WorldWideScience

Sample records for y-pd thin films

  1. Pd thin films on flexible substrate for hydrogen sensor

    Energy Technology Data Exchange (ETDEWEB)

    Öztürk, Sadullah [Fatih Sultan Mehmet Vakıf University, Engineering Faculty, Istanbul (Turkey); Kılınç, Necmettin, E-mail: nkilinc@nigde.edu.tr [Nigde University, Mechatronics Engineering Department, 51245 Nigde (Turkey); Nigde University, Nanotechnology Application and Research Center, 51245 Nigde (Turkey)

    2016-07-25

    In this work, palladium (Pd) thin films were prepared via RF sputtering method with various thicknesses (6 nm, 20 nm and 60 nm) on both a flexible substrate and a hard substrate. Hydrogen (H{sub 2}) sensing properties of Pd films on flexible substrate have been investigated depending on temperatures (25–100 °C) and H{sub 2} concentrations (600 ppm – 10%). The effect of H{sub 2} on structural properties of the films was also studied. The films were characterized by Scanning Electron Microscopy (SEM) and X-ray diffraction. It is found that whole Pd films on hard substrate show permanent structural deformation after exposed to 10% H{sub 2} for 30 min. But, this H{sub 2} exposure does not causes any structural deformation for 6 nm Pd film on flexible substrate and 6 nm Pd film on flexible substrate shows reversible sensor response up to 10% H{sub 2} concentration without any structural deformation. On the other hand, Pd film sensors that have the thicknesses 20 nm and 60 nm on flexible substrate are irreversible for higher H{sub 2} concentration (>2%) with film deformation. The sensor response of 6 nm Pd film on flexible substrate increased with increasing H{sub 2} concentration up 4% and then saturated. The sensitivity of the film decreased with increasing operation temperature. - Highlights: • Pd thin films fabricated by RF sputtering on both flexible and hard substrates. • Structural deformation observed for films on hard substrate after exposing 10% H{sub 2}. • 6 nm Pd film on flexible substrate shows reversible sensor response up to 10% H{sub 2}. • H{sub 2} sensing properties of film on flexible substrate investigated depending on temperature and concentration. • The sensitivity of the film decreased with increasing operation temperature.

  2. The Structural Changes of the Sn(y)OX Thin Films Under Influence of Heat Treament

    Science.gov (United States)

    Vong, V.

    2001-04-01

    Composite oxide Sn(y) Ox made by thermal oxidation of the Sn(y)-bimetal thin films, in which y is the doped-materials as well as Sb, Ag or Pd. The Sn(y)-bimetal thin films have been made by evaporation in high vacuum onto NaCl-monocrystall and optical glass substrates. In the work the tin and the doped material (y) were put on two different boats and then both the boats were simultaniously heated to evaporate. The Sn(y)Ox thin films were annealed at the differential temperatures. The structural changes of its have been investigated by using X-ray diffraction and transmission electron microscope.

  3. Nanocrystalline Pd:NiFe2O4 thin films: A selective ethanol gas sensor

    International Nuclear Information System (INIS)

    Rao, Pratibha; Godbole, R.V.; Bhagwat, Sunita

    2016-01-01

    In this work, Pd:NiFe 2 O 4 thin films were investigated for the detection of reducing gases. These films were fabricated using spray pyrolysis technique and characterized using X-ray diffraction (XRD) to confirm the crystal structure. The surface morphology was studied using scanning electron microscopy (SEM). Magnetization measurements were carried out using SQUID VSM, which shows ferrimagnetic behavior of the samples. These thin film sensors were tested against methanol, ethanol, hydrogen sulfide and liquid petroleum gas, where they were found to be more selective to ethanol. The fabricated thin film sensors exhibited linear response signal for all the gases with concentrations up to 5 w/o Pd. Reduction in optimum operating temperature and enhancement in response was also observed. Pd:NiFe 2 O 4 thin films exhibited faster response and recovery characteristic. These sensors have potential for industrial applications because of their long-term stability, low power requirement and low production cost. - Highlights: • Ethanol gas sensors based on Pd:NiFe 2 O 4 nanoparticle thin film were fabricated. • Pd incorporation in NiFe 2 O 4 matrix inhibits grain growth. • The sensors were more selective to ethanol gas. • Sensors exhibited fast response and recovery when doped with palladium. • Pd:NiFe 2 O 4 thin film sensor displays excellent long–term stability.

  4. Texture-dependent twin formation in nanocrystalline thin Pd films

    International Nuclear Information System (INIS)

    Wang, B.; Idrissi, H.; Shi, H.; Colla, M.S.; Michotte, S.; Raskin, J.P.; Pardoen, T.; Schryvers, D.

    2012-01-01

    Nanocrystalline Pd films were produced by electron-beam evaporation and sputter deposition. The electron-beam-evaporated films reveal randomly oriented nanograins with a relatively high density of growth twins, unexpected in view of the high stacking fault energy of Pd. In contrast, sputter-deposited films show a clear 〈1 1 1〉 crystallographic textured nanostructure without twins. These results provide insightful information to guide the generation of microstructures with enhanced strength/ductility balance in high stacking fault energy nanocrystalline metallic thin films.

  5. Fabrication and nano-imprintabilities of Zr-, Pd- and Cu-based glassy alloy thin films

    International Nuclear Information System (INIS)

    Takenaka, Kana; Saidoh, Noriko; Nishiyama, Nobuyuki; Inoue, Akihisa

    2011-01-01

    With the aim of investigating nano-imprintability of glassy alloys in a film form, Zr 49 Al 11 Ni 8 Cu 32 , Pd 39 Cu 29 Ni 13 P 19 and Cu 38 Zr 47 Al 9 Ag 6 glassy alloy thin films were fabricated on Si substrate by a magnetron sputtering method. These films exhibit a very smooth surface, a distinct glass transition phenomenon and a large supercooled liquid region of about 80 K, which are suitable for imprinting materials. Moreover, thermal nano-imprintability of these obtained films is demonstrated by using a dot array mold with a dot diameter of 90 nm. Surface observations revealed that periodic nano-hole arrays with a hole diameter of 90 nm were successfully imprinted on the surface of these films. Among them, Pd-based glassy alloy thin film indicated more precise pattern imprintability, namely, flatter residual surface plane and sharper hole edge. It is said that these glassy alloy thin films, especially Pd-based glassy alloy thin film, are one of the promising materials for fabricating micro-machines and nano-devices by thermal imprinting.

  6. First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Hansen, Heine Anton; Rossmeisl, Jan

    2015-01-01

    driving force for surface segregation, diffusion to defects or surface self-assembling. On the basis of stability and activity analysis we conclude that the near surface alloy of Pd in Pt and some PdAu binary and PtPdAu ternary thin films with a controlled amount of Au are the best catalysts for oxygen......Further advances in fuel cell technologies are hampered by kinetic limitations associated with the sluggish cathodic oxygen reduction reaction. We have investigated a range of different formulations of binary and ternary Pt, Pd and Au thin films as electrocatalysts for oxygen reduction. The most...... active binary thin films are near-surface alloys of Pt with subsurface Pd and certain PdAu and PtAu thin films with surface and/or subsurface Au. The most active ternary thin films are with pure metal Pt or Pd skins with some degree of Au in the surface and/or subsurface layer and the near-surface alloys...

  7. Nanocrystalline Pd:NiFe2O4 thin films: A selective ethanol gas sensor

    Science.gov (United States)

    Rao, Pratibha; Godbole, R. V.; Bhagwat, Sunita

    2016-10-01

    In this work, Pd:NiFe2O4 thin films were investigated for the detection of reducing gases. These films were fabricated using spray pyrolysis technique and characterized using X-ray diffraction (XRD) to confirm the crystal structure. The surface morphology was studied using scanning electron microscopy (SEM). Magnetization measurements were carried out using SQUID VSM, which shows ferrimagnetic behavior of the samples. These thin film sensors were tested against methanol, ethanol, hydrogen sulfide and liquid petroleum gas, where they were found to be more selective to ethanol. The fabricated thin film sensors exhibited linear response signal for all the gases with concentrations up to 5 w/o Pd. Reduction in optimum operating temperature and enhancement in response was also observed. Pd:NiFe2O4 thin films exhibited faster response and recovery characteristic. These sensors have potential for industrial applications because of their long-term stability, low power requirement and low production cost.

  8. Nanocrystalline Pd:NiFe{sub 2}O{sub 4} thin films: A selective ethanol gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Pratibha; Godbole, R.V.; Bhagwat, Sunita, E-mail: smb.agc@gmail.com

    2016-10-15

    In this work, Pd:NiFe{sub 2}O{sub 4} thin films were investigated for the detection of reducing gases. These films were fabricated using spray pyrolysis technique and characterized using X-ray diffraction (XRD) to confirm the crystal structure. The surface morphology was studied using scanning electron microscopy (SEM). Magnetization measurements were carried out using SQUID VSM, which shows ferrimagnetic behavior of the samples. These thin film sensors were tested against methanol, ethanol, hydrogen sulfide and liquid petroleum gas, where they were found to be more selective to ethanol. The fabricated thin film sensors exhibited linear response signal for all the gases with concentrations up to 5 w/o Pd. Reduction in optimum operating temperature and enhancement in response was also observed. Pd:NiFe{sub 2}O{sub 4} thin films exhibited faster response and recovery characteristic. These sensors have potential for industrial applications because of their long-term stability, low power requirement and low production cost. - Highlights: • Ethanol gas sensors based on Pd:NiFe{sub 2}O{sub 4} nanoparticle thin film were fabricated. • Pd incorporation in NiFe{sub 2}O{sub 4} matrix inhibits grain growth. • The sensors were more selective to ethanol gas. • Sensors exhibited fast response and recovery when doped with palladium. • Pd:NiFe{sub 2}O{sub 4} thin film sensor displays excellent long–term stability.

  9. First principles investigation of the activity of thin film Pt, Pd and Au surface alloys for oxygen reduction

    DEFF Research Database (Denmark)

    Tripkovic, Vladimir; Hansen, Heine Anton; Rossmeisl, Jan

    2015-01-01

    Further advances in fuel cell technologies are hampered by kinetic limitations associated with the sluggish cathodic oxygen reduction reaction. We have investigated a range of different formulations of binary and ternary Pt, Pd and Au thin films as electrocatalysts for oxygen reduction. The most...... active binary thin films are near-surface alloys of Pt with subsurface Pd and certain PdAu and PtAu thin films with surface and/or subsurface Au. The most active ternary thin films are with pure metal Pt or Pd skins with some degree of Au in the surface and/or subsurface layer and the near-surface alloys...

  10. Improved performance of Mg–Y alloy thin film switchable mirrors after coating with a superhydrophobic surface

    International Nuclear Information System (INIS)

    La, Mao; Zhou, Huaijuan; Li, Ning; Xin, Yunchuan; Sha, Ren; Bao, Shanhu; Jin, Ping

    2017-01-01

    Highlights: • The PTFE films was prepared for use as the top layer of Mg–Y/Pd switchable mirrors. • The PTFE as an antireflection layer to improve the luminous transmission, and also to enhance the switching durability of the switchable mirrors. • The PTFE film has a superhydrophobic surface, which endows the Mg–Y/Pd switchable mirrors with self-cleaning properties. - Abstract: The magnesium based switchable mirrors can reversibly change their optical properties between the transparent and the reflective state as a result of hydrogenation and dehydrogenation. These films can potentially be applied as new energy-saving windows, by controlling the transmittance of solar radiation through the regulation of their reflective state. In this study, magnesium–yttrium (Mg–Y) alloy thin films were prepared using a DC magnetron sputtering method. However, the luminous transmittance in the transparent state and the switching durability of switchable mirrors are too poor to satisfy practical demands. In order to improve the films switching durability, luminous transmittance and the surface functionalization, polytetrafluoroethylene (PTFE) was coated with thermal vacuum deposition for use as the top layer of Mg–Y/Pd switchable mirrors. The PTFE layer had a porous network structure and exhibited a superhydrophobic surface with a water contact angle of approximately 152°. By characterization, PTFE thin films shows the excellent protection role against the oxidization of Mg, the switching durability of the films were improved 3 times, and also shows the antireflection role the luminous transmission of films was enhanced by 7% through the top covered with PTFE.

  11. Improved performance of Mg–Y alloy thin film switchable mirrors after coating with a superhydrophobic surface

    Energy Technology Data Exchange (ETDEWEB)

    La, Mao [Department of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot, Inner Mongolia, 010020 (China); State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 (China); Zhou, Huaijuan; Li, Ning; Xin, Yunchuan [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 (China); Sha, Ren, E-mail: sr@imnu.edu.cn [Department of Chemistry and Environmental Science, Inner Mongolia Normal University, Hohhot, Inner Mongolia, 010020 (China); Bao, Shanhu, E-mail: shanhu.bao@mail.sic.ac.cn [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 (China); Jin, Ping [State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050 (China)

    2017-05-01

    Highlights: • The PTFE films was prepared for use as the top layer of Mg–Y/Pd switchable mirrors. • The PTFE as an antireflection layer to improve the luminous transmission, and also to enhance the switching durability of the switchable mirrors. • The PTFE film has a superhydrophobic surface, which endows the Mg–Y/Pd switchable mirrors with self-cleaning properties. - Abstract: The magnesium based switchable mirrors can reversibly change their optical properties between the transparent and the reflective state as a result of hydrogenation and dehydrogenation. These films can potentially be applied as new energy-saving windows, by controlling the transmittance of solar radiation through the regulation of their reflective state. In this study, magnesium–yttrium (Mg–Y) alloy thin films were prepared using a DC magnetron sputtering method. However, the luminous transmittance in the transparent state and the switching durability of switchable mirrors are too poor to satisfy practical demands. In order to improve the films switching durability, luminous transmittance and the surface functionalization, polytetrafluoroethylene (PTFE) was coated with thermal vacuum deposition for use as the top layer of Mg–Y/Pd switchable mirrors. The PTFE layer had a porous network structure and exhibited a superhydrophobic surface with a water contact angle of approximately 152°. By characterization, PTFE thin films shows the excellent protection role against the oxidization of Mg, the switching durability of the films were improved 3 times, and also shows the antireflection role the luminous transmission of films was enhanced by 7% through the top covered with PTFE.

  12. Structure and magnetization in CoPd thin films and nanocontacts

    International Nuclear Information System (INIS)

    Morgan, Caitlin; Schmalbuch, Klaus; García-Sánchez, Felipe; Schneider, Claus M.; Meyer, Carola

    2013-01-01

    We present results showing the structural and magnetic properties of MBE-grown extended films and nanostructured elements of various CoPd alloys. X-ray diffraction studies show that the thin films are polycrystalline, yet exhibit a strong preferential growth orientation along the (111) direction. Magnetic force microscopy and SQUID are used to gain an understanding of the magnetic behavior of the CoPd system with respect to competing anisotropy contributions, based on temperature-dependent SQUID data, collected between 4 and 300 K. The idea and potential implications of using CoPd as a contact material to achieve spin injection in carbon nanotube-based devices is discussed. - Highlights: ► In-plane magnetization of CoPd films increases with added Co content. ► Quasi single-domain nanostructures of Co 50 Pd 50 exhibit almost no OOP component. ► Nanostructures exhibit decrease in coercive field with initial temperature decrease. ► Magnetic behavior is influenced by the anti-FM oxide and magnetoelastic effect.

  13. In-situ study of hydriding kinetics in Pd-based thin film systems

    Energy Technology Data Exchange (ETDEWEB)

    Delmelle, Renaud; Proost, Joris [Univ. Catholique de Louvain, Louvain-la-Neuve (Belgium). Div. of Materials and Process Engineering

    2010-07-01

    The hydriding kinetics of Pd thin films has been investigated in detail. The key experimental technique used in this work consists of a high resolution curvature measurement setup, which continuously monitors the reflections of multiple laser beams coming off a cantilevered sample. After mounting the sample inside a vacuum chamber, a H-containing gas mixture is introduced to instantaneously generate a given hydrogen partial pressure (p{sub H2}) inside the chamber. The resulting interaction of H with the Pd layer then leads to a volume expansion of the thin film system. This induces in turn changes in the sample curvature as a result of internal stresses developing in the Pd film during a hydriding cycle. Based on such curvature date obtained in-situ at different p{sub H2}, a two-step model for the kinetics of Pd-hydride formation has been proposed and expressions for the hydrogen adsorption and absorption velocities have been derived. The rate-limiting steps have been identified by studying the p{sub H2}-dependence of these velocities. Furthermore, from our in-situ experimental data, relevant kinetic parameters have been calculated. The effect of dry air exposure of the Pd films on the hydriding kinetics has been considered as well. (orig.)

  14. Structure and magnetization in CoPd thin films and nanocontacts

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Caitlin, E-mail: c.morgan@fz-juelich.de [Peter Gruenberg Institut, Forschungszentrum Juelich (Germany); JARA Juelich Aachen Research Alliance, 52425 Juelich (Germany); Schmalbuch, Klaus [JARA Juelich Aachen Research Alliance, 52425 Juelich (Germany); Physikalisches Institut, RWTH Aachen University, Otto-Blumenthal-Strasse, 52074 Aachen (Germany); Garcia-Sanchez, Felipe [Peter Gruenberg Institut, Forschungszentrum Juelich (Germany); JARA Juelich Aachen Research Alliance, 52425 Juelich (Germany); Schneider, Claus M. [Peter Gruenberg Institut, Forschungszentrum Juelich (Germany); JARA Juelich Aachen Research Alliance, 52425 Juelich (Germany); Fakultaet f. Physik and Center for Nanointegration Duisburg-Essen (CeNIDE), Universitaet Duisburg-Essen, D-47048 Duisburg (Germany); Meyer, Carola [Peter Gruenberg Institut, Forschungszentrum Juelich (Germany); JARA Juelich Aachen Research Alliance, 52425 Juelich (Germany)

    2013-01-15

    We present results showing the structural and magnetic properties of MBE-grown extended films and nanostructured elements of various CoPd alloys. X-ray diffraction studies show that the thin films are polycrystalline, yet exhibit a strong preferential growth orientation along the (111) direction. Magnetic force microscopy and SQUID are used to gain an understanding of the magnetic behavior of the CoPd system with respect to competing anisotropy contributions, based on temperature-dependent SQUID data, collected between 4 and 300 K. The idea and potential implications of using CoPd as a contact material to achieve spin injection in carbon nanotube-based devices is discussed. - Highlights: Black-Right-Pointing-Pointer In-plane magnetization of CoPd films increases with added Co content. Black-Right-Pointing-Pointer Quasi single-domain nanostructures of Co{sub 50}Pd{sub 50} exhibit almost no OOP component. Black-Right-Pointing-Pointer Nanostructures exhibit decrease in coercive field with initial temperature decrease. Black-Right-Pointing-Pointer Magnetic behavior is influenced by the anti-FM oxide and magnetoelastic effect.

  15. [Preparation and spectral characterization of CdS(y)Te(1-y) thin films].

    Science.gov (United States)

    Li, Wei; Feng, Liang-Huan; Wu, Li-Li; Zhang, Jing-Quan; Li, Bing; Lei, Zhi; Cai, Ya-Ping; Zheng, Jia-Gui; Cai, Wei; Zhang, Dong-Min

    2008-03-01

    CdS(y)Te(1-y) (0 co-evaporation of powders of CdTe and CdS. For the characterization of the structure and composition of the CdS(y)Te(1-y) thin films the X-ray diffraction (XRD) and energy-dispersive spectroscopy (EDS) were used. The results indicate that the values of sulfur content y detected and controlled by the quartz wafer detector show good agreement with the EDS results. The films were found to be cubic for x or = 0.3. The 20-50 nm of grain sizes for CdS(y)Te(1-y) thin films were calculated using a method of XRD analysis. Finally, the optical properties of CdS(y)Te(1-y) thin films were characterized by UV-Vis-NIR spectroscopy alone. According to a method from Swanepoel, together with the first-order Sellmeier model, the thickness, of d-535 nm, energy gap of E(g)-1.41 eV, absorption coefficient, alpha(lambda) and refractive index, n(lambda) of CdS(0.22) Te(0.78) thin films were determined from the transmittance at normal incidence of light in the wavelength range 300-2 500 nm. The results also indicate that the CdS(y)Te(1-y) thin films with any composition (0 co-evaporation, and the method to characterize the optical properties of CdS(y)Te(1-y) thin films can be implemented for other semiconductor thin films.

  16. Morphology and N₂ Permeance of Sputtered Pd-Ag Ultra-Thin Film Membranes.

    Science.gov (United States)

    Fernandez, Ekain; Sanchez-Garcia, Jose Angel; Viviente, Jose Luis; van Sint Annaland, Martin; Gallucci, Fausto; Tanaka, David A Pacheco

    2016-02-10

    The influence of the temperature during the growth of Pd-Ag films by PVD magnetron sputtering onto polished silicon wafers was studied in order to avoid the effect of the support roughness on the layer growth. The surfaces of the Pd-Ag membrane films were analyzed by atomic force microscopy (AFM), and the results indicate an increase of the grain size from 120 to 250-270 nm and film surface roughness from 4-5 to 10-12 nm when increasing the temperature from around 360-510 K. After selecting the conditions for obtaining the smallest grain size onto silicon wafer, thin Pd-Ag (0.5-2-µm thick) films were deposited onto different types of porous supports to study the influence of the porous support, layer thickness and target power on the selective layer microstructure and membrane properties. The Pd-Ag layers deposited onto ZrO₂ 3-nm top layer supports (smallest pore size among all tested) present high N₂ permeance in the order of 10(-6) mol·m(-2)·s(-1)·Pa(-1) at room temperature.

  17. Magnetic properties of Co/Pt-Pd multilayer thin film media

    Energy Technology Data Exchange (ETDEWEB)

    Inaba, N.; Igarashi, S.; Fujita, F.; Koike, K.; Kato, H. [Faculty of Engineering, Yamagata University, Yonezawa, Yamagata 992-8510 (Japan); Kirino, F. [National University of Fine Arts and Music, Taitou-ku, Tokyo 110-8714 (Japan)

    2007-12-15

    We investigated the dependence of magnetic properties for Co/Pt{sub 100-x}Pd{sub x} multilayer thin films on the concentration in the Pt-Pd alloy layers. Perpendicular magneto anisotropy constant K {sub p} increases with increasing Pt concentration in the Pt-Pd layer, since the interface anisotropy between the Co and the Pt-Pd layers is enhanced by the increase of the Pt concentration. The Curie temperature and the temperature dependence of K{sub p} for the specimens increase with increasing the amount of Pt in the Pt-Pd layer. These results may indicate that the lattice distortion of the Co layer caused by the interface from the Pt-Pd layer becomes larger and the increase of the distortion enhances the interface anisotropy, since the lattice misfit between the Pt-Pd and the Co increases with increasing the Pt concentration. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Electrical conductivity dependence of thin metallic films of Au and Pd as a top electrode in capacitor applications

    International Nuclear Information System (INIS)

    Nazarpour, S.; Langenberg, E.; Jambois, O.; Ferrater, C.; Garcia-Cuenca, M.V.; Polo, M.C.; Varela, M.

    2009-01-01

    Electrical conductivity dependence of thin metallic films of Au and Pd over the different perovskites was investigated. It is found from electrical properties that crystallographic growth orientation of Au and Pd thin layers attained from X-ray diffraction results indicate the slop of current (I)-voltage (V) plots. Besides, surface morphology and topography was considered using Field Emission Scanning Electron Microscopy and Atomic Force Microscopy, respectively. Obtained results showed the Stranski-Krastanov growth of the Pd and Au. Indeed, diminishing of the root-mean-square roughness of Pd/BiMnO 3 /SrTiO 3 following by Au deposition should be concerned due to growth of Au onto the crack-like parts of the substrate. These crack-like parts appeared due to parasitic phases of the Bi-Mn-O system mainly Mn 3 O 4 (l 0 l) and Mn 3 O 4 (0 0 4 l). The different response in the electrical properties of heterostructures suggests that electrical conductance of the Au and Pd thin metallic films have the crystallographic orientation dependence. Furthermore, polycrystallinity of the thin metallic films are desired in electrode applications due to increase the conductivity of the metallic layers.

  19. Geometric structures of thin film: Pt on Pd(110) and NiO on Ni(100)

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Oden L. [Iowa State Univ., Ames, IA (United States)

    1993-07-01

    This thesis is divided into 3 papers: dynamical low-energy electron- diffraction investigation of lateral displacements in topmost layer of Pd(110); determination of (1x1) and (1x2) structures of Pt thin films on Pd(110) by dynamical low-energy electron-diffraction analysis; and structural determination of a NiO(111) film on Ni(100) by dynamical low-energy electron-diffraction analysis.

  20. Thin films on icosahedral AlPdMn quasicrystal

    Energy Technology Data Exchange (ETDEWEB)

    Longchamp, J.N.

    2007-07-01

    In this project, the oxidation at high temperature of the fivefold-symmetry surface of an icosahedral Al{sub 70}Pd{sub 20}M{sub 10} quasicrystal was principally investigated. The stoichiometry of the near-surface region was investigated by means of Auger electron spectroscopy and X-ray photoelectron spectroscopy and both confirmed the oxidation of only the Al atoms of the quasicrystalline substrate. The affinity of the two structures is illustrated by the CsCl-like AlPd domains observed, by means of secondary-electron imaging, after Ar{sup +}-sputtering of the quasicrystalline surface. In this project, we used the oxidized fivefold-symmetry surface of i-AlPdMn as substrate for the deposition of PbTe and CdTe. Diffraction patterns obtained from thin films of both materials exhibit, instead of the usual spots, diffraction rings. They are characteristics of nanocrystallites having a random azimuthal orientations but a well-defined polar orientation; the (001) face and the (111) face in case of PbTe and CdTe, respectively. From the diffraction patterns, average domain sizes of 35 Aa were deduced. Face-centered-cubic Al(111) domains with a similar average size are observed in this case. Angle-resolved photoemission spectroscopy investigations on the PbTe films were performed. We also performed angle-resolved photoemission spectroscopy measurements on Ag films deposited onto the fivefold-symmetry surface of icosahedral AlPdMn and onto the tenfold-symmetry surface of decagonal AlCoNi as model for confinement effects occurring due to the incompatible symmetries between the crystalline films and the quasicrystalline surfaces. By analyzing the Ag sp-derived quantum-well states, we assert that the interface with the quasiperiodic material constitutes an efficient barrier for electron propagation, due to lack of common point-group symmetries between Bloch-like and critical wave functions. Finally, the depositions of Si and Ge onto the fivefold-symmetry surface of icosahedral

  1. Nanocomposite C-Pd thin films – a new material with specific spectral properties

    Directory of Open Access Journals (Sweden)

    M. Suchańska

    2013-09-01

    Full Text Available In this paper, the results of optical investigations for thin films of carbon-palladium (C-Pd nanocomposites are presented. This films were prepared using two steps method (PVD/ CVD. The optical and Raman spectroscopy has been used to characterize the material. The multinanolayer model was used to explain the specific spectral properties.

  2. Note: Durability analysis of optical fiber hydrogen sensor based on Pd-Y alloy film.

    Science.gov (United States)

    Huang, Peng-cheng; Chen, You-ping; Zhang, Gang; Song, Han; Liu, Yi

    2016-02-01

    The Pd-Y alloy sensing film has an excellent property for hydrogen detection, but just for one month, the sensing film's property decreases seriously. To study the failure of the sensing film, the XPS spectra analysis was used to explore the chemical content of the Pd-Y alloy film, and analysis results demonstrate that the yttrium was oxidized. The paper presented that such an oxidized process was the potential reason of the failure of the sensing film. By understanding the reason of the failure of the sensing film better, we could improve the manufacturing process to enhance the property of hydrogen sensor.

  3. Redox functionality mediated by adsorbed oxygen on a Pd oxide film over a Pd(100) thin structure: a first-principles study

    International Nuclear Information System (INIS)

    Kusakabe, K; Ikuno, Y k; Nagara, H; Harada, K

    2009-01-01

    Stable oxygen sites on a PdO film over a Pd(100) thin structure with a (√5x√5)R27 o surface unit cell are determined using the first-principles electronic structure calculations with the generalized gradient approximation. The adsorbed monatomic oxygen goes to a site bridging two twofold-coordinated Pd atoms or to a site bridging a twofold-coordinated Pd atom and a fourfold-coordinated Pd atom. Estimated reaction energies of CO oxidation by reduction of the oxidized PdO film and N 2 O reduction mediated by oxidation of the PdO film are both exothermic. Motion of the adsorbed oxygen atom between the two stable sites is evaluated using the nudged elastic band method, where an energy barrier for a translational motion of the adsorbed oxygen may become ∼0.45 eV, which is low enough to allow fluxionality of the surface oxygen at high temperatures. The oxygen fluxionality is allowed by the existence of twofold-coordinated Pd atoms on the PdO film, whose local structure has a similarity to that of Pd catalysts for the Suzuki-Miyaura cross-coupling. Although NO x (including NO 2 and NO) reduction is not always catalyzed by the PdO film only, we conclude that continual redox reactions may happen mediated by oxygen-adsorbed PdO films over a Pd surface structure, when the influx of NO x and CO continues, and when the reaction cycle is kept on a well-designed oxygen surface.

  4. Morphology and N2 Permeance of Sputtered Pd-Ag Ultra-Thin Film Membranes

    Directory of Open Access Journals (Sweden)

    Ekain Fernandez

    2016-02-01

    Full Text Available The influence of the temperature during the growth of Pd-Ag films by PVD magnetron sputtering onto polished silicon wafers was studied in order to avoid the effect of the support roughness on the layer growth. The surfaces of the Pd-Ag membrane films were analyzed by atomic force microscopy (AFM, and the results indicate an increase of the grain size from 120 to 250–270 nm and film surface roughness from 4–5 to 10–12 nm when increasing the temperature from around 360–510 K. After selecting the conditions for obtaining the smallest grain size onto silicon wafer, thin Pd-Ag (0.5–2-µm thick films were deposited onto different types of porous supports to study the influence of the porous support, layer thickness and target power on the selective layer microstructure and membrane properties. The Pd-Ag layers deposited onto ZrO2 3-nm top layer supports (smallest pore size among all tested present high N2 permeance in the order of 10−6 mol·m−2·s−1·Pa−1 at room temperature.

  5. Electrodeposition of thin Pd-Ag films

    International Nuclear Information System (INIS)

    Hasler, P.; Allmendinger, T.

