WorldWideScience

Sample records for yag crystal investigated

  1. Study of structural and optical properties of YAG and Nd:YAG single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kostić, S. [Institute of Physics, University of Belgrade, P.O. Box 68, Pregrevica 118, Zemun, Belgrade (Serbia); Lazarević, Z.Ž., E-mail: lzorica@yahoo.com [Institute of Physics, University of Belgrade, P.O. Box 68, Pregrevica 118, Zemun, Belgrade (Serbia); Radojević, V. [Faculty of Technology and Metallurgy, University of Belgrade, Belgrade (Serbia); Milutinović, A.; Romčević, M.; Romčević, N.Ž. [Institute of Physics, University of Belgrade, P.O. Box 68, Pregrevica 118, Zemun, Belgrade (Serbia); Valčić, A. [Faculty of Technology and Metallurgy, University of Belgrade, Belgrade (Serbia)

    2015-03-15

    Highlights: • Transparent YAG and pale pink Nd:YAG single crystals were produced by the Czochralski technique. • Growth mechanisms and shape of the liquid/solid interface and incorporation of Nd{sup 3+} were studied. • The structure of the crystals was investigated by X-ray diffraction, Raman and IR spectroscopy. • The 15 Raman and 17 IR modes were observed. • The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. - Abstract: Yttrium aluminum garnet (YAG, Y{sub 3}Al{sub 5}O{sub 12}) and yttrium aluminum garnet doped with neodymium (Nd:YAG) single crystals were grown by the Czochralski technique. The critical diameter and the critical rate of rotation were calculated. Suitable polishing and etching solutions were determined. As a result of our experiments, the transparent YAG and pale pink Nd:YAG single crystals were produced. The obtained crystals were studied by X-ray diffraction, Raman and IR spectroscopy. The crystal structure was confirmed by XRD. The 15 Raman and 17 IR modes were observed. The Raman and IR spectroscopy results are in accordance with X-ray diffraction analysis. The obtained YAG and Nd:YAG single crystals were without core and of good optical quality. The absence of a core was confirmed by viewing polished crystal slices. Also, it is important to emphasize that the obtained Nd:YAG single crystal has a concentration of 0.8 wt.% Nd{sup 3+} that is characteristic for laser materials.

  2. Experimental investigation for determination of thermal effects in a Nd: YAG laser crystal by use of interferometry technique

    International Nuclear Information System (INIS)

    Safary, E.; Movahedinejad, H.; Razzaghi, H.; Haj Esmaeilbeigi, F.; Tohidi, T.; Shiri, M.

    2007-01-01

    Thermal effects have an important role in high power solid state laser designing. Known of this effect and their roles on intensity and quality of output beam needs so many experiments. In this paper, we focused on influence of temperature distribution on thermal lensing in the Nd:YAG laser by use of interferometry technique. Then we used from a plariscop set up for describing of intensity reduce and distortion of the wave shape when it use from the Polaroid into the resonator at side pump.

  3. Influence of Gamma-Ray Irradiation on Absorption and Fluorescent Spectra of Nd:YAG and Yb:YAG Laser Crystals

    Institute of Scientific and Technical Information of China (English)

    SUN Dun-Lu; ZHANG Qing-Li; XIAO Jing-Zhong; LUO Jian-Qiao; JIANG Hai-He; YIN Shao-Tang

    2008-01-01

    We investigate the influence of gamma-ray irradiation on the absorption and fluorescent spectra of Nd3+ : Y3Al5O12 (Nd:YAG) and Yb3+ :Y3Al5O12 (Yb:YAG) crystals grown by the Czochralski method. Two additional absorption (AA) bands induced by gamma-ray irradiation appear at 255nm and 340nm. The former is eontributed due to Fe3+ impurity, the latter is due to Fe2+ ions and F-type colour centres. The intensity of the excitation and emission spectra as well as the fluorescent lifetime of Nd:YAG crystal decrease after the irradiation of 100 Mrad gamma-ray. In contrast, the same dose irradiation does not impair the fluorescent properties of Yb: YA G crystal. These results indicate that Yb: YA G crystal possesses the advantage over Nd: YA G crystal that has better reliability for applications in harsh radiant environment.

  4. Growth of single-crystal YAG fiber optics.

    Science.gov (United States)

    Nie, Craig D; Bera, Subhabrata; Harrington, James A

    2016-07-11

    Single-crystal YAG (Y3Al5O12) fibers have been grown by the laser heated pedestal growth technique with losses as low as 0.3 dB/m at 1.06 μm. These YAG fibers are as long as about 60 cm with diameters around 330 μm. The early fibers were grown from unoriented YAG seed fibers and these fibers exhibited facet steps or ridges on the surface of the fiber. However, recently we have grown fibers using an oriented seed to grow step-free fibers. Scattering losses made on the fibers indicate that the scattering losses are equal to about 30% of the total loss.

  5. CW laser properties of Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG mixed crystals

    Science.gov (United States)

    Di, J. Q.; Xu, X. D.; Li, D. Z.; Zhou, D. H.; Wu, F.; Zhao, Z. W.; Xu, J.; Tang, D. Y.

    2011-10-01

    Three mixed crystals, Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG, were grown by Czochralski method. We report the continuous-wave (CW) Nd:GdYAG, Nd:LuYAG, and Nd:GdLuAG laser operation under laser diode pumping. The maximum output powers are 4.11, 5.31, and 7.47 W, with slope efficiency of 73.0, 55.3, and 57.1%, respectively. With replacing Lu3+ or Y3+ ions with large Gd3+ ions, the pump efficiency increases.

  6. Gamma-ray relative energy response of Ce: YAG crystal

    International Nuclear Information System (INIS)

    Zhang Jianhua; Zhang Chuanfei; Hu Mengchun; Peng Taiping; Wang Zhentong; Tang Dengpan; Zhao Guangjun

    2010-01-01

    Gamma-ray relative energy response of Ce: YAG crystal, which is important for pulsed γ-ray measurement, was studied in this work.The Ce: YAG crystal, which was developed at Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, was aligned point by point with γ-rays scattered from an industrial 60 Co line source. The γ-ray relative energy response was calculated using the mass attenuation coefficient. The results show that the numerical calculation method of γ-ray relative energy response is reliable, and the experimental method with multi-energy point γ-ray by Compton scattering is also feasible, that can be used for checking up correctness of the numerical calculation results. (authors)

  7. Growth and characterization of air annealing Tb-doped YAG:Ce single crystal for white-light-emitting diode

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Maogao [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); Xiang, Weidong, E-mail: xiangweidong001@126.com [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); Liang, Xiaojuan [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China); Zhong, Jiasong; Chen, Daqin [College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018 (China); Huang, Jun; Gu, Guorui; Yang, Cheng; Xiang, Run [College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035 (China)

    2015-08-05

    Highlights: • We report preparation of transparent Ce,Tb:YAG single crystal by Czochralski method. • The effect of annealing on Ce,Tb:YAG single crystal had been investigated. • The Ce,Tb:YAG single crystal after annealing exhibited better optical performance. • The Ce,Tb:YAG single crystal could be used as an ideal candidate for WLED. - Abstract: We report the preparation of transparent Ce and Tb co-doped Y{sub 3}Al{sub 5}O{sub 12} single crystal by the Czochralski method. The characterization of the resulting single crystal was accomplished by using X-ray powder diffractometer, scanning electron microscopy and energy dispersive X-ray spectroscopy. Absorption peak of the single crystal at about 460 nm has been obtained from ultraviolet–visible absorption spectrometer and their intensity is changed with different annealing condition. Its optical properties also have been investigated using fluorescence spectrometer. What’s more, its photoelectric parameters were studied by LED fast spectrometer. The constructed single crystal based white-light-emitting diode exhibits a high luminous efficiency of 140.89 lm/W, and a correlated color temperature of 4176 K as well as a color rendering index of 56.7, which reveal the prominent feasibility of the present single crystal material in white-light-emitting diode application.

  8. Growth and characterization of air annealing Tb-doped YAG:Ce single crystal for white-light-emitting diode

    International Nuclear Information System (INIS)

    Gong, Maogao; Xiang, Weidong; Liang, Xiaojuan; Zhong, Jiasong; Chen, Daqin; Huang, Jun; Gu, Guorui; Yang, Cheng; Xiang, Run

    2015-01-01

    Highlights: • We report preparation of transparent Ce,Tb:YAG single crystal by Czochralski method. • The effect of annealing on Ce,Tb:YAG single crystal had been investigated. • The Ce,Tb:YAG single crystal after annealing exhibited better optical performance. • The Ce,Tb:YAG single crystal could be used as an ideal candidate for WLED. - Abstract: We report the preparation of transparent Ce and Tb co-doped Y 3 Al 5 O 12 single crystal by the Czochralski method. The characterization of the resulting single crystal was accomplished by using X-ray powder diffractometer, scanning electron microscopy and energy dispersive X-ray spectroscopy. Absorption peak of the single crystal at about 460 nm has been obtained from ultraviolet–visible absorption spectrometer and their intensity is changed with different annealing condition. Its optical properties also have been investigated using fluorescence spectrometer. What’s more, its photoelectric parameters were studied by LED fast spectrometer. The constructed single crystal based white-light-emitting diode exhibits a high luminous efficiency of 140.89 lm/W, and a correlated color temperature of 4176 K as well as a color rendering index of 56.7, which reveal the prominent feasibility of the present single crystal material in white-light-emitting diode application

  9. Shift and broadening of emission lines in Nd 3: YAG laser crystal ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 86; Issue 6. Shift and broadening of emission lines in Nd3+:YAG laser crystal influenced by input energy. POURMAND SEYED EBRAHIM REZAEI ... Keywords. Nd3+:YAG crystal; heat generation; three-level emission lines; four-level emission lines; input energy.

  10. Spectroscopic and crystallographic studies of YAG:Pr4+ single crystals

    International Nuclear Information System (INIS)

    Pawlak, D.; Frukacz, Z.; Mierczyk, Z.; Suchocki, A.; Zachara, J.

    1998-01-01

    Y 3 Al 5 O 12 single crystals doped with praseodymium and magnesium ions have been prepared. The reversible color change of this crystal is observed when annealing in oxidizing or reducing atmospheres. The change is ascribed to the formation of Pr 4+ in the as-grown crystal, caused by the second dopant, Mg 2+ . The absorption spectra of YAG:Pr,Mg in the range 200-1100 nm, as grown and annealed in air and H 2 /N 2 atmosphere, are presented and discussed. Additional broad absorption bands are observed for the as-grown crystals and those annealed in oxidizing atmosphere. Crystallographic investigations of the original crystal and after annealing in a reducing atmosphere as described above, show no distinct structural differences. A redox mechanism is proposed to explain the color change during annealing. (orig.)

  11. Femtosecond laser irradiation on Nd:YAG crystal: Surface ablation and high-spatial-frequency nanograting

    Science.gov (United States)

    Ren, Yingying; Zhang, Limu; Romero, Carolina; Vázquez de Aldana, Javier R.; Chen, Feng

    2018-05-01

    In this work, we systematically study the surface modifications of femtosecond (fs) laser irradiated Nd:YAG crystal in stationary focusing case (i.e., the beam focused on the target in the steady focusing geometry) or dynamic scanning case (i.e., focused fs-laser beam scanning over the target material). Micro-sized structures (e.g. micro-craters or lines) are experimentally produced in a large scale of parameters in terms of pulse energy as well as (effective) pulse number. Surface ablation of Nd:YAG surface under both processing cases are investigated, involving the morphological evolution, parameter dependence, the ablation threshold fluences and the incubation factors. Meanwhile, under specific irradiation conditions, periodic surface structures with high-spatial-frequency (Investigations on the evolution of nanograting formation and fluence dependence of period are performed. The experimental results obtained under different cases and the comparison between them reveal that incubation effect plays an important role not only in the ablation of Nd:YAG surface but also in the processes of nanograting formation.

  12. Growth, optical and EPR studies of {sup 151}Eu{sup 2+}:YAG single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Petrosyan, A.G., E-mail: pet@ipr.sci.am [Institute for Physical Research, National Academy of Sciences, Ashtarak, 0203 (Armenia); Asatryan, H.R. [Ioffe Physical-Technical Institute, Politekhnicheskaya ul. 26, St. Petersburg, 194021 (Russian Federation); Hovhannesyan, K.L.; Derdzyan, M.V. [Institute for Physical Research, National Academy of Sciences, Ashtarak, 0203 (Armenia); Feofilov, S.P. [Ioffe Physical-Technical Institute, Politekhnicheskaya ul. 26, St. Petersburg, 194021 (Russian Federation); Eganyan, A.V.; Sargsyan, R.S. [Institute for Physical Research, National Academy of Sciences, Ashtarak, 0203 (Armenia)

    2017-01-01

    Single crystals of {sup 151}Eu:YAG were grown by the vertical Bridgman method using Eu{sub 2}O{sub 3} with isotopic enrichment of {sup 151}Eu of 97.5%. Additional Hf{sup 4+}or Si{sup 4+} ions were introduced to favor a high concentrations of Eu{sup 2+}. As compared to Eu:YAG with natural isotope composition, the EPR spectra of YAG doped with {sup 151}Eu isotope show a reduced number of hyperfine structure components and a well-resolved structure of a bigger number of electronic transitions. Optical properties of obtained crystals and the effects of heat treatments under oxidizing and reducing conditions are reported. Based on the analysis of Eu{sup 3+} distribution in oxidized Eu,Hf:YAG, in comparison to that in Eu:YAG, the concentration of Eu{sup 2+} in as-grown Eu,Hf:YAG is determined. - Highlights: • YAG:Eu,Hf single crystals containing only {sup 151}Eu isotopes were prepared. • isotopic enriched crystals gave a well-resolved EPR hyperfine structure of Eu{sup 2+} centers. • the redox ratio was followed through the Eu{sup 2+} associated absorption band at 250 nm. • the band intensities at 378 nm correlate with the Eu{sup 2+} concentration.

  13. Luminescence and scintillation properties of YAG:Ce single crystal and optical ceramics

    CERN Document Server

    Mihóková, E; Mareš, J A; Beitlerová, A; Vedda, A; Nejezchleb, K; Blažek, K; D’Ambrosio, C

    2007-01-01

    We use various techniques to study optical and scintillation properties of Ce-doped yttrium aluminum garnet, Y3Al5O12 (YAG:Ce), in the form of a high-quality industrial single crystal. This was compared to optical ceramics prepared from YAG:Ce nanopowders. We present experimental data in the areas of optical absorption, radioluminescence, scintillation decay, photoelectron yield, thermally stimulated luminescence and radiation-induced absorption. The results point to an interesting feature—the absence of antisite (YAl, i.e. Y at the Al site) defects in optical ceramics. The scintillation decay of the ceramics is faster than that of the single crystal, but its photoelectron yield (measured with 1 μs integration time) is about 30–40% lower. Apart from the photoelectron yield value the YAG:Ce optical ceramic is fully comparable to a high quality industrial YAG:Ce single crystal and can become a competitive scintillator material.

  14. Time-resolved luminescent spectroscopy of YAG:Ce single crystal and single crystalline films

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Gorbenko, V.; Savchyn, V.; Vozniak, T.; Puzikov, V.; Danko, A.; Nizhankovski, S.

    2010-01-01

    The peculiarities of the luminescence and energy transfer from YAG host to the emission centers formed by the Y Al antisite defects and Ce 3+ ions have been studied in YAG:Ce single crystals, grown from the melt by modified Bridgman method in Ar and CO 2 + H 2 atmospheres, and YAG:Ce single crystalline film, grown by liquid phase epitaxy method, using the comparative time-resolved luminescent spectroscopy under excitation by synchrotron radiation in the range of fundamental adsorption of this garnet.

  15. Study on growth techniques and macro defects of large-size Nd:YAG laser crystal

    Science.gov (United States)

    Quan, Jiliang; Yang, Xin; Yang, Mingming; Ma, Decai; Huang, Jinqiang; Zhu, Yunzhong; Wang, Biao

    2018-02-01

    Large-size neodymium-doped yttrium aluminum garnet (Nd:YAG) single crystals were grown by the Czochralski method. The extinction ratio and wavefront distortion of the crystal were tested to determine the optical homogeneity. Moreover, under different growth conditions, the macro defects of inclusion, striations, and cracking in the as-grown Nd:YAG crystals were analyzed. Specifically, the inclusion defects were characterized using scanning electron microscopy and energy dispersive spectroscopy. The stresses of growth striations and cracking were studied via a parallel plane polariscope. These results demonstrate that improper growth parameters and temperature fields can enhance defects significantly. Thus, by adjusting the growth parameters and optimizing the thermal environment, high-optical-quality Nd:YAG crystals with a diameter of 80 mm and a total length of 400 mm have been obtained successfully.

  16. Growth and characterization of air annealing Mn-doped YAG:Ce single crystal for LED

    International Nuclear Information System (INIS)

    Xiang, Weidong; Zhong, Jiasong; Zhao, Yinsheng; Zhao, Binyu; Liang, Xiaojuan; Dong, Yongjun; Zhang, Zhimin; Chen, Zhaoping; Liu, Bingfeng

    2012-01-01

    Highlights: ► The YAG:Ce,Mn single crystal was well synthesized by the Czochralski (CZ) method. ► The emission intensity of the sample has been influenced after annealing. ► Annealed in the air at 1200 °C was the most optimal annealing condition. ► The single crystal could be used in the white light LED which emitted by blue light. - Abstract: The growth of Mn-doped YAG:Ce (yttrium aluminum garnet doped cerium) single crystal by the Czochralski (CZ) method and the characterization of its spectroscopy and color-electric parameters are presented. The absorption spectra indicate that the crystal absorbed highly in the 300–500 nm wavelength range. The emission spectrum of the crystal consists of a peak around 538 nm when excited by 460 nm blue light, which prove the YAG:Ce,Mn single crystal could be used in the white light emitting doides (LED). The different charges of Mn ions have different luminescence properties, and the air annealing process for the single crystal would change the concentration of Mn ions with different charges, which could influence the emission intensity of the single crystal.

  17. Shift and broadening of emission lines in Nd :YAG laser crystal ...

    Indian Academy of Sciences (India)

    1Department of Optics and Laser Engineering, Estahban Branch, Islamic Azad ... Nd3+:YAG crystal; heat generation; three-level emission lines; four-level emission ... Modelling of high-power solid-state lasers requires precise knowledge of ...

  18. Temperature dependence of CIE-x,y color coordinates in YAG:Ce single crystal phosphor

    Czech Academy of Sciences Publication Activity Database

    Rejman, M.; Babin, Vladimir; Kučerková, Romana; Nikl, Martin

    2017-01-01

    Roč. 187, Jul (2017), s. 20-25 ISSN 0022-2313 R&D Projects: GA TA ČR TA04010135 Institutional support: RVO:68378271 Keywords : YAG:Ce * single-crystal * simulation * energy level lifetime * white LED * CIE * temperature dependence Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.686, year: 2016

  19. Temperature dependence of Ce:YAG single-crystal phosphors for high-brightness white LEDs/LDs

    Science.gov (United States)

    Arjoca, Stelian; Víllora, Encarnación G.; Inomata, Daisuke; Aoki, Kazuo; Sugahara, Yoshiyuki; Shimamura, Kiyoshi

    2015-05-01

    The growth of Ce:Y3Al5O12(Ce:YAG) single-crystal phosphors (SCPs) by the Czochralski technique is analyzed in terms of segregation coefficient, solubility and absorption cross-section. The emission characteristics of these SCPs are investigated in a wide temperature range, from liquid He temperature up to 500 °C. The internal quantum efficiency of SCPs achieves its maximum at about 250 °C. Thermal quenching of SCPs at high temperature is attributed to the Mott-Seitz mechanism. In the case of ceramic powder phosphors, a continuous droop is observed with the temperature due to defect-related non-radiative recombination paths. It is shown that (Ce:YAG SCPs + blue LEDs/LDs) can cover a wide range of color temperatures 5500-7000 K, with color rendering indices around 70. In conclusion, it is shown that Ce:YAG SCPs are the most efficient and temperature stable converters to fabricate high-brightness white light sources with high-power blue LEDs and LDs.

  20. Optical spectroscopy in channel waveguides made in Nd:YAG crystals by femtosecond laser writing

    International Nuclear Information System (INIS)

    Torchia, G.A.; Mendez, C.; Roso, L.; Tocho, J.O.

    2008-01-01

    In this work, we present an optical characterization of channel waveguides fabricated by means of femtosecond laser writing on Nd:YAG substrates. These guiding structures show a refractive index increment of about 1x10 -3 which allows TE propagation. By pumping with a CW solid-state laser at 532 nm reaching the 2 G 9/2 and 4 G 7/2 manifolds of Nd 3+ ions, we have explored the emission band corresponding to 4 F 3/2 → 4 I 9/2 optical transitions (peaked at 890 nm). From data, we have found that emission showed similar characteristics for waveguide and bulk. On the other hand, the lifetime corresponding to the 4 F 3/2 metaestable level was determined to be 240 μs for bulk and waveguide. Summarizing, we have made suitable channel waveguides in Nd:YAG crystals, by fs interaction, with similar spectroscopic properties to those of the bulk, a fact that boosters the photonics application of these devices. For the first time to our knowledge, a direct index increment waveguide made by interaction with ultra-short intense pulses in YAG crystals has been performed. This fabrication procedure can be an efficient tool to make several optical circuits in active materials by means of the one-step, fast and low-cost processing

  1. Reduce synthesis temperature and improve dispersion of YAG nanopowders based on the co-crystallization method

    Energy Technology Data Exchange (ETDEWEB)

    Fan, G.F.; Tang, Y.Q.; Lu, W.Z., E-mail: lwz@mail.hust.edu.cn; Zhang, X.R.; Xu, X.

    2015-01-05

    Highlights: • YAG nanopowders were synthesized through a co-crystallization method. • A three-layer core–shell structure was made to lower the synthesis temperature. • PAA again reduced the synthesis temperature based on the core–shell structure. • YAG nanopowders were synthesized at 700 °C in normal apparatus. • Agglomeration was greatly improved by PAA. - Abstract: Pure yttrium aluminum garnet (YAG) nanopowders were synthesized at 950 °C from the co-crystallization precursor of Y(NO{sub 3}){sub 3}⋅6H{sub 2}O and Al(NO{sub 3}){sub 3}⋅9H{sub 2}O (nitrate process). When 17 wt.% of Y(NO{sub 3}){sub 3}⋅6H{sub 2}O was replaced by Y{sub 2}O{sub 3} nanopowders, so as to make up a three-layer core–shell structure of the precursor, the synthesis temperature was reduced to 850 °C (Y{sub 2}O{sub 3} process). Based on Y{sub 2}O{sub 3} process, further reducing the synthesis temperature to 700 °C was realized by adding polyacrylic acid (PAA, 50% M), which was used to shorten the distance of the metal ions and provide combustion heat (PAA process). TEM characterizations indicated that the powders produced through nitrate and Y{sub 2}O{sub 3} processes agglomerated, while the powders produced through PAA process were dispersed much better. The agglomerate size analysis results demonstrated that the powders produced through PAA process were with smaller agglomerate size and wider agglomerate size distribution than those through nitrate process or Y{sub 2}O{sub 3} process. And they were more likely to be sintered to YAG transparent ceramics.

  2. Filament-induced luminescence and supercontinuum generation in undoped, Yb-doped, and Nd-doped YAG crystals

    Science.gov (United States)

    Kudarauskas, D.; Tamošauskas, G.; Vengris, M.; Dubietis, A.

    2018-01-01

    We present a comparative spectral study of filament-induced luminescence and supercontinuum generation in undoped, Yb-doped, and Nd-doped YAG crystals. We show that supercontinuum spectra generated by femtosecond filamentation in undoped and doped YAG crystals are essentially identical in terms of spectral extent. On the other hand, undoped and doped YAG crystals exhibit remarkably different filament-induced luminescence spectra whose qualitative features are independent of the excitation wavelength and provide information on the energy deposition to embedded dopants, impurities, and the crystal lattice itself. Our findings suggest that filament-induced luminescence may serve as a simple and non-destructive tool for spectroscopic studies in various transparent dielectric media.

  3. Impact of incoherent pumping field and Er3+ ion concentration on group velocity and index of refraction in an Er3+-doped YAG crystal

    International Nuclear Information System (INIS)

    Jafarzadeh, Hossein; Asadpour, Seyyed Hossein; Soleimani, H Rahimpour

    2015-01-01

    The effect of Er 3+ ion concentration and incoherent pumping field on the refractive index and group index in an Er 3+ : YAG crystal is investigated. It is shown that under different concentrations of Er 3+ ion in the crystal, the index of refraction and absorption can be changed and a high index of refraction is accompanied by amplification in the medium. Also, it is shown that with the switching from subluminal to superluminal, or vice versa, light propagation can be obtained by different concentrations of Er 3+ ions in the crystal. (paper)

  4. Numerical Simulation of Yttrium Aluminum Garnet(YAG) Single Crystal Growth by Resistance Heating Czochralski(CZ) Method

    Energy Technology Data Exchange (ETDEWEB)

    You, Myeong Hyeon; Cha, Pil Ryung [Kookmin University, Seoul (Korea, Republic of)

    2017-01-15

    Yttrium Aluminum Garnet (YAG) single crystal has received much attention as the high power solid-state laser’s key component in industrial and medical applications. Various growth methods have been proposed, and currently the induction-heating Czochralski (IHCZ) growth method is mainly used to grow YAG single crystal. Due to the intrinsic properties of the IHCZ method, however, the solid/liquid interface has a downward convex shape and a sharp tip at the center, which causes a core defect and reduces productivity. To produce YAG single crystals with both excellent quality and higher yield, it is essential to control the core defects. In this study, using computer simulations we demonstrate that the resistance-heating CZ (RHCZ) method may avoid a downward convex interface and produce core defect free YAG single crystal. We studied the effects of various design parameters on the interface shape and found that there was an optimum combination of design parameter and operating conditions that produced a flat solid-liquid interface.

  5. Low loss depressed cladding waveguide inscribed in YAG:Nd single crystal by femtosecond laser pulses.

    Science.gov (United States)

    Okhrimchuk, Andrey; Mezentsev, Vladimir; Shestakov, Alexander; Bennion, Ian

    2012-02-13

    A depressed cladding waveguide with record low loss of 0.12 dB/cm is inscribed in YAG:Nd(0.3at.%) crystal by femtosecond laser pulses with an elliptical beam waist. The waveguide is formed by a set of parallel tracks which constitute the depressed cladding. It is a key element for compact and efficient CW waveguide laser operating at 1064 nm and pumped by a multimode laser diode. Special attention is paid to mechanical stress resulting from the inscription process. Numerical calculation of mode distribution and propagation loss with the elasto-optical effect taken into account leads to the conclusion that the depressed cladding is a dominating factor in waveguide mode formation, while the mechanical stress only slightly distorts waveguide modes.

  6. High Power 1443.5 nm Laser with Nd:YAG Single Crystal Fiber

    Directory of Open Access Journals (Sweden)

    Han Rao

    2017-07-01

    Full Text Available A high-power eye-safe 1443.5 nm laser was demonstrated with an Nd:YAG single crystal fiber (SCF as the gain medium. For continuous wave (CW operation, a maximum output power of 13.3 W was obtained under an absorbed pump power of 95.0 W, corresponding to an optical-to-optical conversion efficiency of 14.0%. For acousto-optically (AO Q-switched regime, an output power of 1.95 W was obtained at a pulse repetition frequency (PRF of 10 kHz. The pulse duration was 69.5 ns. The pulse energy and peak power were calculated to be 195 µJ and 2.81 kW, respectively.

  7. Quasi-three-level thin-disk laser at 1024 nm based on diode-pumped Yb:YAG crystal

    International Nuclear Information System (INIS)

    Wang, A G; Li, Y L; Fu, X H

    2011-01-01

    We present for the first time, to the best of our knowledge, a Yb:YAG laser operating in a continuous wave (CW) on the quasi-three-level laser at 1024 nm, based on the 2 F 5/2 – 2 F 7/2 transition, generally used for a 1030 nm emission. The use of a pump module with 16 passes through the crystal allowed the realization of a Yb:YAG thin-disk laser with 370 mW of CW output power at 1024 nm. Moreover, intracavity second-harmonic generation (SHG) has also been achieved with a power of 45 mW at 512 nm by using a LiB 3 O 5 (LBO) nonlinear crystal

  8. Optimization of decay kinetics of YAG:Ce single crystal scintillators for S(T)EM electron detectors

    Czech Academy of Sciences Publication Activity Database

    Schauer, Petr

    2011-01-01

    Roč. 269, č. 21 (2011), s. 2572-2577 ISSN 0168-583X R&D Projects: GA ČR GAP102/10/1410 Institutional research plan: CEZ:AV0Z20650511 Keywords : scintillation detector * electron microscope * cathodoluminescence * YAG:Ce single crystal scintillator * decay time * afterglow * kinetic model * SEM * STEM Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.211, year: 2011

  9. Laboratory investigation of the efficacy of holmium:YAG laser irradiation in removing intracanal debris

    Science.gov (United States)

    Nuebler-Moritz, Michael; Gutknecht, Norbert; Sailer, Hermann F.; Hering, Peter; Prettl, Wilhelm

    1997-05-01

    Current endodontic therapy involves debridement and disinfection of the root canal by means of mechanical instrumentation and chemical irrigation. However, several studies have shown that these techniques fail to achieve complete cleansing. Recently, lasers have been suggested for use within root canals. This study was conducted to determine the efficacy of Holmium:YAG laser irradiation in removing intracanal debris and smear layer. Root canal surfaces of freshly-extracted human teeth were exposed to pulsed Ho:YAG laser radiation. Subsequently, laser induced structural changes were investigated using scanning electron microscopy. Temperature measurements during irradiation were performed by means of thermocouples. The result of this survey give a preliminary indication of the ability of the Ho:YAG laser to improve current endodontic treatment survey give a preliminary indication of the ability of the Ho:YAG laser to improve current endodontic treatment modalities. However, limitations exist with regard to circumscribed and well-quantified irradiation of root canal surfaces, due to the lack of perpendicular delivery of the laser beam. Additional studies will be required to develop suitable optical transmission systems, in order to achieve complete cleansing and to avoid damage to the periradicular tissues, respectively.

  10. Investigation of micro-plasma in physiological saline produced by a high-power YAG laser

    International Nuclear Information System (INIS)

    Lu Jian; Ni Xiaowu; He Anzhi

    1994-01-01

    Micro-plasma and shock waves in the physiological saline produced by a Q-switched pulse YAG laser with nearby optical breakdown threshold energy are investigated by using optical shadowing exploring method, and a series of optical shadow graphs of micro-plasma and shock waves versus the incident laser energy and the delay time are obtained. Influence of mechanical action of shock waves for the high-power pulse laser on the ophthalmic treatment is discussed

  11. Thermal Stress Analysis of a Continuous and Pulsed End-Pumped Nd:YAG Rod Crystal Using Non-Classic Conduction Heat Transfer Theory

    Science.gov (United States)

    Mojahedi, Mahdi; Shekoohinejad, Hamidreza

    2018-02-01

    In this paper, temperature distribution in the continuous and pulsed end-pumped Nd:YAG rod crystal is determined using nonclassical and classical heat conduction theories. In order to find the temperature distribution in crystal, heat transfer differential equations of crystal with consideration of boundary conditions are derived based on non-Fourier's model and temperature distribution of the crystal is achieved by an analytical method. Then, by transferring non-Fourier differential equations to matrix equations, using finite element method, temperature and stress of every point of crystal are calculated in the time domain. According to the results, a comparison between classical and nonclassical theories is represented to investigate rupture power values. In continuous end pumping with equal input powers, non-Fourier theory predicts greater temperature and stress compared to Fourier theory. It also shows that with an increase in relaxation time, crystal rupture power decreases. Despite of these results, in single rectangular pulsed end-pumping condition, with an equal input power, Fourier theory indicates higher temperature and stress rather than non-Fourier theory. It is also observed that, when the relaxation time increases, maximum amounts of temperature and stress decrease.

  12. Diode-pumped laser with Yb:YAG single-crystal fiber grown by the micro-pulling down technique

    Science.gov (United States)

    Sangla, D.; Aubry, N.; Didierjean, J.; Perrodin, D.; Balembois, F.; Lebbou, K.; Brenier, A.; Georges, P.; Tillement, O.; Fourmigué, J.-M.

    2009-02-01

    Laser emission obtained from an Yb:YAG single-crystal fiber directly grown by the micro-pulling down technique is demonstrated for the first time. We achieved 11.2 W of continuous wave (CW) output power at 1031 nm for 55 W of incident pump power at 940 nm. In the Q-switched regime, we obtained pulses as short as 17 ns, for an average power of 2.3 W at 2 kHz corresponding to an energy of 1.15 mJ. In both cases, the M 2 factor was 2.5. This single-crystal fiber showed performance similar to a standard rod elaborated by the Czochralski method. The potential of Yb3+-doped single-crystal fibers is presented for scalable high-average and high-peak-power laser systems.

  13. Femtosecond-laser inscribed double-cladding waveguides in Nd:YAG crystal: a promising prototype for integrated lasers.

    Science.gov (United States)

    Liu, Hongliang; Chen, Feng; Vázquez de Aldana, Javier R; Jaque, D

    2013-09-01

    We report on the design and implementation of a prototype of optical waveguides fabricated in Nd:YAG crystals by using femtosecond-laser irradiation. In this prototype, two concentric tubular structures with nearly circular cross sections of different diameters have been inscribed in the Nd:YAG crystals, generating double-cladding waveguides. Under 808 nm optical pumping, waveguide lasers have been realized in the double-cladding structures. Compared with single-cladding waveguides, the concentric tubular structures, benefiting from the large pump area of the outermost cladding, possess both superior laser performance and nearly single-mode beam profile in the inner cladding. Double-cladding waveguides of the same size were fabricated and coated by a thin optical film, and a maximum output power of 384 mW and a slope efficiency of 46.1% were obtained. Since the large diameters of the outer claddings are comparable with those of the optical fibers, this prototype paves a way to construct an integrated single-mode laser system with a direct fiber-waveguide configuration.

  14. DT fusion neutron irradiation of BNL--LASL superconductor wires, LASL YAG, Al2O3 and Spinel, LASL-IIT MgO, YAG, Al2O3 and Spinel, and NRL GeO2 crystals, December 28, 1977

    International Nuclear Information System (INIS)

    MacLean, S.C.

    1978-01-01

    The DT fusion neutron irradiation of eleven BNL-LAST superconductor wires, six NRL GeO 2 crystals, two YAG, two Spinel and two Al 2 O 3 crystals for LASL and four LASL high purity single crystals of MgO, YAG, Spinel and Al 2 O 3 is described. The sample position, beam-on time, and neutron dose record are given. The maximum fluence on any sample was 1.51 x 10 16 neutrons/cm 2

  15. Stimulated Raman adiabatic passage in Tm3+:YAG

    International Nuclear Information System (INIS)

    Alexander, A. L.; Lauro, R.; Louchet, A.; Chaneliere, T.; Le Goueet, J. L.

    2008-01-01

    We report on the experimental demonstration of stimulated Raman adiabatic passage in a Tm 3+ :YAG crystal. Tm 3+ :YAG is a promising material for use in quantum information processing applications, but as yet there are few experimental investigations of coherent Raman processes in this material. We investigate the effect of inhomogeneous broadening and Rabi frequency on the transfer efficiency and the width of the two-photon spectrum. Simulations of the complete Tm 3+ :YAG system are presented along with the corresponding experimental results

  16. Investigations on the potential of a low power diode pumped Er:YAG laser system for oral surgery

    Science.gov (United States)

    Stock, Karl; Wurm, Holger; Hausladen, Florian; Wagner, Sophia; Hibst, Raimund

    2015-02-01

    Flash lamp pumped Er:YAG-lasers are used in clinical practice for dental applications successfully. As an alternative, several diode pumped Er:YAG laser systems (Pantec Engineering AG) become available, with mean laser power of 2W, 15W, and 30W. The aim of the presented study is to investigate the potential of the 2W Er:YAG laser system for oral surgery. At first an appropriate experimental set-up was realized with a beam delivery and both, a focusing unit for non-contact tissue cutting and a fiber tip for tissue cutting in contact mode. In order to produce reproducible cuts, the samples (porcine gingiva) were moved by a computer controlled translation stage. On the fresh samples cutting depth and quality were determined by light microscopy. Afterwards histological sections were prepared and microscopically analyzed regarding cutting depth and thermal damage zone. The experiments show that low laser power ≤ 2W is sufficient to perform efficient oral soft tissue cutting with cut depth up to 2mm (sample movement 2mm/s). The width of the thermal damage zone can be controlled by the irradiation parameters within a range of about 50μm to 110μm. In general, thermal injury is more pronounced using fiber tips in contact mode compared to the focused laser beam. In conclusion the results reveal that even the low power diode pumped Er:YAG laser is an appropriate tool for oral surgery.

  17. Influence of temperature on Yb:YAG/Cr:YAG microchip laser operation

    Science.gov (United States)

    Šulc, Jan; Eisenschreiber, Jan; Jelínková, Helena; Nejezchleb, Karel; Å koda, Václav

    2017-02-01

    The goal of this work was an investigation of the temperature influence (in range from 80 up to 320 K) on the laser properties of Yb:YAG/Cr:YAG Q-switched diode-pumped microchip laser. This laser was based on monolith crystal (diameter 3mm) which combines in one piece an active laser part (Yb:YAG crystal, 10 at.% Yb/Y, 3mm long) and saturable absorber (Cr:YAG crystal, 1.36mm long, initial transmission 90% @ 1031 nm). The laser resonator pump mirror (HT for pump radiation, HR for generated radiation) was directly deposited on the Yb:YAG monolith part. The output coupler with reflection 55% for the generated wavelength was placed on the Cr:YAG part. The microchip laser was placed in the temperature controlled cupreous holder inside vacuum chamber of the liquid nitrogen cryostat. For Yb:YAG part longitudinal pulsed pumping (pumping pulse length 2.5 ms, rep-rate 20 Hz, power amplitude 21W) a fibre coupled (core diameter 400 μm, NA= 0:22) laser diode, operating at wavelength 933 nm, was used. The microchip laser mean output power, pulse duration, repetition rate, emission wavelength, and laser beam profile were measured in dependence on temperature. The generated pulse length was in range from 2.2 ns to 1.1 ns (FWHM) with the minimum at 230 K. The single pulse energy was peaking (0.4 mJ) at 180 K. The highest peak power (325 kW) was obtained at 220 K. The highest pulse repetition rate (38 kHz) and output mean power (370mW) was reached for temperature 80 K.

  18. High-energy azimuthally polarized laser beam generation from an actively Q-switched Nd:YAG laser with c-cut YVO4 crystal

    Science.gov (United States)

    Guo, Jing; Zhang, Baofu; Jiao, Zhongxing; He, Guangyuan; Wang, Biao

    2018-05-01

    A high-energy, azimuthally polarized (AP) and actively Q-switched Nd:YAG laser is demonstrated. The thermal bipolar lensing effect in the Nd:YAG laser rod is used as a polarization discriminator, and a c-cut YVO4 crystal is inserted into the laser cavity to increase the mode-selecting ability of the cavity for AP mode. The laser generated AP pulses with maximum pulse energy as high as 4.2 mJ. To the best of our knowledge, this is the highest pulse energy obtained from an actively Q-switched AP laser. The pulse energy remained higher than 1 mJ over a wide range of repetition rates from 5 kHz to 25 kHz.

  19. Growth and characterization of Yb:Ho:YAG single crystal fiber

    Science.gov (United States)

    Yang, Yilun; Ye, Linhua; Bao, Renjie; Li, Shanming; Zhang, Peixiong; Xu, Min; Hang, Yin

    2018-06-01

    High quality Yb and Ho co-doped Y3Al5O12 single crystal fibers have been successfully grown by the laser heated pedestal growth method of up to 124 mm in length and 450 μm in diameter for the first time. The results of inductively coupled plasma-atomic emission spectrometry analysis, X-ray diffraction and Raman spectroscopy reveal that the lattice structure and doping concentrations of the SCF are the same as that of the bulk. Scanning electron microscopy microphotographs shows that the fibers only have minor diameter fluctuations within 0.5%.

  20. A quasi-three-level dual-wavelength thin-disk laser at 1024 and 1030 nm based on a diode-pumped Yb:YAG crystal

    International Nuclear Information System (INIS)

    Sun, G C; Li, Y D; Zhao, M; Chen, X Y; Wang, J B; Chen, G B

    2013-01-01

    A diode-end-pumped Yb:YAG dual-wavelength continuous-wave (cw) laser that generates simultaneous laser action at wavelengths of 1024 and 1030 nm is demonstrated for the first time. A total output power of 897 mW for the dual-wavelength was achieved at an incident pump power of 17.8 W. Furthermore, intracavity sum-frequency mixing at 1024 and 1030 nm was then realized in an LBO crystal to reach the green range. We obtained a total cw output power of 85 mW at 513.5 nm. (paper)

  1. Electron spin dynamics of Ce.sup.3+./sup. ions in YAG crystals studied by pulse-EPR and pump-probe Faraday rotation

    Czech Academy of Sciences Publication Activity Database

    Azamat, Dmitry; Belykh, V.V.; Yakovlev, D.R.; Fobbe, F.; Feng, D.H.; Evers, E.; Jastrabík, Lubomír; Dejneka, Alexandr; Bayer, M.

    2017-01-01

    Roč. 96, č. 7 (2017), s. 1-10, č. článku 075160. ISSN 2469-9950 R&D Projects: GA MŠk LO1409; GA ČR GA16-22092S Institutional support: RVO:68378271 Keywords : electron spin dynamics * Ce 3+ ions * YAG crystals * pulse-EPR * Faraday rotation Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.836, year: 2016

  2. Tunable colorimetric performance of Al{sub 2}O{sub 3}-YAG:Ce{sup 3+} eutectic crystal by Ce{sup 3+} concentration

    Energy Technology Data Exchange (ETDEWEB)

    Sai, Qinglin, E-mail: saiql@siom.ac.cn; Xia, Changtai, E-mail: xia_ct@siom.ac.cn

    2017-06-15

    Ce-doped Al{sub 2}O{sub 3}-YAG eutectics with different percentage of Ce were successfully grown by the optical floating zone technique. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate the structure. The results show that they have typical eutectic structure of interpenetrating sapphire and garnet phases with the tens of microns lamella spacing. The photoluminescence spectra of the eutectics showed that they have wide excitation band, and samples with 1.6 mol% Ce-doped has the highest emission intensity. The eutectic-packaged LED has high luminous efficiency and its color can be modulated by changing Ce concentration. The results reveal that Ce-doped Al{sub 2}O{sub 3}-YAG eutectic is a promising phosphor for white LED applications.

  3. Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses

    Science.gov (United States)

    Wu, Tao; Higashiguchi, Takeshi; Li, Bowen; Arai, Goki; Hara, Hiroyuki; Kondo, Yoshiki; Miyazaki, Takanori; Dinh, Thanh-Hung; Dunne, Padraig; O'Reilly, Fergal; Sokell, Emma; O'Sullivan, Gerry

    2016-02-01

    The unresolved transition arrays (UTAs) emitted from laser produced bismuth (Bi) plasma sources show potential for single-shot live cell imaging. We have measured extreme ultraviolet spectra from bismuth laser produced plasmas in the 1-7 nm region using a λ = 1064 nm Nd:YAG laser with a pulse duration of 150 ps. Comparison of spectra obtained under different laser power densities with calculations using the Hartree-Fock with configuration interaction Cowan suite of codes and the UTA formalism, as well as consideration of previous predictions of isoelectronic trends, are employed to identify lines and a number of new features in spectra from Bi XXIII to Bi XLVII. The results show that Δn = 0, n = 4-4 emission from highly charged ions merges to form intense UTAs in the 4 nm region and Δn = 1, n = 4-5 resonance transitions UTAs dominate the 1-3 nm region of the Bi spectrum.

  4. Detection and Investigation of Carbon Ions Induced by Nd:YAG laser using SSNTDs

    International Nuclear Information System (INIS)

    Qindeel, Rabia; Ali, Jalil Bin; Chaudhary, K. T.; Hussain, M. S.

    2011-01-01

    A Q-Switched Nd:YAG laser pulse of pulsed width of 9∼14 ns, wavelength of 1064 nm, repetition rate of 0.5 Hz, power of 1.1 MW and energy of 10 mJ has been used to ablate the 4N pure graphite target through IR lens. Solid state nuclear track detector (SSNTD) CR-39 has been used to calculate the energy of carbon ions produced as a result of laser ablation and the whole experiment has been performed under pressure ∼10 -3 Torr in stainless steel vacuum chamber. The minimum and maximum energy of carbon ions observed are 0.2 KeV to 250 KeV respectively.

  5. Spectral investigation of highly ionized bismuth plasmas produced by subnanosecond Nd:YAG laser pulses

    International Nuclear Information System (INIS)

    Wu, Tao; Higashiguchi, Takeshi; Arai, Goki; Hara, Hiroyuki; Kondo, Yoshiki; Miyazaki, Takanori; Dinh, Thanh-Hung; Li, Bowen; Dunne, Padraig; O’Reilly, Fergal; Sokell, Emma; O’Sullivan, Gerry

    2016-01-01

    The unresolved transition arrays (UTAs) emitted from laser produced bismuth (Bi) plasma sources show potential for single-shot live cell imaging. We have measured extreme ultraviolet spectra from bismuth laser produced plasmas in the 1–7 nm region using a λ = 1064 nm Nd:YAG laser with a pulse duration of 150 ps. Comparison of spectra obtained under different laser power densities with calculations using the Hartree–Fock with configuration interaction Cowan suite of codes and the UTA formalism, as well as consideration of previous predictions of isoelectronic trends, are employed to identify lines and a number of new features in spectra from Bi XXIII to Bi XLVII. The results show that Δn = 0, n = 4–4 emission from highly charged ions merges to form intense UTAs in the 4 nm region and Δn = 1, n = 4–5 resonance transitions UTAs dominate the 1–3 nm region of the Bi spectrum. (paper)

  6. Experimental investigation on cleaning of corroded ancient coins using a Nd:YAG laser

    Science.gov (United States)

    Zhu, Huazhong; Lu, Jian; Ni, Xiaowu; Shen, Zhonghua

    2017-05-01

    The objective of the work reported is to study experimentally on the removal of corrosion layer from the ancient coins using laser beam as the conservation tool. With the use of Q-switched Nd:YAG laser radiation at 1064 nm, dry laser cleaning, steam laser cleaning and chemical-assisted laser cleaning were used to find out a more suitable and efficient laser treatment for corrosion removal. Cleaning tests were performed on ancient Chinese coins. Experimental results shows that the dry laser cleaning was not successful at removing all types of corrosion crust. It was possible to remove the outer thicker layer of the corrosion products (typically known as patina), but failed on the thinner layer of cuprite. The steam laser cleaning could decrease the initial removal threshold and improve the removal efficiency especially for the oxidation with powdery structure. As for chemical-assisted laser treatment, the cleaning results demonstrate that the combination of laser and chemical reagent could provide a considerable improvement in corrosion removal compared with the conventional laser treatments. Most of the corrosion contaminant was stripped, even the cuprite layer. Moreover, no secondary pollution was formed on the cleaned surface. X-ray fluorescence was applied to determine the variation of composition of surface layer and bulk metal before and after the coins cleaned. It shows that all of the three laser treatments were efficient to reduce the chlorine concentration on the surface of the coins more than 75%.

  7. A comparative investigation of bone surface after cutting with mechanical tools and Er:YAG laser.

    Science.gov (United States)

    Baek, Kyung-Won; Deibel, Waldemar; Marinov, Dilyan; Griessen, Mathias; Dard, Michel; Bruno, Alfredo; Zeilhofer, Hans-Florian; Cattin, Philippe; Juergens, Philipp

    2015-07-01

    Despite of the long history of medical application, laser ablation of bone tissue became successful only recently. Laser bone cutting is proven to have higher accuracy and to increase bone healing compared to conventional mechanical bone cutting. But the reason of subsequent better healing is not biologically explained yet. In this study we present our experience with an integrated miniaturized laser system mounted on a surgical lightweight robotic arm. An Erbium-doped Yttrium Aluminium Garnet (Er:YAG) laser and a piezoelectric (PZE) osteotome were used for comparison. In six grown up female Göttingen minipigs, comparative surgical interventions were done on the edentulous mandibular ridge. Our laser system was used to create different shapes of bone defects on the left side of the mandible. On the contralateral side, similar bone defects were created by PZE osteotome. Small bone samples were harvested to compare the immediate post-operative cut surface. The analysis of the cut surface of the laser osteotomy and conventional mechanical osteotomy revealed an essential difference. The scanning electron microscopy (SEM) analysis showed biologically open cut surfaces from the laser osteotomy. The samples from PZE osteotomy showed a flattened tissue structure over the cut surface, resembling the "smear layer" from tooth preparation. We concluded that our new finding with the mechanical osteotomy suggests a biological explanation to the expected difference in subsequent bone healing. Our hypothesis is that the difference of surface characteristic yields to different bleeding pattern and subsequently results in different bone healing. The analyses of bone healing will support our hypothesis. © 2015 Wiley Periodicals, Inc.

  8. Investigation of coronal leakage of root fillings after smear-layer removal with EDTA or Nd:YAG lasing through capillary-flow porometry.

    Science.gov (United States)

    Michiels, Rafaël; Vergauwen, Tom Edgard Maria; Mavridou, Athina; Meire, Maarten; De Bruyne, Mieke; De Moor, Roeland Jozef Gentil

    2010-10-01

    This study investigates the effects of Nd:YAG laser irradiation combined with different irrigation protocols on the marginal seal of root fillings. Limited information exists regarding the effects of morphologic changes to root canal (RC) walls after Nd:YAG laser irradiation after smear-layer removal with EDTA on the sealing ability of root fillings. The 75 root-filled teeth (5 × 15 teeth) were analyzed for through-and-through leakage by using capillary flow porometry (CFP). The RC cleaning procedure determined the assignment to a group: (1) irrigation with NaOCl 2.5% and EDTA 17% or standard protocol (SP), (2) SP + Nd:YAG lasing (dried RC), (3) NaOCl 2.5% + Nd:YAG lasing (dried RC), (4) SP + Nd:YAG lasing (wet RC), or (5) NaOCl 2.5% + Nd:YAG lasing (wet RC). Groups 1r to 5r consisted of the same filled teeth with resected apices up to the most apical point of the preparation length. Resection was performed after the first CFP measurement. Roots were filled with cold lateral condensation. CFP was used to assess minimum, mean flow and maximum pore diameters after 48 h, and immediately after these measurements, including root resection. Statistics were performed by using nonparametric tests (p > 0.05). An additional three roots per group were submitted to SEM of the RC wall. Through-and-through leakage was observed in all groups. Statistically significant differences were observed in maximum pore diameter: 1r > 3r, and 1r > 5r; in mean flow pore diameter: 1r > 2r, 2r < 4r (p < 0.05). Typical Nd:YAG glazing effects were observed when the smear layer was present and exposed to the laser fiber (i.e., in the groups without use of EDTA) or when the fiber tip made direct contact with a smear-layer free RC wall. The reduction in through-and-through leakage is significantly higher with the Nd:YAG laser as smear-layer modifier than when smear layer is removed with an EDTA rinsing solution.

  9. Ho:YAG laser in reshaping tracheal cartilage: a pilot investigation using ex vivo porcine and rabbit cartilage

    Science.gov (United States)

    Lam, Anthony; Protsenko, Dmitry E.; Carbone, Nicholas; Li, Chao; Jackson, Ryan; Wong, Brian J.

    2004-07-01

    Stenotic, collapsed, and flow-restricted tracheal airways may result from blunt trauma, chronic infection, and the prolonged endotracheal intubation. This pilot investigation characterizes the degree of shape change produced by Ho:YAG laser (λ=2.12 μm) irradiation of rabbit and pig trachea tissue as a function of laser dosimetry and application protocol. Force displacement curves were generated using fresh lagomorph and porcine tracheal cartilage rings secured in a modified single beam cantilever geometry. These specimens were then irradiated for varying amounts of time and power with the objective of straightening these curved specimens. The degree of shape change was documented photographically. Force and surface temperature were monitored. Confocal microscopy was then used in combination a vital staine ("live-dead assay") to determine the level of viability of straightened cartilage for selected exposure time-power pairs. Laser Cartilage Reshaping of the trachea may provide a new method to treat severe tracheal injuries without the need for classic open surgical techniques. This pilot investigation is the first step toward demonstrating the feasibility of this technique. Long-term, the design of stents combined with laser irradiation may provide a means to alter tracheal shape.

  10. Investigations of morphological changes during annealing of polyethylene single crystals

    NARCIS (Netherlands)

    Tian, M.; Loos, J.

    2001-01-01

    The morphological evolution of isolated individual single crystals deposited on solid substrates was investigated during annealing experiments using in situ and ex situ atomic force microscopy techniques. The crystal morphology changed during annealing at temperatures slightly above the original

  11. Vortex operation in Er:LuYAG crystal laser at ∼1.6 μm

    Science.gov (United States)

    Liu, Qiyao; Zhao, Yongguang; Zhou, Wei; Shen, Deyuan

    2017-09-01

    An Er3+-doped Lu1.5Y1.5Al5O12 (Er:LuYAG) solid-state laser with direct generation of optical vortex is reported. The vortex laser operation was realized through being pumped by an annular beam at 1532 nm, which was reformatted by a specially fabricated optical mirror. With two different laser output couplers of 10% and 20% transmissions, pure LG01 mode lasers with right-handedness at 1647.7 nm and 1619.5 nm were yielded from a simple two-mirror cavity, respectively, without any helicity control optical element. Furthermore, stable pulse trains at 1647.7 nm have been achieved via employing an acousto-optic Q-switch, and ∼0.66 mJ pulsed energy and ∼65 ns pulse duration were finally obtained at 1 kHz repetition rate, corresponding to a peak power of ∼10.2 kW. The generated pulse vortex maintained LG01 mode with well-determined right-handedness, as in the case of cw laser operation.

  12. Experimental investigation of 4-dimensional superspace crystals

    International Nuclear Information System (INIS)

    Rasing, T.; Janner, A.

    1983-09-01

    The symmetry of incommensurate crystals can be described by higher dimensional space groups in the so called superspace approach. The basic ideas are explained and used for showing that superspace groups provide an adequate frame for analyzing experimental results on incommensurate crystals

  13. Laser-induced damage investigation at 1064 nmin KTiOPO4 crystals and its analogy with RbTiOPO4

    International Nuclear Information System (INIS)

    Hildenbrand, A.; Wagner, F. R.; Akhouayri, H.; Natoli, J.-Y.; Commandre, M.; Theodore, F.; Albrecht, H.

    2009-01-01

    Bulk laser-induced damage at 1064 nm has been investigated in KTiOPO4 (KTP) and RbTiOPO4 (RTP) crystals with a nanosecond pulsed Nd:YAG laser. Both crystals belong to the same family. Throughout this study, their comparison shows a very similar laser-damage behavior. The evolution of the damage resistance under a high number of shots per site (10,000 shots) reveals a fatigue effect of KTP and RTP crystals. In addition, S-on-1 damage probability curves have been measured in both crystals for all combinations of polarization and propagation direction aligned with the principal axes of the crystals. The results show an influence of the polarization on the laser-induced damage threshold (LIDT), with a significantly higher threshold along the z axis, whereas no effect of the propagation direction has been observed. This LIDT anisotropy is discussed with regard to the crystallographic structure.

  14. Luminescence properties in the visible of Dy:YAG/YAG planar waveguides

    Energy Technology Data Exchange (ETDEWEB)

    Klimczak, M., E-mail: m.klimczak@elka.pw.edu.p [Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland); Malinowski, M. [Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland); Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Sarnecki, J. [Institute of Electronic Materials Technology, Wolczynska 133, 01-919 Warsaw (Poland); Piramidowicz, R. [Institute of Microelectronics and Optoelectronics, Koszykowa 75, 00-662 Warsaw (Poland); Telekomunikacja Polska Research and Development Centre, Obrzezna 7, 02-691 Warsaw (Poland)

    2009-12-15

    In this work, we investigate visible emission properties of dysprosium-doped yttrium aluminum garnet (YAG) waveguides prepared by the liquid phase epitaxy (LPE) method, which allowed obtaining samples of activator concentrations ranging from 0.2 at% up to ca. 18 at%. This unique set of Dy:YAG/YAG waveguides has been carefully examined by means of highly resolved laser spectroscopy to explore the luminescence properties in the visible (yellow-blue) part of spectrum. In particular, the low-temperature absorption spectra have been recorded and analyzed, giving a more detailed information on energy levels' positions in these crystals. The concentration-dependant emission spectra and fluorescence dynamics profiles have been collected under direct excitation, enabling analysis of multi-ion processes responsible for concentration quenching. This, in turn, enabled optimization of activator concentration with respect to yellow emission efficiency. Additionally, the possible IR to visible up-conversion pathways have been discussed, giving a starting point for further investigations.

  15. Investigations on the parity of Fano resonances in photonic crystals

    DEFF Research Database (Denmark)

    Østerkryger, Andreas Dyhl; de Lasson, Jakob Rosenkrantz; Yu, Yi

    We investigate the relation between the parity of Fano resonances and field distribution in a photonic crystal structure using Fourier modal method, establishing a correlation between Fano parity and field profile.......We investigate the relation between the parity of Fano resonances and field distribution in a photonic crystal structure using Fourier modal method, establishing a correlation between Fano parity and field profile....

  16. Optical Investigation of Nanoconfined Crystal Growth

    Science.gov (United States)

    Kohler, F.; Dysthe, D. K.

    2015-12-01

    Crystals growing in a confined space exert forces on their surroundings. This crystallization force causes deformation of solids and is therefore particularly relevant for the comprehension of geological processes such as replacement and weathering [1]. In addition, these forces are relevant for the understanding of damages in porous building materials caused by crystallization, which is of great economical importance and fundamental for methods that can help to preserve our cultural heritage [2,3]. However, the exact behavior of the growth and the dissolution process in close contact to an interface are still not known in detail. The crystallization, the dissolution and the transport of material is mediated by a nanoconfined water film. We observe brittle NaClO3 crystals growing against a glass surface by optical methods such as reflective interference contrast microscopy (RICM) [4]. In order to carefully control the supersaturation of the fluid close to the crystal interface, a temperature regulated microfluidic system is used (fig. A). The interference based precision of RICM enables to resolve distance variations down to the sub nanometer range without any unwanted disturbances by the measuring method. The combination of RICM with a sensitive camera allows us to observe phenomena such as periodic, wavelike growth of atomic layers. These waves are particularly obvious when observing the difference between two consecutive images (fig. B). In contradiction to some theoretical results, which predict a smooth interface, some recent experiments have shown that the nanoconfined growth surfaces are rough. In combination with theoretical studies and Kinetic Monte Carlo simulations we aim at providing more realistic descriptions of surface energies and energy barriers which are able to explain the discrepancies between experiments and current theory. References:[1] Maliva, Diagenetic replacement controlled by force of crystallization, Geology, August (1988), v. 16 [2] G

  17. ENDOR investigations of the Ce.sup.3+./sup. ions in YAG: Transferred hyperfine interaction with nearest aluminum ions

    Czech Academy of Sciences Publication Activity Database

    Azamat, Dmitry; Badalyan, A. G.; Feng, D.H.; Lančok, Ján; Jastrabík, Lubomír; Dejneka, Alexandr; Baranov, P. G.; Yakovlev, D.R.; Bayer, M.

    2017-01-01

    Roč. 122, č. 24 (2017), s. 1-3, č. článku 243903. ISSN 0021-8979 R&D Projects: GA MŠk LO1409; GA ČR GA16-22092S Institutional support: RVO:68378271 Keywords : ENDOR * Ce 3+ ions in YAG * transferred hyperfine interactions Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.068, year: 2016

  18. Color centers inside crystallic active media

    Science.gov (United States)

    Mierczyk, Zygmunt; Kaczmarek, Slawomir M.; Kopczynski, Krzysztof

    1995-03-01

    This paper presents research results on color centers induced by radiation of a xenon lamp in non doped crystals of yttrium aluminum garnet Y3Al5O12 (YAG), strontium- lanthanum aluminate SrLaAlO4 (SLAO), strontium-lanthanum gallate SrLaGa3O7 (SLGO), and in doped crystals: Nd:YAG, Cr, Tm, Ho:YAG (CTH:YAG), Nd:SLAO and Nd:SLGO. In all these investigated crystals under the influence of intensive exposure by xenon lamp radiation additional bands connected with centers O-2, O2 and centers F came up near the short-wave absorption edge. In the case of doped crystals the observed processes are much more complicated. In crystals CTH:YAG the greatest perturbations in relation to basic state are present at the short-wave absorption edge, as well as on areas of absorption bands of ions Cr+3 and Tm+3 conditioning the sensibilization process of ions Ho+3. These spectral structure disturbances essentially influence the efficiency of this process, as proven during generating investigations. In the case of SrLaGa3O7:Nd+3 under the influence of exposure substantial changes of absorption spectrum occurred on spectral areas 346 divided by 368 nm, 429 divided by 441 nm and 450 divided by 490 nm. Those changes have an irreversible character. They disappear not before the plate is being held at oxidizing atmosphere. Investigations of laser rods Nd:SLGO, CTH:YAG, and Nd:YAG in a free generation demonstrated that the color centers of these crystals are induced by pomp radiation from the spectral area up to 450 nm.

  19. Investigating Micro-Tensile Bond Strength of Silorane Based Composite in Enamel Surfaces Prepared by Er:YAG Laser vs. Bur-Cut

    Directory of Open Access Journals (Sweden)

    AR Daneshkazemi

    2014-10-01

    Full Text Available Introduction: Recently, Er:YAG laser has been used for tooth preparations and silorane-based composites have been introduced to dentistry, though investigating this type of composites has received scant attention. Therefore, the aim of this study was to compare microtensile bond strength (MTBS of silorane- based composite (Filtek P90 3M/USA to enamel sufaces, prepared by Er:YAG laser irradiation versus bur cut. Methods:Same sized cavities were prepared by ER:YAG laser and bur on the enamel of 20 extracted teeth which were randomly divided into 4 groups:E1 laser + acid etching, E2: laser, E3: bur + acid etching, E4: bur. Then primer, adhesive and P60 resin composite were utilized according to the manufacturer instructions. After thermocycling, 20 samples were created in the form of an hour glass model with 1 mm2 slices in each group, and were tested by SD Mechatronic MTD 500 (Germany machine with cross head speed of 1mm/min to create the fracture. The failure mode was assessed under stereomicroscope (ZTX-3E, Zhejiang/China, and the study data were analysed by ANOVA test. Results: The study results revealed that highest and lowest microtensile bond strength belonged to E3 and E2 group respectively. No significant differences were observed between the tested groups(p= 0.213. Highest and lowest modes of failure were adhesive and cohesive respectively. ANOVA results did not demonstrate any significant differences between groups(p=0.845. Conclusion: Laser-prepared or bur-prepared cavities with or without etching and silorane based composite could not significantly affect MTBS in order to enamel.

  20. Investigation of lactose crystallization process during condensed milk cooling using native vacuum-crystallizer

    Directory of Open Access Journals (Sweden)

    E. I. Dobriyan

    2016-01-01

    Full Text Available One of the most general defects of condensed milk with sugar is its consistency heterogeneity – “candying”. The mentioned defect is conditioned by the presence of lactose big crystals in the product. Lactose crystals size up to 10 µm is not organoleptically felt. The bigger crystals impart heterogeneity to the consistency which can be evaluated as “floury”, “sandy”, “crunch on tooth”. Big crystals form crystalline deposit on the can or industrial package bottom in the form of thick layer. Industrial processing of the product with the defective process of crystallization results in the expensive equipment damage of the equipment at the confectionary plant accompanied with heavy losses. One of the factors influencing significantly lactose crystallization is the product cooling rate. Vacuum cooling is the necessary condition for provision of the product consistency homogeneity. For this purpose the vacuum crystallizers of “Vigand” company, Germany, are used. But their production in the last years has been stopped. All-Russian dairy research institute has developed “The references for development of the native vacuum crystallizer” according to which the industrial model has been manufactured. The produced vacuum – crystallizer test on the line for condensed milk with sugar production showed that the product cooling on the native vacuum-crystallizer guarantees production of the finished product with microstructure meeting the requirements of State standard 53436–2009 “Canned Milk. Milk and condensed cream with sugar”. The carried out investigations evidences that the average lactose crystals size in the condensed milk with sugar cooled at the native crystallizer makes up 6,78 µm. The granulometric composition of the product crystalline phase cooled at the newly developed vacuum-crystallizer is completely identical to granulometric composition of the product cooled at “Vigand” vacuum-crystallizer.

  1. Investigation of Pockels Cells Crystal Contrast Ratio Distribution

    Directory of Open Access Journals (Sweden)

    Giedrius Sinkevičius

    2017-07-01

    Full Text Available The BBO Pockel’s cell has been investigated. The investigation results of optimal operating area on the surface of the crystal dependent of intrinsic contrast ratio (ICR and voltage contrast ratio (VCR for Pockel’s cell are presented. The block diagram of Pockel’s cells contrast measurement stand and measurement methodology are introduced and discussed. The graphs of intrinsic contrast ratio distribution on crystal surface, contrast ratio with voltage dependency and voltage contrast ratio distribution on crystal surface with half-wave voltage are presented.

  2. Sub-threshold investigation of two coupled photonic crystal cavities

    DEFF Research Database (Denmark)

    Schubert, Martin; Frandsen, Lars Hagedorn; Skovgård, Troels Suhr

    2009-01-01

    The behavior of two coupled photonic crystal membrane cavities with quantum dots separated by different number of holes is investigated. The measured spectral splitting with increased coupling is verified by 3D calculations and discussed.......The behavior of two coupled photonic crystal membrane cavities with quantum dots separated by different number of holes is investigated. The measured spectral splitting with increased coupling is verified by 3D calculations and discussed....

  3. Investigation on Nd:YAG laser weldability of zircaloy-4 end cap closure for nuclear fuel elements

    International Nuclear Information System (INIS)

    Kim, Soo Sung; Lee, Chul Yung; Yang, Myung Seung

    2001-01-01

    Various welding processes are now available for end cap closure of nuclear fuel element such as TIG(Tungsten Inert Gas) welding, magnetic resistance welding and laser welding. Even though the resistance and TIG welding processes are widely used for manufacturing commercial fuel elements, they can not be recommended for the remote seal welding of a fuel element at a hot cell facility due to the complexity of electrode alignment, difficulty in the replacement of parts in the remote manner and a large heat input for a thin sheath. Therefore, the Nd:YAG laser system using optical fiber transmission was selected for Zircaloy-4 end cap welding inside hot cell. The laser welding apparatus was developed using a pulsed Nd:YAG laser of 500 watt average power with optical fiber transmission. The weldability of laser welding was satisfactory with respect to the microstructures and mechanical properties comparing with TIG and resistance welding. The optimum operation processes of laser welding and the optical fiber transmission system for hot cell operation in a remote manner have been developed. The effects of irradiation on the properties of the laser apparatus were also being studied

  4. Nd:YAG laser welding of aerospace grade ZE41A magnesium alloy: Modeling and experimental investigations

    International Nuclear Information System (INIS)

    Al-Kazzaz, H.; Medraj, M.; Cao, X.; Jahazi, M.

    2008-01-01

    Keyhole formation as well as the geometry of weld profiles during Nd:YAG laser welding of ZE41A-T5 were studied through combining various models and concepts. The results indicated that weld width and fusion area decrease with increasing welding speed. In the case of partially penetrated welding, penetration depth decreases with increasing welding speed. Also, the model predicted that excessive decrease in laser power or increase in defocusing distance decreases surface power density, thereby changing the welding mode from fully penetrated keyhole, to partially penetrated keyhole, and then to the conduction mode. The predicted conditions for keyhole stability and welding modes as well as the weld profiles for various processing conditions were validated by some selected welding experiments. These experiments included studying the effects of welding speed, laser power, joint gap and laser defocusing on the weld geometry of 2- and 6-mm butt joints or bead-on-plates of ZE41A-T5 sand castings using a continuous wave 4 kW Nd:YAG laser system and 1.6-mm EZ33A-T5 filler wire. Good agreements were found between the model predictions and experimental results indicating the validity of the assumptions made for the development of the model

  5. Tunable eye-safe Er:YAG laser

    International Nuclear Information System (INIS)

    Němec, M; Šulc, J; Indra, L; Fibrich, M; Jelínková, H

    2015-01-01

    Er:YAG crystal was investigated as the gain medium in a diode (1452 nm) pumped tunable laser. The tunability was reached in an eye-safe region by an intracavity birefringent filter. The four tuning bands were obtained peaking at wavelengths 1616, 1632, 1645, and 1656 nm. The broadest continuous tunability was 6 nm wide peaking at 1616 nm. The laser was operating in a pulsed regime (10 ms pulse length, 10 Hz repetition rate). The maximum mean output power was 26.5 mW at 1645 nm. The constructed system demonstrated the tunability of a resonantly diode-pumped Er:YAG laser which could be useful in the development of compact diode-pumped lasers for spectroscopic applications. (paper)

  6. Actively Q-switched laser with novel Nd:YAG/YAG polygonal active-mirror

    Science.gov (United States)

    Lang, Ye; Chen, Yanzhong; Ge, Wenqi; He, Jianguo; Zhang, Hongbo; Liao, Lifen; Xin, Jianguo; Zhang, Jian; Fan, Zhongwei

    2018-03-01

    In this work, we demonstrate an efficient actively Q-switched laser based on a novel crystal Nd:YAG/YAG polygonal active mirror. A passively cooled crystal Nd:YAG/YAG polygonal active mirror with an end pump scheme was used as the gain medium. For the overlap between the TEM00 laser mode and large gain profile, a cavity was carefully designed with a large fundamental mode volume. With a maximum absorbed power of 3.1 W, a 685 mW average output power with a pulse repetition of 5 kHz was attained, and the corresponding optical-optical and slope efficiency were 22.1% and 27.7%, respectively. The pulse width was 133.9 ns. The beam quality (M 2) was 1.561 in the horizontal direction and 1.261 in the vertical direction.

  7. Optical properties and laser oscillations of highly neodymium-doped YAG ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Shoji, Ichiro; Kurimura, Sunao; Sato, Yoichi; Taira, Takunori [Laser Research Center, Institute for Molecular Science, Okazaki, Aichi (Japan); Ikesue, Akio [Japan Fine Ceramics Center, Nagoya, Aichi (Japan); Yoshida, Kunio [Institute of Laser Engineering, Osaka Institute of Technology, Osaka (Japan)

    2000-03-01

    Diode-pumped microchip laser oscillation of highly Nd{sup 3+}-doped polycrystalline YAG ceramics has been succeeded. It is found that the loss of a 2.4 at. % neodymium-doped ceramic YAG is as low as that of a 0.9 at. % Nd:YAG single crystal. From a 4.8 at. % Nd:YAG ceramic microchip, 2.3 times higher laser output power is obtained than that from a 0.9 at. % Nd:YAG single crystal microchip. (author)

  8. Optical properties and laser oscillations of highly neodymium-doped YAG ceramics

    International Nuclear Information System (INIS)

    Shoji, Ichiro; Kurimura, Sunao; Sato, Yoichi; Taira, Takunori; Ikesue, Akio; Yoshida, Kunio

    2000-01-01

    Diode-pumped microchip laser oscillation of highly Nd 3+ -doped polycrystalline YAG ceramics has been succeeded. It is found that the loss of a 2.4 at. % neodymium-doped ceramic YAG is as low as that of a 0.9 at. % Nd:YAG single crystal. From a 4.8 at. % Nd:YAG ceramic microchip, 2.3 times higher laser output power is obtained than that from a 0.9 at. % Nd:YAG single crystal microchip. (author)

  9. Investigation of crystallization in glasses containing fission products

    International Nuclear Information System (INIS)

    Malow, G.

    1979-01-01

    Five potential solidification products for high-level waste (four borosilicate glasses and one celsian glass ceramic) have been investigated in terms of crystallization. In all glasses and in the glass ceramic, crystallization, and recrystallization, respectively, were observed by heating above 773 0 K, however, at very different periods of time (0.1d greater than or equal to 100d). The noble metals precipitated into various phases. Crystal growth proceeded at the phase boundary glass-noble metal. In all products rare earth phases crystallized. Silicate phases rarely formed. The leach resistance (by the grain titration and Soxhlet tests) decreased after heat treatment in all cases. The changes were found to be within one order of magnitude for all products. 2 figures, 4 tables

  10. Investigations on the nucleation kinetics of γ-glycine single crystal

    International Nuclear Information System (INIS)

    Yogambal, C.; Rajan Babu, D.; Ezhil Vizhi, R.

