir University School of Medicine to Medical Microbiology Laboratory, were included in this study. Blood, wound, respiratory (sputum, tracheal secretion), and urine specimens were cultivated on blood agar and Sabouraud dextrose agar and incubated for 24-48 hours at 37°C. The isolates were cultivated on CHROMagar Candida and Cornmeal Tween 80 medium for identification. Besides, the automatized Vitek version 2.0 system was used for identification of the yeast strains as well as the antifungal susceptibility of blood culture strains. A total of 262 strains, isolated from the Anesthesiology and Reanimation Unit, as well as from the departments of Hematology, Urology, Infectious Diseases, Gynecology and Obstetrics, and Ear Nose and Throat, were included in this study. The most common isolated yeast-like species was Candida albicans. C. parapsilosis was the most common yeast-like fungus isolated from blood cultures. All the blood culture strains were susceptible to amphotericin B, flucytosine, fluconazole and voriconazole. Candida strains isolated from newborns, elderly patients, and intensive care patients

  13. Isolation of a yeast strain able to produce a polygalacturonase with maceration activity of cassava roots

    Directory of Open Access Journals (Sweden)

    María Alicia Martos

    2013-06-01

    Full Text Available The objective of the present study was the isolation of a yeast strain, from citrus fruit peels, able to produce a polygalacturonase by submerged fermentation with maceration activity of raw cassava roots. Among 160 yeast strains isolated from citrus peels, one strain exhibited the strongest pectinolytic activity. This yeast was identified as Wickerhamomyces anomalus by 5.8S-ITS RFLP analysis and confirmed by amplification of the nucleotide sequence. The yeast produced a polygalacturonase (PG in Erlenmeyer shake flasks containing YNB, glucose, and citrus pectin. PG synthesis occurred during exponential growth phase, reaching 51 UE.mL-1 after 8 hours of fermentation. A growth yield (Yx/s of 0.43 gram of cell dry weight per gram of glucose consumed was obtained, and a maximal specific growth rate (µm of 0.346 h-1 was calculated. The microorganism was unable to assimilate sucrose, galacturonic acid, polygalacturonic acid, or citrus pectin, but it required glucose as carbon and energy source and polygalacturonic acid or citrus pectin as inducers of enzyme synthesis. The crude enzymatic extract of Wickerhamomyces anomalus showed macerating activity of raw cassava. This property is very important in the production of dehydrated mashed cassava, a product of regional interest in the province of Misiones, Argentina.

  14. Antimicrobial activity of yeasts against some pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    Gamal Younis

    2017-08-01

    Full Text Available Aim: This study was designed to isolate and identify yeast species from milk and meat products, and to test their antimicrobial activity against some bacterial species. Materials and Methods: A total of 160 milk and meat products samples were collected from random sellers and super markets in New Damietta city, Damietta, Egypt. Samples were subjected to yeast isolation procedures and tested for its antimicrobial activity against Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli. In addition, all yeast species isolates were subjected to polymerase chain reaction (PCR for detection of khs (kievitone hydratase and pelA (pectate degrading enzyme genes. Results: The recovery rate of yeasts from sausage was 20% (2/10 followed by kareish cheese, processed cheese, and butter 10% (1/10 each as well as raw milk 9% (9/100, and fruit yoghurt 30% (6/20. Different yeast species were recovered, namely, Candida kefyr (5 isolates, Saccharomyces cerevisiae (4 isolates, Candida intermedia (3 isolates, Candida tropicalis (2 isolates, Candida lusitaniae (2 isolates, and Candida krusei (1 isolate. khs gene was detected in all S. cerevisiae isolates, however, pelA gene was not detected in all identified yeast species. Antimicrobial activity of recovered yeasts against the selected bacterial species showed high activity with C. intermedia against S. aureus and E. coli, C. kefyr against E. coli, and C. lusitaniae against S. aureus. Moderate activities were obtained with C. tropicalis, C. lusitaniae, and S. cerevisiae against E. coli; meanwhile, all the tested yeasts revealed a very low antimicrobial activity against P. aeruginosa. Conclusion: The obtained results confirmed that some kinds of yeasts have the ability to produce antimicrobial compounds that could inhibit some pathogenic and spoilage bacteria and these antimicrobial activity of yeasts enables them to be one of the novel agents in controlling spoilage of food.

  15. Emerging azole resistance among Candida albicans from clinical ...

    African Journals Online (AJOL)

    Candida albicans is one of the most frequently isolated yeasts in clinical laboratories and accounts for up to 80 % of the yeasts recovered from sites of infection. The study was set out to determine antifungal susceptibility of clinical isolates of Candida albicans and to establish the Minimum Inhibitory Concentrations (MIC) to ...

  16. [Onychomycosis by yeast not common in diabetics of a health center].

    Science.gov (United States)

    Imbert, J L; G Gomez, J V; Escudero, R B; Blasco, J L

    2016-10-01

    Mexican diabetic population frequently presents mycosis under foot hyperkeratosis; however, in another type of onychomycosis as the ones that is assumed Candida albicans is the causal agent, it is unknown the frequency, the prevalence and if another Candida species or other yeasts are found. Evaluate the frequency of yeasts causing onychomycosis in diabetic patients looked after in public institutions of health of the State of Hidalgo, Mexico, and its association with clinical epidemiological variables. An observational, descriptive and transversal study was made on 261 patients, from which one nail sample of each one was obtained, used to isolate and identify dermatophytes and yeasts; the results were statistically correlated with 24 epidemiological parameters. The clinical study was done through interrogation and by medical exploration in order to evaluate Tinea pedis and onychomycosis. Onychomycosis were caused by Candida guilliermondii, Candida parapsilosis, Candida glabrata, Candida krusei, Candida spp., Kodamaea ohmeri, Prototheca wickerhamii and unidentified yeasts. The prevalence for general onychomycosis, by dermatophytes, mixed onychomycosis and by yeasts were: 24.1, 19.5, 2.3 and 14.6%, respectively. Patients with significant probability to be diagnosed as having onychomycosis by yeasts are those wearing open shoes (2.59%); technicians and professionals (10.49%) and alcohol drinkers (3.72%). The fact that Candida albicans is not present in this study as causal agent of onychomycosis, and emerging and non-common yeasts were indeed isolated, creates new challenges. It is remarked the clinical criterion that when onychomycosis is suspected in diabetics, the diagnosis for culturing dermatophytes and yeasts should be included. Copyright © 2015 Sociedad Española de Médicos de Atención Primaria (SEMERGEN). Publicado por Elsevier España, S.L.U. All rights reserved.

  17. Melanin production by a yeast strain XJ5-1 of Aureobasidium melanogenum isolated from the Taklimakan desert and its role in the yeast survival in stress environments.

    Science.gov (United States)

    Jiang, Hong; Liu, Nan-Nan; Liu, Guang-Lei; Chi, Zhe; Wang, Jian-Ming; Zhang, Ly-Ly; Chi, Zhen-Ming

    2016-07-01

    The yeast strain XJ5-1 isolated from the Taklimakan desert soil was identified to be a strain of Aureobasdium melanogenum and could produce a large amount of melanin when it was grown in the PDA medium, but its melanin biosynthesis and expression of the PKS gene responsible for the melanin biosynthesis was significantly repressed in the presence of (NH4)2SO4. However, A. melanogenum P5 strain isolated from a mangrove ecosystem grown in both the presence and the absence of (NH4)2SO4 did not produce any melanin. The cell size of A. melanogenum XJ5-1 strain was much higher than that of A. melanogenum P5 strain. The melanized cells of the yeast strain XJ5-1 had higher tolerance to UV radiation, oxidation (200.0 mM H2O2), heat treatment (40 °C), salt shock (200.0 g/L NaCl), desiccation and strong acid hydrolysis (6.0 M HCl) at high temperature (80 °C) than the non-melanized cells of the same yeast strain XJ5-1. At the same time, the melanized cells of the yeast strain XJ5-1 also had higher tolerance to UV radiation, oxidation (200.0 mM H2O2), desiccation and strong acid hydrolysis (6.0 M HCl) at high temperature (80 °C) than A. melanogenum P5 strain, but had similar resistance to heat treatment (40 °C) and salt shock (200.0 g/L NaCl) compared to those of A. melanogenum P5 strain. All the results revealed that many characteristics of A. melanogenum XJ5-1 isolated from the Taklimakan desert soil was different from those of A. melanogenum P5 strain isolated from the mangrove ecosystem.

  18. Lachancea lanzarotensis sp. nov., an ascomycetous yeast isolated from grapes and wine fermentation in Lanzarote, Canary Islands.

    Science.gov (United States)

    González, Sara S; Alcoba-Flórez, Julia; Laich, Federico

    2013-01-01

    During the characterization of the microbiota biodiversity associated with grapes and wineries in different bioclimatic conditions of the Canary Islands (Spain), a novel yeast species was isolated from Lanzarote, the driest wine-producing region of the archipelago. Seven strains isolated from grapes, microvinifications and wineries are described. Sequence analysis of the D1/D2 domain of the LSU rDNA gene and 5.8S-ITS regions revealed that the isolates were phylogenetically a member of the genus Lachancea and are closely related to Lachancea meyersii NRRL Y-27269(T) and Lachancea nothofagi NRRL Y-48670(T). On the basis of morphological, biochemical and physiological characterization and phylogenetic analysis, a novel ascosporogenous yeast species, Lachancea lanzarotensis sp. nov., is proposed. The type strain is L2C-15(T) ( = CBS 12615(T) = CECT 13066(T)) which was isolated from grape berries of Vitis vinifera L. cv. Listán Negro red grape variety in Tinajo, Lanzarote. The MycoBank no. is MB 801390.

  19. Respiratory capacity of the Kluyveromyces marxianus yeast isolated from the mezcal process during oxidative stress.

    Science.gov (United States)

    Arellano-Plaza, Melchor; Gschaedler-Mathis, Anne; Noriega-Cisneros, Ruth; Clemente-Guerrero, Mónica; Manzo-Ávalos, Salvador; González-Hernández, Juan Carlos; Saavedra-Molina, Alfredo

    2013-07-01

    During the mezcal fermentation process, yeasts are affected by several stresses that can affect their fermentation capability. These stresses, such as thermal shock, ethanol, osmotic and growth inhibitors are common during fermentation. Cells have improved metabolic systems and they express stress response genes in order to decrease the damage caused during the stress, but to the best of our knowledge, there are no published works exploring the effect of oxidants and prooxidants, such as H2O2 and menadione, during growth. In this article, we describe the behavior of Kluyveromyces marxianus isolated from spontaneous mezcal fermentation during oxidative stress, and compared it with that of Saccharomyces cerevisiae strains that were also obtained from mezcal, using the W303-1A strain as a reference. S. cerevisiae strains showed greater viability after oxidative stress compared with K. marxianus strains. However, when the yeast strains were grown in the presence of oxidants in the media, K. marxianus exhibited a greater ability to grow in menadione than it did in H2O2. Moreover, when K. marxianus SLP1 was grown in a minibioreactor, its behavior when exposed to menadione was different from its behavior with H2O2. The yeast maintained the ability to consume dissolved oxygen during the 4 h subsequent to the addition of menadione, and then stopped respiration. When exposed to H2O2, the yeast stopped consuming oxygen for the following 8 h, but began to consume oxygen when stressors were no longer applied. In conclusion, yeast isolated from spontaneous mezcal fermentation was able to resist oxidative stress for a long period of time.

  20. Antifungal modes of action of Saccharomyces and other biocontrol yeasts against fungi isolated from sour and grey rots.

    Science.gov (United States)

    Nally, M C; Pesce, V M; Maturano, Y P; Rodriguez Assaf, L A; Toro, M E; Castellanos de Figueroa, L I; Vazquez, F

    2015-07-02

    The aim of this study was to determine the putative modes of action of 59 viticultural yeasts (31 Saccharomyces and 28 non-Saccharomyces) that inhibited fungi isolated from sour and grey rot in grapes. Inhibition of fungal mycelial growth by metabolites, enzyme activities (laminarinases, chitinases), antifungal volatiles, competition for nutrients (siderophores, Niche Overlap Index (NOI)), inhibition of fungal spore germination and decreased germinal tube length and induction of resistance were assayed. Biofungicide yeasts were classified into "antifungal patterns", according to their mechanisms of action. Thirty isolates presented at least two of the mechanisms assayed. We propose that inhibition of fungal mycelial growth by metabolites, laminarinases, competition for nutrients, inhibition of fungal spore germination and decreased germinal tube length, and antifungal volatiles by Saccharomyces and non-Saccharomyces viticultural yeasts is used as putative biocontrol mechanisms against phytopathogenic fungi. Twenty-four different antifungal patterns were identified. Siderophore production (N)and a combination of siderophore production and NOI>0.92 (M)were the most frequent antifungal patterns observed in the biofungicide yeasts assayed. Elucidation of these mechanisms could be useful for optimization of an inoculum formulation, resulting in a more consistent control of grey and sour rot with Saccharomyces and non-Saccharomyces biocontrol yeasts. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Isolation of the alkane inducible cytochrome P450 (P450alk) gene from the yeast Candida tropicalis

    Science.gov (United States)

    The gene for the alkane-inducible cytochrome P450, P450alk, has been isolated from the yeast Candida tropicalis by immunoscreening a λgt11 library. Isolation of the gene has been identified on the basis of its inducibility and partial DNA sequence. Transcripts of this gene were i...

  2. Screening and characterizing of xylanolytic and xylose-fermenting yeasts isolated from the wood-feeding termite, Reticulitermes chinensis.

    Directory of Open Access Journals (Sweden)

    Sameh Samir Ali

    Full Text Available The effective fermentation of xylose remains an intractable challenge in bioethanol industry. The relevant xylanase enzyme is also in a high demand from industry for several biotechnological applications that inevitably in recent times led to many efforts for screening some novel microorganisms for better xylanase production and fermentation performance. Recently, it seems that wood-feeding termites can truly be considered as highly efficient natural bioreactors. The highly specialized gut systems of such insects are not yet fully realized, particularly, in xylose fermentation and xylanase production to advance industrial bioethanol technology as well as industrial applications of xylanases. A total of 92 strains from 18 yeast species were successfully isolated and identified from the gut of wood-feeding termite, Reticulitermes chinensis. Of these yeasts and strains, seven were identified for new species: Candida gotoi, Candida pseudorhagii, Hamamotoa lignophila, Meyerozyma guilliermondii, Sugiyamaella sp.1, Sugiyamaella sp. 2, and Sugiyamaella sp.3. Based on the phylogenetic and phenotypic characterization, the type strain of C. pseudorhagii sp. nov., which was originally designated strain SSA-1542T, was the most frequently occurred yeast from termite gut samples, showed the highly xylanolytic activity as well as D-xylose fermentation. The highest xylanase activity was recorded as 1.73 and 0.98 U/mL with xylan or D-xylose substrate, respectively, from SSA-1542T. Among xylanase-producing yeasts, four novel species were identified as D-xylose-fermenting yeasts, where the yeast, C. pseudorhagii SSA-1542T, showed the highest ethanol yield (0.31 g/g, ethanol productivity (0.31 g/L·h, and its fermentation efficiency (60.7% in 48 h. Clearly, the symbiotic yeasts isolated from termite guts have demonstrated a competitive capability to produce xylanase and ferment xylose, suggesting that the wood-feeding termite gut is a promising reservoir for novel

  3. Evaluation of probiotic potential of yeasts isolated from traditional cheeses manufactured in Serbia and Croatia

    Directory of Open Access Journals (Sweden)

    Milica Zivkovic

    2015-03-01

    Results. The results revealed that two strains of Kluyvereomyces lactis ZIM 2408 and ZIM 2453 grew above one log unit ( and #916; log CFU/ml in the complex colonic medium during 24 h of cultivation, while Torulaspora delbrueckii ZIM 2460 was the most resistant isolate in chemically-simulated conditions of gastric juice and upper intestinal tract. It was demonstrated that the strains Kluyvereomyces lactis ZIM 2408 and ZIM2441 and Saccharomyces cerevisiae ZIM 2415 were highly adhesive to Caco-2 cells, while strains Kluyvereomyces lactis ZIM 2408 and Debaryomyces hansenii ZIM 2415 exhibit the highest adhesion percentage to HT29-MTX cells. All strains significantly (p<0.0001 decreased the proliferation of gut-associated lymphoid tissue (GALT cells suggesting the possible strain-specific immunomodulatory potential of the isolates. Conclusion. The dairy yeast isolates exhibit the strain-specific probiotic properties. Particularly, the strain K. lactis ZIM 2408 appears to be the best probiotic candidate in terms of all three criteria. Taking into account their immunomodulatory potential, the yeast isolates could be further tested for specific probiotic applications and eventually included in functional food formulated for patients suffering from diseases associated with an increased inflammatory status. [J Intercult Ethnopharmacol 2015; 4(1.000: 12-18

  4. Radiation stimulation of yeast crops for increasing output of alcohol and baker yeasts

    International Nuclear Information System (INIS)

    Vlad, E.; Marsheu, P.

    1974-01-01

    The purpose of this study was to stimulate by gamma radiation the existing commercial types of yeast so as to obtain yeasts that would better reflect the substrate and have improved reproductive capacity. The experiments were conducted under ordinary conditions using commercial yeasts received from one factory producing alcohol and bakery yeasts and isolated as pure cultures. Irradiating yeast cultures with small doses (up to 10 krad) was found to stimulate the reproduction and fermenting activity of yeast cells as manifested in increased accumulation of yeast biomass and greater yield of ethyl alcohol. (E.T.)

  5. Are the Conventional Commercial Yeast Identification Methods Still Helpful in the Era of New Clinical Microbiology Diagnostics? A Meta-Analysis of Their Accuracy.

    Science.gov (United States)

    Posteraro, Brunella; Efremov, Ljupcho; Leoncini, Emanuele; Amore, Rosarita; Posteraro, Patrizia; Ricciardi, Walter; Sanguinetti, Maurizio

    2015-08-01

    Accurate identification of pathogenic species is important for early appropriate patient management, but growing diversity of infectious species/strains makes the identification of clinical yeasts increasingly difficult. Among conventional methods that are commercially available, the API ID32C, AuxaColor, and Vitek 2 systems are currently the most used systems in routine clinical microbiology. We performed a systematic review and meta-analysis to estimate and to compare the accuracy of the three systems, in order to assess whether they are still of value for the species-level identification of medically relevant yeasts. After adopting rigorous selection criteria, we included 26 published studies involving Candida and non-Candida yeasts that were tested with the API ID32C (674 isolates), AuxaColor (1,740 isolates), and Vitek 2 (2,853 isolates) systems. The random-effects pooled identification ratios at the species level were 0.89 (95% confidence interval [CI], 0.80 to 0.95) for the API ID32C system, 0.89 (95% CI, 0.83 to 0.93) for the AuxaColor system, and 0.93 (95% CI, 0.89 to 0.96) for the Vitek 2 system (P for heterogeneity, 0.255). Overall, the accuracy of studies using phenotypic analysis-based comparison methods was comparable to that of studies using molecular analysis-based comparison methods. Subanalysis of studies conducted on Candida yeasts showed that the Vitek 2 system was significantly more accurate (pooled ratio, 0.94 [95% CI, 0.85 to 0.99]) than the API ID32C system (pooled ratio, 0.84 [95% CI, 0.61 to 0.99]) and the AuxaColor system (pooled ratio, 0.76 [95% CI, 0.67 to 0.84]) with respect to uncommon species (P for heterogeneity, 0.05). Nonetheless, clinical microbiologists should reconsider the usefulness of these systems, particularly in light of new diagnostic tools such as matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry, which allow for considerably shortened turnaround times and/or avoid the requirement

  6. Isolation and characterization of the plasma membrane from the yeast Pichia pastoris.

    Science.gov (United States)

    Grillitsch, Karlheinz; Tarazona, Pablo; Klug, Lisa; Wriessnegger, Tamara; Zellnig, Günther; Leitner, Erich; Feussner, Ivo; Daum, Günther

    2014-07-01

    Despite similarities of cellular membranes in all eukaryotes, every compartment displays characteristic and often unique features which are important for the functions of the specific organelles. In the present study, we biochemically characterized the plasma membrane of the methylotrophic yeast Pichia pastoris with emphasis on the lipids which form the matrix of this compartment. Prerequisite for this effort was the design of a standardized and reliable isolation protocol of the plasma membrane at high purity. Analysis of isolated plasma membrane samples from P. pastoris revealed an increase of phosphatidylserine and a decrease of phosphatidylcholine compared to bulk membranes. The amount of saturated fatty acids in the plasma membrane was higher than in total cell extracts. Ergosterol, the final product of the yeast sterol biosynthetic pathway, was found to be enriched in plasma membrane fractions, although markedly lower than in Saccharomyces cerevisiae. A further characteristic feature of the plasma membrane from P. pastoris was the enrichment of inositol phosphorylceramides over neutral sphingolipids, which accumulated in internal membranes. The detailed analysis of the P. pastoris plasma membrane is discussed in the light of cell biological features of this microorganism especially as a microbial cell factory for heterologous protein production. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Genotyping of the MTL loci and susceptibility to two antifungal agents of Candida glabrata clinical isolates

    Directory of Open Access Journals (Sweden)

    María Teresa Lavaniegos-Sobrino

    2009-08-01

    Full Text Available The opportunistic fungal pathogen Candida glabrata is the second most common isolate from bloodstream infections worldwide and is naturally less susceptible to the antifungal drug fluconazole than other Candida species. C. glabrata is a haploid yeast that contains three mating-type like loci (MTL, although no sexual cycle has been described. Strains containing both types of mating information at the MTL1 locus are found in clinical isolates, but it is thought that strains containing type a information are more common. Here we investigated if a particular combination of mating type information at each MTLlocus is more prevalent in clinical isolates from hospitalized patients in Mexico and if there is a correlation between mating information and resistance to fluconazole and 5-fluorocytosine. We found that while both types of information at MTL1 are equally represented in a collection of 64 clinical isolates, the vast majority of isolates contain a-type information at MTL2 and α-type at MTL3. We also found no correlation of the particular combination of mating type information at the three MTL loci and resistance to fluconazole.

  8. High-temperature ethanol production using thermotolerant yeast newly isolated from Greater Mekong Subregion

    Directory of Open Access Journals (Sweden)

    Atiya Techaparin

    Full Text Available Abstract The application of high-potential thermotolerant yeasts is a key factor for successful ethanol production at high temperatures. Two hundred and thirty-four yeast isolates from Greater Mekong Subregion (GMS countries, i.e., Thailand, The Lao People's Democratic Republic (Lao PDR and Vietnam were obtained. Five thermotolerant yeasts, designated Saccharomyces cerevisiae KKU-VN8, KKU-VN20, and KKU-VN27, Pichia kudriavzevii KKU-TH33 and P. kudriavzevii KKU-TH43, demonstrated high temperature and ethanol tolerance levels up to 45 °C and 13% (v/v, respectively. All five strains produced higher ethanol concentrations and exhibited greater productivities and yields than the industrial strain S. cerevisiae TISTR5606 during high-temperature fermentation at 40 °C and 43 °C. S. cerevisiae KKU-VN8 demonstrated the best performance for ethanol production from glucose at 37 °C with an ethanol concentration of 72.69 g/L, a productivity of 1.59 g/L/h and a theoretical ethanol yield of 86.27%. The optimal conditions for ethanol production of S. cerevisiae KKU-VN8 from sweet sorghum juice (SSJ at 40 °C were achieved using the Box-Behnken experimental design (BBD. The maximal ethanol concentration obtained during fermentation was 89.32 g/L, with a productivity of 2.48 g/L/h and a theoretical ethanol yield of 96.32%. Thus, the newly isolated thermotolerant S. cerevisiae KKU-VN8 exhibits a great potential for commercial-scale ethanol production in the future.

  9. Isolation of baker's yeast mutants with proline accumulation that showed enhanced tolerance to baking-associated stresses.

    Science.gov (United States)

    Tsolmonbaatar, Ariunzaya; Hashida, Keisuke; Sugimoto, Yukiko; Watanabe, Daisuke; Furukawa, Shuhei; Takagi, Hiroshi

    2016-12-05

    During bread-making processes, yeast cells are exposed to baking-associated stresses such as freeze-thaw, air-drying, and high-sucrose concentrations. Previously, we reported that self-cloning diploid baker's yeast strains that accumulate proline retained higher-level fermentation abilities in both frozen and sweet doughs than the wild-type strain. Although self-cloning yeasts do not have to be treated as genetically modified yeasts, the conventional methods for breeding baker's yeasts are more acceptable to consumers than the use of self-cloning yeasts. In this study, we isolated mutants resistant to the proline analogue azetidine-2-carboxylate (AZC) derived from diploid baker's yeast of Saccharomyces cerevisiae. Some of the mutants accumulated a greater amount of intracellular proline, and among them, 5 mutants showed higher cell viability than that observed in the parent wild-type strain under freezing or high-sucrose stress conditions. Two of them carried novel mutations in the PRO1 gene encoding the Pro247Ser or Glu415Lys variant of γ-glutamyl kinase (GK), which is a key enzyme in proline biosynthesis in S. cerevisiae. Interestingly, we found that these mutations resulted in AZC resistance of yeast cells and desensitization to proline feedback inhibition of GK, leading to intracellular proline accumulation. Moreover, baker's yeast cells expressing the PRO1 P247S and PRO1 E415K gene were more tolerant to freezing stress than cells expressing the wild-type PRO1 gene. The approach described here could be a practical method for the breeding of proline-accumulating baker's yeasts with higher tolerance to baking-associated stresses. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Diversity and killer activity of yeasts in Malaysian fermented food samples.

    Science.gov (United States)

    Lim, S L; Tay, S T

    2011-08-01

    The biodiversity and the killer activity of yeasts isolated from various types of fermented food in Malaysia were investigated in this study. Of 252 yeasts isolated from 48 fermented food samples in this study, 19 yeast species were identified based on sequence analysis of the ITS1-5.8S-ITS2 partial fragments of the yeasts. A total of 29 (11.5%) of the yeast isolates demonstrated killer activity to at least one Candida species tested in this study; including 22 isolates of Trichosporon asahii, 4 isolates of Pichia anomala, and one isolate each of Pichia norvegensis, Pichia fermentans and Issatchenkia orientalis, respectively. The presence of killer yeasts reflects antagonism that occurs during microbial interaction in the fermented food, whereby certain yeasts produce killer toxins and possibly other toxic substances in competition for limited nutrients and space. The anti-Candida activity demonstrated by killer yeasts in this study should be further explored for development of alternative therapy against candidiasis.

  11. Occurrence of Killer Yeast Strains in Fruit and Berry Wine Yeast Populations

    Directory of Open Access Journals (Sweden)

    Gintare Gulbiniene

    2004-01-01

    Full Text Available Apple, cranberry, chokeberry and Lithuanian red grape wine yeast populations were used for the determination of killer yeast occurrence. According to the tests of the killer characteristics and immunity the isolated strains were divided into seven groups. In this work the activity of killer toxins purified from some typical strains was evaluated. The analysed strains produced different amounts of active killer toxin and some of them possessed new industrially significant killer properties. Total dsRNA extractions in 11 killer strains of yeast isolated from spontaneous fermentations revealed that the molecular basis of the killer phenomenon was not only dsRNAs, but also unidentified genetic determinants.

  12. Starmerella syriaca f.a., sp. nov., an osmotolerant yeast species isolated from flowers in Syria.

    Science.gov (United States)

    Sipiczki, Matthias

    2015-04-01

    Four strains of a novel asexual ascomycetous yeast species were isolated from Malva sp. flowers in Syria. Sequencing of the regions spanning the small subunit, 5.8S, and the D1/D2 domains of the large subunit ribosomal RNA genes showed that the isolates were conspecific. Comparative analysis of these sequences and the corresponding sequences of the type strains of ascomycetous yeasts revealed that the novel species is phylogenetically related to members of the Starmerella clade. Its closest relative is Candida vaccinii. For the new species the name Starmerella syriaca is proposed. Its strains are osmotolerant and produce pseudohypha-like structures capable of penetrating agar media. The type strain is 2-1362(T) (=CBS 13909(T) = NCAIM Y.02138(T) = CCY 090-003-001(T)). The GenBank accession numbers for its nucleotide sequences are: JX515986 (D1/D2 LSU), JX515987 (ITS1-5.8S-ITS2) and JX515988 (SSU). Mycobank: MB 810090.

  13. Characterization of ß-Glucans Isolated from Brewer’s Yeast and Dried by Different Methods

    Directory of Open Access Journals (Sweden)

    Vesna Zechner-Krpan

    2010-01-01

    Full Text Available Two different procedures have been used for isolation of water-insoluble ß-glucans from brewer’s yeast: alkaline-acidic isolation (AA and alkaline-acidic isolation with mannoprotein removal (AAM. The obtained ß-glucans were then dried by air-drying, lyophilization and combination of sonication and spray-drying. ß-Glucan preparations obtained by AA and AAM isolations had similar values of dry mass, total polysaccharides, proteins and organic elemental microanalysis. The mass fractions of ß-glucan in total polysaccharides were significantly affected by different isolation procedures. Fourier transform infrared (FTIR spectra of all preparations had the appearance typical for (1→3-ß-D-glucan. Lyophilization and especially air-drying caused a higher degree of agglomeration and changes in ß-glucan microstructure. Sonication followed by spray-drying resulted in minimal structural changes and negligible formation of agglomerates.

  14. Isolation, selection and evaluation of yeasts for use in fermentation of coffee beans by the wet process.

    Science.gov (United States)

    de Melo Pereira, Gilberto Vinícius; Soccol, Vanete Thomaz; Pandey, Ashok; Medeiros, Adriane Bianchi Pedroni; Andrade Lara, João Marcos Rodrigues; Gollo, André Luiz; Soccol, Carlos Ricardo

    2014-10-01

    During wet processing of coffee, the ripe cherries are pulped, then fermented and dried. This study reports an experimental approach for target identification and selection of indigenous coffee yeasts and their potential use as starter cultures during the fermentation step of wet processing. A total of 144 yeast isolates originating from spontaneously fermenting coffee beans were identified by molecular approaches and screened for their capacity to grow under coffee-associated stress conditions. According to ITS-rRNA gene sequencing, Pichia fermentans and Pichia kluyveri were the most frequent isolates, followed by Candida Candida glabrata, quercitrusa, Saccharomyces sp., Pichia guilliermondii, Pichia caribbica and Hanseniaspora opuntiae. Nine stress-tolerant yeast strains were evaluated for their ability to produce aromatic compounds in a coffee pulp simulation medium and for their pectinolytic activity. P. fermentans YC5.2 produced the highest concentrations of flavor-active ester compounds (viz., ethyl acetate and isoamyl acetate), while Saccharomyces sp. YC9.15 was the best pectinase-producing strain. The potential impact of these selected yeast strains to promote flavor development in coffee beverages was investigated for inoculating coffee beans during wet fermentation trials at laboratory scale. Inoculation of a single culture of P. fermentans YC5.2 and co-culture of P. fermentans YC5.2 and Saccharomyces sp. YC9.15 enhanced significantly the formation of volatile aroma compounds during the fermentation process compared to un-inoculated control. The sensory analysis indicated that the flavor of coffee beverages was influenced by the starter cultures, being rated as having the higher sensory scores for fruity, buttery and fermented aroma. This demonstrates a complementary role of yeasts associated with coffee quality through the synthesis of yeast-specific volatile constituents. The yeast strains P. fermentans YC5.2 and Saccharomyces sp. YC9.15 have a great

  15. Yeast genetics. A manual of methods

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, J.F.T.; Spencer, D.M.; Bruce, I.J.

    1989-01-01

    This is a bench-top manual of methods needed both for classical genetics as related to yeasts, such as mating, sporulation, isolation of hybrids, microdissection of asci for the isolation of single-spore clones, as well as for mapping of genes and the construction of new strains by protoplast fusion. Special emphasis is on mutations in general, and on methods of isolating a number of important classes of mutants in particular. Basic techniques for the separation of chromosomes by electrophoresis, such as OFAGE, FIGE, and CHEF, are discussed, with detailed protocols for the first two. Furthermore, new methods, e.g. for the isolation of high molecular weight DNA from yeast, isolation of RNA, and techniques for transformation of yeasts, are also described in detail. (orig.) With 10 figs.

  16. Hg tolerance and biouptake of an isolated pigmentation yeast Rhodotorula mucilaginosa.

    Science.gov (United States)

    Liu, Bing; Wang, Chaogang; Liu, Danxia; He, Ning; Deng, Xu

    2017-01-01

    A pigmented yeast R1 with strong tolerance to Hg2+ was isolated. Phylogenetic identification based on the analysis of 26S rDNA and ITS revealed R1 is a Rhodotorula mucilaginosa species. R1 was able to grow in the presence of 80 mg/L Hg2+, but the lag phase was much prolonged compared to its growth in the absence of Hg2+. The maximum Hg2+ binding capacity of R1 was 69.9 mg/g, and dead cells could bind 15% more Hg2+ than living cells. Presence of organic substances drastically reduced bioavailability of Hg2+ and subsequently decreased Hg2+ removal ratio from aqueous solution, but this adverse effect could be remarkably alleviated by the simultaneous process of cell propagation and Hg2+ biouptake with actively growing R1. Furthermore, among the functional groups involved in Hg2+ binding, carboxyl group contributed the most, followed by amino & hydroxyl group and phosphate group. XPS analysis disclosed the mercury species bound on yeast cells was HgCl2 rather than HgO or Hg0.

  17. ISOLATION AND IDENTIFICATION OF AMYLASE PRODUCING YEASTS IN ‘TELLA’ (ETHIOPIAN LOCAL BEER AND THEIR AMYLASE CONTRIBUTION FOR ‘TELLA’ PRODUCTION

    Directory of Open Access Journals (Sweden)

    Berhanu Andualem

    2013-08-01

    Full Text Available ‘Tella’ is local beer which is used in most part of Ethiopia. It is made from cereals, such as barley, wheat, maize and other crops. Rhamnus prinoides is also used to provide a special aroma and flavor as well as antiseptic agent. The objective of this study is to determine the contribution of amylases from tella yeast isolates and compare with the role of amylase from malt. House hold ‘tella’ samples were collected and plated on starch agar and then amylase positive isolates of yeast were identified by folding iodine solution over the starch agar. Amylase assay and activities were investigated by standard methods and compared with amylase from malt. According to this study, the activity of amylases which was extracted from yeast isolates was very low and may have no contribution in the conversion of starch into fermentable sugars. Thus, it is better to avoid such organisms from ‘tella’ fermentation in order to discriminate unwanted bio-products. In conclusion, the substrates and ingredients should be sterilized and introduced into the fermentation system aseptically.

  18. Occurrence and characterization of Candida nivariensis from a culture collection of Candida glabrata clinical isolates in Malaysia.

    Science.gov (United States)

    Tay, Sun Tee; Lotfalikhani, Azadeh; Sabet, Negar Shafiei; Ponnampalavanar, Sasheela; Sulaiman, Sofiah; Na, Shiang Ling; Ng, Kee Peng

    2014-10-01

    Candida nivariensis and C. bracarensis have been recently identified as emerging yeast pathogens which are phenotypically indistinguishable from C. glabrata. However, there is little data on the prevalence and antifungal susceptibilities of these species. This study investigated the occurrence of C. nivariensis and C. bracarensis in a culture collection of 185 C. glabrata isolates at a Malaysian teaching hospital. C. nivariensis was discriminated from C. glabrata using a PCR assay as described by Enache-Angoulvant et al. (J Clin Microbiol 49:3375-9, 2011). The identity of the isolates was confirmed by sequence analysis of the D1D2 domain and internal transcribed spacer region of the yeasts. The isolates were cultured on Chromogenic CHROMagar Candida (®) agar (Difco, USA), and their biochemical and enzymic profiles were determined. Antifungal susceptibilities of the isolates against amphotericin B, fluconazole, voriconazole and caspofungin were determined using E tests. Clotrimazole MICs were determined using a microbroth dilution method. There was a low prevalence (1.1 %) of C. nivariensis in our culture collection of C. glabrata. C. nivariensis was isolated from a blood culture and vaginal swab of two patients. C. nivariensis grew as white colonies on Chromogenic agar and demonstrated few positive reactions using biochemical tests. Enzymatic profiles of the C. nivariensis isolates were similar to that of C. glabrata. The isolates were susceptible to amphotericin B, fluconazole, voriconazole and caspofungin. Clotrimazole resistance is suspected in one isolate. This study reports for the first time the emergence of C. nivariensis in our clinical setting.

  19. Neutron activation analysis of cadmium bioremediation by yeast isolated from the fermentation of cachaca

    International Nuclear Information System (INIS)

    Ribeiro, Frederico H.; Moreira, Luciana M.C.; Porto, Barbara A.A.; Menezes, Maria Angela B.C.; Amaral, Angela M.; Neves, Maria J.; Rosa, Carlos A.

    2009-01-01

    The accumulation of heavy metal in urban environment is a final result of industrial waste discharges. The removal and recovery of heavy metals from contaminated water and wastewater is important in the protection of the environment and human health. There are several chemical technologies used to remove heavy metals. Most of these are ineffective or excessively expensive when the metal concentrations are less than 100 mgL -1 . Biological treatment with bioremediation, is an innovative technology available for heavy metal polluted wastewaters. Brazil has a big production of yeast as a by-product of the fermentation of sugar cane for the production of ethanol or, for the production of artisanal cachaca, notedly in the state of Minas Gerais. Biological organisms remove metals through of two processes: bioaccumulation and biosorption. This research used neutron activation technique to determine the capacity of 10 isolated yeast of the fermentation for the withdrawal of cadmium. The efflux of ions K + , was also analyzed by the same technique after the incorporation of cadmium by cells. This work showed that the neutron activation analysis is a suitable technique to quantification the metal absorbed from liquid solution and that isolated strains of the fermentation of cachaca are more efficient in removing cadmium of the liquid solution that the laboratorial strain. The influences of the metals on the growth of the cells are also observed. The results obtained were compared with the yeast strain of laboratory, Saccharomyces cerevisiae W303-WT. The tolerance of cadmium to concentration of 100 mgL -1 was evaluated. (author)

  20. Neutron activation analysis of cadmium bioremediation by yeast isolated from the fermentation of cachaca

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Frederico H.; Moreira, Luciana M.C.; Porto, Barbara A.A.; Menezes, Maria Angela B.C.; Amaral, Angela M.; Neves, Maria J. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)], e-mail: fhr@cdtn.br; Rosa, Carlos A. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)], e-mail: carlrosa@icb.ufmg.br

    2009-07-01

    The accumulation of heavy metal in urban environment is a final result of industrial waste discharges. The removal and recovery of heavy metals from contaminated water and wastewater is important in the protection of the environment and human health. There are several chemical technologies used to remove heavy metals. Most of these are ineffective or excessively expensive when the metal concentrations are less than 100 mgL{sup -1}. Biological treatment with bioremediation, is an innovative technology available for heavy metal polluted wastewaters. Brazil has a big production of yeast as a by-product of the fermentation of sugar cane for the production of ethanol or, for the production of artisanal cachaca, notedly in the state of Minas Gerais. Biological organisms remove metals through of two processes: bioaccumulation and biosorption. This research used neutron activation technique to determine the capacity of 10 isolated yeast of the fermentation for the withdrawal of cadmium. The efflux of ions K{sup +}, was also analyzed by the same technique after the incorporation of cadmium by cells. This work showed that the neutron activation analysis is a suitable technique to quantification the metal absorbed from liquid solution and that isolated strains of the fermentation of cachaca are more efficient in removing cadmium of the liquid solution that the laboratorial strain. The influences of the metals on the growth of the cells are also observed. The results obtained were compared with the yeast strain of laboratory, Saccharomyces cerevisiae W303-WT. The tolerance of cadmium to concentration of 100 mgL{sup -1} was evaluated. (author)

  1. Comparative evaluation of matrix-assisted laser desorption ionisation-time of flight mass spectrometry and conventional phenotypic-based methods for identification of clinically important yeasts in a UK-based medical microbiology laboratory.

    Science.gov (United States)

    Fatania, Nita; Fraser, Mark; Savage, Mike; Hart, Jason; Abdolrasouli, Alireza

    2015-12-01

    Performance of matrix-assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF MS) was compared in a side-by side-analysis with conventional phenotypic methods currently in use in our laboratory for identification of yeasts in a routine diagnostic setting. A diverse collection of 200 clinically important yeasts (19 species, five genera) were identified by both methods using standard protocols. Discordant or unreliable identifications were resolved by sequencing of the internal transcribed spacer region of the rRNA gene. MALDI-TOF and conventional methods were in agreement for 182 isolates (91%) with correct identification to species level. Eighteen discordant results (9%) were due to rarely encountered species, hence the difficulty in their identification using traditional phenotypic methods. MALDI-TOF MS enabled rapid, reliable and accurate identification of clinically important yeasts in a routine diagnostic microbiology laboratory. Isolates with rare, unusual or low probability identifications should be confirmed using robust molecular methods. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  2. The uses of AFLP for detecting DNA polymorphism, genotype identification and genetic diversity between yeasts isolated from Mexican agave-distilled beverages and from grape musts.

    Science.gov (United States)

    Flores Berrios, E P; Alba González, J F; Arrizon Gaviño, J P; Romano, P; Capece, A; Gschaedler Mathis, A

    2005-01-01

    The objectives were to determine the variability and to compare the genetic diversity obtained using amplified fragment length polymorphism (AFLP) markers in analyses of wine, tequila, mezcal, sotol and raicilla yeasts. A molecular characterization of yeasts isolated from Mexican agave musts, has been performed by AFLP marker analysis, using reference wine strains from Italian and South African regions. A direct co-relation between genetic profile, origin and fermentation process of strains was found especially in strains isolated from agave must. In addition, unique molecular markers were obtained for all the strains using six combination primers, confirming the discriminatory power of AFLP markers. This is the first report of molecular characterization between yeasts isolated from different Mexican traditional agave-distilled beverages, which shows high genetic differences with respect to wine strains.

  3. Selection and identification of oleaginous yeast isolated from soil, animal feed and ruminal fluid for use as feed supplement in dairy cattle.

    Science.gov (United States)

    Paserakung, A; Pattarajinda, V; Vichitphan, K; Froetschel, M A

    2015-10-01

    The purpose of this study was to select oleaginous yeast for microbial lipid production. Sixty-four yeast isolates were obtained from soil (GSY1-12), animal feeds (FDY1-21), and ruminal fluid (RMY1-31) using yeast extract peptone dextrose (YPD) agar. The cultivation of these isolates on nitrogen limited-medium revealed that GSY2 to GSY6, GSY10, FDY2, FDY12 and FDY14 accumulated lipid over 20% of dry biomass. Therefore, they were preliminarily classified as oleaginous yeast. In subsequent experiment, an 8 × 3 factorial in completely randomized design was conducted to examine the effect of eight oleaginous yeast strains and three nitrogen sources (peptone, (NH4 )2 SO4 , urea) on lipid accumulation when using molasses as substrate. The result illustrated that only GSY3 and GSY10 accumulated lipid over 20% of biomass when using peptone or (NH4 )2 SO4 but urea did not. However, GSY10 gave higher biomass and lipid yield than GSY3 (P yeast for microbial lipid production from molasses. This study illustrated the ability of T. asahii GSY10 to utilize molasses and (NH4 )2 SO4 for synthesizing and accumulating cellular lipid of which oleic acid (C18:1 ) was predominant. This yeast would be used for microbial lipid production used as feed supplement in dairy cattle. © 2015 The Society for Applied Microbiology.

  4. Nuclear Magnetic Resonance Spectroscopy-Based Identification of Yeast.

    Science.gov (United States)

    Himmelreich, Uwe; Sorrell, Tania C; Daniel, Heide-Marie

    2017-01-01

    Rapid and robust high-throughput identification of environmental, industrial, or clinical yeast isolates is important whenever relatively large numbers of samples need to be processed in a cost-efficient way. Nuclear magnetic resonance (NMR) spectroscopy generates complex data based on metabolite profiles, chemical composition and possibly on medium consumption, which can not only be used for the assessment of metabolic pathways but also for accurate identification of yeast down to the subspecies level. Initial results on NMR based yeast identification where comparable with conventional and DNA-based identification. Potential advantages of NMR spectroscopy in mycological laboratories include not only accurate identification but also the potential of automated sample delivery, automated analysis using computer-based methods, rapid turnaround time, high throughput, and low running costs.We describe here the sample preparation, data acquisition and analysis for NMR-based yeast identification. In addition, a roadmap for the development of classification strategies is given that will result in the acquisition of a database and analysis algorithms for yeast identification in different environments.

  5. Evaluation of Caspofungin Susceptibility Testing by the New Vitek 2 AST-YS06 Yeast Card Using a Unique Collection of FKS Wild-Type and Hot Spot Mutant Isolates, Including the Five Most Common Candida Species

    DEFF Research Database (Denmark)

    Astvad, Karen M; Perlin, David S; Johansen, Helle K

    2013-01-01

    FKS mutant isolates associated with breakthrough or failure cases are emerging in clinical settings. Discrimination of these from wild-type (wt) isolates in a routine laboratory setting is complicated. We evaluated the ability of caspofungin MIC determination using the new Vitek 2 AST-Y06 yeast...... susceptibility card to correctly identify the fks mutants from wt isolates and compared the performance to those of the CLSI and EUCAST reference methods. A collection of 98 Candida isolates, including 31 fks hot spot mutants, were included. Performance was evaluated using the FKS genotype as the "gold standard...

  6. Adhesion to silicone rubber of yeasts and bacteria isolated from voice prostheses : Influence of salivary conditioning films

    NARCIS (Netherlands)

    Busscher, HJ; GeertsemaDoornbusch, GI; vanderMei, HC

    Adhesion of yeasts and bacteria to silicone rubber is one of the first steps in the biodeterioration of silicone rubber voice prostheses. In this paper, adhesion of two streptococcal, staphylococcal, Candida albicans and Candida tropicalis strains, isolated from explanted voice prostheses was

  7. Isolation of pathogenic yeasts in the air from hospital environments in the city of Fortaleza, northeast Brazil

    Directory of Open Access Journals (Sweden)

    Rossana A Cordeiro

    Full Text Available This paper reports the results of environmental surveillance of yeasts in specific areas of two tertiary local hospitals. From March 2007 to February 2008, samples from the air of two public hospitals were collected on a monthly basis. The samples were collected through passive sedimentation method (day and night exposure of Petri dishes. A total of 240 air samples from 10 hospital environments were analyzed. These environments presented similar contamination levels, from which 80 fungi isolates were isolated: Candida parapsilosis (n = 34, Rhodotorula spp. (19, Trichosporon asahii (11, C. tropicalis (8, C. albicans (4, C. glabrata (1, C. guilliermondii (1, C. krusei (1 and Saccharomyces spp. (1. Regarding the presence of yeasts and climatic conditions, there were 40 strains (50% in semi-critical areas (natural ventilation and critical areas (air conditioned. Considering the presence of microorganisms with pathogenic potential, environmental monitoring is necessary to prevent possible hospital infections.

  8. Yeasts and yeast-like organisms associated with fruits and blossoms of different fruit trees.

    Science.gov (United States)

    Vadkertiová, Renáta; Molnárová, Jana; Vránová, Dana; Sláviková, Elena

    2012-12-01

    Yeasts are common inhabitants of the phyllosphere, but our knowledge of their diversity in various plant organs is still limited. This study focused on the diversity of yeasts and yeast-like organisms associated with matured fruits and fully open blossoms of apple, plum, and pear trees, during 2 consecutive years at 3 localities in southwest Slovakia. The occurrence of yeasts and yeast-like organisms in fruit samples was 2½ times higher and the yeast community more diverse than that in blossom samples. Only 2 species (Aureobasidium pullulans and Metschnikowia pulcherrima) occurred regularly in the blossom samples, whereas Galactomyces candidus, Hanseniaspora guilliermondii, Hanseniaspora uvarum, M. pulcherrima, Pichia kluyveri, Pichia kudriavzevii, and Saccharomyces cerevisiae were the most frequently isolated species from the fruit samples. The ratio of the number of samples where only individual species were present to the number of samples where 2 or more species were found (consortium) was counted. The occurrence of individual species in comparison with consortia was much higher in blossom samples than in fruit samples. In the latter, consortia predominated. Aureobasidium pullulans, M. pulcherrima, and S. cerevisiae, isolated from both the fruits and blossoms, can be considered as resident yeast species of various fruit tree species cultivated in southwest Slovakia localities.

  9. Genome Sequences of Industrially Relevant Saccharomyces cerevisiae Strain M3707, Isolated from a Sample of Distillers Yeast and Four Haploid Derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Steven D.; Klingeman, Dawn M.; Johnson, Courtney M.; Clum, Alicia; Aerts, Andrea; Salamov, Asaf; Sharma, Aditi; Zane, Matthew; Barry, Kerrie; Grigoriev, Igor V.; Davison, Brian H.; Lynd, Lee R.; Gilna, Paul; Hau, Heidi; Hogsett, David A.; Froehlich, Allan C.

    2013-04-19

    Saccharomyces cerevisiae strain M3707 was isolated from a sample of commercial distillers yeast, and its genome sequence together with the genome sequences for the four derived haploid strains M3836, M3837, M3838, and M3839 has been determined. Yeasts have potential for consolidated bioprocessing (CBP) for biofuel production, and access to these genome sequences will facilitate their development.

  10. Rhodotorula bloemfonteinensis sp. nov., Rhodotorula eucalyptica sp. nov., Rhodotorula orientis sp. nov. and Rhodotorula pini sp. nov., yeasts isolated from monoterpene-rich environments.

    Science.gov (United States)

    Pohl, Carolina H; Smit, Martha S; Albertyn, Jacobus

    2011-09-01

    Recent rDNA sequencing of 25 isolates from a previous study, during which limonene-utilizing yeasts were isolated from monoterpene-rich environments by using 1,4-disubstituted cyclohexanes as sole carbon sources, led to the identification of four hitherto unknown Rhodotorula species. Analyses of the 26S rDNA D1/D2 region as well as the internal transcribed spacer (ITS) domain indicated that two isolates (CBS 8499(T) and CBS 10736) were identical and were closely related to Rhodotorula cycloclastica, a previously described limonene-utilizing yeast. These novel isolates differed from known yeast species and could be distinguished from R. cycloclastica by standard physiological tests. The other three isolates represent three novel Rhodotorula species, closely related to Sporobolomyces magnisporus. These three species could also be distinguished from other Rhodotorula species by standard physiological tests. Based on these results, we suggest that the new isolates represent novel species, for which the names Rhodotorula eucalyptica sp. nov. (type strain CBS 8499(T)  = NRRL Y-48408(T)), Rhodotorula pini sp. nov. (type strain CBS 10735(T)  = NRRL Y-48410(T)), Rhodotorula bloemfonteinensis sp. nov. (type strain CBS 8598(T)  = NRRL Y-48407(T)) and Rhodotorula orientis sp. nov. (type strain CBS 8594(T)  = NRRL Y-48719(T)) are proposed. R. eucalyptica and R. pini can also utilize limonene.

  11. Isolation and characterization of yeasts capable of efficient utilization of hemicellulosic hydrolyzate as the carbon source.

    Science.gov (United States)

    Cassa-Barbosa, L A; Procópio, R E L; Matos, I T S R; Filho, S A

    2015-09-28

    Few yeasts have shown the potential to efficiently utilize hemicellulosic hydrolyzate as the carbon source. In this study, microorganisms isolated from the Manaus region in Amazonas, Brazil, were characterized based on their utilization of the pentoses, xylose, and arabinose. The yeasts that showed a potential to assimilate these sugars were selected for the better utilization of lignocellulosic biomass. Two hundred and thirty seven colonies of unicellular microorganisms grown on hemicellulosic hydrolyzate, xylose, arabinose, and yeast nitrogen base selective medium were analyzed. Of these, 231 colonies were subjected to sugar assimilation tests. One hundred and twenty five of these were shown to utilize hydrolyzed hemicellulose, xylose, or arabinose as the carbon source for growth. The colonies that showed the best growth (N = 57) were selected, and their internal transcribed spacer-5.8S rDNA was sequenced. The sequenced strains formed four distinct groups in the phylogenetic tree, and showed a high percentage of similarity with Meyerozyma caribbica, Meyerozyma guilliermondii, Trichosporon mycotoxinivorans, Trichosporon loubieri, Pichia kudriavzevii, Candida lignohabitans, and Candida ethanolica. The discovery of these xylose-fermenting yeasts could attract widespread interest, as these can be used in the cost-effective production of liquid fuel from lignocellulosic materials.

  12. Characterization of the Respiration-Induced Yeast Mitochondrial Permeability Transition Pore

    OpenAIRE

    Bradshaw, Patrick C.; Pfeiffer, Douglas R.

    2013-01-01

    When isolated mitochondria from the yeast Saccharomyces cerevisiae oxidize respiratory substrates in the absence of phosphate and ADP, the yeast mitochondrial unselective channel, also called the yeast permeability transition pore (yPTP), opens in the inner membrane dissipating the electrochemical gradient. ATP also induces yPTP opening. yPTP opening allows mannitol transport into isolated mitochondria of laboratory yeast strains, but mannitol is not readily permeable throug...

  13. Yeast-like fungi possessing bio-indicator properties isolated from the Łyna river

    Directory of Open Access Journals (Sweden)

    Maria Dynowska

    2014-08-01

    Full Text Available Yeast-like fungi isolated in the Łyna river are constant components of microflora of inland waters. Every increase in their number indicates progress in the process of eutrophication and accumulation of organic and inorganic pollutans. The fungi Candida aibicans, Pichia guilliermondii, P. anomala, Rhodotorula glutinis i Trichosporon beigelii, potentially pathogenic apperred in water with high content of municipal sewage, but T. aquatile - in the clean waters only. The tested fungi can be also considered as bio-indicators.

  14. Candida infanticola and Candida spencermartinsiae yeasts: Possible emerging species in cancer patients

    NARCIS (Netherlands)

    Shokohi, T.; Aslani, N.; Ahangarkani, F.; Meyabadi, M.F.; Hagen, F.; Meis, J.F.G.M.; Boekhout, T.; Kolecka, A.; Badali, H.

    2018-01-01

    Opportunistic infections due to Candida species occur frequently in intensive care settings. We investigated the prevalence of Candida species among 65 clinical specimens obtained from 200 cancer patients by phenotypic and molecular (ITS sequencing and AFLP) methods. Among the 65 yeast isolates,

  15. Isolation and Identification of the Indigenous Yeast Population during Spontaneous Fermentation of Isabella (Vitis labrusca L.) Grape Must

    Science.gov (United States)

    Raymond Eder, María L.; Reynoso, Cristina; Lauret, Santiago C.; Rosa, Alberto L.

    2017-01-01

    Grape must harbors a complex community of yeast species responsible for spontaneous alcoholic fermentation. Although there are detailed studies on the microbiota of Vitis vinifera L. grapes, less is known about the diversity and behavior of yeast communities present on fermenting grape must from other species of Vitis. In this work, we used a culture-dependent method to study the identity and dynamics of the indigenous yeast population present during the spontaneous fermentation of Isabella (Vitis labrusca L.) grape must. Alcoholic fermentation was conducted using standard enological practices, and the associated non-Saccharomyces and S. cerevisiae yeast community was analyzed using selective growth media and 5.8-ITS DNA sequencing. Candida californica, Candida hellenica, Starmerella bacillaris (synonym Candida zemplinina), Hanseniaspora uvarum, and Hanseniaspora vineae were the main non-Saccharomyces species identified on Isabella fermenting must. Issatchenkia hanoiensis, a yeast species rarely found on Vitis vinifera L. grapes, was also recognized on Isabella grape must. Candida azymoides, Candida californica and Pichia cecembensis, identified in this work on Isabella fermenting must, have not previously been found on Vitis vinifera L. grape must. Interestingly, C. azymoides, I. hanoiensis and P. cecembensis have recently been isolated from the surface of Vitis labrusca L. grapes from vineyards in the Azores archipelago, suggesting that specific Vitis-yeast species associations are formed independently of geographic origin. We suggest that C. azymoides, C. californica, and P. cecembensis are yeast species preferentially associated with Vitis labrusca L. grapes. Specific biological interactions between grapevines and yeast species may underlie the assembly of differential Vitis-microbial communities. PMID:28424672

  16. Interference in adhesion of bacteria and yeasts isolated from explanted voice prostheses to silicone rubber by rhamnolipid biosurfactants

    NARCIS (Netherlands)

    Rodrigues, LR; Banat, IM; van der Mei, HC; Teixeira, JA; Oliveira, R

    Aims: The effects and extent of adhesion of four different bacterial and two yeast strains isolated from explanted voice prostheses to silicone rubber with and without an adsorbed rhamnolipid biosurfactant layer obtained from Pseudomonasaeruginosa DS10-129 was studied. Methods and Results: The

  17. Issues in identifying germ tube positive yeasts by conventional methods.

    Science.gov (United States)

    Yazdanpanah, Atta; Khaithir, Tzar Mohd Nizam

    2014-01-01

    Candida speciation is vital for epidemiology and management of candidiasis. Nonmolecular conventional methods often fail to identify closely related germ tube positive yeasts from clinical specimens. The present study was conducted to identify these yeasts and to highlight issues in conventional versus molecular methods of identification. A total of 98 germ tube positive yeasts from high vaginal swabs were studied over a 12-month period. Isolates were examined with various methods including growth at 42 °C and 45 °C on Sabouraud dextrose agar (SDA), color development on CHROMagar Candida medium, chlamydospore production on corn meal agar at 25 °C, carbohydrate assimilation using ID 32C system, and polymerase chain reaction using a single pair of primers targeting the hyphal wall protein 1 (Hwp1) gene. Of all the isolates studied, 97 were molecularly confirmed as C. albicans and one isolate was identified as C. dubliniensis. No C. africana was detected in this study. The molecular method used in our study was an accurate and useful tool for discriminating C. albicans, C. dubliniensis, and C. africana. The conventional methods, however, were less accurate and riddled with many issues that will be discussed in further details. © 2013 Wiley Periodicals, Inc.

  18. Identification of uncommon oral yeasts from cancer patients by MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Aslani, Narges; Janbabaei, Ghasem; Abastabar, Mahdi; Meis, Jacques F; Babaeian, Mahasti; Khodavaisy, Sadegh; Boekhout, Teun; Badali, Hamid

    2018-01-08

    Opportunistic infections due to Candida species occur frequently in cancer patients because of their inherent immunosuppression. The aim of the present study was to investigate the epidemiology of yeast species from the oral cavity of patients during treatment for oncological and haematological malignancies. MALDI-TOF was performed to identify yeasts isolated from the oral cavity of 350 cancer patients. Moreover, antifungal susceptibility testing was performed in according to CLSI guidelines (M27-A3). Among 162 yeasts and yeast-like fungi isolated from the oral cavity of cancer patients, Candida albicans was the most common species (50.6%), followed by Candida glabrata (24.7%), Pichia kudriavzevii (Candida krusei (9.9%)), Candida tropicalis (4.3%), Candida dubliniensis (3.7%), Kluyveromyces marxianus (Candida kefyr (3.7%)) and Candida parapsilosis (1%). In addition, uncommon yeast species i.e., Saprochaete capitata, Saccharomyces cerevisiae, Clavispora lusitaniae (C. lusitaniae) and Pichia kluyveri (C. eremophila) were recovered from oral lesions. Oral colonization by C. albicans, non-albicans Candida species and uncommon yeasts were as follow; 55%, 44% and 1%, whereas oral infection due to C. albicans was 33.3%, non-albicans Candida species 60.6%, and uncommon yeasts 6.1%. Poor oral hygiene and xerostomia were identified as independent risk factors associated with oral yeast colonization. The overall resistance to fluconazole was 11.7% (19/162). Low MIC values were observed for anidulafungin for all Candida and uncommon yeast species. This current study provides insight into the prevalence and susceptibility profiles of Candida species, including emerging Candida species and uncommon yeasts, isolated from the oral cavity of Iranian cancer patients. The incidence of oral candidiasis was higher amongst patients with hematological malignancies. The majority of oral infections were caused by non-albicans Candida species which were often more resistant to anti

  19. [Evaluation of mass spectrometry: MALDI-TOF MS for fast and reliable yeast identification].

    Science.gov (United States)

    Relloso, María S; Nievas, Jimena; Fares Taie, Santiago; Farquharson, Victoria; Mujica, María T; Romano, Vanesa; Zarate, Mariela S; Smayevsky, Jorgelina

    2015-01-01

    The matrix-assisted laser desorption/ionization time-of-flight mass spectrometry technique known as MALDI-TOF MS is a tool used for the identification of clinical pathogens by generating a protein spectrum that is unique for a given species. In this study we assessed the identification of clinical yeast isolates by MALDI-TOF MS in a university hospital from Argentina and compared two procedures for protein extraction: a rapid method and a procedure based on the manufacturer's recommendations. A short protein extraction procedure was applied in 100 isolates and the rate of correct identification at genus and species level was 98.0%. In addition, we analyzed 201 isolates, previously identified by conventional methods, using the methodology recommended by the manufacturer and there was 95.38% coincidence in the identification at species level. MALDI TOF MS showed to be a fast, simple and reliable tool for yeast identification. Copyright © 2014 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  20. Isolation, identification and characterization of yeasts from fermented goat milk of the Yaghnob Valley in Tajikistan

    Directory of Open Access Journals (Sweden)

    Linnea Annie Qvirist

    2016-11-01

    Full Text Available The geographically isolated region of the Yaghnob Valley, Tajikistan, has allowed its inhabitants to maintain a unique culture and lifestyle. Their fermented goat milk constitutes one of the staple foods for the Yaghnob population, and is produced by backslopping, i.e. using the previous fermentation batch to inoculate the new one. This study addresses the yeast composition of the fermented milk, assessing genotypic and phenotypic properties.The 52 isolates included in this study revealed small species diversity, belonging to Kluyveromyces marxianus, Pichia fermentans, Saccharomyces cerevisiae and one Kazachstania unispora. The K. marxianus strains showed two different genotypes, one of which never described previously. The two genetically different groups also differed significantly in several phenotypic characteristics, such as tolerance towards high temperatures, low pH, and presence of acid. Microsatellite analysis of the S. cerevisiae strains from this study, compared to 350 previously described strains, attributed the Yaghnobi S. cerevisiae to two different ancestry origins, both distinct from the wine and beer strains, and similar to strains isolated from human and insects faeces, suggesting a peculiar origin of these strains, and the existence of a gut reservoir for S. cerevisiae.Our work constitutes a foundation for strain selection for future applications as starter cultures in food fermentations. This work is the first ever on yeast diversity from fermented milk of the previously unexplored area of the Yaghnob Valley.

  1. Yeasts associated with fresh and frozen pulps of Brazilian tropical fruits.

    Science.gov (United States)

    Trindade, Rita C; Resende, Maria Aparecida; Silva, Claudia M; Rosa, Carlos A

    2002-08-01

    The occurrence of yeasts on ripe fruits and frozen pulps of pitanga (Eugenia uniflora L), mangaba (Hancornia speciosa Gom.), umbu (Spondias tuberosa Avr. Cam.), and acerola (Malpighia glaba L) was verified. The incidence of proteolytic, pectinolytic, and mycocinogenic yeasts on these communities was also determined. A total of 480 colonies was isolated and grouped in 405 different strains. These corresponded to 42 ascomycetous and 28 basidiomycetous species. Candida sorbosivorans, Pseudozyma antarctica, C. spandovensis-like, C. spandovensis, Kloeckera apis, C. parapsilosis, Rhodotorula graminis, Kluyveromyces marxianus, Cryptococcus laurentii, Metchnikowia sp (isolated only from pitanga ripe fruits), Issatchenkia occidentalis and C. krusei (isolated only from mangaba frozen pulps), were the most frequent species. The yeast communities from pitanga ripe fruits exhibited the highest frequency of species, followed by communities from acerola ripe fruits and mangaba frozen pulps. Yeast communities from frozen pulp and ripe fruits of umbu had the lowest number of species. Except the yeasts from pitanga, yeast communities from frozen pulp exhibited higher number of yeasts than ripe fruit communities. Mycocinogenic yeasts were found in all of the substrates studied except in communities from umbu ripe fruits and pitanga frozen pulps. Most of the yeasts found to produce mycocins were basidiomycetes and included P. antarctica, Cryptococcus albidus, C. bhutanensis-like, R. graminis and R. mucilaginosa-like from pitanga ripe fruits as well as black yeasts from pitanga and acerola ripe fruits. The umbu frozen pulps community had the highest frequency of proteolytic species. Yeasts able to hydrolyse casein at pH 5.0 represented 38.5% of the species isolated. Thirty-seven percent of yeast isolates were able to hydrolyse casein at pH 7.0. Pectinolytic yeasts were found in all of the communities studied, excepted for those of umbu frozen pulps. The highest frequency of

  2. Oral yeast carriage in patients with advanced cancer.

    Science.gov (United States)

    Davies, A N; Brailsford, S; Broadley, K; Beighton, D

    2002-04-01

    The aim of this study was to investigate oral yeast carriage amongst patients with advanced cancer. Oral rinse samples were obtained from 120 subjects. Yeasts were isolated using Sabouraud's dextrose agar and CHROMagar Candida, and were identified using a combination of the API 20 C AUX yeast identification system, species-specific PCR and 26S rDNA gene sequencing. Oral yeast carriage was present in 66% of subjects. The frequency of isolation of individual species was: Candida albicans, 46%; Candida glabrata, 18%; Candida dubliniensis, 5%; others, yeast carriage was associated with denture wearing (P = 0.006), and low stimulated whole salivary flow rate (P = 0.009). Identification of these risk factors offers new strategies for the prevention of oral candidosis in this group of patients.

  3. Occurrence and identification of yeasts in dogs external ear canal with and without otitis

    Directory of Open Access Journals (Sweden)

    Elidiana de Bona

    2012-08-01

    Full Text Available Objective. To analyze the presence of yeast in the external ear canal of 116 dogs with and without a diagnosis of otitis from veterinary clinic in the Chapecó city, Santa Catarina, Brazil, and to examine the secretion of the proteinase in isolates. Materials and methods. Were collected cerumen of conduct hearing of dogs of 16 different races 71% with pendular ear type, 5% of semi-pendular and 24% of the erect type. All dogs were previously evaluated by otoscopy and grouped in dogs with and without otitis. Results. Yeasts were isolated in 44 samples (approximately 36%, where Malassezia pachydermatis was identified in 95% of samples where were observed growth of yeasts. On 20 samples the proteinase enzyme showed strong activity in 31% isolates, were 21% of the dogs with otitis tested showed high proteolytic activity. Conclusions. We observed a variation of strains of M. pachydermatis-producing enzymes. The variation in production of these enzymes is probably more associated with different response to the action of the immune system of the animal in the tissue injury.

