WorldWideScience

Sample records for yag ultrafine powders

  1. Influence of Ultrafine 2CaO·SiO₂ Powder on Hydration Properties of Reactive Powder Concrete.

    Science.gov (United States)

    Sun, Hongfang; Li, Zishanshan; Memon, Shazim Ali; Zhang, Qiwu; Wang, Yaocheng; Liu, Bing; Xu, Weiting; Xing, Feng

    2015-09-17

    In this research, we assessed the influence of an ultrafine 2CaO·SiO₂ powder on the hydration properties of a reactive powder concrete system. The ultrafine powder was manufactured through chemical combustion method. The morphology of ultrafine powder and the development of hydration products in the cement paste prepared with ultrafine powder were investigated by scanning electron microscopy (SEM), mineralogical composition were determined by X-ray diffraction, while the heat release characteristics up to the age of 3 days were investigated by calorimetry. Moreover, the properties of cementitious system in fresh and hardened state (setting time, drying shrinkage, and compressive strength) with 5% ordinary Portland cement replaced by ultrafine powder were evaluated. From SEM micrographs, the particle size of ultrafine powder was found to be up to several hundred nanometers. The hydration product started formulating at the age of 3 days due to slow reacting nature of belitic 2CaO·SiO₂. The initial and final setting times were prolonged and no significant difference in drying shrinkage was observed when 5% ordinary Portland cement was replaced by ultrafine powder. Moreover, in comparison to control reactive powder concrete, the reactive powder concrete containing ultrafine powder showed improvement in compressive strength at and above 7 days of testing. Based on above, it can be concluded that the manufactured ultrafine 2CaO·SiO₂ powder has the potential to improve the performance of a reactive powder cementitious system.

  2. Influence of Ultrafine 2CaO·SiO2 Powder on Hydration Properties of Reactive Powder Concrete

    Directory of Open Access Journals (Sweden)

    Hongfang Sun

    2015-09-01

    Full Text Available In this research, we assessed the influence of an ultrafine 2CaO·SiO2 powder on the hydration properties of a reactive powder concrete system. The ultrafine powder was manufactured through chemical combustion method. The morphology of ultrafine powder and the development of hydration products in the cement paste prepared with ultrafine powder were investigated by scanning electron microscopy (SEM, mineralogical composition were determined by X-ray diffraction, while the heat release characteristics up to the age of 3 days were investigated by calorimetry. Moreover, the properties of cementitious system in fresh and hardened state (setting time, drying shrinkage, and compressive strength with 5% ordinary Portland cement replaced by ultrafine powder were evaluated. From SEM micrographs, the particle size of ultrafine powder was found to be up to several hundred nanometers. The hydration product started formulating at the age of 3 days due to slow reacting nature of belitic 2CaO·SiO2. The initial and final setting times were prolonged and no significant difference in drying shrinkage was observed when 5% ordinary Portland cement was replaced by ultrafine powder. Moreover, in comparison to control reactive powder concrete, the reactive powder concrete containing ultrafine powder showed improvement in compressive strength at and above 7 days of testing. Based on above, it can be concluded that the manufactured ultrafine 2CaO·SiO2 powder has the potential to improve the performance of a reactive powder cementitious system.

  3. Preparation and pattern recognition of metallic Ni ultrafine powders by electroless plating

    International Nuclear Information System (INIS)

    Zhang, H.J.; Zhang, H.T.; Wu, X.W.; Wang, Z.L.; Jia, Q.L.; Jia, X.L.

    2006-01-01

    Using hydrazine hydrate as reductant, metallic Ni ultrafine powders were prepared from NiSO 4 aqueous solution by electroless plating method. The factors including concentration of NiSO 4 , bathing temperature, ratio of hydrazine hydrate to NiSO 4 , the pH of the solution, etc., on influence of the yield and average particle size of metallic Ni ultrafine powders were studied in detail. X-ray powders diffraction patterns show that the nickel powders are cubic crystallite. The average crystalline size of the ultrafine nickel powders is about 30 nm. The dielectric and magnetic loss of ultrafine Ni powders-paraffin wax composites were measured by the rectangle waveguide method in the range 8.2-12.4 GHz. The factors for Ni ultrafine powders preparation are optimized by computer pattern recognition program based on principal component analysis, the optimum factors regions with higher yield of metallic Ni ultrafine powders are indicated by this way

  4. [A technological study on the extraction of ultra-fine powder of Panax notoginsen].

    Science.gov (United States)

    Huang, Yaohai; Huang, Mingqing; Zeng, Huifang; Guo, Wei; Xi, Ping

    2005-12-01

    To investigate the extraction of ultra-fine powder Panax notoginsen. The extraction rate of ginseng saponin Rg1, Re, Rb1, notoginseng saponin R1 and filtrated time were determined by alcoholic and aqueous extraction of Panax notoginsen in tablet, coarse powder, ultra-fine powder and recostitution granules of ultra-fine powder. The filtered time of ultra-fine powder of Panax notoginsen extraction and that of the tablet of Panax notoginsen extraction were similar, while the extraction rates of various saponins of it were high. The method of aqueous extrction in ltra-fine powder of Panax notoginsen is easy in filtrationer, higher in extraction rate of Panax notoginsen and lower in production cost.

  5. [The species traceability of the ultrafine powder and the cell wall-broken powder of herbal medicine based on DNA barcoding].

    Science.gov (United States)

    Xiang, Li; Tang, Huan; Cheng, Jin-le; Chen, Yi-long; Deng, Wen; Zheng, Xia-sheng; Lai, Zhi-tian; Chen, Shi-lin

    2015-12-01

    Ultrafine powder and cell wall-broken powder of herbal medicine lack of the morphological characters and microscopic identification features. This makes it hard to identify herb's authenticity with traditional methods. We tested ITS2 sequence as DNA barcode in identification of herbal medicine in ultrafine powder and cell wall-broken powder in this study. We extracted genomic DNAs of 93 samples of 31 representative herbal medicines (28 species), which include whole plant, roots and bulbs, stems, leaves, flowers, fruits and seeds. The ITS2 sequences were amplified and sequenced bidirectionally. The ITS2 sequences were identified using Basic Local Alignment Search Tool (BLAST) method in the GenBank database and DNA barcoding system to identify the herbal medicine. The genetic distance was analyzed using the Kimura 2-parameter (K2P) model and the Neighbor-joining (NJ) phylogenetic tree was constructed using MEGA 6.0. The results showed that DNA can be extracted successfully from 93 samples and high quality ITS2 sequences can be amplified. All 31 herbal medicines can get correct identification via BLAST method. The ITS2 sequences of raw material medicines, ultrafine powder and cell wall-broken powder have same sequence in 26 herbal medicines, while the ITS2 sequences in other 5 herbal medicines exhibited variation. The maximum intraspecific genetic-distances of each species were all less than the minimum interspecific genetic distances. ITS2 sequences of each species are all converged to their standard DNA barcodes using NJ method. Therefore, using ITS2 barcode can accurately and effectively distinguish ultrafine powder and cell wall-broken powder of herbal medicine. It provides a new molecular method to identify ultrafine powder and cell wall-broken powder of herbal medicine in the quality control and market supervision.

  6. Development and applications of ultrafine aluminium powders

    International Nuclear Information System (INIS)

    Kearns, Martin

    2004-01-01

    Over the last 20 years or so, a variety of new technologies has been developed to produce sub-micron powders. Among the products attracting interest is nanoaluminium which is being evaluated in specialist propulsion and exothermic end-uses. This paper examines the advances made in 'nanopowder' production in the context of the existing aluminium powder industry where finest commercial grades have a median size of ∼6 μm (one or two orders of magnitude coarser than nanopowders) and which today supplies the markets being targeted by nanopowders with coarser, but effective products. Are there genuine market opportunities for nanoaluminium and if so, how will they be produced? One the one hand there are the novel nanopowder production methods which are high yielding but generally slow and costly, while on the other, there is the very fine fraction from conventional atomising routes which generate a very low yield of sub-micron powder but which nevertheless can translate into a meaningful rate as part of the bulk production. Can conventional routes ever hope to make sufficient volumes of nanopowders cost effectively and which will be the favoured routes in future? Moreover, what of the 'ultrafine' size range (∼0.5-5 μm) which is of more immediate potential interest to today's powder users. This paper seeks to identify the near term opportunities for application of low volume/high value ultrafine and nano powders

  7. Ultrafine TaC powders prepared in a high frequency plasma

    International Nuclear Information System (INIS)

    Canteloup, J.; Mocellin, A.

    1976-01-01

    Ultrafine tantalum carbide powders were prepared under conditions allowing higher purities to be achieved than when plasma or chemical vapour deposition techniques are used. The process consists of dissociation-vaporisation of powders in a radio frequency argon plasma followed by quenching of the vapours and collection in an electrostatic precipitator. Physical and chemical properties are given. The presence of excess carbon appears to protect against oxidation and as a dispersing medium for the carbide powders. (U.K.)

  8. Production of ultrafine zinc powder from wastes containing zinc by electrowinning in alkaline solution

    Directory of Open Access Journals (Sweden)

    Zhao Youcai

    2013-12-01

    Full Text Available Production of ultrafine zinc powder from industrial wastes by electrowinning in alkaline solution was studied. Stainless steel and magnesium electrodes were used as anode and cathode, respectively. Morphology, size distribution and composition of the Zn particles were characterized by Scanning Electron Microscopy, Laser Particle Size Analyzer, and Inductive Coupled Plasma Emission Spectrometer. The required composition of the electrolyte for ultrafine particles was found to be 25-35 g/L Zn, 200-220 g/L NaOH and 20-40 mg/L Pb. The optimal conditions were a current density of 1000-1200 A/m² and an electrolyte temperature of 30-40 °C. The results indicated that the lead additive exerted a beneficial effect on the refining of the particles, by increasing the cathodic polarization. Through this study, ultrafine zinc powder with a size distribution of around 10 μm could be produced, and considerably high current efficiencies (97-99 % were obtained.

  9. Luminescence properties of YAG:Nd nano-sized ceramic powders ...

    Indian Academy of Sciences (India)

    Abstract. Nano-sized ceramic powders with weaker aggregation of Nd3+-doped yttrium aluminum garnet. (YAG:Nd3+) were synthesized via co-microemulsion and microwave heating. This method provides a limited small space in a micelle for the formation of nano-sized precursors. It also requires a very short heating time, ...

  10. Removal of fluoride from drinking water using modified ultrafine tea powder processed using a ball-mill

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Huimei; Xu, Lingyun; Chen, Guijie; Peng, Chuanyi [School of Tea & Food Science and Technology, Anhui Agricultural University/State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui (China); Ke, Fei [School of Tea & Food Science and Technology, Anhui Agricultural University/State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui (China); School of Science, Anhui Agricultural University, Hefei 230036 (China); Liu, Zhengquan; Li, Daxiang; Zhang, Zhengzhu [School of Tea & Food Science and Technology, Anhui Agricultural University/State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui (China); Wan, Xiaochun, E-mail: xcwan@ahau.edu.cn [School of Tea & Food Science and Technology, Anhui Agricultural University/State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, Anhui (China)

    2016-07-01

    Highlights: • Ultrafine tea powder (UTP) was prepared by ball-milling. • A novel and high efficient biosorbent from ultrafine tea powder (UTP) for the removal of fluoride from drinking water was prepared. • Loaded ultrafine tea powder adsorbed more fluoride adsorption than loaded tea waste. • UTP-Zr performed well over a considerably wide pH range, from 3.0 to 10.0. • UTP-Zr retains Zr metal ion during defluoridation, limiting secondary pollution. - Abstract: A low-cost and highly efficient biosorbent was prepared by loading zirconium(IV) onto ball-milled, ultrafine tea powder (UTP-Zr) for removal of fluoride from drinking water. To evaluate the fluoride adsorption capacity of UTP-Zr over a wide range of conditions, the biosorbent dosage, contact time, initial pH, initial fluoride concentration and presence of other ions were varied. UTP-Zr performed well over the considerably wide pH range of 3–10. The residual concentration of Zr in the treated water was below the limit of detection (0.01 mg/L). Fluoride adsorption by the UTP-Zr biosorbent followed the Langmuir model, with a maximum adsorption capacity of 12.43 mgF/g at room temperature. The fluoride adsorption kinetics fit the pseudo-second-order kinetic model. The synthesized biosorbent was characterized by BET, SEM, EDS, XRD and XPS to reveal how UTP-Zr interacts with fluoride. Results from this study demonstrated that UTP-based biosorbents will be useful and safe for the removal of fluoride from drinking water.

  11. Removal of fluoride from drinking water using modified ultrafine tea powder processed using a ball-mill

    International Nuclear Information System (INIS)

    Cai, Huimei; Xu, Lingyun; Chen, Guijie; Peng, Chuanyi; Ke, Fei; Liu, Zhengquan; Li, Daxiang; Zhang, Zhengzhu; Wan, Xiaochun

    2016-01-01

    Highlights: • Ultrafine tea powder (UTP) was prepared by ball-milling. • A novel and high efficient biosorbent from ultrafine tea powder (UTP) for the removal of fluoride from drinking water was prepared. • Loaded ultrafine tea powder adsorbed more fluoride adsorption than loaded tea waste. • UTP-Zr performed well over a considerably wide pH range, from 3.0 to 10.0. • UTP-Zr retains Zr metal ion during defluoridation, limiting secondary pollution. - Abstract: A low-cost and highly efficient biosorbent was prepared by loading zirconium(IV) onto ball-milled, ultrafine tea powder (UTP-Zr) for removal of fluoride from drinking water. To evaluate the fluoride adsorption capacity of UTP-Zr over a wide range of conditions, the biosorbent dosage, contact time, initial pH, initial fluoride concentration and presence of other ions were varied. UTP-Zr performed well over the considerably wide pH range of 3–10. The residual concentration of Zr in the treated water was below the limit of detection (0.01 mg/L). Fluoride adsorption by the UTP-Zr biosorbent followed the Langmuir model, with a maximum adsorption capacity of 12.43 mgF/g at room temperature. The fluoride adsorption kinetics fit the pseudo-second-order kinetic model. The synthesized biosorbent was characterized by BET, SEM, EDS, XRD and XPS to reveal how UTP-Zr interacts with fluoride. Results from this study demonstrated that UTP-based biosorbents will be useful and safe for the removal of fluoride from drinking water.

  12. Synthesis of ultrafine alumina powders using egg white as complexing medium

    International Nuclear Information System (INIS)

    Salem, R.E.P.; Guilherme, K. A.; Chinelatto, A.S.A.; Chinelatto, A.L.

    2011-01-01

    Synthesis of alumina powders through chemical methods has been attracting much attention of researchers in the past few years, due to the ability to produce powders in nanometric scale with high degree of purity. In this work, there were synthesized alumina powders through a chemical route, using egg white as a complexing medium and aluminium nitrate as the source of Al 3+ cations. Egg white contains ovalbumin, a protein which acts effectively on the isolation of aluminium cations during the mixing process, enabling the formation of ultrafine alumina powders in a relatively economic and environmentally friendly way. The powders obtained by calcinations of the precursor resin were characterized by X-ray diffraction, specific surface area measurements, infrared spectroscopy and scanning electron microscopy. It was observed that the egg white, present at the reaction medium, allowed obtaining transition alumina powders, with high degree of purity. (author)

  13. The Radiation Synthesis of Ultra-Fine Powdered Carboxylated Styrene-Butadiene Rubber (UFCSBR) and Property of Nylon 6/ UFCSBR Blends

    International Nuclear Information System (INIS)

    Xu, L.

    2006-01-01

    A serial of novel ultra-fine powdered carboxylated styrene-butadiene rubber (UFCSBR) were prepared by using radiation crosslinking and spray drying method. Thereafter, these powdered rubber particles were used as toughener of nylon 6.The radiation synthesis of ultra-fine powdered rubbers were studied, moreover, the mechanical and thermal property of nylon 6/UFCSBR blends were investigated. Finally, the toughening mechanism of nylon 6 modified with ultra-fine rubber particles was discussed. The UFCSBR could be dispersed well in nylon 6 as individual particles with a diameter of 150 nm by using melt blending. The Nylon 6/UFCSBR (80/20) blend possesses higher toughness and higher thermal stability than Nylon 6/POE-g-MAH (which is most often used elastomer in toughening nylon now). The deformation mechanism of nylon 6/UFCSBR blends includes shear deformation of nylon 6 and the formation of elongated rubber particles in matrix. In addition, the UFCSBR has good interfacial compatibility with nylon 6. Therefore, the nylon 6/UFCSBR blends with good mechanical performance could be prepared in this work

  14. Nanometric onion-like hollow spheres in laser synthesized boron nitride ultrafine powder

    Energy Technology Data Exchange (ETDEWEB)

    Boulanger, L; Willaime, F [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Direction des Technologies Avancees; Cauchetier, M [CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France). Dept. de Recherche sur l` Etat Condense, les Atomes et les Molecules

    1994-12-31

    TEM observations of ultra-fine B Cl{sub 3}-N H{sub 3} powders elaborated by an innovative method, laser pyrolysis, are presented. The resulting microstructures in the as received state and after thermal treatments show small nanometric scale configurations close to the ones met with carbon, such as an hollowed configuration of onions but at a much smaller scale than with carbon. 3 figs., 3 refs.

  15. Mechanochemical synthesis of ultrafine Ce2S3 powder

    International Nuclear Information System (INIS)

    Tsuzuki, T.; McCormick, P.G.

    1998-01-01

    Full text: Rare earth sulphides have been receiving an increasing attraction for various applications including infrared window materials and magneto-optical devices. In particular, Ce 2 S 3 has been under intensive study for use as a red pigment to replace toxic cadmium sulfoselenide. The conventional method for synthesising Ce 2 S 3 is the sulphidization of the element or sesquioxide with hydrogen sulphide gas. However, the method usually requires a high-temperature process (>1000 deg C), and hence coarse particles larger than the optimal size of ∼ 2 S 3 powder by mechanochemical processing using X-ray diffraction spectroscopy, BET surface area analysis and transmission electron microscopy. Mechanical milling of the mixture of a cerium salt and an alkali/alkali-earth sulphide powders led to a solid state displacement reaction in a steady-state manner, forming Ce 2 S 3 nanoparticles in a salt by-product matrix. After a simple washing process to remove the salt by-product, ultrafine Ce 2 S 3 particles with sizes of 20 - 200 nm having an orthorhombic structure were obtained. Using a diluent and mechanically alloyed CaS nanoparticles in the starting powder, particles of only a cubic γ-Ce 2 S 3 phase with sizes of 10 - 80 nm were formed

  16. Production of dispersed nanometer sized YAG powders from alkoxide, nitrate and chloride precursors and spark plasma sintering to transparency

    International Nuclear Information System (INIS)

    Suarez, M.; Fernandez, A.; Menendez, J.L.; Torrecillas, R.

    2010-01-01

    Yttrium aluminum garnet (YAG) was synthesized from different starting materials, i.e., alkoxide, nitrate and chloride precursors. The conversion steps from the precursors to crystalline YAG were studied by Raman spectroscopy. Dispersed YAG powders were formed at a relatively low temperature, around 800 o C by the chlorides route, whereas alkoxide precursors needed firing over 900 o C and nitrates even over 1100 o C. Lyophilized YAG gel was sintered to transparency by the spark plasma sintering method at 1500 o C with in-line transmittances close to 60% at 680 nm and over 80% in the infrared range.

  17. In vitro study of hydroxy apatite and enamel powder fused in human enamel by Nd:YAG laser

    International Nuclear Information System (INIS)

    Ferrreira, Marcus Vinicius Lucas

    2000-01-01

    The aim of this study was to evaluate the effects of pulsed Nd:YAG (1064 nm) laser irradiation on hydroxyapatite and enamel powder fusion. This laser beam is not well absorbed by this two compounds for this reason they were mixed with vegetal coal to increase the absorption of the laser beam. Fifteen enamel flat surfaces and six occlusal enamel surfaces were prepared with three different substances: hydroxyapatite mixed with vegetal coal (3:1 in weigh); enamel powder mixed with vegetal coal (3:1 in weigh); vegetal coal. The occlusal surfaces were utilized to determine if the compounds could seal pits and fissures. Flat surfaces were utilized to determine fusion of hydroxyapatite and enamel powder. All samples were irradiated with Nd:YAG laser with the parameters: 80 mJ, 15 Hz, 1,2 W, 100 μs pulse-width, 131,1 J/cm 2 . Laser beam was delivered to the samples with a 300 μm diameter fiber optic. Morphology of the irradiated surfaces were examined by scanning electron microscopy (SEM). The compounds with hydroxyapatite and enamel powder were fused to enamel surfaces. Only partial pits and fissures sealing could be observed. (author)

  18. Spectrochemical analysis of powder using 355 nm Nd-YAG laser-induced low-pressure plasma.

    Science.gov (United States)

    Lie, Zener S; Pardede, M; Hedwig, R; Suliyanti, M M; Kurniawan, Koo Hendrik; Munadi; Lee, Yong-Inn; Kagawa, Kiichiro; Hattori, Isamu; Tjia, May On

    2008-04-01

    The applicability of spectrochemical analysis of minute amounts of powder samples was investigated using an ultraviolet Nd-YAG laser (355 nm) and low-pressure ambient air. A large variety of chemical powder samples of different composition were employed in the experiment. These included a mixture of copper(II) sulfate pentahydrate, zinc sulfide, and chromium(III) sulfate n-hydrate powders, baby powder, cosmetic powders, gold films, zinc supplement tablet, and muds and soils from different areas. The powder samples were prepared by pulverizing the original samples to an average size of around 30 microm in order to trap them in the tiny micro holes created on the surface of the quartz subtarget. It was demonstrated that in all cases studied, good quality spectra were obtained with low background, free from undesirable contamination by the subtarget elements and featuring ppm sensitivity. A further measurement revealed a linear calibration curve with zero intercept. These results clearly show the potential application of this technique for practical qualitative and quantitative spectrochemical analysis of powder samples in various fields of study and investigation.

  19. Sol-gel auto-combustion synthesis and properties of Co2Z-type hexagonal ferrite ultrafine powders

    Science.gov (United States)

    Liu, Junliang; Yang, Min; Wang, Shengyun; Lv, Jingqing; Li, Yuqing; Zhang, Ming

    2018-05-01

    Z-type hexagonal ferrite ultrafine powders with chemical formulations of (BaxSr1-x)3Co2Fe24O41 (x varied from 0.0 to 1.0) have been synthesized by a sol-gel auto-combustion technique. The average particle sizes of the synthesized powders ranged from 2 to 5 μm. The partial substitution of Ba2+ by Sr2+ led to the shrinkage of the crystal lattices and resulted in changes in the magnetic sub-lattices, which tailored the static and dynamic magnetic properties of the as-synthesized powders. As the substitution ratio of Ba2+ by Sr2+, the saturation magnetization of the synthesized powders almost consistently increased from 43.3 to 56.1 emu/g, while the real part of permeability approached to a relatively high value about 2.2 owing to the balance of the saturation magnetization and magnetic anisotropy field.

  20. Preparation and characterization of highly transparent Nd:YAG/YAG composite ceramics

    Science.gov (United States)

    Ma, Benyuan; Zhang, Wei; Shen, Bizhou; Wang, Yuezhong; Song, Haizhi; Li, Feng; Xie, Xiumin; Zhang, Zhibin; Yang, Yongqiang; Guan, Zhouguo

    2018-05-01

    Using the co-precipitated Nd:YAG and YAG powders as raw materials, the Nd:YAG/YAG composite ceramics (Ф 50 mm × 5 mm) were prepared by vacuum sintering (1790 °C 50 h), followed by hot isostatic pressing (HIP) post treatment (1700 °C 2 h, 200 MPa Ar atmosphere) and air annealing (1250 °C 100 h). The optical properties of Nd:YAG/YAG samples were improved markedly by HIP post-treatment, mainly due to the elimination of residual pores in the samples. The composite sample showed a perfect bonding interface from Nd:YAG to YAG regions without obvious grain size difference, pores or other defects. This structure should be responsible for the thermal conductivity larger than that of non-composite sample. The composite sample revealed good optical properties with transmittance up to 83.9% at 1064 nm and 80.8% at 400 nm, and a maximum laser output power of 1.38 KW with the slope efficiency of 36.7% was obtained.

  1. Chevrel phases superconductive and ultrafine powders synthesis and characterization; Synthese et caracterisation de poudres ultrafines supraconductrices de phases de Chevrel

    Energy Technology Data Exchange (ETDEWEB)

    Even-Boudjada, S

    1994-12-01

    This work deals with the Chevrel phases superconductive and ultrafine powders synthesis and characterization. The first part of this study presents some new way of synthesis (precipitation, coprecipitation) of Chevrel phases precursors powders (PbS, SnS, MoS{sub 2}) and their characterizations (X-ray fluorescence analysis, ICP mass spectroscopy, scanning electron microscopy, transmission electron microscopy and laser granulometry). These new synthesis methods lead to quasi spherical morphology grains and very weak size grains (0.2 to 0.5 {mu}m) whereas the chemical preparation from the solid state elements gives very different morphology grains (small plates) with a size of 1 to 20 {mu}m. In the second part is shown the interest of the binary Mo{sub 6} S{sub 8} as precursor in the synthesis of ternary superconductive phases (Li, Ni, Cu, Pb). The last part presents the formation reaction of the phase PbMo{sub 6} S{sub 8} and its main chemical and physical properties. Thus some calorimetric measures associated with X-ray diffraction analysis have been realized and have allowed to understand the different reactions occurring during the PbMo{sub 6}S{sub 8} synthesis. (O.L.). 100 refs., figs., tabs.

  2. Extruded Al-Al2O3 composites formed in situ during consolidation of ultrafine Al powders: Effect of the powder surface area

    International Nuclear Information System (INIS)

    Balog, Martin; Simancik, Frantisek; Walcher, Martin; Rajner, Walter; Poletti, Cecilia

    2011-01-01

    Highlights: → 25 gas atomised Al 99.5% powders with particle size 2 O 3 dispersoids. → Compacts showed good thermal stability due to grain pinning of Al 2 O 3 dispersoids. - Abstract: Twenty-five samples of commercially available, gas-atomised Al (99.5%) powders with particle sizes 2 O 3 composites formed in situ during extrusion. The effect of particle size, surface area, oxygen content and atomisation atmosphere of the powder on the microstructure and mechanical properties of the extruded compacts were studied by Brunauer, Emmett, Teller (BET) analysis, hot gas extraction, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and tensile tests. Thermal stability of the compacts and the individual strengthening mechanisms operating in the compacts were discussed. It was found that the properties of the compacts stemmed from the extraordinary grain boundary strengthening effect of the ultrafine-grained compacts due to their microstructures. The efficiency of the grain boundary strengthening was significantly enhanced by the presence of nano-metric Al 2 O 3 dispersoids introduced in situ. The strength of the compacts was closely related to the surface area of the powder particles. In addition, the entrapped gasses and chemically bonded humidity had a negative effect on the mechanical properties of the compacts.

  3. Preparation and Characterization of Plasma-Sprayed Ultrafine Chromium Oxide Coatings

    International Nuclear Information System (INIS)

    Lin Feng; Jiang Xianliang; Yu Yueguang; Zeng Keli; Ren Xianjing; Li Zhenduo

    2007-01-01

    Ultrafine chromium oxide coatings were prepared by plasma spraying with ultrafine feedstock. Processing parameters of plasma spraying were optimized. Optical microscope (OM) was used to observe the microstructure of the ultrafine chromium oxide coatings. Scanning electron microscopy (SEM) was used to observe the morphology and particle size of ultrafine powder feedstock as well as to examine the microstructure of the chromium oxide coating. In addition, hardness and bonding strength of the ultrafine chromium oxide coatings were measured. The results showed that the optimized plasma spraying parameters were suitable for ultrafine chromium oxide coating and the properties and microstructure of the optimized ultrafine chromium oxide coating were superior compared to conventional chromium oxide wear resistant coatings

  4. Ultrafine hydrogen storage powders

    Science.gov (United States)

    Anderson, Iver E.; Ellis, Timothy W.; Pecharsky, Vitalij K.; Ting, Jason; Terpstra, Robert; Bowman, Robert C.; Witham, Charles K.; Fultz, Brent T.; Bugga, Ratnakumar V.

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  5. Fine crystalline powders. Analysis of scientific and technical literature

    International Nuclear Information System (INIS)

    Denisenko, Eh.T.; Kulik, O.P.; Eremina, T.V.

    1983-01-01

    The state of development and studies of fine crystalline powders for recent five years is reviewed in the paper. Based on data available in literature, the most significant methods for fine metal and alloy powder production are considered and physicochemical properties of ultrafine particles are discussed from the standpoint of their interrelation with promising techniques for powder production. It is stated that the most important feature of ultrafine powder production technique at the present stage is a transition from the stage of data accumulation to that of controlled production of ultrafine structures of various metals and alloys under controllable conditions

  6. Effect of Ultrafine Pulverization of Senecio Scandens on Growth, Immune System and Faecal Microorganisms in Piglets

    Directory of Open Access Journals (Sweden)

    J Yue1, CQ Lu1, HY Lin1, XN Wang, JQ Zheng1, JJ Chen1* and R Gooneratne2*

    2016-11-01

    Full Text Available There is increased interest in using naturally occurring compounds subjected to new technologies for enhancing pig nutrition to replace antibiotic usage in swine production. The effects of ultrafine pulverization on the size distribution, morphology of Senecio scandens Buch.-Ham., and the growth performance, serum immunity parameters and faecal microorganisms of piglets fed this powder were investigated. The size distribution and morphology of S. scandens were characterized by using a laser diffraction analyser and scanning electron microscopy respectively. Ninety Duroc×Landrace×Yorkshire piglets (average body weight of 10.43kg were randomly assigned to six treatments with three pens of five pigs per treatment. Group 1 (Control piglets were fed the basal diet only. Groups 2 to 5 were fed with the basal diet supplemented with ultrafine powder (median diameter [d0.5] of 8.89μm of S. scandens at 0.3, 0.6, 0.9, and 1.2% of the basal diet, respectively, for 30 days. For group 6, 1.2% of ordinary S. scandens powder (d0.5=88.59μm was added to the basal diet. Both S. scandens ordinary and ultrafine powder increased piglet body weight and reduced the feed to gain ratio, but the performance of piglets fed the ultrafine powder was better. In groups 4 to 6, the number of Escherechia coli in faeces and the diarrhoeal incidence were significantly lower (P<0.05 and the serum IgA, IgG, IgM contents significantly higher (P<0.05. Feeding S. scandens ultrafine powder in the diet improved piglet performance and the diet supplemented with 0.9% of the ultrafine powder was the most effective.

  7. Preparation of ultra-fine powders from polysaccharide-coated solid lipid nanoparticles and nanostructured lipid carriers by innovative nano spray drying technology.

    Science.gov (United States)

    Wang, Taoran; Hu, Qiaobin; Zhou, Mingyong; Xue, Jingyi; Luo, Yangchao

    2016-09-10

    In this study, five polysaccharides were applied as natural polymeric coating materials to prepare solid lipid nanoparticles (SLN) and nanostructure lipid carriers (NLC), and then the obtained lipid colloidal particles were transformed to solid powders by the innovative nano spray drying technology. The feasibility and suitability of this new technology to generate ultra-fine lipid powder particles were evaluated and the formulation was optimized. The spray dried SLN powder exhibited the aggregated and irregular shape and dimension, but small, uniform, well-separated spherical powder particles of was obtained from NLC. The optimal formulation of NLC was prepared by a 20-30% oleic acid content with carrageenan or pectin as coating material. Therefore, nano spray drying technology has a potential application to produce uniform, spherical, and sub-microscale lipid powder particles when the formulation of lipid delivery system is appropriately designed. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. In vitro study of hydroxy apatite and enamel powder fused in human enamel by Nd:YAG laser; Estudo in vitro da fusao de hidroxiapatita e esmalte em superficies de esmalte humano pelo laser de Nd:YAg

    Energy Technology Data Exchange (ETDEWEB)

    Ferrreira, Marcus Vinicius Lucas

    2000-07-01

    The aim of this study was to evaluate the effects of pulsed Nd:YAG (1064 nm) laser irradiation on hydroxyapatite and enamel powder fusion. This laser beam is not well absorbed by this two compounds for this reason they were mixed with vegetal coal to increase the absorption of the laser beam. Fifteen enamel flat surfaces and six occlusal enamel surfaces were prepared with three different substances: hydroxyapatite mixed with vegetal coal (3:1 in weigh); enamel powder mixed with vegetal coal (3:1 in weigh); vegetal coal. The occlusal surfaces were utilized to determine if the compounds could seal pits and fissures. Flat surfaces were utilized to determine fusion of hydroxyapatite and enamel powder. All samples were irradiated with Nd:YAG laser with the parameters: 80 mJ, 15 Hz, 1,2 W, 100 {mu}s pulse-width, 131,1 J/cm{sup 2}. Laser beam was delivered to the samples with a 300 {mu}m diameter fiber optic. Morphology of the irradiated surfaces were examined by scanning electron microscopy (SEM). The compounds with hydroxyapatite and enamel powder were fused to enamel surfaces. Only partial pits and fissures sealing could be observed. (author)

  9. Preparation and utilization of metal oxide fine powder

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Joon Soo; Jang, Hee Dong; Lim, Young Woong; Kim, Sung Don; Lee, Hi Sun; Lee, Hoo In; Kim, Chul Joo; Shim, Gun Joo; Jang, Dae Kyu [Korea Inst. of Geology Mining and Materials, Taejon (Korea, Republic of)

    1995-12-01

    Metal oxide fine powders finds many applications in industry as new materials. It is very much necessary for the development of such powders to improve the domestic industry. The purpose of present research is to develop a process for the preparation and utilization of metal oxide fine powder. This project is consisted of two main subjects. (1) Production of ultrafine metal oxide powder: Ultrafine metal oxide powder is defined as a metal oxide powder of less than 100 nanometer in particle size. Experiments for the control of particle size and distributions in the various reaction system and compared with results of (2 nd year research). Various reaction systems were adopted for the development of feasible process. Ultrafine particles could be prepared even higher concentration of TiCl{sub 4} and lower gas flowrate compared to TiCl{sub 4}-O{sub 2} system in the TiCl{sub 4}-Air-H{sub 2}O system. Ultrafine Al{sub 2}O{sub 3} powders also prepared with the change of concentration and gas flowrate. Experiments on the treatment of surface characteristics of ultrafine TiO{sub 2} powders were investigated using esterification and surface treating agents. A mathematical model that can predict the particle size and distribution was also developed. (2) Preparation of cerium oxide for high-grade polishing powder: Used cerium polishing powder was recycled for preparation of high grade cerium oxide polishing powder. Also, cerium hydroxide which was generated as by-product in processing of monazite ore was used as another material. These two materials were leached respectively by using acid, and the precipitate was gained in each leached solution by adjusting pH of the solution, and by selective crystallization. These precipitates were calcined to make high grade cerium oxide polishing powder. The effect of several experimental variables were investigated, and the optimum conditions were obtained through the experiments. (author). 81 refs., 49 figs., 27 tabs.

  10. Preparation and Hydrogen Storage Properties of Mg-Rich Mg-Ni Ultrafine Particles

    Directory of Open Access Journals (Sweden)

    Jianxin Zou

    2012-01-01

    Full Text Available In the present work, Mg-rich Mg-Ni ultrafine powders were prepared through an arc plasma method. The phase components, microstructure, and hydrogen storage properties of the powders were carefully investigated. It is found that Mg2Ni and MgNi2 could be obtained directly from the vapor state reactions between Mg and Ni, depending on the local vapor content in the reaction chamber. A nanostructured MgH2 + Mg2NiH4 hydrogen storage composite could be generated after hydrogenation of the Mg-Ni ultrafine powders. After dehydrogenation, MgH2 and Mg2NiH4 decomposed into nanograined Mg and Mg2Ni, respectively. Thermogravimetry/differential scanning calorimetry (TG/DSC analyses showed that Mg2NiH4 phase may play a catalytic role in the dehydriding process of the hydrogenated Mg ultrafine particles.

  11. [Ultra-Fine Pressed Powder Pellet Sample Preparation XRF Determination of Multi-Elements and Carbon Dioxide in Carbonate].

    Science.gov (United States)

    Li, Xiao-li; An, Shu-qing; Xu, Tie-min; Liu, Yi-bo; Zhang, Li-juan; Zeng, Jiang-ping; Wang, Na

    2015-06-01

    The main analysis error of pressed powder pellet of carbonate comes from particle-size effect and mineral effect. So in the article in order to eliminate the particle-size effect, the ultrafine pressed powder pellet sample preparation is used to the determination of multi-elements and carbon-dioxide in carbonate. To prepare the ultrafine powder the FRITSCH planetary Micro Mill machine and tungsten carbide media is utilized. To conquer the conglomeration during the process of grinding, the wet grinding is preferred. The surface morphology of the pellet is more smooth and neat, the Compton scatter effect is reduced with the decrease in particle size. The intensity of the spectral line is varied with the change of the particle size, generally the intensity of the spectral line is increased with the decrease in the particle size. But when the particle size of more than one component of the material is decreased, the intensity of the spectral line may increase for S, Si, Mg, or decrease for Ca, Al, Ti, K, which depend on the respective mass absorption coefficient . The change of the composition of the phase with milling is also researched. The incident depth of respective element is given from theoretical calculation. When the sample is grounded to the particle size of less than the penetration depth of all the analyte, the effect of the particle size on the intensity of the spectral line is much reduced. In the experiment, when grounded the sample to less than 8 μm(d95), the particle-size effect is much eliminated, with the correction method of theoretical α coefficient and the empirical coefficient, 14 major, minor and trace element in the carbonate can be determined accurately. And the precision of the method is much improved with RSD element, the fluorescence yield is low and the interference is serious. With the manual multi-layer crystal PX4, coarse collimator, empirical correction, X-ray spectrometer can be used to determine the carbon dioxide in the carbonate

  12. Extruded Al-Al{sub 2}O{sub 3} composites formed in situ during consolidation of ultrafine Al powders: Effect of the powder surface area

    Energy Technology Data Exchange (ETDEWEB)

    Balog, Martin, E-mail: martin.balog@savba.sk [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Bratislava (Slovakia); Simancik, Frantisek [Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Bratislava (Slovakia); Walcher, Martin; Rajner, Walter [NMD - New Materials Development GmbH, St. Pantaleon (Austria); Poletti, Cecilia [Institute of Materials Science and Welding, Graz University of Technology, Kopernikusgasse 24/I, A8010 Graz (Austria)

    2011-11-25

    Highlights: {yields} 25 gas atomised Al 99.5% powders with particle size <10 {mu}m were hot extruded. {yields} The strength of compacts was closely related to powder surface area. {yields} Grain boundary strengthening was enhanced by the presence of in situ Al{sub 2}O{sub 3} dispersoids. {yields} Compacts showed good thermal stability due to grain pinning of Al{sub 2}O{sub 3} dispersoids. - Abstract: Twenty-five samples of commercially available, gas-atomised Al (99.5%) powders with particle sizes <10 {mu}m were hot extruded into Al-Al{sub 2}O{sub 3} composites formed in situ during extrusion. The effect of particle size, surface area, oxygen content and atomisation atmosphere of the powder on the microstructure and mechanical properties of the extruded compacts were studied by Brunauer, Emmett, Teller (BET) analysis, hot gas extraction, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM) and tensile tests. Thermal stability of the compacts and the individual strengthening mechanisms operating in the compacts were discussed. It was found that the properties of the compacts stemmed from the extraordinary grain boundary strengthening effect of the ultrafine-grained compacts due to their microstructures. The efficiency of the grain boundary strengthening was significantly enhanced by the presence of nano-metric Al{sub 2}O{sub 3} dispersoids introduced in situ. The strength of the compacts was closely related to the surface area of the powder particles. In addition, the entrapped gasses and chemically bonded humidity had a negative effect on the mechanical properties of the compacts.

  13. Granularity and Laxative Effect of Ultrafine Powder of Dendrobium officinale.

    Science.gov (United States)

    Luo, DanDan; Qu, Chao; Zhang, ZhenBiao; Xie, JianHui; Xu, LieQiang; Yang, HongMei; Li, CaiLan; Lin, GuoSheng; Wang, HongFeng; Su, ZiRen

    2017-02-01

    Constipation is a common disorder that is a significant source of morbidity among people around the world ranging from 2% to 28%. Dendrobium officinale Kimura et Migo is a traditional herbal medicine and health food used for tonicity of the stomach and promotion of body fluid production in China. This study aimed to prepare the ultrafine powder of Dendrobium officinale (UDO) and investigate its laxative effect and potential mechanism in mice with diphenoxylate-induced constipation. Results indicated that the mean diameter (d 50 ) of UDO obtained by ball milling was 6.56 μm. UDO (62.5, 125, and 250 mg/kg, p.o.) could significantly enhance the gastrointestinal transit ratio and promote fecal output. Moreover, UDO treatment resulted in significant increases in the serum levels of acetylcholinesterase (AChE), gastrin (Gas), motilin (MTL), and substance P (SP), and obviously decreased serum contents of somatostatin (SS). Taken together, UDO, which can be easily obtained through milling to a satisfactory particle size, exhibited obvious laxative effect in diphenoxylate-induced constipated mice, and the mechanism might be associated with elevated levels of AChE, Gas, MTL, SP, and reduced production of SS. UDO has the potential for further development into an alternative effective diet therapy for constipation.

  14. Radiation-induced copolymerization of styrene/n-butyl acrylate in the presence of ultra-fine powdered styrene-butadiene rubber

    Energy Technology Data Exchange (ETDEWEB)

    Yu Haibo [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Peng Jing [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China)], E-mail: jpeng@pku.edu.cn; Zhai Maolin; Li Jiuqiang; Wei Genshuan [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); Qiao Jinliang [Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871 (China); SINOPEC Beijing Research Institute of Chemical Industry, Beijing 100013 (China)

    2007-11-15

    Styrene (St)/n-butyl acrylate (BA) copolymers were prepared by two-stage polymerization: St/BA was pre-polymerized to a viscous state by bulk polymerization with initiation by benzoyl peroxide (BPO) followed by {sup 60}Co {gamma}-ray radiation curing. The resultant copolymers had higher molecular weight and narrower molecular weight distribution than conventional methods. After incorporation of ultra-fine powdered styrene-butadiene rubber (UFSBR) with a particle size of 100 nm in the monomer, the glass transition temperature (T{sub g}) of St-BA copolymer increased at low rubber content. Both the St-BA copolymer and the St-BA copolymer/UFSBR composites had good transparency at BA content below 40%.

  15. Direct synthesis of La9.33Si6O26 ultrafine powder via sol-gel self-combustion method

    International Nuclear Information System (INIS)

    Tian Changan; Liu Junliang; Cai Jun; Zeng Yanwei

    2008-01-01

    Single phase La 9.33 Si 6 O 26 ultrafine powder, as a kind of highly activated precursor to prepare medium-to-low temperature electrolyte for solid oxide fuel cells (SOFCs), has been successfully synthesized via a non-aqueous sol-gel and self-combustion approach from the starting materials: lanthanum nitrate (La(NO 3 ) 3 .6H 2 O), citric acid, ethylene glycol (EG), tetraethyl orthosilicate (TEOS) and ammonium nitrate. The details of gel's self-combustion were investigated by DTA-TG and the structural characterization of as-synthesized powder from self-combustion was performed by XRD and SEM. The results show that La 9.33 Si 6 O 26 single phase of apatite-type crystal structure can be directly synthesized by sol-gel self-combustion method without further calcinations on the condition that the molar ratio (R) of NO 3 - to citric acid and ethylene glycol being 6:1. Such powders composed of well-dispersed particles with an average size of 200 nm and a specific surface area of 5.54 m 2 /g. It can be sintered to 90% of its theoretical density at 1500 deg. C for 10 h, about 200 deg. C lower than the sintering temperature for the powder derived from traditional solid reactions. The sintered material has a thermal expansion coefficient of 9.2 x 10 -6 K -1 between room temperature and 800 deg. C

  16. Effect of ammonium carbonate to metal ions molar ratio on synthesis and sintering of Nd:YAG nanopowders

    Science.gov (United States)

    Liu, Qiang; Chen, Cong; Dai, Jiawei; Hu, Zewang; Chen, Haohong; Li, Jiang

    2018-06-01

    Using the nanopowders synthesized by a reverse co-precipitation method, neodymium doped yttrium aluminum garnet (Nd:YAG) transparent ceramics were fabricated by vacuum sintering method. The influence of ammonium carbonate to metal ions (NH4HCO3/M3+) molar ratio (R value) on the properties of Nd:YAG precursors and powders, as well as the densification, microstructure, and transmittance of the resultant ceramics was systematically investigated. The results show that the precursors have similar compositions and the calcined powders have pure Y3Al5O12 (YAG) phase. However, the R value is closely related to the morphologies of the precursors and powders. It is found that the powder with R = 3.0 has strongest agglomeration and the powders with R = 3.2-4.0 show better dispersity. Using these powders as starting materials, the corresponding ceramics were sintered at 1720 °C for 20 h in vacuum. As a result, the ceramic with R = 3.2 obtains the best transmittance of about 72% at the wavelength of 1064 nm. The grain growth exponent and activation energy of the Nd:YAG ceramics fabricated from the powder with R = 3.2 were also studied.

  17. Fabrication of Nd:YAG transparent ceramics with both TEOS and MgO additives

    International Nuclear Information System (INIS)

    Yang Hao; Qin Xianpeng; Zhang Jian; Wang Shiwei; Ma Jan; Wang Lixi; Zhang Qitu

    2011-01-01

    Research highlights: → It is well known that the use of TEOS as sintering aid is required to reach fully dense and transparent Nd:YAG ceramics. However, it is difficult to produce high quality transparent Nd:YAG ceramics only using TEOS as sintering aid. In this present work, high quality transparent Nd:YAG ceramic was fabricated using both TEOS and MgO as sintering aids. There have been few reports that both TEOS and MgO were co-added as sintering aids in YAG or Nd:YAG transparent ceramics to date. The transmittance of Nd:YAG ceramic is 83.8% at 1064 nm. The effect of MgO on the optical properties of transparent ceramics was also studied. - Abstract: Neodymium doped YAG transparent ceramics were fabricated by vacuum reactive sintering method using commercial α-Al 2 O 3 , Y 2 O 3 and Nd 2 O 3 powders as the starting materials with both tetraethyl orthosilicate (TEOS) and MgO as sintering aids. The morphologies and microstructure of the powders and Nd:YAG transparent ceramics were investigated. Fully dense Nd:YAG ceramics with average grain size of ∼10 μm were obtained by vacuum sintering at 1780 deg. C for 8 h. No pores and grain-boundary phases were observed. The in-line transmittance of the ceramic was 83.8% at 1064 nm.

  18. Ultrafine luminescent structures through nanoparticle self-assembly

    International Nuclear Information System (INIS)

    Prabhakaran, K; Goetzinger, S; Shafi, K V P M; Mazzei, A; Schietinger, S; Benson, O

    2006-01-01

    We report the fabrication of ultrafine structures consisting of regular arrays of nanoemitters through the self-assembly of luminescent nanoparticles on a silicon wafer. Nanoparticles of yttrium aluminium garnet (YAG) doped with Eu 3+ ions were synthesized by a sonochemical technique. These particles, suspended in ethanol, are introduced onto a pre-patterned silicon wafer, covered with a thin oxide layer. On annealing the sample in an ultrahigh-vacuum chamber, the nanoparticles self-assemble along the pattern. We demonstrate this 'chemical lithography' by assembling the nanoparticles along a variety of patterns. We believe that such self-organized nanopatterning of functional structures is important for the realization of nanodevices

  19. Ultracentrifugation for ultrafine nanodiamond fractionation

    Science.gov (United States)

    Koniakhin, S. V.; Besedina, N. A.; Kirilenko, D. A.; Shvidchenko, A. V.; Eidelman, E. D.

    2018-01-01

    In this paper we propose a method for ultrafine fractionation of nanodiamonds using the differential centrifugation in the fields up to 215000g. The developed protocols yield 4-6 nm fraction giving main contribution to the light scattering intensity. The desired 4-6 nm fraction can be obtained from various types of initial nanodiamonds: three types of detonation nanodiamonds differing in purifying methods, laser synthesis nanodiamonds and nanodiamonds made by milling. The characterization of the obtained hydrosols was conducted with Dynamic Light Scattering, Zeta potential measurements, powder XRD and TEM. According to powder XRD and TEM data ultracentrifugation also leads to a further fractionation of the primary diamond nanocrystallites in the hydrosols from 4 to 2 nm.

  20. Synthesis of alumina/YAG 20 vol% composite by co-precipitation

    Directory of Open Access Journals (Sweden)

    Radosław Lach

    2011-12-01

    Full Text Available Co-precipitation of alumina/YAG precursor from aluminum and yttrium nitrate solution with ammonium carbonate results in dawsonite. Its crystallographic parameters differ from the compound precipitated with no yttrium additive. It suggests that yttrium ions become incorporated into the dawsonite structure. The DSC/TG and X-ray diffraction measurements show decomposition of dawsonite at elevated temperatures resulting in γ-Al2O3 and then δ- and θ-alumina modifications. Full transformation to α-Al2O3 and YAG occurs at temperatures higher than 1230°C. Starting powder for the sintering experiments was prepared using the coprecipitated precursor calcined at 600°C. Seeding of such powder with 5 wt.% α-Al2O3 results in material of 98% density at 1500°C. Much lower densification show compacts of unseeded powder.

  1. Integrated chemical process for exothermic wave synthesis of high luminance YAG:Ce phosphors

    International Nuclear Information System (INIS)

    Won, C.W.; Nersisyan, H.H.; Won, H.I.; Youn, J.W.

    2011-01-01

    In this paper, high-luminance yellow-emitting Y 3 Al 5 O 12 :Ce 3+ phosphor (YAG:Ce) microparticles were prepared in a solid flame using a 1.425Y 2 O 3 +2.5Al 2 O 3 +0.15CeO 2 +k(KClO 3 +urea)+mNH 4 F precursor mixture (here k is the number of moles of the KClO 3 +urea red-ox mixture, and m is the number of moles of NH 4 F). The self-sustaining combustion process for the entire reaction sample was provided by the heat generated from the KClO 3 +urea mixture. Parametric studies demonstrated that the maximum temperature in the combustion wave varied from 885 to 1200 deg. C for k=2.0-3.0 mole and m=0-1.5 mole. X-ray analysis results showed that the product obtained in the solid flame consisted of Y 3 Al 5 O 12 :Ce 3+ and KCl phases. Therefore, after dissolving potassium chloride in distillated water, pure-phase YAG:Ce phosphor powder was obtained. The as-prepared YAG:Ce phosphor particles had diameters of 10-25 μm and good dispersity and exhibited luminescence properties comparable to those of YAG:Ce phosphor powders prepared by conventional high-temperature processing. - Highlights: → A new solid-flame strategy was developed for synthesizing high-luminance YAG:Ce phosphor. → Adding KClO 3 +CO(NH 2 ) 2 +NH 4 F mixture to oxide powders provides a low-temperature combustion process. → YAG:Ce phosphor particles 10-25 μm in diameter were obtained at 1000-1100 deg. C within tens of seconds. → As-prepared YAG:Ce emission intensity was 90.1-103.2% compared to that of the reference sample.

  2. An Investigation on Self-Compacting Concrete Using Ultrafine Natural Steatite Powder as Replacement to Cement

    Directory of Open Access Journals (Sweden)

    P. Kumar

    2017-01-01

    Full Text Available An experimental investigation was made on flow properties and compressive strength of self-compacting concrete (SCC with ultrafine natural steatite powder (UFNSP as replacement to cement. The tests were conducted on specimens with 5%, 10%, 15%, 20%, and 25% of replacement of UFNSP to the weight of cement and compared to the control specimens. The flow properties of all specimens were tested and checked for their limit with the existing guidelines. The compressive strength test was done on all specimens for strength of 7 days, 14 days, 28 days, and 56 days. The hardened samples were tested for their microstructural behavior and the elements Mg, Ca, and Si were mapped. Through mapping, the formations of M-S-H along with C-S-H are observed. The results show that the addition of UFNSP influences the flow property, by reducing the flow, and increases the compressive strength till 20% replacement. Further the addition of UFNSP increases the denseness of microstructure of the specimens thus resulting in the strength increment.

  3. An IR and XPS spectroscopy assessment of the physico-chemical surface properties of alumina–YAG nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Spina, Giulia; Bonelli, Barbara, E-mail: barbara.bonelli@polito.it; Palmero, Paola, E-mail: paola.palmero@polito.it; Montanaro, Laura

    2013-12-16

    Well-dispersed nano-crystalline transition alumina suspensions were mixed with yttrium chloride aqueous solutions, with the aim of producing by spray-drying Al{sub 2}O{sub 3}–Y{sub 3}Al{sub 5}O{sub 12} (YAG) composite powders of increasing YAG vol.%. Two samples were prepared, with different Y content, corresponding to 5 and 20 YAG vol.%, respectively. Both samples were then treated at either 600 or 1150 °C. The obtained powders were characterized by X-Ray Diffraction (XRD), X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infra Red (FT-IR) spectroscopy and compared to three reference samples: commercial nano-crystalline transition alumina, YAG and Y{sub 2}O{sub 3}. YAG powders were obtained by co-precipitation route whereas Y{sub 2}O{sub 3} powders were yielded by spray-drying of a yttrium chloride aqueous solution. Modification of physico-chemical properties of the surface of alumina nanoparticles were assessed by combining XPS and FT-IR spectroscopies. On the basis of the results obtained, a possible model is proposed for the structure of the obtained composites, in which Y basically reacts with more acidic hydroxyls of alumina, by forming Y-rich surface grains, the extension of which depends on the thermal treatment. - Highlights: • Al{sub 2}O{sub 3}–Y{sub 3}Al{sub 5}O{sub 12} (YAG) composite nanopowders were prepared by spray drying. • Combined XPS and IR spectroscopy: effective tools to study surface modifications. • Y reacts with more acidic hydroxyls at alumina surface. • Y-rich surface grains form: their extension depends on the thermal treatment.

  4. Formation of ultra-fine grained SUS316L steels by ball-milling and their mechanical properties after neutron irradiation

    International Nuclear Information System (INIS)

    Zheng, Y.J.; Yamasaki, T.; Fukami, T.; Terasawa, M.; Mitamura, T.

    2003-01-01

    In order to overcome the irradiation embrittlement in austenitic stainless steels, ultra-fine grained SUS316L steels with very fine TiC particles have been developed. The SUS316L-TiC nanocomposite powders having 1.0 to 2.0 mass% TiC were prepared by ball-milling SUS316L-TiC powder mixtures for 125 h in an argon gas atmosphere. The milled powders were consolidated by hot isostatic pressing (HIP) under a pressure of 200 MPa at temperatures between 700 and 1000 C, and the bulk materials with grain sizes between 100 and 400 nm have been produced. The possibility of using fine-grained TiC particles to pin grain boundaries and thereby maintain the ultra-fine grained structures has been discussed. In order to clarify the effects of the neutron irradiation on mechanical properties of the ultra-fine grained SUS316L steels, Vickers microhardness measurements were performed before and after the irradiation of 1.14 x 10 23 n/m 2 and 1.14 x 10 24 n/m 2 . The hardness increased with increasing the dose of the irradiation. However, these increasing rates of the ultra-fine grained steels were much smaller than those of the coarse-grained SUS316L steels having grain sizes between 13 and 50 μm. (orig.)

  5. Ultrafine particles of Ni and FeCr studied by positron annihilation

    DEFF Research Database (Denmark)

    Eldrup, Morten Mostgaard; Pedersen, N.J.; Sethi, S.A.

    1995-01-01

    Ultrafine particles of Ni and Fe80Cr20 have been produced by the gas condensation technique. After surface oxidation the paticles were heated in a reducing H2 atmosphere and positron lifetime and Doppler broadening measurements were carried out. Reduction of the oxide on the Ni powder takes place...... at about 350K and at about 650K for the FeCr powder. Electron microscopy shows sintering of the Ni particles above 450K, and the present results show that defects develop in the growing particles....

  6. Studi Analisis Serbuk dengan Teknik Krim Silikon Menggunakan Plasma Tekanan Tinggi yang Diinduksi oleh Laser Nd: YAG

    Directory of Open Access Journals (Sweden)

    Syahrun Nur Madjid

    2012-12-01

    Full Text Available Laser-Induced Breakdown Spectroscopy (LIBS is a technique that used for quantitative elemental analysis of various samples in different forms. In this technique, a laser light is focused on the surface of sample yielding a plasma just above the sample surface that used for analytical source. Nowadays, rapid powder analysis in tiny amount (mg has been carried out using plasma induced by high power laser of  Nd:YAG (Neodymium-doped Yttrium Aluminium Garnet at atmospheric pressure. However, powder analysis using high power laser is still difficult to be carried out  due to blow of powder when irradiated laser beam focused on a powder sample. In general, the powder must be transformed into pellet form prior to analysis. Pellet sample requires a lot of powder and it takes time for preparation. In this study, we developed a technique of powder sample with its size about  30 µm (± 5 mg that mixed with silicon grease (± 5 mg that act as a binder. The mixed sample then thinly painted on the metal plate as sub-target. The study showed that by employing sillicon grease technique, a semiquantitative analysis of several elements contain in coal, rock, and  water  can be conducted. Meanwhile heavy metal in soils is still not able to detect. This results showed that sillicon grease technique using  Nd:YAG laser can be applied for rapid semi-quantitative analysis of powder samples available only in tiny amounts. Keywords: high pressured plasma, Nd:YAG laser, powder analysis, silicon grease technique

  7. Physicochemical characterization of Baizhi particles by ultrafine pulverization

    Science.gov (United States)

    Yang, Lian-Wei; Sun, Peng; Gai, Guo-Sheng; Yang, Yu-Fen; Wang, Yu-Rong

    2011-04-01

    Baizhi, as a medicinal plant, has been demonstrated to be useful for the treatment of aches and pains in China. The physicochemical characterization of Baizhi particles is greatly influenced by ultrafine pulverization. To study the physicochemical characterization of Baizhi, the raw plant material of Baizhi was ground to 6 μm particles by a high speed centrifugal sheering (HSCS) pulverizer. The micron particles were characterized by optical microscopy and scanning electron microscopy (SEM). Imperatorin is one of the active ingredients of Baizhi, and its extraction yield is determined to evaluate the chemical characterization of Baizhi powder. Imperatorin was analyzed by high performance liquid chromatography (HPLC). The results show that after ultrafine pulverization, the plant cell walls are broken into pieces and the extraction yield of imperatorin is increased by 11.93% compared with the normal particles.

  8. Formation of ultra-fine grained TiC-dispersed SUS316L by ball-milling and their consolidation by hot isostatic pressing

    International Nuclear Information System (INIS)

    Zheng, Yongjia; Yamasaki, Tohru; Fukami, Takeshi; Mitamura, Tohru; Terasawa, Mititaka

    2003-01-01

    In order to overcome the irradiation embrittlement in austenitic stainless steels, ultra-fine grained SUS316L steels with very fine TiC particles have been developed. The SUS316-TiC nanocomposite powders having 1.0 to 2.0 mass%TiC were prepared by ball-milling SUS316-TiC powder mixtures for 125h in an argon gas atmosphere. The milled powders were consolidated by hot isostatic pressing (HIP) under a pressure of 200 MPa at temperature between 700-1000degC, and the bulk materials with crystallite size ranging between 100-400 nm have been produced. The possibility of using fine-grained TiC particles for pinning grain boundaries and thereby to maintain the ultra-fine grained structures has been discussed. (author)

  9. Colloidal characterization of ultrafine silicon carbide and silicon nitride powders

    Science.gov (United States)

    Whitman, Pamela K.; Feke, Donald L.

    1986-01-01

    The effects of various powder treatment strategies on the colloid chemistry of aqueous dispersions of silicon carbide and silicon nitride are examined using a surface titration methodology. Pretreatments are used to differentiate between the true surface chemistry of the powders and artifacts resulting from exposure history. Silicon nitride powders require more extensive pretreatment to reveal consistent surface chemistry than do silicon carbide powders. As measured by titration, the degree of proton adsorption from the suspending fluid by pretreated silicon nitride and silicon carbide powders can both be made similar to that of silica.

  10. The effect of native Al2O3 skin disruption on properties of fine Al powder compacts

    International Nuclear Information System (INIS)

    Balog, Martin; Poletti, Cecilia; Simancik, Frantisek; Walcher, Martin; Rajner, Walter

    2011-01-01

    Research highlights: → The effect of various powder metallurgy compaction routes on the microstructures and properties of ultra-fine atomized Al powder compacts. → Applied compaction route affects the deformation and fracture of native Al 2 O 3 layer present on the surface of as-atomized powder. → Distribution, morphology and interconnectivity of in situ introduced Al 2 O 3 dispersoids distinctly determine the compacts properties. - Abstract: In the presented study we characterize how various powder metallurgical routes (extrusion, forging, and HIP/sintering) affect the fracture of native Al 2 O 3 layer present on the surface of ultra-fine atomized Al powders. It is shown that the different distribution, morphology and interconnectivity of in situ introduced Al 2 O 3 dispersoids strongly affect the thermal stability and mechanical and thermal properties of subsequent powder compacts.

  11. Effects of neodymium concentration on optical characteristics of polycrystalline Nd:YAG laser materials

    International Nuclear Information System (INIS)

    Ikesue, A.; Kamata, K.; Yoshida, K.

    1996-01-01

    A neodymium-doped yttrium-aluminum garnet (Y 3 Al 5 O 12 , YAG) (Nd:YAG) ceramic that contained 0.3--4.8 at.% neodymium additives and exhibited nearly the same optical properties as those of a single crystal was fabricated by a solid-state reaction method using high-purity powders. Although the integrated absorption intensity of the 2 H 9/2 + 4 F 5/2 bands simply increased as the neodymium concentration in the YAG ceramics decreased, the fluorescence intensity of the 2.4 at.% Nd:YAG ceramic was the strongest among Nd:YAG ceramics with various neodymium concentrations and a 0.9 at.% Nd:YAG single crystal. An oscillation experiment was performed on a continuous-wave (cw) laser with a diode-laser exciting system using those ceramics and the single crystal. The oscillation threshold and slope efficiency in that analysis were 309 mW and 28%, respectively, for the 1.1 at.% Nd:YAG ceramics and 356 mW and 40%, respectively, for the 2.4 at.% Nd:YAG ceramics. The lasing characteristics of the ceramics in the present work were superior to those of a 0.9 at.% Nd:YAG single crystal that was fabricated by the Czochralski (Cz) method

  12. Tape casting fabrication and properties of planar waveguide YAG/Yb:YAG/YAG transparent ceramics

    Science.gov (United States)

    Zhao, Yu; Liu, Qiang; Ge, Lin; Wang, Chao; Li, Wenxue; Yang, Chao; Wang, Juntao; Yuan, Lei; Xie, Tengfei; Kou, Huamin; Pan, Yubai; Gao, Qingsong; Bo, Yong; Peng, Qinjun; Xu, Zuyan; Li, Jiang

    2017-07-01

    Highly transparent YAG/10at.%Yb:YAG/YAG planar waveguide ceramics were fabricated by the non-aqueous tape casting and solid-state reactive sintering technology. The tapes are relatively homogeneous and the green body shows a dense structure without distinct interfaces after the treatment of debinding and cold isostatic pressing. YAG/10at.%Yb:YAG/YAG ceramics with almost full dense structure were obtained by vacuum-sintering at 1760 °C for 30 h. For the mirror-polished sample with the thickness of 3.5 mm, the In-line transmittance was measured to be 83.6% at the visual wavelength of 400 nm. The diffusion distance of the Yb3+ ions was about 215 μm along the thickness direction of the ceramics. In the lasing experiments, the YAG/10at.%Yb:YAG/YAG planar waveguide ceramics were end-pumped by a 976 nm semiconductor diode laser and enabled efficient continuous-wave lasers, which resulted in a maximum output power of 1.6 W and a slope efficiency of 34.4% at 1030 nm.

  13. Pulmonary delivery of an ultra-fine oxytocin dry powder formulation: potential for treatment of postpartum haemorrhage in developing countries.

    Directory of Open Access Journals (Sweden)

    Richard J Prankerd

    Full Text Available Oxytocin is recommended by the World Health Organisation as the most effective uterotonic for the prevention and treatment of postpartum haemorrhage. The requirement for parenteral administration by trained healthcare providers and the need for the drug solution to be maintained under cold-chain storage limit the use of oxytocin in the developing world. In this study, a spray-dried ultrafine formulation of oxytocin was developed with an optimal particle size diameter (1-5 µm to facilitate aerosolised delivery via the lungs. A powder formulation of oxytocin, using mannitol, glycine and leucine as carriers, was prepared with a volume-based median particle diameter of 1.9 µm. Oxytocin content in the formulation was assayed using high-performance liquid chromatography-mass spectroscopy and was found to be unchanged after spray-drying. Ex vivo contractility studies utilising human and ovine uterine tissue indicated no difference in the bioactivity of oxytocin before and after spray-drying. Uterine electromyographic (EMG activity in postpartum ewes following pulmonary (in vivo administration of oxytocin closely mimicked that observed immediately postpartum (0-12 h following normal vaginal delivery of the lamb. In comparison to the intramuscular injection, pulmonary administration of an oxytocin dry powder formulation to postpartum ewes resulted in generally similar EMG responses, however a more rapid onset of uterine EMG activity was observed following pulmonary administration (129 ± 18 s than intramuscular injection (275 ± 22 s. This is the first study to demonstrate the potential for oxytocin to elicit uterine activity after systemic absorption as an aerosolised powder from the lungs. Aerosolised oxytocin has the potential to provide a stable and easy to administer delivery system for effective prevention and treatment of postpartum haemorrhage in resource-poor settings in the developing world.

  14. Pulmonary delivery of an ultra-fine oxytocin dry powder formulation: potential for treatment of postpartum haemorrhage in developing countries.

    Science.gov (United States)

    Prankerd, Richard J; Nguyen, Tri-Hung; Ibrahim, Jibriil P; Bischof, Robert J; Nassta, Gemma C; Olerile, Livesey D; Russell, Adrian S; Meiser, Felix; Parkington, Helena C; Coleman, Harold A; Morton, David A V; McIntosh, Michelle P

    2013-01-01

    Oxytocin is recommended by the World Health Organisation as the most effective uterotonic for the prevention and treatment of postpartum haemorrhage. The requirement for parenteral administration by trained healthcare providers and the need for the drug solution to be maintained under cold-chain storage limit the use of oxytocin in the developing world. In this study, a spray-dried ultrafine formulation of oxytocin was developed with an optimal particle size diameter (1-5 µm) to facilitate aerosolised delivery via the lungs. A powder formulation of oxytocin, using mannitol, glycine and leucine as carriers, was prepared with a volume-based median particle diameter of 1.9 µm. Oxytocin content in the formulation was assayed using high-performance liquid chromatography-mass spectroscopy and was found to be unchanged after spray-drying. Ex vivo contractility studies utilising human and ovine uterine tissue indicated no difference in the bioactivity of oxytocin before and after spray-drying. Uterine electromyographic (EMG) activity in postpartum ewes following pulmonary (in vivo) administration of oxytocin closely mimicked that observed immediately postpartum (0-12 h following normal vaginal delivery of the lamb). In comparison to the intramuscular injection, pulmonary administration of an oxytocin dry powder formulation to postpartum ewes resulted in generally similar EMG responses, however a more rapid onset of uterine EMG activity was observed following pulmonary administration (129 ± 18 s) than intramuscular injection (275 ± 22 s). This is the first study to demonstrate the potential for oxytocin to elicit uterine activity after systemic absorption as an aerosolised powder from the lungs. Aerosolised oxytocin has the potential to provide a stable and easy to administer delivery system for effective prevention and treatment of postpartum haemorrhage in resource-poor settings in the developing world.

  15. Ultrafine particles in concrete: Influence of ultrafine particles on concrete properties and application to concrete mix design

    Energy Technology Data Exchange (ETDEWEB)

    Vogt, Carsten

    2010-07-01

    shrinkage was found to continue over long periods of time, even after more than 4 years of testing the final shrinkage was not reached. The total water content of concrete was found to be the governing factor for the drying shrinkage. With the help of the modified Andreassen model, concrete compositions with low cement content and high content of ultrafines were optimised. With only 100 kg/m3 of cement, suitable inert ultrafine particles and an optimised particle size distribution, a compressive strength of more than 65 MPa can be achieved.The most effective way to apply the modified Andreassen model to concrete is the combination of inert ultrafine fillers and silica fume. In doing so, concrete with low cement content and compressive strength of more than 100 MPa can be produced. The paste structure of such mixes is homogeneous without distinct interfacial transition zones or agglomeration of portlandite crystals. The microstructure is dense, that was confirmed by mercury intrusion porosimetry, capillary suction and microscopy. The early shrinkage of such mix compositions is due to the autogenous shrinkage contribution of the silica fume higher than for a traditional concrete. After a longer period of time, the difference diminishes. The concept of replacing cement by inert ultrafine particles is also applicable to high strength concrete and reactive powder concrete. The cement content was reduced by more than 30 % without negative influence on strength and durability. Again, the modified Andreassen model proved to be a valuable tool in the design of the mixes. This work includes also practical applications of some of the concepts tested. Self-compacting concrete with low cement content and low pH (pH < 11), to be used in a repository for spent nuclear fuel, was developed. The concrete contained high amounts of inert ultrafine particles and silica fume, the modified Andreassen model was used to optimise the particle size distribution of the mixes and thus packing density

  16. Physical properties and microstructure performance of ultrafine nanocrystals reinforced laser 3D print microlaminates

    International Nuclear Information System (INIS)

    Li, Jianing; Xia, Chunzhi; Liu, Peng; Pan, Guanghui; Wang, Congwei

    2015-01-01

    Highlights: • Ultrafine nanocrystals, nanorods and amorphous phases were produced in such LRP microlaminates. • The amorphous/nanocrystalline interface owned a high bonding energy. • Amorphous/nanocrystalline interface may retard growth of nanocrystals in a certain extent. • Due to production of amorphous, lots of microscale ASNPs were produced. • Ultrafine nanocrystals had the high interface energy, which became the driving force of the atomic motions. - Abstract: Rapid prototyping based on laser alloying was used to produce ultrafine nanocrystals (UN) reinforced three-dimensional microlaminates. Such microlaminates were fabricated on a TA1 alloy by laser rapid prototyping (LRP) of Stellite 20–TiN–B 4 C mixed powders to produce a bottom layer; then Stellite 20–TiN–B 4 C–Sb powders were deposited on such bottom-layer in order to form an upper-layer. There is an excellent metallurgical combination between such two layer; the upper-layer shows a better wear resistance than that of the bottom layer. The Sb addition promoted lots of UN to be produced, and lots of the nanorods were also produced in such microlaminates, their growth was retarded by agglomeration of UN in a certain extent. Such UN had the high interface energy, which became the driving force of atomic motions, favoring formation of a compact fine structure

  17. Physical properties and microstructure performance of ultrafine nanocrystals reinforced laser 3D print microlaminates

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jianing, E-mail: jn2369@163.com [School of Materials Science and Engineering, Shandong Jianzhu University, Jinan 250101 (China); Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024 (China); Xia, Chunzhi [Provincial Laboratory of Advanced Welding Technology, Jiangsu University of Science and Technology, Zhenjiang 212003 (China); Liu, Peng; Pan, Guanghui; Wang, Congwei [School of Materials Science and Engineering, Shandong Jianzhu University, Jinan 250101 (China)

    2015-10-05

    Highlights: • Ultrafine nanocrystals, nanorods and amorphous phases were produced in such LRP microlaminates. • The amorphous/nanocrystalline interface owned a high bonding energy. • Amorphous/nanocrystalline interface may retard growth of nanocrystals in a certain extent. • Due to production of amorphous, lots of microscale ASNPs were produced. • Ultrafine nanocrystals had the high interface energy, which became the driving force of the atomic motions. - Abstract: Rapid prototyping based on laser alloying was used to produce ultrafine nanocrystals (UN) reinforced three-dimensional microlaminates. Such microlaminates were fabricated on a TA1 alloy by laser rapid prototyping (LRP) of Stellite 20–TiN–B{sub 4}C mixed powders to produce a bottom layer; then Stellite 20–TiN–B{sub 4}C–Sb powders were deposited on such bottom-layer in order to form an upper-layer. There is an excellent metallurgical combination between such two layer; the upper-layer shows a better wear resistance than that of the bottom layer. The Sb addition promoted lots of UN to be produced, and lots of the nanorods were also produced in such microlaminates, their growth was retarded by agglomeration of UN in a certain extent. Such UN had the high interface energy, which became the driving force of atomic motions, favoring formation of a compact fine structure.

  18. Co-precipitation synthesis and luminescence behavior of Ce-doped yttrium aluminum garnet (YAG:Ce) phosphor: The effect of precipitant

    International Nuclear Information System (INIS)

    Zhang Kai; Liu Hezhou; Wu Yating; Hu Wenbin

    2008-01-01

    YAG:Ce precursors were co-precipitated using ammonia water and ammonium hydrogen carbonate as precipitants, respectively. Phase transition of the precursors during sintering was compared between the two precipitants. The precursors synthesized with ammonia water transformed to YAG at about 1000 deg. C via YAlO 3 phase. The precursors synthesized with ammonium hydrogen carbonate directly converted to pure YAG at about 900 deg. C. Comparing the powders produced with the two precipitants, the powders produced with ammonia hydrogen carbonate showed good dispersity. When sintered at 1600 deg. C, aggregation of the powders synthesized with the two precipitants both became severe. With increase the sintering temperature, the maximum wavelength of excitation and emission spectra of the phosphors synthesized with ammonium water hardly varied. While the maximum wavelength of excitation spectra of the phosphors synthesized with ammonium hydrogen carbonate unchanged, and the emission spectra showed red shift. Because of size effect and higher loss of cerium content, the emission intensity of phosphors prepared with ammonium hydrogen carbonate was lower than the phosphors prepared with ammonium water, when sintered at the same temperature

  19. Novel Fe-based nanocrystalline powder cores with excellent magnetic properties produced using gas-atomized powder

    Science.gov (United States)

    Chang, Liang; Xie, Lei; Liu, Min; Li, Qiang; Dong, Yaqiang; Chang, Chuntao; Wang, Xin-Min; Inoue, Akihisa

    2018-04-01

    FeSiBPNbCu nanocrystalline powder cores (NPCs) with excellent magnetic properties were fabricated by cold-compaction of the gas-atomized amorphous powder. Upon annealing at the optimum temperature, the NPCs showed excellent magnetic properties, including high initial permeability of 88, high frequency stability up to 1 MHz with a constant value of 85, low core loss of 265 mW/cm3 at 100 kHz for Bm = 0.05 T, and superior DC-bias permeability of 60% at a bias field of 100 Oe. The excellent magnetic properties of the present NPCs could be attributed to the ultrafine α-Fe(Si) phase precipitated in the amorphous matrix and the use of gas-atomized powder coated with a uniform insulation layer.

  20. New life of recycled rare earth-oxides powders for lighting applications.

    Science.gov (United States)

    Carlo Ricci, Pier; Murgia, Massimiliano; Carbonaro, Carlo Maria; Sgariotto, Serena; Stagi, Luigi; Corpino, Riccardo; Chiriu, Daniele; Grilli, Maria Luisa

    2018-03-01

    In this work we analysed the optical and structural properties of Ce:YAG regenerated phosphors. The concentrate resulted as the final product of an industrial recycling process of waste electrical and electronic equipment (WEEE), and in particular fluorescent powders coming from spent lamps treatment plant. The waste pristine materials were re-utilized without any further purification and or separation process as starting materials to obtain a YAG matrix (Y2Al5O12) doped with Cerium ions. We tested out the recovered concentrate against commercial Ce:YAG phosphors comparing their structural and optical properties by means of XRD measurements and steady time and time resolved luminescence. The analysis reveals that the new phosphors obtained by scrap powder have the same crystal structure as the commercial reference sample and comparable optical properties. In particular, the Ce-related emission efficiency has a quantum yield of about 0.75 when excited at 450 nm, in good agreement with our reference sample and with the one of commercial powder presently exploited in white LED. This achievement strongly suggests the possibility of a new life for the exhausted phosphors and a possible step forward to a complete circular process for lighting equipment.

  1. Plasma dynamic synthesis and obtaining ultrafine powders of iron oxides with high content of ε-Fe2O3

    Science.gov (United States)

    Sivkov, Alexander; Naiden, Evgenii; Ivashutenko, Alexander; Shanenkov, Ivan

    2016-05-01

    The ultrafine iron oxide powders were successfully synthesized using the plasma dynamic synthesis method, based on the use of a coaxial magnetoplasma accelerator with the iron electrode system. The synthesis was implemented in the high-speed iron-containing plasma jet, flowing into the space of the sealed chamber, filled with the gaseous mixture of oxygen and argon at different ratios. The XRD investigations showed that the synthesized products were heterophase and consisted of three main phases such as magnetite Fe3O4, hematite α-Fe2O3 and ε-Fe2O3. The SEM data confirmed the presence of three particle types: the hollow spheroids with sizes about hundreds of micrometers (magnetite), the particles with sizes up to 100 μm from the porous material of sintered submicron particles (hematite), and nanoscale particles (ε-phase). We found that at the higher oxygen concentration the content of ε-Fe2O3 is increased up to 50% at the same time with decreasing the Fe3O4 phase. The magnetic properties of the products are mainly determined by magnetite characteristics and are significantly reduced with decreasing its content in the powder. In order to investigate the synthesized ε-Fe2O3 on the ability to absorb the electromagnetic radiation in the millimeter wavelength range, we separated the product with the higher ε-phase concentration. The fraction mainly, consisting of ε-Fe2O3, showed the occurrence of the natural resonance at frequencies of 8.3 GHz and 130 GHz.