    2014-01-01

    Single crystals of γ-glycine were grown by slow evaporation technique. The crystalline system was confirmed by single crystal X-ray diffraction analysis. The optical absorption study has shown that the grown crystal possesses lower cut-off wavelength. Solubility and metastable zone width were estimated for different temperatures. The induction period of title compound was determined by varying the temperature and concentration. Nucleation parameters such as Gibbs volume free energy change (ΔG v ), interfacial tension (γ), critical free energy change of the nucleus (ΔG ⁎ ), nucleation rate (J), number of molecules in the critical nucleus (i ⁎ ) have been calculated for the aqueous solution grown γ-glycine single crystals. The second harmonic generation (SHG) of γ-glycine was confirmed by Q-switched Nd:YAG laser technique

  11. Numerical calculations of the absorption and oscillation processes in the nonlinear polarized crystal Cr4+:YAG pumped by Nd-glass laser

    International Nuclear Information System (INIS)

    Abdul Ghani, B.; Hammadi, M.

    2007-01-01

    A mathematical model describing the dynamic emission of intracavity isotropic Cr 4+ : YAG polarized solid-state saturable absorber as a tool of dual Q-switching and lasing processes 1.06 μm and 1.4 μm by double pumping pulse has been developed. This model describes the time evolution of interaction between the pumping laser pulse with a changed polarization state and the polarized absorber. (author)

  12. Study of simultaneous q-switching and mode-locking in ND:YVO4 laser with Cr4+:YAG crystal

    International Nuclear Information System (INIS)

    Al-Sous, M. B.

    2009-01-01

    A numerical model of rate equations for a four-level solid-state laser with Cr 4+ :YAG saturable absorber including excited state absorption ESA is presented. The cavity is divided into a large number of disks and the model is solved for each disk and its local corresponding photon flux. The flux array is shifted for each recurrence simulating the movement of photons inside the cavity during the round trip. This simulator can describe the mode locking phenomenon and can be used to simulate the simultaneous mode locking and Q-switching with a saturable absorber. (author)

  13. Study of simulations q-switching and mode-locking in Nd:YVO4 laser with Cr4+:YAG crystal

    International Nuclear Information System (INIS)

    Al-Sous, M. B.

    2007-12-01

    A numerical model of rate equations for a four-level solid-state laser with Cr 4+ :YAG saturable absorber including excited state absorption ESA is presented. The cavity is divided into a large number of disks and the model is solved for each disk and its local corresponding photon flux. The flux array is shifted for each recurrence simulating the movement of photons inside the cavity during the round trip. This simulator can describe the mode locking phenomenon and can be used to simulate the simultaneous mode locking and Q-switching with a saturable absorber.(author)

  14. An arc detector for neutron crystal structure investigations

    Energy Technology Data Exchange (ETDEWEB)

    Habib, N [Reactor and Neutron Physics Dept., Nuclear Research Center. AEA, Cairo (Egypt)

    1997-12-31

    An arc detector for neutron structure investigations of powder crystals using time-of-flight technique is described. In order to enable the measurement of integral intensity from about 1/4 of the Debye-Scherrer ring and for simplicity reasons, the scattering angle 20-90 degree was chosen and a special arc collimator was built. The arc collimator-detector had a divergency of about 20 minutes of arc, and the distance between detector-sample was 64 cm. Four {sup 3} He detectors were fixed on the arc of the collimator. Both efficiency and space sensitivity of the detector were determined using a point neutron source. Results of measurements show that parameters of the arc detector are acceptable for high resolution crystal structure investigations. 6 figs.

  15. First principles investigation of the structure of a bacteriochlorophyll crystal

    Energy Technology Data Exchange (ETDEWEB)

    Marchi, M. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)]|[Centre d`Etudes Saclay, Gif-sur-Yvette (France); Hutter, J.; Parrinello, M. [Max-Planck-Institut fuer Festkoerperforschung, Stuttgart (Germany)

    1996-08-21

    In this communication we present an ab initio study of the crystal of methyl bacteriophorbide (MeBPheo) a, a bacteriochlorophyll derivative, and high-precision structure of which is available. Our main purpose has been to investigate the viability of the technique toward complex molecular systems relevant to biologically important phenomena, in this particular case photosynthesis. Here we present the following results: First, we show that DFT is capable of calculating nuclear positions in excellent agreement with the experimental X-ray structure. Second, the calculated electronic density of the HOMO orbital reveals a {pi} type bond between rings I and III, consistent with the one-dimensional chain structure of the MeBPheo a molecules in the crystal. Finally, after performing the optimization of the molecular geometry with one electron in the LUMO state, we find localized bond length changes near the ring II of the MeBPheo a. 19 refs., 3 figs.

  16. Pulsed Nd:YAG laser welding of Cu54Ni6Zr22Ti18 bulk metallic glass

    International Nuclear Information System (INIS)

    Kim, Jong Hyun; Lee, Changhee; Lee, D.M.; Sun, J.H.; Shin, S.Y.; Bae, J.C.

    2007-01-01

    Pulsed Nd:YAG laser was used to weld Cu 54 Ni 6 Zr 22 Ti 18 (numbers indicate at.%) metallic glass with glass forming ability of 6 mm. Through a single pulse irradiation on the glassy plate, the pulse condition for welding without crystallization was investigated. Under the selected pulse condition, the Cu 54 Ni 6 Zr 22 Ti 18 plate was periodically welded with different welding speeds. For the welding speed of 60 mm/min, no crystallization was observed in both weldment and heat-affected zone. For the 20 mm/min, the crystallized areas with a band shape were observed along the welding direction

  17. Effects of neodymium concentration on optical characteristics of polycrystalline Nd:YAG laser materials

    International Nuclear Information System (INIS)

    Ikesue, A.; Kamata, K.; Yoshida, K.

    1996-01-01

    A neodymium-doped yttrium-aluminum garnet (Y 3 Al 5 O 12 , YAG) (Nd:YAG) ceramic that contained 0.3--4.8 at.% neodymium additives and exhibited nearly the same optical properties as those of a single crystal was fabricated by a solid-state reaction method using high-purity powders. Although the integrated absorption intensity of the 2 H 9/2 + 4 F 5/2 bands simply increased as the neodymium concentration in the YAG ceramics decreased, the fluorescence intensity of the 2.4 at.% Nd:YAG ceramic was the strongest among Nd:YAG ceramics with various neodymium concentrations and a 0.9 at.% Nd:YAG single crystal. An oscillation experiment was performed on a continuous-wave (cw) laser with a diode-laser exciting system using those ceramics and the single crystal. The oscillation threshold and slope efficiency in that analysis were 309 mW and 28%, respectively, for the 1.1 at.% Nd:YAG ceramics and 356 mW and 40%, respectively, for the 2.4 at.% Nd:YAG ceramics. The lasing characteristics of the ceramics in the present work were superior to those of a 0.9 at.% Nd:YAG single crystal that was fabricated by the Czochralski (Cz) method

  18. Yttrium aluminum garnet (YAG) obtained by rare-earth mixed oxide (RE2O3)

    International Nuclear Information System (INIS)

    Castro, D.F.; Daguano, J.K.M.F.; Rodrigues Junior, D.; Suzuki, P.A.; Silva, O.M.M.

    2010-01-01

    In this work, the substitution of commercial Y 2 O 3 by a rare earth mixed oxide, RE 2 O 3 , to form Yttrium aluminum Garnet-Y 3 Al 5 O 12 , was investigated. Al 2 O 3 :Y 2 O 3 and Al 2 O 3 :RE 2 O 3 powder-mixtures, in a molar ratio of 60:40, were milled and subsequently cold uniaxially-pressed. Compacts were sintered at 1000, 1400 or 1600 deg C, for 120 minutes. RE 2 O 3 oxide was characterized by high-resolution synchrotron X-ray diffraction (HRXRD) and compared to Y 2 O 3 . X-ray diffraction pattern of the RE 2 O 3 indicates a true solid solution formation. Rietveld refinement of the sintered YAG and (RE)AG reveled a similar crystal structure to the YAGs obtained by the use of Al 2 O 3 -Y 2 O 3 or Al 2 O 3 -RE 2 O 3 respectively. Microstructural analysis of both, YAG or (RE)AG, revealed similar grain sizes of about 2.5 μm besides mechanical properties, with hardness of 400HV and fracture toughness of 3.8MPa.m1/2. It could be, thus, demonstrated that pure Y 2 O 3 can be substituted by the rare-earth solid solution, RE 2 O 3 , in the formation YAGs, presenting similar microstructural and mechanical properties. (author)

  19. Densification behavior, doping profile and planar waveguide laser performance of the tape casting YAG/Nd:YAG/YAG ceramics

    Science.gov (United States)

    Ge, Lin; Li, Jiang; Qu, Haiyun; Wang, Juntao; Liu, Jiao; Dai, Jiawei; Zhou, Zhiwei; Liu, Binglong; Kou, Huamin; Shi, Yun; Wang, Zheng; Pan, Yubai; Gao, Qingsong; Guo, Jingkun

    2016-10-01

    The sintering behavior and doping concentration profile of the planar waveguide YAG/Nd:YAG/YAG ceramics by the tape casting and solid-state reaction method were investigated on the basis of densification trajectory, microstructure evolution, and Nd3+ ions diffusion. The porosity of the green body by tape casting and cold isostatic pressing is about 38.6%. And the green bodies were consolidated from 1100 °C to 1800 °C for 0.5-20 h to study the densification and the doping diffusion behaviors. At the temperature higher than 1500 °C, pure YAG phase is formed, followed by the densification and grain growth process. With the increase of temperature, two sintering stages occur, corresponding to remarkable densification and significant grain growth, respectively. The mechanism controlling densification at 1550 °C is grain boundary diffusion. The diffusion of Nd3+ ions is more sensitive to temperature than the sintering time, and the minimum temperature required for the obvious diffusion of Nd3+ ions is higher than 1700 °C. Finally, planar waveguide YAG/1.5 at.%Nd:YAG/YAG transparent ceramics with in-line transmittance of 84.8% at 1064 nm were obtained by vacuum-sintering at 1780 °C for 30 h. The fluorescence lifetime of 4F3/2 state of Nd3+ in the specimen is about 259 μs. The prepared ceramic waveguide was tested in a laser amplifier and the laser pulse was amplificated from 87 mJ to 238 mJ, with the pump energy of 680 mJ.

  20. Nd:YAG laser annealing investigation of screen-printed CIGS layer on PET: Layer annealing method for photovoltaic cell fabrication process

    KAUST Repository

    Alsaggaf, Ahmed; Alarousu, Erkki; Boulfrad, Samir; Rothenberger, Alexander

    2014-01-01

    by heat treatment using a Nd:YAG laser. The structure and morphology of the heated thin films were studied. The characterization of the CIGS powder, ink, and film was done using TGA, SEM, FIB, EDS, and XRD. TGA analysis shows that the CIGS ink is drying

  1. Investigation of domain walls in GMO crystals by conoscope method

    International Nuclear Information System (INIS)

    Radchenko, I.R.; Filimonova, L.A.

    1993-01-01

    The patterns of polarized beam interference (conoscopic patterns) enable assessment of orientation and parameters of crystal's optical indicatrix. The presented conoscopic patterns of gadolinium molybdate crystal in the vicinity to plane and wedge-live domain walls differ from conoscopic patterns of the crystals far away from these walls which allows to spear about changes occurring in the crystal in the vicinity to domain walls

  2. Investigation of the influence of crystal quality on Borrmann spectroscopy

    International Nuclear Information System (INIS)

    Kalaydzhyan, Aram

    2012-12-01

    The goal of thesis is to apply the dynamical theory of X-ray diffraction for perfect crystals to mosaic crystals, which are composed of slightly misoriented blocks. For this purpose statistical methods were used for the description of crystal defects. This concept was combined with the diffraction theory and implemented in code. This program was used for numerical simulations of diffraction processes in transmission geometry by plane barium titanate crystals. The computed dependencies on defects for Borrmann spectroscopy satisfy the initial expectations for medium orders of crystal defects qualitatively.

  3. Investigation of the influence of crystal quality on Borrmann spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, Aram

    2012-12-15

    The goal of thesis is to apply the dynamical theory of X-ray diffraction for perfect crystals to mosaic crystals, which are composed of slightly misoriented blocks. For this purpose statistical methods were used for the description of crystal defects. This concept was combined with the diffraction theory and implemented in code. This program was used for numerical simulations of diffraction processes in transmission geometry by plane barium titanate crystals. The computed dependencies on defects for Borrmann spectroscopy satisfy the initial expectations for medium orders of crystal defects qualitatively.

  4. crystal

    Science.gov (United States)

    Yu, Yi; Huang, Yisheng; Zhang, Lizhen; Lin, Zhoubin; Sun, Shijia; Wang, Guofu

    2014-07-01

    A Nd3+:Na2La4(WO4)7 crystal with dimensions of ϕ 17 × 30 mm3 was grown by the Czochralski method. The thermal expansion coefficients of Nd3+:Na2La4(WO4)7 crystal are 1.32 × 10-5 K-1 along c-axis and 1.23 × 10-5 K-1 along a-axis, respectively. The spectroscopic characteristics of Nd3+:Na2La4(WO4)7 crystal were investigated. The Judd-Ofelt theory was applied to calculate the spectral parameters. The absorption cross sections at 805 nm are 2.17 × 10-20 cm2 with a full width at half maximum (FWHM) of 15 nm for π-polarization, and 2.29 × 10-20 cm2 with a FWHM of 14 nm for σ-polarization. The emission cross sections are 3.19 × 10-20 cm2 for σ-polarization and 2.67 × 10-20 cm2 for π-polarization at 1,064 nm. The fluorescence quantum efficiency is 67 %. The quasi-cw laser of Nd3+:Na2La4(WO4)7 crystal was performed. The maximum output power is 80 mW. The slope efficiency is 7.12 %. The results suggest Nd3+:Na2La4(WO4)7 crystal as a promising laser crystal fit for laser diode pumping.

  5. Systematic study of formation and crystal structure of 3d-transition metal nitrides synthesized in a supercritical nitrogen fluid under 10 GPa and 1800 K using diamond anvil cell and YAG laser heating

    International Nuclear Information System (INIS)

    Hasegawa, Masashi; Yagi, Takehiko

    2005-01-01

    Syntheses of 3d-transition metal (Ti-Cu) nitrides have been tried in a supercritical nitrogen fluid at high pressures (about 10 GPa) and high temperatures (about 1800 K) using diamond anvil cell and YAG laser heating system. Nitrides, such as TiN, VN, CrN, Mn 3 N 2 , Fe 2 N, Co 2 N and Ni 3 N have been successfully synthesized easily by a simple direct nitriding reaction between metal and fluid nitrogen in a short time, while any Cu nitrides were not synthesized. These results indicate that the ratio of nitrogen to metal, N/M, of the nitride decreases from 1 to 0 with the sequence from the early transition metal nitrides to the late transition metal ones. The systematic change of the N/M ratio and crystal structure of the 3d-transition metal nitrides is discussed and interpreted on the basis of the electron arrangement of the 3d-transition metal which is relevant to its coordination number

  6. Crystallization of Polymers Investigated by Temperature-Modulated DSC

    OpenAIRE

    Maria Cristina Righetti

    2017-01-01

    The aim of this review is to summarize studies conducted by temperature-modulated differential scanning calorimetry (TMDSC) on polymer crystallization. This technique can provide several advantages for the analysis of polymers with respect to conventional differential scanning calorimetry. Crystallizations conducted by TMDSC in different experimental conditions are analysed and discussed, in order to illustrate the type of information that can be deduced. Isothermal and non-isothermal crystal...

  7. Investigating the nucleation of protein crystals with hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kadri, A [Departement ' Mecanismes et Macromolecules de la Synthese Proteique et Cristallogenese' UPR 9002, Institut de Biologie Moleculaire et Cellulaire du CNRS, 15 rue Rene Descartes, F-67084 Strasbourg Cedex (France); Damak, M [Laboratoire de Chimie des Substances Naturelles, Faculte des Sciences de Sfax, BP 802, 3018 Sfax (Tunisia); Jenner, G [Laboratoire de Piezochimie Organique, UMR 7123, Faculte de Chimie, Universite Louis Pasteur, 1 rue Blaise Pascal, F-67008 Strasbourg Cedex (France); Lorber, B [Departement ' Mecanismes et Macromolecules de la Synthese Proteique et Cristallogenese' UPR 9002, Institut de Biologie Moleculaire et Cellulaire du CNRS, 15 rue Rene Descartes, F-67084 Strasbourg Cedex (France); Giege, R [Departement ' Mecanismes et Macromolecules de la Synthese Proteique et Cristallogenese' UPR 9002, Institut de Biologie Moleculaire et Cellulaire du CNRS, 15 rue Rene Descartes, F-67084 Strasbourg Cedex (France)

    2003-12-17

    Hydrostatic pressure in the 0.1-75 MPa range has been used as a non-invasive tool to study the crystallization process of the tetragonal crystal form of the protein thaumatin (M{sub r} 22 200). Crystals were prepared within agarose gel and at temperatures in the range from 283 to 303 K. The solubility, i.e. the concentration of soluble macromolecules remaining in equilibrium with the crystals, decreases when the pressure increases and when the temperature decreases. High pressure was used to probe the nucleation behaviour of thaumatin. The pressure dependence of the nucleation rate leads to an activation volume of -46.5cm{sup 3} mol{sup -1}. It is shown that an increase in pressure decreases the enthalpy, the entropy and the free energy of crystallization of thaumatin. The data are discussed in the light of the results of crystallographic analyses and of the structure of the protein.

  8. Investigating the nucleation of protein crystals with hydrostatic pressure

    International Nuclear Information System (INIS)

    Kadri, A; Damak, M; Jenner, G; Lorber, B; Giege, R

    2003-01-01

    Hydrostatic pressure in the 0.1-75 MPa range has been used as a non-invasive tool to study the crystallization process of the tetragonal crystal form of the protein thaumatin (M r 22 200). Crystals were prepared within agarose gel and at temperatures in the range from 283 to 303 K. The solubility, i.e. the concentration of soluble macromolecules remaining in equilibrium with the crystals, decreases when the pressure increases and when the temperature decreases. High pressure was used to probe the nucleation behaviour of thaumatin. The pressure dependence of the nucleation rate leads to an activation volume of -46.5cm 3 mol -1 . It is shown that an increase in pressure decreases the enthalpy, the entropy and the free energy of crystallization of thaumatin. The data are discussed in the light of the results of crystallographic analyses and of the structure of the protein

  9. Nd:YAG laser for holography

    International Nuclear Information System (INIS)

    Bykovsky, Yu.A.; Evtihiev, N.N.; Larkin, A.I.

    1982-01-01

    Different possibilities to use photonics, holography and optical processing for nuclear physics has been investigated in our works. The paper presents the results of the study of time and spatial coherence of Nd:YAG laser and application in holography. (orig./HSI)

  10. NQR investigation and characterization of cocrystals and crystal polymorphs

    Energy Technology Data Exchange (ETDEWEB)

    Seliger, Janez, E-mail: janez.seliger@fmf.uni-lj.si; Zagar, Veselko [Jozef Stefan Institute (Slovenia); Asaji, Tetsuo [Nihon University, Department of Chemistry, College of Humanities and Sciences (Japan)

    2013-05-15

    The application of {sup 14}N NQR to the study of cocrystals and crystal polymorphs is reviewed. In ferroelectric and antiferroelectric organic cocrystals {sup 14}N NQR is used to determine proton position in an N-H...O hydrogen bond and proton displacement below T{sub C}. In cocrystal isonicitinamide - oxalic acid (2:1) {sup 14}N NQR is used to distinguish between two polymorphs and to determine the type of the hydrogen bond (N{sup -}...H-O). The difference in the {sup 14}N NQR spectra of cocrystal formers and cocrystal is investigated in case of carbamazepine, saccharin and carbamazepine - saccharin (1:1). The experimental resolution allows an unambiguous distinction between the {sup 14}N NQR spectrum of the cocrystal and the {sup 14}N NQR spectra of the cocrystal formers. The possibility of application of NQR and double resonance for the determination of the inhomogeneity of the sample and for the study of the life time of an unstable polymorph is discussed.

  11. Development of frequency tunable Ti:sapphire laser and dye laser pumped by a pulsed Nd:YAG laser

    International Nuclear Information System (INIS)

    Yi, Jong Hoon; Horn, Roland; Wendt, K.

    2001-01-01

    We investigated lasing characteristics of two kinds of tunable laser, liquid dye laser and solid Ti:sapphire crystal laser, pumped by high pulse repetition rate Nd:YAG laser. Dye laser showed drastically reduced pulsewidth compared with that of pump laser and it also contained large amount of amplified spontaneous emission. Ti:sapphire laser showed also reduced pulsewidth. But, the laser conversion pump laser and Ti:sapphire laser pulse, we used a Brewster-cut Pockel's cell for Q-switching. The laser was frequency doubled by a type I BBO crystal outside of the cavity.

  12. Nd:YAG Lasers Treating of Carious Lesion and Root Canal In Vitro

    Directory of Open Access Journals (Sweden)

    Danqing Xia

    2012-01-01

    Full Text Available Dental caries is a transmissible bacterial disease process, with cavities at the end, and caused by acids from bacterial metabolism. The essence of dental treatment is to clean and disinfect bacterial contamination from the tooth. In this work, we tried to demonstrate the cleaning and disinfecting effects of Nd:YAG laser irradiation on dental carious lesion and root canal in vitro. Acousto-optic Q-switched quasicontinuous and Cr3+:YAG crystal Q-switched pulse Nd:YAG lasers were employed to treat caries lesion and the root canal, respectively. Results showed that acousto-optic Q-switched quasicontinuous Nd:YAG laser irradiation and Cr3+:YAG crystal Q-switched pulse Nd:YAG laser irradiation could rapidly clean decayed material and bacterial contamination from dental carious lesion and the narrow tail end of root canal with minimally invasive in vitro, respectively. It was concluded that acousto-optic Q-switched quasicontinuous laser irradiation may be a rapid and effective alternative caries treatment, and Cr3+:YAG crystal Q-switched pulse Nd:YAG laser irradiation may be an effective method for canal cleaning and disinfecting during root canal therapy.

  13. Highly efficient solar-pumped Nd:YAG laser.

    Science.gov (United States)

    Liang, Dawei; Almeida, Joana

    2011-12-19

    The recent progress in solar-pumped laser with Fresnel lens and Cr:Nd:YAG ceramic medium has revitalized solar laser researches, revealing a promising future for renewable reduction of magnesium from magnesium oxide. Here we show a big advance in solar laser collection efficiency by utilizing an economical Fresnel lens and a most widely used Nd:YAG single-crystal rod. The incoming solar radiation from the sun is focused by a 0.9 m diameter Fresnel lens. A dielectric totally internally reflecting secondary concentrator is employed to couple the concentrated solar radiation from the focal zone to a 4 mm diameter Nd:YAG rod within a conical pumping cavity. 12.3 W cw laser power is produced, corresponding to 19.3 W/m(2) collection efficiency, which is 2.9 times larger than the previous results with Nd:YAG single-crystal medium. Record-high slope efficiency of 3.9% is also registered. Laser beam quality is considerably improved by pumping a 3 mm diameter Nd:YAG rod.

  14. Crystallization of Polymers Investigated by Temperature-Modulated DSC

    Directory of Open Access Journals (Sweden)

    Maria Cristina Righetti

    2017-04-01

    Full Text Available The aim of this review is to summarize studies conducted by temperature-modulated differential scanning calorimetry (TMDSC on polymer crystallization. This technique can provide several advantages for the analysis of polymers with respect to conventional differential scanning calorimetry. Crystallizations conducted by TMDSC in different experimental conditions are analysed and discussed, in order to illustrate the type of information that can be deduced. Isothermal and non-isothermal crystallizations upon heating and cooling are examined separately, together with the relevant mathematical treatments that allow the evolution of the crystalline, mobile amorphous and rigid amorphous fractions to be determined. The phenomena of ‘reversing’ and ‘reversible‘ melting are explicated through the analysis of the thermal response of various semi-crystalline polymers to temperature modulation.

  15. Temperature-dependent μ-Raman investigation of struvite crystals.

    Science.gov (United States)

    Prywer, Jolanta; Kasprowicz, D; Runka, T

    2016-04-05

    The effect of temperature on the vibrational properties of struvite crystals grown from silica gels was systematically studied by μ-Raman spectroscopy. The time-dependent Raman spectra recorded in the process of long time annealing of struvite crystal at 353 K do not indicate structural changes in the struvite crystal with the time of annealing. The temperature-dependent Raman spectra recorded in the range 298-423 K reveal a phase transition in struvite at about 368 K. Above this characteristic temperature, some of bands assigned to vibrations of the PO4 and NH4 tetrahedra and water molecules observed in the Raman spectra in low temperatures (orthorhombic phase) change their spectral parameters or disappear, which indicates a transition to a higher symmetry structure of struvite in the range of high temperatures. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Er∶YAG激光防龋可行性的探讨%To investigate the feasibility of Er:YAG laser caries

    Institute of Scientific and Technical Information of China (English)

    陈冬冬; 陈晶晶

    2014-01-01

    Er∶YAG激光属于中红外线激光,对水具有高度的亲和性,相较于传统的治疗方法而言具有更大的优势,能够有效的缓解患者在治疗过程中产生的不适感与疼痛,患者更易接受。因Er∶YAG激光在牙科治疗中的应用增多和研究地不断深入,现对其工作原理及在牙科防龋中的优势和应用进行综述。%Er:YAG laser which belongs to the infrared laser, have high affinity for water treatment, compared with traditional method has more advantages, can effectively relieve patients produced in the treatment process of discomfort and pain, patients are more likely to accept. Because of the application of Er:YAG laser in the dental treatment increased and the deepening of research, we have reviewed its working principle andadvantage and application in dental caries in.

  17. Nd:YAG laser annealing investigation of screen-printed CIGS layer on PET: Layer annealing method for photovoltaic cell fabrication process

    KAUST Repository

    Alsaggaf, Ahmed

    2014-06-01

    Cu(In, Ga)Se2 (CIGS) ink was formulated from CIGS powder, polyvinyl butyral PVB, terpineol and polyester/polyamine co-polymeric dispersant KD-1. Thin films with different thicknesses were deposited on PET substrate using screen-printing followed by heat treatment using a Nd:YAG laser. The structure and morphology of the heated thin films were studied. The characterization of the CIGS powder, ink, and film was done using TGA, SEM, FIB, EDS, and XRD. TGA analysis shows that the CIGS ink is drying at 200 °C, which is well below the decomposition temperature of the PET substrate. It was observed by SEM that 20 pulses of 532nm and 60 mJ/cm2 Nd:YAG laser annealing causes atomic diffusion on the near surface area. Furthermore, FIB cross section images were utilized to monitor the effect of laser annealing in the depth of the layer. Laser annealing effects were compared to as deposited layer using XRD in reference to CIGS powder. The measurement shows that crystallinity of deposited CIGS is retained while EDS quantification and atomic ratio result in gradual loss of selenium as laser energy increases. The laser parameters were tuned in an effort to utilize laser annealing of screen-printed CIGS layer as a layer annealing method for solar cell fabrication process.

  18. Using PXRD to Investigate the Crystallization of Highly ...

    African Journals Online (AJOL)

    The process of crystallization of highly concentrated emulsions of ammonium nitrate can be studied using powder X-ray diffraction. The dispersed particles comprise a supercooled aqueous solution of the ammonium nitrate salt and are dispersed in a paraffin-based oil. This results in a thermodynamically unstable system ...

  19. Investigating the vortex melting phenomenon in BSCCO crystals ...

    Indian Academy of Sciences (India)

    reveal complex patterns in the formation and evolution of the vortex solid–liquid interface ... images of the melting process in a BSCCO crystal (Tc =90 K) of area 0.35×0.27 mm2 .... For example, at 20 Oe the valley in the form of an arc along.

  20. Controlled in meso phase crystallization--a method for the structural investigation of membrane proteins.

    Directory of Open Access Journals (Sweden)

    Jan Kubicek

    Full Text Available We investigated in meso crystallization of membrane proteins to develop a fast screening technology which combines features of the well established classical vapor diffusion experiment with the batch meso phase crystallization, but without premixing of protein and monoolein. It inherits the advantages of both methods, namely (i the stabilization of membrane proteins in the meso phase, (ii the control of hydration level and additive concentration by vapor diffusion. The new technology (iii significantly simplifies in meso crystallization experiments and allows the use of standard liquid handling robots suitable for 96 well formats. CIMP crystallization furthermore allows (iv direct monitoring of phase transformation and crystallization events. Bacteriorhodopsin (BR crystals of high quality and diffraction up to 1.3 Å resolution have been obtained in this approach. CIMP and the developed consumables and protocols have been successfully applied to obtain crystals of sensory rhodopsin II (SRII from Halobacterium salinarum for the first time.

  1. Tape casting fabrication and properties of planar waveguide YAG/Yb:YAG/YAG transparent ceramics

    Science.gov (United States)

    Zhao, Yu; Liu, Qiang; Ge, Lin; Wang, Chao; Li, Wenxue; Yang, Chao; Wang, Juntao; Yuan, Lei; Xie, Tengfei; Kou, Huamin; Pan, Yubai; Gao, Qingsong; Bo, Yong; Peng, Qinjun; Xu, Zuyan; Li, Jiang

    2017-07-01

    Highly transparent YAG/10at.%Yb:YAG/YAG planar waveguide ceramics were fabricated by the non-aqueous tape casting and solid-state reactive sintering technology. The tapes are relatively homogeneous and the green body shows a dense structure without distinct interfaces after the treatment of debinding and cold isostatic pressing. YAG/10at.%Yb:YAG/YAG ceramics with almost full dense structure were obtained by vacuum-sintering at 1760 °C for 30 h. For the mirror-polished sample with the thickness of 3.5 mm, the In-line transmittance was measured to be 83.6% at the visual wavelength of 400 nm. The diffusion distance of the Yb3+ ions was about 215 μm along the thickness direction of the ceramics. In the lasing experiments, the YAG/10at.%Yb:YAG/YAG planar waveguide ceramics were end-pumped by a 976 nm semiconductor diode laser and enabled efficient continuous-wave lasers, which resulted in a maximum output power of 1.6 W and a slope efficiency of 34.4% at 1030 nm.

  2. Investigations on nucleation, HRXRD, optical, piezoelectric, polarizability and Z-scan analysis of L-arginine maleate dihydrate single crystals

    Science.gov (United States)

    Sakthy Priya, S.; Alexandar, A.; Surendran, P.; Lakshmanan, A.; Rameshkumar, P.; Sagayaraj, P.

    2017-04-01

    An efficient organic nonlinear optical single crystal of L-arginine maleate dihydrate (LAMD) has been grown by slow evaporation solution technique (SEST) and slow cooling technique (SCT). The crystalline perfection of the crystal was examined using high-resolution X-ray diffractometry (HRXRD) analysis. Photoluminescence study confirmed the optical properties and defects level in the crystal lattice. Electromechanical behaviour was observed using piezoelectric co-efficient (d33) analysis. The photoconductivity analysis confirmed the negative photoconducting nature of the material. The dielectric constant and loss were measured as a function of frequency with varying temperature and vice-versa. The laser damage threshold (LDT) measurement was carried out using Nd:YAG Laser with a wavelength of 1064 nm (Focal length is 35 cm) and the obtained results showed that LDT value of the crystal is high compared to KDP crystal. The high laser damage threshold of the grown crystal makes it a potential candidate for second and higher order nonlinear optical device application. The third order nonlinear optical parameters of LAMD crystal is determined by open-aperture and closed-aperture studies using Z-scan technique. The third order linear and nonlinear optical parameters such as the nonlinear refractive index (n2), two photon absorption coefficient (β), Real part (Reχ3) and imaginary part (Imχ3) of third-order nonlinear optical susceptibility are calculated.

  3. CW Yb:YAG LASER FOR PORTABLE MEASURING SYSTEMS

    Directory of Open Access Journals (Sweden)

    A. M. Ivashko

    2014-01-01

    Full Text Available The theoretical and experimental results of longitudinally continuous-wave diode-pumped Yb:Y3Al5O12 (YAG laser performance for compact field-condition measuring systems were demonstrated. Optimization of laser setup in terms of operation condition in the range of -40 ˚С – +65 ˚С without active thermal stabilization was carried out. Using Yb (10 ат.%:YAG crystal with the length of 3 mm the maximal output power more than 2 W was obtained in the whole of temperature range.

  4. Thulium doped crystals for quantum information storage

    Energy Technology Data Exchange (ETDEWEB)

    Lauro, R., E-mail: romain.lauro@lac.u-psud.f [Laboratoire Aime Cotton, CNRS-UPR 3321, Univ Paris Sud, Batiment 505, 91405 Orsay cedex (France); Ruggiero, J.; Louchet, A.; Alexander, A.; Chaneliere, T.; Lorgere, I.; Bretenaker, F.; Goldfarb, F.; Le Gouet, J.-L. [Laboratoire Aime Cotton, CNRS-UPR 3321, Univ Paris Sud, Batiment 505, 91405 Orsay cedex (France)

    2009-12-15

    Optically driving nuclear spin waves in a Tm:YAG crystal, we experimentally demonstrate the feasibility of a three-level {Lambda} system in this material, which is a foundation step in the prospect of quantum memory investigations. Varying the spin state splitting with an external magnetic field, we show that the nuclear spin coherence lifetime remains close to 350mus over a wide range of variation of this splitting. Finally, we demonstrate fast coherent population transfer between the spin states.

  5. Crystal chemistry of nephelines from ijolites and nepheline-rich pegmatites: influence of composition and genesis on the crystal structure investigated by X-ray diffraction

    DEFF Research Database (Denmark)

    Vulić, Predrag; Balić-Žunić, Tonči; Belmonte, Louise Josefine

    2011-01-01

    Ten nepheline single crystals from five different localities representing rocks from nepheline-syenite pegmatites to urtite, ijolite and cancrinite-ijolite were investigated chemically and structurally. The chemical compositions were determined by electron microprobe, whereas the crystal structur...

  6. Investigation of the liquid crystal alignment layer: effect on electrical properties

    Energy Technology Data Exchange (ETDEWEB)

    Abderrahmen, Asma; Romdhane, Fayda Fekih; Gharbi, Abdelhafidh [Laboratoire de la matiere molle, Faculte des sciences, Tunis (Tunisia); Ouada, Hafedh Ben [Laboratoire de physique et chimie des interfaces, Faculte des sciences, 5000 Monastir (Tunisia)], E-mail: asma_abderrahmen@yahoo.fr

    2008-04-01

    We investigate the electrical behavior of a symmetric liquid crystal (LC) cell: elecrode-silane-LC-silane-electrode. The silane (chlorodimethyloctadecyl-silane) layer induces a homeotropic orientation of the nematic liquid crystal (NLC) molecules. The wettability technique is used to detect the change of the surface energy of the electrode upon cleaning and silane layer deposition. We report on the dynamic impedance measurements of the nematic liquid crystal cell. It is found that the silane alignment layer has a blocking effect on the liquid crystal (LC) cell. We also study the relaxation behavior of the cell which is later assimilated as an electrical equivalent circuit.

  7. Investigation of the liquid crystal alignment layer: effect on electrical properties

    International Nuclear Information System (INIS)

    Abderrahmen, Asma; Romdhane, Fayda Fekih; Gharbi, Abdelhafidh; Ouada, Hafedh Ben

    2008-01-01

    We investigate the electrical behavior of a symmetric liquid crystal (LC) cell: elecrode-silane-LC-silane-electrode. The silane (chlorodimethyloctadecyl-silane) layer induces a homeotropic orientation of the nematic liquid crystal (NLC) molecules. The wettability technique is used to detect the change of the surface energy of the electrode upon cleaning and silane layer deposition. We report on the dynamic impedance measurements of the nematic liquid crystal cell. It is found that the silane alignment layer has a blocking effect on the liquid crystal (LC) cell. We also study the relaxation behavior of the cell which is later assimilated as an electrical equivalent circuit

  8. muSR-Investigation of a Liquid Crystal Containing Iron Atoms

    CERN Document Server

    Mamedov, T N; Galyametdinov, Yu G; Gritsaj, K I; Herlach, D; Kormann, O; Major, J V; Rochev, V Ya; Stoikov, A V; Zimmermann, U

    2000-01-01

    The work is devoted to the investigation of properties of a liquid crystal whose molecule contains iron atom. The compounds of this type are of interest from the point of view of obtaining liquid crystals with magnetic properties. The temperature dependence of the polarization and relaxation rate of positive muon spin in the liquid crystal was measured in the temperature range 4-300 K. The results obtained do not contradict the suggestion that the iron ions from an antiferromagnetically-ordered structure in this liquid crystal at the temperatures below 80 K.

  9. Model and experimental investigation of frequency conversion in AgGaGexS2(1+x) (x = 0, 1) crystals

    International Nuclear Information System (INIS)

    Wang Tiejun; Kang Zhihui; Zhang Hongzhi; Feng Zhishu; Jiang Yun; Gao Jinyue; Andreev, Yury M; Lanskii, Gregory V; Shaiduko, Anna V

    2007-01-01

    Analysis of available and developed data on phase matching in AgGaGe x S 2(1+x) (x = 0, 1) crystals is carried out. Nanosecond AgGaS 2 type I optical parametric oscillator with a continuously tunable range 2.65-5.29 μm is demonstrated pumped by a Q-switched Nd : YAG laser. An output pulse energy of up to 0.56 mJ at 4 μm is recorded. Phase matching of second harmonic generation in both crystals is represented. Best sets of Sellmeier equations for two crystals are determined

  10. Experimental investigations on weakly polar liquid crystal-aerosil composites

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, Chethan V; Prasad, S Krishna; Yelamaggad, C V [Centre for Liquid Crystal Research, Jalahalli, Bangalore 560013 (India)

    2006-01-25

    We have carried out differential scanning calorimetric and dielectric studies on composites of hydrophilic aerosil with a liquid crystal that does not possess a terminal polar group. While the shift in the nematic-isotropic transition temperature is in agreement with the general behaviour observed for such composites, the dielectric studies show, contrary to the commonly observed feature, that there is a systematic increase in the relaxation frequency associated with the rotation of the molecules around their short axis, as the aerosil concentration in the composite is increased.

  11. Twinning processes in Cu-Al-Ni martensite single crystals investigated by neutron single crystal diffraction method

    International Nuclear Information System (INIS)

    Molnar, P.; Sittner, P.; Novak, V.; Lukas, P.

    2008-01-01

    A neutron single crystal diffraction method for inspecting the quality of martensite single crystals is introduced. True interface-free martensite single crystals are indispensable for, e.g. measurement of elastic constants of phases by ultrasonic techniques. The neutron diffraction method was used to detect and distinguish the presence of individual lattice correspondence variants of the 2H orthorhombic martensite phase in Cu-Al-Ni as well as to follow the activity of twinning processes during the deformation test on the martensite variant single crystals. When preparing the martensite single variant prism-shaped crystals by compression deformation method, typically a small fraction of second unwanted martensitic variant (compound twin) remains in the prism samples. Due to the very low stress (∼1 MPa) for the compound twinning in many shape memory alloys, it is quite difficult not only to deplete the martensite prisms of all internal interfaces but mainly to keep them in the martensite single variant state for a long time needed for further investigations

  12. Ultrasound Flow Mapping for the Investigation of Crystal Growth.

    Science.gov (United States)

    Thieme, Norman; Bonisch, Paul; Meier, Dagmar; Nauber, Richard; Buttner, Lars; Dadzis, Kaspars; Patzold, Olf; Sylla, Lamine; Czarske, Jurgen

    2017-04-01

    A high energy conversion and cost efficiency are keys for the transition to renewable energy sources, e.g., solar cells. The efficiency of multicrystalline solar cells can be improved by enhancing the understanding of its crystallization process, especially the directional solidification. In this paper, a novel measurement system for the characterization of flow phenomena and solidification processes in low-temperature model experiments on the basis of ultrasound (US) Doppler velocimetry is described. It captures turbulent flow phenomena in two planes with a frame rate of 3.5 Hz and tracks the shape of the solid-liquid interface during multihour experiments. Time-resolved flow mapping is performed using four linear US arrays with a total of 168 transducer elements. Long duration measurements are enabled through an online, field-programmable gate array (FPGA)-based signal processing. Nine single US transducers allow for in situ tracking of a solid-liquid interface. Results of flow and solidification experiments in the model experiment are presented and compared with numerical simulation. The potential of the developed US system for measuring turbulent flows and for tracking the solidification front during a directional crystallization process is demonstrated. The results of the model experiments are in good agreement with numerical calculations and can be used for the validation of numerical models, especially the selection of the turbulence model.

  13. Investigation of transient photoresponse of WSSe ternary alloy crystals

    Science.gov (United States)

    Chauhan, Payal; Solanki, G. K.; Tannarana, Mohit; Pataniya, Pratik; Patel, K. D.; Pathak, V. M.

    2018-05-01

    Transition metal chalcogenides have been studied intensively in recent time due to their tunability of electronic properties by compositional change, alloying and by transforming bulk material into crystalline 2D structure. These changes lead to the development of verities of next generation opto-electronic device applications such as solar cells, FETs and flexible detectors etc. In present work, we report growth and characterization of crystalline ternary alloy WSSe by direct vapour transport technique. A photodetector is constructed using grown crystals to study its transient photoresponse under polychromatic radiation. The WSSe crystals are mechanically exfoliated to thickness of 3 µm and the lateral dimension of prepared sample is 2.25 mm2. The time-resolved photoresponse is studied under polychromatic illumination of power density ranging from 10 to 40 mW/cm2. The photo response is also studied under different bias voltages ranging from 0.1 V to 0.5 V. The typical photodetector parameters i.e. photocurrent, rise and fall time, responsivity and sensitivity are evaluated and discussed in light of the ternary alloy composition.

  14. Investigation on the growth of DAST crystals of large surface area for THz applications

    International Nuclear Information System (INIS)

    Vijay, R. Jerald; Melikechi, N.; Thomas, Tina; Gunaseelan, R.; Arockiaraj, M. Antony; Sagayaraj, P.

    2012-01-01

    Graphical abstract: It is evident from the photographs that the crystal tend to grow as a needle (Fig. 1a) in the lower concentration region (2–3 g/200 mL); whereas, in the high concentration region (5 g/200 mL) though there is a marked enlargement in the size of the crystal, the morphology of the resulting DAST crystal is slightly irregular (Fig. 1d) in nature. Among the four concentrations employed, best result was obtained with the DAST–methanol solution of concentration 4 g/200 mL; which resulted in the DAST crystal of large surface area (270 mm 2 ) with high transparency and nearly square shape (Fig. 1c) in a growth period of 20–25 days. Highlights: ► DAST crystals of different sizes are obtained for different concentrations. ► The main focus is to grow DAST crystals with large surface area. ► Structural, optical, thermal and mechanical properties are investigated. - Abstract: The growth of high quality 4-N,N-dimethylamino-4-N-methyl-stilbazoliumtosylate (DAST) crystal with large surface area is reported by adopting the slope nucleation coupled slow evaporation method (SNM-SE). The structure and composition of the crystal are studied by single crystal X-ray diffraction and CHN analyses. The linear optical properties are investigated by UV–vis absorption. The melting point and thermal behavior of DAST are investigated using differential scanning calorimetric (DSC) and thermogravimetric analyses (TGA). The Vickers microhardness number (VHN) and work hardening coefficient of the grown crystal have been determined. The surface features of the DAST crystal are analyzed by scanning electron microscopy (SEM) and it confirmed the presence of narrow line defects (NLDs) in the sample.

  15. High-efficient Nd:YAG microchip laser for optical surface scanning

    Science.gov (United States)

    Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2017-12-01

    A CW operating, compact, high-power, high-efficient diode pumped 1064nm laser, based on Nd:YAG active medium, was developed for optical surface scanning and mapping applications. To enhance the output beam quality, laser stability, and compactness, a microchip configuration was used. In this arrangement the resonator mirrors were deposited directly on to the laser crystal faces. The Nd-doping concentration was 1 at.% Nd/Y. The Nd:YAG crystal was 5mm long. The laser resonator without pumping radiation recuperation was investigated {the output coupler was transparent for pumping radiation. For the generated laser radiation the output coupler reflectivity was 95%@1064 nm. The diameter of the samples was 5 mm. For the laser pumping two arrangements were investigated. Firstly, a fibre coupled laser diode operating at wavelength 808nm was used in CW mode. The 400 ¹m fiber was delivering up to 14W of pump power amplitude to the microchip laser. The maximum CW output power of 7.2W @ 1064nm in close to TEM00 beam was obtained for incident pumping power 13.7W @ 808 nm. The differential efficiency in respect to the incident pump power reached 56 %. Secondly, a single-emitter, 1W laser diode operating at 808nm was used for Nd:YAG microchip pumping. The laser pumping was directly coupled into the microchip laser using free-space lens optics. Slope efficiency up to 70% was obtained in stable, high-quality, 1064nm laser beam with CW power up to 350mW. The system was successfully used for scanning of super-Gaussian laser mirrors reflectivity profile.

  16. POWER SCALING IN CONTINUOUS-WAVE YB:YAG MICROCHIP LASER FOR MEASURING APPLICATIONS

    Directory of Open Access Journals (Sweden)

    A. M. Ivashko

    2017-01-01

    Full Text Available Characteristics optimization of lasers used in different measuring systems is of great interest up to now. Diode-pumped microchip lasers is one of the most perspective ways for development of solid-state light sources with minimal size and weight together with low energy power consumption. Increasing of output power with good beam quality is rather difficult task for such type of lasers due to thermal effects in the gain crystal under high pump power.The investigation results of continuous-wave longitudinally diode-pumped Yb:YAG microchip laser are presented. In the presented laser radiation from multiple pump laser diodes were focused into the separate zone in one gain crystal that provides simultaneous generation of multiple laser beams. The energy and spatial laser beam characteristics were investigated.Influence of neighboring pumped regions on energy and spatial laser beams parameters both for separate and for sum laser output was observed. The dependences of laser output power from distance between neighboring pumped regions and their number were determined. Decreasing of laser output power was demonstrated with corresponding distance shortening between pumped regions and increasing their quantity with simultaneous improvement of laser beam quality.Demonstrated mutual influence of neighboring pumped regions in the longitudinally diode pumped Yb:YAG microchip laser allow as to generate diffraction limited Gaussian beam with 2W of continuous-wave output power that 30 % higher than in case of one pumped zone. 

  17. Computational investigation on 2,4,6-trinitrochlorobenzene crystal

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Xue-Hai; Qiu, Ling; Xiao, He-Ming [Department of Chemistry, Nanjing University of Science and Technology, Nanjing 210094 (China)

    2006-02-15

    Density functional theory calculations at the B3LYP level were performed on crystalline 2,4,6-trinitrochlorobenzene. The carbon, oxygen, and chlorine atoms make up the narrow lower energy bands, while the nitrogen, carbon, and oxygen atoms make up the higher energy bands. Besides, the contributions of these atomic orbitals to the frontier bands are somewhat well-proportioned. The Mulliken populations obviously demonstrate that the C-N bonds are the weakest, indicating that the C-NO{sub 2} is prone to rupture upon stimuli. An anisotropic impact on the bulk makes the electron transfer from chlorine to its neighbor carbon atom and from nitrogen atoms to oxygen atoms. The crystal lattice energy is predicted to be -50.99 kJ/mol, after being corrected for basis set superposition error. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  18. Investigation of classical radiation reaction with aligned crystals

    Energy Technology Data Exchange (ETDEWEB)

    Di Piazza, A., E-mail: dipiazza@mpi-hd.mpg.de [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 (Germany); Wistisen, Tobias N.; Uggerhøj, Ulrik I. [Department of Physics and Astronomy, Aarhus University, 8000 Aarhus (Denmark)

    2017-02-10

    Classical radiation reaction is the effect of the electromagnetic field emitted by an accelerated electric charge on the motion of the charge itself. The self-consistent underlying classical equation of motion including radiation–reaction effects, the Landau–Lifshitz equation, has never been tested experimentally, in spite of the first theoretical treatments of radiation reaction having been developed more than a century ago. Here we show that classical radiation reaction effects, in particular those due to the near electromagnetic field, as predicted by the Landau–Lifshitz equation, can be measured in principle using presently available facilities, in the energy emission spectrum of 30-GeV electrons crossing a 0.55-mm thick diamond crystal in the axial channeling regime. Our theoretical results indicate the feasibility of the suggested setup, e.g., at the CERN Secondary Beam Areas (SBA) beamlines.

  19. Evaluation of erbium:YAG and holmium:YAG laser radiation and dental hard tissue

    Science.gov (United States)

    Attrill, David Cameron

    Lasers have become increasingly established in medicine as effective alternatives or adjuncts to conventional techniques. In dentistry, several clinical laser systems have been developed and marketed, but their applications have been limited to soft tissue surgery. To date, no laser has been capable of effectively cutting or modifying the highly mineralised dental tissues of enamel and dentine. The aim of this study was to evaluate two new laser systems for use in dentistry through a series of in vitro experiments. Both generic erbium and holmium lasers have theoretically superior operating characteristics over currently established lasers for applications with dental hard tissues. The two lasers investigated in this study were pulsed Er:YAG (lambda=2.94) a.m. and Cr-Tm-Ho:YAG (lambda=2.1mu.m). Both operated with a macropulse duration of approximately 200lambdas, at pulse repetition rates of 2-8Hz and mean pulse energies up to 230mJ. Radiation was focused using CaF[2] lenses (f=50-120mm). The lasers could be operated with or without the addition of a surface water film at the interaction site. Tissue removal efficiency was expressed as a latent heat of ablation (LHA, kJ/cm[3]) using a modification of the technique described by Charlton et al. (1990). The mean LHA's for the Er:YAG laser were 6.24kJ/cm[3] and 22.99kJ/cm[3] with dentine and enamel respectively without water, and 10.07kJ/cm[3] and 18.73kJ/cm[3] for dentine and enamel with water. The Cr-Tm-Ho:YAG laser was unable to effectively remove enamel at the fluences and pulse energies available; the mean LHA's for the Cr-Tm- Ho:YAG laser with dentine were 82.79kJ/cm3 and 57.57kJ/cm3 with and without water respectively. The Cr-Tm-Ho;YAG was approximately 8-9 times less efficient for tissue removal than the Er:YAG system. Er:YAG tissue removal with water was characterised by clean "surgical" cuts, comparable in histological appearance to those obtained using conventional instrumentation. Some thermal disruption

  20. Relaxations and fast dynamics of the plastic crystal cyclo-octanol investigated by broadband dielectric spectroscopy

    OpenAIRE

    Lunkenheimer, Peter

    1997-01-01

    Relaxations and fast dynamics of the plastic crystal cyclo-octanol investigated by broadband dielectric spectroscopy / R. Brand, P. Lunkenheimer, A. Loidl. - In: Physical review. B. 56. 1997. S. R5713-R5716

  1. An investigation on capability of hybrid Nd:YAG laser-TIG welding technology for AA2198 Al-Li alloy

    Science.gov (United States)

    Faraji, Amir Hosein; Moradi, Mahmoud; Goodarzi, Massoud; Colucci, Pietro; Maletta, Carmine

    2017-09-01

    This paper surveys the capability of the hybrid laser-arc welding in comparison with lone laser welding for AA2198 aluminum alloy experimentally. In the present research, a continuous Nd:YAG laser with a maximum power of 2000 W and a 350 A electric arc were used as two combined welding heat sources. In addition to the lone laser welding experiments, two strategies were examined for hybrid welding; the first one was low laser power (100 W) accompanied by high arc energy, and the second one was high laser power (2000 W) with low arc energy. Welding speed and arc current varied in the experiments. The influence of heat input on weld pool geometry was surveyed. The macrosection, microhardness profile and microstructure of the welded joints were studied and compared. The results indicated that in lone laser welding, conduction mode occurred and keyhole was not formed even in low welding speeds and thus the penetration depth was so low. It was also found that the second approach (high laser power accompanied with low arc energy) is superior to the first one (low laser power accompanied with high arc energy) in hybrid laser-arc welding of Al2198, since lower heat input was needed for full penetration weld and as a result a smaller HAZ was created.

  2. Tunable, diode side-pumped Er:YAG laser

    Science.gov (United States)

    Hamilton, C.E.; Furu, L.H.

    1997-04-22

    A discrete-element Er:YAG laser, side pumped by a 220 Watt peak-power InGaAs diode array, generates >500 mWatts at 2.94 {micro}m, and is tunable over a 6 nm range near about 2.936 {micro}m. The oscillator is a plano-concave resonator consisting of a concave high reflector, a flat output coupler, a Er:YAG crystal and a YAG intracavity etalon, which serves as the tuning element. The cavity length is variable from 3 cm to 4 cm. The oscillator uses total internal reflection in the Er:YAG crystal to allow efficient coupling of the diode emission into the resonating modes of the oscillator. With the tuning element removed, the oscillator produces up to 1.3 Watts of average power at 2.94 {micro}m. The duty factor of the laser is 6.5% and the repetition rate is variable up to 1 kHz. This laser is useful for tuning to an atmospheric transmission window at 2.935 {micro}m (air wavelength). The laser is also useful as a spectroscopic tool because it can access several infrared water vapor transitions, as well as transitions in organic compounds. Other uses include medical applications (e.g., for tissue ablation and uses with fiber optic laser scalpels) and as part of industrial effluent monitoring systems. 4 figs.

  3. Spectroscopic and morphological investigation of conjugated photopolymerisable quinquethiophene liquid crystals

    KAUST Repository

    McGlashon, Andrew J.

    2012-09-01

    3′-methyl-(5,5′′-bis[3-ethyl-3-(6-phenyl-hexyloxymethyl) -oxetane])-2,2′:5′,2′′-terthiophene (5T(Me)Ox) is a solution processable small molecule semiconductor displaying smectic-C and nematic liquid crystal phases. The pendant oxetane group can be polymerized in situ in the presence of a suitable photoacid at concentrations ≥1% by weight. Spin-coated films of pure 5T(Me)Ox and 5T(Me)Ox doped with the soluble photoacid were characterized by absorption and photoluminescent spectroscopy. Thick pristine films showed absorption and emission from a crystalline phase. Thin monolayer (<5 nm) films, as well as thicker photoacid doped films, instead showed absorption from an H-aggregate phase and emission from an excimer. Optical microscopy showed a significant change in film structure upon addition of the photoacid; large and well-orientated crystals being replaced by much smaller domains which appear to vary in thickness. Grazing Incidence Wide Angle X-Ray Scattering (GIWAXS) was used to characterize the packing and orientation of molecules in the crystalline and doped samples. The results are consistent with the photoacid doped samples forming layers of H-aggregate phase monolayer sheets parallel to the substrate where the photoacid inhibits the transition into the three-dimensionally ordered crystalline phase. Field-effect transistors and light emitting diodes were constructed incorporating 5T(Me)Ox as the active layer. Pure 5T(Me)Ox field-effect transistors showed good, p-type device characteristics, but the morphological changes upon doping result in a loss of transistor action. In the diodes, curing through melting and exposure to UV light followed by photoacid removal resulted in an increase in current density but a decrease in light emission. These results indicate that the presence of the photoacid (≥1% by weight) can have a dramatic effect on the structure, morphology and device performance of ordered, photopatternable materials for organic

  4. Spectroscopic and morphological investigation of conjugated photopolymerisable quinquethiophene liquid crystals

    KAUST Repository

    McGlashon, Andrew J.; Zhang, Weimin; Smilgies, Detlef Matthias; Shkunov, Maxim N.; Genevičius, Kristijonas; Whitehead, Katherine S.; Amassian, Aram; Malliaras, George G.; Bradley, Donal D C; Heeney, Martin J.; Campbell, Alasdair J.

    2012-01-01

    3′-methyl-(5,5′′-bis[3-ethyl-3-(6-phenyl-hexyloxymethyl) -oxetane])-2,2′:5′,2′′-terthiophene (5T(Me)Ox) is a solution processable small molecule semiconductor displaying smectic-C and nematic liquid crystal phases. The pendant oxetane group can be polymerized in situ in the presence of a suitable photoacid at concentrations ≥1% by weight. Spin-coated films of pure 5T(Me)Ox and 5T(Me)Ox doped with the soluble photoacid were characterized by absorption and photoluminescent spectroscopy. Thick pristine films showed absorption and emission from a crystalline phase. Thin monolayer (<5 nm) films, as well as thicker photoacid doped films, instead showed absorption from an H-aggregate phase and emission from an excimer. Optical microscopy showed a significant change in film structure upon addition of the photoacid; large and well-orientated crystals being replaced by much smaller domains which appear to vary in thickness. Grazing Incidence Wide Angle X-Ray Scattering (GIWAXS) was used to characterize the packing and orientation of molecules in the crystalline and doped samples. The results are consistent with the photoacid doped samples forming layers of H-aggregate phase monolayer sheets parallel to the substrate where the photoacid inhibits the transition into the three-dimensionally ordered crystalline phase. Field-effect transistors and light emitting diodes were constructed incorporating 5T(Me)Ox as the active layer. Pure 5T(Me)Ox field-effect transistors showed good, p-type device characteristics, but the morphological changes upon doping result in a loss of transistor action. In the diodes, curing through melting and exposure to UV light followed by photoacid removal resulted in an increase in current density but a decrease in light emission. These results indicate that the presence of the photoacid (≥1% by weight) can have a dramatic effect on the structure, morphology and device performance of ordered, photopatternable materials for organic

  5. Crystal growth, optical properties, and laser operation of Yb3+-doped NYW single crystal

    Science.gov (United States)

    Cheng, Y.; Xu, X. D.; Yang, X. B.; Xin, Z.; Cao, D. H.; Xu, J.

    2009-11-01

    Laser crystal Yb3+-doped NaY(WO4)2 (Yb:NYW) with excellent quality has been grown by Czochralski technique. The rocking curves from (400) plane of as-grown Yb:NYW crystal was measured and the full-width value at half-maximum was 19.92″. The effective segregation coefficients were measured by the X-ray fluorescence method. The polarized absorption spectra and the fluorescence spectra of Yb:NYW crystal were measured at room temperature. The fluorescence decay lifetime of Yb3+ ion in NYW crystal has been investigated. The spectroscopic parameters of Yb:NYW crystal are calculated and compared with those of Yb:YAG crystal. A continuous wave output power of 3.06 W at 1031 nm was obtained with a slope efficiency of 42% by use of diode pumping.

  6. Photonic crystal-based optical biosensor: a brief investigation

    Science.gov (United States)

    Divya, J.; Selvendran, S.; Sivanantha Raja, A.

    2018-06-01

    In this paper, a two-dimensional photonic crystal biosensor for medical applications based on two waveguides and a nanocavity was explored with different shoulder-coupled nanocavity structures. The most important biosensor parameters, like the sensitivity and quality factor, can be significantly improved. By injecting an analyte into a sensing hole, the refractive index of the hole was changed. This refractive index biosensor senses the changes and shifts its operating wavelength accordingly. The transmission characteristics of light in the biosensor under different refractive indices that correspond to the change in the analyte concentration are analyzed by the finite-difference time-domain method. The band gap for each structure is designed and observed by the plane wave expansion method. These proposed structures are designed to obtain an analyte refractive index variation of about 1–1.5 in an optical wavelength range of 1.250–1.640 µm. Accordingly, an improved sensitivity of 136.6 nm RIU‑1 and a quality factor as high as 3915 is achieved. An important feature of this structure is its very small dimensions. Such a combination of attributes makes the designed structure a promising element for label-free biosensing applications.

  7. Investigation of organic desulfurization additives affecting the calcium sulfate crystals formation

    Directory of Open Access Journals (Sweden)

    Lv Lina

    2017-01-01

    Full Text Available In the study, the optimal experimental conditions for gypsum crystals formation were 323 K, 300 rpm stirring speed. The major impurities of Mg2+, Al3+ and Fe3+ were found to inhibit calcium sulfate crystals formation. Fe3+ caused the strongest inhibition, followed by Mg2+ and Al3+. The influence of desulfurization additives on the gypsum crystals formation was explored with the properties of moisture content, particle size distribution and crystal morphology. The organic desulfurization additives of adipic acid, citric acid, sodium citrate and benzoic acid were investigated. Citric acid and sodium citrate were found to improve the quality of gypsum. Moisture contents were reduced by more than 50%, gypsum particle sizes were respectively enlarged by 9.1 and 22.8%, induction time extended from 4.3 (blank to 5.3 and 7.8 min, and crystal morphology trended to be thicker.

  8. Stable continuous-wave single-frequency Nd:YAG blue laser at 473 nm considering the influence of the energy-transfer upconversion.

    Science.gov (United States)

    Wang, Yaoting; Liu, Jianli; Liu, Qin; Li, Yuanji; Zhang, Kuanshou

    2010-06-07

    We report a continuous-wave (cw) single frequency Nd:YAG blue laser at 473 nm end-pumped by a laser diode. A ring laser resonator was designed, the frequency doubling efficiency and the length of nonlinear crystal were optimized based on the investigation of the influence of the frequency doubling efficiency on the thermal lensing effect induced by energy-transfer upconversion. By intracavity frequency doubling with PPKTP crystal, an output power of 1 W all-solid-state cw blue laser of single-frequency operation was achieved. The stability of the blue output power was better than +/- 1.8% in the given four hours.

  9. Experimental Investigations on Pulsed Nd:YAG Laser Welding of C17300 Copper-Beryllium and 49Ni-Fe Soft Magnetic Alloys

    International Nuclear Information System (INIS)

    Mousavi, S. A. A. Akbari; Ebrahimzadeh, H.

    2011-01-01

    Copper-beryllium and soft magnetic alloys must be joined in electrical and electro-mechanical applications. There is a high difference in melting temperatures of these alloys which cause to make the joining process very difficult. In addition, copper-beryllium alloys are of age hardenable alloys and precipitations can brittle the weld. 49Ni-Fe alloy is very hot crack sensitive. Moreover, these alloys have different heat transfer coefficients and reflection of laser beam in laser welding process. Therefore, the control of welding parameters on the formation of adequate weld puddle composition is very difficult. Laser welding is an advanced technique for joining of dissimilar materials since it can precisely control and adjust the welding parameters. In this study, a 100W Nd:YAG pulsed laser machine was used for joining 49Ni-Fe soft magnetic to C17300 copper-beryllium alloys. Welding of samples was carried out autogenously by changing the pulse duration, diameter of beam, welding speed, voltage and frequency. The spacing between samples was set to almost zero. The ample were butt welded. It was required to apply high voltage in this study due to high reflection coefficient of copper alloys. Metallography, SEM analysis, XRD and microhardness measurement was used for survey of results. The results show that the weld strength depends upon the chemical composition of the joints. To change the wells composition and heat input of the welds, it was attempted to deviate the laser focus away from the weld centerline. The best strength was achieved by deviation of the laser beam away about 0.1mm from the weld centerline. The result shows no intermetallic compounds if the laser beam is deviated away from the joint.

  10. Holmium:YAG laser stapedotomy: preliminary evaluation

    Science.gov (United States)

    Stubig, Ingrid M.; Reder, Paul A.; Facer, G. W.; Rylander, Henry G.; Welch, Ashley J.

    1993-07-01

    This study investigated the use of a pulsed Holmium:YAG ((lambda) equals 2.09 micrometers ) laser- fiber microsurgical system for laser stapedotomy. This system ablates human stapes bones effectively with minimal thermal damage. The study was designed to determine the effectiveness of the Ho:YAG laser (Schwartz Electro Optics, Inc., Orlando, FL) for stapedotomy and to evaluate temperature changes within the cochlea during the ablation process. Human cadaveric temporal bones were obtained and the stapes portion of the ossicular chain was removed. A 200 micrometers diameter low OH quartz fiber was used to irradiate these stapes bones in an air environment. The laser was pulsed at 2 Hz, 250 microsecond(s) ec pulse width and an irradiance range of 100 - 240 J/cm2 was used to ablate holes in the stapes footplate. The resultant stapedotomies created had smooth 300 micrometers diameter holes with a minimum of circumferential charring. Animal studies in-vivo were carried out in chinchillas to determine the caloric spread within the cochlea. A 0.075 mm Type T thermocouple was placed in the round window. Average temperature change during irradiation of the stapes footplate recorded in the round window was 3.6 degree(s)C. The data suggest that stapedotomy using the Ho:YAG laser can result in a controlled ablation of the stapes footplate with minimal thermal damage to the surrounding stapes. Optical coupling using fiberoptic silica fibers is an ideal method for delivering laser energy to the stapes during stapedotomy.

  11. CTE:YAG laser applications in dentistry

    Science.gov (United States)

    Shori, Ramesh K.; Fried, Daniel; Featherstone, John D. B.; Kokta, Milan R.; Duhn, Clifford W.

    1998-04-01

    The suitability of CTE:YAG laser radiation was investigated for caries preventive laser treatments and caries ablation. Although, CTE:YAG laser radiation at 2.69 micrometer is less highly absorbed by dental hard tissues than other erbium laser wavelengths, namely 2.79 and 2.94 micrometer, it can readily be transmitted through a conventional low hydroxyl fiber with minimal loss. These studies show that reasonable ablation rates and efficiencies are obtainable with both free running (200 microseconds) and Q-switched (100 ns) laser pulses on both dentin and enamel with the application of a relatively thick layer of water to the tissue surface. The water served to remove tissue char and debris from the ablation site leaving a clean crater. However, mechanical forces produced during the energetic ablative process resulted in peripheral mechanical damage to the tissue. Surface dissolution studies on enamel indicated that CTE:YAG radiation inhibited surface dissolution by organic acid by 60 - 70% compared to unirradiated controls, albeit, at fluences an order of magnitude higher than those required for CO2 laser radiation. This layer system may be suitable for dental hard tissue applications if mechanical damage can be mitigated. This work was supported by NIH/NIDR Grants R29DE12091 and R01DE09958.

  12. Investigation of the cluster formation in lithium niobate crystals by computer modeling method

    Energy Technology Data Exchange (ETDEWEB)

    Voskresenskii, V. M.; Starodub, O. R., E-mail: ol-star@mail.ru; Sidorov, N. V.; Palatnikov, M. N. [Russian Academy of Sciences, Tananaev Institute of Chemistry and Technology of Rare Earth Elements and Mineral Raw Materials, Kola Science Centre (Russian Federation)

    2017-03-15

    The processes occurring upon the formation of energetically equilibrium oxygen-octahedral clusters in the ferroelectric phase of a stoichiometric lithium niobate (LiNbO{sub 3}) crystal have been investigated by the computer modeling method within the semiclassical atomistic model. An energetically favorable cluster size (at which a structure similar to that of a congruent crystal is organized) is shown to exist. A stoichiometric cluster cannot exist because of the electroneutrality loss. The most energetically favorable cluster is that with a Li/Nb ratio of about 0.945, a value close to the lithium-to-niobium ratio for a congruent crystal.

  13. Investigation of grain competitive growth during directional solidification of single-crystal nickel-based superalloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xinbao [National Energy R and D Center of Clean and High-Efficiency Fossil-Fired Power Generation Technology, Xi' an Thermal Power Research Institute Co. Ltd., Xi' an (China); Northwestern Polytechnical University, State Key Laboratory of Solidification Processing, Xi' an (China); Liu, Lin; Zhang, Jun [Northwestern Polytechnical University, State Key Laboratory of Solidification Processing, Xi' an (China)

    2015-08-15

    Grain competitive growth of nickel-based single-crystal superalloys during directional solidification was investigated. A detailed characterization of bi-crystals' competitive growth was performed to explore the competitive grain evolution. It was found that high withdrawal rate improved the efficiency of grain competitive growth. The overgrowth rate was increased when the misorientation increased. Four patterns of grain competitive growth with differently oriented dispositions were characterized. The results indicated that the positive branching of the dendrites played a significant role in the competitive growth process. The effect of crystal orientation and heat flow on the competitive growth can be attributed to the blocking mechanism between the adjacent grains. (orig.)

  14. 101 W of average green beam from diode-side-pumped Nd:YAG ...

    Indian Academy of Sciences (India)

    Nd:YAG rod laser using 18 mm long type-II phase-matched LBO crystal in a ... LBO crystal are placed in the parallel arms of the Z-shaped cavity formed by .... than its maximum possible value as the higher-order modes could not reach the.

  15. Investigation of the growth defects in strontium titanate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kulagin, N A; Landar, S V; Podus, L P [Khar' kovskij Gosudarstvennyj Univ. (Ukrainian SSR)

    1981-02-01

    Investigation results of characteristics and reasons for formation of macroscopic growth defects in SrTiO/sub 3/ monocrystals grown up by Wernail method are presented. It is shown that blue colour occurring in the specimen volume is caused by shortage of oxygen during growing which results in transition of some ions from tetravalent to trivalent state. The defect of another type is characterized by increased content of Fe and Ni oxides.

  16. Fabrication of Nd:YAG transparent ceramics with both TEOS and MgO additives

    International Nuclear Information System (INIS)

    Yang Hao; Qin Xianpeng; Zhang Jian; Wang Shiwei; Ma Jan; Wang Lixi; Zhang Qitu

    2011-01-01

    Research highlights: → It is well known that the use of TEOS as sintering aid is required to reach fully dense and transparent Nd:YAG ceramics. However, it is difficult to produce high quality transparent Nd:YAG ceramics only using TEOS as sintering aid. In this present work, high quality transparent Nd:YAG ceramic was fabricated using both TEOS and MgO as sintering aids. There have been few reports that both TEOS and MgO were co-added as sintering aids in YAG or Nd:YAG transparent ceramics to date. The transmittance of Nd:YAG ceramic is 83.8% at 1064 nm. The effect of MgO on the optical properties of transparent ceramics was also studied. - Abstract: Neodymium doped YAG transparent ceramics were fabricated by vacuum reactive sintering method using commercial α-Al 2 O 3 , Y 2 O 3 and Nd 2 O 3 powders as the starting materials with both tetraethyl orthosilicate (TEOS) and MgO as sintering aids. The morphologies and microstructure of the powders and Nd:YAG transparent ceramics were investigated. Fully dense Nd:YAG ceramics with average grain size of ∼10 μm were obtained by vacuum sintering at 1780 deg. C for 8 h. No pores and grain-boundary phases were observed. The in-line transmittance of the ceramic was 83.8% at 1064 nm.

  17. The investigation of stress in freestanding GaN crystals grown from Si substrates by HVPE.

    Science.gov (United States)

    Lee, Moonsang; Mikulik, Dmitry; Yang, Mino; Park, Sungsoo

    2017-08-17

    We investigate the stress evolution of 400 µm-thick freestanding GaN crystals grown from Si substrates by hydride vapour phase epitaxy (HVPE) and the in situ removal of Si substrates. The stress generated in growing GaN can be tuned by varying the thickness of the MOCVD AlGaN/AlN buffer layers. Micro Raman analysis shows the presence of slight tensile stress in the freestanding GaN crystals and no stress accumulation in HVPE GaN layers during the growth. Additionally, it is demonstrated that the residual tensile stress in HVPE GaN is caused only by elastic stress arising from the crystal quality difference between Ga- and N-face GaN. TEM analysis revealed that the dislocations in freestanding GaN crystals have high inclination angles that are attributed to the stress relaxation of the crystals. We believe that the understanding and characterization on the structural properties of the freestanding GaN crystals will help us to use these crystals for high-performance opto-electronic devices.

  18. Experimental investigation on dependency of interparticle distance in Coulomb crystal on various parameters

    OpenAIRE

    Adachi, Satoshi; Takayanagi, Masahiro; 足立 聡; 高柳 昌弘

    2007-01-01

    Dependency of interparticle distance in Coulomb crystal on various parameters such as plasma density, electron temperature, plasma potential and the Debye length are experimentally investigated. From the investigation, it is found that the interparticle distance is proportional to the Debye length.

  19. Q-switched Nd:YAG/V:YAG microchip 1338 nm laser for laser-induced breakdown spectroscopy

    Science.gov (United States)

    Šulc, Jan; Jelínková, Helena; Nejezchleb, Karel; Škoda, Václav

    2017-12-01

    Q-switched microchip laser emitting radiation at wavelength 1338nm was tested as a radiation source for laser induced breakdown spectroscopy (LIBS). This laser used sandwich crystal which combined in one piece the cooling part (undoped YAG crystal 4mm long), the active laser part (Nd:YAG crystal 12mm long), and the saturable absorber (V:YAG crystal 0.7mm long). The diameter of this crystal was 5 mm. The microchip resonator consisted of dielectric mirrors directly deposited on the monolith crystal surfaces. The pump mirror (HT @ 808 nm, HR @ 1.3 ¹m) was placed on the undoped YAG part. The output coupler (R = 90% @ 1338 nm) was placed on the V:YAG part. The fibre-coupled 808nm pumping laser diode was operating in pulsed regime (rep. rate 250 Hz, pulse width 300 ¹s, pulse energy 6 mJ). Using this pumping, stable and high reproducible Q-switched pulses were generated at wavelength 1338 nm. Pulse length was 6.2 ns (FWHM) and the mean output power was 33mW. The single pulse energy and peak power was 0.13mJ and 21kW, respectively. Laser was operating in fundamental TEM00 mode. The laser radiation was focused on a tested sample using single plano-convex lens (focal length 75 mm). The focal spot radius was 40 ¹m. The corresponding peak-power density was 0.83GW/cm2. The laser induced break-down was successfully reached and corresponding laser-induced plasma spectra were recorded for set of metallic elements (Cu, Ag, Au, In, Zn, Al, Fe, Ni, Cr) and alloys (Sn-Pb solder, duralumin, stainless-steel, brass). To record the spectra, StellarNet BLACK-Comet concave grating CCD-based spectrometer was used without any special collimation optics. Thanks to used laser wavelength far from the detector sensitivity, no special filtering was needed to overcome the CCD dazzling. The constructed laser could significantly improve repletion-rate of up-to-date LIBS devices.