  4. In vitro attachment of phylloplane yeasts to Botrytis cinerea, Rhizoctonia solani, and Sclerotinia homoeocarpa.

    Science.gov (United States)

    Allen, Tom W; Burpee, Leon L; Buck, James W

    2004-12-01

    The ability of yeasts to attach to hyphae or conidia of phytopathogenic fungi has been speculated to contribute to biocontrol activity on plant surfaces. Attachment of phylloplane yeasts to Botrytis cinerea, Rhizoctonia solani, and Sclerotinia homoeocarpa was determined using in vitro attachment assays. Yeasts were incubated for 2 d on potato dextrose agar (PDA) prior to experimentation. A total of 292 yeasts cultured on PDA were screened for their ability to attach to conidia of B. cinerea; 260 isolates (89.1%) attached to conidia forming large aggregates of cells, and 22 isolates (7.5%) weakly attached to conidia with 1 or 2 yeast cells attached to a few conidia. Ten yeasts (3.4%), including 8 isolates of Cryptococcus laurentii, 1 isolate of Cryptococcus flavescens, and an unidentified species of Cryptococcus, failed to attach to conidia. All non-attaching yeasts produced copious extracellular polysaccharide (EPS) on PDA. Seventeen yeast isolates did not attach to hyphal fragments of B. cinerea, R. solani, and S. homoeocarpa after a 1 h incubation, but attachment was observed after 24 h. Culture medium, but not culture age, significantly affected the attachment of yeast cells to conidia of B. cinerea. The 10 yeast isolates that did not attach to conidia when grown on agar did attach to conidia (20%-57% of conidia with attached yeast cells) when cultured in liquid medium. Attachment of the biocontrol yeast Rhodotorula glutinis PM4 to conidia of B. cinerea was significantly greater at 1 x 10(7) yeast cells x mL(-1) than at lower concentrations of yeast cells. The ability of yeast cells to attach to fungal conidia or hyphae appears to be a common phenotype among phylloplane yeasts.

  5. Candida neustonensis sp. nov., a novel ascomycetous yeast isolated from the sea surface microlayer in Taiwan.

    Science.gov (United States)

    Chang, Chin-Feng; Lee, Ching-Fu; Liu, Shiu-Mei

    2010-01-01

    A new ascomycetous yeast species, Candida neustonensis is proposed in this study based on four strains (SN92(T), SN47, SJ22, SJ25) isolated from sea surface microlayer in Taiwan. These four yeast strains were morphologically, physiologically and phylogenetically identical to each other. No sexual reproduction was observed on 5% malt extract agar, corn meal agar, V8 agar, McClary's acetate agar and potato-dextrose agar. Phylogenetic analysis of the sequences of the D1/D2 domain of the large subunit (LSU) rRNA gene places C. neustonensis as a member of the Pichia guilliermondii clade, it also reveals that the phylogenetically closest relatives of C. neustonensis are C. fukuyamaensis (4.4% divergence), C. xestobii (4.4% divergence) and P. guilliermondii (4.5% divergence). C. neustonensis also is clearly distinguished from other known species in the P. guilliermondii clade based on the results of physiology tests. From these comparison analyses, the following novel yeast species is proposed: Candida neustonensis sp. nov., with strain SN92(T) (= BCRC 23108(T) = JCM 14892(T) = CBS 11061(T)) as the type strain.

  6. Formation of In Vitro Mixed-Species Biofilms by Lactobacillus pentosus and Yeasts Isolated from Spanish-Style Green Table Olive Fermentations.

    Science.gov (United States)

    León-Romero, Ángela; Domínguez-Manzano, Jesús; Garrido-Fernández, Antonio; Arroyo-López, Francisco Noé; Jiménez-Díaz, Rufino

    2016-01-15

    The present work details the in vitro interactions between Lactobacillus pentosus and yeast strains isolated from table olive processing to form mixed biofilms. Among the different pairs assayed, the strongest biofilms were obtained from L. pentosus and Candida boidinii strain cocultures. However, biofilm formation was inhibited in the presence of d-(+)-mannose. In addition, biofilm formation by C. boidinii monoculture was stimulated in the absence of cell-cell contact with L. pentosus. Scanning electron microscopy revealed that a sort of "sticky" material formed by the yeasts contributed to substrate adherence. Hence, the data obtained in this work suggest that yeast-lactobacilli biofilms may be favored by the presence of a specific mate of yeast and L. pentosus, and that more than one mechanism might be implicated in the biofilm formation. This knowledge will help in the design of appropriate mixed starter cultures of L. pentosus-yeast species pairs that are able to improve the quality and safety of Spanish-style green table olive processing. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  7. Virgin olive oil yeasts: A review.

    Science.gov (United States)

    Ciafardini, Gino; Zullo, Biagi Angelo

    2018-04-01

    This review summarizes current knowledge on virgin olive oil yeasts. Newly produced olive oil contains solid particles and micro drops of vegetation water in which yeasts reproduce to become the typical microbiota of olive oil. To date, about seventeen yeast species have been isolated from different types of olive oils and their by-products, of which six species have been identified as new species. Certain yeast species contribute greatly to improving the sensorial characteristics of the newly produced olive oil, whereas other species are considered harmful as they can damage the oil quality through the production of unpleasant flavors and triacylglycerol hydrolysis. Studies carried out in certain yeast strains have demonstrated the presence of defects in olive oil treated with Candida adriatica, Nakazawaea wickerhamii and Candida diddensiae specific strains, while other olive oil samples treated with other Candida diddensiae strains were defect-free after four months of storage and categorized as extra virgin. A new acetic acid producing yeast species, namely, Brettanomyces acidodurans sp. nov., which was recently isolated from olive oil, could be implicated in the wine-vinegary defect of the product. Other aspects related to the activity of the lipase-producing yeasts and the survival of the yeast species in the flavored olive oils are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Evaluation of the Efficiency of Different Disruption Methods on Yeast Cell Wall Preparation for β-Glucan Isolation

    Directory of Open Access Journals (Sweden)

    Anna Bzducha-Wróbel

    2014-12-01

    Full Text Available Selected methods for yeast cell disruption were evaluated to establish their suitability for cell wall preparation in the process of β-glucan isolation. The effect of different disruption methods on contents of total saccharides, β-glucans and proteins in the produced cell walls preparations was analyzed. The degree of cell wall purification from intracellular components was established on the basis of the ratio of solubilised material. The investigated methods included: cell exposure to hot water (autoclaving, thermally-induced autolysis, homogenization in a bead mill, sonication and their combinations. Experimental systems were prepared in water (pH 5.0 and pH 7.0 and Tris-HCl buffer (pH 8.0. The Saccharomyces cerevisiae yeast cell wall preparations with the highest degree of cytosol component release and purification of β-glucans were produced by 30 min of cell homogenization with zirconium-glass beads (0.5 mm in diameter. This was confirmed by the highest ratio of solubilised material (approx. 64%–67%. The thus-produced preparations contained ca. 60% of total saccharides, 13%–14% of β(1,3/(1,6-glucans, and approx. 35% of crude proteins. Similar results were obtained after autolysis coupled with bead milling as well as with sonication, but the time required for these processes was more than 24 h. Homogenization in a bead mill could be valuable for general isolation procedures because allows one to eliminate the different autolytic activity of various yeast strains.

  9. Antifungal activity of the extract of Curcuma zedoaria (Christm. Roscoe, Zingiberaceae, against yeasts of the genus Candida isolated from the oral cavity of patients infected with the human immunodeficiency virus

    Directory of Open Access Journals (Sweden)

    Cristiane S. Shinobu-Mesquita

    2011-02-01

    Full Text Available Oropharyngeal candidiasis is the most common fungal infection among patients infected with the human immunodeficiency virus (HIV, and is treated empirically with topical or systemic antifungals. The objective of the present study was to investigate the possible antifungal action of the hydroalcoholic extract of Curcuma zedoaria (Christm. Roscoe, Zingiberaceae, on yeasts in this population. Samples were collected from HIV-positive patients who attended the Laboratory for Teaching and Research in Clinical Analysis at the Universidade Estadual de Maringá for routine exams. The isolated yeasts were identified at the genus and species levels through classical methodology. Next, tests of microdilution in broth were carried out to determine the profile of susceptibility of these yeasts towards the hydroalcoholic extract of C. zedoaria, following methodology standardised by the CLSI (2002. A total of 53 yeasts were identified, 49 of them C. albicans, two C. tropicalis and two C. glabrata. These yeasts were inhibited by low concentrations of the extract of C. zedoaria (between 1.95 and 15.63 μg/mL. In addition, 7.82 μg/mL inhibited 90% of the yeasts. Our results indicate a potent antifungal action for C. zedoaria and suggest more detailed studies with a view towards the practical application of this phytomedicine in topical pharmaceutical forms for the treatment of oral candidosis or candidiasis.

  10. Development of selective media for the isolation of yeasts and filamentous fungi from the sputum of adult patients with cystic fibrosis (CF).

    Science.gov (United States)

    Nagano, Yuriko; Millar, B Cherie; Goldsmith, Colin E; Walker, James M; Elborn, J Stuart; Rendall, Jackie; Moore, John E

    2008-11-01

    Yeasts and filamentous fungi are beginning to emerge as significant microbial pathogens in patients with cystic fibrosis (CF), particularly in relation to allergic-type responses, as seen in patients with allergic bronchopulmonary aspergillosis (ABPA), Aspergillus bronchitis and in invasive fungal disease in lung transplant patients. Four fungal media were compared in this study, including Sabouraud Dextrose Agar (SDA) and Medium B, with and without the addition of selective antibiotics, where antibiotic-supplemented media were designated with (+). These media were compared for their ability to suppress contaminating, mainly Gram-ve pathogens, in CF sputa (Pseudomonas aeruginosa, Burkholderia cepacia complex [BCC] organisms) and to enhance the growth of fungi present in CF sputum. Medium B consisted of glucose (16.7 g/l), agar (20 g/l), yeast extract (30 g/l) and peptone (6.8 g/l) at pH 6.3 and both SDA(+) and Medium B(+) were supplemented with cotrimethoxazole, 128 mg/l; chloramphenicol, 50 mg/l; ceftazidime, 32 mg/l; colistin, 24 mg/l). Employment of SDA(+) or Medium B(+) allowed an increase in specificity in the detection of yeasts and moulds, by 42.8% and 39.3%, respectively, over SDA when used solely. SDA(+) had a greater ability than Medium B(+) to suppress bacterial growth from predominantly Gram-ve co-colonisers. This is a significant benefit when attempting to detect and isolate fungi from the sputum of CF patients, as it largely suppressed any bacterial growth, with the exception of the BCC organisms, thus allowing for an increased opportunity to detect target fungal organisms in sputum and represented a significant improvement over the commercial medium (SDA), which is currently used. Overall, both novel selective media were superior in their ability to suppress bacteria in comparison with the commercially available SDA medium, which is routinely employed in most clinical microbiology diagnostic laboratories presently. Alternatively, Medium B(+) had a

  11. Cryptococcus haglerorum, sp. nov., an anamorphic basidiomycetous yeast isolated from nests of the leaf-cutting ant Atta sexdens.

    NARCIS (Netherlands)

    Middelhoven, W.J.; Fonseca, A.; Carreiro, S.C.; Pagnocca, F.C.; Bueno, O.C.

    2003-01-01

    A yeast strain (CBS 8902) was isolated from the nest of a leaf-cutting ant and was shown to be related to Cryptococcus humicola. Sequencing of the D1/D2 region of the 26S ribosomal DNA and physiological characterization revealed a separate taxonomic position. A novel species named Cryptococcus

  12. Isolation and characterization of awamori yeast mutants with L-leucine accumulation that overproduce isoamyl alcohol.

    Science.gov (United States)

    Takagi, Hiroshi; Hashida, Keisuke; Watanabe, Daisuke; Nasuno, Ryo; Ohashi, Masataka; Iha, Tomoya; Nezuo, Maiko; Tsukahara, Masatoshi

    2015-02-01

    Awamori shochu is a traditional distilled alcoholic beverage made from steamed rice in Okinawa, Japan. Although it has a unique aroma that is distinguishable from that of other types of shochu, no studies have been reported on the breeding of awamori yeasts. In yeast, isoamyl alcohol (i-AmOH), known as the key flavor of bread, is mainly produced from α-ketoisocaproate in the pathway of L-leucine biosynthesis, which is regulated by end-product inhibition of α-isopropylmalate synthase (IPMS). Here, we isolated mutants resistant to the L-leucine analog 5,5,5-trifluoro-DL-leucine (TFL) derived from diploid awamori yeast of Saccharomyces cerevisiae. Some of the mutants accumulated a greater amount of intracellular L-leucine, and among them, one mutant overproduced i-AmOH in awamori brewing. This mutant carried an allele of the LEU4 gene encoding the Ser542Phe/Ala551Val variant IPMS, which is less sensitive to feedback inhibition by L-leucine. Interestingly, we found that either of the constituent mutations (LEU4(S542F) and LEU4(A551V)) resulted in the TFL tolerance of yeast cells and desensitization to L-leucine feedback inhibition of IPMS, leading to intracellular L-leucine accumulation. Homology modeling also suggested that L-leucine binding was drastically inhibited in the Ser542Phe, Ala551Val, and Ser542Phe/Ala551Val variants due to steric hindrance in the cavity of IPMS. As we expected, awamori yeast cells expressing LEU4(S542F), LEU4(A551V), and LEU4(S542F/A551V) showed a prominent increase in extracellular i-AmOH production, compared with that of cells carrying the vector only. The approach described here could be a practical method for the breeding of novel awamori yeasts to expand the diversity of awamori taste and flavor. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  13. A rapid and simple method for DNA extraction from yeasts and fungi isolated from Agave fourcroydes.

    Science.gov (United States)

    Tapia-Tussell, Raul; Lappe, Patricia; Ulloa, Miguel; Quijano-Ramayo, Andrés; Cáceres-Farfán, Mirbella; Larqué-Saavedra, Alfonso; Perez-Brito, Daisy

    2006-05-01

    A simple and easy protocol for extracting high-quality DNA from different yeast and filamentous fungal species is described. This method involves two important steps: first, the disruption of cell walls by mechanical means and freezing; and second, the extraction, isolation, and precipitation of genomic DNA. The absorbance ratios (A(260)/A(280)) obtained ranged from 1.6 to 2.0. The main objective of this procedure is to extract pure DNA from yeast and filamentous fungi, including those with high contents of proteins, polysaccharides, and other complex compounds in their cell walls. The yield and quality of the DNAs obtained were suitable for micro/minisatellite primer-polymerase chain reaction (MSP-PCR) fingerprinting as well as for the sequence of the D1/D2 domain of the 26S rDNA.

  14. Overexpression of Aldo-Keto-Reductase in Azole-resistant Clinical Isolates of Candida Glabrata Determined by cDNA-AFLP

    Directory of Open Access Journals (Sweden)

    Mansour Heidari

    2013-01-01

    Full Text Available Background: Candida glabrata causes significant medical problems in immunocompromised patients. Many strains of this yeast are intrinsically resistant to azole antifungal agents, and treatment is problematic, leading to high morbidity and mortality rates in immunosuppressed individuals. The primary goal of this study was to investigate the genes involved in the drug resistance of clinical isolates of C. glabrata.Methods: The clinical isolates of C. glabrata were collected in an epidemiological survey of candidal infection inimmunocompromised patients and consisted of four fluconazole and itraconazole resistant isolates, two fluconazoleand itraconazole sensitive isolates, and C. glabrata CBS 138 as reference strain. Antifungal susceptibility patterns ofthe organisms were determined beforehand by the Clinical and Laboratory Standards Institute (CLSI. The potentialgene(s implicated in antifungal resistance were investigated using complementary DNA- Amplified Fragment Length Polymorphism (cDNA-AFLP. Semi-quantitative RT-PCR was carried out to evaluate the expression of gene(s in resistant isolates as compared to sensitive and reference strains.Results and conclusions: The aldo-keto-reductase superfamily (AKR gene was upregulated in the resistant clinicalisolates as assessed by cDNA-AFLP. Semi-quantitative RT-PCR revealed AKR mRNA expression approximately twice that seen in the sensitive isolates. Overexpression of the AKR gene was associated with increased fluconazole and itraconazole resistance in C. glabrata. The data suggest that upregulation of the AKR gene might give a new insight into the mechanism of azole resistance.

  15. Isolation of basidiomycetous yeast Pseudozyma tsukubaensis and production of glycolipid biosurfactant, a diastereomer type of mannosylerythritol lipid-B.

    Science.gov (United States)

    Morita, Tomotake; Takashima, Masako; Fukuoka, Tokuma; Konishi, Masaaki; Imura, Tomohiro; Kitamoto, Dai

    2010-10-01

    The producers of glycolipid biosurfactant, mannosylerythritol lipid-B (MEL-B), were isolated from leaves of Perilla frutescens on Ibaraki in Japan. Four isolates, 1D9, 1D10, 1D11, and 1E5, were identified as basidiomycetous yeast Pseudozyma tsukubaensis by rDNA sequence and biochemical properties. The structure of MEL-B produced by these strains was analyzed by (1)H nuclear magnetic resonance and gas chromatography-mass spectrometry methods, and was determined to be the same as the diastereomer MEL-B produced by P. tsukubaensis NBRC 1940. Of these isolates, P. tsukubaensis 1E5 (JCM 16987) is capable of producing the largest amount of the diastereomer MEL-B from vegetable oils. In order to progress the diastereomer MEL-B production by strain 1E5, factors affecting the production, such as carbon and organic nutrient sources, were further examined. Olive oil and yeast extract were the best carbon and nutrient sources, respectively. Under the optimal conditions, a maximum yield, productivity, and yield coefficient of 73.1 g/L, 10.4 g L(-1) day(-1), and 43.5 g/g were achieved by feeding of olive oil in a 5-L jar-fermenter culture using strain 1E5.

  16. Assessment of accuracy of identification of pathogenic yeasts in microbiology laboratories in the United kingdom.

    Science.gov (United States)

    Borman, Andrew M; Szekely, Adrien; Palmer, Michael D; Johnson, Elizabeth M

    2012-08-01

    Rapid, accurate identification of yeast isolates from clinical samples has always been important given their innately variable antifungal susceptibility profiles. Recently, this has become paramount with the proposed introduction of species-specific interpretive breakpoints for MICs obtained in yeast antifungal susceptibility tests (M. A. Pfaller, D. Andes, D. J. Diekema, A. Espinel-Ingroff, D. Sheehan, and CLSI Subcommittee for Antifungal Susceptibility Testing, Drug Resist. Updat. 13:180-195, 2010). Here, we present the results of a 12-month evaluation of the accuracy of identifications that accompany yeast isolates submitted to the Mycology Reference Laboratory (United Kingdom) for either confirmation of identity or susceptibility testing. In total, 1,781 yeast isolates were analyzed, and the robustness of prior identifications obtained in microbiology laboratories throughout the United Kingdom was assessed using a combination of culture on chromogenic agar, morphology on cornmeal agar, and molecular identification by pyrosequencing. Over 40% of isolates (755) were submitted without any suggested identification. Of those isolates with a prior identification, 100 (9.7%) were incorrectly identified. Error rates ranged from 5.2% (for organisms submitted for antifungal susceptibility testing) to 18.2% (for organisms requiring confirmation of identity) and varied in a strictly species-specific manner. At least 50% of identification errors would be likely to affect interpretation of MIC data, with a possible impact on patient management. In addition, 2.3% of submitted cultures were found to contain mixtures of at least two yeast species. The vast majority of mixtures had gone undetected in the referring laboratory and would have impacted the interpretation of antifungal susceptibility profiles and patient management. Some of the more common misidentifications are discussed according to the identification method employed, with suggestions for avoiding such

  17. Aboveground Deadwood Deposition Supports Development of Soil Yeasts

    Directory of Open Access Journals (Sweden)

    Thorsten Wehde

    2012-12-01

    Full Text Available Unicellular saprobic fungi (yeasts inhabit soils worldwide. Although yeast species typically occupy defined areas on the biome scale, their distribution patterns within a single type of vegetation, such as forests, are more complex. In order to understand factors that shape soil yeast communities, soils collected underneath decaying wood logs and under forest litter were analyzed. We isolated and identified molecularly a total of 25 yeast species, including three new species. Occurrence and distribution of yeasts isolated from these soils provide new insights into ecology and niche specialization of several soil-borne species. Although abundance of typical soil yeast species varied among experimental plots, the analysis of species abundance and community composition revealed a strong influence of wood log deposition and leakage of organic carbon. Unlike soils underneath logs, yeast communities in adjacent areas harbored a considerable number of transient (phylloplane-related yeasts reaching 30% of the total yeast quantity. We showed that distinguishing autochthonous community members and species transient in soils is essential to estimate appropriate effects of environmental factors on soil fungi. Furthermore, a better understanding of species niches is crucial for analyses of culture-independent data, and may hint to the discovery of unifying patterns of microbial species distribution.

  18. Species distribution and drug susceptibility of candida in clinical isolates from a tertiary care centre at Indore

    Directory of Open Access Journals (Sweden)

    N Pahwa

    2014-01-01

    Full Text Available Background: The incidence of fungal infections has increased significantly, contributing to morbidity and mortality. This is caused by an alarming increase in infections with multi-drug resistant bacteria leading to overuse of broad-spectrum antimicrobials, which lead to overgrowth of Candida, thus enhancing its opportunity to cause disease. Candida are major human fungal pathogens that cause both mucosal and deep tissue infections. Objective : The aim of our study was to identify the distribution of Candida species among clinical isolates and their sensitivity pattern for common antifungal drugs. Materials and Methods : Two hundred and thirty-seven different clinical isolates of Candida were collected from patients visiting to a tertiary care centre of Indore from 2010 to 2012. Identification of Candida species as well as antifungal sensitivity testing was performed with Vitek2 Compact (Biomerieux France using vitek 2 cards for identification of yeast and yeast like organisms (ID-YST cards. Antifungal susceptibility testing was performed with Vitek2 "Fungal Susceptibility Card (AST YS01 kits respectively. Results : We found that the non-albicans Candida were more prevalent than Candida albicans in paediatric (60 year patients than other age group (4-18, 19-60 years patients and also in intensive care unit (ICU patients as compared to out patient department (OPD patients. Resistance rates for amphotericin B, fluconazole, flucytosine, itraconazole, and voriconazole were 2.9%, 5.9%, 0.0%, 4.2% and 2.5%%, respectively. All the strains of C. krusei were found resistant to fluconazole with intermediate sensitivity to flucytosine. Conclusion: Species-level identification of Candida and their antifungal sensitivity testing should be performed to achieve better clinical results.

  19. Whole Genome Sequence of the Heterozygous Clinical Isolate Candida krusei 81-B-5

    Directory of Open Access Journals (Sweden)

    Christina A. Cuomo

    2017-09-01

    Full Text Available Candida krusei is a diploid, heterozygous yeast that is an opportunistic fungal pathogen in immunocompromised patients. This species also is utilized for fermenting cocoa beans during chocolate production. One major concern in the clinical setting is the innate resistance of this species to the most commonly used antifungal drug fluconazole. Here, we report a high-quality genome sequence and assembly for the first clinical isolate of C. krusei, strain 81-B-5, into 11 scaffolds generated with PacBio sequencing technology. Gene annotation and comparative analysis revealed a unique profile of transporters that could play a role in drug resistance or adaptation to different environments. In addition, we show that, while 82% of the genome is highly heterozygous, a 2.0 Mb region of the largest scaffold has undergone loss of heterozygosity. This genome will serve as a reference for further genetic studies of this pathogen.

  20. Yeast ecology of Kombucha fermentation.

    Science.gov (United States)

    Teoh, Ai Leng; Heard, Gillian; Cox, Julian

    2004-09-01

    Kombucha is a traditional fermentation of sweetened tea, involving a symbiosis of yeast species and acetic acid bacteria. Despite reports of different yeast species being associated with the fermentation, little is known of the quantitative ecology of yeasts in Kombucha. Using oxytetracycline-supplemented malt extract agar, yeasts were isolated from four commercially available Kombucha products and identified using conventional biochemical and physiological tests. During the fermentation of each of the four products, yeasts were enumerated from both the cellulosic pellicle and liquor of the Kombucha. The number and diversity of species varied between products, but included Brettanomyces bruxellensis, Candida stellata, Schizosaccharomyces pombe, Torulaspora delbrueckii and Zygosaccharomyces bailii. While these yeast species are known to occur in Kombucha, the enumeration of each species present throughout fermentation of each of the four Kombucha cultures demonstrated for the first time the dynamic nature of the yeast ecology. Kombucha fermentation is, in general, initiated by osmotolerant species, succeeded and ultimately dominated by acid-tolerant species.

  1. Genetic diversity and pectinolytic activity of epiphytic yeasts from grape carposphere.

    Science.gov (United States)

    Filho, M Cilião; Bertéli, M B D; Valle, J S; Paccola-Meirelles, L D; Linde, G A; Barcellos, F G; Colauto, N B

    2017-06-20

    The genetic diversity of epiphytic yeasts from grape carposphere is susceptible to environmental variations that determine the predominant carposphere microbiota. Understanding the diversity of yeasts that inhabit grape carposphere in different environments and their pectinolytic activity is a way to understand the biotechnological potential that surrounds us and help improve winemaking. Therefore, this study aimed to evaluate the pectinolytic activity and characterize the genetic diversity of isolated epiphytic yeasts from grape carposphere. Grapes of the Bordeaux cultivar were collected from different regions of Paraná and Rio Grande do Sul States, in Brazil, and the yeasts were isolated from these grape carpospheres. Monosporic isolates were morphologically and genetically characterized on potato dextrose agar medium and by PCR-RFLP and rep-PCR (BOX-PCR) in the ITS1-5.8S-ITS2 region of rDNA. The index of pectinolytic activity of isolates was also evaluated estimating the ratio between the halo diameter of enzymatic degradation and the diameter of the colony when the isolates were grown in cultivation medium containing 10 g/L pectin, 5 g/L yeast extract, 15 g/L agar, 0.12% (w/v) Congo red, and pH 6.2. We observed that the grape carposphere is an environment with a great genetic diversity of epiphytic yeasts of the following genera: Cryptococcus (31.25%), Pichia (25.0%), Candida (25.0%), Dekkera (12.5%), and Saccharomyces (6.25%). The PCR-RFLP technique allowed analyzing existing polymorphism among individuals of a population based on a more restrict and evolutionarily preserved region, mostly utilized to differentiate isolates at the genus level. Approximately 33% of yeast isolates presented pectinolytic activity with potential biotechnological for wine and fruit juice production. This great genetic variability found indicated that it is a potential reservoir of genes to be applied in viniculture improvement programs.

  2. p-Toluenethiol as an Initiator of Autolysis in Bakers' Yeast

    Science.gov (United States)

    Arnold, Wilfred N.

    1972-01-01

    Cysteine or dithiothreitol enhances the rate of autolysis in toluene-treated yeast. p-Toluenethiol alone is even more effective and is recommended for the isolation of β-fructofuranosidase. This suggests a more general application of p-toluenethiol in the isolation of enzymes from yeast. PMID:5058457

  3. Development of Yeast Populations during Processing and Ripening of Blue Veined Cheese

    Directory of Open Access Journals (Sweden)

    Alison M. Knox

    2003-01-01

    Full Text Available Varieties of blue veined cheese were analyzed regularly during different stages of manufacturing and ripening to determine the origin of contaminating the yeasts present in them, their population diversity and development until the end of the storage. Yeast diversity and development in the inner and outer core of the cheeses during ripening were also compared. Air samples revealed few if any yeasts whereas the samples in contact with the equipment and the surroundings revealed high number of yeasts, implicating it as the possible main source of post-pasteurization contamination, as very few yeasts were isolated from the milk and cheese making process itself. Samples from the inner and outer core of the maturing cheeses had typical survival curves. The number of yeasts on the outer core was about a 100-fold more than of those in the inner core. The most abundant yeasts isolated from the environment and ripening cheeses were identified as Debaryomyces hansenii, Saccharomyces cerevisiae, Torulaspora delbrueckii, Trichosporon beigelii, Candida versatilis and Cryptococcus albidus, while the yeasts Candida zeylanoides and Dekkera anomala were additionally isolated from the environment. Yeasts were present in high number, making their occurrence in blue-veined cheeses meaningful.

  4. Epidemiological Importance of Yeasts Isolated from the Beak and Cloaca of Healthy Charadriiformes

    Directory of Open Access Journals (Sweden)

    Dynowska Maria

    2015-04-01

    Full Text Available The paper presents mycological studies conducted jointly with ornithologists on the epidemiology of mycoses and the taxonomic diversity and prevalence of fungi that colonise the selected onthocenoses in healthy, wild migratory birds. Aquatic ecosystem populations of healthy birds include a percentage of carriers of potential zoo- and anthropopathogens, and this study's purpose was to determine the percentage. The studies were performed on swabs sampled in vivo (during spring and autumn migrations from the beak and cloaca of nine species of Charadriiformes in two age categories. Macro- and microcultures of fungi were prepared according to the standards for diagnostic mycological laboratories. From the 450 birds examined, fungi were isolated from 130 (26.5% individuals. The sampling yielded 272 yeast isolates: 170 (62.5% from the beak and 102 (37.5% from the cloaca. The isolates represented 23 species, among which C. albicans, C. neoformans, and R. rubra were predominant. In both onthocenoses in young and adult birds, more fungi were recorded in autumn than in spring. As many as 15 species are included in the biosafety level classification, of which seven are categorised as category 2 and one as category 3.

  5. Biodegradation of lindane using a novel yeast strain, Rhodotorula sp. VITJzN03 isolated from agricultural soil.

    Science.gov (United States)

    Abdul Salam, Jaseetha; Lakshmi, V; Das, Devlina; Das, Nilanjana

    2013-03-01

    Lindane is a notorious organochlorine pesticide due to its high toxicity, persistence in the environment and its tendency to bioaccumulate. A yeast strain isolated from sorghum cultivation field was able to use lindane as carbon and energy source under aerobic conditions. With molecular techniques, it was identified and named as Rhodotorula strain VITJzN03. The effects of nutritional and environmental factors on yeast growth and the biodegradation of lindane was investigated. The maximum production of yeast biomass along with 100 % lindane mineralization was noted at an initial lindane concentration of 600 mg l(-1) within a period of 10 days. Lindane concentration above 600 mg l(-1) inhibited the growth of yeast in liquid medium. A positive relationship was noted between the release of chloride ions and the increase of yeast biomass as well as degradation of lindane. The calculated degradation rate and half life of lindane were found to be 0.416 day(-1) and 1.66 days, respectively. The analysis of the metabolites using GC-MS identified the formation of seven intermediates including γ-pentachlorocyclohexane(γ-PCCH), 1,3,4,6-tetrachloro-1,4-cyclohexadiene(1,4-TCCHdiene), 1,2,4-trichlorobenzene (1,2,4 TCB), 1,4-dichlorobenzene (1,4 DCB), chloro-cis-1,2-dihydroxycyclohexadiene (CDCHdiene), 3-chlorocatechol (3-CC) and maleylacetate (MA) derivatives indicating that lindane degradation follows successive dechlorination and oxido-reduction. Based on the results of the present study, the possible pathway for lindane degradation by Rhodotorula sp. VITJzN03 has been proposed. To the best of our knowledge, this is the first report on lindane degradation by yeast which can serve as a potential agent for in situ bioremediation of medium to high level lindane-contaminated sites.

  6. Differential identification of Candida species and other yeasts by analysis of [35S]methionine-labeled polypeptide profiles

    International Nuclear Information System (INIS)

    Shen, H.D.; Choo, K.B.; Tsai, W.C.; Jen, T.M.; Yeh, J.Y.; Han, S.H.

    1988-01-01

    This paper describes a scheme for differential identification of Candida species and other yeasts based on autoradiographic analysis of protein profiles of [ 35 S]methionine-labeled cellular proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Using ATCC strains as references, protein profile analysis showed that different Candida and other yeast species produced distinctively different patterns. Good agreement in results obtained with this approach and with other conventional systems was observed. Being accurate and reproducible, this approach provides a basis for the development of an alternative method for the identification of yeasts isolated from clinical specimens

  7. Production of Food Grade Yeasts

    Directory of Open Access Journals (Sweden)

    Argyro Bekatorou

    2006-01-01

    Full Text Available Yeasts have been known to humans for thousands of years as they have been used in traditional fermentation processes like wine, beer and bread making. Today, yeasts are also used as alternative sources of high nutritional value proteins, enzymes and vitamins, and have numerous applications in the health food industry as food additives, conditioners and flavouring agents, for the production of microbiology media and extracts, as well as livestock feeds. Modern scientific advances allow the isolation, construction and industrial production of new yeast strains to satisfy the specific demands of the food industry. Types of commercial food grade yeasts, industrial production processes and raw materials are highlighted. Aspects of yeast metabolism, with respect to carbohydrate utilization, nutritional aspects and recent research advances are also discussed.

  8. Antimicrobial sensitivity profile of Staphylococcus spp. Isolated from clinical mastitis

    Directory of Open Access Journals (Sweden)

    Thamires Martins

    2012-12-01

    Full Text Available Inflammation of the mammary gland, which is also known as mastitis, occupies a prominent place among the diseases that affect dairy cattle, having a great economic importance in the dairy sector. Mastitis may have different origins, however, infectious mastitis is the most frequent and represents a risk to public health due to the propagation of microorganisms through milk. Staphylococcus spp. are considered the microorganisms that cause the greatest losses in milk production, being that Staphylococcus aureus is the pathogen of major importance because they present high resistence to antimicrobials. Empirical treatment, without prior identification of the pathogens and their resistance profile, may contribute to the emergence of multidrug-resistant strains and risk the efficiency of the antimicrobial. In that scenery, the study aimed to evaluate the resistance profile of Staphylococcus spp. against some antimicrobials used in the treatment of cows with clinical mastitis. The study was conducted on a property in the state of São Paulo from January 2011 to June 2012. We evaluated 29 lactating cows that present clinical mastitis in, at least, one mammary quarter. The diagnosis of clinical mastitis was performed by evaluating the clinical signs and also by Tamis test. Samples of milk from mammary quarters were collected aseptically in sterile tubes for microbiological evaluation. Microorganisms were isolated on sheep blood agar 5% and Sabouraud agar with chloramphenicol. The sensitivity profile of Staphylococcus spp. to the antibiotics ampicillin, cephalexin, ceftiofur, cefaclor, gentamicin, kanamycin, neomycin, penicillin G and oxacillin, was tested by disk diffusion test on Mueller-Hinton agar. From a total of 106 samples of milk analyzed, 64 (60.38% presented microbiological growth, being observed isolation of Streptococcus spp. 29 (34.52%, Staphylococcus spp. 28 (33.33%, Corynebacterium spp. 17 (20.24%, filamentous fungi 4 (4.76%, yeast 4 (4

  9. Selection of 80 newly isolated autochthonous yeast strains from the Tikveš region of Macedonia and their impact on the quality of red wines produced from Vranec and Cabernet Sauvignon grape varieties.

    Science.gov (United States)

    Ilieva, Fidanka; Kostadinović Veličkovska, Sanja; Dimovska, Violeta; Mirhosseini, Hamed; Spasov, Hristo

    2017-02-01

    The main objectives of this study were to (i) isolate newly autochthonous yeast strains from the Tikveš region of Macedonia and (ii) test their impact on the quality of red wines from Vranec and Cabernet Sauvignon grape varieties. The newly isolated yeast strains were obtained by spontaneous fermentation of grape must from Vranec and Cabernet Sauvignon varieties collected from ten different micro-regions in Macedonia. The grapevines from both varieties grown in "Barovo" micro-region were the richest sources of yeast strains. In addition, the molecular identification and typing of strains were also carried out. The monomeric anthocyanins, polyphenolic content and other oenochemical characteristics of the wines were also compared with the wines from commercial yeast strain "SiHa". The Vranec wine from yeast strain F-8 and Cabernet Sauvignon wine from yeast strain F-20 had significantly (p<0.05) higher concentrations of monomeric anthocyanins and total phenolic compounds than other wines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Degradation of Bacterial Quorum Sensing Signaling Molecules by the Microscopic Yeast Trichosporon loubieri Isolated from Tropical Wetland Waters

    Directory of Open Access Journals (Sweden)

    Cheng-Siang Wong

    2013-09-01

    Full Text Available Proteobacteria produce N-acylhomoserine lactones as signaling molecules, which will bind to their cognate receptor and activate quorum sensing-mediated phenotypes in a population-dependent manner. Although quorum sensing signaling molecules can be degraded by bacteria or fungi, there is no reported work on the degradation of such molecules by basidiomycetous yeast. By using a minimal growth medium containing N-3-oxohexanoylhomoserine lactone as the sole source of carbon, a wetland water sample from Malaysia was enriched for microbial strains that can degrade N-acylhomoserine lactones, and consequently, a basidiomycetous yeast strain WW1C was isolated. Morphological phenotype and molecular analyses confirmed that WW1C was a strain of Trichosporon loubieri. We showed that WW1C degraded AHLs with N-acyl side chains ranging from 4 to 10 carbons in length, with or without oxo group substitutions at the C3 position. Re-lactonisation bioassays revealed that WW1C degraded AHLs via a lactonase activity. To the best of our knowledge, this is the first report of degradation of N-acyl-homoserine lactones and utilization of N-3-oxohexanoylhomoserine as carbon and nitrogen source for growth by basidiomycetous yeast from tropical wetland water; and the degradation of bacterial quorum sensing molecules by an eukaryotic yeast.

  11. MALDI-TOF MS Andromas strategy for the routine identification of bacteria, mycobacteria, yeasts, Aspergillus spp. and positive blood cultures.

    Science.gov (United States)

    Bille, E; Dauphin, B; Leto, J; Bougnoux, M-E; Beretti, J-L; Lotz, A; Suarez, S; Meyer, J; Join-Lambert, O; Descamps, P; Grall, N; Mory, F; Dubreuil, L; Berche, P; Nassif, X; Ferroni, A

    2012-11-01

    All organisms usually isolated in our laboratory are now routinely identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) using the Andromas software. The aim of this study was to describe the use of this strategy in a routine clinical microbiology laboratory. The microorganisms identified included bacteria, mycobacteria, yeasts and Aspergillus spp. isolated on solid media or extracted directly from blood cultures. MALDI-TOF MS was performed on 2665 bacteria isolated on solid media, corresponding to all bacteria isolated during this period except Escherichia coli grown on chromogenic media. All acquisitions were performed without extraction. After a single acquisition, 93.1% of bacteria grown on solid media were correctly identified. When the first acquisition was not contributory, a second acquisition was performed either the same day or the next day. After two acquisitions, the rate of bacteria identified increased to 99.2%. The failures reported on 21 strains were due to an unknown profile attributed to new species (9) or an insufficient quality of the spectrum (12). MALDI-TOF MS has been applied to 162 positive blood cultures. The identification rate was 91.4%. All mycobacteria isolated during this period (22) were correctly identified by MALDI-TOF MS without any extraction. For 96.3% and 92.2% of yeasts and Aspergillus spp., respectively, the identification was obtained with a single acquisition. After a second acquisition, the overall identification rate was 98.8% for yeasts (160/162) and 98.4% (63/64) for Aspergillus spp. In conclusion, the MALDI-TOF MS strategy used in this work allows a rapid and efficient identification of all microorganisms isolated routinely. © 2011 The Authors. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.

  12. Oligotrophic bacteria isolated from clinical materials.

    OpenAIRE

    Tada, Y; Ihmori, M; Yamaguchi, J

    1995-01-01

    Oligotrophic bacteria (oligotrophs) are microorganisms that grow in extremely nutritionally deficient conditions in which the concentrations of organic substances are low. Many oligotrophic bacteria were isolated from clinical materials including urine, sputum, swabbings of the throat, vaginal discharges, and others. Seventy-seven strains of oligotrophic bacteria from 871 samples of clinical material were isolated. A relatively higher frequency of isolation of oligotrophic bacteria was shown ...

  13. Occurrence and growth of yeasts in processed meat products - implications for potential spoilage

    DEFF Research Database (Denmark)

    Nielsen, Dennis Sandris; Jacobsen, Tomas; Jespersen, Lene

    2008-01-01

    of the processed meat products. The yeast microflora was complex with 4-12 different species isolated from the different production sites. In general, Candida zeylanoides, Debaryomyces hansenii and the newly described Candida alimentaria were found to be the dominant yeast species. In addition, three putatively......Spoilage of meat products is in general attributed to bacteria but new processing and storage techniques inhibiting growth of bacteria may provide opportunities for yeasts to dominate the microflora and cause spoilage of the product. With the aim of obtaining a deeper understanding of the potential...... role of yeast in spoilage of five different processed meat products (bacon, ham, salami and two different liver patés), yeasts were isolated, enumerated and identified during processing, in the final product and in the final product at the end of shelf life. Yeasts were isolated along the bacon...

  14. Comparison of biomarker based Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) and conventional methods in the identification of clinically relevant bacteria and yeast.

    Science.gov (United States)

    Kassim, Ali; Pflüger, Valentin; Premji, Zul; Daubenberger, Claudia; Revathi, Gunturu

    2017-05-25

    MALDI-TOF MS is an analytical method that has recently become integral in the identification of microorganisms in clinical laboratories. It relies on databases that majorly employ pattern recognition or fingerprinting. Biomarker based databases have also been developed and there is optimism that these may be superior to pattern recognition based databases. This study compared the performance of ribosomal biomarker based MALDI-TOF MS and conventional methods in the identification of selected bacteria and yeast. The study was a cross sectional study identifying clinically relevant bacteria and yeast isolated from varied clinical specimens submitted to a clinical laboratory. The identification of bacteria using conventional Vitek 2™ automated system, serotyping and MALDI-TOF MS was performed as per standard operating procedures. Comparison of sensitivities were then carried out using Pearson Chi-Square test and p-value of bacteria and Gram positive bacteria to the species level. For the Gram positive bacteria, significant difference was observed in the identification of Coagulase negative Staphylococci (p = 0.000) and Enterococcus (p = 0.008). Significant difference was also observed between serotyping and MALDI-TOF MS (p = 0.005) and this was attributed to the lack of identification of Shigella species by MALDI-TOF MS. There was no significant difference observed in the identification of yeast however some species of Candida were unidentified by MALDI-TOF MS. Biomarker based MALDI-TOF MS had good performance in a clinical laboratory setting with high sensitivities in the identification of clinically relevant microorganisms.

  15. Ca2+-Signal Transduction Inhibitors, Kujiol A and Kujigamberol B, Isolated from Kuji Amber Using a Mutant Yeast.

    Science.gov (United States)

    Uchida, Takeshi; Koshino, Hiroyuki; Takahashi, Shunya; Shimizu, Eisaku; Takahashi, Honoka; Yoshida, Jun; Shinden, Hisao; Tsujimura, Maiko; Kofujita, Hisayoshi; Uesugi, Shota; Kimura, Ken-Ichi

    2018-04-27

    A podocarpatriene and a labdatriene derivative, named kujiol A [13-methyl-8,11,13-podocarpatrien-19-ol (1)] and kujigamberol B [15,20-dinor-5,7,9-labdatrien-13-ol (2)], respectively, were isolated from Kuji amber through detection with the aid of their growth-restoring activity against a mutant yeast strain ( zds1Δ erg3Δ pdr1Δ pdr3Δ), which is known to be hypersensitive with respect to Ca 2+ -signal transduction. The structures were elucidated by spectroscopic data analysis. Compounds 1 and 2 are rare organic compounds from Late Cretaceous amber, and the mutant yeast used seems useful for elucidating a variety of new compounds from Kuji amber specimens, produced before the K-Pg boundary.

  16. The primary structures of two yeast enolase genes. Homology between the 5' noncoding flanking regions of yeast enolase and glyceraldehyde-3-phosphate dehydrogenase genes.

    Science.gov (United States)

    Holland, M J; Holland, J P; Thill, G P; Jackson, K A

    1981-02-10

    Segments of yeast genomic DNA containing two enolase structural genes have been isolated by subculture cloning procedures using a cDNA hybridization probe synthesized from purified yeast enolase mRNA. Based on restriction endonuclease and transcriptional maps of these two segments of yeast DNA, each hybrid plasmid contains a region of extensive nucleotide sequence homology which forms hybrids with the cDNA probe. The DNA sequences which flank this homologous region in the two hybrid plasmids are nonhomologous indicating that these sequences are nontandemly repeated in the yeast genome. The complete nucleotide sequence of the coding as well as the flanking noncoding regions of these genes has been determined. The amino acid sequence predicted from one reading frame of both structural genes is extremely similar to that determined for yeast enolase (Chin, C. C. Q., Brewer, J. M., Eckard, E., and Wold, F. (1981) J. Biol. Chem. 256, 1370-1376), confirming that these isolated structural genes encode yeast enolase. The nucleotide sequences of the coding regions of the genes are approximately 95% homologous, and neither gene contains an intervening sequence. Codon utilization in the enolase genes follows the same biased pattern previously described for two yeast glyceraldehyde-3-phosphate dehydrogenase structural genes (Holland, J. P., and Holland, M. J. (1980) J. Biol. Chem. 255, 2596-2605). DNA blotting analysis confirmed that the isolated segments of yeast DNA are colinear with yeast genomic DNA and that there are two nontandemly repeated enolase genes per haploid yeast genome. The noncoding portions of the two enolase genes adjacent to the initiation and termination codons are approximately 70% homologous and contain sequences thought to be involved in the synthesis and processing messenger RNA. Finally there are regions of extensive homology between the two enolase structural genes and two yeast glyceraldehyde-3-phosphate dehydrogenase structural genes within the 5

  17. Saccharomyces cerevisiae variety diastaticus friend or foe?-spoilage potential and brewing ability of different Saccharomyces cerevisiae variety diastaticus yeast isolates by genetic, phenotypic and physiological characterization.

    Science.gov (United States)

    Meier-Dörnberg, Tim; Kory, Oliver Ingo; Jacob, Fritz; Michel, Maximilian; Hutzler, Mathias

    2018-06-01

    Saccharomyces cerevisiae variety diastaticus is generally considered to be an obligatory spoilage microorganism and spoilage yeast in beer and beer-mixed beverages. Their super-attenuating ability causes increased carbon dioxide concentrations, beer gushing and potential bottle explosion along with changes in flavor, sedimentation and increased turbidity. This research shows clear differences in the super-attenuating properties of S. cerevisiae var. diastaticus yeast strains and their potential for industrial brewing applications. Nineteen unknown spoilage yeast cultures were obtained as isolates and characterized using a broad spectrum of genetic and phenotypic methods. Results indicated that all isolates represent genetically different S. cerevisiae var. diastaticus strains except for strain TUM PI BA 124. Yeast strains were screened for their super-attenuating ability and sporulation. Even if the STA1 gene responsible for super-attenuation by encoding for the enzyme glucoamylase could be verified by real-time polymerase chain reaction, no correlation to the spoilage potential could be demonstrated. Seven strains were further characterized focusing on brewing and sensory properties according to the yeast characterization platform developed by Meier-Dörnberg. Yeast strain TUM 3-H-2 cannot metabolize dextrin and soluble starch and showed no spoilage potential or super-attenuating ability even when the strain belongs to the species S. cerevisiae var. diastaticus. Overall, the beer produced with S. cerevisiae var. diastaticus has a dry and winey body with noticeable phenolic off-flavors desirable in German wheat beers.

  18. Competition assays and physiological experiments of soil and phyllosphere yeasts identify Candida subhashii as a novel antagonist of filamentous fungi.

    Science.gov (United States)

    Hilber-Bodmer, Maja; Schmid, Michael; Ahrens, Christian H; Freimoser, Florian M

    2017-01-05

    While recent advances in next generation sequencing technologies have enabled researchers to readily identify countless microbial species in soil, rhizosphere, and phyllosphere microbiomes, the biological functions of the majority of these species are unknown. Functional studies are therefore urgently needed in order to characterize the plethora of microorganisms that are being identified and to point out species that may be used for biotechnology or plant protection. Here, we used a dual culture assay and growth analyses to characterise yeasts (40 different isolates) and their antagonistic effect on 16 filamentous fungi; comprising plant pathogens, antagonists, and saprophytes. Overall, this competition screen of 640 pairwise combinations revealed a broad range of outcomes, ranging from small stimulatory effects of some yeasts up to a growth inhibition of more than 80% by individual species. On average, yeasts isolated from soil suppressed filamentous fungi more strongly than phyllosphere yeasts and the antagonistic activity was a species-/isolate-specific property and not dependent on the filamentous fungus a yeast was interacting with. The isolates with the strongest antagonistic activity were Metschnikowia pulcherrima, Hanseniaspora sp., Cyberlindnera sargentensis, Aureobasidium pullulans, Candida subhashii, and Pichia kluyveri. Among these, the soil yeasts (C. sargentensis, A. pullulans, C. subhashii) assimilated and/or oxidized more di-, tri- and tetrasaccharides and organic acids than yeasts from the phyllosphere. Only the two yeasts C. subhashii and M. pulcherrima were able to grow with N-acetyl-glucosamine as carbon source. The competition assays and physiological experiments described here identified known antagonists that have been implicated in the biological control of plant pathogenic fungi in the past, but also little characterised species such as C. subhashii. Overall, soil yeasts were more antagonistic and metabolically versatile than yeasts from

  19. Characterization of vanadate-dependent NADH oxidation activity and isolation of yeast DNA which complements a class 1 vanadate resistance mutation

    International Nuclear Information System (INIS)

    Minasi, L.E.

    1989-01-01

    A vanadate-dependent NADH oxidation activity has been characterized in plasma membranes from the yeast S cerevisiae. NADH oxidation activity was maximally stimulated at pH 5.0 in phosphate buffer. NADH oxidation was not dependent on the concentration of plasma membranes. The vanadate-dependent NADH oxidation activity was abolished under anaerobic conditions and the concomitant uptake of oxygen occurred during NADH oxidation. The activity was inhibited by superoxide dismutase and stimulated by the presence of paraquat. These results indicate that the vanadate stimulation of NADH oxidation in yeast plasma membranes occurs as a result of the vanadate-dependent oxidation of NADH by superoxide, generated by a plasma membrane NADH oxidase. 51 V-NMR results indicated that a phosphate-vanadate anhydride was the stimulatory species in pH 5.0 and pH 7.0 phosphate buffer. Yeast DNA has been isolated which complements a class 1 vanadate resistance mutation

  20. Terroir of yeasts? – Application of FTIR spectroscopy and molecular methods for strain typing of yeasts

    Directory of Open Access Journals (Sweden)

    Gerhards Daniel

    2015-01-01

    Full Text Available The site specific influence on wine (Terroir is an often by wine producers, consumers and scientists discussed topic in the world of wine. A study on grapes and (spontaneous fermentations from six different vineyards was done to investigate the biodiversity of yeasts and to answer the question if there is a terroir of yeast and how it could be influenced. Randomly isolated yeasts were identified by FTIR-spectroscopy and molecular methods on species and strain level. Vineyard specific yeast floras would be observed but they are not such important as expected. Only a few overlapping strain patterns would be identified during both vintages. The yeast flora of the winery had a huge impact on the spontaneous fermentations, but is not really constant and influenced by different factors from outside.

  1. Saccharomyces jurei sp. nov., isolation and genetic identification of a novel yeast species from Quercus robur.

    Science.gov (United States)

    Naseeb, Samina; James, Stephen A; Alsammar, Haya; Michaels, Christopher J; Gini, Beatrice; Nueno-Palop, Carmen; Bond, Christopher J; McGhie, Henry; Roberts, Ian N; Delneri, Daniela

    2017-06-01

    Two strains, D5088T and D5095, representing a novel yeast species belonging to the genus Saccharomyces were isolated from oak tree bark and surrounding soil located at an altitude of 1000 m above sea level in Saint Auban, France. Sequence analyses of the internal transcribed spacer (ITS) region and 26S rRNA D1/D2 domains indicated that the two strains were most closely related to Saccharomyces mikatae and Saccharomyces paradoxus. Genetic hybridization analyses showed that both strains are reproductively isolated from all other Saccharomyces species and, therefore, represent a distinct biological species. The species name Saccharomyces jurei sp. nov. is proposed to accommodate these two strains, with D5088T (=CBS 14759T=NCYC 3947T) designated as the type strain.

  2. The Efficacy of Specific Essential Oils on Yeasts Isolated from the Royal Tomb Paintings at Tanis, Egypt

    Directory of Open Access Journals (Sweden)

    Akmal Ali SAKR

    2012-06-01

    Full Text Available Yeast strains play an important role in the biodeterioration and biodegradation of paintings in ancient Egyptian tombs. Thirteen yeast were isolated from the royal tombs at Tanis (Oserkon II, Psunes and Shashanq, Sharkia Governorate, Egypt, dated back to 840 B.C., by using a sterile cotton swab. Those strains were identified as Saccharomyces cerevisiae, Candida albicans, C. lipolytica and Lodderomyces elongspous. The S. cerevisiae strains were halotolerant for sodium chloride, up to 10 %. Moreover, they caused a fading for the azurite blue color in laboratory cultures and S. cerevisiae was the most potent agent in fading the color. Five essential oils (lemon, spearmint, fennel, marjonam and rosemary were used to control their growth. Spearmint and lemon oils were the most effective oils in inhibiting the growth of those strains, whereas marjonam, fennel and rosemary had no effect on their growth.

  3. Biosynthesis of polyhydroxyalkanotes in wildtype yeasts | Desuoky ...

    African Journals Online (AJOL)

    Biosynthesis of the biodegradable polymers polyhydroxyalkanotes (PHAs) are studied extensively in wild type and genetically modified prokaryotic cells, however the content and structure of PHA in wild type yeasts are not well documented. The purpose of this study was to screen forty yeast isolates collected from different ...

  4. Structural investigations of yeast mannans

    International Nuclear Information System (INIS)

    Rademacher, K.H.

    1983-01-01

    Cell wall mannans were isolated from 8 different Candida species and separated in oligosaccharides by partial acetolysis. After gel chromatography specific acetolysis patterns were obtained. The 13 C NMR spectra of mannans and oligosaccharides were recorded. Signals at delta = 93.1 - 105.4 were assigned to certain chemical structures. Both the spectral patterns and the acetolysis patterns of the yeast mannans can be used for the discrimination of related yeasts. (author)

  5. Selection and Characterization of Potential Baker’s Yeast from Indigenous Resources of Nepal

    OpenAIRE

    Tika B. Karki; Parash Mani Timilsina; Archana Yadav; Gyanu Raj Pandey; Yogesh Joshi; Sahansila Bhujel; Rojina Adhikari; Katyayanee Neupane

    2017-01-01

    The study aims to isolate the yeast strains that could be used effectively as baker’s yeast and compare them with the commercial baker’s yeast available in the market of Nepal. A total of 10 samples including locally available sources like fruits, Murcha, and a local tree “Dar” were collected from different localities of Bhaktapur, Kavre, and Syangja districts of Nepal, respectively. Following enrichment and fermentation of the samples, 26 yeast strains were isolated using selective medium Wa...

  6. Evaluation of pectinolytic activities for oenological uses from psychrotrophic yeasts.

    Science.gov (United States)

    Sahay, S; Hamid, B; Singh, P; Ranjan, K; Chauhan, D; Rana, R S; Chaurse, V K

    2013-08-01

    Of the twenty-three morphotypes of yeasts isolated from soil capable of utilizing pectin as sole carbon source at 6°C, two yeast isolates, one psychrotolerant (PT1) and one psychrophilic (SPY11), were selected according to their ability to secrete pectinolytic enzymes under some oenological conditions (temperature 6 and 12°C and pH 3.5) and ability or inability to grow above 20°C, respectively. As compared to their optimal activity, the three pectinolytic enzymes viz., pectin methyl esterase (PME), endopolygalacturonase (endo-PG) and exopolygalacturonase (exo-PG) isolated and assayed at pH 3.5 from PT1 were found to retain 39, 60 and 60% activity at 12°C and 40, 79 and 74% activity at 28°C, respectively. Likewise, the enzymes PME and endo-PG at pH 3.5 from SPY11 displayed 46 and 86% activity at 12°C and 50 and 60% activity at 28°C, respectively. All these enzymes showed 20-90% of residual activity at pH 3.5 and 6°C. The yeast isolates PT1 and SPY11 were identified as Rhodotorula mucilaginosa and Cystofilobasidium capitatum, respectively, on the basis of morphological, physiological and molecular characteristics. This study presents the first report on pectinolytic activities under major oenological conditions from psychrotolerant isolate R. mucilaginosa PT1 and psychrophilic isolate C. capitatum SPY11. The cold-active pectinolytic enzymes (PME, endo-PG and exo-PG) from the newly isolated and identified psychrophilic yeast Cystofilobasidium capitatum SPY11 and psychrotolerant yeast Rhodotorula mucilaginosa PT1that exhibited 50-80% of their optimum activity under some major oenological conditions pH (3.5) and temperatures (6 and 12°C) could be applied to wine production and juice clarification at low temperature. The psychrotrophic yeasts themselves could be applied to cold process for the production of enzymes thus saving cost of energy and protecting process from contamination. © 2013 The Society for Applied Microbiology.

  7. Treatment of clinical mastitis.

    Science.gov (United States)

    Roberson, Jerry R

    2012-07-01

    In summary, culture-based therapy and severity levels are key to management of clinical mastitis. Antibiotic therapy should be strongly considered for gram-positive clinical mastitis. Antibiotic therapy is not necessary for mild-to-moderate gram-negative clinical mastitis. Antibiotic therapy is warranted for practically all severe clinical mastitis as well as fluids and anti-inflammatory drugs. Clinical mastitis cases due to yeast and fungal pathogens or no growth isolates do not warrant antibiotic therapy.

  8. Yeast Biodiversity from DOQ Priorat Uninoculated Fermentations.

    Science.gov (United States)

    Padilla, Beatriz; García-Fernández, David; González, Beatriz; Izidoro, Iara; Esteve-Zarzoso, Braulio; Beltran, Gemma; Mas, Albert

    2016-01-01

    Climate, soil, and grape varieties are the primary characteristics of terroir and lead to the definition of various appellations of origin. However, the microbiota associated with grapes are also affected by these conditions and can leave a footprint in a wine that will be part of the characteristics of terroir. Thus, a description of the yeast microbiota within a vineyard is of interest not only to provide a better understanding of the winemaking process, but also to understand the source of microorganisms that maintain a microbial footprint in wine from the examined vineyard. In this study, two typical grape varieties, Grenache and Carignan, have been sampled from four different vineyards in the DOQ Priorat winegrowing region. Afterward, eight spontaneous alcoholic fermentations containing only grapes from one sampling point and of one variety were conducted at laboratory scale. The fermentation kinetics and yeast population dynamics within each fermentation experiment were evaluated. Yeast identification was performed by RFLP-PCR of the 5.8S-ITS region and by sequencing D1/D2 of the 26S rRNA gene of the isolates. The fermentation kinetics did not indicate clear differences between the two varieties of grapes or among vineyards. Approximately 1,400 isolates were identified, exhibiting high species richness in some fermentations. Of all the isolates studied, approximately 60% belong to the genus Hanseniaspora, 16% to Saccharomyces, and 11% to Candida. Other minor genera, such as Hansenula, Issatchenkia, Kluyveromyces, Saccharomycodes, and Zygosaccharomyces, were also found. The distribution of the identified yeast throughout the fermentation process was studied, and Saccharomyces cerevisiae was found to be present mainly at the end of the fermentation process, while Aureobasidium pullulans was isolated primarily during the first days of fermentation in three of the eight spontaneous fermentations. This work highlights the complexity and diversity of the vineyard

  9. Antifungal activity of lectins against yeast of vaginal secretion

    Directory of Open Access Journals (Sweden)

    Bruno Severo Gomes

    2012-06-01

    Full Text Available Lectins are carbohydrate-binding proteins of non-imune origin. This group of proteins is distributed widely in nature and they have been found in viruses, microorganisms, plants and animals. Lectins of plants have been isolated and characterized according to their chemical, physical-chemical, structural and biological properties. Among their biological activities, we can stress its fungicidal action. It has been previously described the effect of the lectins Dviol, DRL, ConBr and LSL obtained from the seeds of leguminous plants on the growth of yeasts isolated from vaginal secretions. In the present work the experiments were carried out in microtiter plates and the results interpreted by both methods: visual observations and a microplate reader at 530nm. The lectin concentrations varied from 0.5 to 256µg/mL, and the inoculum was established between 65-70% of trammitance. All yeast samples isolated from vaginal secretion were evaluated taxonomically, where were observed macroscopic and microscopic characteristics to each species. The LSL lectin did not demonstrate any antifungal activity to any isolate studied. The other lectins DRL, ConBr and DvioL, showed antifungal potential against yeast isolated from vaginal secretion. These findings offering offer a promising field of investigation to develop new therapeutic strategies against vaginal yeast infections, collaborating to improve women's health.

  10. Yeast Communities of Chestnut Soils under Vineyards in Dagestan

    Science.gov (United States)

    Abdullabekova, D. A.; Magomedova, E. S.; Magomedov, G. G.; Aliverdieva, D. A.; Kachalkin, A. V.

    2017-12-01

    The study of yeast communities in chestnut soils (Kastanozems) under vineyards in the Republic of Dagestan made it possible to isolate 20 yeast species. Most of the yeasts under vineyards belonged to ascomycetes, among which species of the Saccharomycetaceae family (in particular, Saccharomyces cerevisiae) comprised a significant part. The obtained results indicate that the soils under vineyards keep the pool of microbial diversity and ensure preservation of many species typical for grapes. The method of enrichment culture on grape juice medium proved to be more efficient than other methods of analysis with respect to the number of isolated species and the rate of their detection. However, implementation of different techniques to study yeasts' diversity can give somewhat different results; a set of methods should be used for an integrated analysis.

  11. Breeding research on sake yeasts in Japan: history, recent technological advances, and future perspectives.

    Science.gov (United States)

    Kitagaki, Hiroshi; Kitamoto, Katsuhiko

    2013-01-01

    Sake is an alcoholic beverage of Japan, with a tradition lasting more than 1,300 years; it is produced from rice and water by fermenting with the koji mold Aspergillus oryzae and sake yeast Saccharomyces cerevisiae. Breeding research on sake yeasts was originally developed in Japan by incorporating microbiological and genetic research methodologies adopted in other scientific areas. Since the advent of a genetic paradigm, isolation of yeast mutants has been a dominant approach for the breeding of favorable sake yeasts. These sake yeasts include (a) those that do not form foams (produced by isolating a mutant that does not stick to foams, thus decreasing the cost of sake production); (b) those that do not produce urea, which leads to the formation of ethyl carbamate, a possible carcinogen (isolated by positive selection in a canavanine-, arginine-, and ornithine-containing medium); (c) those that produce an increased amount of ethyl caproate, an apple-like flavor (produced by isolating a mutant resistant to cerulenin, an inhibitor of fatty-acid synthesis); and (d) those that produce a decreased amount of pyruvate (produced by isolating a mutant resistant to an inhibitor of mitochondrial transport, thus decreasing the amount of diacetyl). Given that sake yeasts perform sexual reproduction, sporulation and mating are potent approaches for their breeding. Recently, the genome sequences of sake yeasts have been determined and made publicly accessible. By utilizing this information, the quantitative trait loci (QTLs) for the brewing characteristics of sake yeasts have been identified, which paves a way to DNA marker-assisted selection of the mated strains. Genetic engineering technologies for experimental yeast strains have recently been established by academic groups, and these technologies have also been applied to the breeding of sake yeasts. Sake yeasts whose genomes have been modified with these technologies correspond to genetically modified organisms (GMOs

  12. [Isolation of Aspergillus tritici from internal environment (Chile): Ecological and clinical scope].

    Science.gov (United States)

    Vieille Oyarzo, Peggy; Cruz Choappa, Rodrigo; Piontelli Laforet, Eduardo

    2018-03-29

    Indoor environments provide important protective habitats for humans, who live or work in them most of the time. Many of these environments lack ventilation, which affects the composition of microbial communities, especially that of the fungal community. The aim of this study is to report the isolation of Aspergillus section Candidi from indoor environments of the School of Medicine at Universidad de Valparaiso, Chile, and identification through morpho-physiological and molecular approaches. Their ecological and clinical features were highlighted. An environmental non-volumetric sampling was performed on PDA medium; 2 petri dishes were exposed in 10 different places to select the Aspergillus samples. Subcultures were performed on agar Czapek with yeast extract (CYA), malt extract agar (MEA) and creatin sacarose agar (CREA) media only for the morpho-physiological and later the molecular identification of white spore species. Of the 20 samples analyzed, one Aspergillus belonging to Candidi section was isolated. Based on its morphology and molecular features, it was classified as Aspergillustritici Mehrotra & Basu. Its ecology and medical relevance are reviewed and discussed. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. Yeast species associated with the spontaneous fermentation of cider.

    Science.gov (United States)

    Valles, Belén Suárez; Bedriñana, Rosa Pando; Tascón, Norman Fernández; Simón, Amparo Querol; Madrera, Roberto Rodríguez

    2007-02-01

    This paper reports the influence of cider-making technology (pneumatic and traditional pressing) on the dynamics of wild yeast populations. Yeast colonies isolated from apple juice before and throughout fermentation at a cider cellar of Asturias (Spain), during two consecutive years were studied. The yeast strains were identified by restriction fragment length polymorphism analysis of the 5.8S rRNA gene and the two flanking internal transcribed sequences (ITS). The musts obtained by pneumatic pressing were dominated by non-Saccharomyces yeasts (Hanseniaspora genus and Metschnikowia pulcherrima) whereas in the apple juices obtained by traditional pressing Saccharomyces together with non-Saccharomyces, were always present. The species Saccharomyces present were S. cerevisiae and S. bayanus. Apparently S. bayanus, was the predominant species at the beginning and the middle fermentation steps of the fermentation process, reaching a percentage of isolation between 33% and 41%, whereas S. cerevisiae took over the process in the final stages of fermentation. During the 2001 harvest, with independence of cider-making technology, the species Hanseniaspora valbyensis was always isolated at the end of fermentations.