    1993-01-01

    Thin Pd-Ag layers were electroplated preferably on brass and on nickel substrates using a two-compartment cell separated by an anion exchange membrane. The weakly alkaline electrolyte contained glycine-glycinate as the major complexing agents. The plating experiments were usually carried out without stirring, at different potentials and temperatures and in the absence or in the presence of sodium benzaldehyde-2,4-disulphonate (BDS). The samples were characterized by scanning electron microscopy and light microscopy. Their compositions were determined analytically by the inductively coupled plasma technique. In addition, the film porosity was tested. Electrodeposition in almost limiting current conditions for both components and without simultaneous hydrogen evolution led to deposits with compositions being in good agreement with the molar metal ratio in the electrolyte (77:23). The best results were achieved between 0 and -50 mV with respect to a reversible hydrogen electrode at 0 C in the presence of BDS. These deposits were bright, had good adherence and exhibited no pores at a film thickness of 1.2 μm. At too negative potentials, the deposits became black and powdery. (orig.)

  6. AFM, XRD and HRTEM Studies of Annealed FePd Thin Films

    International Nuclear Information System (INIS)

    Perzanowski, M.; Zabila, Y.; Polit, A.; Krupinski, M.; Dobrowolska, A.; Marszalek, M.; Morgiel, J.

    2010-01-01

    Ferromagnetic FePd L1 0 ordered alloys are highly expected as forthcoming high-density recording materials, because they reveal a large perpendicular magnetocrystalline anisotropy. The value of the magnetic anisotropy of FePd alloy strongly depends on the alloy composition, degree of alloy order as well as on the crystallographic grain orientation. In particular, to obtain the perpendicular anisotropy, it is necessary to get the films with (001) texture. One of the successful methods, which allows one to obtain highly ordered alloy, is a subsequent deposition of Fe and Pd layers, followed by an annealing at high temperature. This paper presents the study of the FePd thin alloy film structure changing in the result of high temperature annealing. During the annealing in high vacuum, the measurements of electrical resistance were performed, indicating the regions of different structure evolution. Changes in the crystal structure and surface morphology induced by thermal treatment were investigated by X-ray diffraction, atomic force microscopy, as well as high resolution transmission electron microscopy and then compared with electrical resistivity measurement. The slow thermal annealing of the deposited layers leads to the formation of L1 0 ordered FePd alloy with preferred (111) grain orientation. After the annealing at the highest used temperature, the dewetting process was observed, resulting in a creation of well oriented, regular nanoparticles. (author)

  7. Ellipsometry study on Pd thin film grown by atomic layer deposition with Maxwell–Garnett effective medium approximation model

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yihang; Zhou, Xueqi; Cao, Kun [State Key Laboratory of Digital of Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen, Xiuguo; Deng, Zhang [State Key Laboratory of Digital of Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Liu, Shiyuan, E-mail: shyliu@hust.edu.cn [State Key Laboratory of Digital of Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Shan, Bin [State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Chen, Rong, E-mail: rongchen@mail.hust.edu.cn [State Key Laboratory of Digital of Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2015-10-30

    Maxwell–Garnett effective medium approximation (MG-EMA) model is chosen to study Pd ultrathin film grown on Si substrate, as well as its growth on self-assembled monolayers (SAMs) modified substrate respectively. The general oscillator (GO) model with one Drude and two Lorentz oscillators is firstly applied to fix the optical constants of Pd. Compared with Pd bulk model, MG-EMA model with GO is more reliable to predict the film thickness verified by X-ray reflection test. The stable growth rate on Si substrate reveals our methods are feasible and the quartz crystal microbalance measurement confirms the stability of the ALD chamber. For Pd coverage, MG-EMA fitting result is similar to the statistical computation from scanning electron microscope when Pd ALD cycles are over 400, while large bias exists for cycles under 400, might be due to that air is not the proper filling medium between nanoparticles. Then we change the filling medium into SAMs as a comparison, better fitting performance is obtained. It is demonstrated that the filling medium between nanoparticles is important for the application of MG-EMA model. - Highlights: • Ultrathin Pd thin films were grown by atomic layer deposition. • The measurement of thin film was important to understand initial growth behavior. • Maxwell–Garnett effective medium approximation model was applied. • Pd nanoparticle size and coverage were studied. • The filling medium between nanoparticles was important for model application.

  8. Magnetization process in FePd thin films

    International Nuclear Information System (INIS)

    Klein, O.; Samson, Y.; Marty, A.; Guillous, S.; Viret, M.; Fermon, C.; Alloul, H.

    2001-01-01

    A custom made magnetic force microscope is used to study the magnetization process in thin films of FePd throughout the entire hysteresis loop. The 40 nm thick sample has a strong perpendicular anisotropy, which leads to a maze of 80 nm wide stripes of opposite polarity in the remanent state. The growth of M, when H increases, happens through an unwinding of the reversed domain along their axis. Together with the length recession, the reversed domain width also contracts with increasing field. The later effect is estimated by comparison of our images with magneto-optical Kerr measurements. A large disorder in the propagation process of the domain walls is observed. It is also found that the bubble configuration near the saturation field is unstable. [copyright] 2001 American Institute of Physics

  9. PLD growth of CoPd thin films and characterization of their magnetic properties by magneto optical Kerr effect

    Science.gov (United States)

    Sedrpooshan, Mehran; Ahmadvand, Hossein; Ranjbar, Mehdi; Salamati, Hadi

    2018-06-01

    CoPd alloy thin films with different thicknesses and Co/Pd ratios have been deposited on Si (100) substrate by pulsed laser deposition (PLD). The magnetic properties were investigated by using the magneto-optical Kerr effect (MOKE) in both longitudinal and polar geometries. The results show that the films with thickness in the range of 6-24 nm, deposited at a low substrate temperature of 200 °C, are mostly magnetized in the plane of film. Higher deposition temperature forces the magnetic easy axis to orient in the perpendicular direction of the films.

  10. Characteristics of Iron-Palladium alloy thin films deposited by magnetron sputtering

    Science.gov (United States)

    Chiu, Y.-J.; Shen, C.-Y.; Chang, H.-W.; Jian, S.-R.

    2018-06-01

    The microstructural features, magnetic, nanomechanical properties and wettability behaviors of Iron-Palladium (FePd) alloy thin films are investigated by using X-ray diffraction (XRD), atomic force microscopy (AFM), vibrating sample magnetometer (VSM), nanoindentation and water contact angle (CA) techniques, respectively. The FePd alloy thin films were deposited on glass substrates using a magnetron sputtering system. The post-annealing processes of FePd alloy thin films were carried out at 400 °C and 750 °C and resulted in a significant increase of both the average grain size and surface roughness. The XRD analysis showed that FePd alloy thin films exhibited a predominant (1 1 1) orientation. The magnetic field dependence of magnetization of all FePd thin films are measured at room temperature showed the ferromagnetic characteristics. The nanoindentation with continuous stiffness measurement (CSM) is used to measure the hardness and Young's modulus of present films. The contact angle (θCA) increased with increasing surface roughness. The maximum θCA of 75° was achieved for the FePd alloy thin film after annealing at 750 °C and a surface roughness of 4.2 nm.

  11. Effect of performance of Zr-Y alloy target on thin film deposition technology

    International Nuclear Information System (INIS)

    Pan Qianfu; Liu Chaohong; Jiang Mingzhong; Yin Changgeng

    2011-01-01

    Yttria-stabilized zirconia (YSZ) films are synthesized on corrosion resistant plates by pulsed bias arc ion plating. The arc starting performance and the stability of thin film deposition is explored by improving the uniformity and compactibility of Zr-Y alloy target. The property of Zr-Y alloy target and depositional thin films were measured with the optical microscope, scanning electron microscope, X-ray diffractometer. The result shows that the target with hot rolling and annealing has a good arc starting performance and stability of thin film deposition, and the depositional thin films made of Yttria and amorphous zirconia are homogeneous and compact. (authors)

  12. Deposition of Y thin films by nanosecond UV pulsed laser ablation for photocathode application

    International Nuclear Information System (INIS)

    Lorusso, A.; Anni, M.; Caricato, A.P.; Gontad, F.; Perulli, A.; Taurino, A.; Perrone, A.; Chiadroni, E.

    2016-01-01

    In this work, yttrium (Y) thin films have been deposited on Si (100) substrates by the pulsed laser deposition technique. Ex-situ morphological, structural and optical characterisations of such films have been performed by scanning electron microscopy, X-ray diffractometry, atomic force microscopy and ellipsometry. Polycrystalline films with a thickness of 1.2 μm, homogenous with a root mean square roughness of about 2 nm, were obtained by optimised laser irradiation conditions. Despite the relatively high thickness, the films resulted very adherent to the substrates. The high quality of such thin films is important to the synthesis of metallic photocathodes based on Y thin film, which could be used as electron sources of high photoemission performance in radio-frequency guns. - Highlights: • Pulsed laser deposition of Yttrium thin films is investigated. • 1.2 μm thick films were deposited with very low RMS roughness. • The Y thin films were very adherent to the Si substrate • Optical characterisation showed a very high absorption coefficient for the films.

  13. Deposition of Y thin films by nanosecond UV pulsed laser ablation for photocathode application

    Energy Technology Data Exchange (ETDEWEB)

    Lorusso, A. [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce (Italy); Istituto Nazionale di Fisica Nucleare-Lecce, 73100 Lecce (Italy); Anni, M. [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce (Italy); Caricato, A.P. [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce (Italy); Istituto Nazionale di Fisica Nucleare-Lecce, 73100 Lecce (Italy); Gontad, F., E-mail: francisco.gontad@le.infn.it [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce (Italy); Istituto Nazionale di Fisica Nucleare-Lecce, 73100 Lecce (Italy); Perulli, A. [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce (Italy); Taurino, A. [National Research Council, Institute for Microelectronics & Microsystems, 73100 Lecce (Italy); Perrone, A. [Università del Salento, Dipartimento di Matematica e Fisica “E. De Giorgi”, 73100 Lecce (Italy); Istituto Nazionale di Fisica Nucleare-Lecce, 73100 Lecce (Italy); Chiadroni, E. [Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, 00044 Frascati (Italy)

    2016-03-31

    In this work, yttrium (Y) thin films have been deposited on Si (100) substrates by the pulsed laser deposition technique. Ex-situ morphological, structural and optical characterisations of such films have been performed by scanning electron microscopy, X-ray diffractometry, atomic force microscopy and ellipsometry. Polycrystalline films with a thickness of 1.2 μm, homogenous with a root mean square roughness of about 2 nm, were obtained by optimised laser irradiation conditions. Despite the relatively high thickness, the films resulted very adherent to the substrates. The high quality of such thin films is important to the synthesis of metallic photocathodes based on Y thin film, which could be used as electron sources of high photoemission performance in radio-frequency guns. - Highlights: • Pulsed laser deposition of Yttrium thin films is investigated. • 1.2 μm thick films were deposited with very low RMS roughness. • The Y thin films were very adherent to the Si substrate • Optical characterisation showed a very high absorption coefficient for the films.

  14. Characteristics of Ti-Ni-Pd shape memory alloy thin films

    International Nuclear Information System (INIS)

    Zhang Congchun; Yang Chunsheng; Ding Duifu; Qian Shiqiang; Wu Jiansheng

    2005-01-01

    Ti-Ni-Pd thin films were deposited by RF magnetron sputtering. Microstructure and phase transformation behaviors were studied by X-ray diffraction (XRD), by transmission electron microscopy and by differential scanning calorimeter (DSC). Also tensile tests and the internal friction characteristics were examined. Annealing at 750 deg. C followed by subsequent annealing at 450 deg. C resulted in relatively homogeneous microstructure and uniform martensite/austenite transformation. The results from DSC showed clearly the martensitic transformation upon heating and cooling, the transformation temperatures are 112 deg. C (M* peak) and 91 deg. C (M peak), respectively. The transformation characteristics are also found in strain-temperature curves and internal friction-temperature curves. The film had shape memory effect. The frequency had no effect on the modulus, but the internal friction decreased with increasing frequency

  15. A mechanistic study of hydrogen gas sensing by PdO nanoflake thin films at temperatures below 250 °C.

    Science.gov (United States)

    Chiang, Yu-Ju; Li, Kuang-Chung; Lin, Yi-Chieh; Pan, Fu-Ming

    2015-02-07

    We prepared PdO nanoflake thin films on the SiO2 substrate by reactive sputter deposition, and studied their sensing response to H2 at temperatures between 25 and 250 °C. In addition to the oxygen ionosorption model, which is used to describe the early H2 sensing response over the temperature range studied, the H2 sensing kinetics of the PdO thin films can be separated into three temperature regimes: temperatures below 100 °C, around 150 °C and above 200 °C. At temperatures below 100 °C, PdO reduction is the dominant reaction affecting the H2 sensing behavior. At temperatures around 150 °C, Pd reoxidation kinetically competes with PdO reduction leading to a complicated sensing characteristic. Active PdO reduction by H2 promotes the continuing growth of Pd nanoislands, facilitating dissociative oxygen adsorption and thus the subsequent Pd reoxidation in the H2-dry air gas mixture. The kinetic competition between the PdO reduction and reoxidation at 150 °C leads to the observation of an inverse of the increase in the sensor conductivity. At temperatures above 200 °C, the PdO sensor exhibits a sensor signal monotonically increasing with the H2 concentration, and the H2 sensing behavior is consistent with the Mars-van-Krevelen redox mechanism.

  16. RHEED and EELS study of Pd/Al bimetallic thin film growth on different α-Al 2O 3 substrates

    Science.gov (United States)

    Moroz, V.; Rajs, K.; Mašek, K.

    2002-06-01

    Pd/Al bimetallic thin films were grown by molecular beam epitaxy on single-crystalline α-Al 2O 3(0 0 0 1) and (1 1 2¯ 0) surfaces. Substrate and deposit crystallographic structures and evolution of deposit lattice parameter during the growth were studied by reflection high-energy electron diffraction. The electron energy loss spectroscopy was used as an auxiliary method for chemical analysis. The bimetallic films were prepared by successive deposition of both Pd and Al metals. The structure of Pd and Al deposits in early stages of the growth and its dependence on the preparation conditions were studied. Two phases of Pd clusters covered by Al overlayer have been found. The formation of Al overlayer strongly influenced the lattice parameter of Pd clusters.

  17. Ultrahigh vacuum dc magnetron sputter-deposition of epitaxial Pd(111)/Al2O3(0001) thin films.

    Science.gov (United States)

    Aleman, Angel; Li, Chao; Zaid, Hicham; Kindlund, Hanna; Fankhauser, Joshua; Prikhodko, Sergey V; Goorsky, Mark S; Kodambaka, Suneel

    2018-05-01

    Pd(111) thin films, ∼245 nm thick, are deposited on Al 2 O 3 (0001) substrates at ≈0.5 T m , where T m is the Pd melting point, by ultrahigh vacuum dc magnetron sputtering of Pd target in pure Ar discharges. Auger electron spectra and low-energy electron diffraction patterns acquired in situ from the as-deposited samples reveal that the surfaces are compositionally pure 111-oriented Pd. Double-axis x-ray diffraction (XRD) ω-2θ scans show only the set of Pd 111 peaks from the film. In triple-axis high-resolution XRD, the full width at half maximum intensity Γ ω of the Pd 111 ω-rocking curve is 630 arc sec. XRD 111 pole figure obtained from the sample revealed six peaks 60°-apart at a tilt angles corresponding to Pd 111 reflections. XRD ϕ scans show six 60°-rotated 111 peaks of Pd at the same ϕ angles for 11[Formula: see text]3 of Al 2 O 3 based on which the epitaxial crystallographic relationships between the film and the substrate are determined as [Formula: see text]ǁ[Formula: see text] with two in-plane orientations of [Formula: see text]ǁ[Formula: see text] and [Formula: see text]ǁ[Formula: see text]. Using triple axis symmetric and asymmetric reciprocal space maps, interplanar spacings of out-of-plane (111) and in-plane (11[Formula: see text]) are found to be 0.2242 ± 0.0003 and 0.1591 ± 0.0003 nm, respectively. These values are 0.18% lower than 0.2246 nm for (111) and the same, within the measurement uncertainties, as 0.1588 nm for (11[Formula: see text]) calculated from the bulk Pd lattice parameter, suggesting a small out-of-plane compressive strain and an in-plane tensile strain related to the thermal strain upon cooling the sample from the deposition temperature to room temperature. High-resolution cross-sectional transmission electron microscopy coupled with energy dispersive x-ray spectra obtained from the Pd(111)/Al 2 O 3 (0001) samples indicate that the Pd-Al 2 O 3 interfaces are essentially atomically abrupt and

  18. Synthesis of Ag-Cu-Pd alloy thin films by DC-magnetron sputtering: Case study on microstructures and optical properties

    Science.gov (United States)

    Rezaee, Sahar; Ghobadi, Nader

    2018-06-01

    The present study aims to investigate optical properties of Ag-Cu-Pd alloy thin films synthesized by DC-magnetron sputtering method. The thin films are deposited on the glass and silicon substrates using Argon gas and Ag-Cu-Pd target. XRD analysis confirms the successful growth of Ag, Cu, and Pd NPs with FCC crystalline structure. Moreover, UV-visible absorption spectroscopy is applied to determine optical properties of the prepared samples which are affected by changes in surface morphology. The existence of single surface plasmon resonance (SPR) peak near 350 nm proves the formation of silver nanoparticles with a slight red shift through increasing deposition time. Ineffective thickness method (ITM) and Derivation of ineffective thickness method (DITM) are applied to extract optical band gap and transition type via absorption spectrum. SEM and AFM analyses show the distribution of near-spherical nanoparticles covering the surface of thin films. Furthermore, thickness variation affects the grain size. In addition, TEM image reveals the uniform size distribution of nanoparticles with an average particle size of about 15 nm. The findings show that increasing grain size and crystallite order along with the decrease of structural defect and disorders decrease optical band gap from 3.86 eV to 2.58 eV.

  19. Modulation of magnetic coercivity in Ni thin films by reversible control of strain

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wen-Chin, E-mail: wclin@ntnu.edu.tw [Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan (China); Huang, Chia-Wei; Ting, Yi-Chieh; Lo, Fang-Yuh [Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan (China); Chern, Ming-Yau [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China)

    2015-05-01

    In this study, we demonstrated the magnetoelectric control of magnetic thin films. (111)-textured Pd/Ni/Pd thin films were prepared on mica/lead zirconium titanate (PZT) substrates for the investigation. The reversible modulation of magnetic coercivity in Ni films was observed through the electric-voltage-controlled strain variation from the PZT substrate. For 14 nm Ni film, the applied electric field of ±350 V/m led to ±0.5% strain variation of PZT, which was transferred to ±0.4% strain variation of Pd/Ni/Pd thin films on mica, and resulted in ∓17 Oe (∓5% of the preliminary magnetic coercivity). The reversible modulation of magnetic coercivity is supposed to be caused by the voltage-controlled strain through the magneto-elastic effect. - Highlights: • The magnetoelectric control of the magnetic coercivity of Pd/Ni/Pd thin films was demonstrated. • The ±0.4% strain variation of 14 nm Ni thin films resulted in ±17 Oe change of H{sub c}. • The reversible modulation of H{sub c} is supposed to be caused by the magneto-elastic effect.

  20. Gilbert damping constant of FePd alloy thin films estimated by broadband ferromagnetic resonance

    Directory of Open Access Journals (Sweden)

    Kawai T.

    2014-07-01

    Full Text Available Magnetic relaxation of FePd alloy epitaxial thin films with very flat surfaces prepared on MgO(001 substrate are measured by in-plane broadband ferromagnetic resonance (FMR. Magnetic relaxation is investigated as Δω for FMR absorption peak by frequency sweep measurements. ΔH is calculated by using the measured Δω. Gilbert damping constant, α, is estimated by employing a straight line fitting of the resonant frequency dependence of ΔH. The α value for an FePd film deposited at 200 ˚C, which shows disordered A1 structure, is 0.010 and ΔH0, which is frequency independent part of ΔH, is 10 Oe. The α value for a film annealed at 400 ˚C, which shows partially L10 ordered structure (S=0.32, is 0.013, which is slightly larger than that for the disorder A1 structure film. However, ΔH0 for the annealed film is 85 Oe, which is much larger than that for the film with disordered structure. The results show that the magnetic relaxation of the 400 ˚C annealed film is mainly dominated by ΔH0, which is related with magnetic in-homogeneity caused by the appearance of perpendicular anisotropy of partially ordered phase.

  1. Superconducting thin films of As-free pnictide LaPd{sub 1-x}Sb{sub 2} grown by reactive molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Retzlaff, Reiner; Buckow, Alexander; Kurian, Jose; Alff, Lambert [Institute of Materials Science, Technische Universitaet Darmstadt, Petersenstr. 23, 64287 Darmstadt (Germany)

    2013-07-01

    We use reactive molecular beam epitaxy as synthesis technique for the search of arsenic free pnictide superconductors. Epitaxial thin films of LaPd{sub 1-x}Sb{sub 2} were grown on (100) MgO substrates from elemental sources by simultaneous evaporation of high purity La, Pd and Sb metals by e-gun. LaPd{sub 1-x}Sb{sub 2} belongs to a novel class of pnictide superconductors with a peculiar pnictide square net layer. Previously, we have reported epitaxial growth of isostructural Bi based compounds. The substitution of Bi by Sb leads to thin films with metallic behavior and room temperature resistivity of about 85 μΩ cm. The highest observed transition temperature T{sub c} inLaPd{sub 1-x}Sb{sub 2} is 3.1 K and does not depend on x. We discuss strategies to increase T{sub c} in this pnictide subfamily.

  2. Thickness-dependent radiative properties of Y-Ba-Cu-O thin films

    International Nuclear Information System (INIS)

    Phelan, P.E.; Chen, G.; Tien, C.L.

    1991-01-01

    Some applications of high-temperature superconductors where their thermal radiative behavior is important, such as bolometers, optically-triggered switches and gates, and space-cooled electronics, required the superconductor to be in the form of a very thin film whose radiative behavior cannot be adequately represented by a semi-infinite analysis. Two properties of particular importance are the film absorptance and the combined film/substrate absorptance, which are crucial to the operation of many devices. This paper reports on calculations of the absorptance of superconducting-state Y-Ba-Cu-O films on MgO substrates which suggest that for film thicknesses less than about 50 nm, a decrease in the film thickness leads to an increase in both the film absorptance and the film/substrate absorptance. Furthermore, the film absorptance is maximum at some optimal value of film thickness. Assuming the film to be a smooth, continuous slab with a refractive index equal to that of the bulk Y-Ba-Cu-O is verified, at least in the normal state and for films as thin as 35 nm, by room-temperature reflectance and transmittance measurements

  3. Early deuteration steps of Pd- and Ta/Pd- catalyzed Mg{sub 70}Al{sub 30} thin films observed at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Harrower, Christopher; Kalisvaart, Peter; Mitlin, David [Chemical and Materials Engineering, University of Alberta, Alberta T6G 2V4 (Canada); National Research Council Canada, National Institute for Nanotechnology, Edmonton, Alberta T6G 2M9 (Canada); Poirier, Eric; Fritzsche, Helmut [National Research Council Canada, SIMS, Canadian Neutron Beam Centre, Chalk River, Ontario K0J 1J0 (Canada); Satija, Sushil [National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, MD 20899 (United States); Akgun, Bulent [National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, MD 20899 (United States); Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742 (United States)

    2010-10-15

    Deuterium absorption in Mg{sub 70}Al{sub 30} thin films coated with a Pd layer and a Ta/Pd bilayer were investigated using in situ neutron reflectometry at room temperature and deuterium pressures up to 1.3 bar. The approach used provides a detailed profile, at the nanoscale, of the deuterium content inside the specific layers that constitute the films. It is found that Mg{sub 70}Al{sub 30} can store up to 5 wt.% under these mild conditions following a two-step mechanism. The latter involves the deuteration of the top and bottom catalyst layers first, followed by the main Mg{sub 70}Al{sub 30} layer. The presence of deuterium throughout the films in the early absorption stages evidences atomic deuterium spillover from the catalyst layers. The addition of a Ta layer between the Pd and Mg{sub 70}Al{sub 30} was found to allow observable absorption at a pressure 10 times lower than on the Ta-free sample, without affecting the storage capacity. Our measurements imply that this improvement in kinetics is due to a lowering of the nucleation barrier for the formation of the hydride phase in the Mg{sub 70}Al{sub 30} layer. (author)

  4. Nanostructured pyronin Y thin films as a new organic semiconductor: Linear/nonlinear optics, band gap and dielectric properties

    Energy Technology Data Exchange (ETDEWEB)

    Zahran, H.Y. [Metallurgical Lab.1, Nanoscience Laboratory for Environmental and Bio-medical Applications (NLEBA), Semiconductor Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt); Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Yahia, I.S., E-mail: dr_isyahia@yahoo.com [Metallurgical Lab.1, Nanoscience Laboratory for Environmental and Bio-medical Applications (NLEBA), Semiconductor Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, 11757 Cairo (Egypt); Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia); Alamri, F.H. [Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha (Saudi Arabia)

    2017-05-15

    Pyronin Y dye (PY) is a kind of xanthene derivatives. Thin films of pyronin Y were deposited onto highly cleaned glass substrates using low-cost/spin coating technique. The structure properties of pyronin Y thin films with different thicknesses were investigated by using X-ray diffraction (XRD) and atomic force microscope (AFM). PY thin films for all the studied thicknesses have an amorphous structure supporting the short range order of the grain size. AFM supports the nanostructure with spherical/clusters morphologies of the investigated thin films. The optical constants of pyronin Y thin films for various thicknesses were studied by using UV–vis–NIR spectrophotometer in the wavelength range 350–2500 nm. The transmittance T(λ), reflectance R(λ) spectral and absorbance (abs(λ)) were obtained for all film thicknesses at room temperature and the normal light incident. These films showed a high transmittance in the wide scale wavelengths. For different thicknesses of the studied thin films, the optical band gaps were determined and their values around 2 eV. Real and imaginary dielectric constants, dissipation factor and the nonlinear optical parameters were calculated in the wavelengths to the range 300–2500 nm. The pyronin Y is a new organic semiconductor with a good optical absorption in UV–vis regions and it is suitable for nonlinear optical applications. - Highlights: • Pyronin Y (PY) nanostructured thin films were deposited by using spin coating technique. • XRD/AFM were used to study the structure of PY films. • The optical band gap was calculated on the basis of Tauc's model. • Linear/nonlinear optical parameters are calculated and interpreted via the applied optical theories. • PY thin films is a new organic semiconductor for its application in optoelectronic devices.

  5. Synthesis and characterization of thin films of Pd/TiO2 with possible applications in photo catalysis

    International Nuclear Information System (INIS)

    Tirado G, S.; Valenzuela Z, M. A.

    2015-10-01

    In this paper the synthesis and study of thin films of titanium oxide is reported, as well as those that were surface modified with palladium nanoparticles Pd/TiO 2 . First, the TiO 2 films are grown on substrates of soda-lime glass using chemical sol-gel route and the repeated immersion procedure. The salt precursor titanium oxy-acetylacetonate to 0.2 M, in the solvent 2-methoxyethanol and monoethanolamine was used as stabilizer. The number of used immersions gave an average thickness estimate for these films of 172.8 nm. Second, the series of Pd/TiO 2 films surface modified were obtained from a solution of palladium nitrate dehydrate at low concentration, with the same procedure. The films grown TiO 2 and those surface-modified films were characterized in its structure by X-ray diffraction, morphology by scanning electron microscopy, the topography with atomic force microscopy, optical properties by UV-Vis, among others. Photoluminescence properties and/or possible applications in photo catalysis are reported in this paper. (Author)

  6. Synthesis and characterization of thin films of Pd/TiO{sub 2} with possible applications in photo catalysis; Sintesis y caracterizacion de peliculas delgadas de Pd/TiO{sub 2} con posibles aplicaciones en fotocatalisis

    Energy Technology Data Exchange (ETDEWEB)

    Tirado G, S. [IPN, Escuela Superior de Fisica y Matematicas, U. P. Adolfo Lopez Mateos Edif. 9, San Pedro Zacatenco, 07738 Mexico D. F. (Mexico); Valenzuela Z, M. A., E-mail: tirado@esfm.ipn.mx [IPN, Escuela Superior de Ingenieria Quimica e Industrias Extractivas, Laboratorio de Catalisis y Materiales, U. P. Adolfo Lopez Mateos Edif. 8, San Pedro Zacatenco, 07738 Mexico D. F. (Mexico)

    2015-10-15

    In this paper the synthesis and study of thin films of titanium oxide is reported, as well as those that were surface modified with palladium nanoparticles Pd/TiO{sub 2}. First, the TiO{sub 2} films are grown on substrates of soda-lime glass using chemical sol-gel route and the repeated immersion procedure. The salt precursor titanium oxy-acetylacetonate to 0.2 M, in the solvent 2-methoxyethanol and monoethanolamine was used as stabilizer. The number of used immersions gave an average thickness estimate for these films of 172.8 nm. Second, the series of Pd/TiO{sub 2} films surface modified were obtained from a solution of palladium nitrate dehydrate at low concentration, with the same procedure. The films grown TiO{sub 2} and those surface-modified films were characterized in its structure by X-ray diffraction, morphology by scanning electron microscopy, the topography with atomic force microscopy, optical properties by UV-Vis, among others. Photoluminescence properties and/or possible applications in photo catalysis are reported in this paper. (Author)

  7. Preparation and characterization of metallic supported thin Pd-Ag membranes for hydrogen separation

    OpenAIRE

    Fernandez, Ekain; Medrano, Jose Antonio; Melendez, Jon; Parco, Maria; Viviente, J.L.; van Sint Annaland, Martin; Gallucci, Fausto; Pacheco Tanaka, David A.

    2015-01-01

    This paper reports the preparation and characterization of thin-film (4-5 µm thick) Pd-Ag metallic supported membranes for high temperature applications. Various thin film membranes have been prepared by depositing a ceramic interdiffusion barrier layer prior to the simultaneous Pd-Ag electroless plating deposition. Two deposition techniques for ceramic layers (made of zirconia and alumina) have been evaluated: atmospheric plasma spraying and dip coating of a powder suspension. Initially, the...

  8. Hydrogen absorption by thin Pd/Nb films deposited on glass

    International Nuclear Information System (INIS)

    Reisfeld, G.; Jisrawi, N.M.; Ruckman, M.W.; Strongin, M.