  20. Investigation of SiC crystals by means of synchrotron topography

    International Nuclear Information System (INIS)

    Wierzchowski, W.; Tymicki, E.; Balcer, T.; Pawlowska, M.; Wieteska, K.; Malinowska, A.; Wierzbicka, E.; Grasza, K.; Graeff, W.

    2006-01-01

    The crystallographic quality of monopolytypic 6H SiC crystals grown by Physical Vapour Transport in graphite crucible was studied. The diameter of crystals was increased up to 65 mm. The crystals were investigated using several methods of characterisation including white and monochromatic beam synchrotron diffraction topography and scanning electron microscopy. Particularly useful results were obtained using back reflection white beam synchrotron section topography, which provided the intersection of the large thickness of the sample investigated. The topographs revealed a great part of macro and micropipes present in the samples, reproduced as white areas. The additional possibility offered the section topographs taken using a fine grid with the distance between the wires equal to 0.7 mm, which enabled evaluation of the lattice deformation. The scanning electron microscopy was also very useful in studying the micropipes and voids as well as in observation of the selective etching pattern. (author)

  1. Continuous-wave generation and tunability of eye-safe resonantly diode-pumped Er:YAG laser

    Science.gov (United States)

    Němec, Michal; Indra, Lukás.; Šulc, Jan; Jelínková, Helena

    2016-03-01

    Laser sources generating radiation in the spectral range from 1.5 to 1.7 μm are very attractive for many applications such as satellite communication, range finding, spectroscopy, and atmospheric sensing. The goal of our research was an investigation of continuous-wave generation and wavelength tuning possibility of diode pumped eye-safe Er:YAG laser emitting radiation around 1645 nm. We used two 0.5 at. % doped Er:YAG active media with lengths of 10 mm and 25 mm (diameter 5 mm). As a pumping source, a fibre-coupled 1452 nm laser-diode was utilized, which giving possibility of the in-band pumping with a small quantum defect and low thermal stress of the active bulk laser material. The 150 mm long resonator was formed by a pump mirror (HT @ 1450 nm, HR @ 1610 - 1660 nm) and output coupler with 96 % reflectivity at 1610 - 1660 nm. For continuous-wave generation, the maximal output powers were 0.7 W and 1 W for 10 mm and 25 mm long laser crystals, respectively. The corresponding slope efficiencies with respect to absorbed pump power for these Er:YAG lasers were 26.5 % and 37.8 %, respectively. The beam spatial structure was close to the fundamental Gaussian mode. A wavelength tunability was realized by a birefringent plate and four local spectral maxima at 1616, 1633, 1645, and 1657 nm were reached. The output characteristics of the designed and realized resonantly diode-pumped eye-safe Er:YAG laser show that this compact system has a potential for usage mainly in spectroscopic fields.

  2. Experimental and numerical investigations of Si-based photonic crystals with ordered Ge quantum dots emitters

    International Nuclear Information System (INIS)

    Jannesari, R.

    2014-01-01

    In recent years quasi-two-dimensional (2D) photonic crystals, also known as photonic crystal slabs, have been the subject of extensive research. The present work is based on photonic crystals where a hexagonal 2D lattice of air holes is etched through a silicon-on-insulator (SOI) slab. Light is guided in the horizontal plane using photonic band-gap properties, and index guiding provides the optical confinement in the third dimension. This work discusses photonic crystal slabs with Ge quantum dots (QDs) as internal sources. Ge quantum dots have luminescence around 1500nm, which is well suited for optical fiber communication in a way that is fully compatible with standard silicon technology. QD emission can be controlled by epitaxial growth on a pre-patterned SOI substrate. In this way the position of the QDs is controlled, as well as their homogeneity and spectral emission range. During this thesis, photonic crystal fabrication techniques together with techniques for the alignment of the photonic crystal holes with the QDs positions were developed. The employed techniques involve electron beam lithography (EBL) and inductively-coupled-plasma reactive ion etching (ICP-RIE). Perfect ordering of the QDs position was achieved by employing these techniques for pit patterning and the subsequent growth of Ge dots using molecular beam epitaxy (MBE). A second EBL step was then used for photonic crystal writing, which needed to be aligned with respect to the pit pattern with a precision of about ± 30nm. Micro-photoluminescence spectroscopy was used for the optical characterization of the photonic crystal. The emission from ordered quantum dots in different symmetry positions within a unit cell of photonic crystal was theoretically and experimentally investigated and compared with randomly distributed ones. Besides, different geometrical parameters of photonic crystals were studied. The theoretical investigations were mainly based on the rigorous coupled wave analysis (RCWA

  3. Thermalization calorimetry: A simple method for investigating glass transition and crystallization of supercooled liquids

    DEFF Research Database (Denmark)

    Jakobsen, Bo; Sanz, Alejandro; Niss, Kristine

    2016-01-01

    and their crystallization, e.g., for locating the glass transition and melting point(s), as well as for investigating the stability against crystallization and estimating the relative change in specific heat between the solid and liquid phases at the glass transition......We present a simple method for fast and cheap thermal analysis on supercooled glass-forming liquids. This “Thermalization Calorimetry” technique is based on monitoring the temperature and its rate of change during heating or cooling of a sample for which the thermal power input comes from heat...

  4. Re-investigation of the crystal structure of enstatite under high-pressure conditions

    DEFF Research Database (Denmark)

    Periotto, Benedetta; Balic Zunic, Tonci; Nestola, Fabrizio

    2012-01-01

    A synthetic single crystal of pure orthoenstatite (MgSiO3, space group Pbca) has been investigated at high pressure for structural determinations by in situ single-crystal X‑ray diffraction using a diamond-anvil cell. Ten complete intensity data collections were performed up to 9.36 GPa. This study...... with different compositions. The structural evolution determined in this work confirms the high-pressure evolution found previously for other orthopyroxenes and removes some ambiguities originating from the less accurate published data on the MgSiO3 structure at high pressure. The structural compression...

  5. Laboratory Investigation of Contact Freezing and the Aerosol to Ice Crystal Transformation Process

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, Raymond A. [Michigan Technological Univ., Houghton, MI (United States)

    2014-10-28

    This project has been focused on the following objectives: 1. Investigations of the physical processes governing immersion versus contact nucleation, specifically surface-induced crystallization; 2. Development of a quadrupole particle trap with full thermodynamic control over the temperature range 0 to –40 °C and precisely controlled water vapor saturation ratios for continuous, single-particle measurement of the aerosol to ice crystal transformation process for realistic ice nuclei; 3. Understanding the role of ice nucleation in determining the microphysical properties of mixed-phase clouds, within a framework that allows bridging between laboratory and field measurements.

  6. Investigations and Simulations of All optical Switches in linear state Based on Photonic Crystal Directional Coupler

    Directory of Open Access Journals (Sweden)

    S. Maktoobi

    2014-10-01

    Full Text Available Switching is a principle process in digital computers and signal processing systems. The growth of optical signal processing systems, draws particular attention to design of ultra-fast optical switches. In this paper, All Optical Switches in linear state Based On photonic crystal Directional coupler is analyzed and simulated. Among different methods, the finite difference time domain method (FDTD is a preferable method and is used. We have studied the application of photonic crystal lattices, the physics of optical switching and photonic crystal Directional coupler. In this paper, Electric field intensity and the power output that are two factors to improve the switching performance and the device efficiency are investigated and simulated. All simulations are performed by COMSOL software.

  7. Automation of electron channeling investigations into crystals on the experimental stand

    International Nuclear Information System (INIS)

    Kolodin, L.G.; Kupchishin, A.A.; Bunegin, V.V.

    1995-01-01

    Automated control system of technological processes of the experimental stand is proposed for electron channeling investigation into crystals. The system is proposed for stand control automation and registration of corresponding radiations. There are four main parts in stand complex: Ehlu-6 type electron accelerator; forming and transporting system of electron beams; goniometer system; radiation detection system. Purposes of the automated system creation are following: - improvement of EhLU accelerator operating stability by of automation stabilization of its parameters; - quality improvement of electron beam monochromatization by of automation of monochromator electromagnet control; - simplification of crystal adjustment process relatively of primary electron beam and crystal transporting to the position by of goniometer automation control; - providing of automating collection and processing of data of physical experiments

  8. Numerical investigation of magnetic field effect on pressure in cylindrical and hemispherical silicon CZ crystal growth

    International Nuclear Information System (INIS)

    Mokhtari, F.; Bouabdallah, A.; Merah, A.; Oualli, H.

    2012-01-01

    The effect of axial magnetic field of different intensities on pressure in silicon Czochralski crystal growth is investigated in cylindrical and hemispherical geometries with rotating crystal and crucible and thermocapillary convection. As one important thermodynamic variable, the pressure is found to be more sensitive than temperature to magnetic field with strong dependence upon the vorticity field. The pressure at the triple point is proposed as a convenient parameter to control the homogeneity of the grown crystal. With a gradual increase of the magnetic field intensity the convection effect can be reduced without thermal fluctuations in the silicon melt. An evaluation of the magnetic interaction parameter critical value corresponding to flow, pressure and temperature homogenization leads to the important result that a relatively low axial magnetic field is required for the spherical system comparatively to the cylindrical one. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Numerical investigation of magnetic field effect on pressure in cylindrical and hemispherical silicon CZ crystal growth

    Energy Technology Data Exchange (ETDEWEB)

    Mokhtari, F. [Universite Mouloud Mammeri de Tizi Ouzou (Algeria); LTSE Laboratory, University of Science and Technology. BP 32 Elalia, Babezzouar, Algiers (Algeria); Bouabdallah, A. [LTSE Laboratory, University of Science and Technology. BP 32 Elalia, Babezzouar, Algiers (Algeria); Merah, A. [LTSE Laboratory, University of Science and Technology. BP 32 Elalia, Babezzouar, Algiers (Algeria); M' hamed Bougara University, Boumerdes (Algeria); Oualli, H. [EMP, Bordj ElBahri, Algiers (Algeria)

    2012-12-15

    The effect of axial magnetic field of different intensities on pressure in silicon Czochralski crystal growth is investigated in cylindrical and hemispherical geometries with rotating crystal and crucible and thermocapillary convection. As one important thermodynamic variable, the pressure is found to be more sensitive than temperature to magnetic field with strong dependence upon the vorticity field. The pressure at the triple point is proposed as a convenient parameter to control the homogeneity of the grown crystal. With a gradual increase of the magnetic field intensity the convection effect can be reduced without thermal fluctuations in the silicon melt. An evaluation of the magnetic interaction parameter critical value corresponding to flow, pressure and temperature homogenization leads to the important result that a relatively low axial magnetic field is required for the spherical system comparatively to the cylindrical one. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  10. Investigations of Residual Stresses and Mechanical Properties of Single Crystal Niobium for SRF Cavities

    Science.gov (United States)

    Gnäupel-Herold, Thomas; Myneni, Ganapati Rao; Ricker, Richard E.

    2007-08-01

    This work investigates properties of large grained, high purity niobium with respect to the forming of superconducting radio frequency (SRF) cavities from such large grained sheets. The yield stresses were examined using tensile specimens that were essentially single crystals in orientations evenly distributed in the standard projection triangle. No distinct yield anisotropy was found, however, vacuum annealing increased the yield strength by a factor 2…3. The deep drawing forming operation of the half cells raises the issues of elastic shape changes after the release of the forming tool (springback) and residual stresses, both of which are indicated to be negligible. This is a consequence of the low yield stress (sheet metal forming). However, the significant anisotropy of the transversal plastic strains after uniaxial deformation points to potentially critical thickness variations for large grained / single crystal half cells, thus raising the issue of controlling grain orientation or using single crystal sheet material.

  11. Determination of rare earth element content in yttrium aluminium garnet crystals by absorption spectrophotometry method

    International Nuclear Information System (INIS)

    Mejl'man, M.L.; Kolomijtsev, A.I.; Baskakova, Z.M.; Bagdasarov, Kh.S.; Kevorkov, A.M.

    1985-01-01

    Possibility of determination of relative and absolute contents of impurity trivalent REE ions in yttrium aluminium garnet of (YAG) monocrystals has been studied by the absorption spectrophotometry method. Absorption spectra in UV and visible regions YAG monocrystals doped by REE are studied. For each admixture the characteristic lines or absorption bands not overlapping with lines of other admixtures are defined and investigated. The extinction coefficients of characteristic lines are determined which allow one to measure absolute REE admixture concentrations in garnet crystals. A conclusion is drawn that the absorption spectrophotometry method permits to measure REE admixture content in YAG monocrystals within the concentration range of approximately 1x10sup(-3)-5 mas. % with an accuracy not less than 20% (with sample thickness of approximately 1 cm)

  12. Investigation of the operating conditions to morphology evolution of β-L-glutamic acid during seeded cooling crystallization

    Science.gov (United States)

    Zhang, Fangkun; Liu, Tao; Huo, Yan; Guan, Runduo; Wang, Xue Z.

    2017-07-01

    In this paper the effects of operating conditions including cooling rate, initial supersaturation, and seeding temperature were investigated on the morphology evolution of β-L-glutamic acid (β-LGA) during seeded cooling crystallization. Based on the results of in-situ image acquisition of the crystal morphology evolution during the crystallization process, it was found that the crystal products tend to be plate-like or short rod-like under a slow cooling rate, low initial supersaturation, and low seeding temperature. In the opposite, the operating conditions of a faster cooling rate, higher initial supersaturation, and higher seeding temperature tend to produce long rod-like or needle-like crystals, and meanwhile, the length and width of crystal products will be increased together with a wider crystal size distribution (CSD). The aspect ratio of crystals, defined by the crystal length over width measured from in-situ or sample images, was taken as a shape index to analyze the crystal morphologies. Based on comparative analysis of the experimental results, guidelines on these operating conditions were given for obtaining the desired crystal shapes, along with the strategies for obtaining a narrower CSD for better product quality. Experimental verifications were performed to illustrate the proposed guidelines on the operating conditions for seeded cooling crystallization of LGA solution.

  13. Origin of electronic properties of PbGa2Se4 crystal: Experimental and theoretical investigations

    International Nuclear Information System (INIS)

    Babuka, T.; Kityk, I.V.; Parasyuk, O.V.; Myronchuk, G.; Khyzhun, O.Y.; Fedorchuk, A.O.; Makowska-Janusik, M.

    2015-01-01

    Graphical abstract: In the presented work the structural and electronic properties of the PbGa 2 Se 4 single crystal were investigated experimentally as well as theoretically. The XPS spectra, Urbach’s rule and steepness parameters of PbGa 2 Se 4 single crystal have been investigated for the first time. The quantum chemical calculations were also never performed before for the studied structure. The theoretically obtained data help to explain the properties of material. - Highlights: • Urbach’s rule and steepness parameters for PbGa 2 Se 4 crystals explored for the first time. • Non-reactivity of the PbGa 2 Se 4 surface was established by XPS. • DFT approach shows its efficiency to describe electronic properties of PbGa 2 Se 4 . • Electronic parameters are affected by existence of electron–phonon interaction. - Abstract: The PbGa 2 Se 4 crystal is a promising material for optoelectronic applications. It is caused by coexistence of the large polarized Pb cations and a huge contribution of anharmonic phonon subsystem caused by chalcogenide anions. In the present work the electronic and optical properties of the mentioned material were studied theoretically as well as experimentally by optical and X-ray photoelectron spectroscopy methods. The DFT approach has been used for the quantum chemical electronic properties calculations. Urbach rule and steepness parameters of the PbGa 2 Se 4 crystal have been evaluated for the first time. These parameters and Urbach energies increase with increasing temperature of the samples that is typical for the semiconducting materials. The XPS measurements of the investigated crystal reveal that all the spectral features are originated from core-level states of the constituent elements. Simultaneously these results also confirm non-reactivity of the PbGa 2 Se 4 surface. However, the titled single crystal possesses a number of intrinsic structural defects and vacancies thereby affecting its electronic properties. The

  14. Investigating the large degeneracy Kondo lattice metamagnet CeTiGe: Crystal growth and doping studies

    Energy Technology Data Exchange (ETDEWEB)

    Gruner, T.; Caroca-Canales, N.; Deppe, M.; Geibel, C. [MPI fuer Chemische Physik fester Stoffe, 01187, Dresden (Germany); Sereni, J. [Centro Atomico Bariloche, 8400, S. C. de Bariloche (Argentina)

    2011-07-01

    CeTiGe is a paramagnetic Kondo lattice system with a large orbital degeneracy involved in the formation of the heavy Fermion ground state. Recently we discovered that this compound presents a huge metamagnetic transition at B{sub MMT} {approx} 13 T, with much larger anomalies in magnetization, magnetoresistance and magnetostriction than in the archetypical Kondo lattice metamagnet CeRu{sub 2}Si{sub 2}. Since CeTiGe forms in a pronounced peritectic reaction the growth of single crystals is difficult. We therefore studied the Ce-Ti-Ge ternary metallographic phase diagram to get a sound basis for future crystal growth attempts. Preliminary results of growth experiments based on these studies are promising and shall be discussed. Furthermore, Ti-rich CeTiGe was recently reported to present a high temperature phase crystallizing in the closely related CeScSi structure type. In order to study this structural instability and the effect on the physical properties, we studied the effect of substituting Sc for Ti, since pure CeScGe crystallizes in the CeScSi structure type. In well annealed samples we observed a two phase region in the range 10% - 25%-Sc-substitution. Preliminary investigations of the CeSc{sub x}Ti{sub 1-x}Ge alloy suggest it is a promising candidate for the observation of a ferromagnetic quantum critical point in a large degeneracy Kondo lattice system.

  15. Investigations of interhydrogen bond dynamical coupling effects in the polarized IR spectra of acetanilide crystals.

    Science.gov (United States)

    Flakus, Henryk T; Michta, Anna

    2010-02-04

    This Article presents the investigation results of the polarized IR spectra of the hydrogen bond in acetanilide (ACN) crystals measured in the frequency range of the proton and deuteron stretching vibration bands, nu(N-H) and nu(N-D). The basic spectral properties of the crystals were interpreted quantitatively in terms of the "strong-coupling" theory. The model of the centrosymmetric dimer of hydrogen bonds postulated by us facilitated the explanation of the well-developed, two-branch structure of the nu(N-H) and nu(N-D) bands as well as the isotopic dilution effects in the spectra. On the basis of the linear dichroic and temperature effects in the polarized IR spectra of ACN crystals, the H/D isotopic "self-organization" effects were revealed. A nonrandom distribution of hydrogen isotope atoms (H or D) in the lattice was deduced from the spectra of isotopically diluted ACN crystals. It was also determined that identical hydrogen isotope atoms occupy both hydrogen bonds in the dimeric systems, where each hydrogen bond belongs to a different chain. A more complex fine structure pattern of nu(N-H) and nu(N-D) bands in ACN spectra in comparison with the spectra of other secondary amides (e.g., N-methylacetamide) can be explained in terms of the "relaxation" theory of the IR spectra of hydrogen-bonded systems.

  16. Fluorescence kinetics and positron annihilation kinetics investigations in cadmium sulfide crystals

    Energy Technology Data Exchange (ETDEWEB)

    Grillot, E; Bancie-Grillot, M; Egee, M [Reims Univ., 51 (France)

    1976-03-01

    Fluorescence kinetics and positrons annihilation kinetics investigations on CdS crystals, either very pure or with increasing contents of Ag-ions, led to similar and complementary results. Ag-ions mainly fill the cadmium vacancies of the lattice, building red emission luminogene centres, while green 'edge-emission' ones are destroyed. These latter, which involve an excited level active for high energy series fluorescence, seems actually related to cadmium vacancies.

  17. Investigation of quantum states of fast electrons under planar channeling in silicon crystals

    International Nuclear Information System (INIS)

    Gridnev, V.I.; Kaplin, V.V.; Khlabutin, V.G.; Rozum, E.I.; Vorobiev, S.A.

    1987-01-01

    The angular distributions of (1.87 to 5.7) MeV electrons channeled in 2 μm Si crystals along (100), (110), and (111) atomic planes are measured. The half-width of measured angular distributions is defined by a critical Lindhard angle. A relation is obtained connecting those energies of electrons at which their angular distributions are similar for various atomic planes. The effect of a 'critical energy' under planar channeling of electrons is found and investigated. (author)

  18. Parametric investigations on the influence of nano-second Nd{sup 3+}:YAG laser wavelength and fluence in synthesizing NiTi nano-particles using liquid assisted laser ablation technique

    Energy Technology Data Exchange (ETDEWEB)

    Patra, Nandini, E-mail: nandinipatra2007@gmail.com [Centre for Material Science and Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, Pin-453441 (India); Akash, K.; Shiva, S.; Gagrani, Rohit; Rao, H. Sai Pranesh; Anirudh, V.R. [Mechatronics and Instrumentation lab, Discipline of Mechanical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, Pin-453441 (India); Palani, I.A., E-mail: palaniia@iiti.ac.in [Centre for Material Science and Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, Pin-453441 (India); Mechatronics and Instrumentation lab, Discipline of Mechanical Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, Pin-453441 (India); Singh, Vipul [Centre for Material Science and Engineering, Indian Institute of Technology, Indore, Madhya Pradesh, Pin-453441 (India)

    2016-03-15

    Graphical abstract: - Highlights: • Influence of laser wavelengths (1064 nm, 532 nm and 355 nm) and fluences (40 J/cm{sup 2}, 30 J/cm{sup 2} and 20 J/cm{sup 2}) on generation of underwater laser ablated NiTi nanoparticles. • Particle size range of 140–10 nm was generated at varying laser wavelengths. • The alloy formation of NiTi nanoparticles was confirmed from XRD and TEM analysis where the crystalline peaks of NiTi, Ni{sub 4}Ti{sub 3} and Ni{sub 3}Ti were observed from XRD. • Formation efficiency of NiTi nanoparticles was maximum at 1064 nm wavelength and 40 J/cm{sup 2} fluence. - Abstract: This paper investigates the influence of laser wavelengths and laser fluences on the size and quality of the NiTi nanoparticles, generated through underwater solid state Nd:YAG laser ablation technique. The experiments were performed on Ni55%–Ti45% sheet to synthesize NiTi nano-particles at three different wavelengths (1064 nm, 532 nm and 355 nm) with varying laser fluences ranging from 20 to 40 J/cm{sup 2}. Synthesized NiTi nano-particles were characterized through SEM, DLS, XRD, FT-IR, TEM and UV–vis spectrum. It was observed that, maximum particle size of 140 nm and minimum particle size of 10 nm were generated at varying laser wavelengths. The crystallinity and lattice spacing of NiTi alloy nanoparticles were confirmed from the XRD analysis and TEM images, respectively.

  19. High energy single frequency Yb:YAG crystalline fiber waveguide master oscillator power amplifier, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective is to demonstrate the concept of Yb:YAG crystalline fiber MOPA laser and investigation the technical feasibility toward 50 mJ single frequency...

  20. Experimental investigation and crystal-field modeling of Er{sup 3+} energy levels in GSGG crystal

    Energy Technology Data Exchange (ETDEWEB)

    Gao, J.Y., E-mail: jygao1985@sina.com [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China); Sun, D.L.; Zhang, Q.L. [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China); Wang, X.F. [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China); Graduate School of the Chinese Academy of Sciences, Beijing 100049 (China); Liu, W.P.; Luo, J.Q.; Sun, G.H.; Yin, S.T. [Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-06-25

    The Er{sup 3+}-doped Gd{sub 3}Sc{sub 2}Ga{sub 3}O{sub 12} (Er{sup 3+}:GSGG) single crystal, a excellent medium of the mid-infrared and anti-radiation solid state laser pumped by laser diode, was grown by Czochralski method successfully. The absorption spectra were measured and analyzed in a wider spectral wavelength range of 350–1700 nm at different temperatures of 7.6, 77, 200 and 300 K. The free-ions and crystal-field parameters were fitted to the experimental energy levels with the root mean square deviation of 9.86 cm{sup −1}. According to the crystal-field calculations, 124 degenerate energy levels of Er{sup 3+} in GSGG host crystals were assigned. The fitting results of free-ions and crystal-field parameters were compared with those already reported of Er{sup 3+}:YSGG. The results indicated that the free-ions parameters for Er{sup 3+} in GSGG host are similar to those in YSGG host crystals, and the crystal-field interaction of GSGG is weaker than that of YSGG, which may result in the better laser characterization of Er{sup 3+}:GSGG crystal. - Highlights: • The efficient diode-end-pumped laser crystal Er:GSGG has been grown successfully. • The absorption spectra of Er:GSGG have been measured in range of 350–1700 nm. • The fitting result is very well for the root mean square deviation is 9.86 cm{sup −1}. • The 124 levels of Er:GSGG have been assigned from the crystal-field calculations.

  1. Cryogenic Yb: YAG Thin-Disk Laser

    Science.gov (United States)

    2016-09-09

    as a 4- level laser. Its absorption and emission cross-sections increase, and its thermal conductivity improves. Yb:YAG thin disk laser performance...Air Force Base, NM USA 87117 4RINI Technologies, 582 South Econ Circle, Oviedo, FL USA 32765 Keywords: Laser materials; Lasers, ytterbium...temperatures, Yb:YAG behaves as a 4- level laser. Its absorption and emission cross-sections increase, and its thermal conductivity improves. Yb:YAG

  2. Thermalization calorimetry: A simple method for investigating glass transition and crystallization of supercooled liquids

    Directory of Open Access Journals (Sweden)

    Bo Jakobsen

    2016-05-01

    Full Text Available We present a simple method for fast and cheap thermal analysis on supercooled glass-forming liquids. This “Thermalization Calorimetry” technique is based on monitoring the temperature and its rate of change during heating or cooling of a sample for which the thermal power input comes from heat conduction through an insulating material, i.e., is proportional to the temperature difference between sample and surroundings. The monitored signal reflects the sample’s specific heat and is sensitive to exo- and endothermic processes. The technique is useful for studying supercooled liquids and their crystallization, e.g., for locating the glass transition and melting point(s, as well as for investigating the stability against crystallization and estimating the relative change in specific heat between the solid and liquid phases at the glass transition.

  3. Investigation of singularities of integral intensity of the relativistic particle bremsstrahlung radiation in a diamond crystal

    International Nuclear Information System (INIS)

    Avakyan, R.O.; Armaganyan, A.A.; Arutyunyan, L.G.; Iskandaryan, A.G.; Taroyan, S.P.

    1981-01-01

    The results are given of the theoretical processing of experimental data on the investigation of orientational dependences of integral intensity of coherent bremsstrahlung radiation (CBR) of superfast electrons in a diamond crystal. It is shown that in the case of ''point effect'' right up to the electrons incident angle, which is 0.1 mrad with respect to the crystallographic plane, the CBR theory gives a good description of experimental data. In the case of ''row effect'', in order to account for the divergence between the theory and experiment at small incident angles of electrons with respect to the crystallographic axis, it is assumed that the multiple scattering angle has an orientational dependence. By fitting the theoretical curve to experimental points the dependences are obtained of the multiple scattering angle change on the crystal orientation with respect to the electron beam

  4. Crystal-field investigations of rare-earth-doped wide band gap semiconductors

    CERN Multimedia

    Muller, S; Wahl, U

    Crystal field investigations play a central role in the studies of rare earth doped semiconductors. Optical stark level spectroscopy and lattice location studies of radioactive rare earth isotopes implanted at ISOLDE have provided important insight into these systems during the last years. It has been shown that despite a major site preference of the probe atoms in the lattice, several defect configurations do exist. These sites are visible in the optical spectra but their origin and nature aren't deducible from these spectra alone. Hyperfine measurements on the other hand should reveal these defect configurations and yield the parameters necessary for a description of the optical properties at the atomic scale. In order to study the crystal field with this alternative approach, we propose a new concept for perturbed $\\gamma\\gamma$-angular correlation (PAC) experiments at ISOLDE based on digital signal processing in contrast to earlier analog setups. The general functionality of the spectrometer is explained ...

  5. Changes of retinal light sensitivity after YAG-laser capsulotomy

    International Nuclear Information System (INIS)

    Pahor, D.; Gracner, B.

    2003-01-01

    The aim of this prospective study was to investigate the changes of retinal light sensitivity of central visual field in patients with posterior capsule opacification (PCO) after YAG-laser capsulotomy. Our study includes 18 eyes ( 18 patients) with PCO after phacoemulsification and intraocular lens implantation. In all patients YAG-laser capsulotomy was performed. In all patients, a threshold visual field analysis was carried out with the C 30-2 program of the automated Humphrey Field Analyzer before and one month after the procedure. In all patients a significant improvement of visual acuity was observed one month after capsulotomy (p 0.00004). One month after YAG-laser treatment, a significant improvement of retinal light sensitivity in the central visual field was also observed. The average MD (mean deviation) before the procedure was -6.88 db (±3.9, max. -11.7, min. 2.17) and after the procedure --4.58 db (±4.37, max. -10.87, min. +0.51). The improvement in MD was statistically significant (p = 0.00475). No correlation was established between the improvement of retinal light sensitivity and patient age or the size of capsulotomy. Our study shows that the improvement of retinal light sensitivity is significant after YAG-laser capsulotomy and does not depend on patient age or capsulotomy size. (author)

  6. Nd-YAG laser welding of bare and galvanised steels

    International Nuclear Information System (INIS)

    Kennedy, S.C.; Norris, I.M.

    1989-01-01

    Until recently, one of the problems that has held back the introduction of lasers into car body fabrication has been the difficulty of integrating the lasers with robots. Nd-YAG laser beams can be transmitted through fibre optics which, as well as being considerably easier to manipulate than a mirror system, can be mounted on more lightweight accurate robots. Although previously only available at low powers, recent developments in Nd-YAG laser technology mean that lasers of up to 1kW average power will soon be available, coupled to a fibre optic beam delivery system. The increasing usage of zinc coated steels in vehicle bodies has led to welding problems using conventional resistance welding as well as CO 2 laser welding. The use of Nd-YAG lasers may be able to overcome these problems. This paper outlines work carried out at The Welding Institute on a prototype Lumonics 800W pulsed Nd-YAG laser to investigate its welding characteristics on bare and zinc coated car body steels

  7. Pulsed Nd:YAG laser beam drilling: A review

    Science.gov (United States)

    Gautam, Girish Dutt; Pandey, Arun Kumar

    2018-03-01

    Laser beam drilling (LBD) is one of non contact type unconventional machining process that are employed in machining of stiff and high-strength materials, high strength temperature resistance materials such as; metal alloys, ceramics, composites and superalloys. Most of these materials are difficult-to-machine by using conventional machining methods. Also, the complex and precise holes may not be obtained by using the conventional machining processes which may be obtained by using unconventional machining processes. The laser beam drilling in one of the most important unconventional machining process that may be used for the machining of these materials with satisfactorily. In this paper, the attention is focused on the experimental and theoretical investigations on the pulsed Nd:YAG laser drilling of different categories of materials such as ferrous materials, non-ferrous materials, superalloys, composites and Ceramics. Moreover, the review has been emphasized by the use of pulsed Nd:YAG laser drilling of different materials in order to enhance productivity of this process without adverse effects on the drilled holes quality characteristics. Finally, the review is concluded with the possible scope in the area of pulsed Nd:YAG laser drilling. This review work may be very useful to the subsequent researchers in order to give an insight in the area of pulsed Nd:YAG laser drilling of different materials and research gaps available in this area.

  8. Investigation of self-frequency doubling crystals, yttrium calcium oxyborate (YCOB), doped with neodymium or ytterbium

    Science.gov (United States)

    Ye, Qing

    1999-09-01

    There is a need for low cost red, green, and blue (RGB) lasers for a number of commercial applications such as high-resolution laser printing, full color laser display. While semiconductor lasers still have both availability (green and blue) and beam quality (red) problems, nonlinear frequency conversion of diode-pumped solid state lasers are good alternatives. Among them, self- frequency doubling is an attractive approach because of its simpler design and lower cost. Unfortunately, few known crystals possess self-frequency doubling property. A newly discovered yttrium calcium oxyborate (YCOB) can fill in the role because it has adequate lasing and nonlinear frequency conversion efficiency. More importantly, YCOB crystal melts congruently so that high quality, large size single crystals can be grown using conventional Czochralski melt pulling technique. The thermal mechanical properties, linear and nonlinear optical properties of YCOB, laser properties of Nd:YCOB and Yb:YCOB crystals were investigated. Based on the calculated second harmonic phase matching angles, Nd:YCOB laser rods were fabricated. Self-frequency doubled green emission with 62 mW output power and red emission with 16 mW output power were successfully demonstrated using diode-pumping. It is the first time to achieve the continuous wave (cw) red lasing in Nd doped rare-earth calcium oxyborates. Rare-earth ions doping in YCOB crystal can not only achieve lasing, but also affect the physical and chemical properties of the crystal. The stability field of YCOB is reduced in proportion to both the ionic size differences from yttrium and doping concentrations of the rare-earth ions. The doping also changes the linear and nonlinear optical properties of the material. For example, the second harmonic conversion efficiency of 20% Yb doped YCOB was enhanced by more than 15% compared to undoped YCOB. The absorption cutoff edge of 20% Yb:YCOB was red- shift by more than 60 nm. Similar effects were observed in

  9. Tapered diode laser pumped 946 nm Nd:YAG laser

    DEFF Research Database (Denmark)

    Cheng, Haynes Pak Hay; Jensen, Ole Bjarlin; Petersen, Paul Michael

    2009-01-01

    We successfully implemented a 946 nm Nd:YAG laser based on a 808 nm tapered diode pump laser. The tapered diode is developed at the Ferdinand-Braun-Institute fur Hochstfrequenztechnik in Germany. Figure 2 shows the experimental setup and results of each pump source coupled into a 1.5 mm crystal...... laser, we show that tapered diode laser pumping potentially increase the power of 946 nm lasers by a factor of two and reduce the threshold by a factor of three....

  10. Crystalline perfection and mechanical investigations on vertical Bridgman grown Bismuth telluride (Bi_2Te_3) single crystals for thermoelectric applications

    International Nuclear Information System (INIS)

    Krishna, Anuj; Vijayan, N.; Singh, Budhendra; Thukral, Kanika; Maurya, K.K.

    2016-01-01

    High efficiency thermoelectric materials plays a vital role in power generation and refrigeration applications. Bismuth telluride (Bi_2Te_3) is one among them. In the present work single crystal of bismuth telluride was grown using vertical Bridgman technique. The phase of grown crystals was analysed using a powder X-ray diffractometer. Quality of the grown crystal was assessed by using high resolution X-ray diffractometer and observed that it is fairly good. Further mechanical investigations on grown crystal was carried out using nano-indentation technique and various mechanical properties like hardness, stiffness and Young’s modulus were evaluated. Observed results clearly indicate its suitability for thermoelectric applications.

  11. Laser performance and modeling of RE3+:YAG double-clad crystalline fiber waveguides

    Science.gov (United States)

    Li, Da; Lee, Huai-Chuan; Meissner, Stephanie K.; Meissner, Helmuth E.

    2018-02-01

    We report on laser performance of ceramic Yb:YAG and single crystal Tm:YAG double-clad crystalline fiber waveguide (CFW) lasers towards the goal of demonstrating the design and manufacturing strategy of scaling to high output power. The laser component is a double-clad CFW, with RE3+:YAG (RE = Yb, Tm respectively) core, un-doped YAG inner cladding, and ceramic spinel or sapphire outer cladding. Laser performance of the CFW has been demonstrated with 53.6% slope efficiency and 27.5-W stable output power at 1030-nm for Yb:YAG CFW, and 31.6% slope efficiency and 46.7-W stable output power at 2019-nm for Tm:YAG CFW, respectively. Adhesive-Free Bond (AFB®) technology enables a designable refractive index difference between core and inner cladding, and designable core and inner cladding sizes, which are essential for single transverse mode CFW propagation. To guide further development of CFW designs, we present thermal modeling, power scaling and design of single transverse mode operation of double-clad CFWs and redefine the single-mode operation criterion for the double-clad structure design. The power scaling modeling of double-clad CFW shows that in order to achieve the maximum possible output power limited by the physical properties, including diode brightness, thermal lens effect, and simulated Brillion scattering, the length of waveguide is in the range of 0.5 2 meters. The length of an individual CFW is limited by single crystal growth and doping uniformity to about 100 to 200 mm lengths, and also by availability of starting crystals and manufacturing complexity. To overcome the limitation of CFW lengths, end-to-end proximity-coupling of CFWs is introduced.

  12. Synthesis, characterization, crystal structure and quantum chemical investigations of three novel coumarin-benzenesulfonohydrazide derivatives

    Science.gov (United States)

    Chethan Prathap, K. N.; Lokanath, N. K.

    2018-04-01

    Coumarin derivatives are an important class of heterocyclic compounds due to their physical and biological properties. Coumarin derivatives have been identified with many significant electro-optical properties and biological activities. Three novel coumarin derivatives containing benzene sulfonohydrazide group were synthesized by condensation reaction. The synthesized compounds were characterized by various spectroscopic techniques (Mass, 1H/13C NMR and FTIR). Thermal and optical properties were investigated by thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and UV-Vis spectroscopic studies. Finally their structures were confirmed by single crystal X-ray diffraction (XRD) studies. The three compounds exhibit diverse intermolecular interactions, as observed by the crystal packing and Hirshfeld surface analysis. Further, their structures were optimized by density functional theory (DFT) calculations using B3LYP hybrid functionals with 6-311G+(d,p) level basis set. The Mulliken charge, molecular electrostatic potential (MEP), frontier molecular orbitals (HOMO-LUMO) were investigated. The experimentally determined parameters were compared with those calculated theoretically and they complement each other with a very good correlation. The transitions among the molecular orbitals were investigated using time-dependent density functional theory (TD-DFT) and the electronic absorption spectra obtained showed very good agreement with the experimentally measured UV-Vis spectra. Furthermore, non-linear optical (NLO) properties were investigated by calculating polarizabilities and hyperpolarizabilities. All three compounds exhibit significantly high hyperpolarizabilities compared to the reference material urea, which makes them potential candidates for NLO applications.

  13. The Use Of Scanning Probe Microscopy To Investigate Crystal-Fluid Interfaces

    International Nuclear Information System (INIS)

    Orme, C A; Giocondi, J L

    2007-01-01

    Over the past decade there has been a natural drive to extend the investigation of dynamic surfaces in fluid environments to higher resolution characterization tools. Various aspects of solution crystal growth have been directly visualized for the first time. These include island nucleation and growth using transmission electron microscopy and scanning tunneling microscopy; elemental step motion using scanning probe microscopy; and the time evolution of interfacial atomic structure using various diffraction techniques. In this lecture we will discuss the use of one such in situ method, scanning probe microscopy, as a means of measuring surface dynamics during crystal growth and dissolution. We will cover both practical aspects of imaging such as environmental control, fluid flow, and electrochemical manipulation, as well as the types of physical measurements that can be made. Measurements such as step motion, critical lengths, nucleation density, and step fluctuations, will be put in context of the information they provide about mechanistic processes at surfaces using examples from metal and mineral crystal growth

  14. Investigation of pyroelectric electron emission from monodomain lithium niobate single crystals

    International Nuclear Information System (INIS)

    Bourim, El Mostafa; Moon, Chang-Wook; Lee, Seung-Woon; Kyeong Yoo, In

    2006-01-01

    The behaviors of thermally stimulated electron emission from pyroelectric monodomain lithium niobate single crystal (LiNbO 3 ) were investigated by utilizing a Si p-n junction photodiode as electron detector and a receptive electron beam resist (E-beam resist) as electron collector. In high vacuum (10 -6 Torr), the pyroelectric electron emission (PEE) was found to depend on the exposed emitting polar crystal surface (+Z face or -Z face) and was significantly influenced by the emitter-electron receiver gap distances. Thus, the PEE from +Z face was detected during heating and was activated, in small gaps ( 2 mm) the emission was simply mastered by field emission effect. Whereas, The PEE from -Z face was detected during cooling and was solely due to the field ionization effect. Therewith, for small gaps ( 2 mm) PEE was governed by field ionization generating a soft and continuous plasma ambient atmosphere. Significant decrease of electron emission current was observed from +Z face after successive thermal cycles. A fast and fully emission recovery was established after a brief exposure of crystal to a poor air vacuum of 10 -1 Torr

  15. Manipulating Light and Matter with Photonic Structures: Numerical Investigations on Photonic Crystals and Optical Forces

    Science.gov (United States)

    Zhang, Peng

    The highly developed nano-fabrication techniques allow light to be modulated with photonic structures in a more intensive way. These photonic structures involve photonic crystals, metals supporting surface plasmon polaritons, metamaterials, etc. In this thesis work, three different ways for light manipulation are numerically investigated. First, the light propagation is modulated using a photonic crystal with Dirac cones. It is demonstrated that the zero-index behavior of this photonic crystal which happens for normal incident waves, is lost at oblique incidence. A new method combining complex-k band calculations and absorbing boundary conditions for Bloch modes is developed to analyze the Bloch mode interaction in details. Second, the mechanic states of graphene are modulated through the optical gradient force. This force is induced by the coupled surface plasmons on the double graphene sheets and is greatly enhanced in comparison to the regular waveguides. By applying different strengths of forces in accordance to the input power, the mechanic state transition is made possible, accompanied by an abrupt change in the transmission and reflection spectra. Third, the helicity/chirality of light is studied to modulate the lateral force on a small particle. A left-hand material slab which supports coherent TE ad TM plasmons simultaneously is introduced. By mixing the TE and TM surface plasmons with different relative phases, the lateral force on a chiral particle can be changed, which will be beneficial for chiral particle sorting.

  16. Investigation of element contents of natural diamond crystals of different gemological features by INAA and autoradiography

    International Nuclear Information System (INIS)

    Khamrayeva, D.S.; Ulugmuradov, S.; Didyk, A.Y.; Gasanov, M.; Solodova, J.P.; Sedova, E.A.

    2004-01-01

    Full text: The work presented aims at understanding the role of Co, Ni, Ti, Cr, Mn, Cu impurities on the natural diamond ( Type Ι ) quality, microstructure and morphology having different gemological features for identification their deposit. An according of the Kimberly Process there is Certification Scheme for regulating trade in diamonds to exclude 'bloody' diamonds. The 'four C's' criteria (color, clarity, carat weight, cut) had for decades been used by gemologists worldwide to evaluate precious gem diamonds. Those four parameters were believed to determine the value of the stones. Some 10 years ago gemologists added to those traditional criteria a fifth C, signifying Confidence. The role of the fifth C in pricing precious stones increased over time. An according of the Kimberly Process it is necessary to determine diamond deposit. Impurity content of natural diamonds is basic feature to for identification their deposit. We have used autoradiographic technique for investigation of spatial impurity distributions in natural diamond crystals. It is based on the secondary beta irradiation registration. Impurities were identified by energy lines of the gamma spectra obtained and by half-life periods. We bring information which allow to clarify the spatial distributions of Co, Ni, Ti, Cr, Mn, Cu impurities depended inner morphology of diamond crystal. It was established several types of impurity distributions depending from inner morphology of diamond crystals. Results of INAA and autoradiographic study of natural diamonds use for to make of international data for identification their deposit

  17. Investigations of Residual Stresses and Mechanical Properties of Single Crystal Niobium for SRF Cavities

    International Nuclear Information System (INIS)

    Gnaeupel-Herold, Thomas; Myneni, Ganapati Rao; Ricker, Richard E.

    2007-01-01

    This work investigates properties of large grained, high purity niobium with respect to the forming of superconducting radio frequency (SRF) cavities from such large grained sheets. The yield stresses were examined using tensile specimens that were essentially single crystals in orientations evenly distributed in the standard projection triangle. No distinct yield anisotropy was found, however, vacuum annealing increased the yield strength by a factor 2...3. The deep drawing forming operation of the half cells raises the issues of elastic shape changes after the release of the forming tool (springback) and residual stresses, both of which are indicated to be negligible. This is a consequence of the low yield stress (< 100 MPa) and the large thickness (compared to typical thicknesses in sheet metal forming). However, the significant anisotropy of the transversal plastic strains after uniaxial deformation points to potentially critical thickness variations for large grained / single crystal half cells, thus raising the issue of controlling grain orientation or using single crystal sheet material

  18. The spectroscopy investigation of ZnWO{sub 4}:Tm{sup 3+} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Yang Fugui, E-mail: ruopiao@fjirsm.ac.cn [Department of Electronic Information Science, Fujian Jiangxia University, Fuzhou, Fujian 350108 (China); Tu Chaoyang [Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002 (China)

    2012-09-15

    Highlights: Black-Right-Pointing-Pointer The spectroscopy and refractive index of single crystal ZnWO{sub 4}:Tm{sup 3+} are investigated systematically. Black-Right-Pointing-Pointer The Judd-Ofelt parameters are obtained. Black-Right-Pointing-Pointer The gain cross sections at {approx}2 {mu}m are estimated by reciprocity method (RM). Black-Right-Pointing-Pointer The laser operation at {approx}2 {mu}m is discussed. - Abstract: The single crystal ZnWO{sub 4}:Tm{sup 3+} has been grown by Czochralski method. The XRD, refractive index, absorption and fluorescence spectra are measured. The Judd-Ofelt parameters{Omega}{sub 2}, {Omega}{sub 4}, {Omega}{sub 6} are obtained to be 6.3 Multiplication-Sign 10{sup -20}, 1.3 Multiplication-Sign 10{sup -20}, 1.4 Multiplication-Sign 10{sup -20} cm{sup 2}, respectively. The fluorescence decay time of the {sup 3}H{sub 4} level is measured to be 0.113 ms and the quantum efficiency is 57%. The gain cross sections corresponding to {sup 3}F{sub 4}{yields}{sup 3}H{sub 6} transition at {approx}2 {mu}m are estimated by the reciprocity method (RM). The strong gain at {approx}2 {mu}m indicates that the ZnWO{sub 4}:Tm{sup 3+} crystal is a promising laser host for {approx}2 {mu}m laser.

  19. Photoluminescence and positron annihilation spectroscopic investigation on a H+ irradiated ZnO single crystal

    Science.gov (United States)

    Sarkar, A.; Chakrabarti, Mahuya; Sanyal, D.; Bhowmick, D.; Dechoudhury, S.; Chakrabarti, A.; Rakshit, Tamita; Ray, S. K.

    2012-08-01

    Low temperature photoluminescence and room temperature positron annihilation spectroscopy have been employed to investigate the defects incorporated by 6 MeV H+ ions in a hydrothermally grown ZnO single crystal. Prior to irradiation, the emission from donor bound excitons is at 3.378 eV (10 K). The irradiation creates an intense and narrow emission at 3.368 eV (10 K). The intensity of this peak is nearly four times that of the dominant near band edge peak of the pristine crystal. The characteristic features of the 3.368 eV emission indicate its origin as a ‘hydrogen at oxygen vacancy’ type defect. The positron annihilation lifetime measurement reveals a single component lifetime spectrum for both the unirradiated (164 ± 1 ps) and irradiated crystal (175 ± 1 ps). It reflects the fact that the positron lifetime and intensity of the new irradiation driven defect species are a little higher compared to those in the unirradiated crystal. However, the estimated defect concentration, even considering the high dynamic defect annihilation rate in ZnO, comes out to be ˜4 × 1017 cm-3 (using SRIM software). This is a very high defect concentration compared to the defect sensitivity of positron annihilation spectroscopy. A probable reason is the partial filling of the incorporated vacancies (positron traps), which in ZnO are zinc vacancies. The positron lifetime of ˜175 ps (in irradiated ZnO) is consistent with recent theoretical calculations for partially hydrogen-filled zinc vacancies in ZnO. Passivation of oxygen vacancies by hydrogen is also reflected in the photoluminescence results. A possible reason for such vacancy filling (at both Zn and O sites) due to irradiation has also been discussed.

  20. Photoluminescence and positron annihilation spectroscopic investigation on a H+ irradiated ZnO single crystal

    International Nuclear Information System (INIS)

    Sarkar, A; Chakrabarti, Mahuya; Sanyal, D; Bhowmick, D; Dechoudhury, S; Chakrabarti, A; Rakshit, Tamita; Ray, S K

    2012-01-01

    Low temperature photoluminescence and room temperature positron annihilation spectroscopy have been employed to investigate the defects incorporated by 6 MeV H + ions in a hydrothermally grown ZnO single crystal. Prior to irradiation, the emission from donor bound excitons is at 3.378 eV (10 K). The irradiation creates an intense and narrow emission at 3.368 eV (10 K). The intensity of this peak is nearly four times that of the dominant near band edge peak of the pristine crystal. The characteristic features of the 3.368 eV emission indicate its origin as a ‘hydrogen at oxygen vacancy’ type defect. The positron annihilation lifetime measurement reveals a single component lifetime spectrum for both the unirradiated (164 ± 1 ps) and irradiated crystal (175 ± 1 ps). It reflects the fact that the positron lifetime and intensity of the new irradiation driven defect species are a little higher compared to those in the unirradiated crystal. However, the estimated defect concentration, even considering the high dynamic defect annihilation rate in ZnO, comes out to be ∼4 × 10 17 cm -3 (using SRIM software). This is a very high defect concentration compared to the defect sensitivity of positron annihilation spectroscopy. A probable reason is the partial filling of the incorporated vacancies (positron traps), which in ZnO are zinc vacancies. The positron lifetime of ∼175 ps (in irradiated ZnO) is consistent with recent theoretical calculations for partially hydrogen-filled zinc vacancies in ZnO. Passivation of oxygen vacancies by hydrogen is also reflected in the photoluminescence results. A possible reason for such vacancy filling (at both Zn and O sites) due to irradiation has also been discussed. (paper)

  1. Photoluminescence and positron annihilation spectroscopic investigation on a H(+) irradiated ZnO single crystal.

    Science.gov (United States)

    Sarkar, A; Chakrabarti, Mahuya; Sanyal, D; Bhowmick, D; Dechoudhury, S; Chakrabarti, A; Rakshit, Tamita; Ray, S K

    2012-08-15

    Low temperature photoluminescence and room temperature positron annihilation spectroscopy have been employed to investigate the defects incorporated by 6 MeV H(+) ions in a hydrothermally grown ZnO single crystal. Prior to irradiation, the emission from donor bound excitons is at 3.378 eV (10 K). The irradiation creates an intense and narrow emission at 3.368 eV (10 K). The intensity of this peak is nearly four times that of the dominant near band edge peak of the pristine crystal. The characteristic features of the 3.368 eV emission indicate its origin as a 'hydrogen at oxygen vacancy' type defect. The positron annihilation lifetime measurement reveals a single component lifetime spectrum for both the unirradiated (164 ± 1 ps) and irradiated crystal (175 ± 1 ps). It reflects the fact that the positron lifetime and intensity of the new irradiation driven defect species are a little higher compared to those in the unirradiated crystal. However, the estimated defect concentration, even considering the high dynamic defect annihilation rate in ZnO, comes out to be ∼4 × 10(17) cm(-3) (using SRIM software). This is a very high defect concentration compared to the defect sensitivity of positron annihilation spectroscopy. A probable reason is the partial filling of the incorporated vacancies (positron traps), which in ZnO are zinc vacancies. The positron lifetime of ∼175 ps (in irradiated ZnO) is consistent with recent theoretical calculations for partially hydrogen-filled zinc vacancies in ZnO. Passivation of oxygen vacancies by hydrogen is also reflected in the photoluminescence results. A possible reason for such vacancy filling (at both Zn and O sites) due to irradiation has also been discussed.

  2. [Experimental results of erbium:YAG laser vitrectomy].

    Science.gov (United States)

    Mrochen, M; Petersen, H; Wüllner, C; Seiler, T

    1998-01-01

    Vitrectomy performed by conventional guillotine devices includes the risk of mechanical damage to retina as well as other ocular structures. The present study aims to investigate the efficacy of the Er:YAG laser for vitreous liquefaction. Vitreous liquefaction by means of Er:YAG laser pulses was performed using a special handpiece. The output of an Er:YAG laser operating at 2.94 microns was coupled into a ZrF optical fibre (length 2 m) which ended inside a cavity located at the quartz tip (diameter 320 microns) of the handpiece where tissue ablation took place. The viscosity of the liquefied vitreous was determined by rotation viscosimetry and compared to liquefied vitreous obtained by mechanical vitrectomy. In addition, the aspiration flow (ml/min) was correlated to the repetition/cutting rate of the laser and the cutter. The temperature rise at the handpiece was recorded with a micro thermocouple. The cutting threshold was determined to 5 mJ +/- 3 mJ at a pulse duration of 200 microseconds. The viscosity of the vitreous liquefied with the Er:YAG laser was 31 +/- 10 mPa s which is similar to the results of mechanical vitrectomy (42 +/- 19 mPa s) but significant less than that of normal vitreous (880 +/- 280 mPa s). The aspiration of the laser handpiece in dependence to the repetition rate increases linear up to 2.6 ml/min at 30 Hz. The temperature increase at the handpiece was < 1 K under vitrectomy conditions (aspiration and irrigation) with an averaged laser power of 0.3 W (10 mJ at 30 Hz). The decreased vacuum forces used by the laser vitrectomy system may result in less mechanical stress to the retina as well as intravitreal structures which may be attached to it. An Er:YAG laser vitrectomy system may offer the potential of fewer complications during vitrectomy.

  3. Creep Properties of NiAl-1Hf Single Crystals Re-Investigated

    Science.gov (United States)

    Whittenberger, J. Daniel; Locci, Ivan E.; Darolia, Ram; Bowman, Randy R.

    2000-01-01

    NiAl-1Hf single crystals have been shown to be quite strong at 1027 C, with strength levels approaching those of advanced Ni-based superalloys. Initial testing, however, indicated that the properties might not be reproducible. Study of the 1027 C creep behavior of four different NiAl-1Hf single-crystal ingots subjected to several different heat treatments indicated that strength lies in a narrow band. Thus, we concluded that the mechanical properties are reproducible. Recent investigations of the intermetallic NiAl have confirmed that minor alloying additions combined with single-crystal growth technology can produce elevated temperature strength levels approaching those of Ni-based superalloys. For example, General Electric alloy AFN 12 {Ni-48.5(at.%) Al-0.5Hf-1Ti-0.05Ga} has a creep rupture strength equivalent to Rene 80 combined with a approximately 30-percent lower density, a fourfold improvement in thermal conductivity, and the ability to form a self-protective alumina scale in aggressive environments. Although the compositions of strong NiAl single crystals are relatively simple, the microstructures are complex and vary with the heat treatment and with small ingot-toingot variations in the alloy chemistry. In addition, initial testing suggested a strong dependence between microstructure and creep strength. If these observations were true, the ability to utilize NiAl single-crystal rotating components in turbine machinery could be severely limited. To investigate the possible limitations in the creep response of high-strength NiAl single crystals, the NASA Glenn Research Center at Lewis Field initiated an in depth investigation of the effect of heat treatment on the microstructure and subsequent 1027 C creep behavior of [001]-oriented NiAl-1Hf with a nominal chemistry of Ni-47.5Al-1Hf-0.5Si. This alloy was selected since four ingots, grown over a number of years and possessing slightly different compositions, were available for study. Specimens taken from the

  4. Phase transition sequence in ferroelectric Aurivillius compounds investigated by single crystal X-ray diffraction

    Science.gov (United States)

    Boullay, P.; Tellier, J.; Mercurio, D.; Manier, M.; Zuñiga, F. J.; Perez-Mato, J. M.

    2012-09-01

    The investigation of the phase transition sequence in SrBi2Ta2O9 (SBT) and SrBi2Nb2O9 (SBN) is reported using single-crystal X-ray diffraction. By monitoring specific reflections as a function of temperature, sensitive either to the superstructure formation or to polar displacements, it was possible to check the existence or not of an intermediate phase. This latter was confirmed in SBT, but within experimental accuracy could not be detected in SBN.

  5. Investigation of the crystallization process of titanium alloy ingots produced by vacuum arc melting method

    International Nuclear Information System (INIS)

    Tetyukhin, V.V.; Kurapov, V.N.; Trubin, A.N.; Demchenko, M.V.; Lazarev, V.G.; Ponedilko, S.V.; Dubrovina, N.T.; Kurapova, L.A.

    1978-01-01

    The process of crystallization and hardening of the VT3-1 and VT9 titanium alloys ingots during the vacuum-arc remelting (VAR) has been studied. In order to investigate the kinetics of the hole shape changing and the peculiarities of the ingot formation during the VAR, the radiography method has been used. It is established that the VAR of the titanium alloy ingots is basically a continuous process. An intense heating of the liquid bath mirror and the availability of high temperature gradients in the hole are the typical features of the VAR process

  6. Investigation of radiation-enhanced diffusions of non valency impurities in ionic crystals

    International Nuclear Information System (INIS)

    Surzhikov, A.P.; Pritulov, A.M.; Gyngazov, S.A.; Chernyavskij, A.V.

    1999-01-01

    Investigations of hetero valency ions Al +3 and Mg +2 diffusion in potassium bromide crystals, under the intensive electron radiation, were conducted. The electron accelerator ELV-6 generating a continuous electron beam of 1.4 MeV in power was used for the investigations. To discover the radiation effects, there was a comparison of outcomes of the heating under the same temperature and annealing duration values. The mass-spectrometer MS-7021M was used to measure the diffusion profiles. The experimental outcomes analysis was carried out by approximation of the experimental concentration profiles, using a relevant solution of Fick's equation. The numerical values of the diffusion factors for the set annealing temperatures were determined according to the approximation outcomes. The investigations were financed by the Russian Fundamental Research Fund

  7. Twinning processes in Cu-Al-Ni martensite single crystals investigated by neutron single crystal diffraction method

    Czech Academy of Sciences Publication Activity Database

    Molnar, P.; Šittner, P.; Novák, V.; Lukáš, Petr

    2008-01-01

    Roč. 481, Sp.Iss.SI (2008), s. 513-517 ISSN 0921-5093 R&D Projects: GA AV ČR IAA100480704 Institutional research plan: CEZ:AV0Z10480505 Keywords : Cu-Al-Ni * single crystals * neutron diffraction Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.806, year: 2008

  8. Continuous production of phosphor YAG:Tb nanoparticles by hydrothermal synthesis in supercritical water

    International Nuclear Information System (INIS)

    Hakuta, Yukiya; Haganuma, Tsukasa; Sue, Kiwamu; Adschiri, Tadafumi; Arai, Kunio

    2003-01-01

    Phosphor YAG:Tb ((Y 2.7 Tb 0.3 )Al 5 O 12 ) nano particles were synthesized by a hydrothermal method at supercritical conditions (400 deg. C and 30 MPa) using a flow reactor. Hydroxide sol solutions formed by stoichiometric aluminum nitrate, yttrium nitrate, terbium nitrate and potassium hydroxide solutions. The relationship between particle size and experimental variables including pH, concentration of coexistent ions and hydroxide sol were investigated. Particles were characterized by XRD, TEM and photo-luminescence measurements. Particle size of YAG:Tb became finer as pH was increased or potassium nitrate concentration of the starting metal salt solution was increased. By removing the coexisting ions (NO 3 - , K + ) from the metal salt solution, single phase YAG:Tb particles with 20 nm particle size were obtained. The emission spectra of YAG:Tb particles of 14 nm shows a blue shift

  9. Investigation of a polymer-dispersed liquid crystal system by NMR diffusometry and relaxometry

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Mingxue

    2013-02-26

    Polymer-dispersed liquid crystals (PDLCs) are polymer composites containing a dispersion of liquid crystal droplets in polymer networks. PDLCs have attracted much attention due to their unique properties and potential usage. The properties of PDLCs depend on the degree of phase separation and the size of liquid crystal droplets. To investigate the structure will help us to better understand and optimize PDLCs.The main aim of this PhD thesis was to investigate PDLCs by NMR techniques. Diffusion constants and spin-lattice relaxation times in the laboratory (T{sub 1}) and rotating frame (T{sub 1{rho}}) were measured for PDLCs as well as precursor mixtures based on the trifunctional monomer trimethylolpropane triacrylate (TMPTA) and the commercial nematic mixture E7. The variation of the main dipolar splitting of {sup 1}H spectra with increasing temperature was analyzed to obtain the nematic-to-isotropic phase transition temperature and the nematic order parameter of E7 and, for comparison, the nematic liquid crystal 5CB.Diffusion constants in TMPTA/E7 mixtures, measured by pulsed-field gradient NMR, increase for both E7 and TMPTA as the mass fraction of E7 increases, due to the lower viscosity of E7. E7 in the PDLC diffuses more slowly than in the bulk because of the hindrance by the polymer matrix. T{sub 1} and T{sub 1{rho}} relaxation times in the liquid or liquid-crystalline phases of TMPTA and bulk E7 are higher than in the PDLC and the pure polymer, due to the lower mobility in the polymer samples. T{sub 1{rho}} in the PDLC is even shorter than in the pure polymer, indicating an anti-softening effect caused by E7 molecules. In bulk E7, the well-ordered rod-like molecules exhibit a unique H-C dipolar coupling, which leads to oscillations in the cross-polarization curve. However, in the PDLC, the anchoring effect at the boundary between the polymer and LC droplets disturbs the molecular order resulting in a smooth cross polarization curve.

  10. Investigation of a polymer-dispersed liquid crystal system by NMR diffusometry and relaxometry

    International Nuclear Information System (INIS)

    Tang, Mingxue

    2013-01-01

    Polymer-dispersed liquid crystals (PDLCs) are polymer composites containing a dispersion of liquid crystal droplets in polymer networks. PDLCs have attracted much attention due to their unique properties and potential usage. The properties of PDLCs depend on the degree of phase separation and the size of liquid crystal droplets. To investigate the structure will help us to better understand and optimize PDLCs.The main aim of this PhD thesis was to investigate PDLCs by NMR techniques. Diffusion constants and spin-lattice relaxation times in the laboratory (T 1 ) and rotating frame (T 1ρ ) were measured for PDLCs as well as precursor mixtures based on the trifunctional monomer trimethylolpropane triacrylate (TMPTA) and the commercial nematic mixture E7. The variation of the main dipolar splitting of 1 H spectra with increasing temperature was analyzed to obtain the nematic-to-isotropic phase transition temperature and the nematic order parameter of E7 and, for comparison, the nematic liquid crystal 5CB.Diffusion constants in TMPTA/E7 mixtures, measured by pulsed-field gradient NMR, increase for both E7 and TMPTA as the mass fraction of E7 increases, due to the lower viscosity of E7. E7 in the PDLC diffuses more slowly than in the bulk because of the hindrance by the polymer matrix. T 1 and T 1ρ relaxation times in the liquid or liquid-crystalline phases of TMPTA and bulk E7 are higher than in the PDLC and the pure polymer, due to the lower mobility in the polymer samples. T 1ρ in the PDLC is even shorter than in the pure polymer, indicating an anti-softening effect caused by E7 molecules. In bulk E7, the well-ordered rod-like molecules exhibit a unique H-C dipolar coupling, which leads to oscillations in the cross-polarization curve. However, in the PDLC, the anchoring effect at the boundary between the polymer and LC droplets disturbs the molecular order resulting in a smooth cross polarization curve.

  11. Pulsed Q-switched ruby laser annealing of Bi implanted Si crystals investigated by channeling

    International Nuclear Information System (INIS)

    Deutch, B.I.; Shih-Chang, T.; Shang-Hwai, L.; Zu-Yao, Z.; Jia-Zeng, H.; Ren-Zhi, D.; Te-Chang, C.; De-Xin, C.

    1979-01-01

    Channeling was used to investigate pulsed, Q switched ruby-laser annealed and thermally annealed Si single crystals implanted with 40-keV Bi ions to a dose of 10 15 atoms/cm 2 . After thermal annealing, residual damage decreased with increasing annealing temperature to a minimum value of 30% at 900 0 C. The Bi atoms in substitutional sites reached a maximum value (50%) after annealing at 750 0 C but decreased with increasing annealing temperature. Out diffusion of Bi atoms occurred at temperatures higher than 625 0 C. For comparison, the residual damage disappeared almost completely after pulsed-laser annealing (30 ns pulse width, Energy, E = 3J/cm 2 ). The concentration of Bi in Si exceeded its solid solubility by an order of magnitude; 95% of Bi atoms were annealed to substitutional sites. Laser pulses of different energies were used to investigate the efficiency of annealing. (author)

  12. Determination of the compressive yield strength for nano-grained YAG transparent ceramic by XRD analysis

    International Nuclear Information System (INIS)

    Wang, H.M.; Jiang, J.S.; Huang, Z.Y.; Chen, Y.; Liu, K.; Lu, Z.W.; Qi, J.Q.; Li, F.; He, D.W.; Lu, T.C.; Wang, Q.Y.

    2016-01-01

    Nano-grained ceramics have their unique mechanical characteristics that are not commonly found in their coarse-grained counterparts. In this study, nano-grained YAG transparent ceramics (NG-YAG) were prepared by low-temperature high-pressure technique (LTHP). The peak profile analysis of the X-ray diffraction was employed to investigate the compressive yield strength of NG-YAG. During the temperature at 450 °C, the residual micro-strain (RMS) increased with increasing loading pressure. However when the loading pressure was exceeded to 4.0 GPa the RMS exhibited a severe negative slop. The temperature effects on the compressive yield strength were also studied. It shows that the compressive yield strength of NG-YAG is 4.0 GPa and 5.0 GPa respectively at 450 °C and 350 °C. More importantly according to this investigation, a feasible technique to study the nano-grained ceramics is provided. - Graphical abstract: Fig. 2 shows the significant slope changes of calculated residual micro-strain (RMS) associated with five selected pressure-temperature conditions. Another the grain size estimated from Scherrer's formula, especially when it changes with the pressure-temperature condition is also plotted in Fig. 2. - Highlights: • Prepared the nano-grained YAG transparent ceramic by high pressure technique. • Obtained the compressive yield with different temperature. • Obtained the compressive yield of nano-grained YAG transparent ceramic.

  13. Co-precipitation synthesis of YAG:Dy nanophosphor and its thermometric properties

    International Nuclear Information System (INIS)

    Chong, Joo-Yun; Zhang, Yuelan; Wagner, Brent K.; Kang, Zhitao

    2013-01-01

    Highlights: •YAG:Dy nanophosphors were synthesized with particle size of about 50 nm. •Optimized doping concentration of 6%Dy was determined. •Thermometric photoluminescence properties were studied between 20 and 350 °C. •Temperature-sensitive change in peak ratio of 496/457 nm emissions was demonstrated. •Suitable for potential thermographic applications when dispersed in a liquid media. -- Abstract: Dy 3+ doped yttrium aluminum garnet (YAG) nanophosphors were synthesized by a co-precipitation method for potential thermographic applications in a liquid media dispersed with fluorescent nanoparticles. The doping concentration and annealing temperature on the structural and optical properties of YAG:Dy were investigated. Pure phase YAG:Dy nanophosphors were obtained by annealing the co-precipitated hydroxide products at above 900 °C. Maximum photoluminescence intensity was observed from 6%Dy doped YAG samples. The effect of measuring temperature between 20 and 350 °C on the photoluminescence spectra of nano YAG:Dy was investigated. A temperature-sensitive change in the peak intensity ratio of 496/457 nm emission lines was demonstrated for such nanophosphors for the first time, suggesting potential applications in temperature monitoring of fuel spray

  14. Co-precipitation synthesis of YAG:Dy nanophosphor and its thermometric properties

    Energy Technology Data Exchange (ETDEWEB)

    Chong, Joo-Yun [School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Zhang, Yuelan [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Wagner, Brent K. [Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Kang, Zhitao, E-mail: zhitao.kang@gtri.gatech.edu [Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, GA 30332 (United States); School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2013-12-25

    Highlights: •YAG:Dy nanophosphors were synthesized with particle size of about 50 nm. •Optimized doping concentration of 6%Dy was determined. •Thermometric photoluminescence properties were studied between 20 and 350 °C. •Temperature-sensitive change in peak ratio of 496/457 nm emissions was demonstrated. •Suitable for potential thermographic applications when dispersed in a liquid media. -- Abstract: Dy{sup 3+} doped yttrium aluminum garnet (YAG) nanophosphors were synthesized by a co-precipitation method for potential thermographic applications in a liquid media dispersed with fluorescent nanoparticles. The doping concentration and annealing temperature on the structural and optical properties of YAG:Dy were investigated. Pure phase YAG:Dy nanophosphors were obtained by annealing the co-precipitated hydroxide products at above 900 °C. Maximum photoluminescence intensity was observed from 6%Dy doped YAG samples. The effect of measuring temperature between 20 and 350 °C on the photoluminescence spectra of nano YAG:Dy was investigated. A temperature-sensitive change in the peak intensity ratio of 496/457 nm emission lines was demonstrated for such nanophosphors for the first time, suggesting potential applications in temperature monitoring of fuel spray.

  15. Investigation and dating of gypsum crystals from Sivrihisar region in Eskisehir by ESR and TL techniques

    International Nuclear Information System (INIS)

    2011-01-01

    Gypsum crystals taken from Sivrihisar-Eskisehir district were investigated and dated by Electron Spin Resonance (ESR) and Thermoluminescence (TL) techniques. The natural ESR spectra of gypsum samples had also the signals of Mn 2 + in addition to the signal at g=2.009. It was observed that the intensity of ESR signal at g=2.009 increased with gamma irradiation dose. This ESR signal (g=2.009) was used as a dating signal in dating of gypsum samples. The only one TL peak at about 278 degree Celsius was observed in TL glow curves of nonirradiated gypsum sample. In the case of irradiated sample, TL peak at 157 degree Celsius was observed in addition of TL peak at 278 degree Celsius. Gypsum samples were irradiated with a 6 0Co gamma source. The ESR spectra and TL glow curve of gypsum samples were recorded by X-band ESR spectrometer and Risφ TL/OSL reader, respectively. For samples, ESR/TL dose-response curves was constructed. Dose-response curves were fitted with an exponential saturation function. Based on this model, accumulated dose (AD) values for dating are determined. 2 38U, 2 32Th and 4 0K analysis was carried out for gypsum crystals and dolomite which enveloped these gypsum crystals. The internal dose rate was calculated from 2 38U, 2 32Th and 4 0K analysis results of gypsum sample. The external dose rate was calculated by using 2 38U, 2 32Th and 4 0K analysis results of dolomite and cosmic dose rate. Internal and external gamma dose-rate was used for dating calculations. Because of successive recrystallization of gypsum sample after formation, calculated age values of gypsum is smaller than expected formation age.

  16. Single, composite, and ceramic Nd:YAG 946-nm lasers

    Science.gov (United States)

    Lan, Rui-Jun; Yang, Guang; Zheng-Ping, Wang

    2015-06-01

    Single, composite crystal and ceramic continuous wave (CW) 946-nm Nd:YAG lasers are demonstrated, respectively. The ceramic laser behaves better than the crystal laser. With 5-mm long ceramic, a CW output power of 1.46 W is generated with an optical conversion efficiency of 13.9%, while the slope efficiency is 17.9%. The optimal ceramic length for a 946-nm laser is also calculated. Project supported by the National Natural Science Foundation of China (Grant No. 61405171), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2012FQ014), and the Science and Technology Program of the Shandong Higher Education Institutions of China (Grant No. J13LJ05).