  14. Yeast identification by sequencing, biochemical kits, MALDI-TOF MS and rep-PCR DNA fingerprinting.

    Science.gov (United States)

    Zhao, Ying; Tsang, Chi-Ching; Xiao, Meng; Chan, Jasper F W; Lau, Susanna K P; Kong, Fanrong; Xu, Yingchun; Woo, Patrick C Y

    2017-12-08

    No study has comprehensively evaluated the performance of 28S nrDNA and ITS sequencing, commercial biochemical test kits, MALDI-TOF MS platforms, and the emerging rep-PCR DNA fingerprinting technology using a cohort of yeast strains collected from a clinical microbiology laboratory. In this study, using 71 clinically important yeast isolates (excluding Candida albicans) collected from a single centre, we determined the concordance of 28S nrDNA and ITS sequencing and evaluated the performance of two commercial test kits, two MALDI-TOF MS platforms, and rep-PCR DNA fingerprinting. 28S nrDNA and ITS sequencing showed complete agreement on the identities of the 71 isolates. Using sequencing results as the standard, 78.9% and 71.8% isolates were correctly identified using the API 20C AUX and Vitek 2 YST ID Card systems, respectively; and 90.1% and 80.3% isolates were correctly identified using the Bruker and Vitek MALDI-TOF MS platforms, respectively. Of the 18 strains belonging to the Candida parapsilosis species complex tested by DiversiLab automated rep-PCR DNA fingerprinting, all were identified only as Candida parapsilosis with similarities ≥93.2%, indicating the misidentification of Candida metapsilosis and Candida orthopsilosis. However, hierarchical cluster analysis of the rep-PCR DNA fingerprints of these three species within this species complex formed three different discrete clusters, indicating that this technology can potentially differentiate the three species. To achieve higher accuracies of identification, the databases of commercial biochemical test kits, MALDI-TOF MS platforms, and DiversiLab automated rep-PCR DNA fingerprinting needs further enrichment, particularly for uncommonly encountered yeast species. © The Author 2017. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. In vitro differential activity of phospholipases and acid proteinases of clinical isolates of Candida

    Directory of Open Access Journals (Sweden)

    Aurean D'Eça Júnior

    2011-06-01

    Full Text Available INTRODUCTION: Candida yeasts are commensals; however, if the balance of normal flora is disrupted or the immune defenses are compromised, Candida species can cause disease manifestations. Several attributes contribute to the virulence and pathogenicity of Candida, including the production of extracellular hydrolytic enzymes, particularly phospholipase and proteinase. This study aimed to investigate the in vitro activity of phospholipases and acid proteinases in clinical isolates of Candida spp. METHODS: Eighty-two isolates from hospitalized patients collected from various sites of origin were analyzed. Phospholipase production was performed in egg yolk medium and the production of proteinase was verified in a medium containing bovine serum albumin. The study was performed in triplicate. RESULTS: Fifty-six (68.3% of isolates tested were phospholipase positive and 16 (44.4% were positive for proteinase activity. C. tropicalis was the species with the highest number of positive isolates for phospholipase (91.7%. Statistically significant differences were observed in relation to production of phospholipases among species (p<0,0001 and among the strains from different sites of origin (p=0.014. Regarding the production of acid protease, the isolates of C. parapsilosis tested presented a larger number of producers (69.2%. Among the species analyzed, the percentage of protease producing isolates did not differ statistically (χ2=1.9 p=0.5901 (χ2=1.9 p=0.5901. CONCLUSIONS: The majority of C. non-albicans and all C. albicans isolates were great producers of hydrolytic enzymes and, consequently, might be able to cause infection under favorable conditions.

  16. Specific Gene Loci of Clinical Pseudomonas putida Isolates.

    Directory of Open Access Journals (Sweden)

    Lázaro Molina

    Full Text Available Pseudomonas putida are ubiquitous inhabitants of soils and clinical isolates of this species have been seldom described. Clinical isolates show significant variability in their ability to cause damage to hosts because some of them are able to modulate the host's immune response. In the current study, comparisons between the genomes of different clinical and environmental strains of P. putida were done to identify genetic clusters shared by clinical isolates that are not present in environmental isolates. We show that in clinical strains specific genes are mostly present on transposons, and that this set of genes exhibit high identity with genes found in pathogens and opportunistic pathogens. The set of genes prevalent in P. putida clinical isolates, and absent in environmental isolates, are related with survival under oxidative stress conditions, resistance against biocides, amino acid metabolism and toxin/antitoxin (TA systems. This set of functions have influence in colonization and survival within human tissues, since they avoid host immune response or enhance stress resistance. An in depth bioinformatic analysis was also carried out to identify genetic clusters that are exclusive to each of the clinical isolates and that correlate with phenotypical differences between them, a secretion system type III-like was found in one of these clinical strains, a determinant of pathogenicity in Gram-negative bacteria.

  17. Identification and Characterization of Oleaginous Yeast Isolated from Kefir and Its Ability to Accumulate Intracellular Fats in Deproteinated Potato Wastewater with Different Carbon Sources

    Directory of Open Access Journals (Sweden)

    Iwona Gientka

    2017-01-01

    Full Text Available The search for efficient oleaginous microorganisms, which can be an alternative to fossil fuels and biofuels obtained from oilseed crops, has been going on for many years. The suitability of microorganisms in this regard is determined by their ability to biosynthesize lipids with preferred fatty acid profile along with the concurrent utilization of energy-rich industrial waste. In this study, we isolated, characterized, and identified kefir yeast strains using molecular biology techniques. The yeast isolates identified were Candida inconspicua, Debaryomyces hansenii, Kluyveromyces marxianus, Kazachstania unispora, and Zygotorulaspora florentina. We showed that deproteinated potato wastewater, a starch processing industry waste, supplemented with various carbon sources, including lactose and glycerol, is a suitable medium for the growth of yeast, which allows an accumulation of over 20% of lipid substances in its cells. Fatty acid composition primarily depended on the yeast strain and the carbon source used, and, based on our results, most of the strains met the criteria required for the production of biodiesel. In particular, this concerns a significant share of saturated fatty acids, such as C16:0 and C18:0, and unsaturated fatty acids, such as C18:1 and C18:2. The highest efficiency in lipid biosynthesis exceeded 6.3 g L−1. Kazachstania unispora was able to accumulate the high amount of palmitoleic acid.

  18. Identification and Characterization of Oleaginous Yeast Isolated from Kefir and Its Ability to Accumulate Intracellular Fats in Deproteinated Potato Wastewater with Different Carbon Sources.

    Science.gov (United States)

    Gientka, Iwona; Kieliszek, Marek; Jermacz, Karolina; Błażejak, Stanisław

    2017-01-01

    The search for efficient oleaginous microorganisms, which can be an alternative to fossil fuels and biofuels obtained from oilseed crops, has been going on for many years. The suitability of microorganisms in this regard is determined by their ability to biosynthesize lipids with preferred fatty acid profile along with the concurrent utilization of energy-rich industrial waste. In this study, we isolated, characterized, and identified kefir yeast strains using molecular biology techniques. The yeast isolates identified were Candida inconspicua , Debaryomyces hansenii , Kluyveromyces marxianus , Kazachstania unispora , and Zygotorulaspora florentina . We showed that deproteinated potato wastewater, a starch processing industry waste, supplemented with various carbon sources, including lactose and glycerol, is a suitable medium for the growth of yeast, which allows an accumulation of over 20% of lipid substances in its cells. Fatty acid composition primarily depended on the yeast strain and the carbon source used, and, based on our results, most of the strains met the criteria required for the production of biodiesel. In particular, this concerns a significant share of saturated fatty acids, such as C16:0 and C18:0, and unsaturated fatty acids, such as C18:1 and C18:2. The highest efficiency in lipid biosynthesis exceeded 6.3 g L -1 . Kazachstania unispora was able to accumulate the high amount of palmitoleic acid.

  19. Identification and Characterization of Oleaginous Yeast Isolated from Kefir and Its Ability to Accumulate Intracellular Fats in Deproteinated Potato Wastewater with Different Carbon Sources

    Science.gov (United States)

    Kieliszek, Marek; Jermacz, Karolina; Błażejak, Stanisław

    2017-01-01

    The search for efficient oleaginous microorganisms, which can be an alternative to fossil fuels and biofuels obtained from oilseed crops, has been going on for many years. The suitability of microorganisms in this regard is determined by their ability to biosynthesize lipids with preferred fatty acid profile along with the concurrent utilization of energy-rich industrial waste. In this study, we isolated, characterized, and identified kefir yeast strains using molecular biology techniques. The yeast isolates identified were Candida inconspicua, Debaryomyces hansenii, Kluyveromyces marxianus, Kazachstania unispora, and Zygotorulaspora florentina. We showed that deproteinated potato wastewater, a starch processing industry waste, supplemented with various carbon sources, including lactose and glycerol, is a suitable medium for the growth of yeast, which allows an accumulation of over 20% of lipid substances in its cells. Fatty acid composition primarily depended on the yeast strain and the carbon source used, and, based on our results, most of the strains met the criteria required for the production of biodiesel. In particular, this concerns a significant share of saturated fatty acids, such as C16:0 and C18:0, and unsaturated fatty acids, such as C18:1 and C18:2. The highest efficiency in lipid biosynthesis exceeded 6.3 g L−1. Kazachstania unispora was able to accumulate the high amount of palmitoleic acid. PMID:29098157

  20. Identifying yeast isolated from spoiled peach puree and assessment of its batch culture for invertase production

    Directory of Open Access Journals (Sweden)

    Marcela Vega FERREIRA

    Full Text Available Abstract The identification of yeasts isolated from spoiled Jubileu peach puree using the API 20C AUX method and a commercial yeast as witness were studied. Subsequently, the yeast’s growth potential using two batch culture treatments were performed to evaluate number of colonies (N, reducing sugar concentration (RS, free-invertase (FI, and culture-invertase activity (CI. Stock cultures were maintained on potato dextrose agar (PDA slants at 4 °C and pH 5 for later use for batch-culture (150 rpm at 30°C for 24 h, then they were stored at 4 °C for subsequent invertase extraction. The FI extract was obtained using NaHCO3 as autolysis agent, and CI activity was determined on the supernatant after batch-cultured centrifugation. The activity was followed by an increase in absorbance at 490 nm using the acid 3,5-DNS method with glucose standard. Of the four yeasts identified, Saccharomyces cerevisiae was chosen for legal reasons. It showed logarithmic growth up to 18 h of fermentation with positive correlation CI activity and inverse with RS. FI showed greater activity by the end of the log phase and an inverse correlation with CI activity. Finally, it was concluded that treatment “A” is more effective than “B” to produce invertase (EC 3.2.1.26.

  1. Microbial terroir in Chilean valleys: Diversity of non-conventional yeast

    Directory of Open Access Journals (Sweden)

    Carla eJara

    2016-05-01

    Full Text Available In this study, the presence of non-conventional yeast associated with vineyards located between latitudes 30ºS and 36ºS was examined, including the valleys of Limarí, Casablanca, Maipo, Colchagua, Maule and Itata. The microbial fingerprinting in each valley was examined based on the specific quantification of yeast of enological interest. Grape berries were sampled to evaluate the presence and load of non-conventional yeast with enological potential, such as Metschnikowia, Hanseniaspora, Torulaspora, Debaryomyces, Meyerozyma and Rhodotorula. These yeasts were present in all vineyards studied but with varying loads depending on the valley sampled. No identical fingerprints were observed; however, similarities and differences could be observed among the microbial profiles of each valley. A co-variation in the loads of Metschnikowia and Hanseniaspora with latitude was observed, showing high loads in the Casablanca and Itata valleys, which was coincident with the higher relative humidity or rainfall of those areas. Non-conventional yeasts were also isolated and identified after sequencing molecular markers. Potentially good aromatic properties were also screened among the isolates, resulting in the selection of mostly Metschnikowia and Hanseniaspora isolates. Finally, our results suggest that microbial terroir might be affected by climatic conditions such as relative humidity and rainfall, especially impacting the load of non-conventional yeast. In this study, the microbial fingerprint for yeast in Chilean vineyards is reported for the first time revealing an opportunity to study the contribution of this assembly of microorganisms to the final product.

  2. Identification of the major yeasts isolated from high moisture corn and corn silages in the United States using genetic and biochemical methods.

    Science.gov (United States)

    Santos, M C; Golt, C; Joerger, R D; Mechor, G D; Mourão, Gerson B; Kung, L

    2017-02-01

    The objective of this study was to identify species of yeasts in samples of high moisture corn (HMC) and corn silage (CS) collected from farms throughout the United States. Samples were plated and colonies were isolated for identification using DNA analysis. Randomly selected colonies were also identified by fatty acid methyl esters (FAME) and by physiological substrate profiling (ID 32C). For CS, Candida ethanolica, Saccharomyces bulderi, Pichia anomala, Kazachstania unispora, and Saccharomyces cerevisiae were the predominant yeasts. Pichia anomala, Issatchenkia orientalis, S. cerevisiae, and Pichia fermentans were the prevalent species in HMC. The 3 identification methods were in agreement at the species level for 16.6% of the isolates and showed no agreement for 25.7%. Agreement in species identification between ID 32C and DNA analysis, FAME and ID 32C, and FAME and DNA analysis was 41.1, 14.4, and 2.2%, respectively. Pichia anomala and I. orientalis were able to grow on lactic acid, whereas S. cerevisiae metabolized sugars (galactose, sucrose, and glucose) but failed to use lactic acid. The yeast diversity in CS and HMC varied due to type of feed and location. Differences in species assignments were seen among methods, but identification using substrate profiling generally corresponded with that based on DNA analysis. These findings provide information about the species that may be expected in silages, and this knowledge may lead to interventions that control unwanted yeasts. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  3. The environmental and intrinsic yeast diversity of Cuban cocoa bean heap fermentations.

    Science.gov (United States)

    Fernández Maura, Yurelkys; Balzarini, Tom; Clapé Borges, Pablo; Evrard, Pierre; De Vuyst, Luc; Daniel, H-M

    2016-09-16

    The environmental yeast diversity of spontaneous cocoa bean fermentations in east Cuba was investigated. Seven fermentations, 25 equipment- and handling-related samples, and 115 environmental samples, such as flowers, leaf and cocoa pod surfaces, as well as drosophilid insects, were analysed. The basic fermentation parameters temperature and pH were recorded during five fermentations for at least six days. A total of 435 yeast isolates were identified by a combination of PCR-fingerprinting of genomic DNA with the M13 primer and sequence analysis of DNA from representative isolates, using the internal transcribed spacer region, the D1/D2 region of the large subunit rRNA gene, and an actin gene-encoding fragment, as required. Among 65 yeast species detected, Pichia manshurica and Hanseniaspora opuntiae were the most frequently isolated species, obtained from five and four fermentations, followed in frequency by Pichia kudriavzevii from two fermentations. Saccharomyces cerevisiae was isolated only occasionally. Cocoa fermentation yeast species were also present on processing equipment. The repeated isolation of a preliminarily as Yamadazyma sp. classified species, a group of strains similar to Saccharomycopsis crataegensis from fermentations and equipment, and the isolation of fifteen other potentially novel yeast species in low numbers provides material for further studies. Environmental samples showed higher yeast diversity compared to the fermentations, included the most frequent fermentation species, whereas the most frequently isolated environmental species were Candida carpophila, Candida conglobata, and Candida quercitrusa. Potential selective advantages of the most frequently isolated species were only partly explained by the physiological traits tested. For instance, tolerance to higher ethanol concentrations was more frequent in strains of Pichia spp. and S. cerevisiae compared to Hanseniaspora spp.; the ability to also assimilate ethanol might have

  4. [Yeast microbiota in artisanal cheeses from Corrientes, Argentina].

    Science.gov (United States)

    Cardozo, Marina C; Fusco, Ángel J V; Carrasco, Marta S

    The artisanal cheese from Corrientes (from the Spanish acronym QAC-Queso Artesanal de Corrientes/Artisanal Cheese from Corrientes) is a soft cheese elaborated with raw cow milk and an artisanal coagulant agent. Lactic bacteria contitute the main flora of this cheese although yeasts are also present in high quantities as secondary microbiota and might play a relevant role in cheese ripening. The aim of this work was to evaluate yeast occurrence during QAC elaboration and ripening, and the effect of seasonal variation. Yeasts were isolated and purified from raw materials and cheese at different ripening stagesl elaborated during the different seasons. Yeast sample counts were in the order of 10 3 - 10 7 UFC/ml o UFC/g. Ninety yeast strains were classified: 9 from milk, 28 from the coagulant agent, 10 from curd and 43 from cheese. Candida predominated in milk samples while other yeast genera had low incidence. Candida also predominated in the coagulant agent samples, followed by genera Myxozyma and Debaryomyces. The isolates obtained from cheese belonged to the same genera predominating in the coagulant agent, and showed the same order of prevalence. Copyright © 2017 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. Rhodotorula svalbardensis sp. nov., a novel yeast species isolated from cryoconite holes of Ny-Ålesund, Arctic.

    Science.gov (United States)

    Singh, Purnima; Singh, Shiv M; Tsuji, Masaharu; Prasad, Gandham S; Hoshino, Tamotsu

    2014-02-01

    A psychrophilic yeast species was isolated from glacier cryoconite holes of Svalbard. Nucleotide sequences of the strains were studied using D1/D2 domain, ITS region and partial sequences of mitochondrial cytochrome b gene. The strains belonged to a clade of psychrophilic yeasts, but showed marked differences from related species in the D1/D2 domain and biochemical characters. Effects of temperature, salt and media on growth of the cultures were also studied. Screening of the cultures for amylase, cellulase, protease, lipase, urease and catalase activities was carried out. The strains expressed high amylase and lipase activities. Freeze tolerance ability of the isolates indicated the formation of unique hexagonal ice crystal structures due to presence of 'antifreeze proteins' (AFPs). FAME analysis of cultures showed a unique trend of increase in unsaturated fatty acids with decrease in temperature. The major fatty acids recorded were oleic acid, linoleic acid, linolenic acid, palmitic acid, stearic acid, myristic acid and pentadecanoic acid. Based on sequence data and, physiological and morphological properties of the strains, we propose a novel species, Rhodotorula svalbardensis and designate strains MLB-I (CCP-II) and CRY-YB-1 (CBS 12863, JCM 19699, JCM 19700, MTCC 10952) as its type strains (Etymology: sval.bar.den'sis. N.L. fem. adj. svalbardensis pertaining to Svalbard). Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Yeast species diversity in apple juice for cider production evidenced by culture-based method.

    Science.gov (United States)

    Lorenzini, Marilinda; Simonato, Barbara; Zapparoli, Giacomo

    2018-05-07

    Identification of yeasts isolated from apple juices of two cider houses (one located in a plain area and one in an alpine area) was carried out by culture-based method. Wallerstein Laboratory Nutrient Agar was used as medium for isolation and preliminary yeasts identification. A total of 20 species of yeasts belonging to ten different genera were identified using both BLAST algorithm for pairwise sequence comparison and phylogenetic approaches. A wide variety of non-Saccharomyces species was found. Interestingly, Candida railenensis, Candida cylindracea, Hanseniaspora meyeri, Hanseniaspora pseudoguilliermondii, and Metschnikowia sinensis were recovered for the first time in the yeast community of an apple environment. Phylogenetic analysis revealed a better resolution in identifying Metschnikowia and Moesziomyces isolates than comparative analysis using the GenBank or YeastIP gene databases. This study provides important data on yeast microbiota of apple juice and evidenced differences between two geographical cider production areas in terms of species composition.

  7. Pollutant removal-oriented yeast biomass production from high-organic-strength industrial wastewater: A review

    International Nuclear Information System (INIS)

    Yang, Min; Zheng, Shaokui

    2014-01-01

    Microbial single-cell-protein (SCP) production from high-organic-strength industrial wastewaters is considered an attractive method for both wastewater purification and resource utilization. In the last two decades, pollutant removal-oriented yeast SCP production processes, i.e., yeast treatment processes, have attracted a great deal of attention from a variety of research groups worldwide. Different from conventional SCP production processes, yeast treatment processes are characterized by higher pollutant removal rates, lower production costs, highly adaptive yeast isolates from nature, no excess nutrient supplements, and are performed under non-sterile conditions. Furthermore, yeast treatment processes are similar to bacteria-dominated conventional activated sludge processes, which offer more choices for yeast SCP production and industrial wastewater treatment. This review discusses why highly adaptive yeast species isolated from nature are used in the yeast treatment process rather than commercial SCP producers. It also describes the application of yeast treatment processes for treating high-carboxyhydrate, oil-rich and high-salinity industrial wastewater, focusing primarily on high-strength biodegradable organic substances, which usually account for the major fraction of biochemical oxygen demand. Also discussed is the biodegradation of xenobiotics, such as color (including dye and pigment) and toxic substances (including phenols, chlorophenols, polycyclic aromatic hydrocarbons, etc.), present in industrial wastewater. Based on molecular information of yeast community structures and their regulation in yeast treatment systems, we also discuss how to maintain efficient yeast species in yeast biomass and how to control bacterial and mold proliferation in yeast treatment systems. - Highlights: • Pollutant removal-oriented yeast SCP production processes offer more choices. • Highly adaptive yeast isolates replace commercial SCP producers. • Yeasts degrade

  8. Occurrence and identification of yeast species in fermented liquid feed for piglets

    DEFF Research Database (Denmark)

    Gori, Klaus; Bjørklund, Marina Kryger; Canibe, Nuria

    2011-01-01

    The major objective of the present study was to investigate the occurrence and identity of yeast species in fermented liquid feed (FLF) used for feeding piglets. In total, 40 different Danish farms were included in the analysis. The preparation and composition of FLF was found to be very...... heterogeneous with high variations in both yeast counts and yeast species composition. The yeast population varied between 6.0 × 10(3) and 4.2 × 10(7) cfug(-1) with an average yeast count of 8.7 × 10(6) ± 1.1 × 10(7) cfug(-1). A total of 766 yeasts were isolated and identified by conventional and/or molecular...... typing techniques. The predominant yeast species in the FLF samples were found to be Candida milleri (58.4%), Kazachstania exigua (17.5%), Candida pararugosa (6.40%) and Kazachstania bulderi (5.09%). No clear separation between isolates of C. milleri and Candida humilis could be obtained based...

  9. Ecological structuring of yeasts associated with trees around Hamilton, Ontario, Canada.

    Science.gov (United States)

    Maganti, Harinad; Bartfai, David; Xu, Jianping

    2012-02-01

    This study seeks to determine the distribution and diversity of yeasts in and around the Hamilton area in Canada. In light of the increasing number of fungal infections along with rising morbidity and mortality rates, especially among the immunocompromised, understanding the diversity and distribution of yeasts in natural environments close to human habitations has become an increasingly relevant topic. In this study, we analyzed 1110 samples obtained from the hollows of trees, shrubs and avian droppings at 8 geographical sites in and around Hamilton, Ontario, Canada. A total of 88 positive yeast strains were isolated and identified belonging to 20 yeast species. Despite the relative proximity of the sampling sites, our DNA fingerprinting results showed that the yeast populations were highly heterogenous. Among the 14 tree species sampled, cedar, cottonwood and basswood hollows had relatively high yeast colonization rates. Interestingly, Candida parapsilosis was isolated almost exclusively from Pine trees only. Our results are consistent with microgeographic and ecological differentiation of yeast species in and around an urban environment. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  10. Nitrile Metabolizing Yeasts

    Science.gov (United States)

    Bhalla, Tek Chand; Sharma, Monica; Sharma, Nitya Nand

    Nitriles and amides are widely distributed in the biotic and abiotic components of our ecosystem. Nitrile form an important group of organic compounds which find their applications in the synthesis of a large number of compounds used as/in pharmaceutical, cosmetics, plastics, dyes, etc>. Nitriles are mainly hydro-lyzed to corresponding amide/acid in organic chemistry. Industrial and agricultural activities have also lead to release of nitriles and amides into the environment and some of them pose threat to human health. Biocatalysis and biotransformations are increasingly replacing chemical routes of synthesis in organic chemistry as a part of ‘green chemistry’. Nitrile metabolizing organisms or enzymes thus has assumed greater significance in all these years to convert nitriles to amides/ acids. The nitrile metabolizing enzymes are widely present in bacteria, fungi and yeasts. Yeasts metabolize nitriles through nitrilase and/or nitrile hydratase and amidase enzymes. Only few yeasts have been reported to possess aldoxime dehydratase. More than sixty nitrile metabolizing yeast strains have been hither to isolated from cyanide treatment bioreactor, fermented foods and soil. Most of the yeasts contain nitrile hydratase-amidase system for metabolizing nitriles. Transformations of nitriles to amides/acids have been carried out with free and immobilized yeast cells. The nitrilases of Torulopsis candida>and Exophiala oligosperma>R1 are enantioselec-tive and regiospecific respectively. Geotrichum>sp. JR1 grows in the presence of 2M acetonitrile and may have potential for application in bioremediation of nitrile contaminated soil/water. The nitrilase of E. oligosperma>R1 being active at low pH (3-6) has shown promise for the hydroxy acids. Immobilized yeast cells hydrolyze some additional nitriles in comparison to free cells. It is expected that more focus in future will be on purification, characterization, cloning, expression and immobilization of nitrile metabolizing

  11. Yeasts from skin colonization are able to cross the acellular dermal matrix.

    Science.gov (United States)

    Jarros, Isabele Carrilho; Okuno, Érika; Costa, Maiara Ignacio; Veiga, Flávia Franco; de Souza Bonfim-Mendonça, Patricia; Negri, Melyssa Fernanda Norman; Svidzinski, Terezinha Inez Estivalet

    2018-04-01

    In recent decades, the prognosis for burn patients has improved considerably with the development of specialized care. The acellular dermal matrix (ADM) is a totally artificial acellular device that functions to control water loss, prevent penetration by bacteria and allow migration of endothelial cells and fibroblasts from patient tissues. However, little is known about its effectiveness against yeasts. The present study evaluated the capacity of colonization and migration of some human commensal yeasts. Three clinical isolates from skin scales, identified as Candida parapsilosis, Candida glabrata and Rhodotorula mucilaginosa, were used. Their ability to cross the ADM was evaluated. After three days, all isolates had crossed the ADM. C. parapsilosis showed the lowest growth, while R. mucilaginosa showed intermediate and C. glabrata the highest growth. In the plates incubated for seven days, the growth of C. parapsilosis and C. glabrata increased by 1 log over the third day. All isolates have the capacity to colonize and migrate through the matrix, increasing the potential risk to burn patients, who can develop severe and even fatal infections by invasive fungi. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Study on the effects of near-future ocean acidification on marine yeasts: a microcosm approach

    Science.gov (United States)

    Krause, Evamaria; Wichels, Antje; Erler, René; Gerdts, Gunnar

    2013-12-01

    Marine yeasts play an important role in biodegradation and nutrient cycling and are often associated with marine flora and fauna. They show maximum growth at pH levels lower than present-day seawater pH. Thus, contrary to many other marine organisms, they may actually profit from ocean acidification. Hence, we conducted a microcosm study, incubating natural seawater from the North Sea at present-day pH (8.10) and two near-future pH levels (7.81 and 7.67). Yeasts were isolated from the initial seawater sample and after 2 and 4 weeks of incubation. Isolates were classified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and representative isolates were identified by partial sequencing of the large subunit rRNA gene. From the initial seawater sample, we predominantly isolated a yeast-like filamentous fungus related to Aureobasidium pullulans, Cryptococcus sp., Candida sake, and various cold-adapted yeasts. After incubation, we found more different yeast species at near-future pH levels than at present-day pH. Yeasts reacting to low pH were related to Leucosporidium scottii, Rhodotorula mucilaginosa, Cryptococcus sp., and Debaryomyces hansenii. Our results suggest that these yeasts will benefit from seawater pH reductions and give a first indication that the importance of yeasts will increase in a more acidic ocean.

  13. Selection and Characterization of Potential Baker's Yeast from Indigenous Resources of Nepal.

    Science.gov (United States)

    Karki, Tika B; Timilsina, Parash Mani; Yadav, Archana; Pandey, Gyanu Raj; Joshi, Yogesh; Bhujel, Sahansila; Adhikari, Rojina; Neupane, Katyayanee

    2017-01-01

    The study aims to isolate the yeast strains that could be used effectively as baker's yeast and compare them with the commercial baker's yeast available in the market of Nepal. A total of 10 samples including locally available sources like fruits, Murcha, and a local tree "Dar" were collected from different localities of Bhaktapur, Kavre, and Syangja districts of Nepal, respectively. Following enrichment and fermentation of the samples, 26 yeast strains were isolated using selective medium Wallerstein Laboratory Nutrient Agar. From the differential tests which included morphological and microscopic observation and physiological and biochemical characterization such as nitrate reduction and lactose utilization tests, 8 strains were selected as possible Saccharomyces strain. The selected strains were further assessed for their efficient leavening ability by tests such as ethanol tolerance, osmotolerance, invertase test, and stress exclusion test. The three most potent strains ENG, MUR3B, and SUG1 isolated from grape, Murcha, and sugarcane, respectively, were used in the fermentation and baking of dough. These strains also carried a possibility of being used as industrial baker's yeast.

  14. Breeding of Freeze-tolerant Yeast and the Mechanisms of Stress-tolerance

    Science.gov (United States)

    Hino, Akihiro

    Frozen dough method have been adopted in the baking industry to reduce labor and to produce fresh breads in stores. New freeze-tolerant yeasts for frozen dough preparations were isolated from banana peel and identified. To obtain strains that have fermentative ability even after several months of frozen storage in fermented dough, we attempted to breed new freeze-tolerantstrain. The hybrid between S.cerevisiae, which is a isolated freeze-tolerant strain, and a strain isolated from bakers' yeast with sexual conjugation gave a good quality bread made from frozen dough method. Freeze-tolerant strains showed higher surviving and trehalose accumulating abilities than freeze-sensitive strains. The freeze tolerance of the yeasts was associated with the basal amount of intracellular trehalose after rapid degradation at the onset of the prefermentation period. The complicated metabolic pathway and the regulation system of trehalose in yeast cells are introduced. The trehalose synthesis may act as a metabolic buffer system which contribute to maintain the intracellular inorganic phosphate and as a feedback regulation system in the glycolysis. However, it is not known enough how the trehalose protects yeast cells from stress.

  15. Uncommon opportunistic yeast bloodstream infections from Qatar

    NARCIS (Netherlands)

    Taj-Aldeen, S.J.; AbdulWahab, A.; Kolecka, A.; Deshmukh, A.; Meis, J.F.G.M.; Boekhout, T.

    2014-01-01

    Eleven uncommon yeast species that are associated with high mortality rates irrespective of antifungal therapy were isolated from 17/187 (201 episodes) pediatric and elderly patients with fungemia from Qatar. The samples were taken over a 6-year period (January 2004-December 2010). Isolated species

  16. Responses of phylloplane yeasts to UV-B (290-320 nm) radiation: interspecific differences in sensitivity

    International Nuclear Information System (INIS)

    Gunasekera, T.S.; Paul, N.D.; Ayres, P.G.

    1997-01-01

    The sensitivity to UV-B (290–320 nm) radiation of common phylloplane yeasts from two contrasting UV-B environments was compared in the laboratory using mixtures of white light (PAR: 400–700 nm) and UV-B radiation from artificial lamp sources. Sporidiobolus salmonicolor, Rhodotorula mucilaginosa and Cryptococcus sp., the dominant yeasts on leaves of tea (Camellia sinensis), were isolated in Sri Lanka (SL), while Sporidiobolus sp. and Bullera alba, dominant on faba bean (Vicia faba), were isolated in the U.K. Dose responses were determined separately for each yeast. UV-B reduced colony forming units (due to cell mortality or inactivation) and colony size (due to reduced multiplication) of all yeasts. The LD 50 values and doses causing 50% reduction of cells per colony were higher for SL isolates than U.K. isolates. Results indicated that each yeast is somewhat vulnerable to UV-B doses representative of its natural habitat. The relative insensitivity of SL isolates was shown when SL and U.K. isolates were irradiated simultaneously with the same dose of UV-B. Of the two U.K. yeasts, B. alba was significantly more sensitive than Sporidiobolus sp. to UV-B. Except for R. mucilaginosa from SL, all yeasts demonstrated some photorepair in the presence of white light. White light provided relatively little protection for the U.K. isolate of Sporidiobolus sp. although it allowed increased colony size. The spectral responses of Sporidiobolus sp. (U.K.) and of B. alba (U.K.) were broadly similar. Wavelengths longer than 320 nm had no measurable effect on colony forming units. However, colony survival was significantly reduced at 310 nm and all shorter wavebands. No colonies were counted at 290 nm or below. (author)

  17. Genetic characteristics of Japanese clinical Listeria monocytogenes isolates.

    Directory of Open Access Journals (Sweden)

    Satoko Miya

    Full Text Available Listeria monocytogenes causes foodborne illnesses through consumption of ready-to-eat foods. Although 135-201annual listeriosis cases have been estimated in Japan, the details regarding the clinical isolates such as infection source, virulence level, and other genetic characteristics, are not known. In order to uncover the trends of listeriosis in Japan and use the knowledge for prevention measures to be taken, the genetic characteristics of the past human clinical isolates needs to be elucidated. For this purpose, multilocus tandem-repeat sequence analysis (MLTSA and multi-virulence-locus sequence typing (MVLST were used in this study. The clinical isolates showed a variety of genetically distant genotypes, indicating they were from sporadic cases. However, the MVLST profiles of 7 clinical isolates were identical to those of epidemic clone (EC I isolates, which have caused several serious outbreaks in other countries, suggesting the possibility that they have strong virulence potential and originated from a single outbreak. Moreover, 6 Japanese food isolates shared their genotypes with ECI isolates, indicating that there may be risks for listeriosis outbreak in Japan. This is the first investigational study on genetic characteristics of Japanese listeriosis isolates. The listeriosis cases happened in the past are presumably sporadic, but it is still possible that some isolates with strong virulence potential have caused listeriosis outbreaks, and future listeriosis risks also exist.

  18. Cell damage caused by vaginal Candida albicans isolates from women with different symptomatologies.

    Science.gov (United States)

    Faria, Daniella Renata; Sakita, Karina Mayumi; Akimoto-Gunther, Luciene Setsuko; Kioshima, Érika Seki; Svidzinski, Terezinha Inez Estivalet; Bonfim-Mendonça, Patrícia de Souza

    2017-08-01

    The present study aimed to characterize cell damage caused by vaginal Candida albicans isolates from women with different symptomatologies. It was evaluated 12 clinical isolates of C. albicans from vaginal samples: 4 from asymptomatic women (AS), 4 from women with a single episode of vulvovaginal candidiasis (VVC) and 4 from women with recurrent vulvovaginal candidiasis (RVVC). We evaluated the ability of C. albicans to adhere to human cervical cancer cells (SiHa), the yeast-SiHa cell interactions and cell damage. All of the clinical isolates presented a high adhesion capacity on SiHa cells. However, clinical isolates from symptomatic women (VVC and RVVC) had higher filamentation after contact (24 h) with SiHa cells and a greater capacity to cause cell damage (>80 %). Clinical isolates from symptomatic women had greater potential to invade SiHa cells, suggesting that they are more pathogenic than AS isolates.

  19. The yeast spectrum of the 'tea fungus Kombucha'.

    Science.gov (United States)

    Mayser, P; Fromme, S; Leitzmann, C; Gründer, K

    1995-01-01

    The tea fungus 'Kombucha' is a symbiosis of Acetobacter, including Acetobacter xylinum as a characteristic species, and various yeasts. A characteristic yeast species or genus has not yet been identified. Kombucha is mainly cultivated in sugared black tea to produce a slightly acidulous effervescent beverage that is said to have several curative effects. In addition to sugar, the beverage contains small amounts of alcohol and various acids, including acetic acid, gluconic acid and lactic acid, as well as some antibiotic substances. To characterize the yeast spectrum with special consideration given to facultatively pathogenic yeasts, two commercially available specimens of tea fungus and 32 from private households in Germany were analysed by micromorphological and biochemical methods. Yeasts of the genera Brettanomyces, Zygosaccharomyces and Saccharomyces were identified in 56%, 29% and 26% respectively. The species Saccharomycodes ludwigii and Candida kefyr were only demonstrated in isolated cases. Furthermore, the tests revealed pellicle-forming yeasts such as Candida krusei or Issatchenkia orientalis/occidentalis as well as species of the apiculatus yeasts (Kloeckera, Hanseniaspora). Thus, the genus Brettanomyces may be a typical group of yeasts that are especially adapted to the environment of the tea fungus. However, to investigate further the beneficial effects of tea fungus, a spectrum of the other typical genera must be defined. Only three specimens showed definite contaminations. In one case, no yeasts could be isolated because of massive contamination with Penicillium spp. In the remaining two samples (from one household), Candida albicans was demonstrated. The low rate of contamination might be explained by protective mechanisms, such as formation of organic acids and antibiotic substances. Thus, subjects with a healthy metabolism do not need to be advised against cultivating Kombucha. However, those suffering from immunosuppression should preferably

  20. Etest and Sensititre YeastOne Susceptibility Testing of Echinocandins against Candida Species from a Single Center in Austria.

    Science.gov (United States)

    Aigner, Maria; Erbeznik, Thomas; Gschwentner, Martin; Lass-Flörl, Cornelia

    2017-08-01

    Candida species were tested for susceptibility to caspofungin, anidulafungin, and micafungin in order to evaluate the roles of Etest and Sensititre YeastOne in antifungal susceptibility testing for daily routines and to survey resistance. A total of 104 Candida species isolates detected from blood cultures were investigated. With EUCAST broth microdilution as the reference method, essential agreement (EA), categorical agreement (CA), very major errors (VME), major errors (ME), and minor (MIN) errors were assessed by reading MICs at 18, 24, and 48 h. By use of EUCAST broth microdilution and species-specific clinical breakpoints (CBPs), echinocandin resistance was not detected during the study period. Using EUCAST CBPs, MIC readings at 24 h for the Etest and Sensititre YeastOne resulted in CA levels of 99% and 93% for anidulafungin and 99% and 97% for micafungin. Using revised CLSI CBPs for caspofungin, CA levels were 92% and 99% for Etest and Sensititre YeastOne. The Etest proved an excellent, easy-to-handle alternative method for testing susceptibility to anidulafungin and micafungin. Due to misclassifications, the Etest is less suitable for testing susceptibility to caspofungin (8% of isolates falsely tested resistant). The CA levels of Sensititre YeastOne were 93% and 97% for anidulafungin and micafungin (24 h) by use of EUCAST CBPs and increased to 100% for both antifungals if CLSI CBPs were applied and to 100% and 99% if Sensititre YeastOne epidemiological cutoff values (ECOFFs) were applied. No one echinocandin could be demonstrated to be superior to another in vitro Since resistance was lacking among our Candida isolates, we cannot derive any recommendation from accurate resistance detection by the Etest and Sensititre YeastOne. Copyright © 2017 American Society for Microbiology.

  1. Polyphenolic substrates and dyes degradation by yeasts from 25 de Mayo/King George Island (Antarctica).

    Science.gov (United States)

    Rovati, José I; Pajot, Hipólito F; Ruberto, Lucas; Mac Cormack, Walter; Figueroa, Lucía I C

    2013-11-01

    Antarctica offers a range of extreme climatic conditions, such as low temperatures, high solar radiation and low nutrient availability, and constitutes one of the harshest environments on Earth. Despite that, it has been successfully colonized by ’cold-loving’ fungi, which play a key role in decomposition cycles in cold ecosystems. However, knowledge about the ecological role of yeasts in nutrient or organic matter recycling/mineralization remains highly fragmentary. The aim of this work was to study the yeast microbiota in samples collected on 25 de Mayo/King George Island regarding the scope of their ability to degrade polyphenolic substrates such as lignin and azo dyes. Sixty-one yeast isolates were obtained from 37 samples, including soil, rocks, wood and bones. Molecular analyses based on rDNA sequences revealed that 35 yeasts could be identified at the species level and could be classified in the genera Leucosporidiella, Rhodotorula, Cryptococcus, Bullera and Candida. Cryptococcus victoriae was by far the most ubiquitous species. In total, 33% of the yeast isolates examined showed significant activity for dye decolorization, 25% for laccase activity and 38% for ligninolytic activity. Eleven yeasts did not show positive activity in any of the assays performed and no isolates showed positive activity across all tested substrates. A high diversity of yeasts were isolated in this work, possibly including undescribed species and conspicuous Antarctic yeasts, most of them belonging to oligotrophic, slow-growing and metabolically diverse basidiomycetous genera.

  2. Yeast species associated with the spontaneous fermentation of cider.

    OpenAIRE

    Suárez, Belén; Pando, Rosa; Fernández, Norman; Querol, Amparo; Rodríguez, Roberto

    2018-01-01

    This paper reports the influence of cider-making technology (pneumatic and traditional pressing) on the dynamics of wild yeast populations. Yeast colonies isolated from apple juice before and throughout fermentation at a cider cellar of Asturias (Spain), during two consecutive years were studied. The yeast strains were identified by restriction fragment length polymorphism analysis of the 5.8S rRNA gene and the two flanking internal transcribed sequences (ITS). The musts obtained by ...

  3. Population analysis of biofilm yeasts during fino sherry wine aging in the Montilla-Moriles D.O. region.

    Science.gov (United States)

    Marin-Menguiano, Miriam; Romero-Sanchez, Sandra; Barrales, Ramón R; Ibeas, Jose I

    2017-03-06

    Fino is the most popular sherry wine produced in southern Spain. Fino is matured by biological aging under a yeast biofilm constituted of Saccharomyces cerevisiae yeasts. Although different S. cerevisiae strains can be identified in such biofilms, their diversity and contribution to wine character have been poorly studied. In this work, we analyse the flor yeast population in five different wineries from the Montilla-Moriles D.O. (Denominación de Origen) in southern Spain. Yeasts present in wines of different ages were identified using two different culture-dependent molecular techniques. From 2000 individual yeast isolates, five different strains were identified with one of them dominating in four out of the five wineries analysed, and representing 76% of all the yeast isolates collected. Surprisingly, this strain is similar to the predominant strain isolated twenty years ago in Jerez D.O. wines, suggesting that this yeast is particularly able to adapt to such a stressful environment. Fino wine produced with pure cultures of three of the isolated strains resulted in different levels of acetaldehyde. Because acetaldehyde levels are a distinctive characteristic of fino wines and an indicator of fino aging, the use of molecular techniques for yeast identification and management of yeast populations may be of interest for fino wine producers looking to control one of the main features of this wine. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Black yeast-like fungi in skin and nail

    DEFF Research Database (Denmark)

    Saunte, D M; Tarazooie, B; Arendrup, M C

    2011-01-01

    Black yeast-like fungi are rarely reported from superficial infections. We noticed a consistent prevalence of these organisms as single isolations from mycological routine specimens. To investigate the prevalence of black yeast-like fungi in skin, hair and nail specimens and to discuss...... the probability of these species to be involved in disease. Slow-growing black yeast-like fungi in routine specimens were prospectively collected and identified. A questionnaire regarding patient information was sent to physicians regarding black yeast-like fungus positive patients. A total of 20 746...... dermatological specimens were examined by culture. Black yeast-like fungi accounted for 2.2% (n = 108) of the positive cultures. Only 31.0% of the samples, culture positive for black yeast-like fungi were direct microscopy positive when compared with overall 68.8% of the culture positive specimens. The most...

  5. Interactions between Drosophila and its natural yeast symbionts-Is Saccharomyces cerevisiae a good model for studying the fly-yeast relationship?

    Science.gov (United States)

    Hoang, Don; Kopp, Artyom; Chandler, James Angus

    2015-01-01

    Yeasts play an important role in the biology of the fruit fly, Drosophila melanogaster. In addition to being a valuable source of nutrition, yeasts affect D. melanogaster behavior and interact with the host immune system. Most experiments investigating the role of yeasts in D. melanogaster biology use the baker's yeast, Saccharomyces cerevisiae. However, S. cerevisiae is rarely found with natural populations of D. melanogaster or other Drosophila species. Moreover, the strain of S. cerevisiae used most often in D. melanogaster experiments is a commercially and industrially important strain that, to the best of our knowledge, was not isolated from flies. Since disrupting natural host-microbe interactions can have profound effects on host biology, the results from D. melanogaster-S. cerevisiae laboratory experiments may not be fully representative of host-microbe interactions in nature. In this study, we explore the D. melanogaster-yeast relationship using five different strains of yeast that were isolated from wild Drosophila populations. Ingested live yeasts have variable persistence in the D. melanogaster gastrointestinal tract. For example, Hanseniaspora occidentalis persists relative to S. cerevisiae, while Brettanomyces naardenensis is removed. Despite these differences in persistence relative to S. cerevisiae, we find that all yeasts decrease in total abundance over time. Reactive oxygen species (ROS) are an important component of the D. melanogaster anti-microbial response and can inhibit S. cerevisiae growth in the intestine. To determine if sensitivity to ROS explains the differences in yeast persistence, we measured yeast growth in the presence and absence of hydrogen peroxide. We find that B. naardenesis is completely inhibited by hydrogen peroxide, while H. occidentalis is not, which is consistent with yeast sensitivity to ROS affecting persistence within the D. melanogaster gastrointestinal tract. We also compared the feeding preference of D

  6. Molecular identification and physiological characterization of yeasts, lactic acid bacteria and acetic acid bacteria isolated from heap and box cocoa bean fermentations in West Africa.

    Science.gov (United States)

    Visintin, Simonetta; Alessandria, Valentina; Valente, Antonio; Dolci, Paola; Cocolin, Luca

    2016-01-04

    Yeast, lactic acid bacteria (LAB) and acetic acid bacteria (AAB) populations, isolated from cocoa bean heap and box fermentations in West Africa, have been investigated. The fermentation dynamicswere determined by viable counts, and 106 yeasts, 105 LAB and 82 AAB isolateswere identified by means of rep-PCR grouping and sequencing of the rRNA genes. During the box fermentations, the most abundant species were Saccharomyces cerevisiae, Candida ethanolica, Lactobacillus fermentum, Lactobacillus plantarum, Acetobacter pasteurianus and Acetobacter syzygii, while S. cerevisiae, Schizosaccharomyces pombe, Hanseniaspora guilliermondii, Pichia manshurica, C. ethanolica, Hanseniaspora uvarum, Lb. fermentum, Lb. plantarum, A. pasteurianus and Acetobacter lovaniensis were identified in the heap fermentations. Furthermore, the most abundant species were molecularly characterized by analyzing the rep-PCR profiles. Strains grouped according to the type of fermentations and their progression during the transformation process were also highlighted. The yeast, LAB and AAB isolates were physiologically characterized to determine their ability to grow at different temperatures, as well as at different pH, and ethanol concentrations, tolerance to osmotic stress, and lactic acid and acetic acid inhibition. Temperatures of 45 °C, a pH of 2.5 to 3.5, 12% (v/v) ethanol and high concentrations of lactic and acetic acid have a significant influence on the growth of yeasts, LAB and AAB. Finally, the yeastswere screened for enzymatic activity, and the S. cerevisiae, H. guilliermondii, H. uvarumand C. ethanolica species were shown to possess several enzymes that may impact the quality of the final product.

  7. Performance of CHROMAGAR candida and BIGGY agar for identification of yeast species

    Directory of Open Access Journals (Sweden)

    Marol Serhat

    2003-10-01

    Full Text Available Abstract Background The importance of identifying the pathogenic fungi rapidly has encouraged the development of differential media for the presumptive identification of yeasts. In this study two differential media, CHROMagar Candida and bismuth sulphite glucose glycine yeast agar, were evaluated for the presumptive identification of yeast species. Methods A total number of 270 yeast strains including 169 Candida albicans, 33 C. tropicalis, 24 C. glabrata, 18 C. parapsilosis, 12 C. krusei, 5 Trichosporon spp., 4 C. kefyr, 2 C. lusitaniae, 1 Saccharomyces cerevisiae and 1 Geotrichum candidum were included. The strains were first identified by germ tube test, morphological characteristics on cornmeal tween 80 agar and Vitek 32 and API 20 C AUX systems. In parallel, they were also streaked onto CHROMagar Candida and bismuth sulphite glucose glycine yeast agar plates. The results were read according to the color, morphology of the colonies and the existance of halo around them after 48 hours of incubation at 37°C. Results The sensitivity and specificity values for C. albicans strains were found to be 99.4, 100% for CHROMagar Candida and 87.0, 75.2% for BiGGY agar, respectively. The sensitivity of CHROMagar Candida to identify C. tropicalis, C. glabrata and C. krusei ranged between 90.9 and 100% while the specificity was 100%. The sensitivity rates for BiGGY agar were 66.6 and 100% while the specificity values were found to be 95.4 and 100% for C. tropicalis and C. krusei, respectively. Conclusions It can be concluded that the use of CHROMagar Candida is an easy and reliable method for the presumptive identification of most commonly isolated Candida species especially C. albicans, C. tropicalis and C. krusei. The lower sensitivity and specificity of BiGGY agar to identify commonly isolated Candida species potentially limits the clinical usefulness of this agar.

  8. Performance of CHROMAGAR candida and BIGGY agar for identification of yeast species.

    Science.gov (United States)

    Yücesoy, Mine; Marol, Serhat

    2003-10-29

    The importance of identifying the pathogenic fungi rapidly has encouraged the development of differential media for the presumptive identification of yeasts. In this study two differential media, CHROMagar Candida and bismuth sulphite glucose glycine yeast agar, were evaluated for the presumptive identification of yeast species. A total number of 270 yeast strains including 169 Candida albicans, 33 C. tropicalis, 24 C. glabrata, 18 C. parapsilosis, 12 C. krusei, 5 Trichosporon spp., 4 C. kefyr, 2 C. lusitaniae, 1 Saccharomyces cerevisiae and 1 Geotrichum candidum were included. The strains were first identified by germ tube test, morphological characteristics on cornmeal tween 80 agar and Vitek 32 and API 20 C AUX systems. In parallel, they were also streaked onto CHROMagar Candida and bismuth sulphite glucose glycine yeast agar plates. The results were read according to the color, morphology of the colonies and the existance of halo around them after 48 hours of incubation at 37 degrees C. The sensitivity and specificity values for C. albicans strains were found to be 99.4, 100% for CHROMagar Candida and 87.0, 75.2% for BiGGY agar, respectively. The sensitivity of CHROMagar Candida to identify C. tropicalis, C. glabrata and C. krusei ranged between 90.9 and 100% while the specificity was 100%. The sensitivity rates for BiGGY agar were 66.6 and 100% while the specificity values were found to be 95.4 and 100% for C. tropicalis and C. krusei, respectively. It can be concluded that the use of CHROMagar Candida is an easy and reliable method for the presumptive identification of most commonly isolated Candida species especially C. albicans, C. tropicalis and C. krusei. The lower sensitivity and specificity of BiGGY agar to identify commonly isolated Candida species potentially limits the clinical usefulness of this agar.

  9. Study on the IAA (Indole acetic acid) Productivity of Soil Yeast Strain Isolats

    International Nuclear Information System (INIS)

    Nwe Nwe Soe Hlaing; Swe Zin Yu; San San Yu

    2011-12-01

    Twelve isolated soil yeast were tested in IAA production in peptone yeast glucose broth (PYG). All strains were screened for the Indole Acetic Acid (IAA) producing activity in PYG broth supplemented with or without L-Tryptophan (L-TRP) as precusor. IAA production was assayed calorimetrically using Salkowski's reagent. The concentration of IAA produced by yeast strains was measured by spectrophotometric method at 530nm. Y6 strain was the highest IAA producer (79ppm) at 9 days incubation period without tryptophan. Y3, Y10 and Y12 strains that were incubated without L-TRP also had the higher ability in the production of IAA than other yeast isolates. The selected yeasts having high IAA production activity were characterized by morphological study and biochemical tests including sugar assimilation and fermentation tests.

  10. Presence and distribution of yeasts in the reproductive tract in healthy female horses.

    Science.gov (United States)

    Azarvandi, A; Khosravi, A R; Shokri, H; Talebkhan Garoussi, M; Gharahgouzlou, F; Vahedi, G; Sharifzadeh, A

    2017-09-01

    Yeasts are commensal organisms found in the reproductive and gastrointestinal tracts, and on the skin and other mucosa in mammals. The purpose of this study was to isolate and identify yeast flora in the caudal reproductive tract in healthy female horses. Longitudinal study. A total of 453 samples were collected using double-guarded swabs from the vestibule, clitoral fossa and vagina in 151 horses. All samples were cultured on Sabouraud 4% dextrose agar and incubated at 35°C for 7-10 days. Isolates were identified according to their morphological characteristics and biochemical profiles. Yeast colonies were isolated from 60 (39.7%) of the 151 horses. The isolated yeasts belonged to nine genera, and included Candida spp. (53.2%), Cryptococcus spp. (12.2%), Saccharomyces spp. (10.5%), Geotrichum spp. (8.0%), Rhodotorula spp. (7.1%), Malassezia spp. (3.7%), Trichosporon spp. (2.6%), Kluyveromyces spp. (2.6%) and Sporothrix spp. (0.2%). Candida krusei (43.1%) was the most frequent Candida species isolated. There was a significant difference in prevalence between C. krusei and other Candida species (Pyeast isolates (48.0%) than the vagina (18.3%). The isolation of yeast colonies from multiparous females (76.8%) was significantly higher than from maiden mares (P<0.05). The study was limited by the difficulty of distinguishing between normal flora and potential pathogens. Candida spp., in particular C. krusei, represent important flora resident in the caudal reproductive tract in healthy female horses. This is particularly important in contexts that require the initiation of empirical treatment prior to the completion of culture results. © 2016 EVJ Ltd.

  11. FT-IR spectroscopy: A powerful tool for studying the inter- and intraspecific biodiversity of cultivable non-Saccharomyces yeasts isolated from grape must.

    Science.gov (United States)

    Grangeteau, Cédric; Gerhards, Daniel; Terrat, Sebastien; Dequiedt, Samuel; Alexandre, Hervé; Guilloux-Benatier, Michèle; von Wallbrunn, Christian; Rousseaux, Sandrine

    2016-02-01

    The efficiency of the FT-IR technique for studying the inter- and intra biodiversity of cultivable non-Saccharomyces yeasts (NS) present in different must samples was examined. In first, the capacity of the technique FT-IR to study the global diversity of a given sample was compared to the pyrosequencing method, used as a reference technique. Seven different genera (Aureobasidium, Candida, Cryptococcus, Hanseniaspora, Issatchenkia, Metschnikowia and Pichia) were identified by FT-IR and also by pyrosequencing. Thirty-eight other genera were identified by pyrosequencing, but together they represented less than 6% of the average total population of 6 musts. Among the species identified, some of them present organoleptic potentials in winemaking, particularly Starmerella bacillaris (synonym Candidazemplinina). So in a second time, we evaluated the capacity of the FT-IR technique to discriminate the isolates of this species because few techniques were able to study intraspecific NS yeast biodiversity. The results obtained were validated by using a classic method as ITS sequencing. Biodiversity at strain level was high: 19 different strains were identified from 58 isolates. So, FT-IR spectroscopy seems to be an accurate and reliable method for identifying major genera present in the musts. The two biggest advantages of the FT-IR are the capacity to characterize intraspecific biodiversity of non-Saccharomyces yeasts and the possibility to discriminate a lot of strains. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. New vectors in fission yeast: application for cloning the his2 gene

    DEFF Research Database (Denmark)

    Weilguny, D; Praetorius, M; Carr, Alan

    1991-01-01

    of transforming Sc. pombe ura4 strains, as well as ura 3 strains of the distantly related budding yeast Saccharomyces cerevisiae. We have used pON163 for the construction of two fission yeast genomic libraries. From these gene banks clones were isolated that were able to complement fission yeast his2 mutants...

  13. THE ROLE FUNGI AND YEAST IN MONITORED NATURAL ATTENUATION

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.; Abe, M.; Johnson, B.; Simpson, W.; Mckinsey, P.

    2010-01-26

    Fungi and yeast have been characterized as important components in the bioremediation of organic contaminants in soil and water including polyaromatic hydrocarbons (PAHs); however, research into their ability to metabolize these compounds in extreme environments has been limited. In this work forty-three fungi and yeasts were isolated from a PAH-contaminated sludge waste lagoon in Poland. The lagoon was part of a monitored natural attenuation (MNA) study where natural reduction of PAHs and associated toxicity over time in non-disturbed areas of the sludge lagoon indicated MNA activity. The microorganisms were initially isolated on minimal medium containing naphthalene as the sole carbon and energy source. Fungal isolates were then maintained on MEA and identified based on microscopic examination and BIOLOG{reg_sign}. The analysis identified several of the fungal isolates as belonging to the genera Penicillium, Paecilomyces, Aspergillus, and Eupenicillium. Yeasts included Candida parapsilosis and C. fluvialitis. Further microbial characterization revealed that several isolates were capable of rowing on acidified media of pH 4, 3, and 2.5. Over twenty percent of the fungi demonstrated growth as low as pH 2.5. Of the 43 isolates examined, 24 isolates exhibited growth at 5 C. Nine of the fungal isolates exhibiting growth at 5 C were then examined for metabolic activity using a respirometer testing metabolic activity at pH 3. Microcosm studies confirmed the growth of the fungi on PAH contaminated sediment as the sole carbon and energy source with elevated metabolic rates indicating evidence of MNA. Our findings suggest that many of the Poland fungal isolates may be of value in the bioremediation processes in acidic waste sites in northern climates typical of Northern Europe.

  14. Radiometric detection of yeasts in blood cultures of cancer patients

    International Nuclear Information System (INIS)

    Hopfer, R.L.; Orengo, A.; Chesnut, S.; Wenglar, M.

    1980-01-01

    During a 12-month period, 19,457 blood cultures were collected. Yeasts were isolated from 193 cultures derived from 76 cancer patients. Candida albicans or Candida tropicalis accounted for 79% of isolates. Of the three methods compared, the radiometric method required 2.9 days to become positive, blind subculture required 2.6 days, and Gram stains required 1 day. However, the radiometric method was clearly superior in detecting positive cultures, since 73% of all cultures were first detected radiometrically, 22% were detected by subculture, and only 5% were detected by Gram stain. Although 93% of the isolates were detected by aerobic culture, five (7%) isolates were obtained only from anaerobic cultures. Seven days of incubation appear to be sufficient for the radiometric detection of yeasts

  15. [Yeast species in vulvovaginitis candidosa].

    Science.gov (United States)

    Nemes-Nikodém, Éva; Tamási, Béla; Mihalik, Noémi; Ostorházi, Eszter

    2015-01-04

    Vulvovaginal candidiasis is the most common mycosis, however, the available information about antifungal susceptibilities of these yeasts is limited. To compare the gold standard fungal culture with a new molecular identification method and report the incidence of yeast species in vulvovaginitis candidosa. The authors studied 370 yeasts isolated from vulvovaginal candidiasis and identified them by phenotypic and molecular methods. The most common species was Candida albicans (85%), followed by Candida glabrata, and other Candida species. At present there are no recommendations for the evaluation of antifungal susceptibility of pathogenic fungal species occurring in vulvovaginal candidiasis and the natural antifungal resistance of the different species is known only. Matrix Assisted Laser Desorption Ionization Time of Flight identification can be used to differentiate the fluconazole resistant Candida dubliniensis and the sensitive Candida albicans strains.

  16. The identification and characterization of osmotolerant yeast isolates from chemical wastewater evaporation ponds.

    Science.gov (United States)

    Lahav, R; Fareleira, P; Nejidat, A; Abeliovich, A

    2002-04-01

    Ramat Hovav is a major chemical industrial park manufacturing pharmaceuticals, pesticides, and various aliphatic and aromatic halogens. All wastewater streams are collected in large evaporation ponds. Salinity in the evaporation ponds fluctuates between 3% (w/v) and saturation and pH values range between 2.0 and 10.0. We looked for microorganisms surviving in these extreme environmental conditions and found that 2 yeast strains dominate this biotope. 18S rDNA sequence analysis identified the isolates as Pichia guilliermondii and Rhodotorula mucilaginosa. Both isolates grew in NaCl concentrations ranging up to 3.5 M and 2.5 M, respectively, and at a pH range of 2-10. There was a distinct difference between the Rhodotorula and Pichia strains and S. cerevisiae RS16 that served as a control strain with respect to accumulation of osmoregulators and internal ion concentrations when exposed to osmotic stress. The Pichia and Rhodotorula strains maintained high glycerol concentration also in media low in NaCl. Utilization of various carbon sources was examined. Using a tetrazolium-based assay we show that the Rhodotorula and Pichia strains are capable of utilizing a wide range of different carbon sources including anthracene, phenanthrene, and other cyclic aromatic hydrocarbons.

  17. Copper-tolerant yeasts: Raman spectroscopy in determination of bioaccumulation mechanism.

    Science.gov (United States)

    Radić, Danka S; Pavlović, Vera P; Lazović, Milana M; Jovičić-Petrović, Jelena P; Karličić, Vera M; Lalević, Blažo T; Raičević, Vera B

    2017-09-01

    Modern, efficient, and cost-effective approach to remediation of heavy metal-contaminated soil is based on the application of microorganisms. In this paper, four isolates from agricultural and urban contaminated soil showed abundant growth in the presence of copper(II) sulfate pentahydrate (CuSO 4 ·5H 2 O) up to 2 mM. Selected yeasts were identified by molecular methods as Candida tropicalis (three isolates) and Schwanniomyces occidentalis (one isolate). C. tropicalis (4TD1101S) showed the highest percentage of bioaccumulation capabilities (94.37%), determined by the inductively coupled plasma optical emission spectrometry (ICP-OES). The Raman spectra of C. tropicalis (4TD1101S) analyzed in a medium with the addition of 2 mM CuSO 4 ·5H 2 O showed certain increase in metallothionein production, which represents a specific response of the yeast species to the stress conditions. These results indicate that soil yeasts represent a potential for practical application in the bioremediation of contaminated environments.

  18. Clinical Saccharomyces cerevisiae isolates cannot cross the epithelial barrier in vitro

    DEFF Research Database (Denmark)

    Pérez-Torrado, Roberto; Llopis, Silvia; Jespersen, Lene

    2012-01-01

    Saccharomyces cerevisiae is generally considered to be a safe organism and is essential to produce many different kinds of foods as well as being widely used as a dietary supplement. However, several isolates, which are genetically related to brewing and baking yeasts, have shown virulent traits,...

  19. Isolation and characterization of thermotolerant ethanol-fermenting ...

    African Journals Online (AJOL)

    Thermotolerant yeasts, which are expected to be applicable for high-temperature fermentation as an economical process, were isolated from four provinces in Laos. Of these yeasts, five isolates exhibited stronger fermentation abilities in a 16% sugars-containing medium of glucose, sucrose, sugarcane or molasses at 40°C ...

  20. Extracellular enzymatic activities and physiological profiles of yeasts colonizing fruit trees.

    Science.gov (United States)

    Molnárová, Jana; Vadkertiová, Renáta; Stratilová, Eva

    2014-07-01

    Yeasts form a significant and diverse part of the phyllosphere microbiota. Some yeasts that inhabit plants have been found to exhibit extracellular enzymatic activities. The aim of the present study was to investigate the ability of yeasts isolated from leaves, fruits, and blossoms of fruit trees cultivated in Southwest Slovakia to produce extracellular enzymes, and to discover whether the yeasts originating from these plant organs differ from each other in their physiological properties. In total, 92 strains belonging to 29 different species were tested for: extracellular protease, β-glucosidase, lipase, and polygalacturonase activities; fermentation abilities; the assimilation of xylose, saccharose and alcohols (methanol, ethanol, glycerol); and for growth in a medium with 33% glucose. The black yeast Aureobasidium pullulans showed the largest spectrum of activities of all the species tested. Almost 70% of the strains tested demonstrated some enzymatic activity, and more than 90% utilized one of the carbon compounds tested. Intraspecies variations were found for the species of the genera Cryptococcus and Pseudozyma. Interspecies differences of strains exhibiting some enzymatic activities and utilizing alcohols were also noted. The largest proportion of the yeasts exhibited β-glucosidase activity and assimilated alcohols independently of their origin. The highest number of strains positive for all activities tested was found among the yeasts associated with leaves. Yeasts isolated from blossoms assimilated saccharose and D-xylose the most frequently of all the yeasts tested. The majority of the fruit-inhabiting yeasts grew in the medium with higher osmotic pressure. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. [Comparison between conventional methods, ChromAgar Candida® and PCR method for the identification of Candida species in clinical isolates].

    Science.gov (United States)

    Estrada-Barraza, Deyanira; Dávalos Martínez, Arturo; Flores-Padilla, Luis; Mendoza-De Elias, Roberto; Sánchez-Vargas, Luis Octavio

    2011-01-01

    The increase in the incidence of yeast species causing fungemia in susceptible immunocompromised patients in the last two decades and the low sensitivity of conventional blood culture has led to the need to develop alternative approaches for the early detection and identification of causative species. The aim of this study was to compare the usefulness of molecular testing by the polymerase chain reaction (PCR) and conventional methods to identify clinical isolates of different species, using the ID32C ATB system (bioMérieux, France), chromogenic culture Chromagar Candida® (CHROMagar, France) and morphogenesis in corn meal agar. We studied 79 isolates, in which the most prevalent species using the system ID32C and PCR was C. albicans, followed by C. tropicalis, C. glabrata and C .krusei. PCR patterns obtained for the identification of clinical isolates were stable and consistent in the various independent studies and showed good reproducibility, concluding that PCR with species-specific primers that amplify genes ITS1 and ITS2 for rRNA or topoisomerase II primers is a very specific and sensitive method for the identification of C. glabrata, C. krusei, C. albicans, and with less specificity for C. tropicalis. Copyright © 2010 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  2. Culturable yeasts in meltwaters draining from two glaciers in the Italian Alps

    Science.gov (United States)

    Buzzini, Pietro; Turchetti, Benedetta; Diolaiuti, Guglielmina; D'Agata, Carlo; Martini, Alessandro; Smiraglia, Claudio

    The meltwaters draining from two glaciers in the Italian Alps contain metabolically active yeasts isolable by culture-based laboratory procedures. The average number of culturable yeast cells in the meltwaters was 10 20 colony-forming units (CFU) L-1, whereas supraglacial stream waters originating from overlying glacier ice contained 80% of isolated strains (Cryptococcus spp. and Rhodotorula spp. were 33.3% and 17.8% of total strains, respectively). Culturable yeasts were psychrotolerant, predominantly obligate aerobes and able to degrade organic macromolecules (e.g. starch, esters, lipids, proteins). To the authors' knowledge, this is the first study to report the presence of culturable yeasts in meltwaters originating from glaciers. On the basis of these results, it is reasonable to suppose that the viable yeasts observed in meltwaters derived predominantly from the subglacial zone and that they originated from the subglacial microbial community. Their metabolic abilities could contribute to the microbial activity occurring in subglacial environments.