  2. Effect of Annealing Time of YAG:Ce3+ Phosphor on White Light Chromaticity Values

    Science.gov (United States)

    Abd, Husnen R.; Hassan, Z.; Ahmed, Naser M.; Almessiere, Munirah Abdullah; Omar, A. F.; Alsultany, Forat H.; Sabah, Fayroz A.; Osman, Ummu Shuhada

    2018-02-01

    Yttrium and aluminium nitrate phosphors doped with cerium nitrate and mixed with urea (fuel) are prepared by using microwave-induced combustion synthesis according to the formula Y(3-0.06)Al5O12:0.06Ce3+ (YAG:Ce3+) to produce white light emitting diodes by conversion from blue indium gallium nitride-light emitting diode chips. The sintering time with fixed temperature (1050°C) for phosphor powder was optimized and found to be 5 h. The crystallinity, structure, chemical composition, luminescent properties with varying currents densities and chromaticity were characterized by x-ray diffraction, field emission-scanning electron microscopy, transmission electron microscopy, energy dispersive spectroscopy, photoluminescence emission, electroluminescence and standard CIE 1931 chromaticity diagram, respectively. The energy levels of Ce3+ in YAG were discussed based on its absorption and excitation spectra. The results show that the obtained YAG:Ce3+ phosphor sintered for 5 h has good crystallinity with pure phase, low agglomerate with spherical shaped particles and strong yellow emission, offering cool-white LED with tuneable correlated color temperature and a good color rendering index compared to those prepared by sintering for 2 h and as-prepared phosphor powders.

  3. Potential of advanced ceramics elaborated from laser-synthetized powders

    International Nuclear Information System (INIS)

    Lihrmann, J.M.; Luce, M.; Croix, O.; Cauchetier, M.

    1987-01-01

    Use of ultrafine powders obtained by pyrolysis of gaseous reagents with a CO 2 laser gives high tech ceramics. Initiated by Haggerty from MIT, this new method is in use at the CEA since 1985. Conditions for synthesis with a 1KW laser are presented. Lab production is nearly 40g/hr of SiC with yields of 99%. Methods for powder treatment and results of mechanical and chemical properties of the compact materials obtained are given [fr

  4. Influence of spark plasma sintering conditions on the sintering and functional properties of an ultra-fine grained 316L stainless steel obtained from ball-milled powder

    Energy Technology Data Exchange (ETDEWEB)

    Keller, C., E-mail: clement.keller@insa-rouen.fr [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Tabalaiev, K.; Marnier, G. [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Noudem, J. [Laboratoire de Cristallographie des Matériaux, CNRS-UMR 6508, Université de Caen, ENSICAEN, 7 bd du Maréchal Juin, 14050 Caen (France); Sauvage, X. [Groupe de Physique des Matériaux, CNRS-UMR 6634, Université de Rouen, INSA de Rouen, Avenue de l' Université, 76800 Saint-Etienne du Rouvray (France); Hug, E. [Laboratoire de Cristallographie des Matériaux, CNRS-UMR 6508, Université de Caen, ENSICAEN, 7 bd du Maréchal Juin, 14050 Caen (France)

    2016-05-17

    In this work, 316L samples with submicrometric grain size were sintered by spark plasma sintering. To this aim, 316L powder was first ball-milled with different conditions to obtain nanostructured powder. The process control agent quantity and milling time were varied to check their influence on the crystallite size of milled powder. Samples were then sintered by spark plasma sintering using different sets of sintering parameters (temperature, dwell time and pressure). For each sample, grain size and density were systematically measured in order to investigate the influence of the sintering process on these two key microstructure parameters. Results show that suitable ball-milling and subsequent sintering can be employed to obtain austenitic stainless steel samples with grain sizes in the nanometer range with porosity lower than 3%. However, ball-milling and subsequent sintering enhance chromium carbides formation at the sample surface in addition to intragranular and intergranular oxides in the sample as revealed by X-ray diffraction and transmission electron microscopy. It has been shown that using Boron nitride together with graphite foils to protect the mold from powder welding prevent such carbide formation. For mechanical properties, results show that the grain size refinement strongly increases the hardness of the samples without deviation from Hall-Petch relationship despite the oxides formation. For corrosion resistance, grain sizes lower than a few micrometers involve a strong decrease in the pitting potential and a strong increase in passivation current. As a consequence, spark plasma sintering can be considered as a promising tool for ultra-fine grained austenitic stainless steel.

  5. Zirconium dioxide ultrafine powders formation in ultra-high frequency discharge plasma

    International Nuclear Information System (INIS)

    Triotskij, V.N.; Kurkin, E.N.; Torbov, V.I.; Berestenko, V.I.; Torbova, O.D.; Gurov, S.V.; Alekseev, N.V.

    1995-01-01

    ZrO 2 fine powders of 30...60 nm particle size were synthesized by ZrCl 4 oxidation in a flow of oxygen microwave plasma. Oxygen flow rate and ZrCl 4 feeding rate were the defining parameters effecting on powder particles size at constant discharge power.At predominant contribution of the coalescence process into ZrO 2 powder particles formation their heterogeneous growth was shown necessary to take into account. 16 refs.; 5 figs

  6. Synthesis of Yttria-stabilized zirconia nanoparticles by decomposition of metal nitrates coated on carbon powder

    International Nuclear Information System (INIS)

    Jiang, S.; Stangle, G.C.; Amarakoon, V.R.; Schulze, W.A.

    1996-01-01

    Weakly agglomerated nanoparticles of yttria-stabilized zirconia (YSZ) were synthesized by a novel process which involved the decomposition of metal nitrates that had been coated on ultrafine carbon black powder, after which the carbon black was gasified. The use of ultrafine, high-surface-area carbon black powder apparently allowed the nanocrystalline oxide particles to form and remain separate from each other, after which the carbon black was gasified at a somewhat higher temperature. As a result, the degree of agglomeration was shown to be relatively low. The average crystallite size and the specific surface area of the as-synthesized YSZ nanoparticles were 5∼6 nm and 130 m 2 /g, respectively, for powder synthesized at 650 degree C. The as-synthesized YSZ nanoparticles had a light brown color and were translucent, which differs distinctly from conventional YSZ particles which are typically white and opaque. The mechanism of the synthesis process was investigated, and indicated that the gasification temperature had a direct effect on the crystallite size of the as-synthesized YSZ nanoparticles. High-density and ultrafine-grained YSZ ceramic articles were prepared by fast-firing, using a dwell temperature of 1250 degree C and a dwell time of two minutes or less. copyright 1996 Materials Research Society

  7. Reduce synthesis temperature and improve dispersion of YAG nanopowders based on the co-crystallization method

    Energy Technology Data Exchange (ETDEWEB)

    Fan, G.F.; Tang, Y.Q.; Lu, W.Z., E-mail: lwz@mail.hust.edu.cn; Zhang, X.R.; Xu, X.

    2015-01-05

    Highlights: • YAG nanopowders were synthesized through a co-crystallization method. • A three-layer core–shell structure was made to lower the synthesis temperature. • PAA again reduced the synthesis temperature based on the core–shell structure. • YAG nanopowders were synthesized at 700 °C in normal apparatus. • Agglomeration was greatly improved by PAA. - Abstract: Pure yttrium aluminum garnet (YAG) nanopowders were synthesized at 950 °C from the co-crystallization precursor of Y(NO{sub 3}){sub 3}⋅6H{sub 2}O and Al(NO{sub 3}){sub 3}⋅9H{sub 2}O (nitrate process). When 17 wt.% of Y(NO{sub 3}){sub 3}⋅6H{sub 2}O was replaced by Y{sub 2}O{sub 3} nanopowders, so as to make up a three-layer core–shell structure of the precursor, the synthesis temperature was reduced to 850 °C (Y{sub 2}O{sub 3} process). Based on Y{sub 2}O{sub 3} process, further reducing the synthesis temperature to 700 °C was realized by adding polyacrylic acid (PAA, 50% M), which was used to shorten the distance of the metal ions and provide combustion heat (PAA process). TEM characterizations indicated that the powders produced through nitrate and Y{sub 2}O{sub 3} processes agglomerated, while the powders produced through PAA process were dispersed much better. The agglomerate size analysis results demonstrated that the powders produced through PAA process were with smaller agglomerate size and wider agglomerate size distribution than those through nitrate process or Y{sub 2}O{sub 3} process. And they were more likely to be sintered to YAG transparent ceramics.

  8. Development of ultrafine and pure amorphous and crystalline new materials and their fabrication process

    International Nuclear Information System (INIS)

    Yang, Myung Seung; Kim, Y. E.; Kim, J. G.; Gu, J. H.; Yoon, N. K.; Seong, S. Y.; Ryu, S. E.; Lee, J. C.

    1996-07-01

    Based on an estimation of annual rice production of 5.2 Million tons, rice husks by-production reaches to 1.17 Million tons per year in Korea. distinguished to other corns, rice contains a lot of Si; 10 ∼ 20 % by weight in rice husks calculated as silica. The aim of this research project is to develop technologies for ceramic powders and materials utilizing the silica in rice husks called phytoliths. In this researches of the following subjects were performed; decomposition of the organic components, acid treatments, extraction of the organic matter, effect of gamma-ray irradiation on the acid treatment, plasma treatment, crystallization of silica powder, dispersion of amorphous silica powder, fabrication of ultrafine crystalline fibrous materials.. (author). 18 refs., 5 tabs., 55 figs

  9. Defect structure of ultrafine MgB2 nanoparticles

    International Nuclear Information System (INIS)

    Bateni, Ali; Somer, Mehmet; Repp, Sergej; Erdem, Emre; Thomann, Ralf; Acar, Selçuk

    2014-01-01

    Defect structure of MgB 2 bulk and ultrafine particles, synthesized by solid state reaction route, have been investigated mainly by the aid of X-band electron paramagnetic resonance spectrometer. Two different amorphous Boron (B) precursors were used for the synthesis of MgB 2 , namely, boron 95 (purity 95%–97%, <1.5 μm) and nanoboron (purity >98.5%, <250 nm), which revealed bulk and nanosized MgB 2 , respectively. Scanning and transmission electron microscopy analysis demonstrate uniform and ultrafine morphology for nanosized MgB 2 in comparison with bulk MgB 2 . Powder X-ray diffraction data show that the concentration of the by-product MgO is significantly reduced when nanoboron is employed as precursor. It is observed that a significant average particle size reduction for MgB 2 can be achieved only by using B particles of micron or nano size. The origin and the role of defect centers were also investigated and the results proved that at nanoscale MgB 2 material contains Mg vacancies. Such vacancies influence the connectivity and the conductivity properties which are crucial for the superconductivity applications

  10. A comparative approach to synthesis and sintering of alumina/yttria nanocomposite powders using different precipitants

    Energy Technology Data Exchange (ETDEWEB)

    Kafili, G. [Department of Nanotechnology Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441 (Iran, Islamic Republic of); Movahedi, B., E-mail: b.movahedi@ast.ui.ac.ir [Department of Nanotechnology Engineering, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, 81746-73441 (Iran, Islamic Republic of); Milani, M. [Faculty of Advanced Materials and Renewable Energy Research Center, Tehran (Iran, Islamic Republic of)

    2016-11-01

    Alumina/yttria nanocomposite powder as an yttrium aluminum garnet (YAG) precursor was synthesized via partial wet route using urea and ammonium hydrogen carbonate (AHC) as precipitants, respectively. The products were characterized using X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and energy dispersive spectroscopy. The use of urea produced very tiny spherical Y-compounds with chemical composition of Y{sub 2}(CO{sub 3}){sub 3}·nH{sub 2}O, which were attracted to the surface of alumina nanoparticles and consequently, a core-shell structure was obtained. The use of ammonium hydrogen carbonate produced sheets of Y-compounds with chemical composition of Y(OH)CO{sub 3} covering the alumina nanoparticles. A fine-grained YAG ceramic (about 500 nm), presenting a non-negligible transparency (45% RIT at IR range) was obtained by the spark plasma sintering (SPS) of alumina-yttria nanocomposite synthesized in the urea system. This amount of transmission was obtained by only the sintering of the powder specimen without any colloidal forming process before sintering or adding any sintering aids or dopant elements. However, by spark plasma sintering of alumina-yttria nanocomposite powder synthesized in AHC system, an opaque YAG ceramic with an average grain size of 1.2 μm was obtained. - Highlights: • Urea proved to be an appropriate precipitant for obtaining a core-shell alumina/yttria nanocomposite. • Alumina/yttria nanocomposite powders with more appropriate morphology and highly sinterability. • A fine-grained YAG ceramic was obtained by SPS of alumina-yttria nanocomposite.

  11. Nanocrystalline and ultrafine grain copper obtained by mechanical attrition

    Directory of Open Access Journals (Sweden)

    Rodolfo Rodríguez Baracaldo

    2010-01-01

    Full Text Available This article presents a method for the sample preparation and characterisation of bulk copper having grain size lower than 1 μm (ultra-fine grain and lower than 100 nm grain size (nanocrystalline. Copper is initially manufactured by a milling/alloying me- chanical method thereby obtaining a powder having a nanocrystalline structure which is then consolidated through a process of warm compaction at high pressure. Microstructural characterisation of bulk copper samples showed the evolution of grain size during all stages involved in obtaining it. The results led to determining the necessary conditions for achieving a wide range of grain sizes. Mechanical characterisation indicated an increase in microhardness to values of around 3.40 GPa for unconsolida- ted nanocrystalline powder. Compressivee strength was increased by reducing the grain size, thereby obtaining an elastic limit of 650 MPa for consolidated copper having a ~ 62 nm grain size.

  12. Plasma dynamic synthesis and obtaining ultrafine powders of iron oxides with high content of ε-Fe{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Sivkov, Alexander [Institute of Power Engineering, National Research Tomsk Polytechnic University, Lenin av., 30, Tomsk 634050 (Russian Federation); Naiden, Evgenii [Faculty of Radiophysics, National Research Tomsk State University, Lenin av., 36, Tomsk 634050 (Russian Federation); Ivashutenko, Alexander [Institute of Power Engineering, National Research Tomsk Polytechnic University, Lenin av., 30, Tomsk 634050 (Russian Federation); Shanenkov, Ivan, E-mail: Swordi@list.ru [Institute of Power Engineering, National Research Tomsk Polytechnic University, Lenin av., 30, Tomsk 634050 (Russian Federation)

    2016-05-01

    The ultrafine iron oxide powders were successfully synthesized using the plasma dynamic synthesis method, based on the use of a coaxial magnetoplasma accelerator with the iron electrode system. The synthesis was implemented in the high-speed iron-containing plasma jet, flowing into the space of the sealed chamber, filled with the gaseous mixture of oxygen and argon at different ratios. The XRD investigations showed that the synthesized products were heterophase and consisted of three main phases such as magnetite Fe{sub 3}O{sub 4}, hematite α-Fe{sub 2}O{sub 3} and ε-Fe{sub 2}O{sub 3}. The SEM data confirmed the presence of three particle types: the hollow spheroids with sizes about hundreds of micrometers (magnetite), the particles with sizes up to 100 μm from the porous material of sintered submicron particles (hematite), and nanoscale particles (ε-phase). We found that at the higher oxygen concentration the content of ε-Fe{sub 2}O{sub 3} is increased up to ~50% at the same time with decreasing the Fe{sub 3}O{sub 4} phase. The magnetic properties of the products are mainly determined by magnetite characteristics and are significantly reduced with decreasing its content in the powder. In order to investigate the synthesized ε-Fe{sub 2}O{sub 3} on the ability to absorb the electromagnetic radiation in the millimeter wavelength range, we separated the product with the higher ε-phase concentration. The fraction mainly, consisting of ε-Fe{sub 2}O{sub 3}, showed the occurrence of the natural resonance at frequencies of 8.3 GHz and 130 GHz. - Highlights: • We synthesized iron oxide powder with high content of ε-Fe{sub 2}O{sub 3}. • Synthesis is implemented using iron-containing plasma jet flowing into O{sub 2} atm. • Synthesized powders are heterophase and consist of ε-Fe{sub 2}O{sub 3,} α-Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4}. • ε-Fe{sub 2}O{sub 3} content increases up to 50% with increasing the O{sub 2} volume concentration. • We found the

  13. Preparation of Ultra-Fine Nickel Manganite Powders and Ceramics by a Solid-State Coordination Reaction

    NARCIS (Netherlands)

    Fang, Dao-lai; Wang, Zhongbing; Wang, Zhichun; Yang, Pinghua; Liu, W.; Liu, Wei; Winnubst, Aloysius J.A.; Chen, Chusheng

    2006-01-01

    A solid-state coordination reaction was adopted to prepare negative temperature coefficient ceramics. A mixed oxalate NiMn2(C2O4)3·6H2O, a coordination compound, was synthesized by milling a mixture of nickel acetate, manganese acetate, and oxalic acid for 5 h at room temperature. An ultrafine

  14. Electrochemical behavior of copper metal core/oxide shell ultra-fine particles on mercury electrodes in aqueous dispersions

    Czech Academy of Sciences Publication Activity Database

    Korshunov, A.; Heyrovský, Michael

    2009-01-01

    Roč. 629, 1-2 (2009), s. 23-29 ISSN 0022-0728 R&D Projects: GA ČR GA203/07/1195; GA AV ČR IAA400400806 Institutional research plan: CEZ:AV0Z40400503 Keywords : ultrafine copper powders * surface oxide layers * aqueous dispersions * voltammetry * Hg electrodes Subject RIV: CG - Electrochemistry Impact factor: 2.580, year: 2007

  15. Study of structural and optical properties of YAG and Nd:YAG single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kostić, S. [Institute of Physics, University of Belgrade, P.O. Box 68, Pregrevica 118, Zemun, Belgrade (Serbia); Lazarević, Z.Ž., E-mail: lzorica@yahoo.com [Institute of Physics, University of Belgrade, P.O. Box 68, Pregrevica 118, Zemun, Belgrade (Serbia); Radojević, V. [Faculty of Technology and Metallurgy, University of Belgrade, Belgrade (Serbia); Milutinović, A.; Romčević, M.; Romčević, N.Ž. [Institute of Physics, University of Belgrade, P.O. Box 68, Pregrevica 118, Zemun, Belgrade (Serbia); Valčić, A. [Faculty of Technology and Metallurgy, University of Belgrade, Belgrade (Serbia)

    2015-03-15

    Highlights: • Transparent YAG and pale pink Nd:YAG single crystals were produced by the Czochralski technique. • Growth mechanisms and shape of the liquid/solid interface and incorporation of Nd{sup 3+} were studied. • The structure of the crystals was investigated by X-ray diffraction, Raman and IR spectroscopy. • The 15 Raman and 17 IR modes were observed. • The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. - Abstract: Yttrium aluminum garnet (YAG, Y{sub 3}Al{sub 5}O{sub 12}) and yttrium aluminum garnet doped with neodymium (Nd:YAG) single crystals were grown by the Czochralski technique. The critical diameter and the critical rate of rotation were calculated. Suitable polishing and etching solutions were determined. As a result of our experiments, the transparent YAG and pale pink Nd:YAG single crystals were produced. The obtained crystals were studied by X-ray diffraction, Raman and IR spectroscopy. The crystal structure was confirmed by XRD. The 15 Raman and 17 IR modes were observed. The Raman and IR spectroscopy results are in accordance with X-ray diffraction analysis. The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. The absence of a core was confirmed by viewing polished crystal slices. Also, it is important to emphasize that the obtained Nd:YAG single crystal has a concentration of 0.8 wt.% Nd{sup 3+} that is characteristic for laser materials.

  16. Preparation and characterization of ultrafine alumina via sol-gel polymeric route

    Energy Technology Data Exchange (ETDEWEB)

    Ibrahim, D.M. [Ceramic Department, National Research Centre, Dokki, Cairo (Egypt); Abu-Ayana, Y.M. [Polymers and Pigments Department, National Research Centre, Dokki, Cairo (Egypt)], E-mail: yosreya20@gmail.com

    2008-10-15

    Ultrafine alumina powder was prepared through resin formation between urea and formaldehyde. Aluminium stearate soap was introduced during resin preparation. Ethylene glycol was used to terminate the thermosetting reaction. Calcination of the product was carried out at 700, 1000, 1100, 1300 and 1400 deg. C to obtain aluminium oxide. IR and Raman spectroscopic analysis indicated the occupation of Al{sup 3+} at different sites in the polymer network (C=O, -NH{sub 2}, C-O, -NH, and -CH{sub 2}OH). X-ray diffraction of powder calcined at 1000 deg. C revealed the presence of a mixture of {alpha}- and {theta}-alumina together, while a mixture of {alpha}- and {beta}-alumina phases were obtained on calcination at 1400 deg. C. Transmission electron microscope (TEM) examination of the powder fired at 700 deg. C showed uniform grains in the form of clusters with average size between 22.02 and 30.5 nm. Clusters are multi-particles as evident from the electron diffraction pattern. Crystallite size of alumina powder calcined at 1000 deg. C was found to be {approx}25.67 nm, while that of powder calcined at1400 deg. C was {approx}30.52 nm. The calculated specific surface area of alumina powder calcined at 1000 deg. C was 59.17 m{sup 2} g{sup -1}, while that calcined at 1400 deg. C was 49.77 m{sup 2} g{sup -1}.

  17. Temperature dependence of Ce:YAG single-crystal phosphors for high-brightness white LEDs/LDs

    Science.gov (United States)

    Arjoca, Stelian; Víllora, Encarnación G.; Inomata, Daisuke; Aoki, Kazuo; Sugahara, Yoshiyuki; Shimamura, Kiyoshi

    2015-05-01

    The growth of Ce:Y3Al5O12(Ce:YAG) single-crystal phosphors (SCPs) by the Czochralski technique is analyzed in terms of segregation coefficient, solubility and absorption cross-section. The emission characteristics of these SCPs are investigated in a wide temperature range, from liquid He temperature up to 500 °C. The internal quantum efficiency of SCPs achieves its maximum at about 250 °C. Thermal quenching of SCPs at high temperature is attributed to the Mott-Seitz mechanism. In the case of ceramic powder phosphors, a continuous droop is observed with the temperature due to defect-related non-radiative recombination paths. It is shown that (Ce:YAG SCPs + blue LEDs/LDs) can cover a wide range of color temperatures 5500-7000 K, with color rendering indices around 70. In conclusion, it is shown that Ce:YAG SCPs are the most efficient and temperature stable converters to fabricate high-brightness white light sources with high-power blue LEDs and LDs.

  18. Processing of tungsten csrap into powders by electroerosion dispersion

    International Nuclear Information System (INIS)

    Fominskij, L.P.; Myuller, A.S.; Levchuk, M.V.; Tarabrina, V.P.

    1985-01-01

    A powder produced by electroerosion dispersion in water from tungsten chips and rod cuttings is studied for its properties and structure. Powder particles are mainly of spherical shape, their predominant size is 2-4 μm. A fraction of -63 μm comprises a basic mass of the powder (up to 80%), an ultrafine (to 40 μm) phase of WO which is isolated by decantation comprises about 3.5% of its mass. The powder particles are low oxidized, have a fine-grain microstructure and consist of tungsten with admixture of β-W (to 30%). A fraction of total oxygen mass in the mixture of fractio s 0.74%. The powder containing less than 0.25% of oxygen is produced by decantation of the oxide phase. The product purity is determined exclusively by the purity of the raw material. Prior to producing articles it is recommended to anneal the powder either in the inert atmosphere or in the reduced medium at 750 deg C for β-W to transfer into common tungsten

  19. Ultrafine-grained porous titanium and porous titanium/magnesium composites fabricated by space holder-enabled severe plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Qi, Yuanshen, E-mail: yuanshen.qi@monash.edu [Centre for Advanced Hybrid Materials, Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia); Contreras, Karla G. [Monash Institute of Medical Engineering, Faculty of Engineering, Monash University, Clayton, Victoria 3800 (Australia); Jung, Hyun-Do [Liquid Processing & Casting Technology R& D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Hyoun-Ee [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of); Advanced Institutes of Convergence Technology, Seoul National University, Gwanggyo, Yeongtong-gu, Suwon-si, Gyeonggi-do 443-270 (Korea, Republic of); Lapovok, Rimma [Centre for Advanced Hybrid Materials, Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia); Estrin, Yuri, E-mail: yuri.estrin@monash.edu [Centre for Advanced Hybrid Materials, Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia); Laboratory of Hybrid Nanostructured Materials, NUST MISiS, Moscow 119490 (Russian Federation)

    2016-02-01

    Compaction of powders by equal channel angular pressing (ECAP) using a novel space holder method was employed to fabricate metallic scaffolds with tuneable porosity. Porous Ti and Ti/Mg composites with 60% and 50% percolating porosity were fabricated using powder blends with two kinds of sacrificial space holders. The high compressive strength and good ductility of porous Ti and porous Ti/Mg obtained in this way are believed to be associated with the ultrafine grain structure of the pore walls. To understand this, a detailed electron microscopy investigation was employed to analyse the interface between Ti/Ti and Ti/Mg particles, the grain structures in Ti particles and the topography of pore surfaces. It was found that using the proposed compaction method, high quality bonding between particles was obtained. Comparing with other powder metallurgy methods to fabricate Ti with an open porous structure, where thermal energy supplied by a laser beam or high temperature sintering is essential, the ECAP process conducted at a relatively low temperature of 400 °C was shown to produce unique properties. - Highlights: • Porous Ti and porous Ti/Mg composite scaffolds were fabricated successfully. • Space holder-enabled severe plastic deformation was first used in this application. • Silicon particles as sacrificial space holders were used for the first time. • Ultrafine-grained microstructure and good bonding between particles were obtained. • Good preosteoblast cell response to as-manufactured porous Ti was achieved.

  20. Laser Powder Cladding of Ti-6Al-4V α/β Alloy

    OpenAIRE

    Samar Reda Al-Sayed Ali; Abdel Hamid Ahmed Hussein; Adel Abdel Menam Saleh Nofal; Salah Elden Ibrahim Hasseb Elnaby; Haytham Abdelrafea Elgazzar; Hassan Abdel Sabour

    2017-01-01

    Laser cladding process was performed on a commercial Ti-6Al-4V (α + β) titanium alloy by means of tungsten carbide-nickel based alloy powder blend. Nd:YAG laser with a 2.2-KW continuous wave was used with coaxial jet nozzle coupled with a standard powder feeding system. Four-track deposition of a blended powder consisting of 60 wt % tungsten carbide (WC) and 40 wt % NiCrBSi was successfully made on the alloy. The high content of the hard WC particles is intended to enhance the abrasion resist...

  1. Ultrafine yttria-stabilized zirconia powders prepared by pyrolysis of a metal-oxalate-cellulose complex

    Energy Technology Data Exchange (ETDEWEB)

    Solov`eva, L.V.; Bashmakov, I.A.; Kaputskii, F.N. [Research Institute of Physicochemical Problems, Minsk (Belarus)] [and others

    1995-12-01

    Preparation of high-purity submicron powders with uniform particles is a key stage in the fabrication of high-quality ceramics. For this purpose, chemical methods are commonly used. Recently, pyrolysis of salt-cellulose compositions has gained acceptance for the preparation of mixed oxide powders. This method ensures control of the morphology and particle size of the resultant powders. In this work, the authors present an environmentally safe method for preparing ZrO{sub 2}-based powders from metal-oxalate-cellulose complexes (MOCC) used as precursors instead of soluble metal salts physisorbed on the cellulose surface. The powders obtained by this method feature higher dispersity than their commercially available analogs.

  2. Simultaneous synthesis and densification of transparent, photoluminescent polycrystalline YAG by current activated pressure assisted densification (CAPAD)

    International Nuclear Information System (INIS)

    Penilla, E.H.; Kodera, Y.; Garay, J.E.

    2012-01-01

    Highlights: ► We report a method for the synthesis of transparent and PL bulk polycrystalline Ce:YAG using CAPAD. ► The process uses γ-Al 2 O 3 , Y 2 O 3 , and CeO 2 nanopowders, reacted and densified simultaneously. ► The synthesis/densification kinetics are faster than those reported previously. ► Optical measurements show good transparency in the visible and photoluminescence (PL) in the Ce:YAG. ► The PL peak is broad and appears white when excited using blue light. - Abstract: We report a method for the synthesis and processing of transparent bulk polycrystalline yttrium aluminum garnet (YAG) and photoluminescent Ce-doped YAG ceramics via solid-state reactive-current activated pressure assisted densification (CAPAD). The process uses commercially available γ-Al 2 O 3 , Y 2 O 3 , and CeO 2 nanopowders. The nanopowders were reacted and densified simultaneously at temperatures between 850 °C and 1550 °C and at a maximum pressure of 105 MPa. The solid-state reaction to phase pure YAG occurs in under 4 min at processing temperatures 1100 °C which is significantly faster (on the order of tens of hours) and occurs at much lower temperatures (∼600 °C) compared to conventional reaction sintering. We found that the reaction significantly improves densification – the shrinkage rate of reaction-produced YAG was three times higher than that of YAG using pre-reacted powder. The Ce additions were found to retard the reaction driven shrinkage kinetics by a factor ∼3, but are still faster (by a factor ∼1.6) than those associated with direct densification (no synthesis). Densities >99% were achieved in both pure YAG and Ce doped YAG (Ce:YAG). Results of optical measurements show good transparency in the visible and photoluminescence (PL) in the Ce:YAG. The PL peak is broad and appears white when excited using blue light confirming that the ceramics can be used in solid state lighting to produce white light.

  3. Thermally stimulated luminescence and persistent luminescence of β-irradiated YAG:Pr"3"+ nanophosphors produced by combustion synthesis

    International Nuclear Information System (INIS)

    Santacruz-Gomez, K.; Meléndrez, R.; Gil-Tolano, M.I.; Jimenez, J.A.; Makale, M.T.; Barboza-Flores, M.; Castaneda, B.; Soto-Puebla, D.; Pedroza-Montero, M.; McKittrick, J.; Hirata, G.A.

    2016-01-01

    In this work, the thermally stimulated luminescence (TSL) and persistent luminescence (PLUM) properties of praseodymium doped yttrium aluminum garnet (YAG:Pr"3"+) exposed to β-irradiation are reported. X-ray diffraction (XRD) confirms a single phase of YAG obtained by the combustion method. Transmission electron microscopy (TEM) shows that powder particles appear to be irregular crystals with an average size of 67 nm. TSL glow-curve deconvolution of YAG:Pr"3"+ after β-irradiation consist in six peaks centered at 394, 450, 467, 543, 637 and 705 K. The TSL fading and PLUM signals were found to be associated with at least with two different kinds of traps, corresponding to the peaks located at 394, 450 and 467 K. YAG:Pr"3"+ nanophosphors analyzed in this work showed interesting features about the dosimetric sensitivity as well as the reproducibility for both TSL/PLUM techniques, with good linearity dose response. These results indicate that nanocrystalline YAG:Pr3"+ is a good candidate for dosimetric applications in the range of 80 mGy-20 Gy. - Highlights: • β-irradiated YAG:Pr"3"+ TSL consist in 394, 450, 467, 543, 637 and 705 K peaks. • YAG:Pr"3"+ is a good candidate for dosimetry in the range of 80 mGy-20 Gy. • PLUM can be potentially used for in vivo, in situ and quasi in real time dosimetry.

  4. Densification behavior, doping profile and planar waveguide laser performance of the tape casting YAG/Nd:YAG/YAG ceramics

    Science.gov (United States)

    Ge, Lin; Li, Jiang; Qu, Haiyun; Wang, Juntao; Liu, Jiao; Dai, Jiawei; Zhou, Zhiwei; Liu, Binglong; Kou, Huamin; Shi, Yun; Wang, Zheng; Pan, Yubai; Gao, Qingsong; Guo, Jingkun

    2016-10-01

    The sintering behavior and doping concentration profile of the planar waveguide YAG/Nd:YAG/YAG ceramics by the tape casting and solid-state reaction method were investigated on the basis of densification trajectory, microstructure evolution, and Nd3+ ions diffusion. The porosity of the green body by tape casting and cold isostatic pressing is about 38.6%. And the green bodies were consolidated from 1100 °C to 1800 °C for 0.5-20 h to study the densification and the doping diffusion behaviors. At the temperature higher than 1500 °C, pure YAG phase is formed, followed by the densification and grain growth process. With the increase of temperature, two sintering stages occur, corresponding to remarkable densification and significant grain growth, respectively. The mechanism controlling densification at 1550 °C is grain boundary diffusion. The diffusion of Nd3+ ions is more sensitive to temperature than the sintering time, and the minimum temperature required for the obvious diffusion of Nd3+ ions is higher than 1700 °C. Finally, planar waveguide YAG/1.5 at.%Nd:YAG/YAG transparent ceramics with in-line transmittance of 84.8% at 1064 nm were obtained by vacuum-sintering at 1780 °C for 30 h. The fluorescence lifetime of 4F3/2 state of Nd3+ in the specimen is about 259 μs. The prepared ceramic waveguide was tested in a laser amplifier and the laser pulse was amplificated from 87 mJ to 238 mJ, with the pump energy of 680 mJ.

  5. Elucidating of the microstructure of ZrO2 ceramics with additions of 1200 deg. C heat treated ultrafine MgO powders: Aging at 1420 deg. C

    International Nuclear Information System (INIS)

    Brito-Chaparro, J.A.; Reyes-Rojas, A.; Bocanegra-Bernal, M.H.; Aguilar-Elguezabal, A.; Echeberria, J.

    2007-01-01

    The microstructure and phase transformations in the pressureless sintered composite ZrO 2 with additions of 3.11 wt% high purity and ultrafine MgO powder (9.25 mol% Mg-PSZ) heat treated at 1200 deg. C were investigated by using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction, before and after of eutectoid aging treatment at 1420 deg. C during 4 h. The phases in the as-sintered ceramics were t, c, and m, and was not evident under the experimental conditions of this work, the formation of typical disk-like shape tetragonal precipitates aligned at right angles, meanwhile the microstructure resulting in aged samples was majority monoclinic stable phase showing a banded structure which appear to be twin related. When is used MgO previously heat treated as stabilizer of ZrO 2 , strong differences in SEM microstructures compared to the shown by other investigators in very similar compositions have been found

  6. The development of an alternative thermoplastic powder prepregging technique

    Science.gov (United States)

    Ogden, A. L.; Hyer, M. W.; Wilkes, G. L.; Loos, A. C.

    1992-01-01

    An alternative powder prepregging technique is discussed that is based on the deposition of powder onto carbon fibers that have been moistened using an ultrasonic humidifier. The dry fiber tow is initially spread to allow a greater amount of the fiber surface to be exposed to the powder, thus ensuring a significant amount of intimate contact between the fiber and the matrix. Moisture in the form of ultrafine water droplets is then deposited onto the spread fiber tow. The moisture promotes adhesion to the fiber until the powder can be tacked to the fibers by melting. Powdered resin is then sieved onto the fibers and then tacked onto the fibers by quick heating in a convective oven. This study focuses on the production of prepregs and laminates made with LaRC-TPI (thermoplastic polyimide) using this process. Although the process appears to be successful, early evaluation was hampered by poor interfacial adhesion. The adhesion problem, however, seems to be the result of a material system incompatibility, rather than being influenced by the process.

  7. Ultrafine portland cement performance

    Directory of Open Access Journals (Sweden)

    C. Argiz

    2018-04-01

    Full Text Available By mixing several binder materials and additions with different degrees of fineness, the packing density of the final product may be improved. In this work, ultrafine cement and silica fume mixes were studied to optimize the properties of cement-based materials. This research was performed in mortars made of two types of cement (ultrafine Portland cement and common Portland cement and two types of silica fume with different particle-size distributions. Two Portland cement replacement ratios of 4% and 10% of silica fume were selected and added by means of a mechanical blending method. The results revealed that the effect of the finer silica fume mixed with the coarse cement enhances the mechanical properties and pore structure refinement at a later age. This improvement is somewhat lower in the case of ultrafine cement with silica fume.

  8. Film analysis employing subtarget effect using 355 nm Nd-YAG laser-induced plasma at low pressure

    Energy Technology Data Exchange (ETDEWEB)

    Hedwig, Rinda [Department of Computer Engineering, Faculty of Computer Studies, Bina Nusantara University, 9 K.H. Syahdan, Jakarta Barat 11480 (Indonesia); Budi, Wahyu Setia [Department of Physics, Faculty of Mathematics and Natural Sciences, Diponegoro University, Tembalang Campus, Semarang, Central Java (Indonesia); Abdulmadjid, Syahrun Nur [Department of Physics, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh, Nanggroe Aceh Darussalam (Indonesia); Pardede, Marincan [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Suliyanti, Maria Margaretha [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Lie, Tjung Jie [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Kurniawan, Davy Putra [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Kurniawan, Koo Hendrik [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia)]. E-mail: kurnia18@cbn.net.id; Kagawa, Kiichiro [Department of Physics, Faculty of Education and Regional Studies, 9-1 bunkyo 3-chome, Fukui 910-8507 (Japan); Tjia, May On [Department of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, 10 Ganesha, Bandung 40132 (Indonesia)

    2006-12-15

    The applicability of spectrochemical analysis for liquid and powder samples of minute amount in the form of thin film was investigated using ultraviolet Nd-YAG laser (355 nm) and low-pressure ambient air. A variety of organic samples such as commercial black ink usually used for stamp pad, ginseng extract, human blood, liquid milk and ginseng powder was prepared as film deposited on the surface of an appropriate hard substrate such as copper plate or glass slide. It was demonstrated that in all cases studied, good quality spectra were obtained with very low background and free from undesirable contamination by the substrate elements, featuring ppm or even sub-ppm sensitivity and worthy of application for quantitative analysis of organic samples. The proper preparation of the films was found to be crucial in achieving the high quality spectra. It was further shown that much inferior results were obtained when the atmospheric-pressure (101 kPa) operating condition of laser-induced breakdown spectroscopy or the fundamental wavelength of the Nd-YAG laser was employed due to the excessive or improper laser ablation process.

  9. Film analysis employing subtarget effect using 355 nm Nd-YAG laser-induced plasma at low pressure

    International Nuclear Information System (INIS)

    Hedwig, Rinda; Budi, Wahyu Setia; Abdulmadjid, Syahrun Nur; Pardede, Marincan; Suliyanti, Maria Margaretha; Lie, Tjung Jie; Kurniawan, Davy Putra; Kurniawan, Koo Hendrik; Kagawa, Kiichiro; Tjia, May On

    2006-01-01

    The applicability of spectrochemical analysis for liquid and powder samples of minute amount in the form of thin film was investigated using ultraviolet Nd-YAG laser (355 nm) and low-pressure ambient air. A variety of organic samples such as commercial black ink usually used for stamp pad, ginseng extract, human blood, liquid milk and ginseng powder was prepared as film deposited on the surface of an appropriate hard substrate such as copper plate or glass slide. It was demonstrated that in all cases studied, good quality spectra were obtained with very low background and free from undesirable contamination by the substrate elements, featuring ppm or even sub-ppm sensitivity and worthy of application for quantitative analysis of organic samples. The proper preparation of the films was found to be crucial in achieving the high quality spectra. It was further shown that much inferior results were obtained when the atmospheric-pressure (101 kPa) operating condition of laser-induced breakdown spectroscopy or the fundamental wavelength of the Nd-YAG laser was employed due to the excessive or improper laser ablation process

  10. Influence of temperature on Yb:YAG/Cr:YAG microchip laser operation

    Science.gov (United States)

    Šulc, Jan; Eisenschreiber, Jan; Jelínková, Helena; Nejezchleb, Karel; Å koda, Václav

    2017-02-01

    The goal of this work was an investigation of the temperature influence (in range from 80 up to 320 K) on the laser properties of Yb:YAG/Cr:YAG Q-switched diode-pumped microchip laser. This laser was based on monolith crystal (diameter 3mm) which combines in one piece an active laser part (Yb:YAG crystal, 10 at.% Yb/Y, 3mm long) and saturable absorber (Cr:YAG crystal, 1.36mm long, initial transmission 90% @ 1031 nm). The laser resonator pump mirror (HT for pump radiation, HR for generated radiation) was directly deposited on the Yb:YAG monolith part. The output coupler with reflection 55% for the generated wavelength was placed on the Cr:YAG part. The microchip laser was placed in the temperature controlled cupreous holder inside vacuum chamber of the liquid nitrogen cryostat. For Yb:YAG part longitudinal pulsed pumping (pumping pulse length 2.5 ms, rep-rate 20 Hz, power amplitude 21W) a fibre coupled (core diameter 400 μm, NA= 0:22) laser diode, operating at wavelength 933 nm, was used. The microchip laser mean output power, pulse duration, repetition rate, emission wavelength, and laser beam profile were measured in dependence on temperature. The generated pulse length was in range from 2.2 ns to 1.1 ns (FWHM) with the minimum at 230 K. The single pulse energy was peaking (0.4 mJ) at 180 K. The highest peak power (325 kW) was obtained at 220 K. The highest pulse repetition rate (38 kHz) and output mean power (370mW) was reached for temperature 80 K.

  11. Study on synthesis of ultrafine Cu–Ag core–shell powders with high electrical conductivity

    International Nuclear Information System (INIS)

    Peng Yuhsien; Yang Chihhao; Chen Kuanting; Popuri, Srinivasa R.; Lee, Ching-Hwa; Tang, Bo-Shin

    2012-01-01

    Highlights: ► This synthesis method is relatively facile, novel and eco-friendly. ► Toxic agents were not used for chelating agent, reductant or dispersant in our method. ► The reaction can under room temperature for energy saving purpose. ► Cu–Ag core–shell powders with homogeneous cover-silver layer. ► The resistivity of Cu–Ag core–shell powders has the same value as the pure silver. - Abstract: Cu–Ag composite powders with high electrical conductivity were synthesized by electroless plating of silver sulfate, copper powders with eco-friendly sodium citrate as reducing agent, dispersant and chelating agent in an aqueous system. The influences of sodium citrate/Ag ratio on Ag coatings of Cu powders were investigated. Ag was formed a dense coating on the surface of Cu powders at a molar ratio of sodium citrate/Ag = 0.07/1. SEM showed an uniformity of Ag coatings on Cu powders. SEM-EDX also revealed that Cu cores were covered by Ag shells on the whole. The surface composition analysis by XPS indicated that without Cu or Ag atoms in the surface were oxidized. The resistivity measurements of Cu–Ag paste shows that they have closer resistivity as the pure silver paste's after 250 °C for 30 min heat-treatment (2.55 × 10 −4 Ω cm) and 350 °C for 30 min heat-treatment (1.425 × 10 −4 Ω cm).

  12. Simultaneous synthesis and densification of transparent, photoluminescent polycrystalline YAG by current activated pressure assisted densification (CAPAD)

    Energy Technology Data Exchange (ETDEWEB)

    Penilla, E.H.; Kodera, Y. [Mechanical Engineering Dept., Materials Science and Engineering Program, University of California, Riverside (United States); Garay, J.E., E-mail: jegaray@engr.ucr.edu [Mechanical Engineering Dept., Materials Science and Engineering Program, University of California, Riverside (United States)

    2012-08-20

    Highlights: Black-Right-Pointing-Pointer We report a method for the synthesis of transparent and PL bulk polycrystalline Ce:YAG using CAPAD. Black-Right-Pointing-Pointer The process uses {gamma}-Al{sub 2}O{sub 3}, Y{sub 2}O{sub 3}, and CeO{sub 2} nanopowders, reacted and densified simultaneously. Black-Right-Pointing-Pointer The synthesis/densification kinetics are faster than those reported previously. Black-Right-Pointing-Pointer Optical measurements show good transparency in the visible and photoluminescence (PL) in the Ce:YAG. Black-Right-Pointing-Pointer The PL peak is broad and appears white when excited using blue light. - Abstract: We report a method for the synthesis and processing of transparent bulk polycrystalline yttrium aluminum garnet (YAG) and photoluminescent Ce-doped YAG ceramics via solid-state reactive-current activated pressure assisted densification (CAPAD). The process uses commercially available {gamma}-Al{sub 2}O{sub 3}, Y{sub 2}O{sub 3}, and CeO{sub 2} nanopowders. The nanopowders were reacted and densified simultaneously at temperatures between 850 Degree-Sign C and 1550 Degree-Sign C and at a maximum pressure of 105 MPa. The solid-state reaction to phase pure YAG occurs in under 4 min at processing temperatures 1100 Degree-Sign C which is significantly faster (on the order of tens of hours) and occurs at much lower temperatures ({approx}600 Degree-Sign C) compared to conventional reaction sintering. We found that the reaction significantly improves densification - the shrinkage rate of reaction-produced YAG was three times higher than that of YAG using pre-reacted powder. The Ce additions were found to retard the reaction driven shrinkage kinetics by a factor {approx}3, but are still faster (by a factor {approx}1.6) than those associated with direct densification (no synthesis). Densities >99% were achieved in both pure YAG and Ce doped YAG (Ce:YAG). Results of optical measurements show good transparency in the visible and

  13. The possibility of clinical application of the solid state lasers: Nd:YAG, Ho:YAG, and Er:YAG in otolaryngology - head and neck surgery

    Science.gov (United States)

    Tomaszewska, M.; Kukwa, A.; Tulibacki, M.; Wójtowicz, P.; Olędzka, I.; Jeżewska, E.

    2007-02-01

    The purpose of this study was to summarize our experiences in clinical application of Nd:YAG, Ho:YAG and Er:YAG in otolaryngology- head and neck surgery. Choosing the laser type and parameters for the particular procedures was based on our previous research on tissue effects of those lasers. During the period of 1993-2006 we performed 3988 surgical procedures with the Nd:YAG laser. Over 87% of those were made for the nasal cavity pathologies as polyps, hyperplasia of inferior nasal turbinate, granulation tissue, postoperative adhesions, vascular malformations, under the local anesthesia conditions. In our experience Nd:YAG laser gives the possibility of good clinical control and low risk of side effects for disorders of high recurrence and frequent interventions necessity, as nasal polyps or respiratory papillomatosis. Nd:YAG assisted uvulopalatoplasty gives an interesting alternative for surgical procedures for snoring and slight/mild OSA-recognized patients. Due to its good hemostatic properties, it is a perfect tool for removal of the chemodectoma from meddle ear. During the period of 1995-2006 we performed 229 surgical procedures with the Ho:YAG laser, mostly for larynx pathologies (adhesion and scar tissue removal). In our experience Ho:YAG laser can serve as a precise laser knife for both soft and bony tissue. The ER:YAG laser still remain under clinical trial. Since 2001 year we performed 24 procedures of removing stone deposits from salivary glands. We believe it may become a promising method to cope with sialolithiasis which allows for glandule function preservation. All of the laser types mentioned above, can be easily coupled with endoscopes, what makes them available for all of the head and necklocalized disorders.

  14. Grain growth in ultrafine titanium powders during sintering

    International Nuclear Information System (INIS)

    Panigrahi, B.B.; Godkhindi, M.M.

    2006-01-01

    Grain growth behaviour of fine (∼3 μm) and attrition milled nanocrystalline (∼32 nm) titanium powers during sintering have been studied. The activation energies of grain growth (Q g ) in fine titanium were found to be 192.9 and 142.4 kJ/mol at lower and higher temperature ranges, respectively. The nanocrystalline titanium showed very low values of Q g (54.6 kJ/mol) at lower temperatures and it increased to 273.2 kJ/mol at higher temperatures. The constant (n) in nano Ti system was found to have unusually very high values of 6.5-8.2. The grain boundary rotation along with the diffusional processes could be the grain growth mechanism in nanocrystalline and in fine titanium powders

  15. Evaluation of erbium:YAG and holmium:YAG laser radiation and dental hard tissue

    Science.gov (United States)

    Attrill, David Cameron

    Lasers have become increasingly established in medicine as effective alternatives or adjuncts to conventional techniques. In dentistry, several clinical laser systems have been developed and marketed, but their applications have been limited to soft tissue surgery. To date, no laser has been capable of effectively cutting or modifying the highly mineralised dental tissues of enamel and dentine. The aim of this study was to evaluate two new laser systems for use in dentistry through a series of in vitro experiments. Both generic erbium and holmium lasers have theoretically superior operating characteristics over currently established lasers for applications with dental hard tissues. The two lasers investigated in this study were pulsed Er:YAG (lambda=2.94) a.m. and Cr-Tm-Ho:YAG (lambda=2.1mu.m). Both operated with a macropulse duration of approximately 200lambdas, at pulse repetition rates of 2-8Hz and mean pulse energies up to 230mJ. Radiation was focused using CaF[2] lenses (f=50-120mm). The lasers could be operated with or without the addition of a surface water film at the interaction site. Tissue removal efficiency was expressed as a latent heat of ablation (LHA, kJ/cm[3]) using a modification of the technique described by Charlton et al. (1990). The mean LHA's for the Er:YAG laser were 6.24kJ/cm[3] and 22.99kJ/cm[3] with dentine and enamel respectively without water, and 10.07kJ/cm[3] and 18.73kJ/cm[3] for dentine and enamel with water. The Cr-Tm-Ho:YAG laser was unable to effectively remove enamel at the fluences and pulse energies available; the mean LHA's for the Cr-Tm- Ho:YAG laser with dentine were 82.79kJ/cm3 and 57.57kJ/cm3 with and without water respectively. The Cr-Tm-Ho;YAG was approximately 8-9 times less efficient for tissue removal than the Er:YAG system. Er:YAG tissue removal with water was characterised by clean "surgical" cuts, comparable in histological appearance to those obtained using conventional instrumentation. Some thermal disruption

  16. Electrostatic dry powder prepregging of carbon fiber

    Science.gov (United States)

    Throne, James L.; Sohn, Min-Seok

    1990-01-01

    Ultrafine, 5-10 micron polymer-matrix resin powders are directly applied to carbon fiber tows by passing then in an air or nitrogen stream through an electrostatic potential; the particles thus charged will strongly adhere to grounded carbon fibers, and can be subsequently fused to the fiber in a continuously-fed radiant oven. This electrostatic technique derived significant end-use mechanical property advantages from the obviation of solvents, binders, and other adulterants. Additional matrix resins used to produce prepregs to date have been PMR-15, Torlon 40000, and LaRC TPI.

  17. Laser alloying of Al with mixed Ni, Ti and SiC powders

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-11-01

    Full Text Available Laser alloying of aluminium AA1200 was performed with a 4.4kW Rofin Sinar Nd:YAG laser to improve the surface hardness. Alloying was carried out by depositing Ni, Ti and SiC powders of different weight ratios on the aluminium substrate. The aim...

  18. Nd:YAG laser annealing investigation of screen-printed CIGS layer on PET: Layer annealing method for photovoltaic cell fabrication process

    KAUST Repository

    Alsaggaf, Ahmed; Alarousu, Erkki; Boulfrad, Samir; Rothenberger, Alexander

    2014-01-01

    by heat treatment using a Nd:YAG laser. The structure and morphology of the heated thin films were studied. The characterization of the CIGS powder, ink, and film was done using TGA, SEM, FIB, EDS, and XRD. TGA analysis shows that the CIGS ink is drying

  19. Yttrium aluminum garnet (YAG) obtained by rare-earth mixed oxide (RE2O3)

    International Nuclear Information System (INIS)

    Castro, D.F.; Daguano, J.K.M.F.; Rodrigues Junior, D.; Suzuki, P.A.; Silva, O.M.M.

    2010-01-01

    In this work, the substitution of commercial Y 2 O 3 by a rare earth mixed oxide, RE 2 O 3 , to form Yttrium aluminum Garnet-Y 3 Al 5 O 12 , was investigated. Al 2 O 3 :Y 2 O 3 and Al 2 O 3 :RE 2 O 3 powder-mixtures, in a molar ratio of 60:40, were milled and subsequently cold uniaxially-pressed. Compacts were sintered at 1000, 1400 or 1600 deg C, for 120 minutes. RE 2 O 3 oxide was characterized by high-resolution synchrotron X-ray diffraction (HRXRD) and compared to Y 2 O 3 . X-ray diffraction pattern of the RE 2 O 3 indicates a true solid solution formation. Rietveld refinement of the sintered YAG and (RE)AG reveled a similar crystal structure to the YAGs obtained by the use of Al 2 O 3 -Y 2 O 3 or Al 2 O 3 -RE 2 O 3 respectively. Microstructural analysis of both, YAG or (RE)AG, revealed similar grain sizes of about 2.5 μm besides mechanical properties, with hardness of 400HV and fracture toughness of 3.8MPa.m1/2. It could be, thus, demonstrated that pure Y 2 O 3 can be substituted by the rare-earth solid solution, RE 2 O 3 , in the formation YAGs, presenting similar microstructural and mechanical properties. (author)

  20. Influence of 45S5 Bioglass addition on microstructure and properties of ultrafine grained (Mg-4Y-5.5Dy-0.5Zr) alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, K., E-mail: kamil.kowalski@put.poznan.pl [Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawla II 24, 61-138 Poznan (Poland); Jurczyk, M.U. [Division of Mother’s and Child’s Health, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan (Poland); Wirstlein, P.K. [Department of Gynecology and Obstetrics, Division of Reproduction, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan (Poland); Jakubowicz, J.; Jurczyk, M. [Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawla II 24, 61-138 Poznan (Poland)

    2017-05-15

    Highlights: • Ultrafine grained composites were formed by consolidating mechanically alloyed powders. • Mechanical properties were sensitive to the content of 45S5 Bioglass in Mg-4Y-5.5Dy-0.5Zr alloy. • Fluoride treated composites displayed superior corrosion resistance in Ringer solution. • Composites modified with MgF{sub 2} have a higher degree of biocompatibility in comparison with the unmodified reference material. - Abstract: Bulk samples of an ultrafine grained (Mg-4Y-5.5Dy-0.5Zr)-x wt% 45S5 Bioglass (x = 0, 5) and (Mg-4Y-5.5Dy-0.5Zr)-5 wt% 45S5 Bioglass-1 wt% Ag composites have been synthesized by consolidating mechanically alloyed powders. The influence of the chemical composition on the microstructure, mechanical properties and corrosion behavior of bulk composites were studied. The sintering of (Mg-4Y-5.5Dy-0.5Zr)-5 wt% 45S5 Bioglass powders led to the formation of a bulk composite with grain size of approx. 95 nm. The corrosion behavior of Mg-based composites before and after hydrofluoric acid treatment was also investigated. The ultrafine grained (Mg-4Y-5.5Dy-0.5Zr)-5 wt% 45S5 Bioglass composite was more corrosion resistant than the bulk Mg-4Y-5.5Dy-0.5Zr alloy after HF treatment. The in vitro biocompatibility of synthesized composites was evaluated and compared with microcrystalline magnesium. Magnesium, (Mg-4Y-5.5Dy-0.5Zr)-5 wt% 45S5 Bioglass and (Mg-4Y-5.5Dy-0.5Zr)-5 wt% 45S5 Bioglass-1 wt% Ag composites modified with MgF{sub 2} have a higher degree of biocompatibility in comparison with the unmodified reference material.

  1. Actively Q-switched laser with novel Nd:YAG/YAG polygonal active-mirror

    Science.gov (United States)

    Lang, Ye; Chen, Yanzhong; Ge, Wenqi; He, Jianguo; Zhang, Hongbo; Liao, Lifen; Xin, Jianguo; Zhang, Jian; Fan, Zhongwei

    2018-03-01

    In this work, we demonstrate an efficient actively Q-switched laser based on a novel crystal Nd:YAG/YAG polygonal active mirror. A passively cooled crystal Nd:YAG/YAG polygonal active mirror with an end pump scheme was used as the gain medium. For the overlap between the TEM00 laser mode and large gain profile, a cavity was carefully designed with a large fundamental mode volume. With a maximum absorbed power of 3.1 W, a 685 mW average output power with a pulse repetition of 5 kHz was attained, and the corresponding optical-optical and slope efficiency were 22.1% and 27.7%, respectively. The pulse width was 133.9 ns. The beam quality (M 2) was 1.561 in the horizontal direction and 1.261 in the vertical direction.

  2. Bioceramic coating of hydroxyapatite on titanium substrate with Nd-YAG laser

    International Nuclear Information System (INIS)

    Cheng, Gary J.; Pirzada, Daniel; Cai, M.; Mohanty, Pravansu; Bandyopadhyay, Amit

    2005-01-01

    The ability to bond to bone tissue is a unique property of bioactive ceramics. Hydroxyapatite (HAp) is one of the potential bioceramics candidates due to its superior bio-compatibility. Significant effort has been devoted to coat HAp ceramics on metallic substrates. Most of these processes, such as ion-beam sputter coating, thermal spraying, and flame spraying, are high temperature line of sight processes, which suffer from undesirable phase formation and weak metal/HAP bonding strength. This paper presents a unique process to coat HAp powders on titanium substrates at low temperature and enhance the coating/substrate interface by laser surface engineering. Nd-YAG laser transmits HAp powders and the laser power is absorbed by titanium substrate to produce a thin layer of molten region. During coating process, HAp powders are kept at low temperature before they are entrapped in metallic layer. Scanning electron microscope (SEM) was used to investigate the microstructure of coating; the chemical composition of the coating is determined by energy dispersive spectrometry (EDS). Mechanical properties of the interface between coating and Ti substrate were investigated by nanoindentation

  3. On the response of Y 3Al 5O 12: Ce (YAG: Ce) powder scintillating screens to medical imaging X-rays

    Science.gov (United States)

    Kandarakis, I.; Cavouras, D.; Sianoudis, I.; Nikolopoulos, D.; Episkopakis, A.; Linardatos, D.; Margetis, D.; Nirgianaki, E.; Roussou, M.; Melissaropoulos, P.; Kalivas, N.; Kalatzis, I.; Kourkoutas, K.; Dimitropoulos, N.; Louizi, A.; Nomicos, C.; Panayiotakis, G.

    2005-02-01

    The aim of this study was to examine Y 3Al 5O 12:Ce (also known as YAG:Ce) powder scintillator under X-ray imaging conditions. This material shows a very fast scintillation decay time and it has never been used in X-ray medical imaging. In the present study various scintillator layers (screens) with coating thickness ranging from 13 to 166 mg/cm 2 were prepared in our laboratory by sedimentation of Y 3Al 5O 12: Ce powder. Optical emission spectra and light emission efficiency (spectrum area over X-ray exposure) of the layers were measured under X-ray excitation using X-ray tube voltages (80-120 kVp) often employed in general medical radiography and fluoroscopy. Spectral compatibility with various optical photon detectors (photodiodes, photocathodes, charge coupled devices, films) and intrinsic conversion efficiency values were determined using emission spectrum data. In addition, parameters related to X-ray detection, energy absorption efficiency and K-fluorescence characteristic emission were calculated. A theoretical model describing radiation and light transfer through scattering media was used to fit experimental data. Intrinsic conversion efficiency (η≈0.03-0.05) and light attenuation coefficients (σ≈26.5 cm/g) were derived through this fitting. Y 3Al 5O 12:Ce showed peak emission in the wavelength range 530-550 nm. The light emission efficiency was found to be maximum for the 107 mg/cm 2 layer. Due to its "green" emission spectrum, Y 3Al 5O 12:Ce showed excellent compatibility (of the order of 0.9) with the sensitivity of many currently used photodetectors. Taking into account its very fast response Y 3Al 5O 12:Ce could be considered for application in X-ray imaging especially in various digital detectors.

  4. On the response of Y3Al5O12: Ce (YAG: Ce) powder scintillating screens to medical imaging X-rays

    International Nuclear Information System (INIS)

    Kandarakis, I.; Cavouras, D.; Sianoudis, I.; Nikolopoulos, D.; Episkopakis, A.; Linardatos, D.; Margetis, D.; Nirgianaki, E.; Roussou, M.; Melissaropoulos, P.; Kalivas, N.; Kalatzis, I.; Kourkoutas, K.; Dimitropoulos, N.; Louizi, A.; Nomicos, C.; Panayiotakis, G.

    2005-01-01

    The aim of this study was to examine Y 3 Al 5 O 12 :Ce (also known as YAG:Ce) powder scintillator under X-ray imaging conditions. This material shows a very fast scintillation decay time and it has never been used in X-ray medical imaging. In the present study various scintillator layers (screens) with coating thickness ranging from 13 to 166mg/cm 2 were prepared in our laboratory by sedimentation of Y 3 Al 5 O 12 : Ce powder. Optical emission spectra and light emission efficiency (spectrum area over X-ray exposure) of the layers were measured under X-ray excitation using X-ray tube voltages (80-120kVp) often employed in general medical radiography and fluoroscopy. Spectral compatibility with various optical photon detectors (photodiodes, photocathodes, charge coupled devices, films) and intrinsic conversion efficiency values were determined using emission spectrum data. In addition, parameters related to X-ray detection, energy absorption efficiency and K-fluorescence characteristic emission were calculated. A theoretical model describing radiation and light transfer through scattering media was used to fit experimental data. Intrinsic conversion efficiency (ηC ∼0.03-0.05) and light attenuation coefficients (σ∼26.5cm 2 /g) were derived through this fitting. Y 3 Al 5 O 12 :Ce showed peak emission in the wavelength range 530-550nm. The light emission efficiency was found to be maximum for the 107mg/cm 2 layer. Due to its 'green' emission spectrum, Y 3 Al 5 O 12 :Ce showed excellent compatibility (of the order of 0.9) with the sensitivity of many currently used photodetectors. Taking into account its very fast response Y 3 Al 5 O 12 :Ce could be considered for application in X-ray imaging especially in various digital detectors

  5. Positron annihilation lifetime spectroscopy of mechanically milled protein fibre powders and their free volume aspects

    International Nuclear Information System (INIS)

    Patil, K; Rajkhowa, R; Tsuzuki, T; Lin, T; Wang, X; Sellaiyan, S; Smith, S V; Uedono, A

    2013-01-01

    The present study reports the fabrication of ultra-fine powders from animal protein fibres such as cashmere guard hair, merino wool and eri silk along with their free volume aspects. The respectively mechanically cleaned, scoured and degummed cashmere guard hair, wool and silk fibres were converted into dry powders by a process sequence: Chopping, Attritor Milling, and Spray Drying. The fabricated protein fibre powders were characterised by scanning electron microscope, particle size distribution and positron annihilation lifetime spectroscopy (PALS). The PALS results indicated that the average free volume size in protein fibres increased on their wet mechanical milling with a decrease in the corresponding intensities leading to a resultant decrease in their fractional free volumes.

  6. Growth and characterization of air annealing Tb-doped YAG:Ce single crystal for white-light-emitting diode

    International Nuclear Information System (INIS)

    Gong, Maogao; Xiang, Weidong; Liang, Xiaojuan; Zhong, Jiasong; Chen, Daqin; Huang, Jun; Gu, Guorui; Yang, Cheng; Xiang, Run

    2015-01-01

    Highlights: • We report preparation of transparent Ce,Tb:YAG single crystal by Czochralski method. • The effect of annealing on Ce,Tb:YAG single crystal had been investigated. • The Ce,Tb:YAG single crystal after annealing exhibited better optical performance. • The Ce,Tb:YAG single crystal could be used as an ideal candidate for WLED. - Abstract: We report the preparation of transparent Ce and Tb co-doped Y 3 Al 5 O 12 single crystal by the Czochralski method. The characterization of the resulting single crystal was accomplished by using X-ray powder diffractometer, scanning electron microscopy and energy dispersive X-ray spectroscopy. Absorption peak of the single crystal at about 460 nm has been obtained from ultraviolet–visible absorption spectrometer and their intensity is changed with different annealing condition. Its optical properties also have been investigated using fluorescence spectrometer. What’s more, its photoelectric parameters were studied by LED fast spectrometer. The constructed single crystal based white-light-emitting diode exhibits a high luminous efficiency of 140.89 lm/W, and a correlated color temperature of 4176 K as well as a color rendering index of 56.7, which reveal the prominent feasibility of the present single crystal material in white-light-emitting diode application

  7. Growth and characterization of air annealing Tb-doped YAG:Ce single crystal for white-light-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Maogao [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); Xiang, Weidong, E-mail: xiangweidong001@126.com [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); Liang, Xiaojuan [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); Zhong, Jiasong; Chen, Daqin [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Huang, Jun; Gu, Guorui; Yang, Cheng; Xiang, Run [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China)

    2015-08-05

    Highlights: • We report preparation of transparent Ce,Tb:YAG single crystal by Czochralski method. • The effect of annealing on Ce,Tb:YAG single crystal had been investigated. • The Ce,Tb:YAG single crystal after annealing exhibited better optical performance. • The Ce,Tb:YAG single crystal could be used as an ideal candidate for WLED. - Abstract: We report the preparation of transparent Ce and Tb co-doped Y{sub 3}Al{sub 5}O{sub 12} single crystal by the Czochralski method. The characterization of the resulting single crystal was accomplished by using X-ray powder diffractometer, scanning electron microscopy and energy dispersive X-ray spectroscopy. Absorption peak of the single crystal at about 460 nm has been obtained from ultraviolet–visible absorption spectrometer and their intensity is changed with different annealing condition. Its optical properties also have been investigated using fluorescence spectrometer. What’s more, its photoelectric parameters were studied by LED fast spectrometer. The constructed single crystal based white-light-emitting diode exhibits a high luminous efficiency of 140.89 lm/W, and a correlated color temperature of 4176 K as well as a color rendering index of 56.7, which reveal the prominent feasibility of the present single crystal material in white-light-emitting diode application.

  8. Elevated temperature mechanical properties of novel ultra-fine grained Cu–Nb composites

    Energy Technology Data Exchange (ETDEWEB)

    Primorac, Mladen-Mateo [Department of Materials Physics, Montanuniversität Leoben (Austria); Abad, Manuel David; Hosemann, Peter [Department of Nuclear Engineering, University of California, Berkeley (United States); Kreuzeder, Marius [Department of Materials Physics, Montanuniversität Leoben (Austria); Maier, Verena [Department of Materials Physics, Montanuniversität Leoben (Austria); Erich-Schmid Institute for Materials Science, Austrian Academy of Sciences, Leoben (Austria); Kiener, Daniel, E-mail: daniel.kiener@unileoben.ac.at [Department of Materials Physics, Montanuniversität Leoben (Austria)

    2015-02-11

    Ultra-fine grained materials exhibit outstanding properties and are therefore favorable for prospective applications. One of these promising systems is the composite assembled by the body centered cubic niobium and the face centered cubic copper. Cu–Nb composites show a high hardness and good thermal stability, as well as a high radiation damage tolerance. These properties make the material interesting for use in nuclear reactors. The aim of this work was to create a polycrystalline ultra-fine grained composite for high temperature applications. The samples were manufactured via a powder metallurgical route using high pressure torsion, exhibiting a randomly distributed oriented grain size between 100 and 200 nm. The mechanical properties and the governing plastic deformation behavior as a function of temperature were determined by high temperature nanoindentation up to 500 °C. It was found that in the lower temperature regions up to 300 °C the plastic deformation is mainly governed by dislocation interactions, such as dislocation glide and the nucleation of kink pairs. For higher temperatures, thermally activated processes at grain boundaries are proposed to be the main mechanism governing plastic deformation. This mechanistic view is supported by temperature dependent changes in hardness, strain rate sensitivity, activation volume, and activation energy.

  9. Study of the sintering behavior of fine, ultrafine and nanocrystalline WC-CO mixtures obtained by high energy milling

    International Nuclear Information System (INIS)

    Salvador, M. D.; Bonache, V.; Amigo, V.; Busquets, D.

    2008-01-01

    In this work the sintering behaviour of fine, ultrafine and nanocrystalline WC-12Co mixtures obtained by high energy milling, as well commercial nano powders, have been studied, in order to evaluate the effect of the particle size and the powder processing, in the densification, microstructural development and mechanical properties of the final product. The consolidation of the mixtures has been made by uniaxial pressing and sintering in vacuum, and by hot isostatic pressing. The sintered materials have been evaluated by measures of density, hardness and indentation fracture toughness, and micro structurally characterized by optical microscopy and scanning and transmission electronic microscopy (SEM and TEM). The results show the improvements in resistant behaviour of the materials obtained from nanocrystalline powders, in spite of the grain growth experienced during the sintering. The best results were obtained for the milling nanocrystalline material, which presents values of hardness higher than 180 HV. (Author) 46 refs

  10. Unraveling the atomic structure of ultrafine iron clusters

    KAUST Repository

    Wang, Hongtao; Li, Kun; Yao, Yingbang; Wang, Qingxiao; Cheng, Yingchun; Schwingenschlö gl, Udo; Zhang, Xixiang; Yang, Wei

    2012-01-01

    Unraveling the atomic structures of ultrafine iron clusters is critical to understanding their size-dependent catalytic effects and electronic properties. Here, we describe the stable close-packed structure of ultrafine Fe clusters for the first

  11. Ultrafine particles in the atmosphere

    CERN Document Server

    Brown, L M; Harrison, R M; Maynard, A D; Maynard, R L

    2003-01-01

    Following the recognition that airborne particulate matter, even at quite modest concentrations, has an adverse effect on human health, there has been an intense research effort to understand the mechanisms and quantify the effects. One feature that has shone through is the important role of ultrafine particles as a contributor to the adverse effects of airborne particles. In this volume, many of the most distinguished researchers in the field provide a state-of-the-art overview of the scientific and medical research on ultrafine particles. Contents: Measurements of Number, Mass and Size Distr

  12. Bond strength of an adhesive system irradiated with Nd:YAG laser in dentin treated with Er:YAG laser

    International Nuclear Information System (INIS)

    Malta, D A M P; De Andrade, M F; Costa, M M; Lizarelli, R F Z; Pelino, J E P

    2008-01-01

    The purpose of this in vitro study was to verify through micro tensile bond test the bond strength of an adhesive system irradiated with Nd:YAG laser in dentine previously treated with Er:YAG laser. Twenty caries free extracted human third molars were used. The teeth were divided in four experimental groups (n = 5): (G1) control group; (G2) irradiation of the adhesive system with the Nd:YAG laser; (G3) dentin treatment with Er:YAG laser; (G4) dentin treatment with Er:YAG laser followed by the irradiation of the adhesive system with Nd:YAG laser. The Er:YAG laser fluency parameter for the dentin treatment was of 60 J/cm 2 . The adhesive system was irradiated with the Nd:YAG laser with fluency of 100 J/cm 2 . Dental restorations were performed with Adper Single Bond 2/Z250. One tooth from each group was prepared for the evaluation of the adhesive interface under SEM and bond failure tests were also performed and evaluated. The statistical analysis showed statistical significant difference between the groups G1 and G3, G1 and G4, G2 and G3, and G2 and G4; and similarity between the groups G1 and G2, and G3 and G4. The adhesive failures were predominant in all the experimental groups. The SEM analysis showed an adhesive interface with features confirming the results of the mechanical tests. The Nd:YAG laser on the adhesive system did not influence the bond strength in dentin treated or not with the Er:YAG laser

  13. CW laser properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG mixed crystals

    Science.gov (United States)

    Di, J. Q.; Xu, X. D.; Li, D. Z.; Zhou, D. H.; Wu, F.; Zhao, Z. W.; Xu, J.; Tang, D. Y.

    2011-10-01

    Three mixed crystals, Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG, were grown by Czochralski method. We report the continuous-wave (CW) Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG laser operation under laser diode pumping. The maximum output powers are 4.11, 5.31, and 7.47 W, with slope efficiency of 73.0, 55.3, and 57.1%, respectively. With replacing Lu3+ or Y3+ ions with large Gd3+ ions, the pump efficiency increases.

  14. Nd:YAG laser annealing investigation of screen-printed CIGS layer on PET: Layer annealing method for photovoltaic cell fabrication process

    KAUST Repository

    Alsaggaf, Ahmed

    2014-06-01

    Cu(In, Ga)Se2 (CIGS) ink was formulated from CIGS powder, polyvinyl butyral PVB, terpineol and polyester/polyamine co-polymeric dispersant KD-1. Thin films with different thicknesses were deposited on PET substrate using screen-printing followed by heat treatment using a Nd:YAG laser. The structure and morphology of the heated thin films were studied. The characterization of the CIGS powder, ink, and film was done using TGA, SEM, FIB, EDS, and XRD. TGA analysis shows that the CIGS ink is drying at 200 °C, which is well below the decomposition temperature of the PET substrate. It was observed by SEM that 20 pulses of 532nm and 60 mJ/cm2 Nd:YAG laser annealing causes atomic diffusion on the near surface area. Furthermore, FIB cross section images were utilized to monitor the effect of laser annealing in the depth of the layer. Laser annealing effects were compared to as deposited layer using XRD in reference to CIGS powder. The measurement shows that crystallinity of deposited CIGS is retained while EDS quantification and atomic ratio result in gradual loss of selenium as laser energy increases. The laser parameters were tuned in an effort to utilize laser annealing of screen-printed CIGS layer as a layer annealing method for solar cell fabrication process.

  15. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines.

    Science.gov (United States)

    Brown, D M; Wilson, M R; MacNee, W; Stone, V; Donaldson, K

    2001-09-15

    Studies into the effects of ultrafine particles in the lung have shown adverse effects considered to be due in part to the particle size. Air pollution particles (PM(10)) are associated with exacerbations of respiratory disease and deaths from cardiovascular causes in epidemiological studies and the ultrafine fraction of PM(10) has been hypothesized to play an important role. The aim of the present study was to investigate proinflammatory responses to various sizes of polystyrene particles as a simple model of particles of varying size including ultrafine. In the animal model, we demonstrated that there was a significantly greater neutrophil influx into the rat lung after instillation of 64-nm polystyrene particles compared with 202- and 535-nm particles and this was mirrored in other parameters of lung inflammation, such as increased protein and lactate dehydrogenase in bronchoalveolar lavage. When surface area instilled was plotted against inflammation, these two variables were directly proportional and the line passed through zero. This suggests that surface area drives inflammation in the short term and that ultrafine particles cause a greater inflammatory response because of the greater surface area they possess. In vitro, we measured the changes in intracellular calcium concentration in mono mac 6 cells in view of the potential role of calcium as a signaling molecule. Calcium changes after particle exposure may be important in leading to proinflammatory gene expression such as chemokines. We demonstrated that only ultrafine polystyrene particles induced a significant increase in cytosolic calcium ion concentration. Experiments using dichlorofluorescin diacetate demonstrated greater oxidant activity of the ultrafine particles, which may explain their activity in these assays. There were significant increases in IL-8 gene expression in A549 epithelial cells after treatment with the ultrafine particles but not particles of other sizes. These findings suggest

  16. Surgical smoke and ultrafine particles

    Directory of Open Access Journals (Sweden)

    Nowak Dennis

    2008-12-01

    Full Text Available Abstract Background Electrocautery, laser tissue ablation, and ultrasonic scalpel tissue dissection all generate a 'surgical smoke' containing ultrafine ( Methods To measure the amount of generated particulates in 'surgical smoke' during different surgical procedures and to quantify the particle number concentration for operation room personnel a condensation particle counter (CPC, model 3007, TSI Inc. was applied. Results Electro-cauterization and argon plasma tissue coagulation induced the production of very high number concentration (> 100000 cm-3 of particles in the diameter range of 10 nm to 1 μm. The peak concentration was confined to the immediate local surrounding of the production side. In the presence of a very efficient air conditioning system the increment and decrement of ultrafine particle occurrence was a matter of seconds, with accumulation of lower particle number concentrations in the operation room for only a few minutes. Conclusion Our investigation showed a short term very high exposure to ultrafine particles for surgeons and close assisting operating personnel – alternating with longer periods of low exposure.

  17. Preparation of high-performance ultrafine-grained AISI 304L stainless steel under high temperature and pressure

    Directory of Open Access Journals (Sweden)

    Peng Wang

    2016-08-01

    Full Text Available Bulk ultra-fine grained (UFG AISI 304L stainless steel with excellent mechanical properties was prepared by a high-temperature and high-pressure (HTHP method using nanocrystalline AISI 304L stainless steel powders obtained from ball milling. Samples were sintered in high-pressure conditions using the highest martensite content of AISI 304L stainless steel powders milled for 25 h. Analyses of phase composition and grain size were accomplished by X-ray diffraction and Rietveld refinement. By comparing the reverse martensite transformation under vacuum and HTHP treat, we consider that pressure can effectively promote the change in the process of transformation. Compared with the solid-solution-treated 304L, the hardness and yield strength of the samples sintered under HTHP are considerably higher. This method of preparation of UFG bulk stainless steel may be widely popularised and used to obtain UFG metallic materials with good comprehensive performance.

  18. Low-temperature synthesis, phonon and luminescence properties of Eu doped Y{sub 3}Al{sub 5}O{sub 12} (YAG) nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Mączka, M., E-mail: m.maczka@int.pan.wroc.pl [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2 (Poland); Bednarkiewicz, A. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2 (Poland); Mendoza-Mendoza, E.; Fuentes, A.F. [Cinvestav Unidad Saltillo, Apartado Postal 663, 25000 Saltillo, Coahuila (Mexico); Kępiński, L. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2 (Poland)

    2014-02-14

    This contribution presents two simple and cost-effective routes for the low-temperature and large-scale production of pure and Eu-doped Y{sub 3}Al{sub 5}O{sub 12} (yttrium aluminum garnet YAG) nanopowders. The proposed methodologies combine a mechanically assisted metathesis reaction or coprecipitation from solution followed by crystallization of the obtained precursors from molten sodium nitrate/nitrite. Both procedures allow obtaining pure and/or doped YAG nanopowders at remarkably low temperatures, i.e. already at 350 °C although firing at 500 °C is needed in order to get single phase and fully crystalline materials. As-obtained samples were characterized by XRD, TEM, Raman, IR and luminescence methods. These methods showed that the mean crystallite size is near 23–31 and 51 nm, when crystallization is performed from the amorphous precursor obtained by a mechanically assisted metathesis reaction and coprecipitation, respectively. Raman and IR spectra indicated better crystallinity of the powders prepared at 500 °C. The emission study showed that the intensity ratio between hypersensitive {sup 5}D{sub 0} → {sup 7}F{sub 2} and magnetic-dipole {sup 5}D{sub 0} → {sup 7}F{sub 1} transitions of Eu{sup 3+} is significantly larger than expected for well-crystallized YAG. Origin of this behavior is discussed. - Highlights: • Nanoparticles of Y{sub 3}Al{sub 5}O{sub 12} (YAG) and YAG:Eu{sup 3+} have been prepared at remarkable 350 °C. • Metathesis/molten salts and coprecipitation/molten salts methods were used. • Metathesis/molten salts method is suitable for preparation of rare-earth doped YAG. • Emission properties of YAG:Eu{sup 3+} are significantly different from bulk YAG.