  17. SEM evaluation of the morphological changes in hard dental tissues prepared by Er: YAG laser and rotary instruments

    Directory of Open Access Journals (Sweden)

    Tomov Georgi

    2010-09-01

    Full Text Available Effective ablation of dental hard tissues by means of the erbium:yttrium-aluminum garnet (Er: YAG laser has been reported recently, and its application to caries removal and cavity preparation has been expected. However, few studies have investigated the morphological changes in hard dental tissues after Er: YAG laser caries treatment. In the present study the morphological changes in hard dental tissues after Er: YAG laser caries ablation in vitro was compared with that of conventional mechanical treatment. Thirty extracted human teeth with caries were used. Ten tooth was treated with the Er: YAG laser, and the other was treated with a conventional steel and diamond burs. Laser treatment was performed by means of a non-contact irradiation modes with cooling water spray, with a new Er: YAG laser (LiteTouch. Conventional bur treatment was conducted by means of a low-speed micromotor and air turbine with water cooling. Scanning electron microscope (SEM observations were performed for each treatment. The Er: YAG laser ablated carious dentin effectively with minimal thermal damage to the surrounding intact dentin, and removed infected and softened carious dentin to the same degree as the burtreatment. In addition, a lower degree of vibration was noted with the Er: YAG laser treatment. The SEM examination revealed characteristic micro-irregularities of the lased dentin and enamel surfaces with potential benefits for adhesive restorations. Our results show that the Er: YAG laser is promising as a new technical modality for caries treatment

  18. Investigation on nonlinear optical and dielectric properties of L-arginine doped ZTC crystal to explore photonic device applications

    Directory of Open Access Journals (Sweden)

    Anis Mohd

    2016-09-01

    Full Text Available The present study is focused to explore the photonic device applications of L-arginine doped ZTC (LA-ZTC crystals using nonlinear optical (NLO and dielectric studies. The LA-ZTC crystals have been grown by slow evaporation solution technique. The chemical composition and surface of LA-ZTC crystal have been analyzed by means of energy dispersive spectroscopy (EDS and surface scanning electron microscopy (SEM techniques. The Vicker’s microhardness study has been carried out to determine the hardness, work hardening index, yield strength and elastic stiffness of LA-ZTC crystal. The enhanced SHG efficiency of LA-ZTC crystal has been ascertained using the Kurtz-Perry powder SHG test. The closed-and-open aperture Z-scan technique has been employed to confirm the third order nonlinear optical nature of LA-ZTC crystal. The Z-scan transmittance data has been utilized to calculate the superior cubic susceptibility, nonlinear refractive index, nonlinear absorption coefficient and figure of merit of LA-ZTC crystal. The behavior of dielectric constant and dielectric loss of LA-ZTC crystal at different temperatures has been investigated using the dielectric analysis.

  19. Investigation of the crystal lattice defects by means of the positrons annihilations

    International Nuclear Information System (INIS)

    Dryzek, J.

    1994-01-01

    In this report the positrons annihilation methods as a tool for the crystal defects studies is presented. The short description of the positron - crystal interactions and different positron capture models are discussed. 192 refs, 67 figs, 6 tabs

  20. Investigation into structure of berylliumaluminium silicate glasses and crystals by X-ray spectroscopy

    International Nuclear Information System (INIS)

    Tykachinskij, I.D.; Gorbachev, V.V.; Petrakov, V.N.; Varshal, B.G.; Bystrakov, A.S.; Dmitriev, I.D.; Zatsepin, A.F.; Blaginina, L.A.

    1983-01-01

    For the purpose of elucidating the structural state of Be 2+ and Al 3+ ions as well as the nature of Be-O bond the investigation of glasses obtained from BeO, Al 2 O 3 and SiO 2 with different component composition is undertaken by X-ray spectroscopy. In three-component beryllium alumosilicate glasses at the ratio γ=Al 2 O 3 /BeO=0.34-1.92 the main part of Al 3+ cations forms AlO 4 groups. Be 2+ cations probably occupy several non-equivalent states. At the ''crystal-glass'' transition the reorganization of near structure of beryllium alumosilicate frame with appearance in a glass in contrast to crystal analog of beryllium cations playing the role of a glass former (being a part of glass net) as well as a modifier role occurs. For compositions with γ=1 the degree of ionic character of the Be-O bond is the greatest. The increase of Be 2+ cations fraction being a part of the glass net is characteristic feature of the glasses with parameter values γ not equal to 1

  1. Experimental investigation of photonic band gap in one-dimensional photonic crystals with metamaterials

    International Nuclear Information System (INIS)

    Chen, Yihang; Wang, Xinggang; Yong, Zehui; Zhang, Yunjuan; Chen, Zefeng; He, Lianxing; Lee, P.F.; Chan, Helen L.W.; Leung, Chi Wah; Wang, Yu

    2012-01-01

    Composite right/left-handed transmission lines with lumped element series capacitors and shunt inductors are used to experimentally realize the one-dimensional photonic crystals composed of single-negative metamaterials. The simulated and experimental results show that a special photonic band gap corresponding to zero-effective-phase (zero-φ eff ) may appear in the microwave regime. In contrast to the Bragg gap, by changing the length ratio of the two component materials, the width and depth of the zero-φ eff gap can be conveniently adjusted while keeping the center frequency constant. Furthermore, the zero-φ eff gap vanishes when both the phase-matching and impedance-matching conditions are satisfied simultaneously. These transmission line structures provide a good way for realizing microwave devices based on the zero-φ eff gap. -- Highlights: ► 1D photonic crystals with metamaterials were investigated experimentally. ► Both Bragg gap and zero-φ eff gap were observed in the microwave regime. ► The width and depth of the zero-φ eff gap were experimentally adjusted. ► Zero-φ eff gap was observed to be close when two match conditions were satisfied.

  2. Experimental investigation of photonic band gap in one-dimensional photonic crystals with metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yihang, E-mail: eon.chen@yahoo.com.cn [Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou (China); Wang, Xinggang [Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou (China); Yong, Zehui; Zhang, Yunjuan [Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Chen, Zefeng [Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou (China); He, Lianxing; Lee, P.F.; Chan, Helen L.W.; Leung, Chi Wah [Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China); Wang, Yu, E-mail: apywang@inet.polyu.edu.hk [Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong (China)

    2012-03-19

    Composite right/left-handed transmission lines with lumped element series capacitors and shunt inductors are used to experimentally realize the one-dimensional photonic crystals composed of single-negative metamaterials. The simulated and experimental results show that a special photonic band gap corresponding to zero-effective-phase (zero-φ{sub eff}) may appear in the microwave regime. In contrast to the Bragg gap, by changing the length ratio of the two component materials, the width and depth of the zero-φ{sub eff} gap can be conveniently adjusted while keeping the center frequency constant. Furthermore, the zero-φ{sub eff} gap vanishes when both the phase-matching and impedance-matching conditions are satisfied simultaneously. These transmission line structures provide a good way for realizing microwave devices based on the zero-φ{sub eff} gap. -- Highlights: ► 1D photonic crystals with metamaterials were investigated experimentally. ► Both Bragg gap and zero-φ{sub eff} gap were observed in the microwave regime. ► The width and depth of the zero-φ{sub eff} gap were experimentally adjusted. ► Zero-φ{sub eff} gap was observed to be close when two match conditions were satisfied.

  3. A numerical method for investigating crystal settling in convecting magma chambers

    Science.gov (United States)

    Verhoeven, J.; Schmalzl, J.

    2009-12-01

    Magma chambers can be considered as thermochemically driven convection systems. We present a new numerical method that describes the movement of crystallized minerals in terms of active spherical particles in a convecting magma that is represented by an infinite Prandtl number fluid. The main part focuses on the results we obtained. A finite volume thermochemical convection model for two and three dimensions and a discrete element method, which is used to model granular material, are combined. The new model is validated with floating experiments using particles of different densities and an investigation of single and multiparticle settling velocities. The resulting velocities are compared with theoretical predictions by Stokes's law and a hindered settling function for the multiparticle system. Two fundamental convection regimes are identified in the parameter space that is spanned by the Rayleigh number and the chemical Rayleigh number, which is a measure for the density of the particles. We define the T regime that is dominated by thermal convection. Here the thermal driving force is strong enough to keep all particles in suspension. As the particles get denser, they start settling to the ground, which results in a C regime. The C regime is characterized by the existence of a sediment layer with particle-rich material and a suspension layer with few particles. It is shown that the presence of particles can reduce the vigor of thermal convection. In the frame of a parameter study we discuss the change between the regimes that is systematically investigated. We show that the so-called TC transition fits a power law. Furthermore, we investigate the settling behavior of the particles in vigorous thermal convection, which can be linked to crystal settling in magma chambers. We develop an analytical settling law that describes the number of settled particles against time and show that the results fit the observations from numerical and laboratory experiments.

  4. Investigations on the optical, thermal and surface modifications of electron irradiated L-threonine single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh Kumar, G.; Gokul Raj, S. [Department of Physics, Presidency College, Chepauk, Chennai 600005 (India); Bogle, K.A.; Dhole, S.D.; Bhoraskar, V.N. [Department of Physics, University of Pune, Pune 411007 (India); Mohan, R. [Department of Physics, Presidency College, Chepauk, Chennai 600005 (India)], E-mail: professormohan@yahoo.co.in

    2008-06-15

    L-Threonine single crystals have been irradiated by 6 MeV electrons. Irradiated crystals at various electron fluences were subjected to various techniques such as UV-vis-NIR, atomic force microscopy (AFM) and thermomechanical analyses. Thermal strength of the irradiated crystals has also been studied through differential scanning calorimetry (DSC) measurements. The results have been discussed in detail.

  5. Transition of Emission Colours as a Consequence of Heat-Treatment of Carbon Coated Ce3+-Doped YAG Phosphors

    Directory of Open Access Journals (Sweden)

    Liang-Jun Yin

    2017-10-01

    Full Text Available To modify the luminescence properties of Ce3+-doped Y3Al5O12 (YAG phosphors, they have been coated with a carbon layer by chemical vapor deposition and subsequently heat-treated at high temperature under N2 atmosphere. Luminescence of the carbon coated YAG:Ce3+ phosphors has been investigated as a function of heat-treatment at 1500 and 1650 °C. The 540 nm emission intensity of C@YAG:Ce3+ is the highest when heated at 1650 °C, while a blue emission at 400–420 nm is observed when heated at 1500 °C but not at 1650 °C. It is verified by X-ray diffraction (XRD that the intriguing luminescence changes are induced by the formation of new phases in C@YAG:Ce3+-1500 °C, which disappear in C@YAG:Ce3+-1650 °C. In order to understand the mechanisms responsible for the enhancement of YAG:Ce3+ emission and the presence of the blue emission observed for C@YAG:Ce3+-1500 °C, the samples have been investigated by a combination of several electron microscopy techniques, such as HRTEM, SEM-CL, and SEM-EDS. This local and cross-sectional analysis clearly reveals a gradual transformation of phase and morphology in heated C@YAG:Ce3+ phosphors, which is related to a reaction between C and YAG:Ce3+ in N2 atmosphere. Through reaction between the carbon layer and YAG host materials, the emission colour of the phosphors can be modified from yellow, white, and then back to yellow under UV excitation as a function of heat-treatment in N2 atmosphere.

  6. Transition of Emission Colours as a Consequence of Heat-Treatment of Carbon Coated Ce3+-Doped YAG Phosphors.

    Science.gov (United States)

    Yin, Liang-Jun; Dierre, Benjamin; Sekiguchi, Takashi; van Ommen, J Ruud; Hintzen, Hubertus T Bert; Cho, Yujin

    2017-10-16

    To modify the luminescence properties of Ce 3+ -doped Y₃Al₅O 12 (YAG) phosphors, they have been coated with a carbon layer by chemical vapor deposition and subsequently heat-treated at high temperature under N₂ atmosphere. Luminescence of the carbon coated YAG:Ce 3+ phosphors has been investigated as a function of heat-treatment at 1500 and 1650 °C. The 540 nm emission intensity of C@YAG:Ce 3+ is the highest when heated at 1650 °C, while a blue emission at 400-420 nm is observed when heated at 1500 °C but not at 1650 °C. It is verified by X-ray diffraction (XRD) that the intriguing luminescence changes are induced by the formation of new phases in C@YAG:Ce 3+ -1500 °C, which disappear in C@YAG:Ce 3+ -1650 °C. In order to understand the mechanisms responsible for the enhancement of YAG:Ce 3+ emission and the presence of the blue emission observed for C@YAG:Ce 3+ -1500 °C, the samples have been investigated by a combination of several electron microscopy techniques, such as HRTEM, SEM-CL, and SEM-EDS. This local and cross-sectional analysis clearly reveals a gradual transformation of phase and morphology in heated C@YAG:Ce 3+ phosphors, which is related to a reaction between C and YAG:Ce 3+ in N₂ atmosphere. Through reaction between the carbon layer and YAG host materials, the emission colour of the phosphors can be modified from yellow, white, and then back to yellow under UV excitation as a function of heat-treatment in N₂ atmosphere.

  7. Pulsed Tm:YAG laser ablation of knee joint tissues

    Science.gov (United States)

    Shi, Wei-Qiang; Vari, Sandor G.; Duffy, J. T.; Miller, J. M.; Weiss, Andrew B.; Fishbein, Michael C.; Grundfest, Warren S.

    1992-06-01

    We investigated the effect of a free-running 2.01 micron pulsed Tm:YAG laser on bovine knee joint tissues. Ablation rates of fresh fibrocartilage, hyaline cartilage, and bone were measured in saline as a function of laser fluence (160 - 640 J/cm2) and fiber core size (400 and 600 microns). All tissues could be effectively ablated and the ablation rate increased linearly with the increasing fluence. Use of fibers of different core sizes, while maintaining constant energy fluence, did not result in significant difference in ablation rate. Histology analyses of the ablated tissue samples reveal average Tm:YAG radiation induced thermal damage (denatunalization) zones ranging between 130 and 540 microns, depending on the laser parameters and the tissue type.

  8. Passive Q switching of a solar-pumped Nd:YAG laser.

    Science.gov (United States)

    Lando, M; Shimony, Y; Noter, Y; Benmair, R M; Yogev, A

    2000-04-20

    Passive Q switching is a preferable choice for switching the Q factor of a solar-pumped laser because it requires neither a driver nor an electrical power supply. The superior thermal characteristics and durability of Cr(4+):YAG single crystals as passive Q switches for lamp and diode-pumped high-power lasers has been demonstrated. Here we report on an average power of 37 W and a switching efficiency of 80% obtained by use of a solar-pumped Nd:YAG laser Q switched by a Cr(4+):YAG saturable absorber. Concentration of the pumping solar energy on the laser crystal was obtained with a three-stage concentrator, composed of 12 heliostats, a three-dimensional compound parabolic concentrator (CPC) and a two-dimensional CPC. The water-cooled passive Q switch also served as the laser rear mirror. Repetition rates of as much as 50 kHz, at pulse durations between 190 and 310 ns (FWHM) were achieved. From the experimental results, the saturated single-pass power absorption of the Cr(4+):YAG device was estimated as 3 ? 1%.

  9. Particle detection through the quantum counter concept in YAG:Er{sup 3+}

    Energy Technology Data Exchange (ETDEWEB)

    Borghesani, A. F. [CNISM Unit, Dip. di Fisica e Astronomia and INFN, Via F. Marzolo 8, I-35131 Padova (Italy); Braggio, C., E-mail: Caterina.Braggio@unipd.it; Carugno, G.; Chiossi, F.; Guarise, M. [Dip. di Fisica e Astronomia and INFN, Via F. Marzolo 8, I-35131 Padova (Italy); Di Lieto, A.; Tonelli, M. [Dip. di Fisica and INFN, Largo Bruno Pontecorvo, 3, I-56127 Pisa (Italy); Ruoso, G. [INFN, Laboratori Nazionali di Legnaro, Viale dell' Università 2, I-35020 Legnaro (Italy)

    2015-11-09

    We report on a scheme for particle detection based on the infrared quantum counter concept. Its operation consists of a two-step excitation process of a four level system, which can be realized in rare earth-doped crystals when a cw pump laser is tuned to the transition from the second to the fourth level. The incident particle raises the atoms of the active material into a low lying, metastable energy state, triggering the absorption of the pump laser to a higher level. Following a rapid non-radiative decay to a fluorescent level, an optical signal is observed with a conventional detector. In order to demonstrate the feasibility of such a scheme, we have investigated the emission from the fluorescent level {sup 4}S{sub 3∕2} (540 nm band) in an Er{sup 3+}-doped YAG crystal pumped by a tunable titanium sapphire laser when it is irradiated with 60 keV electrons delivered by an electron gun. We have obtained a clear signature that this excitation increases the {sup 4}I{sub 13∕2} metastable level population that can efficiently be exploited to generate a detectable optical signal.

  10. Solid-state {sup 2}H NMR investigations in guest-host systems and plastic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Garibay, J.A.V.

    2004-07-01

    Variable temperature {sup 2}H NMR investigations have been carried out to study the molecular behavior of perdeuterated benzene and pyridine in the inclusion compound with tris-(1,2-dioxyphenyl)-cyclotriphosphazene. Here, a comprehensive variable temperature {sup 2}H NMR study is presented comprising line shape studies and relaxation experiments. The experimental data clearly indicate the presence of highly mobile guest species. Sample cooling gives rise to characteristic line shape effects that can be attributed to a slow-down of the rotational motion. Additional {sup 2}H NMR measurements were performed on the plastic crystal 1,4-diazabicyclo[2,2,2]octane where highly mobile species were observed. A quantitative analysis of the experimental data is achieved by appropriate computer simulations taking into account various molecular motions for each studied system. The analysis of these theoretical data give rise to the kinetic parameters that are in the order of related systems. (orig.)

  11. Photopyroelectric Calorimetry Investigations of 8CB Liquid Crystal-Microemulsion System

    Science.gov (United States)

    Paoloni, S.; Zammit, U.; Mercuri, F.

    2018-02-01

    In this work, the photopyroelectric technique has been used to investigate the phase transitions in a liquid crystal microemulsion by combining the simultaneous high temperature resolution thermal diffusivity measurements and optical polarization microscopy observations. It has been found that, during the conversion from the isotropic phase into the nematic one, the micelles are expelled from the nematic domains and remain confined in islands of isotropic material which survive down to the smectic temperature range. A hysteresis in the thermal diffusivity profiles between heating and cooling run over the isotropic-nematic transition temperature range has been observed which has been ascribed to the different micelles distribution into the sample volume during cooling and heating runs. Finally, the almost bulk-like behavior of the thermal diffusivity over the nematic-smectic phase transition confirms that a significant fraction of the micelles are expelled during the nucleation of the nematic phase.

  12. Indentation induced mechanical and electrical response in ferroelectric crystal investigated by acoustic mode AFM

    Science.gov (United States)

    Yu, H. F.; Zeng, H. R.; Ma, X. D.; Chu, R. Q.; Li, G. R.; Luo, H. S.; Yin, Q. R.

    2005-01-01

    The mechanical and electrical response of Pb (Mg1/3Nb2/3)- O3-PbTiO3 single crystals to micro-indentation are investigated using the newly developed low frequency scanning probe acoustic microscopy which is based on the atomic force microscope. There are three ways to release the stress produced by indentation. Plastic deformation emerged directly underneath the indentor and along the indentation diagonals. In addition, indentation-induced micro-cracks and new non-180° domain structures which are perpendicular to each other are also observed in the indented surface. Based on the experimental results, the relationship between the cracks and the domain patterns was discussed.

  13. Investigation of the Band Structure of Graphene-Based Plasmonic Photonic Crystals.

    Science.gov (United States)

    Qiu, Pingping; Qiu, Weibin; Lin, Zhili; Chen, Houbo; Tang, Yixin; Wang, Jia-Xian; Kan, Qiang; Pan, Jiao-Qing

    2016-09-09

    In this paper, one-dimensional (1D) and two-dimensional (2D) graphene-based plasmonic photonic crystals (PhCs) are proposed. The band structures and density of states (DOS) have been numerically investigated. Photonic band gaps (PBGs) are found in both 1D and 2D PhCs. Meanwhile, graphene-based plasmonic PhC nanocavity with resonant frequency around 175 THz, is realized by introducing point defect, where the chemical potential is from 0.085 to 0.25 eV, in a 2D PhC. Also, the bending wvaguide and the beam splitter are realized by introducing the line defect into the 2D PhC.

  14. In vitro effect of Q-switched Nd:YAG laser exposure on morphology, hydroxyapatite composition and microhardness properties of human dentin

    Directory of Open Access Journals (Sweden)

    Retna Apsari

    2011-12-01

    Full Text Available Background: A Q-switched Nd:YAG laser was employed as a source of ablation. The fundamental wavelength of the laser is 1064 nm, with pulse duration of 8 nanosecond operates with uniphase mode of TEM00. In the following experiments, dentin samples (without caries and plaque are exposed to pulse laser with Q-switching effect at various energy dose. Purpose: The aim of this study was to investigate the effect of laser ablation on dentin samples using Q-switched Nd:YAG laser exposure. Methods: The laser was operated in repetitive mode with frequency of 10 Hz. The energy dose of the laser was ranging from 13.9 J/cm2, 21.2 J/cm2 and 41.7 J/cm2. The target material comprised of human dentin. The laser was exposed in one mode with Q-switched Nd:YAG laser. Energy delivered to the target through free beam technique. The exposed human dentin was examined by using x-ray diffraction (XRD and fluoresence scanning electron microscopy for energy dispersive (FESEM-EDAX. Microhardness of human dentin were examined by using microhardness vickers test (MVT. Results: The result obtained showed that the composition of hydroxyapatite of the dentin after exposed by Q-switched Nd:YAG laser are 75.02% to 78.21%, with microhardness of 38.7 kgf/mm2 to 86.6 kgf/mm2. This indicated that exposed pulsed Nd:YAG laser on the human dentin attributed to the phototermal effect. The power density created by the Q-switched Nd:YAG laser enables the heat to produce optical breakdown (melting and hole associated with plasma formation and shock wave propagation, from energy dose of 21.2 J/cm2. From XRD analysis showed that the exposure of Nd:YAG laser did not involve in changing the crystal structure of the dentin, but due to photoablation effect. Conclusion: In conclusion, the application of Q-switched Nd:YAG laser as contactless drills in dentistry should be regarded as an alternative to the classical mechanical technique to improve the quality of the dentin treatment.Latar belakang

  15. Investigation of the process of co-crystallization of barium and strontium nitrates from the system acetic acid-water

    International Nuclear Information System (INIS)

    Hubicki, W.; Piskorek, M.

    1976-01-01

    Co-crystallization of barium nitrate and strontium nitrate from the system CH 3 COOH-H 2 O was investigated by using radioactive tracer Ba 133 . The authors have found that during the crystallization of strontium nitrate from acetic acid solution at 25 0 C, one can obtain a 67-fold lowering of the content of barium in strontium nitrate, a 40-fold lowering of the content of barium in strontium nitrate is at 35 0 C. Strontium nitrate went to the solid phase with 70% efficiency. Acetic acid solutions of 24.5-24.3 per cent weight were used. Attention was paid to the franctionation of barium admixtures during crystallization of strontium nitrate from acetic acid solutions (so called ''isothermic salting out crystallization process'') is in agreement with the logarithmic law of Doerner-Hoskins. Process is characterized by a constant coefficient of surface co-crystallization lambda = 18. The results of investigations show that it is possible to obtain spectrally pure non-barium strontium nitrate as the result of its crystallization from the system CH 3 COOH-H 2 O at a temperature of 25 0 and 35 0 C. (author)

  16. Investigate earing of TWIP steel sheet during deep-drawing process by using crystal plasticity constitutive model

    Directory of Open Access Journals (Sweden)

    Yang J.

    2015-01-01

    Full Text Available By combining the nonlinear finite element analysis techniques and crystal plasticity theory, the macroscopic mechanical behaviour of crystalline material, the texture evolution and earing-type characteristics are simulated accurately. In this work, a crystal plasticity model exhibiting deformation twinning is introduced based on crystal plasticity theory and saturation-type hardening laws for FCC metal Fe-22Mn-0.6C TWIP steel. Based on the CPFE model and parameters which have been determined for TWIP steel, a simplified finite element model for deep drawing is promoted by using crystal plasticity constitutive model. The earing characteristics in typical deep-drawing process are simulated well. Further, the drawing forces are calculated and compared to the experimental results from reference. Meanwhile, the impacts of drawing coefficient and initial texture on the earing characteristics are investigated for controlling the earing.

  17. Nd:YAG laser in caries prevention: a clinical study

    International Nuclear Information System (INIS)

    Boari, Heloisa Gomes Dimiranda

    2000-01-01

    The caries prevention by using laser irradiation has been investigated during the last 30 years. The Nd: YAG laser associated with acidulated phosphate fluoride has been shown as a very promising technique for enamel caries prevention. The aim of this work was to clinically evaluate the efficiency of Nd: YAG laser associated with acidulated phosphate fluoride in pit and fissure caries prevention of children and adolescents. In this work it was determined the dye that enhance the effect of Nd: YAG laser in enamel. It was selected 242 pre-molar and molar teeth from 33 children and adolescents, aged from 7 to 15 years old. The selected teeth were free from caries or decalcification marks (active white marks) to the clinical and radiographic exams. The teeth were divided into two groups: the first group was laser irradiated and their homologous remained as a control. The right side teeth were dye-assisted Nd:YAG laser irradiated. The dye solution was a moisture of dust coal and equal parts of water and alcohol. The irradiation conditions were 60 mJ/10 Hz, optical fiber in contact mode, with diameter of 300 μm, resulting in an energy density of 84,9 J/cm 2 . The oclusal surface of the teeth was completely irradiated, specially on the slopes and in the deepest part of the pits and fissures. This procedure was repeated three times. In the sequence it was applied the acidulated phosphate fluoride for 4 minutes. On the left side teeth - control group- only acidulated phosphate fluoride was applied for the same time. The final examination considered the presence of caries and active white marks after a period of one year. There were statistical significant differences (p < 0.01) between the lased + fluoride group and the non irradiated group. The present study concluded that the technique used in this work can be an alternative clinical method for caries prevention. (author)

  18. Preparation and characterization of highly transparent Nd:YAG/YAG composite ceramics

    Science.gov (United States)

    Ma, Benyuan; Zhang, Wei; Shen, Bizhou; Wang, Yuezhong; Song, Haizhi; Li, Feng; Xie, Xiumin; Zhang, Zhibin; Yang, Yongqiang; Guan, Zhouguo

    2018-05-01

    Using the co-precipitated Nd:YAG and YAG powders as raw materials, the Nd:YAG/YAG composite ceramics (Ф 50 mm × 5 mm) were prepared by vacuum sintering (1790 °C 50 h), followed by hot isostatic pressing (HIP) post treatment (1700 °C 2 h, 200 MPa Ar atmosphere) and air annealing (1250 °C 100 h). The optical properties of Nd:YAG/YAG samples were improved markedly by HIP post-treatment, mainly due to the elimination of residual pores in the samples. The composite sample showed a perfect bonding interface from Nd:YAG to YAG regions without obvious grain size difference, pores or other defects. This structure should be responsible for the thermal conductivity larger than that of non-composite sample. The composite sample revealed good optical properties with transmittance up to 83.9% at 1064 nm and 80.8% at 400 nm, and a maximum laser output power of 1.38 KW with the slope efficiency of 36.7% was obtained.

  19. Single-Frequency Nd:YAG Ring Lasers with Corner Cube Prism

    Science.gov (United States)

    Wu, Ke-Ying; Yang, Su-Hui; Zhao, Chang-Ming; Wei, Guang-Hui

    2000-10-01

    We put forward another form of the non-planar ring lasers, in which the corner cube prism is the key element and the Nd:YAG crystal is used as a Porro prism to enclose the ring resonator. The phase shift due to the total internal reflections of the three differently orientated reflection planes of the corner cube prism, Faraday rotation in the Nd:YAG crystal placed in a magnetic field and the different output coupling in S and P polarization form an optical diode and enforce the single-frequency generating power. A round trip analysis of the polarization properties of the resonator is made by the evaluation of Jones matrix.

  20. Investigation of 2D photonic crystal structure based channel drop filter using quad shaped photonic crystal ring resonator for CWDM system

    Energy Technology Data Exchange (ETDEWEB)

    Chhipa, Mayur Kumar, E-mail: mayurchhipa1@gmail.com; Dusad, Lalit Kumar [Government Engineering College Ajmer, Rajasthan (India); Rajasthan Technical University, Kota, Rajasthan (India)

    2016-05-06

    In this paper, the design & performance of two dimensional (2-D) photonic crystal structure based channel drop filter is investigated using quad shaped photonic crystal ring resonator. In this paper, Photonic Crystal (PhC) based on square lattice periodic arrays of Gallium Indium Phosphide (GaInP) rods in air structure have been investigated using Finite Difference Time Domain (FDTD) method and photonic band gap is being calculated using Plane Wave Expansion (PWE) method. The PhC designs have been optimized for telecommunication wavelength λ= 1571 nm by varying the rods lattice constant. The number of rods in Z and X directions is 21 and 20, with lattice constant 0.540 nm it illustrates that the arrangement of Gallium Indium Phosphide (GaInP) rods in the structure which gives the overall size of the device around 11.4 µm × 10.8 µm. The designed filter gives good dropping efficiency using 3.298, refractive index. The designed structure is useful for CWDM systems. This device may serve as a key component in photonic integrated circuits. The device is ultra compact with the overall size around 123 µm{sup 2}.

  1. Spectroscopic investigation of the far-infrared properties of liquid crystals

    DEFF Research Database (Denmark)

    Reuter, M.; Vieweg, N.; Fischer, B. M.

    2013-01-01

    Liquid crystals are one of the most promising base materials for switchable devices at THz frequencies. Therefore, a precise understanding of the optical parameters is crucial. Here, we present the refractive indices and absorption coefficients for 5 CB and an isothiocyanate terminated liquid...... crystal over a broad frequency range from 0.3 THz to 15 THz....

  2. Study of spatial resolution of YAG:Ce cathodoluminescent imaging screens

    Czech Academy of Sciences Publication Activity Database

    Schauer, Petr; Bok, Jan

    2013-01-01

    Roč. 308, 1 August (2013), s. 68-73 ISSN 0168-583X R&D Projects: GA TA ČR TE01020118; GA ČR GAP102/10/1410; GA MŠk EE.2.3.20.0103 Institutional support: RVO:68081731 Keywords : Spatial resolution * Imaging screen * Electron microscope * Cathodoluminescence * YAG:Ce single crystal * Line spread function * Modulation transfer function Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.186, year: 2013

  3. Mössbauer and Kerr microscopy investigation of crystallization in FeCoB ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, V. Raghavendra, E-mail: varimalla@yahoo.com, E-mail: vrreddy@csr.res.in; Hussain, Zaineb; Babu, Hari [UGC DAE Consortium for Scientific Research, University Campus, Kandhwa Road, Indore-452001 India (India); Shrivastava, Namrata [School of Physics, DAVV, Khandwa Road, Indore – 452001 India (India); Gupta, Ajay [Amity Centre for Spintronic Materials, Amity University, Noida 201303.India (India)

    2016-05-23

    The present work reports the crystallization study of amorphous FeCoB ribbons using x-ray diffraction, {sup 57}Fe Mössbauer spectroscopy in transmission mode and magneto-optical Kerr (MOKE) microscopy. Annealing at 673 K is found to result in crystallization. From the Mossbauer measurements it is observed that the Fe magnetic moments are in the plane of sample for as-cast ribbon; α-FeCo, (Fe{sub 0.5}Co{sub 0.5}){sub 2}B and Fe{sub 2}B phases are formed after crystallization. MOKE microscopy revealed that wide 180° domain walls & narrow fingerprint domains are observed before crystallization and fine domains are observed after crystallization. The results are explained in terms of the presence of internal stresses and their annealing with thermal heat treatment.

  4. Investigation of distribution microhomogeneity of doped elements in oxide single crystals by means of LMA-AES

    International Nuclear Information System (INIS)

    Nikolova, L.; Krasnobaeva, N.; Manuilov, N.

    1989-01-01

    The distribution of V and Ti in oxide single crystals Al 2 O 3 :V 3+ , Y 3 Al 5 O 12 :V 3+ , Al 2 O 3 :Ti 3+ , Y 3 Al 5 O 12 :Ti 3+ is investigated by laser emission microspectral analysis with photographic registration of spectra. Single crystals have been grown by the method of vertical directed crystallization (method of Bridgman-Stockbarger). For evaluation of microhomogeneity of the investigated elements distribution the following statistical methods are applied: one-way variance analysis, two-way variance analysis, regression models and gradient method. A PC programme package is developed allowing to process photoregistration data, to choose the internal standard line by scatter diagrams, to perform all statistical analysis and to plot the distribution diagrams of the elements in the samples. 2 refs. (author)

  5. Hybrid Pulsed Nd:YAG Laser

    Science.gov (United States)

    Miller, Sawyer; Trujillo, Skyler; Fort Lewis College Laser Group Team

    This work concerns the novel design of an inexpensive pulsed Nd:YAG laser, consisting of a hybrid Kerr Mode Lock (KLM) and Q-switch pulse. The two pulse generation systems work independently, non simultaneously of each other, thus generating the ability for the user to easily switch between ultra-short pulse widths or large energy density pulses. Traditionally, SF57 glass has been used as the Kerr medium. In this work, novel Kerr mode-locking mediums are being investigated including: tellurite compound glass (TeO2), carbon disulfide (CS2), and chalcogenide glass. These materials have a nonlinear index of refraction orders of magnitude,(n2), larger than SF57 glass. The Q-switched pulse will utilize a Pockels cell. As the two pulse generation systems cannot be operated simultaneously, the Pockels cell and Kerr medium are attached to kinematic mounts, allowing for quick interchange between systems. Pulse widths and repetition rates will vary between the two systems. A goal of 100 picosecond pulse widths are desired for the mode-locked system. A goal of 10 nanosecond pulse widths are desired for the Q-switch system, with a desired repetition rate of 50 Hz. As designed, the laser will be useful in imaging applications.

  6. Low-temperature synthesis, phonon and luminescence properties of Eu doped Y{sub 3}Al{sub 5}O{sub 12} (YAG) nanopowders

    Energy Technology Data Exchange (ETDEWEB)

    Mączka, M., E-mail: m.maczka@int.pan.wroc.pl [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2 (Poland); Bednarkiewicz, A. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2 (Poland); Mendoza-Mendoza, E.; Fuentes, A.F. [Cinvestav Unidad Saltillo, Apartado Postal 663, 25000 Saltillo, Coahuila (Mexico); Kępiński, L. [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, P.O. Box 1410, 50-950 Wrocław 2 (Poland)

    2014-02-14

    This contribution presents two simple and cost-effective routes for the low-temperature and large-scale production of pure and Eu-doped Y{sub 3}Al{sub 5}O{sub 12} (yttrium aluminum garnet YAG) nanopowders. The proposed methodologies combine a mechanically assisted metathesis reaction or coprecipitation from solution followed by crystallization of the obtained precursors from molten sodium nitrate/nitrite. Both procedures allow obtaining pure and/or doped YAG nanopowders at remarkably low temperatures, i.e. already at 350 °C although firing at 500 °C is needed in order to get single phase and fully crystalline materials. As-obtained samples were characterized by XRD, TEM, Raman, IR and luminescence methods. These methods showed that the mean crystallite size is near 23–31 and 51 nm, when crystallization is performed from the amorphous precursor obtained by a mechanically assisted metathesis reaction and coprecipitation, respectively. Raman and IR spectra indicated better crystallinity of the powders prepared at 500 °C. The emission study showed that the intensity ratio between hypersensitive {sup 5}D{sub 0} → {sup 7}F{sub 2} and magnetic-dipole {sup 5}D{sub 0} → {sup 7}F{sub 1} transitions of Eu{sup 3+} is significantly larger than expected for well-crystallized YAG. Origin of this behavior is discussed. - Highlights: • Nanoparticles of Y{sub 3}Al{sub 5}O{sub 12} (YAG) and YAG:Eu{sup 3+} have been prepared at remarkable 350 °C. • Metathesis/molten salts and coprecipitation/molten salts methods were used. • Metathesis/molten salts method is suitable for preparation of rare-earth doped YAG. • Emission properties of YAG:Eu{sup 3+} are significantly different from bulk YAG.

  7. Ion implantation effects in single crystal Si investigated by Raman spectroscopy

    International Nuclear Information System (INIS)

    Harriman, T.A.; Lucca, D.A.; Lee, J.-K.; Klopfstein, M.J.; Herrmann, K.; Nastasi, M.

    2009-01-01

    A study of the effects of Ar ion implantation on the structural transformation of single crystal Si investigated by confocal Raman spectroscopy is presented. Implantation was performed at 77 K using 150 keV Ar ++ with fluences ranging from 2 x 10 13 to 1 x 10 15 ions/cm 2 . The Raman spectra showed a progression from crystalline to highly disordered structure with increasing fluence. The 520 cm -1 c-Si peak was seen to decrease in intensity, broaden and exhibit spectral shifts indicating an increase in lattice disorder and changes in the residual stress state. In addition, an amorphous Si band first appeared as a shoulder on the 520 cm -1 peak and then shifted to lower wavenumbers as a single broadband peak with a spectral center of 465 cm -1 . Additionally, the emergence of the a-Si TA phonon band and the decrease of the c-Si 2TA and 2TO phonon bands also indicated the same structural transition from crystalline to highly disordered. The Raman results were compared to those obtained by channeling RBS.

  8. Nanomechanical investigation of ion implanted single crystals - Challenges, possibilities and pitfall traps related to nanoindentation

    Science.gov (United States)

    Kurpaska, Lukasz

    2017-10-01

    Nanoindentation technique have developed considerably over last thirty years. Nowadays, commercially available systems offer very precise measurement in nano- and microscale, environmental noise cancelling (or at least noise suppressing), in situ high temperature indentation in controlled atmosphere and vacuum conditions and different additional options, among them dedicated indentation is one of the most popular. Due to its high precision, and ability to measure mechanical properties from very small depths (tens of nm), this technique become quite popular in the nuclear society. It is known that ion implantation (to some extent) can simulate the influence of neutron flux. However, depth of the material damage is very limited resulting in creation of thin layer of modified material over unmodified bulk. Therefore, only very precise technique, offering possibility to control depth of the measurement can be used to study functional properties of the material. For this reason, nanoindentation technique seems to be a perfect tool to investigate mechanical properties of ion implanted specimens. However, conducting correct nanomechanical experiment and extracting valuable mechanical parameters is not an easy task. In this paper a discussion about the nanoindentation tests performed on ion irradiated YSZ single crystal is presented. The goal of this paper is to discuss possible traps when studying mechanical properties of such materials and thin coatings.

  9. Modelling investigations of DBRs and cavities with photonic crystal holes for application in VCSELs

    International Nuclear Information System (INIS)

    Ivanov, P; Ho, Y-L D; Cryan, M J; Rorison, J

    2012-01-01

    We investigate the reflection spectra of distributed Bragg reflectors (DBRs) and DBR cavities with and without photonic crystal holes fabricated within them. A finite-difference time domain (FDTD) electromagnetic model which is considered to provide the exact solution of Maxwell equations is used as a reference model. Two simplified modelling approaches are compared to the FDTD results: an effective index model where the individual DBR constituent layers penetrated by holes possess an effective index and a spatial loss model where optical losses are introduced spatially where the holes are fabricated. Results of the FDTD and the spatial loss model show that optical loss determines the properties of an etched DBR and DBR cavity when the lattice constant of the holes of exceeds 1 μm and the hole depth is small. The spatial loss model compares well to the FDTD results for holes with a lattice period exceeding 1 μm. We also consider the realistic effect of angling the sides of the etched holes. (paper)

  10. TEM investigation of irradiation damage in single crystal CeO2

    International Nuclear Information System (INIS)

    Ye Bei; Kirk, Mark A.; Chen, Weiying; Oaks, Aaron; Rest, Jeffery; Yacout, Abdellatif; Stubbins, James F.

    2011-01-01

    In order to understand the evolution of radiation damage in oxide nuclear fuel, 150-1000 keV Kr ions were implanted into single crystal CeO 2 , as a simulation of fluorite ceramic UO 2 , while in situ transmission electron microscopy (TEM) observations were carried out. Two characteristic defect structures were investigated: dislocation/dislocation loops and nano-size gas bubbles. The growth behavior of defect clusters induced by 1 MeV Kr ions up to doses of 5 x 10 15 ions/cm 2 were followed at 600 deg. C and 800 deg. C. TEM micrographs clearly show the development of defect structures: nucleation of dislocation loops, transformation to extended dislocation lines, and the formation of tangled dislocation networks. The difference in dislocation growth rates at 600 deg. C and 800 deg. C revealed the important role which Ce-vacancies play in the loop formation process. Bubble formation, studied through 150 keV Kr implantations at room temperature and 600 deg. C, might be influenced by either the mobility of metal-vacancies correlated with at threshold temperature or the limitation of gas solubility as a function of temperature.

  11. Two-dimensional NMR investigations of the dynamic conformations of phospholipids and liquid crystals

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Mei [Univ. of California, Berkeley, CA (United States). Applied Science and Technology

    1996-05-01

    Two-dimensional 13C, 1H, and 31P nuclear magnetic resonance (NMR) techniques are developed and used to study molecular structure and dynamics in liquid-crystalline systems, primarily phospholipids and nematic liquid crystals. NMR spectroscopy characterizes molecular conformation in terms of orientations and distances of molecular segments. In anisotropically mobile systems, this is achieved by measuring motionally-averaged nuclear dipolar couplings and chemical shift anisotropies. The short-range couplings yield useful bond order parameters, while the long-range interactions constrain the overall conformation. In this work, techniques for probing proton dipolar local fields are further developed to obtain highlyresolved dipolar couplings between protons and rare spins. By exploiting variable-angle sample spinning techniques, orientation-sensitive NMR spectra are resolved according to sitespecific isotropic chemical shifts. Moreover, the signs and magnitudes of various short-range dipolar couplings are obtained. They are used in novel theoretical analyses that provide information about segmental orientations and their distributions. Such information is obtained in a model-independent fashion or with physically reasonable assumptions. The structural investigation of phospholipids is focused on the dynam

  12. Double and triple crystal diffraction investigation on ion implanted and electron beam annealed silicon

    International Nuclear Information System (INIS)

    Servidori, M.; Cembali, F.; Winter, U.; Zaumseil, P.; Richter, H.

    1985-01-01

    Double (DCD) and triple crystal (TCD) diffractometry was used to investigate radiation damage produced in silicon by silicon bombardment and its evolution after electron beam annealing. The implantation processes were carried out at 60 keV energy and at doses of 0.5, 1, 5, 10, 50, 100, and 200 x 10 13 ions/cm 2 . As to the annealing treatments, an electron gun was used, operating in the ranges 7.5 to 24 W/cm 2 and 2 to 20 seconds. DCD rocking curves were analyzed by means of the dynamical theory of X-ray diffraction. The formalism introduced by Taupin was used to simulate the experimental intensity profiles. From the resulting best fits, the lattice strain vs. depth profiles were obtained, indicating an increase of the damage with dose for the as-implanted samples up to 1 x 10 14 cm -2 dose, whereas amorphous layers are produced for the higher doses. After annealing, lowering of the residual strain was observed to be directly proportional to the implanted dose. In particular, a complete recovery of the damage occurred for the 0.5 and 1 x 10 13 cm -2 samples. The results obtained by the fitting procedure were substantially independent from the power densities and times used during electron beam irradiation. TCD as a very sensitive method to investigate lattice defects after implantation was used to obtain information about the crystallographic perfection of the surface layer. The absence of diffuse scattering indicates that the annealed layers do not contain microdefects within the detection limits. (author)

  13. Investigations on the two-dimensional aperiodic plasma photonic crystals with fractal Fibonacci sequence

    Directory of Open Access Journals (Sweden)

    Hai-Feng Zhang

    2017-07-01

    Full Text Available In this paper, the properties of photonic band gaps (PBGs and defect modes of two-dimensional (2D fractal plasma photonic crystals (PPCs under a transverse-magnetic (TM wave are theoretically investigated by a modified plane wave expansion (PWE method. The configuration of 2D PPCs is the square lattices with the iteration rule of the Fibonacci sequence whose constituents are homogeneous and isotropic. The proposed 2D PPCs is filled with the dielectric cylinders in the plasma background. The accuracy and convergence of the present modified PWE method also are validated by a numerical example. The calculated results illustrate that the enough accuracy and good convergence can be achieved compared to the conventional PWE method, if the number of meshed grids is large enough. The dispersion curves of the proposed PPCs and 2D PPCs with a conventional square lattice are theoretically computed to study the properties of PBGs and defect modes. The simulated results demonstrate that the advantaged properties can be obtained in the proposed PPCs compared to the 2D conventional PPCs with similar lattices. If the Fibonacci sequence is introduced into the 2D PPCs, the larger PBGs and higher cutoff frequency can be achieved. The lower edges of PBGs are flat, which are originated from the Mie resonances. The defect modes can be considered as the quasi-localized states since the Fibonacci sequence has the self-similarity and non-periodicity at the same time. The effects of configurational parameters on the characters of the present PPCs are investigated. The results show that the PBGs and defect modes can be easily manipulated by tuning those parameters.

  14. Investigation of melt structure and crystallization processes by high-temperature Raman spectroscopy method

    International Nuclear Information System (INIS)

    Voron'ko, Yu.K.; Kudryavtsev, A.B.; Osiko, V.V.; Sobol', A.A.

    1988-01-01

    A review of studies dealing with the melts of alkali, rare earth and other element phosphates, gallates, germanates, niobates and tungstates, which are carried out by the method of high-temperature Raman spectroscopy, is given. The effect of the melt structure on the mechanism of the substance cystallization is considered. It is shown that vitrification and supercooling of the melt, as well as its crystallization in the from of metastable structures, are related to the effect of nonconformity between the melt and crystal strucure. The effect of nonconformity between anion motives in the melt and crystal creates obstacles for equilibrium structure nucleation, which results in the formation mainly of metastable forms with lattice structure for from the structure of the melt, though cases of equilibrium phase crystallization are also possible. 37 refs.; 13 figs.; 2 tabs

  15. Localization of the pumping reflector for a Nd:YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kwang Suk; Kim, Chul Joong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-12-01

    For the first year plan of this program, the pumping reflectors, which are gold plated reflectors and ceramic diffuse reflectors, of the Nd:YAG laser have been localized. The laser output performances with these reflectors have been investigated. Developed reflectors can be applied successfully to our commercialized Nd:YAG laser which was worked in previous project. We designed the optical pumping system with GaAlAs diode laser bar to improve the pumping efficiency. Moreover, we investigated a simple pumping technique without changing the fleshlamp, which makes the Nd:YAG laser operate in a cw, a pulsed, and a mixed of the two mode. We expert many new applications of this diversification of output pulse shapes in industry and in medicine. 38 figs, 9 tabs, 18 refs. (Author).

  16. Investigation on the bulk growth of α-LiIO 3 single crystals and the ...

    Indian Academy of Sciences (India)

    2017-07-26

    Jul 26, 2017 ... α-LiIO3 is an excellent optical material exhibiting strong nonlinear optical, ... caused by the strong influence of the growth conditions, and, in particular, pH of the solution from which α-LiIO3 crystal ... studies of the crystals grown at pH 10 reveal the higher optical radiation ... of d31 at 1.06 μm = 4.1 pm V. −1.

  17. X-ray absorption spectroscopy investigation of structurally modified lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Vitova, Tonya

    2008-02-15

    The type and concentration of impurity centers in different valence states are crucial for tuning the photorefractive properties of doped Lithium Niobate (LN) crystals. X-ray Absorption Spectroscopy (XAS) is an appropriate tool for studying the local structure of impurity centers. XAS combined with absorption in UV/VIS/IR and High Resolution X-ray Emission Spectroscopy (HRXES) provide information about the valence state of the dopant ions in as-grown, reduced or oxidized doped LN crystals. Cu (Cu{sup 1+} and Cu{sup 2+}) and Fe (Fe{sup 2+} and Fe{sup 3+}) atoms are found in two different valence states, whereas there are indications for a third Mn valency, in addition to Mn{sup 2+} and Mn{sup 3+} in manganese-doped LN crystals. One of the charge compensation mechanisms during reduction of copper- doped LN crystals is outgassing of oxygen atoms. Cu ions in the reduced crystals have at least two different site symmetries: twofold (Cu{sup 1+}) and sixfold (Cu{sup 2+}) coordinated by O atoms. Fe and Mn atoms are coordinated by six O atoms. Cu and Fe ions are found to occupy only Li sites, whereas Mn ions are also incorporated into Li and Nb sites. The refractive index change in LN crystals irradiated with {sup 3}He{sup 2+} ions is caused by structurally disordered centers, where Nb atoms are displaced from normal crystallographic sites and Li or/and O vacancies are present. (orig.)

  18. X-ray absorption spectroscopy investigation of structurally modified lithium niobate crystals

    International Nuclear Information System (INIS)

    Vitova, Tonya

    2008-02-01

    The type and concentration of impurity centers in different valence states are crucial for tuning the photorefractive properties of doped Lithium Niobate (LN) crystals. X-ray Absorption Spectroscopy (XAS) is an appropriate tool for studying the local structure of impurity centers. XAS combined with absorption in UV/VIS/IR and High Resolution X-ray Emission Spectroscopy (HRXES) provide information about the valence state of the dopant ions in as-grown, reduced or oxidized doped LN crystals. Cu (Cu 1+ and Cu 2+ ) and Fe (Fe 2+ and Fe 3+ ) atoms are found in two different valence states, whereas there are indications for a third Mn valency, in addition to Mn 2+ and Mn 3+ in manganese-doped LN crystals. One of the charge compensation mechanisms during reduction of copper- doped LN crystals is outgassing of oxygen atoms. Cu ions in the reduced crystals have at least two different site symmetries: twofold (Cu 1+ ) and sixfold (Cu 2+ ) coordinated by O atoms. Fe and Mn atoms are coordinated by six O atoms. Cu and Fe ions are found to occupy only Li sites, whereas Mn ions are also incorporated into Li and Nb sites. The refractive index change in LN crystals irradiated with 3 He 2+ ions is caused by structurally disordered centers, where Nb atoms are displaced from normal crystallographic sites and Li or/and O vacancies are present. (orig.)

  19. New investigations of the guanine trichloro cuprate(II) complex crystal

    Science.gov (United States)

    Fabijanić, Ivana; Matković-Čalogović, Dubravka; Pilepić, Viktor; Ivanišević, Irena; Mohaček-Grošev, Vlasta; Sanković, Krešimir

    2017-01-01

    Crystals of the guanine trichloro cuprate(II) complex, (HGua)2[Cu2Cl6]·2H2O (HGua = protonated guanine), were prepared and analysed by spectroscopic (IR, Raman) and computational methods. A new single-crystal X-ray diffraction analysis was conducted to obtain data with lower standard uncertainties than those in the previously published structure. Raman and IR spectroscopy and quantum-mechanical analysis gave us new insight into the vibrational states of the (HGua)2[Cu2Cl6]·2H2O crystal. The vibrational spectra of the crystal were assigned by performing a normal coordinate analysis for a free dimer with a centre of inversion as the only symmetry element. The stretching vibration observed at 279 cm-1 in the infrared spectrum corresponds to the N-Cu bond. The noncovalent interaction (NCI) plots and quantum theory of atoms in molecules (QTAIM) analysis of the electron density obtained from periodic DFT calculations elucidated the interactions that exist within the crystal structure. Closed-shell ionic attractions, as well as weak and medium strength hydrogen bonds, prevailed in the crystal packing.

  20. Detailed Investigation of the Structural, Thermal, and Electronic Properties of Gold Isocyanide Complexes with Mechano-Triggered Single-Crystal-to-Single-Crystal Phase Transitions.

    Science.gov (United States)

    Seki, Tomohiro; Sakurada, Kenta; Muromoto, Mai; Seki, Shu; Ito, Hajime

    2016-02-01

    Mechano-induced phase transitions in organic crystalline materials, which can alter their properties, have received much attention. However, most mechano-responsive molecular crystals exhibit crystal-to-amorphous phase transitions, and the intermolecular interaction patterns in the daughter phase are difficult to characterize. We have investigated phenyl(phenylisocyanide)gold(I) (1) and phenyl(3,5-dimethylphenylisocyanide)gold(I) (2) complexes, which exhibit a mechano-triggered single-crystal-to-single-crystal phase transition. Previous reports of complexes 1 and 2 have focused on the relationships between the crystalline structures and photoluminescence properties; in this work we have focused on other aspects. The face index measurements of complexes 1 and 2 before and after the mechano-induced phase transitions have indicated that they undergo non-epitaxial phase transitions without a rigorous orientational relationship between the mother and daughter phases. Differential scanning calorimetry analyses revealed the phase transition of complex 1 to be enthalpically driven by the formation of new aurophilic interactions. In contrast, the phase transition of complex 2 was found to be entropically driven, with the closure of an empty void in the mother phase. Scanning electron microscopy observation showed that the degree of the charging effect of both complexes 1 and 2 was changed by the phase transitions, which suggests that the formation of the aurophilic interactions affords more effective conductive pathways. Moreover, flash-photolysis time-resolved microwave conductivity measurements revealed that complex 1 increased in conductivity after the phase change, whereas the conductivity of complex 2 decreased. These contrasting results were explained by the different patterns in the aurophilic interactions. Finally, an intriguing disappearing polymorphism of complex 2 has been reported, in which a polymorph form could not be obtained again after some period of time

  1. Effect of transscleral neodymium: YAG cyclophotocoagulation on intraocular lenses

    Energy Technology Data Exchange (ETDEWEB)

    Blomquist, P.H.; Gross, R.L.; Koch, D.D. (Baylor College of Medicine, Houston, TX (USA))

    1990-03-01

    A neodymium: YAG laser operating in the thermal mode was used to irradiate isolated intraocular lenses (IOLs) and to perform transscleral cyclophotocoagulation on pseudophakic autopsy eyes to investigate the potential damage to IOL haptics such irradiation may cause. In the isolated IOLs, 70 mJ of energy deformed and partially melted both polymethylmethacrylate (PMMA) and polypropylene haptics. One of the capsular-fixated PC-IOL haptics in an autopsy eye partially melted when irradiated with the maximum energy level (8.8 J), with the aiming beam focused 1 mm posterior to the limbus and maximal posterior focus offset.

  2. 120 watt continuous wave solar-pumped laser with a liquid light-guide lens and an Nd:YAG rod.

    Science.gov (United States)

    Dinh, T H; Ohkubo, T; Yabe, T; Kuboyama, H

    2012-07-01

    We propose a simple and efficient pumping approach for a high-power solar-pumped laser by using a liquid light-guide lens (LLGL) and a hybrid pumping cavity. A 2×2 m Fresnel lens is used as a primary concentrator to collect natural sunlight; 120 W cw laser power and a 4.3% total slope efficiency are achieved with a 6-mm diameter Nd:YAG rod within a 14-mm diameter LLGL. The corresponded collection efficiency is 30.0 W/m(2), which is 1.5 times larger than the previous record. This result is unexpectedly better than that of Cr:Nd:YAG ceramics. It is because the scattering coefficient of Cr:Nd:YAG ceramics is 0.004cm(1), which is 2 times larger than that of the Nd:YAG crystal, although both have similar saturation gains.

  3. Investigation of the channeling of light ions through gold crystals having thicknesses of several hundreds of angstroms from 0.5 to 2 MeV

    International Nuclear Information System (INIS)

    Poizat, J.C.; Remillieux, J.

    A technique to obtain a few hundred A thick self-supporting gold crystal is described. These crystals have been used to perform three channeling experiments with 0.5 to 2 MeV light ions: i) The wide angle scattering probability as a function of the distance from the crystal surface was studied for a beam of particles incident in planar and axial directions. ii) The influence of channeling on the light emission from crystal-excited atomic beams was investigated. iii) A strong channeling effect was found on the probability of transmission of a molecular beam of H 2 + ions through a thin crystal

  4. Efficient continuous-wave 1112 nm Nd:YAG laser operation under direct diode pumping at 885 nm

    International Nuclear Information System (INIS)

    Gao, J; Dai, X J; Zhang, L; Wu, X D

    2013-01-01

    We report compact diode-end-pumped continuous-wave laser operation at 1112 nm under 885 nm diode-direct pumping for the first time. On the basis of the R 2 →Y 6 transition in a conventional Nd:YAG (yttrium aluminum garnet) single crystal, the maximum output power of 12.5 W is achieved, with an optical to optical efficiency of 46.6% and a slope efficiency of 52.9%. To the best of our knowledge, this represents the highest output at 1112 nm generated by a diode-end-pumped Nd:YAG laser. Furthermore, it is the highest optical to optical efficiency ever reported for 1112 nm Nd:YAG lasers. The short term power stability is ∼0.32% at 12.0 W output. (letter)

  5. In vitro studies of morphological changes in enamel surface after Er:YAG and Nd:YAG laser irradiation, by SEM

    International Nuclear Information System (INIS)

    Verlangieri, Eleonora Jaeger

    2001-01-01

    The caries prevention by using laser irradiation has been investigated by many authors using various lasers with different irradiations conditions. The purpose of this study was to investigated the morphological changes in enamel surface after Er:YAG and Nd:YAG laser irradiation, in vitro, by SEM. Fifteen freshly extracted, intact, caries-free, human third molars, were used in this study. The coronary portions were sectioned, from buccal to lingual direction, in two half-parts. Each one was irradiated by a different laser. The first one was irradiated with water-air spray, by a Nd:YAG laser, at 1.084 nm wave length, at 10 W, 10 Hz, 100 mJ for 60 sec., with an optical fiber in contact mode (0,32 mm of diameter); and the other half, with water-air spray by an Er:YAG laser at 2,94 micrometers wave length at the parameters of 4 Hz, 80 mJ, 24.95 J/cm 2 for 60 sec. The results of this study suggested that both lasers promoted morphological changes in the enamel surface enhancing resistance and can be an alternative clinical method for caries preventions. (author)

  6. Investigation of structural relaxation, crystallization process and magnetic properties of the Fe-Ni-Si-B-C amorphous alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kalezic-Glisovic, A. [Joint Laboratory for Advanced Materials of SASA, Section for Amorphous Systems, Technical Faculty Cacak, Svetog Save 65, 32000 Cacak (Serbia and Montenegro)]. E-mail: aleksandrakalezic@eunet.yu; Novakovic, L. [Faculty of Physics, Studentski trg 16, 11000 Belgrade (Serbia and Montenegro); Maricic, A. [Joint Laboratory for Advanced Materials of SASA, Section for Amorphous Systems, Technical Faculty Cacak, Svetog Save 65, 32000 Cacak (Serbia and Montenegro); Minic, D. [Faculty of Physical Chemistry, Studentski trg 16, 11000 Belgrade (Serbia and Montenegro); Mitrovic, N. [Joint Laboratory for Advanced Materials of SASA, Section for Amorphous Systems, Technical Faculty Cacak, Svetog Save 65, 32000 Cacak (Serbia and Montenegro)]. E-mail: nmitrov@tfc.kg.ac.yu

    2006-07-15

    The differential scanning calorimetry method was used for investigating the crystallization process of the Fe{sub 89.8}Ni{sub 1.5}Si{sub 5.2}B{sub 3}C{sub 0.5} amorphous alloy. It was shown that the examined alloy crystallizes in three stages. The first crystallization stage occurs at 799 K, the second at 820 K and the third at 888 K. Temperature dependence of the magnetic susceptibility relative change was investigated by the modified Faraday method in the temperature region from room temperature up to 900 K. It has been established that the Curie temperature is about 700 K for amorphous state. The magnetic susceptibility increases by 30% after the first heating up to 710 K. During the second heating up to 840 K the alloy loses its ferromagnetic features in the temperature region from 710 to 750 K, upon which it again regains the same. After the second heating magnetic susceptibility decreases by 23% as compared to the amorphous starting value and by 53% as compared to the value before the second heating. The crystallized alloy maintains ferromagnetic features in the whole temperature region during the heating up to 900 K.

  7. Investigation of structural relaxation, crystallization process and magnetic properties of the Fe-Ni-Si-B-C amorphous alloy

    International Nuclear Information System (INIS)

    Kalezic-Glisovic, A.; Novakovic, L.; Maricic, A.; Minic, D.; Mitrovic, N.

    2006-01-01

    The differential scanning calorimetry method was used for investigating the crystallization process of the Fe 89.8 Ni 1.5 Si 5.2 B 3 C 0.5 amorphous alloy. It was shown that the examined alloy crystallizes in three stages. The first crystallization stage occurs at 799 K, the second at 820 K and the third at 888 K. Temperature dependence of the magnetic susceptibility relative change was investigated by the modified Faraday method in the temperature region from room temperature up to 900 K. It has been established that the Curie temperature is about 700 K for amorphous state. The magnetic susceptibility increases by 30% after the first heating up to 710 K. During the second heating up to 840 K the alloy loses its ferromagnetic features in the temperature region from 710 to 750 K, upon which it again regains the same. After the second heating magnetic susceptibility decreases by 23% as compared to the amorphous starting value and by 53% as compared to the value before the second heating. The crystallized alloy maintains ferromagnetic features in the whole temperature region during the heating up to 900 K

  8. Thermally stimulated luminescence and persistent luminescence of β-irradiated YAG:Pr"3"+ nanophosphors produced by combustion synthesis

    International Nuclear Information System (INIS)

    Santacruz-Gomez, K.; Meléndrez, R.; Gil-Tolano, M.I.; Jimenez, J.A.; Makale, M.T.; Barboza-Flores, M.; Castaneda, B.; Soto-Puebla, D.; Pedroza-Montero, M.; McKittrick, J.; Hirata, G.A.

    2016-01-01

    In this work, the thermally stimulated luminescence (TSL) and persistent luminescence (PLUM) properties of praseodymium doped yttrium aluminum garnet (YAG:Pr"3"+) exposed to β-irradiation are reported. X-ray diffraction (XRD) confirms a single phase of YAG obtained by the combustion method. Transmission electron microscopy (TEM) shows that powder particles appear to be irregular crystals with an average size of 67 nm. TSL glow-curve deconvolution of YAG:Pr"3"+ after β-irradiation consist in six peaks centered at 394, 450, 467, 543, 637 and 705 K. The TSL fading and PLUM signals were found to be associated with at least with two different kinds of traps, corresponding to the peaks located at 394, 450 and 467 K. YAG:Pr"3"+ nanophosphors analyzed in this work showed interesting features about the dosimetric sensitivity as well as the reproducibility for both TSL/PLUM techniques, with good linearity dose response. These results indicate that nanocrystalline YAG:Pr3"+ is a good candidate for dosimetric applications in the range of 80 mGy-20 Gy. - Highlights: • β-irradiated YAG:Pr"3"+ TSL consist in 394, 450, 467, 543, 637 and 705 K peaks. • YAG:Pr"3"+ is a good candidate for dosimetry in the range of 80 mGy-20 Gy. • PLUM can be potentially used for in vivo, in situ and quasi in real time dosimetry.

  9. Emission sensitization processes involving Nd{sup 3+} in YAG

    Energy Technology Data Exchange (ETDEWEB)

    Lupei, V., E-mail: lupei_voicu@yahoo.com [National Institute of Laser, Plasma and Radiation Physics, Bucharest 077125 (Romania); Lupei, A.; Gheorghe, C. [National Institute of Laser, Plasma and Radiation Physics, Bucharest 077125 (Romania); Ikesue, A. [World Lab. Co., Nagoya (Japan)

    2016-02-15

    The paper investigates the characteristics of sensitization processes of Nd{sup 3+} emission in YAG ceramics under broad band pumping by co-doping with Cr{sup 3+} and the prospect of using Nd{sup 3+} and Cr{sup 3+} for sensitization of emission of Yb{sup 3+}. It is evidenced that the energy transfer from Cr{sup 3+} to Nd{sup 3+} involves both direct and weak migration-assisted processes and is thus dependent on the concentrations of both species. It is also found that the ion–ion interaction responsible for the direct transfer contains besides the dipole–dipole coupling strong superexchange contribution that dominates the transfer to the Nd{sup 3+} ions up to the third coordination sphere and has major implication in sensitization. Investigation of (Cr, Nd, Yb)-doped YAG ceramics shows that Cr{sup 3+} can sensitize the emission of Yb{sup 3+} both via the chain Cr–Nd–Yb or by direct Cr–Yb energy transfer. The prospect of utilization of these processes in the solar-pumped laser is discussed. - Highlights: • The efficiency of sensitization increases at high Cr and Nd doping concentrations. • The Cr-to-Nd energy transfer involves both direct and migration-assisted processes. • The direct transfer implies both dipole–dipole and superexchange interactions. • The superexchange interaction has major influence on sensitization. • Sensitized emission of Yb{sup 3+} in (Cr,Nd,Yb):YAG by Cr–Nd–Yb and Cr–Yb transfers.

  10. Luminescent properties of LuAG:Yb and YAG:Yb single crystalline films grown by Liquid Phase Epitaxy method

    International Nuclear Information System (INIS)

    Zorenko, Yu; Zorenko, T.; Gorbenko, V.; Voznyak, T.; Popielarski, P.; Batentschuk, M.; Osvet, A.; Brabec, Ch; Kolobanov, V.; Spasky, D.; Fedorov, A.

    2016-01-01

    In this work, investigation of the spectroscopic parameters of the luminescence of Yb"3"+ ions in single crystalline films of Lu_3Al_5O_1_2 and Y_3Al_5O_1_2 garnets was performed using the synchrotron radiation excitation with the energy in the range of Yb"3"+ charge transitions (CT), exciton range and the onset of interband transitions of these garnets. The basic spectroscopic parameters of the Yb"3"+ CT luminescence in LuAG and YAG hosts were determined and summarized with taking into account the differences in the band gap structure of these garnets. - Highlights: • Single crystalline films of Yb doped LuAG and YAG garnets were grown by LPE method. • Yb"3"+ luminescence of LuAG:Yb and YAG:Yb film were studied using synchrotron radiation. • Basic parameters of Yb"3"+ charge transfer luminescence in LuAG and YAG were determined.

  11. Small-Angle Neutron Scattering Investigation of Growth Modifiers on Hydrate Crystal Surfaces

    Science.gov (United States)

    Sun, Thomas; Hutter, Jeffrey L.; Lin, M.; King, H. E., Jr.

    1998-03-01

    Hydrates are crystals consisting of small molecules enclathrated within an ice-like water cage. Suppression of their growth is important in the oil industry. The presence of small quantities of specific polymers during hydrate crystallization can induce a transition from an octahedral to planar growth habit. This symmetry breaking is surprising because of the suppression of two 111 planes relative to the other six crystallographically equivalent faces. To better understand the surface effects leading to this behavior, we have studied the surface adsorption of these growth-modifing polymers onto the hydrate crytals using SANS. The total hydrate surface area, as measured by Porod scattering, increases in the presence of the growth modifier, but, no significant increase in polymer concentration on the crystal surfaces is found. Implications for possible growth mechanisms will be discussed.

  12. Defects in Czochralski-grown silicon crystals investigated by positron annihilation

    Energy Technology Data Exchange (ETDEWEB)

    Ikari, Atsushi; Kawakami, Kazuto; Haga, Hiroyo [Nippon Steel Corp., Sagamihara, Kanagawa (Japan). Electronics Research Labs.; Uedono, Akira; Wei, Long; Kawano, Takao; Tanigawa, Shoichiro

    1994-10-01

    Positron lifetime and Doppler broadening experiments were performed on Czochralski-grown silicon crystals. A monoenergetic positron beam was also used to measure the diffusion length of positrons in the wafer. From the measurements, it was observed that the value of diffusion length of positrons decreased at the region where microdefects were formed during the crystal growth process. It was also found that the line shape parameter S decreased and the lifetime of positrons increased at the region. These results can be attributed to the annihilation of positrons trapped by vacancy oxygen complexes which are formed in association with the microdefects. (author).

  13. Performance study of highly efficient 520 W average power long pulse ceramic Nd:YAG rod laser

    Science.gov (United States)

    Choubey, Ambar; Vishwakarma, S. C.; Ali, Sabir; Jain, R. K.; Upadhyaya, B. N.; Oak, S. M.

    2013-10-01

    We report the performance study of a 2% atomic doped ceramic Nd:YAG rod for long pulse laser operation in the millisecond regime with pulse duration in the range of 0.5-20 ms. A maximum average output power of 520 W with 180 J maximum pulse energy has been achieved with a slope efficiency of 5.4% using a dual rod configuration, which is the highest for typical lamp pumped ceramic Nd:YAG lasers. The laser output characteristics of the ceramic Nd:YAG rod were revealed to be nearly equivalent or superior to those of high-quality single crystal Nd:YAG rod. The laser pump chamber and resonator were designed and optimized to achieve a high efficiency and good beam quality with a beam parameter product of 16 mm mrad (M2˜47). The laser output beam was efficiently coupled through a 400 μm core diameter optical fiber with 90% overall transmission efficiency. This ceramic Nd:YAG laser will be useful for various material processing applications in industry.

  14. EXAFS investigations on PbMoO4 single crystals grown under ...

    Indian Academy of Sciences (India)

    Abstract. Extended X-ray absorption fine structure (EXAFS) measurements on PbMoO4 (LMO) crystals have been performed at the recently-commissioned dispersive EXAFS beamline (BL-8) of INDUS-2 Synchrotron facility at Indore, India. The LMO samples were prepared under three different conditions viz. (i) grown from ...

  15. Investigating calcite growth rates using a quartz crystal microbalance with dissipation (QCM-D)

    Science.gov (United States)

    Cao, Bo; Stack, Andrew G.; Steefel, Carl I.; DePaolo, Donald J.; Lammers, Laura N.; Hu, Yandi

    2018-02-01

    Calcite precipitation plays a significant role in processes such as geological carbon sequestration and toxic metal sequestration and, yet, the rates and mechanisms of calcite growth under close to equilibrium conditions are far from well understood. In this study, a quartz crystal microbalance with dissipation (QCM-D) was used for the first time to measure macroscopic calcite growth rates. Calcite seed crystals were first nucleated and grown on sensors, then growth rates of calcite seed crystals were measured in real-time under close to equilibrium conditions (saturation index, SI = log ({Ca2+}/{CO32-}/Ksp) = 0.01-0.7, where {i} represent ion activities and Ksp = 10-8.48 is the calcite thermodynamic solubility constant). At the end of the experiments, total masses of calcite crystals on sensors measured by QCM-D and inductively coupled plasma mass spectrometry (ICP-MS) were consistent, validating the QCM-D measurements. Calcite growth rates measured by QCM-D were compared with reported macroscopic growth rates measured with auto-titration, ICP-MS, and microbalance. Calcite growth rates measured by QCM-D were also compared with microscopic growth rates measured by atomic force microscopy (AFM) and with rates predicted by two process-based crystal growth models. The discrepancies in growth rates among AFM measurements and model predictions appear to mainly arise from differences in step densities, and the step velocities were consistent among the AFM measurements as well as with both model predictions. Using the predicted steady-state step velocity and the measured step densities, both models predict well the growth rates measured using QCM-D and AFM. This study provides valuable insights into the effects of reactive site densities on calcite growth rate, which may help design future growth models to predict transient-state step densities.

  16. Crystallization and spectroscopic properties investigations of Er3+ doped transparent glass ceramics containing CaF2

    International Nuclear Information System (INIS)

    Hu Zhongjian; Wang Yuansheng; Ma En; Bao Feng; Yu Yunlong; Chen Daqin

    2006-01-01

    Transparent oxyfluoride glass ceramics with composition of 45SiO 2 -25Al 2 O 3 -5CaCO 3 -10NaF-15CaF 2 -0.5ErF 3 (in mol%) were developed through controlled crystallization of melt-quenched glass. Non-isothermal crystallization kinetics investigation showed that the average apparent activation energy E a and Avrami exponent n are about 283 kJ/mol and 2.22, respectively, indicating the crystallization a three dimensional crystal growth process controlled by the diffusion with a decreasing nucleation rate. X-ray diffraction (XRD) analysis and transmission electron microscopy (TEM) observation revealed the precipitation of CaF 2 crystallites sized about 15 nm among the glass matrix after heat-treatment at 650 deg. C for 2 h. For as-made glass, no upconversion signals were detected when excited with a 30 mW diode laser at 980 nm, while strong upconversion emissions at 545, 660 and 800 nm were obtained for transparent glass ceramic under similar excitation condition

  17. 11-GHz waveguide Nd:YAG laser CW mode-locked with single-layer graphene.

    Science.gov (United States)

    Okhrimchuk, Andrey G; Obraztsov, Petr A

    2015-06-08

    We report stable, passive, continuous-wave (CW) mode-locking of a compact diode-pumped waveguide Nd:YAG laser with a single-layer graphene saturable absorber. The depressed cladding waveguide in the Nd:YAG crystal is fabricated with an ultrafast laser inscription method. The saturable absorber is formed by direct deposition of CVD single-layer graphene on the output coupler. The few millimeter-long cavity provides generation of 16-ps pulses with repetition rates in the GHz range (up to 11.3 GHz) and 12 mW average power. Stable CW mode-locking operation is achieved by controlling the group delay dispersion in the laser cavity with a Gires-Tournois interferometer.