  3. Cryptococcus lacticolor sp. nov. and Rhodotorula oligophaga sp. nov., novel yeasts isolated from the nasal smear microbiota of Queensland koalas kept in Japanese zoological parks.

    Science.gov (United States)

    Satoh, Kazuo; Maeda, Mari; Umeda, Yoshiko; Sugamata, Miho; Makimura, Koichi

    2013-07-01

    A total of 515 yeast strains were isolated from the nasal smears of Queensland koalas and their breeding environments in Japanese zoological parks between 2005 and 2012. The most frequent species in the basidiomycetous yeast biota isolated from koala nasal passages was Cryptococcus neoformans, followed by Rhodotorula minuta. R. minuta was the most frequent species in the breeding environments, while C. neoformans was rare. Seven strains representing two novel yeast species were identified. Analyses of the 26S rDNA (LSU) D1/D2 domain and nuclear ribosomal DNA internal transcribed spacer region sequences indicated that these strains represent new species with close phylogenetic relationships to Cryptococcus and Rhodotorula. A sexual state was not found for either of these two novel yeasts. Key phenotypic characters confirmed that these strains could be placed in Cryptococcus and Rhodotorula. The names Cryptococcus lacticolor sp. nov. (type strain TIMM 10013(T) = JCM 15449(T) = CBS 10915(T) = DSM 21093(T), DDBJ/EMBL/Genbank Accession No.; AB375774 (ITS) and AB375775 (26S rDNA D1/D2 region), MycoBank ID; MB 802688, Fungal Barcoding Database ID; 3174), and Rhodotorula oligophaga sp. nov. (type strain TIMM 10017(T) = JCM 18398(T) = CBS 12623(T) = DSM 25814(T), DDBJ/EMBL/Genbank Accession No.; AB702967 (ITS) and AB702967 (26S rDNA D1/D2 region), MycoBank ID; MB 802689, Fungal Barcoding Database ID; 3175) are proposed for these new species.

  4. Typing and virulence factors of food-borne Candida spp. isolates.

    Science.gov (United States)

    Rajkowska, Katarzyna; Kunicka-Styczyńska, Alina

    2018-08-20

    Food-borne yeasts, excluding yeasts used as starter cultures, are commonly considered as food spoilage microorganisms. However, the incidence of non-C. albicans Candida (NCAC) infections has increased considerably over the past two decades. Although 15 Candida species are frequently identified as pathogens, a threat to human from food-borne Candida is poorly recognized. In the present study food-borne NCAC were characterized for the virulence factors, known to be associated with yeast pathogenicity. All food-borne strains in planktonic forms and 89% in biofilm structures represented biotypes established for C. albicans, and 61% demonstrated hemolytic activity. 56-94% of food-borne isolates formed biofilms on glass and biomaterials at a level comparable to clinical C. albicans. Nine out of eighteen tested food-borne NCAC strains (C. krusei, C. lusitaniae, C. famata, C. colliculosa, C. parapsilosis, C. tropicalis) showed similarity to clinical C. albicans in terms of their biotypes and the tested virulence factors, allocating them in a group of risk of potential pathogens. However, their capacity to grow at 37 °C seems to be the preliminary criterion in the study of potential virulence of food-borne yeasts. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Isolation of Cryptococcus gattii from a Castanopsis argyrophylla tree hollow (Mai-Kaw), Chiang Mai, Thailand.

    Science.gov (United States)

    Khayhan, Kantarawee; Hagen, Ferry; Norkaew, Treepradab; Puengchan, Tanpalang; Boekhout, Teun; Sriburee, Pojana

    2017-04-01

    The pathogenic yeast Cryptococcus gattii was isolated from a tree hollow of a Castanopsis argyrophylla King ex Hook.f. (Fagaceae) in Chiang Mai, Thailand. Molecular characterization with amplified fragment length polymorphism analysis and multi-locus sequence typing showed that this isolate belonged to genotype AFLP4/VGI representing C. gattii sensu stricto. Subsequent comparison of the environmental isolate with those from clinical samples from Thailand showed that they grouped closely together in a single cluster.

  6. Comparison of the yeast microbiota of different varieties of cool-climate grapes by PCR-RAPD

    Directory of Open Access Journals (Sweden)

    Iwona Drożdż

    2015-08-01

    Full Text Available The yeast microbiota occurring on different varieties of grapes grown in cool-climate is not completely researched. Therefore, its identification is important to research. On the other hand, yeasts occurring in these fruits can be potentially used as starter cultures to obtain particularly demanded features in the production of wine. In addition, rapid methods for yeast identification allow to eliminate the contamination with pathogenic yeasts, which could cause the loss of wine production. The aim of the study was to isolate and identify the yeasts occurring on the surface of the different varieties of white and red grapes, grown in cool-climate of Poland. Also, the aim was to compare the qualitative and quantitative composition of yeasts on the tested grapes. The 84 cultures of yeasts were isolated, that were initially macroscopic and microscopic analyzed and the purity of cultures was rated on the WL medium. Identification of yeasts by PCR-RAPD was carried using the M13 primer. In the PCR-RFLP method ITS1 and ITS4 primers, as well as restriction enzymes HhaI, HinfI, HaeIII, were used. Preliminary identification of yeasts by standard methods produced results very different from the results obtained by molecular methods. Among the isolated microorganisms yeasts were dominating, but bacteria and molds were also present. Using the PCR-RAPD method most strains of yeasts were identified. Yeast microflora of different varieties of white and red grapes was very similar as the same species of yeasts were identified. Yeasts of the genus Saccharomyces were present in all varieties of grapes. The Rhodotorula mucilaginosa, Saccharomyces cerevisiae, Metschnikowia pulcherrima, Rhodotorula minuta, Pichia kluyveri, Hanseniaspora uvarum and Rhodotorula mucilaginosa were identified by PCR-RAPD. 4 of the 33 tested strains of yeasts were identified by PCR-RFLP. By PCR-RAPD only Hanseniaspora uvarum was identified. The quantity and quality of microorganisms living

  7. Antifungal susceptibility testing of yeast isolated from corneal infections Teste de susceptibilidade a antifúngicos de leveduras isoladas de infecções corneais

    Directory of Open Access Journals (Sweden)

    Vera Lucia Degaspare Monte Mascaro

    2003-10-01

    Full Text Available PURPOSE: To report the antifungal susceptibility profile of yeast isolates obtained from cases of keratitis. METHODS: Susceptibility testing of 15 yeast strains isolated from corneal infections to amphotericin B, fluconazole, itraconazole and ketoconazole was performed using the NCCLS broth microdilution assay. RESULTS: Most episodes of eye infections were caused by Candida albicans. The antifungal drugs tested showed the following minimal inhibitory concentration values against yeast isolates: 0.125-0.5 µg/ml for amphotericin B; 0.125->64.0 µg/ml for fluconazole; 0.015-1.0 µg/ml for itraconazole and 0.015-0.125 µg/ml for ketoconazole. Despite the fact that all Candida isolates were judged to be susceptible to azoles, one isolate showed a minimal inhibitory concentration value significantly higher than a 90% minimal inhibitory concentration of all tested isolates. Rhodotorula rubra was resistant to fluconazole and itraconazole. CONCLUSIONS: Despite the fact that most yeast isolates from corneal infections are usually susceptible to amphotericin B and azoles, they exhibit a wide range of minimal inhibitory concentration values for antifungal drugs. The identification of strains at species level and their susceptibility pattern to antifungal drugs should be considered before determining the concentration to be used in topical antifungal formulations in order to optimize therapeutic response in eye infections.OBJETIVO: Relatar resultados e avaliar a aplicabilidade do teste de suscetibilidade a antifúngicos de leveduras isoladas de infecções corneais oculares. MÉTODOS: Realizou-se teste de suscetibilidade pelo método de microdiluição em caldo, padronizado pelo NCCLS-EUA, em 15 amostras de leveduras de infecções corneanas a anfotericina B, fluconazol, itraconazol e ketoconazol. RESULTADOS: A maioria dos episódios de infecção corneal foi causada por Candida albicans. As drogas antifúngicas testadas exibiram valores de concentra

  8. Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered.

    Science.gov (United States)

    Jolly, Neil P; Varela, Cristian; Pretorius, Isak S

    2014-03-01

    Saccharomyces cerevisiae and grape juice are 'natural companions' and make a happy wine marriage. However, this relationship can be enriched by allowing 'wild' non-Saccharomyces yeast to participate in a sequential manner in the early phases of grape must fermentation. However, such a triangular relationship is complex and can only be taken to 'the next level' if there are no spoilage yeast present and if the 'wine yeast' - S. cerevisiae - is able to exert its dominance in time to successfully complete the alcoholic fermentation. Winemakers apply various 'matchmaking' strategies (e.g. cellar hygiene, pH, SO2 , temperature and nutrient management) to keep 'spoilers' (e.g. Dekkera bruxellensis) at bay, and allow 'compatible' wild yeast (e.g. Torulaspora delbrueckii, Pichia kluyveri, Lachancea thermotolerans and Candida/Metschnikowia pulcherrima) to harmonize with potent S. cerevisiae wine yeast and bring the best out in wine. Mismatching can lead to a 'two is company, three is a crowd' scenario. More than 40 of the 1500 known yeast species have been isolated from grape must. In this article, we review the specific flavour-active characteristics of those non-Saccharomyces species that might play a positive role in both spontaneous and inoculated wine ferments. We seek to present 'single-species' and 'multi-species' ferments in a new light and a new context, and we raise important questions about the direction of mixed-fermentation research to address market trends regarding so-called 'natural' wines. This review also highlights that, despite the fact that most frontier research and technological developments are often focussed primarily on S. cerevisiae, non-Saccharomyces research can benefit from the techniques and knowledge developed by research on the former. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Yeast dynamics during spontaneous fermentation of mawe and tchoukoutou, two traditional products from Benin

    DEFF Research Database (Denmark)

    Greppi, Anna; Rantisou, Kalliopi; Padonou, Wilfrid

    2013-01-01

    Mawe and tchoukoutou are two traditional fermented foods largely consumed in Benin, West Africa. Their preparations remain as a house art and they are the result of spontaneous fermentation processes. In this study, dynamics of the yeast populations occurring during spontaneous fermentations...... of mawe and tchoukoutou were investigated using both culture-dependent and -independent approaches. For each product, two productions were followed. Samples were taken at different fermentation times and yeasts were isolated, resulting in the collection of 177 isolates. They were identified by the PCR......-DGGE technique followed by the sequencing of the D1/D2 domain of the 26S rRNA gene. The predominant yeast species identified were typed by rep-PCR. Candida krusei was the predominant yeast species in mawe fermentation followed by Candida glabrata and Kluyveromyces marxianus. Other yeast species were detected...

  10. Isolation of a dinoflagellate mitotic cyclin by functional complementation in yeast

    International Nuclear Information System (INIS)

    Bertomeu, Thierry; Morse, David

    2004-01-01

    Dinoflagellates are parasite with permanently condensed chromosomes that lack histones and whose nuclear membrane remains intact during mitosis. These unusual nuclear characters have suggested that the typical cell cycle regulators might be slightly different than those in more typical eukaryotes. To test this, a cyclin has been isolated from the dinoflagellate Gonyaulax polyedra by functional complementation in cln123 mutant yeast. This GpCyc1 sequence contains two cyclin domains in its C-terminal region and a degradation box typical of mitotic cyclins. Similar to other dinoflagellate genes, GpCyc1 has a high copy number, with ∼5000 copies found in the Gonyaulax genome. An antibody raised against the N-terminal region of the GpCYC1 reacts with a 68 kDa protein on Western blots that is more abundant in cell cultures enriched for G2-phase cells than in those containing primarily G1-phase cells, indicating its cellular level follows a pattern expected for a mitotic cyclin. This is the first report of a cell cycle regulator cloned and sequenced from a dinoflagellate, and our results suggest control of the dinoflagellate cell cycle will be very similar to that of other organisms

  11. New hybrids between Saccharomyces sensu stricto yeast species found among wine and cider production strains

    DEFF Research Database (Denmark)

    Masneuf, I; Hansen, J.; Groth, C

    1998-01-01

    Two yeast isolates, a wine-making yeast first identified as a Mel(+) strain (ex. S. uvarum) and a cider-making yeast, were characterized for their nuclear and mitochondrial genomes, Electrophoretic karyotyping analyses, restriction fragment length polymorphism maps of PCR-amplified MET2 gene...

  12. Phytase-producing capacity of yeasts isolated from traditional African fermented food products and PHYPk gene expression of Pichia kudriavzevii strains

    DEFF Research Database (Denmark)

    Greppi, Anna; Krych, Lukasz; Costantini, Antonella

    2015-01-01

    Phytate is known as a strong chelate of minerals causing their reduced uptake by the human intestine. Ninety-three yeast isolates from traditional African fermented food products, belonging to nine species (Pichia kudriavzevii, Saccharomyces cerevisiae, Clavispora lusitaniae, Kluyveromyces...... marxianus, Millerozyma farinosa, Candida glabrata, Wickerhamomyces anomalus, Hanseniaspora guilliermondii and Debaryomyces nepalensis) were screened for phytase production on solid and liquid media. 95% were able to grow in the presence of phytate as sole phosphate source, P. kudriavzevii being the best...

  13. Scheffersomyces cryptocercus: a new xylose-fermenting yeast associated with the gut of wood roaches and new combinations in the Sugiyamaella yeast clade.

    Science.gov (United States)

    Urbina, Hector; Frank, Robert; Blackwell, Meredith

    2013-01-01

    The gut of wood-feeding insects is a microhabitat for a specialized community of microbes, including bacteria and several groups of eukaryotes such as nematodes, parabasalids and fungi. The characterization of gut yeast communities from a variety of insects has shown that certain yeasts often are associated with the insects. The gut of wood-feeding insects is rich in ascomycete yeasts and in particular xylose-fermenting (X-F) and assimilating yeasts have been consistently present in the gut of lignicolous insects. The objective of this study was the characterization of the yeast flora from the gut of the wood roach Cryptocercus sp. (Blattodea: Cryptocercidae). Five wood roaches were collected along the Appalachian Trail near the border between Tennessee and North Carolina, USA. We isolated 18 yeast strains from the wood roaches identified as Sugiyamaella paludigena and Sugiyamaella lignohabitans, xylose-assimilating yeasts, and Scheffersomyces cryptocercus (NRRL Y-48824(T) = CBS 12658) a new species of X-F yeast. The presence of X-F and certain non X-F yeasts in the gut of the subsocial wood roach Cryptocercus sp. extends the previous findings of associations between certain ascomycete yeasts and lignicolous insects. New combinations were made for 13 asexual members of the Sugiyamaella clade.

  14. Levaduras fermentadoras aisladas de Cyttaria hariotii (Fungi en bosques Andino-Patagónicos (Argentina Fermenting yeasts isolated from Cyttaria hariotii (Fungi in the Andean Patagonic Forest

    Directory of Open Access Journals (Sweden)

    José Ulloa

    2009-12-01

    Full Text Available Las levaduras han estado asociadas al hombre desde épocas muy tempranas. Entre estas se destacan las fermentadoras debido a su importancia en la industria de los alimentos. Las implicancias biotecnológicas de estas levaduras han sido extensamente estudiadas, sin embargo la distribución en la naturaleza y la ecología de estas no se encuentra igualmente documentada. El presente estudio se realizó en el Parque Nacional Nahuel Huapi (Noroeste Patagónico, Argentina sobre Cyttaria hariotii, hongo ascomicético parásito de árboles del género Nothofagus. Mediante el uso de un medio selectivo con etanol 8 % se obtuvieron 72 aislamientos. Los mismos fueron ordenados en cinco grupos en base a pruebas morfológicas y fisiológicas, tres de los cuales fueron asignados a los géneros Saccharomyces, Pichia y Kloeckera. El grupo Saccharomyces presentó el mayor número de aislamientos y se subdividió en tres subgrupos, dos de ellos presentan alta afinidad con S. bayanus y/ó S. uvarum. La totalidad de los aislamientos fueron psicrotolerantes y la temperatura máxima de crecimiento osciló entre 35 y 37 _C. El presente trabajo contribuye al conocimiento de la biodiversidad de levaduras de la Patagonia y representa el primer aislamiento masivo de levaduras sacaromicéticas en ambientes naturales de la región.Yeasts have been associated with mankind from early ages. Among these, fermentative yeasts played the most relevant role, due to its importance in the food industry. The biotechnological implications of these yeasts have been extensively studied. However there is a lack of information about its distribution in nature and ecology. In this study samples of Cyttaria hariotii, ascomycete fungus parasite of trees of the genus Nothofagus, were collected in Nahuel Huapi National Park (Northwestern Patagonia, Argentina. 72 isolates were obtained using a selective culture medium with 8% ethanol. Identification of the isolates was based on morphological and

  15. Pigeons and their droppings as reservoirs of Candida and other zoonotic yeasts.

    Science.gov (United States)

    Rosario Medina, Inmaculada; Román Fuentes, Lorena; Batista Arteaga, Miguel; Real Valcárcel, Fernando; Acosta Arbelo, Félix; Padilla Del Castillo, Daniel; Déniz Suárez, Soraya; Ferrer Quintana, Otilia; Vega Gutiérrez, Belinda; Silva Sergent, Freddy; Acosta-Hernández, Begoña

    The importance of pigeons as reservoirs and carriers of Cryptococcus neoformans and other species of this genus is well-known; however, less is known about their role as reservoirs and carriers of other yeasts that impact public health. The present study was performed on Gran Canaria Island to define yeasts other than Cryptococcus spp. that have been reported to impact public health and which could be carried by pigeons. Samples were obtained from 83 pigeon lofts (Columba livia); moreover, 331 crop samples, 331 cloacal samples and 174 dropping samples were collected. In addition, 17 dropping samples were taken from a total of 17 public squares. Samples were inoculated on Sabouraud dextrose agar with chloramphenicol. Different yeast species, i.e. Candida guilliermondii (24.36%), Candida kefyr (1.21%), Saccharomyces cerevisiae (2.43%), and Trichosporon asahii (1.21%) were isolated for the first time from the cloaca. The most frequently isolated yeast from the crop, cloaca and dropping samples from lofts was C. guilliermondii (30.46%, 24.36% and 49.37%, respectively). In addition, for the first time, C. kefyr (3.65%), Candida pelliculosa (2.43%), Candida rugosa (1.21%), T. asahii (3.65%), Trichosporon mucoides (3.65%) and Prototheca wickerhamii (1.21%) were obtained from crop samples; Candida pelliculosa (1.20%), T. asahii (9.63%) and T. mucoides (7.22%) were isolated from dropping samples in the lofts. Candida albicans was the most frequently isolated yeast in dropping samples collected in public squares. It can be assumed that pigeons and their droppings act as carriers and reservoirs of Candida spp. and other zoonotic yeasts. Copyright © 2017 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Candida xinjiangensis sp. nov., a new anamorphic yeast species isolated from Scolytus scheryrewi Semenov in China.

    Science.gov (United States)

    Zhu, Xiao-Feng; Zhang, Dian-Peng; Yang, Sen; Zhang, Qing-Wen

    2017-03-01

    Three yeast strains designated as S44, XF1 and XF2, respectively, were isolated from Scolytus scheryrewi Semenov of apricot tree in Shule County, Xinjiang, China, and were demonstrated to be a new member of the genus Candida by sequence comparisons of 26S rRNA gene D1/D2 domain and internal transcribed spacer (ITS) region. BLASTn alignments on NCBI showed that the similarity of 26S rRNA gene sequences of S44 (type strain) to all sequences of other Candida yeasts was very low (≦93 %). The phylogenetic tree based on the 26S rRNA gene D1/D2 domain and ITS region sequences revealed that the strain S44 is closely related to C. blattae, C. dosseyi, C. pruni, C. asparagi, C. fructus and C. musae. However, the strain S44 is distinguished from these Candida species by the physiological characteristics. Moreover, the strain S44 formed typical pseudohyphae when grown on cornmeal agar at 25 °C for 7 days, but did not form ascospores in sporulation medium for 3-4 weeks. Therefore, the name Candida xinjiangensis is proposed for the novel species, with S44 (=KCTC T 27747) as the type strain.

  17. Effect of fungicides on epiphytic yeasts associated with strawberry

    Science.gov (United States)

    Debode, Jane; Van Hemelrijck, Wendy; Creemers, Piet; Maes, Martine

    2013-01-01

    We studied the effect of two commonly used fungicides on the epiphytic yeast community of strawberry. Greenhouse and field experiments were conducted applying Switch (cyprodinil plus fludioxonil) or Signum (boscalid plus pyraclostrobin) to strawberry plants. Yeasts on leaves and fruits were assessed on treated and untreated plants at several time points via plating and denaturing gradient gel electrophoresis (DGGE) analysis. The yeast counts on plates of the treated plants were similar to the control plants. Unripe fruits had 10 times larger yeast concentrations than ripe fruits or leaves. Some dominant yeast types were isolated and in vitro tests showed that they were at least 10 times less sensitive to Switch and Signum as compared with two important fungal strawberry pathogens Botrytis cinerea and Colletotrichum acutatum, which are the targets for the fungicide control. DGGE analysis showed that the applied fungicides had no effect on the composition of the yeast communities, while the growing system, strawberry tissue, and sampling time did affect the yeast communities. The yeast species most commonly identified were Cryptococcus, Rhodotorula, and Sporobolomyces. These results point toward the potential applicability of natural occurring yeast antagonists into an integrated disease control strategy for strawberry diseases.

  18. Indole-3-Acetic Acid-Producing Yeasts in the Phyllosphere of the Carnivorous Plant Drosera indica L

    Science.gov (United States)

    Shin, Li-Ying; Wei, Jyuan-Yu; Fu, Shih-Feng; Chou, Jui-Yu

    2014-01-01

    Yeasts are widely distributed in nature and exist in association with other microorganisms as normal inhabitants of soil, vegetation, and aqueous environments. In this study, 12 yeast strains were enriched and isolated from leaf samples of the carnivorous plant Drosera indica L., which is currently threatened because of restricted habitats and use in herbal industries. According to similarities in large subunit and small subunit ribosomal RNA gene sequences, we identified 2 yeast species in 2 genera of the phylum Ascomycota, and 5 yeast species in 5 genera of the phylum Basidiomycota. All of the isolated yeasts produced indole-3-acetic acid (IAA) when cultivated in YPD broth supplemented with 0.1% L-tryptophan. Growth conditions, such as the pH and temperature of the medium, influenced yeast IAA production. Our results also suggested the existence of a tryptophan-independent IAA biosynthetic pathway. We evaluated the effects of various concentrations of exogenous IAA on yeast growth and observed that IAA produced by wild yeasts modifies auxin-inducible gene expression in Arabidopsis. Our data suggest that yeasts can promote plant growth and support ongoing prospecting of yeast strains for inclusion into biofertilizer for sustainable agriculture. PMID:25464336

  19. Atypical yeasts identified as Saccharomyces cerevisiae by MALDI-TOF MS and gene sequencing are the main responsible of fermentation of chicha, a traditional beverage from Peru.

    Science.gov (United States)

    Vallejo, Juan Andrés; Miranda, Patricia; Flores-Félix, José David; Sánchez-Juanes, Fernando; Ageitos, José M; González-Buitrago, José Manuel; Velázquez, Encarna; Villa, Tomás G

    2013-12-01

    Chicha is a drink prepared in several Andean countries from Inca's times by maize fermentation. Currently this fermentation is carried out in familiar artesanal "chicherías" that make one of the most known types of chicha, the "chicha de jora". In this study we isolate and identify the yeasts mainly responsible of the fermentation process in this type of chicha in 10 traditional "chicherías" in Cusco region in Peru. We applied by first time MALDI-TOF MS analysis for the identification of yeast of non-clinic origin and the results showed that all of yeast strains isolated belong to the species Saccharomyces cerevisiae. These results agree with those obtained after the analysis of the D1/D2 and 5.8S-ITS regions. However the chicha strains have a phenotypic profile that differed in more than 40% as compared to that of current S. cerevisiae strains. To the best of our knowledge this is the first report concerning the yeasts involved in chicha fermentation. Copyright © 2013 Elsevier GmbH. All rights reserved.

  20. Molecular identification and distribution profile of Candida species isolated from Iranian patients.

    Science.gov (United States)

    Mohammadi, Rasoul; Mirhendi, Hossein; Rezaei-Matehkolaei, Ali; Ghahri, Mohammad; Shidfar, Mohammad Reza; Jalalizand, Nilufar; Makimura, Koichi

    2013-08-01

    A total of 855 yeast strains isolated from different clinical specimens, mainly nail (42%) and vulva-vagina (25%) were identified by a set of polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP). Genomic DNA was extracted from fresh colonies using Whatman FTA Card technology. PCR assays were performed on the complete ribosomal DNA internal transcribed spacer (rDNA-ITS) region for all isolates and species identification was carried out through their specific electrophoretic profiles after digestion with the enzyme MspI. Those isolates suspected as Candida parapsilosis group were then subjected to amplification of the secondary alcohol dehydrogenase (SADH) gene and restriction digestion with NlaIII enzyme. In total, 71.1% of the strains were obtained from females and 28.9% from males. The age group of 31-40 years consisted of the highest frequency of patients with candidiasis. Candida albicans was the predominant species (58.6%) followed by C. parapsilosis (11.0%), C. glabrata (8.3%), C. tropicalis (7.0%), C. kefyr (5.8%), C. krusei (4.4%), C. orthopsilosis (2.1%), and C. guilliermondii (0.6%). A few strains of C. lusitaniae, C. rugosa, C. intermedia, C. inconspicua, C. neoformans and S. cerevisiae were isolated. We could not identify 8 (0.9%) isolates. Candida albicans remains the most frequently species isolated from Iranian patients; however, the number of non-C. albicans Candida species looks to be increasing. The simple and reliable PCR-RFLP system used in the study has the potential to identify most clinically isolated yeasts.

  1. Distribution of yeast species associated with oral lesions in HIV-infected patients in Southwest Uganda.

    LENUS (Irish Health Repository)

    Agwu, Ezera

    2012-04-01

    Oropharyngeal candidiasis remains a significant clinical problem in HIV-infected and AIDS patients in regions of Africa where anti-retroviral therapy isn\\'t readily available. In this study we identified the yeast populations associated with oral lesions in HIV-infected patients in Southwest Uganda who were receiving treatment with nystatin and topical clotrimazole. Samples were taken from 605 patients and 316 (52%) of these yielded yeast growth following incubation on Sabouraud dextrose agar. Samples were subsequently re-plated on CHROMagar Candida medium to facilitate identification of the yeast species present. The majority (56%) of culture-positive samples yielded a mix of two or more species. Candida albicans was present in 87% (274\\/316) of patient samples and accounted for 87% (120\\/138) of single species samples. Candida glabrata, Candida tropicalis and Candida norvegensis were also found in cultures that yielded a single species. No Candida dubliniensis isolates were identified in this population.

  2. Distribution of yeast species associated with oral lesions in HIV-infected patients in Southwest Uganda.

    Science.gov (United States)

    Agwu, Ezera; Ihongbe, John C; McManus, Brenda A; Moran, Gary P; Coleman, David C; Sullivan, Derek J

    2012-04-01

    Oropharyngeal candidiasis remains a significant clinical problem in HIV-infected and AIDS patients in regions of Africa where anti-retroviral therapy isn't readily available. In this study we identified the yeast populations associated with oral lesions in HIV-infected patients in Southwest Uganda who were receiving treatment with nystatin and topical clotrimazole. Samples were taken from 605 patients and 316 (52%) of these yielded yeast growth following incubation on Sabouraud dextrose agar. Samples were subsequently re-plated on CHROMagar Candida medium to facilitate identification of the yeast species present. The majority (56%) of culture-positive samples yielded a mix of two or more species. Candida albicans was present in 87% (274/316) of patient samples and accounted for 87% (120/138) of single species samples. Candida glabrata, Candida tropicalis and Candida norvegensis were also found in cultures that yielded a single species. No Candida dubliniensis isolates were identified in this population.

  3. A new methodology to obtain wine yeast strains overproducing mannoproteins.

    Science.gov (United States)

    Quirós, Manuel; Gonzalez-Ramos, Daniel; Tabera, Laura; Gonzalez, Ramon

    2010-04-30

    Yeast mannoproteins are highly glycosylated proteins that are covalently bound to the beta-1,3-glucan present in the yeast cell wall. Among their outstanding enological properties, yeast mannoproteins contribute to several aspects of wine quality by protecting against protein haze, reducing astringency, retaining aroma compounds and stimulating growth of lactic-acid bacteria. The development of a non-recombinant method to obtain enological yeast strains overproducing mannoproteins would therefore be very useful. Our previous experience on the genetic determinants of the release of these molecules by Saccharomyces cerevisiae has allowed us to propose a new methodology to isolate and characterize wine yeast that overproduce mannoproteins. The described methodology is based on the resistance of the killer 9 toxin produced by Williopsis saturnus, a feature linked to an altered biogenesis of the yeast cell wall. Copyright 2010 Elsevier B.V. All rights reserved.

  4. Yeast diversity and dynamics in the production processes of Norwegian dry-cured meat products.

    Science.gov (United States)

    Asefa, Dereje T; Møretrø, Trond; Gjerde, Ragnhild O; Langsrud, Solveig; Kure, Cathrine F; Sidhu, Maan S; Nesbakken, Truls; Skaar, Ida

    2009-07-31

    This study investigate the diversity and dynamics of yeasts in the production processes of one unsmoked and two smoked dry-cured meat products of a Norwegian dry-cured meat production facility. A longitudinal observational study was performed to collect 642 samples from the meat, production materials, room installations and indoor and outdoor air of the production facility. Nutrient rich agar media were used to isolate the yeasts. Morphologically different isolates were re-cultivated in their pure culture forms. Both classical and molecular methods were employed for species identification. Totally, 401 yeast isolates belonging to 10 species of the following six genera were identified: Debaryomyces, Candida, Rhodotorula, Rhodosporidium, Cryptococcus and Sporidiobolus. Debaryomyces hansenii and Candida zeylanoides were dominant and contributed by 63.0% and 26.4% respectively to the total isolates recovered from both smoked and unsmoked products. The yeast diversity was higher at the pre-salting production processes with C. zeylanoides being the dominant. Later at the post-salting stages, D. hansenii occurred frequently. Laboratory studies showed that D. hansenii was more tolerant to sodium chloride and nitrite than C. zeylanoides. Smoking seems to have a killing or a temporary growth inhibiting effect on yeasts that extend to the start of the drying process. Yeasts were isolated only from 31.1% of the environmental samples. They belonged to six different species of which five of them were isolated from the meat samples too. Debaryomyces hansenii and Rhodotorula glutinis were dominant with a 62.6% and 22.0% contribution respectively. As none of the air samples contained D. hansenii, the production materials and room installations used in the production processes were believed to be the sources of contamination. The dominance of D. hansenii late in the production process replacing C. zeylanoides should be considered as a positive change both for the quality and safety

  5. Distribution of dimorphic yeast species in commercial extra virgin olive oil.

    Science.gov (United States)

    Zullo, B A; Cioccia, G; Ciafardini, G

    2010-12-01

    Recent microbiological research has demonstrated the presence of a rich microflora mainly composed of yeasts in the suspended fraction of freshly produced olive oil. Some of the yeasts are considered useful as they improve the organoleptic characteristics of the oil during preservation, whereas others are considered harmful as they can damage the quality of the oil through the hydrolysis of the triglycerides. However, some dimorphic species can also be found among the unwanted yeasts present in the oil, considered to be opportunistic pathogens to man as they have often been isolated from immunocompromised hospital patients. Present research demonstrates the presence of dimorphic yeast forms in 26% of the commercial extra virgin olive oil originating from different geographical areas, where the dimorphic yeasts are represented by 3-99.5% of the total yeasts. The classified isolates belonged to the opportunistic pathogen species Candida parapsilosis and Candida guilliermondii, while among the dimorphic yeasts considered not pathogenic to man, the Candida diddensiae species was highlighted for the first time in olive oil. The majority of the studied yeast strains resulted lipase positive, and can consequently negatively influence the oil quality through the hydrolysis of the triglycerides. Furthermore, all the strains showed a high level of affinity with some organic solvents and a differing production of biofilm in "vitro" corresponded to a greater or lesser hydrophobia of their cells. Laboratory trials indicated that the dimorphic yeasts studied are sensitive towards some components of the oil among which oleic acid, linoleic acid and triolein, whereas a less inhibiting effect was observed with tricaprilin or when the total polyphenols extracted from the oil were used. The observations carried out on a scanning electron microscope (SEM), demonstrated the production of long un-branched pseudohyphae in all the tested dimorphic yeasts when cultivated on nutrient

  6. Recombinant yeast with improved ethanol tolerance and related methods of use

    Science.gov (United States)

    Gasch, Audrey P [Madison, WI; Lewis, Jeffrey A [Madison, WI

    2012-05-15

    The present invention provides isolated Elo1 and Mig3 nucleic acid sequences capable of conferring increased ethanol tolerance on recombinant yeast and methods of using same in biofuel production, particularly ethanol production. Methods of bioengineering yeast using the Elo1 and, or, Mig3 nucleic acid sequences are also provided.

  7. Speciation and antifungal susceptibility profiles of Candida isolates from vaginitis patients attending STD Clinic at a Tertiary Care Hospital

    Directory of Open Access Journals (Sweden)

    G Sasikala

    2018-01-01

    Full Text Available Back ground: Candidiasis is the most common vaginal infection affecting approximately 50–72% of women. Rapid identification of yeast isolates to species level is essential to optimize antifungal treatment. Aim: To determine the prevalence of various Candida species among vaginal candidiasis and to determine the antifungal susceptibility pattern of the isolates. Materials and Methods: A total of 471 women who were clinically diagnosed to have vaginal candidiasis were included in the study. Out of 471 vaginitis patients, 91 were positive for Candida species. All the isolates were speciated comprising five species – C. albicans 42 (46.1%, C. krusei 5 (5.5%, C. glabrata 40 (43.9%, C. tropicalis 3 (3.3%, and C. gullermondi 1 (1.1%. Antifungal susceptibility testing result of all Candida isolates are 100% susceptible to amphotericin B, nystatin, flucytosine, econazole, ketoconazole, miconazole, fluconazole. C. krusei isolates are showing 100% resistance to fluconazole. Discussion: In the present study, C. albicans is most common species 46.1% followed by C. glabarata. C. albicans adhere to vaginal, epithelial cells in significantly higher number than other Candida species. This could explain relative higher frequency of C. albicans in vaginal candidiasis. Conclusion: Presumptive identification followed by confirmation of Candida species helps to initiate early appropriate antifungal treatment, thereby reducing the morbidity and mortality.

  8. Cyberlindnera xylolytica sp. nov., a xylitol-producing yeast species isolated from lignocellulosic materials

    Science.gov (United States)

    Independent surveys of yeasts associated with lignocellulosic-related materials led to the discovery of a novel yeast species belonging to the Cyberlindnera clade (Saccharomycotina, Ascomycota). Analysis of the sequences of the internal transcribed spacer (ITS) region and the D1/D2 domains of the la...

  9. Spores of the mycorrhizal fungus Glomus mosseae host yeasts that solubilize phosphate and accumulate polyphosphates.

    Science.gov (United States)

    Mirabal Alonso, Loreli; Kleiner, Diethelm; Ortega, Eduardo

    2008-04-01

    The present paper reports the presence of bacteria and yeasts tightly associated with spores of an isolate of Glomus mosseae. Healthy spores were surface disinfected by combining chloramine-T 5%, Tween-40, and cephalexin 2.5 g L(-1) (CTCf). Macerates of these spores were incubated on agar media, microorganisms were isolated, and two yeasts were characterized (EndoGm1, EndoGm11). Both yeasts were able to solubilize low-soluble P sources (Ca and Fe phosphates) and accumulate polyphosphates (polyPs). Sequence analysis of 18S ribosomal deoxyribonucleic acid showed that the yeasts belong to the genera Rhodotorula or Rhodosporidium (EndoGm1) and Cryptococcus (EndoGm11). Results from inoculation experiments showed an effect of the spore-associated yeasts on the root growth of rice, suggesting potential tripartite interactions with mycorrhizal fungi and plants.

  10. Improving industrial yeast strains: exploiting natural and artificial diversity

    Science.gov (United States)

    Steensels, Jan; Snoek, Tim; Meersman, Esther; Nicolino, Martina Picca; Voordeckers, Karin; Verstrepen, Kevin J

    2014-01-01

    Yeasts have been used for thousands of years to make fermented foods and beverages, such as beer, wine, sake, and bread. However, the choice for a particular yeast strain or species for a specific industrial application is often based on historical, rather than scientific grounds. Moreover, new biotechnological yeast applications, such as the production of second-generation biofuels, confront yeast with environments and challenges that differ from those encountered in traditional food fermentations. Together, this implies that there are interesting opportunities to isolate or generate yeast variants that perform better than the currently used strains. Here, we discuss the different strategies of strain selection and improvement available for both conventional and nonconventional yeasts. Exploiting the existing natural diversity and using techniques such as mutagenesis, protoplast fusion, breeding, genome shuffling and directed evolution to generate artificial diversity, or the use of genetic modification strategies to alter traits in a more targeted way, have led to the selection of superior industrial yeasts. Furthermore, recent technological advances allowed the development of high-throughput techniques, such as ‘global transcription machinery engineering’ (gTME), to induce genetic variation, providing a new source of yeast genetic diversity. PMID:24724938

  11. Malassezia vespertilionis sp. nov.: A new cold-tolerant species of yeast isolated from bats

    Science.gov (United States)

    Lorch, Jeffrey M.; Palmer, Jonathan M.; Vanderwolf, Karen J.; Schmidt, Katie Z.; Verant, Michelle L.; Weller, Theodore J.; Blehert, David S.

    2018-01-01

    Malassezia is a genus of medically-important, lipid-dependent yeasts that live on the skin of warm-blooded animals. The 17 described species have been documented primarily on humans and domestic animals, but few studies have examined Malassezia species associated with more diverse host groups such as wildlife. While investigating the skin mycobiota of healthy bats, we isolated a Malassezia sp. that exhibited only up to 92 % identity with other known species in the genus for the portion of the DNA sequence of the internal transcribed spacer region that could be confidently aligned. The Malassezia sp. was cultured from the skin of nine species of bats in the subfamily Myotinae; isolates originated from bats sampled in both the eastern and western United States. Physiological features and molecular characterisation at seven additional loci (D1/D2 region of 26S rDNA, 18S rDNA, chitin synthase, second largest subunit of RNA polymerase II, β-tubulin, translation elongation factor EF-1α, and minichromosome maintenance complex component 7) indicated that all of the bat Malasseziaisolates likely represented a single species distinct from other named taxa. Of particular note was the ability of the Malassezia sp. to grow over a broad range of temperatures (7–40 °C), with optimal growth occurring at 24 °C. These thermal growth ranges, unique among the described Malassezia, may be an adaptation by the fungus to survive on bats during both the host's hibernation and active seasons. The combination of genetic and physiological differences provided compelling evidence that this lipid-dependent yeast represents a novel species described herein as Malassezia vespertilionis sp. nov. Whole genome sequencing placed the new species as a basal member of the clade containing the species M. furfur, M. japonica, M. obtusa, and M. yamatoensis. The genetic and physiological uniqueness of Malassezia vespertilionis among its closest relatives may make it

  12. Generation of Nutrients and Detoxification: Possible Roles of Yeasts in Leaf-Cutting Ant Nests

    Directory of Open Access Journals (Sweden)

    Fernando C. Pagnocca

    2012-02-01

    Full Text Available The possible roles played by yeasts in attine ant nests are mostly unknown. Here we present our investigations on the plant polysaccharide degradation profile of 82 yeasts isolated from fungus gardens of Atta and Acromyrmex species to demonstrate that yeasts found in ant nests may play the role of making nutrients readily available throughout the garden and detoxification of compounds that may be deleterious to the ants and their fungal cultivar. Among the yeasts screened, 65% exhibited cellulolytic enzymes, 44% exhibited pectinolytic activity while 27% and 17% possess enzyme systems for the degradation of protease and amylase, respectively. Galacturonic acid, which had been reported in previous work to be poorly assimilated by the ant fungus and also to have a negative effect on ants’ survival, was assimilated by 64% and 79% of yeasts isolated from nests of A. texana and Acromyrmex respectively. Our results suggest that yeasts found in ant nests may participate in generation of nutrients and removal of potentially toxic compounds, thereby contributing to the stability of the complex microbiota found in the leaf-cutting ant nests.

  13. Kefir-isolated bacteria and yeasts inhibit Shigella flexneri invasion and modulate pro-inflammatory response on intestinal epithelial cells.

    Science.gov (United States)

    Bolla, P A; Abraham, A G; Pérez, P F; de Los Angeles Serradell, M

    2016-02-01

    The aim of this work was to evaluate the ability of a kefir-isolated microbial mixture containing three bacterial and two yeast strains (MM) to protect intestinal epithelial cells against Shigella flexneri invasion, as well as to analyse the effect on pro-inflammatory response elicited by this pathogen. A significant decrease in S. flexneri strain 72 invasion was observed on both HT-29 and Caco-2 cells pre-incubated with MM. Pre-incubation with the individual strains Saccharomyces cerevisiae CIDCA 8112 or Lactococcus lactis subsp. lactis CIDCA 8221 also reduced the internalisation of S. flexneri into HT-29 cells although in a lesser extent than MM. Interestingly, Lactobacillus plantarum CIDCA 83114 exerted a protective effect on the invasion of Caco-2 and HT-29 cells by S. flexneri. Regarding the pro-inflammatory response on HT-29 cells, S. flexneri infection induced a significant activation of the expression of interleukin 8 (IL-8), chemokine (C-C motif) ligand 20 (CCL20) and tumour necrosis factor alpha (TNF-α) encoding genes (P<0.05), whereas incubation of cells with MM did not induce the expression of any of the mediators assessed. Interestingly, pre-incubation of HT-29 monolayer with MM produced an inhibition of S. flexneri-induced IL-8, CCL20 and TNF-α mRNA expression. In order to gain insight on the effect of MM (or the individual strains) on this pro-inflammatory response, a series of experiments using a HT-29-NF-κB-hrGFP reporter system were performed. Pre-incubation of HT-29-NF-κB-hrGFP cells with MM significantly dampened Shigella-induced activation. Our results showed that the contribution of yeast strain Kluyveromyces marxianus CIDCA 8154 seems to be crucial in the observed effect. In conclusion, results presented in this study demonstrate that pre-treatment with a microbial mixture containing bacteria and yeasts isolated from kefir, resulted in inhibition of S. flexneri internalisation into human intestinal epithelial cells, along with the

  14. Hemólise produzida por Candida tropicalis isoladas de amostras clínicas Hemolysis produced by Candida tropicalis isolates from clinical samples

    Directory of Open Access Journals (Sweden)

    Emanuele Júlio Galvão de França

    2010-06-01

    Full Text Available INTRODUÇÃO: Leveduras do gênero Candida são responsáveis pela maioria das infecções fúngicas em humanos. Candida tropicalis tem sido uma das mais comumente isoladas dentre as espécies não-albicans. O objetivo foi analisar a hemólise in vitro promovida por isolados clínicos de C. tropicalis provenientes de sangue e outras amostras clínicas de pacientes internados no Hospital Universitário da UEL, PR-Brasil. MÉTODOS: Foi avaliada a hemólise promovida por 28 isolados clínicos de C. tropicalis, sendo os isolados agrupados em classes de acordo com os níveis de hemólise. RESULTADOS: A maioria dos isolados de sangue apresentou hemólise fraca (+, enquanto as classes de hemólise forte (+++ e muito forte (++++ foram as predominantes nos isolados de outras amostras clínicas como urina, lesão de unha e secreção traqueal, embora não tenham sido detectadas diferenças estatísticas (p>0,05. CONCLUSÕES: Isolados de C. tropicalis, obtidos de diferentes amostras clínicas, apresentam capacidade de promover hemólise in vitro.INTRODUCTION: Yeasts belonging to the genus Candida are responsible for the majority of fungal infections in humans. Candida tropicalis has been one of most commonly isolated non-albicans species. To analyze in vitro hemolysis promoted by clinical isolates of C. tropicalis obtained from blood and other clinical samples from hospitalized patients at the University Hospital of Londrina State University, Paraná, Brazil. METHODS: The hemolysis promoted by 28 clinical isolates of C. tropicalis was evaluated, and the isolates were grouped into classes according to the hemolysis levels. RESULTS: The majority of the blood isolates showed weak hemolysis (+, while the classes of strong hemolysis (+++ and very strong hemolysis (++++ predominated among isolates from other clinical samples such as urine, nail lesions and tracheal secretions. However, no statistical differences were detected (p> 0.05. CONCLUSIONS: Isolates of C

  15. Isolation and molecular genetic characterization of a yeast strain ...

    African Journals Online (AJOL)

    The yeast was identified by molecular genetics technique based on sequence analysis of the variable D1/D2 domain of the large subunit (26S) ribosomal DNA. Subsequent 26S rRNA gene sequencing showed 100% base sequence homology and it was identified as Candida viswanathii. The degradation of PAHs

  16. Modifying infrared scattering effects of single yeast cells with plasmonic metal mesh

    Science.gov (United States)

    Malone, Marvin A.; Prakash, Suraj; Heer, Joseph M.; Corwin, Lloyd D.; Cilwa, Katherine E.; Coe, James V.

    2010-11-01

    The scattering effects in the infrared (IR) spectra of single, isolated bread yeast cells (Saccharomyces cerevisiae) on a ZnSe substrate and in metal microchannels have been probed by Fourier transform infrared imaging microspectroscopy. Absolute extinction [(3.4±0.6)×10-7 cm2 at 3178 cm-1], scattering, and absorption cross sections for a single yeast cell and a vibrational absorption spectrum have been determined by comparing it to the scattering properties of single, isolated, latex microspheres (polystyrene, 5.0 μm in diameter) on ZnSe, which are well modeled by the Mie scattering theory. Single yeast cells were then placed into the holes of the IR plasmonic mesh, i.e., metal films with arrays of subwavelength holes, yielding "scatter-free" IR absorption spectra, which have undistorted vibrational lineshapes and a rising generic IR absorption baseline. Absolute extinction, scattering, and absorption spectral profiles were determined for a single, ellipsoidal yeast cell to characterize the interplay of these effects.

  17. Epidemiology, Clinical Characteristics, and Antimicrobial Susceptibility Profiles of Human Clinical Isolates of Staphylococcus intermedius Group.

    Science.gov (United States)

    Yarbrough, Melanie L; Lainhart, William; Burnham, C A

    2018-03-01

    The veterinary pathogens in the Staphylococcus intermedius group (SIG) are increasingly recognized as causes of human infection. Shared features between SIG and Staphylococcus aureus may result in the misidentification of SIG in human clinical cultures. This study examined the clinical and microbiological characteristics of isolates recovered at a tertiary-care academic medical center. From 2013 to 2015, 81 SIG isolates were recovered from 62 patients. Patients were commonly ≥50 years old, diabetic, and/or immunocompromised. Documentation of dog exposure in the electronic medical record was not common. Of the 81 SIG isolates, common sites of isolation included 37 (46%) isolates from wound cultures and 17 (21%) isolates from respiratory specimens. Although less common, 10 (12%) bloodstream infections were documented in 7 unique patients. The majority of SIG (65%) isolates were obtained from polymicrobial cultures. In comparison to S. aureus isolates from the same time period, significant differences were noted in proportion of SIG isolates that were susceptible to doxycycline (74% versus 97%, respectively; P SIG isolates. All MR isolates detected by an oxacillin disk diffusion test would have been misclassified as methicillin susceptible using a cefoxitin disk diffusion test. Thus, SIG is recovered from human clinical specimens, and distinction of SIG from S. aureus is critical for the accurate characterization of MR status in these isolates. Copyright © 2018 American Society for Microbiology.

  18. Yeast Identification During Fermentation of Turkish Gemlik Olives.

    Science.gov (United States)

    Mujdeci, Gamze; Arévalo-Villena, María; Ozbas, Z Yesim; Briones Pérez, Ana

    2018-05-01

    Naturally fermented black table olives of the Gemlik variety are one of the most consumed fermented products in Turkey. The objective of this work was to identify yeast strains isolated during their natural fermentation by using Restriction Fragments Lengths Polymorphism-Polimerase Chain Reaction (RFLP-PCR) and DNA sequencing methods. The study also focused on determining the effect of regional differences on yeast microflora of naturally fermented Gemlik olives. A total of 47 yeast strains belonging to 12 different species which had been previously isolated from the natural brine of Akhisar and Iznik-Gemlik cv. olives were characterized by molecular methods. Forty-two of the tested strains could be identified by RFLP-PCR to species level. These yeast species were determined as Candida mycetangi, Candida hellenica, Candida membranaefaciens, Candida famata, Candida pelliculosa, Saccharomyces cerevisiae, and Zygosaccharomyces mrakii. Five strains were identified by DNA sequencing. These strains belonged to three different species: Aureobasidium pullulans, Kloeckera apiculate, and Cryptococcus saitoi. The most frequent species were C. famata and C. pelliculosa in both regions. This work studies the yeasts from Turkish table olives which could prove to be of importance to the food industry in that area. On the other hand, it compares identification by molecular and classical biochemical methods and offers an idea about the differences between the ecosystems of Gemlik olives in the Akhisar (AO) and Iznik (IO) regions. The study could be useful in characterizing a very important product and, in this way, could help to promote its marketing. © 2018 Institute of Food Technologists®.

  19. Characterization of pectinase activity for enology from yeasts occurring in Argentine Bonarda grape

    Science.gov (United States)

    Merín, María Gabriela; Martín, María Carolina; Rantsiou, Kalliopi; Cocolin, Luca; de Ambrosini, Vilma Inés Morata

    2015-01-01

    Pectinolytic enzymes are greatly important in winemaking due to their ability to degrade pectic polymers from grape, contributing to enhance process efficiency and wine quality. This study aimed to analyze the occurrence of pectinolytic yeasts during spontaneous fermentation of Argentine Bonarda grape, to select yeasts that produce extracellular pectinases and to characterize their pectinolytic activity under wine-like conditions. Isolated yeasts were grouped using PCR-DGGE and identified by partial sequencing of 26S rRNA gene. Isolates comprised 7 genera, with Aureobasidium pullulans as the most predominant pectinolytic species, followed by Rhodotorula dairenensis and Cryptococcus saitoi. No pectinolytic activity was detected among ascomycetous yeasts isolated on grapes and during fermentation, suggesting a low occurrence of pectinolytic yeast species in wine fermentation ecosystem. This is the first study reporting R. dairenensis and Cr. saitoi species with pectinolytic activity. R. dairenensis GM-15 produced pectinases that proved to be highly active at grape pH, at 12 °C, and under ethanol and SO2 concentrations usually found in vinifications (pectinase activity around 1.1 U/mL). This strain also produced cellulase activity at 12 °C and pH 3.5, but did not produce β-glucosidase activity under these conditions. The strain showed encouraging enological properties for its potential use in low-temperature winemaking. PMID:26413065

  20. Cariogenic properties of Streptococcus mutans clinical isolates with sortase defects.

    Science.gov (United States)

    Lapirattanakul, Jinthana; Takashima, Yukiko; Tantivitayakul, Pornpen; Maudcheingka, Thaniya; Leelataweewud, Pattarawadee; Nakano, Kazuhiko; Matsumoto-Nakano, Michiyo

    2017-09-01

    In Streptococcus mutans, a Gram-positive pathogen of dental caries, several surface proteins are anchored by the activity of sortase enzyme. Although various reports have shown that constructed S. mutans mutants deficient of sortase as well as laboratory reference strains with a sortase gene mutation have low cariogenic potential, no known studies have investigated clinical isolates with sortase defects. Here, we examined the cariogenic properties of S. mutans clinical isolates with sortase defects as well as caries status in humans harboring such defective isolates. Sortase-defective clinical isolates were evaluated for biofilm formation, sucrose-dependent adhesion, stress-induced dextran-dependent aggregation, acid production, and acid tolerance. Additionally, caries indices of subjects possessing such defective isolates were determined. Our in vitro results indicated that biofilm with a lower quantity was formed by sortase-defective as compared to non-defective isolates. Moreover, impairments of sucrose-dependent adhesion and stress-induced dextran-dependent aggregation were found among the isolates with defects, whereas no alterations were seen in regard to acid production or tolerance. Furthermore, glucan-binding protein C, a surface protein anchored by sortase activity, was predominantly detected in culture supernatants of all sortase-defective S. mutans isolates. Although the sortase-defective isolates showed lower cariogenic potential because of a reduction in some cariogenic properties, deft/DMFT indices revealed that all subjects harboring those isolates had caries experience. Our findings suggest the impairment of cariogenic properties in S. mutans clinical isolates with sortase defects, though the detection of these defective isolates seemed not to imply low caries risk in the subjects harboring them. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Potential of xylose-fermented yeast isolated from sugarcane bagasse waste for xylitol production using hydrolysate as carbon source

    Directory of Open Access Journals (Sweden)

    Kusumawadee Thancharoen

    2016-10-01

    Full Text Available Xylitol is a high value sugar alcohol that is used as a sweetener. In the past years, the biological process of D-xylose from lignocellulosic material into xylitol has gained increasing interest as an alternative production method. In this study, sugarcane bagasse was used as raw material for xylitol production because of its high efficiency, reduced industrial cost, and high concentration of xylose. Pre-treatment of sugarcane bagasse with sulfuric acid was performed with various conditions. The results showed that the optimum condition was exhibited for 3.1% sulfuric acid at 126°C for 18 min producing 19 g/l xylose. Isolated yeasts from the sugarcane bagasse were selected and tested for xylitol ability from xylose. Results showed that Candida tropicalis KS 10-3 (from 72 isolates had the highest ability and produced 0.47 g xylitol/ g xylose in 96 hrs of cultivation containing 32.30 g/l xylose was used as the production medium.

  2. Biosurfactant-producing yeasts widely inhabit various vegetables and fruits.

    Science.gov (United States)

    Konishi, Masaaki; Maruoka, Naruyuki; Furuta, Yoshifumi; Morita, Tomotake; Fukuoka, Tokuma; Imura, Tomohiro; Kitamoto, Dai

    2014-01-01

    The isolation of biosurfactant-producing yeasts from food materials was accomplished. By a combination of a new drop collapse method and thin-layer chromatography, 48 strains were selected as glycolipid biosurfactant producers from 347 strains, which were randomly isolated from various vegetables and fruits. Of the producers, 69% were obtained from vegetables of the Brassica family. Of the 48 producers, 15 strains gave relatively high yields of mannosylerythritol lipids (MELs), and were identified as Pseudozyma yeasts. These strains produced MELs from olive oil at yields ranging from 8.5 to 24.3 g/L. The best yield coefficient reached 0.49 g/g as to the carbon sources added. Accordingly, MEL producers were isolated at high efficiency from various vegetables and fruits, indicating that biosurfactant producers are widely present in foods. The present results should facilitate their application in the food and related industries.

  3. Microbiological and biochemical studies on certain antibiotic-resistant bacteria isolated from certain clinical specimens

    Energy Technology Data Exchange (ETDEWEB)

    Nada, H M.AL.M. [National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo (Egypt)

    2008-07-01

    Infection is a dynamic process involving invasion of the body by pathogenic microorganisms and reactions of the tissues to microorganisms and their toxins. Pathogenic microorganisms isolated from clinical samples are of great threat to human health.The outcome of an infection depends on the virulence of the pathogen and the relative degree of resistance or susceptibility to antimicrobial chemotherapy. Antimicrobial agents interfere with specific processes that are essential for growth and division.Development of antibiotic resistance in bacteria is a problem of great concern. The high prevalence of resistant bacteria seems to be related to uncontrolled usage of antibiotics. B-lactamases are the most common cause of bacterial resistance to B-lactam antimicrobial agents, and it is one of the most important reason for increasing the resistance in pathogenic bacteria against some antibiotics especially those acting on inhibition of cell wall synthesis. One hundred and seven clinical samples and specimens were collected from public, private hospitals and National Cancer Institute (NCI) in Cairo, Egypt. Out of them 72 cases positive for microbial infection. Twelve cases were showed mixed infection. Eighty four isolates of pathogenic bacteria and yeast were collected from single and mixed culture. Susceptibilities of the isolates to 20 different antimicrobial agents were determined according to Kirby-Bauer method. Nine multi-drug resistant gram-negative bacterial strains were identified by (Micro Scan WalkAway 96 SI System). Six of them urine isolates, 2 wound (pus) isolates and one sputum isolate. The identified strains were exposed to in-vitro gamma irradiation at dose level of 24.4 Gy, which is biologically equivalent to the fractionated multiple therapeutic dose used in the protocol of cancer treatment of some patients. The antimicrobial susceptibility of the nine multi-drug resistant strains were carried out by disk diffusion method before and after irradiation

  4. Microbiological and biochemical studies on certain antibiotic-resistant bacteria isolated from certain clinical specimens

    International Nuclear Information System (INIS)

    Nada, H.M.AL.M.

    2008-01-01

    Infection is a dynamic process involving invasion of the body by pathogenic microorganisms and reactions of the tissues to microorganisms and their toxins. Pathogenic microorganisms isolated from clinical samples are of great threat to human health.The outcome of an infection depends on the virulence of the pathogen and the relative degree of resistance or susceptibility to antimicrobial chemotherapy. Antimicrobial agents interfere with specific processes that are essential for growth and division.Development of antibiotic resistance in bacteria is a problem of great concern. The high prevalence of resistant bacteria seems to be related to uncontrolled usage of antibiotics. B-lactamases are the most common cause of bacterial resistance to B-lactam antimicrobial agents, and it is one of the most important reason for increasing the resistance in pathogenic bacteria against some antibiotics especially those acting on inhibition of cell wall synthesis. One hundred and seven clinical samples and specimens were collected from public, private hospitals and National Cancer Institute (NCI) in Cairo, Egypt. Out of them 72 cases positive for microbial infection. Twelve cases were showed mixed infection. Eighty four isolates of pathogenic bacteria and yeast were collected from single and mixed culture. Susceptibilities of the isolates to 20 different antimicrobial agents were determined according to Kirby-Bauer method. Nine multi-drug resistant gram-negative bacterial strains were identified by (Micro Scan WalkAway 96 SI System). Six of them urine isolates, 2 wound (pus) isolates and one sputum isolate. The identified strains were exposed to in-vitro gamma irradiation at dose level of 24.4 Gy, which is biologically equivalent to the fractionated multiple therapeutic dose used in the protocol of cancer treatment of some patients. The antimicrobial susceptibility of the nine multi-drug resistant strains were carried out by disk diffusion method before and after irradiation

  5. Xylitol production by yeasts isolated from rotting wood in the Galápagos Islands, Ecuador, and description of Cyberlindnera galapagoensis f.a., sp. nov.

    Science.gov (United States)

    Guamán-Burneo, Maria C; Dussán, Kelly J; Cadete, Raquel M; Cheab, Monaliza A M; Portero, Patricia; Carvajal-Barriga, Enrique J; da Silva, Sílvio S; Rosa, Carlos A

    2015-10-01

    This study evaluated D-xylose-assimilating yeasts that are associated with rotting wood from the Galápagos Archipelago, Ecuador, for xylitol production from hemicellulose hydrolysates. A total of 140 yeast strains were isolated. Yeasts related to the clades Yamadazyma, Kazachstania, Kurtzmaniella, Lodderomyces, Metschnikowia and Saturnispora were predominant. In culture assays using sugarcane bagasse hemicellulose hydrolysate, Candida tropicalis CLQCA-24SC-125 showed the highest xylitol production, yield and productivity (27.1 g L(-1) xylitol, Y p/s (xyl) = 0.67 g g(-1), Qp = 0.38 g L(-1). A new species of Cyberlindnera, strain CLQCA-24SC-025, was responsible for the second highest xylitol production (24 g L(-1), Y p/s (xyl) = 0.64 g g(-1), Qp = 0.33 g L(-1) h(-1)) on sugarcane hydrolysate. The new xylitol-producing species Cyberlindnera galapagoensis f.a., sp. nov., is proposed to accommodate the strain CLQCA-24SC-025(T) (=UFMG-CM-Y517(T); CBS 13997(T)). The MycoBank number is MB 812171.

  6. [Investigation of in vitro metronidazole resistance in the clinical isolates of Trichomonas vaginalis].

    Science.gov (United States)

    Ertabaklar, Hatice; Yaman Karadam, Senem; Malatyalı, Erdoğan; Ertuğ, Sema

    2016-10-01

    Trichomonas vaginalis, a flagellated, urogenital anaerobic protozoon is reported as an important cause of vaginitis with a global distribution. Although metronidazole is the primary choice of drug for the treatment of trichomoniasis, the presence of resistant isolates from many different countries highlights the need of novel drugs for the treatment. Many studies from Turkey mostly dealing with the in vitro effects of compounds and natural products against T.vaginalis have been reported, however, only one study has been encountered searching the metronidazole resistance in a single T.vaginalis isolate. The aim of this study was to determine the in vitro metronidazole resistance and minimum lethal concentrations (MLCs) of the isolates from symptomatic cases. T.vaginalis strains isolated from vaginal discharge samples of symptomatic women that were sent to Adnan Menderes University Faculty of Medicine, Research and Training Hospital Parasitology Laboratory, between 2009-2014 period, were included in the study. The strains were isolated by the inoculation of samples into trypticase-yeast-maltose medium supplemented with 10% fetal calf serum. A total of 40 T.vaginalis isolates stored by cryopreservation were revived before the experiments. T.vaginalis trophozoites were incubated with different concentrations of metronidazole (200, 100, 50, 25, 12.5, 6.25, 3.12, 1.56 μg/ml) and the viability of cells were examined in both aerobic and anaerobic conditions under phase contrast microscope. Additionally, non-motile isolates were further inoculated into fresh media and viability was checked. The wells containing motile trophozoites after 48 hours of incubation with 15 µg/ml and/or higher metronidazole concentration in anaerobic condition and 75 µg/ml and/or higher metronidazole concentration in aerobic conditions were determined as resistant isolates. Of the 40 T.vaginalis isolates three (7.5%) were resistant to metronidazole. MLC mean values of metronidazole

  7. Genomic and Phenotypic Characterization of Yeast Biosensor for Deep-space Radiation

    Science.gov (United States)

    Marina, Diana B.; Santa Maria, Sergio; Bhattacharya, Sharmila

    2016-01-01

    The BioSentinel mission was selected to launch as a secondary payload onboard NASA Exploration Mission 1 (EM-1) in 2018. In BioSentinel, the budding yeast Saccharomyces cerevisiae will be used as a biosensor to measure the long-term impact of deep-space radiation to living organisms. In the 4U-payload, desiccated yeast cells from different strains will be stored inside microfluidic cards equipped with 3-color LED optical detection system to monitor cell growth and metabolic activity. At different times throughout the 12-month mission, these cards will be filled with liquid yeast growth media to rehydrate and grow the desiccated cells. The growth and metabolic rates of wild-type and radiation-sensitive strains in deep-space radiation environment will be compared to the rates measured in the ground- and microgravity-control units. These rates will also be correlated with measurements obtained from onboard physical dosimeters. In our preliminary long-term desiccation study, we found that air-drying yeast cells in 10% trehalose is the best method of cell preservation in order to survive the entire 18-month mission duration (6-month pre-launch plus 12-month full-mission periods). However, our study also revealed that desiccated yeast cells have decreasing viability over time when stored in payload-like environment. This suggests that the yeast biosensor will have different population of cells at different time points during the long-term mission. In this study, we are characterizing genomic and phenotypic changes in our yeast biosensor due to long-term storage and desiccation. For each yeast strain that will be part of the biosensor, several clones were reisolated after long-term storage by desiccation. These clones were compared to their respective original isolate in terms of genomic composition, desiccation tolerance and radiation sensitivity. Interestingly, clones from a radiation-sensitive mutant have better desiccation tolerance compared to their original isolate

  8. Biosurfactants production by yeasts using soybean oil and glycerol as low cost substrate.

    Science.gov (United States)

    Accorsini, Fábio Raphael; Mutton, Márcia Justino Rossini; Lemos, Eliana Gertrudes Macedo; Benincasa, Maria

    2012-01-01

    Biosurfactants are bioactive agents that can be produced by many different microorganisms. Among those, special attention is given to yeasts, since they can produce many types of biosurfactants in large scale, using several kinds of substrates, justifying its use for industrial production of those products. For this production to be economically viable, the use of residual carbon sources is recommended. The present study isolated yeasts from soil contaminated with petroleum oil hydrocarbons and assessed their capacity for producing biosurfactants in low cost substrates. From a microbial consortium enriched, seven yeasts were isolated, all showing potential for producing biosurfactants in soybean oil. The isolate LBPF 3, characterized as Candida antarctica, obtained the highest levels of production - with a final production of 13.86 g/L. The isolate LBPF 9, using glycerol carbon source, obtained the highest reduction in surface tension in the growth medium: approximately 43% of reduction after 24 hours of incubation. The products obtained by the isolates presented surfactant activity, which reduced water surface tension to values that varied from 34 mN/m, obtained from the product of isolates LBPF 3 and 16 LBPF 7 (respectively characterized as Candida antarctica and Candida albicans) to 43 mN/m from the isolate LPPF 9, using glycerol as substrate. The assessed isolates all showed potential for the production of biosurfactants in conventional sources of carbon as well as in agroindustrial residue, especially in glycerol.