    1996-01-01

    Hydrogen absorption by 200 endash 2000-A-thick Pd-capped Nb films, between 5 and 110 degree C, was studied by simultaneous four-probe resistivity and volumetric measurements. The resistivity as a function of hydrogen concentration was measured while charging the films with hydrogen, and was used to compute the change in hydrogen concentration in the film, during the reaction with oxygen. For the thinnest films (200 A thick), the hydrogen charging and discharging curves indicate that a first-order gas-liquid-like phase transition with a T c of 70 endash 75 degree C takes place. The H-Nb phase diagram for the 200-A film looks like the H/bulk Nb α-α' phase diagram which has a higher T c (173 degree C). We attribute the substantial modifications of the film close-quote s phase diagram to the clamping of the Nb film at its interfaces with glass and Pd and to the nanostructure of the films. copyright 1996 The American Physical Society

  9. Thickness-dependent appearance of ferromagnetism in Pd(100) ultrathin films

    Science.gov (United States)

    Sakuragi, S.; Sakai, T.; Urata, S.; Aihara, S.; Shinto, A.; Kageshima, H.; Sawada, M.; Namatame, H.; Taniguchi, M.; Sato, T.

    2014-08-01

    We report the appearance of ferromagnetism in thin films of Pd(100), which depends on film thickness in the range of 3-5 nm on SrTiO3(100) substrates. X-ray magnetic circular dichroism measurement shows the intrinsic nature of ferromagnetism in Pd(100) films. The spontaneous magnetization in Pd(100) films, corresponding to is 0.61μB/atom, is comparable to Ni, and it changes in an oscillatory manner depending on film thickness, where the period quantitatively agrees with the theoretical prediction based on the two-dimensional quantum well in the film. This indicates that the discrete electronic states in the quantum well shift to Fermi energy to satisfy the condition for ferromagnetism (Stoner criterion) at a specific film thickness.

  10. Fabrication of Au-Pd Core-shell Nanoparticles using Au Thin-Film Dewetting at High Temperature and Chemical Synthesis Methods

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min-Gyu; Lee, Hye-Jung; Oh, Yong-Jun [Hanbat National Univ., Daejeon (Korea, Republic of)

    2016-07-15

    Au-Pd bimetallic nanoparticles (NPs) have received a lot of attention in the fields of catalysts and hydrogen sensors. In this study, Au-Pd core-shell NP arrays were successfully fabricated using two steps: formation of the ordered array of Au NPs cores via solid-state dewetting of a Au thin film on a topographic silica substrate, and Pd shell formation via chemical synthesis using two different surfactants (CTAB and CTAC). Using the CTAB surfactant in particular, a 2-D composite structure comprised of an ordered array of Au-Pd NPs, with smaller Pd NPs on the nanoscopic gaps between the Au-Pd NPs, could be formed. This structure is expected to have potential application in resistance-base hydrogen sensors.

  11. Tight comparison of Mg and Y thin film photocathodes obtained by the pulsed laser deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Lorusso, A. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy); Gontad, F., E-mail: francisco.gontad@le.infn.it [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy); Solombrino, L. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy); Chiadroni, E. [Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, 00044 Frascati (Italy); Broitman, E. [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping (Sweden); Perrone, A. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy)

    2016-11-11

    In this work Magnesium (Mg) and Yttrium (Y) thin films have been deposited on Copper (Cu) polycrystalline substrates by the pulsed laser ablation technique for photocathode application. Such metallic materials are studied for their interesting photoemission properties and are proposed as a good alternative to the Cu photocathode, which is generally used in radio-frequency guns. Mg and Y films were uniform with no substantial differences in morphology; a polycrystalline structure was found for both of them. Photoemission measurements of such cathodes based on thin films were performed, revealing a quantum efficiency higher than Cu bulk. Photoemission theory according to the three-step model of Spicer is invoked to explain the superior photoemission performance of Mg with respect to Y. - Highlights: • Mg and Y thin film photocathodes were successfully prepared by pulsed laser deposition. • Mg quantum efficiency is higher than Y, despite its higher work function. • The three-step model of Spicer justify the difference in quantum efficiency.

  12. Ultra-thin zirconia films on Zr-alloys

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Joong Il Jake; Mayr-Schmoelzer, Wernfried; Mittendorfer, Florian; Redinger, Josef; Diebold, Ulrike; Schmid, Michael [Institute of Applied Physics, Vienna University of Technology (Austria); Li, Hao; Rupprechter, Guenther [Institute of Materials Chemistry, Vienna University of Technology (Austria)

    2014-07-01

    Zirconia ultra-thin films have been prepared by oxidation of Pt{sub 3}Zr(0001) and showed a structure equivalent to (111) of cubic zirconia. Following previous work, we have prepared ultra-thin zirconia by oxidation of a different alloy, Pd{sub 3}Zr(0001), which resulted in a similar structure with a slightly different lattice parameter, 351.2 ±0.4 pm. Unlike the oxide on Pt{sub 3}Zr, where Zr of the oxide binds to Pt in the substrate, here the oxide binds to substrate Zr via oxygen. This causes stronger distortion of the oxide structure, i.e. a stronger buckling of Zr in the oxide. After additional oxidation of ZrO{sub 2}/Pt{sub 3}Zr, a different ultra-thin zirconia phase is observed. A preliminary structure model for this film is based on (113)-oriented cubic zirconia. 3D oxide clusters are also present after growing ultra-thin zirconia films. They occur at the step edges, and the density is higher on Pd{sub 3}Zr. These clusters also appear on terraces after additional oxidation. XPS reveals different core level shifts of the oxide films, bulk, and oxide clusters.

  13. Magneto-optical and magnetic properties in a Co/Pd multilayered thin film

    Energy Technology Data Exchange (ETDEWEB)

    Nwokoye, Chidubem A. [Institute for Magnetics Research, Department of Electrical and Computer Engineering, The George Washington University, DC 20052 (United States); Naval Air Systems Command, Avionics, Sensors and E*Warfare Department, Patuxent River, MD 20670 (United States); Bennett, Lawrence H., E-mail: lbennett@gwu.edu [Institute for Magnetics Research, Department of Electrical and Computer Engineering, The George Washington University, DC 20052 (United States); Della Torre, Edward, E-mail: edt@gwu.edu [Institute for Magnetics Research, Department of Electrical and Computer Engineering, The George Washington University, DC 20052 (United States); Ghahremani, Mohammadreza [Institute for Magnetics Research, Department of Electrical and Computer Engineering, The George Washington University, DC 20052 (United States); Narducci, Frank A. [Naval Air Systems Command, Avionics, Sensors and E*Warfare Department, Patuxent River, MD 20670 (United States)

    2017-01-01

    The paper describes investigation of ferromagnetism at low temperatures. We explored the magneto-optical properties, influenced by photon–magnon interactions, of a ferromagnetic Co/Pd multilayered thin film below and above the magnon Bose–Einstein Condensation (BEC) temperature. Analyses of SQUID and MOKE low temperature experimental results reveal a noticeable phase transition in both magnetic and magneto-optical properties of the material at the BEC temperature. - Highlights: • The results show the effect of a non-zero chemical potential on the magnetization. • The MOKE and SQUID results show a phase transition point at the same temperature. • Magnon BEC is a major influence of the observed phase transition temperature.

  14. Preparation of transparent Cu{sub 2}Y{sub 2}O{sub 5} thin films by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Te-Wei, E-mail: tewei@ntut.edu.tw; Chang, Chih-Hao; Yang, Li-Wei; Wang, Yung-Po

    2015-11-01

    Highlights: • Cu{sub 2}Y{sub 2}O{sub 5} thin films were prepared by RF magnetron sputtering. • Cu{sub 2}Y{sub 2}O{sub 5} thin films have high transmittance and antibacterial properties. • Mechanical properties of Cu{sub 2}Y{sub 2}O{sub 5} thin films were investigated. - Abstract: Cu{sub 2}Y{sub 2}O{sub 5} thin films were deposited on non-alkali glass substrates by RF magnetron sputtering. Its crystal structure, microstructure, optical property, mechanical property, and antibacterial activity were investigated by grazing-incidence X-ray diffraction, transmittance spectra, nanoindenter, and antibiotics test, respectively. A single-phase of Cu{sub 2}Y{sub 2}O{sub 5} was obtained while annealing at 700 °C in air and its optical transparency was >80% in the visible region. The hardness and elastic modulus of the film were 6.7 GPa and 82 GPa, respectively. Antibiotics testing result revealed that Cu{sub 2}Y{sub 2}O{sub 5} surface had a superior antibacterial performance even at a dark environment. Therefore, Cu{sub 2}Y{sub 2}O{sub 5} is a promising novel transparent antibacterial hard coating material.

  15. Experimental study of the plasma fluorination of Y-Ba-Cu-O thin films

    CERN Document Server

    Li Qi; Ji Zheng Ming; Feng Yi Jun; Kang Lin; Yang Sen Zu; Wu Pei Heng; Wang Xiao Shu; Ye Yuda

    2002-01-01

    The authors have experimentally studied the surface modifications of Y-Ba-Cu-O (YBCO) thin films using CF sub 4 plasma. The intensity of the plasma fluorination was controlled by changing the biasing voltage and the time of the plasma treatment. Microstructural analyses reveal that the oxygen content of the YBCO thin films was changed. Transport measurements of sufficient fluorinated YBCO films imply that the films changed totally into an oxygen-deficient semi-conducting state. From these experimental results, the authors believe that plasma fluorination is quite a useful method to form controllable a thin barrier layer in fabricating interface engineered junctions and to form a stable narrow weak-link region in fabricating planar superconductor-normal-superconductor junctions

  16. Quantum-well-driven magnetism in thin films

    DEFF Research Database (Denmark)

    Mirbt, S.; Johansson, B.; Skriver, Hans Lomholt

    1996-01-01

    We have performed local spin-density calculations for an fee (100) Ag substrate covered by 1 to 16 monolayers (ML) of Pd. We find that thin films of Pd are magnetic with a moment of the order of 0.3 mu(B) except for films of 1-2 ML and 5-7 ML where magnetism is completely suppressed. We present...... a physically transparent explanation of this behavior in terms of the Stoner picture and magnetic quantum-well states....

  17. 2D Ultrathin Core-shell Pd@Ptmonolayer Nanosheets: Defect-Mediated Thin Film Growth and Enhanced Oxygen Reduction Performance

    KAUST Repository

    Wang, Wenxin

    2015-06-16

    An operational strategy for the synthesis of atomically smooth Pt skin by a defect-mediated thin film growth method is reported. Extended ultrathin core-shell structured Pd@Ptmonolayer nanosheets (thickness below 5 nm) exhibit a seven-fold enhancement in mass-activity and surprisingly good durability toward oxygen reduction reaction as compared with the commercial Pt/C catalyst.

  18. 2D Ultrathin Core-shell Pd@Ptmonolayer Nanosheets: Defect-Mediated Thin Film Growth and Enhanced Oxygen Reduction Performance

    KAUST Repository

    Wang, Wenxin; Zhao, Yunfeng; Ding, Yi

    2015-01-01

    An operational strategy for the synthesis of atomically smooth Pt skin by a defect-mediated thin film growth method is reported. Extended ultrathin core-shell structured Pd@Ptmonolayer nanosheets (thickness below 5 nm) exhibit a seven-fold enhancement in mass-activity and surprisingly good durability toward oxygen reduction reaction as compared with the commercial Pt/C catalyst.

  19. Thermal Measurement during Electrolysis of Pd-Ni Thin-film -Cathodes in Li2SO4/H2O Solution

    Science.gov (United States)

    Castano, C. H.; Lipson, A. G.; S-O, Kim; Miley, G. H.

    2002-03-01

    Using LENR - open type calorimeters, measurements of excess heat production were carried out during electrolysis in Li_2SO_4/H_2O solution with a Pt-anode and Pd-Ni thin film cathodes (2000-8000 Åthick) sputtered on the different dielectric substrates. In order to accurately evaluate actual performance during electrolysis runs in the open-type calorimeter used, considering effects of heat convection, bubbling and possible H_2+O2 recombination, smooth Pt sheets were used as cathodes. Pt provides a reference since it does not produce excess heat in the light water electrolyte. To increase the accuracy of measurements the water dissociation potential was determined for each cathode taking into account its individual over-voltage value. It is found that this design for the Pd-Ni cathodes resulted in the excess heat production of ~ 20-25 % of input power, equivalent to ~300 mW. In cases of the Pd/Ni- film fracture (or detachment from substrate) no excess heat was detected, providing an added reference point. These experiments plus use of optimized films will be presented.

  20. Oriented Y-typehexagonal ferrite thin films prepared by chemical

    Czech Academy of Sciences Publication Activity Database

    Buršík, Josef; Kužel, R.; Knížek, Karel; Drbohlav, Ivo

    2013-01-01

    Roč. 203, JULY (2013), s. 100-105 ISSN 0022-4596 R&D Projects: GA ČR GA13-03708S Institutional support: RVO:61388980 ; RVO:68378271 Keywords : Y-type hexagonal ferrites * chemical solution deposition * thin films * epitaxial growth Subject RIV: CA - Inorganic Chemistry; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 2.200, year: 2013

  1. Heterogenous integration of a thin-film GaAs photodetector and a microfluidic device on a silicon substrate

    International Nuclear Information System (INIS)

    Song, Fuchuan; Xiao, Jing; Udawala, Fidaali; Seo, Sang-Woo

    2011-01-01

    In this paper, heterogeneous integration of a III–V semiconductor thin-film photodetector (PD) with a microfluidic device is demonstrated on a SiO 2 –Si substrate. Thin-film format of optical devices provides an intimate integration of optical functions with microfluidic devices. As a demonstration of a multi-material and functional system, the biphasic flow structure in the polymeric microfluidic channels was co-integrated with a III–V semiconductor thin-film PD. The fluorescent drops formed in the microfluidic device are successfully detected with an integrated thin-film PD on a silicon substrate. The proposed three-dimensional integration structure is an alternative approach to combine optical functions with microfluidic functions on silicon-based electronic functions.

  2. Ultraviolet emitting (Y1-xGd x)2O3-δ thin films deposited by radio frequency magnetron sputtering; structure-property-thin film processing relationships

    International Nuclear Information System (INIS)

    Fowlkes, J.D.; Fitz-Gerald, J.M.; Rack, P.D.

    2007-01-01

    The effects that the oxygen partial pressure, substrate temperature and annealing temperature have on the cathodoluminescence (CL) efficiency of radio frequency magnetron sputter deposited Gd-doped Y 2 O 3 thin films is investigated. Furthermore these sputtering parameters are correlated to the degree of crystallinity, the phases present (cubic (α) versus monoclinic (β) Y 2 O 3 ), and the stoichiometry of the thin films. Films deposited at room temperature (RT) did not CL, however, the films were activated by a post-deposition anneal at 1273 K for 6 h. Films deposited at 873 K had a very low CL efficiency which was significantly enhanced by a post-deposition anneal. For RT deposited films the external CL efficiency increased with increasing oxygen partial pressure for the range studied, however the opposite trend was observed for the 873 K deposited films. Examination of the morphology and grain size of the high temperature deposited films revealed that the average grain size increased with decreasing partial pressure and the observed increase in the external CL efficiency was attributed to enhanced anomalous diffraction. An intrinsic CL efficiency term was determined to circumvent the effects of the enhanced anomalous diffraction, and the CL efficiency was correlated to the integrated intensity of the (222) of the cubic α-Y 2 O 3 phase

  3. Hydrogen-Induced Buckling of Pd Films Deposited on Various Substrates

    KAUST Repository

    Vlček, Marián

    2015-07-01

    A Pd-H system is a model system suitable for studying interactions of hydrogen with metals. In the present work, we studied hydrogen-induced buckling of thin Pd films deposited on various substrates with different bonding strengths (sapphire, glimmer) and also the effect of deposition temperature. Lattice expansion and phase transitions were investigated by X-ray diffraction of synchrotron radiation. The influence of the substrate and microstructure of the film on the buckling process and phase transformation to palladium hydride are discussed.

  4. Hydrogen-Induced Buckling of Pd Films Deposited on Various Substrates

    KAUST Repository

    Vlček, Mariá n; Luká č, František; Vlach, Martin; Prochá zka, Ivan; Wagner, Stefan; Uchida, Helmut; Pundt, Astrid; Gemma, Ryota; Čí žek, Jakub

    2015-01-01

    A Pd-H system is a model system suitable for studying interactions of hydrogen with metals. In the present work, we studied hydrogen-induced buckling of thin Pd films deposited on various substrates with different bonding strengths (sapphire, glimmer) and also the effect of deposition temperature. Lattice expansion and phase transitions were investigated by X-ray diffraction of synchrotron radiation. The influence of the substrate and microstructure of the film on the buckling process and phase transformation to palladium hydride are discussed.

  5. Synthesis of high-oxidation Y-Ba-Cu-O phases in superoxygenated thin films

    Science.gov (United States)

    Zhang, H.; Gauquelin, N.; McMahon, C.; Hawthorn, D. G.; Botton, G. A.; Wei, J. Y. T.

    2018-03-01

    It is known that solid-state reaction in high-pressure oxygen can stabilize high-oxidation phases of Y-Ba-Cu-O superconductors in powder form. We extend this superoxygenation concept of synthesis to thin films which, due to their large surface-to-volume ratio, are more reactive thermodynamically. Epitaxial thin films of YBa2Cu3O7 -δ grown by pulsed laser deposition are annealed at up to 700 atm O2 and 900 ∘C , in conjunction with Cu enrichment by solid-state diffusion. The films show the clear formation of Y2Ba4Cu7O15 -δ and Y2Ba4Cu8O16 as well as regions of YBa2Cu5O9 -δ and YBa2Cu6O10 -δ phases, according to scanning transmission electron microscopy, x-ray diffraction, and x-ray absorption spectroscopy. Similarly annealed YBa2Cu3O7 -δ powders show no phase conversion. Our results demonstrate a route of synthesis towards discovering more complex phases of cuprates and other superconducting oxides.

  6. Interface reactions between Pd thin films and SiC by thermal annealing and SHI irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Njoroge, E.G., E-mail: eric.njoroge@up.ac.za [Department of Physics, University of Pretoria, Pretoria (South Africa); Theron, C.C. [Department of Physics, University of Pretoria, Pretoria (South Africa); Skuratov, V.A. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Wamwangi, D. [School of Physics, University of Witwatersrand, Johannesburg (South Africa); Hlatshwayo, T.T. [Department of Physics, University of Pretoria, Pretoria (South Africa); Comrie, C.M. [MRD, iThemba LABS, P.O. Box 722, Somerset West 7129 (South Africa); Malherbe, J.B. [Department of Physics, University of Pretoria, Pretoria (South Africa)

    2016-03-15

    The solid-state reactions between Pd thin films and 6H-SiC substrates induced by thermal annealing, room temperature swift heavy ion (SHI) irradiation and high temperature SHI irradiation have been investigated by in situ and real-time Rutherford backscattering spectrometry (RBS) and Grazing incidence X-ray diffraction (GIXRD). At room temperature, no silicides were detected to have formed in the Pd/SiC samples. Two reaction growth zones were observed in the samples annealed in situ and analysed by real time RBS. The initial reaction growth region led to formation of Pd{sub 3}Si or (Pd{sub 2}Si + Pd{sub 4}Si) as the initial phase(s) to form at a temperature of about 450 °C. Thereafter, the reaction zone did not change until a temperature of 640 °C was attained where Pd{sub 2}Si was observed to form in the reaction zone. Kinetic analysis of the initial reaction indicates very fast reaction rates of about 1.55 × 10{sup 15} at cm{sup −2}/s and the Pd silicide formed grew linear with time. SHI irradiation of the Pd/SiC samples was performed by 167 MeV Xe{sup 26+} ions at room temperature at high fluences of 1.07 × 10{sup 14} and 4 × 10{sup 14} ions/cm{sup 2} and at 400 °C at lower fluences of 5 × 10{sup 13} ions/cm{sup 2}. The Pd/SiC interface was analysed by RBS and no SHI induced diffusion was observed for room temperature irradiations. The sample irradiated at 400 °C, SHI induced diffusion was observed to occur accompanied with the formation of Pd{sub 4}Si, Pd{sub 9}Si{sub 2} and Pd{sub 5}Si phases which were identified by GIXRD analysis.

  7. Surface electronic properties of discontinuous Pd films during hydrogen exposure

    International Nuclear Information System (INIS)

    Zhao, Ming; Nagata, Shinji; Shikama, Tatsuo; Inouye, Aichi; Yamamoto, Shunya; Yoshikawa, Masahito

    2011-01-01

    This paper explored the change in the surface resistance of the discontinuous palladium (Pd) films during hydrogen exposure. In our experiments, we observed a remarkable rise in the electrical resistance of the discontinuous film which consists of nano-sized particles, when it was exposed to thin hydrogen. By studying the resistance change ratio before and after hydrogen exposure, we have found that it demonstrates an inverse exponential relationship with the ratio of on-film particle radius to the inter island separation. This suggests that the change in the film resistance under hydrogen exposure is primarily associated with the variation of surface work function which is caused by the hydrogen absorption on the Pd surface. (author)

  8. LiFePO_4_−_xN_y thin-film electrodes coated on carbon fiber-modified current collectors for pseudocapacitors

    International Nuclear Information System (INIS)

    Chiu, Kuo-Feng; Su, Shih-Hsuan; Leu, Hoang-Jyh; Huang, Wei-Chieh

    2015-01-01

    LiFePO_4_−_xN_y thin films were sputter-deposited on micron carbon fibers (MCFs) under a gas mixture of N_2/Ar/H_2 as electrode materials in pseudocapacitors. The MCFs were fabricated by thermal chemical vapor deposition on stainless steel substrates as current collectors. Various amounts of N_2 were introduced by controlling the flow ratios of N_2 to Ar/H_2. The LiFePO_4_−_xN_y thin films coated on the surfaces of MCFs were observed by field emission scanning electron microscopy. The electrochemical properties of the LiFePO_4_−_xN_y thin films were characterized using cyclic voltammetry and charge–discharge processes. The LiFePO_4_−_xN_y thin-film electrode deposited under the optimal N_2 contents exhibited a high specific capacitance of 722 F/g at 1 A/g. Even at a current of 20 A/g, the electrode delivered a capacitance of 298 F/g. The pseudocapacitors using LiFePO_4_−_xN_y thin-film electrodes showed no significant capacitance fading after 1000 cycles at 1 A/g. The results indicated that nitrogen doping improved the electrochemical performances of LiFePO_4, demonstrating the potential of LiFePO_4_−_xN_y as an active material in pseudocapacitors. - Highlights: • LiFePO_4_−_xN_y thin films were sputter-deposited on micron carbon fibers (MCFs). • MCFs only act as a three-dimensional current collector in this system. • The pseudocapacitor exhibits a high specific capacitance.

  9. Pd-Ni-MWCNT nanocomposite thin films: preparation and structure

    Science.gov (United States)

    Kozłowski, Mirosław; Czerwosz, ElŻbieta; Sobczak, Kamil

    2017-08-01

    The properties of nanocomposite palladium-nickel-multi-walled (Pd-Ni-MWCNT) films deposited on aluminum oxide (Al2O3) substrate have been prepared and investigated. These films were obtained by 3 step process consisted of PVD/CVD/PVD methods. The morphology and structure of the obtained films were characterized by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques at various stages of the film formation. EDX spectrometer was used to measurements of elements segregation in the obtained film. TEM and STEM (Scanning Transmission Electron Microscopy) observations showed MWCNTs decorated with palladium nanoparticles in the film obtained in the last step of film formation (final PVD process). The average size of the palladium nanoparticles observed both on MWCNTs and carbonaceous matrix does not exceed 5 nm. The research was conducted on the use of the obtained films as potential sensors of gases (e.g. H2, NH3, CO2) and bio-sensors or optical sensors.

  10. Effects of composition and microstructure of Pd-Cu-Si metallic glassy alloy thin films on hydrogen absorbing properties

    International Nuclear Information System (INIS)

    Kajita, Susumu; Kohara, Shinji; Onodera, Yohei; Fukunaga, Toshiharu; Matsubara, Eiichiro

    2011-01-01

    Thin films of Pd-Cu-Si metallic glassy alloys for a hydrogen sensor were fabricated by a sputtering method. In order to find out the effect of the composition and the microstructure of them on the hydrogen absorbing property (the H 2 response), the structural parameters based on the short-range order (SRO) were measured. Additionally, the change of the structural parameters with hydrogen absorption was measured, and the correlations of the change with the H 2 response and the hydrogen induced linear expansion coefficient (LEC) were examined. The H 2 response decreased with increases in Si content and the structural parameters. These results can be explained by the positive effects of Si content and the structural parameters on the formation of a trigonal prism which is a structural unit of Pd-based amorphous alloys, and by the negative effect of the trigonal prism on absorbing hydrogen. From the observation of the elongation of the Pd-Pd atomic distance with absorbing hydrogen, H atoms are supposed to occupy the space between Pd atoms. The amount of the change in the Pd-Pd atomic distance showed the positive correlations with the H 2 response and the LEC. (author)

  11. Process for obtaining multiple sheet resistances for thin film hybrid microcircuit resistors

    International Nuclear Information System (INIS)

    Norwood, D.P.

    1989-01-01

    A standard thin film circuit containing Ta/sub 2/N (100 ohms/square) resistors is fabricated by depositing on a dielectric substrate successive layers of Ta/sub 2/N, Ti and Pd, with a gold layer to provide conductors. The addition of a few simple photoprocessing steps to the standard TFN manufacturing process enables the formation of Ta/sub 2/N + Ti (10 ohms/square) and Ta/sub 2/N + Ti + Pd (1 ohm/square) resistors in the same otherwise standard thin film circuit structure

  12. Amorphization reaction in thin films of elemental Cu and Y

    Science.gov (United States)

    Johnson, R. W.; Ahn, C. C.; Ratner, E. R.

    1989-10-01

    Compositionally modulated thin films of Cu and Y were prepared in an ultrahigh-vacuum dc ion-beam deposition chamber. The amorphization reaction was monitored by in situ x-ray-diffraction measurements. Growth of amorphous Cu1-xYx is observed at room temperature with the initial formation of a Cu-rich amorphous phase. Further annealing in the presence of unreacted Y leads to Y enrichment of the amorphous phase. Growth of crystalline CuY is observed for T=469 K. Transmission-electron-microscopy measurements provide real-space imaging of the amorphous interlayer and growth morphology. Models are developed, incorporating metastable interfacial and bulk free-energy diagrams, for the early stage of the amorphization reaction.

  13. Perovskite oxynitride LaTiO{sub x}N{sub y} thin films: Dielectric characterization in low and high frequencies

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Y.; Ziani, A. [Institut d' Electronique et de Telecommunications de Rennes (IETR) UMR-CNRS 6164, groupe ' Antennes et Hyperfrequences' , University of Rennes 1, UEB, IUT Saint Brieuc, 18 rue Henri Wallon, 22004 Saint Brieuc cedex (France); Le Paven-Thivet, C., E-mail: claire.lepaven@univ-rennes1.fr [Institut d' Electronique et de Telecommunications de Rennes (IETR) UMR-CNRS 6164, groupe ' Antennes et Hyperfrequences' , University of Rennes 1, UEB, IUT Saint Brieuc, 18 rue Henri Wallon, 22004 Saint Brieuc cedex (France); Benzerga, R.; Le Gendre, L. [Institut d' Electronique et de Telecommunications de Rennes (IETR) UMR-CNRS 6164, groupe ' Antennes et Hyperfrequences' , University of Rennes 1, UEB, IUT Saint Brieuc, 18 rue Henri Wallon, 22004 Saint Brieuc cedex (France); Fasquelle, D. [Laboratoire d' Etude des Materiaux et des Composants pour l' Electronique (LEMCEL) UPRES-EA 2601, University of Littoral-Cote d' Opale, 50 rue Ferdinand Buisson, F-62228 Calais cedex (France); Kassem, H. [Laboratoire de l' Integration du Materiau au Systeme(IMS) UMR-CNRS 5218, groupe Materiaux, University of Bordeaux 1, 16 avenue Pey-Berland, 33607 Pessac (France); and others

    2011-11-01

    Lanthanum titanium oxynitride (LaTiO{sub x}N{sub y}) thin films are studied with respect to their dielectric properties in low and high frequencies. Thin films are deposited by radio frequency magnetron sputtering on different substrates. Effects of nitrogen content and crystalline quality on dielectric properties are investigated. In low-frequency range, textured LaTiO{sub x}N{sub y} thin films deposited on conductive single crystal Nb-STO show a dielectric constant {epsilon} Prime Almost-Equal-To 140 with low losses tan{delta} = 0.012 at 100 kHz. For the LaTiO{sub x}N{sub y} polycrystalline films deposited on conductive silicon substrates with platinum (Pt/Ti/SiO{sub 2}/Si), the tunability reached up to 57% for a weak electric field of 50 kV/cm. In high-frequency range, epitaxial LaTiO{sub x}N{sub y} films deposited on MgO substrate present a high dielectric constant with low losses ({epsilon} Prime Almost-Equal-To 170, tan{delta} = 0.011, 12 GHz).

  14. Domain reversal dynamics in ferromagnetic thin films of Co/Pd nanomultilayers

    International Nuclear Information System (INIS)

    Choe, Sug Bong; Kim, Dong Hyun; Shin, Sung Chul

    2002-01-01

    Domain reversal dynamics in ferromagnetic thin films has been quantitatively investigated by means of a magneto-optical microscope magnetometer (MOMM), capable of grabbing domain reversal patterns in real time under an applied magnetic field and of measuring local magnetic properties with 400-nm spatial resolution. The domain reversal behavior sensitively changed between wall-motion and nucleation-dominant behavior with changing multilayer structure of the Co-Pd multilayers. Quantitative analysis revealed that the contrasting reversal behavior was mainly caused by a sensitive change in wall-motion speed and that the reversal ratio of wall-motion speed over nucleation rate was a governing parameter for the contrasting domain reversal dynamics. The activation volumes of the wall-motion and nucleation processes were generally unequal, and the inequality was closely related with the domain dynamics. Based on a Monte-Carlo simulation, both the macroscopic magnetic properties and the local magnetic variation were responsible for the contrasting domain reversal behavior

  15. Flux pinning enhancement in thin films of Y3 Ba5 Cu8O18.5 + d

    Science.gov (United States)

    Aghabagheri, S.; Mohammadizadeh, M. R.; Kameli, P.; Salamati, H.

    2018-06-01

    YBa2Cu3O7 (Y123) and Y3Ba5Cu8O18 (Y358) thin films were deposited by pulsed laser deposition method. XRD analysis shows both films grow in c axis orientation. Resistivity versus temperature analysis shows superconducting transition temperature was about 91.2 K and 91.5 K and transition width for Y358 and Y123 films was about 0.6 K and 1.6 K, respectively. Analysis of the temperature dependence of the AC susceptibility near the transition temperature, employing Bean's critical state model, indicates that intergranular critical current density for Y358 films is more than twice of intergranular critical current density of Y123 films. Thus, flux pining is stronger in Y358 films. Weak links in the both samples is of superconductor-normal-superconductor (SNS) type irrespective of stoichiometry.