  19. Clinical application of the Nd-YAG and Ho-YAG lasers in otolaryngology: head and neck surgery

    Science.gov (United States)

    Kukwa, Andrzej; Tulibacki, Marek P.; Dudziec, Katarzyna; Wojtowicz, Piotr

    1997-10-01

    The authors present their clinical experience regarding the possibilities of application of Nd:YAG and Ho:YAG lasers for the treatment of disorders in the area of the upper respiratory tract sinuses and ears. This technique makes it possible to perform a number of procedures in local anesthesia which considerably improves the economic effectiveness of the treatment. In case of the Nd:YAG laser they have also utilized the effect of deep coagulation of the soft tissues, whereas the Ho:YAG laser energy was applied for the surgery of bone tissue. The surgeries performed using laser beam enabled very good effect of treatment. They are competitive compared wit the methods used by traditional surgery.

  20. Ablation of CdTe with 100 μs Nd:YAG laser pulses: dependence on target preparation method

    International Nuclear Information System (INIS)

    Rzeszutek, J.; Savchuk, V.; Oszwaldowski, M.

    2008-01-01

    The results of experimental studies of the ablation of CdTe with a pulsed Nd:YAG laser (wavelength 1064 nm) performed with 100 μs pulses and repetition time of 35 Hz are presented for the pulse energy range from 0.13 to 0.25 J. The main goal is to elucidate the dependence of the ablation process on the target preparation method. The investigation of the vapour stream intensity and chemical composition and their evolution with time are performed with a quadrupole mass spectrometer synchronized with the laser pulses. These studies are performed for three kinds of targets: a target made of CdTe bulk crystal (BC target), a target made of CdTe fine powder pressed under the pressure of 700 atm (PP target), and a target made of loose CdTe powder (N-PP target). The applicability of these targets for obtaining high quality CdTe thin films is determined. The best chemical composition of the vapour stream can be obtained with the BC target. A major drawback of this target is the energetic threshold for ablation with Nd:YAG laser and resulting delay in the ablation process above the threshold. The advantage of powder targets over BC target is the lack of any ablation threshold or delay. Weaker angular dependence of the particle emission (associated with the surface roughness), if confirmed in further experiments, can be the most important advantage of PP and N-PP targets. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Novel Ultrafine Fibrous Poly(tetrafluoroethylene Hollow Fiber Membrane Fabricated by Electrospinning

    Directory of Open Access Journals (Sweden)

    Qinglin Huang

    2018-04-01

    Full Text Available Novel poly(tetrafluoroethylene (PTFE hollow fiber membranes were successfully fabricated by electrospinning, with ultrafine fibrous PTFE membranes as separation layers, while a porous glassfiber braided tube served as the supporting matrix. During this process, PTFE/poly(vinylalcohol (PVA ultrafine fibrous membranes were electrospun while covering the porous glassfiber braided tube; then, the nascent PTFE/PVA hollow fiber membrane was obtained. In the following sintering process, the spinning carrier PVA decomposed; meanwhile, the ultrafine fibrous PTFE membrane shrank inward so as to further integrate with the supporting matrix. Therefore, the ultrafine fibrous PTFE membranes had excellent interface bonding strength with the supporting matrix. Moreover, the obtained ultrafine fibrous PTFE hollow fiber membrane exhibited superior performances in terms of strong hydrophobicity (CA > 140°, high porosity (>70%, and sharp pore size distribution. The comprehensive properties indicated that the ultrafine fibrous PTFE hollow fiber membranes could have potentially useful applications in membrane contactors (MC, especially membrane distillation (MD in harsh water environments.

  2. Efficiency of cloud condensation nuclei formation from ultrafine particles

    Directory of Open Access Journals (Sweden)

    J. R. Pierce

    2007-01-01

    Full Text Available Atmospheric cloud condensation nuclei (CCN concentrations are a key uncertainty in the assessment of the effect of anthropogenic aerosol on clouds and climate. The ability of new ultrafine particles to grow to become CCN varies throughout the atmosphere and must be understood in order to understand CCN formation. We have developed the Probability of Ultrafine particle Growth (PUG model to answer questions regarding which growth and sink mechanisms control this growth, how the growth varies between different parts of the atmosphere and how uncertainties with respect to the magnitude and size distribution of ultrafine emissions translates into uncertainty in CCN generation. The inputs to the PUG model are the concentrations of condensable gases, the size distribution of ambient aerosol, particle deposition timescales and physical properties of the particles and condensable gases. It was found in most cases that condensation is the dominant growth mechanism and coagulation with larger particles is the dominant sink mechanism for ultrafine particles. In this work we found that the probability of a new ultrafine particle generating a CCN varies from <0.1% to ~90% in different parts of the atmosphere, though in the boundary layer a large fraction of ultrafine particles have a probability between 1% and 40%. Some regions, such as the tropical free troposphere, are areas with high probabilities; however, variability within regions makes it difficult to predict which regions of the atmosphere are most efficient for generating CCN from ultrafine particles. For a given mass of primary ultrafine aerosol, an uncertainty of a factor of two in the modal diameter can lead to an uncertainty in the number of CCN generated as high as a factor for eight. It was found that no single moment of the primary aerosol size distribution, such as total mass or number, is a robust predictor of the number of CCN ultimately generated. Therefore, a complete description of the

  3. Direct synthesis of nanocrystalline oxide powders by wet-chemical techniques

    Directory of Open Access Journals (Sweden)

    Vladimir V. Srdić

    2010-09-01

    Full Text Available In a recent period there is a great need for increasing the knowledge of tailoring the innovative procedures for the synthesis of electroceramic nanopowders and materials with improved quality for specific application. In order to produce electroceramics with desirable microstructure and properties, synthesis of stoichiometric, ultra-fine and agglomerate free powders with narrow size distributions is one of the most important steps. Within this scope, in the present paper we summarize our recent results on direct synthesis of some important perovskites and ferrites nanopowders by wet-chemical techniques.

  4. ELECTRON MICROSCOPIC INVESTIGATION OF YTTRIUM ALUMINUM GARNET POWDERS Y3AL5O12, SYNTHESIZED BY SOL–GEL METHOD

    Directory of Open Access Journals (Sweden)

    A. E. Baranchikov

    2015-09-01

    Full Text Available Subject of Study. The paper presents results of characterization for neodymium doped yttrium aluminum garnet nanopowders - YAG:Nd3+ by the method of scanning electronic microscopy. Method. Synthesis of YAG:Nd3+ was carried out by sol-gel method from nitrate or acetate - nitrate solutions with addition of some organic compounds and ammonia as well. Such substances were used as the source ones: oxides of neodymium and yttrium with the content of the basic substance equal to 99.999 %; organic compounds: citric acid with the content of the basic substance not less than 99.0 %; ethylene glycol (99.5%; the ammonium lauryl sulfate (99.0 %; urea (99.0 % of Alfa Aesar, Fluka, Aldrich companies. Oxides of yttrium and neodymium (5 at. % were dissolved in 50% acetic acid, nitrate aluminum was added with a view to the resulting product Y2,85Nd0,15Al5,0O12, the solution was stirred and heated to 60С before reaching its transparency and uniformity. The weight of the portion corresponding to the stoichiometry YAG was 2.0 g. 50 % aqueous solutions of organic substances or 5% NH4OH in a weight ratio of 1:1 to the weight of the garnet were added in aqueous solutions, placed into glass cups. The solutions were thoroughly mixed first using a conventional stirrer, then on ultrasonic installation with simultaneous 60 С heating for 2 hours. Drying of solutions to the consistency of a powder or a thick gel was carried out at 110 С. Then the samples were placed into platinum cups and annealed in a tube furnace at 950 - 1050 С for the period from 0.5 to 2 hours. Additional annealing of the powders in the air at 950 - 1060С were carried out for the purpose of powders clarifying for residual amorphous carbon removal. Main Results. The synthesized powder precursors and powders after annealing were examined using a polarizing microscope to identify anisotropic crystalline phases. X-ray analysis of the synthesized samples was carried out on a DRON - 4 and UDR - 63

  5. Fundamentals of fast reduction of ultrafine iron ore at low temperature

    Institute of Scientific and Technical Information of China (English)

    Pei Zhao; Peimin Guo

    2008-01-01

    Fundamentals on the fast reduction of ultrafine iron ore at low temperature, including characterization of ultrafine ore, de- oxidation thermodynamics of stored-energy ultrafine ore, kinetics of iron ore deoxidation, and deoxidation mechanism, etc., and a new ironmaking process are presented in this article. Ultrafine ore concentrate with a high amount of stored energy can be produced by mechanical milling, and can be dcoxidated fast below 700℃ by either the coal-based or gas-based process. This novel process has some advantages over others: high productivity, low energy consumption, and environmental friendliness.

  6. Cryogenic Yb: YAG Thin-Disk Laser

    Science.gov (United States)

    2016-09-09

    as a 4- level laser. Its absorption and emission cross-sections increase, and its thermal conductivity improves. Yb:YAG thin disk laser performance...Air Force Base, NM USA 87117 4RINI Technologies, 582 South Econ Circle, Oviedo, FL USA 32765 Keywords: Laser materials; Lasers, ytterbium...temperatures, Yb:YAG behaves as a 4- level laser. Its absorption and emission cross-sections increase, and its thermal conductivity improves. Yb:YAG

  7. Luminescence properties in the visible of Dy:YAG/YAG planar waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Klimczak, M., E-mail: m.klimczak@elka.pw.edu.p [Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland); Malinowski, M. [Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland); Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Sarnecki, J. [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Piramidowicz, R. [Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland); Telekomunikacja Polska Research and Development Centre, Obrzezna 7, 02-691 Warsaw (Poland)

    2009-12-15

    In this work, we investigate visible emission properties of dysprosium-doped yttrium aluminum garnet (YAG) waveguides prepared by the liquid phase epitaxy (LPE) method, which allowed obtaining samples of activator concentrations ranging from 0.2 at% up to ca. 18 at%. This unique set of Dy:YAG/YAG waveguides has been carefully examined by means of highly resolved laser spectroscopy to explore the luminescence properties in the visible (yellow-blue) part of spectrum. In particular, the low-temperature absorption spectra have been recorded and analyzed, giving a more detailed information on energy levels' positions in these crystals. The concentration-dependant emission spectra and fluorescence dynamics profiles have been collected under direct excitation, enabling analysis of multi-ion processes responsible for concentration quenching. This, in turn, enabled optimization of activator concentration with respect to yellow emission efficiency. Additionally, the possible IR to visible up-conversion pathways have been discussed, giving a starting point for further investigations.

  8. Efficacy of long pulse Nd:YAG laser versus fractional Er:YAG laser in the treatment of hand wrinkles.

    Science.gov (United States)

    Robati, Reza M; Asadi, Elmira; Shafiee, Anoosh; Namazi, Nastaran; Talebi, Atefeh

    2018-04-01

    There are different modalities for hand rejuvenation. Fractional Er:YAG laser and long pulse Nd:YAG laser were introduced for treating hand wrinkles. We plan to compare fractional Er:YAG laser and long pulse Nd:YAG laser in a randomized controlled double-blind design with multiple sessions and larger sample size in comparison with previous studies. Thirty-three participants with hand wrinkles entered this study. They were randomly allocated to undergo three monthly laser treatments on each hand, one with a fractional Er:YAG laser and the other with a long pulse Nd:YAG laser. The evaluations included assessment of clinical improvement determined by two independent dermatologists not enrolled in the treatment along with measuring skin biomechanical property of hands using a sensitive biometrologic device with the assessment of cutaneous resonance running time (CRRT). Moreover, potential side effects and patients' satisfaction have been documented at baseline, 1 month after each treatment, and 3 months after the final treatment session. Clinical evaluation revealed both modalities significantly reduce hand wrinkles (p value lasers. Mean CRRT values also decreased significantly after the laser treatment compared to those of the baseline in both laser groups. There was no serious persistent side effect after both laser treatments. Both fractional Er:YAG and long pulse Nd:YAG lasers show substantial clinical improvement of hand skin wrinkles with no serious side effects. However, combination treatment by these lasers along with the other modalities such as fat transfer could lead to better outcomes in hand rejuvenation. IRCT2016032020468N4.

  9. Enhancing the performance of Ce:YAG phosphor-in-silica-glass by controlling interface reaction

    International Nuclear Information System (INIS)

    Zhou, Beiying; Luo, Wei; Liu, Sheng; Gu, Shijia; Lu, Mengchen; Zhang, Yan; Fan, Yuchi; Jiang, Wan; Wang, Lianjun

    2017-01-01

    Dispersing the Ce"3"+ doped yttrium aluminum garnet (Ce:YAG) phosphor in the glass matrix has been widely investigated to replace conventional organic resin or silicone packaging. However, the reaction layer formed between commercial phosphors and glass matrix severely degrades the optical performance of Ce:YAG phosphor in silica glass (PiSG) materials. This paper demonstrates an ultra-fast method for preparing high performance PiSG materials. Instead of traditional melting process, the highly transparent PiSG samples can be rapidly fabricated from mixtures of commercial Ce:YAG phosphor and mesoporous SiO_2 (SBA-15) powders using spark plasma sintering (SPS) at relatively low temperature (1000 °C) within short time (10 min). Owing to the inhibition of the deleterious interface reactions between Ce:YAG phosphor and silica glass matrix, the phosphor has been perfectly preserved, and the internal relative quantum yield of the PiSG sample reaches as high as 93.5% when excited at 455 nm, which is the highest efficiency in current research. Furthermore, combining the PiSG sample, we successfully fabricate a light-emitting diode (LED) module exhibiting a superior performance with luminous efficacy of 127.9 lm/W, correlated color temperature of 5877 K and color rendering index of 69 at the operating current of 120 mA. This work on the high performance LED modules provides not only a new approach to fabricate the functional glass-based materials that is sensitive to the high temperature, but also a possibility to extend the lifetime and improve the optical performances of the glass based LEDs.

  10. Sorption activity investigation of ultrafine powders of high temperature melting point compounds in atmospheric pressure conditions

    International Nuclear Information System (INIS)

    Rudneva, V.V.

    2006-01-01

    A study is made in saturation with gas in the air for ultradispersed chromium carbonitride and boride powders synthesized in a nitrogen plasma jet according to three variants: from elements, from oxides, from chromium trichloride. It is established that in the air on temperature increasing the powders adsorb considerable amounts of oxygen and water vapor. This results in surface oxidation of powder particles and a loss in specific combination of properties. Preliminary vacuum heat treatment is shown to decrease sharply the rate of atmospheric gas adsorption. The quantity of adsorbed gases is dependent on a carbon monoxide concentration in a particle surface layer and the availability of adsorption centers. The number of such centers in the layer can be controlled by vacuum heat treatment conditions. The interaction of the powders with atmospheric gases is concluded to be of adsorption-diffusion nature [ru

  11. Pulmonary Delivery of an Ultra-Fine Oxytocin Dry Powder Formulation: Potential for Treatment of Postpartum Haemorrhage in Developing Countries

    OpenAIRE

    Prankerd, Richard J.; Nguyen, Tri-Hung; Ibrahim, Jibriil P.; Bischof, Robert J.; Nassta, Gemma C.; Olerile, Livesey D.; Russell, Adrian S.; Meiser, Felix; Parkington, Helena C.; Coleman, Harold A.; Morton, David A. V.; McIntosh, Michelle P.

    2013-01-01

    Oxytocin is recommended by the World Health Organisation as the most effective uterotonic for the prevention and treatment of postpartum haemorrhage. The requirement for parenteral administration by trained healthcare providers and the need for the drug solution to be maintained under cold-chain storage limit the use of oxytocin in the developing world. In this study, a spray-dried ultrafine formulation of oxytocin was developed with an optimal particle size diameter (1-5 µm) to facilitate ae...

  12. High power YAG laser cutting; Koshutsuryoku YAG laser ni yoru setsudan gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Owaki, K. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1998-08-01

    This paper describes features of high power YAG cutting. The optical fiber transmission YAG laser machining system has some advantages in which optical path length compensation unit is not required and measures for low power loss and dust are not required, when compared with the CO2 laser system. Its application to the cutting of stainless steel plates has attracted attention. Cutting tests of SUS304 were conducted using high power YAG laser. Cutting of SUS304 plate with a thickness of 40 mm could be successfully done at the power of 3.5 kW. Cutting tests of SUS304 pipes with a thickness of 8 mm in water under the depth of 20 m were also conducted using air as assist gas at the power of 2.5 kW. Excellent results were obtained without scale deposition. For the tests by the composite beam using 3 kW and 4 kW systems, SUS304 plate with a thickness of 50 mm could be cut at the cutting speed of 0.1 m/min. Laser cutting of pipes from the internal surface was conducted using a newly developed small machining head which can rotate in the peripheral direction. Excellent quality for welding was confirmed. Cutting speed and plate thickness were improved by combining water jet cutter and YAG laser unit. 6 refs., 10 figs.

  13. Development of ultra-fine grained W-TiC and their mechanical properties for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Kurishita, H. [International Research Center for Nuclear Materials Science, Institute for Materials Research (IMR), Tohoku University, Oarai, Ibaraki 311-1313 (Japan)]. E-mail: kurishi@imr.tohoku.ac.jp; Amano, Y. [Department of Materials Science and Engineering, Ehime University, Matsuyama 790-8577 (Japan); Kobayashi, S. [Department of Materials Science and Engineering, Ehime University, Matsuyama 790-8577 (Japan); Nakai, K. [Department of Materials Science and Engineering, Ehime University, Matsuyama 790-8577 (Japan); Arakawa, H. [International Research Center for Nuclear Materials Science, Institute for Materials Research (IMR), Tohoku University, Oarai, Ibaraki 311-1313 (Japan); Hiraoka, Y. [Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005 (Japan); Takida, T. [A.L.M.T. Corp., 2 Iwase-koshi-machi, Toyama 931-8371 (Japan); Takebe, K. [A.L.M.T. Corp., 2 Iwase-koshi-machi, Toyama 931-8371 (Japan); Matsui, H. [International Research Center for Nuclear Materials Science, Institute for Materials Research (IMR), Tohoku University, Oarai, Ibaraki 311-1313 (Japan)

    2007-08-01

    Effects of neutron irradiation on microstructural evolution and radiation hardening were examined for fine-grained W-0.3 wt%TiC (grain size of 0.9 {mu}m) and commercially available pure W (20 {mu}m). Both materials were neutron irradiated at 563 K to 9 x 10{sup 23} n/m{sup 2} (E > 1 MeV) in the Japan Materials Testing Reactor (JMTR). Post-irradiation examinations showed that the microstructural changes and the degree of hardening due to irradiation were significantly reduced for fine-grained W-0.3TiC compared with pure W, demonstrating the significance of grain refinement to improve radiation resistance. In order to develop ultra-fine grained W-TiC compacts with nearly full densification, the fabrication process was modified, so that W-(0.3-0.7)%TiC with 0.06-0.2 {mu}m grain size and 99% of relative density was fabricated. The achievable grain refinement depended on TiC content and milling atmosphere. The three-point bending fracture strength at room temperature for ultra-fine grained W-TiC compacts of powder milled in H{sub 2} reached approximately 1.6-2 GPa for composition near 0.5%TiC.

  14. Preparation of ultrafine poly(sodium 4-styrenesulfonate) fibres via ...

    Indian Academy of Sciences (India)

    The ultrafine poly (sodium 4-styrenesulfonate) (NaPSS) fibres have been prepared for the first time by electrospinning. The spinning solutions (NaPSS aqueous solutions) in varied concentrations were studied for electrospinning into ultrafine fibres. The results indicated that the smooth fibre could be formed when the ...

  15. Laser reduction of specific microorganisms in the periodontal pocket using Er:YAG and Nd:YAG lasers: a randomized controlled clinical study.

    Science.gov (United States)

    Grzech-Leśniak, K; Sculean, A; Gašpirc, Boris

    2018-05-15

    The objective of this study was to evaluate the microbiological and clinical outcomes following nonsurgical treatment by either scaling and root planing, combination of Nd:YAG and Er:YAG lasers, or by Er:YAG laser treatment alone. The study involved 60 patients with generalized chronic periodontitis, randomly assigned into one of three treatment groups of 20 patients. The first group received scaling and root planing by hand instruments (SRP group), the second group received Er:YAG laser treatment alone (Er group), and the third group received combined treatment with Nd:YAG and Er:YAG lasers (NdErNd group). Microbiological samples, taken from the periodontal pockets at baseline and 6 months after treatments, were assessed with PET Plus tests. The combined NdErNd laser (93.0%), followed closely by Er:YAG laser (84.9%), treatment resulted in the highest reduction of all bacteria count after 6 months, whereas SRP (46.2%) failed to reduce Treponema denticola, Peptostreptococcus micros, and Capnocytophaga gingivalis. Full-mouth plaque and bleeding on probing scores dropped after 6 months and were the lowest in both laser groups. The combination of NdErNd resulted in higher probing pocket depth reduction and gain of clinical attachment level (1.99 ± 0.23 mm) compared to SRP (0.86 ± 0.13 mm) or Er:YAG laser alone (0.93 ± 0.20 mm) in 4-6 mm-deep pockets. Within their limits, the present results provide support for the combination of Nd:YAG and Er:YAG lasers to additionally improve the microbiological and clinical outcomes of nonsurgical periodontal therapy in patients with moderate to severe chronic periodontitis.

  16. A CO2 laser based system for the production of nanoscaled powders

    International Nuclear Information System (INIS)

    Kurland, H.-D.; Schindler, K.; Staupendahl, G.; Oestreich, Ch.; Loogk, M.; Mueller, E.

    2002-01-01

    Nowadays the world-wide industrial competition is increasingly determined by the use of new materials which allow optimised and in part totally new qualities of products or the production of more compact components. Thereby the importance of ultrafine ceramic powders with grain sizes of only a few nanometers rises rapidly. These powders show some interesting physical and chemical features which result from the extremely small dimensions of their particles, for example very high specific surfaces, high surface energy or special behaviour in the phase transformation. Their thermodynamic and kinetic (short diffusion lengths) parameters are mirrored in high sintering activities and hence relatively low sintering temperatures as well as very special properties of the sintered materials, especially the possibility of super plasticity. Nanoscaled powders also have a broad potential for the production of thin layers for example in the electronics industry or as part of composite materials with components of lower thermal stability. At present different technologies for the manufacturing of nanoscaled powders are intensively used and developed. In this paper a technique for the production of ceramic nanopowders by evaporation of solid starting materials with CO 2 laser radiation is presented

  17. Ultrafine ash aerosols from coal combustion: Characterization and health effects

    Energy Technology Data Exchange (ETDEWEB)

    William P. Linak; Jong-Ik Yoo; Shirley J. Wasson; Weiyan Zhu; Jost O.L. Wendt; Frank E. Huggins; Yuanzhi Chen; Naresh Shah; Gerald P. Huffman; M. Ian Gilmour [US Environmental Protection Agency, Research Triangle Park, NC (United States). National Risk Management Research Laboratory

    2007-07-01

    Ultrafine coal fly-ash particles withdiameters less than 0.5 {mu}m typically comprise less than 1% of the total fly-ash mass. This paper reports research focused on both characterization and health effects of primary ultrafine coal ash aerosols alone. Ultrafine, fine, and coarse ash particles were segregated and collected from a coal burned in a 20 kW laboratory combustor and two additional coals burned in an externally heated drop tube furnace. Extracted samples from both combustors were characterized by transmission electron microscopy (TEM), wavelength dispersive X-ray fluorescence(WD-XRF) spectroscopy, Moessbauer spectroscopy, and X-ray absorption fine structure (XAFS) spectroscopy. Pulmonary inflammation was characterized by albumin concentrations in mouse lung lavage fluid after instillation of collected particles in saline solutions and a single direct inhalation exposure. Results indicate that coal ultrafine ash sometimes contains significant amounts of carbon, probably soot originating from coal tar volatiles, depending on coal type and combustion device. Surprisingly, XAFS results revealed the presence of chromium and thiophenic sulfur in the ultrafine ash particles. The instillation results suggested potential lung injury, the severity of which could be correlated with the carbon (soot) content of the ultrafines. This increased toxicity is consistent with theories in which the presence of carbon mediates transition metal (i.e., Fe) complexes, as revealed in this work by TEM and XAFS spectroscopy, promoting reactive oxygenspecies, oxidation-reduction cycling, and oxidative stress. 24 refs., 7 figs.

  18. Submicron and ultrafine grained hardmetals for microdrills and metal cutting inserts

    International Nuclear Information System (INIS)

    Gille, G.; Szesny, B.; Dreyer, K.; Berg, H. van den; Schidt, J.; Gestrich, T.; Leitner, G.

    2001-01-01

    Although round tools as carbide drills and mills are dominating by far the application of submicron and ultrafine hardmetals the consumption for PCB microdrills had the strongest growth rate over the last decade. This paper deals with the latest developments of ultrafine hardmetals and their application for PCB microdrills and metal cutting inserts. Based on optimized processing and properties such as hardness, hot hardness, toughness, strength and wear resistance a new generation of microdrills is presented. In particular the failure probability of the microdrills could be considerably reduced and the number of drilling strokes was nearly doubled. Combining improved pressing behavior with proper doping and optimized processing new applications of submicron and ultrafine hardmetals could be obtained by using complex shaped metal cutting inserts. Apart from these application examples the paper gives some insight into fundamental investigations an sintering and properties of ultrafine hardmetals and shows in particular the influence of milling, doping and sintering an the properties of ultrafine hardmetals. The paper also presents a new ultrafine WC grade showing a 0.1 μm WC intercept of a sintered WC - 10 wt % Co structure and a hardness of HV 30 = 2050 for a 1 wt % mixed VC/Cr 3 C 2 doping. (author)

  19. Highly efficient solar-pumped Nd:YAG laser.

    Science.gov (United States)

    Liang, Dawei; Almeida, Joana

    2011-12-19

    The recent progress in solar-pumped laser with Fresnel lens and Cr:Nd:YAG ceramic medium has revitalized solar laser researches, revealing a promising future for renewable reduction of magnesium from magnesium oxide. Here we show a big advance in solar laser collection efficiency by utilizing an economical Fresnel lens and a most widely used Nd:YAG single-crystal rod. The incoming solar radiation from the sun is focused by a 0.9 m diameter Fresnel lens. A dielectric totally internally reflecting secondary concentrator is employed to couple the concentrated solar radiation from the focal zone to a 4 mm diameter Nd:YAG rod within a conical pumping cavity. 12.3 W cw laser power is produced, corresponding to 19.3 W/m(2) collection efficiency, which is 2.9 times larger than the previous results with Nd:YAG single-crystal medium. Record-high slope efficiency of 3.9% is also registered. Laser beam quality is considerably improved by pumping a 3 mm diameter Nd:YAG rod.

  20. Synthesis of crystalline Ce-activated garnet phosphor powders and technique to characterize their scintillation light yield

    Science.gov (United States)

    Gordienko, E.; Fedorov, A.; Radiuk, E.; Mechinsky, V.; Dosovitskiy, G.; Vashchenkova, E.; Kuznetsova, D.; Retivov, V.; Dosovitskiy, A.; Korjik, M.; Sandu, R.

    2018-04-01

    This work reports on a process of preparation of garnet phosphor powders and a technique for light yield evaluation of strongly light scattering samples. Powders of scintillation compounds could be used as individual materials or as samples for express tests of scintillation properties. However, estimation of their light yield (LY) is complicated by strong light scattering of this kind of materials. Ce3+-activated yttrium-aluminum and gallium-gadolinium-aluminum garnet phosphor powders, Y3Al5O12 (YAG:Ce) and Gd3Ga3Al2O12 (GGAG:Ce), were obtained using a modified coprecipitation technique. Ga tends to residue in mother liquor in ammonia media, but the modification allows to avoid the loss of components. We propose an approach for sample preparation and LY measurement setup with alpha particles excitation, allowing to decrease light scattering influence and to estimate a light yield of powder samples. This approach is used to evaluate the obtained powders.

  1. Er:YAG and CTH:YAG laser radiation: contact versus non-contact enamel ablation and sonic-activated bulk composite placement

    International Nuclear Information System (INIS)

    Buckova, M; Kasparova, M; Dostalova, T; Jelinkova, H; Sulc, J; Nemec, M; Fibrich, M; Bradna, P; Miyagi, M

    2013-01-01

    Laser radiation can be used for effective caries removal and cavity preparation without significant thermal effects, collateral damage of tooth structure, or patient discomfort. The aim of this study was to compare the quality of tissue after contact or non-contact Er:YAG and CTH:YAG laser radiation ablation. The second goal was to increase the sealing ability of hard dental tissues using sonic-activated bulk filling material with change in viscosity during processing. The artificial caries was prepared in intact teeth to simulate a demineralized surface and then the Er:YAG or CTH:YAG laser radiation was applied. The enamel artificial caries was gently removed by the laser radiation and sonic-activated composite fillings were inserted. A stereomicroscope and then a scanning electron microscope were used to evaluate the enamel surface. Er:YAG contact mode ablation in enamel was quick and precise; the cavity was smooth with a keyhole shaped prism and rod relief arrangement without a smear layer. The sonic-activated filling material was consistently regularly distributed; no cracks or microleakage in the enamel were observed. CTH:YAG irradiation was able to clean but not ablate the enamel surface; in contact and also in non-contact mode there was evidence of melting and fusing of the enamel. (paper)

  2. Er:YAG and CTH:YAG laser radiation: contact versus non-contact enamel ablation and sonic-activated bulk composite placement

    Science.gov (United States)

    Buckova, M.; Kasparova, M.; Dostalova, T.; Jelinkova, H.; Sulc, J.; Nemec, M.; Fibrich, M.; Bradna, P.; Miyagi, M.

    2013-05-01

    Laser radiation can be used for effective caries removal and cavity preparation without significant thermal effects, collateral damage of tooth structure, or patient discomfort. The aim of this study was to compare the quality of tissue after contact or non-contact Er:YAG and CTH:YAG laser radiation ablation. The second goal was to increase the sealing ability of hard dental tissues using sonic-activated bulk filling material with change in viscosity during processing. The artificial caries was prepared in intact teeth to simulate a demineralized surface and then the Er:YAG or CTH:YAG laser radiation was applied. The enamel artificial caries was gently removed by the laser radiation and sonic-activated composite fillings were inserted. A stereomicroscope and then a scanning electron microscope were used to evaluate the enamel surface. Er:YAG contact mode ablation in enamel was quick and precise; the cavity was smooth with a keyhole shaped prism and rod relief arrangement without a smear layer. The sonic-activated filling material was consistently regularly distributed; no cracks or microleakage in the enamel were observed. CTH:YAG irradiation was able to clean but not ablate the enamel surface; in contact and also in non-contact mode there was evidence of melting and fusing of the enamel.

  3. Preparation of TiC/W core–shell structured powders by one-step activation and chemical reduction process

    International Nuclear Information System (INIS)

    Ding, Xiao-Yu; Luo, Lai-Ma; Huang, Li-Mei; Luo, Guang-Nan; Zhu, Xiao-Yong; Cheng, Ji-Gui; Wu, Yu-Cheng

    2015-01-01

    Highlights: • A novel wet chemical method was used to prepare TiC/W core–shell structure powders. • TiC nanoparticles were well-encapsulated by W shells. • TiC phase was present in the interior of tungsten grains. - Abstract: In the present study, one-step activation and chemical reduction process as a novel wet-chemical route was performed for the preparation of TiC/W core–shell structured ultra-fine powders. The XRD, FE-SEM, TEM and EDS results demonstrated that the as-synthesized powders are of high purity and uniform with a diameter of approximately 500 nm. It is also found that the TiC nanoparticles were well-encapsulated by W shells. Such a unique process suggests a new method for preparing X/W (X refers the water-insoluble nanoparticles) core–shell nanoparticles with different cores

  4. Titania-polymeric powder coatings with nano-topography support enhanced human mesenchymal cell responses.

    Science.gov (United States)

    Mozumder, Mohammad Sayem; Zhu, Jesse; Perinpanayagam, Hiran

    2012-10-01

    Titanium implant osseointegration is dependent on the cellular response to surface modifications and coatings. Titania-enriched nanocomposite polymeric resin coatings were prepared through the application of advanced ultrafine powder coating technology. Their surfaces were readily modified to create nano-rough (topographies that supported human embryonic palatal mesenchymal cell responses. Energy dispersive x-ray spectroscopy confirmed continuous and homogenous coatings with a similar composition and even distribution of titanium. Scanning electron microscopy (SEM) showed complex micro-topographies, and atomic force microscopy revealed intricate nanofeatures and surface roughness. Cell counts, mitochondrial enzyme activity reduction of yellow 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) to dark purple, SEM, and inverted fluorescence microscopy showed a marked increase in cell attachment, spreading, proliferation, and metabolic activity on the nanostructured surfaces. Reverse Transcription- Polymerase Chain Reaction (RT-PCR) analysis showed that type I collagen and Runx2 expression were induced, and Alizarin red staining showed that mineral deposits were abundant in the cell cultures grown on nanosurfaces. This enhancement in human mesenchymal cell attachment, growth, and osteogenesis were attributed to the nanosized surface topographies, roughness, and moderate wetting characteristics of the coatings. Their dimensional similarity to naturally occurring matrix proteins and crystals, coupled with their increased surface area for protein adsorption, may have facilitated the response. Therefore, this application of ultrafine powder coating technology affords highly biocompatible surfaces that can be readily modified to accentuate the cellular response. Copyright © 2012 Wiley Periodicals, Inc.

  5. Cytocompatible and water stable ultrafine protein fibers for tissue engineering

    Science.gov (United States)

    Jiang, Qiuran

    This dissertation proposal focuses on the development of cytocompatible and water stable protein ultrafine fibers for tissue engineering. The protein-based ultrafine fibers have the potential to be used for biomedicine, due to their biocompatibility, biodegradability, similarity to natural extracellular matrix (ECM) in physical structure and chemical composition, and superior adsorption properties due to their high surface to volume ratio. However, the current technologies to produce the protein-based ultrafine fibers for biomedical applications still have several problems. For instance, the current electrospinning and phase separation technologies generate scaffolds composed of densely compacted ultrafine fibers, and cells can spread just on the surface of the fiber bulk, and hardly penetrate into the inner sections of scaffolds. Thus, these scaffolds can merely emulate the ECM as a two dimensional basement membrane, but are difficult to mimic the three dimensional ECM stroma. Moreover, the protein-based ultrafine fibers do not possess sufficient water stability and strength for biomedical applications, and need modifications such as crosslinking. However, current crosslinking methods are either high in toxicity or low in crosslinking efficiency. To solve the problems mentioned above, zein, collagen, and gelatin were selected as the raw materials to represent plant proteins, animal proteins, and denatured proteins in this dissertation. A benign solvent system was developed specifically for the fabrication of collagen ultrafine fibers. In addition, the gelatin scaffolds with a loose fibrous structure, high cell-accessibility and cell viability were produced by a novel ultralow concentration phase separation method aiming to simulate the structure of three dimensional (3D) ECM stroma. Non-toxic crosslinking methods using citric acid as the crosslinker were also developed for electrospun or phase separated scaffolds from these three proteins, and proved to be

  6. Laser-diode pumped Nd:YAG lasers; Laser diode reiki Nd:YAG lasear

    Energy Technology Data Exchange (ETDEWEB)

    Yuasa, H.; Akiyama, Y.; Nakayama, M. [Toshiba Corp., Tokyo (Japan)

    2000-04-01

    Laser-diode pumped Nd:YAG lasers are expected to be applied to laser processing fields such as welding, cutting, drilling, and marking due to their potential for high efficiency and compactness. We are designing and developing laser-diode pumped Nd:YAG lasers using numerical analysis simulation techniques such as ray tracing and thermal analysis. We have succeeded in achieving a laser power of more than 3 kW with 20% efficiency, which is the best ever obtained. In addition, we have developed a laser-diode pumped green laser by second harmonic generation, for precision machining on silicon wafers. (author)

  7. Separation of ultrafine particles from class F fly ashes

    Directory of Open Access Journals (Sweden)

    Acar Ilker

    2016-01-01

    Full Text Available In this study, ultrafine particles were recovered from Çatalağzı (CFA and Sugözü (SFA thermal power plant fly ashes using a specific hydraulic classification technology. Since fly ashes have a high tendency to be flocculated in water, settling experiments were first designed to determine the more effective dispersant and the optimum dosage. Two different types of the superplasticizers (SP polymers based on sulphonate (NSF, Disal and carboxylate (Glenium 7500 were used as the dispersing agents in these settling experiments. Hydraulic classification experiments were then conducted to separate ultrafine fractions from the fly ash samples on the basis of the settling experiments. According to the settling experiments, better results were achieved with the use of Disal for both CFA and SFA. The classification experiments showed that the overflow products with average particle sizes of 5.2 μm for CFA and 4.4 μm for SFA were separated from the respective as-received samples with acceptable yields and high enough recoveries of -5 μm (ultrafine particles. Overall results pointed out that the hydraulic classification technology used provided promising results in the ultrafine particle separations from the fly ash samples.

  8. Synthesis of alumina powder with seeds by Pechini Method using O2 as calcination atmosphere

    International Nuclear Information System (INIS)

    Salem, R.E.P.; Guilherme, K.A.; Chinelatto, A.S.A.; Chinelatto, A. L.

    2012-01-01

    Alumina is a very investigated material due to its excellent refractory characteristics and mechanical properties. Its alpha phase, the most stable one, has a formation temperature of about 1200 ° C. Due to its high temperature of formation, many researches have been trying to reduce it through addition of seeds of alpha phase in chemical processes of synthesis. This work aims to synthesize ultrafine powders of alpha-alumina by the Pechini method with seeding, and using an O 2 atmosphere in the pre-calcination (500 ° C) and calcination (1000 ° C and 1100° C) steps. The resulting powders were characterized through X-ray diffractometry, infrared spectroscopy and scanning electron microscopy. The results were compared with samples calcined on ai. It was verified that the presence of oxygen in the calcination atmosphere favored the elimination of residual carbon from the precursor powders, forthcoming from the great amount of organic material used on the synthesis, modifying its morphology and favoring reduction of particle size. (author)

  9. Evaluation in vitro of effects of Er:YAG and Nd:YAG lasers irradiation on root canal wall, by stereoscopy, scanning electron micrography and thermographic camera

    International Nuclear Information System (INIS)

    Goya, Claudia

    2001-01-01

    This study was carried out to evaluate in vitro the effects of Nd:YAG laser and Er:YAG laser irradiation in the root canal wall by SEM, evaluating the apical leakage and the temperature changes during the laser irradiation. Seventy four extracted human teeth were used, they were instrumented and divided into seven groups of 10 teeth each. The teeth were evaluated through stereoscopy, by SEM, and with the thermographic camera. The Nd:YAG laser irradiation parameters were 100 mJ/p, 15 Hz, and Er:YAG laser were 160 mJ/p and 10 Hz, the irradiation was 4 times at 2 mm/sec speed, with 20 sec interval. The apical leakage was not observed in the teeth irradiated by Nd:YAG laser alone or in association with Er:YAG laser. However in the teeth irradiated only by the Er:YAG laser we observed a little leakage. By SEM observation the Nd:YAG laser irradiation showed melting and recrystallization in the dentin surface closing dentinal tubules, and in the samples irradiated by Er:Y AG laser a clean surface, opened dentinal tubules, and the combination by two lasers, showed melting covering some dentinal tubules The thermographic study found the temperature increase was not more than 6 deg C. This study showed the safety parameters applications of Er:YAG laser in association with Nd:YAG laser in root canal treatment, in order to not cause thermal damages to the periodontal tissues. (author)

  10. Gingival melanin depigmentation by Er:YAG laser: A literature review.

    Science.gov (United States)

    Pavlic, Verica; Brkic, Zlata; Marin, Sasa; Cicmil, Smiljka; Gojkov-Vukelic, Mirjana; Aoki, Akira

    2018-04-01

    Laser ablation is recently suggested as a most effective and reliable technique for depigmentation of melanin hyperpigmented gingiva. To date, different lasers have been used for gingival depigmentation (CO 2 , diode, Nd:YAG, Er:YAG and Er,Cr:YSGG lasers). The use of Er:YAG laser for depigmentation of melanin hyperpigmented gingiva has gained increasing importance in recent years. The purpose of this study was to report removal of gingival melanin pigmentation using an Er:YAG laser in a literature review. The main outcomes, such as improvement of signs (clinical parameters of bleeding, erythema, swelling and wound healing), symptoms (pain) and melanin recurrence/repigmentation were measured. The literature demonstrated that depigmentation of gingival melanin pigmentation can be performed safely and effectively by Er:YAG laser resulting in healing and an esthetically significant improvement of gingival discoloration. Thus, Er:YAG laser seems to be safe and useful in melanin depigmentation procedure. However, the main issue in giving the final conclusion of the optimal Er:YAG laser use in melanin depigmentation is that, to date, studies are offering completely discrepant Er:YAG laser procedure protocols (complex settings of laser parameters), and different criteria for the assessment of depigmentation and repigmentation (recurrence), thus hampering the comparison of the results. Therefore, further studies are necessary to give an optimal recommendation on the use of Er:YAG laser in gingival melanin hyperpigmentation.

  11. Parameters in selective laser melting for processing metallic powders

    Science.gov (United States)

    Kurzynowski, Tomasz; Chlebus, Edward; Kuźnicka, Bogumiła; Reiner, Jacek

    2012-03-01

    The paper presents results of studies on Selective Laser Melting. SLM is an additive manufacturing technology which may be used to process almost all metallic materials in the form of powder. Types of energy emission sources, mainly fiber lasers and/or Nd:YAG laser with similar characteristics and the wavelength of 1,06 - 1,08 microns, are provided primarily for processing metallic powder materials with high absorption of laser radiation. The paper presents results of selected variable parameters (laser power, scanning time, scanning strategy) and fixed parameters such as the protective atmosphere (argon, nitrogen, helium), temperature, type and shape of the powder material. The thematic scope is very broad, so the work was focused on optimizing the process of selective laser micrometallurgy for producing fully dense parts. The density is closely linked with other two conditions: discontinuity of the microstructure (microcracks) and stability (repeatability) of the process. Materials used for the research were stainless steel 316L (AISI), tool steel H13 (AISI), and titanium alloy Ti6Al7Nb (ISO 5832-11). Studies were performed with a scanning electron microscope, a light microscopes, a confocal microscope and a μCT scanner.

  12. Suppression of parasitic oscillations in a core-doped ceramic Nd:YAG laser by Sm:YAG cladding.

    Science.gov (United States)

    Huss, Rafael; Wilhelm, Ralf; Kolleck, Christian; Neumann, Jörg; Kracht, Dietmar

    2010-06-07

    The onset of parasitic oscillations limits the extraction efficiency and therefore energy scaling of Q-switched lasers. A solid-state laser was end pumped with a fiber-coupled diode laser and operated in q-cw as well as in passively Q-switched operation. For Q-switched operation, we demonstrate the suppression of parasitic oscillations in a core-doped ceramic Nd:YAG laser by Sm:YAG cladding.

  13. Nanomaterials vs Ambient Ultrafine Particles

    DEFF Research Database (Denmark)

    Stone, Vicki; Miller, Mark R.; Clift, Martin J. D.

    2017-01-01

    BACKGROUND: A rich body of literature exists that has demonstrated adverse human health effects following exposure to ambient air particulate matter (PM), and there is strong support for an important role of ultrafine (nanosized) particles. At present, relatively few human health or epidemiology ...

  14. Evaluation in vitro of effects of Er:YAG and Nd:YAG lasers irradiation on root canal wall, by stereoscopy, scanning electron micrography and thermographic camera; Avaliacao in vitro dos efeitos da irradiacao laser de Er:YAG e Nd:YAG na parede dentinaria do canal radicular, sob observacao do estereoscopio, da micrografia eletronica e da camera termografica

    Energy Technology Data Exchange (ETDEWEB)

    Goya, Claudia

    2001-07-01

    This study was carried out to evaluate in vitro the effects of Nd:YAG laser and Er:YAG laser irradiation in the root canal wall by SEM, evaluating the apical leakage and the temperature changes during the laser irradiation. Seventy four extracted human teeth were used, they were instrumented and divided into seven groups of 10 teeth each. The teeth were evaluated through stereoscopy, by SEM, and with the thermographic camera. The Nd:YAG laser irradiation parameters were 100 mJ/p, 15 Hz, and Er:YAG laser were 160 mJ/p and 10 Hz, the irradiation was 4 times at 2 mm/sec speed, with 20 sec interval. The apical leakage was not observed in the teeth irradiated by Nd:YAG laser alone or in association with Er:YAG laser. However in the teeth irradiated only by the Er:YAG laser we observed a little leakage. By SEM observation the Nd:YAG laser irradiation showed melting and recrystallization in the dentin surface closing dentinal tubules, and in the samples irradiated by Er:Y AG laser a clean surface, opened dentinal tubules, and the combination by two lasers, showed melting covering some dentinal tubules The thermographic study found the temperature increase was not more than 6 deg C. This study showed the safety parameters applications of Er:YAG laser in association with Nd:YAG laser in root canal treatment, in order to not cause thermal damages to the periodontal tissues. (author)

  15. Twinning interactions induced amorphisation in ultrafine silicon grains

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Y. [School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Zhang, L.C., E-mail: liangchi.zhang@unsw.edu.au [School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Zhang, Y. [School of Mechatronics Engineering, Harbin Institute of Technology (China)

    2016-03-21

    Detailed transmission electron microscopy analysis on a severely deformed Al-Si composite material has revealed that partial dislocation slips and deformation twinning are the major plastic deformation carriers in ultrafine silicon grains. This resembles the deformation twinning activities and mechanisms observed in nano-crystalline face-centred-cubic metallic materials. While deformation twinning and amorphisation in Si were thought unlikely to co-exist, it is observed for the first time that excessive twinning and partial dislocation interactions can lead to localised solid state amorphisation inside ultrafine silicon grains.

  16. Optical properties and laser oscillations of highly neodymium-doped YAG ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, Ichiro; Kurimura, Sunao; Sato, Yoichi; Taira, Takunori [Laser Research Center, Institute for Molecular Science, Okazaki, Aichi (Japan); Ikesue, Akio [Japan Fine Ceramics Center, Nagoya, Aichi (Japan); Yoshida, Kunio [Institute of Laser Engineering, Osaka Institute of Technology, Osaka (Japan)

    2000-03-01

    Diode-pumped microchip laser oscillation of highly Nd{sup 3+}-doped polycrystalline YAG ceramics has been succeeded. It is found that the loss of a 2.4 at. % neodymium-doped ceramic YAG is as low as that of a 0.9 at. % Nd:YAG single crystal. From a 4.8 at. % Nd:YAG ceramic microchip, 2.3 times higher laser output power is obtained than that from a 0.9 at. % Nd:YAG single crystal microchip. (author)

  17. Optical properties and laser oscillations of highly neodymium-doped YAG ceramics

    International Nuclear Information System (INIS)

    Shoji, Ichiro; Kurimura, Sunao; Sato, Yoichi; Taira, Takunori; Ikesue, Akio; Yoshida, Kunio

    2000-01-01

    Diode-pumped microchip laser oscillation of highly Nd 3+ -doped polycrystalline YAG ceramics has been succeeded. It is found that the loss of a 2.4 at. % neodymium-doped ceramic YAG is as low as that of a 0.9 at. % Nd:YAG single crystal. From a 4.8 at. % Nd:YAG ceramic microchip, 2.3 times higher laser output power is obtained than that from a 0.9 at. % Nd:YAG single crystal microchip. (author)

  18. Application of an Ultrafine Shearing Method for the Extraction of C-Phycocyanin from Spirulina platensis

    Directory of Open Access Journals (Sweden)

    Jianfeng Yu

    2017-11-01

    Full Text Available Cell disruption is an important step during the extraction of C-phycocyanin from Spirulina platensis. An ultrafine shearing method is introduced and combined with soaking and ultrasonication to disrupt the cell walls of S. platensis efficiently and economically. Five kinds of cell disruption method, including soaking, ultrasonication, freezing-thawing, soaking-ultrafine shearing and soaking-ultrafine shearing-ultrasonication were applied to break the cell walls of S. platensis. The effectiveness of cell breaking was evaluated based on the yield of the C-phycocyanin. The results show that the maximum C-phycocyanin yield was 9.02%, achieved by the soaking-ultrafine shearing-ultrasonication method, followed by soaking (8.43%, soaking-ultrafine shearing (8.89%, freezing and thawing (8.34%, and soaking-ultrasonication (8.62%. The soaking-ultrafine shearing-ultrasonication method is a novel technique for breaking the cell walls of S. platensis for the extraction of C-phycocyanin.

  19. Fabrication and characterization of dual-functional ultrafine composite fibers with phase-change energy storage and luminescence properties.

    Science.gov (United States)

    Xi, Peng; Zhao, Tianxiang; Xia, Lei; Shu, Dengkun; Ma, Menjiao; Cheng, Bowen

    2017-01-09

    Ultrafine composite fibers consisting of a thermoplastic polyurethane solid-solid phase-change material and organic lanthanide luminescent materials were prepared through a parallel electrospinning technique as an innovative type of ultrafine, dual-functional fibers containing phase-change and luminescent properties. The morphology and structure, thermal energy storage, and luminescent properties of parallel electrospun ultrafine fibers were investigated. Scanning electron microscopy (SEM) images showed that the parallel electrospun ultrafine fibers possessed the desired morphologies with smaller average fiber diameters than those of traditional mixed electrospun ultrafine fibers. Transmission electron microscopy (TEM) images revealed that the parallel electrospun ultrafine fibers were composed of two parts. Polymeric phase-change materials, which can be directly produced and spun, were used to provide temperature stability, while a mixture of polymethyl methacrylate and an organic lanthanide complex acted as the luminescent unit. Differential scanning calorimetry (DSC) and luminescence measurements indicated that the unique structure of the parallel electrospun ultrafine fibers provides the products with good thermal energy storage and luminescence properties. The fluorescence intensity and the phase-change enthalpy values of the ultrafine fibers prepared by parallel electrospinning were respectively 1.6 and 2.1 times those of ultrafine fibers prepared by mixed electrospinning.

  20. Detection of Ultrafine Anaphase Bridges

    DEFF Research Database (Denmark)

    Bizard, Anna H; Nielsen, Christian F; Hickson, Ian D

    2018-01-01

    Ultrafine anaphase bridges (UFBs) are thin DNA threads linking the separating sister chromatids in the anaphase of mitosis. UFBs are thought to form when topological DNA entanglements between two chromatids are not resolved prior to anaphase onset. In contrast to other markers of defective...

  1. Study on the Effect of Laser Welding Parameters on the Microstructure and Mechanical Properties of Ultrafine Grained 304L Stainless Steel

    Directory of Open Access Journals (Sweden)

    Reihane Nafar Dehsorkhi

    2016-12-01

    Full Text Available In the present study, an ultrafine grained (UFG 304L stainless steel with the average grain size of 300 nm was produced by a combination of cold rolling and annealing. Weldability of the UFG sample was studied by Nd: YAG laser welding under different welding conditions. Taguchi experimental design was used to optimize the effect of frequency, welding time, laser current and laser pulse duration on the resultant microstructure and mechanical properties. X-ray Diffraction (XRD, Optical Microscope (OM, Scanning Electron Microscope (SEM, Transmission Electron Microscope (TEM, microhardness measurements and tension tests were conducted to characterize the sample after thermomechanical processing and laser welding. The results showed that the ultrafine grained steel had the yield strength of 1000 Mpa and the total elongation of 48%, which were almost three times higher than those of the as-received sample. The microstructure of the weld zone was shown to be a mixture of austenite and delta ferrite. The microhardness of the optimized welded sample (315 HV0.5 was found to be close to the UFG base metal (350 HV. It was also observed that the hardness of the heat affected zone (HAZ was  lower than that of the weld zone, which was related to the HAZ grain growth during laser welding. The results of optimization also showed that the welding time was the most important parameter affecting the weld strength. Overall, the study showed that laser welding could be an appropriate and alternative welding technique for the joining of UFG steels.

  2. FT-Raman spectroscopic characterization of enamel surfaces irradiated with Nd:YAG and Er:YAG lasers

    Directory of Open Access Journals (Sweden)

    Sima Shahabi

    2016-12-01

    Full Text Available Background. Despite recent advances in dental caries prevention, caries is common and remains a serious health problem. Laser irradiation is one of the most common methods in preventive measures in recent years. Raman spectroscopy technique is utilized to study the microcrystalline structure of dental enamel. In this study, FT-Raman spectroscopy was used to evaluate chemical changes in enamel structure irradiated with Nd:YAG and Er:YAG lasers. Methods. We used 15 freshly-extracted, non-carious, human molars that were treated as follows: No treatment was carried out in group A (control group; Group B was irradiated with Er:YAG laser for 10 seconds under air and water spray; and Group C was irradiated with Nd:YAG laser for 10 seconds under air and water spray. After treatment, the samples were analyzed by FT-Raman spectroscopy. Results. The carbonate content evaluation with regard to the integrated area under the curve (1065/960 cm–1 exhibited a significant reduction in its ratio in groups B and C. The organic content (2935/960 cm-1 area exhibited a significant decrease after laser irradiation in group B and C. Conclusion. The results showed that the mineral and organic matrices of enamel structure were affected by laser irradiation; therefore, it might be a suitable method for caries prevention.

  3. Synthesis and Mechanical Characterisation of an Ultra-Fine Grained Ti-Mg Composite

    Directory of Open Access Journals (Sweden)

    Markus Alfreider

    2016-08-01

    Full Text Available The importance of lightweight materials such as titanium and magnesium in various technical applications, for example aerospace, medical implants and lightweight construction is well appreciated. The present study is an attempt to combine and improve the mechanical properties of these two materials by forming an ultra-fine grained composite. The material, with a composition of 75 vol% (88.4 wt% Ti and 25 vol% (11.4 wt% Mg , was synthesized by powder compression and subsequently deformed by high-pressure torsion. Using focused ion beam machining, miniaturised compression samples were prepared and tested in-situ in a scanning electron microscope to gain insights into local deformation behaviour and mechanical properties of the nanocomposite. Results show outstanding yield strength of around 1250 MPa, which is roughly 200 to 500 MPa higher than literature reports of similar materials. The failure mode of the samples is accounted for by cracking along the phase boundaries.

  4. Polymer degradation and ultrafine particles - Potential inhalation hazards for astronauts

    Science.gov (United States)

    Ferin, J.; Oberdoerster, G.

    1992-01-01

    To test the hypothesis that exposure to ultrafine particles results in an increased interstiatilization of the particles which is accompanied by an acute pathological inflammation, rats were exposed to titanium dioxide (TiO2) particles by intratracheal instillation and by inhalation. Both acute intratracheal instillation and subchronic inhalation studies on rats show that ultrafine TiO2 particles access the pulmonary interstitium to a larger extent than fine particles and that they elicit an inflammatory response as indicated by PMN increase in lavaged cells. The release of ultrafine particles into the air of an enclosed environment from a thermodegradation event or from other sources is a potential hazard for astronauts. Knowing the mechanisms of action is a prerequisite for technical or medical countermeasures.

  5. Features of ultrafine-grained structure forming in Zr-1Nb alloy

    Energy Technology Data Exchange (ETDEWEB)

    Stepanova, Ekaterina N.; Prosolov, Konstantin A. [National Research Tomsk Polytechnic University, Tomsk (Russian Federation); Grabovetskaya, Galina P.; Mishin, Ivan P. [Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences, Tomsk (Russian Federation)

    2013-07-01

    Ultrafine-grained structure forming by the method combined reversible hydrogenation and hot pressing in Zr-1Nb alloy was investigated. Preliminary hydrogenation to concentrations of (0.14–0.4) % at 873 K is found to lead to yield strength decreasing in Zr-1Nb alloy during hot pressing by 1,5–2 times. During uniaxial compression at (70–72) % under isothermal conditions at a temperature of 873 K in Zr-1Nb alloy, hydrogenated to concentration of 0.22 %, homogeneous ultrafine grained structure with an average grain size of 0,4 P m was formed. Key words: zirconium alloy, ultrafine-grained structure, hydrogen.

  6. Growth of single-crystal YAG fiber optics.

    Science.gov (United States)

    Nie, Craig D; Bera, Subhabrata; Harrington, James A

    2016-07-11

    Single-crystal YAG (Y3Al5O12) fibers have been grown by the laser heated pedestal growth technique with losses as low as 0.3 dB/m at 1.06 μm. These YAG fibers are as long as about 60 cm with diameters around 330 μm. The early fibers were grown from unoriented YAG seed fibers and these fibers exhibited facet steps or ridges on the surface of the fiber. However, recently we have grown fibers using an oriented seed to grow step-free fibers. Scattering losses made on the fibers indicate that the scattering losses are equal to about 30% of the total loss.

  7. Laser fabrication nanocrystalline coatings using simultaneous powders/wire feed

    Science.gov (United States)

    Li, Jianing; Zhai, Tongguang; Zhang, Yuanbin; Shan, Feihu; Liu, Peng; Ren, Guocheng

    2016-07-01

    Laser melting deposition (LMD) fabrication is used to investigate feasibilty of simultaneously feeding TC17 wire and the Stellite 20-Si3N4-TiC-Sb mixed powders in order to increase the utilization ratio of materials and also quality of LMD composite coatings on the TA1 substrate. SEM images indicated that such LMD coating with metallurgical joint to substrate was formed free of the obvious defects. Lots of the ultrafine nanocrystals (UNs) were produced, which distributed uniformly in some coating matrix location, retarding growth of the ceramics in a certain extent; UNs were intertwined with amorphous, leading the yarn-shape materials to be produced. Compared with substrate, an improvement of wear resistance was achieved for such LMD coating.

  8. Continuous-wave ceramic Nd:YAG laser at 1123 nm

    International Nuclear Information System (INIS)

    Zhang, S S; Wang, Q P; Zhang, X Y; Cong, Z H; Fan, S Z; Liu, Z J; Sun, W J

    2009-01-01

    Ceramic Nd:YAG (cNd:YAG) materials are employed to generate 1123-nm laser. A fiber-coupled continuous-wave (CW) 808-nm diode laser is used as the pumping source. With an incident diode power of 26.1 W, a CW output power of up to 10.8 W is obtained with a 10-mm-long ceramic Nd:YAG rod (1.0 at.%-Nd-doped). The conversion efficiency from diode power to 1123-nm laser power is 41.4%. The laser performance of another 10-mm-long cNd:YAG rod with a Nd-doping concentration of 0.6 at.% is studied as a comparison

  9. Challenges and Approaches for Developing Ultrafine Particle Emission Inventories for Motor Vehicle and Bus Fleets

    Directory of Open Access Journals (Sweden)

    Diane U. Keogh

    2011-03-01

    Full Text Available Motor vehicles in urban areas are the main source of ultrafine particles (diameters < 0.1 µm. Ultrafine particles are generally measured in terms of particle number because they have little mass and are prolific in terms of their numbers. These sized particles are of particular interest because of their ability to enter deep into the human respiratory system and contribute to negative health effects. Currently ultrafine particles are neither regularly monitored nor regulated by ambient air quality standards. Motor vehicle and bus fleet inventories, epidemiological studies and studies of the chemical composition of ultrafine particles are urgently needed to inform scientific debate and guide development of air quality standards and regulation to control this important pollution source. This article discusses some of the many challenges associated with modelling and quantifying ultrafine particle concentrations and emission rates for developing inventories and microscale modelling of motor vehicles and buses, including the challenge of understanding and quantifying secondary particle formation. Recommendations are made concerning the application of particle emission factors in developing ultrafine particle inventories for motor vehicle fleets. The article presents a précis of the first published inventory of ultrafine particles (particle number developed for the urban South-East Queensland motor vehicle and bus fleet in Australia, and comments on the applicability of the comprehensive set of average particle emission factors used in this inventory, for developing ultrafine particle (particle number and particle mass inventories in other developed countries.

  10. Influence of high volumes of ultra-fine additions on self-compacting concrete[ACI SP-239

    Energy Technology Data Exchange (ETDEWEB)

    Cioffi, R. [Naples Univ., Naples (Italy). Faculty of Engineering; Colangelo, F. [Naples Univ., Naples (Italy). Dept. of Technologies; Caputo, D.; Liguori, B. [Naples Univ., Naples (Italy). Dept. of Materials and Production Engineering

    2006-07-01

    The addition of fine minerals can reduce water demand and increase the slump characteristics of concrete. This paper examined the influence of high volumes of ultra-fine fly ash, raw fly ash, silica fume and natural zeolites on the properties of self-compacting concrete (SCC). Three samples of SCC were prepared using various mineral additions to determine normal slump and J-ring slump flows of fresh concrete as well as the compressive strength and elastic modulus properties of hardened concrete. Cement and crushed limestone natural aggregates were used. The fly ash, silica fume and natural zeolites were subjected to wet high energy milling. The rotating speed, milling time, water-to-solid ratio, and size of milling media were optimized to obtain powders with varying qualities. Results of the study showed that values for the normal slump flow ranged between 604 and 785 mm, while the differences with the J-ring slump flow were less than 30 mm. The samples were then tested to evaluate the mechanical properties of the hardened concrete after 7 and 28 curing days. The modulus of elasticity and compressive strength showed improvements in the concretes containing the ultra-fine fly ash. No segregation phenomena were observed in the case of the cylindrical column specimens. It was concluded that all the specimens provided environmentally sustainable, high workability concretes which can be successfully prepared with the addition of high volumes of minerals. 17 refs., 5 tabs., 6 figs.

  11. Stimulated Raman adiabatic passage in Tm3+:YAG

    International Nuclear Information System (INIS)

    Alexander, A. L.; Lauro, R.; Louchet, A.; Chaneliere, T.; Le Goueet, J. L.

    2008-01-01

    We report on the experimental demonstration of stimulated Raman adiabatic passage in a Tm 3+ :YAG crystal. Tm 3+ :YAG is a promising material for use in quantum information processing applications, but as yet there are few experimental investigations of coherent Raman processes in this material. We investigate the effect of inhomogeneous broadening and Rabi frequency on the transfer efficiency and the width of the two-photon spectrum. Simulations of the complete Tm 3+ :YAG system are presented along with the corresponding experimental results

  12. Neodymium-YAG laser vitreolysis in sickle cell retinopathy

    Energy Technology Data Exchange (ETDEWEB)

    Hrisomalos, N.F.; Jampol, L.M.; Moriarty, B.J.; Serjeant, G.; Acheson, R.; Goldberg, M.F.

    1987-08-01

    Six patients with proliferative sickle cell retinopathy and vitreous bands were treated with the neodymium-YAG (Nd-YAG) laser to accomplish lysis of avascular traction bands or to clear the media in front of the macula. Transection of bands was possible in five of the six cases but in two of these the effect was only partial. Three cases were satisfactorily treated with the Nd-YAG laser application alone, two eventually required conventional vitreoretinal surgery, and one patient's condition stabilized despite failure of the treatment. Complications from the treatment occurred in three cases and included subretinal (choroidal) hemorrhage, preretinal hemorrhage, microperforation of a retinal vein, and focal areas of damage to the retinal pigment epithelium. Neodymium-YAG vitreolysis may be a useful modality in carefully selected patients with proliferative sickle cell retinopathy, but potentially sight-threatening complications may occur.

  13. Evaluation of the permeability and morphological alteration of the dental surface after apicoectomy, treatment and preparation with Er:YAG and Nd:YAG lasers; Avaliacao da permeabilidade e da alteracao morfologica da superficie dentinaria apos apicectomia, tratamento e retropreparo com os lasers de Er:YAG e Nd:YAG

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Rodrigo Guerra de

    2001-07-01

    One of the objectives of endodontic treatment is to resolve pathological periapical processes caused by microbial contamination of the dental pulp. Correct execution of the necessary chemical preparation prior to surgery generally results in positive outcomes. However, a percentage of cases do not respond favorably and therefore require retreatment, a conservative therapeutic option. There are meanwhile a number of treatment failures which do not respond to these conservative measures and must therefore be subjected to paraendodontic surgical procedures. One of the principal problems of this therapeutic conduct is linked to the surface permeability of the dentin after apicoectomy and the lack of adequate marginal adaptation between the retrofilling material and the cavity walls. This permits the percolation of microorganisms and their metabolic by products from the system of root canals to the periapical region, thereby compromising the necessary tissue repair. The present work proposes the evaluation of the surface and marginal permeability of cut dentin after apicoectomy and treatment with Er:YAG and Nd:YAG lasers with fiber optics and then retrofilled with intermediate restorative material (IRM). A total of 24 single rooted teeth whose canals were endodontically treated were divided into 3 experimental groups: group I, whose apices were sectioned with an Er:YAG laser and the resulting cavity and the cut dental surface were irradiated with this laser via a 50/10 type fiber; in group II the apicoectomy was conducted with an Er:YAG laser and the resulting cavity and the cut surface were irradiated with a Nd:YAG laser; in group III, the samples were apicoectomized and the cavities were treated with a high speed bur (control group). Analysis of the infiltration of the dye methylene blue throughout the cut dental surface and the reconstruction demonstrated that the samples in the irradiated groups presented lower indices of infiltration than the control group. The

  14. Q-switched Nd:YAG/V:YAG microchip 1338 nm laser for laser-induced breakdown spectroscopy

    Science.gov (United States)

    Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2017-12-01

    Q-switched microchip laser emitting radiation at wavelength 1338nm was tested as a radiation source for laser induced breakdown spectroscopy (LIBS). This laser used sandwich crystal which combined in one piece the cooling part (undoped YAG crystal 4mm long), the active laser part (Nd:YAG crystal 12mm long), and the saturable absorber (V:YAG crystal 0.7mm long). The diameter of this crystal was 5 mm. The microchip resonator consisted of dielectric mirrors directly deposited on the monolith crystal surfaces. The pump mirror (HT @ 808 nm, HR @ 1.3 ¹m) was placed on the undoped YAG part. The output coupler (R = 90% @ 1338 nm) was placed on the V:YAG part. The fibre-coupled 808nm pumping laser diode was operating in pulsed regime (rep. rate 250 Hz, pulse width 300 ¹s, pulse energy 6 mJ). Using this pumping, stable and high reproducible Q-switched pulses were generated at wavelength 1338 nm. Pulse length was 6.2 ns (FWHM) and the mean output power was 33mW. The single pulse energy and peak power was 0.13mJ and 21kW, respectively. Laser was operating in fundamental TEM00 mode. The laser radiation was focused on a tested sample using single plano-convex lens (focal length 75 mm). The focal spot radius was 40 ¹m. The corresponding peak-power density was 0.83GW/cm2. The laser induced break-down was successfully reached and corresponding laser-induced plasma spectra were recorded for set of metallic elements (Cu, Ag, Au, In, Zn, Al, Fe, Ni, Cr) and alloys (Sn-Pb solder, duralumin, stainless-steel, brass). To record the spectra, StellarNet BLACK-Comet concave grating CCD-based spectrometer was used without any special collimation optics. Thanks to used laser wavelength far from the detector sensitivity, no special filtering was needed to overcome the CCD dazzling. The constructed laser could significantly improve repletion-rate of up-to-date LIBS devices.

  15. Analysis of erythema after Er:YAG laser skin resurfacing.

    Science.gov (United States)

    Ko, Na Young; Ahn, Hyo-Hyun; Kim, Soo-Nam; Kye, Young-Chul

    2007-11-01

    Postoperative erythema can be expected to occur in every patient after laser resurfacing, and pigmentary disturbances may be related to the intensity and the duration of erythema. This study was undertaken to assess the clinical features of erythema, the factors that influence its duration, and the relation between the duration of erythema and the incidence of hyperpigmentation and hypopigmentation in skin of Asian persons after Er:YAG laser resurfacing. A total of 218 patients (skin phototypes III to V) were recruited and treated with a short-pulsed Er:YAG laser, a variable-pulsed Er:YAG laser, or a dual-mode Er:YAG laser for skin resurfacing. Clinical assessments were performed retrospectively using medical charts and serial photographs. Postoperative erythema was observed in all patients after Er:YAG laser resurfacing with a mean duration of 4.72 months. In 98.2% of patients, erythema faded completely within 12 months. Postinflammatory hyperpigmentation was observed in 38.1% of patients after Er:YAG laser resurfacing. Skin phototype, level of ablation, and depth of thermal damage caused by a long-pulsed laser appear to be important factors that affect the duration of erythema. Moreover, prolonged erythema was related to the risk of postinflammatory hyperpigmentation.

  16. Heat treatment of transparent Yb:YAG and YAG ceramics and its influence on laser performance

    Science.gov (United States)

    Fujioka, Kana; Mochida, Tetsuo; Fujimoto, Yasushi; Tokita, Shigeki; Kawanaka, Junji; Maruyama, Momoko; Sugiyama, Akira; Miyanaga, Noriaki

    2018-05-01

    Composite transparent ceramic materials are promising for improving the performance of high-average-power lasers. A combination of room-temperature bonding via surface treatment by a fast atom beam and diffusion bonding via heating, which effectively controls the ion diffusion distance near the interface, makes the laser materials suitable for a variety of oscillator/amplifier. During the heat treatment of yttrium aluminum garnet (YAG) ceramics, the Si ions in the solid solution of the sintering aid incorporated within the grains were seen to segregate at the grain boundary, resulting in an increase of scattering sites. The number density and size of the scattering sites strongly depended on the post-heating temperature rather than the heating time. Specifically, heating at 1300 °C did not affect the transmittance of the YAG ceramic, whereas both the size and number of scattering sites substantially increased with a heat treatment at 1400 °C. The laser oscillation experiment using cryogenically-cooled Yb:YAG ceramics exhibited heating temperature dependence of the slope efficiency owing to the increasing scattering loss.

  17. Comparison of deposited surface area of airborne ultrafine particles generated from two welding processes.

    Science.gov (United States)

    Gomes, J F; Albuquerque, P C; Miranda, Rosa M; Santos, Telmo G; Vieira, M T

    2012-09-01

    This article describes work performed on the assessment of the levels of airborne ultrafine particles emitted in two welding processes metal-active gas (MAG) of carbon steel and friction-stir welding (FSW) of aluminium in terms of deposited area in alveolar tract of the lung using a nanoparticle surface area monitor analyser. The obtained results showed the dependence from process parameters on emitted ultrafine particles and clearly demonstrated the presence of ultrafine particles, when compared with background levels. The obtained results showed that the process that results on the lower levels of alveolar-deposited surface area is FSW, unlike MAG. Nevertheless, all the tested processes resulted in important doses of ultrafine particles that are to be deposited in the human lung of exposed workers.

  18. In vitro studies of morphological changes in enamel surface after Er:YAG and Nd:YAG laser irradiation, by SEM; Estudo in vitro do efeito do laser Nd:YAG e Er:YAG sobre o esmalte dental humano atraves de microscopia eletronica de varredura

    Energy Technology Data Exchange (ETDEWEB)

    Verlangieri, Eleonora Jaeger

    2001-07-01

    The caries prevention by using laser irradiation has been investigated by many authors using various lasers with different irradiations conditions. The purpose of this study was to investigated the morphological changes in enamel surface after Er:YAG and Nd:YAG laser irradiation, in vitro, by SEM. Fifteen freshly extracted, intact, caries-free, human third molars, were used in this study. The coronary portions were sectioned, from buccal to lingual direction, in two half-parts. Each one was irradiated by a different laser. The first one was irradiated with water-air spray, by a Nd:YAG laser, at 1.084 nm wave length, at 10 W, 10 Hz, 100 mJ for 60 sec., with an optical fiber in contact mode (0,32 mm of diameter); and the other half, with water-air spray by an Er:YAG laser at 2,94 micrometers wave length at the parameters of 4 Hz, 80 mJ, 24.95 J/cm{sup 2} for 60 sec. The results of this study suggested that both lasers promoted morphological changes in the enamel surface enhancing resistance and can be an alternative clinical method for caries preventions. (author)

  19. A mechanism for the production of ultrafine particles from concrete fracture.

    Science.gov (United States)

    Jabbour, Nassib; Rohan Jayaratne, E; Johnson, Graham R; Alroe, Joel; Uhde, Erik; Salthammer, Tunga; Cravigan, Luke; Faghihi, Ehsan Majd; Kumar, Prashant; Morawska, Lidia

    2017-03-01

    While the crushing of concrete gives rise to large quantities of coarse dust, it is not widely recognized that this process also emits significant quantities of ultrafine particles. These particles impact not just the environments within construction activities but those in entire urban areas. The origin of these ultrafine particles is uncertain, as existing theories do not support their production by mechanical processes. We propose a hypothesis for this observation based on the volatilisation of materials at the concrete fracture interface. The results from this study confirm that mechanical methods can produce ultrafine particles (UFP) from concrete, and that the particles are volatile. The ultrafine mode was only observed during concrete fracture, producing particle size distributions with average count median diameters of 27, 39 and 49 nm for the three tested concrete samples. Further volatility measurements found that the particles were highly volatile, showing between 60 and 95% reduction in the volume fraction remaining by 125 °C. An analysis of the volatile fraction remaining found that different volatile material is responsible for the production of particles between the samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Nd:YAG Lasers Treating of Carious Lesion and Root Canal In Vitro

    Directory of Open Access Journals (Sweden)

    Danqing Xia

    2012-01-01

    Full Text Available Dental caries is a transmissible bacterial disease process, with cavities at the end, and caused by acids from bacterial metabolism. The essence of dental treatment is to clean and disinfect bacterial contamination from the tooth. In this work, we tried to demonstrate the cleaning and disinfecting effects of Nd:YAG laser irradiation on dental carious lesion and root canal in vitro. Acousto-optic Q-switched quasicontinuous and Cr3+:YAG crystal Q-switched pulse Nd:YAG lasers were employed to treat caries lesion and the root canal, respectively. Results showed that acousto-optic Q-switched quasicontinuous Nd:YAG laser irradiation and Cr3+:YAG crystal Q-switched pulse Nd:YAG laser irradiation could rapidly clean decayed material and bacterial contamination from dental carious lesion and the narrow tail end of root canal with minimally invasive in vitro, respectively. It was concluded that acousto-optic Q-switched quasicontinuous laser irradiation may be a rapid and effective alternative caries treatment, and Cr3+:YAG crystal Q-switched pulse Nd:YAG laser irradiation may be an effective method for canal cleaning and disinfecting during root canal therapy.

  1. In vitro studies of morphological changes in enamel surface after Er:YAG and Nd:YAG laser irradiation, by SEM

    International Nuclear Information System (INIS)

    Verlangieri, Eleonora Jaeger

    2001-01-01

    The caries prevention by using laser irradiation has been investigated by many authors using various lasers with different irradiations conditions. The purpose of this study was to investigated the morphological changes in enamel surface after Er:YAG and Nd:YAG laser irradiation, in vitro, by SEM. Fifteen freshly extracted, intact, caries-free, human third molars, were used in this study. The coronary portions were sectioned, from buccal to lingual direction, in two half-parts. Each one was irradiated by a different laser. The first one was irradiated with water-air spray, by a Nd:YAG laser, at 1.084 nm wave length, at 10 W, 10 Hz, 100 mJ for 60 sec., with an optical fiber in contact mode (0,32 mm of diameter); and the other half, with water-air spray by an Er:YAG laser at 2,94 micrometers wave length at the parameters of 4 Hz, 80 mJ, 24.95 J/cm 2 for 60 sec. The results of this study suggested that both lasers promoted morphological changes in the enamel surface enhancing resistance and can be an alternative clinical method for caries preventions. (author)

  2. Controlled synthesis of uniform ultrafine CuO nanowires as anode material for lithium-ion batteries

    International Nuclear Information System (INIS)

    Wang Fei; Tao Weizhe; Zhao Mingshu; Xu Minwei; Yang Shengchun; Sun Zhanbo; Wang Liqun; Song Xiaoping

    2011-01-01

    Highlights: → The ultrafine CuO nanowires were controlled synthesized by a simple solution route. → CuO nanowires exhibit high capacity, superior cyclability and improved rate capability. → Voltage-capacity curves show larger extra reversible reactions at low potentials in CuO nanowires. → CV curves show lower over-potential in CuO nanowires. - Abstract: A simple solution route is used to synthesize ultrafine Cu(OH) 2 nanowires by restraining the morphology transformation of early formed 1D nanostructure. The obtained ultrafine nanowires can be well preserved at a low temperature structure transformation in solid state. As anode material for lithium-ion batteries, the ultrafine CuO nanowires exhibit high reversible capacity, superior cycling performance and improved rate capability. The improved electrochemical properties of CuO nanowires are ascribed to their ultrafine size which lead to the reduced over-potential, extra reversible reactions at low potentials and improved interface performance between the electrode and electrolyte.

  3. Martensitic Transformation in Ultrafine-Grained Stainless Steel AISI 304L Under Monotonic and Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Heinz Werner Höppel

    2012-02-01

    Full Text Available The monotonic and cyclic deformation behavior of ultrafine-grained metastable austenitic steel AISI 304L, produced by severe plastic deformation, was investigated. Under monotonic loading, the martensitic phase transformation in the ultrafine-grained state is strongly favored. Under cyclic loading, the martensitic transformation behavior is similar to the coarse-grained condition, but the cyclic stress response is three times larger for the ultrafine-grained condition.