  9. Biosurfactants production by yeasts using soybean oil and glycerol as low cost substrate

    Directory of Open Access Journals (Sweden)

    Fábio Raphael Accorsini

    2012-03-01

    Full Text Available Biosurfactants are bioactive agents that can be produced by many different microorganisms. Among those, special attention is given to yeasts, since they can produce many types of biosurfactants in large scale, using several kinds of substrates, justifying its use for industrial production of those products. For this production to be economically viable, the use of residual carbon sources is recommended. The present study isolated yeasts from soil contaminated with petroleum oil hydrocarbons and assessed their capacity for producing biosurfactants in low cost substrates. From a microbial consortium enriched, seven yeasts were isolated, all showing potential for producing biosurfactants in soybean oil. The isolate LBPF 3, characterized as Candida antarctica, obtained the highest levels of production - with a final production of 13.86 g/L. The isolate LBPF 9, using glycerol carbon source, obtained the highest reduction in surface tension in the growth medium: approximately 43% of reduction after 24 hours of incubation. The products obtained by the isolates presented surfactant activity, which reduced water surface tension to values that varied from 34 mN/m, obtained from the product of isolates LBPF 3 and 16 LBPF 7 (respectively characterized as Candida antarctica and Candida albicans to 43 mN/m from the isolate LPPF 9, using glycerol as substrate. The assessed isolates all showed potential for the production of biosurfactants in conventional sources of carbon as well as in agroindustrial residue, especially in glycerol.

  10. Bacterial and yeast counts in Brazilian commodities and spices

    Directory of Open Access Journals (Sweden)

    Freire Francisco das Chagas Oliveira

    2002-01-01

    Full Text Available A total of thirteen genera of bacteria and two genera of yeasts were detected in surface sterilized and unsterilized Brazilian commodities and spices such as cashew kernels, Brazil nut kernels, black and white pepper. The genus Bacillus with eight species was by far the most common. The yeasts isolated were Pichia sp., P. guillermondii and Rhodotorula sp. Bacillus cereus, Salmonella typhimurium and Staphylococcus aureus were detected in cashew and Brazil nut kernels.

  11. Thermotolerant yeasts capable of producing bioethanol: isolation from natural fermented sources, identification and characterization

    Directory of Open Access Journals (Sweden)

    Ali Azam Talukder

    2016-11-01

    Full Text Available Recently, the demands of biofuels have increased, because of their significant role in reducing various pollutants created by fossil fuels. Here, we have collected 25 samples containing various thermotolerant microorganisms from the nine natural fermented sources of Bangladesh, such as Boiled potato (Bp, Decomposed foods (Df, Municipal liquid waste (Mlw, Municipal solid waste (Msw, Sugarcane juice (Sc, Pantavat (Pv, Sugar molasses (Sm, Tari (Tari and Watermelon juice (Wm for bioethanol production. Among them, 18 isolates are capable of producing bioethanol. Cultural, morphological, physiological, biochemical and genetic analyses were carried out under various physiological conditions. Ethanol fermentation was checked by different carbon sources, temperatures and pH. All of the isolates could grow well in the medium containing Dextrose and Arabinose and only two strains Pv-1 and Bp-2 could ferment Xylose as a sole carbon source. At 42 °C, the highest ethanol concentration 6.58% (v/v was obtained by a strain Wm-1 isolated from Watermelon juice. At 37 °C, maximal ethanol concentrations of 6.74% (v/v, 6.50% (v/v and 6.22% (v/v were obtained by the strains Bp-2, Wm-l and Pv-1, respectively. Among the various pH tested, the highest ethanol concentration 6.6% (v/v was obtained at pH 4.5 by a strain named Tari-2. Finally, yeast 26S rDNA sequencing information identified the strains Sc-2 as Saccharomyces cerevisiae Pv-2, Tari-2 and Df-1 as Pichia kudriavzevii, Mlw-l and Bp-2 as Candida tropicalis, Pv-1 as Pichia guilliermondii and Df-2 as Candida rugosa.

  12. Proteogenomic Investigation of Strain Variation in Clinical Mycobacterium tuberculosis Isolates

    KAUST Repository

    Heunis, Tiaan

    2017-08-18

    Mycobacterium tuberculosis consists of a large number of different strains that display unique virulence characteristics. Whole-genome sequencing has revealed substantial genetic diversity among clinical M. tuberculosis isolates, and elucidating the phenotypic variation encoded by this genetic diversity will be of utmost importance to fully understand M. tuberculosis biology and pathogenicity. In this study we integrated whole-genome sequencing and mass spectrometry (GeLC-MS/MS) to reveal strain-specific characteristics in the proteomes of two clinical M. tuberculosis Latin American-Mediterranean isolates. Using this approach we identified 59 peptides containing single amino acid variants, which covered ~9% of all total coding nonsynonymous single nucleotide variants detected by whole-genome sequencing. Furthermore, we identified 29 distinct peptides that mapped to a hypothetical protein not present in the M. tuberculosis H37Rv reference proteome. Here we provide evidence for the expression of this protein in the clinical M. tuberculosis SAWC3651 isolate. The strain-specific databases enabled confirmation of genomic differences (i.e. large genomic regions of difference and nonsynonymous single nucleotide variants) in these two clinical M. tuberculosis isolates and allowed strain differentiation at the proteome level. Our results contribute to the growing field of clinical microbial proteogenomics and can improve our understanding of phenotypic variation in clinical M. tuberculosis isolates.

  13. Proteogenomic Investigation of Strain Variation in Clinical Mycobacterium tuberculosis Isolates

    KAUST Repository

    Heunis, Tiaan; Dippenaar, Anzaan; Warren, Robin M.; van Helden, Paul D.; van der Merwe, Ruben G.; Gey van Pittius, Nicolaas C.; Pain, Arnab; Sampson, Samantha L.; Tabb, David L.

    2017-01-01

    Mycobacterium tuberculosis consists of a large number of different strains that display unique virulence characteristics. Whole-genome sequencing has revealed substantial genetic diversity among clinical M. tuberculosis isolates, and elucidating the phenotypic variation encoded by this genetic diversity will be of utmost importance to fully understand M. tuberculosis biology and pathogenicity. In this study we integrated whole-genome sequencing and mass spectrometry (GeLC-MS/MS) to reveal strain-specific characteristics in the proteomes of two clinical M. tuberculosis Latin American-Mediterranean isolates. Using this approach we identified 59 peptides containing single amino acid variants, which covered ~9% of all total coding nonsynonymous single nucleotide variants detected by whole-genome sequencing. Furthermore, we identified 29 distinct peptides that mapped to a hypothetical protein not present in the M. tuberculosis H37Rv reference proteome. Here we provide evidence for the expression of this protein in the clinical M. tuberculosis SAWC3651 isolate. The strain-specific databases enabled confirmation of genomic differences (i.e. large genomic regions of difference and nonsynonymous single nucleotide variants) in these two clinical M. tuberculosis isolates and allowed strain differentiation at the proteome level. Our results contribute to the growing field of clinical microbial proteogenomics and can improve our understanding of phenotypic variation in clinical M. tuberculosis isolates.

  14. Proteogenomic Investigation of Strain Variation in Clinical Mycobacterium tuberculosis Isolates.

    Science.gov (United States)

    Heunis, Tiaan; Dippenaar, Anzaan; Warren, Robin M; van Helden, Paul D; van der Merwe, Ruben G; Gey van Pittius, Nicolaas C; Pain, Arnab; Sampson, Samantha L; Tabb, David L

    2017-10-06

    Mycobacterium tuberculosis consists of a large number of different strains that display unique virulence characteristics. Whole-genome sequencing has revealed substantial genetic diversity among clinical M. tuberculosis isolates, and elucidating the phenotypic variation encoded by this genetic diversity will be of the utmost importance to fully understand M. tuberculosis biology and pathogenicity. In this study, we integrated whole-genome sequencing and mass spectrometry (GeLC-MS/MS) to reveal strain-specific characteristics in the proteomes of two clinical M. tuberculosis Latin American-Mediterranean isolates. Using this approach, we identified 59 peptides containing single amino acid variants, which covered ∼9% of all coding nonsynonymous single nucleotide variants detected by whole-genome sequencing. Furthermore, we identified 29 distinct peptides that mapped to a hypothetical protein not present in the M. tuberculosis H37Rv reference proteome. Here, we provide evidence for the expression of this protein in the clinical M. tuberculosis SAWC3651 isolate. The strain-specific databases enabled confirmation of genomic differences (i.e., large genomic regions of difference and nonsynonymous single nucleotide variants) in these two clinical M. tuberculosis isolates and allowed strain differentiation at the proteome level. Our results contribute to the growing field of clinical microbial proteogenomics and can improve our understanding of phenotypic variation in clinical M. tuberculosis isolates.

  15. Improving industrial yeast strains: exploiting natural and artificial diversity.

    Science.gov (United States)

    Steensels, Jan; Snoek, Tim; Meersman, Esther; Picca Nicolino, Martina; Voordeckers, Karin; Verstrepen, Kevin J

    2014-09-01

    Yeasts have been used for thousands of years to make fermented foods and beverages, such as beer, wine, sake, and bread. However, the choice for a particular yeast strain or species for a specific industrial application is often based on historical, rather than scientific grounds. Moreover, new biotechnological yeast applications, such as the production of second-generation biofuels, confront yeast with environments and challenges that differ from those encountered in traditional food fermentations. Together, this implies that there are interesting opportunities to isolate or generate yeast variants that perform better than the currently used strains. Here, we discuss the different strategies of strain selection and improvement available for both conventional and nonconventional yeasts. Exploiting the existing natural diversity and using techniques such as mutagenesis, protoplast fusion, breeding, genome shuffling and directed evolution to generate artificial diversity, or the use of genetic modification strategies to alter traits in a more targeted way, have led to the selection of superior industrial yeasts. Furthermore, recent technological advances allowed the development of high-throughput techniques, such as 'global transcription machinery engineering' (gTME), to induce genetic variation, providing a new source of yeast genetic diversity. © 2014 The Authors. FEMS Microbiology Reviews published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  16. The impact of nectar chemical features on phenotypic variation in two related nectar yeasts.

    Science.gov (United States)

    Pozo, María I; Herrera, Carlos M; Van den Ende, Wim; Verstrepen, Kevin; Lievens, Bart; Jacquemyn, Hans

    2015-06-01

    Floral nectars become easily colonized by microbes, most often species of the ascomycetous yeast genus Metschnikowia. Although it is known that nectar composition can vary tremendously among plant species, most probably corresponding to the nutritional requirements of their main pollinators, far less is known about how variation in nectar chemistry affects intraspecific variation in nectarivorous yeasts. Because variation in nectar traits probably affects growth and abundance of nectar yeasts, nectar yeasts can be expected to display large phenotypic variation in order to cope with varying nectar conditions. To test this hypothesis, we related variation in the phenotypic landscape of a vast collection of nectar-living yeast isolates from two Metschnikowia species (M. reukaufii and M. gruessii) to nectar chemical traits using non-linear redundancy analyses. Nectar yeasts were collected from 19 plant species from different plant families to include as much variation in nectar chemical traits as possible. As expected, nectar yeasts displayed large variation in phenotypic traits, particularly in traits related to growth performance in carbon sources and inhibitors, which was significantly related to the host plant from which they were isolated. Total sugar concentration and relative fructose content significantly explained the observed variation in the phenotypic profile of the investigated yeast species, indicating that sugar concentration and composition are the key traits that affect phenotypic variation in nectarivorous yeasts. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Isolation and characterization of an acrylamide-degrading yeast Rhodotorula sp. strain MBH23 KCTC 11960BP.

    Science.gov (United States)

    Rahim, M B H; Syed, M A; Shukor, M Y

    2012-10-01

    As well as for chemical and environmental reasons, acrylamide is widely used in many industrial applications. Due to its carcinogenicity and toxicity, its discharge into the environment causes adverse effects on humans and ecology alike. In this study, a novel acrylamide-degrading yeast has been isolated. The isolate was identified as Rhodotorula sp. strain MBH23 using ITS rRNA analysis. The results showed that the best carbon source for growth was glucose at 1.0% (w/v). The optimum acrylamide concentration, being a nitrogen source for cellular growth, was at 500 mg l(-1). The highest tolerable concentration of acrylamide was 1500 mg l(-1) whereas growth was completely inhibited at 2000 mg l(-1). At 500 mg l(-1), the strain MBH completely degraded acrylamide on day 5. Acrylic acid as a metabolite was detected in the media. Strain MBH23 grew well between pH 6.0 and 8.0 and between 27 and 30 °C. Amides such as 2-chloroacetamide, methacrylamide, nicotinamide, acrylamide, acetamide, and propionamide supported growth. Toxic heavy metals such as mercury, chromium, and cadmium inhibited growth on acrylamide. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Selection of Yeast Strains for Tequila Fermentation Based on Growth Dynamics in Combined Fructose and Ethanol Media.

    Science.gov (United States)

    Aldrete-Tapia, J A; Miranda-Castilleja, D E; Arvizu-Medrano, S M; Hernández-Iturriaga, M

    2018-02-01

    The high concentration of fructose in agave juice has been associated with reduced ethanol tolerance of commercial yeasts used for tequila production and low fermentation yields. The selection of autochthonous strains, which are better adapted to agave juice, could improve the process. In this study, a 2-step selection process of yeasts isolated from spontaneous fermentations for tequila production was carried out based on analysis of the growth dynamics in combined conditions of high fructose and ethanol. First, yeast isolates (605) were screened to identify strains tolerant to high fructose (20%) and to ethanol (10%), yielding 89 isolates able to grow in both conditions. From the 89 isolates, the growth curves under 8 treatments of combined fructose (from 20% to 5%) and ethanol (from 0% to 10%) were obtained, and the kinetic parameters were analyzed with principal component analysis and k-means clustering. The resulting yeast strain groups corresponded to the fast, medium and slow growers. A second clustering of only the fast growers led to the selection of 3 Saccharomyces strains (199, 230, 231) that were able to grow rapidly in 4 out of the 8 conditions evaluated. This methodology differentiated strains phenotypically and could be further used for strain selection in other processes. A method to select yeast strains for fermentation taking into account the natural differences of yeast isolates. This methodology is based on the cell exposition to combinations of sugar and ethanol, which are the most important stress factors in fermentation. This strategy will help to identify the most tolerant strain that could improve ethanol yield and reduce fermentation time. © 2018 Institute of Food Technologists®.

  19. Identification of Yeast Species In the Oral Cavity of Iranian Soldiers By Disk Diffusion Method

    Directory of Open Access Journals (Sweden)

    M. Imami

    2008-02-01

    Full Text Available Background:The disk diffusion method for identification of yeasts species was performed based on different but distinct susceptibilities of yeasts spp.to chemicals:janus green, ethidium bromide,2,3,5-triphenyltetrazolium chloride, brilliant green, cycloheximide and rhodamine 6G. Methods: Atotal of 568 Iranian soldiers went under study for isolation and identification of Yeast species from their oral cavity. Asterile swab was used for each individual and specimens were collected from the nasopharynx region, then inoculated to petri dishes containing Sabouraud Dextrose Agar and incubated for 48 hrs at 37 °C. All colonies were counted and stocked in distilled water and stored in a refrigerator for further analysis. The yeasts were identified by the “disk diffusion test” [6,8]. This is a simple, rapid, accurate, and inexpensive technique presented by Sobczak [8]. By this method we identified yeast species within 24-48 hrs. Results: 51.4% of petri dishes were positive for yeast species and 318 strains were identified. Candida albicans, Candida kefyr, Candida tropicalis and Candida guilliermondii were the most common yeast species isolated from the oral cavity of soldiers. Conclusion: We used this method because of its simplicity and other beneficial characteristics for rapid identification of large and numerous isolates and the results were compared with other morphological characters such as chlamydospore and germ tube production. In addition,we used some type strains (Candida parapsilosis: PTCC 5089,Candida tropicalis: PTCC 5028,Saccharomyces cerevisiae:PTCC 5052,Candida lipolytica: PTCC 5063,Candida lipolytica:PTCC 5064,and the results were acceptable.

  20. Molecular basis of antifungal drug resistance in yeasts

    DEFF Research Database (Denmark)

    Morio, Florent; Jensen, Rasmus Hare; Le Pape, Patrice

    2017-01-01

    Besides inherent differences in in vitro susceptibilities, clinically-relevant yeast species may acquire resistance upon exposure to most antifungal drugs used in the clinic. In recent years, major fundamental research studies have been conducted to improve our understanding of the molecular basis...... of antifungal resistance. This topic is of major interest as antifungal resistance in yeast is clearly evolving and is correlated with clinical failure. This minireview is an overview of the most recent findings about key molecular mechanisms evolving in human pathogenic yeasts, particularly Candida spp......., in the context of antifungal drug resistance. Also included are the methods currently available for in vitro antifungal susceptibility testing and for molecular detection of mutations associated with resistance. Finally, the genetic drivers of antifungal resistance are discussed in light of the spectra...

  1. Malassezia Yeast and Cytokine Gene Polymorphism in Atopic Dermatitis.

    Science.gov (United States)

    Jain, Charu; Das, Shukla; Ramachandran, V G; Saha, Rumpa; Bhattacharya, S N; Dar, Sajad

    2017-03-01

    Atopic Dermatitis (AD) is a recurrent chronic condition associated with microorganism and their interaction with the susceptible host. Malassezia yeast is a known commensal which is thought to provoke the recurrent episodes of symptoms in atopic dermatitis patients. Malassezia immunomodulatory properties along with defective skin barrier in such host, results in disease manifestation. Here, we studied Single Nucleotide Polymorphism (SNP) in IL10 and IFN γ genes of the host and its relation with susceptibility to Malassezia infection. To isolate Malassezia yeast from AD patients and compare the genetic susceptibility of the host by correlating the cytokine gene polymorphism with the control subjects. Study was conducted from January 2012 to January 2013. It was a prospective observational study done in Department of Microbiology and Department of Dermatology and Venereology in University College of Medical Sciences and GTB Hospital, Delhi. Sample size comprised of 38 cases each of AD. Skin scrapings were used for fungal culture on Sabouraud Dextrose Agar (SDA) and Modified Dixon Agar (MDA) and isolated were identified as per conventional phenotypic methods. Genomic DNA was extracted from blood samples collected from all study subjects. Cytokine genotyping was carried out by Amplification Refractory Mutations System- Polymerase Chain Reaction (ARMS-PCR) with sequence specific primers. Three SNPs (IL10-1082A/G; IL10-819/592C/T; IFN-γ+874A/T) in two cytokine genes were assessed in all the patients and healthy controls. Chi-Square Test or Fisher's-Exact Test and Bonferroni's correction. In AD group, Malassezia yeasts were cultured in 24 out of 38 samples and thus the identification rate was 63.1 percent as compared to healthy group, 52.6 percent (20/38). Significant difference in allele, or genotype distribution were observed in IL10-819/592C/T and IFN-γ+874A/T gene polymorphism in AD group. Higher isolation rate in cases as compared to control group highlights the

  2. Exploration of potential baker's yeast from sugarcane juice: optimization and evaluation.

    Science.gov (United States)

    Mamun-Or-rashid, A N M; Dash, Biplab Kumar; Chowdhury, Md Nurul Abadin; Waheed, Momtaz Fatima; Pramanik, Md Kamruzzaman

    2013-07-01

    The present study was carried out to explore baker's yeasts strains from sugarcane juice to assess its potential in laboratory scale production of breads. Collected juice samples were processed for isolation and identification of yeast strains based on standard cultural, morphological and biochemical characteristics. Among the six isolated strains, four (designated as S1, S2, S5 and S6) were identified as Saccharomyces cerevisiae and the rests (designated S3 and S4) were as S. rouxii. When assessing their CO2 production rates as a measure of their baking potential, S6 was found to produce maximum amount of gas (226.67 mm3 mL(-1)) in sucrose broth, whereas gas produced by S2, S1 and S5 were relatively insignificant (170, 136.67 and 86.67 mm3 mL(-1), respectively). No strain was found to produce undesirable H2S gas responsible for off-flavor. Besides, effects of different physicochemical parameters (e.g., pH, temperature, substrate concentration, incubation period, agitation etc.) on the production of yeast cell-mass were studied. Yield of cell mass was indirectly measured by spectrophotometric method at 550 nm. All the test isolates were found to produce maximum cell mass at a pH range of 4.0 to 5.0 in 2 to 4% molasses broth at 30 degrees C after 4 days of incubation. In the laboratory scale production of bread using composite flour, Isolate-S6 formed significant characteristic texture. Considering overall characteristics, Isolate- S6 was found to be satisfactorily potent for baking purpose.

  3. Dimorphic transition in Yarrowia lipolytica isolated from oil-polluted sea water

    International Nuclear Information System (INIS)

    Zinjarde, Smita S.; Pant, Aditi; Deshpande, Mukund V.

    1998-01-01

    Fungal cultures from oil-polluted sea water near Mumbai, India have been studies for their capability to degrade crude oil. A yeast isolate identified as Yarrowia lipolytica was further investigated with respect to its dimorphic behaviour and alkane degradation. Y. lipolytica NCIM 3589 in the yeast form degraded the aliphatic fraction of crude oil and also pure alkanes (20-60% within 48h) under aerobic conditions. Unlike most Y. lipolytica strains, our isolate required partial anaerobiosis for mycelium formation. Studies with two isolates suggested that mycelium to yeast transition may be the prerequisite for effective alkane degradation. (author)

  4. Yeasts from the sediment samples of the EEZ along the southwest coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Prabhakaran, N.; Gupta, R.

    Fiftyeight yeast isolates were obtained from the benthic sediment samples of 19 stations during R.V. Gaveshani Cruise No. 187 of the Exclusive Economic Zone along the southwest coast of India. The depths ranged from 20 to 1,055 m. Asporogenous yeast...

  5. [Study on VNTR diversity of clinical Mycobacterium tuberculosis isolates from Qinghai].

    Science.gov (United States)

    Li, Bin; Liu, Haican; Wang, Zhaofen; Ma, Yongcheng; Su, Xiaodong; Jiang, Mingxia; Wan, Kanglin; Liu, Shou; Zhao, Xiuqin; Qu, Shugen

    2015-10-01

    To investigate the variable number tandem repeats (VNTR) genetic polymorphisms, genotyping and distribution pattern of clinical Mycobacterium (M.) tuberculosis isolates from Qinghai province. The clinical M. tuberculosis strains isolated from the patients with tuberculosis and related background data were collected from Qinghai Provincial Center for Disease Control and Prevention from 2009 to 2012. Genotyping was conducted by using multiple locus VNTR analysis (MLVA). Genomic DNA was extracted and 15 VNTR loci were amplified with PCR and the PCR products were detected with gel electrophoresis. The VNTR diversity and clusters of genotyping were analyzed with BioNumerics (Version 5.0). A total of 251 clinical M. tuberculosis isolates were analyzed with 15 VNTR loci showing that there were great genetic diversity in these isolates. Six of the 15 VNTR loci, showed that the Hunter-Gaston index (HGI) were higher than 0.6, in which the highest resolution was MIRU26. The clusters of genotyping showed that these isolates could be categorized into four gene clusters and 238 genotypes. The four gene clusters accounted for 4.9%, 91.9%, 1.6% and 1.6% of the clinical isolates, respectively. The results showed that there is great variety of VNTR genetic polymorphisms in clinical M. tuberculosis isolates in Qinghai province.

  6. Non-Genetic Engineering Approaches for Isolating and Generating Novel Yeasts for Industrial Applications

    Science.gov (United States)

    Chambers, P. J.; Bellon, J. R.; Schmidt, S. A.; Varela, C.; Pretorius, I. S.

    Generating novel yeast strains for industrial applications should be quite straightforward; after all, research into the genetics, biochemistry and physiology of Baker's Yeast, Saccharomyces cerevisiae, has paved the way for many advances in the modern biological sciences. We probably know more about this humble eukaryote than any other, and it is the most tractable of organisms for manipulation using modern genetic engineering approaches. In many countries, however, there are restrictions on the use of genetically-modified organisms (GMOs), particularly in foods and beverages, and the level of consumer acceptance of GMOs is, at best, variable. Thus, many researchers working with industrial yeasts use genetic engineering techniques primarily as research tools, and strain development continues to rely on non-GM technologies. This chapter explores the non-GM tools and strategies available to such researchers.

  7. The Influence of Heating Mains on Yeast Communities in Urban Soils

    Science.gov (United States)

    Tepeeva, A. N.; Glushakova, A. M.; Kachalkin, A. V.

    2018-04-01

    The number and species diversity of yeasts in urban soils (urbanozems) affected by heating mains and in epiphytic yeast complexes of grasses growing above them were studied. The number of yeasts in the soil reached 103-104 CFU/g; on the plants, 107 CFU/g. Significant (by an order of magnitude) increase in the total number of soil yeasts in the zone of heating mains in comparison with the surrounding soil was found in winter period. Overall, 25 species of yeasts were isolated in our study. Yeast community of studied urbanozems was dominated by the Candida sake, an eurybiont of the temperate zone and other natural ecotopes with relatively low temperatures, but its share was minimal in the zone of heating mains. In general, the structure of soil and epiphytic yeast complexes in the zones of heating mains differed from that in the surrounding area by higher species diversity and a lower share of pigmented species among the epiphytic yeasts. The study demonstrated that the number and species structure of soil yeast communities in urban soils change significantly under the influence of the temperature factor and acquire a mosaic distribution pattern.

  8. Distribution of yeast complexes in the profiles of different soil types

    Science.gov (United States)

    Glushakova, A. M.; Kachalkin, A. V.; Tiunov, A. V.; Chernov, I. Yu.

    2017-07-01

    The number and taxonomic structure of the yeast complexes were investigated in the full profiles of the soddy-podzolic soil (Central Forest State Nature Biosphere Reserve), dark gray forest soil (Kaluzhskie Zaseki Reserve), and chernozem (Privolzhskaya Forest-Steppe Reserve). In all these soils, the number of yeasts was maximal (104 CFU/g) directly under the litter; it drastically decreased with the depth. However, at the depth of 120-160 cm, the number of yeasts significantly increased in all the soils; their maximum was found in the illuvial horizon of the soddy-podzolic soil. Such a statistically significant increase in the number of yeasts at a considerable depth was found for the first time. Different groups of yeasts were present in the yeast communities of different soils. The species structure of yeast communities changed little in each soil: the same species were isolated both from the soil surface and from the depth of more than 2 m. The results showed that yeasts could be used for soil bioindication on the basis of specific yeast complexes in the profiles of different soil types rather than individual indicative species.

  9. A Genetics Laboratory Module Involving Selection and Identification of Lysine Synthesis Mutants in the Yeast Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Jill B. Keeney

    2009-12-01

    Full Text Available We have developed a laboratory exercise, currently being used with college sophomores, which uses the yeast Saccharomyces cerevisiae to convey the concepts of amino acid biosynthesis, mutation, and gene complementation. In brief, selective medium is used to isolate yeast cells carrying a mutation in the lysine biosynthesis pathway. A spontaneous mutation in any one of three separate genetic loci will allow for growth on selective media; however, the frequency of mutations isolated from each locus differs. Following isolation of a mutated strain, students use complementation analysis to identify which gene contains the mutation. Since the yeast genome has been mapped and sequenced, students with access to the Internet can then research and develop hypotheses to explain the differences in frequencies of mutant genes obtained.

  10. Selenium bioavailability from soy protein isolate and tofu in rats fed a torula yeast-based diet.

    Science.gov (United States)

    Yan, Lin; Graef, George L; Reeves, Philip G; Johnson, LuAnn K

    2009-12-23

    Selenium (Se) is an essential nutrient, and soy is a major plant source of dietary protein to humans. The United States produces one-third of the world's soybeans, and the Se-rich Northern Plains produce a large share of the nation's soybeans. The present study used a rat model to determine the bioavailability of Se from a protein isolate and tofu (bean curd) prepared from a soybean cultivar we recently developed specifically for food grade markets. The soybean seeds contained 2.91 mg Se/kg. Male Sprague-Dawley rats were depleted of Se by feeding them a 30% Torula yeast-based diet containing 5 microg Se/kg; after 56 days, they were replenished of Se for an additional 50 days by feeding them the same diet supplemented with 20, 30, or 40 microg Se/kg from soy protein isolate or tofu. l-Selenomethionine (SeMet) was used as a reference. Selenium bioavailability was determined on the basis of the responses of Se-dependent enzyme activities and tissue Se contents, comparing those responses for each soy product to those for SeMet using a slope-ratio method. Dietary supplementation with the protein isolate or tofu resulted in dose-dependent increases in glutathione peroxidase activities in blood and liver and thioredoxin reductase activity in liver, as well as dose-dependent increases in the Se contents of plasma, liver, muscle, and kidneys. These responses indicated an overall bioavailability of approximately 97% for Se from both the protein isolate and tofu, relative to SeMet. These results demonstrate that Se from this soybean cultivar is highly bioavailable in this model and that high-Se soybeans can be good dietary sources of Se.

  11. Genetic and phenotypic diversity of autochthonous cider yeasts in a cellar from Asturias.

    Science.gov (United States)

    Pando Bedriñana, R; Querol Simón, A; Suárez Valles, B

    2010-06-01

    This paper analyses yeast diversity and dynamics during the production of Asturian cider. Yeasts were isolated from apple juice and at different stages of fermentation in a cellar in Villaviciosa during two Asturian cider-apple harvests. The species identified by ITS-RFLP corresponded to Hanseniaspora valbyensis, Hanseniaspora uvarum, Metschnikowia pulcherrima, Pichia guilliermondii, Candida parapsilosis, Saccharomyces cerevisiae and Saccharomyces bayanus/Saccharomyces pastorianus/Saccharomyces kudriavzevii/Saccharomyces mikatae. The species C. parapsilosis is reported here for the first time in cider. The analysis of Saccharomyces mtDNA patterns showed great diversity, sequential substitution and the presence of a small number of yeast patterns (up to 8), present in both harvests. Killer (patterns nos. 22' and 47), sensitive (patterns nos. 12, 15, 33 and 61) and neutral phenotypes were found among the S. cerevisiae isolates. The detection of beta-glucosidase activity, with arbutin as the sole carbon source, allowed two S. cerevisiae strains (patterns nos. 3' and 19') to be differentiated by means of this enzymatic activity. Yeast strains producing the killer toxin or with beta-glucosidase activity are reported for the first time in autochthonous cider yeasts. 2009 Elsevier Ltd. All rights reserved.

  12. Enumeration and rapid identification of yeasts during extraction processes of extra virgin olive oil in Tuscany.

    Science.gov (United States)

    Mari, Eleonora; Guerrini, Simona; Granchi, Lisa; Vincenzini, Massimo

    2016-06-01

    The aim of this study was to evaluate the occurrence of yeast populations during different olive oil extraction processes, carried out in three consecutive years in Tuscany (Italy), by analysing crushed pastes, kneaded pastes, oil from decanter and pomaces. The results showed yeast concentrations ranging between 10(3) and 10(5) CFU/g or per mL. Seventeen dominant yeast species were identified by random amplified polymorphic DNA with primer M13 and their identification was confirmed by restriction fragments length polymorphism of ribosomal internal transcribed spacer and sequencing rRNA genes. The isolation frequencies of each species in the collected samples pointed out that the occurrence of the various yeast species in olive oil extraction process was dependent not only on the yeasts contaminating the olives but also on the yeasts colonizing the plant for oil extraction. In fact, eleven dominant yeast species were detected from the washed olives, but only three of them were also found in oil samples at significant isolation frequency. On the contrary, the most abundant species in oil samples, Yamadazyma terventina, did not occur in washed olive samples. These findings suggest a phenomenon of contamination of the plant for oil extraction that selects some yeast species that could affect the quality of olive oil.

  13. Characterization of a novel yeast species Metschnikowia persimmonesis KCTC 12991BP (KIOM G15050 type strain) isolated from a medicinal plant, Korean persimmon calyx (Diospyros kaki Thumb).

    Science.gov (United States)

    Kang, Young Min; Choi, Ji Eun; Komakech, Richard; Park, Jeong Hwan; Kim, Dae Wook; Cho, Kye Man; Kang, Seung Mi; Choi, Sang Haeng; Song, Kun Chul; Ryu, Chung Min; Lee, Keun Chul; Lee, Jung-Sook

    2017-11-10

    The yeast strain Metschnikowia persimmonesis Kang and Choi et al., sp. nov. [type strain KIOM_G15050 = Korean Collection for Type Cultures (KCTC) 12991BP] was isolated from the stalk of native persimmon cultivars (Diospyros kaki Thumb) obtained from different regions of South Korea and was characterized phenotypically, genetically, and physiologically. The isolate grew between 4 and 40 °C (optimum temperature: 24-28 °C), pH 3-8 (pH optimum = 6.0), and in 0-4% NaCl solution (with optimal growth in absence of NaCl). It also exhibited strong antibiotic and antimicrobial activities. Morphologically, cells were characterized by the presence of long, needle-shaped ascospores. Based on 18S ribosomal DNA gene sequence analysis, the new species was found to belong to the genus Metschnikowia as a sister clade of Metschnikowia fructicola. We therefore conclude that this yeast isolate from D. kaki is a new member of the genus Metschnikowia and propose the name M. persimmonesis sp. nov. This strain has been deposited in the KCTC for future reference. This discovery provides a basis for future research on M. persimmonesis sp. nov., including its possible contribution to the medicinal properties of the host persimmon plant.

  14. The radiation resistance and cobalt biosorption activity of yeast strains isolated from the Lanyu low-level radioactive waste repository in Taiwan

    International Nuclear Information System (INIS)

    Li, Chia-Chin; Chung, Hsiao-Ping; Wen, Hsiao-Wei; Chang, Ching-Tu; Wang, Ya-Ting; Chou, Fong-In

    2015-01-01

    The ubiquitous nature of microbes has made them the pioneers in radionuclides adsorption and transport. In this study, the radiation resistance and nuclide biosorption capacity of microbes isolated from the Lanyu low-level radioactive waste (LLRW) repository in Taiwan was assessed, the evaluation of the possibility of using the isolated strain as biosorbents for 60 Co and Co (II) from contaminated aqueous solution and the potential impact on radionuclides release. The microbial content of solidified waste and broken fragments of containers at the Lanyu LLRW repository reached 10 5  CFU/g. Two yeast strains, Candida guilliermondii (CT1) and Rhodotorula calyptogenae (RT1) were isolated. The radiation dose necessary to reduce the microbial count by one log cycle of CT1 and RT1 was 2.1 and 0.8 kGy, respectively. Both CT1 and RT1 can grow under a radiation field with dose rate of 6.8 Gy/h, about 100 times higher than that on the surface of the LLRW container in Lanyu repository. CT1 and RT1 had the maximum 60 Co biosorption efficiency of 99.7 ± 0.1% and 98.3 ± 0.2%, respectively in 60 Co aqueous solution (700 Bq/mL), and the 60 Co could stably retained for more than 30 days in CT 1. Nearly all of the Co was absorbed and reached equilibrium within 1 h by CT1 and RT1 in the 10 μg/g Co (II) aqueous solution. Biosorption efficiency test showed almost all of the Co (II) was adsorbed by CT1 in 20 μg/g Co (II) aqueous solution, the efficiency of biosorption by RT1 in 10 μg/g of Co (II) was lower. The maximum Co (II) sorption capacity of CT1 and RT1 was 5324.0 ± 349.0 μg/g (dry wt) and 3737.6 ± 86.5 μg/g (dry wt), respectively, in the 20 μg/g Co (II) aqueous solution. Experimental results show that microbial activity was high in the Lanyu LLRW repository in Taiwan. Two isolated yeast strains, CT1 and RT1 have high potential for use as biosorbents for 60 Co and Co (II) from contaminated aqueous solution, on the other hand, but may have the impact on

  15. Production of ethanol and polyethanol by yeasts isolated from date ...

    African Journals Online (AJOL)

    Linda

    valuation by biotechnological processes enables the production of high value added materials with low cost. In this regard, the objective of this study focused on the selection of yeasts ... produce ethyl alcohol from this waste used in many industries and ... fundamental economic interest. ..... Industrial enzymes from marine.

  16. Identification of Candida species isolated from vulvovaginitis in Mashhad, Iran by Use of MALDI-TOF MS

    Directory of Open Access Journals (Sweden)

    Majid Alizadeh

    2017-12-01

     Of the 65 isolates analyzed, 61 (93.8% were recognised by MALDI-TOF mass spectrometry and for four isolates (6.1% only not relabile identifications were achieved. In this study, the most frequently isolated species were Candida albicans (58.5%, followed by Candida tropicalis (16.9%, Candida glabrata (7.7%, Candida parapsilosis (7.7% and Candida guillermondii (3.1%.  Conclusion presented results demonstrate that the MALDI TOF mass spectrometry is a fast and reliable technique, and has the potential to replace conventional phenotypic identification of Candida species and other yeast strains routinely isolated in clinical microbiology laboratories.

  17. Isolation and Characterization of an Amylase Producing Yeast and its Application in Carotenoid Production Using Dual Culture

    Directory of Open Access Journals (Sweden)

    Iraj Nahvi

    2005-06-01

    Full Text Available Starch is a plant polysaccharide with unique applications in Iran. Its increasing production and processing recently have led to large volumes of industrial effluent as an environmental pollutant. In this study, an amylase producing yeast is isolated and identified as “Cryptococcus aerius” to investigate some of its characteristics such as its amylase secretion and starch digesting patterns, kinetics of amylase complex, and its capability for carotenoid production in dual culture. The results indicate that C.aerius is capable of soluble and raw maize starch digestion and assimilation. Raw starch digestion is scarce among yeast species; hence, it is industrially important. C.aerius digests soluble starch in the first 10 hours of cultivation and on the basis of amylase secreting patterns, it is therefore categorized with fast growing species on starch as carbon source. Non-pathogenicity, digestion of raw starch, heat stability of the secreted amylases complex (>55˚C, and the optimum pH level of 5.5- 6 for amylases complex are the set of properties that make this species capable of use in microbial production on an industrial scale. Absorption of carotenoid extract obtained from dual fermentation of C.aerius and Rhodotorula sp. indicates that the quality of carotenoids produced in dual fermentation is the same as that produced from pure Rhodotorula sp culture.

  18. Diversity of culturable yeasts associated with zoanthids from Brazilian reef and its relation with anthropogenic disturbance.

    Science.gov (United States)

    Paulino, Gustavo Vasconcelos Bastos; Félix, Ciro Ramon; Broetto, Leonardo; Landell, Melissa Fontes

    2017-10-15

    Some of the main threats to coral reefs come from human actions on marine environment, such as tourism, overfishing and pollution from urban development. While several studies have demonstrated an association between bacteria and corals, demonstrating how these communities react to different anthropogenic stressors, yeast communities associated with corals have received far less attention from researchers. The aim of this work was therefore to describe cultivable yeasts associated with three coral species and to evaluate the influence of sewage discharge on yeasts community. We obtained 130 isolates, mostly belonging to phylum Ascomycota and many of them had previously been isolated from human samples or are considered pathogens. The mycobiota was more similar among corals collected from the same reef, indicating that the composition of reef yeast community is more influenced by environmental conditions than host species. We suggest further studies to elucidate which factors are most influential on the composition of the coral-associated yeast community. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Characterization of the respiration-induced yeast mitochondrial permeability transition pore.

    Science.gov (United States)

    Bradshaw, Patrick C; Pfeiffer, Douglas R

    2013-12-01

    When isolated mitochondria from the yeast Saccharomyces cerevisiae oxidize respiratory substrates in the absence of phosphate and ADP, the yeast mitochondrial unselective channel, also called the yeast permeability transition pore (yPTP), opens in the inner membrane, dissipating the electrochemical gradient. ATP also induces yPTP opening. yPTP opening allows mannitol transport into isolated mitochondria of laboratory yeast strains, but mannitol is not readily permeable through the yPTP in an industrial yeast strain, Yeast Foam. The presence of oligomycin, an inhibitor of ATP synthase, allowed for respiration-induced mannitol permeability in mitochondria from this strain. Potassium (K+) had varied effects on the respiration-induced yPTP, depending on the concentration of the respiratory substrate added. At low respiratory substrate concentrations K+ inhibited respiration-induced yPTP opening, while at high substrate concentrations this effect diminished. However, at the high respiratory substrate concentrations, the presence of K+ partially prevented phosphate inhibition of yPTP opening. Phosphate was found to inhibit respiration-induced yPTP opening by binding a site on the matrix space side of the inner membrane in addition to its known inhibitory effect of donating protons to the matrix space to prevent the pH change necessary for yPTP opening. The respiration-induced yPTP was also inhibited by NAD, Mg2+, NH4 + or the oxyanion vanadate polymerized to decavanadate. The results demonstrate similar effectors of the respiration-induced yPTP as those previously described for the ATP-induced yPTP and reconcile previous strain-dependent differences in yPTP solute selectivity. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Method for using a yeast alpha-amylase promoter

    Science.gov (United States)

    Gao, Johnway; Skeen, Rodney S.; Hooker, Brian S.; Anderson, Daniel B.

    2003-04-22

    The present invention provides the promoter clone discovery of an alpha-amylase gene of a starch utilizing yeast strain Schwanniomyces castellii. The isolated alpha-amylase promoter is an inducible promoter, which can regulate strong gene expression in starch culture medium.

  1. Transcriptional activation of a geranylgeranyl diphosphate synthase gene, GGPPS2, isolated from Scoparia dulcis by treatment with methyl jasmonate and yeast extract.

    Science.gov (United States)

    Yamamura, Y; Mizuguchi, Y; Taura, F; Kurosaki, F

    2014-10-01

    A cDNA clone, designated SdGGPPS2, was isolated from young seedlings of Scoparia dulcis. The putative amino acid sequence of the translate of the gene showed high homology with geranylgeranyl diphosphate synthase (GGPPS) from various plant sources, and the N-terminal residues exhibited the characteristics of chloroplast targeting sequence. An appreciable increase in the transcriptional level of SdGGPPS2 was observed by exposure of the leaf tissues of S. dulcis to methyl jasmonate, yeast extract or Ca(2+) ionophore A23187. In contrast, SdGGPPS1, a homologous GGPPS gene of the plant, showed no or only negligible change in the expression level upon treatment with these stimuli. The truncated protein heterologously expressed in Escherichia coli in which the putative targeting domain was deleted catalyzed the condensation of farnesyl diphosphate and isopentenyl diphosphate to liberate geranylgeranyl diphosphate. These results suggested that SdGGPPS2 plays physiological roles in methyl jasmonate and yeast extract-induced metabolism in the chloroplast of S. dulcis cells.

  2. Exploration of Yeast and Bacteria Contaminants in Seed Culture and Fermented Wort from Gyo Gon Alcohol Distillery

    International Nuclear Information System (INIS)

    Ngwe Thein

    2005-10-01

    Study was made on samples of seed culture and fermented wort from Gyogon alcohol distillery. In all samples bacteria contaminants were observed. Samples were cultured on Sabouraud dextrose agar, Czapek Dox agar, and nutrient agar media and broth. The selected colonies were isolated. Biochemical tests for identification were conducted. The yeast and bacteria contaminants were identified by morphological characteristics and biochemical reactions. The yeast isolated and identified from Gyogon alcohol distillery was Sacchacromyces cerevisiae. The bacteria contaminants isolated and identified were Aeromonas sp. and Pseudomonas sp.

  3. Isolation and characterization of two soil derived yeasts for bioethanol production on Cassava starch

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Gi-Wook; Kim, Yule; Kang, Hyun-Woo [Changhae Institute of Cassava and Ethanol Research, Changhae Ethanol Co., Ltd, Palbok-Dong 829, Dukjin-Gu, Jeonju 561-203 (Korea); Um, Hyun-Ju; Kim, Mina; Kim, Yang-Hoon [Department of Microbiology, Chungbuk National University, 410 Sungbong-Ro, Heungduk-Gu, Cheongju 361-763 (Korea); Chung, Bong-Woo [Department of Bioprocess Engineering, Chonbuk National University, 664-14, 1-Ga, Duckjin-Dong, Duckjin-Gu, Jeonju 561-156 (Korea)

    2010-08-15

    Two ethanol-producing yeast strains, CHY1011 and CHFY0901 were isolated from soil in South Korea using an enrichment technique in a yeast peptone dextrose medium supplemented with 5% (w v{sup -1}) ethanol at 30 C. The phenotypic and physiological characteristics, as well as molecular phylogenetic analysis based on the D1/D2 domains of the large subunit (26S) rRNA gene and the internally transcribed spacer (ITS) 1 + 2 regions suggested that they were novel strains of Saccharomyces cerevisiae. During shaking flask cultivation, the highest ethanol productivity and theoretical yield of S. cerevisiae CHY1011 in YPD media containing 9.5% total sugars was 1.06 {+-} 0.02 g l{sup -1} h{sup -1} and 95.5 {+-} 1.2%, respectively, while those for S. cerevisiae CHFY0901 were 0.97 {+-} 0.03 g l{sup -1} h{sup -1} and 91.81 {+-} 2.2%, respectively. Simultaneous saccharification and fermentation for ethanol production was carried out using liquefied cassava (Manihot esculenta) starch in a 5 l lab-scale jar fermenter at 32 C for 66 h with an agitation speed of 2 Hz. Under these conditions, S. cerevisiae CHY1011 and CHFY0901 yielded a final ethanol concentration of 89.1 {+-} 0.87 g l{sup -1} and 83.8 {+-} 1.11 g l{sup -1}, a maximum ethanol productivity of 2.10 {+-} 0.02 g l{sup -1} h{sup -1} and 1.88 {+-} 0.01 g l{sup -1} h{sup -1}, and a theoretical yield of 93.5 {+-} 1.4% and 91.3 {+-} 1.1%, respectively. These results suggest that S. cerevisiae CHY1011 and CHFY0901 have potential use in industrial bioethanol fermentation processes. (author)

  4. The growth, properties and interactions of yeasts and bacteria associated with the maturation of Camembert and blue-veined cheeses.

    Science.gov (United States)

    Addis, E; Fleet, G H; Cox, J M; Kolak, D; Leung, T

    2001-09-19

    The growth of yeasts and bacteria were monitored during the maturation of Camembert and blue-veined cheese produced in Australia. Yeasts were prominent throughout maturation, growing to 10(5)-10(9)/g, depending on the manufacturer. Debaryomyces hansenii predominated, but there were lesser, inconsistent contributions from Yarrowia lipolytica. Of the non-lactic acid bacteria, Acinetobacter species were significant during the maturation of Camembert but not blue-veined cheeses, and grew to 10(6)-10(8) cfu/g. Staphylococcus and Micrococcus species were consistently isolated from the cheeses with Staphylococcus xylosus growing to 10(5)-10(9) cfu/g, depending on the product. Lactic acid bacteria (10(7)-10(9) cfu/g) were present throughout maturation but were not identified. Interactions between the various yeasts and bacterial isolates were examined. Several strains of D. hansenii exhibited killer activity but not against Y. lipolytica. None of the yeasts were antagonistic towards the bacteria but some strains of D. hansenii enhanced the growth of Y. lipolytica and S. xylosus. The yeast and bacterial isolates exhibited various degrees of extracellular proteolytic and lipolytic activities.

  5. Isolation and clinical sample typing of human leptospirosis cases in Argentina.

    Science.gov (United States)

    Chiani, Yosena; Jacob, Paulina; Varni, Vanina; Landolt, Noelia; Schmeling, María Fernanda; Pujato, Nazarena; Caimi, Karina; Vanasco, Bibiana

    2016-01-01

    Leptospira typing is carried out using isolated strains. Because of difficulties in obtaining them, direct identification of infective Leptospira in clinical samples is a high priority. Multilocus sequence typing (MLST) proved highly discriminatory for seven pathogenic species of Leptospira, allowing isolate characterization and robust assignment to species, in addition to phylogenetic evidence for the relatedness between species. In this study we characterized Leptospira strains circulating in Argentina, using typing methods applied to human clinical samples and isolates. Phylogenetic studies based on 16S ribosomal RNA gene sequences enabled typing of 8 isolates (6 Leptospira interrogans, one Leptospira wolffii and one Leptospira broomii) and 58 out of 85 (68.2%) clinical samples (55 L. interrogans, 2 Leptospira meyeri, and one Leptospira kirschneri). MLST results for the L. interrogans isolates indicated that five were probably Canicola serogroup (ST37) and one was probably Icterohaemorrhagiae serogroup (ST17). Eleven clinical samples (21.6%), provided MLST interpretable data: five were probably Pyrogenes serogroup (ST13), four Sejroe (ST20), one Autumnalis (ST22) and one Canicola (ST37). To the best of our knowledge this study is the first report of the use of an MLST typing scheme with seven loci to identify Leptospira directly from clinical samples in Argentina. The use of clinical samples presents the advantage of the possibility of knowing the infecting strain without resorting to isolates. This study also allowed, for the first time, the characterization of isolates of intermediate pathogenicity species (L. wolffii and L. broomii) from symptomatic patients. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Effects of a spoilage yeast from silage on in vitro ruminal fermentation.

    Science.gov (United States)

    Santos, M C; Lock, A L; Mechor, G D; Kung, L

    2015-04-01

    Feeding silages with high concentrations of yeasts from aerobic spoilage is often implicated as a cause of poor animal performance on dairies. Our objective was to determine if a commonly found spoilage yeast, isolated from silage, had the potential to alter in vitro ruminal fermentations. A single colony of Issatchenkia orientalis, isolated from high-moisture corn, was grown in selective medium. The yeast culture was purified and added to in vitro culture tubes containing a total mixed ration (43% concentrate, 43% corn silage, 11% alfalfa haylage, and 3% alfalfa hay on a dry matter basis), buffer, and ruminal fluid to achieve added theoretical final concentrations of 0 (CTR), 4.40 (low yeast; LY), 6.40 (medium yeast; MY), and 8.40 (high yeast; HY) log10 cfu of yeast/mL of in vitro fluid. Seven separate tubes were prepared for each treatment and each time point and incubated for 12 and 24h at 39 °C. At the end of the incubation period, samples were analyzed for pH, yeast number, neutral detergent fiber (NDF) digestibility, volatile fatty acids (VFA), and fatty acids (FA). We found that total viable yeast counts decreased for all treatments in in vitro incubations but were still relatively high (5.3 log10 cfu of yeasts/mL) for HY after 24h of incubation. Addition of HY resulted in a lower pH and higher concentration of total VFA in culture fluid compared with other treatments. Moreover, additions of MY and HY decreased in vitro NDF digestibility compared with CTR, and the effect was greatest for HY. Overall, the biohydrogenation of dietary unsaturated FA was not altered by addition of I. orientalis and decreased over time with an increase in the accumulation of saturated FA, especially palmitic and stearic acids. We conclude that addition of I. orientalis, especially at high levels, has the potential to reduce in vitro NDF digestion and alter other aspects of ruminal fermentations. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All

  7. Characterization of a novel yeast species Metschnikowia persimmonesis KCTC 12991BP (KIOM G15050 type strain) isolated from a medicinal plant, Korean persimmon calyx (Diospyros kaki Thumb)

    OpenAIRE

    Kang, Young Min; Choi, Ji Eun; Komakech, Richard; Park, Jeong Hwan; Kim, Dae Wook; Cho, Kye Man; Kang, Seung Mi; Choi, Sang Haeng; Song, Kun Chul; Ryu, Chung Min; Lee, Keun Chul; Lee, Jung-Sook

    2017-01-01

    The yeast strain Metschnikowia persimmonesis Kang and Choi et al., sp. nov. [type strain KIOM_G15050 = Korean Collection for Type Cultures (KCTC) 12991BP] was isolated from the stalk of native persimmon cultivars (Diospyros kaki Thumb) obtained from different regions of South Korea and was characterized phenotypically, genetically, and physiologically. The isolate grew between 4 and 40 °C (optimum temperature: 24–28 °C), pH 3–8 (pH optimum = 6.0), and in 0–4% NaCl solution (with optimal growt...

  8. Biodiversity of Yeasts During Plum Wegierka Zwykla Spontaneous Fermentation

    Directory of Open Access Journals (Sweden)

    Tadeusz Tuszynski

    2005-01-01

    Full Text Available The study comprises an analysis of the yeast microbiota that participated in the spontaneous fermentation of crushed Wegierka Zwykla plum fruit, which is the raw material for slivovitz production in the mountain region in the south of Poland. Saccharomyces cerevisiae yeast strains were differentiated by means of the killer sensitivity analysis related to a killer reference panel of 9 well-known killer yeast strains. The first phase of the fermentation was dominated by the representatives of Kloeckera apiculata and Candida pulcherrima species, which reached their maximum concentration (1.4·106 CFU/mL after 48 h of the process. Almost all yeasts isolated during the following days were classified as S. cerevisiae and the killer sensitivity analysis revealed a high population diversity of this species and the presence of 14 different strains that changed quantitatively and qualitatively throughout the fermentation period.

  9. Presence and changes in populations of yeasts on raw and processed poultry products stored at refrigeration temperature.

    Science.gov (United States)

    Ismail, S A; Deak, T; El-Rahman, H A; Yassien, M A; Beuchat, L R

    2000-12-05

    A study was undertaken to determine populations and profiles of yeast species on fresh and processed poultry products upon purchase from retail supermarkets and after storage at 5 degrees C until shelf life expiration, and to assess the potential role of these yeasts in product spoilage. Fifty samples representing 15 commercial raw, marinated, smoked, or roasted chicken and turkey products were analyzed. Yeast populations were determined by plating on dichloran rose bengal chloramphenicol (DRBC) agar and tryptone glucose yeast extract (TGY) agar. Proteolytic activity was determined using caseinate and gelatin agars and lipolytic activity was determined on plate count agar supplemented with tributyrin. Populations of aerobic microorganisms were also determined. Initial populations of yeasts (log10 cfu/g) ranged from less than 1 (detection limit) to 2.89, and increased by the expiration date to 0.37-5.06, indicating the presence of psychrotrophic species. Highest initial populations were detected in raw chicken breast, wings, and ground chicken, as well as in turkey necks and legs, whereas roasted chicken and turkey products contained less than 1 log10 cfu/g. During storage, yeast populations increased significantly (P chicken, ground chicken, liver, heart and gizzard, and in ground turkey and turkey sausage. Isolates (152 strains) of yeasts from poultry products consisted of 12 species. Yarrowia lipolytica and Candida zeylanoides were predominant, making up 39 and 26% of the isolates, respectively. Six different species of basidiomycetous yeasts representing 24% of the isolates were identified. Most Y. lipolytica strains showed strong proteolytic and lipolytic activities, whereas C. zeylanoides was weakly lipolytic. Results suggest that yeasts, particularly Y. lipolytica, may play a more prominent role than previously recognized in the spoilage of fresh and processed poultry stored at 5 degrees C.

  10. High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories.

    Science.gov (United States)

    van Veen, S Q; Claas, E C J; Kuijper, Ed J

    2010-03-01

    Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is suitable for high-throughput and rapid diagnostics at low costs and can be considered an alternative for conventional biochemical and molecular identification systems in a conventional microbiological laboratory. First, we evaluated MALDI-TOF MS using 327 clinical isolates previously cultured from patient materials and identified by conventional techniques (Vitek-II, API, and biochemical tests). Discrepancies were analyzed by molecular analysis of the 16S genes. Of 327 isolates, 95.1% were identified correctly to genus level, and 85.6% were identified to species level by MALDI-TOF MS. Second, we performed a prospective validation study, including 980 clinical isolates of bacteria and yeasts. Overall performance of MALDI-TOF MS was significantly better than conventional biochemical systems for correct species identification (92.2% and 83.1%, respectively) and produced fewer incorrect genus identifications (0.1% and 1.6%, respectively). Correct species identification by MALDI-TOF MS was observed in 97.7% of Enterobacteriaceae, 92% of nonfermentative Gram-negative bacteria, 94.3% of staphylococci, 84.8% of streptococci, 84% of a miscellaneous group (mainly Haemophilus, Actinobacillus, Cardiobacterium, Eikenella, and Kingella [HACEK]), and 85.2% of yeasts. MALDI-TOF MS had significantly better performance than conventional methods for species identification of staphylococci and genus identification of bacteria belonging to HACEK group. Misidentifications by MALDI-TOF MS were clearly associated with an absence of sufficient spectra from suitable reference strains in the MALDI-TOF MS database. We conclude that MALDI-TOF MS can be implemented easily for routine identification of bacteria (except for pneumococci and viridans streptococci) and yeasts in a medical microbiological laboratory.

  11. Co-cultivation of non-conventional yeast with Saccharomyces cerevisiae to increase the aroma complexity of fermented beverages

    OpenAIRE

    Rijswijck, van, Irma M.H.

    2017-01-01

    Yeast are used as workhorses to convert hopped wort into beer. Conventionally, such yeasts belong to the genus Saccharomyces and most research on fermentation of wort for the production of beer has focussed on the species Saccharomyces cerevisiae and Saccharomyces pastorianus. Recently, there is an increasing interest in unravelling features of non-conventional yeast species for beer innovation. In this thesis, features of yeast isolates belonging to the species: Cyberlindnera fabianii, Pichi...

  12. Automated Extraction of Genomic DNA from Medically Important Yeast Species and Filamentous Fungi by Using the MagNA Pure LC System

    OpenAIRE

    Loeffler, Juergen; Schmidt, Kathrin; Hebart, Holger; Schumacher, Ulrike; Einsele, Hermann

    2002-01-01

    A fully automated assay was established for the extraction of DNA from clinically important fungi by using the MagNA Pure LC instrument. The test was evaluated by DNA isolation from 23 species of yeast and filamentous fungi and by extractions (n = 28) of serially diluted Aspergillus fumigatus conidia (105 to 0 CFU/ml). Additionally, DNA from 67 clinical specimens was extracted and compared to the manual protocol. The detection limit of the MagNA Pure LC assay of 10 CFU corresponded to the sen...

  13. RAPD- and ERIC-Based Typing of Clinical and Environmental Pseudomonas aeruginosa Isolates.

    Science.gov (United States)

    Auda, Ibtesam Ghadban; Al-Kadmy, Israa M S; Kareem, Sawsan Mohammed; Lafta, Aliaa Khyuon; A'Affus, Mustafa Hussein Obeid; Khit, Ibrahim Abd Aloahd; Al Kheraif, Abdulaziz Abdullah; Divakar, Darshan Devang; Ramakrishnaiah, Ravikumar

    2017-03-01

    Pseudomonas aeruginosa is a major cause of nosocomial infection in children and adults, resulting in significant morbidity and mortality due to its ability to acquire drug resistance. The ability of P. aeruginosa in the environment to cause infection in individuals has been reported previously; henceforth, surveillance of the emergence and transmission of P. aeruginosa strains among patients is important for infection control in a clinical setup. Various gene-typing methods have been used for epidemiological typing of P. aeruginosa isolates for the purpose of surveillance. In this work, the suitability and comparability of two typing methods, enterobacterial repetitive intergenic consensus (ERIC)-PCR and random amplification of polymorphic DNA (RAPD)-PCR fingerprinting, were studied to characterize P. aeruginosa strains isolated from clinical and environmental sources. Forty-four clinical and environmental bacterial isolates of P. aeruginosa were collected between October 2015 and January 2016. DNA extraction, ERIC-PCR and RAPD-PCR, agarose gel electrophoresis, and phylogenetic analyses were carried using the unweighted pair-group method with mean. RAPD typing revealed less clonality among clinical isolates, whereas the ERIC method showed greater similarity in comparison with RAPD. Environmental isolates, however, showed greater similarity using RAPD compared with ERIC typing. With only a few exceptions, most clinical isolates were distinct from environmental isolates, irrespective of the typing method. In conclusion, both the RAPD and ERIC typing methods proved to be good tools in understanding clonal diversity. The results also suggest that there is no relationship between clinical and environmental isolates. The absence of clonality among the clinical isolates may indicate that most P. aeruginosa infection cases could be endemic and not epidemic and that endemic infections may be due to nonclonal strains of P. aeruginosa.

  14. Cystobasidiomycetes yeasts from Patagonia (Argentina): description of Rhodotorula meli sp. nov. from glacial meltwater.

    Science.gov (United States)

    Libkind, Diego; Sampaio, José Paulo; van Broock, Maria

    2010-09-01

    A basidiomycetous yeast, strain CRUB 1032(T), which formed salmon-pink colonies, was isolated from glacial meltwater in Patagonia, Argentina. Morphological, physiological and biochemical characterization indicated that this strain belonged to the genus Rhodotorula. Molecular taxonomic analysis based on the 26S rDNA D1/D2 domain and internal transcribed spacer region sequences showed that strain CRUB 1032(T) represents an undescribed yeast species, for which the name Rhodotorula meli sp. nov. is proposed (type strain is CRUB 1032(T)=CBS 10797(T)=JCM 15319(T)). Phylogenetic analysis showed that Rhodotorula lamellibrachii was the closest known species, which, together with R. meli, formed a separate cluster related to the Sakaguchia clade within the Cystobasidiomycetes. Additional Patagonian yeast isolates of the class Cystobasidiomycetes are also investigated in the present work.

  15. Isolation, speciation, and antibiogram of clinically relevant non-diphtherial Corynebacteria (Diphtheroids

    Directory of Open Access Journals (Sweden)

    B S Reddy

    2012-01-01

    Full Text Available Purpose: Coryneform or the non-diphtherial Corynebacterium species largely remains a neglected group with the traditional consideration of these organisms as contaminants. This concept, however, is slowly changing in the light of recent observations. This study has been done to find out the species distribution and antibiogram of various members of the clinically relevant Coryneform group, isolated from various clinical materials. Materials and Methods: One hundred and fourteen non-duplicate isolates of diphtheroids from various clinical isolates were selected for the study. The isolates were identified to the species level by using a battery of tests; and antimicrobial susceptibility was tested by using a combination of Clinical and Laboratory Standards Institute (CLSI and the British Society for Antimicrobial Chemotherapy (BSAC guidelines, in the absence of definitive CLSI guidelines. Results: Corynebacterium amycolatum was the predominant species (35.9% in our series followed by the CDC Group G organisms (15.7%. Each of the remaining 19 species comprised of less than 10% of the isolates. More than half the total isolates were resistant to the penicillins, erythromycin, and clindamycin; while excellent activity (all the strains being susceptible was shown by vancomycin, linezolid, and tigecycline. Chloramphenicol and tetracycline also had good activity in inhibiting more than 80% of the isolates. Multiply drug resistance was exhibited by all the species. Conclusion: This study was an attempt to establish the clinical significance of coryneform organisms. The high level of resistance shown by this group to some of the common antibacterial agents highlights the importance of processing these isolates in select conditions to guide the clinicians towards an appropriate therapy.

  16. Biodegradation of used lubricating and diesel oils by a new yeast ...

    African Journals Online (AJOL)

    A new yeast strain, identified by 18S-rRNA gene sequencing as Candida viswanathii KA-201l, was isolated from used lubricating oil, showed high biodegradation efficiency for different used lubricating oils. Capability of this isolate to degrade different high and low molecular weight hydrocarbons, castor oil, diesel oil and ...

  17. Yeast Population Dynamics in Spontaneous and Inoculated Alcoholic Fermentations of Zametovka Must

    Directory of Open Access Journals (Sweden)

    Franc Cus

    2002-01-01

    Full Text Available Inoculated fermentations, which are more rapid and more reliable than spontaneous fermentations, and assure predictable wine quality, are nowadays prevalent in Slovenia’s large-scale wine production. However, spontaneous fermentation strengthens local characteristics of wine and offers opportunities for technological innovation. In the 1999 vintage, spontaneous and inoculated fermentations of Zametovka (Vitis vinifera grape must were studied. Zametovka is the main red variety in production of traditional Slovene red blend wine, Cvicek. The diversity of yeast species and strains in both of the investigated fermentations was determined by molecular and traditional identification methods. The outset of alcoholic fermentation, yeast growth kinetics, and yeast population dynamics presents the main differences between the examined fermentations. Yeast population diversity was higher in the spontaneous process. Dominant yeast isolates from spontaneous fermentation were identified as Candida stellata, Hanseniaspora uvarum and Saccharomyces cerevisiae; whereas Saccharomyces bayanus, Pichia kluyveri, Pichia membranifaciens and Torulaspora delbrueckiim were found less frequently. Dominant species in the inoculated fermentation was Saccharomyces cerevisiae; other species found in smaller numbers were Candida stellata, Hanseniaspora uvarum and Debaryomyces hansenii var. hansenii. Using PFGE, we were able to distinguish among 15 different Saccharomyces cerevisiae strains and three different Saccharomyces bayanus strains isolated from spontaneous fermentation, whereas, in the case of inoculated fermentation, only two Saccharomyces cerevisiae strains were found. Their chromosomal patterns coincide with the chromosomal patterns of the starter culture strains.

  18. Fusidic acid resistance among staphylococci strains isolated from clinical specimens

    Directory of Open Access Journals (Sweden)

    Özcan Deveci

    2012-03-01

    Full Text Available Objectives: The aim of this study was to investigate in vitrosusceptibility of fusidic acid to clinic isolates of staphylococci.Materials and methods: The forty-one coagulase negativestaphylococci (CNS and 18 Staphylococcus aureusstrains isolated from various clinical specimens were includedin this study. Staphylococci isolates were identifiedby conventional methods such as colony morphologyonto medium, gram staining, catalase and coagulasetests. According to “Clinical and Laboratory Standards Institute(CLSI” criteria, antimicrobial susceptibility testingof isolates was performed by Kirby-Bauer’s disk diffusionmethod.Results: The seventy-two percent of the isolated S.aureuswere defined as methicillin sensitive-S.aureus (MSSA,28% of the isolated S.aureus were defined as methicillinresistant-S.aureus (MRSA. The difference among fusidicacid susceptibility rates of MSSA and MRSA strains wasnot statistically significant (p=0.305. The twenty-nine percentof the isolated CNS were defined as methicillin sensitive-CNS (MS-CNS, 71% of the isolated CNS were definedas methicillin resistant-CNS (MR-CNS. There wasno statistically significant difference between MS-CNSand MR-CNS strains for fusidic acid susceptibility rates(p=0.490. But the difference among fusidic acid susceptibilityrates of CNS and S.aureus strains was statisticallysignificant (p<0.001. CNS strains were found more resistancethan S.aureus strains for fusidic acid.Conclusion: In this study, the resistance rates weredetected to increase for fusidic acid along with methicillinresistance. Among CNS isolates, fusidic acid resistancerates were significantly more elevated than that forS.aureus. Fusidic acid remains as an alternative in thetreatment of infections due to staphylococci.

  19. Intra-Genomic Internal Transcribed Spacer Region Sequence Heterogeneity and Molecular Diagnosis in Clinical Microbiology.