  18. An actively mode-locked Ho: YAG solid laser pumped by a Tm: YLF laser

    International Nuclear Information System (INIS)

    Yao, B Q; Cui, Z; Wang, J; Duan, X M; Dai, T Y; Du, Y Q; Yuan, J H; Liu, W

    2015-01-01

    A continuous wave mode-locked (CWML) Ho: YAG laser based on an acousto-optic modulator (AOM) pumped by a 1.9 μm Tm: YLF laser is demonstrated. This is the first time a report on an active CWML Ho: YAG laser has been published. A maximum output power of 1.04 W at 2097.25 nm in the CWML regime is obtained at a pump power of 13.2 W, corresponding to a slope efficiency of 13.3%. The mode-locked pulse repetition frequency is 82.76 MHz and the single pulse energy is 12.57 nJ. The mode-locked pulse width is 102 ps measured through a no-background second harmonic autocorrelation with KTP as the nonlinear crystal. Furthermore, the M 2 factor is calculated to be 1.146. (letter)

  19. Injection seeded, diode pumped regenerative ring Nd:YAG amplifier for spaceborne laser ranging technology development

    Science.gov (United States)

    Coyle, D. Barry; Kay, Richard B.; Degnan, John J.; Krebs, Danny J.; Seery, Bernard D.

    1992-01-01

    A small, all solid state, regenerative ring amplifier designed as a prototype for space application is discussed. Novel features include dual side pumping of the Nd:YAG crystal and a triangular ring cavity design which minimizes the number of optical components and losses. The amplifier is relatively small (3 ns round trip time) even though standard optical elements are employed. The ring regeneratively amplifies a 100 ps single pulse by approximately 10(exp 5) at a repetition rate of 10 to 100 Hz. The amplifier is designed to be injection seeded with a pulsed, 100 ps laser diode at 1.06 microns, but another Nd:YAG laser system supplying higher pulse energies was employed for laboratory experiment. This system is a prototype laser oscillator for the Geoscience Laser Ranging System (GLRS) platform. Results on measurements of beam quality, astigmatism, and gain are given.

  20. Trapped electronic states in YAG crystal excited by femtosecond radiation

    Energy Technology Data Exchange (ETDEWEB)

    Zavedeev, E.V.; Kononenko, V.V.; Konov, V.I. [General Physics Institute of RAS, Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2017-07-15

    The excitation of an electronic subsystem of an yttrium aluminum garnet by 800 nm femtosecond radiation was studied theoretically and experimentally. The spatio-temporal dynamics of the refractive index (n) inside the beam waist was explored by means of the pump-probe interferometric technique with a submicron resolution. The observed increase in n indicated the formation of bound electronic states relaxed for ∝ 150 ps. We showed that the experimental data agreed with the computational simulation based on the numerical solution of the nonlinear Schroedinger equation only if these transient states were considered to arise from a direct light-induced process but not from the decay of radiatively generated free-electron-hole pairs. (orig.)

  1. Nd:YAG laser in urogenital surgery of the dog and cat

    NARCIS (Netherlands)

    van Nimwegen, S.A.

    2008-01-01

    It was hypothesized that the fiber-guided Nd:YAG laser with its incisional and hemostatic action, could be useful for meticulous tissue dissection in a subcapsular partial prostatectomy in dogs, and in laparoscopic surgery of dogs and cats. Prior to clinical use, its action was investigated in

  2. Thermal lensing effects in cw-pumped Nd3: YAG laser rods

    International Nuclear Information System (INIS)

    Chang, C.

    Thermal lensing effects were investigated in cw-pumped Nd 3+ : YAG laser rods. For identically specified rods very different thermally induced focal lengths were measured. Thus compensation of thermal lensing by applying curved end faces should be done individually for each rod. (orig.) 891 HT/orig. 892 HIS

  3. Dynamics of pulsed holmium:YAG laser photocoagulation of albumen

    International Nuclear Information System (INIS)

    Pfefer, T.J.; Welch, A.J.

    2000-01-01

    The pulsed holmium:YAG laser (λ = 2.12 μm, τ p = 250 μs) has been investigated as a method for inducing localized coagulation for medical procedures, yet the dynamics of this process are not well understood. In this study, photocoagulation of albumen (egg white) was analysed experimentally and results compared with optical-thermal simulations to investigate a rate process approach to thermal damage and the role of heat conduction and dynamic changes in absorption. The coagulation threshold was determined using probit analysis, and coagulum dynamics were documented with fast flash photography. The nonlinear computational model, which included a Beer's law optical component, a finite difference heat transfer component and an Arrhenius equation-based damage calculation, was verified against data from the literature. Moderate discrepancies between simulation results and our experimental data probably resulted from the use of a laser beam with an irregular spatial profile. This profile produced a lower than expected coagulation threshold and an irregular damage distribution within a millisecond after laser onset. After 1 ms, heat conduction led to smoothing of the coagulum. Simulations indicated that dynamic changes in absorption led to a reduction in surface temperatures. The Arrhenius equation was shown to be effective for simulating transient albumen coagulation during pulsed holmium:YAG laser irradiation. Greater understanding of pulsed laser-tissue interactions may lead to improved treatment outcome and optimization of laser parameters for a variety of medical procedures. (author)

  4. Effect of Nd:YAG laser on the solvent evaporation of adhesive systems.

    Science.gov (United States)

    Batista, Graziela Ribeiro; Barcellos, Daphne Câmara; Rocha Gomes Torres, Carlos; Damião, Álvaro José; de Oliveira, Hueder Paulo Moisés; de Paiva Gonçalves, Sérgio Eduardo

    2015-01-01

    This study evaluated the influence of Nd:YAG laser on the evaporation degree (ED) of the solvent components in total-etch and self-etch adhesives. The ED of Gluma Comfort Bond (Heraeus-Kulzer) one-step self-etch adhesive, and Adper Single Bond 2 (3M ESPE), and XP Bond (Dentsply) total-etch adhesives was determined by weight alterations using two techniques: Control--spontaneous evaporation of the solvent for 5 min; Experimental--Nd:YAG laser irradiation for 1 min, followed by spontaneous evaporation for 4 min. The weight loss due to evaporation of the volatile components was measured at baseline and after 10 s, 20 s, 30 s, 40 s, 50 s, 60 s, 70 s, 80 s, 90 s, 100 s, 110 s, 2 min, 3 min, 4 min, and 5 min. Evaporation of solvent components significantly increased with Nd:YAG laser irradiation for all adhesives investigated. Gluma Comfort Bond showed significantly higher evaporation of solvent components than Adper Single Bond 2 and XP Bond. All the adhesives lost weight quickly during the first min of Nd:YAG laser irradiation. The application of Nd:YAG laser on adhesives before light curing had a significant effect on the evaporation of the solvent components, and the ED of Gluma Comfort Bond one-step self-etch adhesive was significantly higher than with Adper Single Bond 2 and XP Bond total-etch adhesives. The use of the Nd:YAG laser on the uncured adhesive technique can promote a greater ED of solvents, optimizing the longevity of the adhesive restorations.

  5. Treatment of rosacea with long-pulsed Nd: YAG laser

    Directory of Open Access Journals (Sweden)

    Ekin Meşe Say

    2013-03-01

    Full Text Available Background and Design: Rosacea is a chronic inflammatory disorder of the face. There is no curative treatment for the disease. Facial flushing and vascular lesions due to rosacea may significantly affect a patient’s quality of life. Topical and oral antibiotics are not effective for treating rosacea. Currently, laser treatment of vascular lesions has been reported in the literature. We aimed to investigate the efficacy of long-pulse 1064-nm neodymium: YAG (Nd: YAG laser in the treatment of vascular lesions (erythema and telangiectasia in rosacea patients. Materials and Methods: Thirty-nine patients (29 women, 10 men with erythematotelangiectatic rosacea (ETR were recruited into the study. Severity of the disease (ETR-score: 0-3 was assessed for all patients. We used long-pulsed Nd: YAG laser for vascular lesions at 3-4 weeks intervals. The face was divided into seven anatomic regions for evaluation. Assessment was made by comparing pretreatment and posttreatment photographs by using ETR-scores. For evaluating patient satisfaction, a scale of 0 to 3 was used. Results: The patients were divided into three groups according to the ETR scores [ETR-1 (n=12, ETR-2 (n=9, ETR-3 (n=18]. Following an average of 3.95 (2-8 sessions laser treatments, the clinical improvement was statistically significant in all groups (p<0.05. The mean reduction of ETR-score was 91.70% in patients with ETR-1 and. the clinical improvement was to be decreased in severe forms of ETR. The most common sites for the lesions were the malar region, ala nasi and the nasal dorsum, respectively. The lesions on the ala nasi were more recalcitrant to the treatment than those on the other areas. Regarding to physician assessment of treatment’s success, 97% of the patients was associated with moderate and excellent improvement. According to physicians’ assessment, excellent improvement was noticed in 43.58% and, 61.5% of patients reported a high degree of satisfaction with this

  6. Investigations on the photographic elementary process in AgCl single crystal foils

    International Nuclear Information System (INIS)

    Schmidt, H.; Haase, G.; Zoergiebel, F.

    1977-01-01

    The behaviour of the latent image produced by actinic radiation (lambda = 365 nm and lambda = 407 nm) in AgCl monocrystal foils highly doped with Cd and grown and annealed under various conditions was studied by extinction measurements in the near infrared. The photographic elementary process in these highly doped crystals cannot be described satisfactorily by the classical Gurney Mott model. Therefore another model was used based on the creation of anion vacancies and molecular chlorine complexes. The radiation-induced electrons occupy these anion vacancies, and quasimetallic centres are formed. By this model the behaviour of the light-induced latent image can also be described as the nuclear particle track formation in the Cd doped AgCl crystals. (author)

  7. Investigations on the photographic elementary process in AgCl single crystal foils

    International Nuclear Information System (INIS)

    Schmidt, H.; Haase, G.; Zoergiebel, F.

    1976-01-01

    The behaviour of the latent image produced by actinic radiation (lambda = 365 mn and lambda = 407 nm) in AgCl-monocrystal foils highly doped with Cd and grown and annealed under various conditions was studied by extinction measurements in the near infrared. The photographic elementary process in these highly doped crystals cannot be described satisfactorily by the classical Gurney Mott model. Therefore another model was used based on the creation of anion vacancies and molecular chlorine complexes. The radiation induced electrons occupy these anion vacancies, and quasimetallic centers are formed. By this model the behaviour of the light induced latent image can as well be described as the nuclear particle track formation in the Cd doped AgCl-crystals. (orig.) [de

  8. Numerical investigation of flows in Czochralski crystal growth by an axisymmetric lattice Boltzmann method

    Science.gov (United States)

    Peng, Y.; Shu, C.; Chew, Y. T.; Qiu, J.

    2003-03-01

    An alternative new method called lattice Boltzmann method (LBM) is applied in this work to simulate the flows in Czochralski crystal growth, which is one of the widely used prototypical systems for melt-crystal growth. The standard LBM can only be used in Cartesian coordinate system and we extend it to be applicable to this axisymmetric thermal flow problem, avoiding the use of three-dimensional LBM on Cartesian coordinate system. The extension is based on the following idea. By inserting position and time dependent source terms into the evolution equation of standard LBM, the continuity and NS equations on the cylindrical coordinate system [1] can be recovered. Our extension is validated by its application to the benchmark problem suggested by Wheeler [2].

  9. Numerical investigation of flows in Czochralski crystal growth by an axisymmetric lattice Boltzmann method

    International Nuclear Information System (INIS)

    Peng, Y.; Shu, C.; Chew, Y.T.; Qiu, J.

    2003-01-01

    An alternative new method called lattice Boltzmann method (LBM) is applied in this work to simulate the flows in Czochralski crystal growth, which is one of the widely used prototypical systems for melt-crystal growth. The standard LBM can only be used in Cartesian coordinate system and we extend it to be applicable to this axisymmetric thermal flow problem, avoiding the use of three-dimensional LBM on Cartesian coordinate system. The extension is based on the following idea. By inserting position and time dependent source terms into the evolution equation of standard LBM, the continuity and NS equations on the cylindrical coordinate system can be recovered. Our extension is validated by its application to the benchmark problem suggested by Wheeler

  10. Numerical investigation of flows in Czochralski crystal growth by an axisymmetric lattice Boltzmann method

    CERN Document Server

    Peng, Y; Chew, Y T; Qiu, J

    2003-01-01

    An alternative new method called lattice Boltzmann method (LBM) is applied in this work to simulate the flows in Czochralski crystal growth, which is one of the widely used prototypical systems for melt-crystal growth. The standard LBM can only be used in Cartesian coordinate system and we extend it to be applicable to this axisymmetric thermal flow problem, avoiding the use of three-dimensional LBM on Cartesian coordinate system. The extension is based on the following idea. By inserting position and time dependent source terms into the evolution equation of standard LBM, the continuity and NS equations on the cylindrical coordinate system can be recovered. Our extension is validated by its application to the benchmark problem suggested by Wheeler .

  11. Neodymium: YAG laser damage threshold. A comparison of injection-molded and lathe-cut polymethylmethacrylate intraocular lenses.

    Science.gov (United States)

    Wilson, S E; Brubaker, R F

    1987-01-01

    The possibility that injection-molded intraocular lenses (IOLs) with imperfections called iridescent clefts could have a decreased threshold to neodymium: YAG (Nd:YAG) laser-induced damage was investigated. Thresholds for Nd:YAG laser-induced damage were determined for injection-molded and lathe-cut polymethylmethacrylate lenses. When aimed at a membrane in contact with a posterior convex surface, the average thresholds were 0.96 +/- 0.18 mJ (Standard deviation [SD]) and 1.80 +/- 0.55 mJ, respectively. The difference was significant at P = 0.001. When injection-molding polymethylmethacrylate was used to make lathe-cut IOLs, very few iridescent clefts were present, and the threshold to Nd:YAG laser-induced damage was 0.94 +/- 0.25 mJ. Iridescent clefts are therefore produced during the injection-molding process but they do not lower the threshold to Nd:YAG laser-induced damage. Rather, the reduced threshold in injection-molded lenses is most probably a result of the polymethylmethacrylate used in their manufacture. Clinically, iridescent clefts in a lens suggest that it has been manufactured by an injection-molding process and that Nd:YAG laser posterior capsulotomy must be performed at the lowest possible energy level to avoid damage.

  12. Studies of diode-pumped solid-state lasers based on Nd:KGW and Nd:YAG

    International Nuclear Information System (INIS)

    Ibrahim, Akram Yousif

    1996-01-01

    The experimental part of the thesis was dedicated to the studies of diode-pumped solid- state lasers. it includes experiments with end-pumped continuous wave (CW) Nd-doped crystals. In particular, we have concentrated to Nd:KGW, a relatively new and not studied in the literature about the laser materials. We have performed some basics measurements of this material. A fibre bundle coupled laser diode array was used as a pump source. We have investigated two main optical arrangements for the pump, allowing operation in two regimes: 1- Low pump power operation using selected output power from a single of the fibre bundle. 2- high pump power operation using the total output power from the bundle. The main parameters of the cavities we use (e.g. the cavity mode and the pumping spot size), were determined using the matrix approach and the equations for the propagation of the Gaussian beams. The highest output power obtained in this work for Nd:KGW with a transverse electromagnetic (TEM 0 0) single-mode, continuous (CW) operation, was 400 mW for 1700 mW pumping power from the diode laser. We present also data about the performance of a diode pumped Nd:YAG crystal. Our experiment shows that Nd:KGW is a promising material of low and medium pumping power levels. (Author)

  13. A comparative investigation on strain induced crystallization for graphene and carbon nanotubes filled natural rubber composites

    Directory of Open Access Journals (Sweden)

    D. H. Fu

    2015-07-01

    Full Text Available Natural rubber containing graphene and carbon nanotubes (CNTs composites were prepared by ultrasonicallyassisted latex mixing. Natural rubber filled by both graphene and CNTs show significant enhanced tensile strength, while graphene exhibits a better reinforcing effect than CNTs. Strain-induced crystallization in natural rubber composites during stretching was determined by synchrotron wide-angle X-ray diffraction. With the addition of CNTs or graphene, the crystallization for natural rubber occurs at a lower strain compared to unfilled natural rubber, and the strain amplification effects were observed. The incorporation of graphene results in a faster strain-induced crystallization rate and a higher crystallinity compared to CNTs. The entanglement-bound rubber tube model was used to analyze the chain network structure and determine the network parameters of composites. The results show that the addition of graphene or CNTs has an influence on the molecular network structure and improves the contribution of entanglement to the conformational constraint, while graphene has a more marked effect than CNTs.

  14. Design, structural investigation and physicochemical properties of benzotriazolium m-nitrophthalate monohydrate single crystals

    Science.gov (United States)

    Mekala, R.; Mani, Rajaboopathi; Jagdish, P.; Mathammal, R.

    2018-04-01

    The single crystals of organic salt benzotriazolium m-nitrophthalate monohydrate were grown by slow evaporation technique. It crystallizes in orthorhombic system with space group Pbca. The molecular interactions of the compound have been pictured using Hirshfeld surfaces and fingerprints plots and the results were compared with BZD+·mNPA-. The functional groups were identified by FTIR and FT-Raman spectra. The proton transfer from acid to base was identified from the 1H and 13C NMR spectra. The absorption and emission spectrum of BTA+·mNPA-·H2O was recorded in aqueous solution and different solvents, respectively The HOMO and LUMO energy gap of benzotriazole and BTA+·mNPA-·H2O were calculated using density functional theory (DFT). The thermal stability and melting point of hydrated salt was analysed and compared by TG-DTG/DSC study. The anti-oxidant activity of the title compound was evaluated by DPPH and ABTS+ Radical scavenging assay. The anti-microbial and anti-cancer activity showed a potential impact in the crystal.

  15. Ablation of CdTe with 100 μs Nd:YAG laser pulses: dependence on target preparation method

    International Nuclear Information System (INIS)

    Rzeszutek, J.; Savchuk, V.; Oszwaldowski, M.

    2008-01-01

    The results of experimental studies of the ablation of CdTe with a pulsed Nd:YAG laser (wavelength 1064 nm) performed with 100 μs pulses and repetition time of 35 Hz are presented for the pulse energy range from 0.13 to 0.25 J. The main goal is to elucidate the dependence of the ablation process on the target preparation method. The investigation of the vapour stream intensity and chemical composition and their evolution with time are performed with a quadrupole mass spectrometer synchronized with the laser pulses. These studies are performed for three kinds of targets: a target made of CdTe bulk crystal (BC target), a target made of CdTe fine powder pressed under the pressure of 700 atm (PP target), and a target made of loose CdTe powder (N-PP target). The applicability of these targets for obtaining high quality CdTe thin films is determined. The best chemical composition of the vapour stream can be obtained with the BC target. A major drawback of this target is the energetic threshold for ablation with Nd:YAG laser and resulting delay in the ablation process above the threshold. The advantage of powder targets over BC target is the lack of any ablation threshold or delay. Weaker angular dependence of the particle emission (associated with the surface roughness), if confirmed in further experiments, can be the most important advantage of PP and N-PP targets. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Crystallization kinetics and spectroscopic investigations on Tb3+ and Yb3+ codoped glass ceramics containing CaF2 nanocrystals

    International Nuclear Information System (INIS)

    Huang Lihui; Qin Guanshi; Arai, Yusuke; Jose, Rajan; Suzuki, Takenobu; Ohishi, Yasutake; Yamashita, Tatsuya; Akimoto, Yusuke

    2007-01-01

    Transparent Tb 3+ and Yb 3+ codoped oxyfluoride glass ceramics containing CaF 2 nanocrystals were prepared by melt quenching and subsequent heat treatment. Crystallization kinetics of CaF 2 nanocrystals was investigated by differential scanning calorimetric method. The average apparent activation energy E a of the crystallization was ∼498 kJ/mol. Moreover, the value of the Avrami exponent n was 1.01. These results suggest that the crystallization mechanism of CaF 2 is a diffusion controlled growth process of needles and plates of finite long dimensions. X-ray diffraction patterns and transmission electron microscopy image confirmed the CaF 2 nanocrystals in the glass ceramic. Ultraviolet (UV) and visible emission spectra of the as-made glass and the glass ceramic with an excitation of a 974 nm laser diode were recorded at room temperature. An intense UV emission at 381 nm was observed in the glass ceramic. The origin of the enhancement of the emission at 381 nm was investigated using spectroscopic technique and Judd-Ofelt analysis. The enhancement of the emission at 381 nm could be attributed to the change of the ligand field of Tb 3+ ions due to the incorporation of some Tb 3+ and Yb 3+ ions into CaF 2 nanocrystals in the glass ceramic

  17. Habit modification of bis-thiourea zinc chloride (ZTC) semi organic crystals by impurities

    Science.gov (United States)

    Ruby Nirmala, L.; Thomas Joseph Prakash, J.

    2013-06-01

    Single crystals of bis-thiourea zinc chloride (ZTC) doped with metal ion (Li+) possess excellent nonlinear optical properties. These crystals were grown by slow evaporation solution growth technique. The effect of Li+ dopant on the growth and properties of ZTC single crystal were investigated and reported. The grown crystals were crystallized in orthorhombic structure with non-centro symmetric space group Pn21a through the parent compound. The amount of dopant incorporated in the parent crystal was revealed by the inductively coupled plasma (ICP-OES) studies. The FT-IR spectroscopy study was done for finding and confirming the functional groups present in the compound. The UV-Visible spectral study was carried out to find the optical behavior and transparency nature of the grown crystal. TG/DTA measurements and Vickers microhardness measurements were traced to find out the thermal and mechanical stability of the grown crystals respectively. Using Nd:YAG laser, the Second harmonic generation (SHG) for the grown crystals were confirmed.

  18. Thermogravimetric investigation into some crystals of rare earth ultraphosphates and glasses on their base

    Energy Technology Data Exchange (ETDEWEB)

    Dudko, G D; Musiyachenko, V D; Shevelevich, R S; Gut' ko, A D

    1986-01-01

    Thermal properties of crystal and glass-like ulraphosphates (UP) rare earth and bismuth: LnP/sub 5/O/sub 14/, where Ln-La, Nd, Eu, Gd, and (R, Nd)P/sub 5/O/sub 14/, where R=La, Gd, Bi, depending on their thermal prehistory are studied. The ratio R/sub 2/O/sub 3/:Nd/sub 2/O/sub 3/ equals 1:2. The glasses were produced by initial UP melt cooling from 1200 deg C to room temperature. It is shown, that the reaction of continuous decomposition with the maximum rate at 1000-1080 deg C and the loss of P/sub 2/O/sub 5/ at 1200 deg C not exceeding 4.5 weight % precedes the melting of LnP/sub 5/O/sub 14/ type crystal, where Ln=La, Nd, Eu, Gd, and (R, Nd)P/sub 5/O/sub 14/, where R=La, Gd, Bi (at the temperatures 1035-1100 deg C). The decomposition activation energy E/sub a/, as well as melting enthalpy ..delta..H/sub melting/ and melting temperature t/sub melting/ of LnP/sub 5/O/sub 14/ crystals, decrease in the series from La to Gd with the increase in the rare earth atomic number E/sub a/:580+-34-464+-32 kJ/mol, ..delta..H/sub melting/:37+-3-32+-2 kJ/mol, t/sub melting/:1100+-10-1035+-10 deg C.

  19. Synthesis of the semi-organic nonlinear optical crystal l-glutamic acid zinc chloride and investigation of its growth and physiochemical properties

    Directory of Open Access Journals (Sweden)

    S. Chennakrishnan

    2017-11-01

    Full Text Available The aim of this study is to synthesize and investigate the growth and physiochemical properties of the nonlinear optical semi-organic crystal l-glutamic acid zinc chloride (LGAZC. An optically transparent and defect-free crystal was grown with the slow evaporation solution growth technique under optimized conditions. The induction periods were measured at various supersaturations, and the interfacial energies were evaluated. Single crystal X-ray diffraction reveals that the crystal has an orthorhombic structure with space group P212121, and the calculated lattice parameters are a = 5.20 Å, b = 6.99 Å, c = 17.58 Å, α = β = γ = 90° and volume = 623.411 Å3. Spectroscopic properties were investigated by recording the Fourier transform infrared and optical transmission spectra. The thermal decomposition of the grown crystal was investigated by Thermo Gravimetric and Differential Thermal Analysis (TG/DTA. The LGAZC crystal exhibits second harmonic generation (SHG efficiency 1.5 times that of inorganic KDP crystal. The presence of the metal ion (Zn+ in a grown crystal was identified by EDAX spectrum analysis. The photoconductivity study demonstrates that LGAZC crystal has a positive photo conducting nature. The dielectric response of the LGAZC crystal was investigated and reported. Keywords: Semi-organic nonlinear optical crystal, X-ray Diffraction, UV-vis-NIR, Thermal study

  20. Investigations of structural, dielectric and optical properties on silicon ion irradiated glycine monophosphate single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Kanagasekaran, T. [Department of Physics, Anna University, Chennai 600 025 (India); Department of Physics and Astrophysics, University of Delhi, New Delhi 110 007 (India); Mythili, P. [Department of Physics, Anna University, Chennai 600 025 (India); Bhagavannarayana, G. [Materials Characterization Division, National Physical Laboratory, New Delhi 110012 (India); Kanjilal, D. [Inter University Accelerator Centre, New Delhi 110 067 (India); Gopalakrishnan, R. [Department of Physics, Anna University, Chennai 600 025 (India)], E-mail: krgkrishnan@annauniv.edu

    2009-08-01

    The 50 MeV silicon ion irradiation induced modifications on structural, optical and dielectric properties of solution grown glycine monophosphate (GMP) crystals were studied. The high-resolution X-ray diffraction study shows the unaltered value of integrated intensity on irradiation. The dielectric constant as a function of frequency and temperature was studied. UV-visible studies reveal the decrease in bandgap values on irradiation and presence of F-centers. The fluorescence spectrum shows the existence of some energy levels, which remains unaffected after irradiation. The scanning electron micrographs reveal the defects formed on irradiation.

  1. Properties of Energy Spectra of Molecular Crystals Investigated by Nonlinear Theory

    Science.gov (United States)

    Pang, Xiao-Feng; Zhang, Huai-Wu

    We calculate the quantum energy spectra of molecular crystals, such as acetanilide, by using discrete nonlinear Schrodinger equation, containing various interactions, appropriate to the systems. The energy spectra consist of many energy bands, in each energy band there are a lot of energy levels including some higher excited states. The result of energy spectrum is basically consistent with experimental values obtained by infrared absorption and Raman scattering in acetanilide and can also explain some experimental results obtained by Careri et al. Finally, we further discuss the influences of variously characteristic parameters on the energy spectra of the systems.

  2. Low temperature ultrasonic investigation of ZnSe crystals doped with Ni

    Energy Technology Data Exchange (ETDEWEB)

    Gudkov, Vladimir [Institute for Metal Physics, Ural Department of the Russian Academy of Sciences, 18, Kovalevskaya st., 620219 Ekaterinburg (Russian Federation); Russian State Vocational Pedagogical University, 11, Mashinostroitelei st., 620012 Ekaterinburg (Russian Federation); Lonchakov, Alexander; Sokolov, Victor; Zhevstovskikh, Irina; Gruzdev, Nikita [Institute for Metal Physics, Ural Department of the Russian Academy of Sciences, 18, Kovalevskaya st., 620219 Ekaterinburg (Russian Federation)

    2005-03-01

    The peak of ultrasonic absorption observed at {approx}13 K in ZnSe:Ni crystals with dopant concentration of 5.5 x 10{sup 19} cm{sup -3} was interpreted as due to the Jahn-Teller effect. The dynamic contribution to the effective elastic modulus was accounted for and the temperature dependences of relaxation time, relaxed and unrelaxed modulus C{sub 44} were obtained. The procedure of accounting for the dynamic contribution resulted in a more accurate determination of the temperature of phase transition. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Taladrado de pizarra mediante láser de Nd:Yag

    Directory of Open Access Journals (Sweden)

    Larosi, M. S.

    1998-04-01

    Full Text Available A serie of experiments to investigate the feasibility of using a Nd: YAG laser to process slate tiles and the influence of the processing parameters have been undertaken. The objective of this work is to investigate the capabilities of a Nd:YAG pulsed laser to drill tiny holes in slate tiles, in order to produce a better quality drilled slate tile in a reduced time. Part of the results obtained in a systematic study about the influence of the processing parameters, such as average power, pulse width, frequency, pressure and type of assisting gas is presented.

    Se ha desarrollado una serie de experimentos para investigar la viabilidad del uso de un láser de Nd: YAG para el procesamiento de piezas de pizarra, así como los parámetros que más afectan al proceso. El objetivo concreto de este trabajo es investigar la capacidad de un láser de Nd:YAG pulsado para taladrar orificios de pequeño diámetro en láminas de pizarra, con el fin de obtener mejor calidad de taladrado en un tiempo reducido. Se presenta parte de los resultados obtenidos en un estudio sistemático de la influencia de los parámetros de procesamiento en la forma del orificio, tales como, potencia, duración de pulso, frecuencia, presión y tipo de gas de aportación.

  4. In vitro studies of morphological changes in enamel surface after Er:YAG and Nd:YAG laser irradiation, by SEM; Estudo in vitro do efeito do laser Nd:YAG e Er:YAG sobre o esmalte dental humano atraves de microscopia eletronica de varredura

    Energy Technology Data Exchange (ETDEWEB)

    Verlangieri, Eleonora Jaeger

    2001-07-01

    The caries prevention by using laser irradiation has been investigated by many authors using various lasers with different irradiations conditions. The purpose of this study was to investigated the morphological changes in enamel surface after Er:YAG and Nd:YAG laser irradiation, in vitro, by SEM. Fifteen freshly extracted, intact, caries-free, human third molars, were used in this study. The coronary portions were sectioned, from buccal to lingual direction, in two half-parts. Each one was irradiated by a different laser. The first one was irradiated with water-air spray, by a Nd:YAG laser, at 1.084 nm wave length, at 10 W, 10 Hz, 100 mJ for 60 sec., with an optical fiber in contact mode (0,32 mm of diameter); and the other half, with water-air spray by an Er:YAG laser at 2,94 micrometers wave length at the parameters of 4 Hz, 80 mJ, 24.95 J/cm{sup 2} for 60 sec. The results of this study suggested that both lasers promoted morphological changes in the enamel surface enhancing resistance and can be an alternative clinical method for caries preventions. (author)

  5. Nd: YAG laser in art works restoration

    International Nuclear Information System (INIS)

    Flores, T.; Ponce, L.; Arronte, M.; Moreno, B.; Fernandez, M.; Garcia, C.

    1998-01-01

    Laser cleaning in works of art has a number of advantages over traditional techniques of restoration. In this article, the technique used and the physical mechanisms that explain the process of ablation of pollutants are described. The results obtained in the cleaning of statues of marble and alabaster are exposed as well as oil-painting restoration. In this last specific case, the Nd: YAG laser is used with successful results. (Author) 6 refs

  6. Investigation of a metallic photonic crystal high power microwave mode converter

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2015-02-01

    Full Text Available It is demonstrated that an L band metallic photonic crystal TEM-TE11 mode converter is suitable for narrow band high power microwave application. The proposed mode converter is realized by partially filling metallic photonic crystals along azimuthal direction in a coaxial transmission line for phase-shifting. A three rows structure is designed and simulated by commercial software CST Microwave Studio. Simulation results show that its conversion efficiency is 99% at the center frequency 1.58 GHz. Over the frequency range of 1.56-1.625 GHz, the conversion efficiency exceeds 90 %, with a corresponding bandwidth of 4.1 %. This mode converter has a gigawatt level power handling capability which is suitable for narrow band high power microwave application. Using magnetically insulated transmission line oscillator(MILO as a high power microwave source, particle-in-cell simulation is carried out to test the performance of the mode converter. The expected TE11 mode microwave output is obtained and the MILO works well. Mode conversion performance of the converter is tested by far-field measurement method. And the experimental result confirms the validity of our design. Then, high power microwave experiment is carried out on a Marx-driven Blumlein water line pulsed power accelerator. Microwave frequency, radiated pattern and power are measured in the far-field region and the results agree well with simulation results. The experiment also reveals that no microwave breakdown or pulse shortening took place in the experimental setup.

  7. Crystal structure investigations on cation-substituted alums by X-ray and neutron diffraction

    International Nuclear Information System (INIS)

    Abdeen, A.M.

    1980-04-01

    The crystal structures of the three alums: NH 4 Al(SO 4 ) 2 .12H 2 O, (NH 3 CH 3 )Al(SO 4 ) 2 .12H 2 O and (NH 3 OH)Al(SO 4 ) 2 .12H 2 O have been determined from three-dimensional neutron diffraction data enhanced by X-ray diffraction when necessary. These compounds crystallize cubic in space group Pa3. The structures of the three alums exhibit partial occupancies of crystallographic sites for the NH 4 , (NH 3 CH 3 ) and (NH 3 OH) group atoms. This can be explained by a quantized rotation of the three groups around an axis perpendicular to the [111] direction. Some of the (SO 4 ) 2- groups in the NH 4 -alum are disordered with about 17% of the sulfate tetrahedra being in a reversed orientation around the sulfur atom. The disorder in (NH 3 CH 3 ) and (NH 3 OH)-alums is only 4,3% and 3.0% respectively. The atoms in the alum structures are held together by a system of hydrogen bonds between the water molecules and between the water molecules and the sulfate oxygen atoms. In these three structures there is a strong indication that shorter hydrogen bonds tend to be nearly linear. (orig.)

  8. Investigations of the energy and angular dependence of ultra-short radiation lengths in Si, Ge and W single crystals

    CERN Multimedia

    Very recently, experiments NA33 and WA81 have shown that pair production by energetic photons incident along crystalline directions is strongly enhanced as compared to the Bethe-Heitler value for amorphous targets. The enhanced pair production sets in at around 40 GeV in Ge crystals and rises almost linearly with photon energy up to a calculated maximum enhancement of around thirty. In Si, this maximum is expected to be nearly two orders of magnitude above the Bethe-Heitler value.\\\\ For GeV electrons/positrons incident along crystal axes, the radiation energy loss also shows a very large enhancement of approximately two orders of magnitude. In a 0.4 mm W crystal, a 100 GeV electron is expected to emit on average 70% of its total energy.\\\\ The combination of these two dramatic enhancements means that the electromagnetic shower develops much faster around crystalline directions, corresponding to ultrashort radiation lengths.\\\\ The aim of this experiment is to investigate the shower development in ...

  9. Stone retropulsion during holmium:YAG lithotripsy.

    Science.gov (United States)

    Lee, Ho; Ryan, R Tres; Teichman, Joel M H; Kim, Jeehyun; Choi, Bernard; Arakeri, Navanit V; Welch, A J

    2003-03-01

    We modeled retropulsion during holmium:YAG lithotripsy on the conservation of momentum, whereby the force of ejected fragment debris off of the calculous surface should equal the force of retropulsion displacing the stone. We tested the hypothesis that retropulsion occurs as a result of ejected stone debris. Uniform calculous phantoms were irradiated with holmium:YAG energy in air and in water. Optical fiber diameter and pulse energy were varied. Motion of the phantom was monitored with high speed video imaging. Laser induced crater volume and geometry were characterized by optical coherence tomography. To determine the direction of plume laser burn paper was irradiated at various incident angles. Retropulsion was greater for phantoms irradiated in air versus water. Retropulsion increased as fiber diameter increased and as pulse energy increased (p <0.001). Crater volumes increased as pulse energy increased (p <0.05) and generally increased as fiber diameter increased. Crater geometry was wide and shallow for larger fibers, and narrow and deeper for smaller fibers. The ejected plume propagated in the direction normal to the burn paper surface regardless of the laser incident angle. Retropulsion increases as pulse energy and optical fiber diameter increase. Vector analysis of the ejected plume and crater geometry explains increased retropulsion using larger optical fibers. Holmium:YAG lithotripsy should be performed with small optical fibers to limit retropulsion.

  10. Characterization of caries progression on dentin after irradiation with Nd:YAG laser by FTIR spectroscopy and fluorescence imaging

    Science.gov (United States)

    Ana, P. A.; Brito, A. M. M.; Zezell, D. M.; Lins, E. C. C. C.

    2015-06-01

    Considering the use of high intensity lasers for preventing dental caries, this blind in vitro study evaluated the compositional and fluorescence effects promoted by Nd:YAG laser (λ=1064 nm) when applied for prevention of progression of dentin caries, in association or not with topical application of acidulated phosphate fluoride (APF). Sixty bovine root dentin slabs were prepared and demineralized by 32h in order to create early caries lesions. After, the slabs were distributed into six experimental groups: G1- untreated and not submitted to a pH-cycling model; G2- untreated and submitted to a pH-cycling model; G3- acidulated phosphate fluoride application (APF); G4- Nd:YAG irradiation (84.9 J/cm2, 60 mJ/pulse); G5- treated with Nd:YAG+APF; G6- treated with APF+Nd:YAG. After treatments, the samples of groups G2 to G6 were submitted to a 4-day pH-cycling model in order to simulate the progression of early caries lesions. All samples were characterized by the micro-attenuated total reflection technique of Fourier transformed infrared spectroscopy (μATR-FTIR), using a diamond crystal, and by a fluorescence imaging system (FIS), in which it was used an illuminating system at λ= 405±30 nm. Demineralization promoted reduction in carbonate and phosphate contents, exposing the organic matter; as well, it was observed a significant reduction of fluorescence intensity. Nd:YAG laser promoted additional chemical changes, and increased the fluorescence intensity even with the development of caries lesions. It was concluded that the compositional changes promoted by Nd:YAG, when associated to APF, are responsible for the reduction of demineralization progression observed on root dentin.

  11. Neutron diffraction investigation of the crystal and molecular structure of the anisotropic superconductor Hg3AsF6

    International Nuclear Information System (INIS)

    Schultz, A.J.; Williams, J.M.; Miro, N.D.; MacDiarmid, A.G.; Heeger, A.J.

    1978-01-01

    The crystal and molecular structure of Hg 3 AsF 6 has been investigated by single-crystal neutron diffraction. This metallic compound crystallizes in the body-centered tetragonal space group I4 1 /amd with cell dimensions of a = 7.549 (5) A and c = 12.390 (9) A. The crystal structure consists of two orthogonal and nonintersecting linear chains of Hg/sup 0.33+/ cations passing through a lattice of octahedral AsF 6 - anions. The intrachain Hg--Hg distance of 2.64 (2) A is derived from planes of diffuse scattering normal to a* and b*. Since the a and b axis lattice constants are not simple multiples of the Hg--Hg intrachain distance, the mercury chains are incommensurate with the tetragonal lattice; hence we have the apparent formula Hg 2 . 86 AsF 6 . These results are in essential agreement with a previously reported x-ray diffraction study. However, from the neutron diffraction data, we have established that the Hg chains are not strictly one-dimensional. The maximum room-temperature deviation from the chain axis is 0.07 (1) A with neighboring chains distorted away from each other. The closest interchain Hg--Hg contact is 3.24 (2) A. Furthermore, analytical data consistently indicate a stoichiometric empirical formula of Hg 3 AsF 6 . These results together with precise density measurements imply that the incommensurate structure is stabilized by anion vacancies, such that there are four formula weights of Hg 2 . 86 (AsF 6 ) 0 . 953 per unit cell. 4 tables, 2 figures

  12. All passive synchronized Q-switching of a quasi-three-level and a four-level Nd:YAG laser

    DEFF Research Database (Denmark)

    Cheng, Haynes Pak Hay; Tidemand-Lichtenberg, Peter; Jensen, Ole Bjarlin

    2010-01-01

    Using an all passive approach, synchronized Q-switching of two Nd:YAG lasers, at 946 nm and 1064 nm, is reported. Two laser crystals are used to avoid gain competition, and stable operation is reported for the first time. The pulse trains are synchronized over a wide range of pump powers...

  13. Ho:YAG laser: intervertebral disk cell interaction using three-dimensional cell culture system

    Science.gov (United States)

    Sato, Masato; Ishihara, Miya; Arai, Tsunenori; Asazuma, Takashi; Kikuchi, Toshiyuki; Kikuchi, Makoto; Fujikawa, Kyosuke

    2000-06-01

    The purpose of this study is to evaluate the influence on the intervertebral disc cells after laser irradiation using three- dimensional culture system and to clarify the optimum Ho:YAG laser irradiation condition on percutaneous laser disc decompression (PLDD) for lumbar disc herniation. Since the Ho:YAG laser ablation is characterized by water-vapor bubble dynamics, not only thermal effect but also acoustic effect on cell metabolism might occur in the intervertebral disc. We studied the disc cell reaction from the metabolic point of view to investigate photothermal and photoacoustic effects on three-dimensional cultured disc cell. Intervertebral discs were obtained from female 30 Japanese white rabbits weighing about 1 kg. A pulsed Ho:YAG laser (wavelength: 2.1 micrometer, pulse width: about 200 microseconds) was delivered through a 200 micrometer-core diameter single silica glass fiber. We used the Ho:YAG laser irradiation fluence ranging from 60 to approximately 800 J/cm2 at the fiber end. To investigate acoustic effect, the acoustic transducer constructed with polyvinylidene fluoride (PVdF) film and acoustic absorber was used to detect the stress wave. Thermocouple and thermography were used to investigate thermal effect. Concerning damage of plasma membrane and ability of matrix synthesis, thermal effect might mainly affect cell reaction in total energy of 54 J (closed to practically used condition), but in 27 J, acoustic effect might contribute to it. We found that total energy was key parameter among the optimum condition, so that temperature and/or stress wave may influence Ho:YAG laser-disc cell interactions.

  14. Investigation of the correlation between stoichiometry and thermoelectric properties in a PtSb2 single crystal

    DEFF Research Database (Denmark)

    Søndergaard, Martin; Christensen, Mogens; Bjerg, Lasse

    2012-01-01

    utilizing X-Ray Diffraction and Energy Dispersive X-Ray Spectroscopy. The correlation between Pt/Sb ratio and physical property parameters - Seebeck coefficient, mobility, resistivity and charge carrier concentration - was studied. Elemental analysis by Energy Dispersive X-Ray Spectroscopy, X......The thermoelectric properties of a PtSb2 single crystal containing a stoichiometric gradient were investigated. The gradient was produced by employing a Stockbarger synthesis technique. The gradient was observed through the use of spatial resolved Seebeck coefficient measurements and verified...

  15. Investigation of the vibration spectrum of SbSI crystals in harmonic and in anharmonic approximations

    International Nuclear Information System (INIS)

    Audzijonis, A.; Zigas, L.; Vinokurova, I.V.; Farberovic, O.V.; Zaltauskas, R.; Cijauskas, E.; Pauliukas, A.; Kvedaravicius, A.

    2006-01-01

    The force constants of SbSI crystal have been calculated by the pseudo-potential method. The frequencies and normal coordinates of SbSI vibration modes along the c (z) direction have been determined in harmonic approximation. The potential energies of SbSI normal modes dependence on normal coordinates along the c (z) direction V(z) have been determined in anharmonic approximation, taking into account the interaction between the phonons. It has been found, that in the range of 30-120 cm -1 , the vibrational spectrum is determined by a V(z) double-well normal mode, but in the range of 120-350 cm -1 , it is determined by a V(z) single-well normal mode

  16. Ex situ investigation of the step bunching on crystal surfaces by atomic force microscopy

    Science.gov (United States)

    Krasinski, Mariusz J.

    1997-07-01

    We are describing ex situ observation of step bunching on the surfaces of solution grown potassium dihydrogen phosphate (KDP) and sodium chlorate monocrystals. The measurements have been done with the use of atomic force microscope. The use of this equipment allowed us to see directly the structure of macrosteps. Observation confirmed the existence of step pinning which is one of the proposed mechanisms of step bunching. Despite the very high resolution of AFM it was not possible to determine the nature of pinning point. The monatomic steps on KDP and sodium chlorate crystal surfaces are mainly one unit cell high what seems to be the result of the steps pairing. The origin of observed step pattern is discussed in frames of existing theories.

  17. Investigation into the temperature dependence of isotropic- nematic phase transition of Gay- Berne liquid crystals

    Directory of Open Access Journals (Sweden)

    A Avazpour

    2014-12-01

    Full Text Available Density functional approach was used to study the isotropic- nematic (I-N transition and calculate the values of freezing parameters of the Gay- Berne liquid crystal model. New direct and pair correlation functions of a molecular fluid with Gay- Berne pair potential were used. These new functions were used in density functional theory as input to calculate the isotropic- nematic transition densities for elongation at various reduced temperatures. It was observed that the isotropic- nematic transition densities increase as the temperature increases. It was found that the new direct correlation function is suitable to study the isotropic- nematic transition of Gay- Berne liquids. Comparison to other works showed qualitative agreement

  18. The investigation of Ce doped ZnO crystal: The electronic, optical and magnetic properties

    Science.gov (United States)

    Wen, Jun-Qing; Zhang, Jian-Min; Qiu, Ze-Gang; Yang, Xu; Li, Zhi-Qin

    2018-04-01

    The electronic, optical and magnetic properties of Ce doped ZnO crystal have been studied by using first principles method. The research of formation energies show that Ce doped ZnO is energetically stable, and the formation energies reduce from 6.25% to 12.5% for Ce molar percentage. The energy band is still direct band gap after Ce doped, and band gap increases with the increase of Cesbnd Ce distance. The Fermi level moves upward into conduction band and the DOS moves to lower energy with the increase of Ce concentration, which showing the properties of n-type semiconductor. The calculated optical properties imply that Ce doped causes a red-shift of absorption peaks, and enhances the absorption of the visible light. The transition from ferromagnetic to antiferromagnetic has been found in Ce doped ZnO.

  19. Laser-diode pumped Nd:YAG lasers; Laser diode reiki Nd:YAG lasear

    Energy Technology Data Exchange (ETDEWEB)

    Yuasa, H.; Akiyama, Y.; Nakayama, M. [Toshiba Corp., Tokyo (Japan)

    2000-04-01

    Laser-diode pumped Nd:YAG lasers are expected to be applied to laser processing fields such as welding, cutting, drilling, and marking due to their potential for high efficiency and compactness. We are designing and developing laser-diode pumped Nd:YAG lasers using numerical analysis simulation techniques such as ray tracing and thermal analysis. We have succeeded in achieving a laser power of more than 3 kW with 20% efficiency, which is the best ever obtained. In addition, we have developed a laser-diode pumped green laser by second harmonic generation, for precision machining on silicon wafers. (author)

  20. Removal effects of the Nd:YAG laser and Carisolv on carious dentin.

    Science.gov (United States)

    Yamada, Y; Hossain, M; Kawanaka, T; Kinoshita, J; Matsumoto, K

    2000-10-01

    The purpose of this study was to investigate the removal effect of the Nd:YAG laser irradiation and Carisolv on carious dentin. Many previous studies have reported several simple and alternative techniques, such as lasers and chemicals, for caries removal. Carisolv was applied on the surface of 20 extracted human anterior and molar teeth for 1 min and then the Nd:YAG laser was irradiated with a continuous water spray for another 1 min. The energy densities were varied from 2 to 6W with a repetition rate of 20 pps. As caries removal progressed, the cavity was carefully assessed by DIAGNOdent. Each lesion was photographed before and after treatment, and the treated cavity was observed microscopically using a stereoscope and with scanning electron microscope (SEM). Thermal change at the time of laser irradiation was measured by thermovision. Our results revealed that application of Carisolv followed by Nd:YAG laser irradiation at 4-6W pulse energy effectively removed dentin caries. The total procedure was usually repeated once or twice for complete caries removal. From the SEM study, it was found that the cavity surface treated with the laser revealed various patterns of microirregularity, often accompanied by microfissure propagation. There was also no smear layer. It was revealed that Nd:YAG laser and Carisolv could provide an alternative technique for caries removal instead of the conventional mechanical drilling and cutting.

  1. Evaluation of the cavity margins after Er:YAG laser ablation of the enamel and dentin

    Science.gov (United States)

    Dostalova, Tatjana; Krejsa, Otakar; Jelinkova, Helena; Hamal, Karel

    1994-12-01

    This study investigates the checks of cavity margin after enamel and dentin ablation. The Er:YAG laser enamel and dentin ablation can be directly connected with the danger of cracks originating in the enamel near the cavity. This study evaluates the quality of the enamel edges after Er:YAG laser preparation. The enamel and dentin of buccal surfaces were ablated by the Er:YAG laser radiation. An Erbium:YAG laser system with the energy of 200 mJ was used to generate 200 microsecond(s) long pulses of mid-infrared 2.94 micrometers light in multimode configuration. The laser was operating in a free running mode, the repetition rate being 0.5 Hz with average laser power of 100 mW. Laser radiation was focused on the tooth tissue. Water cooling was used during the procedure in order to prevent tooth tissue destruction. The time of laser preparation was 5 minutes. A cavity of class V was prepared. The teeth were immersed into 0.5% basic fuchsin and then centrifuged at 6000 rev/min for 20 minutes. The microphotographs of the margins stained with 0.5% basic fuchsin were made and then the longitudinal section of the teeth were evaluated. The micrographs of the longitudinal section were checked and measured afterwards. The effect of the investigated laser irradiation on the origin of cracks was analyzed in the scanning electron microscope. Micrographs of each tooth before and after the laser ablation were compared. Micrographs of the intact teeth after extraction present the cracks of the enamel. They depend on the pressure exerted during extraction. The influence of the laser ablation proper is it bears no signs of new cracks. The conclusions of this study demonstrate the non-invasive nature of the Er:YAG laser ablation of the hard dental tissues.

  2. Crystal structure investigations of ZrAsxSey (x>y, x+y≤2) by single crystal neutron diffraction at 300 K, 25 K and 2.3 K

    International Nuclear Information System (INIS)

    Niewa, Rainer; Czulucki, Andreas; Schmidt, Marcus; Auffermann, Gudrun; Cichorek, Tomasz; Meven, Martin; Pedersen, Bjoern; Steglich, Frank; Kniep, Ruediger

    2010-01-01

    Large single crystals of ZrAs x Se y (x>y, x+y≤2, PbFCl type of structure, space group P4/nmm) were grown by Chemical Transport. Structural details were studied by single crystal neutron diffraction techniques at various temperatures. One single crystal specimen with chemical composition ZrAs 1.595(3) Se 0.393(1) was studied at ambient temperature (R1=5.10 %, wR2=13.18 %), and a second crystal with composition ZrAs 1.420(3) Se 0.560(1) was investigated at 25 K (R1=2.70%, wR2=5.70 %) and 2.3 K (R1=2.30 %, wR2=4.70 %), respectively. The chemical compositions of the crystals under investigation were determined by wavelength dispersive X-ray spectroscopy. The quantification of trace elements was carried out by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. According to the crystal structure refinements the crystallographic 2a site is occupied by As, together with a significant amount of vacancies. One of the 2c sites is fully occupied by As and Se (random distribution). With respect to the fractional coordinates of the atoms, the crystal structure determinations based on the data obtained at 25.0 K and 2.3 K did not show significant deviations from ambient temperature results. The temperature dependence of the displacement parameters indicates a static displacement of As on the 2a sites (located on the (0 0 1) planes) for all temperatures. No indications for any occupation of interstitial sites or the presence of vacancies on the Zr (2a) site were found. - Graphical abstract: Large single crystals of ZrAs x Se y grown by Chemical Transport to study structural details as the As-Se order scheme by single crystal neutron diffraction.

  3. Optical Characterizations of Surface Polished Polycrystalline YAG (Yttrium Aluminum Garnet) Fibers (Postprint)

    Science.gov (United States)

    2017-06-02

    potential alternative for higher power lasers. Eye- safe lasers with mid-IR range are used for biomedical applications, remote sensing, defense, etc.15...LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl . Phys., 98 103514 (2005). [5] Slack, G. A...Laser damage threshold of ceramic YAG,” Jpn. J. Appl . Phys. 42, L1025 (2003). [7] Yoshida, K., Umemura, N., Kuzuu, N., Yoshida, H., Kamimura, T. and

  4. A protected annealing strategy to enhanced light emission and photostability of YAG:Ce nanoparticle-based films

    Science.gov (United States)

    Revaux, Amelie; Dantelle, Geraldine; George, Nathan; Seshadri, Ram; Gacoin, Thierry; Boilot, Jean-Pierre

    2011-05-01

    A significant obstacle in the development of YAG:Ce nanoparticles as light converters in white LEDs and as biological labels is associated with the difficulty of finding preparative conditions that allow simultaneous control of structure, particle size and size distribution, while maintaining the optical properties of bulk samples. Preparation conditions frequently involve high-temperature treatments of precursors (up to 1400 °C), which result in increased particle size and aggregation, and lead to oxidation of Ce(iii) to Ce(iv). We report here a process that we term protected annealing, that allows the thermal treatment of preformed precursor particles at temperatures up to 1000 °C while preserving their small size and state of dispersion. In a first step, pristine nanoparticles are prepared by a glycothermal reaction, leading to a mixture of YAG and boehmite crystalline phases. The preformed nanoparticles are then dispersed in a porous silica. Annealing of the composite material at 1000 °C is followed by dissolution of the amorphous silica by hydrofluoric acid to recover the annealed particles as a colloidal dispersion. This simple process allows completion of YAG crystallization while preserving their small size. The redox state of Ce ions can be controlled through the annealing atmosphere. The obtained particles of YAG:Ce (60 +/- 10 nm in size) can be dispersed as nearly transparent aqueous suspensions, with a luminescence quantum yield of 60%. Transparent YAG:Ce nanoparticle-based films of micron thickness can be deposited on glass substrates using aerosol spraying. Films formed from particles prepared by the protected annealing strategy display significantly improved photostability over particles that have not been subject to such annealing.A significant obstacle in the development of YAG:Ce nanoparticles as light converters in white LEDs and as biological labels is associated with the difficulty of finding preparative conditions that allow simultaneous

  5. Luminescent properties of Y3Al5−xGaxO12:Ce crystals

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Zorenko, T.; Malinowski, P.; Sidletskiy, O.; Neicheva, S.

    2014-01-01

    Absorption, luminescent and scintillation properties of Ce 3+ doped Y 3 Al 5−x Ga x O 12 crystals with Ga content in the x=1–5 range were investigated in this work and compared with the properties of YAG:Ce crystals. Apart from the traditional spectral methods (absorption, cathodoluminescence and light yield measurements), the intrinsic and Ce 3+ related luminescence of Y 3 Al 5−x Ga x O 12 :Ce solid-solution were also investigated using the luminescent spectroscopy under excitation by synchrotron radiation in the 3.7–25 eV range. We show that the optical properties Y 3 Al 5−x Ga x O 12 :Ce garnets monotonically change with increasing the Ga content in the x=0–3 range due to preferable localization of Ga ions in the tetrahedral position of the garnet lattice. At the highest Ga concentration (x>3) the deviation of the optical properties of Y 3 Al 5−x Ga x O 12 :Ce garnets is observed from the respective properties of these crystals with Ga content in the x=0–3 range due to occupation by Ga ions of the octahedral position in the garnet host. - Highlights: • Different dependence of optical properties of Y 3 Al 5−x Ga x O 12 :Ce crystals on Ga content in x=0–3 and 3–5 ranges. • Elimination of the luminescence of Y Al antisite defects in Y 3 Al 5−x Ga x O 12 :Ce crystals at x>2. • Significant improvement of the scintillation properties of Y 3 Al 5−x Ga x O 12 :Ce crystals at x=2 and 3 in comparison with YAG:Ce

  6. Investigating Optical Properties of One-Dimensional Photonic Crystals Containing Semiconductor Quantum Wells

    Directory of Open Access Journals (Sweden)

    Mahshid Mokhtarnejad

    2017-01-01

    Full Text Available This study examined MQWs made of InGaAs/GaAs, InAlAs/InP, and InGaAs/InP in terms of their band structure and reflectivity. We also demonstrated that the reflectivity of MQWs under normal incident was at maximum, while both using a strong pump and changing incident angle reduced it. Reflectivity of the structure for a weak probe pulse depends on polarization, intensity of the pump pulse, and delay between the probe pulse and the pump pulse. So this system can be used as an ultrafast all-optical switch which is inspected by the transfer matrix method. After studying the band structure of the one-dimensional photonic crystal, the optical stark effect (OSE was considered on it. Due to the OSE on virtual exciton levels, the switching time can be in the order of picoseconds. Moreover, it is demonstrated that, by introducing errors in width of barrier and well as well as by inserting defect, the reflectivity is reduced. Thus, by employing the mechanism of stark effect MQWs band-gaps can be easily controlled which is useful in designing MWQ based optical switches and filters. By comparing the results, we observe that the reflectivity of MWQ containing 200 periods of InAlAs/InP quantum wells shows the maximum reflectivity of 96%.

  7. The possibility of clinical application of the solid state lasers: Nd:YAG, Ho:YAG, and Er:YAG in otolaryngology - head and neck surgery

    Science.gov (United States)

    Tomaszewska, M.; Kukwa, A.; Tulibacki, M.; Wójtowicz, P.; Olędzka, I.; Jeżewska, E.

    2007-02-01

    The purpose of this study was to summarize our experiences in clinical application of Nd:YAG, Ho:YAG and Er:YAG in otolaryngology- head and neck surgery. Choosing the laser type and parameters for the particular procedures was based on our previous research on tissue effects of those lasers. During the period of 1993-2006 we performed 3988 surgical procedures with the Nd:YAG laser. Over 87% of those were made for the nasal cavity pathologies as polyps, hyperplasia of inferior nasal turbinate, granulation tissue, postoperative adhesions, vascular malformations, under the local anesthesia conditions. In our experience Nd:YAG laser gives the possibility of good clinical control and low risk of side effects for disorders of high recurrence and frequent interventions necessity, as nasal polyps or respiratory papillomatosis. Nd:YAG assisted uvulopalatoplasty gives an interesting alternative for surgical procedures for snoring and slight/mild OSA-recognized patients. Due to its good hemostatic properties, it is a perfect tool for removal of the chemodectoma from meddle ear. During the period of 1995-2006 we performed 229 surgical procedures with the Ho:YAG laser, mostly for larynx pathologies (adhesion and scar tissue removal). In our experience Ho:YAG laser can serve as a precise laser knife for both soft and bony tissue. The ER:YAG laser still remain under clinical trial. Since 2001 year we performed 24 procedures of removing stone deposits from salivary glands. We believe it may become a promising method to cope with sialolithiasis which allows for glandule function preservation. All of the laser types mentioned above, can be easily coupled with endoscopes, what makes them available for all of the head and necklocalized disorders.

  8. Direct investigations on strain-induced cold crystallization behavior and structure evolutions in amorphous poly(lactic acid) with SAXS and WAXS measurements

    DEFF Research Database (Denmark)

    Zhou, Chengbo; Li, Hongfei; Zhang, Wenyang

    2016-01-01

    scanning calorimetry (DSC) measurements. The data obtained from the stretched samples within 70-90 degrees C showed that all of the formed crystals are disordered alpha' form with more compact chain packing than that of the cold crystallization. Upon stretching at 70 degrees C, the mesocrystal appears......Strain-induced cold crystallization behavior and structure evolution of amorphous poly(lactic acid) (PLA) stretched within 70-90 degrees C were investigated via in situ synchrotron small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) measurements as well as differential...... in strain-induced crystallization behavior of amorphous PLA within 70-90 degrees C can be attributed to the competition between chain orientation caused by stretching and chain relaxation. It was proposed that the strain-induced mesocrystal/crystal and the lamellae are formed from the mesophase originally...

  9. High power YAG laser cutting; Koshutsuryoku YAG laser ni yoru setsudan gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Owaki, K. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1998-08-01

    This paper describes features of high power YAG cutting. The optical fiber transmission YAG laser machining system has some advantages in which optical path length compensation unit is not required and measures for low power loss and dust are not required, when compared with the CO2 laser system. Its application to the cutting of stainless steel plates has attracted attention. Cutting tests of SUS304 were conducted using high power YAG laser. Cutting of SUS304 plate with a thickness of 40 mm could be successfully done at the power of 3.5 kW. Cutting tests of SUS304 pipes with a thickness of 8 mm in water under the depth of 20 m were also conducted using air as assist gas at the power of 2.5 kW. Excellent results were obtained without scale deposition. For the tests by the composite beam using 3 kW and 4 kW systems, SUS304 plate with a thickness of 50 mm could be cut at the cutting speed of 0.1 m/min. Laser cutting of pipes from the internal surface was conducted using a newly developed small machining head which can rotate in the peripheral direction. Excellent quality for welding was confirmed. Cutting speed and plate thickness were improved by combining water jet cutter and YAG laser unit. 6 refs., 10 figs.

  10. Nanomaterial Host Bands Effect on the Photoluminescence Properties of Ce-Doped YAG Nanophosphor Synthesized by Sol-Gel Method

    Directory of Open Access Journals (Sweden)

    L. Guerbous

    2015-01-01

    Full Text Available Cerium trivalent (Ce3+ doped YAG nano-sized phosphors have been successfully synthesized by sol-gel method using different annealing temperatures. The samples have been characterized by X-ray diffraction (XRD, thermogravimetry (TG, differential scanning calorimetry (DSC analysis, Fourier transform infrared (FTIR spectroscopy, and steady photoluminescence (PL spectroscopy. X-ray diffraction analysis indicates that the pure cubic phase YAG was formed and strongly depends on the cerium content and the annealing temperature. It was found that the grain size ranges from 30 to 58 nm depending on the calcination temperature. The YAG: Ce nanophosphors showed intense, green-yellow emission, corresponding to Ce3+ 5d1→2F5/2, 2F7/2 transitions and its photoluminescence excitation spectrum contains the two Ce3+ 4f1→5d1, 5d2 bands. The crystal filed splitting energy levels positions 5d1 and 5d2 and the emission transitions blue shift with annealing temperatures have been discussed. It was found that the Ce3+ 4f1 ground state position relative to valence band maximum of YAG host nanomaterial decreases with increasing the temperature.

  11. Three-Rod Resonator for Krypton Lamp Pumped 1.8 kW Continuous-Wave Nd:YAG Laser

    Institute of Scientific and Technical Information of China (English)

    LI Qiang; FANG Ming-Xing; WANG Zhi-Yong; YU Zhen-Sheng; LEI Hong; GUO Jiang; LI Gang; ZUO Tie-Chuan

    2004-01-01

    @@ A three-rod series resonator cw Nd:YAG laser suitable for the industrial applications is presented. The symmetrical resonator laser has been developed and is rated at 1820-W output power with beam parameter product 24 mm.mrad. By utilizing the symmetrical resonator design, the characteristic of beam with multi-rod is not obviously decreased compared with that of a single one. The system total electro-optics efficiency of lamp pumped YAG crystal is as high as 4.0%. The main factors, which affect output power and beam quality of high power solid-state laser module, are theoretically analysed.

  12. Low-threshold ablation of enamel and dentin using Nd:YAG laser assisted with chromophore with different pulse shapes

    Science.gov (United States)

    Bonora, Stefano; Benazzato, Paolo; Stefani, Alessandro; Villoresi, Paolo

    2004-05-01

    Neodimium laser treatment has several drawbacks when used in the hard tissue cutting, because of the low absorption of the dental tissues at its wavelength. This investigation proved that the Nd:YAG radiation is a powerful ablation tool if it is used with the dye assisted method. Several in vitro tests on enamel and dentin were accomplished changing some laser parameters to have different pulse shapes and durations from 125μs up to 1.4ms. The importance of short time high power peaks, typical of crystal lasers, in the ablation process was investigated. The pulse shapes were analyzed by their intensity in space and time profiles. A first set of results found the optimum dye concentration be used in all the following tests. Furthermore the ablation threshold for this technique was found for each different pulse shapes and durations. A low energy ablation method was found to avoid temperature increase and surface cracks formation. In vitro temperature analysis was reported comparing the differences between no dye application laser treatment and with a dye spray applied. A strong reduction of the temperature increase was found in the dye assisted method. A discussion on the general findings and their possible clinical applications is presented.

  13. Er:YAG laser for endodontics: efficiency and safety

    Science.gov (United States)

    Hibst, Raimund; Stock, Karl; Gall, Robert; Keller, Ulrich

    1997-12-01

    Recently it has been shown that bacterias can be sterilized by Er:YAG laser irradiation. By optical fiber transmission the bactericidal effect can also be used in endodontics. In order to explore potential laser parameters, we further investigated sterilization of caries and measured temperatures in models simulating endodontic treatment. It was found out that the bactericidal effect is cumulative, with single pulses being active. This offers to choose all laser parameters except pulse energy (radiant exposure) from technical, practical or safety considerations. For clinical studies the following parameter set is proposed for efficient and safe application (teeth with a root wall thickness > 1 mm, and prepared up to ISO 50): pulse energy: 50 mJ, repetition rate: 15 Hz, fiber withdrawal velocity: 2 mm/s. With these settings 4 passes must be performed to accumulate the total dose for sterilization.

  14. Effect of Er:YAG laser irradiation on bonding property of zirconia ceramics to resin cement.

    Science.gov (United States)

    Lin, Yihua; Song, Xiaomeng; Chen, Yaming; Zhu, Qingping; Zhang, Wei

    2013-12-01

    This study aimed to investigate whether or not an erbium: yttrium-aluminum-garnet (Er:YAG) laser could improve the bonding property of zirconia ceramics to resin cement. Surface treatments can improve the bonding properties of dental ceramics. However, little is known about the effect of Er:YAG laser irradiated on zirconia ceramics. Specimens of zirconia ceramic pieces were made, and randomly divided into 11 groups according to surface treatments, including one control group (no treatment), one air abrasion group, and nine Er:YAG laser groups. The laser groups were subdivided by applying different energy intensities (100, 200, or 300 mJ) and irradiation times (5, 10, or 15 sec). After surface treatments, ceramic pieces had their surface morphology observed, and their surface roughness was measured. All specimens were bonded to resin cement. Shear bond strength was measured after the bonded specimens were stored in water for 24 h, and additionally aged by thermocycling. Statistical analyses were performed using one way analysis of variance (ANOVA) and Tukey's test for shear bond strength, and Dunnett's t test for surface roughness, with α=0.05. Er:YAG laser irradiation changed the morphological characteristics of zirconia ceramics. Higher energy intensities (200, 300 mJ) could roughen the ceramics, but also caused surface cracks. There were no significant differences in the bond strength between the control group and the laser groups treated with different energy intensities or irradiation times. Air abrasion with alumina particles induced highest surface roughness and shear bond strength. Er:YAG laser irradiation cannot improve the bonding property of zirconia ceramics to resin cement. Enhancing irradiation intensities and extending irradiation time have no benefit on the bond of the ceramics, and might cause material defect.

  15. Investigation of thermoluminescent response of K2YF5:Dy3+ crystals for gamma and X radiation fields

    International Nuclear Information System (INIS)

    Silva, E.C.; Nogueira, M.S.; Faria, L.O.; Khaidukov, N.M.

    2005-01-01

    K 2 YF 5 crystals doped with rare earths have been synthesized with 0 to 100% of Dy 3+ ions optically active ions and an investigation was conducted to test its thermoluminescent (TL) response due to function of Dy 3+ concentration and their response in energy. After being irradiated with gamma and X-rays, it was observed that crystals doped with 1.0% of Dy 3+ feature the best response TL. The main dosimetric peak can be decomposed into three secondary TL peaks, centered in 96.4, 104.9 and 130.7 deg C, respectively, showing a good linearity and reproducibility of the dose measurements. The sensitization process seems to improve response TL and TL peak sensitivity increase to 130, 7 deg C at the expense of TL peak to 104, 9 deg C. The linear coefficient sign TL for K 2 Y 0.09 Dy 0.01 F5 is comparable to that of the dosemeter CaSO 4 : Mn, irradiated with gamma radiation source ( 137 Cs) under the same conditions. Energy dependence measurements show that the answer for X-rays with energy of 41.1 keV is more than 30 times the response to Cs-137, when exposed to the same dose. Due to the main peak in low temperature and the TL high reply to low energy fields, the results reported indicate that the K 2 YF 5 crystals doped with Dy 3+ present great potential for radiation dosimetry in X-rays therapy, clinical dosimetry and also for applications in digital thermoluminescent images

  16. Orientation-dependent crystal instability of gamma-TiAl in nanoindentation investigated by a multiscale interatomic potential finite-element model

    International Nuclear Information System (INIS)

    Xiong, Kai; Liu, Xiaohui; Gu, Jianfeng

    2014-01-01

    The anisotropic mechanical behavior of γ-TiAl alloys has been observed and repeatedly reported, but the effect of crystallographic orientations on the crystal instability of γ-TiAl is still unclear. In this paper, the orientation-dependent crystal instability of γ-TiAl single crystals was investigated by performing nanoindentation on different crystal surfaces. All the nanoindentations are simulated using an interatomic potential finite-element model (IPFEM). Simulation results show that the load–displacement curves, critical indentation depth and critical load for crystal instability as well as indentation modulus, are all associated with surface orientations. The active slip systems and the location of crystal instability in five typical nanoindentations are analyzed in detail, i.e. the (0 0 1), (1 0 0), (1 0 1), (1 1 0) and (1 1 1) crystal surfaces. The predicted crystal instability sites and the activated slipping systems in the IPFEM simulations are in good agreement with the dislocation nucleation in molecular dynamics simulations. (paper)

  17. Growth of rare-earth doped single crystal yttrium aluminum garnet fibers

    Science.gov (United States)

    Bera, Subhabrata; Nie, Craig D.; Harrington, James A.; Cheng, Long; Rand, Stephen C.; Li, Yuan; Johnson, Eric G.

    2018-02-01

    Rare-earth doped single crystal (SC) yttrium aluminum garnet (YAG) fibers have great potential as high-power laser gain media. SC fibers combine the superior material properties of crystals with the advantages of a fiber geometry. Improving processing techniques, growth of low-loss YAG SC fibers have been reported. A low-cost technique that allows for the growth of optical quality Ho:YAG single crystal (SC) fibers with different dopant concentrations have been developed and discussed. This technique is a low-cost sol-gel based method which offers greater flexibility in terms of dopant concentration. Self-segregation of Nd ions in YAG SC fibers have been observed. Such a phenomenon can be utilized to fabricate monolithic SC fibers with graded index.

  18. Investigation of the crystal lattice defects by means of the positrons annihilations; Badania defektow sieci krystalicznej metoda anihilacji pozytonow

    Energy Technology Data Exchange (ETDEWEB)

    Dryzek, J [Institute of Nuclear Physics, Cracow (Poland)

    1994-12-31

    In this report the positrons annihilation methods as a tool for the crystal defects studies is presented. The short description of the positron - crystal interactions and different positron capture models are discussed. 192 refs, 67 figs, 6 tabs.

  19. Investigation of domain walls in GMO crystals by conoscope method. Issledovanie domennykh granits v kristallakh GMO konoskopicheskim metodom

    Energy Technology Data Exchange (ETDEWEB)

    Radchenko, I R; Filimonova, L A [Moskovskij Inzhenerno-Fizicheskij Inst., Moscow (Russian Federation)

    1993-06-01

    The patterns of polarized beam interference (conoscopic patterns) enable assessment of orientation and parameters of crystal's optical indicatrix. The presented conoscopic patterns of gadolinium molybdate crystal in the vicinity to plane and wedge-live domain walls differ from conoscopic patterns of the crystals far away from these walls which allows to spear about changes occurring in the crystal in the vicinity to domain walls.

  20. Numerical Investigation of the Effect of Bottom Shape on the Flow Field and Particle Suspension in a DTB Crystallizer

    Directory of Open Access Journals (Sweden)

    Hao Pan

    2016-01-01

    Full Text Available The influence of the bottom shape on the flow field distribution and particle suspension in a DTB crystallizer was investigated by Computational Fluid Dynamics (CFD coupled with Two-Fluid Model (Eulerian model. Volume fractions of three sections were monitored on time, and effect on particle suspension could be obtained by analyzing the variation tendency of volume fraction. The results showed that the protruding part of a W type bottom could make the eddies smaller, leading to the increase of velocity in the vortex. Modulating the detailed structure of the W type bottom to make the bottom surface conform to the streamlines can reduce the loss of the kinetic energy of the flow fluid and obtain a larger flow velocity, which made it possible for the particles in the bottom to reach a better suspension state. Suitable shape parameters were also obtained; the concave and protruding surface diameter are 0.32 and 0.373 times of the cylindrical shell diameter, respectively. It is helpful to provide a theoretical guidance for optimization of DTB crystallizer.

  1. Crystal, magnetic, calorimetric and electronic structure investigation of GdScGe1-x Sb x compounds

    Science.gov (United States)

    Guillou, F.; Pathak, A. K.; Hackett, T. A.; Paudyal, D.; Mudryk, Y.; Pecharsky, V. K.

    2017-12-01

    Experimental investigations of crystal structure, magnetism and heat capacity of compounds in the pseudoternary GdScGe-GdScSb system combined with density functional theory projections have been employed to clarify the interplay between the crystal structure and magnetism in this series of RTX materials (R  =  rare-earth, T   =  transition metal and X  =  p-block element). We demonstrate that the CeScSi-type structure adopted by GdScGe and CeFeSi-type structure adopted by GdScSb coexist over a limited range of compositions 0.65 ≤slant x ≤slant 0.9 . Antimony for Ge substitutions in GdScGe result in an anisotropic expansion of the unit cell of the parent that is most pronounced along the c axis. We believe that such expansion acts as the driving force for the instability of the double layer CeScSi-type structure of the parent germanide. Extensive, yet limited Sb substitutions 0 ≤slant x disappearance of the induced magnetic moments on Sc. For the parent antimonide, heat capacity measurements indicate an additional transition below the main antiferromagnetic transition.