  4. Seasonal variation and volatility of ultra-fine particles in coastal Antarctic troposphere

    Directory of Open Access Journals (Sweden)

    Keiichiro Hara

    2010-12-01

    Full Text Available The Size distribution and volatility of ultrafine aerosol particles were measured at Syowa Station during the 46-47 Japanese Antarctic Research Expeditions. During the summer, most of the ultrafine particles were volatile particles, which were composed of H_2SO_4, CH_3SO_3H and sulfates bi-sulfates. The abundance of non-volatile particles was ~ 20% during the summer, increasing to>90% in winter-spring. Non-volatile particles in winter were dominantly sea-salt particles. Some ultrafine sea-salt particles might be released from sea-ice. When air mass was transported from the free troposphere over the Antarctic continent, the abundance of non-volatile particles dropped to<30% even in winter.

  5. Properties of aerosol particles generated during 213 nm laser ablation: a study of compact and powdered tungsten carbides as materials with a two-component matrix

    International Nuclear Information System (INIS)

    Hola, M.; Konecna, V.; Kanicky, V.; Mikuska, P.; Kaiser, J.; Hanzlikova, R.

    2009-01-01

    Full text: The laser ablation process of tungsten carbide hardmetals was studied using 213 nm Nd:YAG laser. The samples were presented for ablation as sintered compacts or powders pressed into pellets to compare the generation of particles from samples with similar chemical composition but different physical properties. The influence of laser ablation parameters on the aerosol generation was studied using an optical aerosol spectrometer. In the case of powders, the effect of binder amount was investigated. The structure of generated particles and the properties of ablation-craters were additionally studied by SEM. (author)

  6. Enhanced radiation tolerance of ultrafine grained Fe–Cr–Ni alloy

    International Nuclear Information System (INIS)

    Sun, C.; Yu, K.Y.; Lee, J.H.; Liu, Y.; Wang, H.; Shao, L.; Maloy, S.A.; Hartwig, K.T.; Zhang, X.

    2012-01-01

    Highlights: ► Ultrafine grained Fe-Cr-Ni alloy was processed by equal channel angular pressing technique. ► The overall Helium bubble density and dislocation loop density were reduced by grain refinement. ► The ultrafine grained microstructure alleviated radiation-induced hardening. - Abstract: The evolutions of microstructure and mechanical properties of Fe–14Cr–16Ni (wt.%) alloy subjected to Helium ion irradiations were investigated. Equal channel angular pressing (ECAP) process was used to significantly reduce the average grain size from 700 μm to 400 nm. At a peak fluence level of 5.5 displacement per atom (dpa), helium bubbles, 0.5–2 nm in diameter, were observed in both coarse-grained (CG) and ultrafine grained (UFG) alloy. The density of He bubbles, dislocation loops, as well as radiation hardening were reduced in the UFG Fe–Cr–Ni alloy comparing to those in its CG counterpart. The results imply that radiation tolerance in bulk metals can be effectively enhanced by refinement of microstructures.

  7. Influence of Gamma-Ray Irradiation on Absorption and Fluorescent Spectra of Nd:YAG and Yb:YAG Laser Crystals

    Institute of Scientific and Technical Information of China (English)

    SUN Dun-Lu; ZHANG Qing-Li; XIAO Jing-Zhong; LUO Jian-Qiao; JIANG Hai-He; YIN Shao-Tang

    2008-01-01

    We investigate the influence of gamma-ray irradiation on the absorption and fluorescent spectra of Nd3+ : Y3Al5O12 (Nd:YAG) and Yb3+ :Y3Al5O12 (Yb:YAG) crystals grown by the Czochralski method. Two additional absorption (AA) bands induced by gamma-ray irradiation appear at 255nm and 340nm. The former is eontributed due to Fe3+ impurity, the latter is due to Fe2+ ions and F-type colour centres. The intensity of the excitation and emission spectra as well as the fluorescent lifetime of Nd:YAG crystal decrease after the irradiation of 100 Mrad gamma-ray. In contrast, the same dose irradiation does not impair the fluorescent properties of Yb: YA G crystal. These results indicate that Yb: YA G crystal possesses the advantage over Nd: YA G crystal that has better reliability for applications in harsh radiant environment.

  8. Evaluation of the permeability and morphological alteration of the dental surface after apicoectomy, treatment and preparation with Er:YAG and Nd:YAG lasers

    International Nuclear Information System (INIS)

    Oliveira, Rodrigo Guerra de

    2001-01-01

    One of the objectives of endodontic treatment is to resolve pathological periapical processes caused by microbial contamination of the dental pulp. Correct execution of the necessary chemical preparation prior to surgery generally results in positive outcomes. However, a percentage of cases do not respond favorably and therefore require retreatment, a conservative therapeutic option. There are meanwhile a number of treatment failures which do not respond to these conservative measures and must therefore be subjected to paraendodontic surgical procedures. One of the principal problems of this therapeutic conduct is linked to the surface permeability of the dentin after apicoectomy and the lack of adequate marginal adaptation between the retrofilling material and the cavity walls. This permits the percolation of microorganisms and their metabolic by products from the system of root canals to the periapical region, thereby compromising the necessary tissue repair. The present work proposes the evaluation of the surface and marginal permeability of cut dentin after apicoectomy and treatment with Er:YAG and Nd:YAG lasers with fiber optics and then retrofilled with intermediate restorative material (IRM). A total of 24 single rooted teeth whose canals were endodontically treated were divided into 3 experimental groups: group I, whose apices were sectioned with an Er:YAG laser and the resulting cavity and the cut dental surface were irradiated with this laser via a 50/10 type fiber; in group II the apicoectomy was conducted with an Er:YAG laser and the resulting cavity and the cut surface were irradiated with a Nd:YAG laser; in group III, the samples were apicoectomized and the cavities were treated with a high speed bur (control group). Analysis of the infiltration of the dye methylene blue throughout the cut dental surface and the reconstruction demonstrated that the samples in the irradiated groups presented lower indices of infiltration than the control group. The

  9. DEBONDING OF CERAMIC BRACKETS BY ER:YAG LASER

    Directory of Open Access Journals (Sweden)

    Fidan ALAKUŞ-SABUNCUOĞLU

    2016-04-01

    Full Text Available Purpose: The objective of the present study is to evaluate the effects of Er:YAG laser debonding of ceramic brackets on the bond strength and the amount of adhesive resin remnant. Materials and Methods: Twenty human mandibular incisors were randomly divided into two groups of 10 and polycrystalline ceramic brackets (Transcend series 6000, 3M Unitek, Monrovia, CA, USA were bonded on enamel surfaces. Group 1 was the control group in which no laser application was performed prior to the shear bond strength (SBS testing. In Group 2, Er:YAG was applied in 3W power for 6 seconds using the scanning method. The brackets were tested for SBS with an Instron universal testing machine and results were expressed in megapascals (MPa. The amount of adhesive remnant was evaluated with Adhesive Remnant Index (ARI. One-way analysis of variance and Tukey’s post-hoc tests were used for statistical analysis. Results: Mean ± standard deviation of SBS values in the control group was 13.42 ±1.23 MPa and 8.47 ±0.71 MPa in the Er:YAG group and this difference was statistically significant (p<0.05. The evaluation of ARI scores demonstrated more adhesive was left on the enamel surface with Er:YAG group. Conclusion: 3W power Er:YAG laser application with the scanning method to polycrystalline ceramic brackets demonstrated lower bond strengths and higher ARI scores during the debonding procedure.

  10. Successful treatment of acne keloidalis nuchae with erbium:YAG laser: a comparative study.

    Science.gov (United States)

    Gamil, Hend D; Khater, Elsayed M; Khattab, Fathia M; Khalil, Mona A

    2018-05-14

    Acne keloidalis nuchae (AKN) is a chronic inflammatory disease involving hair follicles of the neck. It is a form of keloidal scarring alopecia that is often refractory to medical or surgical management. To evaluate the efficacy of Er:YAG laser in the treatment of AKN as compared to long pulsed Nd:YAG laser. This study was conducted on 30 male patients with AKN. Their ages ranged from 19 to 47 years with a mean age of 36.87 ± 7.8 years. Patients were divided randomly into two groups of 15 patients, each receiving six sessions of either Er:YAG or long-pulsed Nd:YAG laser therapy. A statistically significant decrease in the number of papules was detected at the end of therapy in both groups, with a mean of 91.8% improvement in the Er:YAG group versus 88% in the Nd:YAG group. A significant decrease in plaques count was detected only in the Er: YAG group while a significant decrease in plaques size and consistency was recorded in both groups. The Er: YAG laser proved to be a potentially effective and safe modality both in the early and late AKN lesions.

  11. A rapid tattoo removal technique using a combination of pulsed Er:YAG and Q-Switched Nd:YAG in a split lesion protocol.

    Science.gov (United States)

    Sardana, Kabir; Ranjan, Rashmi; Kochhar, Atul M; Mahajan, Khushbu Goel; Garg, Vijay K

    2015-01-01

    Tattoo removal has evolved over the years and though Q-switched laser is the 'workhorse' laser, it invariably requires multiple sittings, which are dependent on numerous factors, including the skin colour, location of the tattoo, age of the tattoo, colour of pigment used, associated fibrosis and the kind of tattoo treated. Though ablative lasers, both pulsed CO2 and Er:YAG, have been used for recalcitrant tattoos, very few studies have been done comparing them with pigment-specific lasers. Our study was based on the premise that ablating the epidermis overlying the tattoo pigment with Er:YAG could help in gaining better access to the pigment which would enable the Q-switched laser to work effectively with less beam scattering. A study of rapid tattoo removal (RTR) technique using a combination of pulsed Er:YAG and Q-Switched Nd:YAG in a split lesion protocol. This prospective study was undertaken during 2010-13 at a laser Clinic in the Maulana Azad Medical College, New Delhi. A total of 10 patients were recruited, 5 of amateur tattoo and 5 of professional tattoo. After informed consent each tattoo was arbitrarily 'split' into two parts. One part was treated with QS Nd:YAG laser(1064 nm) and the other part with Er:YAG laser immediately followed by the QS Nd:YAG. The laser treatments were repeated at 6-week intervals until the tattoo pigment had cleared. On the combination side in subsequent sittings only the QS Nd:YAG was used, to minimize repetitive ablation. To ensure consistency in the intervention methods a trained dermatologist who was independent of the treatment delivery randomly rated 10% of the procedures. The mean improvement achieved by the Q-switched laser (2.93) was less than the combination laser (3.85) side (p = 0.001) and needed more sessions (3.8 vs. 1.6; p = 0.001). There was a statistically significant difference in the improvement on the combination side till the second session. On the combination side patients required a maximum of 2 sessions

  12. Co-precipitation synthesis of YAG:Dy nanophosphor and its thermometric properties

    International Nuclear Information System (INIS)

    Chong, Joo-Yun; Zhang, Yuelan; Wagner, Brent K.; Kang, Zhitao

    2013-01-01

    Highlights: •YAG:Dy nanophosphors were synthesized with particle size of about 50 nm. •Optimized doping concentration of 6%Dy was determined. •Thermometric photoluminescence properties were studied between 20 and 350 °C. •Temperature-sensitive change in peak ratio of 496/457 nm emissions was demonstrated. •Suitable for potential thermographic applications when dispersed in a liquid media. -- Abstract: Dy 3+ doped yttrium aluminum garnet (YAG) nanophosphors were synthesized by a co-precipitation method for potential thermographic applications in a liquid media dispersed with fluorescent nanoparticles. The doping concentration and annealing temperature on the structural and optical properties of YAG:Dy were investigated. Pure phase YAG:Dy nanophosphors were obtained by annealing the co-precipitated hydroxide products at above 900 °C. Maximum photoluminescence intensity was observed from 6%Dy doped YAG samples. The effect of measuring temperature between 20 and 350 °C on the photoluminescence spectra of nano YAG:Dy was investigated. A temperature-sensitive change in the peak intensity ratio of 496/457 nm emission lines was demonstrated for such nanophosphors for the first time, suggesting potential applications in temperature monitoring of fuel spray

  13. Co-precipitation synthesis of YAG:Dy nanophosphor and its thermometric properties

    Energy Technology Data Exchange (ETDEWEB)

    Chong, Joo-Yun [School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Zhang, Yuelan [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Wagner, Brent K. [Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Kang, Zhitao, E-mail: zhitao.kang@gtri.gatech.edu [Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, GA 30332 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2013-12-25

    Highlights: •YAG:Dy nanophosphors were synthesized with particle size of about 50 nm. •Optimized doping concentration of 6%Dy was determined. •Thermometric photoluminescence properties were studied between 20 and 350 °C. •Temperature-sensitive change in peak ratio of 496/457 nm emissions was demonstrated. •Suitable for potential thermographic applications when dispersed in a liquid media. -- Abstract: Dy{sup 3+} doped yttrium aluminum garnet (YAG) nanophosphors were synthesized by a co-precipitation method for potential thermographic applications in a liquid media dispersed with fluorescent nanoparticles. The doping concentration and annealing temperature on the structural and optical properties of YAG:Dy were investigated. Pure phase YAG:Dy nanophosphors were obtained by annealing the co-precipitated hydroxide products at above 900 °C. Maximum photoluminescence intensity was observed from 6%Dy doped YAG samples. The effect of measuring temperature between 20 and 350 °C on the photoluminescence spectra of nano YAG:Dy was investigated. A temperature-sensitive change in the peak intensity ratio of 496/457 nm emission lines was demonstrated for such nanophosphors for the first time, suggesting potential applications in temperature monitoring of fuel spray.

  14. Volatility and mixing states of ultrafine particles from biomass burning

    International Nuclear Information System (INIS)

    Maruf Hossain, A.M.M.; Park, Seungho; Kim, Jae-Seok; Park, Kihong

    2012-01-01

    Highlights: ► Size distribution, volatility, and mixing states of ultrafine particles emitted from rice straw, oak, and pine burning under different burning conditions were investigated. ► Smoldering combustion emitted larger mode particles in higher numbers than smaller mode particles, while the converse was true for flaming combustion. ► While the flaming combustion and open burning results imply there is internal mixing of OC and BC, smoldering combustion in rice straw produced ultrafine particles devoid of BC. ► Mixing state of ultrafine particles from biomass burning can alter the single scattering albedo, and might even change the sign of radiative forcing. - Abstract: Fine and ultrafine carbonaceous aerosols produced from burning biomasses hold enormous importance in terms of assessing radiation balance and public health hazards. As such, volatility and mixing states of size-selected ultrafine particles (UFP) emitted from rice straw, oak, and pine burning were investigated by using volatility tandem differential mobility analyzer (VTDMA) technique in this study. Rice straw combustion produced unimodal size distributions of emitted aerosols, while bimodal size distributions from combustions of oak (hardwood) and pine (softwood) were obtained. A nearness of flue gas temperatures and a lower CO ratio of flaming combustion (FC) to smoldering combustion (SC) were characteristic differences found between softwood and hardwood. SC emitted larger mode particles in higher numbers than smaller mode particles, while the converse was true for FC. Rice straw open burning UFPs exhibited a volatilization behavior similar to that between FC and SC. In addition, internal mixing states were observed for size-selected UFPs in all biomasses for all combustion conditions, while external mixing states were only observed for rice straw combustion. Results for FC and open burning suggested there was an internal mixing of volatile organic carbon (OC) and non-volatile core (e

  15. [Experimental results of erbium:YAG laser vitrectomy].

    Science.gov (United States)

    Mrochen, M; Petersen, H; Wüllner, C; Seiler, T

    1998-01-01

    Vitrectomy performed by conventional guillotine devices includes the risk of mechanical damage to retina as well as other ocular structures. The present study aims to investigate the efficacy of the Er:YAG laser for vitreous liquefaction. Vitreous liquefaction by means of Er:YAG laser pulses was performed using a special handpiece. The output of an Er:YAG laser operating at 2.94 microns was coupled into a ZrF optical fibre (length 2 m) which ended inside a cavity located at the quartz tip (diameter 320 microns) of the handpiece where tissue ablation took place. The viscosity of the liquefied vitreous was determined by rotation viscosimetry and compared to liquefied vitreous obtained by mechanical vitrectomy. In addition, the aspiration flow (ml/min) was correlated to the repetition/cutting rate of the laser and the cutter. The temperature rise at the handpiece was recorded with a micro thermocouple. The cutting threshold was determined to 5 mJ +/- 3 mJ at a pulse duration of 200 microseconds. The viscosity of the vitreous liquefied with the Er:YAG laser was 31 +/- 10 mPa s which is similar to the results of mechanical vitrectomy (42 +/- 19 mPa s) but significant less than that of normal vitreous (880 +/- 280 mPa s). The aspiration of the laser handpiece in dependence to the repetition rate increases linear up to 2.6 ml/min at 30 Hz. The temperature increase at the handpiece was < 1 K under vitrectomy conditions (aspiration and irrigation) with an averaged laser power of 0.3 W (10 mJ at 30 Hz). The decreased vacuum forces used by the laser vitrectomy system may result in less mechanical stress to the retina as well as intravitreal structures which may be attached to it. An Er:YAG laser vitrectomy system may offer the potential of fewer complications during vitrectomy.

  16. Tunable, diode side-pumped Er:YAG laser

    Science.gov (United States)

    Hamilton, C.E.; Furu, L.H.

    1997-04-22

    A discrete-element Er:YAG laser, side pumped by a 220 Watt peak-power InGaAs diode array, generates >500 mWatts at 2.94 {micro}m, and is tunable over a 6 nm range near about 2.936 {micro}m. The oscillator is a plano-concave resonator consisting of a concave high reflector, a flat output coupler, a Er:YAG crystal and a YAG intracavity etalon, which serves as the tuning element. The cavity length is variable from 3 cm to 4 cm. The oscillator uses total internal reflection in the Er:YAG crystal to allow efficient coupling of the diode emission into the resonating modes of the oscillator. With the tuning element removed, the oscillator produces up to 1.3 Watts of average power at 2.94 {micro}m. The duty factor of the laser is 6.5% and the repetition rate is variable up to 1 kHz. This laser is useful for tuning to an atmospheric transmission window at 2.935 {micro}m (air wavelength). The laser is also useful as a spectroscopic tool because it can access several infrared water vapor transitions, as well as transitions in organic compounds. Other uses include medical applications (e.g., for tissue ablation and uses with fiber optic laser scalpels) and as part of industrial effluent monitoring systems. 4 figs.

  17. Fatigue mechanisms in ultrafine-grained copper

    Czech Academy of Sciences Publication Activity Database

    Lukáš, Petr; Kunz, Ludvík; Svoboda, Milan

    2009-01-01

    Roč. 47, č. 1 (2009), s. 1-9 ISSN 0023-432X R&D Projects: GA AV ČR(CZ) 1QS200410502 Institutional research plan: CEZ:AV0Z20410507 Keywords : ultrafine-grained copper * effect of purity * effect of temperature Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 1.345, year: 2007

  18. Luminescence properties and energy transfer processes in YAG:Yb,Er single crystalline films

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Gorbenko, V.; Savchyn, V.; Batentschuk, M.; Osvet, A.; Brabec, C.

    2013-01-01

    The paper is dedicated to the study of the optical properties of YAG:Yb,Er single-crystalline films (SCF) grown by liquid phase epitaxy. The absorption, cathodoluminescence and time-resolved photoluminescence spectra and photoluminescence decay curves were measured for the SCFs with different doping levels of Er 3+ (from 0.6 to 4.2 at.%) and Yb 3+ (from 0.1 to 0.6 at.%). The spectra, excited by synchrotron radiation in the fundamental absorption range of the YAG and in the intraionic absorption bands of both dopants, reveal energy transfer from the YAG host to the Er 3+ and Yb 3+ ions and between these ions. -- Highlights: •Growth of YAG:Yb,Er single crystalline films by LPE method. •Peculiarities of luminescence of YAG:Yb,Er films with different Er–Yb content. •Yb–Er energy transfer processes in YAG hosts

  19. Effectiveness of the Top-Down Nanotechnology in the Production of Ultrafine Cement (~220 nm

    Directory of Open Access Journals (Sweden)

    Byung-Wan Jo

    2014-01-01

    Full Text Available The present investigation is dealing with the communition of the cement particle to the ultrafine level (~220 nm utilizing the bead milling process, which is considered as a top-down nanotechnology. During the grinding of the cement particle, the effect of various parameters such as grinding time (1–6 h and grinding agent (methanol and ethanol on the production of the ultrafine cement has also been investigated. Performance of newly produced ultrafine cement is elucidated by the chemical composition, particle size distribution, and SEM and XRD analyses. Based on the particle size distribution of the newly produced ultrafine cement, it was assessed that the size of the cement particle decreases efficiently with increase in grinding time. Additionally, it is optimized that the bead milling process is able to produce 90% of the cement particle <350 nm and 50% of the cement particle < 220 nm, respectively, after 6.3 h milling without affecting the chemical phases. Production of the ultrafine cement utilizing this method will promote the construction industries towards the development of smart and sustainable construction materials.

  20. Enhanced protective properties of epoxy/polyaniline-camphorsulfonate nanocomposite coating on an ultrafine-grained metallic surface

    International Nuclear Information System (INIS)

    Pour-Ali, Sadegh; Kiani-Rashid, Alireza; Babakhani, Abolfazl; Davoodi, Ali

    2016-01-01

    Highlights: • Preparing mild steel surface with ultrafine grains by wire brushing process. • Performance of a smart coating on micro- and nano-crystalline surfaces. • Corrosion evaluation, surface analysis and ac/dc electrochemical measurements. • Ultrafine surface grains improve protective behavior of epoxy/PANI-CSA coating. - Abstract: An ultrafine-grained surface layer on mild steel substrate with average grain size of 77 nm was produced through wire brushing process. Surface grain size was determined through transmission electron microscopy and X-ray diffraction methods. This substrate was coated with epoxy and an in situ synthesized epoxy/polyaniline-camphorsulfonate (epoxy/PANI-CSA) nanocomposite. The corrosion behavior was studied by open circuit potential, potentiodynamic polarization and impedance measurements. Results of electrochemical tests evidenced the enhanced protective properties of epoxy/PANI-CSA coating on the substrate with ultrafine-grained surface.

  1. Enhanced protective properties of epoxy/polyaniline-camphorsulfonate nanocomposite coating on an ultrafine-grained metallic surface

    Energy Technology Data Exchange (ETDEWEB)

    Pour-Ali, Sadegh, E-mail: pourali2020@ut.ac.ir; Kiani-Rashid, Alireza; Babakhani, Abolfazl; Davoodi, Ali

    2016-07-15

    Highlights: • Preparing mild steel surface with ultrafine grains by wire brushing process. • Performance of a smart coating on micro- and nano-crystalline surfaces. • Corrosion evaluation, surface analysis and ac/dc electrochemical measurements. • Ultrafine surface grains improve protective behavior of epoxy/PANI-CSA coating. - Abstract: An ultrafine-grained surface layer on mild steel substrate with average grain size of 77 nm was produced through wire brushing process. Surface grain size was determined through transmission electron microscopy and X-ray diffraction methods. This substrate was coated with epoxy and an in situ synthesized epoxy/polyaniline-camphorsulfonate (epoxy/PANI-CSA) nanocomposite. The corrosion behavior was studied by open circuit potential, potentiodynamic polarization and impedance measurements. Results of electrochemical tests evidenced the enhanced protective properties of epoxy/PANI-CSA coating on the substrate with ultrafine-grained surface.

  2. 10-kW-class YAG laser application for heavy components

    Science.gov (United States)

    Ishide, Takashi; Tsubota, S.; Nayama, Michisuke; Shimokusu, Yoshiaki; Nagashima, Tadashi; Okimura, K.

    2000-02-01

    The authors have put the YAG laser of the kW class to practical use for repair welding of nuclear power plant steam generator heat exchanger tubes, all-position welding of pipings, etc. This paper describes following developed methods and systems of high power YAG laser processing. First, we apply the 6 kW to 10 kW YAG lasers for welding and cutting in heavy components. The beam guide systems we have used are optical fibers which core diameter is 0.6 mm to 0.8 mm and its length is 200 m as standard one. Using these system, we can get the 1 pass penetration of 15 mm to 20 mm and multi pass welding for more thick plates. Cutting of 100 mm thickness plate data also described for dismantling of nuclear power plants. In these systems we carried out the in-process monitoring by using CCD camera image processing and monitoring fiber which placed coaxial to the YAG optical lens system. In- process monitoring by the monitoring fiber, we measured the light intensity from welding area. Further, we have developed new hybrid welding with the TIG electrode at the center of lens for high power. The hybrid welding with TIG-YAG system aims lightening of welding groove allowances and welding of high quality. Through these techniques we have applied 7 kW class YAG laser for welding in the components of nuclear power plants.

  3. 27Al, 63Cu NMR spectroscopy and electrical transport in Heusler Cu-Mn-Al alloy powders

    Science.gov (United States)

    Nadutov, V. M.; Perekos, A. O.; Kokorin, V. V.; Trachevskii, V. V.; Konoplyuk, S. M.; Vashchuk, D. L.

    2018-02-01

    The ultrafine powder of the Heusler Cu-13,1Mn-12,6Al (wt.%) alloy produced by electrical spark dispersion (ESD) in ethanol and the pellets prepared by pressing of the powders and aged in various gas environment (air, Ar, vacuum) were studied by XRD, nuclear magnetic resonance, magnetic and electric transport methods. The constituent phases were identified as b.c.c. α-Cu-Mn-Al, f.c.c. γ-Cu-Mn-Al, Cu2MnAl, and oxides. The sizes of the coherently scattering domains (CSD) and the saturation magnetizations were in the range of 4-90 nm and 0-1.5 Am2/kg, respectively. 27Al and 63Cu NMR spectra of the powders and pellets have shown hyperfine structure caused by contributions from atomic nuclei of the constituent phases. The aging of pellets in different gas environments had effect on their phase composition but no effect on dispersion of the phases. In contrast to the as-cast alloy, electrical resistance of the pellets evidenced semiconducting behavior at elevated temperatures due to the presence of metal oxides formed on the surfaces of nanoparticles.

  4. Formation and evolution of ultrafine particles produced by radiolysis and photolysis

    International Nuclear Information System (INIS)

    Madelaine, G.J.; Perrin, M.L.; Renoux, A.

    1980-01-01

    Results are presented, concerning the formation, the size distribution, and the behavior of ultrafine particles produced by alpha disintegration of actinium and uv irradiation in filtered and natural atmospheric air. The characterization of these particles is obtained by electrical aerosol analyzer and diffusion battery method. Measurements are made in the range between 0.003 and 0.5 micrometer. Some qualitative indications are obtained on the different mechanisms which govern the evolution of ultrafine particles in the atmosphere (nucleation, coagulation, and condensation). It is now well established that the photo-oxydation of SO 2 in the atmosphere leads to the production of sulphuric acid and of sulphate, which are usually found in the form of submicronic particles. This paper concerns the evolution of ultrafine particles generated in the presence of a preexisting aerosol. They are either instantaneously produced by the alpha disintegrations of actinium 219 or continuously produced by the transformation of SO 2 under uv irradiation

  5. Combination of CO2 and Q-switched Nd:YAG lasers is more effective than Q-switched Nd:YAG laser alone for eyebrow tattoo removal.

    Science.gov (United States)

    Radmanesh, Mohammad; Rafiei, Zohreh

    2015-04-01

    The eyebrow tattoo removal using Q-switched lasers is usually prolonged. Other modalities may be required to enhance the efficacy and shorten the treatment course. To compare the efficacy of Q-switched neodymium-doped yttrium aluminum garnet (Nd:YAG) laser alone versus combination of Q-switched Nd:YAG and Ultrapulse CO2 lasers for eyebrow tattoo removal after a single session. After local anesthesia, the right eyebrow of 20 patients was treated with Ultrapulse CO2 laser with the parameters of 4 J/cm(2) and 3.2 J/cm(2) for the first and the second passes. Both eyebrows were then treated with 1064-nm and 532-nm Q-switched Nd:YAG laser. The spot size and pulse duration were 3 mm and 5 nanoseconds for both wavelengths, and the fluence was 7 J/cm(2) for 1064 nm and 3 J/cm (2) for 532 nm. The side treated with combination of Q-switched Nd:YAG and CO2 lasers improved 75-100% in 6 of 20 patients versus only 1 of 20 in the side treated with Q-switched Nd:YAG alone. Similarly, the right side in 13 of 20 patients showed more than 50% improvement with combination therapy versus the left side (the monotherapy side), where only 6 of 20 cases showed more than 50% improvement. The Mann-Whitney test was 2.85 for the right side and 1.95 for the left side (P value = 0.007). Using Ultra pulse CO2 laser enhances the efficacy of Q-switched Nd:YAG laser in eyebrow tattoo removal.

  6. Er:YAG Laser Dental Treatment of Patients Affected by Epidermolysis Bullosa

    Directory of Open Access Journals (Sweden)

    Angela Galeotti

    2014-01-01

    Full Text Available Aim. The purpose of this study was to evaluate the efficacy of Er:YAG laser used for treating hard dental tissue in patients with epidermolysis bullosa (EB. Methods. We report two cases of EB in which an Er:YAG laser was used for conservative treatments. In the first case, the Er:YAG laser (2,940 μm, 265 mJ, 25 Hz was used to treat caries on a deciduous maxillary canine in an 8-year-old male patient affected by dystrophic EB. In the second case, we treated a 26-year-old female patient, affected by junctional EB, with generalized enamel hypoplasia, and an Er:YAG laser (2,940 μm, 265 mJ, 25 Hz was used to remove the damaged enamel on maxillary incisors. Results. The use of the Er:YAG laser, with the appropriate energy, was effective in the selective removal of carious tissue and enamel hypoplasia. During dental treatment with the Er:YAG laser, patients required only a few interruptions due to the absence of pain, vibration, and noise. Conclusions. Laser treatment of hard dental tissues is a valuable choice for patients affected by EB since it is less invasive compared to conventional treatment, resulting in improved patient compliance.

  7. Laser alloying of AI with mixed Ni, Ti and SiC powders

    CSIR Research Space (South Africa)

    Mabhali, Luyolo AB

    2010-03-01

    Full Text Available composite (MMC) is formed. The MMC layer has excellent hardness and wear resistance compared to the base alloy [9-13]. Man et al. [14] used a high power continuous wave Nd:YAG laser to alloy aluminium AA 6061 with preplaced NiTi (54 wt% Ni & 46 wt...Al, Ti3Al, SiC, Al and Si phases. The hardness increased from 75HV to 650HV due to the formation of the TiC particles and TiAl and Ti3Al intermetallics. Su and Lei [9] laser cladded Al-12wt%Si with a powder containing SiC and Al-12wt%Si in a 3...

  8. Atmospheric ultrafine aerosol number concentration and its ...

    Indian Academy of Sciences (India)

    B. Pant Institute of Himalayan Environment & Development, Himachal Unit, ... a significant increase indicating impact of vehicular onslaught on pure air of this hilly region. 1. .... Meteorological conditions during ultrafine measurement days in 2008 at: (a) Mohal and ..... Claiborne C and Koenig J 1999 Episodes of high coarse.

  9. Shear Bond Strength of Composite and Ceromer Superstructures to Direct Laser Sintered and Ni-Cr-Based Infrastructures Treated with KTP, Nd:YAG, and Er:YAG Lasers: An Experimental Study.

    Science.gov (United States)

    Gorler, Oguzhan; Hubbezoglu, Ihsan; Ulgey, Melih; Zan, Recai; Guner, Kubra

    2018-04-01

    The aim of this study was to examine the shear bond strength (SBS) of ceromer and nanohybrid composite to direct laser sintered (DLS) Cr-Co and Ni-Cr-based metal infrastructures treated with erbium-doped yttrium aluminum garnet (Er:YAG), neodymium-doped yttrium aluminum garnet (Nd:YAG), and potassium titanyl phosphate (KTP) laser modalities in in vitro settings. Experimental specimens had four sets (n = 32) including two DLS infrastructures with ceromer and nanohybrid composite superstructures and two Ni-Cr-based infrastructures with ceromer and nanohybrid composite superstructures. Of each infrastructure set, the specimens randomized into four treatment modalities (n = 8): no treatment (controls) and Er:YAG, Nd:YAG, and KTP lasers. The infrastructures were prepared in the final dimensions of 7 × 3 mm. Ceromer and nanohybrid composite was applied to the infrastructures after their surface treatments according to randomization. The SBS of specimens was measured to test the efficacy of surface treatments. Representative scanning electron microscopy (SEM) images after laser treatments were obtained. Overall, in current experimental settings, Nd:YAG, KTP, and Er:YAG lasers, in order of efficacy, are effective to improve the bonding of ceromer and nanohybrid composite to the DLS and Ni-Cr-based infrastructures (p laser is more effective in the DLS/ceromer infrastructures (p laser, as second more effective preparation, is more effective in the DLS/ceromer infrastructures (p laser modalities, in order of success, Nd:YAG, KTP, and Er:YAG, are effective to increase bonding of these structures.

  10. Bake hardening of ultra-fine grained low carbon steel produced by constrained groove pressing

    International Nuclear Information System (INIS)

    Alihosseini, H.; Dehghani, K.

    2012-01-01

    Highlights: ► BH of UFG low carbon steel sheets was studied. ► Three passes of CGP are used for producing of UFG sheets. ► Maximum BH was achieved to the UFG specimen pre-strained 8% by baking at 250 °C. - Abstract: In the present work, the bake hardening of ultra-fine grained low carbon steel was compared with that of its coarse-grain counterpart. The ultra-fine grained sheets were produced by applying three passes of constrained groove pressing resulting the grains of 260–270 nm. The microstructure of ultra-fine grain specimens were characterized using electron back-scatter diffraction technique. Then, the bake hardenability of ultra-fine grain and coarse-grain samples were compared by pre-straining to 4, 6 and 8% followed by baking at 150 °C and 250 °C for 20 min. The results show that in case of baking at 250 °C, there was an increase about 108%, 93%, and 72% in the bake hardening for 4%, 6% and 8% pre-strain, respectively. As for baking at 150 °C, these values were 170%, 168%, and 100%, respectively for 4%, 6% and 8% pre-strain. The maximum in bake hardenability (103 MPa) and final yield stress (563 MPa) were pertaining to the ultra-fine grain specimen pre-strained 8% followed by baking at 250 °C.

  11. Nd-YAG laser welding of bare and galvanised steels

    International Nuclear Information System (INIS)

    Kennedy, S.C.; Norris, I.M.

    1989-01-01

    Until recently, one of the problems that has held back the introduction of lasers into car body fabrication has been the difficulty of integrating the lasers with robots. Nd-YAG laser beams can be transmitted through fibre optics which, as well as being considerably easier to manipulate than a mirror system, can be mounted on more lightweight accurate robots. Although previously only available at low powers, recent developments in Nd-YAG laser technology mean that lasers of up to 1kW average power will soon be available, coupled to a fibre optic beam delivery system. The increasing usage of zinc coated steels in vehicle bodies has led to welding problems using conventional resistance welding as well as CO 2 laser welding. The use of Nd-YAG lasers may be able to overcome these problems. This paper outlines work carried out at The Welding Institute on a prototype Lumonics 800W pulsed Nd-YAG laser to investigate its welding characteristics on bare and zinc coated car body steels

  12. Laser-diode pumped 40-W Yb:YAG ceramic laser.

    Science.gov (United States)

    Hao, Qiang; Li, Wenxue; Pan, Haifeng; Zhang, Xiaoyi; Jiang, Benxue; Pan, Yubai; Zeng, Heping

    2009-09-28

    We demonstrated a high-power continuous-wave (CW) polycrystalline Yb:YAG ceramic laser pumped by fiber-pigtailed laser diode at 968 nm with 400 mum fiber core. The Yb:YAG ceramic laser performance was compared for different Yb(3+) ion concentrations in the ceramics by using a conventional end-pump laser cavity consisting of two flat mirrors with output couplers of different transmissions. A CW laser output of 40 W average power with M(2) factor of 5.8 was obtained with 5 mol% Yb concentration under 120 W incident pump power. This is to the best of our knowledge the highest output power in end-pumped bulk Yb:YAG ceramic laser.

  13. Compact corner-pumped Nd:YAG/YAG composite slab 1319 nm/1338 nm laser

    International Nuclear Information System (INIS)

    Liu, H; Gong, M; Wushouer, X; Gao, S

    2010-01-01

    A corner-pumped type is a new pumping type in the diode-pumped solid-state lasers, which has the advantages of high pump efficiency and favorable pump uniformity. A corner-pumped Nd:YAG/YAG composite slab continuous-wave 1319 nm/1338 nm dual-wavelength laser is first demonstrated in this paper. When the cavity length is 25 mm, the maximal output power is up to 7.62 W with a slope efficiency of 16.6% and an optical-to-optical conversion efficiency of 17%. The corresponding spectral line widths of 1319 nm laser and 1338 nm laser are 0.11 and 0.1 nm, respectively. The short-term instability of the output power is better than 1% when the pumping power is 39.5 W. The experimental results show that a corner-pumped type is a kind of feasible schedules in the design of diode-pumped solid-state 1.3 μm lasers with low or medium output powers

  14. Optimization of operating variables for production of ultra-fine talc in a stirred mill. Specific surface area investigations

    Directory of Open Access Journals (Sweden)

    Toraman Oner Yusuf

    2016-01-01

    Full Text Available Due to its properties such as chemical inertness, softness, whiteness, high thermal conductivity, low electrical conductivity and adsorption properties talc has wide industrial applications in paper, cosmetics, paints, polymer, ceramics, refractory materials and pharmaceutical. The demand for ultra-fine talc is emerging which drives the mineral industry to produce value added products. In this study, it was investigated how certain grinding parameters such as mill speed, ball filling ratio, powder filling ratio and grinding time of dry stirred mill affect grindability of talc ore (d97=127 μm. A series of laboratory experiments using a 24 full factorial design was conducted to determine the optimal operational parameters of a stirred mill in order to minimize the specific surface area. The main and interaction effects on the volume specific surface area (SV, m2.cm−3 of the ground product were evaluated using the Yates analysis. Under the optimal conditions at the stirrer speed of 600 rpm, grinding time of 20 min, sample mass of 5% and ball ratio of 70%, the resulting talc powder had larger volume specific surface area (i.e., 3.48 m2.cm−3 than the starting material (i.e., 1.84 m2.cm−3.

  15. Nd:YAG Laser Firmware Design under RTOS Operation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B. G.; Kim, W. Y.; Park, G. R.; Moon, D. S.; Hong, J. H.; Kim, H. J.; Cho, J. S. [Pusan National University (Korea)

    2000-07-01

    A pulsed Nd:YAG laser is used widely for materials processing and medical instrument. It's very important to control the laser energy density in those fields using a pulsed Nd:YAG laser. A pulse repetition rate and a pulse width are regarded as the most dominant factors to control the energy density of laser beam. In this paper, the alternating charge and discharge system was designed to adjust a pulse repetition rate. This system is controlled by microprocessor and allows to replace an expensive condenser for high frequency to cheap one of low frequency. In addition, The microcontroller monitors the flow of cooling water, short circuit, and miss firing and so on. We designed Nd:YAG laser firmware with smart microcontroller, and want to explain general matters about the firmware from now. (author). 8 refs., 6 figs.

  16. Yb:YAG Lasers for Space Based Remote Sensing

    Science.gov (United States)

    Ewing, J.J.; Fan, T. Y.

    1998-01-01

    Diode pumped solid state lasers will play a prominent role in future remote sensing missions because of their intrinsic high efficiency and low mass. Applications including altimetry, cloud and aerosol measurement, wind velocity measurement by both coherent and incoherent methods, and species measurements, with appropriate frequency converters, all will benefit from a diode pumped primary laser. To date the "gold standard" diode pumped Nd laser has been the laser of choice for most of these concepts. This paper discusses an alternate 1 micron laser, the YB:YAG laser, and its potential relevance for lidar applications. Conceptual design analysis and, to the extent possible at the time of the conference, preliminary experimental data on the performance of a bread board YB:YAG oscillator will be presented. The paper centers on application of YB:YAG for altimetry, but extension to other applications will be discussed.

  17. Laser Powder Cladding of Ti-6Al-4V α/β Alloy

    Science.gov (United States)

    Al-Sayed Ali, Samar Reda; Hussein, Abdel Hamid Ahmed; Nofal, Adel Abdel Menam Saleh; Elgazzar, Haytham Abdelrafea; Sabour, Hassan Abdel

    2017-01-01

    Laser cladding process was performed on a commercial Ti-6Al-4V (α + β) titanium alloy by means of tungsten carbide-nickel based alloy powder blend. Nd:YAG laser with a 2.2-KW continuous wave was used with coaxial jet nozzle coupled with a standard powder feeding system. Four-track deposition of a blended powder consisting of 60 wt % tungsten carbide (WC) and 40 wt % NiCrBSi was successfully made on the alloy. The high content of the hard WC particles is intended to enhance the abrasion resistance of the titanium alloy. The goal was to create a uniform distribution of hard WC particles that is crack-free and nonporous to enhance the wear resistance of such alloy. This was achieved by changing the laser cladding parameters to reach the optimum conditions for favorable mechanical properties. The laser cladding samples were subjected to thorough microstructure examinations, microhardness and abrasion tests. Phase identification was obtained by X-ray diffraction (XRD). The obtained results revealed that the best clad layers were achieved at a specific heat input value of 59.5 J·mm−2. An increase by more than three folds in the microhardness values of the clad layers was achieved and the wear resistance was improved by values reaching 400 times. PMID:29036935

  18. Laser Powder Cladding of Ti-6Al-4V α/β Alloy.

    Science.gov (United States)

    Al-Sayed Ali, Samar Reda; Hussein, Abdel Hamid Ahmed; Nofal, Adel Abdel Menam Saleh; Hasseb Elnaby, Salah Elden Ibrahim; Elgazzar, Haytham Abdelrafea; Sabour, Hassan Abdel

    2017-10-15

    Laser cladding process was performed on a commercial Ti-6Al-4V (α + β) titanium alloy by means of tungsten carbide-nickel based alloy powder blend. Nd:YAG laser with a 2.2-KW continuous wave was used with coaxial jet nozzle coupled with a standard powder feeding system. Four-track deposition of a blended powder consisting of 60 wt % tungsten carbide (WC) and 40 wt % NiCrBSi was successfully made on the alloy. The high content of the hard WC particles is intended to enhance the abrasion resistance of the titanium alloy. The goal was to create a uniform distribution of hard WC particles that is crack-free and nonporous to enhance the wear resistance of such alloy. This was achieved by changing the laser cladding parameters to reach the optimum conditions for favorable mechanical properties. The laser cladding samples were subjected to thorough microstructure examinations, microhardness and abrasion tests. Phase identification was obtained by X-ray diffraction (XRD). The obtained results revealed that the best clad layers were achieved at a specific heat input value of 59.5 J·mm -2 . An increase by more than three folds in the microhardness values of the clad layers was achieved and the wear resistance was improved by values reaching 400 times.

  19. Ultrafine particle emissions from modern Gasoline and Diesel vehicles: An electron microscopic perspective.

    Science.gov (United States)

    Liati, Anthi; Schreiber, Daniel; Arroyo Rojas Dasilva, Yadira; Dimopoulos Eggenschwiler, Panayotis

    2018-08-01

    Ultrafine (electron microscopy (TEM) is applied to obtain a concrete picture on the nature, morphology and chemical composition of non-volatile ultrafine particles in the exhaust of state-of-the-art, Euro 6b, Gasoline and Diesel vehicles. The particles were collected directly on TEM grids, at the tailpipe, downstream of the after-treatment system, during the entire duration of typical driving cycles on the chassis dynamometer. Based on TEM imaging coupled with Energy Dispersive X-ray (EDX) analysis, numerous ultrafine particles could be identified, imaged and analyzed chemically. Particles vehicles and driving cycles. The present TEM study gives information also on the imaging and chemical composition of the solid fraction of the unregulated sub-23 nm size category particles. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. 1.8kW laser diode pumped YAG laser; Shutsuryoku 1.8kW no handotai laser reiki YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Toshiba Corporation, as a participant in Ministry of International Trade and Industry`s `photon measurement and processing technology project` since August, 1997, is engaged in the development of an energy-efficient LD (laser diode) pumped semiconductor YAG (yttrium-aluminum-garnet) laser device to be used for welding and cutting. It is a 5-year project and the goal is a mean output of 10kW and efficiency of 20%. In this article, a simulation program is developed which carries out calculation about element technology items such as the tracking of the beam from the pumping LD and the excitation distribution, temperature distribution, thermal stress distribution, etc., in the YAG rod. An oscillator is constructed, based on the results of the simulation, and it exhibits a world-high class continuous laser performance of a 1.8kW output and 13% efficiency. The record of 13% efficiency is five times higher than that achieved by the conventional lamp-driven YAG laser device. (translated by NEDO)

  1. Size evolution of ultrafine particles: Differential signatures of normal and episodic events

    International Nuclear Information System (INIS)

    Joshi, Manish; Khan, Arshad; Anand, S.; Sapra, B.K.

    2016-01-01

    The effect of fireworks on the aerosol number characteristics of atmosphere was studied for an urban mega city. Measurements were made at 50 m height to assess the local changes around the festival days. Apart from the increase in total number concentration and characteristic accumulation mode, short-term increase of ultrafine particle concentration was noted. Total number concentration varies an order of magnitude during the measurement period in which peak occurs at a frequency of approximately one per day. On integral scale, it seems not possible to distinguish an episodic (e.g. firework bursting induced aerosol emission) and a normal (ambient atmospheric changes) event. However these events could be differentiated on the basis of size evolution analysis around number concentration peaks. The results are discussed relative to past studies and inferences are drawn towards aerosol signatures of firework bursting. The short-term burst in ultrafine particle concentration can pose an inhalation hazard. - Highlights: • Effect of firework emissions on atmospheric aerosol characteristics was studied. • Significant increase in ultrafine particle concentration was observed during firework bursting. • Size distribution evolution analysis of number concentration peaks has been performed. • Differential signatures of normal and episodic event were noted. - Notable increase in ultrafine particle concentration during firework bursting was seen. Normal and episodic event could be differentiated on the basis of size evolution analysis.

  2. A Metallurgical Evaluation of the Powder-Bed Laser Additive Manufactured 4140 Steel Material

    Science.gov (United States)

    Wang, Wesley; Kelly, Shawn

    2016-03-01

    Using laser powder bed fusion (PBF-L) additive manufacturing (AM) process for steel or iron powder has been attempted for decades. This work used a medium carbon steel (AISI 4140) powder to explore the feasibility of AM. The high carbon equivalent of 4140 steel (CEIIW ≈ 0.83) has a strong tendency toward cold cracking. As such, the process parameters must be carefully controlled to ensure the AM build quality. Through an orthogonally designed experimental matrix, a laser-welding procedure was successfully developed to produce 4140 steel AM builds with no welding defects. In addition, the microstructure and micro-cleanliness of the as-welded PBF-L AM builds were also examined. The results showed an ultra-fine martensite lath structure and an ultra-clean internal quality with minimal oxide inclusion distribution. After optimizing the PBF-L AM process parameters, including the laser power and scan speed, the as-welded AM builds yielded an average tensile strength higher than 1482 MPa and an average 33 J Charpy V-notch impact toughness at -18°C. The surface quality, tensile strength, and Charpy V-notch impact toughness of AM builds were comparable to the wrought 4140 steel. The excellent mechanical properties of 4140 steel builds created by the PBF-L AM AM process make industrial production more feasible, which shows great potential for application in the aerospace, automobile, and machinery industries.

  3. CTE:YAG laser applications in dentistry

    Science.gov (United States)

    Shori, Ramesh K.; Fried, Daniel; Featherstone, John D. B.; Kokta, Milan R.; Duhn, Clifford W.

    1998-04-01

    The suitability of CTE:YAG laser radiation was investigated for caries preventive laser treatments and caries ablation. Although, CTE:YAG laser radiation at 2.69 micrometer is less highly absorbed by dental hard tissues than other erbium laser wavelengths, namely 2.79 and 2.94 micrometer, it can readily be transmitted through a conventional low hydroxyl fiber with minimal loss. These studies show that reasonable ablation rates and efficiencies are obtainable with both free running (200 microseconds) and Q-switched (100 ns) laser pulses on both dentin and enamel with the application of a relatively thick layer of water to the tissue surface. The water served to remove tissue char and debris from the ablation site leaving a clean crater. However, mechanical forces produced during the energetic ablative process resulted in peripheral mechanical damage to the tissue. Surface dissolution studies on enamel indicated that CTE:YAG radiation inhibited surface dissolution by organic acid by 60 - 70% compared to unirradiated controls, albeit, at fluences an order of magnitude higher than those required for CO2 laser radiation. This layer system may be suitable for dental hard tissue applications if mechanical damage can be mitigated. This work was supported by NIH/NIDR Grants R29DE12091 and R01DE09958.

  4. Marginal microleakage in vitro study on class V cavities prepared with Er:YAG laser and etched with acid or etched with Er:YAG laser and acid; Estudo in vitro da microinfiltracao marginal em cavidades classe V preparadas com laser de Er:YAG e condicionadas com acido ou com laser de Er:YAG e acido

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Henrique Dutra Simoes

    2001-07-01

    Microleakage at the interface between the teeth and the restorative materials remains a problem with composite resin restorations. Microleakage at the gingival margins of class V cavities restorations still challenge as they are usually placed in dentin and/or cementum. Previous studies have shown that the cavity preparation with Er:YAG laser is possible. It has been reported that Er:YAG laser has ability to create irregular surface providing micromechanical retention for adhesive dental restorative materials and to improve marginal sealing. The purpose of this in vitro study was to evaluate the marginal microleakage on class V cavities prepared with Er:YAG laser and etched with acid or with Er:YAG laser and acid, in compared to those prepared and etched conventionally. Thirty human molars were divided into three groups, namely: group I - prepared with Er:YAG laser (KaVo KEY Laser II - Germany) and etched with 37% phosphoric acid; group II - prepared with Er:YAG laser and etched with Er:YAG laser and 37% phosphoric acid; group III (control group) - prepared with high speed drill and etched with 37% phosphoric acid. All cavities were treated with same adhesive system (Single Bond - 3M) and restored with the composite resin (Z100 - 3M), according to the manufacturer's instructions. The specimens were stored at 37 deg C in water for 24 hours, polished with Sof-Lex discs (3M), thermally stressed, sealed with a nail polish coating except for the area of the restoration and 1 mm around it, and immersed in a 50% aqueous solution of silver nitrate for 24 hours. After that, the specimens were rinsed in water, soaked in a photodeveloping solution and exposed to a fluorescent light for 8 hours. The teeth were embedded in an autopolymerizing resin and sectioned longitudinally using a diamond saw microtome under running water. The sections were photographed. The microleakage at the occlusal cavity and at the gingival margins of each specimen was evaluated with scores (0-3) by

  5. Marginal microleakage in vitro study on class V cavities prepared with Er:YAG laser and etched with acid or etched with Er:YAG laser and acid; Estudo in vitro da microinfiltracao marginal em cavidades classe V preparadas com laser de Er:YAG e condicionadas com acido ou com laser de Er:YAG e acido

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Henrique Dutra Simoes

    2001-07-01

    Microleakage at the interface between the teeth and the restorative materials remains a problem with composite resin restorations. Microleakage at the gingival margins of class V cavities restorations still challenge as they are usually placed in dentin and/or cementum. Previous studies have shown that the cavity preparation with Er:YAG laser is possible. It has been reported that Er:YAG laser has ability to create irregular surface providing micromechanical retention for adhesive dental restorative materials and to improve marginal sealing. The purpose of this in vitro study was to evaluate the marginal microleakage on class V cavities prepared with Er:YAG laser and etched with acid or with Er:YAG laser and acid, in compared to those prepared and etched conventionally. Thirty human molars were divided into three groups, namely: group I - prepared with Er:YAG laser (KaVo KEY Laser II - Germany) and etched with 37% phosphoric acid; group II - prepared with Er:YAG laser and etched with Er:YAG laser and 37% phosphoric acid; group III (control group) - prepared with high speed drill and etched with 37% phosphoric acid. All cavities were treated with same adhesive system (Single Bond - 3M) and restored with the composite resin (Z100 - 3M), according to the manufacturer's instructions. The specimens were stored at 37 deg C in water for 24 hours, polished with Sof-Lex discs (3M), thermally stressed, sealed with a nail polish coating except for the area of the restoration and 1 mm around it, and immersed in a 50% aqueous solution of silver nitrate for 24 hours. After that, the specimens were rinsed in water, soaked in a photodeveloping solution and exposed to a fluorescent light for 8 hours. The teeth were embedded in an autopolymerizing resin and sectioned longitudinally using a diamond saw microtome under running water. The sections were photographed. The microleakage at the occlusal cavity and at the gingival margins of each specimen was evaluated with scores (0

  6. Role of powder preparation route on microstructure and mechanical properties of Al-TiB2 composites fabricated by accumulative roll bonding (ARB)

    International Nuclear Information System (INIS)

    Askarpour, M.; Sadeghian, Z.; Reihanian, M.

    2016-01-01

    Accumulative roll bonding (ARB) was conducted up to seven cycles to fabricate Al-TiB 2 particulate metal matrix composites. The reinforcing particles were prepared and used in three different processing conditions: as-received TiB 2 , mixed TiB 2 -Al and in-situ synthesized TiB 2 -Al. The mixed TiB 2 -Al powder was produced by milling of TiB 2 with Al powder and in-situ synthesized TiB 2 -Al powder was prepared by mechanical alloying (MA) through inducing TiB 2 particles in the Al with various composition of 10, 20 and 30 wt% Al. Transmission electron microscope (TEM) and scanning electron microscope (SEM) were used to evaluate the microstructure of the produced composites. The composite obtained from the in-situ TiB 2 -Al powder showed the most uniform distribution of particles and exhibited the highest tensile strength of about 177 MPa in comparison with the composites reinforced with the as-received TiB 2 (156 MPa) and mixed TiB 2 -Al powder (160 MPa). After seven ARB cycles, an ultra-fine grained structure with the average size of about 300 nm was obtained in the composite reinforced with in-situ TiB 2 -Al powder. The appearance of dimples in tensile fracture surfaces revealed a ductile-type fracture in the produced composites.

  7. Pulsed Nd:YAG laser beam drilling: A review

    Science.gov (United States)

    Gautam, Girish Dutt; Pandey, Arun Kumar

    2018-03-01

    Laser beam drilling (LBD) is one of non contact type unconventional machining process that are employed in machining of stiff and high-strength materials, high strength temperature resistance materials such as; metal alloys, ceramics, composites and superalloys. Most of these materials are difficult-to-machine by using conventional machining methods. Also, the complex and precise holes may not be obtained by using the conventional machining processes which may be obtained by using unconventional machining processes. The laser beam drilling in one of the most important unconventional machining process that may be used for the machining of these materials with satisfactorily. In this paper, the attention is focused on the experimental and theoretical investigations on the pulsed Nd:YAG laser drilling of different categories of materials such as ferrous materials, non-ferrous materials, superalloys, composites and Ceramics. Moreover, the review has been emphasized by the use of pulsed Nd:YAG laser drilling of different materials in order to enhance productivity of this process without adverse effects on the drilled holes quality characteristics. Finally, the review is concluded with the possible scope in the area of pulsed Nd:YAG laser drilling. This review work may be very useful to the subsequent researchers in order to give an insight in the area of pulsed Nd:YAG laser drilling of different materials and research gaps available in this area.

  8. Nd:YAG laser for holography

    International Nuclear Information System (INIS)

    Bykovsky, Yu.A.; Evtihiev, N.N.; Larkin, A.I.

    1982-01-01

    Different possibilities to use photonics, holography and optical processing for nuclear physics has been investigated in our works. The paper presents the results of the study of time and spatial coherence of Nd:YAG laser and application in holography. (orig./HSI)

  9. Comparison Study on Additive Manufacturing (AM) and Powder Metallurgy (PM) AlSi10Mg Alloys

    Science.gov (United States)

    Chen, B.; Moon, S. K.; Yao, X.; Bi, G.; Shen, J.; Umeda, J.; Kondoh, K.

    2018-02-01

    The microstructural and mechanical properties of AlSi10Mg alloys fabricated by additive manufacturing (AM) and powder metallurgy (PM) routes were investigated and compared. The microstructures were examined by scanning electron microscopy assisted with electron-dispersive spectroscopy. The crystalline features were studied by x-ray diffraction and electron backscatter diffraction. Room-temperature tensile tests and Vickers hardness measurements were performed to characterize the mechanical properties. It was found that the AM alloy had coarser Al grains but much finer Si precipitates compared with the PM alloy. Consequently, the AM alloy showed more than 100% increment in strength and hardness compared with the PM alloy due to the presence of ultrafine forms of Si, while exhibiting moderate ductility.

  10. Next generation Er:YAG fractional ablative laser

    Science.gov (United States)

    Heinrich, A.; Vizhanyo, A.; Krammer, P.; Summer, S.; Gross, S.; Bragagna, T.; Böhler, C.

    2011-03-01

    Pantec Biosolutions AG presents a portable fractional ablative laser system based on a miniaturized diode pumped Er:YAG laser. The system can operate at repetition rates up to 500 Hz and has an incorporated beam deflection unit. It is smaller, lighter and cost efficient compared to systems based on lamp pumped Er:YAG lasers and incorporates a skin layer detection to guarantee precise control of the microporation process. The pulse parameters enable a variety of applications in dermatology and in general medicine, as demonstrated by first results on transdermal drug delivery of FSH (follicle stimulating hormone).

  11. Microstructure of warm rolling and pearlitic transformation of ultrafine-grained GCr15 steel

    International Nuclear Information System (INIS)

    Sun, Jun-Jie; Lian, Fu-Liang; Liu, Hong-Ji; Jiang, Tao; Guo, Sheng-Wu; Du, Lin-Xiu; Liu, Yong-Ning

    2014-01-01

    Pearlitic transformation mechanisms have been investigated in ultra-fine grained GCr15 steel. The ultrafine-grained steel, whose grain size was less than 1 μm, was prepared by thermo-mechanical treatment at 873 K and then annealing at 923 K for 2 h. Pearlitic transformation was conducted by reheating the ultra-fine grained samples at 1073 K and 1123 K for different periods of time and then cooling in air. Scanning electron microscope observation shows that normal lamellar pearlite, instead of granular cementite and ferrite, cannot be formed when the grain size is approximately less than 4(± 0.6) μm, which yields a critical grain size for normal lamellar pearlitic transformations in this chromium alloyed steel. The result confirms that grain size has a great influence on pearlitic transformation by increasing the diffusion rate of carbon atoms in the ultra-fine grained steel, and the addition of chromium element doesn't change this pearlitic phase transformation rule. Meanwhile, the grain growth rate is reduced by chromium alloying, which is beneficial to form fine grains during austenitizing, thus it facilitating pearlitic transformation by divorced eutectoid transformation. Moreover, chromium element can form a relatively high gradient in the frontier of the undissolved carbide, which promotes carbide formation in the frontier of the undissolved carbide, i.e., chromium promotes divorced eutectoid transformation. - Highlights: • Ultrafine-grained GCr15 steel was obtained by warm rolling and annealing technology. • Reduction of grain size makes pearlite morphology from lamellar to granular. • Adding Cr does not change normal pearlitic phase transformation rule in UFG steel. • Cr carbide resists grain growth and facilitates pearlitic transformation by DET

  12. Unraveling the atomic structure of ultrafine iron clusters

    KAUST Repository

    Wang, Hongtao

    2012-12-18

    Unraveling the atomic structures of ultrafine iron clusters is critical to understanding their size-dependent catalytic effects and electronic properties. Here, we describe the stable close-packed structure of ultrafine Fe clusters for the first time, thanks to the superior properties of graphene, including the monolayer thickness, chemical inertness, mechanical strength, electrical and thermal conductivity. These clusters prefer to take regular planar shapes with morphology changes by local atomic shuffling, as suggested by the early hypothesis of solid-solid transformation. Our observations differ from observations from earlier experimental study and theoretical model, such as icosahedron, decahedron or cuboctahedron. No interaction was observed between Fe atoms or clusters and pristine graphene. However, preferential carving, as observed by other research groups, can be realized only when Fe clusters are embedded in graphene. The techniques introduced here will be of use in investigations of other clusters or even single atoms or molecules.

  13. Nd:YAG laser therapy for rectal and vaginal venous malformations.

    Science.gov (United States)

    Gurien, Lori A; Jackson, Richard J; Kiser, Michelle M; Richter, Gresham T

    2017-08-01

    Limited therapeutic options exist for rectal and vaginal venous malformations (VM). We describe our center's experience using Nd:YAG laser for targeted ablation of abnormal veins to treat mucosally involved pelvic VM. Records of patients undergoing non-contact Nd:YAG laser therapy of pelvic VM at a tertiary children's hospital were reviewed. Symptoms, operative findings and details, complications, and outcomes were evaluated. Nine patients (age 0-24) underwent Nd:YAG laser therapy of rectal and/or vaginal VM. Rectal bleeding was present in all patients and vaginal bleeding in all females (n = 5). 5/7 patients had extensive pelvic involvement on MRI. Typical settings were 30 (rectum) and 20-25 W (vagina), with 0.5-1.0 s pulse duration. Patients underwent the same-day discharge. Treatment intervals ranged from 14 to 180 (average = 56) weeks, with 6.1-year mean follow-up. Five patients experienced symptom relief with a single treatment. Serial treatments managed recurrent bleeding successfully in all patients, with complete resolution of vaginal lesions in 40% of cases. No complications occurred. Nd:YAG laser treatment of rectal and vaginal VM results in substantial improvement and symptom control, with low complication risk. Given the high morbidity of surgical resection, Nd:YAG laser treatment of pelvic VM should be considered as first line therapy.

  14. [Nd-YAG laser photocoagulation of scrotal sebaceous cysts].

    Science.gov (United States)

    Franco de Castro, A; Truhán, D; Carretero González, P; Alcover García, J

    2002-02-01

    Scrotum's sebaceous cyst is an usual pathology, not life threatening, but susceptible of infection, producing abscess with their associated cosmetic and psychological disturbance. The classical management is the complete excision, under local anaesthesia, to prevent its recidive. Until today, the use of de Nd-YAG laser for the management of the scrotum's sebaceous cysts as not been reported. We report a case of a young man with several scrotum's sebaceous cysts, treated successfully with the use of a Nd-YAG laser.

  15. Direct printing of patterned three-dimensional ultrafine fibrous scaffolds by stable jet electrospinning for cellular ingrowth

    International Nuclear Information System (INIS)

    Yuan, Huihua; Zhou, Qihui; Li, Biyun; Bao, Min; Lou, Xiangxin; Zhang, Yanzhong

    2015-01-01

    Electrospinning has been widely used to produce ultrafine fibers in microscale and nanoscale; however, traditional electrospinning processes are currently beset by troublesome limitations in fabrication of 3D periodic porous structures because of the chaotic nature of the electrospinning jet. Here we report a novel strategy to print 3D poly(L-lactic acid) (PLLA) ultrafine fibrous scaffolds with the fiber diameter of approximately 2 μm by combining a stable jet electrospinning method and an X-Y stage technique. Our approach allows linearly deposited electrospun ultrafine fibers to assemble into 3D structures with tunable pore sizes and desired patterns. Process conditions (e.g., plotting speed, feeding rate, and collecting distance) were investigated in order to achieve stable jet printing of ultrafine PLLA fibers. The proposed 3D scaffold was successfully used for cell penetration and growth, demonstrating great potential for tissue engineering applications. (paper)

  16. Heat effect of pulsed Er:YAG laser radiation

    Science.gov (United States)

    Hibst, Raimund; Keller, Ulrich

    1990-06-01

    Pulsed Er:YAG laser radiation has been found to be effective for dental enamel and dentin removal. Damage to the surrounding hard tissue is little, but before testing the Er:YAG laser clinically for the preparation of cavities, possible effects on the soft tissue of the pulp must be known. In order to estimate pulp damage , temperature rise in dentin caused by the laser radiation was measured by a thermocouple. Additionally, temperature distributions were observed by means of a thermal imaging system. The heat effect of a single Er:YAG laser pulse is little and limited to the vicinity of the impact side. Because heat energy is added with each additional pulse , the temperature distribution depends not only on the radiant energy, but also on the number of pulses and the repetition rate. Both irradiation conditions can be found , making irreversible pulp damage either likely or unlikely. The experimental observations can be explained qualitatively by a simple model of the ablation process.

  17. Tunable eye-safe Er:YAG laser

    International Nuclear Information System (INIS)

    Němec, M; Šulc, J; Indra, L; Fibrich, M; Jelínková, H

    2015-01-01

    Er:YAG crystal was investigated as the gain medium in a diode (1452 nm) pumped tunable laser. The tunability was reached in an eye-safe region by an intracavity birefringent filter. The four tuning bands were obtained peaking at wavelengths 1616, 1632, 1645, and 1656 nm. The broadest continuous tunability was 6 nm wide peaking at 1616 nm. The laser was operating in a pulsed regime (10 ms pulse length, 10 Hz repetition rate). The maximum mean output power was 26.5 mW at 1645 nm. The constructed system demonstrated the tunability of a resonantly diode-pumped Er:YAG laser which could be useful in the development of compact diode-pumped lasers for spectroscopic applications. (paper)

  18. Passive Q switching of a solar-pumped Nd:YAG laser.

    Science.gov (United States)

    Lando, M; Shimony, Y; Noter, Y; Benmair, R M; Yogev, A

    2000-04-20

    Passive Q switching is a preferable choice for switching the Q factor of a solar-pumped laser because it requires neither a driver nor an electrical power supply. The superior thermal characteristics and durability of Cr(4+):YAG single crystals as passive Q switches for lamp and diode-pumped high-power lasers has been demonstrated. Here we report on an average power of 37 W and a switching efficiency of 80% obtained by use of a solar-pumped Nd:YAG laser Q switched by a Cr(4+):YAG saturable absorber. Concentration of the pumping solar energy on the laser crystal was obtained with a three-stage concentrator, composed of 12 heliostats, a three-dimensional compound parabolic concentrator (CPC) and a two-dimensional CPC. The water-cooled passive Q switch also served as the laser rear mirror. Repetition rates of as much as 50 kHz, at pulse durations between 190 and 310 ns (FWHM) were achieved. From the experimental results, the saturated single-pass power absorption of the Cr(4+):YAG device was estimated as 3 ? 1%.

  19. SPF-RR sequential photothermal fractional resurfacing and remodeling with the variable pulse Er:YAG laser and scanner-assisted Nd:YAG laser.

    Science.gov (United States)

    Marini, Leonardo

    2009-12-01

    Many different lasers, polychromatic high-intensity light sources (PCLs), and RF devices have claimed clinical efficacy in rejuvenating the skin. In this study, the sequential combination of two different laser wavelengths was evaluated to produce reliably significant clinical improvements optimizing treatment parameters. The left volar aspects of the forearms of four volunteers were treated with nine different parameter settings using a variable pulsewidth fractional Er:YAG 2940-nm laser with and without air cooling. The pain perception level was recorded on a 0-10 point scale (0=No pain; 10=Most severe pain). Three evaluations were made: during treatment, immediately after treatment, and 5 minutes after treatment. The same investigation was made on the right volar aspects of the same four volunteers using a short-pulse, random pattern, 3-mm spot, scanner-assisted Nd-YAG 1064-nm laser at 0.3 ms pulsewidth at seven different parameter settings. Clinical evaluations were made concerning erythema and edema 3 days after treatment, as well as pre-operative and 60 days postoperative skin texture plus color uniformity. Considering that the majority of cosmetic patients are willing to accept a relatively short and uneventful downtime (2-4 days according to a study we are presently conducting) and do prefer to limit their intra- and postoperative pain to a minimum, the best combination of clinical improvement matching these two important parameters were selected for our study. A treatment strategy combining two sequential passes of long-pulse Nd:YAG laser (Nd:YAG-LP) at 0.3 and 35 ms followed by two passes of long-pulse fractional Er:YAG laser (Er:YAG-FT) at 600 micros was designed to treat the facial regions of 10 volunteers affected by a combination of intrinsic (chrono-) and extrinsic (mostly photo-) aging. The pain perception level was recorded on a 0-10 scale (0=No pain; 10=Most severe pain). Three evaluations were made: during, immediately after, and 5 minutes after

  20. Micro-Arc Oxidation Enhances the Blood Compatibility of Ultrafine-Grained Pure Titanium

    Directory of Open Access Journals (Sweden)

    Lin Xu

    2017-12-01

    Full Text Available Ultrafine-grained pure titanium prepared by equal-channel angular pressing has favorable mechanical performance and does not contain alloy elements that are toxic to the human body. It has potential clinical value in applications such as cardiac valve prostheses, vascular stents, and hip prostheses. To overcome the material’s inherent thrombogenicity, surface-coating modification is a crucial pathway to enhancing blood compatibility. An electrolyte solution of sodium silicate + sodium polyphosphate + calcium acetate and the micro-arc oxidation (MAO technique were employed for in situ oxidation of an ultrafine-grained pure titanium surface. A porous coating with anatase- and rutile-phase TiO2 was generated and wettability and blood compatibility were examined. The results showed that, in comparison with ultrafine-grained pure titanium substrate, the MAO coating had a rougher surface, smaller contact angles for distilled water and higher surface energy. MAO modification effectively reduced the hemolysis rate; extended the dynamic coagulation time, prothrombin time (PT, and activated partial thromboplastin time (APTT; reduced the amount of platelet adhesion and the degree of deformation; and enhanced blood compatibility. In particular, the sample with an oxidation time of 9 min possessed the highest surface energy, largest PT and APTT values, smallest hemolysis rate, less platelet adhesion, a lesser degree of deformation, and more favorable blood compatibility. The MAO method can significantly enhance the blood compatibility of ultrafine-grained pure titanium, increasing its potential for practical applications.

  1. Study of the sintering behavior of fine, ultrafine and nanocrystalline WC-CO mixtures obtained by high energy milling; Estudio del comportamiento durante la sinterizacion de mezclas WC-Co finas, ultrafinas y nanocristalinas obtenidas por molienda de alta energia

    Energy Technology Data Exchange (ETDEWEB)

    Salvador, M. D.; Bonache, V.; Amigo, V.; Busquets, D.

    2008-07-01

    In this work the sintering behaviour of fine, ultrafine and nanocrystalline WC-12Co mixtures obtained by high energy milling, as well commercial nano powders, have been studied, in order to evaluate the effect of the particle size and the powder processing, in the densification, microstructural development and mechanical properties of the final product. The consolidation of the mixtures has been made by uniaxial pressing and sintering in vacuum, and by hot isostatic pressing. The sintered materials have been evaluated by measures of density, hardness and indentation fracture toughness, and micro structurally characterized by optical microscopy and scanning and transmission electronic microscopy (SEM and TEM). The results show the improvements in resistant behaviour of the materials obtained from nanocrystalline powders, in spite of the grain growth experienced during the sintering. The best results were obtained for the milling nanocrystalline material, which presents values of hardness higher than 180 HV. (Author) 46 refs.

  2. Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel.

    Science.gov (United States)

    Jinlong, Lv; Tongxiang, Liang; Chen, Wang; Limin, Dong

    2016-05-01

    The ultrafine grained 2205 duplex stainless steel was obtained by cold rolling and annealing. The tensile properties were investigated at room temperature. Comparing with coarse grained stainless steel, ultrafine grained sample showed higher strength and plasticity. In addition, grain size changed deformation orientation. The strain induced α'-martensite was observed in coarse grained 2205 duplex stainless steel with large strain. However, the grain refinement inhibited the transformation of α'-martensite;nevertheless, more deformation twins improved the strength and plasticity of ultrafine grained 2205 duplex stainless steel. In addition, the grain refinement improved corrosion resistance of the 2205 duplex stainless steel in sodium chloride solution. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Stone retropulsion during holmium:YAG lithotripsy.

    Science.gov (United States)

    Lee, Ho; Ryan, R Tres; Teichman, Joel M H; Kim, Jeehyun; Choi, Bernard; Arakeri, Navanit V; Welch, A J

    2003-03-01

    We modeled retropulsion during holmium:YAG lithotripsy on the conservation of momentum, whereby the force of ejected fragment debris off of the calculous surface should equal the force of retropulsion displacing the stone. We tested the hypothesis that retropulsion occurs as a result of ejected stone debris. Uniform calculous phantoms were irradiated with holmium:YAG energy in air and in water. Optical fiber diameter and pulse energy were varied. Motion of the phantom was monitored with high speed video imaging. Laser induced crater volume and geometry were characterized by optical coherence tomography. To determine the direction of plume laser burn paper was irradiated at various incident angles. Retropulsion was greater for phantoms irradiated in air versus water. Retropulsion increased as fiber diameter increased and as pulse energy increased (p <0.001). Crater volumes increased as pulse energy increased (p <0.05) and generally increased as fiber diameter increased. Crater geometry was wide and shallow for larger fibers, and narrow and deeper for smaller fibers. The ejected plume propagated in the direction normal to the burn paper surface regardless of the laser incident angle. Retropulsion increases as pulse energy and optical fiber diameter increase. Vector analysis of the ejected plume and crater geometry explains increased retropulsion using larger optical fibers. Holmium:YAG lithotripsy should be performed with small optical fibers to limit retropulsion.

  4. Changes of retinal light sensitivity after YAG-laser capsulotomy

    International Nuclear Information System (INIS)

    Pahor, D.; Gracner, B.

    2003-01-01

    The aim of this prospective study was to investigate the changes of retinal light sensitivity of central visual field in patients with posterior capsule opacification (PCO) after YAG-laser capsulotomy. Our study includes 18 eyes ( 18 patients) with PCO after phacoemulsification and intraocular lens implantation. In all patients YAG-laser capsulotomy was performed. In all patients, a threshold visual field analysis was carried out with the C 30-2 program of the automated Humphrey Field Analyzer before and one month after the procedure. In all patients a significant improvement of visual acuity was observed one month after capsulotomy (p 0.00004). One month after YAG-laser treatment, a significant improvement of retinal light sensitivity in the central visual field was also observed. The average MD (mean deviation) before the procedure was -6.88 db (±3.9, max. -11.7, min. 2.17) and after the procedure --4.58 db (±4.37, max. -10.87, min. +0.51). The improvement in MD was statistically significant (p = 0.00475). No correlation was established between the improvement of retinal light sensitivity and patient age or the size of capsulotomy. Our study shows that the improvement of retinal light sensitivity is significant after YAG-laser capsulotomy and does not depend on patient age or capsulotomy size. (author)

  5. Gas atomization processing of tin and silicon modified LaNi5 for nickel-metal hydride battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Ting, Jason [Iowa State Univ., Ames, IA (United States)

    1999-02-12

    Numerous researchers have studied the relevant material properties of so-called AB5 alloys for battery applications. These studies involved LaNi5 substituted alloys which were prepared using conventional cast and crush alloying techniques. While valuable to the understanding of metal hydride effects, the previous work nearly ignored the potential for alternative direct powder production methods, like high pressure gas atomization (HPGA). Thus, there is a need to understand the relationship between gas atomization processes, powder particle solidification phases, and hydrogen absorption properties of ultra fine (< 25 μm) atomized powders with high surface area for enhanced battery performance. Concurrently, development of a gas atomization nozzle that is more efficient than all current designs is needed to increase the yield of ultrafine AB5 alloy powder for further processing advantage. Gas atomization processing of the AB5 alloys was demonstrated to be effective in producing ultrafine spherical powders that were resilient to hydrogen cycling for the benefit of improving corrosion resistance in battery application. These ultrafine powders benefited from the rapid solidification process by having refined solute segregation in the microstructure of the gas atomized powders which enabled a rapid anneal treatment of the powders. The author has demonstrated the ability to produce high yields of ultrafine powder efficiently and cost effectively, using the new HPGA-III technology. Thus, the potential benefits of processing AB5 alloys using the new HPGA technology could reduce manufacturing cost of nickel-metal hydride powder. In the near future, the manufacture of AB5 alloy powders could become a continuous and rapid production process. The economic benefit of an improved AB5 production process may thereby encourage the use of nickel-metal hydride rechargeable batteries in electrical vehicle

  6. Growth, optical and EPR studies of {sup 151}Eu{sup 2+}:YAG single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Petrosyan, A.G., E-mail: pet@ipr.sci.am [Institute for Physical Research, National Academy of Sciences, Ashtarak, 0203 (Armenia); Asatryan, H.R. [Ioffe Physical-Technical Institute, Politekhnicheskaya ul. 26, St. Petersburg, 194021 (Russian Federation); Hovhannesyan, K.L.; Derdzyan, M.V. [Institute for Physical Research, National Academy of Sciences, Ashtarak, 0203 (Armenia); Feofilov, S.P. [Ioffe Physical-Technical Institute, Politekhnicheskaya ul. 26, St. Petersburg, 194021 (Russian Federation); Eganyan, A.V.; Sargsyan, R.S. [Institute for Physical Research, National Academy of Sciences, Ashtarak, 0203 (Armenia)

    2017-01-01

    Single crystals of {sup 151}Eu:YAG were grown by the vertical Bridgman method using Eu{sub 2}O{sub 3} with isotopic enrichment of {sup 151}Eu of 97.5%. Additional Hf{sup 4+}or Si{sup 4+} ions were introduced to favor a high concentrations of Eu{sup 2+}. As compared to Eu:YAG with natural isotope composition, the EPR spectra of YAG doped with {sup 151}Eu isotope show a reduced number of hyperfine structure components and a well-resolved structure of a bigger number of electronic transitions. Optical properties of obtained crystals and the effects of heat treatments under oxidizing and reducing conditions are reported. Based on the analysis of Eu{sup 3+} distribution in oxidized Eu,Hf:YAG, in comparison to that in Eu:YAG, the concentration of Eu{sup 2+} in as-grown Eu,Hf:YAG is determined. - Highlights: • YAG:Eu,Hf single crystals containing only {sup 151}Eu isotopes were prepared. • isotopic enriched crystals gave a well-resolved EPR hyperfine structure of Eu{sup 2+} centers. • the redox ratio was followed through the Eu{sup 2+} associated absorption band at 250 nm. • the band intensities at 378 nm correlate with the Eu{sup 2+} concentration.