  16. Fabrication of highly sensitive and selective H{sub 2} gas sensor based on SnO{sub 2} thin film sensitized with microsized Pd islands

    Energy Technology Data Exchange (ETDEWEB)

    Van Toan, Nguyen; Viet Chien, Nguyen; Van Duy, Nguyen [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No. 1, Dai Co Viet Road, Hanoi (Viet Nam); Si Hong, Hoang [School of Electrical Engineering (SEE), Hanoi University of Science and Technology (HUST), Hanoi (Viet Nam); Nguyen, Hugo [Division of Microsystems Technology, Department of Engineering Sciences, Uppsala University, 75237 Uppsala (Sweden); Duc Hoa, Nguyen [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No. 1, Dai Co Viet Road, Hanoi (Viet Nam); Van Hieu, Nguyen, E-mail: hieu@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No. 1, Dai Co Viet Road, Hanoi (Viet Nam)

    2016-01-15

    Highlights: • H{sub 2} gas sensors based on SnO{sub 2} thin film sensitized with Pd islands were fabricated. • The sensors could monitor hazardous H{sub 2}n gas at low concentrations of 25–250 ppm. • H{sub 2} response of Pd/SnO{sub 2} is higher than that of Pt/SnO{sub 2} and Au/SnO{sub 2} sensors. • Enhancement of sensor performance was discussed based on spillover and diffusion mechanisms. - Abstract: Ultrasensitive and selective hydrogen gas sensor is vital component in safe use of hydrogen that requires a detection and alarm of leakage. Herein, we fabricated a H{sub 2} sensing devices by adopting a simple design of planar-type structure sensor in which the heater, electrode, and sensing layer were patterned on the front side of a silicon wafer. The SnO{sub 2} thin film-based sensors that were sensitized with microsized Pd islands were fabricated at a wafer-scale by using a sputtering system combined with micro-electronic techniques. The thicknesses of SnO{sub 2} thin film and microsized Pd islands were optimized to maximize the sensing performance of the devices. The optimized sensor could be used for monitoring hydrogen gas at low concentrations of 25–250 ppm, with a linear dependence to H{sub 2} concentration and a fast response and recovery time. The sensor also showed excellent selectivity for monitoring H{sub 2} among other gases, such as CO, NH{sub 3}, and LPG, and satisfactory characteristics for ensuring safety in handling hydrogen. The hydrogen sensing characteristics of the sensors sensitized with Pt and Au islands were also studied to clarify the sensing mechanisms.

  17. Magnesium growth in magnesium deuteride thin films during deuterium desorption

    Energy Technology Data Exchange (ETDEWEB)

    Checchetto, R., E-mail: riccardo.checchetto@unitn.it [Dipartimento di Fisica and CNISM, Università di Trento, Via Sommarive 14, I-38123 Trento (Italy); Miotello, A. [Dipartimento di Fisica and CNISM, Università di Trento, Via Sommarive 14, I-38123 Trento (Italy); Mengucci, P.; Barucca, G. [Dipartimento di Fisica e Ingegneria dei Materiali e del Territorio, Università Politecnica delle Marche, I-60131 Ancona (Italy)

    2013-12-15

    Highlights: ► Highly oriented Pd-capped magnesium deuteride thin films. ► The MgD{sub 2} dissociation was studied at temperatures not exceeding 100 °C. ► The structure of the film samples was analyzed by XRD and TEM. ► The transformation is controlled by the re-growth velocity of the Mg layers. ► The transformation is thermally activated, activation energy value of 1.3 ± 0.1 eV. -- Abstract: Pd- capped nanocrystalline magnesium thin films having columnar structure were deposited on Si substrate by e-gun deposition and submitted to thermal annealing in D{sub 2} atmosphere to promote the metal to deuteride phase transformation. The kinetics of the reverse deuteride to metal transformation was studied by Thermal Desorption Spectroscopy (TDS) while the structure of the as deposited and transformed samples was analyzed by X-rays diffraction and Transmission Electron Microscopy (TEM). In Pd- capped MgD{sub 2} thin films the deuteride to metal transformation begins at the interface between un-reacted Mg and transformed MgD{sub 2} layers. The D{sub 2} desorption kinetics is controlled by MgD{sub 2}/Mg interface effects, specifically the re-growth velocity of the Mg layers. The Mg re-growth has thermally activated character and shows an activation energy value of 1.3 ± 0.1 eV.

  18. Metal-semiconductor transition at a comparable resistivity level and positive magnetoresistance in Mn3Mn1-x Pd x N thin films

    Science.gov (United States)

    Xu, T.; Ji, G. P.; Cao, Z. X.; Ji, A. L.

    2018-02-01

    Thin films of antiperovskite Mn3Mn1-x Pd x N with x up to 0.36 were grown by reactive magnetron co-sputtering method. All the deposits exhibit a [1 0 0] preferential orientation, with the lattice constant slightly enlarged in samples with ever more Pd atoms partially substituting the MnI atoms in Mn3MnN matrix. The replacement of MnI atoms in antiperovskite structure by Pd atoms, besides reducing the saturation magnetization, also invokes a metal-semiconductor transition which occurs remarkably at a comparable resistivity level. Moreover, a positive magnetoresistance was observed in samples of a high Pd content. These tunable electrical and magnetic properties of ternary antiperovskite compounds might promise some ingenious applications in electronic industry.

  19. Shock wave induced martensitic transformations and morphology changes in Fe-Pd ferromagnetic shape memory alloy thin films

    International Nuclear Information System (INIS)

    Bischoff, A. J.; Arabi-Hashemi, A.; Ehrhardt, M.; Lorenz, P.; Zimmer, K.; Mayr, S. G.

    2016-01-01

    Combining experimental methods and classical molecular dynamics (MD) computer simulations, we explore the martensitic transformation in Fe_7_0Pd_3_0 ferromagnetic shape memory alloy thin films induced by laser shock peening. X-ray diffraction and scanning electron microscope measurements at shock wave pressures of up to 2.5 GPa reveal formation of martensitic variants with preferred orientation of the shorter c-axis of the tetragonal unit cell perpendicular to the surface plane. Moreover, consequential merging of growth islands on the film surface is observed. MD simulations unveil the underlying physics that are characterized by an austenite-martensite transformation with a preferential alignment of the c-axis along the propagation direction of the shock wave, resulting in flattening and in-plane expansion of surface features.

  20. Y-Ba-Cu-O superconducting thin films by simultaneous or sequential evaporation

    International Nuclear Information System (INIS)

    Mogro-Campero, A.; Hunt, B.D.; Turner, L.G.; Burrell, M.C.; Balz, W.E.

    1988-01-01

    Superconducting thin films of Y-Ba-Cu-O near the 1:2:3 stoichiometry were produced by simultaneous (coevaporation) and sequential (multilayer) evaporation in the same evaporator. The best film obtained on yttria-stabilized zirconia (YSZ) had a superconducting onset temperature of 104 K, a midpoint T/sub c/ of 92 K, and zero resistance at T≤74 K. Stoichiometry was deduced by inductively coupled plasma emission spectroscopy, and elemental depth profiles were obtained by x-ray photoelectron spectroscopy. Film stoichiometry changes only near the film/substrate boundary for films on YSZ. Films on Si/SiO 2 were not superconducting; depth profiling shows severe changes of film composition with depth. A major theme of this work is process reproducibility, which was found to be poor for coevaporation but improved considerably for sequential evaporation

  1. Development of neutron diffuse scattering analysis code by thin film and multilayer film

    International Nuclear Information System (INIS)

    Soyama, Kazuhiko

    2004-01-01

    To research surface structure of thin film and multilayer film by neutron, a neutron diffuse scattering analysis code using DWBA (Distorted-Wave Bron Approximation) principle was developed. Subjects using this code contain the surface and interface properties of solid/solid, solid/liquid, liquid/liquid and gas/liquid, and metal, magnetism and polymer thin film and biomembran. The roughness of surface and interface of substance shows fractal self-similarity and its analytical model is based on DWBA theory by Sinha. The surface and interface properties by diffuse scattering are investigated on the basis of the theoretical model. The calculation values are proved to be agreed with the experimental values. On neutron diffuse scattering by thin film, roughness of surface of thin film, correlation function, neutron propagation by thin film, diffuse scattering by DWBA theory, measurement model, SDIFFF (neutron diffuse scattering analysis program by thin film) and simulation results are explained. On neutron diffuse scattering by multilayer film, roughness of multilayer film, principle of diffuse scattering, measurement method and simulation examples by MDIFF (neutron diffuse scattering analysis program by multilayer film) are explained. (S.Y.)To research surface structure of thin film and multilayer film by neutron, a neutron diffuse scattering analysis code using DWBA (Distorted-Wave Bron Approximation) principle was developed. Subjects using this code contain the surface and interface properties of solid/solid, solid/liquid, liquid/liquid and gas/liquid, and metal, magnetism and polymer thin film and biomembran. The roughness of surface and interface of substance shows fractal self-similarity and its analytical model is based on DWBA theory by Sinha. The surface and interface properties by diffuse scattering are investigated on the basis of the theoretical model. The calculation values are proved to be agreed with the experimental values. On neutron diffuse scattering

  2. Perovskite phase thin films and method of making

    Science.gov (United States)

    Boyle, Timothy J.; Rodriguez, Mark A.

    2000-01-01

    The present invention comprises perovskite-phase thin films, of the general formula A.sub.x B.sub.y O.sub.3 on a substrate, wherein A is selected from beryllium, magnesium, calcium, strontium, and barium or a combination thereof; B is selected from niobium and tantalum or a combination thereof; and x and y are mole fractions between approximately 0.8 and 1.2. More particularly, A is strontium or barium or a combination thereof and B is niobium or tantalum or a combination thereof. Also provided is a method of making a perovskite-phase thin film, comprising combining at least one element-A-containing compound, wherein A is selected from beryllium, magnesium, calcium, strontium or barium, with at least one element-B-containing compound, wherein B niobium or tantalum, to form a solution; adding a solvent to said solution to form another solution; spin-coating the solution onto a substrate to form a thin film; and heating the film to form the perovskite-phase thin film.

  3. Fractal formation of a Y-Ba-Cu-O thin film on SrTiO3

    International Nuclear Information System (INIS)

    Chow, L.; Chen, J.; Desai, V.; Sundaram, K.; Arora, S.

    1989-01-01

    Fractal formation has been observed after thermal annealing of the rf-sputtered Y-Ba-Cu-O thin film on SrTiO 3 substrate. Through energy-dispersive x-ray analysis, it was found that the composition of the fractal was YBa 2 Cu 3 O x and the surrounding film composition wasY 2 Ba 2 Cu 3 O x . The fractal dimensions D ranging from 1.26 to 1.65 were obtained using the standard sandbox method with different thresholds

  4. Morphological Study Of Palladium Thin Films Deposited By Sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Salcedo, K L; Rodriguez, C A [Grupo Plasma Laser y Aplicaciones, Ingenieria Fisica, Universidad Tecnologica de Pereira (Colombia); Perez, F A [WNANO, West Virginia University (United States); Riascos, H [Grupo Plasma Laser y Aplicaciones, Departamento de Fisica, Universidad Tecnologica de Pereira (Colombia)

    2011-01-01

    This paper presents a morphological analysis of thin films of palladium (Pd) deposited on a substrate of sapphire (Al{sub 2}O{sub 3}) at a constant pressure of 3.5 mbar at different substrate temperatures (473 K, 523 K and 573 K). The films were morphologically characterized by means of an Atomic Force Microscopy (AFM); finding a relation between the roughness and the temperature. A morphological analysis of the samples through AFM was carried out and the roughness was measured by simulating the X-ray reflectivity curve using GenX software. A direct relation between the experimental and simulation data of the Palladium thin films was found.

  5. Morphological Study Of Palladium Thin Films Deposited By Sputtering

    International Nuclear Information System (INIS)

    Salcedo, K L; Rodriguez, C A; Perez, F A; Riascos, H

    2011-01-01

    This paper presents a morphological analysis of thin films of palladium (Pd) deposited on a substrate of sapphire (Al 2 O 3 ) at a constant pressure of 3.5 mbar at different substrate temperatures (473 K, 523 K and 573 K). The films were morphologically characterized by means of an Atomic Force Microscopy (AFM); finding a relation between the roughness and the temperature. A morphological analysis of the samples through AFM was carried out and the roughness was measured by simulating the X-ray reflectivity curve using GenX software. A direct relation between the experimental and simulation data of the Palladium thin films was found.

  6. Optical and morphological characterizations of pyronin dye-poly (vinyl alcohol) thin films formed on glass substrates

    International Nuclear Information System (INIS)

    Meral, Kadem; Arik, Mustafa; Onganer, Yavuz

    2016-01-01

    Thin films of pyronin dye mixed with poly(vinyl alcohol) (PVA) on glass substrate were prepared by using spin-coating technique. The optical and morphological properties of the thin films were studied by UV-Vis., steady-state fluorescence spectroscopies and atomic force microscopy (AFM). The thin films on glass substrate were fabricated at various [PVA]/[dye] (P/D) ratios. Hence, the monomeric and H-aggregates thin films of pyronin dye mixed with PVA were formed as a function of the dye and PVA concentration. It was determined that while the monomeric thin films showed strong fluorescence, the formation of H-aggregates in the thin film caused to decreasing the fluorescence intensity. AFM studies demonstrated that the morphology of the thin film was drastically varied with changing the optical property of the thin film such as monomeric and H-aggregates thin films.

  7. Optical and morphological characterizations of pyronin dye-poly (vinyl alcohol) thin films formed on glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Meral, Kadem, E-mail: kademm@atauni.edu.tr; Arik, Mustafa, E-mail: marik@tatauni.edu.tr; Onganer, Yavuz, E-mail: yonganer@atauni.edu.tr [Department of Chemistry, Faculty of Sciences, Atatürk University, 25240 Erzurum (Turkey)

    2016-04-18

    Thin films of pyronin dye mixed with poly(vinyl alcohol) (PVA) on glass substrate were prepared by using spin-coating technique. The optical and morphological properties of the thin films were studied by UV-Vis., steady-state fluorescence spectroscopies and atomic force microscopy (AFM). The thin films on glass substrate were fabricated at various [PVA]/[dye] (P/D) ratios. Hence, the monomeric and H-aggregates thin films of pyronin dye mixed with PVA were formed as a function of the dye and PVA concentration. It was determined that while the monomeric thin films showed strong fluorescence, the formation of H-aggregates in the thin film caused to decreasing the fluorescence intensity. AFM studies demonstrated that the morphology of the thin film was drastically varied with changing the optical property of the thin film such as monomeric and H-aggregates thin films.

  8. Effect of substituted rare earth element in (Yb1-xNd x)Ba2Cu3O y thin film on growth orientation and superconducting properties

    International Nuclear Information System (INIS)

    Honda, R.; Ichino, Y.; Yoshida, Y.; Takai, Y.; Matsumoto, K.; Ichinose, A.; Kita, R.; Mukaida, M.; Horii, S.

    2005-01-01

    We studied the orientation and superconducting properties in (Yb 1-x Nd x )Ba 2 Cu 3 O y (Yb/Nd123) thin films as a function of Yb/Nd composition ratio x. As a results, we needed so high oxygen pressure as to increase x for obtaining the c-axis oriented films. J c -B curves in the Yb/Nd123 thin films were superior to that in YBa 2 Cu 3 O y thin film. Since a RE fluctuation in a composition in the Yb/Nd123 thin films was observed with TEM-EDX, we speculated the pinning centers in the Yb/Nd123 thin films were strongly affected by the RE fluctuation

  9. Non-conventional photocathodes based on Cu thin films deposited on Y substrate by sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Perrone, A. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 73100 Lecce (Italy); National Institute of Nuclear Physics and University of Salento, 73100 Lecce (Italy); D’Elia, M. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 73100 Lecce (Italy); Gontad, F., E-mail: francisco.gontad@le.infn.it [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 73100 Lecce (Italy); National Institute of Nuclear Physics and University of Salento, 73100 Lecce (Italy); Di Giulio, M.; Maruccio, G. [Department of Mathematics and Physics “E. De Giorgi”, University of Salento, 73100 Lecce (Italy); Cola, A. [National Council Research, Institute for Microelectronics and Microsystems, 73100 Lecce (Italy); Stankova, N.E. [Institute of Electronics, Bulgarian Academy of Sciences, 1784 Sofia (Bulgaria); Kovacheva, D.G. [Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, 1113 Sofia (Bulgaria); Broitman, E. [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden)

    2014-07-01

    Copper (Cu) thin films were deposited on yttrium (Y) substrate by sputtering. During the deposition, a small central area of the Y substrate was shielded to avoid the film deposition and was successively used to study its photoemissive properties. This configuration has two advantages: the cathode presents (i) the quantum efficiency and the work function of Y and (ii) high electrical compatibility when inserted into the conventional radio-frequency gun built with Cu bulk. The photocathode was investigated by scanning electron microscopy to determine surface morphology. X-ray diffraction and atomic force microscopy studies were performed to compare the structure and surface properties of the deposited film. The measured electrical resistivity value of the Cu film was similar to that of high purity Cu bulk. Film to substrate adhesion was also evaluated using the Daimler–Benz Rockwell-C adhesion test method. Finally, the photoelectron performance in terms of quantum efficiency was obtained in a high vacuum photodiode cell before and after laser cleaning procedures. A comparison with the results obtained with a twin sample prepared by pulsed laser deposition is presented and discussed.

  10. Low-field vortex dynamics in various high-Tc thin films

    Indian Academy of Sciences (India)

    Abstract. We present a novel ac susceptibility technique for the study of vortex creep in supercon- ducting thin films. With this technique we study the dynamics of dilute vortices in c-axis oriented. Y-123, Hg-1212, and Tl-1212 thin films, as well as a-axis oriented Hg-1212 thin films. Results on the Hg-1212 and Tl-1212 thin ...

  11. Gasochromic performance of WO3-nanorod thin films fabricated with an ArF excimer laser

    International Nuclear Information System (INIS)

    Yaacob, M. H.; Ou, J. Z.; Wlodarski, W.; Kim, C. S.; Lee, J. Y.; Kim, Y. H.; Oh, C. M.; Dhakal, K. P.; Kim, J. Y.; Kang, J. H.

    2012-01-01

    Thin films with tungsten trioxide (WO 3 ) nanorods were fabricated by using an ArF pulsed laser deposition system. Because the ArF excimer laser operates at a very short wavelength of 193 nm, short enough to expect strong absorption of the photons in the semiconductor oxide targets, and because the clusters incoming to the substrates have high momentum, we could build thin films with good surface morphology. Highly homogeneous arrays of nanorods with sizes mostly in the range of 30 - 40 nm were observed. The absorbance response towards hydrogen (H 2 ) gas was investigated for a WO 3 film coated with 25-A-thick palladium (Pd). The Pd/WO 3 -nanorod thin films exhibited excellent gasochromic response when measured in the visible-NIR range (400 - 1000 nm). As low as 0.06% H 2 concentration was clearly sensed. A significant reversible absorbance change and fast recovery ( 2 at different concentrations.

  12. Preparation and properties of Y{sub 1-x}Ho{sub x}Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} thin films by TFA-MOD method

    Energy Technology Data Exchange (ETDEWEB)

    Jian Hongbin [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li Qi; Shi Dongqi [Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong 2522 (Australia); Zhang Li [Department of Mathematic and Physics, Anhui University of Architecture, Hefei 230022 (China); Yang Zhaorong [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Dou Shixue [Institute for Superconducting and Electronic Materials, University of Wollongong, Wollongong 2522 (Australia); Zhu Xuebin, E-mail: xbzhu@issp.ac.cn [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Sun Yuping [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2011-12-15

    Y{sub 1-x}Ho{sub x}BCO thin films were prepared by TFA-MOD. The best performances were obtained for the Y{sub 0.6}Ho{sub 0.4}BCO thin film. The pinning mechanism was {delta}l-type for all derived thin films. Y{sub 1-x}Ho{sub x}Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} (x = 0, 0.1, 0.2, 0.3, 0.4, 0.5) thin films were prepared on LaAlO{sub 3} (0 0 1) substrates by trifluoroacetate metal organic deposition (TFA-MOD) without change of the processing parameters. The highest J{sub c} was attributed to the sample of Y{sub 0.6}Ho{sub 0.4}Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} thin film, whose critical current density is about 1.6 times as compared to that of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} thin film at 77 K and self field. The flux pinning type was not varied with Ho substitution and can be attributed to {delta}l pinning model, which is attributed to the close ionic radius between the Y{sup 3+} and Ho{sup 3+} ions. The improvement of J{sub c} by Ho substitution without change of the processing parameters will provide an effective route to enhance the J{sub c} of YBCO-based thin films using TFA-MOD method.

  13. Time-resolved analysis of the white photoluminescence from chemically synthesized SiC_xO_y thin films and nanowires

    International Nuclear Information System (INIS)

    Tabassum, Natasha; Nikas, Vasileios; Ford, Brian; Huang, Mengbing; Kaloyeros, Alain E.; Gallis, Spyros

    2016-01-01

    The study reported herein presents results on the room-temperature photoluminescence (PL) dynamics of chemically synthesized SiC_xO_y_≤_1_._6 (0.19 < x < 0.6) thin films and corresponding nanowire (NW) arrays. The PL decay transients of the SiC_xO_y films/NWs are characterized by fast luminescence decay lifetimes that span in the range of 350–950 ps, as determined from their deconvoluted PL decay spectra and their stretched-exponential recombination behavior. Complementary steady-state PL emission peak position studies for SiC_xO_y thin films with varying C content showed similar characteristics pertaining to the variation of their emission peak position with respect to the excitation photon energy. A nearly monotonic increase in the PL energy emission peak, before reaching an energy plateau, was observed with increasing excitation energy. This behavior suggests that band-tail states, related to C-Si/Si-O-C bonding, play a prominent role in the recombination of photo-generated carriers in SiC_xO_y. Furthermore, the PL lifetime behavior of the SiC_xO_y thin films and their NWs was analyzed with respect to their luminescence emission energy. An emission-energy-dependent lifetime was observed, as a result of the modulation of their band-tail states statistics with varying C content and with the reduced dimensionality of the NWs.

  14. Deposition of yttrium oxysulfide thin films by atomic layer epitaxy

    International Nuclear Information System (INIS)

    Kukli, K.; University of Tartu, Tartu,; Johansson, L-S.; Nykaenen, E.; Peussa, M.; Ninistoe, L.

    1998-01-01

    Full text: Yttrium oxysulfide is a highly interesting material for optoelectronic applications. It is industrially exploited in the form of doped powder in catholuminescent phosphors, e.g. Y 2 O 2 S: Eu 3+ for colour TV. Attempts to grow thin films of Y 2 O 2 S have not been frequent and only partially successful due to the difficulties in obtaining crystalline films at a reasonable temperature. Furthermore, sputtering easily leads to a sulphur deficiency. Evaporation of the elements from a multi-source offers a better control of the stoichiometry resulting in hexagonal (0002) oriented films at 580 deg C. In this paper we present the first successful thin film growth experiments using a chemical process with molecular precursors. Atomic layer epitaxy (ALE) allows the use of a relatively low deposition temperature and thus compatibility with other technologies. Already at 425 deg C the reaction between H 2 S and Y(thd) 3 (thd = 2,2,6,6 - tetramethyl-heptane-3,5- dione) yields a crystalline Y 2 O 2 S thin film which was characterized by XRD, XRF and XPS

  15. In situ spectroscopic ellipsometry as a surface sensitive tool to probe thin film growth

    International Nuclear Information System (INIS)

    Liu, C.

    1999-01-01

    Sputtered thin film and multilayer x-ray mirrors are made routinely at the Advanced Photon Source (APS) for the APS users. Precise film growth control and characterization are very critical in fabricating high-quality x-ray mirrors. Film thickness calibrations are carried out using in situ and ex situ spectroscopic ellipsometry, interferometry, and x-ray scattering. To better understand the growth and optical properties of different thin film systems, we have carried out a systematic study of sputtered thin films of Au, Rh, Pg Pd, Cu, and Cr, using in situ ellipsometry. Multiple data sets were obtained in situ for each film material with incremental thicknesses and were analyzed with their correlation in mind. We found that in situ spectroscopic ellipsometry as a surface-sensitive tool can also be used to probe the growth and morphology of the thin film system. This application of in situ spectroscopic ellipsometry for metal thin film systems will be discussed

  16. Gas Sensing Properties of Metal Doped WO3 Thin Film Sensors Prepared by Pulsed Laser Deposition and DC Sputtering Process

    Science.gov (United States)

    Bhuiyan, Md. Mosharraf Hossain; Ueda, Tsuyoshi; Ikegami, Tomoaki; Ebihara, Kenji

    2006-10-01

    Tungsten trioxide (WO3) thin films gas sensors were prepared by the KrF excimer pulsed laser deposition (PLD) method. The films were prepared on the quartz glass, silicon and also on the Al2O3 sensor substrates with platinum interdigitated electrodes. The effect of doping of the platinum (Pt), palladium (Pd) or gold (Au) on the WO3 thin film was also investigated. These metals were doped to the WO3 thin film by the DC sputtering process during the PLD. The substrate temperature and the oxygen pressure were 400 °C and 100 mTorr, respectively, during the deposition. The films were characterized by atomic force microscopy (AFM) and X-ray diffraction (XRD). The sensitivity of the prepared sensors to 60 ppm NO gas was examined using the two terminal resistance method in a chamber at atmospheric pressure and operating temperatures of 25-350 °C. The sensitivity of the WO3 thin films doped with Pt, Pd, or Au was found to be higher than that of the undoped WO3 thin film.

  17. Deposition of SiOx thin films on Y-TZP by reactive magnetron sputtering: influence of plasma parameters on the adhesion properties between Y-TZP and resin cement for application in dental prosthesis

    Directory of Open Access Journals (Sweden)

    José Renato Calvacanti de Queiroz

    2011-01-01

    Full Text Available In this paper SiOx thin films were deposited on Y-TZP ceramics by reactive magnetron sputtering technique in order to improve the adhesion properties between Y-TZP and resin cement for applications in dental prosthesis. For fixed cathode voltage, target current, working pressure and target-to-substrate distance, SiOx thin films were deposited at different oxygen concentrations in the Ar+O2 plasma forming gas. After deposition processes, SiOx thin films were characterized by profilometry, energy dispersive spectroscopy (EDS, optical microscopy and scanning electron microscopy (SEM. Adhesion properties between Y-TZP and resin cement were evaluated by shear testing. Results indicate that films deposited at 20%O2 increased the bond strength to (32.8 ± 5.4 MPa. This value has not been achieved by traditional methods.

  18. High-throughput characterization of stresses in thin film materials libraries using Si cantilever array wafers and digital holographic microscopy

    International Nuclear Information System (INIS)

    Lai, Y. W.; Ludwig, A.; Hamann, S.; Ehmann, M.

    2011-01-01

    We report the development of an advanced high-throughput stress characterization method for thin film materials libraries sputter-deposited on micro-machined cantilever arrays consisting of around 1500 cantilevers on 4-inch silicon-on-insulator wafers. A low-cost custom-designed digital holographic microscope (DHM) is employed to simultaneously monitor the thin film thickness, the surface topography and the curvature of each of the cantilevers before and after deposition. The variation in stress state across the thin film materials library is then calculated by Stoney's equation based on the obtained radii of curvature of the cantilevers and film thicknesses. DHM with nanometer-scale out-of-plane resolution allows stress measurements in a wide range, at least from several MPa to several GPa. By using an automatic x-y translation stage, the local stresses within a 4-inch materials library are mapped with high accuracy within 10 min. The speed of measurement is greatly improved compared with the prior laser scanning approach that needs more than an hour of measuring time. A high-throughput stress measurement of an as-deposited Fe-Pd-W materials library was evaluated for demonstration. The fast characterization method is expected to accelerate the development of (functional) thin films, e.g., (magnetic) shape memory materials, whose functionality is greatly stress dependent.

  19. Geometric structure of thin SiO xN y films on Si(100)

    Science.gov (United States)

    Behrens, K.-M.; Klinkenberg, E.-D.; Finster, J.; Meiwes-Broer, K.-H.

    1998-05-01

    Thin films of amorphous stoichometric SiO xN y are deposited on radiation-heated Si(100) by rapid thermal low-pressure chemical vapour deposition. We studied the whole range of possible compositions. In order to determine the geometric structure, we used EXAFS and photoelectron spectroscopy. Tetrahedrons constitute the short-range units with a central Si atom connected to N and O. The distribution of the possible tetrahedrons can be described by a mixture of the Random Bonding Model and the Random Mixture Model. For low oxygen contents x/( x+ y)≤0.3, the geometric structure of the film is almost the structure of a-Si 3N 4, with the oxygen preferably on top of Si-N 3 triangles. Higher oxygen contents induce changes in the bond lengths, bond angles and coordination numbers.

  20. Deuterium absorption in Mg70Al30 thin films with bilayer catalysts: A comparative neutron reflectometry study

    International Nuclear Information System (INIS)

    Poirier, Eric; Harrower, Chris T.; Kalisvaart, Peter; Bird, Adam; Teichert, Anke; Wallacher, Dirk; Grimm, Nico; Steitz, Roland; Mitlin, David; Fritzsche, Helmut

    2011-01-01

    Highlights: → Mg 70 Al 30 thin films studied for hydrogen absorption using in situ neutron reflectometry. → Films with Ta/Pd, Ti/Pd and Ni/Pd bilayer catalysts systematically compared. → Measurements reveals deuterium spillover from the catalysts to the MgAl phase. → The use of Ti-Pd bilayer offers best results in terms of amount absorbed and kinetics. → Key results cross-checked with X-ray reflectometry. - Abstract: We present a neutron reflectometry study of deuterium absorption in thin films of Al-containing Mg alloys capped with a Ta/Pd, Ni/Pd and Ti/Pd-catalyst bilayer. The measurements were performed at room temperature over the 0-1 bar pressure range under quasi-equilibrium conditions. The modeling of the measurements provided a nanoscale representation of the deuterium profile in the layers at different stages of the absorption process. The absorption mechanism observed was found to involve spillover of atomic deuterium from the catalyst layer to the Mg alloy phase, followed by the deuteration of the Mg alloy. Complete deuteration of the Mg alloy occurs in a pressure range between 100 and 500 mbar, dependent on the type of bilayer catalyst. The use of a Ti/Pd bilayer catalyst yielded the best results in terms of both storage density and kinetic properties.

  1. Magnetic studies of Fe-Y compositionally modulated thin films

    International Nuclear Information System (INIS)

    Badia, F.; Ferrater, C.; Lousa, A.; Martinez, B.; Labarta, A.; Tejada, J.