    Science.gov (United States)

    Zhao, Ying; Tsang, Chi-Ching; Xiao, Meng; Cheng, Jingwei; Xu, Yingchun; Lau, Susanna K P; Woo, Patrick C Y

    2015-10-22

    Internal transcribed spacer region (ITS) sequencing is the most extensively used technology for accurate molecular identification of fungal pathogens in clinical microbiology laboratories. Intra-genomic ITS sequence heterogeneity, which makes fungal identification based on direct sequencing of PCR products difficult, has rarely been reported in pathogenic fungi. During the process of performing ITS sequencing on 71 yeast strains isolated from various clinical specimens, direct sequencing of the PCR products showed ambiguous sequences in six of them. After cloning the PCR products into plasmids for sequencing, interpretable sequencing electropherograms could be obtained. For each of the six isolates, 10-49 clones were selected for sequencing and two to seven intra-genomic ITS copies were detected. The identities of these six isolates were confirmed to be Candida glabrata (n=2), Pichia (Candida) norvegensis (n=2), Candida tropicalis (n=1) and Saccharomyces cerevisiae (n=1). Multiple sequence alignment revealed that one to four intra-genomic ITS polymorphic sites were present in the six isolates, and all these polymorphic sites were located in the ITS1 and/or ITS2 regions. We report and describe the first evidence of intra-genomic ITS sequence heterogeneity in four different pathogenic yeasts, which occurred exclusively in the ITS1 and ITS2 spacer regions for the six isolates in this study.

  20. Radiodiagnosis of yeast alveolits (a clinicoexperimental study)

    International Nuclear Information System (INIS)

    Amosov, I.S.; Smirnov, V.A.

    1984-01-01

    A clinicoroetgenological study was made of 115 workers engaged in the yeast production for different periods of time. Disorders of the respiration biomechanics were revealed depending on the period of service. These data were obtained as a result of the use of roentgenopneumopolygraphy. An experimental study was conducted to establish the nature of lesions in the bronchopulmonary system in allergic alveolitis. The effect of finely divided yeast dust on the bronchopulmonary system was studied on 132 guinea-pigs usinq microbronchography and morphological examination. As a result of the study it has been established that during the inhalation of yeast dust, notnceable dystrophy of the bronchi develops, the sizes of alveoli enlarge and part of them undergo emphysematous distension with the rupture of the interalveolar septa. In the course of the study, it has been shown that yeast dust is little agreessive, yeast alveolitis develops after many years of work. The clinical symptoms are non-specific and insignificant. X-ray and morphological changes are followed by the physical manifestations of yeast alveolitis

  1. Yeast redoxyendonuclease, a DNA repair enzyme similar to Escherichia coli endonuclease III

    International Nuclear Information System (INIS)

    Gossett, J.; Lee, K.; Cunningham, R.P.; Doetsch, P.W.

    1988-01-01

    A DNA repair endonuclease (redoxyendonuclease) was isolated from bakers' yeast (Saccharomyces cerevisiae). The enzyme has been purified by a series of column chromatography steps and cleaves OsO 4 -damaged, double-stranded DNA at sites of thymine glycol and heavily UV-irradiated DNA at sites of cytosine, thymine, and guanine photoproducts. The base specificity and mechanism of phosphodiester bond cleavage for the yeast redoxyendonuclease appear to be identical with those of Escherichia coli endonuclease III when thymine glycol containing, end-labeled DNA fragments of defined sequence are employed as substrates. Yeast redoxyendonuclease has an apparent molecular size of 38,000-42,000 daltons and is active in the absence of divalent metal cations. The identification of such an enzyme in yeast may be of value in the elucidation of the biochemical basis for radiation sensitivity in certain yeast mutants

  2. Large-scale clinical comparison of the lysis-centrifugation and radiometric systems for blood culture

    International Nuclear Information System (INIS)

    Brannon, P.; Kiehn, T.E.

    1985-01-01

    The Isolator 10 lysis-centrifugation blood culture system (E. I. du Pont de Nemours and Co., Inc., Wilmington, Del.) was compared with the BACTEC radiometric method (Johnston Laboratories, Inc., Towson, Md.) with 6B and 7D broth media for the recovery of bacteria and yeasts. From 11,000 blood cultures, 1,174 clinically significant organisms were isolated. The Isolator system recovered significantly more total organisms, members of the family Enterobacteriaceae, Staphylococcus spp., and yeasts. The BACTEC system recovered significantly more Pseudomonas spp., Streptococcus spp., and anaerobes. Of the Isolator colony counts, 87% measured less than 11 CFU/ml of blood. Organisms, on an average, were detected the same day from each of the two culture systems. Only 13 of the 975 BACTEC isolates (0.01%) were recovered by subculture of growth-index-negative bottles, and 12 of the 13 were detected in another broth blood culture taken within 24 h. Contaminants were recovered from 4.8% of the Isolator 10 and 2.3% of the BACTEC cultures

  3. Functionality of selected strains of moulds and yeasts from Vietnamese rice wine starters

    NARCIS (Netherlands)

    Dung, N.T.P.; Rombouts, F.M.; Nout, M.J.R.

    2006-01-01

    The role of starch-degrading mycelial fungi, and the alcohol production and ethanol tolerance of the yeasts isolated from selected Vietnamese traditional rice wine starters were examined, and optimum conditions for these essential steps in rice wine fermentation were determined. Of pure isolates

  4. Characterization of culturable yeast species associating with whole crop corn and total mixed ration silage.

    Science.gov (United States)

    Wang, Huili; Hao, Wei; Ning, Tingting; Zheng, Mingli; Xu, Chuncheng

    2018-02-01

    This study investigated the association of yeast species with improved aerobic stability of total mixed ration (TMR) silages with prolonged ensiling, and clarified the characteristics of yeast species and their role during aerobic deterioration. Whole crop corn (WCC) silages and TMR silages formulated with WCC were ensiled for 7, 14, 28, and 56 d and used for an aerobic stability test. Predominant yeast species were isolated from different periods and identified by sequencing analyses of the 26S rRNA gene D1/D2 domain. Characteristics (assimilation and tolerance) of the yeast species and their role during aerobic deterioration were investigated. In addition to species of Candida glabrata and Pichia kudriavzevii ( P. kudriavzevii ) previously isolated in WCC and TMR, Pichia manshurica ( P. manshurica ), Candida ethanolica ( C. ethanolica ), and Zygosaccharomyces bailii ( Z. bailii ) isolated at great frequency during deterioration, were capable of assimilating lactic or acetic acid and tolerant to acetic acid and might function more in deteriorating TMR silages at early fermentation (7 d and 14 d). With ensiling prolonged to 28 d, silages became more (p<0.01) stable when exposed to air, coinciding with the inhibition of yeast to below the detection limit. Species of P. manshurica that were predominant in deteriorating WCC silages were not detectable in TMR silages. In addition, the predominant yeast species of Z. bailii in deteriorating TMR silages at later fermentation (28 d and 56 d) were not observed in both WCC and WCC silages. The inhibition of yeasts, particularly P. kudriavzevii , probably account for the improved aerobic stability of TMR silages at later fermentation. Fewer species seemed to be involved in aerobic deterioration of silages at later fermentation and Z. bailii was most likely to initiate the aerobic deterioration of TMR silages at later fermentation. The use of WCC in TMR might not influence the predominant yeast species during aerobic

  5. Characterization of culturable yeast species associating with whole crop corn and total mixed ration silage

    Directory of Open Access Journals (Sweden)

    Huili Wang

    2018-02-01

    Full Text Available Objective This study investigated the association of yeast species with improved aerobic stability of total mixed ration (TMR silages with prolonged ensiling, and clarified the characteristics of yeast species and their role during aerobic deterioration. Methods Whole crop corn (WCC silages and TMR silages formulated with WCC were ensiled for 7, 14, 28, and 56 d and used for an aerobic stability test. Predominant yeast species were isolated from different periods and identified by sequencing analyses of the 26S rRNA gene D1/D2 domain. Characteristics (assimilation and tolerance of the yeast species and their role during aerobic deterioration were investigated. Results In addition to species of Candida glabrata and Pichia kudriavzevii (P. kudriavzevii previously isolated in WCC and TMR, Pichia manshurica (P. manshurica, Candida ethanolica (C. ethanolica, and Zygosaccharomyces bailii (Z. bailii isolated at great frequency during deterioration, were capable of assimilating lactic or acetic acid and tolerant to acetic acid and might function more in deteriorating TMR silages at early fermentation (7 d and 14 d. With ensiling prolonged to 28 d, silages became more (p<0.01 stable when exposed to air, coinciding with the inhibition of yeast to below the detection limit. Species of P. manshurica that were predominant in deteriorating WCC silages were not detectable in TMR silages. In addition, the predominant yeast species of Z. bailii in deteriorating TMR silages at later fermentation (28 d and 56 d were not observed in both WCC and WCC silages. Conclusion The inhibition of yeasts, particularly P. kudriavzevii, probably account for the improved aerobic stability of TMR silages at later fermentation. Fewer species seemed to be involved in aerobic deterioration of silages at later fermentation and Z. bailii was most likely to initiate the aerobic deterioration of TMR silages at later fermentation. The use of WCC in TMR might not influence the predominant

  6. Characterization of culturable yeast species associating with whole crop corn and total mixed ration silage

    OpenAIRE

    Wang, Huili; Hao, Wei; Ning, Tingting; Zheng, Mingli; Xu, Chuncheng

    2017-01-01

    Objective This study investigated the association of yeast species with improved aerobic stability of total mixed ration (TMR) silages with prolonged ensiling, and clarified the characteristics of yeast species and their role during aerobic deterioration. Methods Whole crop corn (WCC) silages and TMR silages formulated with WCC were ensiled for 7, 14, 28, and 56 d and used for an aerobic stability test. Predominant yeast species were isolated from different periods and identified by sequencin...

  7. Azole resistance in Candida spp. isolated from Catú Lake, Ceará, Brazil: an efflux-pump-mediated mechanism

    Directory of Open Access Journals (Sweden)

    Raimunda S.N. Brilhante

    2016-03-01

    Full Text Available Abstract Since, there is no study reporting the mechanism of azole resistance among yeasts isolated from aquatic environments; the present study aims to investigate the occurrence of antifungal resistance among yeasts isolated from an aquatic environment, and assess the efflux-pump activity of the azole-resistant strains to better understand the mechanism of resistance for this group of drugs. For this purpose, monthly water and sediment samples were collected from Catú Lake, Ceará, Brazil, from March 2011 to February 2012. The obtained yeasts were identified based on morphological and biochemical characteristics. Of the 46 isolates, 37 were Candida spp., 4 were Trichosporon asahii, 3 were Cryptococcus laurentii, 1 Rhodotorula mucilaginosa, and 1 was Kodamaea ohmeri. These isolates were subjected to broth microdilution assay with amphotericin B, itraconazole, and fluconazole, according to the methodology standardized by the Clinical and Laboratory Standards Institute (CLSI. The minimum inhibitory concentrations (MICs of amphotericin B, itraconazole, and fluconazole were 0.03125–2 µg/mL, 0.0625 to ≥16 µg/mL, and 0.5 to ≥64 µg/mL, respectively, and 13 resistant azole-resistant Candida isolates were detected. A reduction in the azole MICs leading to the phenotypical reversal of the azole resistance was observed upon addition of efflux-pump inhibitors. These findings suggest that the azole resistance among environmental Candida spp. is most likely associated with the overexpression of efflux-pumps.

  8. Metallic Biosorption Using Yeasts in Continuous Systems

    Directory of Open Access Journals (Sweden)

    Karla Miriam Hernández Mata

    2013-01-01

    Full Text Available Mining effluents were found to be the main source of pollution by heavy metals of the surface water in the San Pedro River in Sonora, Mexico. The overall objective of this study was to determine the biosorption of Zn, Cu, Mn, and Fe with yeasts isolated from San Pedro River in a continuous system. The tests conducted in two reactors packed with zeolite connected in series. The first reactor was inoculated mixing two yeasts species, and the effluent of the first reactor was fed to second reactor. Subsequently, the first reactor was fed with contaminated water of San Pedro River and effluent from this was the second reactor influent. After 40 days of the experiment a reduction of 81.5% zinc, 76.5% copper, manganese 95.5%, and 99.8% of iron was obtained. These results show that the selected yeasts are capable of biosorbing zinc, copper, manganese, and iron under these conditions.

  9. Isolation and antibiogram of Staphylococcus, Streptococcus and Escherichia coli isolates from clinical and subclinical cases of bovine mastitis

    Directory of Open Access Journals (Sweden)

    Nihar Nalini Mohanty,

    2013-08-01

    Full Text Available Aim: The present study was aimed to isolate and evaluate the continuous change in the pattern of drug resistance showed by different mastitogenic organisms, isolated from clinical and subclinical cases of mastitis.Materials and Methods: The study was carried out using 150 milk samples received from various clinical and subclinical cases, from which the causative organisms were isolated and subjected to in vitro antibiotic sensitivity test.Results: The bacteriological analysis of the samples indicated the presence of both Gram positive and Gram negative organisms followed by isolation of isolates like Staphylococcus, E. coli, Streptococcus, Bacillus, Corynebacterium, Listeria, Klebsiella. The in vitro sensitivity of Staphylococcus, E. coli and Streptococcus isolates revealed that they were more sensitive towards newer antimicrobials like Levofloxacin and Enrofloxacin.Conclusion: The prevalence of Staphylococcus was found to be maximum followed by Streptococcus and E. coli among the isolated organisms. Levofloxacin and Enrofloxacin were found to be most effective against the targeted isolates.

  10. Decolorization of a recalcitrant organic compound (Melanoidin by a novel thermotolerant yeast, Candida tropicalis RG-9

    Directory of Open Access Journals (Sweden)

    Tiwari Soni

    2012-06-01

    Full Text Available Abstract Background Sugarcane distilleries use molasses for ethanol production and generate large volume of effluent containing high biological oxygen demand (BOD and chemical oxygen demand (COD along with melanoidin pigment. Melanoidin is a recalcitrant compound that causes several toxic effects on living system, therefore, may be treated before disposal. The aim of this study was to isolate a potential thermotolerant melanoidin decolorizing yeast from natural resources, and optimized different physico-chemical and nutritional parameters. Results Total 24 yeasts were isolated from the soil samples of near by distillery site, in which isolate Y-9 showed maximum decolorization and identified as Candida tropicalis by Microbial Type Culture Collection (MTCC Chandigarh, India. The decolorization yield was expressed as the decrease in the absorbance at 475 nm against initial absorbance at the same wavelength. Uninoculated medium served as control. Yeast showed maximum decolorization (75% at 45°C using 0.2%, glucose; 0.2%, peptone; 0.05%, MgSO4; 0.01%, KH2PO4; pH-5.5 within 24 h of incubation under static condition. Decolorizing ability of yeast was also confirmed by high performance liquid chromatography (HPLC analysis. Conclusion The yeast strain efficiently decolorized melanoidin pigment of distillery effluent at higher temperature than the other earlier reported strains of yeast, therefore, this strain could also be used at industrial level for melanoidin decolorization as it tolerated a wide range of temperature and pH with very small amount of carbon and nitrogen sources.

  11. Antibiotic resistance and virulence traits in clinical and environmental Enterococcus faecalis and Enterococcus faecium isolates.

    Science.gov (United States)

    Rathnayake, I U; Hargreaves, M; Huygens, F

    2012-07-01

    This study compared virulence and antibiotic resistance traits in clinical and environmental Enterococcus faecalis and Enterococcus faecium isolates. E. faecalis isolates harboured a broader spectrum of virulence determinants compared to E. faecium isolates. The virulence traits Cyl-A, Cyl-B, Cyl-M, gel-E, esp and acm were tested and environmental isolates predominantly harboured gel-E (80% of E. faecalis and 31.9% of E. faecium) whereas esp was more prevalent in clinical isolates (67.8% of E. faecalis and 70.4% of E. faecium). E. faecalis and E. faecium isolated from water had different antibiotic resistance patterns compared to those isolated from clinical samples. Linezolid resistance was not observed in any isolates tested and vancomycin resistance was observed only in clinical isolates. Resistance to other antibiotics (tetracycline, gentamicin, ciprofloxacin and ampicillin) was detected in both clinical and water isolates. Clinical isolates were more resistant to all the antibiotics tested compared to water isolates. Multi-drug resistance was more prevalent in clinical isolates (71.2% of E. faecalis and 70.3% of E. faecium) compared to water isolates (only 5.7% E. faecium). tet L and tet M genes were predominantly identified in tetracycline-resistant isolates. All water and clinical isolates resistant to ciprofloxacin and ampicillin contained mutations in the gyrA, parC and pbp5 genes. A significant correlation was found between the presence of virulence determinants and antibiotic resistance in all the isolates tested in this study (pantibiotic resistant enterococci, together with associated virulence traits, in surface recreational water could be a public health risk. Copyright © 2012 Elsevier GmbH. All rights reserved.

  12. Yeast and yeast-like fungi associated with dry indehiscent fruits of Nothofagus nervosa in Patagonia, Argentina.

    Science.gov (United States)

    Fernández, Natalia V; Mestre, M Cecilia; Marchelli, Paula; Fontenla, Sonia B

    2012-04-01

    Nothofagus nervosa (Raulí) is a native tree species that yields valuable timber. It was overexploited in the past and is currently included in domestication and conservation programs. Several research programs have focused on the characterization of epiphytic microorganisms because it has been demonstrated that they can affect plant-pathogen interactions and/or promote plant growth. Although the microbial ecology of leaves has been well studied, less is known about microorganisms occurring on seeds and noncommercial fruits. In this work, we analyzed the yeast and yeast-like fungi present on N. nervosa fruits destined for the propagation of this species, as well as the effects of fruit preservation and seed dormancy-breaking processes on fungal diversity. Morphological and molecular methods were used, and differences between fungal communities were analyzed using a similarity index. A total of 171 isolates corresponding to 17 species were recovered, most of which belong to the phylum Ascomycota. The majority of the species develop mycelia, produce pigments and mycosporines, and these adaptation strategies are discussed. It was observed that the preservation process considerably reduced yeast and yeast-like fungal diversity. This is the first study concerning microbial communities associated with this ecologically and economically important species, and the information presented is relevant to domestication programs. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  13. Single Spore Isolation as a Simple and Efficient Technique to obtain fungal pure culture

    Science.gov (United States)

    Noman, E.; Al-Gheethi, AA; Rahman, N. K.; Talip, B.; Mohamed, R.; H, N.; Kadir, O. A.

    2018-04-01

    The successful identification of fungi by phenotypic methods or molecular technique depends mainly on the using an advanced technique for purifying the isolates. The most efficient is the single spore technique due to the simple requirements and the efficiency in preventing the contamination by yeast, mites or bacteria. The method described in the present work is depends on the using of a light microscope to transfer one spore into a new culture medium. The present work describes a simple and efficient procedure for single spore isolation to purify of fungi recovered from the clinical wastes.

  14. Isolation, identification and anti-candidal activity of filamentous fungi from Saudi Arabia soil

    Directory of Open Access Journals (Sweden)

    Nouf M. Al-Enazi

    2018-02-01

    Full Text Available Ten fungal strains; namely, Penicillium melinii, Petriella setifera, Aspergillus pseudo-niger, Alternaria chlamydospora, Pythium nayoroense, Phoma glomerata, Mucor ramosissimus, Mucor racemosus, Fusarium chlamydosporum and Rhizopus azygosporus were isolated from soil. The extra- and intra-cellular extracts of the fungal strains grown on malt extract and yeast-extract sucrose media were screened for their anticandidal activity against different clinically-isolated Candida species. Most of the fungal extracts showed activity against different Candida species. However, the fungal strains grew on malt extract showed greater activities than those grew on yeast extract sucrose media. The activity of the intracellular was higher than the extracellular metabolites. All fungal extracts (extra and intra were similar in chemical constituent; they contained carbohydrates and/or glycosides, unsaturated sterols and/or triterpens, tannins and traces of coumarins. Alkaloids, flavonoids, saponins, anthraquinones and cardenolides were no detected. The intra-cellular extracts contained more compounds than the extra-cellular extracts.

  15. Ribotyping for differentiating Flavobacterium meningosepticum isolates from clinical and environmental sources

    DEFF Research Database (Denmark)

    Colding, H; Bangsborg, J; Fiehn, N E

    1994-01-01

    RI), a discriminatory index of 0.95 to 0.97 was found. The value of ribotyping in an epidemiological setting was assessed for three clinical isolates of F. meningosepticum from an outbreak of meningitis and bacteremia in the neonatal intensive care unit, Rigshospitalet, Copenhagen, Denmark. The three clinical isolates...

  16. Identification by PCR and evaluation of probiotic potential in yeast strains found in kefir samples in the city of Santa Maria, RS, Brazil

    Directory of Open Access Journals (Sweden)

    Daniela CASSANEGO

    2017-10-01

    Full Text Available Abstract Kefir is a product elaborated from the symbiotic fermentation of different microorganisms. The Kluyveromyces and Saccharomyces genera are the major representatives of the yeasts found in kefir microbiota. The only pobiotic yeast commercialized as an oral medication, is the Saccharomyces boulardii. The present work involved the microbiological quality examination of six kefir samples in the city of Santa Maria/RS, the yeasts isolation present in the samples and the identification of them by PCR (Polymerase chain reaction. Then, their probiotic potential was evaluated by in vitro technique. After that, microbiological analysis confirmed that kefir samples were suitable for consumption once the microbiological quality was established. Nineteen yeast strains were isolated from six different kefir samples; it was identified, by PCR analysis, but only three species were identified from these microorganisms in the present article: Saccharomyces cerevisiae, Hanseniospora uvarum and Kazachstania unispora. Nevertheless, by simulating the passage of isolated strains through the gastrointestinal environment, it was observed that they could not be considered probiotics. The results indicate that, in an isolated way, the yeast presents in kefir samples, in the city of Santa Maria, RS, can´t be considered probiotics according to the tests performed.

  17. Genetic relationship and biological status of the industrially important yeast Saccharomyces eubayanus Sampaio et al.

    Science.gov (United States)

    Naumov, G I

    2017-03-01

    The genomes of the recently discovered yeast Saccharomyces eubayanus and traditional S. cerevisiae are known to be found in the yeast S. pastorianus (syn. S. carlsbergensis), which are essential for brewing. The cryotolerant yeast S. bayanus var. uvarum is of great importance for production of some wines. Based on ascospore viability and meiotic recombination of the control parental markers in hybrids, we have shown that there is no complete interspecies post-zygotic isolation between the yeasts S. eubayanus, S. bayanus var. bayanus and S. bayanus var. uvarum. The genetic data presented indicate that all of the three taxa belong to the same species.

  18. Simultaneous saccharification and fermentation (SSF) using cellobiose fermenting yeast Brettanomyces custersii

    Science.gov (United States)

    Spindler, Diane D.; Grohmann, Karel; Wyman, Charles E.

    1992-01-01

    A process for producing ethanol from plant biomass includes forming a substrate from the biomass with the substrate including hydrolysates of cellulose and hemicellulose. A species of the yeast Brettanomyces custersii (CBS 5512), which has the ability to ferment both cellobiose and glucose to ethanol, is then selected and isolated. The substrate is inoculated with this yeast, and the inoculated substrate is then fermented under conditions favorable for cell viability and conversion of hydrolysates to ethanol.

  19. Antimicrobial Susceptibilities of Geographically Diverse Clinical Human Isolates of Leptospira▿

    OpenAIRE

    Ressner, Roseanne A.; Griffith, Matthew E.; Beckius, Miriam L.; Pimentel, Guillermo; Miller, R. Scott; Mende, Katrin; Fraser, Susan L.; Galloway, Renee L.; Hospenthal, Duane R.; Murray, Clinton K.

    2008-01-01

    Although antimicrobial therapy of leptospirosis has been studied in a few randomized controlled clinical studies, those studies were limited to specific regions of the world and few have characterized infecting strains. A broth microdilution technique for the assessment of antibiotic susceptibility has been developed at Brooke Army Medical Center. In the present study, we assessed the susceptibilities of 13 Leptospira isolates (including recent clinical isolates) from Egypt, Thailand, Nicarag...

  20. Isolation and identification of normal conjunctival fungal flora in the Persian Kurd horse

    Directory of Open Access Journals (Sweden)

    saber Mamaghani

    2015-05-01

    Full Text Available This study was conducted to identify the fungi isolated from conjunctival sac of clinically normal Persian Kurd horses of Tabriz, north western Iran and to determine the effect of sex and age variations on the frequency of isolates. Forty horses (17 females and 23 males, aged 2-30 years, without clinical evidence of external ocular inflammation were selected and divided into two age groups (less than 10 years and over 10 years. Samples were taken from both conjunctival sacs of horses and seeded on the sabouraud dextrose agar and malt extract agar. Plates were incubated at 25°C for 7 days. Data were analyzed by Chi-square, Fisher's exact and Kendall Tau tests using SAS 9.1. Filamentous fungi and yeasts comprised 82.35% and 17.65% of total isolates, respectively. The most frequent isolate was Aspergillus species (38.82 % followed by Penicillium spp (14.12%, Fusarium spp (8.24%, Chladosporium, Mucor and Scopulariopsis spp (5.88%, Pseudallescheria, Rhodotorula and Trichoderma spp (1.18 %. Gender had a significant effect on frequency of fungal isolation (p

  1. Genetic diversity of clinical isolates of Bacillus cereus using multilocus sequence typing

    Directory of Open Access Journals (Sweden)

    Pruckler James M

    2008-11-01

    Full Text Available Abstract Background Bacillus cereus is most commonly associated with foodborne illness (diarrheal and emetic but is also an opportunistic pathogen that can cause severe and fatal infections. Several multilocus sequence typing (MLST schemes have recently been developed to genotype B. cereus and analysis has suggested a clonal or weakly clonal population structure for B. cereus and its close relatives B. anthracis and B. thuringiensis. In this study we used MLST to determine if B. cereus isolates associated with illnesses of varying severity (e.g., severe, systemic vs. gastrointestinal (GI illness were clonal or formed clonal complexes. Results A retrospective analysis of 55 clinical B. cereus isolates submitted to the Centers for Disease Control and Prevention between 1954 and 2004 was conducted. Clinical isolates from severe infections (n = 27, gastrointestinal (GI illness (n = 18, and associated isolates from food (n = 10 were selected for analysis using MLST. The 55 isolates were diverse and comprised 38 sequence types (ST in two distinct clades. Of the 27 isolates associated with serious illness, 13 clustered in clade 1 while 14 were in clade 2. Isolates associated with GI illness were also found throughout clades 1 and 2, while no isolates in this study belonged to clade 3. All the isolates from this study belonging to the clade 1/cereus III lineage were associated with severe disease while isolates belonging to clade1/cereus II contained isolates primarily associated with severe disease and emetic illness. Only three STs were observed more than once for epidemiologically distinct isolates. Conclusion STs of clinical B. cereus isolates were phylogenetically diverse and distributed among two of three previously described clades. Greater numbers of strains will need to be analyzed to confirm if specific lineages or clonal complexes are more likely to contain clinical isolates or be associated with specific illness, similar to B. anthracis and

  2. Clinical and mycological analysis of dog's oral cavity

    Directory of Open Access Journals (Sweden)

    Rosema Santin

    2013-01-01

    Full Text Available The oral microbiota of humans and animals is made up of a wide variety of yeasts and bacteria, but microbiota of dogs is not totally described. Although such identification is an important step to establish the etiopathogenesis and adequate therapy for the periodontal disease The aim of this study was to evaluate and correlate oral alterations with the presence of yeasts in oral cavity of female dogs. After clinical evaluation samples from healthy and from dogs with oral diseases were obtained from three different oral sites by swabs, curettes, millimeter periodontal probes and HA membrane tip in cellulose ester. Yeast identification was performed through macroscopic and microscopic colony features and biochemical tests. Dental calculus was the most prevalent occurrence in the oral cavity of 59 females. However, the isolation of yeasts was significantly higher (p < 0.05 in animals suffering from halitosis. Eleven yeast species were identified, namely: Malassezia pachydermatis, Rhodotorula spp., Candida albicans, C. catenulata, C. famata, C. guilliermondii, C. parapsilosis, C. intermedia, Trichosporon asahii, T. mucoides and Cryptococcus albidus. It could be concluded that the yeasts are part of the microbiota from the different sites of the oral cavity of the female canines studied without causing any significant alterations except halitosis.

  3. Identification and characterization of lactic acid bacteria and yeasts of PDO Tuscan bread sourdough by culture dependent and independent methods.

    Science.gov (United States)

    Palla, Michela; Cristani, Caterina; Giovannetti, Manuela; Agnolucci, Monica

    2017-06-05

    Sourdough fermentation has been increasingly used worldwide, in accordance with the demand of consumers for tasty, natural and healthy food. The high diversity of lactic acid bacteria (LAB) and yeast species, detected in sourdoughs all over the world, may affect nutritional, organoleptic and technological traits of leavened baked goods. A wide regional variety of traditional sourdough breads, over 200 types, has been recorded in Italy, including special types selected as worthy of either Protected Geographical Indication (PGI) or Protected Designation of Origin (PDO), whose sourdough microbiota has been functionally and molecularly characterized. As, due to the very recent designation, the microbiota of Tuscan bread sourdough has not been investigated so far, the aim of the present work was to isolate and characterize the species composition of LAB and yeasts of PDO Tuscan bread sourdough by culture-independent and dependent methods. A total of 130 yeasts from WLN medium and 193 LAB from both mMRS and SDB media were isolated and maintained to constitute the germplasm bank of PDO Tuscan bread. Ninety six LAB from mMRS medium and 68 yeasts from WLN medium were randomly selected and molecularly identified by ARDRA (Amplified Ribosomal DNA Restriction Analysis) and PCR-RFLP analysis of the ITS region, respectively, and sequencing. The yeast identity was confirmed by 26S D1/D2 sequencing. All bacterial isolates showed 99% identity with Lactobacillus sanfranciscensis, 65 yeast isolates were identified as Candida milleri, and 3 as Saccharomyces cerevisiae. Molecular characterization of PDO Tuscan bread sourdough by PCR-DGGE confirmed such data. The distinctive tripartite species association, detected as the microbiota characterizing the sourdough used to produce PDO Tuscan bread, encompassed a large number of L. sanfranciscensis and C. milleri strains, along with a few of S. cerevisiae. The relative composition and specific physiological characteristics of such microbiota

  4. Automated extraction of genomic DNA from medically important yeast species and filamentous fungi by using the MagNA Pure LC system.

    Science.gov (United States)

    Loeffler, Juergen; Schmidt, Kathrin; Hebart, Holger; Schumacher, Ulrike; Einsele, Hermann

    2002-06-01

    A fully automated assay was established for the extraction of DNA from clinically important fungi by using the MagNA Pure LC instrument. The test was evaluated by DNA isolation from 23 species of yeast and filamentous fungi and by extractions (n = 28) of serially diluted Aspergillus fumigatus conidia (10(5) to 0 CFU/ml). Additionally, DNA from 67 clinical specimens was extracted and compared to the manual protocol. The detection limit of the MagNA Pure LC assay of 10 CFU corresponded to the sensitivity when DNA was extracted manually; in 9 of 28 runs, we could achieve a higher sensitivity of 1 CFU/ml blood, which was found to be significant (p DNA from all fungal species analyzed could be extracted and amplified by real-time PCR. Negative controls from all MagNA Pure isolations remained negative. Sixty-three clinical samples showed identical results by both methods, whereas in 4 of 67 samples, discordant results were obtained. Thus, the MagNA Pure LC technique offers a fast protocol for automated DNA isolation from numerous fungi, revealing high sensitivity and purity.

  5. Thailandins A and B, New Polyene Macrolactone Compounds Isolated from Actinokineospora bangkokensis Strain 44EHW(T), Possessing Antifungal Activity against Anthracnose Fungi and Pathogenic Yeasts.

    Science.gov (United States)

    Intra, Bungonsiri; Greule, Anja; Bechthold, Andreas; Euanorasetr, Jirayut; Paululat, Thomas; Panbangred, Watanalai

    2016-06-29

    Two new polyene macrolactone antibiotics, thailandins A, 1, and B, 2, were isolated from the fermentation broth of rhizosphere soil-associated Actinokineospora bangkokensis strain 44EHW(T). The new compounds from this strain were purified using semipreparative HPLC and Sephadex LH-20 gel filtration while following an antifungal activity guided fractionation. Their structures were elucidated through spectroscopic techniques including UV, HR-ESI-MS, and NMR. These compounds demonstrated broad spectrum antifungal activity against fungi causing anthracnose disease (Colletotrichum gloeosporioides DoA d0762, Colletotrichum gloeosporiodes DoA c1060, and Colletotrichum capsici DoA c1511) as well as pathogenic yeasts (Candida albicans MT 2013/1, Candida parasilopsis DKMU 434, and Cryptococcus neoformans MT 2013/2) with minimum inhibitory concentrations ranging between 16 and 32 μg/mL. This is the first report of polyene antibiotics produced by Actinokineospora species as bioactive compounds against anthracnose fungi and pathogenic yeast strains.

  6. Is the extraction by Whatman FTA filter matrix technology and sequencing of large ribosomal subunit D1-D2 region sufficient for identification of clinical fungi?

    Science.gov (United States)

    Kiraz, Nuri; Oz, Yasemin; Aslan, Huseyin; Erturan, Zayre; Ener, Beyza; Akdagli, Sevtap Arikan; Muslumanoglu, Hamza; Cetinkaya, Zafer

    2015-10-01

    Although conventional identification of pathogenic fungi is based on the combination of tests evaluating their morphological and biochemical characteristics, they can fail to identify the less common species or the differentiation of closely related species. In addition these tests are time consuming, labour-intensive and require experienced personnel. We evaluated the feasibility and sufficiency of DNA extraction by Whatman FTA filter matrix technology and DNA sequencing of D1-D2 region of the large ribosomal subunit gene for identification of clinical isolates of 21 yeast and 160 moulds in our clinical mycology laboratory. While the yeast isolates were identified at species level with 100% homology, 102 (63.75%) clinically important mould isolates were identified at species level, 56 (35%) isolates at genus level against fungal sequences existing in DNA databases and two (1.25%) isolates could not be identified. Consequently, Whatman FTA filter matrix technology was a useful method for extraction of fungal DNA; extremely rapid, practical and successful. Sequence analysis strategy of D1-D2 region of the large ribosomal subunit gene was found considerably sufficient in identification to genus level for the most clinical fungi. However, the identification to species level and especially discrimination of closely related species may require additional analysis. © 2015 Blackwell Verlag GmbH.

  7. In Vitro Antifungal Susceptibility of Neoscytalidium dimidiatum Clinical Isolates from Malaysia.

    Science.gov (United States)

    James, Jasper Elvin; Santhanam, Jacinta; Lee, Mei Chen; Wong, Choon Xian; Sabaratnam, Parameswari; Yusoff, Hamidah; Tzar, Mohd Nizam; Razak, Mohd Fuat Abdul

    2017-04-01

    Neoscytalidium dimidiatum is an opportunistic fungus causing cutaneous infections mostly, which are difficult to treat due to antifungal resistance. In Malaysia, N. dimidiatum is associated with skin and nail infections, especially in the elderly. These infections may be mistaken for dermatophyte infections due to similar clinical appearance. In this study, Neoscytalidium isolates from cutaneous specimens, identified using morphological and molecular methods (28 Neoscytalidium dimidiatum and 1 Neoscytalidium sp.), were evaluated for susceptibility towards antifungal agents using the CLSI broth microdilution (M38-A2) and Etest methods. Amphotericin B, voriconazole, miconazole and clotrimazole showed high in vitro activity against all isolates with MIC ranging from 0.0313 to 1 µg/mL. Susceptibility towards fluconazole and itraconazole was noted in up to 10% of isolates, while ketoconazole was inactive against all isolates. Clinical breakpoints for antifungal drugs are not yet available for most filamentous fungi, including Neoscytalidium species. However, the results indicate that clinical isolates of N. dimidiatum in Malaysia were sensitive towards miconazole, clotrimazole, voriconazole and amphotericin B, in vitro.

  8. Generic sorting of raft lipids into secretory vesicles in yeast

    DEFF Research Database (Denmark)

    Surma, Michal A; Klose, Christian; Klemm, Robin W

    2011-01-01

    Previous work has showed that ergosterol and sphingolipids become sorted to secretory vesicles immunoisolated using a chimeric, artificial raft membrane protein as bait. In this study, we have extended this analysis to three populations of secretory vesicles isolated using natural yeast plasma...... a complete lipid overview of the yeast late secretory pathway. We could show that vesicles captured with different baits carry the same cargo and have almost identical lipid compositions; being highly enriched in ergosterol and sphingolipids. This finding indicates that lipid raft sorting is a generic...

  9. An interlaboratory comparison of ITS2-PCR for the identification of yeasts, using the ABI Prism 310 and CEQ8000 capillary electrophoresis systems

    Directory of Open Access Journals (Sweden)

    Verschraegen Gerda

    2005-03-01

    Full Text Available Abstract Background Currently, most laboratories identify yeasts routinely on the basis of morphology and biochemical reactivity. This approach has quite often limited discriminatory power and may require long incubation periods. Due to the increase of fungal infections and due to specific antifungal resistence patterns for different species, accurate and rapid identification has become more important. Several molecular techniques have been described for fast and reliable identification of yeast isolates, but interlaboratory exchangeability of identification schemes of molecular techniques has hardly been studied. Here, we compared amplified ITS2 fragment length determination by an ABI Prism 310 (Applied Biosystems, Foster City, Ca. capillary electrophoresis system with that obtained by a CEQ8000 (Beckman Coulter, Fullerton, Ca. capillary electrophoresis system. Results Although ITS2 size estimations on both systems differed and separate libraries had to be constructed for each system, both approaches had the same discriminatory power with regard to the 44 reference strains, identical identifications were obtained for 39/ 40 clinical isolates in both laboratories and strains from 51 samples were correctly identified using CEQ8000, when compared to phenotypic identification. Conclusion Identification of yeasts with ITS2-PCR followed by fragment analysis can be carried out on different capillary electrophoresis systems with comparable discriminatory power.

  10. Molecular identification of clinical Nocardia isolates from India.

    Science.gov (United States)

    Rudramurthy, Shivaprakash M; Honnavar, Prasanna; Kaur, Harsimran; Samanta, Palash; Ray, Pallab; Ghosh, Anup; Chakrabarti, Arunaloke

    2015-10-01

    The epidemiology of nocardiosis is evolving with increasing number of Nocardia spp. causing human infection. In recent years, molecular techniques have been used to identify Nocardia spp. There are limited data available on the spectrum of Nocardia spp. isolated from clinical samples in India. Here, a molecular study was carried on 30 clinical isolates maintained in our National Culture Collection to evaluate the techniques used for identifying the agents. The isolates were identified by sequencing two promising genes: the 16S rRNA gene and hsp65. Both hsp65 and the 16S rRNA gene could reliably identify 90 % of Nocardia isolates, i.e. N. farcinica, N. cyriacigeorgica, N. brasiliensis, N. otitidiscaviarum, N. amamiensis and N. pneumoniae. The mean percentage dissimilarity of sequence identification was higher using the hsp65 gene (4 %, range 0-7.9 %) compared with the 16S rRNA gene (2.3 %, range 0-8.9 %). Two isolates that showed ambiguous results in both the short segment of the 16S rRNA gene and hsp65 sequences could be resolved by sequencing a larger fragment (∼1000 bp) of the 16S rRNA gene. Both of these isolates were identified as N. beijingensis with similarities of 99.8 and 100 % compared with the standard strain. Genotyping of N. cyriacigeorgica strains was performed using hsp65 gene sequences and compared with previously described genotypes. Our N. cyriacigeorgica isolates belonged to genotype 1 (n = 4) and genotype 2 (n = 2). The present study highlights a wide spectrum of Nocardia spp. in India and emphasizes the need for molecular techniques for identification to the species level.

  11. Production of fuel ethanol from molasses by thermotolerant yeast

    International Nuclear Information System (INIS)

    Hamad, S. H.

    2009-01-01

    A thermotolerant strain of the yeast Kluyveromyces marxians, isolated from Kenana sugar factory in the Sudan, was used for the production of ethanol from molasses. Fermentations were carried out in a bioreactor with 10-litre working volume at three temperatures and three sugar concentrations in batch and at one temperature and three feeding rates in fed-batch processes. In the batch fermentations, the best results were obtained at 40 o C and 20% sugar, where a maximum of 9.2% (w/v) ethanol concentration was produced in 30 hours with a yield of 90% of the theoretical and a maximum ethanol specific productivity of 0.65 g per gramme yeast and hour. In the fed-batch process at 40 o C , the best results were obtained at 0.5 1/h feeding rate of a substrate with 400 g/1 sugar. Under such conditions, the yeast produced up to 9.34% (w/v) ethanol with 91.6% of the theoretical yield in 14 hours of fermentation and a maximum specific ethanol productivity of 0.9 g per gramme yeast and hour. (Author)

  12. Yeast: An Overlooked Component of Bactrocera tryoni (Diptera: Tephritidae) Larval Gut Microbiota.

    Science.gov (United States)

    Deutscher, Ania T; Reynolds, Olivia L; Chapman, Toni A

    2017-02-01

    Yeasts, often in hydrolyzed form, are key ingredients in the larval and adult diets of tephritid fruit fly colonies. However, very little is known about the presence or role of yeasts in the diets of tephritid fruit flies in nature. Previous studies have identified bacteria but not detected yeasts in the gut of Queensland fruit fly, Bactrocera tryoni (Froggatt), one of Australia's most economically damaging insect pests of horticultural crops and of significant biosecurity concern domestically and internationally. Here we demonstrate that cultivable yeasts are commonly found in the gut of B. tryoni larvae from fruit hosts. Analysis of the ITS1, 5.8S rRNA gene, and ITS2 sequences of randomly selected isolates identified yeasts and yeast-like fungi of the genera Aureobasidium, Candida, Cryptococcus, Hanseniaspora, Pichia, and Starmerella. The prevalence of these yeasts in fruits suggests that larvae consume the yeasts as part of their diet. This work highlights that yeasts should be considered in future tephritid larval gut microbiota studies. Understanding tephritid-microbial symbiont interactions will lead to improvements in artificial diets and the quality of mass-reared tephritids for the sterile insect technique. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Unraveling the enzymatic basis of wine flavorome: a phylo-functional study of wine related yeast species

    Directory of Open Access Journals (Sweden)

    Ignacio eBelda

    2016-01-01

    Full Text Available Non-Saccharomyces yeasts are a heterogeneous microbial group involved in the early stages of wine fermentation. The high enzymatic potential of these yeasts makes them a useful tool for increasing the final organoleptic characteristics of wines in spite of their low fermentative power. Their physiology and contribution to wine quality are still poorly understood, with most current knowledge being acquired empirically and in most cases based in single species and strains. This work analyzed the metabolic potential of 770 yeast isolates from different enological origins and representing 15 different species, by studying their production of enzymes of enological interest and linking phylogenetic and enzymatic data. The isolates were screened for glycosidase enzymes related to terpene aroma release, the β-lyase activity responsible for the release of volatile thiols, and sulfite reductase. Apart from these aroma-related activities, protease, polygalacturonase and cellulase activities were also studied in the entire yeast collection, being related to the improvement of different technological and sensorial features of wines. In this context, and in terms of abundance, two different groups were established, with α-L-arabinofuranosidase, polygalacturonase and cellulase being the less abundant activities. By contrast, β-glucosidase and protease activities were widespread in the yeast collection studied.A classical phylogenetic study involving the partial sequencing of 26S rDNA was conducted in conjunction with the enzymatic profiles of the 770 yeast isolates for further typing, complementing the phylogenetic relationships established by using 26S rDNA. This has rendered it possible to foresee the contribution different yeast species make to wine quality and their potential applicability as pure inocula, establishing species-specific behavior. These consistent results allowed us to design future targeted studies on the impact different non

  14. [Effects of 33% grapefruit extract on the growth of the yeast--like fungi, dermatopytes and moulds].

    Science.gov (United States)

    Krajewska-Kułak, E; Lukaszuk, C; Niczyporuk, W

    2001-01-01

    Grapefruit seed extract was discovered by Jacob Harich an american immunologist in 1980. Assessment of the influence of grapefruit extract on the yeast-like fungi strains--Candida albicans growth. Material used in this investigation was ATCC test Candida albicans strains no 10231, 200 of Candida albicans strains, 5 of Candida sp. strains isolated from patients with candidiasis symptoms from different ontocenosis and 12 of dermatophytes and moulds isolated from patients. The susceptibility of the Candida was determined by serial dilution method. It seems that 33% grapefruit extract exert a potent antifungal activity against the yeast like fungi strains and had low activity against dermatophytes and moulds. Further studies in vitro and in vivo on greater number of the yeast-like fungi strains and other fungi species are needed.

  15. In situ rheology of yeast biofilms.

    Science.gov (United States)

    Brugnoni, Lorena I; Tarifa, María C; Lozano, Jorge E; Genovese, Diego

    2014-01-01

    The aim of the present work was to investigate the in situ rheological behavior of yeast biofilms growing on stainless steel under static and turbulent flow. The species used (Rhodototula mucilaginosa, Candida krusei, Candida kefyr and Candida tropicalis) were isolated from a clarified apple juice industry. The flow conditions impacted biofilm composition over time, with a predominance of C. krusei under static and turbulent flow. Likewise, structural variations occurred, with a tighter appearance under dynamic flow. Under turbulent flow there was an increase of 112 μm in biofilm thickness at 11 weeks (p < 0.001) and cell morphology was governed by hyphal structures and rounded cells. Using the in situ growth method introduced here, yeast biofilms were determined to be viscoelastic materials with a predominantly solid-like behavior, and neither this nor the G'0 values were significantly affected by the flow conditions or the growth time, and at large deformations their weak structure collapsed beyond a critical strain of about 1.5-5%. The present work could represent a starting point for developing in situ measurements of yeast rheology and contribute to a thin body of knowledge about fungal biofilm formation.

  16. New Lager Brewery Strains Obtained by Crossing Techniques Using Cachaça (Brazilian Spirit) Yeasts

    Science.gov (United States)

    Figueiredo, Bruna Inez Carvalho; Saraiva, Margarete Alice Fontes; de Souza Pimenta, Paloma Patrick; de Souza Testasicca, Miriam Conceição; Sampaio, Geraldo Magela Santos; da Cunha, Aureliano Claret; Afonso, Luis Carlos Crocco; Vieira de Queiroz, Marisa; de Miranda Castro, Ieso

    2017-01-01

    ABSTRACT The development of hybrids has been an effective approach to generate novel yeast strains with optimal technological profile for use in beer production. This study describes the generation of a new yeast strain for lager beer production by direct mating between two Saccharomyces cerevisiae strains isolated from cachaça distilleries: one that was strongly flocculent, and the other with higher production of acetate esters. The first step in this procedure was to analyze the sporulation ability and reproductive cycle of strains belonging to a specific collection of yeasts isolated from cachaça fermentation vats. Most strains showed high rates of sporulation, spore viability, and homothallic behavior. In order to obtain new yeast strains with desirable properties useful for lager beer production, we compare haploid-to-haploid and diploid-to-diploid mating procedures. Moreover, an assessment of parental phenotype traits showed that the segregant diploid C2-1d generated from a diploid-to-diploid mating experiment showed good fermentation performance at low temperature, high flocculation capacity, and desirable production of acetate esters that was significantly better than that of one type lager strain. Therefore, strain C2-1d might be an important candidate for the production of lager beer, with distinct fruit traces and originating using a non-genetically modified organism (GMO) approach. IMPORTANCE Recent work has suggested the utilization of hybridization techniques for the generation of novel non-genetically modified brewing yeast strains with combined properties not commonly found in a unique yeast strain. We have observed remarkable traits, especially low temperature tolerance, maltotriose utilization, flocculation ability, and production of volatile aroma compounds, among a collection of Saccharomyces cerevisiae strains isolated from cachaça distilleries, which allow their utilization in the production of beer. The significance of our research is in

  17. Diversity and adaptive evolution of Saccharomyces wine yeast: a review

    Science.gov (United States)

    Marsit, Souhir; Dequin, Sylvie

    2015-01-01

    Saccharomyces cerevisiae and related species, the main workhorses of wine fermentation, have been exposed to stressful conditions for millennia, potentially resulting in adaptive differentiation. As a result, wine yeasts have recently attracted considerable interest for studying the evolutionary effects of domestication. The widespread use of whole-genome sequencing during the last decade has provided new insights into the biodiversity, population structure, phylogeography and evolutionary history of wine yeasts. Comparisons between S. cerevisiae isolates from various origins have indicated that a variety of mechanisms, including heterozygosity, nucleotide and structural variations, introgressions, horizontal gene transfer and hybridization, contribute to the genetic and phenotypic diversity of S. cerevisiae. This review will summarize the current knowledge on the diversity and evolutionary history of wine yeasts, focusing on the domestication fingerprints identified in these strains. PMID:26205244

  18. Probiotic Properties of Non-Saccharomyces Yeasts

    DEFF Research Database (Denmark)

    Smith, Ida Mosbech

    to harmless luminal substances is a key feature of the intestinal immune system. In this context, dendritic cells (DCs) present in the tissues lining the human gut are central players involved in microbial sensing and shaping of appropriate adaptive immune responses. Probiotics are live microorganisms which...... when administered in adequate amounts confer a health benefit on the host. While the majority of probiotic microorganisms studied to date are lactic acid bacteria, research in yeasts with potentially beneficial influences on human health has mainly revolved around Saccharomyces boulardii. This yeast...... has shown a positive impact on disease outcome in clinical studies of inflammatory bowel disease, indicating an ability of S. boulardii to influence human immune responses underlying intestinal inflammation. Consequent to this focus on S. boulardii as the fundamental probiotic yeast, very little...

  19. Novel Wine Yeast for Improved Utilisation of Proline during Fermentation

    Directory of Open Access Journals (Sweden)

    Danfeng Long

    2018-02-01

    Full Text Available Proline is the predominant amino acid in grape juice, but it is poorly assimilated by wine yeast under the anaerobic conditions typical of most fermentations. Exploiting the abundance of this naturally occurring nitrogen source to overcome the need for nitrogen supplementation and/or the risk of stuck or sluggish fermentations would be most beneficial. This study describes the isolation and evaluation of a novel wine yeast isolate, Q7, obtained through ethyl methanesulfonate (EMS mutagenesis. The utilisation of proline by the EMS isolate was markedly higher than by the QA23 wild type strain, with approximately 700 and 300 mg/L more consumed under aerobic and self-anaerobic fermentation conditions, respectively, in the presence of preferred nitrogen sources. Higher intracellular proline contents in the wild type strain implied a lesser rate of proline catabolism or incorporation by this strain, but with higher cell viability after freezing treatment. The expression of key genes (PUT1, PUT2, PUT3, PUT4, GAP1 and URE2 involved in proline degradation, transport and repression were compared between the parent strain and the isolate, revealing key differences. The application of these strains for efficient conduct for nitrogen-limited fermentations is a possibility.

  20. Antifungal activity of oligochitosans (short chain chitosans) against some Candida species and clinical isolates of Candida albicans: molecular weight-activity relationship.

    Science.gov (United States)

    Kulikov, Sergey N; Lisovskaya, Svetlana A; Zelenikhin, Pavel V; Bezrodnykh, Evgeniya A; Shakirova, Diana R; Blagodatskikh, Inesa V; Tikhonov, Vladimir E

    2014-03-03

    A series of oligochitosans (short chain chitosans) prepared by acidic hydrolysis of chitosan and characterized by their molecular weight, polydispersity and degree of deacetylation were used to determine their anticandidal activities. This study has demonstrated that oligochitosans show a high fungistatic activity (MIC 8-512 μg/ml) against Candida species and clinical isolates of Candida albicans, which are resistant to a series of classic antibiotics. Flow cytometry analysis showed that oligochitosan possessed a high fungicidal activity as well. For the first time it was shown that even sub-MIC oligochitosan concentration suppressed the formation of C. albicans hyphal structures, cause severe cell wall alterations, and altered internal cell structure. These results indicate that oligochitosan should be considered as a possible alternative/additive to known anti-yeast agents in pharmaceutical compositions. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. Heterotrimeric G Protein-coupled Receptor Signaling in Yeast Mating Pheromone Response.

    Science.gov (United States)

    Alvaro, Christopher G; Thorner, Jeremy

    2016-04-08

    The DNAs encoding the receptors that respond to the peptide mating pheromones of the budding yeastSaccharomyces cerevisiaewere isolated in 1985, and were the very first genes for agonist-binding heterotrimeric G protein-coupled receptors (GPCRs) to be cloned in any organism. Now, over 30 years later, this yeast and its receptors continue to provide a pathfinding experimental paradigm for investigating GPCR-initiated signaling and its regulation, as described in this retrospective overview. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. COMPARATIVE ASSESSMENT OF THE LABORATORY SELECTED AND ACTIVE DRIED SACCHAROMYCES CEREVISIAE YEAST CULTURE IN BIOTECHNOLOGY OF THE BRANDY PRODUCTION

    Directory of Open Access Journals (Sweden)

    Bayraktar V.N.

    2015-04-01

    Full Text Available Samples from different industrial grape cultivars were collected during the vintage season from the vineyard of the winery (the «Shabo» winery Company, located in the Odesa region, Ukraine. The following industrial cultivars of grapes were selected for the research: Chardonnay, Cabernet Sauvignon, Merlot, Sauvignon, Riesling Rhenish, Aligote, Rkatsiteli, Bastardo, Traminer, Telti Kuruk, Grinosh. The grape cultivars were cultivated on the sandy soils in the district located between the Black Sea and the Dnestrovsky estuary. Grape must derived from different grape cultivars was placed into sterile glass flasks to half of the 450ml flask volume. Each flask was carefully closed with a rubber stopper with an injection needle in it. During the fermentation process, it was necessary to remove carbon dioxide, which was present as a result of active anaerobic fermentation processes in the grape must. At the end of grape must fermentation, pure yeast cultures were isolated using traditional microbiological methods by consistent inoculation of a sample into a Petri dish with a few modifications of nutrient selective agar for yeast isolation and cultivation. Primary yeast isolation was carried out using Inhibitory Mold Agar medium (Becton Dickinson Company, USA. The yeast culture morphological properties were analyzed after the primary yeast culture isolation. Yeasts were identified by polymerase chain reaction (PCR using universal yeast primers. After yeast culture identification, the next step in yeast cultivation was carried out on Wort Agar medium (Becton Dickinson Company, USA. Each isolated, and identified yeast culture was deposited in the Genebank of Japan, MAFF culture Collection, Tsukuba, Ibaraki, Japan and (NCYC - Yeast Culture Collection (National Collection of Yeast Cultures, Institute of Food Research, Norwich, United Kingdom. Each yeast culture was tested for technological characteristics such as growth resistance to high temperature (+42

  3. Diversity of yeast strains of the genus Hanseniaspora in the winery environment: What is their involvement in grape must fermentation?

    Science.gov (United States)

    Grangeteau, Cédric; Gerhards, Daniel; Rousseaux, Sandrine; von Wallbrunn, Christian; Alexandre, Hervé; Guilloux-Benatier, Michèle

    2015-09-01

    Isolated yeast populations of Chardonnay grape must during spontaneous fermentation were compared to those isolated on grape berries and in a winery environment before the arrival of the harvest (air, floor, winery equipment) and in the air through time. Two genera of yeast, Hanseniaspora and Saccharomyces, were isolated in grape must and in the winery environment before the arrival of the harvest but not on grape berries. The genus Hanseniaspora represented 27% of isolates in the must and 35% of isolates in the winery environment. The isolates of these two species were discriminated at the strain level by Fourier transform infrared spectroscopy. The diversity of these strains observed in the winery environment (26 strains) and in must (12 strains) was considerable. 58% of the yeasts of the genus Hanseniaspora isolated in the must corresponded to strains present in the winery before the arrival of the harvest. Although the proportion and number of strains of the genus Hanseniaspora decreased during fermentation, some strains, all from the winery environment, subsisted up to 5% ethanol content. This is the first time that the implantation in grape must of populations present in the winery environment has been demonstrated for a non-Saccharomyces genus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Quinolones Resistance And R-Plasmids Of Clinical Isolates Of ...

    African Journals Online (AJOL)

    Background: There has been reported incidence in the emergence of. Quinolones resistance in clinical isolates in Nigeria and the level in resistance has been on the increase. Objective: To determine the antimicrobial resistance patterns and plasmids profiles of 67 clinical Pseudomonas species from a teaching hospital ...

  5. Candida auris: emergence and epidemiology of a highly pathogenic yeast

    Directory of Open Access Journals (Sweden)

    Paula Slomp Santos

    2017-09-01

    Full Text Available Candida auris is a multidrug-resistant emerging yeast, which was responsible for healthcare-associated infection outbreaks, and was cataloged as a new species in 2009, after being isolated from a patient’s ear canal secretion in Japan. Since the notification of this first occurrence, numerous cases have been reported throughout the world, including Brazil. C. auris affects mainly inpatients, patients in intensive care units, exposed to broad-spectrum antifungal medications and who make use of vascular catheters. Currently, this yeast is one of the main responsible for invasive infections in hospitals and has been cause of concern by authorities and organs due to its rapid dissemination and difficult treatment caused by its low susceptibility to antifungal agents traditionally used in clinical practice. As a contributor to the severity of infections associated with C. auris, the transmission mechanism is still unknown, which implies in a lack of control of the microorganism and high mortality rates. Thus, this literature review presents relevant information in order to alert the importance of C. auris as an etiological agent of systemic infections, as well as its epidemiology and the real challenges of the treatment. Keywords: Candida auris; candidiasis; candidemia; multidrug-resistance; biofilm; epidemiology; diagnosis

  6. Antibiotic Susceptibilities and Serotyping of Clinical Streptococcus Agalactiae Isolates

    Directory of Open Access Journals (Sweden)

    Altay Atalay

    2011-11-01

    Full Text Available Objective: Streptococcus agalactiae (Group B streptococci, GBS are frequently responsible for sepsis and meningitis seen in the early weeks of life. GBS may cause perinatal infection and premature birth in pregnant women. The aim of this study was to serotype GBS strains isolated from clinical samples and evaluate their serotype distribution according to their susceptibilities to antibiotics and isolation sites. Material and Methods: One hundred thirty one S. agalactiae strains isolated from the clinical samples were included in the study. Of the strains, 99 were isolated from urine, 20 from soft tissue, 10 from blood and 2 from vaginal swab. Penicillin G and ceftriaxone susceptibilities of GBS were determined by the agar dilution method. Susceptibilities to erythromycin, clindamycin, vancomycin and tetracycline were determined by the Kirby-Bauer method according to CLSI criteria. Serotyping was performed using the latex aglutination method using specific antisera (Ia, Ib, II-VIII. Results: While in 131 GBS strains, serotypes VII and VIII were not detected, the most frequently isolated serotypes were types Ia (36%, III (30.5% and II (13% respectively. Serotype Ia was the most frequently seen serotype in all samples. All GBS isolates were susceptible to penicilin G, ceftriaxone and vancomycin. Among the strains, tetracycline, erythromycin and clindamycin resistance rates were determined as 90%, 14.5%, and 13% respectively. Conclusion: Penicillin is still the first choice of treatment for the infections with all serotypes of S. agalactiae in Turkey.

  7. Lactic acid bacteria and yeasts associated with gowé production from sorghum in Bénin

    DEFF Research Database (Denmark)

    Vieira-Dalodé, G.; Jespersen, Lene; Hounhouigan, J.

    2007-01-01

    confusa, Lactobacillus mucosae, Pediococcus acidilactici, Pediococcus pentosaceus and Weissella kimchii. DNA from 200 strains of yeasts was amplified and the D1/D2 domain of the 26S rRNA gene was sequenced for selected isolates, revealing that the yeasts species were Kluyveromyces marxianus, Pichia...... at different fermentation times. DNA amplification by internal transcribed spacer-polymerase chain reaction of 288 lactic acid bacteria (LAB) isolates and 16S rRNA gene sequencing of selected strains revealed that the dominant LAB responsible for gowé fermentation were Lactobacillus fermentum, Weissella...

  8. A survey of yeast from the Yarrowia clade for lipid production in dilute-acid pretreated lignocellulosic biomass hydrolysate

    Science.gov (United States)

    Yarrowia lipolytica is an oleaginous yeast species that has attracted attention as a model organism for synthesis of single cell oil. Among over 50 isolates of Y. lipolytica identified, only a few of the strains have been studied extensively. Furthermore, 12 other yeast species were recently assigne...

  9. Variation in Microbial Identification System accuracy for yeast identification depending on commercial source of Sabouraud dextrose agar.

    Science.gov (United States)

    Kellogg, J A; Bankert, D A; Chaturvedi, V

    1999-06-01

    The accuracy of the Microbial Identification System (MIS; MIDI, Inc. ) for identification of yeasts to the species level was compared by using 438 isolates grown on prepoured BBL Sabouraud dextrose agar (SDA) and prepoured Remel SDA. Correct identification was observed for 326 (74%) of the yeasts cultured on BBL SDA versus only 214 (49%) of yeasts grown on Remel SDA (P < 0.001). The commercial source of the SDA used in the MIS procedure significantly influences the system's accuracy.

  10. Rheological Properties, Water-Holding and Oil-Binding Capacities of Particulate β-Glucans Isolated from Spent Brewer’s Yeast by Three Different Procedures

    Directory of Open Access Journals (Sweden)

    Vlatka Petravić-Tominac

    2011-01-01

    Full Text Available Particulate β-glucans were isolated from brewer’s yeast using three different procedures – alkaline (A, alkaline-acidic (AA and alkaline-acidic with mannoprotein removal (AAM and dried using three different methods – air drying (AD, lyophilization (L and spray drying (SD. In this work, the obtained β-glucan preparations were tested for their microstructure, rheological properties, swelling, water-holding and oil-binding capacities. According to their rheological properties, suspensions containing 1 and 2 % (by mass of spray-dried samples belong to the category of dilatant fluids. Among the spray-dried samples, rheological behaviour and water-holding capacity of the preparation AA-SD differed from those obtained by other two procedures (A-SD and AAM-SD. Concerning different drying methods applied, swelling was the lowest in the lyophilized samples and the most pronounced in the air-dried ones. Oil-binding capacity was the highest in the lyophilized preparations and increased proportionally to the number of processing steps applied in the isolation procedure.

  11. Lipid Metabolic Versatility in Malassezia spp. Yeasts Studied through Metabolic Modeling

    NARCIS (Netherlands)

    Triana, Sergio; de Cock, Hans; Ohm, Robin A; Danies, Giovanna; Wösten, Han A B; Restrepo, Silvia; González Barrios, Andrés F; Celis Ramirez, Adriana

    2017-01-01

    Malassezia species are lipophilic and lipid-dependent yeasts belonging to the human and animal microbiota. Typically, they are isolated from regions rich in sebaceous glands. They have been associated with dermatological diseases such as seborrheic dermatitis, pityriasis versicolor, atopic

  12. Processing of nonedible plant wastes to obtain furfural and yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Golowin, W.W.

    1977-01-01

    The technology of furfural and yeast production from hydrolyzates of wastes from the food and wood-processing industries is detailed. For furfural manufacturing, the pentosan-containing raw material is treated with H/sub 2/SO/sub 4/ and steam-hydrolyzed, the furfural-containing vapors are condensed and separated from non-condensing gases, and the furfural is isolated from the condensate, purified and stabilized. After the furfural hydrolysis, the pressure is decreased from 3 to 1.2 atm, a 0.5% H/sub 2/SO/sub 4/ solution is added, and a hexose-containing hydrolyzate is transferred for neutralization and yeast culturing.

  13. Phenotypic evaluation and characterization of 21 industrial Saccharomyces cerevisiae yeast strains.

    Science.gov (United States)

    Kong, In Iok; Turner, Timothy Lee; Kim, Heejin; Kim, Soo Rin; Jin, Yong-Su

    2018-02-01

    Microorganisms have been studied and used extensively to produce value-added fuels and chemicals. Yeasts, specifically Saccharomyces cerevisiae, receive industrial attention because of their well-known ability to ferment glucose and produce ethanol. Thousands of natural or genetically modified S. cerevisiae have been found in industrial environments for various purposes. These industrial strains are isolated from industrial fermentation sites, and they are considered as potential host strains for superior fermentation processes. In many cases, industrial yeast strains have higher thermotolerance, increased resistances towards fermentation inhibitors and increased glucose fermentation rates under anaerobic conditions when compared with laboratory yeast strains. Despite the advantages of industrial strains, they are often not well characterized. Through screening and phenotypic characterization of commercially available industrial yeast strains, industrial fermentation processes requiring specific environmental conditions may be able to select an ideal starting yeast strain to be further engineered. Here, we have characterized and compared 21 industrial S. cerevisiae strains under multiple conditions, including their tolerance to varying pH conditions, resistance to fermentation inhibitors, sporulation efficiency and ability to ferment lignocellulosic sugars. These data may be useful for the selection of a parental strain for specific biotechnological applications of engineered yeast. © FEMS 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. MICROSCOPIC FUNGI ISOLATED FROM POLISH HONEY

    Directory of Open Access Journals (Sweden)

    Soňa Felšöciová

    2012-12-01

    Full Text Available The characterization of some honey samples from Poland was carried out on the basis of their microbiological (fungi and yeasts analysis. Most of the samples contained less than 20 % water. The amount of fungi found in the honey samples was less than 1 x 102 CFU.g-1 but 19 % of the samples had more yeasts than 1 x 102 CFU.g-1 – up to 5.7 x 102 CFU.g-1. The isolated fungi were Alternaria spp., Aspergillus spp., Cladosporium spp., Fusarium spp., Mycelia sterilia, Rhizopus spp. and Penicillium spp. The last genus was isolated very frequently. A total number of eight fungal Penicillium species were identified namely, Penicillium brevicompactum, P. commune, P. corylophilum, P. crustosum, P. expansum, P. griseofulvum, P. chrysogenum and P. polonicum. They were isolated using dilution plate method. The results showed that honeys produced in this region are of good microbiological quality.

  15. Performance assessment of two lysis methods for direct identification of yeasts from clinical blood cultures using MALDI-TOF mass spectrometry.