  7. New technique for the direct analysis of food powders confined in a small hole using transversely excited atmospheric CO(2) laser-induced gas plasma.

    Science.gov (United States)

    Khumaeni, Ali; Ramli, Muliadi; Deguchi, Yoji; Lee, Yong Inn; Idris, Nasrullah; Kurniawan, Koo Hendrik; Lie, Tjung Jie; Kagawa, Kiichiro

    2008-12-01

    Taking advantage of the differences between the interactions of transversely excited atmospheric (TEA) CO(2) lasers with metal and with organic powder, a new technique for the direct analysis of food powder samples has been developed. In this technique, the powder samples were placed into a small hole with a diameter of 2 mm and a depth of 3 mm and covered by a metal mesh. The TEA CO(2) laser (1500 mJ, 200 ns) was focused on the powder sample surfaces, passing through the metal mesh, at atmospheric pressure in nitrogen gas. It is hypothesized that the small hole functions to confine the powder particles and suppresses the blowing-off of sample, while the metal mesh works as the source of electrons to initiate the strong gas breakdown plasma. The confined powder particles are then ablated by laser irradiation and the ablated particles move into the strong gas breakdown plasma region to be atomized and excited; this method cannot be applied for the case of Nd:YAG lasers because in such case the metal mesh itself was ablated by the laser irradiation. A quantitative analysis of a milk powder sample containing different concentrations of Ca was successfully demonstrated, resulting in a good linear calibration curve with high precision.

  8. Marginal microleakage in vitro study on class V cavities prepared with Er:YAG laser and etched with acid or etched with Er:YAG laser and acid

    International Nuclear Information System (INIS)

    Tavares, Henrique Dutra Simoes

    2001-01-01

    Microleakage at the interface between the teeth and the restorative materials remains a problem with composite resin restorations. Microleakage at the gingival margins of class V cavities restorations still challenge as they are usually placed in dentin and/or cementum. Previous studies have shown that the cavity preparation with Er:YAG laser is possible. It has been reported that Er:YAG laser has ability to create irregular surface providing micromechanical retention for adhesive dental restorative materials and to improve marginal sealing. The purpose of this in vitro study was to evaluate the marginal microleakage on class V cavities prepared with Er:YAG laser and etched with acid or with Er:YAG laser and acid, in compared to those prepared and etched conventionally. Thirty human molars were divided into three groups, namely: group I - prepared with Er:YAG laser (KaVo KEY Laser II - Germany) and etched with 37% phosphoric acid; group II - prepared with Er:YAG laser and etched with Er:YAG laser and 37% phosphoric acid; group III (control group) - prepared with high speed drill and etched with 37% phosphoric acid. All cavities were treated with same adhesive system (Single Bond - 3M) and restored with the composite resin (Z100 - 3M), according to the manufacturer's instructions. The specimens were stored at 37 deg C in water for 24 hours, polished with Sof-Lex discs (3M), thermally stressed, sealed with a nail polish coating except for the area of the restoration and 1 mm around it, and immersed in a 50% aqueous solution of silver nitrate for 24 hours. After that, the specimens were rinsed in water, soaked in a photodeveloping solution and exposed to a fluorescent light for 8 hours. The teeth were embedded in an autopolymerizing resin and sectioned longitudinally using a diamond saw microtome under running water. The sections were photographed. The microleakage at the occlusal cavity and at the gingival margins of each specimen was evaluated with scores (0-3) by

  9. Sources of ultrafine particles in the Eastern United States

    Science.gov (United States)

    Posner, Laura N.; Pandis, Spyros N.

    2015-06-01

    Source contributions to ultrafine particle number concentrations for a summertime period in the Eastern U.S. are investigated using the chemical transport model PMCAMx-UF. New source-resolved number emissions inventories are developed for biomass burning, dust, gasoline automobiles, industrial sources, non-road and on-road diesel. According to the inventory for this summertime period in the Eastern U.S., gasoline automobiles are responsible for 40% of the ultrafine particle number emissions, followed by industrial sources (33%), non-road diesel (16%), on-road diesel (10%), and 1% from biomass burning and dust. With these emissions as input, the chemical transport model PMCAMx-UF reproduces observed ultrafine particle number concentrations (N3-100) in Pittsburgh with an error of 12%. For this summertime period in the Eastern U.S., nucleation is predicted to be the source of more than 90% of the total particle number concentrations. The source contributions to primary particle number concentrations are on average similar to those of their source emissions contributions: gasoline is predicted to contribute 36% of the total particle number concentrations, followed by industrial sources (31%), non-road diesel (18%), on-road diesel (10%), biomass burning (1%), and long-range transport (4%). For this summertime period in Pittsburgh, number source apportionment predictions for particles larger than 3 nm in diameter (traffic 65%, other combustion sources 35%) are consistent with measurement-based source apportionment (traffic 60%, combustion sources 40%).

  10. CW Yb:YAG LASER FOR PORTABLE MEASURING SYSTEMS

    Directory of Open Access Journals (Sweden)

    A. M. Ivashko

    2014-01-01

    Full Text Available The theoretical and experimental results of longitudinally continuous-wave diode-pumped Yb:Y3Al5O12 (YAG laser performance for compact field-condition measuring systems were demonstrated. Optimization of laser setup in terms of operation condition in the range of -40 ˚С – +65 ˚С without active thermal stabilization was carried out. Using Yb (10 ат.%:YAG crystal with the length of 3 mm the maximal output power more than 2 W was obtained in the whole of temperature range.

  11. LASIK flap breakthrough in Nd:YAG laser treatment of epithelial ingrowth

    NARCIS (Netherlands)

    Lapid-Gortzak, Ruth; Hughes, John M.; Nieuwendaal, Carla P.; Mourits, Maarten P.; van der Meulen, Ivanka J. E.

    2015-01-01

    To present two cases with complications after Nd:YAG laser treatment of epithelial ingrowth. Case reports. Dense central recurrent epithelial ingrowth was treated with a Nd:YAG laser directed at the epithelial nests in the LASIK flap interface in one case. Misalignment of the aiming beam after

  12. Laser Powder Cladding of Ti-6Al-4V α/β Alloy

    Directory of Open Access Journals (Sweden)

    Samar Reda Al-Sayed Ali

    2017-10-01

    Full Text Available Laser cladding process was performed on a commercial Ti-6Al-4V (α + β titanium alloy by means of tungsten carbide-nickel based alloy powder blend. Nd:YAG laser with a 2.2-KW continuous wave was used with coaxial jet nozzle coupled with a standard powder feeding system. Four-track deposition of a blended powder consisting of 60 wt % tungsten carbide (WC and 40 wt % NiCrBSi was successfully made on the alloy. The high content of the hard WC particles is intended to enhance the abrasion resistance of the titanium alloy. The goal was to create a uniform distribution of hard WC particles that is crack-free and nonporous to enhance the wear resistance of such alloy. This was achieved by changing the laser cladding parameters to reach the optimum conditions for favorable mechanical properties. The laser cladding samples were subjected to thorough microstructure examinations, microhardness and abrasion tests. Phase identification was obtained by X-ray diffraction (XRD. The obtained results revealed that the best clad layers were achieved at a specific heat input value of 59.5 J·mm−2. An increase by more than three folds in the microhardness values of the clad layers was achieved and the wear resistance was improved by values reaching 400 times.

  13. Laser amplification of optical images using a CW Nd:YAG amplifier

    International Nuclear Information System (INIS)

    Aman, H

    2013-01-01

    In this paper a scheme for the amplification of optical images is described, using a continuous wave (CW) diode-pumped Nd:YAG (yttrium aluminum garnet) laser module. A passively q-switched end-pumped Nd:YAG laser is used as a pump source, which carries the optical image distribution as an input which is transmitted towards the amplifier at a distance of about ten feet. For amplification, a three-side-pumped CW Nd:YAG laser module is utilized without the cavity mirrors. In this way, optical images are amplified by a factor of 3.2 and imaged at a distance of ten feet with a spatial resolution of 500 μm. (paper)

  14. Application of YAG laser cladding to the flange seating surface

    International Nuclear Information System (INIS)

    Nakanishi, Koki; Ninomiya, Kazuyuki; Nezaki, Koji

    1999-01-01

    Stainless cladding on carbon steel is usually conducted by shielded metal arc welding (SMAW) or gas tungsten arc welding (GTAW). YAG ( Yttrium-Aluminum-Garnet) laser welding is superior to these methods of welding in the following respects : (1) The heat affected zone (HAZ) is narrower and there is less distortion. (2) YAG laser cladding has the required chemical compositions, even with possibly fewer welding layers under controlled dilution. (3) Greater welding speed. YAG laser cladding application to vessel flange seating surfaces was examined in this study and the results are discussed. The following objectives were carried out : (1) Determination of welding conditions for satisfactory cladding layers and (2) whether cladding would be adequately possible at a cornered section of a stair-like plate, assuming actual flange shape. (3) Measurement of welding distortion and heat affected zone in carbon steel. The welding conditions for producing no-crack deposit with low dilution in carbon steel were clarified and welding by which cladding at cornered section would be possible was achieved. welding distortion by YAG laser was found less than with GTAW and HAZ made by first layer welding could be tempered appropriately by second layer welding. (author)

  15. Exposure to airborne ultrafine particles from cooking in Portuguese homes.

    Science.gov (United States)

    Bordado, J C; Gomes, J F; Albuquerque, P C

    2012-10-01

    Cooking was found to be a main source of submicrometer and ultrafine aerosols from gas combustion in stoves. Therefore, this study consisted of the determination of the alveolar deposited surface area due to aerosols resulting from common domestic cooking activities (boiling fish, vegetables, or pasta, and frying hamburgers and eggs). The concentration of ultrafine particles during the cooking events significantly increased from a baseline of 42.7 microm2/cm3 (increased to 72.9 microm2/cm3 due to gas burning) to a maximum of 890.3 microm2/cm3 measured during fish boiling in water and a maximum of 4500 microm2/cm3 during meat frying. This clearly shows that a domestic activity such as cooking can lead to exposures as high as those of occupational exposure activities. The approach of this study considers the determination of alveolar deposited surface area of aerosols generated from cooking activities, namely, typical Portuguese dishes. This type of measurement has not been done so far, in spite of the recognition that cooking activity is a main source of submicrometer and ultrafine aerosols. The results have shown that the levels of generated aerosols surpass the outdoor concentrations in a major European town, which calls for further determinations, contributing to a better assessment of exposure of individuals to domestic activities such as this one.

  16. On tension-compression asymmetry in ultrafine-grained and nanocrystalline metals

    KAUST Repository

    Gurses, Ercan; El Sayed, Tamer S.

    2010-01-01

    We present a physically motivated computational study explaining the tension/compression (T/C) asymmetry phenomenon in nanocrystalline (nc) and ultrafine-grained (ufg) face centered cubic (fcc) metals utilizing a variational constitutive model where

  17. Holmium:YAG laser stapedotomy: preliminary evaluation

    Science.gov (United States)

    Stubig, Ingrid M.; Reder, Paul A.; Facer, G. W.; Rylander, Henry G.; Welch, Ashley J.

    1993-07-01

    This study investigated the use of a pulsed Holmium:YAG ((lambda) equals 2.09 micrometers ) laser- fiber microsurgical system for laser stapedotomy. This system ablates human stapes bones effectively with minimal thermal damage. The study was designed to determine the effectiveness of the Ho:YAG laser (Schwartz Electro Optics, Inc., Orlando, FL) for stapedotomy and to evaluate temperature changes within the cochlea during the ablation process. Human cadaveric temporal bones were obtained and the stapes portion of the ossicular chain was removed. A 200 micrometers diameter low OH quartz fiber was used to irradiate these stapes bones in an air environment. The laser was pulsed at 2 Hz, 250 microsecond(s) ec pulse width and an irradiance range of 100 - 240 J/cm2 was used to ablate holes in the stapes footplate. The resultant stapedotomies created had smooth 300 micrometers diameter holes with a minimum of circumferential charring. Animal studies in-vivo were carried out in chinchillas to determine the caloric spread within the cochlea. A 0.075 mm Type T thermocouple was placed in the round window. Average temperature change during irradiation of the stapes footplate recorded in the round window was 3.6 degree(s)C. The data suggest that stapedotomy using the Ho:YAG laser can result in a controlled ablation of the stapes footplate with minimal thermal damage to the surrounding stapes. Optical coupling using fiberoptic silica fibers is an ideal method for delivering laser energy to the stapes during stapedotomy.

  18. Localization of the pumping reflector for a Nd:YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Suk; Kim, Chul Joong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    For the first year plan of this program, the pumping reflectors, which are gold plated reflectors and ceramic diffuse reflectors, of the Nd:YAG laser have been localized. The laser output performances with these reflectors have been investigated. Developed reflectors can be applied successfully to our commercialized Nd:YAG laser which was worked in previous project. We designed the optical pumping system with GaAlAs diode laser bar to improve the pumping efficiency. Moreover, we investigated a simple pumping technique without changing the fleshlamp, which makes the Nd:YAG laser operate in a cw, a pulsed, and a mixed of the two mode. We expert many new applications of this diversification of output pulse shapes in industry and in medicine. 38 figs, 9 tabs, 18 refs. (Author).

  19. Lasing and thermal characteristics of Yb:YAG/YAG composite with atomic diffusion bonding

    Czech Academy of Sciences Publication Activity Database

    Nagisetty, Siva S.; Severová, Patricie; Miura, Taisuke; Smrž, Martin; Kon, H.; Uomoto, M.; Shimatsu, T.; Kawasaki, M.; Higashiguchi, T.; Endo, Akira; Mocek, Tomáš

    2017-01-01

    Roč. 14, č. 1 (2017), 1-6, č. článku 015001. ISSN 1612-2011 R&D Projects: GA MŠk LM2015086; GA MŠk LO1602 Institutional support: RVO:68378271 Keywords : composite Yb:YAG ceramic * atomic diffusion bonding * thermal effects Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 2.537, year: 2016

  20. Luminescence and scintillation properties of YAG:Ce single crystal and optical ceramics

    CERN Document Server

    Mihóková, E; Mareš, J A; Beitlerová, A; Vedda, A; Nejezchleb, K; Blažek, K; D’Ambrosio, C

    2007-01-01

    We use various techniques to study optical and scintillation properties of Ce-doped yttrium aluminum garnet, Y3Al5O12 (YAG:Ce), in the form of a high-quality industrial single crystal. This was compared to optical ceramics prepared from YAG:Ce nanopowders. We present experimental data in the areas of optical absorption, radioluminescence, scintillation decay, photoelectron yield, thermally stimulated luminescence and radiation-induced absorption. The results point to an interesting feature—the absence of antisite (YAl, i.e. Y at the Al site) defects in optical ceramics. The scintillation decay of the ceramics is faster than that of the single crystal, but its photoelectron yield (measured with 1 μs integration time) is about 30–40% lower. Apart from the photoelectron yield value the YAG:Ce optical ceramic is fully comparable to a high quality industrial YAG:Ce single crystal and can become a competitive scintillator material.

  1. Influence of Er:YAG and Nd:YAG wavelengths on laser-induced breakdown spectroscopy measurements under air or helium atmosphere

    International Nuclear Information System (INIS)

    Detalle, Vincent; Sabsabi, Mohamad; St-Onge, Louis; Hamel, Andre; Heon, Rene

    2003-01-01

    Laser-induced breakdown spectroscopy (LIBS) is widely dependent on the conditions of its implementation in terms of laser characteristics (wavelength, energy, and pulse duration), focusing conditions, and surrounding gas. In this study two wavelengths, 1.06 and 2.94 μm, obtained with Nd:YAG and Er:YAG lasers, respectively, were used for LIBS analysis of aluminum alloy samples in two conditions of surrounding gas. The influence of the laser wavelength on the laser-produced plasma was studied for the same irradiance by use of air or helium as a buffer gas at atmospheric pressure. We used measurements of light emission to determine the temporally resolved space-averaged electron density and plasma temperature in the laser-induced plasma. We also examined the effect of laser wavelength in two different ambient conditions in terms of spectrochemical analysis by LIBS. The results indicate that the effect of the surrounding gas depends on the laser wavelength and the use of an Er:YAG laser could increase linearity by limiting the leveling in the calibration curve for some elements in aluminum alloys. There is also a significant difference between the plasma induced by the two lasers in terms of electron density and plasma temperature

  2. Effect of Nd:YAG laser on the solvent evaporation of adhesive systems.

    Science.gov (United States)

    Batista, Graziela Ribeiro; Barcellos, Daphne Câmara; Rocha Gomes Torres, Carlos; Damião, Álvaro José; de Oliveira, Hueder Paulo Moisés; de Paiva Gonçalves, Sérgio Eduardo

    2015-01-01

    This study evaluated the influence of Nd:YAG laser on the evaporation degree (ED) of the solvent components in total-etch and self-etch adhesives. The ED of Gluma Comfort Bond (Heraeus-Kulzer) one-step self-etch adhesive, and Adper Single Bond 2 (3M ESPE), and XP Bond (Dentsply) total-etch adhesives was determined by weight alterations using two techniques: Control--spontaneous evaporation of the solvent for 5 min; Experimental--Nd:YAG laser irradiation for 1 min, followed by spontaneous evaporation for 4 min. The weight loss due to evaporation of the volatile components was measured at baseline and after 10 s, 20 s, 30 s, 40 s, 50 s, 60 s, 70 s, 80 s, 90 s, 100 s, 110 s, 2 min, 3 min, 4 min, and 5 min. Evaporation of solvent components significantly increased with Nd:YAG laser irradiation for all adhesives investigated. Gluma Comfort Bond showed significantly higher evaporation of solvent components than Adper Single Bond 2 and XP Bond. All the adhesives lost weight quickly during the first min of Nd:YAG laser irradiation. The application of Nd:YAG laser on adhesives before light curing had a significant effect on the evaporation of the solvent components, and the ED of Gluma Comfort Bond one-step self-etch adhesive was significantly higher than with Adper Single Bond 2 and XP Bond total-etch adhesives. The use of the Nd:YAG laser on the uncured adhesive technique can promote a greater ED of solvents, optimizing the longevity of the adhesive restorations.

  3. Site preference and elastic properties of ternary alloying additions in B2 YAg alloys by first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Wu Yurong, E-mail: winwyr@126.com [College of Electromechanical Engineering, Hunan University of Science and Technology, Xiantang 411201 (China); Hu Wangyu [Department of Applied Physics, Hunan University, Changsha 410082 (China); Xu Longshan [Department of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024 (China)

    2012-09-15

    First-principles calculations were preformed to study the site preference behavior and elastic properties of 3d (Ti-Cu) transition-metal elements in B2 ductility YAg alloy. In YAg, Ti is found to occupy the Y sublattice whereas V, Cr, Co, Fe, Ni and Cu tend to substitute for Ag sublattice. Due to the addition of 3d transition metals, the lattice parameters of YAg is decreased in the order: VYAg alloy, and Fe is the most effective element to improve the ductility of YAg, while Ti, Ni and V alloying elements can reduce the ductility of YAg alloy, especially, V transforms ductile into brittle for YAg alloy. In addition, both V and Ni alloying elements can increase the hardness of YAg alloy, and Y{sub 8}Ag{sub 7}V is harder than Y{sub 8}Ag{sub 7}Ni.

  4. Study on preparation of ultrafine lead tungstate for radiation protection and γ-ray shielding of the gloves

    International Nuclear Information System (INIS)

    Du Licheng; He Ping; Zhou Yuanlin; Song Kaiping; Yang Kuihua

    2012-01-01

    Lead tungstate combines the radiation shielding properties of tungsten and lead, and it is quite distinctive to manufacture lead tungstate with ultra-fine granularity to enhance its capacity of radiation shielding. The grain size of lead tungstate has direct impact on the ability of its protection from radioactive materials. the smaller the grain size and more uniform dispersion of lead tungstate, the better protective ability it is going to be. In this paper, soft-template synthesis was introduced to prepare ultra-fine PbWO 4 . Rigorous experiment conditions are settled to ensure the access to obtain ultra-fine, homogeneous lead tungstate product, and it is better than other physical and chemical preparation methods. The surface-active agent for the soft template, with S-60 for the water system W/O microemulsion zone, was used to synthesize successfully ultra-fine PbWO 4 . It was shown that dispersing agent S-60 in the soft template method produced ultra-fine PbWO 4 with uniform granularity distribution. By using orthogonal experimental method, the best experimental conditions were obtained as follows: S-60 as surfactant dispersant with diluted 30 times concentration, solutions with pH9, 0.01 mol/L concentration of reactant, 1300 rpm of stirring speed and slowly adding drops of Na 2 WO 4 solution into Pb (Ac) 2 solution. Based on the optimal experimental conditions, the product of ultra-fine product for the anti-radiation protection filler has been made. The fine packing for the preparation of tungsten the gamma rays on the gloves is an average capacity of 5% or so. (authors)

  5. Microstructure and Mechanical Property of ODS Ferritic Steels Using Commercial Alloy Powders for High Temperature Service Applications

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Sanghoon; Choi, Byoung-Kwon; Kang, Suk Hoon; Kim, Tae Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Oxide dispersion strengthening (ODS) is one of the promising ways to improve the mechanical property at high temperatures. This is mainly attributed to uniformly distributed nano-oxide particle with a high density, which is extremely stable at the high temperature and acts as effective obstacles when the dislocations are moving. In this study, as a preliminary examination to develop the advanced structural materials for high temperature service applications, ODS ferritic steels were fabricated using commercial alloy powders and their microstructural and mechanical properties were investigated. In this study, ODS ferritic steels were fabricated using commercial stainless steel 430L powder and their microstructures and mechanical properties were investigated. Morphology of micro-grains and oxide particles were significantly changed by the addition of minor alloying elements such as Ti, Zr, and Hf. The ODS ferritic steel with Zr and Hf additions showed ultra-fine grains with fine complex oxide particles. The oxide particles were uniformly located in grains and on the grain boundaries. This led to higher hardness than ODS ferritic steel with Ti addition.

  6. Time-resolved luminescent spectroscopy of YAG:Ce single crystal and single crystalline films

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Gorbenko, V.; Savchyn, V.; Vozniak, T.; Puzikov, V.; Danko, A.; Nizhankovski, S.

    2010-01-01

    The peculiarities of the luminescence and energy transfer from YAG host to the emission centers formed by the Y Al antisite defects and Ce 3+ ions have been studied in YAG:Ce single crystals, grown from the melt by modified Bridgman method in Ar and CO 2 + H 2 atmospheres, and YAG:Ce single crystalline film, grown by liquid phase epitaxy method, using the comparative time-resolved luminescent spectroscopy under excitation by synchrotron radiation in the range of fundamental adsorption of this garnet.

  7. Role of powder preparation route on microstructure and mechanical properties of Al-TiB{sub 2} composites fabricated by accumulative roll bonding (ARB)

    Energy Technology Data Exchange (ETDEWEB)

    Askarpour, M.; Sadeghian, Z., E-mail: z.sadeghian@scu.ac.ir; Reihanian, M.

    2016-11-20

    Accumulative roll bonding (ARB) was conducted up to seven cycles to fabricate Al-TiB{sub 2} particulate metal matrix composites. The reinforcing particles were prepared and used in three different processing conditions: as-received TiB{sub 2}, mixed TiB{sub 2}-Al and in-situ synthesized TiB{sub 2}-Al. The mixed TiB{sub 2}-Al powder was produced by milling of TiB{sub 2} with Al powder and in-situ synthesized TiB{sub 2}-Al powder was prepared by mechanical alloying (MA) through inducing TiB{sub 2} particles in the Al with various composition of 10, 20 and 30 wt% Al. Transmission electron microscope (TEM) and scanning electron microscope (SEM) were used to evaluate the microstructure of the produced composites. The composite obtained from the in-situ TiB{sub 2}-Al powder showed the most uniform distribution of particles and exhibited the highest tensile strength of about 177 MPa in comparison with the composites reinforced with the as-received TiB{sub 2} (156 MPa) and mixed TiB{sub 2}-Al powder (160 MPa). After seven ARB cycles, an ultra-fine grained structure with the average size of about 300 nm was obtained in the composite reinforced with in-situ TiB{sub 2}-Al powder. The appearance of dimples in tensile fracture surfaces revealed a ductile-type fracture in the produced composites.

  8. Synthesis of highly sinterable YAG nanopowders by a modified co-precipitation method

    International Nuclear Information System (INIS)

    Chen, Zhi-Hui; Yang, Yun; Hu, Zhang-Gui; Li, Jiang-Tao; He, Shu-Li

    2007-01-01

    A hydrate precursor of yttrium aluminum garnet (YAG) was synthesized by a modified co-precipitation method, in which n-butanol was employed as a low-cost recyclable dehydration solvent. A mixed solution of ethanol and ammonia were used as precipitant. Pure YAG phase appeared after the as-prepared precursors being calcined at 850 o C for 2 h. The nanocrystalline YAG particles calcined at 1100 o C were well dispersed with average diameter of about 40 nm, which can be densified to transparency under vacuum sintering at 1700 o C for 5 h with TEOS as sintering additive

  9. Directly electrospun ultrafine nanofibres with Cu grid spinneret

    International Nuclear Information System (INIS)

    Li Wenwang; Zheng Gaofeng; Wang Xiang; Wang Lingyun; Wang Han; Sun Daoheng; Zhang Yulong; Li Lei

    2011-01-01

    A hydrophobic Cu grid was used as an electrospinning spinneret to fabricate ultrafine organic nanofibres. The Cu grid used in this study was that which holds samples in TEM. Due to the hydrophobic surface and larger contact angle of the electrospinning solution on the Cu grid surface, the solution flow was divided into several finer ones by the holes in the Cu grid instead of accumulating. Each finer flow was stretched into individual jets and established a multi-jet mode by the electrical field force. The finer jets played an important role in decreasing the diameter of the nanofibre. The charge repulsion force among charged jets enhanced the whipping instability motion of the liquid jets, which improved the uniformity of the nanofibre and decreased the diameter of the nanofibre. An ultrafine uniform nanofibre of diameter less than 80 nm could be fabricated directly with the novel Cu grid spinneret without any additive. This study provided a unique way to promote the application of one-dimensional organic nanostructures in micro/nanosystems.

  10. Er:YAG Laser and Fractured Incisor Restorations: An In Vitro Study

    Directory of Open Access Journals (Sweden)

    C. Fornaini

    2012-01-01

    Full Text Available Introduction. The aim of this study was to analyse the effects of an Er:YAG laser on enamel and dentine in cases of dental restorations involving fractured teeth, utilizing the dental fragment. Materials and Methods. Seventy-two freshly extracted bovine incisors were fractured at the coronal level by using a hammer applied with a standardized method, and the fragment was reattached by using three different methods: Er:YAG laser, orthophosphoric acid, and laser plus acid. The different groups were evaluated by a test realized with the dynamometer to know the force required to successfully detach the reattached fragment and by a microinfiltration test by using a 0.5% methylene blue solution followed by the optic microscope observation. Results. The compression test showed only a slight difference between the three groups, without any statistical significance. The infiltration test used to evaluate the marginal seal between the fracture fragment and the tooth demonstrated that etching with Er:YAG laser alone or in combination with orthophosphoric acid gives better results than orthophosphoric acid alone, with a highly significant statistical result. Discussion. Reattaching a tooth fragment represents a clinically proven methodology, in terms of achieving resistance to detachment, and the aim of this work was to demonstrate the advantages of Er:YAG laser on this procedure. Conclusion. This “in vitro” study confirms that Er:YAG laser can be employed in dental traumatology to restore frontal teeth after coronal fracture.

  11. Shift and broadening of emission lines in Nd 3: YAG laser crystal ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 6. Shift and broadening of emission lines in Nd3+:YAG laser crystal influenced by input energy. POURMAND SEYED EBRAHIM REZAEI ... Keywords. Nd3+:YAG crystal; heat generation; three-level emission lines; four-level emission lines; input energy.

  12. TiO2-enriched polymeric powder coatings support human mesenchymal cell spreading and osteogenic differentiation

    International Nuclear Information System (INIS)

    Mozumder, Mohammad Sayem; Zhu, Jesse; Perinpanayagam, Hiran

    2011-01-01

    Novel polymeric powder coatings (PPC) were prepared by ultrafine powder coating technology and shown to support human mesenchymal cell attachment and growth. PPC surfaces enriched with nano-TiO 2 (nTiO 2 ) showed enhanced cellular responses, and were compared to commercially pure titanium (cpTi). After cell attachment and growth, osteogenic differentiation and bone matrix formation ensures osseointegration for implantable biomaterials. Therefore, the objective of this study was to determine if mesenchymal cells grown on PPC could undergo osteogenic differentiation by inducing Runx2 and bone matrix proteins, and then initiate mineralization. Atomic force microscopy revealed intricate three-dimensional micro-topographies, and the measures of nano-roughness and porosity were similar for all PPC surfaces. Scanning electron microscopy showed that the cells attached and spread out over all of the surfaces. After 1 week in osteogenic media, RT-PCR analysis showed the induction of Runx2, the up-regulation of type I collagen, and the initial detection of alkaline phosphatase and bone sialoprotein. After 4 weeks, Alizarin Red staining showed mineral deposition. However, cell spreading and osteogenic differentiation were significantly (P 2 additives may enhance their performance.

  13. Comparison of diode laser and Er:YAG lasers in the treatment of ankyloglossia.

    Science.gov (United States)

    Aras, Mutan Hamdi; Göregen, Mustafa; Güngörmüş, Metin; Akgül, Hayati Murat

    2010-04-01

    The purpose of this study was to compare the tolerance of lingual frenectomy with regard to a local anesthesia requirement and comparison of postsurgical discomfort experienced by patients operated on with both diode and erbium:yttrium-aluminium-garnet (Er:YAG) lasers. Ankyloglossia, commonly known as tongue-tie, is a congenital oral anomaly characterized by a short lingual frenulum. A short lingual frenulum may contribute to feeding, speech, and mechanical tongue problems. Sixteen referred patients with tongue mobility complaints were included in this study. A GaAlAs laser device with a continuous wavelength of 808 nm was used in the diode group. Frenulums were incised by applying 2 W of laser power. The Er:YAG laser device with a continuous wavelength of 2940 nm was used in the Er:YAG group. Frenulums were incised by applying 1 W of laser power. The acceptability of the lingual frenectomy without local anesthesia and the degree of the postsurgical discomfort were evaluated. Although the majority of patients (six) could be operated on without local anesthesia in the Er:YAG group, all patients could not be operated on without local anesthetic agent in the diode group. There were no differences between the two groups with regard to pain, chewing, and speaking on the first or seventh day after surgery, whereas patients had more pain in the Er:YAG group than in the diode group the first 3 h after surgery. The results indicate that only the Er:YAG laser can be used for lingual frenectomy without local anesthesia, and there was no difference between the two groups regarding the degree of the postsurgical discomfort except in the first 3 h. In conclusion, these results indicate that the Er:YAG laser is more advantageous than the diode laser in minor soft-tissue surgery because it can be performed without local anesthesia and with only topical anesthesia.

  14. Enhanced Antifungal Bioactivity of Coptis Rhizome Prepared by Ultrafining Technology

    Directory of Open Access Journals (Sweden)

    Ping-Chung Kuo

    2014-01-01

    Full Text Available The aim of this study was to identify and quantify the bioactive constituents in the methanol extracts of Coptis Rhizome prepared by ultrafining technology. The indicator compound was identified by spectroscopic method and its purity was determined by HPLC. Moreover, the crude extracts and indicator compound were examined for their ability to inhibit the growth of Rhizoctonia solani Kühn AG-4 on potato dextrose agar plates. The indicator compound is a potential candidate as a new plant derived pesticide to control Rhizoctonia damping-off in vegetable seedlings. In addition, the extracts of Coptis Rhizome prepared by ultrafining technology displayed higher contents of indicator compound; they not only improve their bioactivity but also reduce the amount of the pharmaceuticals required and, thereby, decrease the environmental degradation associated with the harvesting of the raw products.

  15. Continuous production of phosphor YAG:Tb nanoparticles by hydrothermal synthesis in supercritical water

    International Nuclear Information System (INIS)

    Hakuta, Yukiya; Haganuma, Tsukasa; Sue, Kiwamu; Adschiri, Tadafumi; Arai, Kunio

    2003-01-01

    Phosphor YAG:Tb ((Y 2.7 Tb 0.3 )Al 5 O 12 ) nano particles were synthesized by a hydrothermal method at supercritical conditions (400 deg. C and 30 MPa) using a flow reactor. Hydroxide sol solutions formed by stoichiometric aluminum nitrate, yttrium nitrate, terbium nitrate and potassium hydroxide solutions. The relationship between particle size and experimental variables including pH, concentration of coexistent ions and hydroxide sol were investigated. Particles were characterized by XRD, TEM and photo-luminescence measurements. Particle size of YAG:Tb became finer as pH was increased or potassium nitrate concentration of the starting metal salt solution was increased. By removing the coexisting ions (NO 3 - , K + ) from the metal salt solution, single phase YAG:Tb particles with 20 nm particle size were obtained. The emission spectra of YAG:Tb particles of 14 nm shows a blue shift

  16. Ultrafine particles dispersion modeling in a street canyon: development and evaluation of a composite lattice Boltzmann model.

    Science.gov (United States)

    Habilomatis, George; Chaloulakou, Archontoula

    2013-10-01

    Recently, a branch of particulate matter research concerns on ultrafine particles found in the urban environment, which originate, to a significant extent, from traffic sources. In urban street canyons, dispersion of ultrafine particles affects pedestrian's short term exposure and resident's long term exposure as well. The aim of the present work is the development and the evaluation of a composite lattice Boltzmann model to study the dispersion of ultrafine particles, in urban street canyon microenvironment. The proposed model has the potential to penetrate into the physics of this complex system. In order to evaluate the model performance against suitable experimental data, ultrafine particles levels have been monitored on an hourly basis for a period of 35 days, in a street canyon, in Athens area. The results of the comparative analysis are quite satisfactory. Furthermore, our modeled results are in a good agreement with the results of other computational and experimental studies. This work is a first attempt to study the dispersion of an air pollutant by application of the lattice Boltzmann method. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. New pulsed YAG laser performances in cutting thick metallic materials for nuclear applications

    International Nuclear Information System (INIS)

    Alfille, J.P.; Prunele, D. de; Pilot, G.

    1996-01-01

    The purpose of this study was to evaluate the capacities of the pulsed YAG laser thick cutting on metallic material and to compare with the CO 2 laser capacities. Stainless steel (304L) cutting tests were made in air and underwater using CO 2 and YAG lasers. A performance assessment was made for each laser and the wastes produced in the cutting operation were measured and the gases and the aerosols analyzed. The results show that the pulsed YAG laser is high performance tool for thick cutting and particularly attractive for nuclear applications

  18. ULTRAFINE PARTICLE DEPOSITION IN HEALTHY SUBJECTS VS. PATIENTS WTH COPD

    Science.gov (United States)

    Individuals affected with chronic obstructive pulmonary disease (COPD) have increased susceptibility to adverse health effects from exposure to particulate air pollution. The dosimetry of ultrafine aerosols (diameter # 0.1 :m) is not well characterized in the healthy or diseas...

  19. Er:YAG delamination of immersed biological membranes using sealed flexible hollow waveguides

    Science.gov (United States)

    Sagi-Dolev, A. M.; Dror, Jacob; Inberg, Alexandra; Ferencz, J. R.; Croitoru, Nathan I.

    1996-04-01

    The radiation of Er-YAG laser ((lambda) equals 2.94 micrometer) gives selective interaction with tissues. The extinction in soft tissues is only a few micrometers and in hard tissues is of the order of hundreds of micrometers. This makes this type of laser very suitable for treatments in dentistry, orthopedy, or ophthalmology. Because the usual silica fibers are not transmitting the radiation at lambda equals 2.94 micrometer of this laser, many applications cannot be presently performed. Fused silica hollow fibers for Er-YAG radiation were developed in our laboratory and several possible applications in dentistry, orthopedy and ophthalmology were indicated. Hole opening and implantation preparation of teeth were experimented, using Er-YAG laser and hollow plastic waveguide delivery systems. Hole drilling in cow bones was demonstrated for applications in orthopedy. A new procedure of delivering Er-YAG radiation on fibrotic membranes of inner eggshell as a model of the membranes in eyes was developed employing silica hollow waveguides of 0.5 and 0.7 mm ID or a plastic waveguide of 1.0 mm ID. For this purpose waveguides with sealed distal tip were employed to enable us to approach the delivery system through liquid media near to the membrane. This experiment demonstrates the possibility of surgical applications in vitectomy in ophthalmology using Er-YAG laser and silica hollow waveguides.

  20. Line profile analysis of ODS steels Fe20Cr5AlTiY milled powders at different Y2O3 concentrations

    Science.gov (United States)

    Afandi, A.; Nisa, R.; Thosin, K. A. Z.

    2017-04-01

    Mechanical properties of material are largely dictated by constituent microstructure parameters such as dislocation density, lattice microstrain, crystallite size and its distribution. To develop ultra-fine grain alloys such as Oxide Dispersion Strengthened (ODS) alloys, mechanical alloying is crucial step to introduce crystal defects, and refining the crystallite size. In this research the ODS sample powders were mechanically alloyed with different Y2O3 concentration respectively of 0.5, 1, 3, and 5 wt%. MA process was conducted with High Energy Milling (HEM) with the ball to powder ratio of 15:1. The vial and the ball were made of alumina, and the milling condition is set 200 r.p.m constant. The ODS powders were investigated by X-Ray Diffractions (XRD), Bragg-Brentano setup of SmartLab Rigaku with 40 KV, and 30 mA, step size using 0.02°, with scanning speed of 4°min-1. Line Profile Analysis (LPA) of classical Williamson-Hall was carried out, with the aim to investigate the different crystallite size, and microstrain due to the selection of the full wide at half maximum (FWHM) and integral breadth.

  1. Enamel Surface Roughness after Debonding of Orthodontic Brackets and Various Clean-Up Techniques

    Directory of Open Access Journals (Sweden)

    Farzaneh Ahrari

    2013-01-01

    Full Text Available Objective: This study aimed to evaluate enamel roughness after adhesive removal using different burs and an Er:YAG laser.Materials and Methods: The buccal surfaces of forty human premolars were sealed by two layers of nail varnish, except for a circular area of 3 mm in diameter on the middle third. The enamel surfaces were initially subjected to profilometry analysis and four parameters of surface irregularity (Ra, Rq, Rt and Rz were recorded. Following bracket bonding and debonding, adhesive remnants were removed by tungsten carbide burs in low- or high- speed handpieces (group 1 and 2, respectively, an ultrafine diamond bur (group 3 or an Er:YAG laser (250 mJ, long pulse, 4 Hz (group 4, and surface roughness parameters were measured again. Then, the buccal surfaces were polished and the third profilometry measurements were performed.Results: The specimens that were cleaned with a low speed tungsten carbide bur showed no significant difference in surface irregularity between the different treatment stages (p>0.05. Surface roughness increased significantly after clean-up with the diamond bur and the Er:YAG laser (p<0.01. In comparison between groups, adhesive removal with tungsten carbide burs at slow- or high-speed handpieces produced the lowest, while enamel clean-up with the Er:YAG laser caused the highest values of roughness measurements (P<0.05.Conclusion: Under the study conditions, application of the ultrafine diamond bur or the Er:YAG laser caused irreversible enamel damage on tooth surface, and thus these methods could not be recommended for removing adhesive remnants after debonding of orthodontic brackets.

  2. Ultrafine carbon particles promote rotenone-induced dopamine neuronal loss through activating microglial NADPH oxidase

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yinxi; Liu, Dan; Zhang, Huifeng; Wang, Yixin [Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191 (China); Wei, Ling [Beijing Center for Physical & Chemical Analysis, Beijing 100089 (China); Liu, Yutong [School of Life Science, Beijing Normal University, Beijing 100875 (China); Liao, Jieying [Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen 361024 (China); Gao, Hui-Ming [Model Animal Research Center of Nanjing University, Nanjing 211800 (China); Zhou, Hui, E-mail: hardhui@gmail.com [Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191 (China)

    2017-05-01

    Background: Atmospheric ultrafine particles (UFPs) and pesticide rotenone were considered as potential environmental risk factors for Parkinson's disease (PD). However, whether and how UFPs alone and in combination with rotenone affect the pathogenesis of PD remains largely unknown. Methods: Ultrafine carbon black (ufCB, a surrogate of UFPs) and rotenone were used individually or in combination to determine their roles in chronic dopaminergic (DA) loss in neuron-glia, and neuron-enriched, mix-glia cultures. Immunochemistry using antibody against tyrosine hydroxylase was performed to detect DA neuronal loss. Measurement of extracellular superoxide and intracellular reactive oxygen species (ROS) were performed to examine activation of NADPH oxidase. Genetic deletion and pharmacological inhibition of NADPH oxidase and MAC-1 receptor in microglia were employed to examine their role in DA neuronal loss triggered by ufCB and rotenone. Results: In rodent midbrain neuron-glia cultures, ufCB and rotenone alone caused neuronal death in a dose-dependent manner. In particularly, ufCB at doses of 50 and 100 μg/cm{sup 2} induced significant loss of DA neurons. More importantly, nontoxic doses of ufCB (10 μg/cm{sup 2}) and rotenone (2 nM) induced synergistic toxicity to DA neurons. Microglial activation was essential in this process. Furthermore, superoxide production from microglial NADPH oxidase was critical in ufCB/rotenone-induced neurotoxicity. Studies in mix-glia cultures showed that ufCB treatment activated microglial NADPH oxidase to induce superoxide production. Firstly, ufCB enhanced the expression of NADPH oxidase subunits (gp91{sup phox}, p47{sup phox} and p40{sup phox}); secondly, ufCB was recognized by microglial surface MAC-1 receptor and consequently promoted rotenone-induced p47{sup phox} and p67{sup phox} translocation assembling active NADPH oxidase. Conclusion: ufCB and rotenone worked in synergy to activate NADPH oxidase in microglia, leading to

  3. Ultrafine carbon particles promote rotenone-induced dopamine neuronal loss through activating microglial NADPH oxidase

    International Nuclear Information System (INIS)

    Wang, Yinxi; Liu, Dan; Zhang, Huifeng; Wang, Yixin; Wei, Ling; Liu, Yutong; Liao, Jieying; Gao, Hui-Ming; Zhou, Hui

    2017-01-01

    Background: Atmospheric ultrafine particles (UFPs) and pesticide rotenone were considered as potential environmental risk factors for Parkinson's disease (PD). However, whether and how UFPs alone and in combination with rotenone affect the pathogenesis of PD remains largely unknown. Methods: Ultrafine carbon black (ufCB, a surrogate of UFPs) and rotenone were used individually or in combination to determine their roles in chronic dopaminergic (DA) loss in neuron-glia, and neuron-enriched, mix-glia cultures. Immunochemistry using antibody against tyrosine hydroxylase was performed to detect DA neuronal loss. Measurement of extracellular superoxide and intracellular reactive oxygen species (ROS) were performed to examine activation of NADPH oxidase. Genetic deletion and pharmacological inhibition of NADPH oxidase and MAC-1 receptor in microglia were employed to examine their role in DA neuronal loss triggered by ufCB and rotenone. Results: In rodent midbrain neuron-glia cultures, ufCB and rotenone alone caused neuronal death in a dose-dependent manner. In particularly, ufCB at doses of 50 and 100 μg/cm 2 induced significant loss of DA neurons. More importantly, nontoxic doses of ufCB (10 μg/cm 2 ) and rotenone (2 nM) induced synergistic toxicity to DA neurons. Microglial activation was essential in this process. Furthermore, superoxide production from microglial NADPH oxidase was critical in ufCB/rotenone-induced neurotoxicity. Studies in mix-glia cultures showed that ufCB treatment activated microglial NADPH oxidase to induce superoxide production. Firstly, ufCB enhanced the expression of NADPH oxidase subunits (gp91 phox , p47 phox and p40 phox ); secondly, ufCB was recognized by microglial surface MAC-1 receptor and consequently promoted rotenone-induced p47 phox and p67 phox translocation assembling active NADPH oxidase. Conclusion: ufCB and rotenone worked in synergy to activate NADPH oxidase in microglia, leading to oxidative damage to DA neurons. Our

  4. Studies on composite solid propellant with tri-modal ammonium perchlorate containing an ultrafine fraction

    Directory of Open Access Journals (Sweden)

    K.V. Suresh Babu

    2017-08-01

    Full Text Available Composite solid propellant is prepared using tri-modal Ammonium perchlorate (AP containing coarse, fine and ultrafine fractions of AP with average particle size (APS 340, 40 and 5 μm respectively, in various compositions and their rheological, mechanical and burn rate characteristics are evaluated. The optimum combination of AP coarse to fine to ultrafine weight fraction was obtained by testing of series of propellant samples by varying the AP fractions at fixed solid loading. The concentration of aluminium was maintained constant throughout the experiments for ballistics requirement. The propellant formulation prepared using AP with coarse to fine to ultrafine ratio of 67:24:9 has lowest viscosity for the propellant paste and highest tensile strength due to dense packing as supported by the literature. A minimum modulus value was also observed at 9 wt. % of ultrafine AP concentration indicates the maximum solids packing density at this ratio of AP fractions. The burn rate is evaluated at different pressures to obtain pressure exponent. Incorporation of ultrafine fraction of AP in propellant increased burn rate without adversely affecting the pressure exponent. Higher solid loading propellants are prepared by increased AP concentration from 67 to 71 wt. % using AP with coarse to fine to ultrafine ratio of 67:24:9. Higher solid content up to 89 wt. % was achieved and hence increased solid motor performance. The unloading viscosity showed a trend with increased AP content and the propellant couldn't able to cast beyond 71 wt. % of AP. Mechanical properties were also studied and from the experiments noticed that % elongation decreased with increased AP content from 67 to 71 wt.%, whereas tensile strength and modulus increased. Burn rate increased with increased AP content and observed that pressure exponent also increased and it is high for the propellant containing with 71 wt.% of AP due to increased oxidiser to fuel ratio. Catalysed

  5. Ultrafine and Fine Particulate Matter Inside and Outside of Mechanically Ventilated Buildings.

    Science.gov (United States)

    Miller, Shelly L; Facciola, Nick A; Toohey, Darin; Zhai, John

    2017-01-28

    The objectives of this study were to measure levels of particulate matter (PM) in mechanically ventilated buildings and to improve understanding of filtration requirements to reduce exposure. With the use of an Ultra High Sensitivity Aerosol Spectrometer and an Aerodyne Mass Spectrometer, ultrafine (0.055-0.1 μm) and fine (0.1-0.7 μm) indoor and outdoor PM was measured as a function of time in an office, a university building, and two elementary schools. Indoor particle levels were highly correlated with outdoor levels. Indoor and outdoor number concentrations in Denver were higher than those in Boulder, with the highest number concentrations occurring during summer and fall. The ratio of indoor-to-outdoor (I/O) PM was weakly but positively correlated with the amount of ventilation provided to the indoor environment, did not vary much with particle size (ranged between 0.48 and 0.63 for the entire size range), and was similar for each period of the week (weekend vs. weekday, night vs. day). Regression analyses showed that ultrafine indoor PM baseline concentrations were higher at night from nighttime infiltration. A lag time was observed between outdoor and indoor measurements. Weekday days had the shortest lag time of 11 min, and weekend nighttime lags when the HVAC was not in use were 50 to 148 min. Indoor-outdoor PM concentration plots showed ultrafine PM was more correlated compared to fine, and especially when the HVAC system was on. Finally, AMS data showed that most of the PM was organic, with occasional nitrate events occurring outdoors. During nitrate events, there were less indoor particles detected, indicating a loss of particulate phase nitrate. The results from this study show that improved filtration is warranted in mechanically ventilated buildings, particularly for ultrafine particles, and that nighttime infiltration is significant depending on the building design.

  6. Effect of flow characteristics on ultrafine particle emissions from range hoods.

    Science.gov (United States)

    Tseng, Li-Ching; Chen, Chih-Chieh

    2013-08-01

    In order to understand the physical mechanisms of the production of nanometer-sized particulate generated from cooking oils, the ventilation of kitchen hoods was studied by determining the particle concentration, particle size distribution, particle dimensions, and hood's flow characteristics under several cooking scenarios. This research varied the temperature of the frying operation on one cooking operation, with three kinds of commercial cooking oils including soybean oil, olive oil, and sunflower oil. The variations of particle concentration and size distributions with the elevated cooking oil temperatures were presented. The particle concentration increases as a function of temperature. For oil temperatures ranging between 180°C and 210°C, a 5°C increase in temperature increased the number concentration of ultrafine particles by 20-50%. The maximum concentration of ultrafine particles was found to be approximately 6 × 10(6) particles per cm(3) at 260°C. Flow visualization techniques and particle distribution measurement were performed for two types of hood designs, a wall-mounted range hood and an island hood, at a suction flow rate of 15 m(3) min(-1). The flow visualization results showed that different configurations of kitchen hoods induce different aerodynamic characteristics. By comparing the results of flow visualizations and nanoparticle measurements, it was found that the areas with large-scale turbulent vortices are more prone to dispersion of ultrafine particle leakage because of the complex interaction between the shear layers and the suction movement that results from turbulent dispersion. We conclude that the evolution of ultrafine particle concentration fluctuations is strongly affected by the location of the hood, which can alter the aerodynamic features. We suggest that there is a correlation between flow characteristics and amount of contaminant leakage. This provides a comprehensive strategy to evaluate the effectiveness of kitchen hoods

  7. Improvement of the technique in treatment of internal hemorrhoids with Nd:YAG laser

    Science.gov (United States)

    Bao, Xiao-qing; Zhu, Jing; Shi, Hong-Min

    2005-07-01

    Objective: To observe and study the improvement of the technique in treatment of internal hemorrhoids with Nd:YAG laser and evaluate the effective rate. Methods: 60 patients of internal hemorrhoids were treated with Nd:YAG laser (10-15mw) irradiating on the mucosa of the lesions. Results: Among 60 patients, 57 patients were primarily cured with one treatment, 3 patients were primarily cured with two treatments. The effective rate was 95% with one treatment, and it reached to 100% with two treatments. Conclusions: the improvement of the technique in treatment of internal hemorrhoids with Nd:YAG laser is effective and easy to operate.

  8. Temperature dependence of optical properties in Nd/Cr:YAG materials

    International Nuclear Information System (INIS)

    Honda, Yoshiyuki; Motokoshi, Shinji; Jitsuno, Takahisa; Miyanaga, Noriaki; Fujioka, Kana; Nakatsuka, Masahiro; Yoshida, Minoru

    2014-01-01

    The energy transfer from Cr 3+ to Nd 3+ for Nd/Cr:YAG (Nd: 1.0%, Cr: 2.0%) materials was investigated by measuring the temperature dependences of fluorescence characteristics. The fluorescence intensity of Nd 3+ increased with temperature owing to enhancement of the absorption coefficient of Cr 3+ . The energy transfer efficiency was constant from 77 to 450 K. The energy transfer time decreased with increasing temperature. -- Highlights: • We investigate the energy transfer from Cr 3+ to Nd 3+ in Nd/Cr:YAG materials by measuring the temperature dependence of fluorescence characteristics. • The fluorescence intensity of Nd 3+ increased with temperature owing to enhancement of the absorption coefficient of Cr 3+ . • The energy transfer efficiency was constant from 77 to 450 K. • The energy transfer time decreased with increasing temperature. • Nd/Cr:YAG ceramics pumped by a flash lamp would not only provide high conversion efficiency, but can also be expected to function as an effective laser operating at high temperature

  9. Holmium:YAG laser effects on articular cartilage metabolism: in vitro

    Science.gov (United States)

    Smith, R. Lane; Montgomery, L.; Fanton, G.; Dillingham, M.; Schurman, D. J.

    1994-09-01

    We report effects of applying variable doses of Holmium:YAG laser energy to bovine articular cartilage in vitro. The response of the cartilage to the Holmium:YAG laser energy was determined by quantification of cell proliferation and extracellular matrix glycosaminoglycan synthesis. This study demonstrates that articular cartilage cell metabolism was maintained at a normal level following treatment of cartilage at a dose of 0.6 joules/pulse. The laser energy was applied at 10 Hz for 10 seconds at 1 mm distance from the cartilage. Under these conditions and at a dose of 0.6 joules/pulse, the total energy density was calculated to be 240 joules/cm2, assuming minimal loss of energy due to water absorption. Energy levels grater than 0.8 joules/pulse corresponding to calculated energy densities greater than 320 joules/cm2 proved harmful to cartilage. Our data demonstrate that low levels of Holmium:YAG laser energy can be applied to articular cartilage under conditions that maintain and/or stimulate cell metabolism.

  10. One-step rapid synthesis of ultrafine γ-Ga2O3 nanocrystals by microwave hydrothermal method in ammonium hydroxide medium

    Science.gov (United States)

    Cui, Lu; Wang, Hong; Xin, Baifu; Mao, Guijie

    2017-10-01

    Ultrafine nanocrystals of γ-gallium oxide (γ-Ga2O3) were rapidly synthesized via microwave hydrothermal method at 140 °C, in which Ga(NO3)3 was used as the gallium source and urea was the precipitant. The samples were characterized by X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-Vis), transmission electron microscopy (TEM), nitrogen physisorption and photoluminescence spectroscopy (PL). The crystallite size of ultrafine spinel γ-Ga2O3 was in the range from 4 to 5 nm and the optical bandgap was 4.61 eV. To improve the crystallinity, the ultrafine γ-Ga2O3 nanocrystals were calcined at 300-700 °C further. The ultrafine γ-Ga2O3 calcined at 500 °C (calcined-γ-Ga2O3) still remained the metastable γ-phase with relatively high crystallinity and the crystallite size around 5-7 nm. Photocatalytic performances of the synthesized samples were also evaluated by the degradation of rhodamine B (RhB). Results revealed that the ultrafine γ-Ga2O3 and the calcined-γ-Ga2O3 samples exhibited high photocatalytic efficiencies of 68.2 and 90.7%, respectively.

  11. Comparative study of diode-pumping self-injection and injection-locking Tm:YAG lasers

    International Nuclear Information System (INIS)

    Wu, C T; Chen, F; Ju, Y L; Wang, Y Z

    2013-01-01

    A comparative study of the laser characteristics of self-injection and injection-locking Tm:YAG lasers is given in this paper. At a pump energy of 145 mJ and Q-switched repetition rate of 100 Hz, an output energy of 2.39 mJ was obtained for an injection-locking Tm:YAG laser, with a pulse width of 403.2 ns and a pulse building-up time of 2.12 μs. Under the same conditions, the output energy, pulse width and pulse build-up time for a self-injection Tm:YAG laser were 2.21 mJ, 407.0 ns and 3.95 μs, respectively. The threshold of the Q-switched injection-locking Tm:YAG laser was much lower than that of the self-injection laser, and the pulse width was narrower and the pulse build-up time shorter. Additionally, the output spectrum was much purer for the injection-locking laser. (paper)

  12. Pulmonary diseases induced by ambient ultrafine and engineered nanoparticles in twenty-first century.

    Science.gov (United States)

    Xia, Tian; Zhu, Yifang; Mu, Lina; Zhang, Zuo-Feng; Liu, Sijin

    2016-12-01

    Air pollution is a severe threat to public health globally, affecting everyone in developed and developing countries alike. Among different air pollutants, particulate matter (PM), particularly combustion-produced fine PM (PM 2.5 ) has been shown to play a major role in inducing various adverse health effects. Strong associations have been demonstrated by epidemiological and toxicological studies between increases in PM 2.5 concentrations and premature mortality, cardiopulmonary diseases, asthma and allergic sensitization, and lung cancer. The mechanisms of PM-induced toxicological effects are related to their size, chemical composition, lung clearance and retention, cellular oxidative stress responses and pro-inflammatory effects locally and systemically. Particles in the ultrafine range (ambient ultrafine particles have higher toxic potential compared with PM 2.5 . In addition, the rapid development of nanotechnology, bringing ever-increasing production of nanomaterials, has raised concerns about the potential human exposure and health impacts. All these add to the complexity of PM-induced health effects that largely remains to be determined, and mechanistic understanding on the toxicological effects of ambient ultrafine particles and nanomaterials will be the focus of studies in the near future.

  13. Photo-switch of pulsed Nd:YAG laser

    International Nuclear Information System (INIS)

    Ketta, W.W.J.

    1989-01-01

    In this work passive Q-switching and its effect on the output laser beam from a pulsed Nd:YAG laser was studied. This was achieved using the photochemically stable (BDNI) dye after dissolving it in dichloroethane. The absorption spectra of the dye solution and how suitable to use with Nd:YAG laser was also dealt with. Cooling unit for the laser system, a detector to detect the output pulse, and an electronic counter to measure the pulse duration were constructed. In the free-running regime, the divergence angle was measured. The form of the output, its energy, and how it is affected by the pumping energy were also studied. In the Q-switching regime, the relation between output and pumping energies was studied and compared to the same relation under the free-running regime. 5 tabs.; 33 figs.; 57 refs

  14. Vascular effects of ultrafine particles in persons with type 2 diabetes

    Science.gov (United States)

    BACKGROUND: Diabetes confers an increased risk for cardiovascular effects of airborne particles. OBJECTIVE: We hypothesized that inhalation of elemental carbon ultrafine particles (UFP) would activate blood platelets and vascular endothelium in people with type 2 diabetes. ...

  15. Source apportionment of fine (PM1.8) and ultrafine (PM0.1) airborne particulate matter during a severe winter pollution episode.

    Science.gov (United States)

    Kleeman, Michael J; Riddle, Sarah G; Robert, Michael A; Jakober, Chris A; Fine, Phillip M; Hays, Michael D; Schauer, James J; Hannigan, Michael P

    2009-01-15

    Size-resolved samples of airborne particulate matter (PM) collected during a severe winter pollution episode at three sites in the San Joaquin Valley of California were extracted with organic solvents and analyzed for detailed organic compounds using GC-MS. Six particle size fractions were characterized with diameter (Dp) < 1.8 microm; the smallest size fraction was 0.056 < Dp < 0.1 microm which accounts for the majority of the mass in the ultrafine (PM0.1) size range. Source profiles for ultrafine particles developed during previous studies were applied to the measurements at each sampling site to calculate source contributions to organic carbon (OC) and elemental carbon (EC) concentrations. Ultrafine EC concentrations ranged from 0.03 microg m(-3) during the daytime to 0.18 microg m(-3) during the nighttime. Gasoline fuel, diesel fuel, and lubricating oil combustion products accounted for the majority of the ultrafine EC concentrations, with relatively minor contributions from biomass combustion and meat cooking. Ultrafine OC concentrations ranged from 0.2 microg m(-3) during the daytime to 0.8 microg m(-3) during the nighttime. Wood combustion was found to be the largest source of ultrafine OC. Meat cooking was also identified as a significant potential source of PM0.1 mass but further study is required to verify the contributions from this source. Gasoline fuel, diesel fuel, and lubricating oil combustion products made minor contributions to PM0.1 OC mass. Total ultrafine particulate matter concentrations were dominated by contributions from wood combustion and meat cooking during the current study. Future inhalation exposure studies may wish to target these sources as potential causes of adverse health effects.

  16. Transition of Emission Colours as a Consequence of Heat-Treatment of Carbon Coated Ce3+-Doped YAG Phosphors

    Directory of Open Access Journals (Sweden)

    Liang-Jun Yin

    2017-10-01

    Full Text Available To modify the luminescence properties of Ce3+-doped Y3Al5O12 (YAG phosphors, they have been coated with a carbon layer by chemical vapor deposition and subsequently heat-treated at high temperature under N2 atmosphere. Luminescence of the carbon coated YAG:Ce3+ phosphors has been investigated as a function of heat-treatment at 1500 and 1650 °C. The 540 nm emission intensity of C@YAG:Ce3+ is the highest when heated at 1650 °C, while a blue emission at 400–420 nm is observed when heated at 1500 °C but not at 1650 °C. It is verified by X-ray diffraction (XRD that the intriguing luminescence changes are induced by the formation of new phases in C@YAG:Ce3+-1500 °C, which disappear in C@YAG:Ce3+-1650 °C. In order to understand the mechanisms responsible for the enhancement of YAG:Ce3+ emission and the presence of the blue emission observed for C@YAG:Ce3+-1500 °C, the samples have been investigated by a combination of several electron microscopy techniques, such as HRTEM, SEM-CL, and SEM-EDS. This local and cross-sectional analysis clearly reveals a gradual transformation of phase and morphology in heated C@YAG:Ce3+ phosphors, which is related to a reaction between C and YAG:Ce3+ in N2 atmosphere. Through reaction between the carbon layer and YAG host materials, the emission colour of the phosphors can be modified from yellow, white, and then back to yellow under UV excitation as a function of heat-treatment in N2 atmosphere.

  17. Transition of Emission Colours as a Consequence of Heat-Treatment of Carbon Coated Ce3+-Doped YAG Phosphors.

    Science.gov (United States)

    Yin, Liang-Jun; Dierre, Benjamin; Sekiguchi, Takashi; van Ommen, J Ruud; Hintzen, Hubertus T Bert; Cho, Yujin

    2017-10-16

    To modify the luminescence properties of Ce 3+ -doped Y₃Al₅O 12 (YAG) phosphors, they have been coated with a carbon layer by chemical vapor deposition and subsequently heat-treated at high temperature under N₂ atmosphere. Luminescence of the carbon coated YAG:Ce 3+ phosphors has been investigated as a function of heat-treatment at 1500 and 1650 °C. The 540 nm emission intensity of C@YAG:Ce 3+ is the highest when heated at 1650 °C, while a blue emission at 400-420 nm is observed when heated at 1500 °C but not at 1650 °C. It is verified by X-ray diffraction (XRD) that the intriguing luminescence changes are induced by the formation of new phases in C@YAG:Ce 3+ -1500 °C, which disappear in C@YAG:Ce 3+ -1650 °C. In order to understand the mechanisms responsible for the enhancement of YAG:Ce 3+ emission and the presence of the blue emission observed for C@YAG:Ce 3+ -1500 °C, the samples have been investigated by a combination of several electron microscopy techniques, such as HRTEM, SEM-CL, and SEM-EDS. This local and cross-sectional analysis clearly reveals a gradual transformation of phase and morphology in heated C@YAG:Ce 3+ phosphors, which is related to a reaction between C and YAG:Ce 3+ in N₂ atmosphere. Through reaction between the carbon layer and YAG host materials, the emission colour of the phosphors can be modified from yellow, white, and then back to yellow under UV excitation as a function of heat-treatment in N₂ atmosphere.

  18. Self-mode-locked Nd3+:YAG laser

    International Nuclear Information System (INIS)

    Komarov, A K; Komarov, K P; Kuch'yanov, Aleksandr S

    2003-01-01

    Self-mode-locking was observed in a Nd 3+ :YAG laser with a negative feedback without introducing any nonlinear elements into the laser cavity. The laser generates during pumping 300 - 500-ps single pulses on an axial period. (lasers)

  19. Microstructural response of ultrafine-grained copper to fatigue loading

    Czech Academy of Sciences Publication Activity Database

    Kunz, Ludvík; Lukáš, Petr; Buksa, Michal; Wang, Q.; Zheng, M.

    2007-01-01

    Roč. 13, č. 1 (2007), s. 512-518 ISSN 1335-1532. [Metallography 2007. Stará Lesná, 02.05.2007-04.05.2007] R&D Projects: GA MŠk(CZ) 1P05ME804 Institutional research plan: CEZ:AV0Z20410507 Keywords : Ultrafine-grained copper * Fatigue * Softening/hardening Subject RIV: JG - Metallurgy

  20. Personal exposure to ultrafine particles and oxidative DNA damage

    DEFF Research Database (Denmark)

    Vinzents, Peter S; Møller, Peter; Sørensen, Mette

    2005-01-01

    Exposure to ultrafine particles (UFPs) from vehicle exhaust has been related to risk of cardiovascular and pulmonary disease and cancer, even though exposure assessment is difficult. We studied personal exposure in terms of number concentrations of UFPs in the breathing zone, using portable instr......, particularly during bicycling in traffic. The results indicate that biologic effects of UFPs occur at modest exposure, such as that occurring in traffic, which supports the relationship of UFPs and the adverse health effects of air pollution.......Exposure to ultrafine particles (UFPs) from vehicle exhaust has been related to risk of cardiovascular and pulmonary disease and cancer, even though exposure assessment is difficult. We studied personal exposure in terms of number concentrations of UFPs in the breathing zone, using portable...... instruments in six 18-hr periods in 15 healthy nonsmoking subjects. Exposure contrasts of outdoor pollution were achieved by bicycling in traffic for 5 days and in the laboratory for 1 day. Oxidative DNA damage was assessed as strand breaks and oxidized purines in mononuclear cells isolated from venous blood...

  1. Laser performance and modeling of RE3+:YAG double-clad crystalline fiber waveguides

    Science.gov (United States)

    Li, Da; Lee, Huai-Chuan; Meissner, Stephanie K.; Meissner, Helmuth E.

    2018-02-01

    We report on laser performance of ceramic Yb:YAG and single crystal Tm:YAG double-clad crystalline fiber waveguide (CFW) lasers towards the goal of demonstrating the design and manufacturing strategy of scaling to high output power. The laser component is a double-clad CFW, with RE3+:YAG (RE = Yb, Tm respectively) core, un-doped YAG inner cladding, and ceramic spinel or sapphire outer cladding. Laser performance of the CFW has been demonstrated with 53.6% slope efficiency and 27.5-W stable output power at 1030-nm for Yb:YAG CFW, and 31.6% slope efficiency and 46.7-W stable output power at 2019-nm for Tm:YAG CFW, respectively. Adhesive-Free Bond (AFB®) technology enables a designable refractive index difference between core and inner cladding, and designable core and inner cladding sizes, which are essential for single transverse mode CFW propagation. To guide further development of CFW designs, we present thermal modeling, power scaling and design of single transverse mode operation of double-clad CFWs and redefine the single-mode operation criterion for the double-clad structure design. The power scaling modeling of double-clad CFW shows that in order to achieve the maximum possible output power limited by the physical properties, including diode brightness, thermal lens effect, and simulated Brillion scattering, the length of waveguide is in the range of 0.5 2 meters. The length of an individual CFW is limited by single crystal growth and doping uniformity to about 100 to 200 mm lengths, and also by availability of starting crystals and manufacturing complexity. To overcome the limitation of CFW lengths, end-to-end proximity-coupling of CFWs is introduced.

  2. Chemical and physical analysis on hard tissues after irradiation with short pulse Nd:YAG laser

    International Nuclear Information System (INIS)

    Pereira, Andrea Antunes

    2003-01-01

    This work reports on a study that was designed to investigate chemical, physical and morphological alterations in the dental enamel surface. The influence of application of laser in enamel surface by microscopic technical, X-ray fluorescence for chemical analysis, physical property as well as hardness and thermal analysis with Nd:YAG laser is also pointed out. A prototype of Nd:YAG (Q-switched) laser developed at the Center of Lasers and Applications - Institute of Energetic and Nuclear Research, aiming applications in the Medical Sciences that typical wavelength of 1.064 nm was used. The modifications in human dental enamel chemical composition for major and trace elements are here outlined. The accuracy of procedures was performed by analysis of natural hydroxyapatite as standard reference material. The identification and quantification of the chemical elements presented in the dental tissue samples were performed trough EDS, XRF and INAA. We determined the rate Calcium/Phosphorus (Ca/P) for different techniques. We performed an analysis in different regions of the surface and for different areas allowing a description of the chemical change in the total area of the specimen and the assessment of the compositional homogeneity of the each specimen. A comparison between XRF and INAA is presented. Based on morphological analysis of the irradiated surfaces with short pulse Nd:YAG laser we determined the area surrounded by the irradiation for the parameters for this thesis, and this technique allowed us to visualize the regions of fusion and re-solidification. The energy densities ranged from 10 J/cm 2 to 40 J/cm 2 , with pulse width of 6, 10 e 200 ns, and repetition rates of 5 and 7 Hz. In this thesis, FTIR-spectroscopy is used to analyze powder of mineralized tissue as well as enamel, dentine, root and cementum for human and bovine teeth after irradiation with short-pulse Nd:YAG laser. Characteristic spectra were obtained for the proteins components and mineral

  3. Resonantly diode-pumped continuous-wave and Q-switched Er:YAG laser at 1645 nm.

    Science.gov (United States)

    Chang, N W H; Simakov, N; Hosken, D J; Munch, J; Ottaway, D J; Veitch, P J

    2010-06-21

    We describe an efficient Er:YAG laser that is resonantly pumped using continuous-wave (CW) laser diodes at 1470 nm. For CW lasing, it emits 6.1 W at 1645 nm with a slope efficiency of 36%, the highest efficiency reported for an Er:YAG laser that is pumped in this manner. In Q-switched operation, the laser produces diffraction-limited pulses with an average power of 2.5 W at 2 kHz PRF. To our knowledge this is the first Q-switched Er:YAG laser resonantly pumped by CW laser diodes.

  4. Taladrado de pizarra mediante láser de Nd:Yag

    Directory of Open Access Journals (Sweden)

    Larosi, M. S.

    1998-04-01

    Full Text Available A serie of experiments to investigate the feasibility of using a Nd: YAG laser to process slate tiles and the influence of the processing parameters have been undertaken. The objective of this work is to investigate the capabilities of a Nd:YAG pulsed laser to drill tiny holes in slate tiles, in order to produce a better quality drilled slate tile in a reduced time. Part of the results obtained in a systematic study about the influence of the processing parameters, such as average power, pulse width, frequency, pressure and type of assisting gas is presented.

    Se ha desarrollado una serie de experimentos para investigar la viabilidad del uso de un láser de Nd: YAG para el procesamiento de piezas de pizarra, así como los parámetros que más afectan al proceso. El objetivo concreto de este trabajo es investigar la capacidad de un láser de Nd:YAG pulsado para taladrar orificios de pequeño diámetro en láminas de pizarra, con el fin de obtener mejor calidad de taladrado en un tiempo reducido. Se presenta parte de los resultados obtenidos en un estudio sistemático de la influencia de los parámetros de procesamiento en la forma del orificio, tales como, potencia, duración de pulso, frecuencia, presión y tipo de gas de aportación.

  5. Neodymium: YAG laser damage threshold. A comparison of injection-molded and lathe-cut polymethylmethacrylate intraocular lenses.

    Science.gov (United States)

    Wilson, S E; Brubaker, R F

    1987-01-01

    The possibility that injection-molded intraocular lenses (IOLs) with imperfections called iridescent clefts could have a decreased threshold to neodymium: YAG (Nd:YAG) laser-induced damage was investigated. Thresholds for Nd:YAG laser-induced damage were determined for injection-molded and lathe-cut polymethylmethacrylate lenses. When aimed at a membrane in contact with a posterior convex surface, the average thresholds were 0.96 +/- 0.18 mJ (Standard deviation [SD]) and 1.80 +/- 0.55 mJ, respectively. The difference was significant at P = 0.001. When injection-molding polymethylmethacrylate was used to make lathe-cut IOLs, very few iridescent clefts were present, and the threshold to Nd:YAG laser-induced damage was 0.94 +/- 0.25 mJ. Iridescent clefts are therefore produced during the injection-molding process but they do not lower the threshold to Nd:YAG laser-induced damage. Rather, the reduced threshold in injection-molded lenses is most probably a result of the polymethylmethacrylate used in their manufacture. Clinically, iridescent clefts in a lens suggest that it has been manufactured by an injection-molding process and that Nd:YAG laser posterior capsulotomy must be performed at the lowest possible energy level to avoid damage.

  6. Outdoor ultrafine particle concentrations in front of fast food restaurants

    NARCIS (Netherlands)

    Vert, Cristina; Meliefste, Kees; Hoek, Gerard

    2016-01-01

    Ultrafine particles (UFPs) have been associated with negative effects on human health. Emissions from motor vehicles are the principal source of UFPs in urban air. A study in Vancouver suggested that UFP concentrations were related to density of fast food restaurants near the monitoring sites. A

  7. Effect of gamma irradiation on properties of ultrafine rubbers as toughening filler in polybenzoxazine

    Science.gov (United States)

    Taewattana, Rapiphan; Jubsilp, Chanchira; Suwanmala, Phiriyatorn; Rimdusit, Sarawut

    2018-04-01

    Three types of ultrafine fully vulcanized powdered rubbers (UFRs), i.e. natural rubber (NR), carboxylated nitrile-butadiene rubber (XNBR), and carboxylated styrene-butadiene rubber (XSBR) were prepared by combined technology between gamma irradiation for crosslinking and spray drying. The effects of doses in a range of 0-250 kGy on swelling ratio, crosslink density, and thermal stability of UFRs were investigated. Smaller particle size of UFRs was obtained at higher dose. A decrease in the swelling ratio and an increase in crosslink density were well corresponded to crosslinking effect related with absorbed dose. The increase in dose was also found to improve thermal performance of URFs. The influence of irradiated UFRs on impact resistance and glass transition temperature (Tg) of polybenzoxazine composites was also evaluated. The highest impact resistance of the composites belonged to the composite filled with irradiated UFXNBR at 200 kGy. While the significantly enhanced Tg of the composite was obtained by an addition of irradiated UFRs with higher doses, i.e. Tg = 173 °C for the composite filled with irradiated UFXNBR at 250 kGy. As a consequence, the UFRs can be used to effectively modify thermal and mechanical properties, especially impact resistance of polybenzoxazine composites.

  8. Microstructure and properties of ultrafine grain nickel 200 after hydrostatic extrusion processes

    Science.gov (United States)

    Sitek, R.; Krajewski, C.; Kamiński, J.; Spychalski, M.; Garbacz, H.; Pachla, W.; Kurzydłowski, K. J.

    2012-09-01

    This paper presents the results of the studies of the structure and properties of ultrafine grained nickel 200 obtained by hydrostatic extrusion processes. Microstructure was characterized by means of optical microscopy and electron transmission microscopy. Corrosion resistance was studied by impedance and potentiodynamic methods using an AutoLab PGSTAT 100 potentiostat in 0.1 M Na2SO4 solution and in acidified (by addition of H2SO4) 0.1 M NaCl solution at pH = 4.2 at room temperature. Microhardness tests were also performed. The results showed that hydrostatic extrusion produces a heterogeneous, ultrafine-grained microstructure in nickel 200. The corrosive resistance tests showed that the grain refinement by hydrostatic extrusion is accompanied by a decreased corrosive resistance of nickel 200.

  9. Bactericidal effect of Nd:YAG laser irradiation in endodontics

    Science.gov (United States)

    Aun, Carlos E.; Barberini, Alexandre F.; Camargo, Selma C. C.; Silva Kfouri, Luciana; Lorenzetti Simionato, Maria R.

    1999-05-01

    The success of endodontic therapy is based on the elimination of bacterial colonization from the endodontic system and periapical tissues. Recent studies have been showing the bactericidal effect of laser in root canal treatment. The propose of the study is to evaluate the effect of Nd:YAG laser irradiation in contaminated root canal treatment. The propose of the study is to evaluate the effect of Nd:YAG laser irradiation in contaminated root canals from upper central incisor. For the experiment 12 teeth were selected, respect at the apical third, sterilized, and 10 μm Streptococcus sanguis liquid culture were inoculated in the root canals. The laser test groups were irradiated with Nd:YAG laser at standard setting of 15Hz, 100mj and 1,5 W for 10, 20 and 30 seconds each in slow helicoidal movements from the apex to the top using a 300 micrometers fiber. After the procedure the specimens were placed in Tryptic Soy Agar, the number of colony forming units was evaluated. The experiment showed a significant reduction on viability of Streptococcus sanguis at the respective time of 20 and 30 seconds.

  10. Er:YAG laser-assisted hair transplantation in cicatricial alopecia.

    Science.gov (United States)

    Podda, M; Spieth, K; Kaufmann, R

    2000-11-01

    Autologous hair transplantation and its combination with flap or reduction procedures is a common surgical approach to cover defects in cicatricial alopecias. Due to the poor recipient conditions present in scar tissue, it is crucial to minimize the trauma exerted on implantation holes in order to achieve good transplantation results. We sought to evaluate the "cold"-ablative properties of the Er:YAG laser for the generation of recipient holes in cicatricial alopecia. Patients with cicatricial alopecia of diverse etiology were treated with Er:YAG laser-assisted hair transplantation. Mini- or micrografts were inserted into recipient holes ablated with a pulse energy of 900-1200 mJ and a spot size of 1.0-1.6 mm. A fluence of 80-120 J/cm2 and 8-12 pulses gave an almost ideal combination of minimal thermal damage and tissue ablation down to the subcutis. With an apparent mini- and micrograft survival of 95% we achieved good cosmetic results after two to five transplant sessions in all patients. The Er:YAG laser is a novel effective tool to ablate recipient holes for autologous hair transplantation in cicatricial alopecia.

  11. Ultrafine fibers of zein and anthocyanins as natural pH indicator.

    Science.gov (United States)

    Prietto, Luciana; Pinto, Vania Zanella; El Halal, Shanise Lisie Mello; de Morais, Michele Greque; Costa, Jorge Alberto Vieira; Lim, Loong-Tak; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa

    2018-05-01

    pH-sensitive indicator membranes, which are useful for pharmaceutical, food, and packaging applications, can be formed by encapsulating halochromic compounds within various solid supports. Accordingly, electrospinning is a versatile technique for the development of these indicators, by entrapping pH dyes within ultrafine polymer fibers. The ultrafine zein fibers, containing 5% (w/v) anthocyanins, had an average diameter of 510 nm. The pH-sensitive membrane exhibited color changes from pink to green when exposed to acidic and alkaline buffers, respectively. The contact angle was negligible after 10 and 2 s for neat and 5% anthocyanin-loaded zein membranes, respectively. The pH membranes exhibited color changes in a board pH range, which can potentially be used in various active packaging applications. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  12. Study on ultra-fine w-EDM with on-machine measurement-assisted

    International Nuclear Information System (INIS)

    Chen Shuntong; Yang Hongye

    2011-01-01

    The purpose of this study was to develop the on-machine measurement techniques so as to precisely fabricate micro intricate part using ultra-fine w-EDM. The measurement-assisted approach which employs an automatic optical inspection (AOI) is incorporated to ultra-fine w-EDM process to on-machine detect the machining error for next re-machining. The AOI acquires the image through a high resolution CCD device from the contour of the workpiece after roughing in order to further process and recognize the image for determining the residual. This facilitates the on-machine error detection and compensation re-machining. The micro workpiece and electrode are not repositioned during machining. A fabrication for a micro probe of 30-μm diameter is rapidly machined and verified successfully. Based on the proposed technique, on-machine measurement with AOI has been realized satisfactorily.