    1990-01-01

    Compositionally modulated thin films of Y/Fe have been studied by using SQUID magnetometry. Samples were grown by electron-beam evaporation onto Kapton substrates. In the low applied field regime, the samples show irreversible behavior when they are submitted to ZFC-FC magnetization processes, increasing the irreversibility zone as the thickness of the Fe layers increases. In the high applied magnetic field regime (H≥10 000 Oe), samples show ferromagnetic behavior. The temperature dependence of the saturation magnetization has been studied, and it was found that both spin-wave excitations and Stoner excitations occur at temperatures higher than 40 K, and a marked deviation from the T 3/2 law was noted below 30 K

  2. Mastering the biaxial stress state in nanometric thin films on flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Faurie, D., E-mail: faurie@univ-paris13.fr [LSPM-CNRS, UPR3407, Université Paris 13, Villetaneuse (France); Renault, P.-O.; Le Bourhis, E. [Institut Pprime UPR3346, CNRS – Université de Poitiers, Futuroscope (France); Geandier, G. [Institut Jean Lamour, CNRS UMR7198, Université de Lorraine, Nancy Cedex (France); Goudeau, P. [Institut Pprime UPR3346, CNRS – Université de Poitiers, Futuroscope (France); Thiaudière, D. [SOLEIL Synchrotron, Saint-Aubin, Gif-Sur-Yvette (France)

    2014-07-01

    Biaxial stress state of thin films deposited on flexible substrate can be mastered thanks to a new biaxial device. This tensile machine allows applying in-plane loads F{sub x} and F{sub y} in the two principal directions x and y of a cruciform-shaped polymer substrate. The transmission of the deformation at film/substrate interface allows controlling the stress and strain field in the thin films. We show in this paper a few illustrations dealing with strain measurements in polycrystalline thin films deposited on flexible substrate. The potentialities of the biaxial device located at Soleil synchrotron are also discussed.

  3. Enhanced energy storage and pyroelectric properties of highly (100)-oriented (Pb1-x-yLaxCay)Ti1-x/4O3 thin films derived at low temperature

    Science.gov (United States)

    Zhu, Hanfei; Ma, Hongfang; Zhao, Yuyao

    2018-05-01

    Highly (100)-oriented (Pb1-x-yLaxCay)Ti1-x/4O3 (x = 0.15, y = 0.05; x = 0.1, y = 0.1; x = 0.05, y = 0.15) thin films were deposited on Pt/Ti/SiO2/Si substrates at a low temperature of 450 °C via a sol-gel route. It was found that all the (Pb1-x-yLaxCay)Ti1-x/4O3 thin films could be completely crystallized and the content of La/Ca showed a significant effect on the electrical properties of films. Among the three films, the (Pb1-x-yLaxCay)Ti1-x/4O3 (x = 0.1, y = 0.1) thin film exhibited the enhanced overall electrical properties, such as a low dielectric loss (tan ⁡ δ energy density (Wre ∼ 15 J/cm3), as well as a large pyroelectric coefficient (p ∼ 190 μC/m2K) and figure of merit (Fd‧∼ 77 μC /m2K). The findings suggest that the fabricated thin films with a good (100) orientation can be an attractive candidate for applications in Si-based energy storage and pyroelectric devices.

  4. Comparison of Y{sub 2}O{sub 3}:Bi{sup 3+} phosphor thin films fabricated by the spin coating and radio frequency magnetron techniques

    Energy Technology Data Exchange (ETDEWEB)

    Jafer, R.M.; Yousif, A. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Department of Physics, Faculty of Education, University of Khartoum, P.O. Box 321, Postal Code 11115 Omdurman (Sudan); Kumar, Vinod [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Photovoltaic Laboratory, Centre for Energy Studies, Indian Institute of Technology Delhi, New Delhi 110016 (India); Pathak, Trilok Kumar [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Semiconductor Physics Lab, Department of Physics, Gurukula Kangri University, Haridwar (India); Purohit, L.P. [Semiconductor Physics Lab, Department of Physics, Gurukula Kangri University, Haridwar (India); Swart, H.C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa); Coetsee, E., E-mail: CoetseeE@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein ZA 9300 (South Africa)

    2016-09-15

    The reactive radio-frequency (RF) magnetron sputtering and spin coating fabrication techniques were used to fabricate Y{sub 2−x}O{sub 3}:Bi{sub x=0.5%} phosphor thin films. The two techniques were analysed and compared as part of investigations being done on the application of down-conversion materials for a Si solar cell. The morphology, structural and optical properties of these thin films were investigated. The X-ray diffraction results of the thin films fabricated by both techniques showed cubic structures with different space groups. The optical properties showed different results because the Bi{sup 3+} ion is very sensitive towards its environment. The luminescence results for the thin film fabricated by the spin coating technique is very similar to the luminescence observed in the powder form. It showed three obvious emission bands in the blue and green regions centered at about 360, 410 and 495 nm. These emissions were related to the {sup 3}P{sub 1}–{sup 1}S{sub 0} transition of the Bi{sup 3+} ion situated in the two different sites of the Y{sub 2}O{sub 3} matrix with I a-3(206) space group. Whereas the thin film fabricated by the radio frequency magnetron technique showed a broad single emission band in the blue region centered at about 416 nm. This was assigned to the {sup 3}P{sub 1}–{sup 1}S{sub 0} transition of the Bi{sup 3+} ion situated in one of the Y{sub 2}O{sub 3} matrix's sites with a Fm-3 (225) space group. The spin coating fabrication technique is suggested to be the best technique to fabricate the Y{sub 2}O{sub 3}:Bi{sup 3+} phosphor thin films. - Highlights: • RF sputtering and spin coating were used to fabricate Y{sub 2−x}O{sub 3}:Bi{sub x=0.5%} phosphor thin films. • XRD results of the two films showed cubic structures with different space groups. • PL showed different emission for the Bi{sup 3+} ions in the two films. • Three emission bands in the blue and green regions centered at about 360, 410 and 495 nm. • RF

  5. Preparation of an orthodontic bracket coated with an nitrogen-doped TiO(2-x)N(y) thin film and examination of its antimicrobial performance.

    Science.gov (United States)

    Cao, Baocheng; Wang, Yuhua; Li, Na; Liu, Bin; Zhang, Yingjie

    2013-01-01

    A bracket coated with a nitrogen-doped (N-doped) TiO(2-x)N(y) thin film was prepared using the RF magnetron sputtering method. The physicochemical properties of the thin film were measured using X-ray diffraction and energy-dispersive X-ray spectrometry, while the antimicrobial activity of the bracket against common oral pathogenic microbes was assessed on the basis of colony counts. The rate of antimicrobial activity of the bracket coated with nano-TiO(2-x)N(y) thin film against Streptococcus mutans, Lactobacillus acidophilus, Actinomyces viscous, and Candida albicans was 95.19%, 91.00%, 69.44%, and 98.86%, respectively. Scanning electron microscopy showed that fewer microbes adhered to the surface of this newly designed bracket than to the surface of the normal edgewise bracket. The brackets coated with the N-doped TiO(2-x)N(y) thin film showed high antimicrobial and bacterial adhesive properties against normal oral pathogenic bacterial through visible light, which is effective in prevention of enamel demineralization and gingivitis in orthodontic patients.

  6. Gasochromic performance of WO{sub 3}-nanorod thin films fabricated with an ArF excimer laser

    Energy Technology Data Exchange (ETDEWEB)

    Yaacob, M. H. [RMIT University, Melbourne (Australia); Universiti Putra Malaysia, Selangor (Malaysia); Ou, J. Z.; Wlodarski, W. [RMIT University, Melbourne (Australia); Kim, C. S.; Lee, J. Y. [KAIST, Daejon (Korea, Republic of); Kim, Y. H. [KIST, Seoul (Korea, Republic of); Oh, C. M.; Dhakal, K. P.; Kim, J. Y.; Kang, J. H. [University of Incheon, Incheon (Korea, Republic of)

    2012-02-15

    Thin films with tungsten trioxide (WO{sub 3}) nanorods were fabricated by using an ArF pulsed laser deposition system. Because the ArF excimer laser operates at a very short wavelength of 193 nm, short enough to expect strong absorption of the photons in the semiconductor oxide targets, and because the clusters incoming to the substrates have high momentum, we could build thin films with good surface morphology. Highly homogeneous arrays of nanorods with sizes mostly in the range of 30 - 40 nm were observed. The absorbance response towards hydrogen (H{sub 2}) gas was investigated for a WO{sub 3} film coated with 25-A-thick palladium (Pd). The Pd/WO{sub 3}-nanorod thin films exhibited excellent gasochromic response when measured in the visible-NIR range (400 - 1000 nm). As low as 0.06% H{sub 2} concentration was clearly sensed. A significant reversible absorbance change and fast recovery (<2 min) were observed when the films were exposed to H{sub 2} at different concentrations.

  7. In situ electrochemical XRD study of (de)hydrogenation of MgyTi100-y thin films

    NARCIS (Netherlands)

    Vermeulen, P.; Wondergem, H.J.; Graat, P.C.J.; Borsa, D.M.; Schreuders, H.; Dam, B.; Griessen, R.; Notten, P.H.L.

    2008-01-01

    X-ray diffraction and electrochemical (de)hydrogenation were performed in situ to monitor the symmetry of the unit cells of MgyTi100-y thin film alloys (with 70 to 90 at.% Mg) along the pressure composition isotherms at room temperature. The diffraction patterns show that the crystal structures of

  8. Effect of Y2O3 Nanoparticles on Critical Current Density of YBa2Cu3O7-x Thin Films

    International Nuclear Information System (INIS)

    Tran, H. D.; Reddy, Sreekantha; Wie, C. H.; Kang, B.; Oh, Sang Jun; Lee, Sung Ik

    2009-01-01

    Introduction of proper impurity into YBa 2 Cu 3 O 7-x (YBCO) thin films is an effective way to enhance its flux-pinning properties. We investigate effect of Y 2 O 3 nanoparticles on the critical current density J c of the YBCO thin films. The Y 2 O 3 nanoparticles were created perpendicular to the film surface (parallel with the c-axis) either between YBCO and substrate or on top of YBCO, YBCO/Y 2 O 3 /LAO or Y 2 O 3 /YBCO/STO, by pulsed laser deposition. The deposition temperature of the YBCO films were varied (780 degree C and 800 degree C) to modify surface morphology of the YBCO films. Surface morphology characterization revealed that the lower deposition temperature of 780 degree C created nano-sized holes on the YBCO film surface which may behave as intrinsic pinning centers, while the higher deposition temperature produced much denser and smoother surface. J-c values of the YBCO films with Y 2 O 3 particles were either remained nearly the same or decreased for the samples in which YBCO is grown at 780 degree C. On the other hand, J-c values were enhanced for the samples in which YBCO is grown at higher temperature of 800 degree C. The difference in the effect of Y 2 O 3 can be explained by the fact that the higher deposition temperature of 800 degree C reduces intrinsic pinning centers and J c is enhanced by introduction of artificial pinning centers in the form of Y 2 O 3 nanoparticles.

  9. Ion-conductivity of thin film Li-Borate glasses

    International Nuclear Information System (INIS)

    Abouzari, M.R.S.

    2007-01-01

    In this thesis, the specific conductivity of ion-sputtered lithium borate thin films is studied. To this end, lithium borate glasses of the composition yLi 2 O.(1-y)B 2 O 3 with y=0.15, 0.20, 0.25, and 0.35 were produced as sputter targets. Films with thicknesses between 7 nm and 700 nm are deposited on silicon substrate between two AlLi electrodes. Conductivity spectra have been taken over a frequency range of 5 Hz to 2 MHz. The measurements were performed at different temperatures between 40 C and 350 C depending on the thickness and the composition of the films. The following results are derived by studying the conductivities of the films: i) The specific dc conductivity of layers with thicknesses larger than 150 nm is independent of their thicknesses; we call these layers 'thick films' and consider their conductivity as the 'base conductivity'. ii) The specific dc conductivity of layers with thicknesses smaller than 150 nm, called 'thin films', depends on the layer thickness. A nontrivial enhancement of the specific dc conductivity about three orders of magnitude for y=0.15, 0.2, and 0.25 is observed. iii) The base conductivity depends on y and at 120 C it varies between 4 x 10 -10 Ω -1 cm -1 and 2.5 x 10 -6 Ω -1 cm -1 when y varies between 0.15 and 0.35, whereas the maximum value of the specific dc conductivity of extremely thin films (with a thickness of some nanometre) seems to be independent of y and equals to the specific dc conductivity of layers with y= 0.35. Furthermore, we found in this work a physical interpretation of the so-called 'Constant Phase Element' (CPE) which is widely used in equivalent circuits for ionic conductors. This element describes correctly the depressed impedance semicircles observed in impedance spectroscopy. So far, this effect is sometimes attributed to the surface roughness. We have shown not only the invalidity of this approach, but we have also found that the depression arises from the nature of ionic motions. The model

  10. Stress development in thin yttrium films on hard substrates during hydrogen loading

    International Nuclear Information System (INIS)

    Dornheim, M.; Pundt, A.; Kirchheim, R.; Molen, S. J. v. d.; Kooij, E. S.; Kerssemakers, J.; Griessen, R.; Harms, H.; Geyer, U.

    2003-01-01

    Polycrystalline (0002)-textured yttrium (Y) films of 50-500 nm thickness on sapphire substrates were loaded electrolytically with hydrogen (H). The stresses which build up in these films were measured in situ using curvature measurements. The results are compared to the behavior of bulk Y-H. A linear elastic model is used to predict the behavior of clamped thin films. Basic properties of the bulk Y-H phase diagram and elastic constants resemble the measured values of the thin films. Compressive stress builds up during H-loading in the α-Y phase and in the (α-Y+β-YH 2 ) two-phase field, showing an initial stress increase of -1.3 GPa per hydrogen concentration X H (compressive stress). While bulk Y-H samples are known to show a contraction in the β-YH 2 phase during H loading, thin films show no evidence for such a contraction during the first loading cycle of the film. The stress remains constant in the bulk β-phase concentration range (ΔX H =0.1 H/Y). This is attributed to the narrow β-phase field (ΔX H =0.02 H/Y) of the thin film during the first loading. Only samples which have been kept at a hydrogen concentration of about 1.5 H/Y for weeks show tensile stress in the concentration range of the bulk β phase. Amazingly a stress increase of about +0.5 GPa/X H (tensile stress) is measured in the β+γ two-phase field. This is attributed to the smaller in-plane nearest-neighbor distance in the γ phase compared to the β phase. In the γ-phase field compressive stress is built up again, compensating the tensile stress. It increases by -1.3 GPa/X H . In total, the net stress in Y-H films remains comparably small. This could be a reason for the good mechanical stability of such Y-H switchable mirrors during H cycling

  11. Preparation of YBa2Cu3O7-δ epitaxial thin films by pulsed ion-beam evaporation

    International Nuclear Information System (INIS)

    Sorasit, S.; Yoshida, G.; Suzuki, T.; Suematsu, H.; Jiang, W.; Yatsui, K.

    2001-01-01

    Thin films of YBa 2 Cu 3 O 7-δ (Y-123) grown epitaxially have been successfully deposited by ion-beam evaporation (IBE). The c-axis oriented YBa 2 Cu 3 O 7-δ thin films were successfully deposited on MgO and SrTiO 3 substrates. The Y-123 thin films which were prepared on the SrTiO 3 substrates were confirmed to be epitaxially grown, by X-ray diffraction analysis. The instantaneous deposition rate of the Y-123 thin films was estimated as high as 4 mm/s. (author)

  12. Hydrogenation properties of pure magnesium and magnesium-aluminium thin films

    Energy Technology Data Exchange (ETDEWEB)

    Domenech-Ferrer, Roger; Gurusamy Sridharan, Madana; Garcia, Gemma; Pi, Francesc; Rodriguez-Viejo, Javier [Departament de Fisica, Universitat Autonoma de Barcelona, 08193 Bellaterra (Spain)

    2007-06-10

    We have studied the hydrogenation/dehydrogenation behaviour of multilayered stacks of Pd/Mg/Pd and Pd-Fe(Ti)-Mg-Al-Mg-Fe(Ti)-Pd grown by electron beam physical vapour deposition. The palladium coating was deposited at both sides of the structure to ensure a fast dissociation rate and good transport properties for hydrogen as well as to avoid oxidation of magnesium either from atmosphere as from the substrate surface. Fe and Ti layers were included in the stack composition in order to assess their possible catalyst effect as well as to prevent the formation of Mg{sub x}Pd{sub y} intermetallics during the thermal treatments. We have studied the structure evolution after thermal treatments as well as after the hydrogenation and dehydrogenation processes using XRD. We have also followed the reactions kinetics by resistometry and differential scanning calorimetry. The nanostructured Mg films have been hydrogenated at temperature as low as 50 C in few minutes. Adding aluminium to magnesium has improved its hydrogenation capacity. We have also observed that the formation of an Mg{sub x}Al{sub y} intermetallic before hydrogenation improves the storage capacity. We have confirmed that titanium is a better catalyst for the hydrogenation/dehydrogenation of the Mg films. (author)

  13. High-throughput characterization of stresses in thin film materials libraries using Si cantilever array wafers and digital holographic microscopy.

    Science.gov (United States)

    Lai, Y W; Hamann, S; Ehmann, M; Ludwig, A

    2011-06-01

    We report the development of an advanced high-throughput stress characterization method for thin film materials libraries sputter-deposited on micro-machined cantilever arrays consisting of around 1500 cantilevers on 4-inch silicon-on-insulator wafers. A low-cost custom-designed digital holographic microscope (DHM) is employed to simultaneously monitor the thin film thickness, the surface topography and the curvature of each of the cantilevers before and after deposition. The variation in stress state across the thin film materials library is then calculated by Stoney's equation based on the obtained radii of curvature of the cantilevers and film thicknesses. DHM with nanometer-scale out-of-plane resolution allows stress measurements in a wide range, at least from several MPa to several GPa. By using an automatic x-y translation stage, the local stresses within a 4-inch materials library are mapped with high accuracy within 10 min. The speed of measurement is greatly improved compared with the prior laser scanning approach that needs more than an hour of measuring time. A high-throughput stress measurement of an as-deposited Fe-Pd-W materials library was evaluated for demonstration. The fast characterization method is expected to accelerate the development of (functional) thin films, e.g., (magnetic) shape memory materials, whose functionality is greatly stress dependent. © 2011 American Institute of Physics

  14. Study of third order nonlinearity of chalcogenide thin films using third harmonic generation measurements

    Science.gov (United States)

    Rani, Sunita; Mohan, Devendra; Kumar, Manish; Sanjay

    2018-05-01

    Third order nonlinear susceptibility of (GeSe3.5)100-xBix (x = 0, 10, 14) and ZnxSySe100-x-y (x = 2, y = 28; x = 4, y = 20; x = 6, y = 12; x = 8, y = 4) amorphous chalcogenide thin films prepared using thermal evaporation technique is estimated. The dielectric constant at incident and third harmonic wavelength is calculated using "PARAV" computer program. 1064 nm wavelength of Nd: YAG laser is incident on thin film and third harmonic signal at 355 nm wavelength alongwith fundamental light is obtained in reflection that is separated from 1064 nm using suitable optical filter. Reflected third harmonic signal is measured to trace the influence of Bi and Zn on third order nonlinear susceptibility and is found to increase with increase in Bi and Zn content in (GeSe3.5)100-xBix, and ZnxSySe100-x-y chalcogenide thin films respectively. The excellent optical nonlinear property shows the use of chalcogenide thin films in photonics for wavelength conversion and optical data processing.

  15. Deuterium absorption in Mg{sub 70}Al{sub 30} thin films with bilayer catalysts: A comparative neutron reflectometry study

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, Eric [National Research Council Canada/Canadian Neutron Beam Centre, Bldg. 459, Chalk River Laboratories, Chalk River, ON, K0J 1J0 (Canada); Harrower, Chris T.; Kalisvaart, Peter [Chemical and Materials Engineering, University of Alberta and National Research Council Canada/National Institute for Nanotechnology, Edmonton, AB, T6G 2M9 (Canada); Bird, Adam [National Research Council Canada/Canadian Neutron Beam Centre, Bldg. 459, Chalk River Laboratories, Chalk River, ON, K0J 1J0 (Canada); Teichert, Anke [Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Instituut voor Kern-en Stralingsfysica and INPAC, K.U. Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Laboratorium voor Vaste-Stoffysica en Magnetisme and INPAC, K.U. Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Wallacher, Dirk; Grimm, Nico; Steitz, Roland [Helmholtz Zentrum Berlin, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Mitlin, David [Chemical and Materials Engineering, University of Alberta and National Research Council Canada/National Institute for Nanotechnology, Edmonton, AB, T6G 2M9 (Canada); Fritzsche, Helmut, E-mail: Helmut.Fritzsche@nrc-cnrc.gc.ca [National Research Council Canada/Canadian Neutron Beam Centre, Bldg. 459, Chalk River Laboratories, Chalk River, ON, K0J 1J0 (Canada)

    2011-05-05

    Highlights: > Mg{sub 70}Al{sub 30} thin films studied for hydrogen absorption using in situ neutron reflectometry. > Films with Ta/Pd, Ti/Pd and Ni/Pd bilayer catalysts systematically compared. > Measurements reveals deuterium spillover from the catalysts to the MgAl phase. > The use of Ti-Pd bilayer offers best results in terms of amount absorbed and kinetics. > Key results cross-checked with X-ray reflectometry. - Abstract: We present a neutron reflectometry study of deuterium absorption in thin films of Al-containing Mg alloys capped with a Ta/Pd, Ni/Pd and Ti/Pd-catalyst bilayer. The measurements were performed at room temperature over the 0-1 bar pressure range under quasi-equilibrium conditions. The modeling of the measurements provided a nanoscale representation of the deuterium profile in the layers at different stages of the absorption process. The absorption mechanism observed was found to involve spillover of atomic deuterium from the catalyst layer to the Mg alloy phase, followed by the deuteration of the Mg alloy. Complete deuteration of the Mg alloy occurs in a pressure range between 100 and 500 mbar, dependent on the type of bilayer catalyst. The use of a Ti/Pd bilayer catalyst yielded the best results in terms of both storage density and kinetic properties.

  16. Y-Ba-Cu-O thin films as high speed IR detectors

    International Nuclear Information System (INIS)

    Kwok, H.S.; Zheng, J.P.; Ying, Q.Y.

    1990-01-01

    Y-Ba-Cu-O thin film infrared detectors were fabricated and studied with various lasers. Operation of the detector in both the bolometric and nonbolometric modes was investigated at 10 microns with a CO2 laser. In the bolometric mode, the detectivity of the detector at 90 K was 2.1 x 10 to the 8th cm sq rt Hz/W with a response time of 15 microsec, corresponding to a bandwidth of 70 KHz. The speed of the detector in the nonbolometric mode was much faster and was beyond the instrument resolution. With a picosecond N2 laser, the output showed an instrument limited duration of 2 ns. The detectivity could not be determined in the nonbolometric mode due to the extremely low noise. The superconducting film quality is critical to the performance of these detectors. 27 refs

  17. Superconductivity in Na{sub 1-x}CoO{sub 2}.yH{sub 2}O thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Sandra; Komissinkiy, Philipp; Alff, Lambert [Institute for Materials Science, TU Darmstadt (Germany); Fritsch, Ingo; Habermeier, Hanns-Ulrich [Max-Planck-Institute for Solid State Research, Stuttgart (Germany); Lemmens, Peter [Institute for Condensed Matter Physics, TU Braunschweig (Germany)

    2010-07-01

    Sodium cobaltate (Na{sub 1-x}CoO{sub 2}) is a novel material with thermoelectric behavior, charge and spin ordered states dependent on the sodium content in the composition. A superconducting phase was found in water intercalated sodium cobaltate (Na{sub 1-x}CoO{sub 2}.yH{sub 2}O) with x=0.65-0.7 and y=0.9-1.3. The pairing state is still under debate, but there are some indications for a spin-triplet or p-wave superconducting pairing state. First films of Na{sub 1-x}CoO{sub 2}.yH{sub 2}O with a superconducting transition temperature near 5 K have been successfully grown. Here we report on thin films of Na{sub 1-x}CoO{sub 2} grown by pulsed laser deposition technique. The deposition parameters, sodium deintercalation and water intercalation conditions are tuned in order to obtain the superconducting phase. The instability of this phase might be an indication for triplet superconductivity, which is known to be affected strongly by impurities and defects.This observation is in agreement with the fact that so far also no superconducting thin films of the most famous triplet superconductor Sr{sub 2}RuO{sub 4} have been reported.

  18. Growth and applications of superconducting Y-Ba-Cu-O thin films

    International Nuclear Information System (INIS)

    Pinto, R.

    1991-01-01

    This paper attempt to highlight the important PVD techniques such as evaporation, sputtering, ion beam deposition and excimer laser ablation for the preparation of superconducting YBaCuO thin films. Since enormous amount of work has been published over the last few years, this review is not comprehensive even in PVD techniques. In the area of applications for electronics, thin film appear to be much more promising than bulk high T c superconductors. Already high J c values in the region of 4 x 10 6 A cm -2 have been realized in thin films. Resonators and transmission lines have been fabricated using 123 films showing a transmission loss significantly lower than that of copper at 77 degrees K at X-band frequencies. This review will discuss some of the important electronic applications feasible with 123 films

  19. Fabrication of the heterojunction diode from Y-doped ZnO thin films on p-Si substrates by sol-gel method

    Science.gov (United States)

    Sharma, Sanjeev K.; Singh, Satendra Pal; Kim, Deuk Young

    2018-02-01

    The heterojunction diode of yttrium-doped ZnO (YZO) thin films was fabricated on p-Si(100) substrates by sol-gel method. The post-annealing process was performed at 600 °C in vacuum for a short time (3 min) to prevent inter-diffusion of Zn, Y, and Si atoms. X-ray diffraction (XRD) pattern of as-grown and annealed (600 °C in vacuum) films showed the preferred orientation along the c-axis (002) regardless of dopant concentrations. The uniform surface microstructure and the absence of other metal/oxide peaks in XRD pattern confirmed the excellence of films. The increasing bandgap and carrier concentration of YZO thin films were interpreted by the BM shift, that is, the Fermi level moves towards the conduction band edge. The current-voltage characteristics of the heterojunction diode, In/n-ZnO/p-Si/Al, showed a rectification behavior. The turn-on voltage and ideality factor of n-ZnO/p-Si and n-YZO/p-Si were observed to be 3.47 V, 2.61 V, and 1.97, 1.89, respectively. Y-dopant in ZnO thin films provided more donor electrons caused the shifting of Fermi-energy level towards the conduction band and strengthen the interest for heterojunction diodes.

  20. Engineering Defect-Free Nanoporous Pd from Optimized Pd-Ni Precursor Alloy by Understanding Palladium-Hydrogen Interactions During Dealloying

    Science.gov (United States)

    Schoop, Julius; Balk, T. John

    2014-04-01

    Thin films of nanoporous palladium (np-Pd) were produced from binary palladium-nickel (Pd-Ni) precursor alloys. A suitable precursor alloy and a method of dealloying to yield optimum nanoporosity (average pore/ligament size of 7 nm) were developed by studying the effects of various processing parameters on final microstructure. To obtain crack-free np-Pd, a 100 nm thin film of 20 at. pct Pd (80 at. pct Ni) can be dealloyed for ~5 hours in a 1 M solution of sulfuric acid, with oleic acid and oleylamine added as surfactants. Both shorter and longer dealloying times, as well as heating, inhibit the formation of crack-free np-Pd. Stress measurements at different stages of dealloying revealed that the necessary dealloying time is determined by the diffusion-controlled corrosion reaction occurring within the thin film during dealloying. Strong interaction between hydrogen and np-Pd was reflected in the stress evolution during dealloying. A mechanism is proposed for the formation of a Ni-rich dense top layer that results from H-induced swelling during initial dealloying and permits the development of defect-free np-Pd beneath, by limiting the speed of dealloying.