  2. Coloration of chromium-doped yttrium aluminum garnet single-crystal fibers using a divalent codopant

    International Nuclear Information System (INIS)

    Tissue, B.M.; Jia, W.; Lu, L.; Yen, W.M.

    1991-01-01

    We have grown single-crystal fibers of Cr:YAG and Cr,Ca:YAG under oxidizing and reducing conditions by the laser-heated-pedestal-growth method. The Cr:YAG crystals were light green due to Cr 3+ in octahedral sites, while the Cr,Ca:YAG crystals were brown. The presence of the divalent codopant was the dominant factor determining the coloration in these single-crystal fibers, while the oxidizing power of the growth atmosphere had little effect on the coloration. The Cr,Ca:YAG had a broad absorption band centered at 1.03 μm and fluoresced from 1.1 to 1.7 μm, with a room-temperature lifetime of 3.5 μs. The presence of both chromium and a divalent codopant were necessary to create the optically-active center which produces the near-infrared emission. Doping with only Ca 2+ created a different coloration with absorption in the blue and ultraviolet. The coloration in the Cr,Ca:YAG is attributed to Cr 4+ and is produced in as-grown crystals without irradiation or annealing, as has been necessary in previous work

  3. The stability of PEMFC electrodes : platinum dissolution vs potential and temperature investigated by quartz crystal microbalance

    NARCIS (Netherlands)

    Dam, V.A.T.; Bruijn, de F.A.

    2007-01-01

    The stability of platinum in proton exchange membrane fuel cell (PEMFC) electrodes has been investigated by determining the dissolution of platinum from a thin platinum film deposited on a gold substrate in 1 M HClO4 at different temperatures ranging between 40 and 80°C and potentials between 0.85

  4. High peak power Q-switched Er:YAG laser with two polarizers and its ablation performance for hard dental tissues.

    Science.gov (United States)

    Yang, Jingwei; Wang, Li; Wu, Xianyou; Cheng, Tingqing; Jiang, Haihe

    2014-06-30

    An electro-optically Q-switched high-energy Er:YAG laser with two polarizers is proposed. By using two Al(2)O(3) polarizing plates and a LiNbO(3) crystal with Brewster angle, the polarization efficiency is significantly improved. As a result, 226 mJ pulse energy with 62 ns pulse width is achieved at the repetition rate of 3 Hz, the corresponding peak power is 3.6 MW. To our knowledge, such a high peak power has not been reported in literature. With our designed laser, in-vitro teeth were irradiated under Q-switched and free-running modes. Results of a laser ablation experiment on hard dental tissue with the high-peak-power laser demonstrates that the Q-switched Er:YAG laser has higher ablation precision and less thermal damage than the free-running Er:YAG laser.

  5. Characteristics of a Ti:sapphire laser pumped by a Nd:YAG laser and its analysis. Nd:YAG laser reiki Ti:sapphire laser no dosa tokusei to sono kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Okada, T.; Masumoto, J.; Mizunami, T.; Maeda, M.; Muraoka, K. (Kyushu Univ., Fukuoka (Japan). Faculty of Engineering)

    1991-06-29

    Although Ti: Sapphire expects of a possibility of being a light source much superior to a dye laser having been used as a wavelength variable laser for spectral analyses, it has a limitation that it does not oscillate directly in the visible and ultraviolet regions. In order to develop a light source that is synchronizable over ultraviolet-near infrared regions, by means of combining a Ti: Sapphire laser of a high peak power, comprising an oscillator and a multistage amplifier, with a non-linear frequency conversion method for harmonic generation and Raman conversion, a prototype Ti:Sapphire laser that is excited by YAG laser second harmonic, and that synchronizes with a prism was fabricated, and its operational characteristics were investigated. As a result, an output energy of 35.6 mJ at a maximum was obtained at a wavelength of 773 nm against an excitation energy of 129 mJ, a conversion efficiency of 38.2% was obtained against the absorption energy of the crystals, and a continuous synchronism was achieved over 750 to 900 nm. 4 refs., 9 figs., 1 tab.

  6. Solid state structural investigations of the bis(chalcone) compound with single crystal X-ray crystallography, DFT, gamma-ray spectroscopy and chemical spectroscopy methods

    Science.gov (United States)

    Yakalı, Gül; Biçer, Abdullah; Eke, Canel; Cin, Günseli Turgut

    2018-04-01

    A bis(chalcone), (2E,6E)-2,6-bis((E)-3phenylallidene)cyclohexanone, was characterized by 1H NMR, 13C NMR, FTIR, UV-Vis spectroscopy, gamma-ray spectroscopy and single crystal X- ray structural analysis. The optimized molecular structure of the compound is calculated using DFT/B3LYP with 6-31G (d,p) level. The calculated geometrical parameters are in good agreement with the experimental data obtained from our reported X-ray structure. The powder and single crystal compounds were gama-irradiated using clinical electron linear accelerator and 60Co gamma-ray source, respectively. Spectral studies (1H NMR, 13C NMR, FTIR and UV-Vis) of powder chalcone compound were also investigated before and after irradiation. Depending on the irradiation notable changes were observed in spectral features powder sample. Single crystal X-ray diffraction investigation shows that both unirradiated and irradiated single crystal samples crystallizes in a orthorhombic crystal system in the centrosymmetric space group Pbcn and exhibits an C-H..O intramolecular and intermolecular hydrogen bonds. The crystal packing is stabilised by strong intermolecular bifurcate C-H..O hydrogen bonds and π…π stacking interactions. The asymmetric unit of the title compound contains one-half of a molecule. The other half of the molecule is generated with (1-x,y,-3/2-z) symmetry operator. The molecule is almost planar due to having π conjugated system of chalcones. However, irradiated single crystal compound showed significant changes lattice parameters, crystal volume and density. According to results of gamma-ray spectroscopy, radioactive elements of powder compound which are 123Sb(n,g),124Sb,57Fe(g,p),56Mn, 55Mn(g,n), and 54Mn were determined using photoactivation analysis. However, the most intensive gamma-ray energy signals are 124Sb.

  7. Investigation on Guided-Mode Characteristics of Hollow-Core Photonic Crystal Fibre at Near-Infrared Wavelengths

    International Nuclear Information System (INIS)

    Jin-Hui, Yuan; Chong-Xiu, Yu; Xin-Zhu, Sang; Wen-Jing, Li; Gui-Yao, Zhou; Shu-Guang, Li; Lan-Tian, Hou

    2009-01-01

    Guided-mode characteristics of hollow-core photonic crystal fibre (HC-PCF) are experimentally and theoretically investigated. The transmission spectrum in the range from 755 to 845 nm is observed and the loss is measured to be 0.12 dB/m at 800 nm by cut-back method. Based on the full-vector beam propagation method and the full-vector plane-wave method, the characteristics of mode field over propagation distance 1 m are simulated, and the results show that the propagation efficiency can be above 80%. Compared with the fundamental guided mode well confined in air core within shorter propagation distance, the second-order guided mode leaks into the cladding region and gradually attenuates due to larger refractive index difference. The primary loss factors in HC-PCF and the corresponding solutions are elementarily discussed. (fundamental areas of phenomenology (including applications))

  8. SPF-RR sequential photothermal fractional resurfacing and remodeling with the variable pulse Er:YAG laser and scanner-assisted Nd:YAG laser.

    Science.gov (United States)

    Marini, Leonardo

    2009-12-01

    Many different lasers, polychromatic high-intensity light sources (PCLs), and RF devices have claimed clinical efficacy in rejuvenating the skin. In this study, the sequential combination of two different laser wavelengths was evaluated to produce reliably significant clinical improvements optimizing treatment parameters. The left volar aspects of the forearms of four volunteers were treated with nine different parameter settings using a variable pulsewidth fractional Er:YAG 2940-nm laser with and without air cooling. The pain perception level was recorded on a 0-10 point scale (0=No pain; 10=Most severe pain). Three evaluations were made: during treatment, immediately after treatment, and 5 minutes after treatment. The same investigation was made on the right volar aspects of the same four volunteers using a short-pulse, random pattern, 3-mm spot, scanner-assisted Nd-YAG 1064-nm laser at 0.3 ms pulsewidth at seven different parameter settings. Clinical evaluations were made concerning erythema and edema 3 days after treatment, as well as pre-operative and 60 days postoperative skin texture plus color uniformity. Considering that the majority of cosmetic patients are willing to accept a relatively short and uneventful downtime (2-4 days according to a study we are presently conducting) and do prefer to limit their intra- and postoperative pain to a minimum, the best combination of clinical improvement matching these two important parameters were selected for our study. A treatment strategy combining two sequential passes of long-pulse Nd:YAG laser (Nd:YAG-LP) at 0.3 and 35 ms followed by two passes of long-pulse fractional Er:YAG laser (Er:YAG-FT) at 600 micros was designed to treat the facial regions of 10 volunteers affected by a combination of intrinsic (chrono-) and extrinsic (mostly photo-) aging. The pain perception level was recorded on a 0-10 scale (0=No pain; 10=Most severe pain). Three evaluations were made: during, immediately after, and 5 minutes after

  9. Dispersion Properties of Photonic Crystals and Silicon Nanostructures Investigated by Fourier-Space Imaging

    OpenAIRE

    Jágerská, Jana

    2011-01-01

    State-of-the-art nanophotonic devices based on semiconductor technology use total internal reflection or the photonic bandgap effect to reduce the waveguide core dimensions down to hundreds of nanometers, ensuring strong optical confinement within the scale of the wavelength. Within the framework of this thesis, we investigate the light propagation in such devices by direct experimental reconstruction of their dispersion relation ω (k), where ω ...

  10. Crystallization mechanisms of acicular crystals

    Science.gov (United States)

    Puel, François; Verdurand, Elodie; Taulelle, Pascal; Bebon, Christine; Colson, Didier; Klein, Jean-Paul; Veesler, Stéphane

    2008-01-01

    In this contribution, we present an experimental investigation of the growth of four different organic molecules produced at industrial scale with a view to understand the crystallization mechanism of acicular or needle-like crystals. For all organic crystals studied in this article, layer-by-layer growth of the lateral faces is very slow and clear, as soon as the supersaturation is high enough, there is competition between growth and surface-activated secondary nucleation. This gives rise to pseudo-twinned crystals composed of several needle individuals aligned along a crystallographic axis; this is explained by regular over- and inter-growths as in the case of twinning. And when supersaturation is even higher, nucleation is fast and random. In an industrial continuous crystallization, the rapid growth of needle-like crystals is to be avoided as it leads to fragile crystals or needles, which can be partly broken or totally detached from the parent crystals especially along structural anisotropic axis corresponding to weaker chemical bonds, thus leading to slower growing faces. When an activated mechanism is involved such as a secondary surface nucleation, it is no longer possible to obtain a steady state. Therefore, the crystal number, size and habit vary significantly with time, leading to troubles in the downstream processing operations and to modifications of the final solid-specific properties. These results provide valuable information on the unique crystallization mechanisms of acicular crystals, and show that it is important to know these threshold and critical values when running a crystallizer in order to obtain easy-to-handle crystals.

  11. In situ TEM investigation on the precipitation behavior of μ phase in Ni-base single crystal superalloys

    International Nuclear Information System (INIS)

    Gao, Shuang; Liu, Zhi-Quan; Li, Cai-Fu; Zhou, Yizhou; Jin, Tao

    2016-01-01

    The precipitation behavior of μ phase in Ni-base single crystal superalloys was investigated by in situ transmission electron microscopy (TEM). A layer-by-layer growth process with a ledge propagation mechanism was first observed during in situ precipitation. Three types of μ phase with different morphologies were found, which grow along [001] μ with (001) μ planar defects, [-111] μ with (1–12) μ planar defects, as well as both directions with mixed planar defects. High-resolution TEM image and established atomic models reveal a basic growth mechanism of μ phase by stacking on (001) μ plane and randomly forming coherent planar defects, while the nucleation of incoherent (1–12) μ planar defects at the early stage of precipitation plays an important role in affecting the basic growth mechanism. The frequent faults during the stacking process of the sub-unit layers within μ lattice should be responsible for the defect formation. -- Graphical abstract: In situ transmission electron microscopy (TEM) investigations reveal the layer-by-layer growth mechanism of μ phase precipitated in Ni-base single crystal superalloys. Three types of μ phase with different morphologies were formed at 1050 °C, which grows along [001] μ with (001) μ planar defects, [-111] μ with (1–12) μ planar defects, as well as both directions with mixed planar defects respectively. Formation of (001) μ micro-twin and stacking fault is the essential feature for precipitated μ phase, while nucleation of incoherent (1–12) μ planar defects plays an important role in changing growth method. Display Omitted

  12. Bond strength of an adhesive system irradiated with Nd:YAG laser in dentin treated with Er:YAG laser

    International Nuclear Information System (INIS)

    Malta, D A M P; De Andrade, M F; Costa, M M; Lizarelli, R F Z; Pelino, J E P

    2008-01-01

    The purpose of this in vitro study was to verify through micro tensile bond test the bond strength of an adhesive system irradiated with Nd:YAG laser in dentine previously treated with Er:YAG laser. Twenty caries free extracted human third molars were used. The teeth were divided in four experimental groups (n = 5): (G1) control group; (G2) irradiation of the adhesive system with the Nd:YAG laser; (G3) dentin treatment with Er:YAG laser; (G4) dentin treatment with Er:YAG laser followed by the irradiation of the adhesive system with Nd:YAG laser. The Er:YAG laser fluency parameter for the dentin treatment was of 60 J/cm 2 . The adhesive system was irradiated with the Nd:YAG laser with fluency of 100 J/cm 2 . Dental restorations were performed with Adper Single Bond 2/Z250. One tooth from each group was prepared for the evaluation of the adhesive interface under SEM and bond failure tests were also performed and evaluated. The statistical analysis showed statistical significant difference between the groups G1 and G3, G1 and G4, G2 and G3, and G2 and G4; and similarity between the groups G1 and G2, and G3 and G4. The adhesive failures were predominant in all the experimental groups. The SEM analysis showed an adhesive interface with features confirming the results of the mechanical tests. The Nd:YAG laser on the adhesive system did not influence the bond strength in dentin treated or not with the Er:YAG laser

  13. Nd:YAG Laser-aided ceramic brackets debonding: Effects on shear bond strength and enamel surface

    Science.gov (United States)

    Han, Xianglong; Liu, Xiaolin; Bai, Ding; Meng, Yao; Huang, Lan

    2008-11-01

    In order to evaluate the efficiency of Nd:YAG laser-aided ceramic brackets debonding technique, both ceramic brackets and metallic brackets were bonded with orthodontic adhesive to 30 freshly extracted premolars. The specimens were divided into three groups, 10 in each, according to the brackets employed and the debonding techniques used: (1) metallic brackets with shear debonding force, (2) ceramic brackets with shear debonding force, and (3) ceramic brackets with Nd:YAG laser irradiation. The result showed that laser irradiation could diminish shear bond strength (SBS) significantly and produce the most desired ARI scores. Moreover, scanning electron microscopy investigation displayed that laser-aided technique induced little enamel scratch or loss. It was concluded that Nd:YAG laser could facilitate the debonding of ceramic brackets and diminish the amount of remnant adhesive without damaging enamel structure.

  14. Nd:YAG Laser-aided ceramic brackets debonding: Effects on shear bond strength and enamel surface

    International Nuclear Information System (INIS)

    Han Xianglong; Liu Xiaolin; Bai Ding; Meng Yao; Huang Lan

    2008-01-01

    In order to evaluate the efficiency of Nd:YAG laser-aided ceramic brackets debonding technique, both ceramic brackets and metallic brackets were bonded with orthodontic adhesive to 30 freshly extracted premolars. The specimens were divided into three groups, 10 in each, according to the brackets employed and the debonding techniques used: (1) metallic brackets with shear debonding force, (2) ceramic brackets with shear debonding force, and (3) ceramic brackets with Nd:YAG laser irradiation. The result showed that laser irradiation could diminish shear bond strength (SBS) significantly and produce the most desired ARI scores. Moreover, scanning electron microscopy investigation displayed that laser-aided technique induced little enamel scratch or loss. It was concluded that Nd:YAG laser could facilitate the debonding of ceramic brackets and diminish the amount of remnant adhesive without damaging enamel structure

  15. Nd:YAG Laser-aided ceramic brackets debonding: Effects on shear bond strength and enamel surface

    Energy Technology Data Exchange (ETDEWEB)

    Han Xianglong [State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041 (China); Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China); Liu Xiaolin [Department of Orthodontics, Stomatology Hospital, Dalian University, Dalian 116021 (China); Bai Ding [State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041 (China); Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China)], E-mail: baiding88@hotmail.com; Meng Yao; Huang Lan [Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041 (China)

    2008-11-15

    In order to evaluate the efficiency of Nd:YAG laser-aided ceramic brackets debonding technique, both ceramic brackets and metallic brackets were bonded with orthodontic adhesive to 30 freshly extracted premolars. The specimens were divided into three groups, 10 in each, according to the brackets employed and the debonding techniques used: (1) metallic brackets with shear debonding force, (2) ceramic brackets with shear debonding force, and (3) ceramic brackets with Nd:YAG laser irradiation. The result showed that laser irradiation could diminish shear bond strength (SBS) significantly and produce the most desired ARI scores. Moreover, scanning electron microscopy investigation displayed that laser-aided technique induced little enamel scratch or loss. It was concluded that Nd:YAG laser could facilitate the debonding of ceramic brackets and diminish the amount of remnant adhesive without damaging enamel structure.

  16. Diode-pumped cw Nd:YAG three-level laser at 869 nm.

    Science.gov (United States)

    Lü, Yanfei; Xia, Jing; Cheng, Weibo; Chen, Jifeng; Ning, Guobin; Liang, Zuoliang

    2010-11-01

    We report for the first time (to our knowledge) a diode-pumped Nd:YAG laser emitting at 869 nm based on the (4)F(3/2)-(4)I(9/2) transition, generally used for a 946 nm emission. Power of 453 mW at 869 nm has been achieved in cw operation with a fiber-coupled laser diode emitting 35.4 W at 809 nm. Intracavity second-harmonic generation in the cw mode has also been demonstrated with power of 118 mW at 435 nm by using a BiB(3)O(6) nonlinear crystal. In our experiment, we used a LiNbO(3) crystal lens to complement the thermal lens of the laser rod, and we obtained good beam quality and high output power stability.

  17. Ab-initio investigation of Rb substitution in KTP single crystal

    Science.gov (United States)

    Ghoohestani, Marzieh; Arab, Ali; Hashemifar, S. Javad; Sadeghi, Hossein

    2018-01-01

    The effects of rubidium doping on the structural, electronic, and optical properties of KTiOPO4 (KTP) are investigated in the framework of density functional theory. The equilibrium structural parameters of KTP and RbTiOPO4 (RTP) are calculated within the local density and Perdew-Burke-Ernzerhof (PBE), Wu-Cohen, and PBEsol formulation of generalized gradient approximations. We discuss that PBEsol predicts better equilibrium parameters for the KTP alloy. In addition, the variation of lattice constants and Ti-O-Ti bond angles are evaluated as a function of rubidium concentration. The modern modified Becke-Johnson functional is applied for more accurate band gap determination in the pure and alloyed KTP/RTP compounds. The phenomenological pseudoinversion parameter is calculated for a qualitative understanding of the effect of impurity on a non-linear optical response of KTP. We also analyze the behavior of the dielectric function, dispersive refractive indices, and birefringence of KTP/RTP alloys.

  18. Crystalline perfection and mechanical investigations on vertical Bridgman grown Bismuth telluride (Bi{sub 2}Te{sub 3}) single crystals for thermoelectric applications

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, Anuj [Academy of Scientific and Innovative Research, CSIR- National Physical Laboratory, New Delhi 110012 (India); X-ray Analysis and Crystal Growth Section, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India); Vijayan, N., E-mail: nvijayan@nplindia.org [X-ray Analysis and Crystal Growth Section, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India); Singh, Budhendra [TEMA-NRD, Mechanical Engineering Department and Aveiro Institute of Nanotechnology (AIN), University of Aveiro, 3810-193 Aveiro (Portugal); Thukral, Kanika [Academy of Scientific and Innovative Research, CSIR- National Physical Laboratory, New Delhi 110012 (India); X-ray Analysis and Crystal Growth Section, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India); Maurya, K.K. [X-ray Analysis and Crystal Growth Section, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Road, New Delhi 110012 (India)

    2016-03-07

    High efficiency thermoelectric materials plays a vital role in power generation and refrigeration applications. Bismuth telluride (Bi{sub 2}Te{sub 3}) is one among them. In the present work single crystal of bismuth telluride was grown using vertical Bridgman technique. The phase of grown crystals was analysed using a powder X-ray diffractometer. Quality of the grown crystal was assessed by using high resolution X-ray diffractometer and observed that it is fairly good. Further mechanical investigations on grown crystal was carried out using nano-indentation technique and various mechanical properties like hardness, stiffness and Young’s modulus were evaluated. Observed results clearly indicate its suitability for thermoelectric applications.

  19. Lasing and thermal characteristics of Yb:YAG/YAG composite with atomic diffusion bonding

    Czech Academy of Sciences Publication Activity Database

    Nagisetty, Siva S.; Severová, Patricie; Miura, Taisuke; Smrž, Martin; Kon, H.; Uomoto, M.; Shimatsu, T.; Kawasaki, M.; Higashiguchi, T.; Endo, Akira; Mocek, Tomáš

    2017-01-01

    Roč. 14, č. 1 (2017), 1-6, č. článku 015001. ISSN 1612-2011 R&D Projects: GA MŠk LM2015086; GA MŠk LO1602 Institutional support: RVO:68378271 Keywords : composite Yb:YAG ceramic * atomic diffusion bonding * thermal effects Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 2.537, year: 2016

  20. Multi-Fresnel lenses pumping approach for improving high-power Nd:YAG solar laser beam quality.

    Science.gov (United States)

    Liang, Dawei; Almeida, Joana

    2013-07-20

    To significantly improve the present-day high-power solar laser beam quality, a three-stage multi-Fresnel lenses approach is proposed for side-pumping either a Nd:YAG single-crystal or a core-doped Sm(3+)Nd:YAG ceramic rod. Optimum pumping and laser beam parameters are found through ZEMAX and LASCAD numerical analysis. The proposed scheme offers a uniform absorption profile along the rod. 167 W laser power can be achieved, corresponding to 29.3 W/m(2) collection efficiency. High brightness figure of merit of 8.34 W is expected for the core-doped rod within a convex-concave resonator, which is 1300 times higher than that of the most-recent high-power solar laser.

  1. Highly efficient end-side-pumped Nd:YAG solar laser by a heliostat-parabolic mirror system.

    Science.gov (United States)

    Almeida, J; Liang, D; Vistas, C R; Guillot, E

    2015-03-10

    We report a large improvement in the collection and slope efficiency of an Nd:YAG solar laser pumped by a heliostat-parabolic mirror system. A conical fused silica lens was used to further concentrate the solar radiation from the focal zone of a 2 m diameter primary concentrator to a Nd:YAG single-crystal rod within a conical pump cavity, which enabled multipass pumping to the active medium. A 56 W cw laser power was measured, corresponding to 21.1  W/m2 record-high solar laser collection efficiency with the heliostat-parabolic mirror system. 4.9% slope efficiency was calculated, corresponding to 175% enhancement over our previous result.

  2. Optical and electronic properties of HWCVD and PECVD silicon films irradiated using excimer and Nd:Yag lasers

    International Nuclear Information System (INIS)

    Shaikh, M.Z.; O'Neill, K.A.; Anthony, S.; Persheyev, S.K.; Rose, M.J.

    2006-01-01

    Thin silicon film samples were deposited using HWCVD and PECVD techniques to study the influence of laser annealing on their optical and electronic properties. Samples were annealed in air using a XeCl excimer and Nd:Yag lasers. Excimer laser annealing (ELA) at 50 to 222 mJ/cm 2 increased conductivity in PECVD films by 2 to 3 orders of magnitude and in HWCVD films by 1 to 2 orders of magnitude. ELA was also seen to decrease the optical gap in PECVD films by 0.5 eV and HWCVD films by 0.15 eV. Silicon-oxygen bond content was higher in as-deposited HWCVD films than PECVD films. Hydrogen content (at.%) in PECVD films was higher than HWCVD for higher H dilution ratios. A Nd:Yag laser 3-beam interference pattern was used to produce a periodic array of crystals in both PECVD and HWCVD films

  3. Stable polarization short pulse passively Q-switched monolithic microchip laser with [110] cut Cr4+:YAG

    International Nuclear Information System (INIS)

    Wang, Y; Gong, M; Yan, P; Huang, L; Li, D

    2009-01-01

    A monolithic Nd:YAG microchip laser with [110] cut Cr 4+ :YAG is presented. The output beam is linearly polarized with polarization ratio higher than 100:1. The polarization direction is stable, independent of pump power, crystal temperature, LD temperature. In single longitudinal mode operation, stable 259 ps pulses at 2.5 kHz with 82 kW peak power and diffraction limited beam mode are output. With a simple and compact one-pass Nd:YVO 4 amplifier, 144 kW peak power is achieved. Single longitudinal and fundamental transverse mode is kept after passing through the amplifier stage. The microchip laser can be operated in two longitudinal modes with two sets of output pulses by increasing the pump power

  4. Heat treatment of transparent Yb:YAG and YAG ceramics and its influence on laser performance

    Science.gov (United States)

    Fujioka, Kana; Mochida, Tetsuo; Fujimoto, Yasushi; Tokita, Shigeki; Kawanaka, Junji; Maruyama, Momoko; Sugiyama, Akira; Miyanaga, Noriaki

    2018-05-01

    Composite transparent ceramic materials are promising for improving the performance of high-average-power lasers. A combination of room-temperature bonding via surface treatment by a fast atom beam and diffusion bonding via heating, which effectively controls the ion diffusion distance near the interface, makes the laser materials suitable for a variety of oscillator/amplifier. During the heat treatment of yttrium aluminum garnet (YAG) ceramics, the Si ions in the solid solution of the sintering aid incorporated within the grains were seen to segregate at the grain boundary, resulting in an increase of scattering sites. The number density and size of the scattering sites strongly depended on the post-heating temperature rather than the heating time. Specifically, heating at 1300 °C did not affect the transmittance of the YAG ceramic, whereas both the size and number of scattering sites substantially increased with a heat treatment at 1400 °C. The laser oscillation experiment using cryogenically-cooled Yb:YAG ceramics exhibited heating temperature dependence of the slope efficiency owing to the increasing scattering loss.

  5. Experimental and theoretical investigation of the elastic moduli of silicate glasses and crystals

    Science.gov (United States)

    Philipps, Katharina; Stoffel, Ralf Peter; Dronskowski, Richard; Conradt, Reinhard

    2017-02-01

    A combined quantum-mechanical and thermodynamic approach to the mechanical properties of multicomponent silicate glasses is presented. Quantum chemical calculations based on density-functional theory (DFT) on various silicate systems were performed to explore the crystalline polymorphs existing for a given chemical composition. These calculations reproduced the properties of known polymorphs even in systems with extensive polymorphism, like MgSiO3. Properties resting on the atomic and electronic structure, i.e., molar volumes (densities) and bulk moduli were predicted correctly. The theoretical data (molar equilibrium volumes, bulk moduli) were then used to complement the available experimental data. In a phenomenological evaluation, experimental data of bulk moduli, a macroscopic property resting on phononic structure, were found to linearly scale with the ratios of atomic space demand to actual molar volume in a universal way. Silicates ranging from high-pressure polymorphs to glasses were represented by a single master line. This suggests that above the Debye limit (in practice: above room temperature), the elastic waves probe the short range order coordination polyhedra and their next-neighbor linkage only, while the presence or absence of an extended translational symmetry is irrelevant. As a result, glasses can be treated - with respect to the properties investigated - as commensurable members of polymorphic series. Binary glasses fit the very same line as their one-component end-members, again both in the crystalline and glassy state. Finally, it is shown that the macroscopic properties of multicomponent glasses also are linear superpositions of the properties of their constitutional phases (as determined from phase diagrams or by thermochemical calculations) taken in their respective glassy states. This is verified experimentally for heat capacities and Young’s moduli of industrial glass compositions. It can be concluded, that the combined quantum

  6. Pulsed Nd-YAG laser in endodontics

    Science.gov (United States)

    Ragot-Roy, Brigitte; Severin, Claude; Maquin, Michel

    1994-12-01

    The purpose of this study was to establish an operative method in endodontics. The effect of a pulsed Nd:YAG laser on root canal dentin has been examined with a scanning electron microscope. Our first experimentation was to observe the impacts carried out perpendicularly to root canal surface with a 200 micrometers fiber optic in the presence of dye. Secondarily, the optical fiber was used as an endodontic instrument with black dye. The irradiation was performed after root canal preparation (15/100 file or 40/100 file) or directly into the canal. Adverse effects are observed. The results show that laser irradiation on root canal dentin surfaces induces a nonhomogeneous modified dentin layer, melted and resolidified dentin closed partially dentinal tubules. The removal of debris is not efficient enough. The laser treatment seems to be indicated only for endodontic and periapical spaces sterilization after conventional root canal preparation.

  7. Development of surgical CW Nd:YAG laser with optical fiber delivery system

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Kim, Jeong Mook; Jung, Chin Mann; Kim, Kwang Suk; Kim, Min Suk; Cho, Jae Wan; Kim, Duk Hyun

    1992-06-01

    We developed a surgical CW Nd:YAG laser with optical fiber delivery system. Several commercial models have been investigated in design and performance. We improved its quality to the level of commercial Nd:YAG laser by an endurance test for each parts of laser system. The maximum power of our surgical laser was 150 W and the laser pulse width could be controlled to 99 sec continuously by 0.1 sec. Many optical parts were localized and lowered much in cost. Only few parts were imported and almost 90% in cost were localized. Also, to find out the maintenance problem of this surgical laser, it was applicated to the production line of our joint company. (Author)

  8. Changes in nail keratin observed by Raman spectroscopy after Nd:YAG laser treatment.

    Science.gov (United States)

    Shin, Min Kyung; Kim, Tae In; Kim, Wan Sun; Park, Hun-Kuk; Kim, Kyung Sook

    2017-04-01

    Lasers and photodynamic therapy have been considered a convergence treatment for onychomycosis, which is a fungal infection on the nail bed and nail plate. Laser therapies have shown satisfactory results without significant complications for onychomycosis; however, the mechanism of clearing remains unknown. In this work, we investigated changes in the chemical structure of nail keratin induced by Nd:YAG laser using Raman spectroscopy. Toe nails with onychomycosis were treated with 1064 nm Nd:YAG laser. After laser treatment, the disulfide band (490-590 cm -1 ) of nail keratin was rarely observed or was reduced in intensity. The amide I band (1500-1700 cm -1 ) also showed changes induced by the laser. The α-helical (1652 cm -1 ) structures dominated the β-sheet (1673 cm -1 ) in nontreated nail, but the opposite phenomenon was observed after laser treatment. © 2016 Wiley Periodicals, Inc.

  9. Acute and chronic response of meniscal fibrocartilage to holmium:YAG laser irradiation

    Science.gov (United States)

    Horan, Patrick J.; Popovic, Neven A.; Islinger, Richard B.; Kuklo, Timothy R.; Dick, Edward J.

    1997-05-01

    The acute and chronic (10 week) histological effects of the holmium:YAG laser during partial meniscectomy in an in vivo rabbit model were investigated. Twenty-four adult male New Zealand rabbits underwent bilateral parapatellar medial knee arthrotomies. In the right knee, a partial medial meniscectomy was done through the avascular zone using a standard surgical blade. In the left knee, an anatomically similar partial medial meniscectomy was performed using a Ho:YAG laser (Coherent, USA). This study indicates that the laser creates two zones of damage in the meniscal fibrocartilage and that the zone of thermal change may act as a barrier to healing. The zone of thermal change which is eventually debrided was thought at the time of surgery to be viable. In the laser cut menisci, the synovium appears to have greater inflammation early and to be equivalent with the scalpel cut after three weeks. At all time periods there appeared more cellular damage in the laser specimens.

  10. Numerical Simulation of the Micro-explosion during Ho:YAG laser lithotripsy

    International Nuclear Information System (INIS)

    Yao Yucheng; Huang Chuyun; Xu Guowang; Yan Xudong; Wang Yanlin

    2011-01-01

    The micro-explosion during Ho:YAG laser lithotripsy may cause calculus fragmentation and migration. It plays an important role to the surgery. A numerical simulation of the micro-explosion during Ho:YAG laser lithotripsy has been developed. The explosion problem in water environment was solved by the Euler algorithm and the piecewise parabolic method (PPM) was selected in the calculation. This simulation investigated the explosion dynamics evolution in the lithotripsy area. The pressure and intensity of the calculus surface were calculated for different laser pulse energy and different distance between calculus and fiber tip. The calculation results indicate that the micro-explosion's properties are determined by the pulse energy, pulse duration and the water distance. Though Short pulse duration and large pulse energy cause high ablation efficiency, it mains more calculus retropulsion at the same time. The ideal surgery results need property laser parameters.

  11. Investigation of the influence of the proximity effect and randomness on a photolithographically fabricated photonic crystal nanobeam cavity

    Science.gov (United States)

    Tetsumoto, Tomohiro; Kumazaki, Hajime; Ishida, Rammaru; Tanabe, Takasumi

    2018-01-01

    Recent progress on the fabrication techniques used in silicon photonics foundries has enabled us to fabricate photonic crystal (PhC) nanocavities using a complementary metal-oxide-semiconductor (CMOS) compatible process. A high Q two-dimensional PhC nanocavity and a one-dimensional nanobeam PhC cavity with a Q exceeding 100 thousand have been fabricated using ArF excimer laser immersion lithography. These are important steps toward the fusion of silicon photonics devices and PhC devices. Although the fabrication must be reproducible for industrial applications, the properties of PhC nanocavities are sensitively affected by the proximity effect and randomness. In this study, we quantitatively investigated the influence of the proximity effect and randomness on a silicon nanobeam PhC cavity. First, we discussed the optical properties of cavities defined with one- and two-step exposure methods, which revealed the necessity of a multi-stage exposure process for our structure. Then, we investigated the impact of block structures placed next to the cavities. The presence of the blocks modified the resonant wavelength of the cavities by about 10 nm. The highest Q we obtained was over 100 thousand. We also discussed the influence of photomask misalignment, which is also a possible cause of disorders in the photolithographic fabrication process. This study will provide useful information for fabricating integrated photonic circuits with PhC nanocavities using a photolithographic process.

  12. Epidemiological evaluation of YAG capsulotomy incidence for posterior capsule opacification in various intraocular lenses in Japanese eyes

    Directory of Open Access Journals (Sweden)

    Nishi Y

    2015-09-01

    Full Text Available Yutaro Nishi,1,2 Tomohiro Ikeda,1 Kayo Nishi,2 Osamu Mimura1 1Department of Ophthalmology, Hyogo College of Medicine, Hyogo, 2Nishi Eye Hospital, Osaka, Japan Background and objective: We investigated the yttrium aluminum garnet (YAG capsulotomy rates in various intraocular lenses (IOLs. Study design/patients and methods: We retrospectively analyzed 23,440 eyes implanted with either MA60BM, MA60AC, VA-60BB, CeeOnEdge, Clariflex, Technis Z9002, SI-40NB, or UV26T IOLs. We calculated the YAG capsulotomy rates at 1, 3, 5, and 10 years post lens implantation. Results: YAG capsulotomy rates at 3 years postimplantation for the eight groups of IOLs were, respectively, 3.7%, 3.9%, 23.7%, 3.4%, 4.5%, 4.7%, 10.4%, and 21.0%. YAG capsulotomy rates at 10 years postimplantation for the MA60BM and SI-40NB IOLs were, respectively, 9.1% and 15% (P<0.05. The average YAG rates for all sharp-edged and round-edged IOLs at 5 years postimplantation were, respectively, 5.2%±0.7% and 25.6%±9.0% (P<0.05. Conclusion: In all studied IOLs, posterior capsule opacification prevention seemed to be associated with the posterior optic sharp-edge design. Round-edged silicone IOLs may also retard posterior capsule opacification formation, though not as much as sharp-edged IOLs. As the follow-up period progressed, round-edged silicone IOLs showed significantly higher YAG rates than sharp-edged IOLs. Keywords: silicone, intraocular lenses, sharp optic edge, chi-square test, implantation surgery, posterior capsule opacification

  13. End-pumped Nd:YAG Q-switched laser with high energy and narrow pulse for glass carving

    Science.gov (United States)

    Ling, Ming; Jin, Guang-yong; Tan, Xue-chun; Wu, Zhi-chao; Liang, Zhu

    2009-05-01

    In order to raise the accuracy of glass carving and improve deep cutting, a novel diode end-pumed solid-state laser is researched. Selecting proper volume of laser crytal, one continue wave laser diode which longitudinally pumped Nd:YAG crystal is performed and an applied optics coupling system is designed with self focusing.Computing with ray trace software and MATLAB software, the best parameter is obtained, so pumping beam is coupled efficiently to Nd:YAG.Used a Cr4+:YAG crystal with the singnal transmission of 82% and a line plane-concave cavity, nanosecond narrow pulse is gotten. After two thermal-electrical coolers kept the laser to work at constant temperature instead of water cooling, the volume of laser is markedly reduced. The method of thermal-electrical cooling could increase the system efficiency,achieve the effect of low mode output.Experimental results indicate that the maximum laser output energy in 1064 nm is 118mJ,pulse width is 5 ns, conversion efficiency from light to light is 15.7% under the condition of the incident power of 5 W and the diameter of the output laser spot is less than 1 mm. This end-pumped Nd:YAG Q-switched laser with the light output of high quality and long life, which has 0.01 mm accuracy after lens focusing can satisfy the glass carving with higher precision, rapid speed as well as easy control. It can be used in carving all kinds of glass and replace current CO2 laser.

  14. Temperature dependence of optical properties in Nd/Cr:YAG materials

    International Nuclear Information System (INIS)

    Honda, Yoshiyuki; Motokoshi, Shinji; Jitsuno, Takahisa; Miyanaga, Noriaki; Fujioka, Kana; Nakatsuka, Masahiro; Yoshida, Minoru

    2014-01-01

    The energy transfer from Cr 3+ to Nd 3+ for Nd/Cr:YAG (Nd: 1.0%, Cr: 2.0%) materials was investigated by measuring the temperature dependences of fluorescence characteristics. The fluorescence intensity of Nd 3+ increased with temperature owing to enhancement of the absorption coefficient of Cr 3+ . The energy transfer efficiency was constant from 77 to 450 K. The energy transfer time decreased with increasing temperature. -- Highlights: • We investigate the energy transfer from Cr 3+ to Nd 3+ in Nd/Cr:YAG materials by measuring the temperature dependence of fluorescence characteristics. • The fluorescence intensity of Nd 3+ increased with temperature owing to enhancement of the absorption coefficient of Cr 3+ . • The energy transfer efficiency was constant from 77 to 450 K. • The energy transfer time decreased with increasing temperature. • Nd/Cr:YAG ceramics pumped by a flash lamp would not only provide high conversion efficiency, but can also be expected to function as an effective laser operating at high temperature

  15. Two dimensional crystals of LH2 light-harvesting complexes from Ectothiorhodospira sp. and Rhodobacter capsulatus investigated by electron microscopy

    NARCIS (Netherlands)

    Oling, Frank; Boekema, EJ; deZarate, IO; Visschers, R; vanGrondelle, R; Keegstra, W; Brisson, A; Picorel, R

    1996-01-01

    Two-dimensional crystals of LH2 (B800-850) light-harvesting complexes from Ectothiorhodospira sp, and Rhodobacter capsulatus were obtained by reconstitution of purified protein into phospholipid vesicles and characterized by electron microscopy. The size of the crystals was up to several

  16. Relation between anchorings of liquid crystals and conformation changes in aligning agents by the Langmuir-Blodgett film technique investigation

    International Nuclear Information System (INIS)

    Zhu, Y.; Lu, Z.; Wei, Y.

    1995-01-01

    The anchoring direction of liquid crystals on a solid substrate surface depends upon many parameters characterizing the liquid-crystal--substrate interface, a variation of which may change this anchoring direction leading to the so-called anchoring transition. Here, based on the Langmuir-Blodgett film technique, we present two model systems to study the relation between anchoring directions and the conformation changes in aligning agents. A double-armed crown ether liquid crystal and a side chain polymer liquid crystal at an air-water interface both show phase transitions, accompanied by conformation changes. However, when the monolayers in different phases were transferred onto solid substrates to orient liquid crystals, we found that for the crown ether material the conformation change can alter the anchoring of liquid crystals between homeotropic and homogeneous alignments, while for the polymer liquid crystal, despite the conformation changes, the liquid crystals can only be aligned homeotropically. The involved mechanisms were briefly discussed in terms of the Landau-type phenomenological theory

  17. Investigation of the effects of swift heavy ion on the properties of yttrium calcium oxyborate (YCOB) NLO crystal

    International Nuclear Information System (INIS)

    Kalidasan, M.; Dhanasekaran, R.; Asokan, K.

    2012-01-01

    Heavy ion irradiation is a successful tool to create an effective refractive index change in a nonlinear optical (NLO) crystal surface in several micron thickness. It leads to the fabrication of non-leaky optical guiding structures. As irradiation can create the property changes with low ion fluence, it will be an alternative for the ion implantation. The present work is related to the creation of micrometer level surface modification in the YCa_4O(BO_3)_3 NLO crystal by the irradiation of 120 MeV Au"9"+ swift heavy ion and studying the changes in property of the material. The irradiation was carried out in the Materials Science beam line of the pelletron accelerator at Inter University Accelerator Centre, New Delhi. YCOB crystals were grown by high temperature flux technique in our laboratory. YCOB belongs to borate family of crystals which are superior to other NLO crystals due to their structural and optical features. Borate crystal can produce UV and deep UV laser through harmonic generation with good optical conversion efficiency. YCOB crystal attracted because of its high laser damage threshold, long nonlinear conversion length and large aperture scaling capability to be employed in high power laser applications. The Stopping and Range of Ions in Matter (SRIM) simulation has been carried out to study the variation of electronic (S_e) and nuclear (S_n) energy losses with penetration depth and energy of gold ions in YCOB crystal. Refractive index change was observed in the YCOB crystal due to the irradiation of 120 MeV Au"9"+ ion. The UV-Visible studies show optical band gap shift and confirms the refractive index change created in the YCOB crystal. The morphology of the irradiated crystal was analysed with scanning electron microscopy. The inhomogeneous broadening of emission curve of the YCOB crystal takes place due to ion irradiation which is analyzed in detail. From the fluorescence decay curves of pristine and irradiated crystals the excited state

  18. The bactericidal effect of a Genius (R) Nd : YAG laser

    NARCIS (Netherlands)

    Kranendonk, A.A.; Reijden, W.A. van der; Winkelhoff, A.J. van; Weijden, G.A. van der

    PURPOSE: To evaluate the 'in vitro' bactericidal effect of the Nd:YAG laser (Genius, MØlsgaard Dental, Copenhagen, Denmark) on six periodontal pathogens. METHODS: Suspensions of six different periodontal pathogens (Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Prevotella

  19. Self-mode-locked Nd3+:YAG laser

    International Nuclear Information System (INIS)

    Komarov, A K; Komarov, K P; Kuch'yanov, Aleksandr S

    2003-01-01

    Self-mode-locking was observed in a Nd 3+ :YAG laser with a negative feedback without introducing any nonlinear elements into the laser cavity. The laser generates during pumping 300 - 500-ps single pulses on an axial period. (lasers)

  20. Neodymium-YAG laser vitreolysis in sickle cell retinopathy

    Energy Technology Data Exchange (ETDEWEB)

    Hrisomalos, N.F.; Jampol, L.M.; Moriarty, B.J.; Serjeant, G.; Acheson, R.; Goldberg, M.F.

    1987-08-01

    Six patients with proliferative sickle cell retinopathy and vitreous bands were treated with the neodymium-YAG (Nd-YAG) laser to accomplish lysis of avascular traction bands or to clear the media in front of the macula. Transection of bands was possible in five of the six cases but in two of these the effect was only partial. Three cases were satisfactorily treated with the Nd-YAG laser application alone, two eventually required conventional vitreoretinal surgery, and one patient's condition stabilized despite failure of the treatment. Complications from the treatment occurred in three cases and included subretinal (choroidal) hemorrhage, preretinal hemorrhage, microperforation of a retinal vein, and focal areas of damage to the retinal pigment epithelium. Neodymium-YAG vitreolysis may be a useful modality in carefully selected patients with proliferative sickle cell retinopathy, but potentially sight-threatening complications may occur.

  1. Non-isothermal crystallization kinetics and fragility of (Cu46Zr47Al7)97Ti3 bulk metallic glass investigated by differential scanning calorimetry

    International Nuclear Information System (INIS)

    Zhu, Man; Li, Junjie; Yao, Lijuan; Jian, Zengyun; Chang, Fang’e; Yang, Gencang

    2013-01-01

    Highlights: • Non-isothermal crystallization kinetics of (Cu 46 Zr 47 Al 7 ) 97 Ti 3 BMGs was studied. • Two-stage of crystallization process is confirmed by DSC. • The nucleation process is difficult than growth process during crystallization. • The second crystallization process is the most sensitive to heating rate. • Kinetic fragility index is evaluated suggesting it is an intermediate glass. - Abstract: In this paper, bulk metallic glasses with the composition of (Cu 46 Zr 47 Al 7 ) 97 Ti 3 were prepared by copper mold casting technique. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) were used to investigate its structure and non-isothermal crystallization kinetics. DSC traces revealed that it undergoes two-stage crystallization. The activation energies corresponding to the characteristic temperatures have been calculated, and the results reveal that the as-cast alloys have a good thermal stability in thermodynamics. Based on Kissinger equation, the activation energies for glass transition, the first and second crystallization processes were obtained as 485 ± 16 kJ/mol, 331 ± 7 kJ/mol and 210 ± 3 kJ/mol, respectively, suggesting that the nucleation process is more difficult than the grain growth process. The fitting curves using Lasocka's empirical relation show that the influence of the heating rate for crystallization is larger than glass transition. Furthermore, the kinetic fragility for (Cu 46 Zr 47 Al 7 ) 97 Ti 3 bulk metallic glasses is evaluated. Depending on the fragility index, (Cu 46 Zr 47 Al 7 ) 97 Ti 3 bulk metallic glasses should be considered as “intermediate glasses”

  2. Effects of Different Combinations of Er:YAG Laser-Adhesives on Enamel Demineralization and Bracket Bond Strength.

    Science.gov (United States)

    Çokakoğlu, Serpil; Nalçacı, Ruhi; Üşümez, Serdar; Malkoç, Sıddık

    2016-04-01

    The purpose of this study was to investigate the demineralization around brackets and shear bond strength (SBS) of brackets bonded to Er:YAG laser-irradiated enamel at different power settings with various adhesive systems combinations. A total of 108 premolar teeth were used in this study. Teeth were assigned into three groups according to the etching procedure, then each group divided into three subgroups based on the application of different adhesive systems. There were a total of nine groups as follows. Group 1: Acid + Transbond XT Primer; group 2: Er:YAG (100 mJ, 10 Hz) etching + Transbond XT Primer; group 3: Er:YAG (200 mJ, 10 Hz) etching + Transbond XT Primer; group 4: Transbond Plus self-etching primer (SEP); group 5: Er:YAG (100 mJ, 10 Hz) etching + Transbond Plus SEP; group 6: Er:YAG (200 mJ, 10 Hz) etching + Transbond Plus SEP; group 7: Clearfil Protect Bond; group 8: Er:YAG (100 mJ, 10 Hz) etching + Clearfil Protect Bond; group 9: Er:YAG (200 mJ, 10 Hz) etching + Clearfil Protect Bond. Brackets were bonded with Transbond XT Adhesive Paste in all groups. Teeth to be evaluated for demineralization and SBS were exposed to pH and thermal cyclings, respectively. Then, demineralization samples were scanned with micro-CT to determine lesion depth values. For SBS test, a universal testing machine was used and adhesive remnant was index scored after debonding. Data were analyzed statistically. No significant differences were found among the lesion depth values of the various groups, except for G7 and G8, in which the lowest values were recorded. The lowest SBS values were in G7, whereas the highest were in G9. The differences between the other groups were not significant. Er:YAG laser did not have a positive effect on prevention of enamel demineralization. When two step self-etch adhesive is preferred for bonding brackets, laser etching at 1 W (100 mJ, 10 Hz) is suggested to improve SBS of brackets.

  3. [Nd-YAG laser photocoagulation of scrotal sebaceous cysts].

    Science.gov (United States)

    Franco de Castro, A; Truhán, D; Carretero González, P; Alcover García, J

    2002-02-01

    Scrotum's sebaceous cyst is an usual pathology, not life threatening, but susceptible of infection, producing abscess with their associated cosmetic and psychological disturbance. The classical management is the complete excision, under local anaesthesia, to prevent its recidive. Until today, the use of de Nd-YAG laser for the management of the scrotum's sebaceous cysts as not been reported. We report a case of a young man with several scrotum's sebaceous cysts, treated successfully with the use of a Nd-YAG laser.

  4. Analysis of erythema after Er:YAG laser skin resurfacing.

    Science.gov (United States)

    Ko, Na Young; Ahn, Hyo-Hyun; Kim, Soo-Nam; Kye, Young-Chul

    2007-11-01

    Postoperative erythema can be expected to occur in every patient after laser resurfacing, and pigmentary disturbances may be related to the intensity and the duration of erythema. This study was undertaken to assess the clinical features of erythema, the factors that influence its duration, and the relation between the duration of erythema and the incidence of hyperpigmentation and hypopigmentation in skin of Asian persons after Er:YAG laser resurfacing. A total of 218 patients (skin phototypes III to V) were recruited and treated with a short-pulsed Er:YAG laser, a variable-pulsed Er:YAG laser, or a dual-mode Er:YAG laser for skin resurfacing. Clinical assessments were performed retrospectively using medical charts and serial photographs. Postoperative erythema was observed in all patients after Er:YAG laser resurfacing with a mean duration of 4.72 months. In 98.2% of patients, erythema faded completely within 12 months. Postinflammatory hyperpigmentation was observed in 38.1% of patients after Er:YAG laser resurfacing. Skin phototype, level of ablation, and depth of thermal damage caused by a long-pulsed laser appear to be important factors that affect the duration of erythema. Moreover, prolonged erythema was related to the risk of postinflammatory hyperpigmentation.

  5. Three-dimensional investigation of the texture and microstructure below a nanoindent in a Cu single crystal using 3D EBSD and crystal plasticity finite element simulations

    International Nuclear Information System (INIS)

    Zaafarani, N.; Raabe, D.; Singh, R.N.; Roters, F.; Zaefferer, S.

    2006-01-01

    This paper reports a three-dimensional (3D) study of the microstructure and texture below a conical nanoindent in a (111) Cu single crystal at nanometer-scale resolution. The experiments are conducted using a joint high-resolution field emission scanning electron microscopy/electron backscatter diffraction (EBSD) set-up coupled with serial sectioning in a focused ion beam system in the form of a cross-beam 3D crystal orientation microscope (3D EBSD). The experiments (conducted in sets of subsequent (112-bar ) cross-section planes) reveal a pronounced deformation-induced 3D patterning of the lattice rotations below the indent. In the cross-section planes perpendicular to the (111) surface plane below the indenter tip the observed deformation-induced rotation pattern is characterized by an outer tangent zone with large absolute values of the rotations and an inner zone closer to the indenter axis with small rotations. The mapping of the rotation directions reveals multiple transition regimes with steep orientation gradients and frequent changes in sign. The experiments are compared to 3D elastic-viscoplastic crystal plasticity finite element simulations adopting the geometry and boundary conditions of the experiments. The simulations show a similar pattern for the absolute orientation changes but they fail to predict the fine details of the patterning of the rotation directions with the frequent changes in sign observed in the experiment. Also the simulations overemphasize the magnitude of the rotation field tangent to the indenter relative to that directly below the indenter tip

  6. Investigations of the EPR parameters and local lattice structure for the rhombic Cu{sup 2+} centre in TZSH crystal

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chao-Ying; Liu, Shi-Fei; Fu, Jin-Xian [Shangrao Normal University, Jiangxi (China). School of Physics and Electronic Information

    2016-07-01

    The electron paramagnetic resonance (EPR) parameters [i.e. g factors g{sub i} (i=x, y, z) and hyperfine structure constants A{sub i}] and the local lattice structure for the Cu{sup 2+} centre in Tl{sub 2}Zn(SO{sub 4}){sub 2}.6H{sub 2}O (TZSH) crystal were theoretically investigated by utilising the perturbation formulae of these parameters for a 3d{sup 9} ion under rhombically elongated octahedra. In the calculations, the admixture of d orbitals in the ground state and the ligand orbital and spin-orbit coupling interactions are taken into account based on the cluster approach. The theoretical EPR parameters show good agreement with the observed values, and the Cu{sup 2+}-H{sub 2}O bond lengths are obtained as follows: R{sub x}∼1.98 Aa, R{sub y}∼2.09 Aa, R{sub z}∼2.32 Aa. The results are discussed.

  7. AN INVESTIGATION INTO THE MECHANICS OF SINGLE CRYSTAL TURBINE BLADES WITH A VIEW TOWARDS ENHANCING GAS TURBINE EFFICIENCY

    Energy Technology Data Exchange (ETDEWEB)

    K.R. Rajagopal; I.J. Rao

    2006-05-05

    The demand for increased efficiency of gas turbines used in power generation and aircraft applications has fueled research into advanced materials for gas turbine blades that can withstand higher temperatures in that they have excellent resistance to creep. The term ''Superalloys'' describes a group of alloys developed for applications that require high performance at elevated temperatures. Superalloys have a load bearing capacity up to 0.9 times their melting temperature. The objective of the investigation was to develop a thermodynamic model that can be used to describe the response of single crystal superalloys that takes into account the microstructure of the alloy within the context of a continuum model. Having developed the model, its efficacy was to be tested by corroborating the predictions of the model with available experimental data. Such a model was developed and it is implemented in the finite element software ABAQUS/STANDARD through a user subroutine (UMAT) so that the model can be used in realistic geometries that correspond to turbine blades.

  8. Investigation of inorganic nonlinear optical potassium penta borate tetra hydrate (PPBTH) single crystals grown by slow evaporation method

    Science.gov (United States)

    Arivuselvi, R.; Babu, P. Ramesh

    2018-03-01

    Borates family crystals were plays vital role in the field of non linear optics (NLO) due to needs of wide range of applications. In this report, NLO crystals (potassium penta borate tetra hydrate (KB5H8O12) are grown by slow evaporation method at room temperature (28° C) and studied their physical properties. The harvested single crystals are transparent with the dimension of 12 × 10 × 6 mm3 and colourless. X-ray diffraction of single crystals reveals that the grown crystal belongs to orthorhombic system with non-centrosymmetric space group Pba2. All the absorbed functional groups are present in the order of inorganic compounds expect 1688 cm-1 because of water (Osbnd H sbnd O blending) molecule present in the pristine. Crystals show transparent in the entire visible region with 5.9 eV optical band gap and also it shows excellence in both second and third order nonlinear optical properties. Crystals can withstand upto 154 °C without any phase changes which is observed using thermal (TGA/DTA) analysis.

  9. Clinical application of the Nd-YAG and Ho-YAG lasers in otolaryngology: head and neck surgery

    Science.gov (United States)

    Kukwa, Andrzej; Tulibacki, Marek P.; Dudziec, Katarzyna; Wojtowicz, Piotr

    1997-10-01

    The authors present their clinical experience regarding the possibilities of application of Nd:YAG and Ho:YAG lasers for the treatment of disorders in the area of the upper respiratory tract sinuses and ears. This technique makes it possible to perform a number of procedures in local anesthesia which considerably improves the economic effectiveness of the treatment. In case of the Nd:YAG laser they have also utilized the effect of deep coagulation of the soft tissues, whereas the Ho:YAG laser energy was applied for the surgery of bone tissue. The surgeries performed using laser beam enabled very good effect of treatment. They are competitive compared wit the methods used by traditional surgery.

  10. High luminous flux from single crystal phosphor-converted laser-based white lighting system

    KAUST Repository

    Cantore, Michael

    2015-12-14

    The efficiency droop of light emitting diodes (LEDs) with increasing current density limits the amount of light emitted per wafer area. Since low current densities are required for high efficiency operation, many LED die are needed for high power white light illumination systems. In contrast, the carrier density of laser diodes (LDs) clamps at threshold, so the efficiency of LDs does not droop above threshold and high efficiencies can be achieved at very high current densities. The use of a high power blue GaN-based LD coupled with a single crystal Ce-doped yttrium aluminum garnet (YAG:Ce) sample was investigated for white light illumination applications. Under CW operation, a single phosphor-converted LD (pc-LD) die produced a peak luminous efficacy of 86.7 lm/W at 1.4 A and 4.24 V and a peak luminous flux of 1100 lm at 3.0 A and 4.85 V with a luminous efficacy of 75.6 lm/W. Simulations of a pc-LD confirm that the single crystal YAG:Ce sample did not experience thermal quenching at peak LD operating efficiency. These results show that a single pc-LD die is capable of emitting enough luminous flux for use in a high power white light illumination system.

  11. Enhancing the performance of Ce:YAG phosphor-in-silica-glass by controlling interface reaction

    International Nuclear Information System (INIS)

    Zhou, Beiying; Luo, Wei; Liu, Sheng; Gu, Shijia; Lu, Mengchen; Zhang, Yan; Fan, Yuchi; Jiang, Wan; Wang, Lianjun

    2017-01-01

    Dispersing the Ce"3"+ doped yttrium aluminum garnet (Ce:YAG) phosphor in the glass matrix has been widely investigated to replace conventional organic resin or silicone packaging. However, the reaction layer formed between commercial phosphors and glass matrix severely degrades the optical performance of Ce:YAG phosphor in silica glass (PiSG) materials. This paper demonstrates an ultra-fast method for preparing high performance PiSG materials. Instead of traditional melting process, the highly transparent PiSG samples can be rapidly fabricated from mixtures of commercial Ce:YAG phosphor and mesoporous SiO_2 (SBA-15) powders using spark plasma sintering (SPS) at relatively low temperature (1000 °C) within short time (10 min). Owing to the inhibition of the deleterious interface reactions between Ce:YAG phosphor and silica glass matrix, the phosphor has been perfectly preserved, and the internal relative quantum yield of the PiSG sample reaches as high as 93.5% when excited at 455 nm, which is the highest efficiency in current research. Furthermore, combining the PiSG sample, we successfully fabricate a light-emitting diode (LED) module exhibiting a superior performance with luminous efficacy of 127.9 lm/W, correlated color temperature of 5877 K and color rendering index of 69 at the operating current of 120 mA. This work on the high performance LED modules provides not only a new approach to fabricate the functional glass-based materials that is sensitive to the high temperature, but also a possibility to extend the lifetime and improve the optical performances of the glass based LEDs.

  12. Nd:YAG transparent ceramics fabricated by direct cold isostatic pressing and vacuum sintering

    Science.gov (United States)

    Ge, Lin; Li, Jiang; Zhou, Zhiwei; Liu, Binglong; Xie, Tengfei; Liu, Jing; Kou, Huamin; Shi, Yun; Pan, Yubai; Guo, Jingkun

    2015-12-01

    The sintering behavior of neodymium doped yttrium aluminum garnet (Nd:YAG) ceramics was investigated on the basis of densification trajectory, microstructure evolution and transmittance. Nd:YAG ceramics with in-line transmittance of 83.9% at 1064 nm and 82.5% at 400 nm were obtained by direct cold isostatic pressing (CIP) at 250 MPa and solid-state reactive sintering at 1790 °C for 30 h under vacuum. Compared with the porosity and the average pore diameter of the sample from uniaxial dry-pressing followed by CIP, those from direct CIP are much smaller. The samples pressed at 250 MPa were sintered from 1500 °C to 1750 °C for 0.5-20 h to study their sintering behavior. At the temperature higher than 1500 °C, pure YAG phase is formed, followed by the densification and grain growth process. The relative density and the grain size increase with the increase of sintering time and temperature, and the sintering behavior is more sensitive to temperature than holding time. The mechanism controlling densification and grain growth at sintering temperature of 1550 °C is grain boundary diffusion.

  13. The investigations of beam extraction and collimation at U-70 proton synchrotron of IHEP by using short silicon crystals

    CERN Document Server

    Afonine, A G; Biryukov, V M; Breese, M B H; Chepegin, V N; Chesnokov, Yu A; Drees, A; Fedotov, Y S; Guidi, V; Kotov, V I; Maisheev, V A; Martinelli, G; Scandale, Walter; Stefancich, M; Terekhov, V I; Trbojevic, D; Troyanov, E F; Vincenzi, D

    2002-01-01

    The new results of using short (2-4 mm) bent crystals for extraction and collimation of proton beam at IHEP 70 GeV proton synchrotron are reported. A broad range of energies from 6 to 65 GeV has been studied in the same crystal collimation set-up where earlier the extraction efficiency of 85% was obtained for 70 GeV protons using a 2-mm Si crystal. The new regime of extraction is applied now at the accelerator to deliver the beam for different experimental setups within the range of intensity 10E7-10E12ppp. (6 refs).

  14. The Investigations Of Beam Extraction And Collimation At U-70 Proton Synchrotron Of IHEP By Using Short Silicon Crystals

    CERN Document Server

    Afonine, A.G.; Biryukov, V.M.; Chepegin, V.N.; Chesnokov, Y.A.; Fedotov, Y.S.; Kotov, V.I.; Maisheev, V.A.; Terekhov, V.I.; Troyanov, E.F.; Drees, A.; Trbojevic, D.; Scandale, W.; Breese, M.B.H.; Guidi, V.; Martinelli, G.; Stefancich, M.; Vincenzi, D.

    2002-01-01

    The new results of using short (2-4mm) bent crystals for extraction and collimation of proton beam at IHEP 70 Gev proton synchrotron are reported. A broad range of energies from 6 to 65 GeV has been studied in the same crystal collimation set-up. The efficiency of extraction more than 85% and intensity more than 10E12 were obtained by using crystal with the length 2-mm and the angle 1 mrad. The new regime of extraction is applied now at the accelerator to deliver the beam for different experimental setups within the range of intensity 10E7-10E12ppp.

  15. Twisted intra-molecular charge transfer investigations of semiorganic triglycine phosphate single crystal for non linear optical applications

    Science.gov (United States)

    Meera, M. R.; Joselin Beaula, T.; Rayar, S. L.; Bena Jothy, V.

    2017-09-01

    NLO materials are gaining importance in technologies such as optical communication, optical computing and dynamic image processing. Many NLO crystals grown by mixing amino acids with various organic and inorganic acids have been reported in the literature. Hence, glycine mixed semi-organic material will be of special interest as a fundamental building block to develop many complex crystals with improved NLO properties. A semi organic Single crystal of Triglycine Phosphate (TGP) which was grown and spectral analysis have been using FTIR and Raman spectral analysis. Natural Bond Orbital Analysis and the atomic natural charges are also predicted. HOMO LUMO energy gap value suggests the possibility of charge transfer within the molecule.

  16. Suppression of parasitic oscillations in a core-doped ceramic Nd:YAG laser by Sm:YAG cladding.

    Science.gov (United States)

    Huss, Rafael; Wilhelm, Ralf; Kolleck, Christian; Neumann, Jörg; Kracht, Dietmar

    2010-06-07

    The onset of parasitic oscillations limits the extraction efficiency and therefore energy scaling of Q-switched lasers. A solid-state laser was end pumped with a fiber-coupled diode laser and operated in q-cw as well as in passively Q-switched operation. For Q-switched operation, we demonstrate the suppression of parasitic oscillations in a core-doped ceramic Nd:YAG laser by Sm:YAG cladding.

  17. Efficacy of long pulse Nd:YAG laser versus fractional Er:YAG laser in the treatment of hand wrinkles.

    Science.gov (United States)

    Robati, Reza M; Asadi, Elmira; Shafiee, Anoosh; Namazi, Nastaran; Talebi, Atefeh

    2018-04-01

    There are different modalities for hand rejuvenation. Fractional Er:YAG laser and long pulse Nd:YAG laser were introduced for treating hand wrinkles. We plan to compare fractional Er:YAG laser and long pulse Nd:YAG laser in a randomized controlled double-blind design with multiple sessions and larger sample size in comparison with previous studies. Thirty-three participants with hand wrinkles entered this study. They were randomly allocated to undergo three monthly laser treatments on each hand, one with a fractional Er:YAG laser and the other with a long pulse Nd:YAG laser. The evaluations included assessment of clinical improvement determined by two independent dermatologists not enrolled in the treatment along with measuring skin biomechanical property of hands using a sensitive biometrologic device with the assessment of cutaneous resonance running time (CRRT). Moreover, potential side effects and patients' satisfaction have been documented at baseline, 1 month after each treatment, and 3 months after the final treatment session. Clinical evaluation revealed both modalities significantly reduce hand wrinkles (p value lasers. Mean CRRT values also decreased significantly after the laser treatment compared to those of the baseline in both laser groups. There was no serious persistent side effect after both laser treatments. Both fractional Er:YAG and long pulse Nd:YAG lasers show substantial clinical improvement of hand skin wrinkles with no serious side effects. However, combination treatment by these lasers along with the other modalities such as fat transfer could lead to better outcomes in hand rejuvenation. IRCT2016032020468N4.

  18. Investigation of the interaction between liquid and micro/nanostructured surfaces during condensation with quartz crystal microbalance

    Science.gov (United States)

    Su, Junwei

    Dropwise condensation (DWC) on hydrophobic surfaces is attracting attention for its great potential in many industrial applications, such as steam power plants, water desalination, and de-icing of aerodynamic surfaces, to list a few. The direct dynamic characterization of liquid/solid interaction can significantly accelerate the progress toward a full understanding of the thermal and mass transport mechanisms during DWC processes. The research focuses on the development of a novel acoustic-based technique for analyzing the liquid/solid interactions of different condensations on micro- and nanostructured surfaces including DWC. hi addition. the newly developed technology was demonstrated for quantitatively sensing different wetting states of liquid on rough surfaces. First, different micro/nanostructures were fabricated on the quartz crystal microbalance (QCM), which serves as acoustic sensor. Polymethyl methacrylate (PMMA) micropillars, with varying heights from 6.03 to 25.02 microm, were fabricated on a quartz crystal microbalance (QCM) substrate by thermal nanoimprinting lithography to form pillar-based QCM (QCM-P). For nanostructured QCM. a copper layer was deposited on the QCM surface and then nanostructures of copper oxide (CuO) films were formed via chemical oxidation in an alkaline solution. Then, these surfaces were treated to make them superhydrophilic or superhydrophobic using oxygen plasma treatment or with coating of 1H,1 H,2H,2H-perfluorooctyl-trichlorosilane (PFOTS). Based on the geometry of these micro/nanostructures, the relationship between the frequency responses of QCM and the wetting states of these surfaces was theoretically investigated. Different theoretical models were established to describing the frequency shift of the micro- and nanostructured QCM in different wetting states. For the microstructured surface, the cantilever based model and a two-degree-of-freedom dynamic model were applied to predict the frequency shift of the QCM-P in

  19. Application of X-ray single crystal diffractometry to investigation of Np(5) complexes with n-donor ligands

    International Nuclear Information System (INIS)

    Andreev, G.

    2007-01-01

    Full text of publication follows. We present here some results of application of conventional X-ray single crystal diffractometry to the research on the interaction of Np(V) with N-donor ligands. Compounds that can coordinate to actinides through one or several nitrogen atoms are of a great variety and occur widely in the biosphere. For example, imidazole, pyridine and their derivatives are the building blocks of many biologically important molecules; triazines are known to occur in some aquatic plants. The presence of anthropogenic organic agents like amine-N-carboxylic acids in surface waters has the potential to re-mobilize metals from sediments and aquifers and to influence their bioavailability. The interaction of radionuclides with such ligands needs to be studied in detail to give fundamental understanding the conditions of the incorporation of long lived a-emitters (Np and Pu primarily) into the food chain. Another aspect of the same problem is the design of new chelating ligands for selective co-ordination of actinide ions as an alternative to the traditional sequestering agents. The problem of the separation of long-lived minor actinides and their transmutation also calls for design of new highly selective ligands for solvent extraction. Polydentate N-donor ligands are now considered to be very promising. A detailed study of structural chemistry is crucial for understanding the relationship between the architecture of the ligands and their binding affinity for actinides. The X-ray single crystal diffractometry became conventional technique as applied to the investigation of actinides in spite of difficulties regarding safe handling of radionuclides. This technique provides unambiguous information about modes of the ligand co-ordination to the metal ion and geometrical parameters of complexes. Moreover, the employment of a synchrotron radiation shows considerable promise for determination of solid state structures as well as obtaining structural

  20. Structural investigations of Lu.sub.2./sub.O.sub.3./sub. as single crystal and polycrystalline transparent ceramic

    Czech Academy of Sciences Publication Activity Database

    Guzik, M.; Pejchal, Jan; Yoshikawa, A.; Ito, A.; Goto, T.; Siczek, M.; Lis, T.; Boulon, J.

    2014-01-01

    Roč. 14, č. 7 (2014), 3327 -3334 ISSN 1528-7483 Institutional support: RVO:68378271 Keywords : lutetium oxide * structure * crystal growth * ceramics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.891, year: 2014

  1. Investigating the crystal growth behavior of biodegradable polymer blend thin films using in situ atomic force microscopy

    CSIR Research Space (South Africa)

    Malwela, T

    2014-01-01

    Full Text Available This article reports the crystal growth behavior of biodegradable polylactide (PLA)/poly[(butylene succinate)-co-adipate] (PBSA) blend thin films using atomic force microscopy (AFM). Currently, polymer thin films have received increased research...

  2. Optical transmittance investigation of 1-keV ion-irradiated sapphire crystals as potential VUV to NIR window materials of fusion reactors

    Directory of Open Access Journals (Sweden)

    Keisuke Iwano

    2016-10-01

    Full Text Available We investigate the optical transmittances of ion-irradiated sapphire crystals as potential vacuum ultraviolet (VUV to near-infrared (NIR window materials of fusion reactors. Under potential conditions in fusion reactors, sapphire crystals are irradiated with hydrogen (H, deuterium (D, and helium (He ions with 1-keV energy and ∼ 1020-m-2 s-1 flux. Ion irradiation decreases the transmittances from 140 to 260 nm but hardly affects the transmittances from 300 to 1500 nm. H-ion and D-ion irradiation causes optical absorptions near 210 and 260 nm associated with an F-center and an F+-center, respectively. These F-type centers are classified as Schottky defects that can be removed through annealing above 1000 K. In contrast, He-ion irradiation does not cause optical absorptions above 200 nm because He-ions cannot be incorporated in the crystal lattice due to the large ionic radius of He-ions. Moreover, the significant decrease in transmittance of the ion-irradiated sapphire crystals from 140 to 180 nm is related to the light scattering on the crystal surface. Similar to diamond polishing, ion irradiation modifies the crystal surface thereby affecting the optical properties especially at shorter wavelengths. Although the transmittances in the VUV wavelengths decrease after ion irradiation, the transmittances can be improved through annealing above 1000 K. With an optical transmittance in the VUV region that can recover through simple annealing and with a high transparency from the ultraviolet (UV to the NIR region, sapphire crystals can therefore be used as good optical windows inside modern fusion power reactors in terms of light particle loadings of hydrogen isotopes and helium.

  3. Theoretical investigations of the optical and EPR spectra for trivalent cerium and ytterbium ions in orthorhombic YF{sub 3} crystal

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Hong-Gang, E-mail: kezhouliu@163.com; Zheng, Wen-Chen

    2016-09-01

    The optical spectra and electron paramagnetic resonance (EPR) parameters (g factors and hyperfine structure constants A) for trivalent cerium and ytterbium ions in YF{sub 3} crystal with orthorhombic structure are investigated together by the complete diagonalization (of energy matrix) method (CDM). The obtained results are in reasonable agreement with the experimental ones. More importantly, two magnetically nonequivalent centers in YF{sub 3} crystal observed in EPR experiments are confirmed and ascribed to their specific positions in a unit cell by our calculations based on superposition model (SPM) analysis. Such identification of local sites with different magnetic properties would help us to understand not only the EPR spectra and magnetic susceptibility of other lanthanide ions doped in crystals with the same structure as YF{sub 3} but also the energy transfer scheme between two lanthanide ions occupying such two sites. All results are discussed carefully.

  4. Synthesis, optical, experimental and theoretical investigation of third order nonlinear optical properties of 8-hydroxyquinolinium 2-carboxy-6-nitrophthalate monohydrate single crystal

    Science.gov (United States)

    Bharathi, M. Divya; Bhuvaneswari, R.; Srividya, J.; Vinitha, G.; Prithiviraajan, R. N.; Anbalagan, G.