  13. Ultrafine Iridium Oxide Nanorods Synthesized by Molten Salt Method toward Electrocatalytic Oxygen and Hydrogen Evolution Reactions

    International Nuclear Information System (INIS)

    Ahmed, Jahangeer; Mao, Yuanbing

    2016-01-01

    Highlights: • Ultrafine iridium oxide nanorods were synthesized by a molten salt method at 650 °C. • They show enhanced electrocatalytic activity to oxygen and hydrogen evolution reactions. • These results are comparable with, and in most cases, higher than reported data in the literature. • This study reports a novel synthetic process for IrO_2 but also a high efficient IrO_2 nanostructure. • These IrO_2 NRs are expected to serve as a benchmark to develop active electrocatalysts. - Abstract: Ultrafine iridium oxide nanorods (IrO_2 NRs) were successfully synthesized using a molten salt method at 650 °C. The structural and morphological characterizations of these IrO_2 NRs were carried out by powder X-ray diffraction, Raman spectroscopy and electron microscopic techniques. Compared to commercial IrO_2 nanoparticles (IrO_2 NPs) and previous reports, these IrO_2 NRs show enhanced electrocatalytic activity to oxygen and hydrogen evolution reactions by passing either N_2 or O_2 gas in a 0.5 M KOH electrolyte before electrochemical measurements, including cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy. Specifically, the current densities from the as-synthesized IrO_2 NRs and commercial IrO_2 NPs were measured in 0.5 M KOH electrolyte to be 70 and 58 (OER, deaerated, at 0.6 V versus Ag/AgCl), 71 and 61 (OER, O_2, from −0.10 to 1.0 V versus Ag/AgCl at 50 mV/s), and 25 and 14 (HER, deaerated, at −1.4 V versus Ag/AgCl) mA/cm"2, respectively. These results are comparable with, and in most cases, higher than reported data in the literature. Therefore, the current study reports not only a novel synthetic process for IrO_2 but also a high efficient IrO_2 nanostructure, and it is expected that these IrO_2 NRs can serve as a benchmark in the development of active OER and HER (photo)electrocatalysts for various applications.

  14. Laser beam diagnostics for kilowatt power pulsed YAG laser

    International Nuclear Information System (INIS)

    Liu, Yi; Leong, Keng H.

    1992-01-01

    There is a growing need for high power YAG laser beam diagnostics with the recent introduction of such lasers in laser material processing. In this paper, we will describe the use of a commercially available laser beam analyzer (Prometec) to profile the laser beam from a 1600 W pulsed Nd:YAG laser that has a 1 mm fiber optic beam delivery system. The selection of laser pulse frequency and pulse width for the measurement is discussed. Laser beam propagation parameters by various optical components such as fibers and lenses can be determined from measurements using this device. The importance of such measurements will be discussed

  15. Aluminium alloys welding with high-power Nd:YAG lasers

    International Nuclear Information System (INIS)

    Garcia Orza, J.A.

    1998-01-01

    Aluminium alloys have good mechanical properties (high strength-to-weight ratio, corrosion resistance) and good workability. their applications are growing up, specially in the transportation industry. Weldability is however poorer than in other materials; recent advances in high power YAG laser are the key to obtain good appearance welds and higher penetration, at industrial production rates. Results of the combination of high power YAG beams with small fiber diameters and specific filler wires are presented. It is also characterized the air bone particulate material, by-product of the laser process: emission rates, size distribution and chemical composition are given for several aluminium alloys. (Author) 6 refs

  16. Effects of Er:YAG laser irradiation on human cartilage

    Science.gov (United States)

    Glinkowski, Wojciech; Brzozowska, Malgorzata; Ciszek, Bogdan; Rowinski, Jan; Strek, Wieslaw

    1996-03-01

    Irradiation of the hyaline or fibrous cartilage excised from the body of a human cadaver with Er:YAG laser beam, single pulse with a dose of 1 J, produces a crater with a depth of approximately 500 micrometers and a diameter varying from 5 to 300 micrometers. Histological examination has revealed that the laser-made craters were surrounded by a thin rim (2-10 micrometer) of charred and coagulated tissue. No damage was observed in the cartilage surrounding the rim. The presence of sharp demarcation between the tissue areas ablated by laser energy and the undamaged areas argues for the potential usefulness of the Er:YAG laser in surgery of cartilages.

  17. Cutting and coagulation during intraoral soft tissue surgery using Er: YAG laser.

    Science.gov (United States)

    Onisor, I; Pecie, R; Chaskelis, I; Krejci, I

    2013-06-01

    To find the optimal techniques and parameters that enables Er:YAG laser to be used successfully for small intraoral soft tissue interventions, in respect to its cutting and coagulation abilities. In vitro pre-tests: 4 different Er:YAG laser units and one CO2 unit as the control were used for incision and coagulation on porcine lower jaws and optimal parameters were established for each type of intervention and each laser unit: energy, frequency, type, pulse duration and distance. 3 different types of intervention using Er:YAG units are presented: crown lengthening, gingivoplasty and maxillary labial frenectomy with parameters found in the in vitro pre-tests. The results showed a great decrease of the EMG activity of masseter and anterior temporalis muscles. Moreover, the height and width of the chewing cycles in the frontal plane increased after therapy. Er:YAG is able to provide good cutting and coagulation effects on soft tissues. Specific parameters have to be defined for each laser unit in order to obtain the desired effect. Reduced or absent water spray, defocused light beam, local anaesthesia and the most effective use of long pulses are methods to obtain optimal coagulation and bleeding control.

  18. Empirical study of classification process for two-stage turbo air classifier in series

    Science.gov (United States)

    Yu, Yuan; Liu, Jiaxiang; Li, Gang

    2013-05-01

    The suitable process parameters for a two-stage turbo air classifier are important for obtaining the ultrafine powder that has a narrow particle-size distribution, however little has been published internationally on the classification process for the two-stage turbo air classifier in series. The influence of the process parameters of a two-stage turbo air classifier in series on classification performance is empirically studied by using aluminum oxide powders as the experimental material. The experimental results show the following: 1) When the rotor cage rotary speed of the first-stage classifier is increased from 2 300 r/min to 2 500 r/min with a constant rotor cage rotary speed of the second-stage classifier, classification precision is increased from 0.64 to 0.67. However, in this case, the final ultrafine powder yield is decreased from 79% to 74%, which means the classification precision and the final ultrafine powder yield can be regulated through adjusting the rotor cage rotary speed of the first-stage classifier. 2) When the rotor cage rotary speed of the second-stage classifier is increased from 2 500 r/min to 3 100 r/min with a constant rotor cage rotary speed of the first-stage classifier, the cut size is decreased from 13.16 μm to 8.76 μm, which means the cut size of the ultrafine powder can be regulated through adjusting the rotor cage rotary speed of the second-stage classifier. 3) When the feeding speed is increased from 35 kg/h to 50 kg/h, the "fish-hook" effect is strengthened, which makes the ultrafine powder yield decrease. 4) To weaken the "fish-hook" effect, the equalization of the two-stage wind speeds or the combination of a high first-stage wind speed with a low second-stage wind speed should be selected. This empirical study provides a criterion of process parameter configurations for a two-stage or multi-stage classifier in series, which offers a theoretical basis for practical production.

  19. Determination of the compressive yield strength for nano-grained YAG transparent ceramic by XRD analysis

    International Nuclear Information System (INIS)

    Wang, H.M.; Jiang, J.S.; Huang, Z.Y.; Chen, Y.; Liu, K.; Lu, Z.W.; Qi, J.Q.; Li, F.; He, D.W.; Lu, T.C.; Wang, Q.Y.

    2016-01-01

    Nano-grained ceramics have their unique mechanical characteristics that are not commonly found in their coarse-grained counterparts. In this study, nano-grained YAG transparent ceramics (NG-YAG) were prepared by low-temperature high-pressure technique (LTHP). The peak profile analysis of the X-ray diffraction was employed to investigate the compressive yield strength of NG-YAG. During the temperature at 450 °C, the residual micro-strain (RMS) increased with increasing loading pressure. However when the loading pressure was exceeded to 4.0 GPa the RMS exhibited a severe negative slop. The temperature effects on the compressive yield strength were also studied. It shows that the compressive yield strength of NG-YAG is 4.0 GPa and 5.0 GPa respectively at 450 °C and 350 °C. More importantly according to this investigation, a feasible technique to study the nano-grained ceramics is provided. - Graphical abstract: Fig. 2 shows the significant slope changes of calculated residual micro-strain (RMS) associated with five selected pressure-temperature conditions. Another the grain size estimated from Scherrer's formula, especially when it changes with the pressure-temperature condition is also plotted in Fig. 2. - Highlights: • Prepared the nano-grained YAG transparent ceramic by high pressure technique. • Obtained the compressive yield with different temperature. • Obtained the compressive yield of nano-grained YAG transparent ceramic.

  20. Preservation of amorphous ultrafine material: A proposed proxy for slip during recent earthquakes on active faults.

    Science.gov (United States)

    Hirono, Tetsuro; Asayama, Satoru; Kaneki, Shunya; Ito, Akihiro

    2016-11-09

    The criteria for designating an "Active Fault" not only are important for understanding regional tectonics, but also are a paramount issue for assessing the earthquake risk of faults that are near important structures such as nuclear power plants. Here we propose a proxy, based on the preservation of amorphous ultrafine particles, to assess fault activity within the last millennium. X-ray diffraction data and electron microscope observations of samples from an active fault demonstrated the preservation of large amounts of amorphous ultrafine particles in two slip zones that last ruptured in 1596 and 1999, respectively. A chemical kinetic evaluation of the dissolution process indicated that such particles could survive for centuries, which is consistent with the observations. Thus, preservation of amorphous ultrafine particles in a fault may be valuable for assessing the fault's latest activity, aiding efforts to evaluate faults that may damage critical facilities in tectonically active zones.

  1. Advancements in Ti Alloy Powder Production by Close-Coupled Gas Atomization

    Energy Technology Data Exchange (ETDEWEB)

    Heidloff, Andy; Rieken, Joel; Anderson, Iver; Byrd, David

    2011-04-01

    size cut has traditionally been 45 {mu}m, and in some instances a bottom cut at +5 {mu}m is made to remove ultra-fine particles and reduce oxygen content. Predictably, use of irregular shaped or larger particle feedstock powder can reduce part quality as sintering shrinkage and part detail suffer. Thus, widespread production and technological use of Ti-MIM is limited due in large part to Ti alloy feedstock cost and availability, not MIM processing capability. Lower cost feedstock of fine, spherical Ti alloy powder with sufficient purity must be available in order to fully utilize the advantages of the Ti-MIM processing route allowing expansion of the market to small complex Ti parts in many high volume applications.

  2. Argon green-Nd: YAG dual laser posterior hyaloidotomy: An innovative approach toward treatment of premacular hemorrhage

    Directory of Open Access Journals (Sweden)

    Ashish Sharma

    2013-01-01

    Full Text Available Background: Neodymium: YAG (Nd: YAG laser and argon laser has been used to treat premacular hemorrhage either alone or rarely in combination. Materials and Methods: We describe a new technique of treating premacular hemorrhage by performing hyaloidotomy using a combination of argon green-Nd: YAG laser. We utilized subthreshold energy levels of Nd: YAG laser of 2.0 mJ as compared to the normal recommendation of 3.6-50 mJ. Results and Conclusions: This technique is easy, effective, and safe to manage premacular hemorrhage. The principle behind this combined laser treatment was to make the internal limiting membrane (ILM taut by initial exposure to argon green laser, which allowed us to employ the subthreshold energy levels of Nd: YAG laser. We would like to assess the role of this combined treatment modality in comparison to other modalities, including solitary laser therapy in the management of premacular hemorrhage by performing a prospective, randomized long-term study.

  3. The influence of reagent type on the kinetics of ultrafine coal flotation

    Science.gov (United States)

    Read, R.B.; Camp, L.R.; Summers, M.S.; Rapp, D.M.

    1989-01-01

    A kinetic study has been conducted to determine the influence of reagent type on flotation rates of ultrafine coal. Two ultrafine coal samples, the Illinois No. 5 (Springfield) and Pittsburgh No. 8, have been evaluated with various reagent types in order to derive the rate constants for coal (kc), ash (ka), and pyrite (kc). The reagents used in the study include anionic surfactants, anionic surfactant-alcohol mixtures, and frothing alcohols. In general, the surfactant-alcohol mixtures tend to float ultrafine coal at a rate three to four times faster than either pure alcohols or pure anionic surfactants. Pine oil, a mixture of terpene alcohols and hydrocarbons, was an exception to this finding; it exhibited higher rate constants than the pure aliphatic alcohols or other pure anionic surfactants studied; this may be explained by the fact that the sample of pine oil used (70% alpha-terpineol) acted as a frother/collector system similar to alcohol/kerosene. The separation efficiencies of ash and pyrite from coal, as evidenced by the ratios of kc/ka or kc/kp, tend to indicate, however, that commercially available surfactant-alcohol mixtures are not as selective as pure alcohols such as 2-ethyl-1-hexanol or methylisobutylcarbinol. Some distinct differences in various rate constants, or their ratios, were noted between the two coals studied, and are possibly attributable to surface chemistry effects. ?? 1989.

  4. Enhanced protective properties of epoxy/polyaniline-camphorsulfonate nanocomposite coating on an ultrafine-grained metallic surface

    Science.gov (United States)

    Pour-Ali, Sadegh; Kiani-Rashid, Alireza; Babakhani, Abolfazl; Davoodi, Ali

    2016-07-01

    An ultrafine-grained surface layer on mild steel substrate with average grain size of 77 nm was produced through wire brushing process. Surface grain size was determined through transmission electron microscopy and X-ray diffraction methods. This substrate was coated with epoxy and an in situ synthesized epoxy/polyaniline-camphorsulfonate (epoxy/PANI-CSA) nanocomposite. The corrosion behavior was studied by open circuit potential, potentiodynamic polarization and impedance measurements. Results of electrochemical tests evidenced the enhanced protective properties of epoxy/PANI-CSA coating on the substrate with ultrafine-grained surface.

  5. Water-soluble ions in nano/ultrafine/fine/coarse particles collected near a busy road and at a rural site

    International Nuclear Information System (INIS)

    Lin, C.-C.; Chen, S.-J.; Huang, K.-L.; Lee, W.-J.; Lin, W.-Y.; Liao, C.-J.; Chaung, H.-C.; Chiu, C.-H.

    2007-01-01

    This study investigated water-soluble ions in the sized particles (particularly nano (PM 0.01-0.056 )/ultrafine (PM 0.01-0.1 )) collected using MOUDI and Nano-MOUDI samplers near a busy road site and at a rural site. The analytical results demonstrate that nano and coarse particles exhibited the highest (16.3%) and lowest (8.37%) nitrate mass ratios, respectively. The mass ratio of NO 3 - was higher than that of SO 4 2- in all the sized particles at the traffic site. The secondary aerosols all displayed trimodal distributions. The aerosols in ultrafine particles collected at the roadside site exhibited Aitken mode distributions indicating they were of local origin. This finding was not observed for those ultrafine particles collected at the rural site. The mass median diameters (MMDs) of the nano, ultrafine, and fine particles were smaller at the traffic site than at the rural site, possibly related to the contribution of mobile engine emissions. - NO 3 - > SO 4 2- in mass ratio, different from common observations in rural areas, was found in (particularly the nano) traffic-associated particles

  6. Metallography of a pulsed Nd:YAG laser weld in a RS/PM Al-8Fe-2Mo alloy

    International Nuclear Information System (INIS)

    Krishnaswamy, S.; Baeslack, W.A. III

    1990-01-01

    This paper reports the microstructure of a pulsed Nd:YAG laser weld in a rapid solidification/powder metallurgy (RS/PM) Al-8.0 wt.% Fe-2.3 wt.% Mo (Al-8Fe-2Mo) alloy investigated using light microcopy, canning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. This analysis revealed significant microstructure variations across the weld fusion zone (FZ). Near the fusion boundary, a light-etching FZ microstructure was observed to contain submicron dispersoids entrapped in a matrix of fine-sized dendritic alpha aluminum. At the center of the FZ, the presence of relatively coarse-sized intermetallic particles that served as growth centers for coarser dendritic alpha aluminum promoted a dark-etching microstructure. In the boundary between successive melt zones, both a heat-affected zone (HAZ) containing acicular dispersoids and a fusion boundary region (FBR) containing irregular-shaped particles in a coarse-grained dendritic alpha aluminum matrix were observed

  7. Preparation of Ultra-fine Calcium Carbonate by a Solvent-free ...

    African Journals Online (AJOL)

    The treatment of calcium chloride with sodium carbonate under solvent-free conditions with a supersonic airflow and at a low heating temperature leads to the synthesis of ultra-fine calcium carbonate. The reaction not only involves mild conditions, a simple operation, and high yields but also gives a high conversion rate.

  8. Measurements of the effect of humidity on radio-aerosol penetration through ultrafine capillaries

    International Nuclear Information System (INIS)

    Cullen, C.

    1996-08-01

    The purpose of this research was to examine the effects of humidity on radio-aerosol penetration through ultrafine capillaries. A number of tests were conducted at relative humidities of 20%, 50%, and 80%, with sampling times of 20, 40, and 60 min. The radio-aerosol consisted of polystyrene particles with a diameter of 0.1 microm. The ultrafine capillaries had a diameter of 250 microm. The data from these tests varied significantly. These results made the identification of radio-aerosol penetration trends inconclusive. The standard deviation for all penetration data ranged from 3% to 30%. The results of this study suggest that a better control of the experimental parameters was needed to obtain more accurate data from experiments associated with radio-aerosol penetration in the presence of moisture. The experimental parameters that may have contributed to the wide variance of data, include aerosol flow, radio-aerosol generation, capillary characteristics, humidity control, and radiation measurements. It was the uncertainty of these parameters that contributed to the poor data which made conclusive deductions about radio-aerosol penetration dependence on humidity difficult. The application of this study is to ultrafine leaks resulting from stress fractures in high-level nuclear waste transportation casks under accident scenarios

  9. Electrodeposited ultrafine TaOx/CB catalysts for PEFC cathode application: Their oxygen reduction reaction kinetics

    KAUST Repository

    Seo, Jeongsuk

    2014-12-01

    Ultrafine TaOx nanoparticles were electrodeposited on carbon black (CB) powder in a nonaqueous Ta complex solution at room temperature, and the resultant TaOx/CB catalysts were assessed as oxygen reduction reaction (ORR) electrocatalysts for polymer electrolyte fuel cell (PEFC) cathodes. The Ta electrodeposition process was scaled up using a newly designed working electrode containing a CB dense layer, without introducing any binder such as the ionomer Nafion in the electrode for electrodeposition. The electrodeposited TaOx/CB powders were removed from the deposition electrode and subsequent H2 treatment at varying temperatures between 523 and 1073 K was attempted to increase the ORR performance. The TaOx/CB samples were characterized by SEM, STEM, XPS, and EELS measurements. XPS and EELS results indicated the reduced nature of the Ta species caused by the high-temperature treatment in H2, while STEM images clearly revealed that the TaOx particles aggregated as the treatment temperature increased. When the TaOx/CB catalyst, which was treated at 873 K for 2 h, was deposited on a glassy carbon substrate with Nafion ionomer, it resulted in the highest activity among the samples investigated, giving an onset potential of 0.95 VRHE at -2 μA cm-2 in a 0.1 M H2SO4 solution. Moreover, the long-term stability test with 10,000 cycles of the voltammetry only led to a 6% loss in the ORR currents, demonstrating the high stability of the TaOx/CB catalysts. Kinetic analysis by R(R)DE indicated that the four-electron transfer pathway in the ORR process was dominant for this TaOx/CB catalyst, and Tafel plots showed a slope corresponding to a one-electron reaction for the rate-determining step.

  10. Electrodeposited ultrafine TaOx/CB catalysts for PEFC cathode application: Their oxygen reduction reaction kinetics

    KAUST Repository

    Seo, Jeongsuk; Anjum, Dalaver H.; Takanabe, Kazuhiro; Kubota, Jun; Domen, Kazunari

    2014-01-01

    Ultrafine TaOx nanoparticles were electrodeposited on carbon black (CB) powder in a nonaqueous Ta complex solution at room temperature, and the resultant TaOx/CB catalysts were assessed as oxygen reduction reaction (ORR) electrocatalysts for polymer electrolyte fuel cell (PEFC) cathodes. The Ta electrodeposition process was scaled up using a newly designed working electrode containing a CB dense layer, without introducing any binder such as the ionomer Nafion in the electrode for electrodeposition. The electrodeposited TaOx/CB powders were removed from the deposition electrode and subsequent H2 treatment at varying temperatures between 523 and 1073 K was attempted to increase the ORR performance. The TaOx/CB samples were characterized by SEM, STEM, XPS, and EELS measurements. XPS and EELS results indicated the reduced nature of the Ta species caused by the high-temperature treatment in H2, while STEM images clearly revealed that the TaOx particles aggregated as the treatment temperature increased. When the TaOx/CB catalyst, which was treated at 873 K for 2 h, was deposited on a glassy carbon substrate with Nafion ionomer, it resulted in the highest activity among the samples investigated, giving an onset potential of 0.95 VRHE at -2 μA cm-2 in a 0.1 M H2SO4 solution. Moreover, the long-term stability test with 10,000 cycles of the voltammetry only led to a 6% loss in the ORR currents, demonstrating the high stability of the TaOx/CB catalysts. Kinetic analysis by R(R)DE indicated that the four-electron transfer pathway in the ORR process was dominant for this TaOx/CB catalyst, and Tafel plots showed a slope corresponding to a one-electron reaction for the rate-determining step.

  11. Ultrafine manganese dioxide nanowire network for high-performance supercapacitors.

    Science.gov (United States)

    Jiang, Hao; Zhao, Ting; Ma, Jan; Yan, Chaoyi; Li, Chunzhong

    2011-01-28

    Ultrafine MnO(2) nanowires with sub-10 nm diameters have been synthesized by a simple process of hydrothermal treatment with subsequent calcinations to form networks that exhibit an enhanced specific capacitance (279 F g(-1) at 1 A g(-1)), high rate capability (54.5% retention at 20 A g(-1)) and good cycling stability (1.7% loss after 1000 cycles).

  12. Facile Deposition of Ultrafine Silver Particles on Silicon Surface Not Submerged in Precursor Solutions for Applications in Antireflective Layer

    Directory of Open Access Journals (Sweden)

    Bing Jiang

    2014-01-01

    Full Text Available Using a facile deposition method, the ultrafine silver particles are successfully deposited on the Si surface that is not submerged in precursor solutions. The ultrafine silver particles have many advantages, such as quasiround shape, uniformity in size, monodisperse distribution, and reduction of agglomeration. The internal physical procedure in the deposition is also investigated. The results show that there are more particles on the rough Si surface due to the wetting effect of solid-liquid interface. The higher concentration of ethanol solvent can induce the increase of quantity and size of particles on Si surface not in solutions. The ultrafine particles can be used to prepare porous Si antireflective layer in solar cell applications.

  13. Latest MIG, TIG arc-YAG laser hybrid welding systems for various welding products

    Science.gov (United States)

    Ishide, Takashi; Tsubota, Shuho; Watanabe, Masao

    2003-03-01

    Laser welding is capable of high-efficiency low-strain welding, and so its applications are started to various products. We have also put the high-power YAG laser of up to 10 kW to practical welding use for various products. On the other hand the weakest point of this laser welding is considered to be strict in the welding gap aiming allowance. In order to solve this problem, we have developed hybrid welding of TIG, MIG arc and YAG laser, taking the most advantages of both the laser and arc welding. Since the electrode is coaxial to the optical axis of the YAG laser in this process, it can be applied to welding of various objects. In the coaxial MIG, TIG-YAG welding, in order to make irradiation positions of the YAG laser beams having been guided in a wire or an electrode focused to the same position, the beam transmitted in fibers is separated to form a space between the separated beams, in which the laser is guided. With this method the beam-irradiating area can be brought near or to the arc-generating point. This enables welding of all directions even for the member of a three-dimensional shape. This time we carried out welding for various materials and have made their welding of up to 1 mm or more in welding groove gap possible. We have realized high-speed 1-pass butt welding of 4m/min in welding speed with the laser power of 3 kW for an aluminum alloy plate of approximately 4 mm thick. For a mild steel plate also we have realized butt welding of 1m/min with 5 kW for 6 mm thick. Further, in welding of stainless steel we have shown its welding possibility, by stabilizing the arc with the YAG laser in the welding atmosphere of pure argon, and shown that this welding is effective in high-efficiency welding of various materials. Here we will report the fundamental welding performances and applications to various objects for the coaxial MIG, TIG-YAG welding we have developed.

  14. A practice of ultra-fine tailings disposal as filling material in a gold mine.

    Science.gov (United States)

    Deng, D Q; Liu, L; Yao, Z L; Song, K I-I L; Lao, D Z

    2017-07-01

    A practice of cemented backfill technology with ultra-fine tailings in a gold mine was comprehensively presented, and a series of tests were conducted in accordance with the peculiar properties of ultra-fine tailings and the mining technology conditions. The test results show that, the tailings from Shuiyindong Gold Mine have a great grinding fineness, with the average particle diameter 22.03 μm, in which the ultra-fine particles with the diameter below 20 μm occupying 66.13%. The analysis results of chemical components of tailings indicate that the content of SiO 2 is relatively low, i.e., 33.08%, but the total content of CaO, MgO and Al 2 O 3 is relatively high i.e., 36.5%. After the settlement of 4-6 h, the tailing slurry with the initial concentration of 40% has the maximum settling concentration of 54.692%, and the corresponding maximum settling unit weight is 1.497 g/cm 3 . During the field application, the ultra-fine tailings and PC32.5 cement were mixed with the cement-tailings ratios of 1:3-1:8, and the slurry concentration of 50 wt% was prepared. Using the slurry pump, the prepared cemented backfill slurries flowed into the goaf, and then the strength of the cemented backfill body met the mining technique requirements in Shuiyindong Gold Mine, where the ore body has a smooth occurrence, with the average thickness of approximately 2 m and the inclination angle ranging from 5 to 10°. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. SEM evaluation of the morphological changes in hard dental tissues prepared by Er: YAG laser and rotary instruments

    Directory of Open Access Journals (Sweden)

    Tomov Georgi

    2010-09-01

    Full Text Available Effective ablation of dental hard tissues by means of the erbium:yttrium-aluminum garnet (Er: YAG laser has been reported recently, and its application to caries removal and cavity preparation has been expected. However, few studies have investigated the morphological changes in hard dental tissues after Er: YAG laser caries treatment. In the present study the morphological changes in hard dental tissues after Er: YAG laser caries ablation in vitro was compared with that of conventional mechanical treatment. Thirty extracted human teeth with caries were used. Ten tooth was treated with the Er: YAG laser, and the other was treated with a conventional steel and diamond burs. Laser treatment was performed by means of a non-contact irradiation modes with cooling water spray, with a new Er: YAG laser (LiteTouch. Conventional bur treatment was conducted by means of a low-speed micromotor and air turbine with water cooling. Scanning electron microscope (SEM observations were performed for each treatment. The Er: YAG laser ablated carious dentin effectively with minimal thermal damage to the surrounding intact dentin, and removed infected and softened carious dentin to the same degree as the burtreatment. In addition, a lower degree of vibration was noted with the Er: YAG laser treatment. The SEM examination revealed characteristic micro-irregularities of the lased dentin and enamel surfaces with potential benefits for adhesive restorations. Our results show that the Er: YAG laser is promising as a new technical modality for caries treatment

  16. Comparative study of excimer and erbium:YAG lasers for ablation of structural components of the knee

    Science.gov (United States)

    Vari, Sandor G.; Shi, Wei-Qiang; van der Veen, Maurits J.; Fishbein, Michael C.; Miller, J. M.; Papaioannou, Thanassis; Grundfest, Warren S.

    1991-05-01

    This study was designed to compare the efficiency and thermal effect of a 135 ns pulsed-stretched XeCl excimer laser (308 nm) and a free-running Erbium:YAG laser (2940 nm) with 200 microsecond(s) pulse duration for ablation of knee joint structures (hyaline and fibrous cartilage, tendon and bone). The radiant exposure used for tissue ablation ranged from 2 to 15 J/cm2 for the XeCl excimer and from 33 to 120 J/cm2 for Er:YAG. The excimer and Er:YAG lasers were operated at 4 and 5 Hz respectively. The ablative laser energy was delivered to tissue through fibers. Ablation rates of soft tissues (hyaline and fibrous cartilage, tendon) varied from 8.5 to 203 micrometers /pulse for excimer and from 8.2 to 273 micrometers /pulse for Er:YAG lasers. Ablation rates of soft tissues are linearly dependent on the radiant exposure. Within the range of parameters tested all the tissues except the bone could be rapidly ablated by both lasers. Bone ablation was much less efficient, requiring 15 J/cm2 and 110 J/cm2 radiant exposure for excimer and Er:YAG lasers to ablate 9.5 and 8.2 micrometers tissue per pulse. However, excimer laser ablation produced less thermal damage in the tissues studied compared to Er:YAG at the same laser parameters. The authors conclude that both lasers are capable of efficient knee joint tissue ablation. XeCl excimer laser requires an order of magnitude less energy than Er:YAG laser for comparable tissue ablation.

  17. Imaging of DNA Ultrafine Bridges in Budding Yeast.

    Science.gov (United States)

    Quevedo, Oliver; Lisby, Michael

    2018-01-01

    DNA ultrafine bridges (UFBs) are a type of chromatin-free DNA bridges that connect sister chromatids in anaphase and pose a threat to genome stability. However, little is known about the origin of these structures, and how they are sensed and resolved by the cell. In this chapter, we review tools and methods for studying UFBs by fluorescence microscopy including chemical and genetic approaches to induce UFBs in the model organism Saccharomyces cerevisiae.

  18. Imaging of DNA Ultrafine Bridges in Budding Yeast

    DEFF Research Database (Denmark)

    Quevedo Rodriguez, Oliver; Lisby, Michael

    2018-01-01

    DNA ultrafine bridges (UFBs) are a type of chromatin-free DNA bridges that connect sister chromatids in anaphase and pose a threat to genome stability. However, little is known about the origin of these structures, and how they are sensed and resolved by the cell. In this chapter, we review tools...... and methods for studying UFBs by fluorescence microscopy including chemical and genetic approaches to induce UFBs in the model organism Saccharomyces cerevisiae....

  19. Utilization of Nd-YAG (1064 nm) laser for female hair removal

    International Nuclear Information System (INIS)

    Ahmed, Ahlam Hassan

    2013-05-01

    The Cutera. Inc, cool Glide system laser is along pulsed Nd-YAG 1064 nm, of energy density 25 to 30 J/cm 2 and pulse duration 25 ms in all individual sessions.This study was held in Medical Arms Service Hospital. The period of study taken was three month. The study sample consisted of five patients base line photographs were taken before treatments and also after treatments. Photos show the satisfactory results of the laser treatment. In this study the hair removal treat went was conducted for female middle age group of 25-40 years. The Nd-YAG (1064 nm) laser was found to more effective in treatment of the hair removal, and complications can be minimized by using anesthesia and anti bio tics. The Nd-YAG laser therapy should be considered as a good and dependable alternative to other treatment radiation techniques. And effectiveness of treatment can be increased by using optimum power and duration.(Author)

  20. Gamma-ray relative energy response of Ce: YAG crystal

    International Nuclear Information System (INIS)

    Zhang Jianhua; Zhang Chuanfei; Hu Mengchun; Peng Taiping; Wang Zhentong; Tang Dengpan; Zhao Guangjun

    2010-01-01

    Gamma-ray relative energy response of Ce: YAG crystal, which is important for pulsed γ-ray measurement, was studied in this work.The Ce: YAG crystal, which was developed at Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, was aligned point by point with γ-rays scattered from an industrial 60 Co line source. The γ-ray relative energy response was calculated using the mass attenuation coefficient. The results show that the numerical calculation method of γ-ray relative energy response is reliable, and the experimental method with multi-energy point γ-ray by Compton scattering is also feasible, that can be used for checking up correctness of the numerical calculation results. (authors)

  1. Marginal microleakage in vitro study of occlusal fissures sealing prepared and etched or not with Er: YAG laser; Avaliacao in vitro da microinfiltracao marginal em selamentos oclusais preparados e condicionados ou nao pelo laser de Er:YAG

    Energy Technology Data Exchange (ETDEWEB)

    Youssef, Fernanda de Almeida

    2004-07-01

    The aim of this in vitro study was to evaluate the degree of marginal microleakage in occlusal sealing by invasive techniques, after preparation with Er:YAG laser followed or not by Er:YAG laser etching and compared to the conventional technique. Thirty human premolars were divided into three groups: A (control group) - cavities were prepared with high speed and etched with 37% orthophosphoric acid; group B - cavities were prepared with Er:YAG (350 mJ, 4 Hz and 112 J /cm{sup 2}) and etched with 37% orthophosphoric acid; group C - cavities were prepared with Er:YAG laser (350 mJ, 4 Hz and 112 J/cm{sup 2}), and etched with Er:YAG laser (80 mJ, 4 Hz and 25 m/cm{sup 2}). All cavities were treated with the same adhesive system and restored with flow composite according to manufacturer instructions. Teeth were submitted to thermal cycling procedures and immersed in 50% Silver Nitrate Solutions for 8 hours in total darkness. Teeth were sectioned longitudinally in the bucco-lingual direction, in slices of 1 mm thick. Each slice was immersed into photo developing solution under 16 hours of fluorescent light. Slices were photographed and microleakage was scored from 0 to 7 J by three standard examiners. Results showed statistically significant differences for group C (Er:YAG laser preparation and etching). We concluded that Er:YAG laser can be used for cavity preparation of occlusal sealing, like the conventional high speed method. However, this laser, used as enamel etching agent, could not promote an adequate surface for adhesive procedures. (author)

  2. Corrosion Resistant Cladding by YAG Laser Welding in Underwater Environment

    International Nuclear Information System (INIS)

    Tsutomi Kochi; Toshio Kojima; Suemi Hirata; Ichiro Morita; Katsura Ohwaki

    2002-01-01

    It is known that stress-corrosion cracking (SCC) will occur in nickel-base alloys used in Reactor Pressure Vessel (RPV) and Internals of nuclear power plants. A SCC sensitivity has been evaluated by IHI in each part of RPV and Internals. There are several water level instrumentation nozzles installed in domestic BWR RPV. In water level instrumentation nozzles, 182 type nickel-base alloys were used for the welding joint to RPV. It is estimated the SCC potential is high in this joint because of a higher residual stress than the yield strength (about 400 MPa). This report will describe a preventive maintenance method to these nozzles Heat Affected Zone (HAZ) and welds by a corrosion resistant cladding (CRC) by YAG Laser in underwater environment (without draining a reactor water). There are many kinds of countermeasures for SCC, for example, Induction Heating Stress Improvement (IHSI), Mechanical Stress Improvement Process (MSIP) and so on. A YAG laser CRC is one of them. In this technology a laser beam is used for heat source and irradiated through an optical fiber to a base metal and SCC resistant material is used for welding wires. After cladding the HAZ and welds are coated by the corrosion resistant materials so their surfaces are improved. A CRC by gas tungsten arc welding (GTAW) in an air environment had been developed and already applied to a couple of operating plants (16 Nozzles). This method was of course good but it spent much time to perform because of an installation of some water-proof working boxes to make a TIG-weldability environment. CRC by YAG laser welding in underwater environment has superior features comparing to this conventional TIG method as follows. At the viewpoint of underwater environment, (1) an outage term reduction (no drainage water). (2) a radioactive exposure dose reduction for personnel. At that of YAG laser welding, (1) A narrower HAZ. (2) A smaller distortion. (3) A few cladding layers. A YAG laser CRC test in underwater

  3. In-Situ TEM Study of Interface Sliding and Migration in an Ultrafine Lamellar Structure

    Energy Technology Data Exchange (ETDEWEB)

    Hsiung, L M

    2005-12-06

    The instability of interfaces in an ultrafine TiAl-({gamma})/Ti{sub 3}Al-({alpha}{sub 2}) lamellar structure by straining at room temperature has been investigated using in-situ straining techniques performed in a transmission electron microscope. The purpose of this study is to obtain experimental evidence to support the creep mechanisms based upon the interface sliding in association with a cooperative movement of interfacial dislocations previously proposed to interpret the nearly linear creep behavior observed from ultrafine lamellar TiAl alloys. The results have revealed that both the sliding and migration of lamellar interfaces can take place simultaneously as a result of the cooperative movement of interfacial dislocations.

  4. Split-face comparison of long-pulse-duration neodymium-doped yttrium aluminum garnet (Nd:YAG) 1,064-nm laser alone and combination long-pulse and Q-switched Nd:YAG 1,064-nm laser with carbon photoenhancer lotion for the treatment of enlarged pores in Asian women.

    Science.gov (United States)

    Wattanakrai, Penpun; Rojhirunsakool, Salinee; Pootongkam, Suwimon

    2010-11-01

    Long-pulse and Q-switched neodymium-doped yttrium aluminum garnet (Nd:YAG) 1,064-nm laser used for facial rejuvenation can improve pore size. Topical carbon has been used to enhance efficacy. To compare the efficacy and safety of a 1,064-nm long-pulse Nd:YAG laser alone with that of a combination Q-switched Nd:YAG laser with topical carbon lotion followed by long-pulse Nd:YAG to improve enlarged pores. Twenty Thai women randomly received five treatments with a long-pulse Nd:YAG laser on one facial half (LP side) and long-pulse Nd:YAG after carbon-assisted Q-switched Nd:YAG laser on the contralateral side (carbon QS+LP side) at 2-week intervals. Participants were evaluated using digital photography, complexion analysis, and a chromometer. There was significant decrease in pore counts of 35.5% and 33% from baseline on the carbon QS+LP and LP sides, respectively. Physician-evaluated pore size improvement was 67% on the carbon QS+LP sides and 60% on the LP sides. Chromometer measurement showed an increase in skin lightness index. There was no significant difference between the two treatments, although there were more adverse effects on the carbon QS+LP side. Long-pulse Nd:YAG 1,064-nm laser improves the appearance of facial pores and skin color. Adding carbon-assisted Q-switched Nd:YAG did not enhance the results but produced more side effects. © 2010 by the American Society for Dermatologic Surgery, Inc.

  5. Performance study of highly efficient 520 W average power long pulse ceramic Nd:YAG rod laser

    Science.gov (United States)

    Choubey, Ambar; Vishwakarma, S. C.; Ali, Sabir; Jain, R. K.; Upadhyaya, B. N.; Oak, S. M.

    2013-10-01

    We report the performance study of a 2% atomic doped ceramic Nd:YAG rod for long pulse laser operation in the millisecond regime with pulse duration in the range of 0.5-20 ms. A maximum average output power of 520 W with 180 J maximum pulse energy has been achieved with a slope efficiency of 5.4% using a dual rod configuration, which is the highest for typical lamp pumped ceramic Nd:YAG lasers. The laser output characteristics of the ceramic Nd:YAG rod were revealed to be nearly equivalent or superior to those of high-quality single crystal Nd:YAG rod. The laser pump chamber and resonator were designed and optimized to achieve a high efficiency and good beam quality with a beam parameter product of 16 mm mrad (M2˜47). The laser output beam was efficiently coupled through a 400 μm core diameter optical fiber with 90% overall transmission efficiency. This ceramic Nd:YAG laser will be useful for various material processing applications in industry.

  6. Q-switched pulse laser generation from double-cladding Nd:YAG ceramics waveguides.

    Science.gov (United States)

    Tan, Yang; Luan, Qingfang; Liu, Fengqin; Chen, Feng; Vázquez de Aldana, Javier Rodríguez

    2013-08-12

    This work reports on the Q-switched pulsed laser generation from double-cladding Nd:YAG ceramic waveguides. Double-cladding waveguides with different combination of diameters were inscribed into a sample of Nd:YAG ceramic. With an additional semiconductor saturable absorber, stable pulsed laser emission at the wavelength of 1064 nm was achieved with pulses of 21 ns temporal duration and ~14 μJ pulse energy at a repetition rate of 3.65 MHz.

  7. Characteristics of Inconel Powders for Powder-Bed Additive Manufacturing

    Directory of Open Access Journals (Sweden)

    Quy Bau Nguyen

    2017-10-01

    Full Text Available In this study, the flow characteristics and behaviors of virgin and recycled Inconel powder for powder-bed additive manufacturing (AM were studied using different powder characterization techniques. The results revealed that the particle size distribution (PSD for the selective laser melting (SLM process is typically in the range from 15 μm to 63 μm. The flow rate of virgin Inconel powder is around 28 s·(50 g−1. In addition, the packing density was found to be 60%. The rheological test results indicate that the virgin powder has reasonably good flowability compared with the recycled powder. The inter-relation between the powder characteristics is discussed herein. A propeller was successfully printed using the powder. The results suggest that Inconel powder is suitable for AM and can be a good reference for researchers who attempt to produce AM powders.

  8. Morphological change study on root surfaces treated with curettes, sonic instruments or Er:YAG laser

    International Nuclear Information System (INIS)

    Guimaraes Filho, Arlindo Lopes

    2004-01-01

    Periodontal disease is caused by dental plaque and dental calculus on roots surfaces, specially on cervical areas. As dental plaque is the main cause and dental calculus a secondary one, it is practically impossible to separate one factor to the other one. In order to get periodontal tissue health it is necessary to eliminate dental plaque and calculus from root surfaces. In this sense, Er:YAG laser comes in as an excellent way to control periodontal disease, not only, by removing calculus and dental plaque but also for its bacteria reduction. The aim of this study is to compare, by S.E.M., root surfaces changing when they are treated with curettes and ultrasonic scaling or Er:YAG laser irradiation with two different energy levels of 60 mJ/pulse and 100 mJ/pulse and repetition tax of 10 Hz (in the display). It is also objective of this study to check a possible thermic damage to pulp tissue when the roots surfaces are irradiated with Er:YAG laser. We used for this study, five human dental roots, each one of them were cut into four samples, giving us a total of twenty samples, which were divided in five groups of four samples each one. The control group, we did not indicated any kind of treatment. The first group, the roots samples were scaled and planned with Gracey curettes 5/6 and 7/8. The second group, the roots samples were treated with ultrasonic instruments. The third group was irradiated with Er:YAG laser using 60 mJ/pulse , 10 Hz and energy density of 4 J/cm 2 (approximated). The fourth group was irradiated with Er:YAG laser using 100 mJ/pulse, 10 Hz and energy density of 7 J/cm 2 (approximated). The results analysis showed that roots scaling either with Gracey curettes or with ultrasonic instruments created smear layer covering roots surfaces; roots surfaces irradiated with Er:YAG laser showed few roughness in the third group; roots surfaces irradiated with Er:YAG laser showed no smear layer and the Er:YAG laser irradiation did not bring any thermic damage

  9. Exposure to ultrafine particles, intracellular production of reactive oxygen species in leukocytes and altered levels of endothelial progenitor cells

    DEFF Research Database (Denmark)

    Jantzen, Kim; Møller, Peter Horn; Karottki, Dorina Gabriela

    2016-01-01

    . Additionally, the early endothelial progenitor cell levels were positively associated with a personalised measure of ultrafine particle exposure and negatively associated with both basal and capacity for reactive oxygen species production in lymphocytes and granulocytes, respectively. Our results indicate......Exposure to particles in the fine and ultrafine size range has been linked to induction of low-grade systemic inflammation, oxidative stress and development of cardiovascular diseases. Declining levels of endothelial progenitor cells within systemic circulation have likewise been linked...... to progression of cardiovascular diseases. The objective was to determine if exposure to fine and ultrafine particles from indoor and outdoor sources, assessed by personal and residential indoor monitoring, is associated with altered levels of endothelial progenitor cells, and whether such effects are related...

  10. Effects of Different Combinations of Er:YAG Laser-Adhesives on Enamel Demineralization and Bracket Bond Strength.

    Science.gov (United States)

    Çokakoğlu, Serpil; Nalçacı, Ruhi; Üşümez, Serdar; Malkoç, Sıddık

    2016-04-01

    The purpose of this study was to investigate the demineralization around brackets and shear bond strength (SBS) of brackets bonded to Er:YAG laser-irradiated enamel at different power settings with various adhesive systems combinations. A total of 108 premolar teeth were used in this study. Teeth were assigned into three groups according to the etching procedure, then each group divided into three subgroups based on the application of different adhesive systems. There were a total of nine groups as follows. Group 1: Acid + Transbond XT Primer; group 2: Er:YAG (100 mJ, 10 Hz) etching + Transbond XT Primer; group 3: Er:YAG (200 mJ, 10 Hz) etching + Transbond XT Primer; group 4: Transbond Plus self-etching primer (SEP); group 5: Er:YAG (100 mJ, 10 Hz) etching + Transbond Plus SEP; group 6: Er:YAG (200 mJ, 10 Hz) etching + Transbond Plus SEP; group 7: Clearfil Protect Bond; group 8: Er:YAG (100 mJ, 10 Hz) etching + Clearfil Protect Bond; group 9: Er:YAG (200 mJ, 10 Hz) etching + Clearfil Protect Bond. Brackets were bonded with Transbond XT Adhesive Paste in all groups. Teeth to be evaluated for demineralization and SBS were exposed to pH and thermal cyclings, respectively. Then, demineralization samples were scanned with micro-CT to determine lesion depth values. For SBS test, a universal testing machine was used and adhesive remnant was index scored after debonding. Data were analyzed statistically. No significant differences were found among the lesion depth values of the various groups, except for G7 and G8, in which the lowest values were recorded. The lowest SBS values were in G7, whereas the highest were in G9. The differences between the other groups were not significant. Er:YAG laser did not have a positive effect on prevention of enamel demineralization. When two step self-etch adhesive is preferred for bonding brackets, laser etching at 1 W (100 mJ, 10 Hz) is suggested to improve SBS of brackets.

  11. All solid-state diode pumped Nd:YAG MOPA with stimulated Brillouin phase conjugate mirror

    NARCIS (Netherlands)

    Offerhaus, Herman L.; Godfried, Herman; Godfried, H.P; Witteman, W.J.

    1996-01-01

    At the Nederlands Centrum voor Laser Research (NCLR) a 1 kHz diode-pumped Nd:YAG Master Oscillator Power Amplifier (MOPA) chain with a Stimulated Brillouin Scattering (SBS) Phase Conjugate mirror is designed and operated. A small Brewster angle Nd:YAG slab (2 by 2 by 20 mm) is side pumped with 200

  12. Morphological change study on root surfaces treated with curettes, sonic instruments or Er:YAG laser; Estudo in vitro da alteracao morfologica em superficie radicular tratada com curetas, aparelho ultrasonico ou com laser de Er:YAG

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes Filho, Arlindo Lopes

    2004-07-01

    Periodontal disease is caused by dental plaque and dental calculus on roots surfaces, specially on cervical areas. As dental plaque is the main cause and dental calculus a secondary one, it is practically impossible to separate one factor to the other one. In order to get periodontal tissue health it is necessary to eliminate dental plaque and calculus from root surfaces. In this sense, Er:YAG laser comes in as an excellent way to control periodontal disease, not only, by removing calculus and dental plaque but also for its bacteria reduction. The aim of this study is to compare, by S.E.M., root surfaces changing when they are treated with curettes and ultrasonic scaling or Er:YAG laser irradiation with two different energy levels of 60 mJ/pulse and 100 mJ/pulse and repetition tax of 10 Hz (in the display). It is also objective of this study to check a possible thermic damage to pulp tissue when the roots surfaces are irradiated with Er:YAG laser. We used for this study, five human dental roots, each one of them were cut into four samples, giving us a total of twenty samples, which were divided in five groups of four samples each one. The control group, we did not indicated any kind of treatment. The first group, the roots samples were scaled and planned with Gracey curettes 5/6 and 7/8. The second group, the roots samples were treated with ultrasonic instruments. The third group was irradiated with Er:YAG laser using 60 mJ/pulse , 10 Hz and energy density of 4 J/cm{sup 2} (approximated). The fourth group was irradiated with Er:YAG laser using 100 mJ/pulse, 10 Hz and energy density of 7 J/cm{sup 2} (approximated). The results analysis showed that roots scaling either with Gracey curettes or with ultrasonic instruments created smear layer covering roots surfaces; roots surfaces irradiated with Er:YAG laser showed few roughness in the third group; roots surfaces irradiated with Er:YAG laser showed no smear layer and the Er:YAG laser irradiation did not bring any

  13. Ho:YAG laser: intervertebral disk cell interaction using three-dimensional cell culture system

    Science.gov (United States)

    Sato, Masato; Ishihara, Miya; Arai, Tsunenori; Asazuma, Takashi; Kikuchi, Toshiyuki; Kikuchi, Makoto; Fujikawa, Kyosuke

    2000-06-01

    The purpose of this study is to evaluate the influence on the intervertebral disc cells after laser irradiation using three- dimensional culture system and to clarify the optimum Ho:YAG laser irradiation condition on percutaneous laser disc decompression (PLDD) for lumbar disc herniation. Since the Ho:YAG laser ablation is characterized by water-vapor bubble dynamics, not only thermal effect but also acoustic effect on cell metabolism might occur in the intervertebral disc. We studied the disc cell reaction from the metabolic point of view to investigate photothermal and photoacoustic effects on three-dimensional cultured disc cell. Intervertebral discs were obtained from female 30 Japanese white rabbits weighing about 1 kg. A pulsed Ho:YAG laser (wavelength: 2.1 micrometer, pulse width: about 200 microseconds) was delivered through a 200 micrometer-core diameter single silica glass fiber. We used the Ho:YAG laser irradiation fluence ranging from 60 to approximately 800 J/cm2 at the fiber end. To investigate acoustic effect, the acoustic transducer constructed with polyvinylidene fluoride (PVdF) film and acoustic absorber was used to detect the stress wave. Thermocouple and thermography were used to investigate thermal effect. Concerning damage of plasma membrane and ability of matrix synthesis, thermal effect might mainly affect cell reaction in total energy of 54 J (closed to practically used condition), but in 27 J, acoustic effect might contribute to it. We found that total energy was key parameter among the optimum condition, so that temperature and/or stress wave may influence Ho:YAG laser-disc cell interactions.

  14. Pulsed Tm:YAG laser ablation of knee joint tissues

    Science.gov (United States)

    Shi, Wei-Qiang; Vari, Sandor G.; Duffy, J. T.; Miller, J. M.; Weiss, Andrew B.; Fishbein, Michael C.; Grundfest, Warren S.

    1992-06-01

    We investigated the effect of a free-running 2.01 micron pulsed Tm:YAG laser on bovine knee joint tissues. Ablation rates of fresh fibrocartilage, hyaline cartilage, and bone were measured in saline as a function of laser fluence (160 - 640 J/cm2) and fiber core size (400 and 600 microns). All tissues could be effectively ablated and the ablation rate increased linearly with the increasing fluence. Use of fibers of different core sizes, while maintaining constant energy fluence, did not result in significant difference in ablation rate. Histology analyses of the ablated tissue samples reveal average Tm:YAG radiation induced thermal damage (denatunalization) zones ranging between 130 and 540 microns, depending on the laser parameters and the tissue type.

  15. Novel treatment of Hori's nevus: A combination of fractional nonablative 2,940-nm Er:YAG and low-fluence 1,064-nm Q-switched Nd:YAG laser.

    Science.gov (United States)

    Tian, Brian Wei Cheng Anthony

    2015-01-01

    To demonstrate a combination laser therapy to treat Hori's nevus. A prospective study. A Singapore-based clinic. Five female patients, aged 30-46 years, with bilateral malar Hori's nevus. Photographs were taken before treatment and 1 month after laser treatment was completed. These were graded by three independent physicians. The patients were also asked to grade their treatment response subjectively. They were followed up for a total of 3 months after laser treatment to monitor recurrence. The fractional nonablative 2,940-nm Er:YAG laser with a fluence of 0.7 J/cm(2), spot size 12 mm, and frequency 15 Hz was used to perform a full-face single-pass treatment. Subsequently, a second pass and third pass over Hori's nevi were done bilaterally till the clinical endpoint of skin whitening. The 1,064-nm Q-switched (QS) Nd:YAG at a fluence of 2.0 J/cm(2), frequency 2 Hz, and 4-mm spot size was used to deliver multiple passes over Hori's nevus till erythema with mild petechiae appeared. We repeated the treatment once a week for 3 more consecutive weeks. All five patients had above 80% improvement in their pigmentation and two (skin type III) achieved complete 100% clearance. Based on the patients' subjective assessments, all five of them expressed satisfaction and felt that their pigmentation had improved. There were no complications noted. The fractional nonablative 2940 nm Er:YAG laser and Q-switched 1064nm laser Nd:YAG combination is an effective and safe treatment for Hori's nevus.

  16. Single-Frequency Nd:YAG Ring Lasers with Corner Cube Prism

    Science.gov (United States)

    Wu, Ke-Ying; Yang, Su-Hui; Zhao, Chang-Ming; Wei, Guang-Hui

    2000-10-01

    We put forward another form of the non-planar ring lasers, in which the corner cube prism is the key element and the Nd:YAG crystal is used as a Porro prism to enclose the ring resonator. The phase shift due to the total internal reflections of the three differently orientated reflection planes of the corner cube prism, Faraday rotation in the Nd:YAG crystal placed in a magnetic field and the different output coupling in S and P polarization form an optical diode and enforce the single-frequency generating power. A round trip analysis of the polarization properties of the resonator is made by the evaluation of Jones matrix.

  17. Multiple minimally invasive Erbium:YAG laser mini-peels for skin rejuvenation: An objective assessment

    Science.gov (United States)

    El-Domyati, Moetaz; El-Ammawi, Tarek S.; Medhat, Walid; Moawad, Osama; Mahoney, Mỹ G.; Uitto, Jouni

    2012-01-01

    Summary Background As the demand for minimally invasive rejuvenation is increasing, micro-peel resurfacing using Erbium:Yttrium Aluminium Garnet (Er:YAG ) laser 2940 nm has been reported for the treatment of photoaged skin without ablation of the epidermis. However, little is known about the efficacy and underlying histologic changes associated with this type of treatment. Aims The purpose of this study is to evaluate the clinical effect and objectively quantify the histological changes in response to multiple sessions of Er:YAG laser 2940 nm mini-peels. Patients and methods Six female volunteers of Fitzpatrick skin type III-IV and Glogau’s class I-III wrinkles were subjected to six microresurfacing peels at 2-week intervals using Er:YAG 2940 nm laser at sub-ablative fluences of 2 - 3 J/cm2 to treat periorbital rhytides. Quantitative evaluation of collagen types I, III and VII, newly synthesized collagen, total elastin and tropoelastin was performed by histochemistry and immunohistochemistry coupled with computerized morphometric analysis at base line, end of treatment, and three months post treatment. Results Compared to the base line, evaluation of volunteers revealed obvious clinical improvement in response to Er:YAG mini-peels. Collagen types I, III, and VII, as well as newly synthesized collagen, together with tropoelastin showed a statistically significant increase in response to treatment, while the mean level of total elastin was significantly decreased in response to treatment. However, this was followed by regression of improvement at 3 months post treatment, but was still better than baseline. Conclusions The present study revealed that multiple Er:YAG mini-peels is a promising treatment option for photoaging as it reverses the signs of photoaged skin with little downtime and side effects. However, to maintain the short term improvement achieved after treatment, continued Er:YAG 2940 nm laser mini-peels is required. PMID:22672276

  18. Management of intermittent angle closure glaucoma with Nd: yag laser iridotomy as a primary procedure

    International Nuclear Information System (INIS)

    Ahmed, M.

    2006-01-01

    To assess the efficacy and complications of Nd: YAG laser iridotomy in patients with intermittent (sub-acute) angle closure glaucoma. Twenty-five eyes of twenty-three patients with periodic (intermittent) angle closure, selected in outpatient department, were kept on pilocarpine until YAG laser iridotomy was performed. After YAG laser iridotomy oral acetazolamide and topical dexamethasone was used to control post laser rise of IOP and inflammation respectively. Patency of iridotomy was confirmed and intra-ocular pressure was measured one hour after the procedure. Immediate complication, if any, was noted. Follow-up was done for six months. Prophylactic laser iridotomy was done in fellow eye with occludable angle. Levene's test for equality of variance and t-test for equality of means were used for statistical analysis. This study revealed a significant difference in IOP before and after YAG laser iridotomy (p = .002). Complete follow-up of 6 months was possible in 25 eyes of 23 subjects. After YAG Laser iridotomy, 21 (84%) eyes showed negative provocative test, intraocular pressure below 19mm Hg without medication and anterior chamber angle no more occludable and were labeled successful. Iridotomy remained patent in 96% of eyes. Iridotomy failed to reduce IOP in 4 (16%) eyes. The complications were minimal and transient. (author)

  19. Ultrafine particles over Eastern Australia: an airborne survey

    Directory of Open Access Journals (Sweden)

    Wolfgang Junkermann

    2015-04-01

    Full Text Available Ultrafine particles (UFP in the atmosphere may have significant impacts on the regional water and radiation budgets through secondary effects on cloud microphysics. Yet, as these particles are invisible for current remote sensing techniques, knowledge about their three-dimensional distribution, source strengths and budgets is limited. Building on a 40-yr-old Australia-wide airborne survey which provides a reference case study of aerosol sources and budgets, this study presents results from a new airborne survey over Eastern Australia, northern New South Wales and Queensland. Observations identified apparent changes in the number and distribution of major anthropogenic aerosol sources since the early 1970s, which might relate to the simultaneously observed changes in rainfall patterns over eastern Queensland. Coal-fired power stations in the inland areas between Brisbane and Rockhampton were clearly identified as the major sources for ultrafine particulate matter. Sugar mills, smelters and shipping along the coast close to the Ports of Townsville and Rockhampton were comparable minor sources. Airborne Lagrangian plume studies were applied to investigate source strength and ageing properties within power station plumes. Significant changes observed, compared to the measurements in the 1970s, included a significant increase in the number concentration of UFP related to coal-fired power station emissions in the sparsely populated Queensland hinterland coincident with the area with the most pronounced reduction in rainfall.

  20. Role of stress-assisted martensite in the design of strong ultrafine-grained duplex steels

    International Nuclear Information System (INIS)

    Yen, Hung-Wei; Ooi, Steve Woei; Eizadjou, Mehdi; Breen, Andrew; Huang, Ching-Yuan; Bhadeshia, H.K.D.H.; Ringer, Simon P.

    2015-01-01

    This work explains the occurrence of transformation-induced plasticity via stress-assisted martensite, when designing ultrafine-grained duplex steels. It is found that, when the austenite is reduced to a fine scale of about 300 nm, the initial deformation-induced microstructure can be dominated by parallel lamellae of ε martensite or mechanical twinning, which cannot efficiently provide nucleation sites for strain-induced martensite. Hence, α′ martensite nucleation occurs independently by a stress-assisted process that enhances transformation-induced plasticity in ultrafine-grained austenite. This metallurgical principle was validated experimentally by using a combination of transmission Kikuchi diffraction mapping, transmission electron microscopy and atom probe microscopy, and demonstrated theoretically by the thermodynamics model of stress-assisted martensite

  1. Production of a Powder Metallurgical Hot Work Tool Steel with Harmonic Structure by Mechanical Milling and Spark Plasma Sintering

    Science.gov (United States)

    Deirmina, Faraz; Pellizzari, Massimo; Federici, Matteo

    2017-04-01

    Commercial AISI-H13 gas atomized powders (AT) were mechanically milled (MM) to refine both the particle size and the microstructure. Different volume fractions of coarser grained (CG) AT powders were mixed with the ultra-fine grained (UFG) MM and consolidated by spark plasma sintering to obtain bulks showing a harmonic structure ( i.e. a 3D interconnected network of UFG areas surrounding the CG atomized particles). The low sintering temperature, 1373.15 K (1100 °C) and the short sintering time (30 minutes) made it possible to obtain near full density samples while preserving the refined microstructure induced by MM. A combination of high hardness and significantly improved fracture toughness is achieved by the samples containing 50 to 80 vol pct MM, essentially showing harmonic structure. The design allows to easily achieve specific application oriented properties by varying the MM volume fraction in the initial mixture. Hardness is governed by the fine-grained MM matrix and improved toughening is due to (1) deviatory effect of AT particles and (2) energy dissipation as a result of the decohesion in MM regions or AT and MM interface.

  2. Wavelength switchable high-power diode-side-pumped rod Tm:YAG Laser around 2µm.

    Science.gov (United States)

    Wang, Caili; Du, Shifeng; Niu, Yanxiong; Wang, Zhichao; Zhang, Chao; Bian, Qi; Guo, Chuan; Xu, Jialin; Bo, Yong; Peng, Qinjun; Cui, Dafu; Zhang, Jingyuan; Lei, Wenqiang; Xu, Zuyan

    2013-03-25

    We report a high-power diode-side-pumped rod Tm:YAG laser operated at either 2.07 or 2.02 µm depending on the transmission of pumped output coupler. The laser yields 115W of continuous-wave output power at 2.07 µm with 5% output coupling, which is the highest output power for all solid-state 2.07 μm cw rod Tm:YAG laser reported so far. With an output coupler of 10% transmission, the center wavelength of the laser is switched to 2.02 μm with an output power of 77.1 W. This is the first observation of high-power wavelength switchable diode-side-pumped rod Tm:YAG laser around 2 µm.

  3. Neodymium:YAG laser cutting of intraocular lens haptics in vitro and in vivo.

    Science.gov (United States)

    Feder, J M; Rosenberg, M A; Farber, M D

    1989-09-01

    Various complications following intraocular lens (IOL) surgery result in explantation of the lenses. Haptic fibrosis may necessitate cutting the IOL haptics prior to removal. In this study we used the neodymium: YAG (Nd:YAG) laser to cut polypropylene and poly(methyl methacrylate) (PMMA) haptics in vitro and in rabbit eyes. In vitro we were able to cut 100% of both haptic types successfully (28 PMMA and 30 polypropylene haptics). In rabbit eyes we were able to cut 50% of the PMMA haptics and 43% of the polypropylene haptics. Poly(methyl methacrylate) haptics were easier to cut in vitro and in vivo than polypropylene haptics, requiring fewer shots for transection. Complications of Nd:YAG laser use frequently interfered with haptic transections in rabbit eyes. Haptic transection may be more easily accomplished in human eyes.

  4. Expert elicitation on ultrafine particles: likelihood of health effects and causal pathways.

    NARCIS (Netherlands)

    Knol, A.B.; de Hartog, J.J.|info:eu-repo/dai/nl/288354850; Boogaard, H.|info:eu-repo/dai/nl/314406522; Slottje, P.|info:eu-repo/dai/nl/299345351; van der Sluijs, J.P.|info:eu-repo/dai/nl/073427489; Lebret, E.|info:eu-repo/dai/nl/071318917; Cassee, F.R.|info:eu-repo/dai/nl/143038990; Wardekker, J.A.|info:eu-repo/dai/nl/306644398; Ayres, J.G.; Borm, P.; Brunekreef, B.|info:eu-repo/dai/nl/067548180; Donaldson, K.; Forastiere, F.; Holgate, S.T.; Kreyling, W.; Nemery, B.; Pekkanen, J.; Stone, V.; Wichmann, H.E.; Hoek, G.|info:eu-repo/dai/nl/069553475

    2009-01-01

    ABSTRACT: BACKGROUND: Exposure to fine ambient particulate matter (PM) has consistently been associated with increased morbidity and mortality. The relationship between exposure to ultrafine particles (UFP) and health effects is less firmly established. If UFP cause health effects independently from

  5. Removal effects of the Nd:YAG laser and Carisolv on carious dentin.

    Science.gov (United States)

    Yamada, Y; Hossain, M; Kawanaka, T; Kinoshita, J; Matsumoto, K

    2000-10-01

    The purpose of this study was to investigate the removal effect of the Nd:YAG laser irradiation and Carisolv on carious dentin. Many previous studies have reported several simple and alternative techniques, such as lasers and chemicals, for caries removal. Carisolv was applied on the surface of 20 extracted human anterior and molar teeth for 1 min and then the Nd:YAG laser was irradiated with a continuous water spray for another 1 min. The energy densities were varied from 2 to 6W with a repetition rate of 20 pps. As caries removal progressed, the cavity was carefully assessed by DIAGNOdent. Each lesion was photographed before and after treatment, and the treated cavity was observed microscopically using a stereoscope and with scanning electron microscope (SEM). Thermal change at the time of laser irradiation was measured by thermovision. Our results revealed that application of Carisolv followed by Nd:YAG laser irradiation at 4-6W pulse energy effectively removed dentin caries. The total procedure was usually repeated once or twice for complete caries removal. From the SEM study, it was found that the cavity surface treated with the laser revealed various patterns of microirregularity, often accompanied by microfissure propagation. There was also no smear layer. It was revealed that Nd:YAG laser and Carisolv could provide an alternative technique for caries removal instead of the conventional mechanical drilling and cutting.

  6. Performance assessment of adding Cu-ultrafine particles into falling film desiccant

    International Nuclear Information System (INIS)

    Al-Mulla Ali, A.

    2006-01-01

    The concept of dehumidification between air and liquid desiccant for the improvement of the efficiency of heating and cooling fluids in industrial applications was discussed. The use of solid/liquid desiccants has received much attention in recent years because liquid desiccants can take moisture from surrounding air at low temperature and then release the moisture at high temperature to provide a continuous process of dehumidification of air and regeneration of liquid desiccant. This process can be used with conventional vapor compression cycles. This paper presented a comparative numerical study between parallel and counter flow configurations that examined the effects of various parameters on heat and mass transfer for the dehumidification and cooling processes of air and regeneration rate of liquid desiccant. Ultrafine particles were added to the falling film desiccant to investigate heat and mass transfer enhancement for both parallel and counter flow channels. The Cu-volume fraction in the falling film desiccant and dispersion effect were the important parameters. A mathematical model was therefore developed to account for the addition of Cu-ultrafine particles into the film desiccant. The dehumidification and cooling rate processes were found to improve with an increase in the Cu-ultrafine particles and dispersion effect. The new hybrid AC system was shown to improve indoor air quality, reduce energy consumption, and be environmentally safe. It was concluded that although the volume fraction and dispersion factor improve the dehumidification and cooling processes of the air, the improvements are not significant due to the small thickness of the falling-film desiccant. The regeneration process did not improve for either controlling parameter because of the small thickness of the film desiccant. 14 refs., 10 figs

  7. A novel film-pore-surface diffusion model to explain the enhanced enzyme adsorption of corn stover pretreated by ultrafine grinding.

    Science.gov (United States)

    Zhang, Haiyan; Chen, Longjian; Lu, Minsheng; Li, Junbao; Han, Lujia

    2016-01-01

    Ultrafine grinding is an environmentally friendly pretreatment that can alter the degree of polymerization, the porosity and the specific surface area of lignocellulosic biomass and can, thus, enhance cellulose hydrolysis. Enzyme adsorption onto the substrate is a prerequisite for the enzymatic hydrolysis process. Therefore, it is necessary to investigate the enzyme adsorption properties of corn stover pretreated by ultrafine grinding. The ultrafine grinding pretreatment was executed on corn stover. The results showed that ultrafine grinding pretreatment can significantly decrease particle size [from 218.50 μm of sieve-based grinding corn stover (SGCS) to 17.45 μm of ultrafine grinding corn stover (UGCS)] and increase the specific surface area (SSA), pore volume (PV) and surface composition (SSA: from 1.71 m(2)/g of SGCS to 2.63 m(2)/g of UGCS, PV: from 0.009 cm(3)/g of SGCS to 0.024 m(3)/g of UGCS, cellulose surface area: from 168.69 m(2)/g of SGCS to 290.76 m(2)/g of UGCS, lignin surface area: from 91.46 m(2)/g of SGCS to 106.70 m(2)/g of UGCS). The structure and surface composition changes induced by ultrafine grinding increase the enzyme adsorption capacity from 2.83 mg/g substrate of SGCS to 5.61 mg/g substrate of UGCS. A film-pore-surface diffusion model was developed to simultaneously predict the enzyme adsorption kinetics of both the SGCS and UGCS. Satisfactory predictions could be made with the model based on high R (2) and low RMSE values (R (2) = 0.95 and RMSE = 0.16 mg/g for the UGCS, R (2) = 0.93 and RMSE = 0.09 mg/g for the SGCS). The model was further employed to analyze the rate-limiting steps in the enzyme adsorption process. Although both the external-film and internal-pore mass transfer are important for enzyme adsorption on the SGCS and UGCS, the UGCS has a lower internal-pore resistance compared to the SGCS. Ultrafine grinding pretreatment can enhance the enzyme adsorption onto corn stover by altering structure and

  8. Regulatory role of XynR (YagI) in catabolism of xylonate in Escherichia coli K-12.

    Science.gov (United States)

    Shimada, Tomohiro; Momiyama, Eri; Yamanaka, Yuki; Watanabe, Hiroki; Yamamoto, Kaneyoshi; Ishihama, Akira

    2017-12-01

    The genome of Escherichia coli K-12 contains ten cryptic phages, altogether constituting about 3.6% of the genome in sequence. Among more than 200 predicted genes in these cryptic phages, 14 putative transcription factor (TF) genes exist, but their regulatory functions remain unidentified. As an initial attempt to make a breakthrough for understanding the regulatory roles of cryptic phage-encoded TFs, we tried to identify the regulatory function of CP4-6 cryptic prophage-encoded YagI with unknown function. After SELEX screening, YagI was found to bind mainly at a single site within the spacer of bidirectional transcription units, yagA (encoding another uncharacterized TF) and yagEF (encoding 2-keto-3-deoxy gluconate aldolase, and dehydratase, respectively) within this prophage region. YagEF enzymes are involved in the catabolism of xylose downstream from xylonate. We then designated YagI as XynR (regulator of xylonate catabolism), one of the rare single-target TFs. In agreement with this predicted regulatory function, the activity of XynR was suggested to be controlled by xylonate. Even though low-affinity binding sites of XynR were identified in the E. coli K-12 genome, they all were inside open reading frames, implying that the regulation network of XynR is still fixed within the CR4-6 prophage without significant influence over the host E. coli K-12. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Synthesis of Uranium nitride powders using metal uranium powders

    International Nuclear Information System (INIS)

    Yang, Jae Ho; Kim, Dong Joo; Oh, Jang Soo; Rhee, Young Woo; Kim, Jong Hun; Kim, Keon Sik

    2012-01-01

    Uranium nitride (UN) is a potential fuel material for advanced nuclear reactors because of their high fuel density, high thermal conductivity, high melting temperature, and considerable breeding capability in LWRs. Uranium nitride powders can be fabricated by a carbothermic reduction of the oxide powders, or the nitriding of metal uranium. The carbothermic reduction has an advantage in the production of fine powders. However it has many drawbacks such as an inevitable engagement of impurities, process burden, and difficulties in reusing of expensive N 15 gas. Manufacturing concerns issued in the carbothermic reduction process can be solved by changing the starting materials from oxide powder to metals. However, in nitriding process of metal, it is difficult to obtain fine nitride powders because metal uranium is usually fabricated in the form of bulk ingots. In this study, a simple reaction method was tested to fabricate uranium nitride powders directly from uranium metal powders. We fabricated uranium metal spherical powder and flake using a centrifugal atomization method. The nitride powders were obtained by thermal treating those metal particles under nitrogen containing gas. We investigated the phase and morphology evolutions of powders during the nitriding process. A phase analysis of nitride powders was also a part of the present work

  10. Significant Corrosion Resistance in an Ultrafine-Grained Al6063 Alloy with a Bimodal Grain-Size Distribution through a Self-Anodic Protection Mechanism

    Directory of Open Access Journals (Sweden)

    Mahdieh Shakoori Oskooie

    2016-12-01

    Full Text Available The bimodal microstructures of Al6063 consisting of 15, 30, and 45 vol. % coarse-grained (CG bands within the ultrafine-grained (UFG matrix were synthesized via blending of high-energy mechanically milled powders with unmilled powders followed by hot powder extrusion. The corrosion behavior of the bimodal specimens was assessed by means of polarization, steady-state cyclic polarization and impedance tests, whereas their microstructural features and corrosion products were examined using optical microscopy (OM, scanning transmission electron microscopy (STEM, field emission scanning electron microscopy (FE-SEM, electron backscattered diffraction (EBSD, energy dispersive spectroscopy (EDS, and X-ray diffraction (XRD techniques. The bimodal Al6063 containing 15 vol. % CG phase exhibits the highest corrosion resistance among the bimodal microstructures and even superior electrochemical behavior compared with the plain UFG and CG materials in the 3.5% NaCl solution. The enhanced corrosion resistance is attributed to the optimum cathode to anode surface area ratio that gives rise to the formation of an effective galvanic couple between CG areas and the UFG matrix. The operational galvanic coupling leads to the domination of a “self-anodic protection system” on bimodal microstructure and consequently forms a uniform thick protective passive layer over it. In contrast, the 45 vol. % CG bimodal specimen shows the least corrosion resistance due to the catastrophic galvanic corrosion in UFG regions. The observed results for UFG Al6063 suggest that metallurgical tailoring of the grain structure in terms of bimodal microstructures leads to simultaneous enhancement in the electrochemical behavior and mechanical properties of passivable alloys that are usually inversely correlated. The mechanism of self-anodic protection for passivable metals with bimodal microstructures is discussed here for the first time.

  11. Nd:YAG laser in caries prevention: a clinical study

    International Nuclear Information System (INIS)

    Boari, Heloisa Gomes Dimiranda

    2000-01-01

    The caries prevention by using laser irradiation has been investigated during the last 30 years. The Nd: YAG laser associated with acidulated phosphate fluoride has been shown as a very promising technique for enamel caries prevention. The aim of this work was to clinically evaluate the efficiency of Nd: YAG laser associated with acidulated phosphate fluoride in pit and fissure caries prevention of children and adolescents. In this work it was determined the dye that enhance the effect of Nd: YAG laser in enamel. It was selected 242 pre-molar and molar teeth from 33 children and adolescents, aged from 7 to 15 years old. The selected teeth were free from caries or decalcification marks (active white marks) to the clinical and radiographic exams. The teeth were divided into two groups: the first group was laser irradiated and their homologous remained as a control. The right side teeth were dye-assisted Nd:YAG laser irradiated. The dye solution was a moisture of dust coal and equal parts of water and alcohol. The irradiation conditions were 60 mJ/10 Hz, optical fiber in contact mode, with diameter of 300 μm, resulting in an energy density of 84,9 J/cm 2 . The oclusal surface of the teeth was completely irradiated, specially on the slopes and in the deepest part of the pits and fissures. This procedure was repeated three times. In the sequence it was applied the acidulated phosphate fluoride for 4 minutes. On the left side teeth - control group- only acidulated phosphate fluoride was applied for the same time. The final examination considered the presence of caries and active white marks after a period of one year. There were statistical significant differences (p < 0.01) between the lased + fluoride group and the non irradiated group. The present study concluded that the technique used in this work can be an alternative clinical method for caries prevention. (author)

  12. Nd:YAG laser in art works restoration

    Directory of Open Access Journals (Sweden)

    Flores, T.

    1998-04-01

    Full Text Available Laser cleaning in works of art has a number of advantages over traditional techniques of restoration. In this article, the technique used and the physical mechanisms that explain the process of ablation of pollutants are described. The results obtained in the cleaning of statues of marble and alabaster are exposed as well as oil-painting restoration. In this last specific case, the Nd:YAG laser is used with successful results.

    La limpieza de obras de arte por láser presenta una serie de ventajas sobre técnicas tradicionales de restauración. En el presente trabajo se describen la técnica empleada y los mecanismos físicos que explican el proceso de ablación de contaminantes. Se reportan los resultados alcanzados en la limpieza de estatuas de mármol y alabastro, así como en la restauración de pintura al óleo. En este último caso, se emplea por primera vez el láser de Nd:YAG con resultados ventajosos.

  13. Effect of ageing on tensile behavior of ultrafine grained Al 6061 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Rao, P. Nageswara [Department of Metallurgical and Materials Engineering & Centre of Nanotechnology, IIT Roorkee, Roorkee 247667 (India); Singh, Dharmendra [Department of Mechanical Engineering, Government Engineering College, Bikaner 304001 (India); Brokmeier, Heinz-Günter [Helmholtz Zentrum Geesthacht, Max Planck Straße 1, Geb 33, D-21502 Geesthacht (Germany); Jayaganthan, R., E-mail: rjayafmt@iitr.ernet.in [Department of Metallurgical and Materials Engineering & Centre of Nanotechnology, IIT Roorkee, Roorkee 247667 (India)

    2015-08-12

    In the present investigation, the ageing behavior of ultrafine grained (UFG) Al 6061 alloy, processed through multi-directional forging (MDF) at cryogenic temperature was investigated. The evolution of microstructure was investigated through transmission electron microscopy and electron back scattered diffraction technique. The results indicate that homogeneous microstructure with an ultrafine grain morphology (average size 250 nm) was achieved through cryogenic forging of the alloy subjected to prior solutionising treatment. Tensile testing at room temperature revealed that MDFed material after ageing led to significant improvement in work hardening and its tensile ductility. Strengthening of the matrix through various mechanisms has been quantified with the existing models to estimate the yield strength of the as forged and peak aged material. The precipitation hardening response in UFG material is found to be 35% lower than that of the coarse grained material as observed in the present work.