  1. Electrical properties of AlN{sub x}O{sub y} thin films prepared by reactive magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Borges, J., E-mail: joelborges@fisica.uminho.pt [Centro de Fisica, Universidade do Minho, 4710-057 Braga (Portugal); Martin, N. [Institut FEMTO-ST, Departement MN2S, UMR 6174 (CNRS, UFC, ENSMM, UTBM) 32, Avenue de l' Observatoire 25044 BESANCON Cedex (France); Barradas, N.P.; Alves, E. [Instituto Superior Tecnico, Instituto Tecnologico Nuclear, E.N. 10, 2686-953 Sacavem (Portugal); Eyidi, D.; Beaufort, M.F.; Riviere, J.P. [Institut PPRIME, UPR 3346 CNRS-Universite de Poitiers-ENSMA, Departement de Physique et Mecanique des Materiaux, BP 30179 86962 Chasseneuil-Futuroscope Cedex (France); Vaz, F.; Marques, L. [Centro de Fisica, Universidade do Minho, 4710-057 Braga (Portugal)

    2012-08-31

    Direct current magnetron sputtering was used to produce AlN{sub x}O{sub y} thin films, using an aluminum target, argon and a mixture of N{sub 2} + O{sub 2} (17:3) as reactive gases. The partial pressure of the reactive gas mixture was increased, maintaining the discharge current constant. Within the two identified regimes of the target (metallic and compound), four different tendencies for the deposition rate were found and a morphological evolution from columnar towards cauliflower-type, ending up as dense and featureless-type films. The structure was found to be Al-type (face centered cubic) and the structural characterization carried out by X-ray diffraction and transmission electron microscopy suggested the formation of an aluminum-based polycrystalline phase dispersed in an amorphous aluminum oxide/nitride (or oxynitride) matrix. This type of structure, composition, morphology and grain size, were found to be strongly correlated with the electrical response of the films, which showed a gradual transition between metallic-like responses towards semiconducting and even insulating-type behaviors. A group of films with high aluminum content revealed a sharp decrease of the temperature coefficient of resistance (TCR) as the concentration ratio of non-metallic/aluminum atomic ratio increased. Another group of samples, where the non-metallic content became more important, revealed a smooth transition between positive and negative values of TCR. In order to test whether the oxynitride films have a unique behavior or simply a transition between the typical responses of aluminum and of those of the correspondent nitride and oxide, the electrical properties of the ternary oxynitride system were compared with AlN{sub x} and AlO{sub y} systems, prepared in similar conditions. - Highlights: Black-Right-Pointing-Pointer AlN{sub x}O{sub y} thin films were produced using magnetron sputtering. Black-Right-Pointing-Pointer AlN{sub x}O{sub y} film morphology, composition and

  2. Ion-conductivity of thin film Li-Borate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Abouzari, M.R.S.

    2007-12-17

    In this thesis, the specific conductivity of ion-sputtered lithium borate thin films is studied. To this end, lithium borate glasses of the composition yLi{sub 2}O.(1-y)B{sub 2}O{sub 3} with y=0.15, 0.20, 0.25, and 0.35 were produced as sputter targets. Films with thicknesses between 7 nm and 700 nm are deposited on silicon substrate between two AlLi electrodes. Conductivity spectra have been taken over a frequency range of 5 Hz to 2 MHz. The measurements were performed at different temperatures between 40 C and 350 C depending on the thickness and the composition of the films. The following results are derived by studying the conductivities of the films: i) The specific dc conductivity of layers with thicknesses larger than 150 nm is independent of their thicknesses; we call these layers 'thick films' and consider their conductivity as the 'base conductivity'. ii) The specific dc conductivity of layers with thicknesses smaller than 150 nm, called 'thin films', depends on the layer thickness. A nontrivial enhancement of the specific dc conductivity about three orders of magnitude for y=0.15, 0.2, and 0.25 is observed. iii) The base conductivity depends on y and at 120 C it varies between 4 x 10{sup -10} {omega}{sup -1}cm{sup -1} and 2.5 x 10{sup -6} {omega}{sup -1}cm{sup -1} when y varies between 0.15 and 0.35, whereas the maximum value of the specific dc conductivity of extremely thin films (with a thickness of some nanometre) seems to be independent of y and equals to the specific dc conductivity of layers with y= 0.35. Furthermore, we found in this work a physical interpretation of the so-called 'Constant Phase Element' (CPE) which is widely used in equivalent circuits for ionic conductors. This element describes correctly the depressed impedance semicircles observed in impedance spectroscopy. So far, this effect is sometimes attributed to the surface roughness. We have shown not only the invalidity of this approach, but

  3. Time-resolved analysis of the white photoluminescence from chemically synthesized SiC{sub x}O{sub y} thin films and nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Tabassum, Natasha; Nikas, Vasileios; Ford, Brian; Huang, Mengbing; Kaloyeros, Alain E.; Gallis, Spyros, E-mail: sgalis@sunypoly.edu [Colleges of Nanoscale Sciences and Engineering, SUNY Polytechnic Institute, Albany, New York 12203 (United States)

    2016-07-25

    The study reported herein presents results on the room-temperature photoluminescence (PL) dynamics of chemically synthesized SiC{sub x}O{sub y≤1.6} (0.19 < x < 0.6) thin films and corresponding nanowire (NW) arrays. The PL decay transients of the SiC{sub x}O{sub y} films/NWs are characterized by fast luminescence decay lifetimes that span in the range of 350–950 ps, as determined from their deconvoluted PL decay spectra and their stretched-exponential recombination behavior. Complementary steady-state PL emission peak position studies for SiC{sub x}O{sub y} thin films with varying C content showed similar characteristics pertaining to the variation of their emission peak position with respect to the excitation photon energy. A nearly monotonic increase in the PL energy emission peak, before reaching an energy plateau, was observed with increasing excitation energy. This behavior suggests that band-tail states, related to C-Si/Si-O-C bonding, play a prominent role in the recombination of photo-generated carriers in SiC{sub x}O{sub y}. Furthermore, the PL lifetime behavior of the SiC{sub x}O{sub y} thin films and their NWs was analyzed with respect to their luminescence emission energy. An emission-energy-dependent lifetime was observed, as a result of the modulation of their band-tail states statistics with varying C content and with the reduced dimensionality of the NWs.

  4. Thermodynamic Properties, Hysteresis Behavior and Stress-Strain Analysis of MgH2 Thin Films, Studied over a Wide Temperature Range

    Directory of Open Access Journals (Sweden)

    Yevheniy Pivak

    2012-06-01

    Full Text Available Using hydrogenography, we investigate the thermodynamic parameters and hysteresis behavior in Mg thin films capped by Ta/Pd, in a temperature range from 333 K to 545 K. The enthalpy and entropy of hydride decomposition, ∆Hdes = −78.3 kJ/molH2, ∆Sdes = −136.1 J/K molH2, estimated from the Van't Hoff analysis, are in good agreement with bulk results, while the absorption thermodynamics, ∆Habs = −61.6 kJ/molH2, ∆Sabs = −110.9 J/K molH2, appear to be substantially affected by the clamping of the film to the substrate. The clamping is negligible at high temperatures, T > 523 K, while at lower temperatures, T < 393 K, it is considerable. The hysteresis at room temperature in Mg/Ta/Pd films increases by a factor of 16 as compared to MgH2 bulk. The hysteresis increases even further in Mg/Pd films, most likely due to the formation of a Mg-Pd alloy at the Mg/Pd interface. The stress–strain analysis of the Mg/Ta/Pd films at 300–333 K proves that the increase of the hysteresis occurs due to additional mechanical work during the (de-hydrogenation cycle. With a proper temperature correction, our stress–strain analysis quantitatively and qualitatively explains the hysteresis behavior in thin films, as compared to bulk, over the whole temperature range.

  5. Solid thin film materials for use in thin film charge-coupled devices

    International Nuclear Information System (INIS)

    Lynch, S.J.

    1983-01-01

    Solid thin films deposited by vacuum deposition were evaluated to ascertain their effectiveness for use in the manufacturing of charge-coupled devices (CCDs). Optical and electrical characteristics of tellurium and Bi 2 Te 3 solid thin films were obtained in order to design and to simulate successfully the operation of thin film (TF) CCDs. In this article some of the material differences between single-crystal material and the island-structured thin film used in TFCCDs are discussed. The electrical parameters were obtained and tabulated, e.g. the mobility, conductivity, dielectric constants, permittivity, lifetime of holes and electrons in the thin films and drift diffusion constants. The optical parameters were also measured and analyzed. After the design was complete, experimental TFCCDs were manufactured and were successfully operated utilizing the aforementioned solid thin films. (Auth.)

  6. Thin-film photovoltaic technology

    Energy Technology Data Exchange (ETDEWEB)

    Bhattacharya, R.N. [National Renewable Energy Laboratory, Golden, CO (United States)

    2010-07-01

    The high material and processing costs associated with single-crystal and polycrystalline silicon wafers that are commonly used in photovoltaic cells render these modules expensive. This presentation described thin-film solar cell technology as a promising alternative to silicon solar cell technology. Cadmium telluride (CdTe) thin films along with copper, indium, gallium, and selenium (CIGS) thin films have become the leaders in this field. Their large optical absorption coefficient can be attributed to a direct energy gap that allows the use of thin layers (1-2 {mu}m) of active material. The efficiency of thin-film solar cell devices based on CIGS is 20 per cent, compared to 16.7 per cent for thin-film solar cell devices based on CdTe. IBM recently reported an efficiency of 9.7 per cent for a new type of inorganic thin-film solar cell based on a Cu{sub 2}ZnSn(S, Se){sub 4} compound. The efficiency of an organic thin-film solar cell is 7.9 per cent. This presentation included a graph of PV device efficiencies and discussed technological advances in non-vacuum deposited, CIGS-based thin-film solar cells. 1 fig.

  7. Spontaneous nano-clustering of ZrO2 in atomic layer deposited LayZr1-yOx thin films: Part 1 - Material characterization

    NARCIS (Netherlands)

    Klootwijk, J.H.; Jinesh, K.B.; Wolters, R.A.M.; Roozeboom, F.; Besling, W.

    2008-01-01

    During atomic layer deposition (ALD) of uniform LayZr1-yOx thin films, spontaneous segregation of ZrO2 nanocrystals takes place that are embedded in an amorphous La2O3 matrix. This occurs if the Zr content in the LayZr1-yOx film is above 30% i.e. if the pulse ratio between the lanthanum precursor

  8. Self-assembled morphologies of an amphiphilic Y-shaped weak polyelectrolyte in a thin film.

    Science.gov (United States)

    Mu, Dan; Li, Jian-Quan; Feng, Sheng-Yu

    2017-11-29

    Different from the self-assembly of neutral polymers, polyelectrolytes self-assemble into smaller aggregates with a more loosely assembled structure, which results from the repulsive forces acting between similar electrical compositions with the introduction of ions. The Y-shaped weak polyelectrolytes self-assemble into a core-shell type cylindrical structure with a hexagonal arrangement in a thin film, whose thickness is smaller than the gyration radius of the polymer chain. The corresponding formation mechanism consists of enrichment of the same components, adjustment of the shape of the aggregate, and the subsequent separation into individual aggregates. With the increase in the thickness of the thin film until it exceeds the gyration radius of the polymer chain, combined with the greater freedom of movement along the direction of thin film thickness, the self-assembled structure changes into a micellar structure. Under confinement, the repulsive force to the polymeric components is weakened by the repulsive forces among polyelectrolyte components with like charges, and this helps in generating aggregates with more uniform size and density distribution. In particular, when the repulsive force between the walls and the core forming components is greater than that between the walls and the shell forming components, such asymmetric confinement produces a crossed-cylindrical structure with nearly perpendicular arrangement of two cylinder arrays. Similarly, a novel three-crossed cylinder morphology is self-assembled upon removal of confinement.

  9. Thin film processes II

    CERN Document Server

    Kern, Werner

    1991-01-01

    This sequel to the 1978 classic, Thin Film Processes, gives a clear, practical exposition of important thin film deposition and etching processes that have not yet been adequately reviewed. It discusses selected processes in tutorial overviews with implementation guide lines and an introduction to the literature. Though edited to stand alone, when taken together, Thin Film Processes II and its predecessor present a thorough grounding in modern thin film techniques.Key Features* Provides an all-new sequel to the 1978 classic, Thin Film Processes* Introduces new topics, and sever

  10. Chemical bath deposition of thin semiconductor films for use as buffer layers in CuInS2 thin film solar cells

    International Nuclear Information System (INIS)

    Kaufmann, C.A.

    2002-01-01

    A CulnS 2 thin film solar cell is a multilayered semiconductor device. The solar cells discussed have a layer sequence Mo/CulnS 2 /buffer/i-ZnO/ZnO:Ga, where a heterojunction establishes between the p-type absorber and the n-type front contact. Conventionally the buffer consists of CdS, deposited by chemical bath deposition (CBD). Apart from providing process oriented benefits the buffer layer functions as a tool for engineering the energy band line-up at the heterojunction interface. Motivated through environmental concern and EU legislation it is felt necessary to substitute this potentially toxic layer by an alternative, Cd-free component. This thesis investigates the suitability of various Zn- and In-compounds, in particular In(OH,O) x S y , as alternative buffer layer materials using CBD. Initial experiments were carried out depositing Zn-based compounds from aqueous solutions. Characterization of the layers, the solution and the processed solar cells was performed. This thesis focuses on the investigation of the CBD process chemistry for the deposition of In-compound thin films. A careful study of the morphology and composition of the deposited thin films was conducted using electron microscopy (SEM, HREM), elastic recoil detection analysis, X-ray photoelectron spectroscopy and optical transmission spectroscopy. This allowed conclusions concerning the nucleation and film growth mechanism from the chemical bath. Connections between bath chemistry, different growth phases, layer morphology and solar cell performance were sought and an improved deposition process was developed. As a result, Cd-free CulnS 2 thin film solar cells with efficiencies of up to 10.6%) (total area) could be produced. Overall the substitution of CdS is shown to be possible by different alternative compounds, such as Zn(OH,O) x S y or In(OH,O) x S y . In the case of In(OH,O) x S y , an understanding of the CBD process and the effect of different growth phases on the resulting solar cell

  11. Structural and photocarrier radiometric characterization of Cux(CdTe)yOz thin films growth by reactive sputtering

    International Nuclear Information System (INIS)

    Velazquez-Hernandez, R.; Rojas-Rodriguez, I.; Carmona-Rodriguez, J.; Jimenez-Sandoval, S.; Rodriguez-Garcia, M.E.

    2011-01-01

    This research presents a structural and photocarrier radiometric (PCR) characterization of Cu x (CdTe) y O z thin films grown using reactive radiofrequency co-sputtering. Electronic distribution induced by variations in dopant concentration as a function of the position was studied using photocarrier radiometric images. Optical and structural characterization of these thin films was carried out by using micro Raman spectroscopy and X-ray diffraction. Due to its nondestructive and noncontact characteristics, the PCR is an excellent technique that permits one to obtain details of lateral electronic distribution across the sample. It was found that Cu target power influences the electronic distribution and produces different phases such as Cu 2 Te and CdO.

  12. Fabrication of cerium-doped yttrium aluminum garnet thin films by a mist CVD method

    Energy Technology Data Exchange (ETDEWEB)

    Murai, Shunsuke, E-mail: murai@dipole7.kuic.kyoto-u.ac.jp; Sato, Takafumi; Yao, Situ; Kamakura, Ryosuke; Fujita, Koji; Tanaka, Katsuhisa

    2016-02-15

    We synthesized thin films, consisting of yttrium aluminum garnet doped with Ce{sup 3+} (YAG:Ce), using the mist chemical vapor deposition (CVD) method, which allows the fabrication of high-quality thin films under atmospheric conditions without the use of vacuum equipment. Under a deposition rate of approximately 1 μm/h, the obtained thin films had a typical thickness of 2 μm. The XRD analysis indicated that the thin films consisted of single-phase YAG:Ce. The Rutherford backscattering confirmed the stoichiometry; the composition of the film was determined to be (Y, Ce){sub 3}Al{sub 5}O{sub 12}, with a Ce content of Ce/(Y+Ce)=2.5%. The YAG:Ce thin films exhibited fluorescence due to the 5d–4f electronic transitions characteristic of the Ce ions occupying the eight-coordinated dodecahedral sites in the YAG lattice. - Highlights: • We have synthesized thin films of yttrium aluminum garnet doped with Ce{sup 3+} (YAG:Ce) by using a mist chemical vapor deposition (CVD) method for the first time. • The thickness of the single-phase and stoichiometric thin film obtained by 2 h deposition and following heat treatments is 2 μm. • The thin film is porous but optically transparent, and shows yellow fluorescence upon irradiation with a blue light. • Mist-CVD is a green and sustainable technique that allows fabrication of high-quality thin films at atmospheric conditions without vacuum equipment.

  13. Colossal Magnetoresistance in La-Y-Ca-Mn-O Films

    NARCIS (Netherlands)

    Chen, L.H.; Tiefel, T.H.; Jin, S.; Palstra, T.T.M.; Ramesh, R.; Kwon, C.

    1996-01-01

    Magnetoresistance behavior of La0.60Y0.07CaMnOx, thin films epitaxially grown on LaAlO3 has been investigated. The films exhibit colossal magnetoresistance with the MR ratio in excess of 10^8% at ~60K, H = 7T, which is the highest ever reported for thin film manganites. The partial substitution of

  14. EPMA-EDS surface measurements of interdiffusion coefficients between miscible metals in thin films

    International Nuclear Information System (INIS)

    Christien, F.; Pierson, J.F.; Hassini, A.; Capon, F.; Le Gall, R.; Brousse, T.

    2010-01-01

    A new technique is developed to study interdiffusion between two miscible metals. The technique is applied to the Ni-Pd system. It consists in measuring the change of apparent surface composition of a Pd substrate coated with an 800 nm Ni thin film during annealing at a given temperature. The measurement is carried out in-situ inside the chamber of a SEM (scanning electron microscope) by EPMA-EDS (electron probe microanalysis-energy dispersive X-ray spectroscopy). The experimental data are processed using a model that mixes the Fick's diffusion equations and the electron probe microanalysis equation. This process allows the determination of the mean interdiffusion coefficient at a given annealing temperature. The main advantages of the technique are the possible determination of interdiffusion coefficients in thin films and at very low temperature (down to 430 deg. C, i.e. ∼0.4 T m ), which is not achievable with other techniques conventionally used for the study of interdiffusion. The Ni-Pd mean interdiffusion coefficient is shown to follow an Arrhenius law (D-tilde c =6.32x10 -3 exp((178.8kJmol -1 )/(RT) )cm 2 s -1 ) between 430 deg. C and 900 deg. C, in relatively good agreement with previous interdiffusion measurements made on the Ni-Pd system at higher temperature.

  15. Magnetism and deformation of epitaxial Pd and Rh thin films

    Czech Academy of Sciences Publication Activity Database

    Káňa, Tomáš; Hüger, E.; Legut, D.; Čák, M.; Šob, Mojmír

    2016-01-01

    Roč. 93, č. 13 (2016), č. článku Art. number 134422. ISSN 2469-9950 R&D Projects: GA MŠk(CZ) LQ1601; GA ČR(CZ) GA16-24711S Institutional support: RVO:68081723 Keywords : ab initio calculations * magnetism * palladium * rhodium * thin films * deformation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.836, year: 2016

  16. Soft magnetic properties and damping parameter of (FeCo-Al alloy thin films

    Directory of Open Access Journals (Sweden)

    Isao Kanada

    2017-05-01

    Full Text Available For high frequency device applications, a systematic study of the soft magnetic properties and magnetization dynamics of (FeCo-Al alloy thin films has been carried out. A low effective damping parameter αeff of 0.002 and a high saturation magnetization of about 1,800 emu/cc are obtained at y=0.2∼0.3 for (Fe1-yCoy98Al2 alloy thin films deposited onto fused silica and MgO(100 at an ambient temperature during deposition. Those films are of the bcc structure with the orientation normal to the film plane. They possess a columnar structure, grown along the film normal. The column width is found to be about 20 nm for y=0.25. It is concluded that the (FeCo-Al thin films with a damping parameter as low as 0.002 and high saturation magnetization of about 1,800 emu/cc have been successfully fabricated, and that they are potential for future high frequency device applications.

  17. Pyrolyzed thin film carbon

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  18. Investigation on synthesis of Bi-based thin films on flat sputter-deposited Ag film by melting process

    International Nuclear Information System (INIS)

    Su Yanjing; Satoh, Yoshimasa; Arisawa, Shunichi; Awane, Toru; Fukuyo, Akihiro; Takano, Yoshihiko; Ishii, Akira; Hatano, Takeshi; Togano, Kazumasa

    2003-01-01

    We report on the fabrication of ribbon-like thin films on flat sputter-deposited Ag films whose surface smoothness remained within the order of tens of nm. It was found that the addition of Pb to the starting material improves the wettability of molten phase and facilitates the growth of Bi-2212 ribbon-like thin films on a flat Ag substrate, and that the increase of Ca and Cu in starting material suppresses the intergrowth of the Bi-2201 phase in ribbon-like thin films. By using (Bi,Pb)-2246 powders, with nominal composition of Bi 1.6 Pb 0.4 Sr 1.6 Ca 3.2 Cu 4.8 O y , as the starting material, the superconducting Bi-2212 ribbon-like thin films with an onset T c at 74 K on a very flat Ag substrate were successfully synthesized. Additionally, the growth mechanism of ribbon-like thin films on flat Ag substrate was investigated by in situ high temperature microscope observation

  19. thin films

    Indian Academy of Sciences (India)

    microscopy (SEM) studies, respectively. The Fourier transform ... Thin films; chemical synthesis; hydrous tin oxide; FTIR; electrical properties. 1. Introduction ... dehydrogenation of organic compounds (Hattori et al 1987). .... SEM images of (a) bare stainless steel and (b) SnO2:H2O thin film on stainless steel substrate at a ...

  20. Perovskite oxynitride LaTiOxNy thin films: Dielectric characterization in low and high frequencies

    International Nuclear Information System (INIS)

    Lu, Y.; Ziani, A.; Le Paven-Thivet, C.; Benzerga, R.; Le Gendre, L.; Fasquelle, D.; Kassem, H.

    2011-01-01

    Lanthanum titanium oxynitride (LaTiO x N y ) thin films are studied with respect to their dielectric properties in low and high frequencies. Thin films are deposited by radio frequency magnetron sputtering on different substrates. Effects of nitrogen content and crystalline quality on dielectric properties are investigated. In low-frequency range, textured LaTiO x N y thin films deposited on conductive single crystal Nb–STO show a dielectric constant ε′ ≈ 140 with low losses tanδ = 0.012 at 100 kHz. For the LaTiO x N y polycrystalline films deposited on conductive silicon substrates with platinum (Pt/Ti/SiO 2 /Si), the tunability reached up to 57% for a weak electric field of 50 kV/cm. In high-frequency range, epitaxial LaTiO x N y films deposited on MgO substrate present a high dielectric constant with low losses (ε′ ≈ 170, tanδ = 0.011, 12 GHz).

  1. Effect of cerium substitution on microstructure and Faraday rotation of Ce{sub x}Y{sub 3-x}Fe{sub 5}O{sub 12} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Shahrokhvand, S.M.; Mozaffari, M.; Rozatian, A.S.H. [University of Isfahan, Department of Physics, Faculty of Science, Isfahan (Iran, Islamic Republic of); Hamidi, S.M. [Shahid Beheshti University, Laser and Plasma Research Institute, Evin, Tehran (Iran, Islamic Republic of); Tehranchi, M.M. [Shahid Beheshti University, Laser and Plasma Research Institute, Evin, Tehran (Iran, Islamic Republic of); Shahid Beheshti University, Department of Physics, Evin, Tehran (Iran, Islamic Republic of)

    2016-01-15

    In this work, cerium-substituted yttrium iron garnet (Ce{sub x}Y{sub 3-x}Fe{sub 5}O{sub 12}, x = 0.25-1) targets were fabricated by conventional ceramic method at different temperatures, and their crystal structures were investigated by X-ray diffraction method. The results showed that the minimum calcining temperature required to get single-phase targets depends on x value and decreased by increasing x value. Then, thin films of the targets were deposited on GGG (444) single-crystal substrates by pulsed laser deposition technique. Based on the previous studies, preferred (444) oriented Ce{sub x}Y{sub 3-x}Fe{sub 5}O{sub 12} thin films were fabricated under optimum conditions. Faraday rotation of the thin films was measured at 635 nm wavelength, and the results showed that Faraday rotation and sensitivity constant increased by increasing x value. Scanning electron microscope images showed that by increasing x value, cracks on the thin films' surface increased. Atomic force microscopy images showed that the films have smooth surfaces and the surface roughness decreased by increasing the x value. (orig.)

  2. Influence of Y doping concentration on the properties of nanostructured MxZn1-xO (M=Y) thin film deposited by nebulizer spray pyrolysis technique

    Science.gov (United States)

    Mariappan, R.; Ponnuswamy, V.; Chandra Bose, A.; Suresh, R.; Ragavendar, M.

    2014-09-01

    Yttrium doped Zinc Oxide (YxZn1-xO) thin films deposited at a substrate temperature 400 °C. The effect of substrate temperature on the structural, surface morphology, compositional, optical and electrical properties of YxZn1-xO thin films was studied. X-ray diffraction studies show that all films are polycrystalline in nature with hexagonal crystal structure having highly textured (002) plane parallel to the surface of the substrate. The structural parameters, such as lattice constants (a and c), crystallite size (D), dislocation density (δ), microstrain (σ) and texture coefficient were calculated for different yttrium doping concentrations (x). High resolution scanning electron microscopy measurements reveal that the surface morphology of the films change from platelet like grains to hexagonal structure with grain size increase due to the yttrium doping. Energy dispersive spectroscopy confirms the presence of Y, Zn and O elements in the films prepared. Optical studies showed that all samples have a strong optical transmittance higher than 70% in the visible range. A slight shift of the absorption edge towards the large wavelengths was observed as the Y doping concentration increased. This result shows that the band gap is slightly decreased from 3.10 to 2.05 eV with increase of the yttrium doping concentrations (up to 7.5%) and then slightly increased. Room temperature PL measurements were done and the band-to-band emission energies of films were determined and reported. The complex impedance of the 10%Y doped ZnO film shows two distinguished semicircles and the diameter of the arcs got decreased in diameter as the temperature increases from 70 to 175 °C.

  3. Growth and characterization of high-Tc Y1Ba2Cu3O7-x superconducting thin films by chemical vapor deposition

    International Nuclear Information System (INIS)

    Feng, A.

    1992-01-01

    In chapter I, the current status of high-Tc superconductors (especially Y 1 Ba 2 Cu 3 O 7-x ), their microstructures and their unique physical properties are reviewed. An introduction to the potential and importance of those high-Tc superconductors in practical applications, especially for the application of YBCO thin films in microelectronics, is given. A general description of the common YBCO thin film fabrication and characterization techniques is also presented in this first chapter. Chapter II describes a new CVD process, temperature-controlled chemical vapor deposition (TC-CVD) for the growth of YBCO superconducting thin films on substrates of practical importance, such as sapphire (Al 2 O 3 ) and on substrates of lattice matched perovskite-type single crystals, such as LaAlO 3 . In order to verify the viability of this new CVD process the qualities of YBCO superconducting thin films were examined by various characterization methods, such as resistivity vs. temperature (R vs. T), scanning electron microscopy (SEM), X-ray diffraction (XRD), and magnetic susceptibility (x) measurements. Chapter III deals with the effect of substrate temperature on the properties of YBCO thin films made by TC-CVD. The principle objective of this study is to raise the transition temperature and critical current densities of CVD YBCO superconducting thin films. Understanding the relations between YBCO film growth process and varying substrate temperatures proved to be crucial in reaching this goal. The authors present the characterization results of YBCO thin films produced by different temperature schemes, to illustrate the importance of varying substrate temperature during the film growth. In chapter IV, the Rutherford backscattering (RBS) channeling technique is described. They have used RBS channeling to characterize the epitaxial YBCO thin film's crystallinity and lattice alignment. Transmission electron microscopy studies are also included

  4. Second harmonic generation from corona-poled polymer thin films ...

    Indian Academy of Sciences (India)

    2014-02-09

    Feb 9, 2014 ... thin films of Y-shape chromophore with different isolation groups. MUKESH P JOSHI1 ... Pramana – J. Phys., Vol. 82, No. ... C. The main advantage of the Y shape is the stability similar to linear polymer and a processing ability ...

  5. Thin Film Microbatteries

    International Nuclear Information System (INIS)

    Dudney, Nancy J.

    2008-01-01

    Thin film batteries are built layer by layer by vapor deposition. The resulting battery is formed of parallel plates, much as an ordinary battery construction, just much thinner. The figure (Fig. 1) shows an example of a thin film battery layout where films are deposited symmetrically onto both sides of a supporting substrate. The full stack of films is only 10 to 15 (micro)m thick, but including the support at least doubles the overall battery thickness. When the support is thin, the entire battery can be flexible. At least six companies have commercialized or are very close to commercializing such all-solid-state thin film batteries and market research predicts a growing market and a variety of applications including sensors, RFID tags, and smarter cards. In principle with a large deposition system, a thin film battery might cover a square meter, but in practice, most development is targeting individual cells with active areas less than 25 cm 2 . For very small battery areas, 2 , microfabrication processes have been developed. Typically the assembled batteries have capacities from 0.1 to 5 mAh. The operation of a thin film battery is depicted in the schematic diagram (Fig. 2). Very simply, when the battery is allowed to discharge, a Li + ion migrates from the anode to the cathode film by diffusing through the solid electrolyte. When the anode and cathode reactions are reversible, as for an intercalation compound or alloy, the battery can be recharged by reversing the current. The difference in the electrochemical potential of the lithium determines the cell voltage. Most of the thin films used in current commercial variations of this thin film battery are deposited in vacuum chambers by RF and DC magnetron sputtering and by thermal evaporation onto unheated substrates. In addition, many publications report exploring a variety of other physical and chemical vapor deposition processes, such as pulsed laser deposition, electron cyclotron resonance sputtering, and

  6. Superconducting oxide thin films by ion beam sputtering

    International Nuclear Information System (INIS)

    Kobrin, P.H.; DeNatale, J.F.; Housley, R.M.; Flintoff, J.F.; Harker, A.B.

    1987-01-01

    Superconducting thin films of ternary copper oxides from the Y-Ba-Cu-O and La-Sr-Cu-O systems have been deposited by ion beam sputtering of ceramic targets. Crystallographic orientation of the polycrystalline films has been shown to vary with substrate identity, deposition temperature and annealing temperature. The onset of the superconductive transition occurs near 90K in the Y-Ba-Cu-O system. Fe impurities of < 0.2% have been found to inhibit the superconducting transition, probably by migrating to the grain boundaries

  7. Effects of ion irradiation on the mechanical properties of SiNa wO xC yH z sol-gel derived thin films

    Science.gov (United States)

    Lucca, D. A.; Qi, Y.; Harriman, T. A.; Prenzel, T.; Wang, Y. Q.; Nastasi, M.; Dong, J.; Mehner, A.

    2010-10-01

    A study of the effects of ion irradiation of hybrid organic/inorganic modified silicate thin films on their mechanical properties is presented. NaOH catalyzed SiNa wO xC yH z thin films were synthesized by sol-gel processing from tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES) precursors and spin-coated onto Si substrates. After drying at 300 °C, the films were irradiated with 125 keV H + or 250 keV N 2+ at fluences ranging from 1 × 10 14 to 2.5 × 10 16 ions/cm 2. Nanoindentation was used to characterize the films. Changes in hardness and reduced elastic modulus were examined as a function of ion fluence and irradiating species. The resulting increases in hardness and reduced elastic modulus are compared to similarly processed acid catalyzed silicate thin films.

  8. Determination of the compositions of the DIGM zone in nanocrystalline Ag/Au and Ag/Pd thin films by secondary neutral mass spectrometry

    Directory of Open Access Journals (Sweden)

    Gábor Y. Molnár

    2016-03-01

    Full Text Available Alloying by grain boundary diffusion-induced grain boundary migration is investigated by secondary neutral mass spectrometry depth profiling in Ag/Au and Ag/Pd nanocrystalline thin film systems. It is shown that the compositions in zones left behind the moving boundaries can be determined by this technique if the process takes place at low temperatures where solely the grain boundary transport is the contributing mechanism and the gain size is less than the half of the grain boundary migration distance. The results in Ag/Au system are in good accordance with the predictions given by the step mechanism of grain boundary migration, i.e., the saturation compositions are higher in the slower component (i.e., in Au or Pd. It is shown that the homogenization process stops after reaching the saturation values and further intermixing can take place only if fresh samples with initial compositions, according to the saturation values, are produced and heat treated at the same temperature. The reversal of the film sequence resulted in the reversal of the inequality of the compositions in the alloyed zones, which is in contrast to the above theoretical model, and explained by possible effects of the stress gradients developed by the diffusion processes itself.