    Science.gov (United States)

    Jeddi, Fakhri; Yapo-Kouadio, Gisèle Cha; Normand, Anne-Cécile; Cassagne, Carole; Marty, Pierre; Piarroux, Renaud

    2017-02-01

    In cases of fungal infection of the bloodstream, rapid species identification is crucial to provide adapted therapy and thereby ameliorate patient outcome. Currently, the commercial Sepsityper kit and the sodium-dodecyl sulfate (SDS) method coupled with MALDI-TOF mass spectrometry are the most commonly reported lysis protocols for direct identification of fungi from positive blood culture vials. However, the performance of these two protocols has never been compared on clinical samples. Accordingly, we performed a two-step survey on two distinct panels of clinical positive blood culture vials to identify the most efficient protocol, establish an appropriate log score (LS) cut-off, and validate the best method. We first compared the performance of the Sepsityper and the SDS protocols on 71 clinical samples. For 69 monomicrobial samples, mass spectrometry LS values were significantly higher with the SDS protocol than with the Sepsityper method (P < .0001), especially when the best score of four deposited spots was considered. Next, we established the LS cut-off for accurate identification at 1.7, based on specimen DNA sequence data. Using this LS cut-off, 66 (95.6%) and 46 (66.6%) isolates were correctly identified at the species level with the SDS and the Sepsityper protocols, respectively. In the second arm of the survey, we validated the SDS protocol on an additional panel of 94 clinical samples. Ninety-two (98.9%) of 93 monomicrobial samples were correctly identified at the species level (median LS = 2.061). Overall, our data suggest that the SDS method yields more accurate species identification of yeasts, than the Sepsityper protocol. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Clotrimazole is highly effective in vitro against feline Sporothrix brasiliensis isolates.

    Science.gov (United States)

    Gagini, Thalita; Borba-Santos, Luana Pereira; Messias Rodrigues, Anderson; Pires de Camargo, Zoilo; Rozental, Sonia

    2017-11-01

    Sporothrix brasiliensis, the most virulent species in the Sporothrix schenckii complex, is responsible for the ongoing epidemics of human and animal sporotrichosis in Brazil. Feline outbreaks are usually driven by S. brasiliensis and followed by extensive transmission to humans. Itraconazole is the first-line treatment for both feline and human sporotrichosis; however, reduced sensitivity is an emerging issue. Thus, we investigated the effect of the widely used antifungal clotrimazole - alone or in combination with itraconazole - against the pathogenic (yeast) form of feline and human S. brasiliensis isolates, in vitro. Minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values were determined for treatment with clotrimazole and itraconazole, as monotherapy or in combination. In addition, the effect of the drugs on neutral lipid levels and the yeast ultrastructure were evaluated by flow cytometry and transmission electron microscopy (TEM), respectively. The MIC and MFC values show that clotrimazole was more effective than itraconazole against feline S. brasiliensis isolates, while human isolates were more sensitive to itraconazole. Similarly to itraconazole, treatment with clotrimazole induced statistically significant neutral lipid accumulation in S. brasiliensis yeasts, and treated yeasts displayed irregularities in the cell membrane and a thicker cell wall when observed by TEM. Clotrimazole increased the antifungal activity of itraconazole in combination assays, with a synergistic effect for two feline isolates. The strong activity of clotrimazole against feline S. brasiliensis isolates suggests that this drug is potentially a new alternative for the treatment of feline sporotrichosis, alone or in combination with itraconazole.

  17. Physicochemical and microbiological study of “shmen”, a traditional butter made from camel milk in the Sahara (Algeria: isolation and identification of lactic acid bacteria and yeasts

    Directory of Open Access Journals (Sweden)

    Mourad, Kacem

    2006-06-01

    Full Text Available Microorganisms (aerobic bacteria, coliforms, lactic acid bacteria, psychrotrophs, lipolytic bacteria and yeasts were isolated from 20 samples of shmen, a traditional clarified butter made from sour camel milk in the Algerian Sahara. The values of pH, titratable acidity, NaCl, total solid, moisture, and fat content ranged from : 3.11-4.97, 0.19-0.36%, 1.04-2.15%, 64.03-65.11%, 34.40-34.99%, and 49.90-56% respectively. A total of 181 isolates of lactic acid bacteria were identified as Lactobacillus plantarum (40 strains, Lactobacillus delbrueckii ssp. bulgaricus (35 strains, Lactococcus lactis ssp. lactis biovar diacetylacti (22 strains, Lactococcus lactis ssp. cremoris (18 strains, Lactobacillus paracasei ssp. paracasei (10 strains, Leuconostoc pseudomesenteroides (9 strains and Leuconostoc gelidum (12 strains Enterococcus faecium (35 strains. Yeasts were isolated from all samples (55 isolates. Of these, 40 were identified as Saccharomyces cerevisiae and 15 isolates were identified as Saccharomyces sp.Se aislaron los microorganismos (bacterias aeróbicas, coliformes, bacterias acido lácticas, bacterias lipolíticas y levaduras de 20 muestras de “shmen”, una matequilla tradicional del Sahara argelino hecha a partir de leche de camella. Los valores de pH, acidez, libre, Nacl, solidos totales, humedad y grasa oscilaron entre 3,11-4,97, 0,19-0,36%, 1.04-2,15%, 64,03-65,11%, 34,40-34,99% y 49,90-56,00%, respectivamente. Entre los 181 cultivos puros de bacterias lácticas se identificaron Lactobacillus plantarum (40 cepas, Lactobacillus delbrueckii ssp. bulgaricus (35 cepas, Lactococcus lactis ssp. lactis biovar diacetylacti (22 cepas, Lactococcus lactis ssp. cremoris (18 cepas, Lactobacillus paracasei ssp. paracasei (10 cepas, Leuconostoc pseudomesenteroides (9 cepas and Leuconostoc gelidum (12cepas Enterococcus faecium (35 cepas. Asimismo, se detectaron levaduras en todas las muestras (55 cultivos puros. De estos, 40 se identificaron como

  18. Detection of Polish clinical Aspergillus fumigatus isolates resistant to triazoles

    DEFF Research Database (Denmark)

    Nawrot, Urszula; Kurzyk, Ewelina; Arendrup, Maiken Cavling

    2018-01-01

    We studied the presence of triazole resistance of 121 Aspergillus fumigatus clinical isolates collected in two Polish cities, Warsaw and Wrocław, to determine if resistance is emerging in our country. We identified five itraconazole resistant isolates (4.13%) carrying the TR34/L98H alteration...

  19. Genome analysis of environmental and clinical P. aeruginosa isolates from sequence type-1146.

    Directory of Open Access Journals (Sweden)

    David Sánchez

    Full Text Available The genomes of Pseudomonas aeruginosa isolates of the new sequence type ST-1146, three environmental (P37, P47 and P49 and one clinical (SD9 isolates, with differences in their antibiotic susceptibility profiles have been sequenced and analysed. The genomes were mapped against P. aeruginosa PAO1-UW and UCBPP-PA14. The allelic profiles showed that the highest number of differences were in "Related to phage, transposon or plasmid" and "Secreted factors" categories. The clinical isolate showed a number of exclusive alleles greater than that for the environmental isolates. The phage Pf1 region in isolate SD9 accumulated the highest number of nucleotide substitutions. The ORF analysis of the four genomes assembled de novo indicated that the number of isolate-specific genes was higher in isolate SD9 (132 genes than in isolates P37 (24 genes, P47 (16 genes and P49 (21 genes. CRISPR elements were found in all isolates and SD9 showed differences in the spacer region. Genes related to bacteriophages F116 and H66 were found only in isolate SD9. Genome comparisons indicated that the isolates of ST-1146 are close related, and most genes implicated in pathogenicity are highly conserved, suggesting a genetic potential for infectivity in the environmental isolates similar to the clinical one. Phage-related genes are responsible of the main differences among the genomes of ST-1146 isolates. The role of bacteriophages has to be considered in the adaptation processes of isolates to the host and in microevolution studies.

  20. Increased cefepime MIC for enterobacteriacae clinical isolates.

    Science.gov (United States)

    Najafi, Narges; Alikhani, Ahmad; Babamahmoudi, Farhang; Davoudi, Alireza; Ghasemiyan, Roya; Aliyan, Shahriar; Shoujaiifar, Arman

    2013-01-01

    Background : Cefepime was used as empirical treatment in ventilator-associated pneumonia (VAP) induced by gram-negative and gram-positive bacteria. This study aimed to determine the antimicrobial susceptibility pattern of cefepime against microorganism causing VAP in Mazandaran, North of Iran. This study was performed on VAP patients diagnosed with clinical pulmonary infection score (CPIS) scores in ICU of two hospitals. For each patient suspected of having VAP, quantitative culture of endotracheal aspiration (QEA) was performed and MIC was determined by micro dilution test. Data were collected and analyzed. Thirty- five cases of enterobacteriaceae were isolated orderly including E coli 13, P. aeruginosa 11, Enterobacter 7 and K. pneumonia 4 cases. All the isolated E. coli, Enterobacter and Klebsiella, 54.5% of P. aeruginosa isolated were fully resistant to cefepime. The results of this study show that cefepime is not a reasonable choice for empirical treatment of nosocomial pneumonia and VAP.

  1. Characterization of Burkholderia rhizoxinica and B. endofungorum isolated from clinical specimens.

    Directory of Open Access Journals (Sweden)

    Jay E Gee

    Full Text Available Eight isolates submitted to CDC from 1989 to 2006 from clinical specimens were initially identified as members of the genus Burkholderia based on preliminary cellular fatty acid analysis and/or 16S rRNA gene sequencing. With the recent descriptions of the new species B. rhizoxinica and B. endofungorum, which are considered endosymbiotic bacteria in Rhizopus microsporus fungi, we now identify seven of these clinical isolates as B. rhizoxinica and one as B. endofungorum based on biochemical testing, 16s rRNA, and DNA-DNA hybridization results. We also further characterize these isolates by assessing toxin production and/or by multiple locus sequence typing.

  2. Biofilm formation by clinical isolates and the implications in chronic infections

    Directory of Open Access Journals (Sweden)

    Sanchez Carlos J

    2013-01-01

    Full Text Available Abstract Background Biofilm formation is a major virulence factor contributing to the chronicity of infections. To date few studies have evaluated biofilm formation in infecting isolates of patients including both Gram-positive and Gram-negative multidrug-resistant (MDR species in the context of numerous types of infectious syndromes. Herein, we investigated the biofilm forming capacity in a large collection of single patient infecting isolates and compared the relationship between biofilm formation to various strain characteristics. Methods The biofilm-forming capacity of 205 randomly sampled clinical isolates from patients, collected from various anatomical sites, admitted for treatment at Brooke Army Medical Center (BAMC from 2004–2011, including methicillin-resistant/methicillin susceptible Staphylococcus aureus (MRSA/MSSA (n=23, Acinetobacter baumannii (n=53, Pseudomonas aeruginosa (n=36, Klebsiella pneumoniae (n=54, and Escherichia coli (n=39, were evaluated for biofilm formation using the high-throughput microtiter plate assay and scanning electron microscopy (SEM. Relationships between biofilm formation to clonal type, site of isolate collection, and MDR phenotype were evaluated. Furthermore, in patients with relapsing infections, serial strains were assessed for their ability to form biofilms in vitro. Results Of the 205 clinical isolates tested, 126 strains (61.4% were observed to form biofilms in vitro at levels greater than or equal to the Staphylococcus epidermidis, positive biofilm producing strain, with P. aeruginosa and S. aureus having the greatest number of biofilm producing strains. Biofilm formation was significantly associated with specific clonal types, the site of isolate collection, and strains positive for biofilm formation were more frequently observed to be MDR. In patients with relapsing infections, the majority of serial isolates recovered from these individuals were observed to be strong biofilm producers in vitro

  3. Evaluating the probiotic and therapeutic potentials of Saccharomyces cerevisiae strain (OBS2) isolated from fermented nectar of toddy palm.

    Science.gov (United States)

    Srinivas, Banoth; Rani, Ganapathiwar Swarupa; Kumar, Bhukya Kiran; Chandrasekhar, Banoth; Krishna, Kommalapati Vamsi; Devi, Tangutur Anjana; Bhima, Bhukya

    2017-12-01

    The purpose of this study is to evaluate the probiotic characteristics of 15 yeast strains isolated from nectar of toddy palm. Initially, the collected samples were inoculated on yeast extract peptone dextrose agar plates and the colonies so obtained were culturally and morphologically characterized. Commercial probiotic yeast, Saccharomyces boulardii served as the control in these experiments. Of the 15 yeast strains, the isolates that were resistant to antibiotics and worked synergistically with other cultures were considered for further evaluation. Selected isolates were evaluated in vitro for tolerance to simulated gastrointestinal conditions such as temperature, pH, bile and gastric juice. Further the yeast isolates were evaluated for their pathogenicity and adherence to intestinal epithelial cells. The 2 yeast isolates with efficient probiotic properties were finally characterized by sequencing their 5.8 S rRNA and partial sequences of internal transcribed spacer 1 and 2. The sequences were BLAST searched in the National Center for Biotechnology Information, nucleic acid database for sequence similarity of organisms and phylogenetic evolutionary analysis was carried out. Based on maximum similarity of basic local alignment search tool results, organisms were characterized as Pichia kudriavzevii OBS1 (100%) and Saccharomyces cerevisiae OBS2 (96%) and sequences were finally deposited in the GenBank data library. Among these two isolates, S. cerevisiae OBS2 displayed slight/moderate antioxidant and anticancer property. Hence, strain OBS2 can be utilized and explored as a potential probiotic for therapeutic applications.

  4. Characterization of bacteriophages infecting clinical isolates of Pseudomonas aeruginosa stored in a culture collection

    Directory of Open Access Journals (Sweden)

    C.C.S. Zanetti

    2013-08-01

    Full Text Available Some clinical isolates of Pseudomonas aeruginosa stored in our culture collection did not grow or grew poorly and showed lysis on the culture plates when removed from the collection and inoculated on MacConkey agar. One hypothesis was that bacteriophages had infected and killed those clinical isolates. To check the best storage conditions to maintain viable P. aeruginosa for a longer time, clinical isolates were stored at various temperatures and were grown monthly. We investigated the presence of phage in 10 clinical isolates of P. aeruginosa stored in our culture collection. Four strains of P. aeruginosa were infected by phages that were characterized by electron microscopy and isolated to assess their ability to infect. The best condition to maintain the viability of the strains during storage was in water at room temperature. Three Siphoviridae and two Myoviridae phages were visualized and characterized by morphology. We confirmed the presence of bacteriophages infecting clinical isolates, and their ability to infect and lyse alternative hosts. Strain PAO1, however, did not show lysis to any phage. Mucoid and multidrug resistant strains of P. aeruginosa showed lysis to 50% of the phages tested.

  5. [Inhibitory effects of butyl alcohol extract of Baitouweng decoction on yeast-to-hyphae transition of Candida albicans isolates from VVC in alkaline pH environment].

    Science.gov (United States)

    Zhang, Meng-xiang; Xia, Dan; Shi, Gao-xiang; Shao, Jing; Wang, Tian-ming; Tang, Chuan-chao; Wang, Chang-zhong

    2015-02-01

    To investigate the effects of butyl alcohol extract of Baitouweng decoction ( BAEB) on yeast-to-hyphae transition of Candida albicans isolates from vulvovaginal candidiasis (VVC) in alkaline pH. Serial 2-fold dilution assay was used to determine the minimal inhibitory concentrations (MICs) of Baitouweng decoction extracts against C. albicans isolates from VVC, XTT assay was applied to determine the metabolic activity of C. albicans hypha treated by BAEB for 6 h. The morphological change of C. albicans treated by BAEB was inspected at different pH by inverted microscope, fluorescence microscope, scanning electron microscopy (SEM). Solid agar plate and semi-solid agar were utilized to evaluate colony morphology and invasive growth of C. albicans, respectively. Quantitative Real-time PCR (qRT-PCR) was adopted to observe the expressions of hyphae-specific genes including HWP1, ALS3, CSH1, SUN41 and CaPDE2. The MIC of BAEB against C. albicans is less than that of other extracts; hyphae grow best at pH 8. 0; 512 mg · L(-1) and 1,024 mg · L(-1) BAEB could inhibit formation of hyphae and influence colony morphology. When treated by 512 mg · L(-1) and 1,024 mg · L(-1) BAEB, the colonies became smooth; while by 0 and 256 mg · L(-1) BAEB, the colonies became wrinkled. In semi-solid agar, the length of hyphae decreased steadily as the concentration of BAEB lowered. The expression of HWP1, ALS3, CSHl, SUN41 were downregulated by 5.12, 4.26, 3.2 and 2.74 folds, and CaPDE2 was upregulated by 2.38 fold. BAEB could inhibit yeast-to-hyphae transition of C. albicans isolates from VVC in alkaline pH.

  6. Yeasts and coliform bacteria of water accumulated in bromeliads of mangrove and sand dune ecosystems of southeast Brazil.

    Science.gov (United States)

    Hagler, A N; Rosa, C A; Morais, P B; Mendonça-Hagler, L C; Franco, G M; Araujo, F V; Soares, C A

    1993-10-01

    Yeasts and coliform bacteria were isolated from water that accumulated in the central cups and adjacent leaf axilae of two bromeliads, Neoregelia cruenta of a coastal sand dune and Quesnelia quesneliana of a mangrove ecosystem near the city of Rio de Janeiro, Brazil. The mean total coliform counts were above 10,000 per 100 mL for waters of both plants, but the mean fecal coliform counts were only 74 per 100 mL for Q. quesneliana and mostly undetected in water from N. cruenta. Of 90 fecal coliform isolates, 51 were typical of Escherichia coli in colony morphology and indol, methyl red, Volges-Proskauer, and citrate (IMViC) tests. Seven representatives of the typical E. coli cultures were identified as this species, but the identifications of nine other coliform bacteria were mostly dubious. The yeast community of N. cruenta was typical of plant surfaces with basidiomycetous yeasts anamorphs, and the black yeast Aureobasidium pullulans was prevalent. Quesnelia quesneliana had a substantial proportion of ascomycetous yeasts and their anamorphs, including a probable new biotype of Saccharomyces unisporus. Our results suggested that the microbial communities in bromeliad waters are typically autochtonous and not contaminants.

  7. Variation in Microbial Identification System Accuracy for Yeast Identification Depending on Commercial Source of Sabouraud Dextrose Agar

    OpenAIRE

    Kellogg, James A.; Bankert, David A.; Chaturvedi, Vishnu

    1999-01-01

    The accuracy of the Microbial Identification System (MIS; MIDI, Inc.) for identification of yeasts to the species level was compared by using 438 isolates grown on prepoured BBL Sabouraud dextrose agar (SDA) and prepoured Remel SDA. Correct identification was observed for 326 (74%) of the yeasts cultured on BBL SDA versus only 214 (49%) of yeasts grown on Remel SDA (P < 0.001). The commercial source of the SDA used in the MIS procedure significantly influences the system’s accuracy.

  8. [Yeast urinary tract infections. Multicentre study in 14 hospitals belonging to the Buenos Aires City Mycology Network].

    Science.gov (United States)

    Maldonado, Ivana; Arechavala, Alicia; Guelfand, Liliana; Relloso, Silvia; Garbasz, Claudia

    2016-01-01

    Urinary tract infections are a frequent ailment in patients in intensive care units. Candida and other yeasts cause 5-12% of these infections. The value of the finding of any yeast is controversial, and there is no consensus about which parameters are adequate for differentiating urinary infections from colonization or contamination. To analyse the epidemiological characteristics of patients with funguria, to determine potential cut-off points in cultures (to distinguish an infection from other conditions), to identify the prevalent yeast species, and to determine the value of a second urine sample. A multicentre study was conducted in intensive care units of 14 hospitals in the Buenos Aires City Mycology Network. The first and second samples of urine from every patient were cultured. The presence of white cells and yeasts in direct examination, colony counts, and the identification of the isolated species, were evaluated. Yeasts grew in 12.2% of the samples. There was no statistical correlation between the number of white cells and the fungal colony-forming units. Eighty five percent of the patients had indwelling catheters. Funguria was not prevalent in women or in patients over the age of 65. Candida albicans, followed by Candida tropicalis, were the most frequently isolated yeasts. Candida parapsilosis and Candida glabrata appeared less frequently. The same species were isolated in 70% of second samples, and in 23% of the cases the second culture was negative. It was not possible to determine a useful cut-off point for colony counts to help in the diagnosis of urinary infections. As in other publications, C. albicans, followed by C. tropicalis, were the most prevalent species. Copyright © 2015 Asociación Española de Micología. Published by Elsevier Espana. All rights reserved.

  9. Yeast communities in Sphagnum phyllosphere along the temperature-moisture ecocline in the boreal forest-swamp ecosystem and description of Candida sphagnicola sp. nov.

    Science.gov (United States)

    Kachalkin, Aleksey V; Yurkov, Andrey M

    2012-06-01

    The effects of the temperature-moisture factors on the phylloplane yeast communities inhabiting Sphagnum mosses were studied along the transition from a boreal forest to a swamp biotope at the Central Forest State Biosphere Reserve (Tver region, Russia). We tested the hypothesis that microclimatic parameters affect yeast community composition and structure even on a rather small spatial scale. Using a conventional plating technique we isolated and identified by molecular methods a total of 15 species of yeasts. Total yeast counts and species richness values did not depend on environmental factors, although yeast community composition and structure did. On average, Sphagnum in the swamp biotope supported a more evenly structured yeast community. Relative abundance of ascomycetous yeasts was significantly higher on swamp moss. Rhodotorula mucilaginosa dominated in the spruce forest and Cryptococcus magnus was more abundant in the swamp. Our study confirmed the low occurrence of tremellaceous yeasts in the Sphagnum phyllosphere. Of the few isolated ascomycetous yeast and yeast-like species, some were differentiated from hitherto known species in physiological tests and phylogenetic analyses. We describe one of them as Candida sphagnicola and designate KBP Y-3887(T) (=CBS 11774(T) = VKPM Y-3566(T) = MUCL 53590(T)) as the type strain. The new species was registered in MycoBank under MB 563443.

  10. Identification of syncytial mutations in a clinical isolate of herpes simplex virus 2

    International Nuclear Information System (INIS)

    Muggeridge, Martin I.; Grantham, Michael L.; Johnson, F. Brent

    2004-01-01

    Small polykaryocytes resulting from cell fusion are found in herpes simplex virus (HSV) lesions in patients, but their significance for viral spread and pathogenesis is unclear. Although syncytial variants causing extensive fusion in tissue culture can be readily isolated from laboratory strains, they are rarely found in clinical isolates, suggesting that extensive cell fusion may be deleterious in vivo. Syncytial mutations have previously been identified for several laboratory strains, but not for clinical isolates of HSV type 2. To address this deficiency, we studied a recent syncytial clinical isolate, finding it to be a mixture of two syncytial and one nonsyncytial strain. The two syncytial strains have novel mutations in glycoprotein B, and in vitro cell fusion assays confirmed that they are responsible for syncytium formation. This panel of clinical strains may be ideal for examining the effect of increased cell fusion on pathogenesis

  11. Phyllosphere yeasts rapidly break down biodegradable plastics

    OpenAIRE

    Kitamoto, Hiroko K; Shinozaki, Yukiko; Cao, Xiao-hong; Morita, Tomotake; Konishi, Masaaki; Tago, Kanako; Kajiwara, Hideyuki; Koitabashi, Motoo; Yoshida, Shigenobu; Watanabe, Takashi; Sameshima-Yamashita, Yuka; Nakajima-Kambe, Toshiaki; Tsushima, Seiya

    2011-01-01

    The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily ...

  12. Saccharomyces interspecies hybrids as model organisms for studying yeast adaptation to stressful environments.

    Science.gov (United States)

    Lopandic, Ksenija

    2018-01-01

    The strong development of molecular biology techniques and next-generation sequencing technologies in the last two decades has significantly improved our understanding of the evolutionary history of Saccharomyces yeasts. It has been shown that many strains isolated from man-made environments are not pure genetic lines, but contain genetic materials from different species that substantially increase their genome complexity. A number of strains have been described as interspecies hybrids, implying different yeast species that under specific circumstances exchange and recombine their genomes. Such fusing usually results in a wide variety of alterations at the genetic and chromosomal levels. The observed changes have suggested a high genome plasticity and a significant role of interspecies hybridization in the adaptation of yeasts to environmental stresses and industrial processes. There is a high probability that harsh wine and beer fermentation environments, from which the majority of interspecies hybrids have been isolated so far, influence their selection and stabilization as well as their genomic and phenotypic heterogeneity. The lessons we have learned about geno- and phenotype plasticity and the diversity of natural and commercial yeast hybrids have already had a strong impact on the development of artificial hybrids that can be successfully used in the fermentation-based food and beverage industry. The creation of artificial hybrids through the crossing of strains with desired attributes is a possibility to obtain a vast variety of new, but not genetically modified yeasts with a range of improved and beneficial traits. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Distinct Domestication Trajectories in Top-Fermenting Beer Yeasts and Wine Yeasts.

    Science.gov (United States)

    Gonçalves, Margarida; Pontes, Ana; Almeida, Pedro; Barbosa, Raquel; Serra, Marta; Libkind, Diego; Hutzler, Mathias; Gonçalves, Paula; Sampaio, José Paulo

    2016-10-24

    Beer is one of the oldest alcoholic beverages and is produced by the fermentation of sugars derived from starches present in cereal grains. Contrary to lager beers, made by bottom-fermenting strains of Saccharomyces pastorianus, a hybrid yeast, ale beers are closer to the ancient beer type and are fermented by S. cerevisiae, a top-fermenting yeast. Here, we use population genomics to investigate (1) the closest relatives of top-fermenting beer yeasts; (2) whether top-fermenting yeasts represent an independent domestication event separate from those already described; (3) whether single or multiple beer yeast domestication events can be inferred; and (4) whether top-fermenting yeasts represent non-recombinant or recombinant lineages. Our results revealed that top-fermenting beer yeasts are polyphyletic, with a main clade composed of at least three subgroups, dominantly represented by the German, British, and wheat beer strains. Other beer strains were phylogenetically close to sake, wine, or bread yeasts. We detected genetic signatures of beer yeast domestication by investigating genes previously linked to brewing and using genome-wide scans. We propose that the emergence of the main clade of beer yeasts is related with a domestication event distinct from the previously known cases of wine and sake yeast domestication. The nucleotide diversity of the main beer clade more than doubled that of wine yeasts, which might be a consequence of fundamental differences in the modes of beer and wine yeast domestication. The higher diversity of beer strains could be due to the more intense and different selection regimes associated to brewing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Susceptibility of clinical isolates of uropathogenic bacteria from ...

    African Journals Online (AJOL)

    Resistance of uropathogens to antibiotics has been on increase and responsible for increased mortality and morbidity among patients. Clinical isolates (22) of uropathogenic bacteria comprising Escherichia coli, Klebsiella Pneumoniae, Proteus mirabilis and Staphylococcus aureus were tested for susceptibility to standard ...

  15. Update on clinically isolated syndrome.

    Science.gov (United States)

    Thouvenot, Éric

    2015-04-01

    Optic neuritis, myelitis and brainstem syndrome accompanied by a symptomatic MRI T2 or FLAIR hyperintensity and T1 hypointensity are highly suggestive of multiple sclerosis (MS) in young adults. They are called "clinically isolated syndrome" (CIS) and correspond to the typical first multiple sclerosis (MS) episode, especially when associated with other asymptomatic demyelinating lesions, without clinical, radiological and immunological sign of differential diagnosis. After a CIS, the delay of apparition of a relapse, which corresponds to the conversion to clinically definite MS (CDMS), varies from several months to more than 10 years (10-15% of cases, generally called benign RRMS). This delay is generally associated with the number and location of demyelinating lesions of the brain and spinal cord and the results of CSF analysis. Several studies comparing different MRI criteria for dissemination in space and dissemination in time of demyelinating lesions, two hallmarks of MS, provided enough substantial data to update diagnostic criteria for MS after a CIS. In the last revision of the McDonald's criteria in 2010, diagnostic criteria were simplified and now the diagnosis can be made by a single initial scan that proves the presence of active asymptomatic lesions (with gadolinium enhancement) and of unenhanced lesions. However, time to conversion remains highly unpredictable for a given patient and CIS can remain isolated, especially for idiopathic unilateral optic neuritis or myelitis. Univariate analyses of clinical, radiological, biological or electrophysiological characteristics of CIS patients in small series identified numerous risk factors of rapid conversion to MS. However, large series of CIS patients analyzing several characteristics of CIS patients and the influence of disease modifying therapies brought important information about the risk of CDMS or RRMS over up to 20 years of follow-up. They confirmed the importance of the initial MRI pattern of

  16. Prions in yeast

    OpenAIRE

    Bezdíčka, Martin

    2013-01-01

    The thesis describes yeast prions and their biological effects on yeast in general. It defines the basic characteristics of yeast prions, that distinguish prions from other proteins. The thesis introduces various possibilities of prion formation, and propagation as well as specific types of yeast prions, including various functions of most studied types of prions. The thesis also focuses on chaperones that affect the state of yeast prions in cells. Lastly, the thesis indicates similarities be...

  17. Fungi isolated from the EEZ of Indian coast

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, R.; Prabhakaran, N.

    Protagonist ofBiotechnology. A Martini and AV. Martini (Eds.), Vol. 2, 5479·5483. PAULA, c.R., DE. A. PURICIIO AND W. GAMBALE 1983.Yeasts from beaches in the southern area of Sao Paulo state "Baisada Santista", Brazil. Rev. Microbial., 14(2): 136-143. Pil... Uden, 1963; Krisset aI., 1967). Bhat and Kachwalla (J955) were the first to isolate yeasts from Indian waters. Fell (J 967) re ported yeasts from Indian ocean. Similarly there have been a few reports on the filamentous fungi from the sea and open ocean...

  18. Yeast diversity during the fermentation of Andean chicha: A comparison of high-throughput sequencing and culture-dependent approaches.

    Science.gov (United States)

    Mendoza, Lucía M; Neef, Alexander; Vignolo, Graciela; Belloch, Carmela

    2017-10-01

    Diversity and dynamics of yeasts associated with the fermentation of Argentinian maize-based beverage chicha was investigated. Samples taken at different stages from two chicha productions were analyzed by culture-dependent and culture-independent methods. Five hundred and ninety six yeasts were isolated by classical microbiological methods and 16 species identified by RFLPs and sequencing of D1/D2 26S rRNA gene. Genetic typing of isolates from the dominant species, Saccharomyces cerevisiae, by PCR of delta elements revealed up to 42 different patterns. High-throughput sequencing (HTS) of D1/D2 26S rRNA gene amplicons from chicha samples detected more than one hundred yeast species and almost fifty filamentous fungi taxa. Analysis of the data revealed that yeasts dominated the fermentation, although, a significant percentage of filamentous fungi appeared in the first step of the process. Statistical analysis of results showed that very few taxa were represented by more than 1% of the reads per sample at any step of the process. S. cerevisiae represented more than 90% of the reads in the fermentative samples. Other yeast species dominated the pre-fermentative steps and abounded in fermented samples when S. cerevisiae was in percentages below 90%. Most yeasts species detected by pyrosequencing were not recovered by cultivation. In contrast, the cultivation-based methodology detected very few yeast taxa, and most of them corresponded with very few reads in the pyrosequencing analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Direct identification and recognition of yeast species from clinical material by using albicans ID and CHROMagar Candida plates.

    OpenAIRE

    Baumgartner, C; Freydiere, A M; Gille, Y

    1996-01-01

    Two chromogenic media, Albicans ID and CHROMagar Candida agar plates, were compared with a reference medium, Sabouraud-chloramphenicol agar, and standard methods for the identification of yeast species. This study involved 951 clinical specimens. The detection rates for the two chromogenic media for polymicrobial specimens were 20% higher than that for the Sabouraud-chloramphenicol agar plates. The rates of identification of Candida albicans for Albicans ID and CHROMagar Candida agar plates w...

  20. Identification and Pathogenic Potential of Clinical Bacillus and Paenibacillus Isolates.

    Directory of Open Access Journals (Sweden)

    Francesco Celandroni

    Full Text Available The soil-related Bacillus and Paenibacillus species have increasingly been implicated in various human diseases. Nevertheless, their identification still poses problems in the clinical microbiology laboratory and, with the exception of Bacillus anthracis and Bacillus cereus, little is known on their pathogenicity for humans. In this study, we evaluated the use of matrix-assisted laser desorption-ionization time of flight mass spectrometry (MALDI-TOF MS in the identification of clinical isolates of these genera and conducted genotypic and phenotypic analyses to highlight specific virulence properties. Seventy-five clinical isolates were subjected to biochemical and MALDI-TOF MS identification. 16S rDNA sequencing and supplemental tests were used to solve any discrepancies or failures in the identification results. MALDI-TOF MS significantly outperformed classical biochemical testing for correct species identification and no misidentification was obtained. One third of the collected strains belonged to the B. cereus species, but also Bacillus pumilus and Bacillus subtilis were isolated at high rate. Antimicrobial susceptibility testing showed that all the B. cereus, B. licheniformis, B. simplex, B. mycoides, Paenibacillus glucanolyticus and Paenibacillus lautus isolates are resistant to penicillin. The evaluation of toxin/enzyme secretion, toxin-encoding genes, motility, and biofilm formation revealed that B. cereus displays the highest virulence potential. However, although generally considered nonpathogenic, most of the other species were shown to swim, swarm, produce biofilms, and secrete proteases that can have a role in bacterial virulence. In conclusion, MALDI-TOF MS appears useful for fast and accurate identification of Bacillus and Paenibacillus strains whose virulence properties make them of increasing clinical relevance.

  1. Molecular cloning and characterization of genes required for nucleotide excision repair in yeast

    International Nuclear Information System (INIS)

    Friedberg, E.C.

    1987-01-01

    Nucleotide excision repair in the yeast S. cerevisiae is a complex process which involves a large number of genes. At least five of these genes (RAD1, RAD2, RAD3, RAD4 and RAD10) are absolutely required for this process and mutations in any of these genes result in no detectable excision repair in vivo. In order to understand the function of these genes in DNA repair, the authors isolated a number of them by screening a yeast genomic library for recombinant plasmids which complement the phentoype of sensitivity to ultraviolet (UV) radiation imparted to mutant strains. A plasmid containing the RAD4 gene was isolated by an alternative strategy which will be discussed. The cloned genes have been extensively characterized. It has been determined that the RAD3 gene is essential for the viability of haploid yeast cells in the absence of DNA damage. The RAD2 gene is inducible by treatment of cells with a variety of DNA-damaging agents, including UV radiation and ionizing radiation. The RAD10 gene shares considerable amino acid sequence homology with a cloned gene involved in nucleotide excision repair in human cells. Yeast is a particularly versatile organism for studying gene function by molecular and genetic approaches and emphasis is placed on many of the techniques used in the present studies

  2. Sugar utilization patterns and respiro-fermentative metabolism in the baker’s yeast Torulaspora delbrueckii

    OpenAIRE

    Araújo, Cecília Alves; Pacheco, A.; Almeida, M. J.; Martins, I. Spencer; Leão, Cecília; Sousa, M. J.

    2007-01-01

    The highly osmo- and cryotolerant yeast species Torulaspora delbrueckii is an important case study among the non-Saccharomyces yeast species. The strain T delbrueckii PYCC 532 1, isolated from traditional corn and rye bread dough in northern Portugal, is considered particularly interesting for the baking industry. This paper reports the sugar utilization patterns of this strain, using media with glucose, maltose and sucrose, alone or in mixtures. Kinetics of growth, biomass and ethanol yields...

  3. Zygosaccharomyces kombuchaensis, a new ascosporogenous yeast from 'Kombucha tea'.

    Science.gov (United States)

    Kurtzman, C P; Robnett, C J; Basehoar-Powers, E

    2001-07-01

    A new ascosporogenous yeast, Zygosaccharomyces kombuchaensis sp. n. (type strain NRRL YB-4811, CBS 8849), is described; it was isolated from Kombucha tea, a popular fermented tea-based beverage. The four known strains of the new species have identical nucleotide sequences in domain D1/D2 of 26S rDNA. Phylogenetic analysis of D1/D2 and 18S rDNA sequences places Z. kombuchaensis near Zygosaccharomyces lentus. The two species are indistinguishable on standard physiological tests used for yeast identification, but can be recognized from differences in restriction fragment length polymorphism patterns obtained by digestion of 18S-ITS1 amplicons with the restriction enzymes DdeI and MboI.

  4. Circulating tumor cell isolation and diagnostics: toward routine clinical use

    NARCIS (Netherlands)

    Stolpe, van de A.; Pantel, K.; Sleijfer, S.; Terstappen, L.W.; Toonder, den J.M.J.

    2011-01-01

    From February 7–11, 2011, the multidisciplinary Lorentz Workshop Circulating Tumor Cell (CTC) Isolation and Diagnostics: Toward Routine Clinical Use was held in Leiden (The Netherlands) to discuss progress and define challenges and potential solutions for development of clinically useful circulating

  5. Yeasts from Different Habitats and Their Potential as Biocontrol Agents

    Directory of Open Access Journals (Sweden)

    Julia Pretscher

    2018-04-01

    Full Text Available Ever since plant diseases began causing losses in viticulture, the control of phytopathogenic fungi has become of vital interest for winemakers. The occurrence of novel pests, fungicide resistance, and changed consumer expectations have led to an enormous demand for novel plant protection strategies. As part of integrated protection measures, antagonistic microorganisms have been investigated to a large extent. Such microorganisms can be applied not only in conventional, but also in organic farming as biological control agents (BCA. Particularly, yeasts were found to be interesting candidates for the development of BCA. Many of these eukaryotic microorganisms are found as part of the phylloplane microflora. In this study, we assessed a set of 38 yeast isolates from different habitats, including the guts of termites, for inhibitory effects against some phytopathogenic fungi that have received less attention in earlier studies. The majority of yeasts were found to interfere with fungi infecting grapevine (Eutypa lata, Botrytis cinerea, and Roesleria subterranea, stone fruits (Monilinia fructicola, or rice (Magnaporte oryzae, as well in vitro and in model experiment on fruits. Although most yeast strains secreted glycoside hydrolases and proteases, attempts to demonstrate direct antagonistic activities of lytic enzymes failed. However, in culture filtrates of the termite yeast Papiliotrema odontotermitis OO5, a low molecular thermostable antagonistic factor was detected. Iron depletion as a BCA mechanism was confirmed for strains of Metschnikowia pulcherrima but not for other yeasts.

  6. Determination of some virulence factors of Candida spp. isolated from locally produced cheese in Diyala Governorate-Iraq

    Directory of Open Access Journals (Sweden)

    Suhail Jawdat Fadihl

    2017-03-01

    Full Text Available Locally produced cheese which called (Gibin Al arab is one of the most common dairy products in Iraq, it has an economic importance and great social value. This research aimed to identify yeast species from locally produced cheese (Gibin Al Arab in Diyala city which traditionally made and sold in markets of old town in Baquba, and study some of virulence factors (Esterase production, Phospholipase and Hemolytic production of yeasts belong to genus of Candida . All cheese samples showed contamination with varying number of yeast, total 88 yeast isolates obtained from 70 cheese samples, they were Geotrichum candidum(20.5%, Rhodotorela species(19.4%, Candida parapsilosis (18%, Candida albicans (13.6%, Candida  tropicalis (10.5%, Candida krusei (8%, Saccharomyces cerevisice (3.3% and mixed yeast (un identified at rate of (6.7%. Species of Candida formed half of the total isolates and the most prevalent isolate of Candida spp. was Candida parapsilosis .According to the results determining of  (Esterase production, Phospholipase and Hemolytic production as a virulence factors identifying Candida spp. these activities referred that all isolates of Candida spp. show one or more of these activities and that isolates of  medically important species Candida albicans were the most virulent isolates. this referred to the importance of take attention about consuming of such types of dairy products and need for applying more hygienic measures during handling, processing of milk and form of storage and/or selling of cheese.

  7. Emergence of Oxacillinases in Environmental Carbapenem-Resistant Acinetobacter baumannii Associated with Clinical Isolates.

    Science.gov (United States)

    Goic-Barisic, Ivana; Hrenovic, Jasna; Kovacic, Ana; Musić, Martina Šeruga

    2016-10-01

    Six carbapenem-resistant isolates of Acinetobacter baumannii were recovered from untreated and treated municipal wastewater of the capital city of Zagreb, Croatia. Molecular identification of environmental isolates of A. baumannii was performed by amplification, sequencing, and phylogenetic analyses of rpoB gene. The presence of bla OXA genes encoding OXA-type carbapenemases (OXA-51-like, OXA-23, and OXA-40-like) was confirmed by multiplex PCR and sequencing. Phylogenetic analyses corroborated the affiliation of detected bla OXA genes to three different clusters and showed association of environmental OXAs with those described from clinical isolates. This result suggests that isolates recovered from municipal wastewater are most probably of clinical origin. Furthermore, the presence of OXA-40-like (OXA-72) in an environmental A. baumannii isolate is reported for the first time. Persistence of A. baumannii harboring the clinically important OXAs in the wastewater treatment process poses a potentially significant source for horizontal gene transfer and implications for wider spread of antibiotic resistance genes.

  8. Incidence of bovine clinical mastitis in Jammu region and antibiogram of isolated pathogens

    Directory of Open Access Journals (Sweden)

    Adil Majid Bhat

    2017-08-01

    Full Text Available Aim: This study was conducted to evaluate the incidence of clinical mastitis in bovines of Jammu region, to identify the infectious organisms responsible for it, and the antimicrobial sensitivity of isolated pathogens. Materials and Methods: The study was conducted on cases that were presented to the Medicine Division of Teaching Veterinary Clinical Complex, Faculty of Veterinary Sciences and Animal Husbandry, R.S. Pura, Jammu, Jammu and Kashmir. A total of 260 cases of bovines were presented from June 30, 2012, to July 01, 2013, out of which 30 cases were of clinical mastitis. The diagnosis of clinical mastitis was made on the basis of history and clinical examination of affected animals. Results: Animal and quarter-wise incidence of clinical mastitis were found to be 11.5% and 5.76%, respectively. Of the 23 isolates obtained, Staphylococcus aureus (60.87% was the most frequently isolated organism, followed by coagulase negative Staphylococci (13.04%, Streptococcus uberis (4.35%, Streptococcus dysgalactiae (8.69%, and Escherichia coli (13.04%. The antimicrobial sensitivity of isolates revealed maximum sensitivity to enrofloxacin, gentamicin, amoxicillin/ sulbactam, ceftriaxone/tazobactam, ceftizoxime, ampicillin/sulbactam and least sensitivity for oxytetracycline and penicillin. Conclusion: Staphylococcus spp. is the major causative agent of clinical mastitis in bovines of Jammu region. The causative agents of the clinical mastitis were most sensitive to enrofloxacin and gentamicin.

  9. Clinical and microbiological features of Haemophilus influenzae vulvovaginitis in young girls

    Science.gov (United States)

    Cox, R A; Slack, M P E

    2002-01-01

    Aims: To define the clinical and microbiological features of vulvovaginitis in prepubertal girls whose genital swabs yielded Haemophilus influenzae. Methods: Laboratory based study and retrospective collection of clinical data from the requesting doctors. Results: Thirty eight isolates of non-capsulate Haemophilus influenzae and one of H parainfluenzae were isolated from 32 girls aged 18 months to 11 years. No other pathogens, such as β haemolytic streptococci or yeasts, were present with H influenzae. The most common biotype was biotype II, comprising 57% of the 26 isolates biotyped. Six children had more than one episode of vulvovaginitis caused by H influenzae and a total of 14 children had recurrent vaginal symptoms. Conclusion: Children who have H influenzae vulvovaginitis are at risk of recurrent symptoms. Biotype II is the one most commonly associated with this condition. PMID:12461068

  10. Detection of Amp C Beta Lactamases in Clinical Isolates of ...

    African Journals Online (AJOL)

    A total of 81 consecutive non repetitive clinical isolates of Escherichia coli (n=40) and Klebsiella spp. (n=41) were screened for AmpC production by disc diffusion method using cefoxitin (30 Zg) disc and confirmed by inhibitor based test using boronic acid as inhibitor. A total of 16 E.coli isolates (40%) and 16 Klebsiella ...

  11. Identification of the orotidine-5'-monophosphate decarboxylase gene of the oleaginous yeast Rhodosporidium toruloides.

    Science.gov (United States)

    Yang, Fan; Zhang, Sufang; Tang, Wei; Zhao, Zongbao K

    2008-09-01

    Oleaginous yeast Rhodosporidium toruloides is an excellent microbial lipid producer of great industrial potential, yet there is no effective genetic tool for rationally engineering this microorganism. To develop a marker recycling system, the orotidine-5'-monophosphate (OMP) decarboxylase gene of R. toruloides (RtURA3) was isolated using methods of degenerate polymerase chain reaction (PCR) together with rapid amplification of cDNA ends. The results showed that RtURA3 contains four extrons and three introns, and that the encoded polypeptide holds a sequence of 279 amino acid residues with significant homology to those of OMP decarboxylases from other yeasts. A shuttle vector pYES2/CT-RtURA3 was constructed via site-specific insertion of RtURA3 into the commercial vector pYES2/CT. Transformation of the shuttle vector into Saccharomyces cerevisiae BY4741, a URA3-deficient yeast strain, ensured the viability of the strain on synthetic dextrose agar plate without uracil, suggesting that the isolated RtURA3 was functionally equivalent to the URA3 gene from S. cerevisiae.

  12. Xylitol production from colombian native yeast strains

    Directory of Open Access Journals (Sweden)

    Isleny Andrea Vanegas Córdoba

    2004-07-01

    Full Text Available Xylitol is an alternative sweetener with similar characteristics to sucrose that has become of great interest, due mainly to its safe use in diabetic patients and those deficient in glucose-6-phosphate-dehydrogenase. Its chemical production is expensive and generates undesirable by-products, whereas biotechnological process, which uses different yeasts genera, is a viable production alternative because it is safer and specific. Colombia has a privilege geographic location and offers a great microbial variety, this can be taken advantage of with academic and commercial goals. Because of this, some native microorganisms with potential to produce xylitol were screened in this work. It were isolated 25 yeasts species, from which was possible to identify 84% by the kit API 20C-AUX. Three yeasts: Candida kefyr, C. tropicalis y C. parapsilosis presented greater capacity to degrade xylose compared to the others, therefore they were selected for the later evaluation of its productive capacity. Discontinuous cellular cultures were developed in shaken flasks at 200 rpm and 35°C by 30 hours, using synthetic media with xylose as carbon source. Xylose consumption and xylitol production were evaluated by thin layer chromatography and high performance liquid chromatography. The maximal efficiency were obtained with Candida kefyr and C. tropicalis (Yp/s 0.5 y 0.43 g/g, respectively, using an initial xylose concentration of 20 g/L. Key words: Xylitol, xylose, yeasts, Candida kefyr, C. tropicalis, C. parapsilosis.

  13. The radiation resistance and cobalt biosorption activity of yeast strains isolated from the Lanyu low-level radioactive waste repository in Taiwan.

    Science.gov (United States)

    Li, Chia-Chin; Chung, Hsiao-Ping; Wen, Hsiao-Wei; Chang, Ching-Tu; Wang, Ya-Ting; Chou, Fong-In

    2015-08-01

    The ubiquitous nature of microbes has made them the pioneers in radionuclides adsorption and transport. In this study, the radiation resistance and nuclide biosorption capacity of microbes isolated from the Lanyu low-level radioactive waste (LLRW) repository in Taiwan was assessed, the evaluation of the possibility of using the isolated strain as biosorbents for (60)Co and Co (II) from contaminated aqueous solution and the potential impact on radionuclides release. The microbial content of solidified waste and broken fragments of containers at the Lanyu LLRW repository reached 10(5) CFU/g. Two yeast strains, Candida guilliermondii (CT1) and Rhodotorula calyptogenae (RT1) were isolated. The radiation dose necessary to reduce the microbial count by one log cycle of CT1 and RT1 was 2.1 and 0.8 kGy, respectively. Both CT1 and RT1 can grow under a radiation field with dose rate of 6.8 Gy/h, about 100 times higher than that on the surface of the LLRW container in Lanyu repository. CT1 and RT1 had the maximum (60)Co biosorption efficiency of 99.7 ± 0.1% and 98.3 ± 0.2%, respectively in (60)Co aqueous solution (700 Bq/mL), and the (60)Co could stably retained for more than 30 days in CT 1. Nearly all of the Co was absorbed and reached equilibrium within 1 h by CT1 and RT1 in the 10 μg/g Co (II) aqueous solution. Biosorption efficiency test showed almost all of the Co (II) was adsorbed by CT1 in 20 μg/g Co (II) aqueous solution, the efficiency of biosorption by RT1 in 10 μg/g of Co (II) was lower. The maximum Co (II) sorption capacity of CT1 and RT1 was 5324.0 ± 349.0 μg/g (dry wt) and 3737.6 ± 86.5 μg/g (dry wt), respectively, in the 20 μg/g Co (II) aqueous solution. Experimental results show that microbial activity was high in the Lanyu LLRW repository in Taiwan. Two isolated yeast strains, CT1 and RT1 have high potential for use as biosorbents for (60)Co and Co (II) from contaminated aqueous solution, on the other hand, but may have the

  14. Potentially pathogenic yeasts from soil of children’s recreational areas in the city of Łódź (Poland

    Directory of Open Access Journals (Sweden)

    Anna Wójcik

    2013-06-01

    Full Text Available Objectives: Yeasts may become potential human and animal pathogens, particularly for individuals with a depressed immune system. Their presence in the environment, especially in soil, may favour their spread into human ontocenoses. Materials and Methods: Eighty-four soil samples obtained from 21 children's recreational sites in Łódź in autumn 2010 and spring 2011 were evaluated. The yeasts were isolated by classical microbiological methods and identified on the basis of morphological and biochemical features. Results: The fungi were found in 73.8% and in 69.0% of the examined samples collected in autumn and spring, respectively. Among 97 isolates of yeasts, the species potentially pathogenic to humans and animals were Candida colliculosa, C. guilliermondii, C. humicola, C. inconspicua, C. lambica, C. lusitaniae, C. pelliculosa, C. tropicalis, Cryptococcus albidus, C. laurentii, C. neoformans, C. terreus, Kloeckera japonica, Geotrichum candidum, G. penicillatum, Rhodotorula mucilaginosa, R. glutinis, Saccharomyces cerevisiae, Sporobolomyces salmonicolor and Trichosporon cutaneum. The most frequently isolated fungi included the genus Cryptococcus (38 isolates and two species: Rhodotorula glutinis (15, Trichosporon cutaneum (14. C. neoformans, an etiological factor of cryptococcal meningitis, was present in the sandpits of 3 kindergartens. The Candida species were identified from park playgrounds and school sports fields mainly in autumn 2010 (14 isolates, in spring 2011 - only 1 isolate. The concentration of fungal species in particular samples varied considerably, but in the majority of samples, fungi were present at concentration of up to 1×102 CFU/1 g of soil. Conclusions: Yeasts were present in the soil of parks, schools and kindergarten recreational areas; the fact may pose a health risk to humans, especially to children, and this type of biological pollution should be regarded as a potential public health concern.

  15. Cloning of a yeast alpha-amylase promoter and its regulated heterologous expression

    Science.gov (United States)

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR; Hooker, Brian S [Kennewick, WA; Anderson, Daniel B [Pasco, WA

    2003-04-01

    The present invention provides the promoter clone discovery of an alpha-amylase gene of a starch utilizing yeast strain Schwanniomyces castellii. The isolated alpha-amylase promoter is an inducible promoter, which can regulate strong gene expression in starch culture medium.

  16. The yeast flora of some decaying mushrooms on trunks of living trees

    NARCIS (Netherlands)

    Middelhoven, W.J.

    2004-01-01

    Several ascomycetous and basidiomycetous yeasts were isolated from rotten mushrooms on the trunks of beech and tamarisk trees. One strain, identified as the novel species Cryptococcus allantoinivorans, assimilated allantoin as the sole carbon source. Phylogenetically it belongs to the C. laurentii

  17. Complete Genome Sequence of the Campylobacter ureolyticus Clinical Isolate RIGS 9880

    DEFF Research Database (Denmark)

    Miller, William G; Yee, Emma; On, Stephen L W

    2015-01-01

    The emerging pathogen Campylobacter ureolyticus has been isolated from human and animal genital infections, human periodontal disease, domestic and food animals, and from cases of human gastroenteritis. We report the whole-genome sequence of the human clinical isolate RIGS 9880, which is the first...

  18. Electrochemical sensors for identifying pyocyanin production in clinical Pseudomonas aeruginosa isolates.

    Science.gov (United States)

    Sismaet, Hunter J; Pinto, Ameet J; Goluch, Edgar D

    2017-11-15

    In clinical practice, delays in obtaining culture results impact patient care and the ability to tailor antibiotic therapy. Despite the advancement of rapid molecular diagnostics, the use of plate cultures inoculated from swab samples continues to be the standard practice in clinical care. Because the inoculation culture process can take between 24 and 48h before a positive identification test can be run, there is an unmet need to develop rapid throughput methods for bacterial identification. Previous work has shown that pyocyanin can be used as a rapid, redox-active biomarker for identifying Pseudomonas aeruginosa in clinical infections. However, further validation is needed to confirm pyocyanin production occurs in all clinical strains of P. aeruginosa. Here, we validate this electrochemical detection strategy using clinical isolates obtained from patients with hospital-acquired infections or with cystic fibrosis. Square-wave voltammetric scans of 94 different clinical P. aeruginosa isolates were taken to measure the concentration of pyocyanin. The results showed that all isolates produced measureable concentrations of pyocyanin with production rates correlated with patient symptoms and comorbidity. Further bioinformatics analysis confirmed that 1649 genetically sequenced strains (99.9%) of P. aeruginosa possess the two genes (PhzM and PhzS) necessary to produce pyocyanin, supporting the specificity of this biomarker. Confirming the production of pyocyanin by all clinically-relevant strains of P. aeruginosa is a significant step towards validating this strategy for rapid, point-of-care diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Antifungal Activity of Bee Venom and Sweet Bee Venom against Clinically Isolated Candida albicans

    Directory of Open Access Journals (Sweden)

    Seung-Bae Lee

    2016-03-01

    Full Text Available Objectives: The purpose of this study was to investigate the antifungal effect of bee venom (BV and sweet bee venom (SBV against Candida albicans (C. albicans clinical isolates. Methods: In this study, BV and SBV were examined for antifungal activities against the Korean Collection for Type Cultures (KCTC strain and 10 clinical isolates of C. albicans. The disk diffusion method was used to measure the antifungal activity and minimum inhibitory concentration (MIC assays were performed by using a broth microdilution method. Also, a killing curve assay was conducted to investigate the kinetics of the anti- fungal action. Results: BV and SBV showed antifungal activity against 10 clinical isolates of C. albicans that were cultured from blood and the vagina by using disk diffusion method. The MIC values obtained for clinical isolates by using the broth microdilution method varied from 62.5 μg/ mL to 125 μg/mL for BV and from 15.63 μg/mL to 62.5 μg/mL for SBV. In the killing-curve assay, SBV behaved as amphotericin B, which was used as positive control, did. The antifungal efficacy of SBV was much higher than that of BV. Conclusion: BV and SBV showed antifungal activity against C. albicans clinical strains that were isolated from blood and the vagina. Especially, SBV might be a candidate for a new antifungal agent against C. albicans clinical isolates.

  20. Comparative evolutionary analysis of protein complexes in E. coli and yeast

    Directory of Open Access Journals (Sweden)

    Ranea Juan AG

    2010-02-01

    Full Text Available Abstract Background Proteins do not act in isolation; they frequently act together in protein complexes to carry out concerted cellular functions. The evolution of complexes is poorly understood, especially in organisms other than yeast, where little experimental data has been available. Results We generated accurate, high coverage datasets of protein complexes for E. coli and yeast in order to study differences in the evolution of complexes between these two species. We show that substantial differences exist in how complexes have evolved between these organisms. A previously proposed model of complex evolution identified complexes with cores of interacting homologues. We support findings of the relative importance of this mode of evolution in yeast, but find that it is much less common in E. coli. Additionally it is shown that those homologues which do cluster in complexes are involved in eukaryote-specific functions. Furthermore we identify correlated pairs of non-homologous domains which occur in multiple protein complexes. These were identified in both yeast and E. coli and we present evidence that these too may represent complex cores in yeast but not those of E. coli. Conclusions Our results suggest that there are differences in the way protein complexes have evolved in E. coli and yeast. Whereas some yeast complexes have evolved by recruiting paralogues, this is not apparent in E. coli. Furthermore, such complexes are involved in eukaryotic-specific functions. This implies that the increase in gene family sizes seen in eukaryotes in part reflects multiple family members being used within complexes. However, in general, in both E. coli and yeast, homologous domains are used in different complexes.

  1. Lactic acid bacteria and yeasts associated with gowé production from sorghum in Bénin.

    Science.gov (United States)

    Vieira-Dalodé, G; Jespersen, L; Hounhouigan, J; Moller, P L; Nago, C M; Jakobsen, M

    2007-08-01

    To identify the dominant micro-organisms involved in the production of gowé, a fermented beverage, and to select the most appropriate species for starter culture development. Samples of sorghum gowé produced twice at three different production sites were taken at different fermentation times. DNA amplification by internal transcribed spacer-polymerase chain reaction of 288 lactic acid bacteria (LAB) isolates and 16S rRNA gene sequencing of selected strains revealed that the dominant LAB responsible for gowé fermentation were Lactobacillus fermentum, Weissella confusa, Lactobacillus mucosae, Pediococcus acidilactici, Pediococcus pentosaceus and Weissella kimchii. DNA from 200 strains of yeasts was amplified and the D1/D2 domain of the 26S rRNA gene was sequenced for selected isolates, revealing that the yeasts species were Kluyveromyces marxianus, Pichia anomala, Candida krusei and Candida tropicalis. Gowé processing is characterized by a mixed fermentation dominated by Lact. fermentum, W. confusa and Ped. acidilactici for the LAB and by K. marxianus, P. anomala and C. krusei for the yeasts. The diversity of the LAB and yeasts identified offers new opportunities for technology upgrading and products development in gowé production. The identified species can be used as possible starter for a controlled fermentation of gowé.

  2. Prevalence of Candida albicans and non-albicans isolates from vaginal secretions: comparative evaluation of colonization, vaginal candidiasis and recurrent vaginal candidiasis in diabetic and non-diabetic women.

    Science.gov (United States)

    Gunther, Luciene Setsuko Akimoto; Martins, Helen Priscila Rodrigues; Gimenes, Fabrícia; Abreu, André Luelsdorf Pimenta de; Consolaro, Marcia Edilaine Lopes; Svidzinski, Terezinha Inez Estivalet

    2014-01-01

    Vulvovaginal candidiasis (VVC) is caused by abnormal growth of yeast-like fungi on the female genital tract mucosa. Patients with diabetes mellitus (DM) are more susceptible to fungal infections, including those caused by species of Candida. The present study investigated the frequency of total isolation of vaginal Candida spp., and its different clinical profiles - colonization, VVC and recurrent VVC (RVVC) - in women with DM type 2, compared with non-diabetic women. The cure rate using fluconazole treatment was also evaluated. Cross-sectional study conducted in the public healthcare system of Maringá, Paraná, Brazil. The study involved 717 women aged 17-74 years, of whom 48 (6.7%) had DM type 2 (mean age: 53.7 years), regardless of signs and symptoms of VVC. The yeasts were isolated and identified using classical phenotypic methods. In the non-diabetic group (controls), total vaginal yeast isolation occurred in 79 (11.8%) women, and in the diabetic group in 9 (18.8%) (P = 0.000). The diabetic group showed more symptomatic (VVC + RVVC = 66.66%) than colonized (33.33%) women, and showed significantly more colonization, VVC and RVVC than seen among the controls. The mean cure rate using fluconazole was 75.0% in the diabetic group and 86.7% in the control group (P = 0.51). We found that DM type 2 in Brazilian women was associated with yeast colonization, VVC and RVVC, and similar isolation rates for C. albicans and non-albicans species. Good cure rates were obtained using fluconazole in both groups.

  3. HANSENULA WICKERHAMII SP. N., A NEW YEAST FROM FINNISH SOIL

    Science.gov (United States)

    Capriotti, Augusto

    1961-01-01

    Capriotti, Augusto (l'Università di Perugia, Perugia, Italy). Hansenula wickerhamii sp. n., a new yeast from Finnish soil. J. Bacteriol. 82:259–360. 1961.—Hansenula wickerhamii sp. n. is described; it was isolated from a Finnish soil, and is named in honor of Lynferd J. Wickerham. Images PMID:13690638

  4. Optimization of yeast (Saccharomyces cerevisiae) RNA isolation ...

    African Journals Online (AJOL)

    Yomi

    2012-01-16

    Jan 16, 2012 ... isolation method for real-time quantitative PCR and microarray ... disease genes to experimental evolution and systems biology (Landry et al., .... scanning, and preliminary analyses with GeneChip Operating. Software 1.4 ...

  5. Yeast flora of the mouth and skin during and after irradiation for oral and laryngeal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Martin, M.V.; Al-Tikriti, U.; Bramley, P.A. (Sheffield Univ. (UK))

    1981-11-01

    The quantitative and qualitative changes occurring in the fungal flora of 22 patients with oral and 9 with laryngeal carcinoma were studied during and after radiation therapy. Each patient received 6000 rad of externally applied radiation in divided doses for 5 weeks. The fungal flora was isolated from the patients' oral cavity and irradiated skin sites during irradiation and 2 weeks and 4-6 months afterwards. The number and types of fungi increased in both groups of patients after the start of irradiation and persisted at high levels for at least 4-6 months after treatment. Candida albicans and C. tropicalis were the principal yeasts isolated throughout the period studied but seven other species were also identified. All the yeast isolates were sensitive in vitro to miconazole, ketoconazole, amphotericin B and nystatin. Any of these antifungal agents should be appropriate for therapy.

  6. Yeast flora of the mouth and skin during and after irradiation for oral and laryngeal cancer

    International Nuclear Information System (INIS)

    Martin, M.V.; Al-Tikriti, U.; Bramley, P.A.

    1981-01-01

    The quantitative and qualitative changes occurring in the fungal flora of 22 patients with oral and 9 with laryngeal carcinoma were studied during and after radiation therapy. Each patient received 6000 rad of externally applied radiation in divided doses for 5 weeks. The fungal flora was isolated from the patients' oral cavity and irradiated skin sites during irradiation and 2 weeks and 4-6 months afterwards. The number and types of fungi increased in both groups of patients after the start of irradiation and persisted at high levels for at least 4-6 months after treatment. Candida albicans and C. tropicalis were the principal yeasts isolated throughout the period studied but seven other species were also identified. All the yeast isolates were sensitive in vitro to miconazole, ketoconazole, amphotericin B and nystatin. Any of these antifungal agents should be appropriate for therapy. (author)

  7. A comparative study of coastal and clinical isolates of Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Anusree V. Nair

    2015-09-01

    Full Text Available Pseudomonas aeruginosa is a ubiquitous Gram-negative bacterium having a versatile metabolic potential and great ecological and clinical significance. The geographical distribution of P. aeruginosahas revealed the existence of an unbiased genetic arrangement in terrestrial isolates. In contrast, there are very few reports about P. aeruginosa strains from marine environments. The present work was aimed at studying the distribution of P. aeruginosa in coastal waters along the Indian Peninsula and understanding the environmental influence on genotypic, metabolic and phenotypic characteristics by comparing marine and clinical isolates. Of the 785 marine isolates obtained on selective media, only 32 (~4.1% were identified as P. aeruginosa, based on their fatty acid methyl ester profiles. A low Euclidian distance value (P. aeruginosa. While biogeographical separation was not evident based solely on phenotypic and metabolic typing, genomic and metatranscriptomic studies are more likely to show differences between these isolates. Thus, newer and more insightful methods are required to understand the ecological distribution of this complex group of bacteria.

  8. Draft genome sequence of the yeast Starmerella bacillaris (syn., Candida zemplinina) FRI751 isolated from fermenting must of dried Raboso grapes

    DEFF Research Database (Denmark)

    Lemos Junior, Wilson Jose Fernandes; Treu, Laura; da Silva Duarte, Vinicius

    2017-01-01

    Starmerella bacillaris is an ascomycetous yeast commonly present in enological environments. Here, we report the first draft genome sequence of S. bacillaris FRI751, which will facilitate the study of the characteristics of this interesting enological yeast.......Starmerella bacillaris is an ascomycetous yeast commonly present in enological environments. Here, we report the first draft genome sequence of S. bacillaris FRI751, which will facilitate the study of the characteristics of this interesting enological yeast....

  9. DNA barcoding analysis of more than 9 000 yeast isolates contributes to quantitative thresholds for yeast species and genera delimitation

    NARCIS (Netherlands)

    Vu, D; Groenewald, M; Szöke, S; Cardinali, G; Eberhardt, U; Stielow, B; de Vries, M; Verkleij, G J M; Crous, P W; Boekhout, T; Robert, V

    DNA barcoding is a global initiative for species identification through sequencing of short DNA sequence markers. Sequences of two loci, ITS and LSU, were generated as barcode data for all (ca. 9k) yeast strains included in the CBS collection, originally assigned to ca. 2 000 species. Taxonomic

  10. Multiple antimicrobial resistance in bacterial isolates from clinical ...

    African Journals Online (AJOL)

    A total of 545 clinical specimens (pus, blood, urine, and stool) and environmental specimens (air sample, saline solution, nasal swabs etc) were cultured for isolation and identification of aerobic bacteria and antimicrobial susceptibility testing. Out of these, 356(65%) specimens yielded one or more bacterial strains. Frequent ...

  11. Bio-prospecting of distillery yeasts as bio-control and bio-remediation agents.

    Science.gov (United States)

    Ubeda, Juan F; Maldonado, María; Briones, Ana I; Francisco, J Fernández; González, Francisco J

    2014-05-01

    This work constitutes a preliminary study in which the capacity of non-Saccharomyces yeasts isolated from ancient distilleries as bio-control agents against moulds and in the treatment of waste waters contaminated by heavy metals-i.e. bio-remediation-is shown. In the first control assays, antagonist effect between non-Saccharomyces yeasts, their extracts and supernatants against some moulds, analysing the plausible (not exhaustive) involved factors were qualitatively verified. In addition, two enzymatic degrading properties of cell wall plant polymers, quitinolitic and pectinolitic, were screened. Finally, their use as agents of bio-remediation of three heavy metals (cadmium, chromium and lead) was analysed semi-quantitatively. The results showed that all isolates belonging to Pichia species effectively inhibited all moulds assayed. Moreover, P. kudriavzevii is a good candidate for both bio-control and bio-remediation because it inhibited moulds and accumulated the major proportion of the three tested metals.

  12. Sensitivity patterns of pseudomonas aeruginosa isolates obtained from clinical specimens in peshawar

    International Nuclear Information System (INIS)

    Abbas, S.H.; Khan, M.Z.U.; Naeem, M.