    2018-02-01

    Single crystals of 8-hydroxyquinolinium 2-carboxy-6-nitrophthalate monohydrate (8HQNP) were obtained from slow evaporation solution growth method using methanol-water (1:1) as a solvent. Powder X-ray diffraction was utilized to compute the unit cell parameters and dislocation density of 8HQNP crystal. The crystalline perfection of the as-grown crystal was investigated by high-resolution X-ray diffraction at room temperature. The molecular structure was analyzed by identifying the functional groups from FT-IR and FT-Raman spectra. The cut-off wavelength and the corresponding optical band gap obtained from an optical spectrum were 376 nm and 3.29 eV respectively. The dispersion nature of refractive index was investigated by the single-oscillator Wemple and Di-Domenico model. Red emission was observed in the photoluminescence spectrum when excited with 376 nm. The low birefringence and high laser damage threshold (8.538 GW/cm2) values dictate the suitability of the crystal for optical devices. Z-scan studies revealed the third order nonlinear absorption coefficient (β) and refractive index (n2) of the 8HQNP crystal. The theoretical value of third order nonlinear susceptibility obtained from density function theory is good accordance with the experimental value. The frontier molecular orbital energy gap decreases with increasing external electric field in different directions which attributed to the enhancement of the second hyperpolarizability. The grown title crystal is thermally stable up to 102 °C which was identified using thermal analysis. Mechanical strength of 8HQNP was estimated by using Vicker's microhardness studies.

  5. Development of blue lasers, from second harmonic generation using a Nd:YAG laser emitting at 946 nm

    International Nuclear Information System (INIS)

    Nogueira, Gustavo Bernardes

    2010-01-01

    Blue lasers have attracted much attention for applications such as blue-ray, displays and as pumped source for the Ti:sapphire laser. A Nd:YAG crystal with diffusion bonded end-caps was used together with a pump wavelength of 802,3 nm, detuned from the absorption peak at 808 nm in order to minimize the thermal lens effect by providing for a better temperature distribution inside the crystal. Using different input mirror radii, the best relation between pump waist and laser was achieved in a linear cavity and resulted in 6.75W cw (continuous wave) laser power at 946 nm and slope efficiency of 48%. In a second step, a second harmonic generation crystal for blue emission at 473 nm was inserted into different types of resonators, and the blue output power at 473 nm was measured as a function of absorbed pump power. (author)

  6. Investigation on structural distortions in NBCsub(x)-single crystals by means of temperature dependent channeling measurements

    International Nuclear Information System (INIS)

    Kaufmann, R.

    1981-08-01

    Investigations using channeling-experiments were performed on the magnitude of the static displacements of the niobium and the carbon atoms around C-vacancies in NbCsub(x)-single crystals (x = 0.82-0.98). Rutherford backscattering with 2 MeV He + -particles and the 12 C(d,p) 13 C-nuclear reaction with 1.27 MeV deuterons were used for the determination of the interaction yields from Nb and C, respectively. As a function of temperature the half widths at half maximum psisub(1/2) of the angular scans for Nb clearly increased with decreasing temperature in the range from 295 K to 78 K and then remained nearly constant down to 4 K. As a function of C-vacancy concentration in the range x = 0.98-0.90 psisub(1/2) also clearly decreased and then remained approximately constant in the range of x = 0.90-0.82. The C-yield did not depend on the C-concentration. The results of the channeling experiments were interpreted by Monte-Carlo-simulation calculations. A linear increase of the mean static three-dimensional displacements of the Nb-atoms form 0.025 Angstroem to 0.10 Angstroem was found in the concentration range of x = 0.98-0.90 and then the values remained nearly constant in the range of 0.90-0.82. The static displacements of the C-atoms lay below the detection limit of 0.025 Angstroem. The strain field around a vacancy for low vacancy concentrations (x = 0.98-0.96) was calculated employing the Kanzaki-method. (orig./GSCH) [de

  7. Development of high average power industrial Nd:YAG laser with peak power of 10 kW class

    International Nuclear Information System (INIS)

    Kim, Cheol Jung; Kim, Jeong Mook; Jung, Chin Mann; Kim, Soo Sung; Kim, Kwang Suk; Kim, Min Suk; Cho, Jae Wan; Kim, Duk Hyun

    1992-03-01

    We developed and commercialized an industrial pulsed Nd:YAG laser with peak power of 10 kW class for fine cutting and drilling applications. Several commercial models have been investigated in design and performance. We improved its quality to the level of commercial Nd:YAG laser by an endurance test for each parts of laser system. The maximum peak power and average power of our laser were 10 kW and 250 W, respectively. Moreover, the laser pulse width could be controlled from 0.5 msec to 20 msec continuously. Many optical parts were localized and lowered much in cost. Only few parts were imported and almost 90% in cost were localized. Also, to accellerate the commercialization by the joint company, the training and transfer of technology were pursued in the joint participation in design and assembly by company researchers from the early stage. Three Nd:YAG lasers have been assembled and will be tested in industrial manufacturing process to prove the capability of developed Nd:YAG laser with potential users. (Author)

  8. Effect of ammonium carbonate to metal ions molar ratio on synthesis and sintering of Nd:YAG nanopowders

    Science.gov (United States)

    Liu, Qiang; Chen, Cong; Dai, Jiawei; Hu, Zewang; Chen, Haohong; Li, Jiang

    2018-06-01

    Using the nanopowders synthesized by a reverse co-precipitation method, neodymium doped yttrium aluminum garnet (Nd:YAG) transparent ceramics were fabricated by vacuum sintering method. The influence of ammonium carbonate to metal ions (NH4HCO3/M3+) molar ratio (R value) on the properties of Nd:YAG precursors and powders, as well as the densification, microstructure, and transmittance of the resultant ceramics was systematically investigated. The results show that the precursors have similar compositions and the calcined powders have pure Y3Al5O12 (YAG) phase. However, the R value is closely related to the morphologies of the precursors and powders. It is found that the powder with R = 3.0 has strongest agglomeration and the powders with R = 3.2-4.0 show better dispersity. Using these powders as starting materials, the corresponding ceramics were sintered at 1720 °C for 20 h in vacuum. As a result, the ceramic with R = 3.2 obtains the best transmittance of about 72% at the wavelength of 1064 nm. The grain growth exponent and activation energy of the Nd:YAG ceramics fabricated from the powder with R = 3.2 were also studied.

  9. Treatment of pigmented keratosis pilaris in Asian patients with a novel Q-switched Nd:YAG laser.

    Science.gov (United States)

    Kim, Sangeun

    2011-06-01

    Treatment for most cases of keratosis pilaris requires simple reassurance and general skin care recommendations. Many Asian patients find lesions due to pigmented keratosis pilaris to be cosmetically unappealing. Treatment of post-inflammatory hyperpigmentation using a 1064-nm Q-switched Nd:YAG laser with low fluence is reported. To investigate the efficacy of a novel Q-switched Nd:YAG laser for the treatment of pigmented keratosis pilaris in Asian patients. Ten patients with pigmented keratosis pilaris underwent five weekly treatments using a Q-switched Nd:YAG laser (RevLite(®); HOYA ConBio(®), Freemont, CA, USA) at 1064 nm with a 6-mm spot size and a fluence of 5.9 J/cm(2). Photographic documentation was obtained at baseline and 2 months after the final treatment. Clinical improvement was achieved in all 10 patients with minimal adverse effects. For the treatment of keratosis pilaris, the use of a Q-switched Nd:YAG laser can be helpful for improving cosmetic appearance as it can improve pigmentation.

  10. Comparison of two Nd:YAG laser posterior capsulotomy: cruciate pattern vs circular pattern with vitreous strand cutting.

    Science.gov (United States)

    Kim, Jin-Soo; Choi, Jung Yeol; Kwon, Ji-Won; Wee, Won Ryang; Han, Young Keun

    2018-01-01

    To investigate the effects and safety of neodymium: yttrium-aluminium-garnet (Nd:YAG) laser posterior capsulotomy with vitreous strand cutting. A total of 40 eyes of 37 patients with symptomatic posterior capsular opacity (PCO) were included in this prospective randomized study and were randomly subjected to either cruciate pattern or round pattern Nd:YAG posterior capsulotomy with vitreous strand cutting (modified round pattern). The best corrected visual acuity (BCVA), intraocular pressure (IOP), refractive error, endothelial cell count (ECC), anterior segment parameters, including anterior chamber depth (ACD) and anterior chamber angle (ACA) were measured before and 1mo after the laser posterior capsulotomy. In both groups, the BCVA improved significantly ( P <0.001 for the modified round pattern group, P =0.001 for the cruciate pattern group); the IOP and ECC did not significantly change. The ACD significantly decreased ( P <0.001 for both) and the ACA significantly increased ( P =0.001 for the modified round pattern group and P =0.034 for the cruciate group). The extent of changes in these parameters was not significantly different between the groups. Modified round pattern Nd:YAG laser posterior capsulotomy is an effective and safe method for the treatment of PCO. This method significantly changes the ACD and ACA, but the change in refraction is not significant. Modified round pattern Nd:YAG laser posterior capsulotomy can be considered a good alternative procedure in patients with symptomatic PCO.

  11. Comparison of two Nd:YAG laser posterior capsulotomy: cruciate pattern vs circular pattern with vitreous strand cutting

    Directory of Open Access Journals (Sweden)

    Jin-Soo Kim

    2018-02-01

    Full Text Available AIM: To investigate the effects and safety of neodymium: yttrium-aluminium-garnet (Nd:YAG laser posterior capsulotomy with vitreous strand cutting METHODS: A total of 40 eyes of 37 patients with symptomatic posterior capsular opacity (PCO were included in this prospective randomized study and were randomly subjected to either cruciate pattern or round pattern Nd:YAG posterior capsulotomy with vitreous strand cutting (modified round pattern. The best corrected visual acuity (BCVA, intraocular pressure (IOP, refractive error, endothelial cell count (ECC, anterior segment parameters, including anterior chamber depth (ACD and anterior chamber angle (ACA were measured before and 1mo after the laser posterior capsulotomy. RESULTS: In both groups, the BCVA improved significantly (P<0.001 for the modified round pattern group, P=0.001 for the cruciate pattern group; the IOP and ECC did not significantly change. The ACD significantly decreased (P<0.001 for both and the ACA significantly increased (P=0.001 for the modified round pattern group and P=0.034 for the cruciate group. The extent of changes in these parameters was not significantly different between the groups. CONCLUSION: Modified round pattern Nd:YAG laser posterior capsulotomy is an effective and safe method for the treatment of PCO. This method significantly changes the ACD and ACA, but the change in refraction is not significant. Modified round pattern Nd:YAG laser posterior capsulotomy can be considered a good alternative procedure in patients with symptomatic PCO.

  12. Compact corner-pumped Nd:YAG/YAG composite slab 1319 nm/1338 nm laser

    International Nuclear Information System (INIS)

    Liu, H; Gong, M; Wushouer, X; Gao, S

    2010-01-01

    A corner-pumped type is a new pumping type in the diode-pumped solid-state lasers, which has the advantages of high pump efficiency and favorable pump uniformity. A corner-pumped Nd:YAG/YAG composite slab continuous-wave 1319 nm/1338 nm dual-wavelength laser is first demonstrated in this paper. When the cavity length is 25 mm, the maximal output power is up to 7.62 W with a slope efficiency of 16.6% and an optical-to-optical conversion efficiency of 17%. The corresponding spectral line widths of 1319 nm laser and 1338 nm laser are 0.11 and 0.1 nm, respectively. The short-term instability of the output power is better than 1% when the pumping power is 39.5 W. The experimental results show that a corner-pumped type is a kind of feasible schedules in the design of diode-pumped solid-state 1.3 μm lasers with low or medium output powers

  13. Q-switching and mode-locking in a diode-pumped frequency-doubled Nd : YAG laser

    International Nuclear Information System (INIS)

    Donin, Valerii I; Yakovin, Dmitrii V; Gribanov, A V

    2012-01-01

    A new method for obtaining Q-switching simultaneously with mode-locking using one travelling-wave acousto-optic modulator in a frequency-doubled Nd : YAG laser cavity is described. Further shortening of output laser pulses (from 40 to 3.25 ps) is achieved by forming a Kerr lens in the frequency-doubling crystal. At an average power of ∼ 2 W and a Q-switching rate of 2 kHz, the peak power of the stably operating reached ∼ 50 MW.

  14. Investigation of crystallization kinetics and deformation behavior in supercooled liquid region of CuZr-based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ke; Fan, Xinhui; Li, Bing; Li, Yanhong; Wang, Xin; Xu, Xuanxuan [Xi' an Technological Univ. (China). School of Material and Chemical Engineering

    2017-08-15

    In this paper, a systematic study of crystallization kinetics and deformation behavior is presented for (Cu{sub 50}Zr{sub 50}){sub 94}Al{sub 6} bulk metallic glass in the supercooled liquid region. Crystallization results showed that the activation energy for (Cu{sub 50}Zr{sub 50}){sub 94}Al{sub 6} was calculated using the Arrhenius equation in isothermal mode and the Kissinger-Akahira-Sunose method in non-isothermal mode. The activation energy was quite high compared with other bulk metallic glasses. Based on isothermal transformation kinetics described by the Johson-Mehl-Avrami model, the average Avrami exponent of about 3.05 implies a mainly diffusion controlled three-dimensional growth with an increasing nucleation rate during the crystallization. For warm deformation, the results showed that deformation behavior, composed of homogeneous and inhomogeneous deformation, is strongly dependent on strain rate and temperature. The homogeneous deformation transformed from non-Newtonian flow to Newtonian flow with a decrease in strain rate and an increase in temperature. It was found that the crystallization during high temperature deformation is induced by heating. The appropriate working temperature/strain rate combination for the alloy forming, without in-situ crystallization, was deduced by constructing an empirical deformation map. The optimum process condition for (Cu{sub 50}Zr{sub 50}){sub 94}Al{sub 6} can be expressed as T∝733 K and ∝ ε 10{sup -3} s{sup -1}.

  15. Fractional Er:YAG laser assisting topical betamethasone solution in combination with NB-UVB for resistant non-segmental vitiligo.

    Science.gov (United States)

    Yan, Ru; Yuan, Jinping; Chen, Hongqiang; Li, Yuan-Hong; Wu, Yan; Gao, Xing-Hua; Chen, Hong-Duo

    2017-09-01

    Resistant non-segmental vitiligo is difficult to be treated. Ablative erbium-YAG (Er:YAG) laser has been used in the treatment of vitiligo, but the ablation of entire epidermis frustrated the compliance of patients. The purpose of this study is to investigate the effects of fractional Er:YAG laser followed by topical betamethasone and narrow band ultraviolet B (NB-UVB) therapy in the treatment of resistant non-segmental vitiligo. The vitiligo lesions of each enrolled patient were divided into four treatment parts, which were all irradiated with NB-UVB. Three parts were, respectively, treated with low, medium, or high energy of Er:YAG laser, followed by topical betamethasone solution application. A control part was spared with laser treatment and topical betamethasone. The treatment period lasted 6 months. The efficacy was assessed by two blinded dermatologists. Treatment protocol with high energy of 1800 mJ/P of fractional Er:YAG laser followed by topical betamethasone solution and in combination with NB-UVB made 60% patients achieve marked to excellent improvement in white patches. The protocol with medium energy of 1200 mJ/P of laser assisted approximate 36% patients achieve such improvement. The two protocols, respectively, showed better efficacies than NB-UVB only protocol. However, fractional Er:YAG laser at low energy of 600 mJ/P did not provide such contributions to the treatment of vitiligo. The fractional Er:YAG laser in combination with topical betamethasone solution and NB-UVB was suitable for resistant non-segmental vitiligo. The energy of laser was preferred to be set at relatively high level.

  16. DEBONDING OF CERAMIC BRACKETS BY ER:YAG LASER

    Directory of Open Access Journals (Sweden)

    Fidan ALAKUŞ-SABUNCUOĞLU

    2016-04-01

    Full Text Available Purpose: The objective of the present study is to evaluate the effects of Er:YAG laser debonding of ceramic brackets on the bond strength and the amount of adhesive resin remnant. Materials and Methods: Twenty human mandibular incisors were randomly divided into two groups of 10 and polycrystalline ceramic brackets (Transcend series 6000, 3M Unitek, Monrovia, CA, USA were bonded on enamel surfaces. Group 1 was the control group in which no laser application was performed prior to the shear bond strength (SBS testing. In Group 2, Er:YAG was applied in 3W power for 6 seconds using the scanning method. The brackets were tested for SBS with an Instron universal testing machine and results were expressed in megapascals (MPa. The amount of adhesive remnant was evaluated with Adhesive Remnant Index (ARI. One-way analysis of variance and Tukey’s post-hoc tests were used for statistical analysis. Results: Mean ± standard deviation of SBS values in the control group was 13.42 ±1.23 MPa and 8.47 ±0.71 MPa in the Er:YAG group and this difference was statistically significant (p<0.05. The evaluation of ARI scores demonstrated more adhesive was left on the enamel surface with Er:YAG group. Conclusion: 3W power Er:YAG laser application with the scanning method to polycrystalline ceramic brackets demonstrated lower bond strengths and higher ARI scores during the debonding procedure.

  17. Crystal structure, magnetism, {sup 89}Y solid state NMR, and {sup 121}Sb Moessbauer spectroscopic investigations of YIrSb

    Energy Technology Data Exchange (ETDEWEB)

    Benndorf, Christopher [Institut fuer Physikalische Chemie, Universitaet Muenster (Germany); Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster (Germany); Heletta, Lukas; Block, Theresa; Poettgen, Rainer [Institut fuer Anorganische und Analytische Chemie, Universitaet Muenster (Germany); Eckert, Hellmut [Institut fuer Physikalische Chemie, Universitaet Muenster (Germany); Institute of Physics in Sao Carlos, University of Sao Paulo, Sao Carlos (Brazil)

    2017-02-15

    The ternary antimonide YIrSb was synthesized from the binary precursor YIr and elemental antimony by a diffusion controlled solid-state reaction. Single crystals were obtained by a flux technique with elemental bismuth as an inert solvent. The YIrSb structure (TiNiSi type, space group Pnma) was refined from single-crystal X-ray diffractometer data: a = 711.06(9), b = 447.74(5), c = 784.20(8) pm, wR{sub 2} = 0.0455, 535 F{sup 2} values, 20 variables. {sup 89}Y solid state MAS NMR and {sup 121}Sb Moessbauer spectra show single resonance lines in agreement with single-crystal X-ray data. YIrSb is a Pauli paramagnet. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Investigation of the thermoluminescent response of K2GdF5:Dy3+ crystals to photon radiation and neutron fields

    International Nuclear Information System (INIS)

    Silva, Edna C.; Faria, Luiz O.; Santos, Joelan A.L.; Vilela, Eudice C.

    2009-01-01

    The thermoluminescent (TL) properties of undoped and Dy 3+ doped K 2 GdF 5 crystals were investigated from the point of view of gamma and neutron dosimetry. Crystalline K 2 GdF 5 platelets with thickness of about 1 mm and doped with 0.0, 0.2, 1.0, 5.0 and 10.0 at.% Dy 3+ ions, synthesized under hydrothermal conditions, were irradiated in order to study TL sensitivity, as well as dose and energy response, reproducibility and fading. As it has been turned out, crystals doped with 5.0 at% Dy 3+ show the most efficient TL response and demonstrate a linear response to doses for all the radiation fields. TL glow curves from Dy 3+ doped K 2 GdF 5 crystals can be deconvoluted into four individual TL peaks centered at 153, 185, 216 and 234 deg C. Concerning the photon fields studied, the maximum TL response has been found for the 52.5 keV photons. The intensity is 15 times more than that of the response for the 662 keV photons from a Cs-137 source. On the other hand, the K 2 GdF 5 crystals doped with 5.0 at % Dy 3+ have also been found to have the better TL response for fast neutron radiation, among all dopants studied. For fast neutron radiation produced by a 241 Am-Be source, the TL responses for doses were also linear and comparable to that of commercial TLD-600, irradiated at same conditions. It has been established that the gamma sensitivity of the crystals is about 0.07% of the neutron sensitivity and the fast neutron sensitivity is about 4.5 % of the thermal neutron sensitivity. These results points out that K 2 Gd 0.95 Dy 0.05 F 5 crystals are good candidates for use in neutron dosimetry applications. (author)

  19. Solar-Pumped TEM₀₀ Mode Nd:YAG laser.

    Science.gov (United States)

    Liang, Dawei; Almeida, Joana

    2013-10-21

    Here we show a significant advance in solar-pumped laser beam brightness by utilizing a 1.0 m diameter Fresnel lens and a 3 mm diameter Nd:YAG single-crystal rod. The incoming solar radiation is firstly focused by the Fresnel lens on a solar tracker. A large aspheric lens and a 2D-CPC concentrator are then combined to further compress the concentrated solar radiation along the thin laser rod within a V-shaped pumping cavity. 2.3 W cw TEM₀₀ (M² ≤ 1.1) solar laser power is finally produced, attaining 1.9 W laser beam brightness figure of merit, which is 6.6 times higher than the previous record. For multimode operation, 8.1 W cw laser power is produced, corresponding to 143% enhancement in collection efficiency.

  20. High stable electro-optical cavity-dumped Nd:YAG laser

    International Nuclear Information System (INIS)

    Ma, Y F; Yu, X; Zhang, J W; Li, H

    2012-01-01

    In this paper, an electro-optical cavity-dumped 10 Hz Nd:Y 3 Al 5 O 12 (Nd:YAG) laser was demonstrated. We designed an optimized high stable concavo-convex cavity according to the thermal-insensitive theory that the cavity could be deep stable and be insensitive to the change of thermal lens of laser crystal when g 1 *g 2 = 1/2. The output pulse width was constant at 6.0±0.1 ns. The maximum output energy was 40 mJ. The laser had outstanding stability of output characteristics. The fluctuations of average output energy and divergence angle within 8 cycles were 1.24% and 0.06 mrad, respectively

  1. A frequency-type optically controllable YAG:Nd(3+) laser

    Energy Technology Data Exchange (ETDEWEB)

    Baliasnyi, L.M.; Groznov, M.A.; Gubanov, B.S.; Zoria, A.V.; Myl' nikov, V.S.

    1990-06-01

    The paper demonstrates the feasibility of using MOS-LC modulators based on the s-effect with an internal dividing mirror as the optically controllable mirrors of frequency-type YAG:Nd(3+) lasers. It is shown that the maximum energy of the laser in free-runnig operation of 10 mJ/sq cm is limited by the radiation resistance (not greater than 70 mJ/sq cm) of the orienting fluid, i.e., polyvinyl alcohol. The optical inhomogeneity of the modulator amounts to 20-40 percent, which is connected with the presence of a bonded single-crystal GaAs layer. The working frequency of the laser was about 20 Hz.

  2. An effective neodimium segregation coefficient in neodimium-doped yttrium-aluminum-garnet crystal growth by pulling method

    International Nuclear Information System (INIS)

    Shiroki, Ken-ichi; Kuwano, Yasuhiko

    1978-01-01

    Effective Nd segregation coefficient in the Nd:YAG (Nd-doped Y 3 Al 5 O 12 ) crystal growth by pulling method was determined precisely over 0 -- 1.3 atom% Nd concentration range at a 0.6 mm hr -1 growth rate. Two Nd:YAG crystals (-- 20 g) were grown from a large melt (-- 1 kg). Neodymium concentrations in the crystals and residual melts were estimated by fluorescent X-ray analysis, and a value of 0.21 was obtained as the effective segregation coefficient. Next, the optical absorption coefficient of Nd:YAG crystal at 5889 A absorption peak was measured in order to analyze a small specimen for Nd by optical absorption measurements. The optical absorption coefficient of 0.97 mm -1 .atom% -1 was determined in this way. The Nd concentrations, calculated by the segregation coefficient, agreed well with those obtained by optical absorption measurements at 5889 A for six successively grown Nd:YAG crystals. Therefore, the obtained segregation coefficient, 0.21, was confirmed as a reliable value for the Nd:YAG crystal growth by the pulling method. (auth.)

  3. Investigations on critical parameters, growth, structural and spectral studies of beta-alaninium picrate (BAP) single crystals

    International Nuclear Information System (INIS)

    Shanthi, D; Selvarajan, P; Perumal, S

    2014-01-01

    Beta-alaninium picrate (BAP) salt has been synthesized and the solubility of the synthesized sample in double distilled water was determined at different temperatures. Solution stability was studied by observing the metastable zone width by employing the polythermal method. Induction period values for different supersaturation ratios at room temperature were determined based on the isothermal method. The nucleation parameters such as critical radius, critical free energy change, interfacial tension, and nucleation rate have been estimated for BAP salt on the basis of the classical nucleation theory. The lattice parameters of the grown BAP crystal were determined using the x-ray diffraction (XRD) technique. The reflection planes of the sample were confirmed by the powder XRD study and diffraction peaks were indexed. Fourier transform infrared spectroscopy and Fourier transform–Raman studies were used to confirm the presence of various functional groups in the BAP crystal. The nonlinear optical property of the grown crystal was studied using the Kurtz–Perry powder technique. UV–visible spectral studies were carried out to understand optical transparency and the type of band gap of the grown BAP crystal. (paper)

  4. Attempt to detect diamagnetic anisotropy of dust-sized crystal orientated to investigate the origin of interstellar dust alignment

    Science.gov (United States)

    Takeuchi, T.; Hisayoshi, K.; Uyeda, C.

    2013-03-01

    Diamagnetic anisotropy Δ χ dia was detected on a submillimeter-sized calcite crystal by observing the rotational oscillation of its magnetically stable axis with respect to the magnetic field direction. The crystal was released in an area of microgravity generated by a 1.5-m-long drop shaft. When the oscillations are observable, the present method can measure Δ χ dia of crystal grains irrespective of how small they are without measuring the sample mass. In conventional Δ χ measurements, the background signal from the sample holder and the difficulty in measuring the sample mass prevent measurement of Δ χ dia for small samples. The present technique of observing Δ χ dia of a submillimeter-sized single crystal is a step toward realizing Δ χ dia measurements of micron-sized grains. The Δ χ dia values of single micron-sized grains can be used to assess the validity of a dust alignment model based on magnetic torque that originates from the Δ χ dia of individual dust particles.

  5. Experimental and theoretical investigations of non-centrosymmetric 8-hydroxyquinolinium dibenzoyl-(L)-tartrate methanol monohydrate single crystal

    International Nuclear Information System (INIS)

    Sudharsana, N.; Krishnakumar, V.; Nagalakshmi, R.

    2015-01-01

    Graphical abstract: ORTEP diagram of HQDBT. - Highlights: • Single crystal XRD and NMR studies confirm the formation of the title compound. • SHG efficiency was found to be 0.6 times that of KDP. • First-order hyperpolarizability (β) was calculated using HF and B3LYP methods. - Abstract: A novel 8-hydroxyquinolinium dibenzoyl-(L)-tartrate methanol monohydrate crystal has been grown by slow evaporation technique. The single crystal X-ray diffraction analysis has been done for the title compound and is found to crystallize in orthorhombic space group P2 1 2 1 2 1 . The optical absorption cut-off wavelength is found to be 440 nm. The vibrational analysis has been carried out to assess the functional groups present in the title compound. The molecular structure of the title compound has been confirmed by nuclear magnetic resonance spectroscopy. Thermogravimetric, differential scanning calorimetric and differential thermal analyses reveal the melting point and thermal stability of the title compound. The second harmonic generation efficiency is confirmed by Kurtz–Perry powder technique. Further quantum chemical calculations are performed using Gaussian 03 software

  6. Crystallization and preliminary crystallographic investigation of a low-pH native insulin monomer with flexible behaviour.

    Science.gov (United States)

    Zhang, Youshang; Whittingham, Jean L; Turkenburg, Johan P; Dodson, Eleanor J; Brange, Jens; Dodson, G Guy

    2002-01-01

    Insulin naturally aggregates as dimers and hexamers, whose structures have been extensively analysed by X-ray crystallography. Structural determination of the physiologically relevant insulin monomer, however, is an unusual challenge owing to the difficulty in finding solution conditions in which the concentration of insulin is high enough for crystallization yet the molecule remains monomeric. By utilizing solution conditions known to inhibit insulin assembly, namely 20% acetic acid, crystals of insulin in the monomeric state have been obtained. The crystals are strongly diffracting and a data set extending to 1.6 A has recently been collected. The crystals nominally belong to the space group I422, with unit-cell parameters a = b = 57.80, c = 54.61 A, giving rise to one molecule in the asymmetric unit. Preliminary electron-density maps show that whilst most of the insulin monomer is well ordered and similar in conformation to other insulin structures, parts of the B-chain C-terminus main chain adopt more than one conformation.

  7. Evaluation in vitro of effects of Er:YAG and Nd:YAG lasers irradiation on root canal wall, by stereoscopy, scanning electron micrography and thermographic camera

    International Nuclear Information System (INIS)

    Goya, Claudia

    2001-01-01

    This study was carried out to evaluate in vitro the effects of Nd:YAG laser and Er:YAG laser irradiation in the root canal wall by SEM, evaluating the apical leakage and the temperature changes during the laser irradiation. Seventy four extracted human teeth were used, they were instrumented and divided into seven groups of 10 teeth each. The teeth were evaluated through stereoscopy, by SEM, and with the thermographic camera. The Nd:YAG laser irradiation parameters were 100 mJ/p, 15 Hz, and Er:YAG laser were 160 mJ/p and 10 Hz, the irradiation was 4 times at 2 mm/sec speed, with 20 sec interval. The apical leakage was not observed in the teeth irradiated by Nd:YAG laser alone or in association with Er:YAG laser. However in the teeth irradiated only by the Er:YAG laser we observed a little leakage. By SEM observation the Nd:YAG laser irradiation showed melting and recrystallization in the dentin surface closing dentinal tubules, and in the samples irradiated by Er:Y AG laser a clean surface, opened dentinal tubules, and the combination by two lasers, showed melting covering some dentinal tubules The thermographic study found the temperature increase was not more than 6 deg C. This study showed the safety parameters applications of Er:YAG laser in association with Nd:YAG laser in root canal treatment, in order to not cause thermal damages to the periodontal tissues. (author)

  8. Nd:YAG Laser Firmware Design under RTOS Operation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, B. G.; Kim, W. Y.; Park, G. R.; Moon, D. S.; Hong, J. H.; Kim, H. J.; Cho, J. S. [Pusan National University (Korea)

    2000-07-01

    A pulsed Nd:YAG laser is used widely for materials processing and medical instrument. It's very important to control the laser energy density in those fields using a pulsed Nd:YAG laser. A pulse repetition rate and a pulse width are regarded as the most dominant factors to control the energy density of laser beam. In this paper, the alternating charge and discharge system was designed to adjust a pulse repetition rate. This system is controlled by microprocessor and allows to replace an expensive condenser for high frequency to cheap one of low frequency. In addition, The microcontroller monitors the flow of cooling water, short circuit, and miss firing and so on. We designed Nd:YAG laser firmware with smart microcontroller, and want to explain general matters about the firmware from now. (author). 8 refs., 6 figs.

  9. Yb:YAG Lasers for Space Based Remote Sensing

    Science.gov (United States)

    Ewing, J.J.; Fan, T. Y.

    1998-01-01

    Diode pumped solid state lasers will play a prominent role in future remote sensing missions because of their intrinsic high efficiency and low mass. Applications including altimetry, cloud and aerosol measurement, wind velocity measurement by both coherent and incoherent methods, and species measurements, with appropriate frequency converters, all will benefit from a diode pumped primary laser. To date the "gold standard" diode pumped Nd laser has been the laser of choice for most of these concepts. This paper discusses an alternate 1 micron laser, the YB:YAG laser, and its potential relevance for lidar applications. Conceptual design analysis and, to the extent possible at the time of the conference, preliminary experimental data on the performance of a bread board YB:YAG oscillator will be presented. The paper centers on application of YB:YAG for altimetry, but extension to other applications will be discussed.

  10. Next generation Er:YAG fractional ablative laser

    Science.gov (United States)

    Heinrich, A.; Vizhanyo, A.; Krammer, P.; Summer, S.; Gross, S.; Bragagna, T.; Böhler, C.

    2011-03-01

    Pantec Biosolutions AG presents a portable fractional ablative laser system based on a miniaturized diode pumped Er:YAG laser. The system can operate at repetition rates up to 500 Hz and has an incorporated beam deflection unit. It is smaller, lighter and cost efficient compared to systems based on lamp pumped Er:YAG lasers and incorporates a skin layer detection to guarantee precise control of the microporation process. The pulse parameters enable a variety of applications in dermatology and in general medicine, as demonstrated by first results on transdermal drug delivery of FSH (follicle stimulating hormone).

  11. Laser beam diagnostics for kilowatt power pulsed YAG laser

    International Nuclear Information System (INIS)

    Liu, Yi; Leong, Keng H.

    1992-01-01

    There is a growing need for high power YAG laser beam diagnostics with the recent introduction of such lasers in laser material processing. In this paper, we will describe the use of a commercially available laser beam analyzer (Prometec) to profile the laser beam from a 1600 W pulsed Nd:YAG laser that has a 1 mm fiber optic beam delivery system. The selection of laser pulse frequency and pulse width for the measurement is discussed. Laser beam propagation parameters by various optical components such as fibers and lenses can be determined from measurements using this device. The importance of such measurements will be discussed

  12. Investigation of the glide modes of single crystals of beryllium; Etude des modes de glissement de monocristaux de beryllium

    Energy Technology Data Exchange (ETDEWEB)

    Regnier, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1969-05-01

    The flow characteristics of single crystals of beryllium specially oriented for slip along a single plane and a single direction have been thoroughly investigated. The elastic limit and the strain hardening in basal glide have been investigated in the temperature range (-195 deg. C, 400 deg. C) in tension as well as in compression. Observation of the slip lines and of the dislocation configurations have also been made in addition to the mechanical tests. The prismatic slip has been studied in greater detail: tensile tests have been performed on specimens carefully oriented at different temperatures, strain rates and with varying orientations of the basal and of the prism planes. Tests have also been made in the micro-strain range; the slip lines and the dislocation arrangements were observed in detail. The very unusual variation of the elastic limit with temperature is not due to impurities but to a cross slip mechanism. A model of dislocation locking is proposed to account for the experimental results. This mechanism assumes that the a-bar dislocations may also dissociate on the prism planes [101-bar 0]. Various possible dissociations are suggested, the most probable of which corresponds to the phase transformation: Hexagonal close packed to body centered cubic. This proposal can be extended to account for the relative ease of glide on the different systems in the hexagonal close packed metals. (author) [French] L' ecoulement de monocristaux de berylliurn deformes en glissement basal et en glissement prismatique a ete etudie sur des echantillons orientes de maniere a favoriser au maximum la deformation suivant une seule direction d'un seul systeme de glissement. L'influence de la temperature sur la limite elastique et la consolidation en glissement basal a ete etudie depuis -195 deg. C jusqu' 400 deg. C sur des echantillons deformes en tension et sur d'autres deformes en compression. Ces essais mecaniques ont ete completes par l'observation des lignes de

  13. The recombination channels of luminescence excitation in YAG:Yb single crystalline films

    International Nuclear Information System (INIS)

    Zakharko, Ya.M.; Luchechko, A.P.; Ubizskii, S.B.; Syvorotka, I.I.; Martynyuk, N.V.; Syvorotka, I.M.

    2007-01-01

    Absorption and emission spectra, luminescence decay kinetics and thermostimulated luminescence of X-ray irradiated YAG:Yb single crystalline films were studied. Two emission bands peaked at 420 and 488 nm have been detected in the investigated films. The strong thermal quenching of luminescence band at 488 nm was observed above 160 K. The influence of growth conditions and annealing in air on the lifetime of Yb 3+ ion excited state in the IR spectral region have been revealed. The recombination mechanisms of the f-f transition at Yb 3+ ion excitation, as well as the mechanism of lifetime shortening for the excited Yb 3+ luminescence have been discussed

  14. Pore formation during C.W.Nd: YAG laser welding of aluminum alloys for automotive applications

    International Nuclear Information System (INIS)

    Pastor, M.; Zhao, H.; DebRoy, T.

    2000-01-01

    Pore formation is an important concern in laser welding of automotive aluminum alloys. This paper investigates the influence of the laser beam defocusing on pore formation during continuous wave Nd:YAG laser welding of aluminum automotive alloys 5182 and 5754. It was found that the instability of the keyhole during welding was a dominant cause of pore formation while hydrogen rejection played an insignificant role. The defocusing of the laser beam greatly affected the stability of the keyhole. Finally, the mechanism of the collapse of the keyhole and pore formation is proposed. (Author) 45 refs

  15. Synthesis, crystal growth, optical, thermal, and mechanical properties of a nonlinear optical single crystal: ammonium sulfate hydrogen sulphamate (ASHS)

    Science.gov (United States)

    Sudhakar, K.; Nandhini, S.; Muniyappan, S.; Arumanayagam, T.; Vivek, P.; Murugakoothan, P.

    2018-04-01

    Ammonium sulfate hydrogen sulphamate (ASHS), an inorganic nonlinear optical crystal, was grown from the aqueous solution by slow evaporation solution growth technique. The single-crystal XRD confirms that the grown single crystal belongs to the orthorhombic system with the space group of Pna21. Powder XRD confirms the crystalline nature and the diffraction planes were indexed. Crystalline perfection of grown crystal was analysed by high-resolution X-ray diffraction rocking curve technique. UV-Vis-NIR studies revealed that ASHS crystal has optical transparency 65% and lower cut-off wavelength at 218 nm. The violet light emission of the crystal was identified by photoluminescence studies. The particle size-dependent second-harmonic generation efficiency for ASHS crystal was evaluated by Kurtz-Perry powder technique using Nd:YAG laser which established the existence of phase matching. Surface laser damage threshold value was evaluated using Nd:YAG laser. Optical homogeneity of the crystal was evaluated using modified channel spectrum method through birefringence study. Thermal analysis reveals that ASHS crystal is stable up to 213 °C. The mechanical behaviour of the ASHS crystal was analysed using Vickers microhardness study.

  16. Investigation on structural aspects of ZnO nano-crystal using radio-active ion beam and PAC

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, Bichitra Nandi, E-mail: bichitra.ganguly@saha.ac.in [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Dutta, Sreetama; Roy, Soma [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Röder, Jens [Physics Department, ISOLDE/CERN, Geneva (Switzerland); Physical Chemistry, RWTH-Aachen, Aachen (Germany); Johnston, Karl [Physics Department, ISOLDE/CERN, Geneva (Switzerland); Experimental Physics, University of the Saarland, Saarbrücken (Germany); Martin, Manfred [Physical Chemistry, RWTH-Aachen, Aachen (Germany)

    2015-11-01

    Nano-crystalline ZnO has been studied with perturbed angular correlation using {sup 111m}Cd, implanted at ISOLDE/CERN and X-ray diffraction using Rietveld analysis. The data show a gradual increase in the crystal size and stress for a sample annealed at 600 °C, and reaching nearly properties of standard ZnO with tempering at 1000 °C. The perturbed angular correlation data show a broad frequency distribution at low annealing temperatures and small particle sizes, whereas at high annealing temperature and larger crystal sizes, results similar to bulk ZnO have been obtained. The ZnO nano-crystalline samples were initially prepared through a wet chemical route, have been examined by Fourier Transform Infrared Spectroscopy (FT-IR) and chemical purity has been confirmed with Energy Dispersive X-ray (EDAX) analysis as well as Transmission Electron Microscopy (TEM).

  17. Numerical analysis and experimental investigation of highly sensitive photonic crystal fiber long-period grating refractive index sensor

    Czech Academy of Sciences Publication Activity Database

    Zhu, Y.; He, Z.; Kaňka, Jiří; Du, H.

    2008-01-01

    Roč. 129, č. 1 (2008), s. 99-105 ISSN 0925-4005 R&D Projects: GA MŠk 1P05OC002 Grant - others:National Science Foundation(US) ECS-0404002 Institutional research plan: CEZ:AV0Z20670512 Source of funding: V - iné verejné zdroje Keywords : photonic crystals * Bragg gratings * optical fibres * fibre optic sensors * refractometers Subject RIV: BH - Optics, Masers, Lasers Impact factor: 3.122, year: 2008

  18. Investigation of the neutron diffraction anomaly and electrical behaviour of α-LiIO3 single crystal under AC field

    International Nuclear Information System (INIS)

    Wang Guang; Yang Zhen

    1990-01-01

    A systematic study of the unique neutron diffraction and electric behaviour of α-LiIO 3 single crystal under AC field is reported. A frequency dependent rectification effect was observed and can be explained as the relaxation process in the ionic conduction. Theoretical treatment using Boltzmann equation gives satisfactory agreement with experimental results. The neutron diffraction anomaly can be attributed to the effect of the rectified DC current in the sample

  19. NONLINEAR OPTICAL MOLECULAR CRYSTAL BASED ON 2,6-DIAMINOPYRIDINE: SYNTHESIS AND CHARACTERIZATION

    Directory of Open Access Journals (Sweden)

    I. M. Pavlovetc

    2014-05-01

    Full Text Available The paper deals with investigation of a new nonlinear optical material based on nonlinear optical chromophore (4-Nitrophenol and aminopyridine (2,6-Diaminopyridine. Calculation results are presented for molecular packing in the crystalline compound, based on the given components. According to these results the finite material must have a noncentrosymmetric lattice, which determines the presence of the second order nonlinear optical response. Investigations carried out in this work confirm these calculations. Results of experiments are given describing the co-crystallization of these components and the following re-crystallization of the obtained material. In order to get a monocrystal form, the optimal conditions for the synthesis of molecular crystals based on these components are determined. Sufficiently large homogeneous crystals are obtained, that gave the possibility to record their spectra in the visible and near infrared parts of the spectrum, to determine their nonlinear optical properties and the level of homogeneity. Their optical (optical transmission and optical laser damage threshold and nonlinear optical properties are presented. For observation and measurement of the nonlinear optical properties an installation was built which implements the comparative method for measurements of nonlinear optical properties. A potassium titanyl oxide phosphate crystal was used as a sample for comparison. Results are given for the conversion efficiency of the primary laser radiation in the second optical harmonic relative to the signal obtained on the potassium titanyl oxide phosphate crystal. Obtained results show that the molecular co-crystal based on 2,6-Diaminopyridine is a promising nonlinear optical material for generating the second optical harmonic on the Nd: YAG laser (532 nm.

  20. The α-particle excited scintillation response of YAG:Ce thin films grown by liquid phase epitaxy

    International Nuclear Information System (INIS)

    Prusa, Petr; Nikl, Martin; Mares, Jiri A.; Nitsch, Karel; Beitlerova, Alena; Kucera, Miroslav

    2009-01-01

    Y 3 Al 5 O 12 :Ce (YAG:Ce) thin films were grown from PbO-,BaO-, and MoO 3 -based fluxes using the liquid phase epitaxy (LPE) method. Photoelectron yield, its time dependence within 0.5-10 μs shaping time, and energy resolution of these samples were measured under α-particle excitation. For comparison a sample of the Czochralski grown bulk YAG:Ce single crystal was measured as well. Photoelectron yield values of samples grown from the BaO-based flux were found superior to other LPE films and comparable with that of the bulk single crystal. The same is valid also for the time dependence of photoelectron yield. Obtained results are discussed taking into account the influence of the flux and technology used. Additionally, α particle energy deposition in very thin films is modelled and discussed. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Single-mode pulsed dye laser pumped by using a diode-pumped Nd:YAG laser with a long pulse width

    CERN Document Server

    Yi, J H; Moon, H J; Rho, S P; Han, J M; Rhee, Y J; Lee, J M

    1999-01-01

    The lasing characteristics of a single-mode dye laser pumped by using a diode-pumped solid-state laser (DPSSL) with a high repetition rate is described. A 45-mm-long Nd:YAG rod was pumped by three CW diode arrays and it was acousto-optically Q-switched. A KTP crystal was used for intracavity frequency doubling. The pulse width of the laser ranged from 90 ns to 200 ns, depending on the diode current and the Q-switching frequency. The single-mode dye laser had a grazing incidence configuration. The pulse width of the dye laser was reduced to about 1/8 of the pumping laser pulse width. The effects of the DPSSL Q-switching frequency, the driving current, and the cavity loss on the dye laser pulse width were investigated by using a simple plane-parallel cavity. From the measured pulse width of the dye laser as a function of the reflectivity of the dye laser output coupler, we found that the cavity loss due to the frequency selection elements and the output coupler should be less than 70 % in order to avoid a drast...

  2. Single-mode pulsed dye laser pumped by using a diode-pumped Nd:YAG laser with a long pulse width

    International Nuclear Information System (INIS)

    Yi, Jong Hoon; Kim, Jin Tae; Moon, Hee Jong; Rho, Si Pyo; Han, Jae Min; Rhee, Yong Joo; Lee, Jong Min

    1999-01-01

    The lasing characteristics of a single-mode dye laser pumped by using a diode-pumped solid-state laser (DPSSL) with a high repetition rate is described. A 45-mm-long Nd:YAG rod was pumped by three CW diode arrays and it was acousto-optically Q-switched. A KTP crystal was used for intracavity frequency doubling. The pulse width of the laser ranged from 90 ns to 200 ns, depending on the diode current and the Q-switching frequency. The single-mode dye laser had a grazing incidence configuration. The pulse width of the dye laser was reduced to about 1/8 of the pumping laser pulse width. The effects of the DPSSL Q-switching frequency, the driving current, and the cavity loss on the dye laser pulse width were investigated by using a simple plane-parallel cavity. From the measured pulse width of the dye laser as a function of the reflectivity of the dye laser output coupler, we found that the cavity loss due to the frequency selection elements and the output coupler should be less than 70 % in order to avoid a drastically reduced pulse width

  3. A High-Energy Good-Beam-Quality Krypton-Lamp-Pumped Nd:YAG Solid-State Laser with One Pump Cavity

    Institute of Scientific and Technical Information of China (English)

    LIU Xue-Sheng; WANG Zhi-Yong; YAN Xin; CAO Ying-Hua

    2008-01-01

    We investigate a high-energy good-beam-quality krypton-lamp-pumped pulsed Nd:YAG solid-state laser with one pump cavity.The symmetrical resonator laser is developed and is rated at 80 J with beam parameter product 12mm mrad.The total system electro-optics efficiency of the lamp-pumped YAG laser is as high as 3.3% and the stability of output energy is ±2% with pulse width tunable between 0.1 ms and 10ms.The experimental results are consistent with the theoretical analysis and simulation.

  4. X-ray Topographic Investigations of Domain Structure in Czochralski Grown PrxLa1-xAlO3 Crystals

    International Nuclear Information System (INIS)

    Wieteska, K.; Wierzchowski, W.; Malinowska, A.; Turczynski, S.; Pawlak, D.A.; Lukasiewicz, T.; Lefeld-Sosnowska, M.; Graeff, W.

    2010-01-01

    In the present paper X-ray diffraction topographic techniques were applied to a number of samples cut from Czochralski grown Pr x La 1-x AlO 3 crystals with different ratio of praseodymium and lanthanum. Conventional and synchrotron X-ray topographic investigations revealed differently developed domain structures dependent on the composition of mixed praseodymium lanthanum aluminium perovskites. Some large mosaic blocks were observed together with the domains. In the best crystals, X-ray topographs revealed striation fringes and individual dislocations inside large domains. Synchrotron topographs allowed us to indicate that the domains correspond to three different crystallographic planes, and to evaluate the lattice misorientation between domains in the range of 20-50 arc min (authors)

  5. Interpenetrating metal-organic and inorganic 3D networks: a computer-aided systematic investigation. Part II [1]. Analysis of the Inorganic Crystal Structure Database (ICSD)

    International Nuclear Information System (INIS)

    Baburin, I.A.; Blatov, V.A.; Carlucci, L.; Ciani, G.; Proserpio, D.M.

    2005-01-01

    Interpenetration in metal-organic and inorganic networks has been investigated by a systematic analysis of the crystallographic structural databases. We have used a version of TOPOS (a package for multipurpose crystallochemical analysis) adapted for searching for interpenetration and based on the concept of Voronoi-Dirichlet polyhedra and on the representation of a crystal structure as a reduced finite graph. In this paper, we report comprehensive lists of interpenetrating inorganic 3D structures from the Inorganic Crystal Structure Database (ICSD), inclusive of 144 Collection Codes for equivalent interpenetrating nets, analyzed on the basis of their topologies. Distinct Classes, corresponding to the different modes in which individual identical motifs can interpenetrate, have been attributed to the entangled structures. Interpenetrating nets of different nature as well as interpenetrating H-bonded nets were also examined

  6. Comparison between Er:YAG laser and bipolar radiofrequency combined with infrared diode laser for the treatment of acne scars: Differential expression of fibrogenetic biomolecules may be associated with differences in efficacy between ablative and non-ablative laser treatment.

    Science.gov (United States)

    Min, Seonguk; Park, Seon Yong; Moon, Jungyoon; Kwon, Hyuck Hoon; Yoon, Ji Young; Suh, Dae Hun

    2017-04-01

    Fractional Er:YAG minimizes the risk associated with skin ablation. Infrared diode laser and radiofrequency have suggested comparable improvements in acne scar. We compared the clinical efficacy of Er:YAG laser and bipolar radiofrequency combined with diode laser (BRDL) for the treatment of acne scars. Moreover, acute molecular changes of cytokine profile associated with wound healing have been evaluated to suggest mechanisms of improvement of acne scar. Twenty-four subjects with mild-to-moderate acne scars were treated in a split-face manner with Er:YAG and BRDL, with two treatment sessions, 4 weeks apart. Objective and subjective assessments were done at baseline, 1, 3, 7 days after each treatment and 4 weeks after last treatment. Skin biopsy specimens were obtained at baseline, 1, 3, 7, 28 days after one session of treatment for investigation of molecular profile of acute skin changes by laser treatment. Investigator's Global Assessment representing the improvement degree shows 2.1 (50%) in fractional Er:YAG and 1.2 (25%) in BRDL. Er:YAG induced the later and higher peak expression of TGFβs and collagenases, whereas BRDL induced earlier and lower expression of TGFβ and collagenases, relatively. PPARγ dropped rapidly after a peak in Er:YAG-treated side, which is associated with tissue inhibitor of metalloproteinase (TIMP) expression. We observed higher expression of TIMP after Er:YAG treatment compared with BRDL by immunohistochemistry, which may be associated with the expression of upregulation of collagen fibers. The superior efficacy of Er:YAG to BRDL in the treatment of acne scars may be associated with higher expression of collagen which is associated with differential expression of TGFβs, collagenases, PPARγ, and TIMP. Lasers Surg. Med. 49:341-347, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Application of YAG laser cladding to the flange seating surface

    International Nuclear Information System (INIS)

    Nakanishi, Koki; Ninomiya, Kazuyuki; Nezaki, Koji

    1999-01-01

    Stainless cladding on carbon steel is usually conducted by shielded metal arc welding (SMAW) or gas tungsten arc welding (GTAW). YAG ( Yttrium-Aluminum-Garnet) laser welding is superior to these methods of welding in the following respects : (1) The heat affected zone (HAZ) is narrower and there is less distortion. (2) YAG laser cladding has the required chemical compositions, even with possibly fewer welding layers under controlled dilution. (3) Greater welding speed. YAG laser cladding application to vessel flange seating surfaces was examined in this study and the results are discussed. The following objectives were carried out : (1) Determination of welding conditions for satisfactory cladding layers and (2) whether cladding would be adequately possible at a cornered section of a stair-like plate, assuming actual flange shape. (3) Measurement of welding distortion and heat affected zone in carbon steel. The welding conditions for producing no-crack deposit with low dilution in carbon steel were clarified and welding by which cladding at cornered section would be possible was achieved. welding distortion by YAG laser was found less than with GTAW and HAZ made by first layer welding could be tempered appropriately by second layer welding. (author)

  8. Neodymium:YAG laser cutting of intraocular lens haptics.

    Science.gov (United States)

    Gorn, R A; Steinert, R F

    1985-11-01

    Neodymium:YAG laser cutting of polymethylmethacrylate and polypropylene anterior chamber and posterior chamber intraocular lens haptics was studied in terms of ease of transection and physical structure of the cut areas as seen by scanning electron microscopy. A marked difference was discovered, with the polymethylmethacrylate cutting easily along transverse planes, whereas the polypropylene resisted cutting along longitudinal fibers. Clinical guidelines are presented.

  9. Preparation and properties of Pr /Ce :YAG phosphors using ...

    Indian Academy of Sciences (India)

    2015-09-01

    Sep 1, 2015 ... [3] transparent ceramics for high power solid-state lasers and Ce:YAG ... and CO2−. 3 . ... be controlled to guarantee that all the metal ions are simul- taneously .... of hydrogen bonding interaction can lead to more serious.

  10. ACRT technique for the single crystal growth of the heavy fermion compound YbRh{sub 2}Si{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Witt, Sebastian; Kliemt, Kristin; Butzke, Constantin; Krellner, Cornelius [Goethe University Frankfurt, 60438 Frankfurt am Main (Germany)

    2016-07-01

    In the heavy fermion compound YbRh{sub 2}Si{sub 2} the antiferromagnetic ordering below 70 mK close to a quantum critical point is well-studied. Beneath the magnetic ordering a new phase transition was found recently at 2 mK. It is necessary to prepare large and high-quality single crystals for studying the nature of this new phase transition. Besides the optimization of the single crystal growth it is important to investigate single crystals with different isotopes at this phase transition. Here, we report the crystal growth of YbRh{sub 2}Si{sub 2} with the accelerated crucible rotation technique (ACRT). ACRT shows for other compounds, e.g. YAG (yttrium aluminum garnet, Y{sub 3}Al{sub 5}O{sub 12}), that this technique can reduce flux impurities and enhance the yield of larger crystals. We also report the attempt to receive metallic isotopes of ytterbium with metallothermic reduction. Crystals with different isotopes of silicon and ytterbium can be used for NMR measurements to investigate the underlying phenomena of quantum criticality in more detail.

  11. Efficiency of ablative fractional Er: YAG (Erbium: Yttrium-Aluminum-Garnet laser treatment of epidermal and dermal benign skin lesions: A retrospective study

    Directory of Open Access Journals (Sweden)

    Erol Koç

    2014-03-01

    Full Text Available Background: Er: YAG lasers are precise ablation systems used in the treatment epidermal and dermal benign skin lesions. In this study, we restrospectively analysed efficiency of Er: YAG laser therapy in the treatment of epidermal and dermal benign skin lesions. Materials and Methods: We retrospectively investigated our clinical records of 116 patients treated with Er: YAG laser between April 2011 and April 2013. The clinical records of 103 patients (47 men, 56 women were included in our study. Of these 103 patients included in the study were xanthelasma, solar lentigo, epidermal nevus, seborrheic keratosis, nevus of ota, syringoma, cafe au lait macules (CALM and other than these. Treatment parameters, demographic features and before and after photographs of the lesions were investigated from patients’ records in order to evaluate efficiency of Er: YAG laser therapy. Results: Of these 103 patients included in the study were evaluated in 8 groups, described as xanthelasma (n=21, syringoma (n=17, solar lentigo (n=16, epidermal nevus (n=11, seborrheic keratosis (n=9, nevus of ota (n=5, CALM (n=3 and other than these (n=21. In the Er: YAG laser treatment, the average energy flow was 3-7 J/cm2, the average pulse duration was 300 ms, the average number of passes was 3-5 repeat, and the average pulse frequency was 3-7 Hz. While 4.9% of the patients showed no improvement, 59.2% showed marked improvement, 26.2% showed moderate improvement and 9.7% showed mild improvement. Treatment responses in xanthelasma, syringoma, epidermal nevus, solar lentigo and CALM lesions were statistically significant. Observed side effects were hyperpigmentation in 4 patients, hypopigmentation in 3 patients, hypertrophic scar in 2 patients and persistent erythema in one patient and the treatment was well tolerated by all the patients. Conclusion: Er: YAG laser is an effective and safe treatment option in the treatment of benign skin lesions especially in epidermal lesions.

  12. Impact of pulse duration on Ho:YAG laser lithotripsy: fragmentation and dusting performance.

    Science.gov (United States)

    Bader, Markus J; Pongratz, Thomas; Khoder, Wael; Stief, Christian G; Herrmann, Thomas; Nagele, Udo; Sroka, Ronald

    2015-04-01

    In vitro investigations of Ho:YAG laser-induced stone fragmentation were performed to identify potential impacts of different pulse durations on stone fragmentation characteristics. A Ho:YAG laser system (Swiss LaserClast, EMS S.A., Nyon, Switzerland) with selectable long or short pulse mode was tested with regard to its fragmentation and laser hardware compatibility properties. The pulse duration is depending on the specific laser parameters. Fragmentation tests (hand-held, hands-free, single-pulse-induced crater) on artificial BEGO stones were performed under reproducible experimental conditions (fibre sizes: 365 and 200 µm; laser settings: 10 W through combinations of 0.5, 1, 2 J/pulse and 20, 10, 5 Hz, respectively). Differences in fragmentation rates between the two pulse duration regimes were detected with statistical significance for defined settings. Hand-held and motivated Ho:YAG laser-assisted fragmentation of BEGO stones showed no significant difference between short pulse mode and long pulse mode, neither in fragmentation rates nor in number of fragments and fragment sizes. Similarly, the results of the hands-free fragmentation tests (with and without anti-repulsion device) showed no statistical differences between long pulse and short pulse modes. The study showed that fragmentation rates for long and short pulse durations at identical power settings remain at a comparable level. Longer holmium laser pulse duration reduces stone pushback. Therefore, longer laser pulses may result in better clinical outcome of laser lithotripsy and more convenient handling during clinical use without compromising fragmentation effectiveness.

  13. Effect of Nd: YAG laser irradiation on surface properties and bond strength of zirconia ceramics.

    Science.gov (United States)

    Liu, Li; Liu, Suogang; Song, Xiaomeng; Zhu, Qingping; Zhang, Wei

    2015-02-01

    This study investigated the effect of neodymium-doped yttrium aluminum garnet (Nd: YAG) laser irradiation on surface properties and bond strength of zirconia ceramics. Specimens of zirconia ceramic pieces were divided into 11 groups according to surface treatments as follows: one control group (no treatment), one air abrasion group, and nine laser groups (Nd: YAG irradiation). The laser groups were divided by applying with different output power (1, 2, or 3 W) and irradiation time (30, 60, or 90 s). Following surface treatments, the morphological characteristics of ceramic pieces was observed, and the surface roughness was measured. All specimens were bonded to resin cement. After, stored in water for 24 h and additionally aged by thermocycling, the shear bond strength was measured. Dunnett's t test and one-way ANOVA were performed as the statistical analyses for the surface roughness and the shear bond strength, respectively, with α = .05. Rougher surface of the ceramics could be obtained by laser irradiation with higher output power (2 and 3 W). However, cracks and defects were also found on material surface. The shear bond strength of laser groups was not obviously increased, and it was significantly lower than that of air abrasion group. No significant differences of the shear bond strength were found among laser groups treated with different output power or irradiation time. Nd: YAG laser irradiation cannot improve the surface properties of zirconia ceramics and cannot increase the bond strength of the ceramics. Enhancing irradiation power and extending irradiation time cannot induce higher bond strength of the ceramics and may cause material defect.

  14. Clinical and bacteriological study of the effect of Nd:YAG laser in gingivitis therapy

    Science.gov (United States)

    Colojoara, Carmen; Mavrantoni, Androniki; Miron, Mariana I.

    2000-06-01

    The relationship between dental plaque and gingivitis was verified. Nonspecific gingivitis is an inflammatory process, frequently caused by enzymes and toxins liberate by bacteria form dental plaque. Loose plaque has come under a great deal of investigation because of its role in attachment loss. The current methods used in the treatment of non specific gingivitis encompass the use of antibiotics and conventional surgical techniques. Treating gingivitis with laser energy may further reduce the gingival inflammation and decrease the wound healing time. The lack of correlation between the quantity of dental plaque and the intensity of gingivitis determined us to study the effect of Nd:YAG pulsed laser in reduction of gingival inflammation and wound healing. The aim of this work is to evaluate clinically the anti- inflammatory and wound healing effect of pulsed Nd:YAG laser and to compare the appearance and the levels of the bacteria in the supergingival and subgingival plaque in adolescents with tooth crowding after Nd:YAG laser. The experimental procedure consisted of a clinical and bacteriological study which was undertaken in 20 patients presenting moderate gingivitis. A group of 10 patients was the subject of a bacteriological study and the other group of 10 was used for clinical and histological examination. For each group the clinical criteria of evaluation were: the gingival index, papillary bleeding index, spontaneous aches. Each patient was tested before and after laser exposure or conventional therapy for bacteriological analyses. The results prove that early gingivitis exposure to laser registers a decrease of bacterial colony number and absence of loss of attachment as compared to the application of the conventional treatment. Clinical study has shown that the combination of scaling and root planning with laser therapy is enough to provide improvement in clinical indices and reduction in the number of bacterial colonies.

  15. Diode-pumped quasi-three-level Nd:GdV O4–Nd:YAG sum-frequency laser at 464 nm

    International Nuclear Information System (INIS)

    Lu, Jie

    2014-01-01

    We report a laser architecture to obtain continuous-wave (cw) blue radiation at 464 nm. A 808 nm diode pumped a Nd:GdV O 4 crystal emitting at 912 nm. A part of the pump power was then absorbed by the Nd:GdV O 4 crystal. The remainder was used to pump a Nd:YAG crystal emitting at 946 nm. Intracavity sum-frequency mixing at 912 and 946 nm was then realized in a LiB 3 O 5 (LBO) crystal to produce blue radiation. We obtained a cw output power of 1.52 W at 464 nm with a pump laser diode emitting 18.4 W at 808 nm. (letter)

  16. Low-threshold, nanosecond, high-repetition-rate vortex pulses with controllable helicity generated in Cr,Nd:YAG self-Q-switched microchip laser

    Science.gov (United States)

    He, Hong-Sen; Chen, Zhen; Li, Hong-Bin; Dong, Jun

    2018-05-01

    A high repetition rate, nanosecond, pulsed optical vortex beam has been generated in a Cr,Nd:YAG self-Q-switched microchip laser pumped by the annular-beam formed with a hollow focus lens. The lasing threshold for vortex pulses is 0.9 W. A pulse width of 6.5 ns and a repetition rate of over 330 kHz have been achieved. The average output power of 1 W and the slope efficiency of 46.6% have been obtained. The helicity of the optical vortices has been controlled by adjusting the tilted angle between Cr,Nd:YAG crystal and output coupler. The work provides a new method for developing pulsed optical vortices for potential applications on quantum communication and optical trapping.

  17. FT-Raman spectroscopic characterization of enamel surfaces irradiated with Nd:YAG and Er:YAG lasers

    Directory of Open Access Journals (Sweden)

    Sima Shahabi

    2016-12-01

    Full Text Available Background. Despite recent advances in dental caries prevention, caries is common and remains a serious health problem. Laser irradiation is one of the most common methods in preventive measures in recent years. Raman spectroscopy technique is utilized to study the microcrystalline structure of dental enamel. In this study, FT-Raman spectroscopy was used to evaluate chemical changes in enamel structure irradiated with Nd:YAG and Er:YAG lasers. Methods. We used 15 freshly-extracted, non-carious, human molars that were treated as follows: No treatment was carried out in group A (control group; Group B was irradiated with Er:YAG laser for 10 seconds under air and water spray; and Group C was irradiated with Nd:YAG laser for 10 seconds under air and water spray. After treatment, the samples were analyzed by FT-Raman spectroscopy. Results. The carbonate content evaluation with regard to the integrated area under the curve (1065/960 cm–1 exhibited a significant reduction in its ratio in groups B and C. The organic content (2935/960 cm-1 area exhibited a significant decrease after laser irradiation in group B and C. Conclusion. The results showed that the mineral and organic matrices of enamel structure were affected by laser irradiation; therefore, it might be a suitable method for caries prevention.

  18. EPR and optical investigation of Mn2+ doped L-histidine-4-nitrophenolate 4-nitrophenol single crystal

    Science.gov (United States)

    Prabakaran, R.; Subramanian, P.

    2018-04-01

    Single crystals of L-histidine-4-nitrophenolate 4-nitrophenol[LHFNP] complex doped with Mn2+ were grown by the slow evaporation method at room temperature. The EPR spectrum reveals the entry of one Mn2+ ion in the lattice. The angular variation plot was drawn between the angles and the magnetic field position. The spin Hamiltonian parameters were obtained by EPR-NMR program. The D and E values show the rhombic field around the ion and is an interstitial one. The g value obtained here suggests that the Mn2+ ion experiences a strong field and there is a transfer of electron from the metal ion to the ligand atom. The optical absorption study shows various bands and are assigned to the transition from the ground state 6A1g(S). The Racah and crystal field parameters have also been evaluated and fitted to the experimental values. The Racah parameter shows the covalent bonding between the metal ion to the ligand.

  19. Investigation the effect of lattice angle on the band gap width in 3D phononic crystals with rhombohedral(I) lattice

    Science.gov (United States)

    Salehi, H.; Aryadoust, M.; Shoushtari, M. Zargar

    2014-07-01

    In this paper, the propagation of acoustic waves in the phononic crystal of 3D with rhombohedral(I) lattice is studied theoretically. The crystal composite constituted of nickel spheres embedded in epoxy. The calculations of the band structure and density of states are performed with the plane wave expansion method in the irreducible part of Brillouin zone. In the present work, we have investigated the effect of lattice angle on the band structure and width of the band gap rhombohedral(I) lattice in the irreducible part of the first Brillouin zone and its planes separately. The results show that more than one complete band gape are formed in the four planes of the irreducible part. The most complete band gaps are formed in the (111) plane and the widest complete band gap in (443) with an angle greater than 80. So, if the sound passes through the (111) and (443) planes for the lattice angle close to 90, the crystal phononic displays the excellent insulation behavior. Moreover, in the other planes, the lattice angle does not affect on the width and the number of band gaps. Also, for the filling fraction 5 %, the widest complete band gap is formed. These results are consistent with the effect of symmetry on the band gap width, because the (111) plane has the most symmetry.

  20. High-pressure single-crystal neutron diffraction (to 20 kbar) using a pulsed source: Preliminary investigation of Tl3PSe4

    International Nuclear Information System (INIS)

    Alkire, R.W.; Larson, A.C.; Vergamini, P.J.; Schirber, J.E.; Morosin, B.

    1985-01-01

    A new technique is described for performing high-pressure single-crystal neutron diffraction [up to 20 kbar (2GPa) at room temperature], using a BeCu pressure cell, an area detector and the Los Alamos National Laboratory pulsed neutron source. Success of this method depends on the increase in information available with a multi-wavelength pulse neutron source, a novel orientation of a cylindrically symmetric pressure cell with its axis coincident with the neutron beam and a specific crystal orientation within the pressure cell. Bragg scattering from the pressure cell is avoided and background for a given 2theta is constant. For a crystal of orthorhombic or higher symmetry oriented with the incident beam passing midway between the major lattice vectors, it will be possible to refine a complete three-dimensional structure with data collected from only one pressure loading. Preliminary investigations of Tl 3 PSe 4 lattice parameters (space group Pcmn) at 15(1)kbar yielded linear compressibilities (. 1000 in kbar -1 ) of Ksub(a) = 1.05(8), Ksub(b) = 1.50(10), Ksub(c) = 1.20(8). The anisotropic compressibility is explained by examination of the ambient-pressure room-temperature structure. (orig.)

  1. Comparative laser-tissue interaction effects at 1.96 and 2.01 um of Cr; Tm:YAG laser

    Science.gov (United States)

    Pankratov, Michail M.; Perrault, Donald F., Jr.; Shapshay, Stanley M.; Pinto, Joseph F.; Esterowitz, Dina; Aretz, H. Thomas

    1992-08-01

    A pulsed spiking and nonspiking Cr; thulium (Tm):YAG flash lamp pumped laser operating at 1.96 and 2.01 μm was investigated in vitro in the clinically relevant power range for its basic laser-tissue interaction with soft, cartilaginous, and bone tissues. Some explanations of the differences and possible medical applications are discussed.

  2. Investigation of crystal structure, dielectric and magnetic properties in La and Nd co-doped BiFeO{sub 3} multiferroics

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ompal [Department of Physics, Guru Jambheshwar University of Science & Technology, Hisar 125001, Haryana (India); Agarwal, Ashish, E-mail: aagju@yahoo.com [Department of Physics, Guru Jambheshwar University of Science & Technology, Hisar 125001, Haryana (India); Sanghi, Sujata [Department of Physics, Guru Jambheshwar University of Science & Technology, Hisar 125001, Haryana (India); Das, Amitabh [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Anju [Department of Physics, Chaudhary Devi Lal University, Sirsa 125025, Haryana (India)

    2017-03-15

    For the investigation of the crystal structure, dielectric properties and magnetic properties of La and Nd co-doped BiFeO{sub 3} multiferroics; Bi{sub 0.8}La{sub 0.2−x}Nd{sub x}FeO{sub 3} (x=0.075, 0.1, 0.125) samples were prepared through solid state reaction method. Rietveld refinement of the obtained XRD patterns shows that there is change in crystal structure in these samples. At higher concentration of La (at x=0.075), the crystal structure was found to have mixed symmetry with rhombohedral and triclinic phases, while with equal concentration of both the dopants (at x=0.1), the structure changes to mixed symmetry having rhombohedral and orthorhombic phases. At higher concentration of Nd (at x=0.125), again mixed symmetry was established having both phases of the previous composition but approximately in reverse fraction. In dielectric analysis, x=0.1 sample showed the highest values of dielectric constant (ε′) and dielectric loss (tan δ). For x=0.125 sample, it was observed that the dielectric constant and dielectric loss response are improved. The magnetic characterization (M–H loops) indicates the significant enhancement in magnetisation with increasing concentration of Nd. Nd doping leads to the destruction of spiral modulation, forming the antiferromagnets, and visualisation of improved magnetisation via canting of spins. - Highlights: • La and Nd co-doped BiFeO{sub 3} were synthesized. • Change in crystal structure is observed. • Significant enhancement in magnetisation is observed.

  3. Growth of dopamine crystals

    Energy Technology Data Exchange (ETDEWEB)

    Patil, Vidya, E-mail: vidya.patil@ruparel.edu; Patki, Mugdha, E-mail: mugdha.patki@ruparel.edu [D. G. Ruparel College, Senapati Bapat Marg, Mahim, Mumbai – 400 016 (India)

    2016-05-06

    Many nonlinear optical (NLO) crystals have been identified as potential candidates in optical and electro-optical devices. Use of NLO organic crystals is expected in photonic applications. Hence organic nonlinear optical materials have been intensely investigated due to their potentially high nonlinearities, and rapid response in electro-optic effect compared to inorganic NLO materials. There are many methods to grow organic crystals such as vapor growth method, melt growth method and solution growth method. Out of these methods, solution growth method is useful in providing constraint free crystal. Single crystals of Dopamine have been grown by evaporating the solvents from aqueous solution. Crystals obtained were of the size of orders of mm. The crystal structure of dopamine was determined using XRD technique. Images of crystals were obtained using FEG SEM Quanta Series under high vacuum and low KV.

  4. 3D YAG laser cutting robot. 3 jigen YAG laser setsudan robot

    Energy Technology Data Exchange (ETDEWEB)

    Mukai, Y. (Matsushita Electric Industrial Co. Ltd., Osaka (Japan))

    1991-11-01

    The present status was introduced of three-dimensional processing by the YAG laser multi-articulation robot to introduce the focusing system. The lowering in locus accuracy of multi-articulation robot is caused by the accuracy and time of computation to interpolate the locus, response characteristics of servo system, and calibration problem of mechanical/structural system. Also as low in output power of laser, it has problem in focusing the energy in the radiating optical system. A focusing system, high in response velocity, is necessary in the processor to use the optical fiber in the optical transfer system. As processing and measuring at an identical spot, the present system can integrate the detection use electrode and nozzle so as to use an electrostatic capacity type sensor, high in response frequency. To avoid the interference with jig, etc., the nozzle of radiating unit was integrated with the detection use electrode so that development was made of height sensor, capable of executing the three-dimensional processing. The present robot is characterized by a standardized equipment of control system with a sliding shaft, independent of the operational shaft properly of robot in order to be exclusively used for the focusing. 9 figs.

  5. Schlieren techniques and interferometric methods using TEA-CO2 lasers for the investigation of transient phenomena by means of thermal liquid crystal image converters

    International Nuclear Information System (INIS)

    Hugenschmidt, M.; Vollrath, K.