  9. Structural comparison between La{sub 0.60}Y{sub 0.07}Ca{sub 0.33}MnO{sub 3-{delta}} bulk and pulsed laser deposited thin films

    Energy Technology Data Exchange (ETDEWEB)

    Teodorescu, V.S. E-mail: teoval@alpha1.infim.ro; Nistor, L.C.; Valeanu, M.; Ghica, C.; Sandu, C.; Mihailescu, I.N.; Ristoscu, C.; Deville, J.P.; Werckmann, J

    2000-03-01

    This work is a comparative study of the structural and magneto-transport properties of La{sub 0.60}Y{sub 0.07}Ca{sub 0.33}MnO{sub 3-{delta}} (LYCMO) as bulk and thin film. The bulk samples were prepared by solid-state reaction between the corresponding metallic oxides mixed in stoichiometric ratios. The thin film was deposited by pulsed laser deposition on an MgO single crystal using an excimer laser. We show that the structure and stoichiometry of the bulk target are perfectly reproduced in the thin film. We measured the magnetoresistive effect on both the LYCMO pellet and the thin film by using the four-probe technique. The maximum of the MR effect is 680% on the polycrystalline thin film in a 2 T magnetic field.

  10. Topotactic synthesis of strontium cobalt oxyhydride thin film with perovskite structure

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Tsukasa [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); Chikamatsu, Akira, E-mail: chikamatsu@chem.s.u-tokyo.ac.jp; Kamisaka, Hideyuki [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); CREST, Japan Science and Technology Agency (JST), Tokyo 113-0033 (Japan); Yokoyama, Yuichi; Hirata, Yasuyuki; Wadati, Hiroki [Institute for Solid State Physics, The University of Tokyo, Chiba 277-8581 (Japan); Fukumura, Tomoteru [CREST, Japan Science and Technology Agency (JST), Tokyo 113-0033 (Japan); Department of Chemistry, Tohoku University, Miyagi 980-8578 (Japan); Hasegawa, Tetsuya [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); CREST, Japan Science and Technology Agency (JST), Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan)

    2015-10-15

    The substitution of hydride anions (H{sup −}) into transition metal oxides has recently become possible through topotactic reactions or high-pressure synthesis methods. However, the fabrication of oxyhydrides is still difficult because of their inherently less-stable frameworks. In this study, we successfully fabricated perovskite SrCoO{sub x}H{sub y} thin films via the topotactic hydride doping of brownmillerite SrCoO{sub 2.5} epitaxial thin films with CaH{sub 2}. The perovskite-type cation framework was maintained during the topotactic treatment owing to epitaxial stabilization. Structural and chemical analyses accompanied by X-ray absorption spectroscopy measurements revealed that the doped hydride ions form a two-dimensional network of Co-H{sup −}-Co bonds, in contrast to other reported perovskite oxyhydrides, SrMO{sub 3−x}H{sub x} (M = Cr, Ti, V). The SrCoO{sub x}H{sub y} thin film exhibited insulating behavior and had a direct band gap of 2.1 eV. Thus, topotactic hydride doping of transition-metal-oxide thin films on suitable substrates is a promising method for the synthesis of new transition metal oxyhydrides.

  11. The effect of different annealing temperatures on the structure and luminescence properties of Y{sub 2}O{sub 3}:Bi{sup 3+} thin films fabricated by spin coating

    Energy Technology Data Exchange (ETDEWEB)

    Yousif, A.; Jafer, R.M.; Som, S. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Department of Physics, Faculty of Education, University of Khartoum, P.O. Box 321, 11115 Omdurman (Sudan); Duvenhage, M.M.; Coetsee, E. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa); Swart, H.C., E-mail: swarthc@ufs.ac.za [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein, ZA 9300 (South Africa)

    2016-03-01

    Graphical abstract: - Highlights: • Y{sub 2−x}O{sub 3}:Bi{sub x=0.005} thin films were successfully fabricated by the spin coating method. • The Y{sub 2−x}O{sub 3}:Bi{sub x=0.005} thin films were converted into Y{sub 2}Si{sub 2}O{sub 7}:Bi films after annealing. • The conversion affected the PL properties of the Bi{sup +} ion in the newly formed host. • A blue shift in emission colour was observed. - Abstract: This paper reports on the structural, morphology and optical properties of Y{sub 2−x}O{sub 3}:Bi{sub x=0.005} micro-and nanophosphors synthesized via the spin coating method. The influence of different annealing temperatures (900–1200 °C) on the morphology, crystal structure and the photoluminescence (PL) properties of the synthesized films were studied in detail. The crystal structure of the films was investigated with X-ray diffraction. The presence of the three major diffraction peaks with Miller indexes (2 1 1), (2 2 2) and (4 0 0) indicated that the Y{sub 2−x}O{sub 3}:Bi{sub x=0.005} thin films were well-crystallized at 900 °C, 1000 °C, 1100 °C and 1200 °C. Additionally, extra diffraction peaks were observed for the sample that was annealed at 1200 °C. Those extra peaks were due to the formation of the Y{sub 2}Si{sub 2}O{sub 7} phase owing to the annealing induced changes in the crystal structure and chemical composition of the Y{sub 2−x}O{sub 3}:Bi{sub x=0.005} thin film. This may also be attributed to inter diffusion of atomic species between the Si substrate and the Y{sub 2−x}O{sub 3}:Bi{sub x=0.005} thin film at the high annealing temperature. Due to structure-sensitive properties of the Bi{sup 3+} ions, a blue shift of the centre PL emission band from 495 nm to 410 nm was clearly observed and explained in detail. The time-of-flight secondary ion mass spectroscopy results show the Si diffusion from the Si substrate, whereas, the scanning electron microscopy and the atomic force microscopy were used for the morphology

  12. Ceramic Composite Thin Films

    Science.gov (United States)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  13. Evidence of Plasmonic Induced Photocatalytic Hydrogen Production on Pd/TiO2 Upon Deposition on Thin Films of Gold

    KAUST Repository

    Khan, M. A.

    2017-02-28

    H2-production from renewables using sunlight is probably the holy grail of modern science and technology. Among the many approaches for increasing reaction rates, by increasing light absorption, plasmonic materials are often invoked. Yet, most plasmonic metals on semiconductors are also good for Schottky barrier formation. In this work, we are presenting evidences of de-coupling the plasmonic from Schottky effects on photoreaction. To conduct this we have systematically changed the under-layer gold film thickness and associated particle size. On top of the thin film layer, we have deposited the exact amount of a prototypical Schottky-based photo-catalyst (Pd/TiO2). We found up to 4 times increase in the H2-production rate at a critical Au film thickness (8 nm-thick). Below this thickness, the plasmonic response is not too strong while above it, the PR decays in favor of the Drude absorption mode. The reaction requires the presence of both UV (to excite the semiconductor) and visible light (to excite Au particles) in order to obtain high hydrogen production, 800 µmol/gCatal.min (probably the highest direct hydrogen (not current) production rate reported on a performing catalyst). The enhancement origin is quantitatively traced to its computed electric field strength (EFS). Adding a dielectric (SiO2) in between the Au thin layer and the catalyst exponentially decreased the reaction rate and EFS, with increasing its thickness. This work indicates the possibility of making an active and stable photo-catalyst from fundamental concepts yet further progress on the structural (technological) front is needed to make a practical catalyst.Graphical abstract

  14. Electrical evaluation of crack generation in SiN_x and SiO_xN_y thin-film encapsulation layers for OLED displays

    International Nuclear Information System (INIS)

    Park, Eun Kil; Kim, Sungmin; Heo, Jaeyeong; Kim, Hyeong Joon

    2016-01-01

    Highlights: • Crack generation in encapsulation layers were detected by leakage current. • Atomic concentration of SiO_xN_y films affected the bending reliability. • The shapes of the crack tips were affected by the stoichiometry of the SiO_xN_y films. - Abstract: By measuring leakage current density, we detected crack generation in silicon nitride (SiN_x) and silicon oxynitride (SiO_xN_y) thin-film encapsulation layers, and correlated with the films’ water vapor permeability characteristics. After repeated bending cycles, both the changes in water vapor transmission rate and leakage current density were directly proportional to the crack density. Thick SiN_x films had better water vapor barrier characteristics in their pristine state, but cyclic loading led to fast failure. Varying the atomic concentration of the SiO_xN_y films affected their bending reliability. We attribute these differences to changes in the shape of the crack tip as the oxygen content varies.

  15. Host thin films incorporating nanoparticles

    Science.gov (United States)

    Qureshi, Uzma

    The focus of this research project was the investigation of the functional properties of thin films that incorporate a secondary nanoparticulate phase. In particular to assess if the secondary nanoparticulate material enhanced a functional property of the coating on glass. In order to achieve this, new thin film deposition methods were developed, namely use of nanopowder precursors, an aerosol assisted transport technique and an aerosol into atmospheric pressure chemical vapour deposition system. Aerosol assisted chemical vapour deposition (AACVD) was used to deposit 8 series of thin films on glass. Five different nanoparticles silver, gold, ceria, tungsten oxide and zinc oxide were tested and shown to successfully deposit thin films incorporating nanoparticles within a host matrix. Silver nanoparticles were synthesised and doped within a titania film by AACVD. This improved solar control properties. A unique aerosol assisted chemical vapour deposition (AACVD) into atmospheric pressure chemical vapour deposition (APCVD) system was used to deposit films of Au nanoparticles and thin films of gold nanoparticles incorporated within a host titania matrix. Incorporation of high refractive index contrast metal oxide particles within a host film altered the film colour. The key goal was to test the potential of nanopowder forms and transfer the suspended nanopowder via an aerosol to a substrate in order to deposit a thin film. Discrete tungsten oxide nanoparticles or ceria nanoparticles within a titanium dioxide thin film enhanced the self-cleaning and photo-induced super-hydrophilicity. The nanopowder precursor study was extended by deposition of zinc oxide thin films incorporating Au nanoparticles and also ZnO films deposited from a ZnO nanopowder precursor. Incorporation of Au nanoparticles within a VO: host matrix improved the thermochromic response, optical and colour properties. Composite VC/TiC and Au nanoparticle/V02/Ti02 thin films displayed three useful

  16. Elevated transition temperature in Ge doped VO2 thin films

    Science.gov (United States)

    Krammer, Anna; Magrez, Arnaud; Vitale, Wolfgang A.; Mocny, Piotr; Jeanneret, Patrick; Guibert, Edouard; Whitlow, Harry J.; Ionescu, Adrian M.; Schüler, Andreas

    2017-07-01

    Thermochromic GexV1-xO2+y thin films have been deposited on Si (100) substrates by means of reactive magnetron sputtering. The films were then characterized by Rutherford backscattering spectrometry (RBS), four-point probe electrical resistivity measurements, X-ray diffraction, and atomic force microscopy. From the temperature dependent resistivity measurements, the effect of Ge doping on the semiconductor-to-metal phase transition in vanadium oxide thin films was investigated. The transition temperature was shown to increase significantly upon Ge doping (˜95 °C), while the hysteresis width and resistivity contrast gradually decreased. The precise Ge concentration and the film thickness have been determined by RBS. The crystallinity of phase-pure VO2 monoclinic films was confirmed by XRD. These findings make the use of vanadium dioxide thin films in solar and electronic device applications—where higher critical temperatures than 68 °C of pristine VO2 are needed—a viable and promising solution.

  17. Preparation and electric and photoelectric properties of thin deposits of Fe, Co, Ni, Cu, Ag, Au and Pd

    International Nuclear Information System (INIS)

    Heras, J.M.; Albano, E.V.; Asensio, M.C.; Viscido, L.

    1984-01-01

    The physics chemical properties of desordered metallic thin films of Fe, Co, Ni, Pd, Ag, Cu and Au are of great interest for its catalitic activity and for its application in radiation absorption of solar cells and micro electronic devices. This work has the purpose of reporting the experimental results obtained by evaporated films of these metals, which present desordered characteristics, small crystal size and high surface-volume rate. (A.C.A.S.) [pt

  18. NMR characterization of thin films

    Science.gov (United States)

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  19. NMR characterization of thin films

    Science.gov (United States)

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  20. Handbook of thin film technology

    CERN Document Server

    Frey, Hartmut

    2015-01-01

    “Handbook of Thin Film Technology” covers all aspects of coatings preparation, characterization and applications. Different deposition techniques based on vacuum and plasma processes are presented. Methods of surface and thin film analysis including coating thickness, structural, optical, electrical, mechanical and magnetic properties of films are detailed described. The several applications of thin coatings and a special chapter focusing on nanoparticle-based films can be found in this handbook. A complete reference for students and professionals interested in the science and technology of thin films.

  1. Measurement of benzenethiol adsorption to nanostructured Pt, Pd, and PtPd films using Raman spectroelectrochemistry.

    Science.gov (United States)

    Pomfret, Michael B; Pietron, Jeremy J; Owrutsky, Jeffrey C

    2010-05-04

    Raman spectroscopy and electrochemical methods were used to study the behavior of the model adsorbate benzenethiol (BT) on nanostructured Pt, Pd, and PtPd electrodes as a function of applied potential. Benzenethiol adsorbs out of ethanolic solutions as the corresponding thiolate, and voltammetric stripping data reveal that BT is oxidatively removed from all of the nanostructured metals upon repeated oxidative and reductive cycling. Oxidative stripping potentials for BT increase in the order Pt oxidizing potentials via cleavage of the Pt-S bond. In contrast, on nanoscale Pd and PtPd, BT is irreversibly lost due to cleavage of BT C-S bonds at oxidizing potentials, which leaves adsorbed sulfur oxides on Pd and PtPd films and effects the desulfurization of BT. While Pd and PtPd films are less sulfur-resistant than Pt films, palladium oxides, which form at higher potentials than Pt oxides, oxidatively desulfurize BT. In situ spectroelectrochemical Raman spectroscopy provides real-time, chemically specific information that complements the cyclic voltammetric data. The combination of these techniques affords a powerful and convenient method for guiding the development of sulfur-tolerant PEMFC catalysts.

  2. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco

    2007-01-01

    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  3. Thin-film solar cells

    International Nuclear Information System (INIS)

    Aberle, Armin G.

    2009-01-01

    The rapid progress that is being made with inorganic thin-film photovoltaic (PV) technologies, both in the laboratory and in industry, is reviewed. While amorphous silicon based PV modules have been around for more than 20 years, recent industrial developments include the first polycrystalline silicon thin-film solar cells on glass and the first tandem solar cells based on stacks of amorphous and microcrystalline silicon films ('micromorph cells'). Significant thin-film PV production levels are also being set up for cadmium telluride and copper indium diselenide.

  4. The impedance of inductive superconducting fault current limiters operating with stacks of thin film Y123/Au washers or bulk Bi2223 rings as secondaries

    International Nuclear Information System (INIS)

    Fernandez, J A Lorenzo; Osorio, M R; Toimil, P; Ferro, G; Blanch, M; Veira, J A; Vidal, F

    2006-01-01

    Inductive fault current limiters operating with stacks of various small superconducting elements acting as secondaries were studied. The stacks consist of Y 1 Ba 2 Cu 3 O 7-δ thin film washers or Bi 1.8 Pb 0.26 Sr 2 Ca 2 Cu 3 O 10+x bulk rings. A central result of our work is an experimental demonstration that the limiting capability of the device is strongly reduced when several bulk rings are stacked, whereas it remains almost unchanged for thin film washers. The use of thin films should therefore allow us to build more efficient high power inductive limiters based on stacks of small washers

  5. Process for forming thin film, heat treatment process of thin film sheet, and heat treatment apparatus therefor

    International Nuclear Information System (INIS)

    Watanabe, S.

    1984-01-01

    The invention provides a process for forming a magnetic thin film on a base film, a heat treatment process of a thin film sheet consisting of the base film and the magnetic thin film, and an apparatus for performing heat treatment of the thin film sheet. Tension applied to the thin film sheet is substantially equal to that applied to the base film when the magnetic thin film is formed thereon. Then, the thin film sheet is treated with heat. The thin film sheet is heated with a given temperature gradient to a reactive temperature at which heat shrinkage occurs, while the tension is being applied thereto. Thereafter, the thin film sheet to which the tension is still applied is cooled with substantially the same temperature gradient as applied in heating. The heat treatment apparatus has a film driving unit including a supply reel, a take-up reel, a drive source and guide rollers; a heating unit including heating plates, heater blocks and a temperature controller for heating the sheet to the reactive temperature; and a heat insulating unit including a thermostat and another temperature controller for maintaining the sheet at the nonreactive temperature which is slightly lower than the reactive temperature

  6. Structure characterization of Pd/Co/Pd tri-layer films epitaxially grown on MgO single-crystal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tobari, Kousuke, E-mail: tobari@futamoto.elect.chuo-u.ac.jp; Ohtake, Mitsuru; Nagano, Katsumasa; Futamoto, Masaaki

    2011-09-30

    Pd/Co/Pd tri-layer films were prepared on MgO substrates of (001), (111), and (011) orientations at room temperature by ultra high vacuum rf magnetron sputtering. The detailed film structures around the Co/Pd and the Pd/Co interfaces are investigated by reflection high energy electron diffraction. Pd layers of (001){sub fcc}, (111){sub fcc}, and (011){sub fcc} orientations epitaxially grow on the respective MgO substrates. Strained fcc-Co(001) single-crystal layers are formed on the Pd(001){sub fcc} layers by accommodating the fairly large lattice mismatch between the Co and the Pd layers. On the Co layers,, Pd polycrystalline layers are formed. When Co films are formed on the Pd(111){sub fcc} and the Pd(011){sub fcc} layers, atomic mixing is observed around the Co/Pd interfaces and fcc-CoPd alloy phases are coexisting with Co crystals. The Co crystals formed on the Pd(111){sub fcc} layers consist of hcp(0001) + fcc(111) and Pd(111){sub fcc} epitaxial layers are formed on the Co layers. Co crystals epitaxially grow on the Pd(011){sub fcc} layers with two variants, hcp(11-bar 00) and fcc(111). On the Co layers, Pd(011){sub fcc} epitaxial layers are formed.

  7. Passivation of cobalt nanocluster assembled thin films with hydrogen

    DEFF Research Database (Denmark)

    Romero, C.P.; Volodin, A.; Di Vece, M.

    2012-01-01

    The effect of hydrogen passivation on bare and Pd capped cobalt nanocluster assembled thin films was studied with Rutherford backscattering spectrometry (RBS) and magnetic force microscopy (MFM) after exposure to ambient conditions. The nanoclusters are produced in a laser vaporization cluster...... source in which the helium carrier gas was mixed with hydrogen. RBS revealed that oxidation of the Co nanoclusters is considerably reduced by the presence of hydrogen during cluster formation. The capping did not modify the influence of the passivation. The hydrogen passivation method is especially...... effective in cases when capping of the films is not desirable, for example for magnetic studies. Clear differences in the magnetic domain structures between hydrogen passivated and non-passivated Co nanocluster films were demonstrated by MFM and are attributed to a difference in inter-cluster magnetic...

  8. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    International Nuclear Information System (INIS)

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M.; Schultz, J.A.; Schmidt, H.K.; Chang, R.P.H.

    1992-01-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 Angstrom), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 Angstrom of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films

  9. Alloying behaviour of electroplated Ag film with its underlying Pd/Ti film stack for low resistivity interconnect metallization

    International Nuclear Information System (INIS)

    Ezawa, Hirokazu; Miyata, Masahiro; Tatsumi, Kohei

    2014-01-01

    Highlights: • Alloying behavior of Ag/Pd/Ti film stack was studied by annealing at 400-800 °C. • The Ag film resistivity decreased with increasing annealing temperature. • Formation of the Pd-Ti intermetallics was found to be dominant over Ag-Pd alloying. • The excess Ti was consumed to form Ti oxides, which inhibited Ti alloying with Ag. -- Abstract: In this paper, viability of electroplated Ag film into device application was studied. Alloying behavior of the Ag film with its underlying Pd(50 nm)/Ti(100 nm) film stack was investigated with respect to heat treatment at different temperatures from 400 °C to 800 °C in an argon ambient. After annealing at 400 °C, the electrical resistivity of the Ag film increased due to Pd alloying with Ag. Formation of Pd–Ti intermetallic phases became dominant over Ag–Pd alloying with increasing annealing temperature, leading to the resistivity decrease of the Ag film. The resistivity of the 800 °C annealed Ag film approached that of its as-plated Ag film. The excess Ti atoms which were not consumed to form the intermetallic phases with the Pd atoms migrated to the Ag film surface to form Ti oxides along the Ag grain boundaries on the topmost film surface. The Ag/Pd/Ti film stack has been confirmed to maintain the resistivity of the Ag film at as-plated low levels after high temperature annealing. This paper also discusses process integration issues to enable the Ag metallization process for future scaled and three dimensionally chip stacked devices

  10. Coulomb-Gas scaling law for a superconducting Bi(2+y)Sr(2-x-y)La(x)CuO(6+delta) thin films in magnetic fields

    Science.gov (United States)

    Zhang; Deltour; Zhao

    2000-10-16

    The electrical transport properties of epitaxial superconducting Bi(2+y)Sr(2-x-y)La(x)CuO(6+delta) thin films have been studied in magnetic fields. Using a modified Coulomb-gas scaling law, we can fit all the magnetic field dependent low resistance data with a universal scaling curve, which allows us to determine a relation between the activation energy of the thermally activated flux flow resistance and the characteristic temperature scaling parameters.

  11. Auger line shape changes in epitaxial (111)Pd/(111)Cu films

    Energy Technology Data Exchange (ETDEWEB)

    Chao, S S; Knabbe, E A; Vook, R W

    1980-01-01

    Epitaxial Pd films ranging in thickness from a few tenths of a monolayer up to many monolayers were formed on (111)Cu substrate films at room temperature under uhv conditions. The growth of these Pd films was monitored in situ by Auger electron spectroscopy. The line profiles of the Cu MMM (61 eV) and Pd MVV (329 eV) AES doublets varied significantly with the amount of Pd deposited. A new measure of the AES doublet line profile, called the R-factor, was defined. A graph of R/sub Pd/ versus Pd film thickness shows a sharp decline with increasing thickness. Superimposed on the major trends is a cyclical variation. A corresponding periodicity in R/sub Cu/ was observed for the Cu MMM (61 eV) AES doublet. The results suggest that the R-factor provides a direct measure of changes in the electronic structures of the overgrowth and substrate films as the former thickens by a layer-growth mechanism.

  12. Properties of Ferrite Garnet (Bi, Lu, Y3(Fe, Ga5O12 Thin Film Materials Prepared by RF Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Mohammad Nur-E-Alam

    2018-05-01

    Full Text Available This work is devoted to physical vapor deposition synthesis, and characterisation of bismuth and lutetium-substituted ferrite-garnet thin-film materials for magneto-optic (MO applications. The properties of garnet thin films sputtered using a target of nominal composition type Bi0.9Lu1.85Y0.25Fe4.0Ga1O12 are studied. By measuring the optical transmission spectra at room temperature, the optical constants and the accurate film thicknesses can be evaluated using Swanepoel’s envelope method. The refractive index data are found to be matching very closely to these derived from Cauchy’s dispersion formula for the entire spectral range between 300 and 2500 nm. The optical absorption coefficient and the extinction coefficient data are studied for both the as-deposited and annealed garnet thin-film samples. A new approach is applied to accurately derive the optical constants data simultaneously with the physical layer thickness, using a combination approach employing custom-built spectrum-fitting software in conjunction with Swanepoel’s envelope method. MO properties, such as specific Faraday rotation, MO figure of merit and MO swing factor are also investigated for several annealed garnet-phase films.

  13. Anisotropic propagation imaging of elastic waves in oriented columnar thin films

    Science.gov (United States)

    Coffy, E.; Dodane, G.; Euphrasie, S.; Mosset, A.; Vairac, P.; Martin, N.; Baida, H.; Rampnoux, J. M.; Dilhaire, S.

    2017-12-01

    We report on the observation of strongly anisotropic surface acoustic wave propagation on nanostructured thin films. Two kinds of tungsten samples were prepared by sputtering on a silicon substrate: a conventional thin film with columns normal to the substrate surface, and an oriented columnar architecture using the glancing angle deposition (GLAD) process. Pseudo-Rayleigh waves (PRWs) were imaged as a function of time in x and y directions for both films thanks to a femtosecond heterodyne pump-probe setup. A strong anisotropic propagation as well as a high velocity reduction of the PRWs were exhibited for the GLAD sample. For the wavevector k/2π  =  3  ×  105 m-1 the measured group velocities v x and v y equal 2220 m s-1 for the sample prepared with conventional sputtering, whereas a strong anisotropy appears (v x   =  1600 m s-1 and v y   =  870 m s-1) for the sample prepared with the GLAD process. Using the finite element method, the anisotropy is related to the structural anisotropy of the thin film’s architecture. The drop of PRWs group velocities is mainly assigned to the porous microstructure, especially favored by atomic shadowing effects which appear during the growth of the inclined columns. Such GLAD thin films constitute a new tool for the control of the propagation of surface elastic waves and for the design of new devices with useful properties.

  14. High-frequency properties of superconducting Y-Ba-Cu-oxide thin films

    International Nuclear Information System (INIS)

    Ramakrishnan, E.S.; Su, M.; Howng, W.

    1992-01-01

    rf and microwave properties of superconducting YBa 2 Cu 3 O 7-x thin films were measured and analyzed using a coplanar resonator structure. The films were developed by sequential electron-beam evaporation of the metals followed by postanneal processing. dc properties of the films were obtained from resistance-temperature and current-voltage measurements to evaluate the transition temperature and current densities. High-frequency properties were measured from 70 to 10 K and in the frequency range 1--3 GHz to determine the film characteristics as compared to pure copper films on the same substrates

  15. DC magnetron sputtering prepared Ag-C thin film anode for thin film lithium ion microbatteries

    International Nuclear Information System (INIS)

    Li, Y.; Tu, J.P.; Shi, D.Q.; Huang, X.H.; Wu, H.M.; Yuan, Y.F.; Zhao, X.B.

    2007-01-01

    An Ag-C thin film was prepared by DC magnetron co-sputtering, using pure silver and graphite as the targets. The microstructure and morphology of the deposited thin film were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Electrochemical performances of the Ag-C thin film anode were investigated by means of discharge/charge and cyclic voltammogram (CV) tests in model cells. The electrochemical impedance spectrum (EIS) characteristics and the chemical diffusion coefficient, D Li of the Ag-C thin film electrode at different discharging states were discussed. It was believed that the excellent cycling performance of the Ag-C electrode was ascribed to the good conductivity of silver and the volume stability of the thin film

  16. Preparation and Hydrogen Absorption/Desorption of Nanoporous Palladium Thin Films

    Directory of Open Access Journals (Sweden)

    Wen-Chung Li

    2009-12-01

    Full Text Available Nanoporous Pd (np-Pd was prepared by co-sputtering Pd-Ni alloy films onto Si substrates, followed by chemical dealloying with sulfuric acid. X-ray diffractometry and chemical analysis were used to track the extent of dealloying. The np-Pd structure was changed from particle-like to sponge-like by diluting the sulfuric acid etchant. Using suitable precursor alloy composition and dealloying conditions, np-Pd films were prepared with uniform and open sponge-like structures, with interconnected ligaments and no cracks, yielding a large amount of surface area for reactions with hydrogen. Np-Pd films exhibited shorter response time for hydrogen absorption/desorption than dense Pd films, showing promise for hydrogen sensing.

  17. Effects of palladium coatings on oxygen sensors of titanium dioxide thin films

    International Nuclear Information System (INIS)

    Castaneda, L.

    2007-01-01

    Titanium dioxide (TiO 2 -anatase phase) thin films were deposited by the ultrasonic spray pyrolysis technique employing titanium (IV) oxide acetylacetonate (TiO(acac) 2 ) dissolved in pure methanol as a source material. In order to prepare oxygen sensors, TiO 2 thin films were deposited on interdigitated gold electrodes with contacted alumina substrates. Palladium (Pd) coatings were carried out by vacuum thermal evaporation through a metallic mask. The effect of the surface additive (Pd) on the response of the thin film TiO 2 oxygen sensors was monitored in a mixture with zero-grade air. The electrical characterization (monitoring of the electrical surface resistance with the operation temperature) of the sensors in an atmosphere of oxygen (diluted in zero-grade air) was performed in a vacuum chamber (10 -6 Torr), where the gas pressure can be controlled. The films sensitivity was estimated by the following relation: s=R gas -R 0 /R 0 . The response time of the sensor is defined to be the time needed to reach a 0.9R 0 value when the oxygen excess is removed. The gas-sensing properties of TiO 2 sensors in an atmosphere of 10 4 ppm of oxygen were measured between 100 and 450 deg. C. Experimental results obtained using palladium as a surface additive show that the sensitivity reaches a stationary value of 1.18 for O 2 concentration of 100ppm in zero-grade air at 300 deg. C, which is as high as those reported for oxygen sensors prepared with more expensive and complex techniques. The role and activity of palladium coatings incorporated on solid-state oxygen sensors are determined by their chemical state, aggregation form and interaction with the metal-oxide semiconductor

  18. Pseudomorphic-to-bulk fcc phase transition of thin Ni films on Pd(100)

    International Nuclear Information System (INIS)

    Rizzi, G.A.; Petukhov, M.; Sedona, F.; Granozzi, G.; Cossaro, A.; Bruno, F.; Cvetko, D.; Morgante, A.; Floreano, L.

    2004-01-01

    We have measured the transformation of pseudomorphic Ni films on Pd(100) into their bulk fcc phase as a function of the film thickness. We made use of x-ray diffraction and x-ray induced photoemission to study the evolution of the Ni film and its interface with the substrate. The growth of a film with tetragonally strained face centered symmetry (fct) has been observed by out-of-plane x-ray diffraction up to a limit thickness of 10 Ni pseudomorphic layers (some of them partially filled and intermixed with the substrate), where a new fcc bulklike phase is formed. After the formation of the bulklike Ni domains, we observed the pseudomorphic fct domains to disappear preserving the number of layers and their spacing. The phase transition thus proceeds via lateral growth of the bulklike phase within the pseudomorphic one, i.e., the bulklike fcc domains penetrate down to the substrate when formed. This large depth of the walls separating the domains of different phases is also indicated by the increase of the intermixing at the substrate-film interface, which starts at the onset of the transition and continues at even larger thickness. The bulklike fcc phase is also slightly strained; its relaxation towards the orthomorphic lattice structure proceeds slowly with the film thickness, being not yet completed at the maximum thickness presently studied of 30 A (∼17 layers)

  19. Thin film metal-oxides

    CERN Document Server

    Ramanathan, Shriram

    2009-01-01

    Presents an account of the fundamental structure-property relations in oxide thin films. This title discusses the functional properties of thin film oxides in the context of applications in the electronics and renewable energy technologies.

  20. YCo5±x thin films with perpendicular anisotropy grown by molecular beam epitaxy

    Science.gov (United States)

    Sharma, S.; Hildebrandt, E.; Sharath, S. U.; Radulov, I.; Alff, L.