    2015-01-01

    Pseudomonas aeruginosa (P. aeruginosa) is a highly virulent opportunistic pathogen and a leading cause of nosocomial infections.Affected patients are often hospitalized in an intensive care unit, and are immuno-compromised as a result of disease and treatment. Suspected P. aeruginosa require timely, adequate and empirical antibiotic therapy to ensure improved outcomes. The purpose of the study was to find the sensitivity and resistance pattern of P. aeruginosa to various groups of drugs, in clinical isolates collected from two major tertiary care hospitals of Peshawar. Methods: Different clinical isolate were taken from patients admitted in various wards of Khyber Teaching Hospital and Lady Reading Hospital Peshawar. Results: A total of 258 clinical isolates were positive for P. aeruginosa out of 2058 clinical isolates. Pseudomonas showed high degree of resistance to third generation Cephalosporins (Ceftazidime, and Ceftriaxone) and moderate degree of resistance to Quinolones and Aminoglycosides (Ofloxacin, Ciprofloxacin, Levofloxacin and Amikacin). Low resistance was observed to different combinations (Cefoperazone + Sulbactum, Piperacillin + Tazobactum). Meropenem and Imipenem had negligible resistance. Conclusion: There is growing resistance to different classes of antibiotics. Combination drugs are useful approach for empirical treatment in suspected Pseudomonas infection. Imipenem and Meropenem are extremely effective but should be in reserve. (author)

  13. Implication of Ca2+ in the Regulation of Replicative Life Span of Budding Yeast*

    OpenAIRE

    Tsubakiyama, Ryohei; Mizunuma, Masaki; Gengyo, Anri; Yamamoto, Josuke; Kume, Kazunori; Miyakawa, Tokichi; Hirata, Dai

    2011-01-01

    In eukaryotic cells, Ca2+-triggered signaling pathways are used to regulate a wide variety of cellular processes. Calcineurin, a highly conserved Ca2+/calmodulin-dependent protein phosphatase, plays key roles in the regulation of diverse biological processes in organisms ranging from yeast to humans. We isolated a mutant of the SIR3 gene, implicated in the regulation of life span, as a suppressor of the Ca2+ sensitivity of zds1Δ cells in the budding yeast Saccharomyces cerevisiae. Therefore, ...

  14. Antimicrobial Susceptibility and Clonality of Clinical Ureaplasma Isolates in the United States.

    Science.gov (United States)

    Fernández, Javier; Karau, Melissa J; Cunningham, Scott A; Greenwood-Quaintance, Kerryl E; Patel, Robin

    2016-08-01

    Ureaplasma urealyticum and Ureaplasma parvum are pathogens involved in urogenital tract and intrauterine infections and also in systemic diseases in newborns and immunosuppressed patients. There is limited information on the antimicrobial susceptibility and clonality of these species. In this study, we report the susceptibility of 250 contemporary isolates of Ureaplasma (202 U. parvum and 48 U. urealyticum isolates) recovered at Mayo Clinic, Rochester, MN. MICs of doxycycline, azithromycin, ciprofloxacin, tetracycline, erythromycin, and levofloxacin were determined by broth microdilution, with MICS of the last three interpreted according to CLSI guidelines. Levofloxacin resistance was found in 6.4% and 5.2% of U. parvum and U. urealyticum isolates, respectively, while 27.2% and 68.8% of isolates, respectively, showed ciprofloxacin MICs of ≥4 μg/ml. The resistance mechanism of levofloxacin-resistant isolates was due to mutations in parC, with the Ser83Leu substitution being most frequent, followed by Glu87Lys. No macrolide resistance was found among the 250 isolates studied; a single U. parvum isolate was tetracycline resistant. tet(M) was found in 10 U. parvum isolates, including the single tetracycline-resistant isolate, as well as in 9 isolates which had low tetracycline and doxycycline MICs. Multilocus sequence typing (MLST) performed on a selection of 46 isolates showed high diversity within the clinical Ureaplasma isolates studied, regardless of antimicrobial susceptibility. The present work extends previous knowledge regarding susceptibility to antimicrobial agents, resistance mechanisms, and clonality of Ureaplasma species in the United States. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  15. Carbapenem-resistant and cephalosporin-susceptible: a worrisome phenotype among Pseudomonas aeruginosa clinical isolates in Brazil.

    Science.gov (United States)

    Campana, Eloiza Helena; Xavier, Danilo Elias; Petrolini, Fernanda Villas-Boas; Cordeiro-Moura, Jhonatha Rodrigo; Araujo, Maria Rita Elmor de; Gales, Ana Cristina

    The mechanisms involved in the uncommon resistance phenotype, carbapenem resistance and broad-spectrum cephalosporin susceptibility, were investigated in 25 Pseudomonas aeruginosa clinical isolates that exhibited this phenotype, which were recovered from three different hospitals located in São Paulo, Brazil. The antimicrobial susceptibility profile was determined by CLSI broth microdilution. β-lactamase-encoding genes were investigated by PCR followed by DNA sequencing. Carbapenem hydrolysis activity was investigated by spectrophotometer and MALDI-TOF assays. The mRNA transcription level of oprD was assessed by qRT-PCR and the outer membrane proteins profile was evaluated by SDS-PAGE. Genetic relationship among P. aeruginosa isolates was assessed by PFGE. Carbapenems hydrolysis was not detected by carbapenemase assay in the carbapenem-resistant and cephalosporin-susceptible P. aueruginosa clinical isolates. OprD decreased expression was observed in all P. aeruginosa isolates by qRT-PCR. The outer membrane protein profile by SDS-PAGE suggested a change in the expression of the 46kDa porin that could correspond to OprD porin. The isolates were clustered into 17 genotypes without predominance of a specific PFGE pattern. These results emphasize the involvement of multiple chromosomal mechanisms in carbapenem-resistance among clinical isolates of P. aeruginosa, alert for adaptation of P. aeruginosa clinical isolates under antimicrobial selective pressure and make aware of the emergence of an uncommon phenotype among P. aeruginosa clinical isolates. Copyright © 2016 Sociedade Brasileira de Infectologia. Published by Elsevier Editora Ltda. All rights reserved.

  16. Flocculent killer yeast for ethanol fermentation of beet molasses

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Kazuhito; Shimoii, Hitoshi; Sato, Shun' ichi; Saito, Kazuo; Tadenuma, Makoto

    1987-09-25

    When ethanol is produced using beet molasses, the concentration of ethanol is lower than that obtained using suger cane molasses. Yeast strain improvement was conducted to enhance ethanol production from beet molasses. The procedures and the results are as follows: (1) After giving ethanol tolerance to the flocculent yeast, strain 180 and the killer yeast, strain 909-1, strain 180-A-7, and strain 909-1-A-4 were isolated. These ethanol tolerant strains had better alcoholic fermentation capability and had more surviving cells in mash in the later process of fermentation than the parental strains. (2) Strain H-1 was bred by spore to cell mating between these two ethanol tolerant strains. Strain H-1 is both flocculent and killer and has better alcoholic fermentation capability than the parental strains. (3) In the fermentation test of beet molasses, strain H-1 showed 12.8% of alcoholic fermentation capability. It is equal to that of sugar cane molasses. Fermentation with reused cells were also successful. (5 figs, 21 refs)

  17. Membrane bioreactor wastewater treatment plants reveal diverse yeast and protist communities of potential significance in biofouling.

    Science.gov (United States)

    Liébana, Raquel; Arregui, Lucía; Belda, Ignacio; Gamella, Luis; Santos, Antonio; Marquina, Domingo; Serrano, Susana

    2015-01-01

    The yeast community was studied in a municipal full-scale membrane bioreactor wastewater treatment plant (MBR-WWTP). The unexpectedly high diversity of yeasts indicated that the activated sludge formed a suitable environment for them to proliferate, with cellular concentrations of 2.2 ± 0.8 × 10(3) CFU ml(-1). Sixteen species of seven genera were present in the biological reactor, with Ascomycetes being the most prevalent group (93%). Most isolates were able to grow in a synthetic wastewater medium, adhere to polyethylene surfaces, and develop biofilms of variable complexity. The relationship between yeast populations and the protists in the MBR-WWTP was also studied, revealing that some protist species preyed on and ingested yeasts. These results suggest that yeast populations may play a role in the food web of a WWTP and, to some extent, contribute to membrane biofouling in MBR systems.

  18. Network Thermodynamic Curation of Human and Yeast Genome-Scale Metabolic Models

    Science.gov (United States)

    Martínez, Verónica S.; Quek, Lake-Ee; Nielsen, Lars K.

    2014-01-01

    Genome-scale models are used for an ever-widening range of applications. Although there has been much focus on specifying the stoichiometric matrix, the predictive power of genome-scale models equally depends on reaction directions. Two-thirds of reactions in the two eukaryotic reconstructions Homo sapiens Recon 1 and Yeast 5 are specified as irreversible. However, these specifications are mainly based on biochemical textbooks or on their similarity to other organisms and are rarely underpinned by detailed thermodynamic analysis. In this study, a to our knowledge new workflow combining network-embedded thermodynamic and flux variability analysis was used to evaluate existing irreversibility constraints in Recon 1 and Yeast 5 and to identify new ones. A total of 27 and 16 new irreversible reactions were identified in Recon 1 and Yeast 5, respectively, whereas only four reactions were found with directions incorrectly specified against thermodynamics (three in Yeast 5 and one in Recon 1). The workflow further identified for both models several isolated internal loops that require further curation. The framework also highlighted the need for substrate channeling (in human) and ATP hydrolysis (in yeast) for the essential reaction catalyzed by phosphoribosylaminoimidazole carboxylase in purine metabolism. Finally, the framework highlighted differences in proline metabolism between yeast (cytosolic anabolism and mitochondrial catabolism) and humans (exclusively mitochondrial metabolism). We conclude that network-embedded thermodynamics facilitates the specification and validation of irreversibility constraints in compartmentalized metabolic models, at the same time providing further insight into network properties. PMID:25028891

  19. Interactions between yeasts and bacteria in the smear surface-ripened cheeses.

    Science.gov (United States)

    Corsetti, A; Rossi, J; Gobbetti, M

    2001-09-19

    In the initial phase of ripening, the microflora of bacterial smear surface-ripened cheeses such as Limburger, Taleggio, Brick, Münster and Saint-Paulin and that of surface mould-ripened cheeses such as Camembert and Brie may be similar, but at the end of the ripening, bacteria such as Brevibacterium spp., Arthrobacter spp., Micrococcus spp., Corynebacterium spp. and moulds such as Penicillium camemberti are, respectively, the dominant microorganisms. Yeasts such as Candida spp., Cryptococcus spp., Debaryomyces spp., Geotrichum candidum, Pichia spp., Rhodotorula spp., Saccharomyces spp. and Yarrowia lipolytica are often and variably isolated from the smear surface-ripened cheeses. Although not dominant within the microorganisms of the smear surface-ripened cheeses, yeasts establish significant interactions with moulds and especially bacteria, including surface bacteria and lactic acid bacteria. Some aspects of the interactions between yeasts and bacteria in such type of cheeses are considered in this paper.

  20. A commentary on the role of molecular technology and automation in clinical diagnostics.

    Science.gov (United States)

    O'Connor, Ciara; Fitzgibbon, Marie; Powell, James; Barron, Denis; O'Mahony, Jim; Power, Lorraine; O'Connell, Nuala H; Dunne, Colum

    2014-01-01

    Historically, the identification of bacterial or yeast isolates has been based on phenotypic characteristics such as growth on defined media, colony morphology, Gram stain, and various biochemical reactions, with significant delay in diagnosis. Clinical microbiology as a medical specialty has embraced advances in molecular technology for rapid species identification with broad-range 16S rDNA polymerase chain reaction (PCR) and matrix-assisted laser desorption and/or ionization time of flight (MALDI-TOF) mass spectrometry demonstrated as accurate, rapid, and cost-effective methods for the identification of most, but not all, bacteria and yeasts. Protracted conventional incubation times previously necessary to identify certain species have been mitigated, affording patients quicker diagnosis with associated reduction in exposure to empiric broad-spectrum antimicrobial therapy and shortened hospital stay. This short commentary details such molecular advances and their implications in the clinical microbiology setting.

  1. [Performance evaluation of Rapid™ Yeast Plus (Remel) system from two different culture media].

    Science.gov (United States)

    Romeo, Ana M; Snitman, Gabriela V; Marucco, Andrea P; Ponce, Graciela Del V; Cataldi, Silvana P; Guelfand, Liliana I; Arechavala, Alicia

    Within the genus Candida, Candida albicans is the most commonly isolated species from clinical samples. Due to the emergence of other species which can show a higher index of antifungal resistance, a fast identification of these species is necessary. The aim of this work was to evaluate the performance of the RapID Yeast Plus system from two different subculture media formulations: Sabouraud dextrose agar adjusted by Emmons (the medium is indicated in the equipment insert) and Sabouraud glucose agar, which is the most frequently used in Buenos Aires City laboratories. One hundred and sixty-six clinical sample strains coming from different hospitals belonging to the Mycology Network of Buenos Aires City were studied. From the obtained results, we conclude that the conditions and culture medium indicated by the manufacturer should be followed. Copyright © 2016 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. A novel functional class 2 integron in clinical Proteus mirabilis isolates.

    Science.gov (United States)

    Wei, Quhao; Hu, Qingfeng; Li, Shanshan; Lu, Huoyang; Chen, Guoqiang; Shen, Beiqiong; Zhang, Ping; Zhou, Yonglie

    2014-04-01

    To describe a novel functional class 2 integron that was found in clinical Proteus mirabilis isolates. Class 1 and 2 integrons were screened by PCR in 153 clinical Proteus isolates. The variable regions of class 1 and 2 integrons were determined by restriction analysis and sequencing. The mutations of internal stop codons in class 2 integrons and their common promoters were also determined by sequencing. Enterobacterial repetitive intergenic consensus (ERIC)-PCR was used to analyse the phylogenetic relations of class 2 integron-positive P. mirabilis isolates. Class 1 integrons were detected in 96 (63%) of 153 Proteus isolates: eight different gene cassette arrays were detected, including dfrA32-ereA1-aadA2, which was detected for the first time in P. mirabilis. Class 2 integrons were detected in 101 (66%) of 153 Proteus isolates: four different gene cassette arrays were detected, including dfrA1-catB2-sat2-aadA1, which was detected for the first time in a class 2 integron. A novel functional class 2 integron was detected in 38 P. mirabilis isolates with a common promoter (-35 TTTAAT|16 bp|-10 TAAAGT). The variable region of this functional class 2 integron contained dfrA14 and three novel open reading frames with unknown functions. Very similar ERIC-PCR fingerprinting patterns were detected in these 38 P. mirabilis isolates and were different from other class 2 integron-positive isolates. A novel functional class 2 integron was found for the first time in P. mirabilis. These functional class 2 integron-harbouring P. mirabilis isolates were likely to be clonally spread in our hospital.

  3. A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast

    DEFF Research Database (Denmark)

    Kampranis, S C; Damianova, R; Atallah, M

    2000-01-01

    The mammalian inducer of apoptosis Bax is lethal when expressed in yeast and plant cells. To identify potential inhibitors of Bax in plants we transformed yeast cells expressing Bax with a tomato cDNA library and we selected for cells surviving after the induction of Bax. This genetic screen allows...... for the identification of plant genes, which inhibit either directly or indirectly the lethal phenotype of Bax. Using this method a number of cDNA clones were isolated, the more potent of which encodes a protein homologous to the class theta glutathione S-transferases. This Bax-inhibiting (BI) protein was expressed...... in Escherichia coli and found to possess glutathione S-transferase (GST) and weak glutathione peroxidase (GPX) activity. Expression of Bax in yeast decreases the intracellular levels of total glutathione, causes a substantial reduction of total cellular phospholipids, diminishes the mitochondrial membrane...

  4. The occurrence and growth of yeasts in Camembert and blue-veined cheeses.

    Science.gov (United States)

    Roostita, R; Fleet, G H

    1996-01-01

    Yeast populations greater than 10(6) cfu/g were found in approximately 54% and 36%, respectively in surface samples of retail Camembert (85 samples) and Blue-veined (45 samples) cheeses. The most predominant species isolated were Debaryomyces hansenii, Candida catenulata, C. lipolytica, C. kefyr, C. intermedia, Saccharomyces cerevisiae, Cryptococcus albidus and Kluyveromyces marxianus. The salt concentration of the surface samples of the cheeses varied between 2.5-5.5% (w/w) (Camembert) and 7.5-8.3 (Blue-veined), depending upon brand, and influenced the yeast ecology, especially the presence of S. cerevisiae. Yeasts grew to populations of 10(6)-10(8) cfu/g when cheeses were stored at either 25 degrees C or 10 degrees C. These populations decreased on continued storage at 25 degrees C, but such decreases were not so evident on storage at 10 degrees C. The properties of yeasts influencing their occurrence and growth in cheese were: fermentation/assimilation of lactose; production of extracellular lipolytic and proteolytic enzymes, utilisation of lactic and citric acids; and growth at 10 degrees C.

  5. Genomic investigation of Staphylococcus aureus isolates from bulk tank milk and dairy cows with clinical mastitis.

    Science.gov (United States)

    Ronco, Troels; Klaas, Ilka C; Stegger, Marc; Svennesen, Line; Astrup, Lærke B; Farre, Michael; Pedersen, Karl

    2018-02-01

    Staphylococcus aureus is one of the most common pathogens that cause mastitis in dairy cows. Various subtypes, virulence genes and mobile genetic elements have been associated with isolates from bulk tank milk and clinical mastitis. So far, no Danish cattle associated S. aureus isolates have been whole-genome sequenced and further analyzed. Thus, the main objective was to investigate the population structure and genomic content of isolates from bulk tank milk and clinical mastitis, using whole-genome sequencing. This may reveal the origin of strains that cause clinical mastitis. S. aureus isolates from bulk tank milk (n = 94) and clinical mastitis (n = 63) were collected from 91 and 24 different farms, respectively and whole-genome sequenced. The genomic content was analyzed and a phylogenetic tree based on single nucleotide polymorphisms was constructed. In general, the isolates from both bulk tank milk and clinical mastitis were of similar genetic background. This suggests that dairy cows are natural carriers of the S. aureus subtypes that cause clinical mastitis if the right conditions are present and that a broad range of subtypes cause mastitis. A phylogenetic cluster that mostly consisted of ST151 isolates carried three mobile genetic elements that were primarily found in this group. The prevalence of resistance genes was generally low. However, the first ST398 methicillin resistant S. aureus isolate from a Danish dairy cow with clinical mastitis was detected. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Slime production and antibiotic susceptibility in staphylococci isolated from clinical samples

    Directory of Open Access Journals (Sweden)

    Seza Arslan

    2007-02-01

    Full Text Available A total of 187 isolates from several clinical specimens were identified to species level as 129 Staphylococcus aureus strains and 58 coagulase-negative staphylococci (CNS strains by the API Staph System (Biomerieux. Slime production was detected both by the conventional Christensen's method as well as by the Congo red agar method. Seventy-two strains of staphylococci isolates (38.5% were found to be slime producers by Christensen's test tube method whereas 58 strains (31% were slime positive with Congo red agar method. There was no statistically significant difference between the two methods for the detection of slime production (P > 0.05. Susceptibility of isolates against antimicrobial agents was tested by the disk diffusion method. Staphylococcal species had resistance to one or more antibiotics. Among the various antimicrobial agents, oxacillin (71.1% and erythromycin (47.1% showed higher resistance than most of the agents used against all isolates. Oxacillin resistant S. aureus (ORSA and oxacillin resistant coagulase-negative staphylococci (ORCNS, 97 (75.2% and 36 (62.1% respectively were frequently observed in strains isolated from clinical materials. Among the ORSA strains, two strains were resistant to vancomycin. Moreover, 96 (74.4% of 129 S. aureus strains were positive for blactamase enzyme. However, 78 (81.25% of 96 b-lactamase positive S. aureus strains were b-lactamase positive ORSA isolates, but none of them had vancomycin resistance.

  7. Evidence for propagation of cold-adapted yeast in an ice core from a Siberian Altai glacier

    Science.gov (United States)

    Uetake, Jun; Kohshima, Shiro; Nakazawa, Fumio; Takeuchi, Nozomu; Fujita, Koji; Miyake, Takayuki; Narita, Hideki; Aizen, Vladimir; Nakawo, Masayoshi

    2011-03-01

    Cold environments, including glacier ice and snow, are known habitats for cold-adapted microorganisms. We investigated the potential for cold-adapted yeast to have propagated in the snow of the high-altitude Belukha glacier. We detected the presence of highly concentrated yeast (over 104 cells mL-1) in samples of both an ice core and firn snow. Increasing yeast cell concentrations in the same snow layer from July 2002 to July 2003 suggests that the yeast cells propagated in the glacier snow. A cold-adapted Rhodotorula sp. was isolated from the snow layer and found to be related to psychrophilic yeast previously found in other glacial environments (based on the D1/D2 26S rRNA domains). 26S rRNA clonal analysis directly amplified from meltwater within the ice core also revealed the presence of genus Rhodotorula. Analyses of the ice core showed that all peaks in yeast concentration corresponded to the peaks in indices of surface melting. These results support the hypothesis that occasional surface melting in an accumulation area is one of the major factors influencing cold-adapted yeast propagation.

  8. Yeast identification in floral nectar of Mimulus aurantiacus (Invited)

    Science.gov (United States)

    Kyauk, C.; Belisle, M.; Fukami, T.

    2009-12-01

    Nectar is such a sugar-rich resource that serves as a natural habitat in which microbes thrive. As a result, yeasts arrive to nectar on the bodies of pollinators such as hummingbirds and bees. Yeasts use the sugar in nectar for their own needs when introduced. This research focuses on the identification of different types of yeast that are found in the nectar of Mimulus aurantiacus (commonly known as sticky monkey-flower). Unopened Mimulus aurantiacus flower buds were tagged at Jasper Ridge and bagged three days later. Floral nectar was then extracted and plated on potato dextrose agar. Colonies on the plates were isolated and DNA was extracted from each sample using QIAGEN DNeasy Plant Mini Kit. The DNA was amplified through PCR and ran through gel electrophoresis. The PCR product was used to clone the nectar samples into an E.coli vector. Finally, a phylogenetic tree was created by BLAST searching sequences in GenBank using the Internal Transcribed Space (ITS) locus. It was found that 18 of the 50 identified species were Candida magnifica, 14 was Candida rancensis, 6 were Crytococcus albidus and there were 3 or less of the following: Starmella bombicola, Candida floricola, Aureobasidium pullulans, Pichia kluyvera, Metschnikowa cibodaserisis, Rhodotorua colostri, and Malassezia globosa. The low diversity of the yeast could have been due to several factors: time of collection, demographics of Jasper Ridge, low variety of pollinators, and sugar concentration of the nectar. The results of this study serve as a necessary first step for a recently started research project on ecological interactions between plants, pollinators, and nectar-living yeast. More generally, this research studies the use of the nectar-living yeast community as a natural microcosm for addressing basic questions about the role of dispersal and competitive and facilitative interactions in ecological succession.

  9. Abc1: a new ABC transporter from the fission yeast Schizosaccharomyces pombe

    DEFF Research Database (Denmark)

    Christensen, P U; Davis, K; Nielsen, O

    1997-01-01

    We have isolated the abc1 gene from the fission yeast Schizosaccharomyces pombe. Sequence analysis suggests that the Abc1 protein is a member of the ABC superfamily of transporters and is composed of two structurally homologous halves, each consisting of a hydrophobic region of six transmembrane...

  10. Assessment of AmpC Beta-Lactamase Genes among Clinical Escherichia coli Isolates

    Directory of Open Access Journals (Sweden)

    HedrooshaMolla Agha-Mirzaeie

    2015-11-01

    Full Text Available Background: AmpC bta lactamases play a significant role in creating resistance to third generation cephalosporins worldwide. They mostly express on chromosome of Enterobacteriaceae especially Escherichia coli and cause consequential problem inclinical treatment and lead to failure in diagnosis and phenotypic test recommended byClinical and Laboratory Standards Institute.Methods:Totally 200 E. coli isolates from different hospitals of Tehran were collected. The isolates were screened by disk diffusion method according to the CLSI guidelines. The profiles and prevalence surveys of AmpC (Dha, CITM, Mox and FOX-type β-lactamase genes in clinical isolates of E. coli by phenotypic and molecular methods.  Results:Out of 200 Ecoli isolated, 115 (89.8% and 13 (10.2% isolates were identified as ESBL- and AmpC- beta-lactamase producers, respectively. Among mpC producers, 13 (100% and 5 (38.5% isolates was reported by PCR assay as bla-CITM and Dha respectively. Mox and FOX genes were not detected in any sample.Conclusions:Our results highlight the importance of using molecular detection methods to identify β-lactamase-producer that have resistance to antibiotics. 

  11. Effects of yeasts and bacteria on the levels of folates in rye sourdoughs.

    Science.gov (United States)

    Kariluoto, Susanna; Aittamaa, Marja; Korhola, Matti; Salovaara, Hannu; Vahteristo, Liisa; Piironen, Vieno

    2006-02-01

    Fermentation of rye dough is often accompanied with an increase in folate content. In this study, three sourdough yeasts, Candida milleri CBS 8195, Saccharomyces cerevisiae TS 146, and Torulaspora delbrueckii TS 207; a control, baker's yeast S. cerevisiae ALKO 743; and four Lactobacillus spp., L. acidophilus TSB 262, L. brevis TSB 307, L. plantarum TSB 304, and L. sanfranciscensis TSB 299 originally isolated from rye sourdough were examined for their abilities to produce or consume folates. The microorganisms were grown in yeast extract-peptone-d-glucose medium as well as in small-scale fermentations that modelled the sourdough fermentation step used in rye baking. Total folate contents were determined using Lactobacillus rhamnosus (ATCC 7469) as the growth indicator organism. The microorganisms studied did not excrete folates into the media in significant amounts. Yeasts increased the folate contents of sterilised rye flour-water mixtures from 6.5 microg/100 g to between 15 and 23 microg/100 g after 19-h fermentation, whereas lactic acid bacteria decreased it to between 2.9 and 4.2 microg/100 g. Strains of Lactobacillus bulgaricus, L. casei, L. curvatus, L. fermentum, L. helveticus, Pediococcus spp., and Streptococcus thermophilus that were also tested gave folate contents after fermentation that varied between 2 and 10.4 microg/100 g. Although the four Lactobacillus spp. from sourdough consumed folates their effect on folate contents in co-cultivations was minimal. It was concluded that the increase of folate content during fermentation was mainly due to folate synthesis by yeasts. Fermentation of non-sterilised flour-water mixtures as such resulted in three-fold increases in the folate contents. Two folate producing bacteria were isolated from the non-sterilised flour and identified as Enterobacter cowanii and Pantoea agglomerans.

  12. Fatty acids from oleaginous yeasts and yeast-like fungi and their potential applications.

    Science.gov (United States)

    Xue, Si-Jia; Chi, Zhe; Zhang, Yu; Li, Yan-Feng; Liu, Guang-Lei; Jiang, Hong; Hu, Zhong; Chi, Zhen-Ming

    2018-02-01

    Oleaginous yeasts, fatty acids biosynthesis and regulation in the oleaginous yeasts and the fatty acids from the oleaginous yeasts and their applications are reviewed in this article. Oleaginous yeasts such as Rhodosporidium toruloides, Yarrowia lipolytica, Rhodotorula mucilaginosa, and Aureobasidium melanogenum, which can accumulate over 50% lipid of their cell dry weight, have many advantages over other oleaginous microorganisms. The fatty acids from the oleaginous yeasts have many potential applications. Many oleaginous yeasts have now been genetically modified to over-produce fatty acids and their derivatives. The most important features of the oleaginous yeasts are that they have special enzymatic systems for enhanced biosynthesis and regulation of fatty acids in their lipid particles. Recently, some oleaginous yeasts such as R. toruloides have been found to have a unique fatty acids synthetase and other oleaginous yeasts such as A. melanogenum have a unique highly reducing polyketide synthase (HR-PKS) involved in the biosynthesis of hydroxyl fatty acids. It is necessary to further enhance lipid biosynthesis using metabolic engineering and explore new applications of fatty acids in biotechnology.

  13. Genetic polymorphism of Malassezia furfur isolates from Han and Tibetan ethnic groups in China using DNA fingerprinting.

    Science.gov (United States)

    Zhang, Hao; Zhang, Ruifeng; Ran, Yuping; Dai, Yaling; Lu, Yao; Wang, Peng

    2010-12-01

    Reported isolation rates of Malassezia yeast from human skin show geographic variations. In China, the populations of the Han (1,182.95 million) and Tibetan (5.41 million) ethnic groups are distributed over 9.6 and 3.27 million square kilometers respectively, making biodiversity research feasible and convenient. Malassezia furfur clinical strains (n = 29) isolated from different individuals, with or without associated dermatoses, of these two ethnic groups (15 Han and 12 Tibetan) were identified and analyzed with DNA fingerprinting using single primers specific to minisatellites. Using the Bionumerics software, we found that almost all M. furfur clinical isolates and type strains formed five distinct group clusters according to their associated skin diseases and the ethnic groups of the patients. These findings are the first to focus on the genetic diversity and relatedness of M. furfur in the Tibetan and Han ethnic groups in China and reveal genetic variation associated with related diseases, host ethnicity and geographic origin.

  14. Serotyping and analysis of produced pigments kinds by Pseudomonas aeruginosa clinical isolates

    Directory of Open Access Journals (Sweden)

    Stanković-Nedeljković Nataša

    2011-01-01

    Full Text Available Background/Aim. Pseudomonas aeruginosa (P. aeruginosa is devided into 20 serotypes on the base of the International Antigenic Typing Scheme. P. aeruginosa serotyping is important because of few reasons but epidemiological is the most important. The aim of the study was serotyping of P. aeruginosa clinical isolates, analysing of single clinical isolates P. aeruginosa present in the particular samples, and analysing of pyocianin and fluorescin production in different isolates of P. aeruginosa. Methods. A total of 223 isolates of P. aeruginosa, isolated in the microbiological laboratory of the Health Center “Aleksinac”, Aleksinac, were examinated. P. aeruginosa isolates were put on the pseudomonas isolation agar, pseudomonas agar base, acetamid agar, asparagin prolin broth, pseudomonas asparagin broth, Bushnnell-Haas agar, cetrimid agar base, King A and King B plates, plates for pyocianin production, plates for fluorescin production and tripticasa soya agar (Himedia. Polyvalent and monovalent serums were used in the agglutination (Biorad. Pigment production was analysed on the bases of growth on the plates for pyocianin and fluorescin production. Results. Serologically, we identificated the serovars as follows: O1, O3, O4, O5, O6, O7, O8, O10, O11 and O12. O1 (38% was the most often serovar, then O11 (19% and O6 (8.6%. A total of 18.6% (42 isolates did not agglutinate with any serum, whereas 21 isolates agglutinated only with polyvalent serum. The majority of P. aeruginosa isolates produced fluorescin, 129 (58.54%, 53 (22.94% produced pyocianin whereas 49 (21.21% isolates produced both pigments. Conclusion. P. aeruginosa was isolated most of the from urine, sputum and other materials. The majority often serovars were O1, O6 and O11. The most of isolates produced fluorescin (58.54%, while 22.94% producted pyocianin and 21.21% both pigments.

  15. Local climatic conditions constrain soil yeast diversity patterns in Mediterranean forests, woodlands and scrub biome.

    Science.gov (United States)

    Yurkov, Andrey M; Röhl, Oliver; Pontes, Ana; Carvalho, Cláudia; Maldonado, Cristina; Sampaio, José Paulo

    2016-02-01

    Soil yeasts represent a poorly known fraction of the soil microbiome due to limited ecological surveys. Here, we provide the first comprehensive inventory of cultivable soil yeasts in a Mediterranean ecosystem, which is the leading biodiversity hotspot for vascular plants and vertebrates in Europe. We isolated and identified soil yeasts from forested sites of Serra da Arrábida Natural Park (Portugal), representing the Mediterranean forests, woodlands and scrub biome. Both cultivation experiments and the subsequent species richness estimations suggest the highest species richness values reported to date, resulting in a total of 57 and 80 yeast taxa, respectively. These values far exceed those reported for other forest soils in Europe. Furthermore, we assessed the response of yeast diversity to microclimatic environmental factors in biotopes composed of the same plant species but showing a gradual change from humid broadleaf forests to dry maquis. We observed that forest properties constrained by precipitation level had strong impact on yeast diversity and on community structure and lower precipitation resulted in an increased number of rare species and decreased evenness values. In conclusion, the structure of soil yeast communities mirrors the environmental factors that affect aboveground phytocenoses, aboveground biomass and plant projective cover. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. Identification of the Transcription Factor Znc1p, which Regulates the Yeast-to-Hypha Transition in the Dimorphic Yeast Yarrowia lipolytica

    Science.gov (United States)

    Martinez-Vazquez, Azul; Gonzalez-Hernandez, Angelica; Domínguez, Ángel; Rachubinski, Richard; Riquelme, Meritxell; Cuellar-Mata, Patricia; Guzman, Juan Carlos Torres

    2013-01-01

    The dimorphic yeast Yarrowia lipolytica is used as a model to study fungal differentiation because it grows as yeast-like cells or forms hyphal cells in response to changes in environmental conditions. Here, we report the isolation and characterization of a gene, ZNC1, involved in the dimorphic transition in Y. lipolytica. The ZNC1 gene encodes a 782 amino acid protein that contains a Zn(II)2C6 fungal-type zinc finger DNA-binding domain and a leucine zipper domain. ZNC1 transcription is elevated during yeast growth and decreases during the formation of mycelium. Cells in which ZNC1 has been deleted show increased hyphal cell formation. Znc1p-GFP localizes to the nucleus, but mutations within the leucine zipper domain of Znc1p, and to a lesser extent within the Zn(II)2C6 domain, result in a mislocalization of Znc1p to the cytoplasm. Microarrays comparing gene expression between znc1::URA3 and wild-type cells during both exponential growth and the induction of the yeast-to-hypha transition revealed 1,214 genes whose expression was changed by 2-fold or more under at least one of the conditions analyzed. Our results suggest that Znc1p acts as a transcription factor repressing hyphal cell formation and functions as part of a complex network regulating mycelial growth in Y. lipolytica. PMID:23826133

  17. The treasure trove of yeast genera and species described by Johannes van der Walt (1925-2011).

    Science.gov (United States)

    Smith, Maudy Th; Groenewald, Marizeth

    2012-12-01

    Yeast taxonomy and systematics have in recent years been dealt with intensively primarily by a small group of individual researchers with particular expertise. Amongst these was Johannes P. van der Walt, who had a major role in shaping our current understanding of yeast biodiversity and taxonomy. Van der Walt based his taxonomic studies not only on available cultures, but also by going into the field to isolate yeasts from various substrates. This pioneering work led to the discovery of many new genera and species, which were deposited in the Centraalbureau voor Schimmelcultures (CBS) collections for future studies in taxonomy, genomics, and industrial uses. These treasures collected during more than 60 years provide an outstanding legacy to the yeast community and will continue to exist in his absence. This contribution provides a comprehensive overview of the current nomenclatural and taxonomic status of the yeast genera and species introduced by van der Walt during his career.

  18. Exoenzyme activity and possibility identification of Candida dubliniensis among Candida albicans species isolated from vaginal candidiasis.

    Science.gov (United States)

    Jafari, Maryam; Salari, Samira; Pakshir, Keyvan; Zomorodian, Kamiar

    2017-09-01

    Vulvovaginal candidiasis (VVC) or vaginal candidiasis is a common fungal infection of the genitals causing inflammation, irritation, itching, and vaginal discharge. Common yeast infections are caused by the yeast species C. albicans. However, there are other species of Candida such as C. dubliniensis which are considered as the causative agents of this infection. Hydrolytic enzymes such as proteinase and coagulase are known as virulence factors. The aim of this study was the molecular confirmation and differentiation of C. dubliniensis among C. albicans strains isolated from women with vulvovaginal candidiasis by PCR-Restriction Fragment Length Polymorphism (PCR-RFLP) and the evaluation of proteinase and coagulase activities. A total of 100 C. albicans strains isolated from women with vulvovaginal candidiasis referred to Shiraz medical clinics were enrolled in the study. All the isolates were primarily identified by conventional methods. PCR-RFLP method was used for the confirmation and identification of C. albicans and C. dubliniensis. Moreover, in vitro proteinase and coagulase activities of these isolates were evaluated using bovine serum albumin media and classical rabbit plasma tube test. As a result, PCR-RFLP identified 100% of the isolates as C. albicans, and no C. dubliniensis could be identified in this study. 84% of the isolates showed proteinase activity, whereas coagulase activity was only detected in 5% of the isolates. This study reveals that C. dubliniensis plays no role in vaginal candidiasis in Iranian patients. Proteinase production could be an essential virulence factor in C. albicans pathogenicity, but coagulase activity has less potential in this matter. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Expression of Panton-Valentine leukocidin mRNA among Staphylococcus aureus isolates associates with specific clinical presentations.

    Directory of Open Access Journals (Sweden)

    Fangyou Yu

    Full Text Available Panton-Valentine leukocidin (PVL; gene designation lukF/S-PV is likely an important virulence factor for Staphylococcus aureus (S. aureus, as qualitative expression of the protein correlates with severity for specific clinical presentations, including skin and soft tissue infections (SSTIs. Development of genetic approaches for risk-assessment of patients with S. aureus infections may prove clinically useful, and whether lukF/S-PV gene expression correlates with specific clinical presentations for S. aureus has been largely unexplored. In the present study, we quantified lukS-PV mRNA among 96 S. aureus isolates to determine whether expression levels correlated with specific clinical presentations in adults and children. Expression level of lukS-PV mRNA among isolates from skin and soft tissue infections (SSTIs was significantly greater than among isolates from blood stream infection (BSIs, and expression level of lukS-PV mRNA among BSI isolates from children was significantly greater than for BSI isolates among adults. Moreover, expression level of lukS-PV mRNA among community-acquired (CA isolates was significantly greater than for hospital-acquired (HA isolates. These data justify additional studies to determine the potential clinical utility for lukS-PV mRNA quantification as a predictive tool for severity of S. aureus infection.

  20. Yeast Biodiversity in Vineyard Environments Is Increased by Human Intervention.

    Directory of Open Access Journals (Sweden)

    João Drumonde-Neves

    Full Text Available One hundred and five grape samples were collected during two consecutive years from 33 locations on seven oceanic islands of the Azores Archipelago. Grape samples were obtained from vineyards that were either abandoned or under regular cultivation involving common viticultural interventions, to evaluate the impact of regular human intervention on grape yeast biota diversity in vineyards. A total of 3150 yeast isolates were obtained and 23 yeast species were identified. The predominant species were Hanseniaspora uvarum, Pichia terricola, Starmerella bacillaris and Issatchenkia hanoiensis. The species Barnettozyma californica, Candida azymoides and Pichia cecembensis were reported in grapes or wine-associated environments for the first time. A higher biodiversity was found in active vineyards where regular human intervention takes place (Shannon index: 1.89 and 1.53 in the first and second years, respectively when compared to the abandoned ones (Shannon index: 0.76 and 0.31. This finding goes against the assumptions that human intervention can destroy biodiversity and lead to homogeneity in the environment. Biodiversity indices were considerably lower in the year with the heaviest rainfall. This study is the first to report on the grape yeast communities from several abandoned vineyards that have undergone no human intervention.

  1. [Clinical problems in medical mycology: Problem number 51].

    Science.gov (United States)

    Romero, Mercedes; Messina, Fernando; Marín, Emmanuel; Arechavala, Alicia; Negroni, Ricardo; Depardo, Roxana; Walker, Laura; Benchetrit, Andrés; Santiso, Gabriela

    A 48 year-old immunocompetent woman, who had a nodular lesion in the neck and a dense infiltrate at the lower lobe of the left lung, presented at the Mycology Unit of Muñiz Hospital of Buenos Aires City. The pulmonary infiltrate disappeared spontaneously 3 months later. The histopathological study of the nodular lesion showed capsulated yeasts (mucicarmin and alcian blue positive stains) compatible with Cryptococcus. The mycological study of a new sample, obtained by a nodular puncture, allowed the isolation of yeasts, identified as Cryptococcus gattii (VGII). Latex test for Cryptococcus capsular antigen in serum was positive (1/100). CSF cultures rendered negative results. Fluconazole at a daily dose of 800mg was given during 45 days with partial improvement; as cultures from a new clinical sample were positive for Cryptococcus, the antimycotic was changed to itraconazole 400mg/day for 5 months, with an excellent clinical response. Copyright © 2017 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  2. Isolation and molecular identification of Lactobacillus brevis from traditional vinegar

    Directory of Open Access Journals (Sweden)

    Zeynab Ebrahimi

    2016-09-01

    Full Text Available Introduction: Vinegar is a popular condiment in the world that different materials and methods have been used to produce it. In Iran natural vinegar is also prepared mostly in a traditional way by using different fruits such as grapes and apples. Natural vinegar has beneficent properties and because of this, it is recommended to be used by traditional and Islamic medicine. Vinegar contains acetic acid bacteria, lactic acid bacteria and yeast. Acetic acid bacteria and yeasts are involved in the production of vinegar and lactic acid bacteria improve the flavor of vinegar. The aim of this study was isolation and identification of lactic acid bacteria especially Lactobacillus brevis from traditional vinegar. Materials and methods: After collecting a few traditional vinegars, the vinegar samples cultured for isolation of lactic acid bacteria on MRS broth and agar media contained nystatin as an anti-yeast antibiotic. Then some microbiological tests including catalase, gram staining and fermentation of carbohydrates were performed. Then, they were cultured at different temperatures, pH and different concentrations of salts. Finally, three isolates bacteria with biochemical properties of Lactobacillus brevis were evaluated by16 srDNA gene amplification. Results: Twelve lactobacilli were isolated from three vinegar samples. All isolated bacteria were catalase-negative and gram-positive. They could be able to grow at pH around 4.5 and 5.6, and at 2, 4 and 5.6% of salt concentrations. Most of the bacteria grew at 15oC, whereas one isolated grew at 45oC. Sequencing and Blast results showed that the three strains are Lactobacillus brevis. Discussion and conclusion: Lactobacillus brevis and Lactobacillus plantrum were found in traditional vinegars. Although isolation of Lactobacillus plantrum from vinegar was reported previously, as far as we could determine, it is for the first time that we could isolate Lactobacillus brevis from vinegar.

  3. Prevalence of Candida albicans and non-albicans isolates from vaginal secretions: comparative evaluation of colonization, vaginal candidiasis and recurrent vaginal candidiasis in diabetic and non-diabetic women

    Directory of Open Access Journals (Sweden)

    Luciene Setsuko Akimoto Gunther

    Full Text Available CONTEXT AND OBJECTIVE: Vulvovaginal candidiasis (VVC is caused by abnormal growth of yeast-like fungi on the female genital tract mucosa. Patients with diabetes mellitus (DM are more susceptible to fungal infections, including those caused by species of Candida. The present study investigated the frequency of total isolation of vaginal Candida spp., and its different clinical profiles - colonization, VVC and recurrent VVC (RVVC - in women with DM type 2, compared with non-diabetic women. The cure rate using fluconazole treatment was also evaluated. DESIGN AND SETTING: Cross-sectional study conducted in the public healthcare system of Maringá, Paraná, Brazil. METHODS: The study involved 717 women aged 17-74 years, of whom 48 (6.7% had DM type 2 (mean age: 53.7 years, regardless of signs and symptoms of VVC. The yeasts were isolated and identified using classical phenotypic methods. RESULTS: In the non-diabetic group (controls, total vaginal yeast isolation occurred in 79 (11.8% women, and in the diabetic group in 9 (18.8% (P = 0.000. The diabetic group showed more symptomatic (VVC + RVVC = 66.66% than colonized (33.33% women, and showed significantly more colonization, VVC and RVVC than seen among the controls. The mean cure rate using fluconazole was 75.0% in the diabetic group and 86.7% in the control group (P = 0.51. CONCLUSION: We found that DM type 2 in Brazilian women was associated with yeast colonization, VVC and RVVC, and similar isolation rates for C. albicans and non-albicans species. Good cure rates were obtained using fluconazole in both groups.

  4. Study on biofilm-forming properties of clinical isolates of Staphylococcus aureus.

    Science.gov (United States)

    Taj, Yasmeen; Essa, Farhan; Aziz, Faisal; Kazmi, Shahana Urooj

    2012-05-14

    The purpose of this study was to observe the formation of biofilm, an important virulence factor, by isolates of Staphylococcus aureus (S. aureus) in Pakistan by different conventional methods and through electron microscopy. We screened 115 strains of S. aureus isolated from different clinical specimens by tube method (TM), air-liquid interface coverslip assay method, Congo red agar (CRA) method, and scanning electron microscopy (SEM). Out of 115 S. aureus isolates, 63 (54.78%) showed biofilm formation by tube method. Biofilm forming bacteria were further categorized as high producers (n = 23, 20%) and moderate producers (n = 40, 34.78%). TM coordinated well with the coverslip assay for strong biofilm-producing strains in 19 (16.5%) isolates. By coverslip method, weak producers were difficult to differentiate from biofilm negative isolates. Screening on CRA showed biofilm formation only in four (3.47%) strains. Scanning electron micrographs showed the biofilm-forming strains of S. aureus arranged in a matrix on the propylene surface and correlated well with the TM. Biofilm production is a marker of virulence for clinically relevant staphylococcal infections. It can be studied by various methods but screening on CRA is not recommended for investigation of biofilm formation in Staphylococcus aureus. Electron micrograph images correlate well with the biofilm production as observed by TM.

  5. Clinical evaluation of isolated abutment teeth in removable partial dentures

    Directory of Open Access Journals (Sweden)

    Zarrati S

    2011-02-01

    Full Text Available "nBackground and Aims: Nowadays, removable partial dentures are applied to patients who are not able to use dental implants or fixed prosthesis. Although based on the studies the users of removable partial dentures are in the risk of plaque accumulation and unacceptable changes such as gingivitis, periodontitis and mobility in abutment tooth. It is not clear whether the negative effects of removable partial dentures are more on the isolated teeth which are a kind of abutment adjacent to endentulous area in both sides. The purpose of this study was to investigate the clinical condition of isolated abutment teeth without splinting in comparison to control abutment from the aspects of B.O.P (bleeding on probing, mobility, pocket depth and gingivitis."nMaterials and Methods: In this cross-sectional study, the prepared questionnaires were filled out by 50 patients who received removable partial dentures in department of removable prosthodontics of dental school of Tehran University of Medical Sciences. The patients had isolated abutment tooth and did not have any systemic disease. The obtained data were analyzed. Using Wilcoxon, exact Fisher and Kruskal-Wallis test."nResults: B.O.P (P=0.004, pocket depth (P=0.035, and mobility (P<0.001 in isolated abutments were more than those in control abutments, but there were not significant differences in the degree of caries (P=0.083 and gingivitis (P=0.07."nConclusion: This study showed that clinical condition of isolated abutments is worse than that of control abutments. More attention should be paid to healthiness of isolated teeth without splinting and periodic follow ups should be done in these cases.

  6. Treatment and Valorization of Palm Oil Mill Effluent through Production of Food Grade Yeast Biomass

    OpenAIRE

    Joy O. Iwuagwu; J. Obeta Ugwuanyi

    2014-01-01

    Palm oil mill effluent (POME) is high strength wastewater derived from processing of palm fruit. It is generated in large quantities in all oil palm producing nations where it is a strong pollutant amenable to microbial degradation being rich in organic carbon, nitrogen, and minerals. Valorization and treatment of POME with seven yeast isolates was studied under scalable conditions by using POME to produce value-added yeast biomass. POME was used as sole source of carbon and nitrogen and the ...

  7. Glutaminase-producing Meyerozyma (Pichia) guilliermondii isolated from Thai soy sauce fermentation.

    Science.gov (United States)

    Aryuman, Phichayaphorn; Lertsiri, Sittiwat; Visessanguan, Wonnop; Niamsiri, Nuttawee; Bhumiratana, Amaret; Assavanig, Apinya

    2015-01-02

    In this study, 34 yeast isolates were obtained from koji and moromi samples of Thai soy sauce fermentation. However, the most interesting yeast strain was isolated from the enriched 2 month-old (M2) moromi sample and identified as Meyerozyma (Pichia) guilliermondii EM2Y61. This strain is a salt-tolerant yeast that could tolerate up to 20% (w/v) NaCl and produce extracellular and cell-bound glutaminases. Interestingly, its glutaminases were more active in 18% (w/v) NaCl which is a salt concentration in moromi. The extracellular glutaminase's activity was found to be much higher than that of cell-bound glutaminase. The highest specific activity and stability of the extracellular glutaminase were found in 18% (w/v) NaCl at pH4.5 and 37°C. A challenge test by adding partially-purified extracellular glutaminase from M. guilliermondii EM2Y61 into 1 month-old (M1) moromi sample showed an increased conversion of L-glutamine to L-glutamic acid. This is the first report of glutaminase producing M. guilliermondii isolated from the moromi of Thai soy sauce fermentation. The results suggested the potential application of M. guilliermondii EM2Y61 as starter yeast culture to increase l-glutamic acid during soy sauce fermentation. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Bio-Technological Characterization of the Saccharomyces bayanus Yeast Strains in Order to Preserve the Local Specificity

    Directory of Open Access Journals (Sweden)

    Enikő Gaspar

    2011-05-01

    Full Text Available The wine yeasts have multiple and important applications in the industry, aiming to obtain pure cultures and the selection of those strains which, according to the lab investigations, present superior bio-technological properties. In this study we monitored three types of Saccharomyces bayanus yeast strains, isolated from indigenous grapes varieties, Apold Iordana, Italian Blaj Riesling and Royal Feteasca from Jidvei area, which are present in the collection of the Biotechnologies and Microbiology Research Center of SAIAPM University. The yeast strains were subject to alcoholic fermentation in malt must at different temperatures, in the presence of alcohol, sugar and SO2 in various concentrations. The obtained results led to selecting of those strains which had best results regarding the alcoholic tolerance, osmo-tolerance, fermentation speed under stress conditions and resistance to SO2. These results can have practical applications in using the indigenous strains, isolated from grapes which are from inside the country, so that we preserve the local specificity, and reduce imports regarding this area.

  9. Use of CHROMagar Candida for the presumptive identification of Candida species directly from clinical specimens in resource-limited settings

    Science.gov (United States)

    Nadeem, Sayyada Ghufrana; Hakim, Shazia Tabassum; Kazmi, Shahana Urooj

    2010-01-01

    Introduction Identification of yeast isolated from clinical specimens to the species level has become increasingly important. Ever-increasing numbers of immuno-suppressed patients, a widening range of recognized pathogens, and the discovery of resistance to antifungal drugs are contributing factors to this necessity. Material and methods A total of 487 yeast strains were studied for the primary isolation and presumptive identification, directly from clinical specimen. Efficacy of CHROMagar Candida has been evaluated with conventional methods including morphology on Corn meal–tween 80 agar and biochemical methods by using API 20 C AUX. Results The result of this study shows that CHROMagar Candida can easily identify three species of Candida on the basis of colonial color and morphology, and accurately differentiate between them i.e. Candida albicans, Candida tropicalis, and Candida krusei. The specificity and sensitivity of CHROMagar Candida for C. albicans calculated as 99%, for C. tropicalis calculated as 98%, and C. krusei it is 100%. Conclusion The data presented supports the use of CHROMagar Candida for the rapid identification of Candida species directly from clinical specimens in resource-limited settings, which could be very helpful in developing appropriate therapeutic strategy and management of patients. PMID:21483597

  10. Use of CHROMagar Candida for the presumptive identification of Candida species directly from clinical specimens in resource-limited settings

    Directory of Open Access Journals (Sweden)

    Sayyada Ghufrana Nadeem

    2010-02-01

    Full Text Available Introduction: Identification of yeast isolated from clinical specimens to the species level has become increasingly important. Ever-increasing numbers of immuno-suppressed patients, a widening range of recognized pathogens, and the discovery of resistance to antifungal drugs are contributing factors to this necessity. Material and methods: A total of 487 yeast strains were studied for the primary isolation and presumptive identification, directly from clinical specimen. Efficacy of CHROMagar Candida has been evaluated with conventional methods including morphology on Corn meal–tween 80 agar and biochemical methods by using API 20 C AUX. Results: The result of this study shows that CHROMagar Candida can easily identify three species of Candida on the basis of colonial color and morphology, and accurately differentiate between them i.e. Candida albicans, Candida tropicalis, and Candida krusei. The specificity and sensitivity of CHROMagar Candida for C. albicans calculated as 99%, for C. tropicalis calculated as 98%, and C. krusei it is 100%. Conclusion: The data presented supports the use of CHROMagar Candida for the rapid identification of Candida species directly from clinical specimens in resource-limited settings, which could be very helpful in developing appropriate therapeutic strategy and management of patients.

  11. Use of CHROMagar Candida for the presumptive identification of Candida species directly from clinical specimens in resource-limited settings.

    Science.gov (United States)

    Nadeem, Sayyada Ghufrana; Hakim, Shazia Tabassum; Kazmi, Shahana Urooj

    2010-02-09

    Identification of yeast isolated from clinical specimens to the species level has become increasingly important. Ever-increasing numbers of immuno-suppressed patients, a widening range of recognized pathogens, and the discovery of resistance to antifungal drugs are contributing factors to this necessity. A total of 487 yeast strains were studied for the primary isolation and presumptive identification, directly from clinical specimen. Efficacy of CHROMagar Candida has been evaluated with conventional methods including morphology on Corn meal-tween 80 agar and biochemical methods by using API 20 C AUX. The result of this study shows that CHROMagar Candida can easily identify three species of Candida on the basis of colonial color and morphology, and accurately differentiate between them i.e. Candida albicans, Candida tropicalis, and Candida krusei. The specificity and sensitivity of CHROMagar Candida for C. albicans calculated as 99%, for C. tropicalis calculated as 98%, and C. krusei it is 100%. The data presented supports the use of CHROMagar Candida for the rapid identification of Candida species directly from clinical specimens in resource-limited settings, which could be very helpful in developing appropriate therapeutic strategy and management of patients.

  12. Identification of Candida albicans and Candida dubliniensis Species Isolated from Bronchoalveolar Lavage Samples Using Genotypic and Phenotypic Methods

    Directory of Open Access Journals (Sweden)

    Sahar Kianipour

    2018-01-01

    Full Text Available Background: Candida dubliniensis is a newly diagnosed species very similar to Candida albicans phenotypically and first discovered in the mouth of people with AIDS in 1995. Among the different phenotypic and genotypic methods, a cost-effective method should be selected which makes it possible to differentiate these similar species. Materials and Methods: Polymerase chain reaction (PCR-restriction fragment length polymorphism with MspI enzyme and the Duplex-PCR method were done by DNA extraction using boiling. The sequencing of the amplified ribosomal region was used to confirm the C. dubliniensis species. Direct examination and colony count of the yeasts were applied for bronchoalveolar lavage (BAL samples and the growth rate of the yeasts were studied at 45°C. To understand the ability formation of chlamydoconidia in yeast isolates, they were separately cultured on the sunflower seed agar, wheat flour agar, and corn meal agar media. Results: Fifty-nine (49.2% yeast colonies were identified from the total of 120 BAL specimens. Twenty-nine isolated yeasts; including 17 (58.6% of C. albicans/dubliniensis complex and 12 (41.4% of nonalbicans isolates produced pseudohypha or blastoconidia in direct smear with a mean colony count of 42000 CFU/mL. C. albicans with the frequency of 15 (42.9% were the most common isolated yeasts, whereas C. dubliniensis was identified in two nonHIV patients. Conclusion: Sequencing of the replicated gene fragment is the best method for identifying the yeasts, but the determination of the species by phenotypic methods such as the creation of chlamydoconidia in sunflower seeds agar and wheat flour agar media can be cost-effective, have sensitivity and acceptable quality.

  13. Identification of Candida albicans and Candida dubliniensis Species Isolated from Bronchoalveolar Lavage Samples Using Genotypic and Phenotypic Methods.

    Science.gov (United States)

    Kianipour, Sahar; Ardestani, Mohammad Emami; Dehghan, Parvin

    2018-01-01

    Candida dubliniensis is a newly diagnosed species very similar to Candida albicans phenotypically and first discovered in the mouth of people with AIDS in 1995. Among the different phenotypic and genotypic methods, a cost-effective method should be selected which makes it possible to differentiate these similar species. Polymerase chain reaction (PCR)-restriction fragment length polymorphism with MspI enzyme and the Duplex-PCR method were done by DNA extraction using boiling. The sequencing of the amplified ribosomal region was used to confirm the C. dubliniensis species. Direct examination and colony count of the yeasts were applied for bronchoalveolar lavage (BAL) samples and the growth rate of the yeasts were studied at 45°C. To understand the ability formation of chlamydoconidia in yeast isolates, they were separately cultured on the sunflower seed agar, wheat flour agar, and corn meal agar media. Fifty-nine (49.2%) yeast colonies were identified from the total of 120 BAL specimens. Twenty-nine isolated yeasts; including 17 (58.6%) of C. albicans / dubliniensis complex and 12 (41.4%) of nonalbicans isolates produced pseudohypha or blastoconidia in direct smear with a mean colony count of 42000 CFU/mL. C. albicans with the frequency of 15 (42.9%) were the most common isolated yeasts, whereas C. dubliniensis was identified in two nonHIV patients. Sequencing of the replicated gene fragment is the best method for identifying the yeasts, but the determination of the species by phenotypic methods such as the creation of chlamydoconidia in sunflower seeds agar and wheat flour agar media can be cost-effective, have sensitivity and acceptable quality.

  14. Phyllosphere yeasts rapidly break down biodegradable plastics.

    Science.gov (United States)

    Kitamoto, Hiroko K; Shinozaki, Yukiko; Cao, Xiao-Hong; Morita, Tomotake; Konishi, Masaaki; Tago, Kanako; Kajiwara, Hideyuki; Koitabashi, Motoo; Yoshida, Shigenobu; Watanabe, Takashi; Sameshima-Yamashita, Yuka; Nakajima-Kambe, Toshiaki; Tsushima, Seiya

    2011-11-29

    The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily isolated from plant surfaces, displayed strong degradation activity on films made from poly-butylene succinate or poly-butylene succinate-co-adipate. Strains of P. antarctica isolated from leaves and husks of paddy rice displayed strong degradation activity on these films at 30°C. The type strain, P. antarctica JCM 10317, and Pseudozyma spp. strains from phyllosphere secreted a biodegradable plastic-degrading enzyme with a molecular mass of about 22 kDa. Reliable source of biodegradable plastic-degrading microorganisms are now in our hands.

  15. Phyllosphere yeasts rapidly break down biodegradable plastics

    Science.gov (United States)

    2011-01-01

    The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily isolated from plant surfaces, displayed strong degradation activity on films made from poly-butylene succinate or poly-butylene succinate-co-adipate. Strains of P. antarctica isolated from leaves and husks of paddy rice displayed strong degradation activity on these films at 30°C. The type strain, P. antarctica JCM 10317, and Pseudozyma spp. strains from phyllosphere secreted a biodegradable plastic-degrading enzyme with a molecular mass of about 22 kDa. Reliable source of biodegradable plastic-degrading microorganisms are now in our hands. PMID:22126328

  16. Identification and Determination of Drug Resistant of Candida species isolated from Hospital Acquired Infections

    Directory of Open Access Journals (Sweden)

    Kambiz Diba

    2015-01-01

    Full Text Available Background & aim: Currently, the use of antifungal azole group and yeasts resistant to these drugs is increasing. The aim of this study was to isolate and identify the yeasts obtained from candidiasis patients and furthermore determining thier antifungal resistance. Methods: In the present descriptive study, infections samples were collected from 256 patients with suspected nosocomial candidiasis, then direct exam and culture were performed. Yeast colonies were identified using phenotypic methods, polymerase chain reaction method and enzyme digestion. Data were analyzed using Descriptive statistical tests. Results: Of sixty isolated yeast, thirty-seven cases of Candida albicans (61.6%, seven cases of C. krusei and C. glabrata (11.6% each, five cases of C. dubliniensis (8.3% and four cases of C. tropicalis (6.6% were indicated. The study showed that the sensitivity of C. albicans and C. cruise species to amphotericin B was negligible in disk diffusion and very sensitve in microdilution. Conclusion: Inspite of the results of antifungal susceptibility test of strains studied did not show high resistance, but screening for drug-resistant Candida isolates in Candida infection by disk diffusion and microdilution methods for new cases of drug resistance is reasonable.

  17. Yeast for virus research

    Science.gov (United States)

    Zhao, Richard Yuqi

    2017-01-01

    Budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe) are two popular model organisms for virus research. They are natural hosts for viruses as they carry their own indigenous viruses. Both yeasts have been used for studies of plant, animal and human viruses. Many positive sense (+) RNA viruses and some DNA viruses replicate with various levels in yeasts, thus allowing study of those viral activities during viral life cycle. Yeasts are single cell eukaryotic organisms. Hence, many of the fundamental cellular functions such as cell cycle regulation or programed cell death are highly conserved from yeasts to higher eukaryotes. Therefore, they are particularly suited to study the impact of those viral activities on related cellular activities during virus-host interactions. Yeasts present many unique advantages in virus research over high eukaryotes. Yeast cells are easy to maintain in the laboratory with relative short doubling time. They are non-biohazardous, genetically amendable with small genomes that permit genome-wide analysis of virologic and cellular functions. In this review, similarities and differences of these two yeasts are described. Studies of virologic activities such as viral translation, viral replication and genome-wide study of virus-cell interactions in yeasts are highlighted. Impacts of viral proteins on basic cellular functions such as cell cycle regulation and programed cell death are discussed. Potential applications of using yeasts as hosts to carry out functional analysis of small viral genome and to develop high throughput drug screening platform for the discovery of antiviral drugs are presented. PMID:29082230

  18. PCR-based method for the rapid identification of astaxanthin-accumulating yeasts (Phaffia spp.).

    Science.gov (United States)

    Colabella, Fernando; Libkind, Diego

    2016-01-01

    It has been recently found that the natural distribution, habitat, and genetic diversity of astaxanthin-producing yeasts (i.e. Phaffia rhodozyma, synonym Xanthophyllomyces dendrorhous) is much greater than previously thought. P. rhodozyma is biotechnologically exploited due to its ability to produce the carotenoid pigment astaxanthin and thus, it is used as a natural source of this pigment for aquaculture. P. rhodozyma was also capable of synthesizing the potent UVB sunscreen mycosporine-glutaminol-glucoside (MGG). Therefore, further environmental studies are needed to elucidate its ecological aspects and detect new potential strains for the production of astaxanthin and MGG. However, obtaining new isolates of P. rhodozyma and related species is not always easy due to its low abundance and the presence of other sympatric and pigmented yeasts. In this work we report a successful development of a species-specific primer which has the ability to quickly and accurately detecting isolates representing all known lineages of the genus Phaffia (including novel species of the genus) and excluding closely related taxa. For this purpose, a primer of 20 nucleotides (called PhR) was designed to be used in combination with universal primers ITS3 and NL4 in a multiplex amplification. The proposed method has the sensitivity and specificity required for the precise detection of new isolates, and therefore represents an important tool for the environmental search for novel astaxanthin-producing yeasts. Copyright © 2015 Asociación Argentina de Microbiología. Publicado por Elsevier España, S.L.U. All rights reserved.

  19. Schizosaccharomyces isolation method

    Directory of Open Access Journals (Sweden)

    Benito Santiago

    2014-01-01

    Full Text Available This study discusses the optimization of a selective and differential medium which would facilitate the isolation of Schizosaccharomyces (a genus with a low incidence compared to other microorganisms to select individuals from this genus for industrial purposes, especially in light of the recent recommendation of the use of yeasts from this genus in the wine industry by the International Organisation of Vine and Wine, or to detect the presence of such yeasts, for those many authors who consider them food spoilers. To this end, we studied various selective differential agents based on the main physiological characteristics of these species, such as their high resistances to high concentrations of sugar, sulfur dioxide, sorbic acid, benzoic acid, acetic acid or malo ethanolic fermentation. This selective medium is based on the genus resistance to the antibiotic actidione and its high resistance to inhibitory agents such as benzoic acid. Malic acid was used as a differential factor due to the ability of this genus to metabolise it to ethanol, which allows detecting of the degradation of this compound. Lastly, the medium was successfully used to isolate strains of Schizosaccharomyces pombe from honey and honeycombs.

  20. Conjunctival bacterial and fungal flora in clinically normal sheep.

    Science.gov (United States)

    Bonelli, Francesca; Barsotti, Giovanni; Attili, Anna Rita; Mugnaini, Linda; Cuteri, Vincenzo; Preziuso, Silvia; Corazza, Michele; Preziuso, Giovanna; Sgorbini, Micaela

    2014-01-01

    The aim was to identify conjunctival bacterial and fungal flora in clinically normal sheep. Prospective study. Tuscany. 100 eyes from 50 adult Massese female sheep were examined. The sheep included in the study were considered free of anterior ophthalmic abnormalities. Bacteria were identified by morphological assessment, Gram staining, biochemical tests. Identification of filamentous fungi was achieved at the genus level, and Aspergillus species were identified based on keys provided by other authors. Yeast colonies were highlighted, but not identified. Positive cultures were obtained from 100/100 eyes for bacteria, and from 86/100 eyes for fungi. A total of 14 types of bacteria and 5 types of fungi were isolated. Yeasts were isolated from 13/100 eyes. The most frequent fungal isolates were saprophytic fungi. Conjunctival bacterial and fungal flora of clinically normal eyes were reported in sheep. The positivity obtained for conjunctival bacteria was higher compared to findings in the literature by other authors in the same species (100 per cent v 40 per cent), while our results were in line with a recent work performed on mouflons (Ovis Musimon) with a 100 per cent positivity for bacterial conjunctival fornix. In our survey, Gram-positive species were prevalent, as reported by other authors in different species. Few data are available in the literature regarding conjunctival fungal flora in healthy small ruminants. The prevalence of conjunctival fungal flora in this study was higher than findings reported in mouflons (86 per cent v 45 per cent). Differences in fungal prevalence may be due to different methods of managing herds, though further studies are required to verify this hypothesis. The similarities in bacterial and fungal isolates between sheep and mouflons suggest a genera pattern of conjunctival colonisation by bacteria and fungi.