  14. Enhanced Impact Toughness at Ambient Temperatures of Ultrafine-Grained Al-26 wt.% Si Alloy Produced by Equal-Channel Angular Pressing

    Science.gov (United States)

    Jiang, Jinghua; Yuan, Ting; Shi, Jun; Zhang, Lingling; Ma, Aibin; Song, Dan

    2018-05-01

    Overcoming general brittleness of hypereutectic Al-Si alloys is in urgent need for expanding their application in automotive, aerospace and construction industries. A unique phenomenon was observed that bulk ultrafine-grained Al-26 wt.% Si alloy, produced by severe plastic deformation via equal-channel angular pressing, exhibited higher toughness at the impact temperature of - 196 100 °C than the coarse-grained casting alloy. The improvement in impact toughness at all testing temperatures was mainly due to the homogeneous ultrafine-grained structure with the breakage of brittle primary silicon crystals, which generated more and deeper fracture dimples that consumed much higher fracture energy. It indicates the advantage of bulk ultrafine-grained Al-Si alloys and spurs their application interest at various ambient temperatures.

  15. Design of laser-driven SiO2-YAG:Ce composite thick film: Facile synthesis, robust thermal performance, and application in solid-state laser lighting

    Science.gov (United States)

    Xu, Jian; Liu, Bingguo; Liu, Zhiwen; Gong, Yuxuan; Hu, Baofu; Wang, Jian; Li, Hui; Wang, Xinliang; Du, Baoli

    2018-01-01

    In recent times, there have been rapid advances in the solid-state laser lighting technology. Due to the large amounts of heat accumulated from the high flux laser radiation, color conversion materials used in solid-state laser lighting devices should possess high durability, high thermal conductivity, and low thermal quenching. The aim of this study is to develop a thermally robust SiO2-YAG:Ce composite thick film (CTF) for high-power solid-state laser lighting applications. Commercial colloidal silica which was used as the source of SiO2, played the roles of an adhesive, a filler, and a protecting agent. Compared to the YAG:Ce powder, the CTF exhibits remarkable thermal stability (11.3% intensity drop at 200 °C) and durability (4.5% intensity drop after 1000 h, at 85 °C and 85% humidity). Furthermore, the effects of the substrate material and the thickness of the CTF on the laser lighting performance were investigated in terms of their thermal quenching and luminescence saturation behaviors, respectively. The CTF with a thickness of 50 μm on a sapphire substrate does not show luminescence saturation, despite a high-power density of incident radiation i.e. 20 W/mm2. These results demonstrate the potential applicability of the CTF in solid-state laser lighting devices.

  16. Filament-induced luminescence and supercontinuum generation in undoped, Yb-doped, and Nd-doped YAG crystals

    Science.gov (United States)

    Kudarauskas, D.; Tamošauskas, G.; Vengris, M.; Dubietis, A.

    2018-01-01

    We present a comparative spectral study of filament-induced luminescence and supercontinuum generation in undoped, Yb-doped, and Nd-doped YAG crystals. We show that supercontinuum spectra generated by femtosecond filamentation in undoped and doped YAG crystals are essentially identical in terms of spectral extent. On the other hand, undoped and doped YAG crystals exhibit remarkably different filament-induced luminescence spectra whose qualitative features are independent of the excitation wavelength and provide information on the energy deposition to embedded dopants, impurities, and the crystal lattice itself. Our findings suggest that filament-induced luminescence may serve as a simple and non-destructive tool for spectroscopic studies in various transparent dielectric media.

  17. Adiabatic shear localization in ultrafine grained 6061 aluminum alloy

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bingfeng, E-mail: biw009@ucsd.edu [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Department of Mechanical and Aerospace Engineering, University of California, San Diego (United States); State Key Laboratory for Powder Metallurgy, Central South University, Changsha, Hunan (China); Key Lab of Nonferrous Materials, Ministry of Education, Central South University, Changsha 410083 (China); Ma, Rui; Zhou, Jindian [School of Materials Science and Engineering, Central South University, Changsha 410083 (China); Li, Zezhou; Zhao, Shiteng [Department of Mechanical and Aerospace Engineering, University of California, San Diego (United States); Huang, Xiaoxia [School of Materials Science and Engineering, Central South University, Changsha 410083 (China)

    2016-10-15

    Localized shear is an important mode of deformation; it leads to catastrophic failure with low ductility, and occurs frequently during high strain-rate deformation. The hat-shaped specimen has been successfully used to generate shear bands under controlled shock-loading tests. The microstructure in the forced shear band was characterized by optical microscopy, microhardness, and transmission electron microscopy. The true flow stress in the shear region can reach 800 MPa where the strain is about 2.2. The whole shear localization process lasts for about 100 μs. The shear band is a long and straight band distinguished from the matrix by boundaries. It can be seen that the grains in the boundary of the shear band are highly elongated along the shear direction and form the elongated cell structures (0.2 µm in width), and the core of the shear band consists of a number of recrystallized equiaxed grains with 0.2−0.3 µm in diameters, and the second phase particles distribute in the boundary of the ultrafine equiaxed new grains. The calculated temperature in the shear band can reach about 667 K. Finally, the formation of the shear band in the ultrafine grained 6061 aluminum alloy and its microstructural evolution are proposed.

  18. Implant Surface Temperature Changes during Er:YAG Laser Irradiation with Different Cooling Systems.

    Directory of Open Access Journals (Sweden)

    Abbas Monzavi

    2014-04-01

    Full Text Available Peri-implantitis is one of the most common reasons for implant failure. Decontamination of infected implant surfaces can be achieved effectively by laser irradiation; although the associated thermal rise may cause irreversible bone damage and lead to implant loss. Temperature increments of over 10ºC during laser application may suffice for irreversible bone damage.The purpose of this study was to evaluate the temperature increment of implant surface during Er:YAG laser irradiation with different cooling systems.Three implants were placed in a resected block of sheep mandible and irradiated with Er:YAG laser with 3 different cooling systems namely water and air spray, air spray alone and no water or air spray. Temperature changes of the implant surface were monitored during laser irradiation with a K-type thermocouple at the apical area of the fixture.In all 3 groups, the maximum temperature rise was lower than 10°C. Temperature changes were significantly different with different cooling systems used (P<0.001.Based on the results, no thermal damage was observed during implant surface decontamination by Er:YAG laser with and without refrigeration. Thus, Er:YAG laser irradiation can be a safe method for treatment of periimplantitis.

  19. New long-wavelength Nd:YAG laser at 1.44 micron: effect on brain.

    Science.gov (United States)

    Martiniuk, R; Bauer, J A; McKean, J D; Tulip, J; Mielke, B W

    1989-02-01

    A wavelength-shifted Nd:YAG laser, tuned to coincide with the infrared absorption peak of water at 1.44 microns, was used to make lesions in normal rabbit brain. A total of 48 lesions were made with power up to 20 W, with energy up to 40 joules, and with two different spot sizes. These lesions were compared to lesions made with 1.06 microns radiation from an Nd:YAG laser under identical operating conditions. Measurements of blood-brain barrier damage and width, depth, and volume of tissue affected were obtained 30 minutes after placement of the lesions. It was found that 1.44-microns lesions produced photoevaporative tissue loss at the highest intensities used. The layer of coagulated tissue remaining after photovaporization had a mean thickness of 0.6 mm irrespective of the volume of tissue removed. There was no photovaporization in the 1.06-microns lesions. In addition, the amount of peripheral edema per unit volume of tissue coagulated was approximately half at the 1.44-microns wavelength. These findings suggest that the 1.44-microns Nd:YAG laser may be a useful surgical instrument since it combines the photoevaporative effect of the CO2 laser while maintaining the advantages of the conventional Nd:YAG laser (quartz fiber delivery and effective hemostasis).

  20. Nd-YAG laser treatment in a patient with complicated pilonidal cysts

    DEFF Research Database (Denmark)

    Lindholt, Christine S; Lindholt, Jes S.; Lindholt, Jan

    2009-01-01

    A 38-year-old woman with a recurrent suppurative pilonidal cyst was successfully treated causally with an Nd-YAG (neodymium-doped yttrium aluminium garnet) laser, and with no recurrence at 3-month follow-up. A similar success was observed for another 15 consecutively treated patients, including...... suppurative cases. The effect could be attributable to the ability of the YAG laser to operate at a wavelength of 1064 nm and to penetrate the skin to levels deeper than that of most other lasers before the energy is absorbed in melanin and oxyhaemoglobin. Consequently, the contents of the cyst can be reached...

  1. Effects of a pulsed Nd:YAG laser on enamel and dentin

    Science.gov (United States)

    Myers, Terry D.

    1990-06-01

    Enamel and dentin samples were exposed extraorally to a pulsed neodymium yttriuma1uminumgarnet (Nd:YAG) laser. The lased samples were observed using both scanning electron microscopy and histological techniques to determine the effects of the laser. The present study has provided the following points: (1) Properly treated, enamel can be 1aser etched to a depth comparable to that achieved with phosphoric acid etching; and (2) both carious and noncarious dentin can be vaporized by the Nd:YAG laser. No cracking or chipping of any enamel or dentin sample was observed histologically or under the SEM.

  2. Alternative Treatment of Osteoma Using an Endoscopic Holmium-YAG Laser

    Directory of Open Access Journals (Sweden)

    Ba Leun Han

    2012-07-01

    Full Text Available Osteoma is one of the most common tumors of the cranial vault and the facial skeleton. For osteoma in the facial region, endoscopic resection is widely used to prevent surgical scarring. Tumors in a total of 14 patients were resected using an endoscopic holmium-doped yttrium aluminium garnet (Ho:YAG laser with a long flexible fiber. Aside from having the advantage of not leaving a scar due to the use of endoscopy, this procedure allowed resection at any position, was minimally invasive, and caused less postoperative pain. This method yielded excellent cosmetic results, so the endoscopic Ho:YAG laser is expected to emerge as a good treatment option for osteoma.

  3. Exposure to ultrafine particles, intracellular production of reactive oxygen species in leukocytes and altered levels of endothelial progenitor cells

    International Nuclear Information System (INIS)

    Jantzen, Kim; Møller, Peter; Karottki, Dorina Gabriela; Olsen, Yulia; Bekö, Gabriel; Clausen, Geo; Hersoug, Lars-Georg; Loft, Steffen

    2016-01-01

    Exposure to particles in the fine and ultrafine size range has been linked to induction of low-grade systemic inflammation, oxidative stress and development of cardiovascular diseases. Declining levels of endothelial progenitor cells within systemic circulation have likewise been linked to progression of cardiovascular diseases. The objective was to determine if exposure to fine and ultrafine particles from indoor and outdoor sources, assessed by personal and residential indoor monitoring, is associated with altered levels of endothelial progenitor cells, and whether such effects are related to leukocyte-mediated oxidative stress. The study utilized a cross sectional design performed in 58 study participants from a larger cohort. Levels of circulating endothelial progenitor cells, defined as either late (CD34 + KDR + cells) or early (CD34 + CD133 + KDR + cells) subsets were measured using polychromatic flow cytometry. We additionally measured production of reactive oxygen species in leukocyte subsets (lymphocytes, monocytes and granulocytes) by flow cytometry using intracellular 2′,7′-dichlorofluoroscein. The measurements encompassed both basal levels of reactive oxygen species production and capacity for reactive oxygen species production for each leukocyte subset. We found that the late endothelial progenitor subset was negatively associated with levels of ultrafine particles measured within the participant residences and with reactive oxygen species production capacity in lymphocytes. Additionally, the early endothelial progenitor cell levels were positively associated with a personalised measure of ultrafine particle exposure and negatively associated with both basal and capacity for reactive oxygen species production in lymphocytes and granulocytes, respectively. Our results indicate that exposure to fine and ultrafine particles derived from indoor sources may have adverse effects on human vascular health.

  4. Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH in Brisbane, Queensland (Australia: Study Design and Implementation

    Directory of Open Access Journals (Sweden)

    Wafaa Nabil Ezz

    2015-02-01

    Full Text Available Ultrafine particles are particles that are less than 0.1 micrometres (µm in diameter. Due to their very small size they can penetrate deep into the lungs, and potentially cause more damage than larger particles. The Ultrafine Particles from Traffic Emissions and Children’s Health (UPTECH study is the first Australian epidemiological study to assess the health effects of ultrafine particles on children’s health in general and peripheral airways in particular. The study is being conducted in Brisbane, Australia. Continuous indoor and outdoor air pollution monitoring was conducted within each of the twenty five participating school campuses to measure particulate matter, including in the ultrafine size range, and gases. Respiratory health effects were evaluated by conducting the following tests on participating children at each school: spirometry, forced oscillation technique (FOT and multiple breath nitrogen washout test (MBNW (to assess airway function, fraction of exhaled nitric oxide (FeNO, to assess airway inflammation, blood cotinine levels (to assess exposure to second-hand tobacco smoke, and serum C-reactive protein (CRP levels (to measure systemic inflammation. A pilot study was conducted prior to commencing the main study to assess the feasibility and reliably of measurement of some of the clinical tests that have been proposed for the main study. Air pollutant exposure measurements were not included in the pilot study.

  5. Effect of Hydrostatic Pressure on Defect Structure and Durability of Ultrafine-Grained Aluminum

    Czech Academy of Sciences Publication Activity Database

    Betekhtin, V.I.; Kadomtsev, A. G.; Sklenička, Václav; Narykova, M. V.

    2011-01-01

    Roč. 37, č. 10 (2011), s. 977-979 ISSN 1063-7850 Institutional research plan: CEZ:AV0Z20410507 Keywords : defect structure * ultrafine-grained aluminium * durability Subject RIV: JG - Metallurgy Impact factor: 0.565, year: 2011

  6. Laboratory investigation of the efficacy of holmium:YAG laser irradiation in removing intracanal debris

    Science.gov (United States)

    Nuebler-Moritz, Michael; Gutknecht, Norbert; Sailer, Hermann F.; Hering, Peter; Prettl, Wilhelm

    1997-05-01

    Current endodontic therapy involves debridement and disinfection of the root canal by means of mechanical instrumentation and chemical irrigation. However, several studies have shown that these techniques fail to achieve complete cleansing. Recently, lasers have been suggested for use within root canals. This study was conducted to determine the efficacy of Holmium:YAG laser irradiation in removing intracanal debris and smear layer. Root canal surfaces of freshly-extracted human teeth were exposed to pulsed Ho:YAG laser radiation. Subsequently, laser induced structural changes were investigated using scanning electron microscopy. Temperature measurements during irradiation were performed by means of thermocouples. The result of this survey give a preliminary indication of the ability of the Ho:YAG laser to improve current endodontic treatment survey give a preliminary indication of the ability of the Ho:YAG laser to improve current endodontic treatment modalities. However, limitations exist with regard to circumscribed and well-quantified irradiation of root canal surfaces, due to the lack of perpendicular delivery of the laser beam. Additional studies will be required to develop suitable optical transmission systems, in order to achieve complete cleansing and to avoid damage to the periradicular tissues, respectively.

  7. Gas atomized precursor alloy powder for oxide dispersion strengthened ferritic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Rieken, Joel [Iowa State Univ., Ames, IA (United States)

    2011-12-13

    different powder particle size ranges, illustrating microstructural control as a function of particle solidification rate. The consolidation of ultra-fine powders (dia. ≤ 5μm) resulted in a significant reduction in dispersoid size and spacing, consistent with initial scanning electron microscopy studies on as-atomized cross-sectioned particles that suggested that these powders solidified above the threshold velocity to effectively solute trap Y within the α-(Fe,Cr) matrix. Interestingly, when the solidification velocity as a function of particle size was extracted from the aforementioned theoretical particle cooling curves, it could be offered as supporting evidence for these microstructure observations. Thermal-mechanical treatments also were used to create and evaluate the stability of a dislocation substructure within these alloys, using microhardness and TEM analysis of the alloy sub-grain and grain structure. Moreover, elevated temperature tensile tests up to 800°C were used to assess the initial mechanical strength of the ODS microstructure.

  8. Marginal microleakage in vitro study of occlusal fissures sealing prepared and etched or not with Er: YAG laser

    International Nuclear Information System (INIS)

    Youssef, Fernanda de Almeida

    2004-01-01

    The aim of this in vitro study was to evaluate the degree of marginal microleakage in occlusal sealing by invasive techniques, after preparation with Er:YAG laser followed or not by Er:YAG laser etching and compared to the conventional technique. Thirty human premolars were divided into three groups: A (control group) - cavities were prepared with high speed and etched with 37% orthophosphoric acid; group B - cavities were prepared with Er:YAG (350 mJ, 4 Hz and 112 J /cm 2 ) and etched with 37% orthophosphoric acid; group C - cavities were prepared with Er:YAG laser (350 mJ, 4 Hz and 112 J/cm 2 ), and etched with Er:YAG laser (80 mJ, 4 Hz and 25 m/cm 2 ). All cavities were treated with the same adhesive system and restored with flow composite according to manufacturer instructions. Teeth were submitted to thermal cycling procedures and immersed in 50% Silver Nitrate Solutions for 8 hours in total darkness. Teeth were sectioned longitudinally in the bucco-lingual direction, in slices of 1 mm thick. Each slice was immersed into photo developing solution under 16 hours of fluorescent light. Slices were photographed and microleakage was scored from 0 to 7 J by three standard examiners. Results showed statistically significant differences for group C (Er:YAG laser preparation and etching). We concluded that Er:YAG laser can be used for cavity preparation of occlusal sealing, like the conventional high speed method. However, this laser, used as enamel etching agent, could not promote an adequate surface for adhesive procedures. (author)

  9. 2940-nm Er:YAG fractional laser enhanced the effect of topical drug for psoriasis.

    Science.gov (United States)

    Li, Ruilian; Zhou, Jun; Su, Hui; Wang, Mei; Wang, Yongxian; Xiao, Shengxiang; Ma, Huiqun

    2017-08-01

    We observed the promoting effects of the 2940-nm erbium:YAG (Er:YAG) fractional laser in topical drug delivery for psoriasis. A total of five (four males and one female) recalcitrant psoriasis patients were given laser treatment eight times at 1-week intervals with the following parameters: 5-11% spot density and 100-μm energy depth. The psoriatic skin lesions on the left knee and the corresponding lesions at the right ones of each psoriasis patient were randomly divided into two groups: laser + topical drug group (L) and drug alone group (D). The psoriatic lesions in both groups were treated with the same topical treatment (calcipotriol ointment). The corresponding psoriatic lesions in the L group received extra 2940-nm Er:YAG laser irradiation before topical treatment. The photos of psoriatic lesions were taken before each treatment. The final photos were obtained from the patients at the seventh day after the final treatment. Drug alone or in combination with laser Er:YAG both reduced psoriatic lesions. However, with the increase in the number of treatments, increasing differences were observed between the treatment and the control sides. The therapeutic outcomes in the L groups were better than those in the D groups. Psoriasis area and severity index (PASI) scores for five cases of both groups were decreased. However, the scores in the L groups were lower than those in the D groups. The use of 2940 nm Er:YAG promoted the absorption of topical drugs for psoriasis, improving the therapeutic effect.

  10. Deposition of ultrafine aerosols in F344/N rat nasal casts

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Y S; Hansen, G K; Su, Y F; Yeh, H C; Morgan, K T [Chemical Industry Institute of Toxicology, Research Triangle Park, NC (United States)

    1988-12-01

    Determination of regional respiratory deposition of inhaled aerosols is critical for evaluation of the health effects of air pollutants. Information on deposition of larger particles (> 0.02 {mu}m) in the nasal passages of laboratory animals is available; the deposition fraction increases with increasing particle size. Little information on ultrafine particles less than 0.2 {mu}m is available. Molds (models) were prepared from replica casts of the nasal passages of F344/N rats, using clear casting plastic. Total deposition of ultrafine aerosols in these casts was then determined using a unidirectional flow system. Measured pressure drops in the casts were a function of flow rate to the power of 1.4-1.6, indicating that the flow through the nasal passage was not laminar. Deposition data were obtained from these casts, using monodisperse sodium chloride aerosols with particle size ranging from 0.2 to 0.005 {mu}m, at inspiratory and expiratory flow rates of 200 to 600 cc/min. Similar deposition data were obtained for the three casts studied. The deposition efficiency was greatest for the smallest particles, and decreased with increasing particle size and flow rate, indicating that diffusion was the dominant mechanism for deposition. At an inspiratory flow rate of 400 cc/min, which is comparable to a respiratory minute volume of 200 cc/min for mature male F344/N rats, deposition efficiencies reached 40 and 70% for 0.01 and 0.005 {mu}m particles, respectively. Turbulent diffusion was considered to be the dominant mechanism for deposition of ultrafine particles in the nasal passage. This information is important for understanding the toxicity and carcinogenicity of submicrometer particles, including diesel soot, radon progeny and vapors. (author)

  11. Ultrafine particles cause cytoskeletal dysfunctions in macrophages: role of intracellular calcium

    Directory of Open Access Journals (Sweden)

    Brown David M

    2005-10-01

    Full Text Available Abstract Background Particulate air pollution is reported to cause adverse health effects in susceptible individuals. Since most of these particles are derived form combustion processes, the primary composition product is carbon with a very small diameter (ultrafine, less than 100 nm in diameter. Besides the induction of reactive oxygen species and inflammation, ultrafine particles (UFP can cause intracellular calcium transients and suppression of defense mechanisms of alveolar macrophages, such as impaired migration or phagocytosis. Methods In this study the role of intracellular calcium transients caused by UFP was studied on cytoskeleton related functions in J774A.1 macrophages. Different types of fine and ultrafine carbon black particles (CB and ufCB, respectively, such as elemental carbon (EC90, commercial carbon (Printex 90, diesel particulate matter (DEP and urban dust (UD, were investigated. Phagosome transport mechanisms and mechanical cytoskeletal integrity were studied by cytomagnetometry and cell viability was studied by fluorescence microscopy. Macrophages were exposed in vitro with 100 and 320 μg UFP/ml/million cells for 4 hours in serum free medium. Calcium antagonists Verapamil, BAPTA-AM and W-7 were used to block calcium channels in the membrane, to chelate intracellular calcium or to inhibit the calmodulin signaling pathways, respectively. Results Impaired phagosome transport and increased cytoskeletal stiffness occurred at EC90 and P90 concentrations of 100 μg/ml/million cells and above, but not with DEP or UD. Verapamil and W-7, but not BAPTA-AM inhibited the cytoskeletal dysfunctions caused by EC90 or P90. Additionally the presence of 5% serum or 1% bovine serum albumin (BSA suppressed the cytoskeletal dysfunctions. Cell viability showed similar results, where co-culture of ufCB together with Verapamil, W-7, FCS or BSA produced less cell dead compared to the particles only.

  12. New application of the long-pulsed Nd-YAG laser as an ablative resurfacing tool for skin rejuvenation: a 7-year study.

    Science.gov (United States)

    Alshami, Mohammad Ali

    2013-09-01

    Carbon dioxide (CO2 ) and erbium-yttrium aluminum garnet (Er-YAG) lasers are the gold standards in ablative skin resurfacing. Neodymium-doped yttrium aluminum garnet (Nd-YAG) laser is considered a nonablative skin resurfacing laser whose usage is limited due to its high cost. To assess the efficacy and safety of Nd-YAG as an ablative resurfacing laser and to compare the results with those previously published for CO2 and Erbium-YAG lasers. A total of 296 patients (251 female and 45 male) with Fitzpatrick skin types III-IV and dermatological conditions amenable to ablative skin resurfacing participated in this study. Nd-YAG laser parameters assessed were wavelength (1064 nm), pulse duration (5 ms), fluence (10 J/cm(2) ), and spot size (8-10 mm). Efficacy of Nd-YAG laser was assessed by comparing pre- and posttreatment photographs. An improvement of 30-80% was observed in treated patients. The degree of improvement correlated positively with the number of laser sessions. The most common side effect was hyperpigmentation. Other side effects were less common and mild in intensity compared with published results for gold standard ablative lasers. Not only was the Nd-YAG laser found to be as effective as Er-YAG and CO2 lasers, but treated patients also had shorter recovery and treatment times, and at lower cost. © 2013 Wiley Periodicals, Inc.

  13. In vitro study of the variable square pulse Er:YAG laser cutting efficacy for apicectomy.

    Science.gov (United States)

    Grgurević, Josko; Grgurević, Lovro; Miletić, Ivana; Karlović, Zoran; Krmek, Silvana Jukić; Anić, Ivica

    2005-06-01

    Variable square pulse (VSP) Er:YAG laser should be quicker than older Er:YAG lasers. The objectives were: (1) comparison of VSP laser and mechanical handpiece efficacy for apicectomy and (2) determination of optimal pulse width/energy/frequency combination. Sixty extracted, single-rooted mature human teeth with round apical parts were instrumented, root filled, cleaned, and divided into four groups. Apical 2 mm of each root were apicectomized with mechanical handpiece and Er:YAG laser with three different settings (LaserA = 200 mJ/300 microseconds/ 8 Hz; LaserB = 200 mJ/100 microseconds/8 Hz; LaserC = 380 mJ/100 microseconds/20 Hz). Timing results were statistically compared. LaserC was the most efficient setting. Differences between groups were significant except between LaserC-Mechanical and LaserA-LaserC (P < 0.05). VSP Er:YAG laser used for apicectomy is slower by a factor of 7-31 than mechanical handpiece, but treatment outcome is acceptable. Optimal settings for apicectomy with VSP laser are 380 mJ/100 microseconds/20 Hz. Copyright 2005 Wiley-Liss, Inc.

  14. Soot, organics and ultrafine ash from air- and oxy-fired coal combustion

    Science.gov (United States)

    This paper is concerned with determining the effects of oxy-combustion of coal on the composition of the ultrafine fly ash. To this end, a 10 W externally heated entrained flow furnace was modified to allow the combustion of pulverized coal in flames under practically relevant s...

  15. Surface improvement for inside surface of small diameter pipes by laser cladding technique

    International Nuclear Information System (INIS)

    Irisawa, Toshio; Morishige, Norio; Umemoto, Tadahiro; Ono, Kazumichi; Hamaoka, Tadashi; Tanaka, Atsushi

    1991-01-01

    A laser cladding technique has been used for surface improvement in controlling the composition of a metal surface. Recent high power YAG laser development gives an opportunity to use this laser cladding technique for various applications. A YAG laser beam can be transmitted through an optical fiber for a long distance and through narrow spaces. YAG laser cladding was studied for developing alloy steel to prevent stress corrosion cracking in austenitic stainless steel piping. In order to make a cladding layer, mixed metal powder was on the inside surface of the piping using an organic binder. Subsequently the powder beds were melted with a YAG laser beam transmitted through an optical fiber. This paper introduces the Laser cladding technique for surface improvement for the inside surface of a small diameter pipe. (author)

  16. Characterization of Stone Cleaning by Nd:YAG Lasers with Different Pulse Duration

    International Nuclear Information System (INIS)

    Bartoli, L.; Siano, S.; Salimbeni, R.; Pouli, P.; Fotakis, C.

    2006-01-01

    The present work is a comparative study on the laser cleaning of stonework using Nd:YAG lasers at different pulse durations. The ablation rate, the degree of cleaning, and the appearance of the treated surface were studied irradiating a simulated sample and a real stone artefact using three different Nd:YAG laser systems with pulse duration of 90 microseconds, 15 nanoseconds, and 150 picoseconds. To our knowledge, the picosecond laser is here used for the first time in stone conservation. Differences in efficiency and in cleaning result are shown and discussed.

  17. Diode-pumped continuous-wave eye-safe Nd:YAG laser at 1415 nm.

    Science.gov (United States)

    Lee, Hee Chul; Byeon, Sung Ug; Lukashev, Alexei

    2012-04-01

    We describe the output performance of the 1415 nm emission in Nd:YAG in a plane-concave cavity under traditional pumping into the 4F5/2 level (808 nm) and direct in-band pumping into the 4F3/2 level (885 nm). An end-pumped Nd:YAG laser yielded maximum cw output power of 6.3 W and 4.2 W at 885 nm and 808 nm laser diode (LD) pumping, respectively. To the best of our knowledge, this is the highest output power of a LD-pumped 1415 nm laser.

  18. Investigation of ultrafine grained AA1050 fabricated by accumulative roll bonding

    International Nuclear Information System (INIS)

    Su, Lihong; Lu, Cheng; Li, Huijun; Deng, Guanyu; Tieu, Kiet

    2014-01-01

    Accumulative roll bonding (ARB) is an effective method to produce ultrafine-grained (UFG) sheet materials with high strength. In this work, fully annealed AA1050 sheet with an initial thickness of 1.5 mm was processed by ARB up to five cycles. The microstructure was examined by optical microscopy (OM) and transmission electron microscopy (TEM). The results revealed that ARB is a promising process for fabricating ultrafine grained structures in aluminium sheets and the average grain size after 5-cycle ARB reached approximately 300 nm. Meanwhile, a remarkable enhancement in the strength was achieved and the value was about three times the strength of starting material. The microstructure at the bond interface introduced during ARB was investigated and its influence was discussed in detail. In addition, the microstructure and mechanical properties after ARB were compared with that after deformation by equal channel angular pressing (ECAP) up to the same strain. It has been found that ARB is more efficient in grain refinement and strengthening, which can be attributed to the different deformation modes of the two techniques

  19. Ultrafine PEG-coated poly(lactic-co-glycolic acid) nanoparticles formulated by hydrophobic surfactant-assisted one-pot synthesis for biomedical applications.

    Science.gov (United States)

    Chu, Chih-Hang; Wang, Yu-Chao; Huang, Hsin-Ying; Wu, Li-Chen; Yang, Chung-Shi

    2011-05-06

    A novel method was developed for the one-pot synthesis of ultrafine poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs), using an emulsion solvent evaporation formulation method. Using either cetyltrimethylammonium bromide (CTAB) or poly(ethylene glycol)-distearyl phosphoethanolamine (PEGPE) as an oily emulsifier during the emulsion process, produced PLGA particle sizes of less than 50 nm, constituting a breakthrough in emulsion formulation methods. The yield of ultrafine PLGA NPs increased with PEGPE/PLGA ratio, reaching a plateau at around 85%, when the PEGPE/PLGA ratio reached 3:1. The PEGPE-PLGA NPs exhibited high drug loading content, reduced burst release, good serum stability, and enhanced cell uptake rate compared with traditional PLGA NPs. Sub-50 nm diameter PEG-coated ultrafine PLGA NPs show great potential for in vivo drug delivery systems.

  20. Emission sensitization processes involving Nd{sup 3+} in YAG

    Energy Technology Data Exchange (ETDEWEB)

    Lupei, V., E-mail: lupei_voicu@yahoo.com [National Institute of Laser, Plasma and Radiation Physics, Bucharest 077125 (Romania); Lupei, A.; Gheorghe, C. [National Institute of Laser, Plasma and Radiation Physics, Bucharest 077125 (Romania); Ikesue, A. [World Lab. Co., Nagoya (Japan)

    2016-02-15

    The paper investigates the characteristics of sensitization processes of Nd{sup 3+} emission in YAG ceramics under broad band pumping by co-doping with Cr{sup 3+} and the prospect of using Nd{sup 3+} and Cr{sup 3+} for sensitization of emission of Yb{sup 3+}. It is evidenced that the energy transfer from Cr{sup 3+} to Nd{sup 3+} involves both direct and weak migration-assisted processes and is thus dependent on the concentrations of both species. It is also found that the ion–ion interaction responsible for the direct transfer contains besides the dipole–dipole coupling strong superexchange contribution that dominates the transfer to the Nd{sup 3+} ions up to the third coordination sphere and has major implication in sensitization. Investigation of (Cr, Nd, Yb)-doped YAG ceramics shows that Cr{sup 3+} can sensitize the emission of Yb{sup 3+} both via the chain Cr–Nd–Yb or by direct Cr–Yb energy transfer. The prospect of utilization of these processes in the solar-pumped laser is discussed. - Highlights: • The efficiency of sensitization increases at high Cr and Nd doping concentrations. • The Cr-to-Nd energy transfer involves both direct and migration-assisted processes. • The direct transfer implies both dipole–dipole and superexchange interactions. • The superexchange interaction has major influence on sensitization. • Sensitized emission of Yb{sup 3+} in (Cr,Nd,Yb):YAG by Cr–Nd–Yb and Cr–Yb transfers.

  1. Preparation of an ultra-fine, slightly dispersed silver iodide aerosol

    International Nuclear Information System (INIS)

    Poc, Marie-Martine

    1973-01-01

    A silver iodide aerosol was prepared under clean conditions. The method was to react iodine vapor with a silver aerosol in an inert dry atmosphere and in darkness. Great care was taken to avoid contamination from atmosphere air. The ice nucleating properties of the ultrafine AgI aerosol obtained were studied in a cloud mixing chamber: the aerosol was found to be strangely inactive. (author) [fr

  2. Size evolution of ultrafine particles: Differential signatures of normal and episodic events.

    Science.gov (United States)

    Joshi, Manish; Khan, Arshad; Anand, S; Sapra, B K

    2016-01-01

    The effect of fireworks on the aerosol number characteristics of atmosphere was studied for an urban mega city. Measurements were made at 50 m height to assess the local changes around the festival days. Apart from the increase in total number concentration and characteristic accumulation mode, short-term increase of ultrafine particle concentration was noted. Total number concentration varies an order of magnitude during the measurement period in which peak occurs at a frequency of approximately one per day. On integral scale, it seems not possible to distinguish an episodic (e.g. firework bursting induced aerosol emission) and a normal (ambient atmospheric changes) event. However these events could be differentiated on the basis of size evolution analysis around number concentration peaks. The results are discussed relative to past studies and inferences are drawn towards aerosol signatures of firework bursting. The short-term burst in ultrafine particle concentration can pose an inhalation hazard. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. BLEPHAROPLASTY AND PERIOCULAR SKIN RESURFACING WITH NEW GENERATION ER:YAG LASER

    Directory of Open Access Journals (Sweden)

    Brigita Drnovšek-Olup

    2002-12-01

    Full Text Available Background. In this study, a new type of Er:YAG laser, emitting irradiation with variable pulse duration, has been used for blepharoplasty and skin resurfacing in periocular region.More than 40 patients have been treated with second generation Er:YAG laser (Fotona Fidelis for blepharoplasty and skin resurfacing. A focused laser beam (diameter 0.4 mm with very short pulse width (100 µs, that is significantly below the thermal relaxation time of skin, leads to a precise cut with no observable thermal effect on surrounding tissue. The depth of the cut is approximately 1–2 mm, precision comparable to a surgical scalpel. The high repetition rate of consecutive laser pulses (50 Hz at 120 mJ energy accounts for accumulation of thermal load in tissue, and thus leads to complete hemostasis of the cut tissue. Due to improved cutting abilities of the Er:YAG laser, excision of orbital fat is also performed with one pass of the laser beam. By changing the laser parameters to short pulses (300 µs, energy 500 mJ, spot diameter 5 mm and repetition rate 12–15 Hz, skin resurfacing was performed. No special pretreatment therapy was used. Anesthesia: 2% Xylocain inj. subcutaneously. Non adhesive dressing for 24 hours was applied after surgery.Epithelisation was complete after ten days. Redness persists up to 5 weeks. Discomfort of patients was mild. Cosmetic results are satisfying.Conclusions. New generation of Er:YAG laser offers a possibility to cut and coagulate the tissue simultaneously, and by changing the parameters to ablate the tissue with heating influence on skin collagen.

  4. Microstructural influence on low-temperature superplasticity of ultrafine-grained Ti-6Al-4V alloy

    International Nuclear Information System (INIS)

    Ko, Young Gun; Kim, Woo Gyeom; Lee, Chong Soo; Shin, Dong Hyuk

    2005-01-01

    Microstructural influence on low-temperature superplastic behavior of ultrafine-grained Ti-6Al-4V alloy fabricated by equal channel angular pressing (ECAP) was investigated. The deformed structures were analyzed with the increment of strain by transmission electron microscopy. Also, a series of tensile tests were carried out on ultrafine-grained (UFG) samples to measure elongation at temperature of 973 K and at strain rates of 10 -4 to 10 -2 s -1 . The results indicated that elongation was significantly increased with increasing ECAP straining from 4 to 8 revealing more high-angle grain boundaries. Deformation mechanisms for UFG structure were analyzed in the context of inelastic deformation theory, which consisted of dislocation glide and grain boundary sliding

  5. Combined pulsed dye laser and fiberoptic Nd-YAG laser for the treatment of hypertrophic port wine stain.

    Science.gov (United States)

    Radmanesh, Mohammed; Radmanesh, Ramin

    2017-10-01

    The hypertrophic Port Wine Stain (PWS) is only partially and superficially treated with the Pulsed dye laser (PDL) because of its limited depth of penetration. We used combined PDL and fiberoptic 1444-nm Nd-YAG laser to treat a case with hypertrophic PWS. After tumescent anesthesia, few holes were made by a 16-gauge needle on different sides of the lesion. The fiberoptic tip of 1444-nm Nd-YAG laser was inserted within the holes and was pushed forward while triggering. In a fan pattern and by a back and forth movement, the subcutaneous and deep dermal areas were coagulated. The skin and outer mucosal surfaces were then treated by PDL. The fiberoptic system used was Accusculpt 1444-nm Nd-YAG laser (Lutronic lasers, South Korea), and the PDL used was 585 nm Nlite system (Chromogenex UK). The parameters used for PDL were fluence = 9 Joules/cm 2 and the spot size was 5 mm. The parameters used for fiberoptic 1444-nm Nd-YAG laser were: Pulse rate = 30 Hz, pulse energy = 300 mJ, power = 6 W, and the total energy = 4000 J for the whole face and mucosa. Little sign of regression and moderate purpura were detected immediately after combined fiberoptic Nd-YAG and PDL therapy. The lesion gradually regressed within 4 months with satisfactory color and volume change. Combined fiberoptic Nd-YAG laser and PDL can be used for the treatment of deeper and superficial layers of hypertrophic PWS.

  6. Ultrafine particle emission characteristics of diesel engine by on-board and test bench measurement.

    Science.gov (United States)

    Huang, Cheng; Lou, Diming; Hu, Zhiyuan; Tan, Piqiang; Yao, Di; Hu, Wei; Li, Peng; Ren, Jin; Chen, Changhong

    2012-01-01

    This study investigated the emission characteristics of ultrafine particles based on test bench and on-board measurements. The bench test results showed the ultrafine particle number concentration of the diesel engine to be in the range of (0.56-8.35) x 10(8) cm(-3). The on-board measurement results illustrated that the ultrafine particles were strongly correlated with changes in real-world driving cycles. The particle number concentration was down to 2.0 x 10(6) cm(-3) and 2.7 x 10(7) cm(-3) under decelerating and idling operations and as high as 5.0 x 10(8) cm(-3) under accelerating operation. It was also indicated that the particle number measured by the two methods increased with the growth of engine load at each engine speed in both cases. The particle number presented a "U" shaped distribution with changing speed at high engine load conditions, which implies that the particle number will reach its lowest level at medium engine speeds. The particle sizes of both measurements showed single mode distributions. The peak of particle size was located at about 50-80 nm in the accumulation mode particle range. Nucleation mode particles will significantly increase at low engine load operations like idling and decelerating caused by the high concentration of unburned organic compounds.

  7. Mass synthesis of yttrium oxide nano-powders using radio frequency (RF) plasma

    International Nuclear Information System (INIS)

    Ghorui, S.; Sahasrabudhe, S.N.; Chakravarthy, Y.; Nagaraj, A.; Das, A.K.; Dhamale, G.

    2014-01-01

    Mass synthesis of nano-phase Yttrium Oxide (Y 2 O 3 ) from commercially available coarse grain powder is reported. Nano-sized high purity Y 2 O 3 is an important and critical constituent of ceramics like YAG (Yttrium aluminum garnet: Y 3 Al 5 O 12 ) for laser applications. The system is characterized in terms of its thermal and electrical behavior. Boltzmann plot technique is used to measure axial variation of temperature of the generated plasma. The synthesized particles are characterized in terms of XRD, SEM, TEM and BET analyses for qualification of the developed system. Major features observed are efficient conversion into nanometer-sized highly spherical particles, narrow size distribution, highly crystallite nature and highly pure phases. The particle distribution (from TEM) peaks within 20-30 nm. Average particle sizes determined from different methods like XRD, TEM and BET are very close to each other and point toward particle sizes within 20 to 30 nm

  8. Study on growth techniques and macro defects of large-size Nd:YAG laser crystal

    Science.gov (United States)

    Quan, Jiliang; Yang, Xin; Yang, Mingming; Ma, Decai; Huang, Jinqiang; Zhu, Yunzhong; Wang, Biao

    2018-02-01

    Large-size neodymium-doped yttrium aluminum garnet (Nd:YAG) single crystals were grown by the Czochralski method. The extinction ratio and wavefront distortion of the crystal were tested to determine the optical homogeneity. Moreover, under different growth conditions, the macro defects of inclusion, striations, and cracking in the as-grown Nd:YAG crystals were analyzed. Specifically, the inclusion defects were characterized using scanning electron microscopy and energy dispersive spectroscopy. The stresses of growth striations and cracking were studied via a parallel plane polariscope. These results demonstrate that improper growth parameters and temperature fields can enhance defects significantly. Thus, by adjusting the growth parameters and optimizing the thermal environment, high-optical-quality Nd:YAG crystals with a diameter of 80 mm and a total length of 400 mm have been obtained successfully.

  9. Treatment of pigmented keratosis pilaris in Asian patients with a novel Q-switched Nd:YAG laser.

    Science.gov (United States)

    Kim, Sangeun

    2011-06-01

    Treatment for most cases of keratosis pilaris requires simple reassurance and general skin care recommendations. Many Asian patients find lesions due to pigmented keratosis pilaris to be cosmetically unappealing. Treatment of post-inflammatory hyperpigmentation using a 1064-nm Q-switched Nd:YAG laser with low fluence is reported. To investigate the efficacy of a novel Q-switched Nd:YAG laser for the treatment of pigmented keratosis pilaris in Asian patients. Ten patients with pigmented keratosis pilaris underwent five weekly treatments using a Q-switched Nd:YAG laser (RevLite(®); HOYA ConBio(®), Freemont, CA, USA) at 1064 nm with a 6-mm spot size and a fluence of 5.9 J/cm(2). Photographic documentation was obtained at baseline and 2 months after the final treatment. Clinical improvement was achieved in all 10 patients with minimal adverse effects. For the treatment of keratosis pilaris, the use of a Q-switched Nd:YAG laser can be helpful for improving cosmetic appearance as it can improve pigmentation.

  10. Numerical Simulation of Yttrium Aluminum Garnet(YAG) Single Crystal Growth by Resistance Heating Czochralski(CZ) Method

    Energy Technology Data Exchange (ETDEWEB)

    You, Myeong Hyeon; Cha, Pil Ryung [Kookmin University, Seoul (Korea, Republic of)

    2017-01-15

    Yttrium Aluminum Garnet (YAG) single crystal has received much attention as the high power solid-state laser’s key component in industrial and medical applications. Various growth methods have been proposed, and currently the induction-heating Czochralski (IHCZ) growth method is mainly used to grow YAG single crystal. Due to the intrinsic properties of the IHCZ method, however, the solid/liquid interface has a downward convex shape and a sharp tip at the center, which causes a core defect and reduces productivity. To produce YAG single crystals with both excellent quality and higher yield, it is essential to control the core defects. In this study, using computer simulations we demonstrate that the resistance-heating CZ (RHCZ) method may avoid a downward convex interface and produce core defect free YAG single crystal. We studied the effects of various design parameters on the interface shape and found that there was an optimum combination of design parameter and operating conditions that produced a flat solid-liquid interface.

  11. Er:YAG pre-treatment for bonding of orthodontic bracket: 1 year of in vitro treatment

    Directory of Open Access Journals (Sweden)

    de Jesus Tavarez RR

    2017-03-01

    Full Text Available Rudys Rodolfo de Jesus Tavarez,1 Gisele Lima Bezerra,2 Karla Janilee de Souza Penha,3 Carlos Rocha Gomes Torres,4 Leily Macedo Firoozmand5 1Department of Dentistry, Ceuma University (UNICEUMA, 2Dentistry Program, Ceuma University (UNICEUMA, 3Dentistry Program, Federal University of Maranhão, UFMA, São Luís, MA, 4Restorative Dentistry Department, ICT UNESP University, São Paulo, 5Dentistry Department I, Federal University of Maranhão,UFMA, São Luís, MA, Brazil Objective: The aim of this study was to evaluate in vitro bond strength of metal brackets bonded with: total etch, total etch with erbium: yttrium aluminum garnet laser (Er:YAG and self-etching adhesive systems, submitted to thermal-mechanical cycling, simulating 1 year of orthodontic treatment.Materials and methods: For the study, 80 bovine incisors were randomly divided into 3 experimental groups (n=16 each: XT- acid etching + Transbond XT, XT/Er:YAG- Transbond XT associated with Er:YAG laser irradiation (λ=2.94 μm, 60 mJ, 10 Hz and SEP- Transbond Plus Self Etching Primer. Samples were submitted to thermal-mechanical cycling, simulating 1 year of orthodontic treatment. Afterward, the shear bond strength test was performed in a universal test machine at a speed of 0.5mm/min. Samples were evaluated under a stereomicroscope and by scanning electron microscopy for analysis of enamel surface and adhesive remnant index. Data were analyzed using Kruskal–Wallis and Mann–Whitney (with Bonferroni correction statistical tests.Results: Statistically significant difference was observed between the groups studied (p<0.05. Groups XT and SEP showed the highest bond strength values, without statistical difference between them, while group XT/Er:YAG showed reduction in bond strength values. Higher frequency of adhesive failures between enamel and adhesive system was verified for groups XT and XT/Er:YAG.Conclusion: The conventional (XT and self-etching (SEP adhesive systems showed mean bond

  12. Novel treatment of Hori′s nevus: A combination of fractional nonablative 2,940-nm Er:YAG and low-fluence 1,064-nm Q-switched Nd:YAG laser

    Directory of Open Access Journals (Sweden)

    Brian Wei Cheng Anthony Tian

    2015-01-01

    Full Text Available Objective: To demonstrate a combination laser therapy to treat Hori′s nevus. Design: A prospective study. Setting: A Singapore-based clinic. Participants: Five female patients, aged 30-46 years, with bilateral malar Hori′s nevus. Measurements: Photographs were taken before treatment and 1 month after laser treatment was completed. These were graded by three independent physicians. The patients were also asked to grade their treatment response subjectively. They were followed up for a total of 3 months after laser treatment to monitor recurrence. Materials and Methods: The fractional nonablative 2,940-nm Er:YAG laser with a fluence of 0.7 J/cm 2, spot size 12 mm, and frequency 15 Hz was used to perform a full-face single-pass treatment. Subsequently, a second pass and third pass over Hori′s nevi were done bilaterally till the clinical endpoint of skin whitening. The 1,064-nm Q-switched (QS Nd:YAG at a fluence of 2.0 J/cm 2 , frequency 2 Hz, and 4-mm spot size was used to deliver multiple passes over Hori′s nevus till erythema with mild petechiae appeared. We repeated the treatment once a week for 3 more consecutive weeks. Results: All five patients had above 80% improvement in their pigmentation and two (skin type III achieved complete 100% clearance. Based on the patients′ subjective assessments, all five of them expressed satisfaction and felt that their pigmentation had improved. There were no complications noted. Conclusion: The fractional nonablative 2940 nm Er:YAG laser and Q-switched 1064nm laser Nd:YAG combination is an effective and safe treatment for Hori′s nevus.

  13. Current status of ultra-fine grained W-TiC development for use in irradiation environments

    Energy Technology Data Exchange (ETDEWEB)

    Kurishita, H [International Research Center for Nuclear Materials Science, Institute for Materials Research (IMR), Tohoku University, Oarai-machi, Ibaraki-ken 311-1313 (Japan); Kobayashi, S [Department of Materials Science and Biotechnology, Ehime University, Matsuyama-shi 790-8577 (Japan); Nakai, K [Department of Materials Science and Biotechnology, Ehime University, Matsuyama-shi 790-8577 (Japan); Arakawa, H [International Research Center for Nuclear Materials Science, Institute for Materials Research (IMR), Tohoku University, Oarai-machi, Ibaraki-ken 311-1313 (Japan); Matsuo, S [International Research Center for Nuclear Materials Science, Institute for Materials Research (IMR), Tohoku University, Oarai-machi, Ibaraki-ken 311-1313 (Japan); Takida, T [ALMT. Corp., 2 Iwase-koshi-machi, Toyama 931-8371 (Japan); Takebe, K [ALMT. Corp., 2 Iwase-koshi-machi, Toyama 931-8371 (Japan); Kawai, M [Institute of Material Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba-shi, Ibaraki-ken 305-0801 (Japan)

    2007-03-15

    Ultra-fine grained (UFG) W-TiC with a high purity matrix of low dislocation density is expected to exhibit improve resistance to irradiation with neutrons and helium ions and the room temperature mechanical properties. Aiming at such UFG W-TiC with the desired microstructure, powders of W with 0.25-0.8 wt% TiC additions were subjected to mechanical alloying (MA) and hot isostatic pressing (HIP), where purified H{sub 2} and Ar were used as the MA atmosphere. Microstructural observations and room- and high-temperature mechanical tests were performed for UFG W-TiC before and after neutron irradiation to a fluence of 2x10{sup 24} n m{sup -2} at 873 K. It is shown that the MA atmosphere significantly affects grain refinement, room-temperature strength and high-temperature tensile plasticity of UFG W-TiC. W-0.5TiC with H{sub 2} in MA (W-0.5TiC-H{sub 2}) shows a larger strain rate sensitivity of flow stress, m, of 0.5{approx}0.6 at temperatures from 1673 to 1973 K, which is a feature of superplastic materials. Whereas W-0.5TiC-Ar shows a smaller m value of approximately 0.2. No radiation hardening is recognized in UFG W-0.5TiC-H{sub 2} and W-0.5TiC-Ar.

  14. Current status of ultra-fine grained W-TiC development for use in irradiation environments

    International Nuclear Information System (INIS)

    Kurishita, H; Kobayashi, S; Nakai, K; Arakawa, H; Matsuo, S; Takida, T; Takebe, K; Kawai, M

    2007-01-01

    Ultra-fine grained (UFG) W-TiC with a high purity matrix of low dislocation density is expected to exhibit improve resistance to irradiation with neutrons and helium ions and the room temperature mechanical properties. Aiming at such UFG W-TiC with the desired microstructure, powders of W with 0.25-0.8 wt% TiC additions were subjected to mechanical alloying (MA) and hot isostatic pressing (HIP), where purified H 2 and Ar were used as the MA atmosphere. Microstructural observations and room- and high-temperature mechanical tests were performed for UFG W-TiC before and after neutron irradiation to a fluence of 2x10 24 n m -2 at 873 K. It is shown that the MA atmosphere significantly affects grain refinement, room-temperature strength and high-temperature tensile plasticity of UFG W-TiC. W-0.5TiC with H 2 in MA (W-0.5TiC-H 2 ) shows a larger strain rate sensitivity of flow stress, m, of 0.5∼0.6 at temperatures from 1673 to 1973 K, which is a feature of superplastic materials. Whereas W-0.5TiC-Ar shows a smaller m value of approximately 0.2. No radiation hardening is recognized in UFG W-0.5TiC-H 2 and W-0.5TiC-Ar

  15. High Power Q-Switched Dual-End-Pumped Ho:YAG Laser

    Energy Technology Data Exchange (ETDEWEB)

    Xiao-Ming, Duan; Ying-Jie, Shen; Tong-Yu, Dai; Bao-Quan, Yao; Wang Yue-Zhu, E-mail: xmduan@hit.edu.cn [National Key Laboratory of Tunable Laser Technology, Harbin Institute of Technology, Harbin 150001 (China)

    2012-09-15

    We report the high power acousto-optically Q-switched operation of a dual-end-pumped Ho:YAG laser at room temperature. For the Q-swithched mode, a maximum pulse energy of 2.4 mJ and a minimum pulse width of 23 ns at the repetition rate of 10 kHz are achieved, resulting in a peak power of 104.3 kW. The beam quality factor of M{sup 2} {approx} 1.5, which is demonstrated by a knife-edge method. In addition, the Ho:YAG laser is employed as a pumping source of ZGP optical parametric oscillator, and its total average output power is 13.2 W at 3.9 {mu}m and 4.4 {mu}m with a slope efficiency of 68.4%.

  16. Efeito do laser Nd:YAG no selamento de fóssulas e fissuras: estudo in vivo = Nd:yag laser effect on pit and fissures sealing: an in vivo study

    Directory of Open Access Journals (Sweden)

    Firoozmand, Leily Macedo

    2007-01-01

    Full Text Available O objetivo desta pesquisa foi o de avaliar o comportamento clínico do laser Nd: YAG em comparação ao de um selante com carga, durante o período de 12 meses, observando; a pigmentação do sulco, incidência de cárie e fratura ou perda do selante. Foram selecionados 62 primeiros e segundos premolares hígidos de pacientes na faixa etária de 12 a 15 anos, de uma escola da rede pública de São José dos Campos. Nos 31 primeiros premolares foi aplicado o laser Nd: YAG, Pulse Máster 600 IQ em toda a extensão do sulco oclusal por 30 segundos utilizando 60 mJ, 10 HZ, 0,6W. Nos 31 segundos premolares foi realizado o selamento dos sulcos oclusais com o selante Fluorshield. Após 6 meses observou-se que dos casos selados com Fluorshield 19,35% apresentaram perda e/ou fratura do selante e em 16,66% os sulcos apresentaram cárie incipiente. Já nos casos em que foi aplicado o laser Nd: YAG 6,45% apresentaram início de lesão de cárie. Com 12 meses de avaliação tanto com selante Fluorshield como com o laser Nd: YAG observou-se o aparecimento de sulcos pigmentados em 12, 90% dos casos e uma incidência de 9,67% de lesões incipientes de cárie. Utilizando-se o selante Fluorshield houve queda do material em 25,80% e fratura em 3,22% dos casos. Concluímos que após 12 meses de avaliação o laser Nd: YAG e o selante Fluorshield apresentaram comportamento clínico semelhante, diante das mesmas condições bucais, sendo que a porcentagem de aparecimento de lesão inicial de cárie foi igual para os dois métodos de prevenção utilizados

  17. Potential emerging treatment in vitiligo using Er:YAG in combination with 5FU and clobetasol.

    Science.gov (United States)

    Mokhtari, Fatemeh; Bostakian, Anis; Shahmoradi, Zabihollah; Jafari-Koshki, Tohid; Iraji, Fariba; Faghihi, Gita; Hosseini, Sayed Mohsen; Bafandeh, Behzad

    2018-04-01

    Vitiligo is a pigmentary disorder of skin affecting at least 1% of the world population of all races in both sexes. Its importance is mainly due to subsequent social and psychological problems rather than clinical complications. Various treatment choices are available for vitiligo; however, laser-based courses have shown to give more acceptable results. The aim of this trial was to evaluate the efficacy of Er:YAG laser as a supplementary medicine to topical 5FU and clobetasol in vitiligo patients. Two comparable vitiligo patches from 38 eligible patients were randomized to receive topical 5FU and clobetasol in control group and additional Er:YAG laser in intervention group. Major outcomes of interest were the size of patch and pigmentation score at randomization and 2 and 4 months after therapy. Final sample included 18 (47%) male patients and age of 35.66±8.04. The performance Er:YAG group was superior in all sites. Reduction in the size of patches was greater in Er:YAG group (p-value=.004). Also, this group showed a higher pigmentation scores in the trial period than control group (p-value<.001). Greater reduction in the size and increase in pigmentation score was seen in Er:YAG group especially for short periods after therapy and repeating laser sessions may help improving final outcomes. Er:AYG could help in reducing complications of long-term topical treatments, achieving faster response, and improving patient adherence. © 2017 Wiley Periodicals, Inc.

  18. Preparation and properties of Pr /Ce :YAG phosphors using ...

    Indian Academy of Sciences (India)

    2015-09-01

    Sep 1, 2015 ... [3] transparent ceramics for high power solid-state lasers and Ce:YAG ... and CO2−. 3 . ... be controlled to guarantee that all the metal ions are simul- taneously .... of hydrogen bonding interaction can lead to more serious.

  19. A protected annealing strategy to enhanced light emission and photostability of YAG:Ce nanoparticle-based films

    Science.gov (United States)

    Revaux, Amelie; Dantelle, Geraldine; George, Nathan; Seshadri, Ram; Gacoin, Thierry; Boilot, Jean-Pierre

    2011-05-01

    A significant obstacle in the development of YAG:Ce nanoparticles as light converters in white LEDs and as biological labels is associated with the difficulty of finding preparative conditions that allow simultaneous control of structure, particle size and size distribution, while maintaining the optical properties of bulk samples. Preparation conditions frequently involve high-temperature treatments of precursors (up to 1400 °C), which result in increased particle size and aggregation, and lead to oxidation of Ce(iii) to Ce(iv). We report here a process that we term protected annealing, that allows the thermal treatment of preformed precursor particles at temperatures up to 1000 °C while preserving their small size and state of dispersion. In a first step, pristine nanoparticles are prepared by a glycothermal reaction, leading to a mixture of YAG and boehmite crystalline phases. The preformed nanoparticles are then dispersed in a porous silica. Annealing of the composite material at 1000 °C is followed by dissolution of the amorphous silica by hydrofluoric acid to recover the annealed particles as a colloidal dispersion. This simple process allows completion of YAG crystallization while preserving their small size. The redox state of Ce ions can be controlled through the annealing atmosphere. The obtained particles of YAG:Ce (60 +/- 10 nm in size) can be dispersed as nearly transparent aqueous suspensions, with a luminescence quantum yield of 60%. Transparent YAG:Ce nanoparticle-based films of micron thickness can be deposited on glass substrates using aerosol spraying. Films formed from particles prepared by the protected annealing strategy display significantly improved photostability over particles that have not been subject to such annealing.A significant obstacle in the development of YAG:Ce nanoparticles as light converters in white LEDs and as biological labels is associated with the difficulty of finding preparative conditions that allow simultaneous

  20. Fractional Er:YAG laser assisting topical betamethasone solution in combination with NB-UVB for resistant non-segmental vitiligo.

    Science.gov (United States)

    Yan, Ru; Yuan, Jinping; Chen, Hongqiang; Li, Yuan-Hong; Wu, Yan; Gao, Xing-Hua; Chen, Hong-Duo

    2017-09-01

    Resistant non-segmental vitiligo is difficult to be treated. Ablative erbium-YAG (Er:YAG) laser has been used in the treatment of vitiligo, but the ablation of entire epidermis frustrated the compliance of patients. The purpose of this study is to investigate the effects of fractional Er:YAG laser followed by topical betamethasone and narrow band ultraviolet B (NB-UVB) therapy in the treatment of resistant non-segmental vitiligo. The vitiligo lesions of each enrolled patient were divided into four treatment parts, which were all irradiated with NB-UVB. Three parts were, respectively, treated with low, medium, or high energy of Er:YAG laser, followed by topical betamethasone solution application. A control part was spared with laser treatment and topical betamethasone. The treatment period lasted 6 months. The efficacy was assessed by two blinded dermatologists. Treatment protocol with high energy of 1800 mJ/P of fractional Er:YAG laser followed by topical betamethasone solution and in combination with NB-UVB made 60% patients achieve marked to excellent improvement in white patches. The protocol with medium energy of 1200 mJ/P of laser assisted approximate 36% patients achieve such improvement. The two protocols, respectively, showed better efficacies than NB-UVB only protocol. However, fractional Er:YAG laser at low energy of 600 mJ/P did not provide such contributions to the treatment of vitiligo. The fractional Er:YAG laser in combination with topical betamethasone solution and NB-UVB was suitable for resistant non-segmental vitiligo. The energy of laser was preferred to be set at relatively high level.

  1. Efectividad del Nd- Yag láser en la capsulotomía posterior Effectiveness of Nd-Yag laser in posterior capsulotomy

    Directory of Open Access Journals (Sweden)

    Alina Pedroso Llanes

    2004-06-01

    Full Text Available Este trabajo se propuso determinar la efectividad del neodimio YAG láser (Nd-YAG láser en la realización de capsulotomía posterior a 150 pacientes (ojos operados de catarata senil o presenil en el centro de Microcirugía Ocular en Serie del Hospital Oftalmológico Docente "Ramón Pando Ferrer" en el período comprendido de febreroa diciembre de 1999. En este grupo se analizaron como variables la edad, sexo, raza, implante o no de lente intraocular, tipo de opacidad de cápsula posterior, agudeza visual con corrección pre y postratamiento, complicaciones encontradas, comportamiento de la presión intraocular, así como la energía empleada para realizar dicho proceder. Estos datos se analizaron a través de tablas de contingencias Chi cuadrado. Como resultado de esta investigación se encontró que el láser es altamente efectivo para el mejoramiento de la agudeza visual en los pacientes afectados de catarata secundaria (74,7 %. Se observó además aumento transitorio de la presión intraocular en las dos primeras horas posteriores al láser (60,7 %, y no se encontró ninguna complicación que afectara la visión de los ojos estudiadosThe aim of this paper was to determine the effectiveness of neodymium YAG laser (Nd-YAG laser on performing the posterior capsulotomy in 150 patients (eyes operated on of senile or presenile cataract at the Center of Serial Ocular Microsurgery (CSOM of "Ramón Pando Ferrer" Ophthalmological Teaching Hospital from February to December 1999. Age, sex, race, implantation or not of the intraocular lens (IOL, type of opacity of the posterior capsule, visual acuity with pre- and posttreatment correction (Avcc, complications found, behavior of the intraocular pressure (IOP, as well as the energy used to carry out such procedure, were analyzed. The Chi square contingency tables were used to this end. As a result of this research, it was found that the laser is highly effective for improving visual acuity in patients

  2. Effect of Gallium and Indium Co-Substituting on Upconversion Properties of Er/Yb:Yttrium Aluminum Garnet Powders Prepared by the Co-Precipitation Method.

    Science.gov (United States)

    Zhang, Wei; Liang, Yun-Ling; Hu, Zheng-Fa; Feng, Zu-Yong; Lun, Ma; Zhang, Xiu-ping; Sheng, Xia; Liu, Qian; Luo, Jie

    2016-04-01

    Gallium and Indium co-substituted Yb, Er:YAG was fabricated through the chemical co-precipitation method. The formation process and structure of the Ga3+ and In3+ substituted phosphor powders were characterized by the X-ray diffraction, thermo-gravimetry analyzer, infrared spectra, and X-ray photoelectron spectroscopy, and the effects of Ga3+ and In3+ concentration on the luminescence properties were investigated by spectrum. The results showed that the blue shift occurred after the substitution of Ga3+ and In3+ for Al3+ in matrix, and the intensity of emission spectrum was affected by the concentration of Ga3+ and In3+.

  3. New application of a bipolar Nd:YAG handpiece in laser cardiac surgery

    Science.gov (United States)

    Mizutani, Tetsuo; Suzuki, Hitoshi; Katayama, Yoshihiko

    1997-05-01

    A bipolar Nd-YAG laser (1.064 micrometer) handpiece was experimentally examined for a venous dissection without scissors and sutures and clinically introduced for the vein graft harvesting in coronary artery bypass grafting (CABG). Experimental study: One hundred and thirty-five segments of the mongrel dog veins were employed. Nd-YAG laser was irradiated on the vein held by the bipolar Nd-YAG handpiece at the power of 5, 9, 13, and 17 watts, and success defined as a complete vein citing without bleeding at the laser-applied sites were gained in all except three; 97.8% of success rate. Laser exposure time for cutting the vein decreased in order to an increase of the applied laser power, and the veins of bigger diameter needed more longer exposure time in the group of the same laser power. An average exposure time was 4.4 seconds for the veins of 1 mm diameter at 13 watts. In histological examination, a vascular lumen at the cutting site was diminished and covered with a degenerated vascular wall, and bleeding was not seen in all specimen. Clinical study: In 18 cases of CABG the bipolar Nd-YAG handpiece was applied to cut the branches of the great saphenous vein without scissors and sutures. Forty-two grafts harvested by this handpiece were used for aortocoronary bypass grating. All were survived and the angiographic examination demonstrated a 90% of graft patency at an average period of 3.5 years after the operation. Laser-induced morphological change such as aneurysmal formation or graft stenosis was not recognized.

  4. Simulation of medical Q-switch flash-pumped Er:YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yanlin; Huang Chuyun; Yao Yucheng; Zou Xiaolin, E-mail: Wangyanlin0@126.com, E-mail: chuyunh@163.com, E-mail: yyuch@soho.com, E-mail: zouxiaol@126.com [Physics school, Hubei University of Technology, Wuhan, China 430068 (China)

    2011-01-01

    Er: YAG laser, the wavelength is 2940nm, can be absorbed strongly by water. The absorption coefficient is as high as 13000 cm{sup -1}. As the water strong absorption, Erbium laser can bring shallow penetration depth and smaller surrounding tissue injury in most soft tissue and hard tissue. At the same time, the interaction between 2940nm radiation and biological tissue saturated with water is equivalent to instantaneous heating within limited volume, thus resulting in the phenomenon of micro-explosion to removal organization. Different parameters can be set up to cut enamel, dentin, caries and soft tissue. For the development and optimization of laser system, it is a practical choice to use laser modeling to predict the influence of various parameters for laser performance. Aim at the status of low Erbium laser output power, flash-pumped Er: YAG laser performance was simulated to obtain optical output in theory. the rate equation model was obtained and used to predict the change of population densities in various manifolds and use the technology of Q-switch the simulate laser output for different design parameters and results showed that Er: YAG laser output energy can achieve the maximum average output power of 9.8W under the given parameters. The model can be used to find the potential laser systems that meet application requirements.

  5. Treatment of rosacea with long-pulsed Nd: YAG laser

    Directory of Open Access Journals (Sweden)

    Ekin Meşe Say

    2013-03-01

    Full Text Available Background and Design: Rosacea is a chronic inflammatory disorder of the face. There is no curative treatment for the disease. Facial flushing and vascular lesions due to rosacea may significantly affect a patient’s quality of life. Topical and oral antibiotics are not effective for treating rosacea. Currently, laser treatment of vascular lesions has been reported in the literature. We aimed to investigate the efficacy of long-pulse 1064-nm neodymium: YAG (Nd: YAG laser in the treatment of vascular lesions (erythema and telangiectasia in rosacea patients. Materials and Methods: Thirty-nine patients (29 women, 10 men with erythematotelangiectatic rosacea (ETR were recruited into the study. Severity of the disease (ETR-score: 0-3 was assessed for all patients. We used long-pulsed Nd: YAG laser for vascular lesions at 3-4 weeks intervals. The face was divided into seven anatomic regions for evaluation. Assessment was made by comparing pretreatment and posttreatment photographs by using ETR-scores. For evaluating patient satisfaction, a scale of 0 to 3 was used. Results: The patients were divided into three groups according to the ETR scores [ETR-1 (n=12, ETR-2 (n=9, ETR-3 (n=18]. Following an average of 3.95 (2-8 sessions laser treatments, the clinical improvement was statistically significant in all groups (p<0.05. The mean reduction of ETR-score was 91.70% in patients with ETR-1 and. the clinical improvement was to be decreased in severe forms of ETR. The most common sites for the lesions were the malar region, ala nasi and the nasal dorsum, respectively. The lesions on the ala nasi were more recalcitrant to the treatment than those on the other areas. Regarding to physician assessment of treatment’s success, 97% of the patients was associated with moderate and excellent improvement. According to physicians’ assessment, excellent improvement was noticed in 43.58% and, 61.5% of patients reported a high degree of satisfaction with this

  6. Fatigue damage of ultrafine-grain copper in very-high cycle fatigue region

    Czech Academy of Sciences Publication Activity Database

    Lukáš, Petr; Kunz, Ludvík; Navrátilová, Lucie; Bokůvka, O.

    2011-01-01

    Roč. 528, - (2011), s. 7036-7040 ISSN 0921-5093 R&D Projects: GA ČR GAP108/10/2001 Institutional research plan: CEZ:AV0Z20410507 Keywords : ultrafine-grained microstructure * ultrasonic fatigue * crack initiation * copper Subject RIV: JL - Materials Fatigue, Friction Mechanics Impact factor: 2.003, year: 2011

  7. ULTRAFINE FLUORESCENT DIAMONDS IN NANOTECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Kanyuk M. I.

    2014-07-01

    Full Text Available The purpose of the work is to summarize the literature data concerning ultrafine diamonds, namely their industrial production, as well as considerable photostability and biocompatibility that promote their use in modern visualization techniques. It is shown that due to the unique physical properties, they are promising materials for using in nanotechnology in the near future. Possibility of diverse surface modification, small size and large absorption surface are the basis for their use in different approaches for drug and gene delivery into a cell. The changes in the properties of nanodiamond surface modification methods of their creation, stabilization and applications are described. It can be said that fluorescent surface-modified nanodiamonds are a promising target in various research methods that would be widely used for labeling of living cells, as well as in the processes of genes and drugs delivery into a cell.

  8. Effect of neodymium:YAG laser capsulotomy on visual function in patients with posterior capsule opacification and good visual acuity.

    Science.gov (United States)

    Yotsukura, Erisa; Torii, Hidemasa; Saiki, Megumi; Negishi, Kazuno; Tsubota, Kazuo

    2016-03-01

    To evaluate the effect of neodymium:YAG (Nd:YAG) laser capsulotomy on the visual function in patients with posterior capsule opacification (PCO) and good visual acuity. Keio University Hospital, Tokyo, Japan. Observational case series. Eyes were evaluated that had previous cataract surgery with a clinical diagnosis of PCO requiring Nd:YAG laser capsulotomy regardless of a good corrected distance visual acuity (CDVA) (at least 20/20). The CDVA, 10% low contrast visual acuity (LCVA), wavefront aberrations from the 3rd to 6th order, and retinal straylight were measured before and after Nd:YAG laser capsulotomy. The study included 16 eyes of 16 patients (10 men, 6 women; mean age 69.5 years ± 9.3 [SD]). The mean CDVA, LCVA, and straylight after Nd:YAG laser capsulotomy improved significantly (P The root mean square (RMS) of the 3rd Zernike coefficients (S3) and the RMS of the total higher-order aberrations (HOAs) from the 3rd to 6th order decreased significantly after capsulotomy (P The straylight correlated significantly with the total HOAs (r = 0.727, P = .002) and S3 (r = 0.748, P = .001) before capsulotomy. Subjective symptoms resolved after capsulotomy in all cases. Neodymium:YAG laser capsulotomy enabled a significant improvement in visual function even in patients with PCO with good visual acuity. Straylight measurements might be useful to determine the indications for Nd:YAG laser capsulotomy when patients report visual disturbances without decreased visual acuity. Copyright © 2016 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  9. Cutting of nonmetallic materials using Nd:YAG laser beam

    Institute of Scientific and Technical Information of China (English)

    Bashir Ahmed Tahir; Rashid Ahmed; M. G. B. Ashiq; Afaq Ahmed; M. A. Saeed

    2012-01-01

    This study deals with Nd:YAG laser cutting nonmetallic materials,which is one of the most important and popular industrial applications of laser.The main theme is to evaluate the effects of Nd:YAG laser beam power besides work piece scanning speed.For approximate cutting depth,a theoretical study is conducted in terms of material property and cutting speed.Results show a nonlinear relation between the cutting depth and input energy.There is no significant effect of speed on cutting depth with the speed being larger than 30 mm/s.An extra energy is utilized in the deep cutting.It is inferred that as the laser power increases,cutting depth increases.The experimental outcomes are in good agreement with theoretical results.This analysis will provide a guideline for laser-based industry to select a suitable laser for cutting,scribing,trimming,engraving,and marking nonmetallic materials.

  10. Analysis of Shear Bond Strength and Morphology of Er:YAG Laser-Recycled Ceramic Orthodontic Brackets.

    Science.gov (United States)

    Han, Ruo-qiao; Yang, Kai; Ji, Ling-fei; Ling, Chen

    2016-01-01

    The aim of this study was to compare the recycling of deboned ceramic brackets via an Er:YAG laser or via the traditional chairside processing methods of flaming and sandblasting; shear bond strength and morphological changes were evaluated in recycled brackets versus new brackets. 3M Clarity Self-Ligating Ceramic Brackets with a microcrystalline base were divided into groups subjected to flaming, sandblasting, or exposure to an Er:YAG laser. New ceramic brackets served as a control group. Shear bond strengths were determined with an Electroforce test machine and tested for statistical significance through analysis of variance. Morphological examinations of the recycled ceramic bracket bases were conducted with scanning electron microscopy and confocal laser scanning microscopy. Residue on the bracket base was analyzed with Raman spectroscopy. Faded, dark adhesive was left on recycled bracket bases processed via flaming. Adhesive was thoroughly removed by both sandblasting and exposure to an Er:YAG laser. Compared with new brackets, shear bond strength was lower after sandblasting (p bracket. Er:YAG lasers effectively remove adhesive from the bases of ceramic brackets without damaging them; thus, this method may be preferred over other recycling methods.

  11. [Comparison of validity and safety between holmium: YAG laser and traditional surgery in partial nephrectomy].

    Science.gov (United States)

    Bi, Sheng; Xia, Ming

    2015-08-11

    To compare the validity and safety between holmium: YAG laser and traditional surgery in partial nephrectomy. A total of 28 patients were divided into two groups (holmium: YAG laser group without renal artery clamping and traditional surgery group with renal artery clamping). The intraoperative blood loss, total operative time, renal artery clamping time, postoperative hospital stay, separated renal function, postoperative complications and depth of tissue injury were recorded. The intraoperative blood loss, total operative time, renal artery clamping time, postoperative hospital stay, separated renal function, postoperative complications and depth of tissue injury were 80 ml, 77 min, 0 min, 7.4 days, 35 ml/min, 0, 0.9 cm, respectively, in holmium: YAG laser group. And in traditional surgery group were 69 ml, 111 min, 25.5 min, 7.3 days, 34 ml/min, 0, 2.0 cm, respectively. The differences of total operative time, renal artery clamping time and depth of tissue injury between two groups were statistically significant. The others were not statistically significant. Holmium: YAG laser is effective and safe in partial nephrectomy. It can decrease the total operative time, minimize the warm ischemia time and enlarge the extent of surgical excision.

  12. Combustion of PTFE: The effects of gravity on ultrafine particle generation

    Science.gov (United States)

    McKinnon, Thomas; Todd, Paul; Oberdorster, Gunter

    1996-01-01

    The objective of this project is to obtain an understanding of the effect of gravity on the toxicity of ultrafine particle and gas phase materials produced when fluorocarbon polymers are thermally degraded or burned. The motivation for the project is to provide a basic technical foundation on which policies for spacecraft health and safety with regard to fire and polymers can be formulated.

  13. Transmission of Er:YAG laser through different dental ceramics.

    Science.gov (United States)

    Sari, Tugrul; Tuncel, Ilkin; Usumez, Aslihan; Gutknecht, Norbert

    2014-01-01

    The aim of this study was to determine the erbium-doped yttrium aluminum garnet (Er:YAG) laser transmission ratio through different dental ceramics with different thicknesses. Laser debonding procedure of adhesively luted all-ceramic restorations is based on the transmission of laser energy through the ceramic and the ablation of resin cement, because of the transmitted laser energy. Five different dental ceramics were evaluated in this study: sintered zirconium-oxide core ceramic, monolithic zirconium-oxide ceramic, feldspathic ceramic, leucite-reinforced glass ceramic, and lithium disilicate-reinforced glass ceramic. Two ceramic discs with different thicknesses (0.5 and 1 mm) were fabricated for each group. Ceramic discs were placed between the sensor membrane of the laser power meter and the tip of the contact handpiece of an Er:YAG laser device with the aid of a custom- made acrylic holder. The transmission ratio of Er:YAG laser energy (500 mJ, 2 Hz, 1 W, 1000 μs) through different ceramic discs was measured with the power meter. Ten measurements were made for each group and the results were analyzed with two way analysis of variance (ANOVA) and Tukey honestly significant difference (HSD) tests. The highest transmission ratio was determined for lithium disilicate-reinforced ceramic with 0.5 mm thickness (88%) and the lowest was determined for feldspathic ceramic with 1 mm thickness (44%). The differences among the different ceramics and between the different thicknesses were significant (pCeramic type and thickness should be taken into consideration to adjust the laser irradiation parameters during laser debonding of adhesively luted all-ceramic restorations.

  14. Design of a high-power, high-brightness Nd:YAG solar laser.

    Science.gov (United States)

    Liang, Dawei; Almeida, Joana; Garcia, Dário

    2014-03-20

    A simple high-power, high-brightness Nd:YAG solar laser pumping approach is presented in this paper. The incoming solar radiation is both collected and concentrated by four Fresnel lenses and redirected toward a Nd:YAG laser head by four plane-folding mirrors. A fused-silica secondary concentrator is used to compress the highly concentrated solar radiation to a laser rod. Optimum pumping conditions and laser resonator parameters are found through ZEMAX and LASCAD numerical analysis. Solar laser power of 96 W is numerically calculated, corresponding to the collection efficiency of 24  W/m². A record-high solar laser beam brightness figure of merit of 9.6 W is numerically achieved.