    In order to investigate plasmas with electron densities in the 10 15 to 10 18 cm -3 range, schlieren techniques and interferometric methods are used with a TEA-CO 2 laser. The thermooptical conversion is achieved by means of cholesteric liquid crystal layers. The possible uses of this technique are examined in view of recording dynamic transient phenomena, attention being paid to response time, resolving power, and quantitative information obtained. Examples are given for records taken from the formation and expansion of electric spark discharges. The experimental results are in good agreement with the computed numerical data [fr

  6. Systematic study of radiation hardness of single crystal CVD diamond material investigated with an Au beam and IBIC method

    Energy Technology Data Exchange (ETDEWEB)

    Pietraszko, Jerzy; Koenig, Wolfgang; Traeger, Michael [GSI, Darmstadt (Germany); Draveny, Antoine; Galatyuk, Tetyana [TU, Darmstadt (Germany); Grilj, Veljko [RBI, Zagreb (Croatia); Collaboration: HADES-Collaboration

    2016-07-01

    For the future high rate CBM experiment at FAIR a radiation hard and fast beam detector is required. The detector has to perform precise T0 measurement (σ<50 ps) and should also offer decent beam monitoring capability. These tasks can be performed by utilizing single-crystal Chemical Vapor Deposition (ScCVD) diamond based detector. A prototype, segmented, detector have been constructed and the properties of this detector have been studied with a high current density beam (about 3.10{sup 6}/s/mm{sup 2}) of 1.23 A GeV Au ions in HADES. The irradiated detector properties have been studied at RBI in Zagreb by means of IBIC method. Details of the design, the intrinsic properties of the detectors and their performance after irradiation with such beam are reported.

  7. Investigation of phase matching for third-harmonic generation in silicon slow light photonic crystal waveguides using Fourier optics.

    Science.gov (United States)

    Monat, Christelle; Grillet, Christian; Corcoran, Bill; Moss, David J; Eggleton, Benjamin J; White, Thomas P; Krauss, Thomas F

    2010-03-29

    Using Fourier optics, we retrieve the wavevector dependence of the third-harmonic (green) light generated in a slow light silicon photonic crystal waveguide. We show that quasi-phase matching between the third-harmonic signal and the fundamental mode is provided in this geometry by coupling to the continuum of radiation modes above the light line. This process sustains third-harmonic generation with a relatively high efficiency and a substantial bandwidth limited only by the slow light window of the fundamental mode. The results give us insights into the physics of this nonlinear process in the presence of strong absorption and dispersion at visible wavelengths where bandstructure calculations are problematic. Since the characteristics (e.g. angular pattern) of the third-harmonic light primarily depend on the fundamental mode dispersion, they could be readily engineered.

  8. Anelasticity of olivine single crystals investigated by stress-reduction tests and high-angular resolution electron backscatter diffraction

    Science.gov (United States)

    Wallis, D.; Hansen, L. N.; Kempton, I.; Wilkinson, A. J.

    2017-12-01

    Geodynamic phenomena, including glacial isostatic adjustment and postseismic deformation, can involve transient deformation in response to changes in differential stress acting on mantle rocks. As such, rheological models of transient deformation are incorporated in predictions of associated processes, including sea-level rise and stress redistribution after earthquakes. However, experimental constraints on rheological models for transient deformation of mantle materials are sparse. In particular, experiments involving stress reductions have been lacking. Moreover, a material's response to a reduction in stress can provide clues to the microphysical processes controlling deformation. To constrain models of transient deformation of mantle rocks we performed stress-reduction tests on single crystals of olivine at 1250-1300°C. Mechanical and piezoelectric actuators controlled constant initial stress during creep. At various strain intervals stress was reduced near-instantaneously using the piezoelectric actuator, inducing both elastic and anelastic (time-dependent) lengthening of the samples. A range of magnitudes of stress reduction were applied, typically unloading 10-90% of the initial stress. High-angular resolution electron backscatter diffraction (HR-EBSD), based on cross-correlation of diffraction patterns, was used to map dislocation density and elastic strain distributions in the recovered samples. Magnitudes of anelastic back-strain increase with increasing magnitudes of stress reduction and show a marked increase when stress reductions exceed 50% of the initial stress, consistent with previous observations in metals and alloys. This observation is inconsistent with the Burgers rheological model commonly used to describe transient behaviour and suggests that the style of rheological behaviour depends on the magnitude of stress change. HR-EBSD maps reveal that the crystal lattices are smoothly curved and generally lack subgrain boundaries and elastic strain

  9. Evaluation in vitro of effects of Er:YAG and Nd:YAG lasers irradiation on root canal wall, by stereoscopy, scanning electron micrography and thermographic camera; Avaliacao in vitro dos efeitos da irradiacao laser de Er:YAG e Nd:YAG na parede dentinaria do canal radicular, sob observacao do estereoscopio, da micrografia eletronica e da camera termografica

    Energy Technology Data Exchange (ETDEWEB)

    Goya, Claudia

    2001-07-01

    This study was carried out to evaluate in vitro the effects of Nd:YAG laser and Er:YAG laser irradiation in the root canal wall by SEM, evaluating the apical leakage and the temperature changes during the laser irradiation. Seventy four extracted human teeth were used, they were instrumented and divided into seven groups of 10 teeth each. The teeth were evaluated through stereoscopy, by SEM, and with the thermographic camera. The Nd:YAG laser irradiation parameters were 100 mJ/p, 15 Hz, and Er:YAG laser were 160 mJ/p and 10 Hz, the irradiation was 4 times at 2 mm/sec speed, with 20 sec interval. The apical leakage was not observed in the teeth irradiated by Nd:YAG laser alone or in association with Er:YAG laser. However in the teeth irradiated only by the Er:YAG laser we observed a little leakage. By SEM observation the Nd:YAG laser irradiation showed melting and recrystallization in the dentin surface closing dentinal tubules, and in the samples irradiated by Er:Y AG laser a clean surface, opened dentinal tubules, and the combination by two lasers, showed melting covering some dentinal tubules The thermographic study found the temperature increase was not more than 6 deg C. This study showed the safety parameters applications of Er:YAG laser in association with Nd:YAG laser in root canal treatment, in order to not cause thermal damages to the periodontal tissues. (author)

  10. Corrosion Resistant Cladding by YAG Laser Welding in Underwater Environment

    International Nuclear Information System (INIS)

    Tsutomi Kochi; Toshio Kojima; Suemi Hirata; Ichiro Morita; Katsura Ohwaki

    2002-01-01

    It is known that stress-corrosion cracking (SCC) will occur in nickel-base alloys used in Reactor Pressure Vessel (RPV) and Internals of nuclear power plants. A SCC sensitivity has been evaluated by IHI in each part of RPV and Internals. There are several water level instrumentation nozzles installed in domestic BWR RPV. In water level instrumentation nozzles, 182 type nickel-base alloys were used for the welding joint to RPV. It is estimated the SCC potential is high in this joint because of a higher residual stress than the yield strength (about 400 MPa). This report will describe a preventive maintenance method to these nozzles Heat Affected Zone (HAZ) and welds by a corrosion resistant cladding (CRC) by YAG Laser in underwater environment (without draining a reactor water). There are many kinds of countermeasures for SCC, for example, Induction Heating Stress Improvement (IHSI), Mechanical Stress Improvement Process (MSIP) and so on. A YAG laser CRC is one of them. In this technology a laser beam is used for heat source and irradiated through an optical fiber to a base metal and SCC resistant material is used for welding wires. After cladding the HAZ and welds are coated by the corrosion resistant materials so their surfaces are improved. A CRC by gas tungsten arc welding (GTAW) in an air environment had been developed and already applied to a couple of operating plants (16 Nozzles). This method was of course good but it spent much time to perform because of an installation of some water-proof working boxes to make a TIG-weldability environment. CRC by YAG laser welding in underwater environment has superior features comparing to this conventional TIG method as follows. At the viewpoint of underwater environment, (1) an outage term reduction (no drainage water). (2) a radioactive exposure dose reduction for personnel. At that of YAG laser welding, (1) A narrower HAZ. (2) A smaller distortion. (3) A few cladding layers. A YAG laser CRC test in underwater

  11. Superconducting properties of single-crystal Nb sphere formed by large-undercooling solidification process

    Energy Technology Data Exchange (ETDEWEB)

    Takeya, H.; Sung, Y.S.; Hirata, K.; Togano, K

    2003-10-15

    An electrostatic levitation (ESL) system has been used for investigating undercooling effects on superconducting materials. In this report, preliminary experiments on Nb (melting temperature: T{sub m}=2477 deg. C) have been performed by melting Nb in levitation using 150 and 250 W Nd-YAG lasers. Since molten Nb is solidified without any contact in a high vacuum condition, a significantly undercooled state up to 400 deg. C is maintained before recalescence followed by solidification. Spherical single crystals of Nb are formed by the ESL process due to the suppression of heterogeneous nucleation. The field dependence of magnetization of Nb shows a reversible behavior as an ideal type II superconductor, implying that it contains almost no flux-pinning centers.

  12. Crystal growth, structural, optical, thermal, mechanical, laser damage threshold and electrical properties of triphenylphosphine oxide 4-nitrophenol (TP4N) single crystals for nonlinear optical applications

    Science.gov (United States)

    Karuppasamy, P.; Senthil Pandian, Muthu; Ramasamy, P.; Verma, Sunil

    2018-05-01

    The optically good quality single crystals of triphenylphosphine oxide 4-nitrophenol (TP4N) with maximum dimension of 15 × 10 × 5 mm3 were grown by slow evaporation solution technique (SEST) at room temperature. The cell dimensions of the grown TP4N crystal were confirmed by single crystal X-ray diffraction (SXRD) and the crystalline purity was confirmed and planes were indexed by powder X-ray diffraction (PXRD) analysis. Functional groups of TP4N crystal were confirmed by Fourier transform infrared (FTIR) spectral analysis. The optical transmittance of the grown crystal was determined by the UV-Vis NIR spectral analysis and it has good optical transparency in the entire visible region. The band tail (Urbach) energy of the grown crystal was analyzed and it appears to be minimum, which indicates that the TP4N has good crystallinity. The position of valence band (Ev) and conduction band (Ec) of the TP4N have been determined from the electron affinity energy (EA) and the ionization energy (EI) of its elements and using the optical band gap. The thermal behaviour of the grown crystal was investigated by thermogravimetric and differential thermal analysis (TG-DTA). Vickers microhardness analysis was carried out to identify the mechanical stability of the grown crystal and their indentation size effect (ISE) was explained by the Meyer's law (ML), Hays-Kendall's (HK) approach, proportional specimen resistance (PSR) model, modified PSR model (MPSR), elastic/plastic deformation (EPD) model and indentation induced cracking (IIC) model. Chemical etching study was carried out to find the etch pit density (EPD) of the grown crystal. Laser damage threshold (LDT) value was measured by using Nd:YAG laser (1064 nm). The dielectric permittivity (ε՛) and dielectric loss (tan δ) as a function of frequency was measured. The electronic polarizability (α) of the TP4N crystal was calculated. It is well matched to the value which was calculated from Clausius-Mossotti relation

  13. Growth and characterization of an efficient new NLO single crystal L-phenylalanine D-methionine for frequency conversion and optoelectronic applications

    Science.gov (United States)

    Sangeetha, P.; Jayaprakash, P.; Nageshwari, M.; Rathika Thaya Kumari, C.; Sudha, S.; Prakash, M.; Vinitha, G.; Lydia Caroline, M.

    2017-11-01

    Optically active single crystals of L-phenylalanine D-methionine (LPDM) were grown by slow evaporation technique by co-crystallization of amino acids L-phenylalanine and D-methionine in water. The unit cell dimensions have been identified from single crystal X-ray diffraction technique. The existences of various hydrocarbyls were examined by FTIR and FT-Raman spectroscopy. The carbon and hydrogen environment of the grown crystals were analyzed by FT NMR spectrum. The optical absorption studies show that the crystal is transparent in the visible region with a lower cut-off wavelength of 259 nm and there by optical band gap energy Eg is calculated to be 5.35 eV. The Urbach energy, extinction coefficient, reflectance were calculated from UV-absorption data. Further, the thermal stability and accurate melting point has been investigated by TG/DSC techniques. The Kurtz powder SHG was confirmed using Nd:YAG laser with fundamental wavelength of 1064 nm. The dielectric behavior of the specimen has been determined for various temperatures (313 K, 333 K, 353 K, 373 K) at different frequencies. Fluorescence study and the time resolved decay calculation was also performed for the LPDM crystal. Optical nonlinear susceptibility was measured in LPDM and the real and imaginary part of χ3 was evaluated by Z-scan technique using open and closed apertures.

  14. Nd:YAG laser in caries prevention: a clinical study; Avaliacao clinica da eficiencia do laser de Nd:YAG associado ao fluor fosfato acidulado na prevencao de caries de sulcos e fissuras de criancas e adolescentes

    Energy Technology Data Exchange (ETDEWEB)

    Boari, Heloisa Gomes Dimiranda

    2000-07-01

    The caries prevention by using laser irradiation has been investigated during the last 30 years. The Nd: YAG laser associated with acidulated phosphate fluoride has been shown as a very promising technique for enamel caries prevention. The aim of this work was to clinically evaluate the efficiency of Nd: YAG laser associated with acidulated phosphate fluoride in pit and fissure caries prevention of children and adolescents. In this work it was determined the dye that enhance the effect of Nd: YAG laser in enamel. It was selected 242 pre-molar and molar teeth from 33 children and adolescents, aged from 7 to 15 years old. The selected teeth were free from caries or decalcification marks (active white marks) to the clinical and radiographic exams. The teeth were divided into two groups: the first group was laser irradiated and their homologous remained as a control. The right side teeth were dye-assisted Nd:YAG laser irradiated. The dye solution was a moisture of dust coal and equal parts of water and alcohol. The irradiation conditions were 60 mJ/10 Hz, optical fiber in contact mode, with diameter of 300 {mu}m, resulting in an energy density of 84,9 J/cm{sup 2}. The oclusal surface of the teeth was completely irradiated, specially on the slopes and in the deepest part of the pits and fissures. This procedure was repeated three times. In the sequence it was applied the acidulated phosphate fluoride for 4 minutes. On the left side teeth - control group- only acidulated phosphate fluoride was applied for the same time. The final examination considered the presence of caries and active white marks after a period of one year. There were statistical significant differences (p < 0.01) between the lased + fluoride group and the non irradiated group. The present study concluded that the technique used in this work can be an alternative clinical method for caries prevention. (author)

  15. A laboratory investigation on the influence of adsorbed gases and particles from the exhaust of a kerosene burner on the evaporation rate of ice crystals and the ice nucleating ability of the exhaust particles

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, K; Mitra, S K; Pruppacher, H R [Johannes Gutenberg Univ., Mainz (Germany). Inst. fuer Physik der Atmosphaere

    1998-12-31

    Laboratory experiments are described during which the influence of the exhausts of a kerosene burner on microphysical processes were studied. In one experimental investigation the evaporation rates of polluted ice crystals were compared with the evaporation rates of pure ice crystals. During another experimental investigation the ice nucleating ability of the exhaust particles was studied. The results show that the evaporation rate of polluted ice crystals was significantly reduced and also that ice nucleation takes place between -20 and -38 deg C. (author) 7 refs.

  16. A laboratory investigation on the influence of adsorbed gases and particles from the exhaust of a kerosene burner on the evaporation rate of ice crystals and the ice nucleating ability of the exhaust particles

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, K.; Mitra, S.K.; Pruppacher, H.R. [Johannes Gutenberg Univ., Mainz (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    Laboratory experiments are described during which the influence of the exhausts of a kerosene burner on microphysical processes were studied. In one experimental investigation the evaporation rates of polluted ice crystals were compared with the evaporation rates of pure ice crystals. During another experimental investigation the ice nucleating ability of the exhaust particles was studied. The results show that the evaporation rate of polluted ice crystals was significantly reduced and also that ice nucleation takes place between -20 and -38 deg C. (author) 7 refs.

  17. Investigation of PEG crystallization in frozen PEG-sucrose-water solutions. I. Characterization of the nonequilibrium behavior during freeze-thawing.

    Science.gov (United States)

    Bhatnagar, Bakul S; Martin, Susan M; Teagarden, Dirk L; Shalaev, Evgenyi Y; Suryanarayanan, Raj

    2010-06-01

    Our objective was to characterize the nonequilibrium thermal behavior of frozen aqueous solutions containing PEG and sucrose. Aqueous solutions of (i) sucrose (10%, w/v) with different concentrations of PEG (1-20%, w/v), and (ii) PEG (10%, w/v) with different concentrations of sucrose (2-20%, w/v), were cooled to -70 degrees C at 5 degrees C/min and heated to 25 degrees C at 2 degrees C/min in a differential scanning calorimeter. Annealing was performed at temperatures ranging from -50 to -20 degrees C for 2 or 6 h. Similar experiments were also performed in the low-temperature stage of a powder X-ray diffractometer. A limited number of additional DSC experiments were performed wherein the samples were cooled to -100 degrees C. In unannealed systems with a fixed sucrose concentration (10%, w/v), the T'g decreased from -35 to -48 degrees C when PEG concentration was increased from 1% to 20% (w/v). On annealing at -25 degrees C, PEG crystallized. This was evident from the increase in T'g and the appearance of a secondary melting endotherm in the DSC. Low-temperature XRD provided direct evidence of PEG crystallization. Annealing at temperatures crystallization and a devitrification event was observed above the T'g. In unannealed systems with a fixed PEG concentration (10%, w/v), the T'g increased from -50 to -40 degrees C when sucrose concentration was increased from 5% to 50%, w/v. As the annealing time increased (at -25 degrees C), the T'g approached that of a sucrose-water system, reflecting progressive PEG crystallization. A second glass transition at approximately -65 degrees C was evident in unannealed systems [10%, w/v sucrose and 10 (or 20%), w/v PEG] cooled to -100 degrees C. Investigation of the nonequilibrium behavior of frozen PEG-sucrose-water ternary system revealed phase separation in the freeze-concentrate. Annealing facilitated PEG crystallization. (c) 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  18. Mass Spectrometric Investigation of Silicon Extremely Enriched in (28)Si: From (28)SiF4 (Gas Phase IRMS) to (28)Si Crystals (MC-ICP-MS).

    Science.gov (United States)

    Pramann, Axel; Rienitz, Olaf

    2016-06-07

    A new generation of silicon crystals even further enriched in (28)Si (x((28)Si) > 0.999 98 mol/mol), recently produced by companies and institutes in Russia within the framework of a project initiated by PTB, were investigated with respect to their isotopic composition and molar mass M(Si). A modified isotope dilution mass spectrometric (IDMS) method treating the silicon as the matrix containing a so-called virtual element (VE) existing of the isotopes (29)Si and (30)Si solely and high resolution multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) were applied in combination. This method succeeds also when examining the new materials holding merely trace amounts of (29)Si (x((29)Si) ≈ 5 × 10(-6) mol/mol) and (30)Si (x((30)Si) ≈ 7 × 10(-7) mol/mol) extremely difficult to detect with lowest uncertainty. However, there is a need for validating the enrichment in (28)Si already in the precursor material of the final crystals, silicon tetrafluoride (SiF4) gas prior to crystal production. For that purpose, the isotopic composition of selected SiF4 samples was determined using a multicollector magnetic sector field gas-phase isotope ratio mass spectrometer. Contaminations of SiF4 by natural silicon due to storing and during the isotope ratio mass spectrometry (IRMS) measurements were observed and quantified. The respective MC-ICP-MS measurements of the corresponding crystal samples show-in contrast-several advantages compared to gas phase IRMS. M(Si) of the new crystals were determined to some extent with uncertainties urel(M) < 1 × 10(-9). This study presents a clear dependence of the uncertainty urel(M(Si)) on the degree of enrichment in (28)Si. This leads to a reduction of urel(M(Si)) during the past decade by almost 3 orders of magnitude and thus further reduces the uncertainty of the Avogadro constant NA which is one of the preconditions for the redefinition of the SI unit kilogram.

  19. Investigations on the crystal-structure and non-ambient behaviour of K2Ca2Si8O19 - a new potassium calcium silicate

    Science.gov (United States)

    Schmidmair, Daniela; Kahlenberg, Volker; Praxmarer, Alessandra; Perfler, Lukas; Mair, Philipp

    2017-09-01

    Within the context of a systematic re-investigation of phase relationships between compounds of the ternary system K2O-CaO-SiO2 a new potassium calcium silicate with the chemical formula K2Ca2Si8O19 was synthesized via solid state reactions as well as the flux method using KCl as a solvent. Its crystal structure was determined from single-crystal X-ray diffraction data by applying direct methods. The new compound crystallizes in the triclinic space group P 1 bar . Unit cell dimensions are a = 7.4231(7) Å, b = 10.7649(10) Å, c = 12.1252(10) Å, α = 70.193(8)°, β = 83.914(7)° and γ = 88.683(7)°. K2Ca2Si8O19 is built up of corner-connected, slightly distorted [SiO4]-tetrahedra forming double-sheets, which are linked by double-chains of edge-sharing [CaO6]-octahedra. Electroneutrality of the material is provided by additional potassium atoms that are located within the voids of the silicate layers and between adjacent [Ca2O6]-double-chains. Further characterization of the compound was performed by Raman spectroscopy and differential thermal analysis. The behaviour of K2Ca2Si8O19 under high-temperature and high-pressure was investigated by in-situ high-temperature powder X-ray diffraction up to a maximum temperature of 1125 °C and a piston cylinder experiment at 1.5 GPa and 1100 °C. Additionally an overview of known double-layer silicates is given as well as a comparison of K2Ca2Si8O19 to closely related structures.

  20. Nd:YAG laser hyaloidotomy for valsalva pre-macular haemorrhage.

    LENUS (Irish Health Repository)

    Kirwan, R P

    2012-02-01

    AIM: To report a case of successful drainage of a large pre-macular haemorrhage using laser photo-disruption of the posterior hyaloid membrane. MATERIALS AND METHODS: A case report. RESULTS: A 47-year-old man presented acutely to our emergency department complaining of a 24-h history of sudden onset, painless and persistent loss of vision in his left eye. Immediately before noticing this loss of vision, he had been vomiting violently from excessive alcohol intake. The left visual acuity was counting fingers. Dilated fundoscopy of the left eye revealed a large pre-macular haemorrhage which was 14 disc diametres in size. Clotting investigations were normal. A diagnosis of valsalva retinopathy was made and the patient elected to receive a prompt neodymium-doped yttrium aluminium garnet (Nd:YAG) laser posterior hyaloidotomy as an outpatient. At 1 week follow-up, the haemorrhage had drained completely into the vitreous space revealing a healthy macula and the visual acuity had improved to 6\\/12 unaided. At 6-month follow-up the left visual acuity stabilised at 6\\/9 unaided. CONCLUSION: Nd:YAG laser posterior hyaloidotomy is a useful outpatient procedure for successful clearance of large pre-macular haemorrhages that offers patients rapid recovery of visual acuity and the avoidance of more invasive intraocular surgery.

  1. Water content contribution in calculus phantom ablation during Q-switched Tm:YAG laser lithotripsy.

    Science.gov (United States)

    Zhang, Jian J; Rajabhandharaks, Danop; Xuan, Jason Rongwei; Wang, Hui; Chia, Ray W J; Hasenberg, Tom; Kang, Hyun Wook

    2015-01-01

    Q-switched (QS) Tm:YAG laser ablation mechanisms on urinary calculi are still unclear to researchers. Here, dependence of water content in calculus phantom on calculus ablation performance was investigated. White gypsum cement was used as a calculus phantom model. The calculus phantoms were ablated by a total 3-J laser pulse exposure (20 mJ, 100 Hz, 1.5 s) and contact mode with N=15 sample size. Ablation volume was obtained on average 0.079, 0.122, and 0.391  mm3 in dry calculus in air, wet calculus in air, and wet calculus in-water groups, respectively. There were three proposed ablation mechanisms that could explain the effect of water content in calculus phantom on calculus ablation performance, including shock wave due to laser pulse injection and bubble collapse, spallation, and microexplosion. Increased absorption coefficient of wet calculus can cause stronger spallation process compared with that caused by dry calculus; as a result, higher calculus ablation was observed in both wet calculus in air and wet calculus in water. The test result also indicates that the shock waves generated by short laser pulse under the in-water condition have great impact on the ablation volume by Tm:YAG QS laser.

  2. Polycarbonate surface cell's adhesion examination after Nd:YAG laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Ramazani, S.A. Ahmad, E-mail: Ramazani@sharif.ir [Polymer Group, Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Mousavi, Seyyed Abbas, E-mail: Musavi@che.sharif.ir [Department of Chemistry, Sharif University of Technology, Tehran (Iran, Islamic Republic of); Seyedjafari, Ehsan [Department of Biotechnology, University College of Science, University of Tehran (Iran, Islamic Republic of); Poursalehi, Reza [Department of Physics, University of Shahed, Tehran (Iran, Islamic Republic of); Sareh, Shohreh [Research Center of Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Silakhori, Kaveh [Laser Research Center, Atomic Energy Organization, Tehran (Iran, Islamic Republic of); Poorfatollah, Ali Akbar [Research Center of Iranian Blood Transfusion Organization, Tehran (Iran, Islamic Republic of); Shamkhali, Amir Nasser [Department of Chemistry, Sharif University of Technology, Tehran (Iran, Islamic Republic of)

    2009-05-05

    Nd:YAG laser treatment was used in order to increase surface cell adhesion aspects of polycarbonate (PC) films prepared via melt process. The treatment was carried out under different wavelengths and beam diameters. ATR-FTIR and UV spectra obtained from different samples before and after laser treatment in air showed that laser irradiation has induced some chemical and physical changes in surface properties. The irradiated films were also characterized using scanning electron microscopy (SEM) and contact angle measurements. Effect of pulse numbers on the surface properties was also investigated. Cell culture test was used to evaluate cell adhesion property on the PC films before and after treatment. The results obtained from this test showed that after laser treatment, the cells were attached and proliferated extensively on the Nd:YAG laser treated films in comparison with the unmodified PC. Moreover, it was revealed that a decrease in the laser beam diameter and an increase in the irradiated pulse numbers increased surface wettability and caused a better cell attachment on the polymer surface. The obtained results also showed that a decrease in the laser beam diameter and an increase in the irradiated pulse numbers increased surface wettability and caused a better cell attachment on the polymer surface.

  3. High-frequency ultrasound evaluation of cellulite treated with the 1064 nm Nd:YAG laser.

    Science.gov (United States)

    Bousquet-Rouaud, Regine; Bazan, Marie; Chaintreuil, Jean; Echague, Agustina Vila

    2009-03-01

    To investigate non-invasive laser treatment for cellulite using the 1064 nm Nd:YAG laser and to correlate clinical results with high-frequency skin ultrasound images. Twelve individuals of normal weight were treated on either the left or right posterior side of the thigh with the following parameters: fluence 30 J/cm, 18 mm spot size and dynamic cooling device pulse duration of 30 ms. Three treatments were performed at intervals of 3-4 weeks, and followed-up 1 and 3 months after the last session. Photographs and ultrasound imaging were assessed before each session. The 1064 nm Nd:YAG laser resulted in a tightening of the skin and an improvement in cellulite. No side effects were reported. High-resolution ultrasound imaging showed a significant improvement in dermis density and a reduction of dermis thickness. The method is described in detail in Appendix 1. Infra-red lasers may constitute a safe and effective treatment for cellulite and high-frequency ultrasound imaging provides a quantitative and objective measurement of the treatment efficacy.

  4. Dependence of calculus retropulsion dynamics on fiber size and radiant exposure during Ho:YAG lithotripsy.

    Science.gov (United States)

    Lee, Ho; Ryan, Robert T; Kim, Jeehyun; Choi, Bernard; Arakeri, Navanit V; Teichman, Joel M H; Welch, A J

    2004-08-01

    During pulsed laser lithotripsy, the calculus is subject to a strong recoil momentum which moves the calculus away from laser delivery and prolongs the operation. This study was designed to quantify the recoil momentum during Ho:YAG laser lithotripsy. The correlation among crater shape, debris trajectory, laser-induced bubble and recoil momentum was investigated. Calculus phantoms made from plaster of Paris were ablated with free running Ho:YAG lasers. The dynamics of recoil action of a calculus phantom was monitored by a high-speed video camera and the laser ablation craters were examined with Optical Coherent Tomography (OCT). Higher radiant exposure resulted in larger ablation volume (mass) which increased the recoil momentum. Smaller fibers produced narrow craters with a steep contoured geometry and decreased recoil momentum compared to larger fibers. In the presence of water, recoil motion of the phantom deviated from that of phantom in air. Under certain conditions, we observed the phantom rocking towards the fiber after the laser pulse. The shape of the crater is one of the major contributing factors to the diminished recoil momentum of smaller fibers. The re-entrance flow of water induced by the bubble collapse is considered to be the cause of the rocking of the phantom.

  5. Modulation of Calcium Oxalate Crystallization by Proteins and Small Molecules Investigated by In Situ Atomic Force Microscopy

    Science.gov (United States)

    Qiu, R.; Orme, C.; Cody, A. M.; Wierzbicki, A.; Hoyer, J.; Nancollas, G.; de Yoreo, J.

    2002-12-01

    Understanding the physical mechanisms by which biological inhibitors control nucleation and growth of inorganic crystals is a major focus of biomineral research. Calcium oxalate monohydrate (COM), which plays a functional role in plant physiology, is also a source of pathogenesis in humans where it causes kidney stone disease. Although a great deal of research has been carried out on the modulation COM by proteins and small molecules, the basic mechanism has not yet been understood. However, because the proteins that play a role in COM growth have been identified and sequenced, COM provides an excellent model system for research into biomineral growth. In this study, in situ atomic force microscopy (AFM) was used to monitor the COM surface under controlled growth conditions both from pure solutions and those doped with citrate and osteopontin (OPN) in order to determine their effects on surface morphology and growth dynamics at the molecular level. As with other solution-grown crystals such as calcite, COM grows on complex dislocation hillocks. In pure solution, while growth on the (010) face is isotropic, hillocks on the (-101) face exhibit anisotropic step kinetics. Steps of [-10-1] and orientation are clearly delineated with the [-10-1] being the fast growing direction. When citrate is added to the solution, both growth rate and morphology are drastically changed on (-101) face, especially along the [-10-1] direction. This results in isotropic disc-shaped hillocks a shape that is then reflected in the macroscopic growth habit. In contrast, no large growth changes were observed on the (010) facet. At the same time, molecular modeling predicts an excellent fit of the citrate ion into the (-101) plane and a poor fit to the (010) face. Here we propose a model that reconciles the step-specific interactions implied by the AFM results with the face-specific predictions of the calculations. Finally, we present the results of doping with aspartic acid as well as OPN, an

  6. Laser reduction of specific microorganisms in the periodontal pocket using Er:YAG and Nd:YAG lasers: a randomized controlled clinical study.

    Science.gov (United States)

    Grzech-Leśniak, K; Sculean, A; Gašpirc, Boris

    2018-05-15

    The objective of this study was to evaluate the microbiological and clinical outcomes following nonsurgical treatment by either scaling and root planing, combination of Nd:YAG and Er:YAG lasers, or by Er:YAG laser treatment alone. The study involved 60 patients with generalized chronic periodontitis, randomly assigned into one of three treatment groups of 20 patients. The first group received scaling and root planing by hand instruments (SRP group), the second group received Er:YAG laser treatment alone (Er group), and the third group received combined treatment with Nd:YAG and Er:YAG lasers (NdErNd group). Microbiological samples, taken from the periodontal pockets at baseline and 6 months after treatments, were assessed with PET Plus tests. The combined NdErNd laser (93.0%), followed closely by Er:YAG laser (84.9%), treatment resulted in the highest reduction of all bacteria count after 6 months, whereas SRP (46.2%) failed to reduce Treponema denticola, Peptostreptococcus micros, and Capnocytophaga gingivalis. Full-mouth plaque and bleeding on probing scores dropped after 6 months and were the lowest in both laser groups. The combination of NdErNd resulted in higher probing pocket depth reduction and gain of clinical attachment level (1.99 ± 0.23 mm) compared to SRP (0.86 ± 0.13 mm) or Er:YAG laser alone (0.93 ± 0.20 mm) in 4-6 mm-deep pockets. Within their limits, the present results provide support for the combination of Nd:YAG and Er:YAG lasers to additionally improve the microbiological and clinical outcomes of nonsurgical periodontal therapy in patients with moderate to severe chronic periodontitis.

  7. Cutting of nonmetallic materials using Nd:YAG laser beam

    Institute of Scientific and Technical Information of China (English)

    Bashir Ahmed Tahir; Rashid Ahmed; M. G. B. Ashiq; Afaq Ahmed; M. A. Saeed

    2012-01-01

    This study deals with Nd:YAG laser cutting nonmetallic materials,which is one of the most important and popular industrial applications of laser.The main theme is to evaluate the effects of Nd:YAG laser beam power besides work piece scanning speed.For approximate cutting depth,a theoretical study is conducted in terms of material property and cutting speed.Results show a nonlinear relation between the cutting depth and input energy.There is no significant effect of speed on cutting depth with the speed being larger than 30 mm/s.An extra energy is utilized in the deep cutting.It is inferred that as the laser power increases,cutting depth increases.The experimental outcomes are in good agreement with theoretical results.This analysis will provide a guideline for laser-based industry to select a suitable laser for cutting,scribing,trimming,engraving,and marking nonmetallic materials.

  8. Photo-switch of pulsed Nd:YAG laser

    International Nuclear Information System (INIS)

    Ketta, W.W.J.

    1989-01-01

    In this work passive Q-switching and its effect on the output laser beam from a pulsed Nd:YAG laser was studied. This was achieved using the photochemically stable (BDNI) dye after dissolving it in dichloroethane. The absorption spectra of the dye solution and how suitable to use with Nd:YAG laser was also dealt with. Cooling unit for the laser system, a detector to detect the output pulse, and an electronic counter to measure the pulse duration were constructed. In the free-running regime, the divergence angle was measured. The form of the output, its energy, and how it is affected by the pumping energy were also studied. In the Q-switching regime, the relation between output and pumping energies was studied and compared to the same relation under the free-running regime. 5 tabs.; 33 figs.; 57 refs

  9. Cutting of nonmetallic materials using Nd:YAG laser beam

    International Nuclear Information System (INIS)

    Tahir, Bashir Ahmed; Ashiq, M.G. B.; Saeed, M.A.; Ahmed, Rashid; Ahmed, Afaq

    2012-01-01

    This study deals with Nd:YAG laser cutting nonmetallic materials, which is one of the most important and popular industrial applications of laser. The main theme is to evaluate the effects of Nd:YAG laser beam power besides work piece scanning speed. For approximate cutting depth, a theoretical study is conducted in terms of material property and cutting speed. Results show a nonlinear relation between the cutting depth and input energy. There is no significant effect of speed on cutting depth with the speed being larger than 30 mm/s. An extra energy is utilized in the deep cutting. It is inferred that as the laser power increases, cutting depth increases. The experimental outcomes are in good agreement with theoretical results. This analysis will provide a guideline for laser-based industry to select a suitable laser for cutting, scribing, trimming, engraving, and marking nonmetallic materials. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  10. Effects of Er:YAG laser irradiation on human cartilage

    Science.gov (United States)

    Glinkowski, Wojciech; Brzozowska, Malgorzata; Ciszek, Bogdan; Rowinski, Jan; Strek, Wieslaw

    1996-03-01

    Irradiation of the hyaline or fibrous cartilage excised from the body of a human cadaver with Er:YAG laser beam, single pulse with a dose of 1 J, produces a crater with a depth of approximately 500 micrometers and a diameter varying from 5 to 300 micrometers. Histological examination has revealed that the laser-made craters were surrounded by a thin rim (2-10 micrometer) of charred and coagulated tissue. No damage was observed in the cartilage surrounding the rim. The presence of sharp demarcation between the tissue areas ablated by laser energy and the undamaged areas argues for the potential usefulness of the Er:YAG laser in surgery of cartilages.

  11. Effects of Nd:YAG laser pulse frequency on the surface treatment of Ti 6Al 4V alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gursel, Ali [International University of Sarajevo (Bosnia and Herzegovina). Dept. of Mechanical Engineering

    2016-07-01

    The desirable properties of titanium and titanium alloys, including excellent corrosion resistance, high strength to weight ratio and high operating temperature, have led to their successful application in various fields such as the medical and aerospace industries. Among the reliable treatment techniques, laser welding can provide significant advantages for the titanium alloys because of its precision, rapid processing capability and ability to control the welding parameters and their effects. The morphology and the quality of pulsed seam welds are directly or synergistically influenced by the Nd:YAG laser parameters of pulse shape, energy, duration, travel speed, peak power and frequency of repetition. In this study, a 1.5 mm thick Ti-6Al-4V alloy sheet surface was treated by SigmaLaser {sup registered} 300 Nd:YAG pulsed laser. The influence of the pulse frequency on seam morphology and surface effects was then investigated. The seam and surface quality were characterized in terms of weld morphology and microhardness. The results showed that, for Nd:YAG laser seams used for surface treatment, pulse repetition was more effective on the cooling rate than had been expected.

  12. Tritium Decontamination of TFTR D-T Graphite Tiles Employing Ultra Violet Light and a Nd:YAG Laser

    International Nuclear Information System (INIS)

    Gentile, C.A.; Skinner, C.H.; Young, K.M.; Ciebiera, L.

    1999-01-01

    The use of an ultra violet (UV) light source (wavelength = 172 nm) and a Nd:YAG Laser for the decontamination of the Tokamak Fusion Test Reactor (TFTR) deuterium-tritium (D-T) tiles will be investigated at the Princeton Plasma Physics Laboratory (PPPL). The development of this form of tritium decontamination may be useful for future D-T burning fusion devices which employ carbon plasma-facing components on the first wall. Carbon tiles retain hydrogen isotopes, and the in-situ tritium decontamination of carbon can be extremely important in maintaining resident in-vessel tritium inventory to a minimum. A test chamber has been designed and fabricated at PPPL. The chamber has the ability to be maintained under vacuum, be baked to 200 *C, and provides sample ports for gas analyses. Tiles from TFTR that have been exposed to D-T plasmas will be placed within the chamber and exposed to either an UV light source or the ND:YAG Laser. The experiment will determine the effectiveness of these two techniques for the removal of tritium. In addition, exposure rates and scan times for the UV light source and/or Nd:YAG Laser will be determined for tritium removal optimization from D-T tiles

  13. Investigations of the local environment and macroscopic alignment behavior of novel polymerizeable lyotropic liquid crystals using nuclear magnetic resonance

    Science.gov (United States)

    Juang, Elizabeth

    In this dissertation, a variety of NMR techniques were used to explore the local environment of novel polymerizeable lyotropic liquid crystals (LLC). The LLC monomers examined in this study self-assemble in the presence of a small amount of water to form uniform, nanometer-scale tubes with aqueous interiors. The phase architecture is retained upon photopolymerization to yield the resulting nanoporous material. By dissolving reactive precursors into the aqueous phase, well- structured nancomposite materials have also been formed. Proposed uses for these novel polymerizeable LLCs are as porous water filtration membranes, as heterogeneous organic catalysts, and as nanocomposite materials for load bearing and optical applications. In order to better exploit these polymerizeable LLCs for materials development, the local environment must be examined. In addition, the macroscopic orientation of these materials remains an important step in their advancement. Various NMR studies were conducted on these novel LLCs. NMR T1 relaxation measurements were conducted to elucidate the local environment and dynamics of the 23Na counterions located inside the aqueous channels. 2H NMR line shape analyses were used to characterize the local structure and dynamics near the hydrophilic headgroup. 29 Si NMR studies were performed on silica nanocomposites formed with these LLC structures. Finally, the macroscopic alignment behavior of these novel LLCs using shear and magnetic fields was examined.

  14. Preparation of three terbium complexes with p-aminobenzoic acid and investigation of crystal structure influence on luminescence property

    International Nuclear Information System (INIS)

    Ye Chaohong; Sun Haoling; Wang Xinyi; Li Junran; Nie Daobo; Fu Wenfu; Gao Song

    2004-01-01

    Three new rare earth p-aminobenzoic acid complexes, [Tb 2 L 6 (H 2 O) 2 ] n (1), [Tb 2 L 6 (H 2 O) 4 ].2H 2 O (2) and [Tb(phen) 2 L 2 (H 2 O) 2 ](phen)L·4H 2 O (3) (HL: p-aminobenzoic acid; phen: 1, 10-phenanthroline), with different structural forms are reported in this paper. Complex 1 is a polymolecule with a two-dimensional plane structure. Compound 2 is a binuclear molecule, and 3 appears to be a mononuclear complex. The fluorescence intensity, the fluorescence life-time and emission quantum yield of 2, which has two coordination water molecules, is better than those of 1, which has only one coordination water molecule. This is an unusual phenomenon for general fluorescent rare earth complexes. The fluorescence performance of 3 is the most unsatisfactory among the three complexes. Their crystal structures show that the coordination mode of the ligand is an important factor influencing the luminescence properties of a fluorescent rare earth complex

  15. Investigation of a diode-pumped intracavity optical parametric oscillator in pulsed and continuous wave operation

    DEFF Research Database (Denmark)

    Jensen, Ole Bjarlin; Skettrup, Torben; Balle-Petersen, O.

    2001-01-01

    Summary form only given. CW and pulsed compact tunable laser sources in the infrared have widespread scientific, medical and industrial applications. Such a laser source can be obtained by use of a diode-pumped intracavity optical parametric oscillator (IOPO). We report on a IOPO based on a Yb......:YAG laser incorporating a periodically poled LiNbO3 (PPLN) crystal inside the laser cavity to take advantage of the high circulating intracavity field. The Yb:YAG crystal is pumped by a reliable 940 nm fibre-coupled diode laser. The IOPO consists of a Yb:YAG crystal coated for HR at 1030 nm, an intracavity...... lens to generate a beam waist in the PPLN crystal, a dichroic mirror to separate the laser and signal fields and two end mirrors...

  16. Luminescence properties and energy transfer processes in YAG:Yb,Er single crystalline films

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Gorbenko, V.; Savchyn, V.; Batentschuk, M.; Osvet, A.; Brabec, C.

    2013-01-01

    The paper is dedicated to the study of the optical properties of YAG:Yb,Er single-crystalline films (SCF) grown by liquid phase epitaxy. The absorption, cathodoluminescence and time-resolved photoluminescence spectra and photoluminescence decay curves were measured for the SCFs with different doping levels of Er 3+ (from 0.6 to 4.2 at.%) and Yb 3+ (from 0.1 to 0.6 at.%). The spectra, excited by synchrotron radiation in the fundamental absorption range of the YAG and in the intraionic absorption bands of both dopants, reveal energy transfer from the YAG host to the Er 3+ and Yb 3+ ions and between these ions. -- Highlights: •Growth of YAG:Yb,Er single crystalline films by LPE method. •Peculiarities of luminescence of YAG:Yb,Er films with different Er–Yb content. •Yb–Er energy transfer processes in YAG hosts

  17. Heat effect of pulsed Er:YAG laser radiation

    Science.gov (United States)

    Hibst, Raimund; Keller, Ulrich

    1990-06-01

    Pulsed Er:YAG laser radiation has been found to be effective for dental enamel and dentin removal. Damage to the surrounding hard tissue is little, but before testing the Er:YAG laser clinically for the preparation of cavities, possible effects on the soft tissue of the pulp must be known. In order to estimate pulp damage , temperature rise in dentin caused by the laser radiation was measured by a thermocouple. Additionally, temperature distributions were observed by means of a thermal imaging system. The heat effect of a single Er:YAG laser pulse is little and limited to the vicinity of the impact side. Because heat energy is added with each additional pulse , the temperature distribution depends not only on the radiant energy, but also on the number of pulses and the repetition rate. Both irradiation conditions can be found , making irreversible pulp damage either likely or unlikely. The experimental observations can be explained qualitatively by a simple model of the ablation process.

  18. Bactericidal effect of Nd:YAG laser irradiation in endodontics

    Science.gov (United States)

    Aun, Carlos E.; Barberini, Alexandre F.; Camargo, Selma C. C.; Silva Kfouri, Luciana; Lorenzetti Simionato, Maria R.

    1999-05-01

    The success of endodontic therapy is based on the elimination of bacterial colonization from the endodontic system and periapical tissues. Recent studies have been showing the bactericidal effect of laser in root canal treatment. The propose of the study is to evaluate the effect of Nd:YAG laser irradiation in contaminated root canal treatment. The propose of the study is to evaluate the effect of Nd:YAG laser irradiation in contaminated root canals from upper central incisor. For the experiment 12 teeth were selected, respect at the apical third, sterilized, and 10 μm Streptococcus sanguis liquid culture were inoculated in the root canals. The laser test groups were irradiated with Nd:YAG laser at standard setting of 15Hz, 100mj and 1,5 W for 10, 20 and 30 seconds each in slow helicoidal movements from the apex to the top using a 300 micrometers fiber. After the procedure the specimens were placed in Tryptic Soy Agar, the number of colony forming units was evaluated. The experiment showed a significant reduction on viability of Streptococcus sanguis at the respective time of 20 and 30 seconds.

  19. Efficient second harmonics generation of a laser-diode-pumped Nd:YAG laser and its applications. Laser diode reiki Nd:YAG laser no kokoritsu daini kochoha hassei to sono oyo

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, S.; Oka, M. (Sony Corp., Tokyo (Japan))

    1991-08-10

    Stabilization of the second harmonics in a laser-diode-pumped Nd:YAG laser and its application are described. The laser is a quantum noise limiting laser, in which a mode competing noise is generated from an interaction between the laser medium Nd:YAG and the type II nonlinear optical crystal KTiOPO{sub 4} when generating a second harmonics in the resonator. However, the quantum noise limiting second harmonics was obtained by means of inserting (1/4) wave length plate in the resonator to release the bond between two intersecting inherent polarization modes. This stabilized green laser is of a single lateral mode is nearly free of aberration. Therefore, an optical disc prototype having three times as much of the currently used density was made using an objective lens having high number of openings to collect lights, which was verified capable of regeneration at a high signal to noise ratio. In addition, higher output is possible by means of parallelizing the excitation, and high output is realized from edge excitation at a fiber bundle. 18 refs., 3 figs.

  20. The investigation of multi-channel splitters and big-bend waveguides based on 2D sunflower-typed photonic crystals

    Science.gov (United States)

    Liu, Wei; Sun, XiaoHong; Fan, QingBin; Wang, Shuai; Qi, YongLe

    2016-12-01

    Different kinds of multi-channel splitters and big-bend waveguides have been designed and investigated by using sunflower-typed photonic crystals. By comparing the transmission spectra of two kinds of 4-channels beam splitters, we find that "C" type splitter has a relative uniform splitting ratio for different channels in a certain wavelength range. Furthermore three types of waveguides with different bending degrees have been investigated. Except for a little loss in the short wavelength with the increase of the bending degrees, they have almost the same transmission spectra structures. The result can be extended to big-bend waveguides with arbitrary bending degrees. This research is valuable for developing new-typed integrated optical communication devices.

  1. Numerical investigation of the propagation of elastic wave modes in a one-dimensional phononic crystal plate coated on a uniform substrate

    International Nuclear Information System (INIS)

    Hou Zhilin; Assouar, Badreddine M

    2009-01-01

    The propagation of wave modes in a two-layer free standing plate composed of a one-dimensional phononic crystal (PC) thin layer coated on a uniform substrate was investigated numerically by the modified plane wave expansion method. The band structures of the system with different thicknesses of the substrate were calculated. The numerical result showed that Bragg scattering by the periodic structure in a PC and wave scattering by the free surface could be coupled to each other with an added substrate layer. The properties of the confined modes in such a system, for example, the Love-wave-like mode, the confined PC mode (which is localized mainly in the PC layer) and the surface mode on the free surface of the substrate layer, were investigated.

  2. Investigation of the Microstructure and Mechanical Properties of Copper-Graphite Composites Reinforced with Single-Crystal α-Al₂O₃ Fibres by Hot Isostatic Pressing.

    Science.gov (United States)

    Zhang, Guihang; Jiang, Xiaosong; Qiao, ChangJun; Shao, Zhenyi; Zhu, Degui; Zhu, Minhao; Valcarcel, Victor

    2018-06-11

    Single-crystal α-Al₂O₃ fibres can be utilized as a novel reinforcement in high-temperature composites owing to their high elastic modulus, chemical and thermal stability. Unlike non-oxide fibres and polycrystalline alumina fibres, high-temperature oxidation and polycrystalline particles boundary growth will not occur for single-crystal α-Al₂O₃ fibres. In this work, single-crystal α-Al₂O₃ whiskers and Al₂O₃ particles synergistic reinforced copper-graphite composites were fabricated by mechanical alloying and hot isostatic pressing techniques. The phase compositions, microstructures, and fracture morphologies of the composites were investigated using X-ray diffraction, a scanning electron microscope equipped with an X-ray energy-dispersive spectrometer (EDS), an electron probe microscopic analysis equipped with wavelength-dispersive spectrometer, and a transmission electron microscope equipped with EDS. The mechanical properties have been measured by a micro-hardness tester and electronic universal testing machine. The results show that the reinforcements were unevenly distributed in the matrix with the increase of their content and there were some micro-cracks located at the interface between the reinforcement and the matrix. With the increase of the Al₂O₃ whisker content, the compressive strength of the composites first increased and then decreased, while the hardness decreased. The fracture and strengthening mechanisms of the composite materials were explored on the basis of the structure and composition of the composites through the formation and function of the interface. The main strengthening mechanism in the composites was fine grain strengthening and solid solution strengthening. The fracture type of the composites was brittle fracture.

  3. Investigations into the Surface Strain/Stress State in a Single-Crystal Superalloy via XRD Characterization

    Directory of Open Access Journals (Sweden)

    Haodong Duan

    2018-05-01

    Full Text Available The present study was aimed at determining the surface strain/stress state in an Ni-based single-crystal (SC superalloy that was subjected to two different cooling rates from solid solution temperature through using the X-ray diffraction (XRD method. The normal stresses σ 11 s and σ 22 s were determined, then the Von Mises stresses ( σ V M s were derived from them. Field emission gun scanning electron microscope (FEG-SEM and transmission electron microscope (TEM micrographs were taken to illustrate the strain/stress state change. The precipitation of the secondary γ′ phases in the γ phase and the formation of the dislocation in the interphase upon a slower cooling rate caused the γ phase lattice distortion to increase, so a larger σ V M s of the γ phase was realized in comparison to the faster cooling sample. For both of the two cooling modes, we found that the σ V M s of the γ′ phase increased due to the growth of the γ′ phase during the aging process. Also, the aging process led to pronouncedly anisotropic lattice mismatches in the {331} and {004} planes. In addition, the surface strain/stress states of a cylinder sample and a tetragonal sample were also studied using a faster cooling rate, and σ 11 s and σ 22 s were analyzed to explain the influence of the shape factor on the stress anisotropy in the [001] and [ 1 1 ¯ 0 ] orientations. The strain in the [001] orientation of the γ phase is more sensitive to the shape change.

  4. Gingival melanin depigmentation by Er:YAG laser: A literature review.

    Science.gov (United States)

    Pavlic, Verica; Brkic, Zlata; Marin, Sasa; Cicmil, Smiljka; Gojkov-Vukelic, Mirjana; Aoki, Akira

    2018-04-01

    Laser ablation is recently suggested as a most effective and reliable technique for depigmentation of melanin hyperpigmented gingiva. To date, different lasers have been used for gingival depigmentation (CO 2 , diode, Nd:YAG, Er:YAG and Er,Cr:YSGG lasers). The use of Er:YAG laser for depigmentation of melanin hyperpigmented gingiva has gained increasing importance in recent years. The purpose of this study was to report removal of gingival melanin pigmentation using an Er:YAG laser in a literature review. The main outcomes, such as improvement of signs (clinical parameters of bleeding, erythema, swelling and wound healing), symptoms (pain) and melanin recurrence/repigmentation were measured. The literature demonstrated that depigmentation of gingival melanin pigmentation can be performed safely and effectively by Er:YAG laser resulting in healing and an esthetically significant improvement of gingival discoloration. Thus, Er:YAG laser seems to be safe and useful in melanin depigmentation procedure. However, the main issue in giving the final conclusion of the optimal Er:YAG laser use in melanin depigmentation is that, to date, studies are offering completely discrepant Er:YAG laser procedure protocols (complex settings of laser parameters), and different criteria for the assessment of depigmentation and repigmentation (recurrence), thus hampering the comparison of the results. Therefore, further studies are necessary to give an optimal recommendation on the use of Er:YAG laser in gingival melanin hyperpigmentation.

  5. Effectiveness and harmful effects of removal sulphated black crust from granite using Nd:YAG nanosecond pulsed laser

    Energy Technology Data Exchange (ETDEWEB)

    Pozo, S. [Dpto. Ingeniería de los Recursos Naturales y Medio Ambiente, ETSI Minas, University of Vigo, 36310 (Spain); Barreiro, P. [Dpto. Física Aplicada, E.T.S.I. Industriales, University of Vigo, 36310 (Spain); Rivas, T. [Dpto. Ingeniería de los Recursos Naturales y Medio Ambiente, ETSI Minas, University of Vigo, 36310 (Spain); González, P. [Dpto. Física Aplicada, E.T.S.I. Industriales, University of Vigo, 36310 (Spain); Fiorucci, M.P. [Centro de Investigacións Tecnolóxicas (CIT), University of A Coruña, 15403, Ferrol (Spain)

    2014-05-01

    Sulphated black crust is a common form of deterioration affecting stone used in monuments, usually occurs in contaminated atmospheres or urban environments. Its origin and cleaning have been studied extensively, for decades, in the case of carbonate rocks. Recent studies show that this form of alteration also affects granites. Scientific research on laser removal effectiveness of gypsum-rich black crust on granites needs to be scientifically addressed considering the inexistent references. This paper assesses the removal by laser of sulphate-rich black crusts on granite using the different harmonics of a Nd:YAG nanosecond pulsed laser (266 nm, 355 nm, 532 nm and 1064 nm). Effectiveness was evaluated using Scanning Electron Microscopy with Energy Dispersive X-ray Spectrometry (SEM–EDS), X-Ray Diffraction (XRD) and Attenuated Total Reflection-Fourier Infrared Transform Spectroscopy (ATR-FTIR). We also evaluated the effect of the radiation on granite-forming minerals and on the colour of the stone using Scanning Electron Microscopy and spectrophotometry colour measurements respectively. SEM–EDS, XRD and ATR-FTIR analyses show that the higher the wavelength, the more efficient the cleaning, so samples cleaned using 1064 nm pulsed laser recovered its original colour. Nevertheless, the Nd:YAG laser did not completely eliminate the crust, and gypsum crystals remaining on the rock surface are observed, even at the most effective wavelength.

  6. A 40 W cw Nd:YAG solar laser pumped through a heliostat: a parabolic mirror system

    International Nuclear Information System (INIS)

    Almeida, J; Liang, D; Guillot, E; Abdel-Hadi, Y

    2013-01-01

    Solar-pumped solid-state lasers are promising for renewable extreme-temperature material processing. Here, we report a significant improvement in solar laser collection efficiency by pumping the most widely used Nd:YAG single-crystal rod through a heliostat–parabolic mirror system. A conical-shaped fused silica light guide with 3D-CPC output end is used to both transmit and compress the concentrated solar radiation from the focal zone of a 2 m diameter parabolic mirror to a 5 mm diameter Nd:YAG rod within a conical pump cavity, which enables multi-pass pumping through the laser rod. 40 W cw laser power is measured, corresponding to 13.9 W m −2 record-high collection efficiency for the solar laser pumped through a heliostat–parabolic mirror system. 2.9% slope efficiency is fitted, corresponding to 132% enhancement over that of our previous pumping scheme. A 209% reduction in threshold pump power is also registered. (paper)

  7. On the use of a chirped Bragg grating as a cavity mirror of a picosecond Nd : YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Zubko, A E; Shashkov, E V; Smirnov, A V; Vorob' ev, N S [A M Prokhorov General Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Smirnov, V I [OptiGrate Corp., 562 South Econ Circle, Oviedo, Florida 32765-4311 (United States)

    2016-02-28

    The first experimental evidence is presented that the use of a chirped volume Bragg grating (CVBG) as a cavity mirror of a Q-switched picosecond Nd : YAG laser with self-mode-locking leads to significant changes in the temporal parameters of the laser output. Measurements have been performed at two positions of the CVBG: with the grating placed so that shorter wavelengths reflected from its front part lead longer wavelengths or with the grating rotated through 180°, so that longer wavelengths are reflected first. In the former case, the duration of individual pulses in a train increased from ∼35 to ∼300 ps, whereas the pulse train shape and duration remained the same as in the case of a conventional laser with a mirror cavity. In the latter case, the full width at half maximum of pulse trains increased from ∼70 ns (Nd : YAG laser with a mirror cavity) to ∼1 ms, and the duration of individual pulses increased from 35 ps to ∼1.2 ns, respectively, which is more typical of free-running laser operation. (laser crystals and braggg ratings)

  8. Effectiveness and harmful effects of removal sulphated black crust from granite using Nd:YAG nanosecond pulsed laser

    International Nuclear Information System (INIS)

    Pozo, S.; Barreiro, P.; Rivas, T.; González, P.; Fiorucci, M.P.

    2014-01-01

    Sulphated black crust is a common form of deterioration affecting stone used in monuments, usually occurs in contaminated atmospheres or urban environments. Its origin and cleaning have been studied extensively, for decades, in the case of carbonate rocks. Recent studies show that this form of alteration also affects granites. Scientific research on laser removal effectiveness of gypsum-rich black crust on granites needs to be scientifically addressed considering the inexistent references. This paper assesses the removal by laser of sulphate-rich black crusts on granite using the different harmonics of a Nd:YAG nanosecond pulsed laser (266 nm, 355 nm, 532 nm and 1064 nm). Effectiveness was evaluated using Scanning Electron Microscopy with Energy Dispersive X-ray Spectrometry (SEM–EDS), X-Ray Diffraction (XRD) and Attenuated Total Reflection-Fourier Infrared Transform Spectroscopy (ATR-FTIR). We also evaluated the effect of the radiation on granite-forming minerals and on the colour of the stone using Scanning Electron Microscopy and spectrophotometry colour measurements respectively. SEM–EDS, XRD and ATR-FTIR analyses show that the higher the wavelength, the more efficient the cleaning, so samples cleaned using 1064 nm pulsed laser recovered its original colour. Nevertheless, the Nd:YAG laser did not completely eliminate the crust, and gypsum crystals remaining on the rock surface are observed, even at the most effective wavelength.

  9. A novel dual-wavelength, Nd:YAG, picosecond-domain laser safely and effectively removes multicolor tattoos.

    Science.gov (United States)

    Bernstein, Eric F; Schomacker, Kevin T; Basilavecchio, Lisa D; Plugis, Jessica M; Bhawalkar, Jayant D

    2015-07-14

    Although nanosecond-domain lasers have been the mainstay of laser tattoo removal for decades, recent disruptive innovations in laser design have introduced a new class of commercial Q-switched lasers that generate picosecond-domain pulses. A picosecond-domain, Nd:YAG laser with a KTP frequency-doubling crystal was used to treat 31 decorative tattoos in 21 subjects. Safety and effectiveness were determined by blinded evaluation of digital images in this prospective clinical study. The average clearance overall as evaluated by blinded observers evaluating randomized digital photographs was 79 ± 0.9% (mean ± sem) after an average of 6.5 treatments. Of the 31 tattoos completing treatment, 6 had evidence of mild hyper- or hypo-pigmentation by evaluation of photographs. The 350 picosecond, 532 nm, and 450 picosecond 1,064 nm Nd:YAG laser is safe and effective for removing decorative tattoos. Lasers Surg. Med. © 2015 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc. © 2015 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc.

  10. A novel dual‐wavelength, Nd:YAG, picosecond‐domain laser safely and effectively removes multicolor tattoos

    Science.gov (United States)

    Schomacker, Kevin T.; Basilavecchio, Lisa D.; Plugis, Jessica M.; Bhawalkar, Jayant D.

    2015-01-01

    Background and Objectives Although nanosecond‐domain lasers have been the mainstay of laser tattoo removal for decades, recent disruptive innovations in laser design have introduced a new class of commercial Q‐switched lasers that generate picosecond‐domain pulses. Study A picosecond‐domain, Nd:YAG laser with a KTP frequency‐doubling crystal was used to treat 31 decorative tattoos in 21 subjects. Safety and effectiveness were determined by blinded evaluation of digital images in this prospective clinical study. Results The average clearance overall as evaluated by blinded observers evaluating randomized digital photographs was 79 ± 0.9% (mean ± sem) after an average of 6.5 treatments. Of the 31 tattoos completing treatment, 6 had evidence of mild hyper‐ or hypo‐pigmentation by evaluation of photographs. Conclusion The 350 picosecond, 532 nm, and 450 picosecond 1,064 nm Nd:YAG laser is safe and effective for removing decorative tattoos. Lasers Surg. Med. 47:542–548, 2015. © 2015 The Authors. Lasers in Surgery and Medicine Published by Wiley Periodicals, Inc. PMID:26175187

  11. A structure and second-harmonic generation of crystals Li B3O5

    International Nuclear Information System (INIS)

    Burak, Ya.V.

    1997-01-01

    Projections of atoms of nonlinear optical crystals Li B 3 O 5 onto planes perpendicular to directions of the phase matching of type-1 and type-2 for second-harmonic generation (SHG) in a YAG:Nd laser are constructed. Analyses of the interdependence of orientations of (B 3 O 7 ) 5 -complexes and of the effectiveness of SHG are conducted

  12. Passive Fe2+ : ZnSe single-crystal Q switch for 3-mu m lasers

    NARCIS (Netherlands)

    Voronov, AA; Kozlovskii, [No Value; Korostelin, YV; Podmar'kov, YP; Polushkin, VG; Frolov, MP

    Passive Q-switching of 3-mu m lasers with the help of a Fe2+ : ZnSe single crystal is demonstrated. The 6-mJ, 50-ns giant pulses are obtained from a 2.9364-mu m Er : YAG laser by using this passive Q switch.

  13. Computational model of dual q-switching and lasing processes of the pulsed Cr4+:YAG laser pumped by Nd-glass laser

    International Nuclear Information System (INIS)

    Abdul Ghani, B.; Hammadi, M.

    2007-01-01

    A mathematical model describing the absorption and oscillation processes of intracavity Cr 4+ : YAG crystal pumped by Nd-glass laser has been developed, in order to describe the temporal behavior of laser-absorber system. The model has been assumed that the Cr 4+ ions excited to a higher level by excited state absorption, followed by relaxation directly to the upper laser level through fast channel, and indirectly through slow proposed intermediate channel at different lifetimes. The model offers simple kinetic mechanisms for pulsed solid state lasers and also the influence of the variations of the laser input parameters (pumping rate, maximum amplification coefficient and loss coefficient) on the output pulse characteristics of the passive Q-switched Nd-glass and pulsed Cr 4+ : YAG lasers. The model estimates the temporal behavior of the population densities of different levels and laser beam densities as well as predicts the nanosecond output laser pulses of passive Q-switched Nd-glass laser and pulsed Cr 4+ : YAG laser. The calculated results are in good agreement with the available experimental and theoretical data in the literature. (author)

  14. Investigation of high resolution compact gamma camera module based on a continuous scintillation crystal using a novel charge division readout method

    International Nuclear Information System (INIS)

    Dai Qiusheng; Zhao Cuilan; Qi Yujin; Zhang Hualin

    2010-01-01

    The objective of this study is to investigate a high performance and lower cost compact gamma camera module for a multi-head small animal SPECT system. A compact camera module was developed using a thin Lutetium Oxyorthosilicate (LSO) scintillation crystal slice coupled to a Hamamatsu H8500 position sensitive photomultiplier tube (PSPMT). A two-stage charge division readout board based on a novel subtractive resistive readout with a truncated center-of-gravity (TCOG) positioning method was developed for the camera. The performance of the camera was evaluated using a flood 99m Tc source with a four-quadrant bar-mask phantom. The preliminary experimental results show that the image shrinkage problem associated with the conventional resistive readout can be effectively overcome by the novel subtractive resistive readout with an appropriate fraction subtraction factor. The response output area (ROA) of the camera shown in the flood image was improved up to 34%, and an intrinsic spatial resolution better than 2 mm of detector was achieved. In conclusion, the utilization of a continuous scintillation crystal and a flat-panel PSPMT equipped with a novel subtractive resistive readout is a feasible approach for developing a high performance and lower cost compact gamma camera. (authors)

  15. Steady-state and time-resolved spectroscopic investigations on intramolecular electron transfer processes within a synthesized methoxynaphthalene dyad by using a nematic liquid crystal medium

    International Nuclear Information System (INIS)

    Bardhan, Munmun; Mandal, Paulami; De, Asish; Kumar De, Avijit; Chowdhury, Joydeep; Ganguly, Tapan

    2010-01-01

    UV-vis, steady state and time-resolved spectroscopic investigations were made on photoinduced charge separation and thermal charge recombination processes involved within a novel synthesized dyad, 1-(4-chloro-phenyl)-3-(4-methoxy-naphthalen-1-yl)-propenone (MNCA) where the donor 1-methoxynaphthalene (MNT) and the acceptor p-choloroacetophenone (PCA) moieties are connected by a short unsaturated olefinic bond. The measurements were made within the pseudo-ordered domain (just above nematic-isotropic (N-I) phase transition temperature, >308 K) of a nematic liquid crystal, 4-(n-pentyl)-4'-cyanobiphenyl (5CB). Results observed are compared with those obtained from the similar measurements in isotropic media. The charge separation and recombination rates remain more-or-less unchanged within the experimental error irrespective of the polarity of the environment, whether in pseudo-ordered domain (ε S ∼10.5) of a nematic liquid crystal 5CB or in highly polar isotropic medium ACN (ε S ∼37.5). The structural rigidity of the dyad MNCA having stable elongated form both in the ground as well as in the photoexcited states seems to be the reason for this unique behavior of solvent insensitivity. The theoretical predictions done by ab initio method density functional theory (DFT) with B3LYP/6-311 G (d, p) basis function correlate well with experimental observations of formations of only one stable elongated (E-type) conformer both in the ground and electronic excited state.

  16. Investigation of the martensitic phase transformations in CoFe single crystals using high-resolution transmission electron microscopy

    International Nuclear Information System (INIS)

    Waitz, T.

    1999-06-01

    In CoFe crystals containing 0.85, 1.5, 5.75 and 6.0at.% Fe the thermally induced martensitic phase transformations between the close packed lattices face centered cubic (fcc), double hexagonal close packed (dhcp) and hexagonal close packed (hcp) were studied. Transmission electron microscopy methods were applied including in-situ experiments; both high-resolution transmission electron microscopy (HRTEM) images and lattice fringe images were used to analyze the transformations at an atomic scale. Based on the results of both the transformations in the bulk and the in-situ transformations it is concluded that the phase transitions occur by the formation of lamellae on the close packed habit planes. The lamellae have a minimum thickness of 10 to 15 close packed planes; therefore transformation models that are based on random overlap of stacking faults can be excluded. The glissile transformation fronts of the lamellae contain transformation dislocations (partials) that are correlated on an atomic scale. In the HRTEM images partials that are only about 0.2 nm apart were resolved and analyzed in detail by circuits that are similar to Burgers circuits. Two attracting partials on adjacent close packed planes are the structural units of the transformation fronts; they are dipoles and paired partials (with a total Burgers vector of a single partial) in the case of the transformations hcp dhcp and fcc dhcp, respectively. Different arrangements of the partials at the transformation fronts lead to two different modes A and B of the phase transition. These two modes seem to be competitive processes that can be favored by different parameters of the material (as chemical composition and microstructure). Partials of mode A transformations have the same Burgers vectors; therefore the partials repel each other causing long range internal stresses and large transformation shear strains that can lead to a surface relief. Whereas, partials of mode B transformations have different

  17. Crystallographic Investigations into Properties of Acentric Hybrid Perovskite Single Crystals NH(CH3)3SnX3(X = Cl, Br)

    KAUST Repository

    Dang, Yangyang; Zhong, Cheng; Zhang, Guodong; Ju, Dianxing; Wang, Lei; Xia, Shengqing; Xia, Haibing; Tao, Xutang

    2016-01-01

    substitute for the lead in the halides perovskites and solving the ambiguous crystal structures and phase transition of NH(CH3)3SnX3 (X = Cl, Br). Here, we report the bulk crystal growths and different crystal morphologies of orthorhombic hybrid perovskites

  18. Laser-Assisted Liposuction Using the Novel 1,444-nm Nd:YAG Laser for the Treatment of Gynecomastia: A Pilot Study.

    Science.gov (United States)

    Yoo, Kwang Ho; Bae, Jung Min; Won, Chae Young; Chung, Yu Seok; Goo, Boncheol; Rho, Yong Kwan; Kim, Gyong Moon; Lee, Jongwon; Ahn, Byeong Heon; Kim, Beom Joon

    2015-01-01

    Laser-assisted liposuction (LAL) is currently widely used to reduce localized fat. A novel Nd:YAG laser that uses a wavelength of 1,444 nm, which is better absorbed by fat, has recently been introduced. In this study, we investigated the efficacy of 1,444-nm Nd:YAG LAL for the treatment of gynecomastia. Thirteen Korean male patients (20-28 years, mean age 23 years) diagnosed with gynecomastia were enrolled in this study. All patients were treated by LAL with 1,444-nm Nd:YAG laser (100 µs pulse width, 40 Hz frequency, 300 mJ pulse energy and 12 W power with continuous emission) after tumescent anesthetic infiltration and were then evaluated. Outcome was assessed using the following 4 methods: (1) clinical assessment with photographs obtained before and 12 weeks after LAL treatment, (2) comparison of pre- and postoperative patient chest circumferences, (3) computed tomography (CT) scans to evaluate changes in breast thickness and (4) a patient satisfaction survey at the end of the study. After 12 weeks, most patients (84.5%) showed an improvement greater than 50%. Mean chest circumference was significantly reduced from 109.6 ± 8.2 to 101.2 ± 4.4 cm 12 weeks after LAL (p Gynecomastia can be safely treated with 1,444-nm Nd:YAG LAL to reduce fatty tissue and total breast volume. © 2015 S. Karger AG, Basel.

  19. Variation on Molecular Structure, Crystallinity, and Optical Properties of Dentin Due to Nd:YAG Laser and Fluoride Aimed at Tooth Erosion Prevention

    Science.gov (United States)

    Freitas, Anderson Z.; Bachmann, Luciano; Benetti, Carolina; Ana, Patricia A.

    2018-01-01

    This in vitro study evaluated the compositional, crystalline, and morphological effects promoted by Nd:YAG laser on root dentin, and verified the effects of laser and topical acidulated phosphate fluoride application (APF-gel) on dentin erosion. 180 bovine dentin slabs were randomized into 4 groups (n = 45): G1–untreated, G2–APF-gel (1.23% F−, 4 min), G3–Nd:YAG (1064 nm, 84.9 J/cm2, 10 Hz), and G4–APF-gel application followed by Nd:YAG laser irradiation. The compositional, crystalline, and morphological effects promoted by treatments were investigated on five samples of each experimental group. The other samples were submitted to a 5-day, 10-day, or 15-day erosive and abrasive demineralization and remineralization cycling in order to create erosion lesions. The area and depth of lesions, as well as the optical attenuation coefficient, were assessed, and all data were statistically analysed (p laser promoted the reduction of carbonate, the formation of tetracalcium phosphate, as well as the melting and recrystallization of the dentin surface. Laser significantly decreased the area and depth of erosion lesions and altered the optical attenuation coefficient when compared to untreated and APF-gel groups, but the association of APF-gel and laser did not promote an additional effect. Nd:YAG laser irradiation can be a promissory treatment to prevent dentin erosion and the abrasion process. PMID:29389868

  20. Cascade conical refraction for annular pumping of a vortex Nd:YAG laser and selective excitation of low- and high-order Laguerre–Gaussian modes

    Science.gov (United States)

    Wu, Yongxiao; Wang, Zhongyang; Chen, Sanbin; Shirakwa, Akira; Ueda, Ken-ichi; Li, Jianlang

    2018-05-01

    We proposed an efficient and vortex Nd:YAG laser for selective lasing of low- and high-order vortex modes, in which multiple-ring pump light was originated from cascaded conical refraction of multiple biaxial crystals. In our proof of concept demonstration, we used two-crystal cascade conical refraction to generate two-ring pump light; the mutual intensity ratio and relative separation of the inner ring and outer ring were controlled by rotating the second biaxial crystal and by moving the imaging lens, respectively. As a result, we obtained selective excitation of Laguerre–Gaussian (LG01 and LG03) vortex modes in the end-pump Nd:YAG laser. For LG01-mode output, the laser power reached 439 mW with 52.5% slope efficiency; for LG03-mode output, the laser power reached 160 mW with 41.3% slope efficiency. Our results revealed that the multiple-ring pumping technique based on cascaded conical refraction would pave the way for realization of the efficient and switchable excitation of low- and high-order LG modes in an end-pumped solid-state laser.