  15. Development of laser surface cladding through energy transmission over optical fiber

    International Nuclear Information System (INIS)

    Hirano, Kenji; Morishige, Norio; Irisawa, Toshio

    1990-01-01

    Much attention has recently been paid to laser cladding techniques as an approach in controlling the composition and structure of the metal surface. If YAG laser is used as the cladding method, the flexibility of laser cladding process increases extremely because YAG laser beam is transmitted through an optical fiber, and enabling cladding on pipes installed in actual plants. So experiments on YAG laser cladding through energy transmission over an optical fiber were performed to prevent stress corrosion cracking in austenitic stainless steel pipes. In order to build a cladding layer, mixed metal powder were pre-placed on the inner surface of the pipe using organic binder and the pre-placed powder beds were melted with YAG laser beam transmitted using an optical fiber. This paper introduces the method of building a cladding layer on pipes in actual nuclear plants. (author)

  16. Segregation of solute elements at grain boundaries in an ultrafine grained Al-Zn-Mg-Cu alloy

    International Nuclear Information System (INIS)

    Sha, Gang; Yao, Lan; Liao, Xiaozhou; Ringer, Simon P.; Chao Duan, Zhi; Langdon, Terence G.

    2011-01-01

    The solute segregation at grain boundaries (GBs) of an ultrafine grained (UFG) Al-Zn-Mg-Cu alloy processed by equal-channel angular pressing (ECAP) at 200 o C was characterised using three-dimensional atom probe. Mg and Cu segregate strongly to the grain boundaries. In contrast, Zn does not always show clear segregation and may even show depletion near the grain boundaries. Trace element Si selectively segregates at some GBs. An increase in the number of ECAP passes leads to a decrease in the grain size but an increase in solute segregation at the boundaries. The significant segregation of alloying elements at the boundaries of ultrafine-grained alloys implies that less solutes will be available in the matrix for precipitation with a decrease in the average grain size. -- Research Highlights: → Atom probe tomography has been employed successfully to reveal unique segregation of solutes at ultrafine grained material. → Mg and Cu elements segregated strongly at the grain boundary of an ultrafine grained Al-Zn-Mg-Cu alloy processed by 4-pass and 8-pass ECAP at 200 o C. Zn frequently depleted at GBs with a Zn depletion region of 7-15 nm in width on one or both sides of the GBs. Only a small fraction (3/13) of GBs were observed with a low level of Zn segregation where the combined Mg and Cu excess is over 3.1 atom/nm 2 . Si appeared selectively segregated at some of the GBs. → The increase in number of ECAP passes from 4 to 8 correlated with the increase in mean level segregation of Mg and Cu for both solute excess and peak concentration. → The change of plane normal of a grain boundary within 30 o only leads to a slight change in the solute segregation level.

  17. Ultrafine coal classification using 150 mm gMax cyclone circuits

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, R.Q.; Boaten, F.; Luttrell, G.H. [University of Kentucky, Lexington, KY (United States). Dept. of Mineral Engineering

    2007-11-15

    A two-stage classification circuit using 150 mm diameter gMax cyclones was installed and evaluated in a coal preparation plant in an effort to achieve a clean coal product without the use of froth flotation. Particle size separations of around 37 {mu}m were achieved while limiting ultrafine bypass to less than 10% in the circuit underflow stream. As a result, approximately 81% of the ash-bearing material in the circuit feed was rejected to the circuit overflow stream. The feed ash content was reduced from around 50% to values in the range of 22-30% in the circuit underflow stream with a mass recovery of about 30%. Further reductions in the coarse product ash content were limited due to the particle density effect and the remaining presence of a significant quantity of high-ash slime material in the coarse product. The typical D{sub 50} for the coal particles was 40 {mu} m while the estimated value for mineral matter was 17 {mu} m. Based on the findings of the study, the use of classification to recover a low-ash, coarse fraction in the feed of a fine coal circuit is limited by the density effect regardless of the ability to eliminate ultrafine bypass.

  18. High-power Nd:YAG lasers using stable-unstable resonators

    CERN Document Server

    Mudge, D; Ottaway, D J; Veitch, P J; Munch, J P; Hamilton, M W

    2002-01-01

    The development of a power-scalable diode-laser-pumped continuous-wave Nd:YAG laser for advanced long-baseline interferometric detectors of gravitational waves is described. The laser employs a chain of injection-locked slave lasers to yield an efficient, frequency-stable, diffraction-limited laser beam.

  19. The bactericidal effect of a Genius (R) Nd : YAG laser

    NARCIS (Netherlands)

    Kranendonk, A.A.; Reijden, W.A. van der; Winkelhoff, A.J. van; Weijden, G.A. van der

    PURPOSE: To evaluate the 'in vitro' bactericidal effect of the Nd:YAG laser (Genius, MØlsgaard Dental, Copenhagen, Denmark) on six periodontal pathogens. METHODS: Suspensions of six different periodontal pathogens (Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Prevotella

  20. Mechanical behavior and dynamic failure of high-strength ultrafine grained tungsten under uniaxial compression

    International Nuclear Information System (INIS)

    Wei, Q.; Jiao, T.; Ramesh, K.T.; Ma, E.; Kecskes, L.J.; Magness, L.; Dowding, R.; Kazykhanov, V.U.; Valiev, R.Z.

    2006-01-01

    We have systematically investigated the quasi-static and dynamic mechanical behavior (especially dynamic failure) of ultra-fine grained (UFG) tungsten (W) under uniaxial compression. The starting material is of commercial purity and large grain size. We utilized severe plastic deformation to achieve the ultrafine microstructure characterized by grains and subgrains with sizes of ∼500 nm, as identified by transmission electron microscopy. Results of quasi-static compression show that the UFG W behaves in an elastic-nearly perfect plastic manner (i.e., vanishing strain hardening), with its flow stress approaching 2 GPa, close to twice that of conventional coarse grain W. Post-mortem examinations of the quasi-statically loaded samples show no evidence of cracking, in sharp contrast to the behavior of conventional W (where axial cracking is usually observed). Under uniaxial dynamic compression (strain rate ∼10 3 s -1 ), the true stress-true strain curves of the UFG W exhibit significant flow softening, and the peak stress is ∼3 GPa. Furthermore, the strain rate sensitivity of the UFG W is reduced to half the value of the conventional W. Both in situ high-speed photography and post-mortem examinations reveal shear localization and as a consequence, cracking of the UFG W under dynamic uniaxial compression. These observations are consistent with recent observations on other body-centered cubic metals with nanocrystalline or ultrafine microstructures. The experimental results are discussed using existing models for adiabatic shear localization in metals

  1. Rapid preparation of ultrafine BaSO{sub 3} by SO{sub 2} storage material

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fei; Sha, Feng; Qiao, Xian Shu; Zhao, Tian Xiang; Guo, Bo; Zhang, Jian Bin [College of Chemical Engineering, Inner Mongolia University of Technology, Huhhot (Korea, Republic of)

    2017-01-15

    In this work, a green and efficient process was developed for the preparation of ultrafine BaSO{sub 3} with layered nanostructure surface via the reaction of BaCl{sub 2} with a SO{sub 2} storage material (SO{sub 2}SM) at room temperature. The absorption of SO{sub 2} with equimolar ethylenediamine (EDA) and ethylene glycol (EG) afforded SO{sub 2}SM, which not only offered alkyl sulfite but also released EDA and EG that served as efficient surfactants to promote the formation of BaSO{sub 3} with spherical morphology and porous structure in the process of synthesis of ultrafine BaSO{sub 3}. The factors affecting the morphology and size of BaSO{sub 3} particle were assessed by investigating the effects of SO{sub 2}SM concentration, BaCl{sub 2} concentration, stirring time and speed. It was found that a higher SO{sub 2}SM concentration led to a higher degree of supersaturation, and the particle size of BaSO{sub 3} could be reduced by increasing SO{sub 2}SM concentration. Moreover, under the identified optimal reaction conditions, ultrafine BaSO{sub 3} was obtained with an average diameter of 450 nm. In addition, a plausible formation process of BaSO{sub 3} was proposed to explain the observed reaction results. Overall, the developed process in this work provides an efficient method for the capture, utilization, and conversion of SO{sub 2} into a valuable chemical.

  2. UNS S32750 super duplex steel welding using pulsed Nd:YAG laser; Soldagem do aco superduplex UNS S32750 com laser pulsado Nd:YAG

    Energy Technology Data Exchange (ETDEWEB)

    Francini, O.D.; Andrade, G.G.; Clemente, M.S.; Gallego, J.; Ventrella, V.A., E-mail: ventrella@dem.feis.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Ilha Solteira, SP (Brazil). Departamento de Engenharia Mecanica

    2016-07-01

    Laser is a flexible and powerful tool with many relevant applications in industry, mainly in the welding area. Lasers today provide the welding industry technical solutions to many problems. This work studied the weld metal obtained by pulsed laser welding of Nd: YAG super duplex stainless steel UNS S32750 employed in the oil and natural gas, analyzing the influence of high cooling rate, due to the laser process, the swing phase ferrite / austenite. Were performed weld beads in butt joint with different repetition rates. The different microstructures were obtained by optical microscopy and scanning electron microscopy. The results showed that the effect of varying the welding energy of Nd: YAG laser on the volume fractions of the phases ferrite/austenite in the weld metal was its ferritization and low austenite amount on the grain boundary. (author)

  3. 120 watt continuous wave solar-pumped laser with a liquid light-guide lens and an Nd:YAG rod.

    Science.gov (United States)

    Dinh, T H; Ohkubo, T; Yabe, T; Kuboyama, H

    2012-07-01

    We propose a simple and efficient pumping approach for a high-power solar-pumped laser by using a liquid light-guide lens (LLGL) and a hybrid pumping cavity. A 2×2 m Fresnel lens is used as a primary concentrator to collect natural sunlight; 120 W cw laser power and a 4.3% total slope efficiency are achieved with a 6-mm diameter Nd:YAG rod within a 14-mm diameter LLGL. The corresponded collection efficiency is 30.0 W/m(2), which is 1.5 times larger than the previous record. This result is unexpectedly better than that of Cr:Nd:YAG ceramics. It is because the scattering coefficient of Cr:Nd:YAG ceramics is 0.004cm(1), which is 2 times larger than that of the Nd:YAG crystal, although both have similar saturation gains.

  4. Hollow fiber optics with improved durability for high-peak-power pulses of Q-switched Nd:YAG lasers.

    Science.gov (United States)

    Matsuura, Yuji; Tsuchiuchi, Akio; Noguchi, Hiroshi; Miyagi, Mitsunobu

    2007-03-10

    To improve the damage threshold of hollow optical waveguides for transmitting Q-switched Nd:YAG laser pulses, we optimize the metallization processes for the inner coating of fibers. For silver-coated hollow fiber as the base, second, and third Nd:YAG lasers, drying silver films at a moderate temperature and with inert gas flow is found to be effective. By using this drying process, the resistance to high-peak-power optical pulse radiation is drastically improved for fibers fabricated with and without the sensitizing process. The maximum peak power transmitted in the fiber is greater than 20 MW. To improve the energy threshold of aluminum-coated hollow fibers for the fourth and fifth harmonics of Nd:YAG lasers, a thin silver film is added between the aluminum film and the glass substrate to increase adhesion of the aluminum coating. By using this primer layer, the power threshold improves to 3 MW for the fourth harmonics of a Q-switched Nd:YAG laser light.

  5. New Strategies for Powder Compaction in Powder-based Rapid Prototyping Techniques

    OpenAIRE

    Budding, A.; Vaneker, T.H.J.

    2013-01-01

    In powder-based rapid prototyping techniques, powder compaction is used to create thin layers of fine powder that are locally bonded. By stacking these layers of locally bonded material, an object is made. The compaction of thin layers of powder mater ials is of interest for a wide range of applications, but this study solely focuses on the application for powder -based three-dimensional printing (e.g. SLS, 3DP). This research is primarily interested in powder compaction for creating membrane...

  6. Ultrafine Ag/MnO{sub x} nanowire-constructed hair-like nanoarchitecture: In situ synthesis, formation mechanism and its supercapacitive property

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yonghe; Wang, Zhenyu; Zhang, Yuefei, E-mail: yfzhang@bjut.edu.cn

    2015-09-25

    Graphical abstract: In this work, novel hair-like (HL) nanoarchitectures constructed by ultrafine MnO{sub x} nanowires (∼7 nm) entrapped with Ag nanoparticle were first synthesized by facile in situ reaction between Ag nanowires and KMnO{sub 4}, and a following hydrothermal method. The as-prepared HL Ag/MnO{sub x} nanocomposites as electrode delivered a high specific capacitance and good cycle stability. - Highlights: • Ultrafine MnO{sub x} nanowires with Ag nanoparticle dispersed on were in situ prepared. • Kirkendall effect and Ostwald ripening mechanism ascribed to developed morphology. • Desirable specific capacitance and cyclability made it candidate for supercapacitors. - Abstract: Hair-like (HL) nanoarchitectures constructed by ultrafine MnO{sub x} nanowires (∼7 nm) with ultrafine Ag nanoparticles anchored on were synthesized by in situ facile reaction between silver (Ag) nanowires and potassium permanganate (KMnO{sub 4}), and followed by a following hydrothermal method. Based on a serious of time-dependent experiments, an orderly merged Kirkendall effect and dissolution-recrystallization (Ostwald ripening) mechanism were proposed for the formation of this novel morphology. The as-prepared HL Ag/MnO{sub x} nanocomposites as electrode exhibited a high specific capacitance (526 Fg{sup −1} at scan rate of 5 mV s{sup −1} and 450 Fg{sup −1} at current density of 0.1 Ag{sup −1}), good rate capability (ca. 45.5% retention with reference to 205 Fg{sup −1} at 50 times higher current density of 5 Ag{sup −1}) and desirable cycle stability (ranging from initial of 237 Fg{sup −1} to 185 Fg{sup −1} after 800 cycles and still maintaining 87% retention compared to 800th cycle after another 2800 cycles at current density of 2 Ag{sup −1}). Such desirable performance could be attributed to HL Ag/MnO{sub x} nanocomposites core (tubular nanosheets) with uniform dispersion of the ultrafine Ag nanoparticals provides a direct pathway for electron

  7. Achieving excellent thermal stability and very high activation energy in an ultrafine-grained magnesium silver rare earth alloy prepared by friction stir processing

    Energy Technology Data Exchange (ETDEWEB)

    Khan MD, F. [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India); Panigrahi, S.K., E-mail: skpanigrahi@iitm.ac.in [Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036 (India)

    2016-10-15

    Ultrafine-grained microstructure of a QE22 alloy prepared by Friction Stir processing (FSP) is isochronally annealed to study the thermal stability and grain growth kinetics. The FSPed microstructure of QE22 alloy is thermally stable under ultrafine-grained regime up to 300 °C and the activation energy required for grain growth is found to be exceptionally high as compared to conventional ultrafine-grained magnesium alloys. The high thermal stability and activation energy of the FSPed QE22 alloy is due to Zener pinning effect from thermally stable eutectic Mg{sub 12}Nd and fine precipitates Mg{sub 12}Nd{sub 2}Ag and solute drag effect from segregation of Neodymium (Nd) solute atoms at grain boundaries.

  8. [Ultrafine particle number concentration and size distribution of vehicle exhaust ultrafine particles].

    Science.gov (United States)

    Lu, Ye-qiang; Chen, Qiu-fang; Sun, Zai; Cai, Zhi-liang; Yang, Wen-jun

    2014-09-01

    Ultrafine particle (UFP) number concentrations obtained from three different vehicles were measured using fast mobility particle sizer (FMPS) and automobile exhaust gas analyzer. UFP number concentration and size distribution were studied at different idle driving speeds. The results showed that at a low idle speed of 800 rmin-1 , the emission particle number concentration was the lowest and showed a increasing trend with the increase of idle speed. The majority of exhaust particles were in Nuclear mode and Aitken mode. The peak sizes were dominated by 10 nm and 50 nm. Particle number concentration showed a significantly sharp increase during the vehicle acceleration process, and was then kept stable when the speed was stable. In the range of 0. 4 m axial distance from the end of the exhaust pipe, the particle number concentration decayed rapidly after dilution, but it was not obvious in the range of 0. 4-1 m. The number concentration was larger than the background concentration. Concentration of exhaust emissions such as CO, HC and NO showed a reducing trend with the increase of idle speed,which was in contrast to the emission trend of particle number concentration.

  9. Nd:YAG Laser-aided ceramic brackets debonding: Effects on shear bond strength and enamel surface

    Science.gov (United States)

    Han, Xianglong; Liu, Xiaolin; Bai, Ding; Meng, Yao; Huang, Lan

    2008-11-01

    In order to evaluate the efficiency of Nd:YAG laser-aided ceramic brackets debonding technique, both ceramic brackets and metallic brackets were bonded with orthodontic adhesive to 30 freshly extracted premolars. The specimens were divided into three groups, 10 in each, according to the brackets employed and the debonding techniques used: (1) metallic brackets with shear debonding force, (2) ceramic brackets with shear debonding force, and (3) ceramic brackets with Nd:YAG laser irradiation. The result showed that laser irradiation could diminish shear bond strength (SBS) significantly and produce the most desired ARI scores. Moreover, scanning electron microscopy investigation displayed that laser-aided technique induced little enamel scratch or loss. It was concluded that Nd:YAG laser could facilitate the debonding of ceramic brackets and diminish the amount of remnant adhesive without damaging enamel structure.

  10. Nd:YAG Laser-aided ceramic brackets debonding: Effects on shear bond strength and enamel surface

    International Nuclear Information System (INIS)

    Han Xianglong; Liu Xiaolin; Bai Ding; Meng Yao; Huang Lan

    2008-01-01

    In order to evaluate the efficiency of Nd:YAG laser-aided ceramic brackets debonding technique, both ceramic brackets and metallic brackets were bonded with orthodontic adhesive to 30 freshly extracted premolars. The specimens were divided into three groups, 10 in each, according to the brackets employed and the debonding techniques used: (1) metallic brackets with shear debonding force, (2) ceramic brackets with shear debonding force, and (3) ceramic brackets with Nd:YAG laser irradiation. The result showed that laser irradiation could diminish shear bond strength (SBS) significantly and produce the most desired ARI scores. Moreover, scanning electron microscopy investigation displayed that laser-aided technique induced little enamel scratch or loss. It was concluded that Nd:YAG laser could facilitate the debonding of ceramic brackets and diminish the amount of remnant adhesive without damaging enamel structure

  11. Nd:YAG Laser-aided ceramic brackets debonding: Effects on shear bond strength and enamel surface

    Energy Technology Data Exchange (ETDEWEB)

    Han Xianglong [State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041 (China); Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Liu Xiaolin [Department of Orthodontics, Stomatology Hospital, Dalian University, Dalian 116021 (China); Bai Ding [State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041 (China); Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China)], E-mail: baiding88@hotmail.com; Meng Yao; Huang Lan [Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China)

    2008-11-15

    In order to evaluate the efficiency of Nd:YAG laser-aided ceramic brackets debonding technique, both ceramic brackets and metallic brackets were bonded with orthodontic adhesive to 30 freshly extracted premolars. The specimens were divided into three groups, 10 in each, according to the brackets employed and the debonding techniques used: (1) metallic brackets with shear debonding force, (2) ceramic brackets with shear debonding force, and (3) ceramic brackets with Nd:YAG laser irradiation. The result showed that laser irradiation could diminish shear bond strength (SBS) significantly and produce the most desired ARI scores. Moreover, scanning electron microscopy investigation displayed that laser-aided technique induced little enamel scratch or loss. It was concluded that Nd:YAG laser could facilitate the debonding of ceramic brackets and diminish the amount of remnant adhesive without damaging enamel structure.

  12. Unipolar and bipolar diffusion charging of ultrafine particles

    International Nuclear Information System (INIS)

    Adachi, Motoaki; Okuyama, Kikuo; Kousaka, Yasuo.

    1985-01-01

    Unipolar and bipolar diffusion charging of monodisperse ultrafine particles of 4 - 100 nm in diameter has been studied experimentally and theoretically. The particles were charged by unipolar and bipolar ions generated by α-ray irradiation and the charge distribution of particles was directly observed in the electric field after the growth of them by condensation of di-butyl phthalate vapor. In both cases of unipolar and bipolar charging, the experimental results have been found in good agreement with the solution of basic equations where Fuchs' formula is used as the combination probability of an ion with a particle. (author)

  13. Impact of superplasticizer concentration and of ultra-fine particles on the rheological behaviour of dense mortar suspensions

    International Nuclear Information System (INIS)

    Artelt, C.; Garcia, E.

    2008-01-01

    This work aims at investigating the impact of the addition of superplasticizer and of ultra-fine particles, namely of silica fume and of precipitated titania, on the rheological behaviour of water-lean mortar pastes. The pastes are characterised in terms of their spread, their flowing behaviour and by means of performing a shear test, giving access to viscosity/shear gradient correlations. Adding superplasticizer is shown to shift the onset of shear thickening of the referring pastes to higher shear rates and to attenuate its otherwise rapid evolution, possibly by means of favouring steric particle-particle interactions. The workability of these mortars, which is characterised in terms of spread values and draining, is also improved. For the case of fly ash based mortars, adding ultra-fine particles is another way of (slightly) 'retarding' shear thickening and of attenuating its evolution, possibly because of resulting in - on the average - lower hydrodynamic forces and reduced attractive Van der Waals interactions between particles. However, at the same time these mortars are characterised by a worsening in workability which is attributed to the huge amount of surface area provided by the ultra-fines

  14. Soot, organics, and ultrafine ash from air- and oxy-fired coal combustion

    KAUST Repository

    Andersen, Myrrha E.

    2016-10-19

    Pulverized bituminous coal was burned in a 10. W externally heated entrained flow furnace under air-combustion and three oxy-combustion inlet oxygen conditions (28, 32, and 36%). Experiments were designed to produce flames with practically relevant stoichiometric ratios (SR. =1.2-1.4) and constant residence times (2.3. s). Size-classified fly ash samples were collected, and measurements focused on the soot, elemental carbon (EC), and organic carbon (OC) composition of the total and ultrafine (<0.6. μm) fly ash. Results indicate that although the total fly ash carbon, as measured by loss on ignition, was always acceptably low (<2%) with all three oxy-combustion conditions lower than air-combustion, the ultrafine fly ash for both air-fired and oxy-fired combustion conditions consists primarily of carbonaceous material (50-95%). Carbonaceous components on particles <0.6. μm measured by a thermal optical method showed that large fractions (52-93%) consisted of OC rather than EC, as expected. This observation was supported by thermogravimetric analysis indicating that for the air, 28% oxy, and 32% oxy conditions, 14-71% of this material may be OC volatilizing between 100. C and 550. C with the remaining 29-86% being EC/soot. However, for the 36% oxy condition, OC may comprise over 90% of the ultrafine carbon with a much smaller EC/soot contribution. These data were interpreted by considering the effects of oxy-combustion on flame attachment, ignition delay, and soot oxidation of a bituminous coal, and the effects of these processes on OC and EC emissions. Flame aerodynamics and inlet oxidant composition may influence emissions of organic hazardous air pollutants (HAPs) from a bituminous coal. During oxy-coal combustion, judicious control of inlet oxygen concentration and placement may be used to minimize organic HAP and soot emissions.

  15. Corrosion-resistant powder-metallurgy stainless steel powders and compacts therefrom

    International Nuclear Information System (INIS)

    Klar, E.; Ro, D.H.; Whitman, C.I.

    1980-01-01

    Disclosed is a process for improving the corrosion resistance of a stainless steel powder or compact thereof wherein the powder is produced by atomizing a melt of metals in an oxidizing environment whereby the resulting stainless steel powder is surface-enriched in silicon oxides. The process comprises adding an effective proportion of modifier metal to the melt prior to the atomization, the modifier metal selected from the group consisting of tin, aluminum, lead, zinc, magnesium, rare earth metals and like metals capable of enrichment about the surface of the resulting atomized stainless steel powder and effective under reductive sintering conditions in the depletion of the silicon oxides about the surface; and sintering the resulting atomized powder or a compact thereof under reducing conditions, the sintered powder or compact thereof being depleted in the silicon oxides and the corrosion resistance of the powder or compact thereof being improved thereby

  16. Martensite phase reversion-induced nano/ ultrafine grained AISI 304L stainless steel with magnificent mechanical properties

    Directory of Open Access Journals (Sweden)

    Mohammad Shirdel

    2015-06-01

    Full Text Available Austenitic stainless steels are extensively used in various applications requiring good corrosion resistance and formability. In the current study, the formation of nano/ ultrafine grained austenitic microstructure in a microalloyed AISI 304L stainless steel was investigated by the advanced thermomechanical process of reversion of strain-induced martensite. For this purpose, samples were subjected to heavy cold rolling to produce a nearly complete martensitic structure. Subsequently, a wide range of annealing temperatures (600 to 800°C and times (1 to 240 min were employed to assess the reversion behavior and to find the best annealing condition for the production of the nano/ultrafine grained austenitic microstructure. Microstructural characterizations have been performed using X-ray diffraction (XRD, scanning electron microscopy (SEM, and magnetic measurement, whereas the mechanical properties were assessed by tensile and hardness tests. After thermomechanical treatment, a very fine austenitic structure was obtained, which was composed of nano sized grains of ~ 85 nm in an ultrafine grained matrix with an average grain size of 480 nm. This microstructure exhibited superior mechanical properties: high tensile strength of about 1280 MPa with a desirable elongation of about 41%, which can pave the way for the application of these sheets in the automotive industry.

  17. New insights into the formation and resolution of ultra-fine anaphase bridges

    DEFF Research Database (Denmark)

    Chan, Kok Lung; Hickson, Ian D

    2011-01-01

    that are important for preventing Fanconi anemia (FA) in man. As part of an analysis of the roles of these proteins in mitosis, we identified a novel class of anaphase bridge structure, called an ultra-fine anaphase bridge (UFB). These UFBs are also defined by the presence of a SNF2 family protein called PICH...

  18. Ultrafine-grained Al composites reinforced with in-situ Al3Ti filaments

    Czech Academy of Sciences Publication Activity Database

    Krizik, P.; Balog, M.; Nosko, M.; Riglos, M. V. C.; Dvořák, Jiří; Bajana, O.

    2016-01-01

    Roč. 657, MAR (2016), s. 6-14 ISSN 0921-5093 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068 Institutional support: RVO:68081723 Keywords : Aluminum * Filament * In-situ metal matrix composite * Mechanical properties * Microstructure * Ultrafine-grained Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.094, year: 2016

  19. Enamel pretreatment with Er:YAG laser: effects on the microleakage of fissure sealant in fluorosed teeth

    Directory of Open Access Journals (Sweden)

    Mahtab Memarpour,

    2014-08-01

    Full Text Available Objectives The purpose of this in vitro study was to evaluate the microleakage and penetration of fissure sealant in permanent molar teeth with fluorosis after pretreatment of the occlusal surface. Materials and Methods A total of 120 third molars with mild dental fluorosis were randomly divided into 6 groups (n = 20. The tooth surfaces were sealed with an unfilled resin fissure sealant (FS material. The experimental groups included: 1 phosphoric acid etching (AE + FS (control; 2 AE + One-Step Plus (OS, Bisco + FS; 3 bur + AE + FS; 4 bur + AE + OS + FS; 5 Er:YAG laser + AE + FS; and 6 Er:YAG laser + AE + OS + FS. After thermocycling, the teeth were immersed in 0.5% fuchsin and sectioned. Proportions of mircoleakage (PM and unfilled area (PUA were measured by digital microscope. Results Overall, there were significant differences among all groups in the PM (p = 0.00. Group 3 showed the greatest PM, and was significantly different from groups 2 to 6 (p < 0.05. Group 6 showed the lowest PM. Pretreatment with Er:YAG with or without adhesive led to less PM than bur pretreatment. There were no significant differences among groups in PUA. Conclusions Conventional acid etching provided a similar degree of occlusal seal in teeth with fluorosis compared to those pretreated with a bur or Er:YAG laser. Pretreatment of pits and fissures with Er:YAG in teeth with fluorosis may be an alternative method before fissure sealant application.

  20. Epidemiological evaluation of YAG capsulotomy incidence for posterior capsule opacification in various intraocular lenses in Japanese eyes

    Directory of Open Access Journals (Sweden)

    Nishi Y

    2015-09-01

    Full Text Available Yutaro Nishi,1,2 Tomohiro Ikeda,1 Kayo Nishi,2 Osamu Mimura1 1Department of Ophthalmology, Hyogo College of Medicine, Hyogo, 2Nishi Eye Hospital, Osaka, Japan Background and objective: We investigated the yttrium aluminum garnet (YAG capsulotomy rates in various intraocular lenses (IOLs. Study design/patients and methods: We retrospectively analyzed 23,440 eyes implanted with either MA60BM, MA60AC, VA-60BB, CeeOnEdge, Clariflex, Technis Z9002, SI-40NB, or UV26T IOLs. We calculated the YAG capsulotomy rates at 1, 3, 5, and 10 years post lens implantation. Results: YAG capsulotomy rates at 3 years postimplantation for the eight groups of IOLs were, respectively, 3.7%, 3.9%, 23.7%, 3.4%, 4.5%, 4.7%, 10.4%, and 21.0%. YAG capsulotomy rates at 10 years postimplantation for the MA60BM and SI-40NB IOLs were, respectively, 9.1% and 15% (P<0.05. The average YAG rates for all sharp-edged and round-edged IOLs at 5 years postimplantation were, respectively, 5.2%±0.7% and 25.6%±9.0% (P<0.05. Conclusion: In all studied IOLs, posterior capsule opacification prevention seemed to be associated with the posterior optic sharp-edge design. Round-edged silicone IOLs may also retard posterior capsule opacification formation, though not as much as sharp-edged IOLs. As the follow-up period progressed, round-edged silicone IOLs showed significantly higher YAG rates than sharp-edged IOLs. Keywords: silicone, intraocular lenses, sharp optic edge, chi-square test, implantation surgery, posterior capsule opacification

  1. Moderate high power 1 to 20μs and kHz Ho:YAG thin disk laser pulses for laser lithotripsy

    Science.gov (United States)

    Renz, Günther

    2015-02-01

    An acousto-optically or self-oscillation pulsed thin disk Ho:YAG laser system at 2.1 μm with an average power in the 10 W range will be presented for laser lithotripsy. In the case of cw operation the thin disk Ho:YAG is either pumped with InP diode stacks or with a thulium fiber laser which leads to a laser output power of 20 W at an optical-to-optical efficiency of 30%. For the gain switched mode of operation a modulated Tm-fiber laser is used to produce self-oscillation pulses. A favored pulse lengths for uric acid stone ablation is known to be at a few μs pulse duration which can be delivered by the thin disk laser technology. In the state of the art laser lithotripter, stone material is typically ablated with 250 to 750 μs pulses at 5 to 10 Hz and with pulse energies up to a few Joule. The ablation mechanism is performed in this case by vaporization into stone dust and fragmentation. With the thin disk laser technology, 1 to 20 μs-laser pulses with a repetition rate of a few kHz and with pulse energies in the mJ-range are available. The ablation mechanism is in this case due to a local heating of the stone material with a decomposition of the crystalline structure into calcium carbonate powder which can be handled by the human body. As a joint process to this thermal effect, imploding water vapor bubbles between the fiber end and the stone material produce sporadic shock waves which help clear out the stone dust and biological material.

  2. Effect of Er:YAG Laser and Sandblasting in Recycling of Ceramic Brackets.

    Science.gov (United States)

    Yassaei, Soghra; Aghili, Hossein; Hosseinzadeh Firouzabadi, Azadeh; Meshkani, Hamidreza

    2017-01-01

    Introduction: This study was performed to determine the shear bond strength of rebonded mechanically retentive ceramic brackets after recycling with Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) laser or sandblasting. Methods: Twenty-eight debonded ceramic brackets plus 14 intact new ceramic brackets were used in this study. Debonded brackets were randomly divided into 2 groups of 14. One group was treated by Er:YAG laser and the other with sandblasting. All the specimens were randomly bonded to 42 intact human upper premolars. The shear bond strength of all specimens was determined with a universal testing machine at a crosshead speed of 0.5 mm/min until bond failure occurred. The recycled bracket base surfaces were observed under a scanning electron microscope (SEM). Analysis of variance (ANOVA) and Tukey tests were used to compare the shear bond strength of the 3 groups. Fisher exact test was used to evaluate the differences in adhesive remnant index (ARI) scores. Results: The highest bond strength belonged to brackets recycled by Sandblasting (16.83 MPa). There was no significant difference between the shear bond strength of laser and control groups. SEM photographs showed differences in 2 recycling methods. The laser recycled bracket appeared to have as well-cleaned base as the new bracket. Although the sandblasted bracket photographs showed no remnant adhesives, remarkable micro-roughening of the base of the bracket was apparent. Conclusion: According to the results of this study, both Er:YAG laser and sandblasting were efficient to mechanically recondition retentive ceramic brackets. Also, Er:YAG laser did not change the design of bracket base while removing the remnant adhesives which might encourage its application in clinical practice.

  3. Ultrafine-Grained Precipitation Hardened Copper Alloys by Swaging or Accumulative Roll Bonding

    Directory of Open Access Journals (Sweden)

    Igor Altenberger

    2015-05-01

    Full Text Available There is an increasing demand in the industry for conductive high strength copper alloys. Traditionally, alloy systems capable of precipitation hardening have been the first choice for electromechanical connector materials. Recently, ultrafine-grained materials have gained enormous attention in the materials science community as well as in first industrial applications (see, for instance, proceedings of NANO SPD conferences. In this study the potential of precipitation hardened ultra-fine grained copper alloys is outlined and discussed. For this purpose, swaging or accumulative roll-bonding is applied to typical precipitation hardened high-strength copper alloys such as Corson alloys. A detailed description of the microstructure is given by means of EBSD, Electron Channeling Imaging (ECCI methods and consequences for mechanical properties (tensile strength as well as fatigue and electrical conductivity are discussed. Finally the role of precipitates for thermal stability is investigated and promising concepts (e.g. tailoring of stacking fault energy for grain size reduction and alloy systems for the future are proposed and discussed. The relation between electrical conductivity and strength is reported.

  4. Cutting of nonmetallic materials using Nd:YAG laser beam

    International Nuclear Information System (INIS)

    Tahir, Bashir Ahmed; Ashiq, M.G. B.; Saeed, M.A.; Ahmed, Rashid; Ahmed, Afaq

    2012-01-01

    This study deals with Nd:YAG laser cutting nonmetallic materials, which is one of the most important and popular industrial applications of laser. The main theme is to evaluate the effects of Nd:YAG laser beam power besides work piece scanning speed. For approximate cutting depth, a theoretical study is conducted in terms of material property and cutting speed. Results show a nonlinear relation between the cutting depth and input energy. There is no significant effect of speed on cutting depth with the speed being larger than 30 mm/s. An extra energy is utilized in the deep cutting. It is inferred that as the laser power increases, cutting depth increases. The experimental outcomes are in good agreement with theoretical results. This analysis will provide a guideline for laser-based industry to select a suitable laser for cutting, scribing, trimming, engraving, and marking nonmetallic materials. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  5. Aerosol number size distributions over a coastal semi urban location: Seasonal changes and ultrafine particle bursts

    Energy Technology Data Exchange (ETDEWEB)

    Babu, S. Suresh, E-mail: s_sureshbabu@vssc.gov.in [Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695022 (India); Kompalli, Sobhan Kumar [Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695022 (India); Moorthy, K. Krishna [Centre for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore 560 012 (India)

    2016-09-01

    Number-size distribution is one of the important microphysical properties of atmospheric aerosols that influence aerosol life cycle, aerosol-radiation interaction as well as aerosol-cloud interactions. Making use of one-yearlong measurements of aerosol particle number-size distributions (PNSD) over a broad size spectrum (~ 15–15,000 nm) from a tropical coastal semi-urban location-Trivandrum (Thiruvananthapuram), the size characteristics, their seasonality and response to mesoscale and synoptic scale meteorology are examined. While the accumulation mode contributed mostly to the annual mean concentration, ultrafine particles (having diameter < 100 nm) contributed as much as 45% to the total concentration, and thus constitute a strong reservoir, that would add to the larger particles through size transformation. The size distributions were, in general, bimodal with well-defined modes in the accumulation and coarse regimes, with mode diameters lying in the range 141 to 167 nm and 1150 to 1760 nm respectively, in different seasons. Despite the contribution of the coarse sized particles to the total number concentration being meager, they contributed significantly to the surface area and volume, especially during transport of marine air mass highlighting the role of synoptic air mass changes. Significant diurnal variation occurred in the number concentrations, geometric mean diameters, which is mostly attributed to the dynamics of the local coastal atmospheric boundary layer and the effect of mesoscale land/sea breeze circulation. Bursts of ultrafine particles (UFP) occurred quite frequently, apparently during periods of land-sea breeze transitions, caused by the strong mixing of precursor-rich urban air mass with the cleaner marine air mass; the resulting turbulence along with boundary layer dynamics aiding the nucleation. These ex-situ particles were observed at the surface due to the transport associated with boundary layer dynamics. The particle growth rates from

  6. Aerosol number size distributions over a coastal semi urban location: Seasonal changes and ultrafine particle bursts

    International Nuclear Information System (INIS)

    Babu, S. Suresh; Kompalli, Sobhan Kumar; Moorthy, K. Krishna

    2016-01-01

    Number-size distribution is one of the important microphysical properties of atmospheric aerosols that influence aerosol life cycle, aerosol-radiation interaction as well as aerosol-cloud interactions. Making use of one-yearlong measurements of aerosol particle number-size distributions (PNSD) over a broad size spectrum (~ 15–15,000 nm) from a tropical coastal semi-urban location-Trivandrum (Thiruvananthapuram), the size characteristics, their seasonality and response to mesoscale and synoptic scale meteorology are examined. While the accumulation mode contributed mostly to the annual mean concentration, ultrafine particles (having diameter < 100 nm) contributed as much as 45% to the total concentration, and thus constitute a strong reservoir, that would add to the larger particles through size transformation. The size distributions were, in general, bimodal with well-defined modes in the accumulation and coarse regimes, with mode diameters lying in the range 141 to 167 nm and 1150 to 1760 nm respectively, in different seasons. Despite the contribution of the coarse sized particles to the total number concentration being meager, they contributed significantly to the surface area and volume, especially during transport of marine air mass highlighting the role of synoptic air mass changes. Significant diurnal variation occurred in the number concentrations, geometric mean diameters, which is mostly attributed to the dynamics of the local coastal atmospheric boundary layer and the effect of mesoscale land/sea breeze circulation. Bursts of ultrafine particles (UFP) occurred quite frequently, apparently during periods of land-sea breeze transitions, caused by the strong mixing of precursor-rich urban air mass with the cleaner marine air mass; the resulting turbulence along with boundary layer dynamics aiding the nucleation. These ex-situ particles were observed at the surface due to the transport associated with boundary layer dynamics. The particle growth rates from

  7. Long-term remission of folliculitis decalvans after treatment with the long-pulsed Nd:YAG laser.

    Science.gov (United States)

    Meesters, Arne A; Van der Veen, J P Wietze; Wolkerstorfer, Albert

    2014-04-01

    Folliculitis decalvans (FD) is a rare inflammatory scalp disorder presenting with tufted folliculitis, follicular papules and pustules, progressing to cicatricial alopecia. Current treatments mainly consist of antibiotic and immunomodulatory therapies and are often disappointing. FD has previously shown to respond to treatment with neodymium:yttrium aluminium garnet (Nd:YAG) laser in one case. We present a case of recalcitrant FD, successfully treated with a long-pulsed Nd:YAG laser.

  8. Light extinction in metallic powder beds: Correlation with powder structure

    International Nuclear Information System (INIS)

    Rombouts, M.; Froyen, L.; Gusarov, A.V.; Bentefour, E.H.; Glorieux, C.

    2005-01-01

    A theoretical correlation between the effective extinction coefficient, the specific surface area, and the chord length distribution of powder beds is verified experimentally. The investigated powder beds consist of metallic particles of several tens of microns. The effective extinction coefficients are measured by a light-transmission technique at a wavelength of 540 nm. The powder structure is characterized by a quantitative image analysis of powder bed cross sections resulting in two-point correlation functions and chord length distributions. The specific surface area of the powders is estimated by laser-diffraction particle-size analysis and by the two-point correlation function. The theoretically predicted tendency of increasing extinction coefficient with specific surface area per unit void volume is confirmed by the experiments. However, a significant quantitative discrepancy is found for several powders. No clear correlation of the extinction coefficient with the powder material and particle size, and morphology is revealed, which is in line with the assumption of geometrical optics

  9. Increased ultrafine particles and carbon monoxide concentrations are associated with asthma exacerbation among urban children

    Science.gov (United States)

    Evans, Kristin A.; Halterman, Jill S.; Hopke, Philip K.; Fagnano, Maria; Rich, David Q.

    2014-01-01

    Objectives Increased air pollutant concentrations have been linked to several asthma-related outcomes in children, including respiratory symptoms, medication use, and hospital visits. However, few studies have examined effects of ultrafine particles in a pediatric population. Our primary objective was to examine the effects of ambient concentrations of ultrafine particles on asthma exacerbation among urban children and determine whether consistent treatment with inhaled corticosteroids could attenuate these effects. We also explored the relationship between asthma exacerbation and ambient concentrations of accumulation mode particles, fine particles (≤ 2.5 micrograms [μm]; PM2.5), carbon monoxide, sulfur dioxide, and ozone. We hypothesized that increased 1 to 7 day concentrations of ultrafine particles and other pollutants would be associated with increases in the relative odds of an asthma exacerbation, but that this increase in risk would be attenuated among children receiving school-based corticosteroid therapy. Methods We conducted a pilot study using data from 3–10 year-old children participating in the School-Based Asthma Therapy trial. Using a time-stratified case-crossover design and conditional logistic regression, we estimated the relative odds of a pediatric asthma visit treated with prednisone (n=96 visits among 74 children) associated with increased pollutant concentrations in the previous 7 days. We re-ran these analyses separately for children receiving medications through the school-based intervention and children in a usual care control group. Results Interquartile range increases in ultrafine particles and carbon monoxide concentrations in the previous 7 days were associated with increases in the relative odds of a pediatric asthma visit, with the largest increases observed for 4-day mean ultrafine particles (interquartile range=2088 p/cm3; OR=1.27; 95% CI=0.90–1.79) and 7-day mean carbon monoxide (interquartile range=0.17 ppm; OR=1.63; 95

  10. Luminescent properties of LuAG:Yb and YAG:Yb single crystalline films grown by Liquid Phase Epitaxy method

    International Nuclear Information System (INIS)

    Zorenko, Yu; Zorenko, T.; Gorbenko, V.; Voznyak, T.; Popielarski, P.; Batentschuk, M.; Osvet, A.; Brabec, Ch; Kolobanov, V.; Spasky, D.; Fedorov, A.

    2016-01-01

    In this work, investigation of the spectroscopic parameters of the luminescence of Yb"3"+ ions in single crystalline films of Lu_3Al_5O_1_2 and Y_3Al_5O_1_2 garnets was performed using the synchrotron radiation excitation with the energy in the range of Yb"3"+ charge transitions (CT), exciton range and the onset of interband transitions of these garnets. The basic spectroscopic parameters of the Yb"3"+ CT luminescence in LuAG and YAG hosts were determined and summarized with taking into account the differences in the band gap structure of these garnets. - Highlights: • Single crystalline films of Yb doped LuAG and YAG garnets were grown by LPE method. • Yb"3"+ luminescence of LuAG:Yb and YAG:Yb film were studied using synchrotron radiation. • Basic parameters of Yb"3"+ charge transfer luminescence in LuAG and YAG were determined.

  11. Efficient continuous-wave 1112 nm Nd:YAG laser operation under direct diode pumping at 885 nm

    International Nuclear Information System (INIS)

    Gao, J; Dai, X J; Zhang, L; Wu, X D

    2013-01-01

    We report compact diode-end-pumped continuous-wave laser operation at 1112 nm under 885 nm diode-direct pumping for the first time. On the basis of the R 2 →Y 6 transition in a conventional Nd:YAG (yttrium aluminum garnet) single crystal, the maximum output power of 12.5 W is achieved, with an optical to optical efficiency of 46.6% and a slope efficiency of 52.9%. To the best of our knowledge, this represents the highest output at 1112 nm generated by a diode-end-pumped Nd:YAG laser. Furthermore, it is the highest optical to optical efficiency ever reported for 1112 nm Nd:YAG lasers. The short term power stability is ∼0.32% at 12.0 W output. (letter)

  12. A study of manufacturing tubes with nano/ultrafine grain structure by stagger spinning

    International Nuclear Information System (INIS)

    Xia, Qinxiang; Xiao, Gangfeng; Long, Hui; Cheng, Xiuquan; Yang, Baojian

    2014-01-01

    Highlights: • Proposing a method of manufacturing tubes with nano/ultrafine crystal. • Obtaining the refined ferritic grains with an size of 500 nm after stagger spinning. • Obtaining the equiaxial ferritic grains with an size of 600 nm after annealing. - Abstract: A new method of manufacturing tubes with nano/ultrafine grain structure by stagger spinning and recrystallization annealing is proposed in this study. Two methods of the stagger spinning process are developed, the corresponding macroforming quality, microstructural evolution and mechanical properties of the spun tubes made of ASTM 1020 steel are analysed. The results reveal that a good surface smoothness and an improved spin-formability of spun parts can be obtained by the process combining of 3-pass spinning followed by a 580 °C × 0.5 h static recrystallization and 2-pass spinning with a 580 °C × 1 h static recrystallization annealing under the severe thinning ratio of wall thickness reduction. The ferritic grains with an average initial size of 50 μm are refined to 500 nm after stagger spinning under the 87% thinning ratio of wall thickness reduction. The equiaxial ferritic grains with an average size of 600 nm are generated through re-nucleation and grain growth by subsequent recrystallization annealing at 580 °C for 1 h heat preservation. The tensile strength of spun tubes has been founded to be proportional to the reciprocal of layer spacing of pearlite (LSP), and the elongation is inversely proportional to the reciprocal of LSP. This study shows that the developed method of stagger power spinning has the potential to be used to manufacture bulk metal components with nano/ultrafine grain structure

  13. Femtosecond laser irradiation on Nd:YAG crystal: Surface ablation and high-spatial-frequency nanograting

    Science.gov (United States)

    Ren, Yingying; Zhang, Limu; Romero, Carolina; Vázquez de Aldana, Javier R.; Chen, Feng

    2018-05-01

    In this work, we systematically study the surface modifications of femtosecond (fs) laser irradiated Nd:YAG crystal in stationary focusing case (i.e., the beam focused on the target in the steady focusing geometry) or dynamic scanning case (i.e., focused fs-laser beam scanning over the target material). Micro-sized structures (e.g. micro-craters or lines) are experimentally produced in a large scale of parameters in terms of pulse energy as well as (effective) pulse number. Surface ablation of Nd:YAG surface under both processing cases are investigated, involving the morphological evolution, parameter dependence, the ablation threshold fluences and the incubation factors. Meanwhile, under specific irradiation conditions, periodic surface structures with high-spatial-frequency (Investigations on the evolution of nanograting formation and fluence dependence of period are performed. The experimental results obtained under different cases and the comparison between them reveal that incubation effect plays an important role not only in the ablation of Nd:YAG surface but also in the processes of nanograting formation.

  14. Neodymium-YAG laser core through urethrotomy in obliterative posttraumatic urethral strictures after failed initial urethroplasty.

    Science.gov (United States)

    Dogra, P N; Nabi, G

    2002-01-01

    To assess the feasibility, problems and results of Nd-YAG laser core through urethrotomy in the management of failed urethroplasty for posttraumatic bulbomembranous urethral strictures. 61 patients with obliterative posttraumatic urethral strictures were treated by Nd-YAG laser core through urethrotomy between May 1997 to April 2000. Of these, 5 patients had failed end-to-end urethroplasty done as an initial procedure at various periods of time. The procedure was performed as day care and patients were discharged within 6 h of procedure. At 24-30 months of follow-up, all patients are voiding well and are continent. Auxiliary procedures were required in 2 cases. Nd-YAG laser core through urethrotomy is a feasible day care option for patients of obliterative urethral strictures following failed initial urethroplasty with successful outcome. Copyright 2002 S. Karger AG, Basel

  15. Synthesis of mullite-based coatings from alumina and zircon powder mixtures by plasma spraying and laser remelting

    International Nuclear Information System (INIS)

    Hazra, S.; Das, J.; Bandyopadhyay, P.P.

    2015-01-01

    A mechanical mixture of alumina and pulverized zircon sand in 3:2 M ratio has been plasma sprayed to obtain mullite coating. Thereafter, the top layer of the coating has been remelted using laser. The presence of a mullite phase in the as-sprayed and laser remelted coatings has been confirmed qualitatively using X-ray diffraction. Both as-sprayed and laser remelted coatings have been characterized for their microstructure, hardness and porosity. The ultrafine grain structure of the coating produced by rapid quenching has been analyzed using transmission electron microscope. Presence of a mullite phase in the coatings has also been confirmed using small angle electron diffraction. Laser remelting has resulted in an appreciable reduction in porosity and increase in hardness in the coatings. - Highlights: • Mullite has been produced by plasma spraying of alumina–zircon powder mixture. • As sprayed coating shows good integrity. • Laser remelting reduced porosity and increased coating hardness

  16. Synthesis of mullite-based coatings from alumina and zircon powder mixtures by plasma spraying and laser remelting

    Energy Technology Data Exchange (ETDEWEB)

    Hazra, S. [Integrated Test Range, Chandipur, Balasore, Odisha 756025 (India); Das, J. [Department of Metallurgical and Materials Engineering, IIT Kharagpur, 721302 (India); Bandyopadhyay, P.P., E-mail: ppb@mech.iitkgp.ernet.in [Department of Mechanical Engineering, IIT Kharagpur, 721302 (India)

    2015-03-15

    A mechanical mixture of alumina and pulverized zircon sand in 3:2 M ratio has been plasma sprayed to obtain mullite coating. Thereafter, the top layer of the coating has been remelted using laser. The presence of a mullite phase in the as-sprayed and laser remelted coatings has been confirmed qualitatively using X-ray diffraction. Both as-sprayed and laser remelted coatings have been characterized for their microstructure, hardness and porosity. The ultrafine grain structure of the coating produced by rapid quenching has been analyzed using transmission electron microscope. Presence of a mullite phase in the coatings has also been confirmed using small angle electron diffraction. Laser remelting has resulted in an appreciable reduction in porosity and increase in hardness in the coatings. - Highlights: • Mullite has been produced by plasma spraying of alumina–zircon powder mixture. • As sprayed coating shows good integrity. • Laser remelting reduced porosity and increased coating hardness.

  17. Elucidating the Relations Between Monotonic and Fatigue Properties of Laser Powder Bed Fusion Stainless Steel 316L

    Science.gov (United States)

    Zhang, Meng; Sun, Chen-Nan; Zhang, Xiang; Goh, Phoi Chin; Wei, Jun; Li, Hua; Hardacre, David

    2018-03-01

    The laser powder bed fusion (L-PBF) technique builds parts with higher static strength than the conventional manufacturing processes through the formation of ultrafine grains. However, its fatigue endurance strength σ f does not match the increased monotonic tensile strength σ b. This work examines the monotonic and fatigue properties of as-built and heat-treated L-PBF stainless steel 316L. It was found that the general linear relation σ f = mσ b for describing conventional ferrous materials is not applicable to L-PBF parts because of the influence of porosity. Instead, the ductility parameter correlated linearly with fatigue strength and was proposed as the new fatigue assessment criterion for porous L-PBF parts. Annealed parts conformed to the strength-ductility trade-off. Fatigue resistance was reduced at short lives, but the effect was partially offset by the higher ductility such that comparing with an as-built part of equivalent monotonic strength, the heat-treated parts were more fatigue resistant.

  18. Effects of various parameters of the 1064 nm Nd:YAG laser for the treatment of enlarged facial pores.

    Science.gov (United States)

    Roh, Mi Ryung; Chung, Hye Jin; Chung, Kee Yang

    2009-01-01

    A variety of treatment modalities have been used to reduce the size of enlarged facial pores without obvious success. To assess and compare the effects of various parameters of a 1064 nm Nd:YAG laser in the treatment of enlarged facial pores. This was a prospective intra-individual left-right comparative study. A total of 40 individuals with enlarged facial pores were recruited for this study. Ten individuals were respectively treated on one half of the face with a quasi long-pulsed 1064 nm Nd:YAG laser (method 1), a Q-switched 1064 nm Nd:YAG laser (method 2), both quasi long-pulsed and Q-switched 1064 nm Nd:YAG lasers without carbon-suspended lotion (method 3), and both quasi long-pulsed and Q-switched 1064 nm Nd:YAG lasers with carbon-suspended lotion (method 4). The other half of the face was left untreated as a control. Five laser sessions were performed with a 3-week interval. The pore sizes were measured using an image analysis program and the sebum level was measured with a Sebumeter before and after the treatments. The pore size and sebum level decreased in all four methods on the treated side compared to the control (p pore size and sebum level.

  19. Nd: YAG laser in art works restoration

    International Nuclear Information System (INIS)

    Flores, T.; Ponce, L.; Arronte, M.; Moreno, B.; Fernandez, M.; Garcia, C.

    1998-01-01

    Laser cleaning in works of art has a number of advantages over traditional techniques of restoration. In this article, the technique used and the physical mechanisms that explain the process of ablation of pollutants are described. The results obtained in the cleaning of statues of marble and alabaster are exposed as well as oil-painting restoration. In this last specific case, the Nd: YAG laser is used with successful results. (Author) 6 refs

  20. Evaluation of the permeability of the furcation area of deciduous molars conditioned with Er:YAG laser and cyanoacrylate Avaliação da permeabilidade da região da furca de molares decíduos condicionada com laser de Er:YAG e cianoacrilatos

    Directory of Open Access Journals (Sweden)

    Adriene Mara Souza Lopes-Silva

    2003-09-01

    Full Text Available The purpose of this study was to evaluate in vitro the dentin permeability of the deciduous pulp chamber floor after employing 2-octyl cyanoacrylate and Er:YAG laser. Twenty four deciduous molars were used, divided into four groups. After chemical-surgical preparation each group received a different treatment: Group 1 - control, without treatment; Group 2 - the floor of the pulp chamber was covered with a fine layer of 2-octyl cyanoacrylate; Group 3 - the floor of the pulp chamber was irradiated with Er:YAG laser (250 mJ, 10 Hz for 30 seconds, 80 J of energy and 320 pulses, and covered with a fine layer of 2-octyl cyanoacrylate; and Group 4 - the floor of the pulp chamber was irradiated with Er:YAG laser set at the parameters already described. After that the specimens received application of 0.5% methylene blue, for 15 minutes. The teeth were cut, photographed, and the digitalized images were analyzed using the ImageLab program. The results obtained were submitted to statistical analysis. Group 4 (Er:YAG presented the largest averages in percentage of dye penetration area (19.5%, followed by Group 1 (11.1%, Group 3 (1.4% and Group 2 (0.2%. The experimental model allowed to conclude that the specimens conditioned with 2-octyl cyanoacrylate (Group 2 and Er:YAG laser associated to 2-octyl cyanoacrylate (Group 3 presented a decrease in permeability, and the specimens treated with Er:YAG laser (Group 4 presented an increase in permeability of the analyzed area.A proposta do presente experimento foi avaliar in vitro a permeabilidade da dentina no assoalho da câmara pulpar de dentes decíduos com o emprego do 2-octil cianoacrilato e laser de Er:YAG. Foram empregados 24 molares decíduos, divididos em quatro grupos. Após preparo químico-cirúrgico, cada grupo recebeu um tratamento diferente: Grupo 1 - controle, sem tratamento; Grupo 2 - o assoalho da câmara pulpar foi coberto com uma fina camada de 2-octil cianoacrilato; Grupo 3 - o assoalho da c

  1. Biostimulative effects of Nd:YAG Q-switch dye on normal human fibroblast cultures: study of a new chemosensitizing agent for the Nd:YAG laser

    International Nuclear Information System (INIS)

    Castro, D.J.; Saxton, R.E.; Fetterman, H.R.; Castro, D.J.; Ward, P.H.

    1987-01-01

    Kodak Q-switch II is a new chemical with an absorption maxima at 1051 nm, designed to be used as an Nd:YAG dye laser. The potential for this dye as a new chemosensitizing agent in the treatment of connective tissue diseases and wound healing with low energy Nd:YAG laser was examined. Two normal fibroblast cell lines were tested for sensitivity to various levels of this dye in vitro. These cells were exposed to Q-switch II dye at concentrations of 0.01, 0.1, 1, 10, 50, and 100 micrograms/ml for 1 and 24 hours. Cell viability was assessed by the trypan blue exclusion test. Cell duplication and DNA synthesis were measured by the incorporation of [ 3 H]-thymidine at 6 and 24 hours postexposure to Q-switch II dye. At concentrations up to 10 micrograms/ml, both cell lines tested showed no changes in cell viability. However, at concentrations equal or higher than 50 micrograms/ml, more than 40% of the fibroblasts incorporated trypan blue after 24 hours of exposure to this dye, indicating significant cell destruction. The results indicate that Q-switch II dye is nontoxic to normal human fibroblast cultures and showed significant biostimulative effects on cell duplication at concentrations equal to or lower than 10 micrograms/ml. Further studies will be required to determine the usefulness of Q-switch II dye as a new photochemosensitizing agent for potential biostimulation of wound healing and/or treatment of connective tissue diseases with the Nd:YAG laser (near infrared, 1060 nm) at nonthermal levels of energies

  2. Neodymium:YAG laser cutting of intraocular lens haptics.

    Science.gov (United States)

    Gorn, R A; Steinert, R F

    1985-11-01

    Neodymium:YAG laser cutting of polymethylmethacrylate and polypropylene anterior chamber and posterior chamber intraocular lens haptics was studied in terms of ease of transection and physical structure of the cut areas as seen by scanning electron microscopy. A marked difference was discovered, with the polymethylmethacrylate cutting easily along transverse planes, whereas the polypropylene resisted cutting along longitudinal fibers. Clinical guidelines are presented.

  3. Synthesis and characterization of ultrafine well-dispersed magnetic nanoparticles

    International Nuclear Information System (INIS)

    Liu, Z.L.; Wang, H.B.; Lu, Q.H.; Du, G.H.; Peng, L.; Du, Y.Q.; Zhang, S.M.; Yao, K.L.

    2004-01-01

    Ultrafine well-dispersed magnetic nanoparticles were directly prepared in aqueous solution using controlled coprecipitation method. The structure, size, size distributions and magnetic properties of the magnetic nanoparticles, characterized by TEM, XRD and VSM, indicated the formation of single domain nanoparticles with average size smaller than 5 nm. The magnetic nanoparticles show superparamagnetism and a lower saturation magnetization is found as a consequence of smaller particle size. The relevant conditions for obtaining these magnetic colloids are discussed and the so-prepared magnetic nanoparticles are stable in a wide pH range

  4. Translocation and potential neurological effects of fine and ultrafine particles a critical update.

    Science.gov (United States)

    Peters, Annette; Veronesi, Bellina; Calderón-Garcidueñas, Lilian; Gehr, Peter; Chen, Lung Chi; Geiser, Marianne; Reed, William; Rothen-Rutishauser, Barbara; Schürch, Samuel; Schulz, Holger

    2006-09-08

    Particulate air pollution has been associated with respiratory and cardiovascular disease. Evidence for cardiovascular and neurodegenerative effects of ambient particles was reviewed as part of a workshop. The purpose of this critical update is to summarize the evidence presented for the mechanisms involved in the translocation of particles from the lung to other organs and to highlight the potential of particles to cause neurodegenerative effects. Fine and ultrafine particles, after deposition on the surfactant film at the air-liquid interface, are displaced by surface forces exerted on them by surfactant film and may then interact with primary target cells upon this displacement. Ultrafine and fine particles can then penetrate through the different tissue compartments of the lungs and eventually reach the capillaries and circulating cells or constituents, e.g. erythrocytes. These particles are then translocated by the circulation to other organs including the liver, the spleen, the kidneys, the heart and the brain, where they may be deposited. It remains to be shown by which mechanisms ultrafine particles penetrate through pulmonary tissue and enter capillaries. In addition to translocation of ultrafine particles through the tissue, fine and coarse particles may be phagocytized by macrophages and dendritic cells which may carry the particles to lymph nodes in the lung or to those closely associated with the lungs. There is the potential for neurodegenerative consequence of particle entry to the brain. Histological evidence of neurodegeneration has been reported in both canine and human brains exposed to high ambient PM levels, suggesting the potential for neurotoxic consequences of PM-CNS entry. PM mediated damage may be caused by the oxidative stress pathway. Thus, oxidative stress due to nutrition, age, genetics among others may increase the susceptibility for neurodegenerative diseases. The relationship between PM exposure and CNS degeneration can also be

  5. In vitro study of temperature changes in root during Er:YAG laser application; Estudo in vitro da alteracao da temperatura durante a aplicacao do Er:YAG laser intracanal

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Redson Vilela

    2001-07-01

    The temperature increase in root dentine irradiated by Er:YAG laser beam was analyzed, for different dentine thickness and different energy and frequency conditions, aiming the evaluation of Er:YAG laser in endodontic therapy, without causing any damages to close tissues. Twenty four human teeth were separated in four groups with six teeth each, and longitudinally sectioned in thickness of 0.5 mm (first group), 1,0 mm (second group), 1,5 mm (third group) and 2,0 mm (fourth group). Those samples were irradiated with the Er:YAG laser, emitting at the wavelength of 2.94{mu}m, by using a sapphire optic fiber with diameter of 0.375 mm, and forming an angle of 5 deg with the irradiated dentine surface. Three different laser energies were used in this study, 180 mJ, 160 mJ and 140 mJ, with frequencies of 10 Hz and 15 Hz. The temperature data were collected in a digital-analog system and sent to a computer for analysis. It was verified that the time for temperature increases of 5 deg in the external root walls varies according to the laser energy, repetition rate and dentine root thickness. Thus, in this work we could obtain laser parameters to avoid thermal damages in periodontal tissues. (author)

  6. Comparison of levobunolol and brimonidine in prophylaxis of intraocular pressure (iop|) rise following nd: yag laser capsulotomy

    International Nuclear Information System (INIS)

    Habib, M.; Akram, A

    2015-01-01

    To compare the efficacy of topical 0.5% Levobunolol and 0.2% Brimonidine in preventing intraocular pressure rise after Nd: YAG laser posterior capsulotomy. Study Design: Randomized controlled trial (RCT). Setting and Duration of Study: Ophthalmology Department Combined Military Hospital Multan, from September 2010 to March 2011. Patients and Methods: A total of 82 patients fulfilling the inclusion criteria were selected from out-patient department and randomly divided into two equal groups. Topical 0.5% levobunolol was instilled in group A while 0.2% brimonidine was instilled in group B one hour before and immediately after doing Nd:YAG laser capsulotomy. The intraocular pressure (IOP) was measured using Goldmann applanation tonometer 1, 3 and 24 hours later. Data was analyzed using SPSS version 15.0. Results: There was no statistically significant difference in mean IOP between 0.5% Levobunolol group (Group A) and 0.2% Brimonidine group (Group B) at 1 hour, 3 hours and 24 hours after Nd:YAG laser capsulotomy. The mean intraocular pressure (IOP) one hour after Nd:YAG laser and topical treatment in group A was 16.10 ± 1.60 mmHg while in group B was 15.65 ± 3.01 mmHg (P=0.401). Mean IOP after three hours in group A was 15.80 ± 1.35 mm Hg and in group B was 15.05 ± 2.15 mmHg (p=0.062). Mean IOP after 24 hours in group A was 15.13 ± 2.05 mmHg while in group B was 14.32 ± 1.62 mmHg (p=0.058). Conclusion: Both 0.5% Levobunolol and 0.2% Brimonidine are equally effective in controlling the IOP spike after Nd: YAG laser capsulotomy. Either of these medicines can be used as a prophylaxis to prevent rise in IOP after Nd:YAG laser capsulotomy. (author)

  7. New Strategies for Powder Compaction in Powder-based Rapid Prototyping Techniques

    NARCIS (Netherlands)

    Budding, A.; Vaneker, Thomas H.J.

    2013-01-01

    In powder-based rapid prototyping techniques, powder compaction is used to create thin layers of fine powder that are locally bonded. By stacking these layers of locally bonded material, an object is made. The compaction of thin layers of powder mater ials is of interest for a wide range of

  8. Spark plasma sintering of hydrothermally derived ultrafine Ca doped lanthanum chromite powders

    Directory of Open Access Journals (Sweden)

    Rendón-Angeles, J. C.

    2006-08-01

    Full Text Available Lanthanum chromite nano-particles, with a composition of La0.9Ca0.1CrO3 and La0.8Ca0.2CrO3, were produced by 1 h of hydrothermal reaction at 400 and 425°C respectively. The sintering of the powders was conducted using a spark plasma apparatus over the temperature range 1300-1550ºC for 1 min with a constant loading pressure of 45 MPa. Additional sintering experiments using conventional firing were carried out for comparison. Fully densified (98 % r.d. lanthanum chromite pellets with fine equiaxial grains 2.3 μm in size were obtained using the SPS (spark plasma sintering method. In contrast, a maximum relative density of 97 % was produced using La0.8Ca0.2CrO3 sintered conventionally at 1400ºC for 300 min, and the average grain size of the resulting sintered sample was 6 μm.

    Partículas ultrafinas de cromita de lantano, con una composición de La0.9Ca0.1CrO3 y La0.8Ca0.2CrO3, se obtuvieron después de 1 hora de síntesis hidrotermal a las temperaturas de 400 y 425°C respectivamente. Los compuestos obtenidos, con un tamaño de partícula de ~ 200 nm, se caracterizaron utilizando las técnicas de DRX, MEB y MET. La sinterización de estos polvos se efectuó en un equipo de chispa de plasma en el rango de temperatura de 1300-1500°C durante 1 min, y a una presión de compactación de 45 MPa. Ambos polvos también se sinterizaron siguiendo un tratamiento térmico convencional, en aire, con el propósito de comparar ambos métodos de sinterización. Las muestras de cromita de lantano sinterizadas por plasma presentaban una densidad relativa del 98 % (/t; y una microestructura monofásica con granos equaxiales con un tamaño medio de grano menor de 2.3 μm. En contraste, la composición La0.8Ca0.2CrO3, sinterizada a 1400°C/300 min, por métodos convencionales alcanzó una densidad relativa máxima del 97 % y su microestructura estaba formada por una sola fase con un tamaño medio de grano de 6 μm.

  9. Development of high average power industrial Nd:YAG laser with peak power of 10 kW class

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Kim, Jeong Mook; Jung, Chin Mann; Kim, Soo Sung; Kim, Kwang Suk; Kim, Min Suk; Cho, Jae Wan; Kim, Duk Hyun

    1992-03-01

    We developed and commercialized an industrial pulsed Nd:YAG laser with peak power of 10 kW class for fine cutting and drilling applications. Several commercial models have been investigated in design and performance. We improved its quality to the level of commercial Nd:YAG laser by an endurance test for each parts of laser system. The maximum peak power and average power of our laser were 10 kW and 250 W, respectively. Moreover, the laser pulse width could be controlled from 0.5 msec to 20 msec continuously. Many optical parts were localized and lowered much in cost. Only few parts were imported and almost 90% in cost were localized. Also, to accellerate the commercialization by the joint company, the training and transfer of technology were pursued in the joint participation in design and assembly by company researchers from the early stage. Three Nd:YAG lasers have been assembled and will be tested in industrial manufacturing process to prove the capability of developed Nd:YAG laser with potential users. (Author)

  10. 885-nm laser diode array pumped ceramic Nd:YAG master oscillator power amplifier system

    Science.gov (United States)

    Yu, Anthony W.; Li, Steven X.; Stephen, Mark A.; Seas, Antonios; Troupaki, Elisavet; Vasilyev, Aleksey; Conley, Heather; Filemyr, Tim; Kirchner, Cynthia; Rosanova, Alberto

    2010-04-01

    The objective of this effort is to develop more reliable, higher efficiency diode pumped Nd:YAG laser systems for space applications by leveraging technology investments from the DoD and other commercial industries. Our goal is to design, build, test and demonstrate the effectiveness of combining 885 nm laser pump diodes and the use of ceramic Nd:YAG for future flight missions. The significant reduction in thermal loading on the gain medium by the use of 885 nm pump lasers will improve system efficiency.

  11. Hypopigmentation Induced by Frequent Low-Fluence, Large-Spot-Size QS Nd:YAG Laser Treatments.

    Science.gov (United States)

    Wong, Yisheng; Lee, Siong See Joyce; Goh, Chee Leok

    2015-12-01

    The Q-switched 1064-nm neodymium-doped yttrium aluminum garnet (QS 1064-nm Nd:YAG) laser is increasingly used for nonablative skin rejuvenation or "laser toning" for melasma. Multiple and frequent low-fluence, large-spot-size treatments are used to achieve laser toning, and these treatments are associated with the development of macular hypopigmentation as a complication. We present a case series of three patients who developed guttate hypomelanotic macules on the face after receiving laser toning treatment with QS 1064-nm Nd:YAG.

  12. High-power diode-side-pumped rod Tm:YAG laser at 2.07 μm.

    Science.gov (United States)

    Wang, Caili; Niu, Yanxiong; Du, Shifeng; Zhang, Chao; Wang, Zhichao; Li, Fangqin; Xu, Jialin; Bo, Yong; Peng, Qinjun; Cui, Dafu; Zhang, Jingyuan; Xu, Zuyan

    2013-11-01

    We report a high-power diode-laser (LD) side-pumped rod Tm:YAG laser of around 2 μm. The laser was water-cooled at 8°C and yielded a maximum output power of 267 W at 2.07 μm, which is the highest output power for an all solid-state cw 2.07 μm rod Tm:YAG laser reported as far as we know. The corresponding optical-optical conversion efficiency was 20.7%, and the slope efficiency was about 29.8%, respectively.

  13. Nd:YAG laser for epithelial ingrowth after laser in situ keratomileusis.

    Science.gov (United States)

    Mohammed, Osama Ali; Mounir, Amr; Hassan, Amin Aboali; Alsmman, Alahmady Hamad; Mostafa, Engy Mohamed

    2018-05-04

    To evaluate the efficacy of neodymium:yttrium-aluminum-garnet (Nd:YAG) laser for treatment of epithelial ingrowth after laser in situ keratomileusis (LASIK). Fifty-eight patients with epithelial ingrowth presented to Sohag refractive center, Sohag, Egypt, between January 2015 and March 2017. Only 41 patients (18 females and 23 males, mean age: 33.4 years) involving 41 eyes were indicated for treatment by Nd:YAG laser as the rest of the eyes were only under observation. Patients with epithelial ingrowth were recognized at a mean of 6 months after primary LASIK procedure (range: 2-16 months). Four eyes had undergone previous LASIK enhancements. Four eyes had the epithelial ingrowth removed by flap lift and scrapping. The mean intensity of the spots used was 0.8 mJ with variable number of shots depending on the size and density of the epithelial ingrowth area. Twenty-eight eyes showed complete regression after one session, while the rest necessitated 2-3 sessions for complete resolution. Mean follow-up period was 8 months (range 5-12 months). Epithelial ingrowth was treated successfully in all 41 eyes. The uncorrected visual acuities were 20/20, and there was no evidence of recurrent epithelial ingrowth after 6 months with no complications reported. YAG laser is a simple, effective outpatient procedure for the management of epithelial ingrowth after LASIK.

  14. Effects of Q-switched and long-pulsed 1064 nm Nd:YAG laser on enlarged facial pores.

    Science.gov (United States)

    Lee, Chang Nam; Kim, You Jeong; Lee, Hyun Seung; Kim, Hei Sung

    2009-12-01

    'Enlarged facial pore' is a subjective term, which is not clearly defined but often complained by many. A diverse range of treatments are used though evidence of efficacy remains largely anecdotal. We report a series of nine patients who underwent a split face trial with Q-switched 1064 nm Nd:YAG and long-pulsed 1064 nm Nd:YAG laser to treat enlarged facial pores.

  15. Aluminum powder metallurgy processing

    Energy Technology Data Exchange (ETDEWEB)

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  16. Root planing with Er:YAG laser X Gracey curette, a study in vitro in scanning electron microscopic study; Avaliacao em microscopia eletronica de varredura da superficie radicular, raspada e alisada com Er: YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Mello, Fabiano Augusto Sfier de

    2000-07-01

    The Er:YAG laser has been studied as a periodontal therapies, used to remove subgingival calculus and its bactericidal effects. The proposal of this study is to evaluate the effectiveness of the Er:YAG laser in root planing in comparison to the traditional method, not surgical. Six recently extracted due to the disease periodontal, were cut longitudinally, tends like this two half of the root. These half were separate in four groups. The first group is the natural tooth (group controls negative), the second group (group controls) was accomplished to root planing with Gracey curette. And in the third to Er:YAG laser with a contact tip, using a 45 deg angle in relation to the root; in the fourth group was scraped and planned with Er:YAG laser and complemented root planing with Gracey curette. The used energy was of 100 mJ (out put) and the frequency of 10 Hz accomplished with irrigation. The obtained results were similar in the groups 2 and 3 in comparison to the amount of smear-layer. In group 4 however, better result was obtained, because the image (SEM) was much more regular and with less amount of smear-layer. The conclusion of the work is that with the association of the laser technique and Gracey curette the results are superior to the conventional treatment. (author)

  17. Efficacy of holmium. Yttrium-aluminium-garnet (Ho: YAG) laser therapy for arthroscopic synovectomy of rheumatoid arthritis

    International Nuclear Information System (INIS)

    Inoue, Yasuo; Inoue, Kazuhiko; Kanbe, Katsuaki

    2008-01-01

    To clarify the efficacy of holmium: yttrium-aluminium-garnet (Ho: YAG) laser therapy for arthroscopic synovectomy of rheumatoid arthritis (RA), we treated 13 shoulders of 11 RA patients of whom 1 was stage I, 7 stage II, 2 stage III, and 1 stage IV. The duration of RA is 4.6 years on average and the follow-up period is an average of 14 months. The Ho: YAG laser was set at 10 Watt (W) to treat the bone erosion areas so as to reach the deep zones of the pannus in order to resect the synovium. We compared C-reactive protein (CRP), Disease activity score (DAS) 28 and magnetic resonance image (MRI) findings before and after surgery. We cultured primary synovial cells to assay cytokine production of interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α. Morphological examination was performed after treatment with the Ho: YAG laser at 0, 1, 5, 10, 15 and 20 W. We found villous synovium proliferation with vascularity in the rotator interval and supra spinatus tendon in the shoulder joints. In the subacromial bursa, yellow fat tissue and white fibrous soft tissue were detected in almost all shoulders. After synovectomy using the Ho: YAG laser, CRP decreased from an average of 3.6 to 0.8 and DAS28 also decreased from an average of 5.4 to 3.7 at 14 months after surgery. MRI showed decreased panni with synovium and did not precede joint destruction after 14 months in 10 shoulders out of 13 (77%). At 20 W of the Ho: YAG laser treatment, the synovial cells shrank as in apoptosis and the number of cells also decreased. Laser treatment also resulted in the following significant changes: TNF-α production increased at 1, 10, 15 and 20 W (compared with 0 W) but not dose dependently; IL-1β and IL-6 increased up to 10 W (compared with 0 W) but decreased at 15 and 20 W (compared with 10 W). In morphological examination, after treatment with the Ho: YAG laser at 15 W, the synovial cells expanded and the number of cells decreased. Therefore, Ho: YAG laser therapy is effective

  18. 5.4W cladding-pumped Nd:YAG silica fiber laser

    OpenAIRE

    Yoo, S.; Webb, A.S.; Standish, R.J.; May-Smith, T.C.; Sahu, J.K.

    2012-01-01

    We report on the spectroscopy and laser characteristics of Nd-doped fiber, fabricated by rod-in-tube from Nd:YAG as a core material with silica cladding. A cladding-pumped CW laser operation at 1058nm with 52% slope-efficiency is demonstrated.

  19. Numerical estimation of phase transformations in solid state during Yb:YAG laser heating of steel sheets

    Energy Technology Data Exchange (ETDEWEB)

    Kubiak, Marcin, E-mail: kubiak@imipkm.pcz.pl; Piekarska, Wiesława; Domański, Tomasz; Saternus, Zbigniew [Institute of Mechanics and Machine Design Foundations, Częstochowa University of Technology, Dąbrowskiego 73, 42-200 Częstochowa (Poland); Stano, Sebastian [Welding Technologies Department, Welding Institute, Błogosławionego Czesława 16-18, 44-100 Gliwice (Poland)

    2015-03-10

    This work concerns the numerical modeling of heat transfer and phase transformations in solid state occurring during the Yb:YAG laser beam heating process. The temperature field is obtained by the numerical solution into transient heat transfer equation with convective term. The laser beam heat source model is developed using the Kriging interpolation method with experimental measurements of Yb:YAG laser beam profile taken into account. Phase transformations are calculated on the basis of Johnson - Mehl - Avrami (JMA) and Koistinen - Marburger (KM) kinetics models as well as continuous heating transformation (CHT) and continuous cooling transformation (CCT) diagrams for S355 steel. On the basis of developed numerical algorithms 3D computer simulations are performed in order to predict temperature history and phase transformations in Yb:YAG laser heating process.

  20. Effects of Nd:YAG and CO2 lasers on cerebral microvasculature. Study in normal rabbit brain.

    Science.gov (United States)

    Kuroiwa, T; Tsuyumu, M; Takei, H; Inaba, Y

    1986-01-01

    The effect of Nd:YAG and CO2 laser beams on cerebral microvasculature was examined in experimental animals. Soft x-ray microangiography and histological examination of the brain after Nd:YAG laser exposure revealed broad avascular or oligovascular zones in the irradiated and the surrounding edematous tissue, in which the surviving vessels were narrowed and tapered without significant leakage of blood. After CO2 laser exposure, a wedge-shaped tissue defect surrounded by layers of charring, coagulation, and edema was observed. The main finding in the surrounding coagulation and edematous layers was dilatation of the vessels. Hemorrhage was sometimes observed, mainly in the edematous layer. These findings seem to explain the effective hemostatic capability of the Nd:YAG laser and the occasional hemorrhage following CO2 laser exposure, especially at high energy output.