    2017-06-01

    The synthesis conditions of buffer-free (00l) oriented YCo5 and Y2Co17 thin films onto Al2O3 (0001) substrates have been explored by molecular beam epitaxy (MBE). The manipulation of the ratio of individual atomic beams of Yttrium, Y and Cobalt, Co, as well as growth rate variations allows establishing a thin film phase diagram. Highly textured YCo5±x thin films were stabilized with saturation magnetization of 517 emu/cm3 (0.517 MA/m), coercivity of 4 kOe (0.4 T), and anisotropy constant, K1, equal to 5.34 ×106 erg/cm3 (0.53 MJ/m3). These magnetic parameters and the perpendicular anisotropy obtained without additional underlayers make the material system interesting for application in magnetic recording devices.

  1. Thin films and nanomaterials

    International Nuclear Information System (INIS)

    Jayakumar, S.; Kannan, M.D.; Prasanna, S.

    2012-01-01

    The objective of this book is to disseminate the most recent research in Thin Films, Nanomaterials, Corrosion and Metallurgy presented at the International Conference on Advanced Materials (ICAM 2011) held in PSG College of Technology, Coimbatore, India during 12-16 December 2011. The book is a compilation of 113 chapters written by active researchers providing information and critical insights into the recent advancements that have taken place. Important new applications are possible today in the fields of microelectronics, opto-electronics, metallurgy and energy by the application of thin films on solid surfaces. Recent progress in high vacuum technology and new materials has a remarkable effect in thin film quality and cost. This has led to the development of new single or multi-layered thin film devices with diverse applications in a multitude of production areas, such as optics, thermal barrier coatings and wear protections, enhancing service life of tools and to protect materials against thermal and atmospheric influence. On the other hand, thin film process techniques and research are strongly related to the basic research activities in nano technology, an increasingly important field with countless opportunities for applications due to the emergence of new properties at the nanoscale level. Materials and structures that are designed and fabricated at the nano scale level, offer the potential to produce new devices and processes that may enhance efficiencies and reduce costs in many areas, as photovoltaic systems, hydrogen storage, fuel cells and solar thermal systems. In the book, the contributed papers are classified under two sections i) thin films and ii) nanomaterials. The thin film section includes single or multi layer conducting, insulating or semiconducting films synthesized by a wide variety of physical or chemical techniques and characterized or analyzed for different applications. The nanomaterials section deals with novel or exciting materials

  2. Substrate decoration for improvement of current-carrying capabilities of YBa2Cu3Ox thin films

    International Nuclear Information System (INIS)

    Khoryushin, Alexey V.; Mozhaev, Peter B.; Mozhaeva, Julia E.; Bdikin, Igor K.; Zhao, Yue; Andersen, Niels H.; Jacobsen, Claus S.; Hansen, Jørn Bindslev

    2013-01-01

    Highlights: ► Effects of substrate decoration on properties of YBCO thin films were studied. ► Y 2 O 3 nanoparticles, ultra-thin Y 2 O 3 and Y:ZrO 2 layers were used as decoration layer. ► Decoration improves j C (5 T and 50 K) up to 0.97 MA/cm 2 vs. 0.76 MA/cm 2 for a reference film. ► Ultra-thin layer of yttria and yttria nanoparticles have a similar effect on YBCO. ► Y 2 O 3 decoration results in power law coefficient α = 0.3 vs. α = 0.4 for a reference film. -- Abstract: The effects of substrate decoration with yttria and Y:ZrO 2 on the structural and electrical properties of the YBa 2 Cu 3 O x (YBCO) thin films are studied. The films were deposited on (LaAlO 3 ) 3 –(Sr 2 AlTaO 8 ) 7 substrates by pulsed laser deposition. Two different structures of decoration layer were applied, a template layer of nanoparticles and an uniform ultra-thin layer. Significant improvement of current-carrying capabilities was observed, especially at high external magnetic fields. Structural studies of these films reveal the presence of extended linear defects in the YBCO matrix. The formation of these structures is attributed to seeding of randomly oriented YBCO grains due to suppression of epitaxy in the very beginning of the deposition. The films of both kinds of decoration layers show nearly the same improvement of j C over the reference film at 77 and 50 K: j C (5T and 50 K) reaches 0.92 and 0.97 MA/cm 2 for uniform and template decoration layers. At 5 and 20 K the effect of template decoration layers is more beneficial: j C (5T and 20 K) values are 3.5 and 4.1 MA/cm 2 , j C (5T and 5 K) values are 6.4 and 7.9 MA/cm 2 , for uniform and template decoration layers, respectively

  3. Determination of optical properties in nanostructured thin films using the Swanepoel method

    International Nuclear Information System (INIS)

    Sanchez-Gonzalez, J.; Diaz-Parralejo, A.; Ortiz, A.L.; Guiberteau, F.

    2006-01-01

    We present the methodological framework of the Swanepoel method for the spectrophotometric determination of optical properties in thin films using transmittance data. As an illustrative case study, we determined the refractive index, thickness, absorption index, and extinction coefficient of a nanostructured 3 mol% Y 2 O 3 -doped ZrO 2 (yttria stabilized zirconia, 3YSZ) thin film prepared by the sol-gel method and deposited by dipping onto a soda-lime glass substrate. In addition, using the absorption index obtained with the Swanepoel method, we calculated the optical band gap of the film. The refractive index was found to increase, then decrease, and finally stabilize with increasing wavelength of the radiation, while the absorption index and extinction coefficient decreased monotonically to zero. These trends are explained in terms of the location of the absorption bands. We also deduced that this 3YSZ thin film has a direct optical band gap of 4.6 eV. All these results compared well with those given in the literature for similar thin films. This suggests that the Swanepoel method has an important role to play in the optical characterization of ceramic thin films

  4. Determination of optical properties in nanostructured thin films using the Swanepoel method

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Gonzalez, J. [Departamento de Electronica e Ingenieria Electromecanica, Escuela de Ingenierias Industriales, Universidad de Extremadura, Badajoz 06071 (Spain); Diaz-Parralejo, A. [Departamento de Electronica e Ingenieria Electromecanica, Escuela de Ingenierias Industriales, Universidad de Extremadura, Badajoz 06071 (Spain); Ortiz, A.L. [Departamento de Electronica e Ingenieria Electromecanica, Escuela de Ingenierias Industriales, Universidad de Extremadura, Badajoz 06071 (Spain)]. E-mail: alortiz@unex.es; Guiberteau, F. [Departamento de Electronica e Ingenieria Electromecanica, Escuela de Ingenierias Industriales, Universidad de Extremadura, Badajoz 06071 (Spain)

    2006-06-30

    We present the methodological framework of the Swanepoel method for the spectrophotometric determination of optical properties in thin films using transmittance data. As an illustrative case study, we determined the refractive index, thickness, absorption index, and extinction coefficient of a nanostructured 3 mol% Y{sub 2}O{sub 3}-doped ZrO{sub 2} (yttria stabilized zirconia, 3YSZ) thin film prepared by the sol-gel method and deposited by dipping onto a soda-lime glass substrate. In addition, using the absorption index obtained with the Swanepoel method, we calculated the optical band gap of the film. The refractive index was found to increase, then decrease, and finally stabilize with increasing wavelength of the radiation, while the absorption index and extinction coefficient decreased monotonically to zero. These trends are explained in terms of the location of the absorption bands. We also deduced that this 3YSZ thin film has a direct optical band gap of 4.6 eV. All these results compared well with those given in the literature for similar thin films. This suggests that the Swanepoel method has an important role to play in the optical characterization of ceramic thin films.

  5. Synthesis, microstructural, optical and mechanical properties of yttria stabilized zirconia thin films

    International Nuclear Information System (INIS)

    Amézaga-Madrid, P.; Hurtado-Macías, A.; Antúnez-Flores, W.; Estrada-Ortiz, F.; Pizá-Ruiz, P.; Miki-Yoshida, M.

    2012-01-01

    Highlights: ► Thin films of YSZ obtained by AACVD have high quality. ► They are uniform, very transparent, and have high hardness. ► Optical characterization were performed in detail, optical constants and band gap energy were determined as a function of dopant content. - Abstract: Thin films of yttria-stabilized zirconia (YSZ) exhibit exceptional properties, such as high thermal, chemical and mechanical stability. Here, we report the synthesis of YSZ thin films by aerosol assisted chemical vapour deposition onto borosilicate glass and fused silica substrates. Optimum deposition temperature was 673 ± 5 K. In addition, different Y content was tried to analyse its influence in the microstructure and properties of the films. The films were uniform, transparent and non-light scattering. Surface morphology and cross sectional microstructure were studied by field emission scanning electron microscopy. The microstructure of the films was characterized by grazing incidence X-ray diffraction. Crystallite size and lattice parameter were obtained. Optical properties were analysed from reflectance and transmittance spectra; from these measurements, optical constants and band gap were obtained. Quantum confinement effect, due to the small grain size of the films, was evident in the high band gap energy obtained. Nanoindentation tests were realized at room temperature employing the continuous stiffness measurement method, to determine the hardness and elastic modulus as a function of Y content.

  6. Improved current transport properties of post annealed Y1Ba2Cu3O7-x thin films using Ag doping

    DEFF Research Database (Denmark)

    Clausen, Thomas; Skov, Johannes; Jacobsen, Claus Schelde

    1996-01-01

    The influence of Ag doping on the transport properties of Y1Ba2Cu3O7–x thin films prepared by Y, BaF2, and Cu co-evaporation and optimized ex situ post annealing has been investigated. Both undoped and Ag doped films have values of Tc above 90 K, but Jc (77 K) is highly dependent on the nominal...... thickness (tnom) of the as-deposited film. For undoped films with tnom>106 A/cm2) decreases monotonically with increasing film thickness. Above 300 nm Jc (77 K) decreases rapidly to values below 5×105 A/cm2. Ag doped films with tnom>=200 nm have higher Jc (77 K) values than those of undoped films. Ag doped...... films have a maximum in Jc (77 K) around 250 nm. As for the undoped films, there is a large decrease in Jc (77 K) for Ag doped films with tnom>=300 nm. It was found that the higher values of Jc (77 K) for the Ag doped films were due to a better epitaxial growth of the YBCO compound. The low values of Jc...

  7. Sputter-deposited Mg-Al-O thin films: linking molecular dynamics simulations to experiments

    International Nuclear Information System (INIS)

    Georgieva, V; Bogaerts, A; Saraiva, M; Depla, D; Jehanathan, N; Lebelev, O I

    2009-01-01

    Using a molecular dynamics model the crystallinity of Mg x Al y O z thin films with a variation in the stoichiometry of the thin film is studied at operating conditions similar to the experimental operating conditions of a dual magnetron sputter deposition system. The films are deposited on a crystalline or amorphous substrate. The Mg metal content in the film ranged from 100% (i.e. MgO film) to 0% (i.e. Al 2 O 3 film). The radial distribution function and density of the films are calculated. The results are compared with x-ray diffraction and transmission electron microscopy analyses of experimentally deposited thin films by the dual magnetron reactive sputtering process. Both simulation and experimental results show that the structure of the Mg-Al-O film varies from crystalline to amorphous when the Mg concentration decreases. It seems that the crystalline Mg-Al-O films have a MgO structure with Al atoms in between.

  8. Quantum and classical contributions to linear magnetoresistance in topological insulator thin films

    International Nuclear Information System (INIS)

    Singh, Sourabh; Gopal, R. K.; Sarkar, Jit; Mitra, Chiranjib

    2016-01-01

    Three dimensional topological insulators possess backscattering immune relativistic Dirac fermions on their surface due to nontrivial topology of the bulk band structure. Both metallic and bulk insulating topological insulators exhibit weak-antilocalization in the low magnetic field and linear like magnetoresistance in higher fields. We explore the linear magnetoresistance in bulk insulating topological insulator Bi 2-x Sb x Te 3-y Se y thin films grown by pulsed laser deposition technique. Thin films of Bi 2-x Sb x Te 3-y Se y were found to be insulating in nature, which conclusively establishes the origin of linear magnetoresistance from surface Dirac states. The films were thoroughly characterized for their crystallinity and composition and then subjected to transport measurements. We present a careful analysis taking into considerations all the existing models of linear magnetoresistance. We comprehend that the competition between classical and quantum contributions to magnetoresistance results in linear magnetoresistance in high fields. We observe that the cross-over field decreases with increasing temperature and the physical argument for this behavior is explained.

  9. Specific considerations for obtaining appropriate La1-xSrxGa1-yMgyO3-δ thin films using pulsed-laser deposition and its influence on the performance of solid-oxide fuel cells

    Science.gov (United States)

    Hwang, Jaeyeon; Lee, Heon; Lee, Jong-Ho; Yoon, Kyung Joong; Kim, Hyoungchul; Hong, Jongsup; Son, Ji-Won

    2015-01-01

    To obtain La1-xSrxGa1-yMgyO3-δ (LSGM) thin films with the appropriate properties, pulsed-laser deposition (PLD) is employed, and specific considerations regarding control of the deposition parameters is investigated. It is demonstrated that with a target of stoichiometric composition, appropriate LSGM thin films cannot be produced because of the deviation of the composition from the target to the thin film. Only after adjusting the target composition an LSGM thin film with an appropriate composition and phase can be obtained. The optimized LSGM thin film possesses an electrical conductivity close to that of the bulk LSGM. In contrast, non-optimized thin films do not yield any measurable electrical conductivity. The impact of the optimization of the LSGM thin-film electrolyte on the cell performance is quite significant, in that a solid-oxide fuel cell (SOFC) with an optimized LSGM thin-film electrolyte produces a maximum power density of 1.1 W cm-2 at 600 °C, whereas an SOFC with a non-optimal LSGM thin-film electrolyte is not operable.

  10. A systematic neutron reflectometry study on hydrogen absorption in thin Mg{sub 1-x}Al{sub x} alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsche, H.; Poirier, E., E-mail: helmut.fritzsche@nrc.gc.ca [National Research Council Canada, Canadian Neutron Beam Centre, Chalk River, ON (Canada); Haagsma, J.; Ophus, C.; Luber, E.; Harrower, C.; Mitlin, D. [Univ. of Alberta, and National Research Council Canada, Chemical and Materials Engineering, Edmonton, AB (Canada)

    2010-10-15

    In this article, we show how neutron reflectometry (NR) can provide deep insight into the absorption and desorption properties of commercially promising hydrogen storage materials. NR benefits from the large negative scattering length of hydrogen atoms, which changes the reflectivity curve substantially, so that NR can determine not only the total amount of stored hydrogen but also the hydrogen distribution along the film normal, with nanometer resolution. To use NR, the samples must have smooth surfaces, and the film thickness should range between 10 and 200 nm. We performed a systematic study on thin Mg{sub 1-x}Al{sub x} alloy films (x = 0.2, 0.3, 0.4, 0.67) capped with a Pd catalyst layer. Our NR experiments showed that Mg{sub 0.7}Al{sub 0.3} is the optimum alloy composition with the highest amount of stored hydrogen and the lowest desorption temperature. All the thin films expand by about 20% because of hydrogen absorption, and the hydrogen is stored only in the MgAl layer with no hydrogen content in the Pd layer. (author)

  11. Thin film device applications

    CERN Document Server

    Kaur, Inderjeet

    1983-01-01

    Two-dimensional materials created ab initio by the process of condensation of atoms, molecules, or ions, called thin films, have unique properties significantly different from the corresponding bulk materials as a result of their physical dimensions, geometry, nonequilibrium microstructure, and metallurgy. Further, these characteristic features of thin films can be drasti­ cally modified and tailored to obtain the desired and required physical characteristics. These features form the basis of development of a host of extraordinary active and passive thin film device applications in the last two decades. On the one extreme, these applications are in the submicron dimensions in such areas as very large scale integration (VLSI), Josephson junction quantum interference devices, magnetic bubbles, and integrated optics. On the other extreme, large-area thin films are being used as selective coatings for solar thermal conversion, solar cells for photovoltaic conver­ sion, and protection and passivating layers. Ind...

  12. Challenges in quantitative crystallographic characterization of 3D thin films by ACOM-TEM

    Energy Technology Data Exchange (ETDEWEB)

    Kobler, A. [Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen (Germany); Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen (Germany); Kübel, C., E-mail: christian.kuebel@kit.edu [Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen (Germany); Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen (Germany)

    2017-02-15

    Automated crystal orientation mapping for transmission electron microscopy (ACOM-TEM) has become an easy to use method for the investigation of crystalline materials and complements other TEM methods by adding local crystallographic information over large areas. It fills the gap between high resolution electron microscopy and electron back scatter diffraction in terms of spatial resolution. Recent investigations showed that spot diffraction ACOM-TEM is a quantitative method with respect to sample parameters like grain size, twin density, orientation density and others. It can even be used in combination with in-situ tensile or thermal testing. However, there are limitations of the current method. In this paper we discuss some of the challenges and discuss solutions, e.g. we present an ambiguity filter that reduces the number of pixels with a ‘180° ambiguity problem’. For that an ACOM-TEM tilt series of nanocrystalline Pd thin films with overlapping crystallites was acquired and analyzed. - Highlights: • Tilt series of nanocrystalline Pd thin films. • Quantitative ACOM-TEM data processing, including a rotation map of crystallites. • Noise filter for orientation data: Ambiguity Filter and min. distance filter.

  13. Biomimetic thin film synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Graff, G.L.; Campbell, A.A.; Gordon, N.R.

    1995-05-01

    The purpose of this program is to develop a new process for forming thin film coatings and to demonstrate that the biomimetic thin film technology developed at PNL is useful for industrial applications. In the biomimetic process, mineral deposition from aqueous solution is controlled by organic functional groups attached to the underlying substrate surface. The coatings process is simple, benign, inexpensive, energy efficient, and particularly suited for temperature sensitive substrate materials (such as polymers). In addition, biomimetic thin films can be deposited uniformly on complex shaped and porous substrates providing a unique capability over more traditional line-of-sight methods.

  14. Rare earth metals, rare earth hydrides, and rare earth oxides as thin films

    International Nuclear Information System (INIS)

    Gasgnier, M.

    1980-01-01

    The review deals with pure rare earth materials such as rare earth metals, rare earth hydrides, and rare earth oxides as thin films. Several preparation techniques, control methods, and nature of possible contaminations of thin films are described. These films can now be produced in an extremely well-known state concerning chemical composition, structure and texture. Structural, electric, magnetic, and optical properties of thin films are studied and discussed in comparison with the bulk state. The greatest contamination of metallic rare earth thin films is caused by reaction with hydrogen or with water vapour. The compound with an f.c.c. structure is the dihydride LnH 2 (Ln = lanthanides). The oxygen contamination takes place after annealing at higher temperatures. Then there appears a compound with a b.c.c. structure which is the C-type sesquioxide C-Ln 2 O 3 . At room atmosphere dihydride light rare earth thin films are converted to hydroxide Ln(OH) 3 . For heavy rare earth thin films the oxinitride LnNsub(x)Osub(y) is observed. The LnO-type compound was never seen. The present review tries to set the stage anew for the investigations to be undertaken in the future especially through the new generations of electron microscopes

  15. High temperature superconductor thin films

    International Nuclear Information System (INIS)

    Correra, L.

    1992-01-01

    Interdisciplinary research on superconducting oxides is the main focus of the contributors in this volume. Several aspects of the thin film field from fundamental properties to applications are examined. Interesting results for the Bi system are also reviewed. The 132 papers, including 8 invited, report mainly on the 1-2-3 system, indicating that the Y-Ba-Cu-O and related compounds are still the most intensively studied materials in this field. The volume attests to the significant progress that has been made in this field, as well as reporting on the challenging problems that still remain to be solved. The papers are presented in five chapters, subsequently on properties, film growth and processing, substrates and multilayers, structural characterization, and applications

  16. Preparation and characterization of epitaxially grown unsupported yttria-stabilized zirconia (YSZ) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Götsch, Thomas; Mayr, Lukas [Institute of Physical Chemistry, Universität Innsbruck, A-6020 Innsbruck (Austria); Stöger-Pollach, Michael [University Service Center for Transmission Electron Microscopy (USTEM), Vienna University of Technology, A-1040 Vienna (Austria); Klötzer, Bernhard [Institute of Physical Chemistry, Universität Innsbruck, A-6020 Innsbruck (Austria); Penner, Simon, E-mail: simon.penner@uibk.ac.at [Institute of Physical Chemistry, Universität Innsbruck, A-6020 Innsbruck (Austria)

    2015-03-15

    Highlights: • Preparation of unsupported yttrium-stabilized zirconia films. • Control of ordering and epitaxy by temperature of deposition template. • Adjustment of film defectivity by deposition and post-oxidation temperature. • Reproducibility of target stoichiometry in the deposited films. • Lateral and vertical chemical homogeneity. - Abstract: Epitaxially grown, chemically homogeneous yttria-stabilized zirconia thin films (“YSZ”, 8 mol% Y{sub 2}O{sub 3}) are prepared by direct-current sputtering onto a single-crystalline NaCl(0 0 1) template at substrate temperatures ≥493 K, resulting in unsupported YSZ films after floating off NaCl in water. A combined methodological approach by dedicated (surface science) analytical characterization tools (transmission electron microscopy and diffraction, atomic force microscopy, angle-resolved X-ray photoelectron spectroscopy) reveals that the film grows mainly in a [0 0 1] zone axis and no Y-enrichment in surface or bulk regions takes place. In fact, the Y-content of the sputter target is preserved in the thin films. Analysis of the plasmon region in EEL spectra indicates a defective nature of the as-deposited films, which can be suppressed by post-deposition oxidation at 1073 K. This, however, induces considerable sintering, as deduced from surface morphology measurements by AFM. In due course, the so-prepared unsupported YSZ films might act as well-defined model systems also for technological applications.

  17. Growth of layered superconductor β-PdBi{sub 2} films using molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Denisov, N.V., E-mail: denisov@iacp.dvo.ru [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); Matetskiy, A.V.; Tupkalo, A.V. [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); Zotov, A.V. [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); School of Natural Sciences, Far Eastern Federal University, 690950 Vladivostok (Russian Federation); Department of Electronics, Vladivostok State University of Economics and Service, 690600 Vladivostok (Russian Federation); Saranin, A.A. [Institute of Automation and Control Processes FEB RAS, 5 Radio Street, 690041 Vladivostok (Russian Federation); School of Natural Sciences, Far Eastern Federal University, 690950 Vladivostok (Russian Federation)

    2017-04-15

    Highlights: • Bulk β-PdBi{sub 2} is layered material with advanced properties of topological superconductor. • We present a method for growing β-PdBi{sub 2} films of a desired thickness. • Method utilizes MBE growth of β-PdBi{sub 2}, using Bi(111) film on Si(111) as a template. • Electronic and superconducting properties of the films are similar to those of bulk β-PdBi{sub 2}. - Abstract: Bulk β-PdBi{sub 2} layered material exhibits advanced properties and is supposed to be probable topological superconductor. We present a method based on molecular beam epitaxy that allows us to grow β-PdBi{sub 2} films from a single β-PdBi{sub 2} triple layer up to the dozens of triple layers, using Bi(111) film on Si(111) as a template. The grown films demonstrate structural, electronic and superconducting properties similar to those of bulk β-PdBi{sub 2} crystals. Ability to grow the β-PdBi{sub 2} films of desired thickness opens the promising possibilities to explore fascinating properties of this advanced material.

  18. Thin Film Photovoltaic Partnership Project | Photovoltaic Research | NREL

    Science.gov (United States)

    Thin Film Photovoltaic Partnership Project Thin Film Photovoltaic Partnership Project NREL's Thin Film Photovoltaic (PV) Partnership Project led R&D on emerging thin-film solar technologies in the United States from 1994 to 2009. The project made many advances in thin-film PV technologies that allowed

  19. Thin Film & Deposition Systems (Windows)

    Data.gov (United States)

    Federal Laboratory Consortium — Coating Lab: Contains chambers for growing thin film window coatings. Plasma Applications Coating Lab: Contains chambers for growing thin film window coatings. Solar...

  20. Characterization of organic thin films

    CERN Document Server

    Ulman, Abraham; Evans, Charles A

    2009-01-01

    Thin films based upon organic materials are at the heart of much of the revolution in modern technology, from advanced electronics, to optics to sensors to biomedical engineering. This volume in the Materials Characterization series introduces the major common types of analysis used in characterizing of thin films and the various appropriate characterization technologies for each. Materials such as Langmuir-Blodgett films and self-assembled monolayers are first introduced, followed by analysis of surface properties and the various characterization technologies used for such. Readers will find detailed information on: -Various spectroscopic approaches to characterization of organic thin films, including infrared spectroscopy and Raman spectroscopy -X-Ray diffraction techniques, High Resolution EELS studies, and X-Ray Photoelectron Spectroscopy -Concise Summaries of major characterization technologies for organic thin films, including Auger Electron Spectroscopy, Dynamic Secondary Ion Mass Spectrometry, and Tra...

  1. The influence of oxygen partial pressure on material properties of Eu{sup 3+}-doped Y{sub 2}O{sub 2}S thin film deposited by Pulsed Laser Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A.G., E-mail: aliag@qwa.ufs.ac.za [Department of Physics, University of the Free State (Qwaqwa Campus), Private Bag X13, Phuthaditjhaba 9866 (South Africa); Dejene, B.F. [Department of Physics, University of the Free State (Qwaqwa Campus), Private Bag X13, Phuthaditjhaba 9866 (South Africa); Swart, H.C. [Department of Physics, University of the Free State, P.O. Box 339, Bloemfontein 9300 (South Africa)

    2016-01-01

    Eu{sup 3+}-doping has been of interest to improve the luminescent characteristics of thin-film phosphors. Y{sub 2}O{sub 2}S:Eu{sup 3+} films have been grown on Si (100) substrates by using a Pulsed Laser Deposition technique. The thin films grown under different oxygen deposition pressure conditions have been characterized using structural and luminescent measurements. The X-ray diffraction patterns showed mixed phases of cubic and hexagonal crystal structures. As the oxygen partial pressure increased, the crystallinity of the films improved. Further increase of the O{sub 2} pressure to 140 mtorr reduced the crystallinity of the film. Similarly, both scanning electron microscopy and Atomic Force Microscopy confirmed that an increase in O{sub 2} pressure affected the morphology of the films. The average band gap of the films calculated from diffuse reflectance spectra using the Kubelka–Munk function was about 4.75 eV. The photoluminescence measurements indicated red emission of Y{sub 2}O{sub 2}S:Eu{sup 3+} thin films with the most intense peak appearing at 619 nm, which is assigned to the {sup 5}D{sub 0}–{sup 7}F{sub 2} transition of Eu{sup 3+}. This most intense peak was totally quenched at higher O{sub 2} pressures. This phosphor may be a promising material for applications in the flat panel displays.

  2. Static and dynamic magnetization properties of Y1Ba2Cu3Oz thin films

    International Nuclear Information System (INIS)

    Sekula, S.T.

    1989-08-01

    Magnetization studies were carried out on Y 1 Ba 2 Cu 3 O z (YBCO) thin films that were e-beam evaporated onto circular discs of single-crystal SrTiO 3 with (001) and (110) faces as well as KTaO 3 with (001) faces. The measurements were made using vibrating sample (VSM) and SQUID-based magnetometry with the applied field perpendicular to the substrate surface. Critical current densities J c (H,T) are deduced from the magnetic hysteresis. Flux creep effects are observed over longer periods with the SQUID magnetometer. Analysis of the results of low frequency response of these films to collinear ac and dc magnetic fields are compared with the dc magnetometry results. J c (H,T) is observed to be quite sensitive to the type of epitaxial growth on the various substrates. 16 refs., 10 figs

  3. Dependency of the properties of Sr xBi yTa2O9 thin films on the Sr and Bi stoichiometry

    International Nuclear Information System (INIS)

    Viapiana, Matteo; Schwitters, Michael; Wouters, Dirk J.; Maes, Herman E.; Van der Biest, Omer

    2005-01-01

    In this study the properties of ferroelectric SBT thin films crystallized at 700 deg. C have been investigated as function of the Sr and Bi stoichiometry. A matrix of 130 nm Sr x Bi y Ta 2 O 9 films with 0.7 ≤ x ≤ 1.0 and 2.0 ≤ y ≤ 2.4 has been realized by metal-organic spin-on deposition technique on Pt/IrO 2 /Ir/TiAlN/SiO 2 /Si substrates. Within this composition range, we found that the ferroelectric properties peak into a narrow window of 0.8 ≤ x ≤ 0.9 and y ∼ 2.25 with Pr and Ec of 6.5 μC/cm 2 and 50 kV/cm, respectively (at 2.5 V). Outside this composition window, the Pr decreases while the hysteresis loop becomes slanted. For some Sr/Bi-ratios even no ferroelectricity was achieved. 2Ec-tendencies were seen as function of the x/y-ratios, too. Examination of the microstructure of the films by scanning electron microscopy showed that film grain size increased with decreasing Sr-deficiency and that nucleation increased with increasing Bi-excess. At high Sr-deficiency and low Bi-excess, no complete crystallization of the SBT film occurs. From the film morphology, also different phases can be discriminated. X-ray diffraction analysis showed a strong correlation of the film orientation with the film composition. While our results show a clear correlation of Pr, film grain size and orientation with composition, further investigations are required to clarify the relation of the hysteresis parameters with film orientation

  4. Deposition of epitaxial thin films of Nd1.85Ce0.15CuO4-y by laser ablation

    International Nuclear Information System (INIS)

    Gupta, A.; Koren, G.; Tsuei, C.C.; Segmuller, A.; McGuire, T.R.

    1989-01-01

    Thin films of the electron-doped superconductor Nd 1.85 Ce 0.15 CuO 4-y have been deposited on (100) SrTiO 3 substrates at 780 degree C using the laser ablation technique. The deposited films are very smooth and show epitaxial growth with the c axis normal to the substrate. The transport properties of the films are very sensitive to the concentration of oxygen vacancies. Films deposited and cooled in the presence of 150 mTorr O 2 exhibit localization behavior with no evidence of superconductivity down to 5 K. Superconductivity is observed on vacuum annealing the films in situ after deposition. Films with optimum concentration of oxygen vacancies show a superconducting onset temperature of 21 K and T c (R=0) of 20 K, with a critical current density of 2x10 5 A/cm 2 at 5.5 K in zero magnetic field

  5. Zirconia thin films from aqueous precursors: Processing, microstructural development, and epitaxial growth

    International Nuclear Information System (INIS)

    Miller, K.T.

    1991-01-01

    Thin films of ZrO 2 (Y 2 O 3 ) were prepared from aqueous salt precursors by spin coating. Films were pyrolyzed to produce porous polycrystalline thin films of 5-10 nm grain size. Subsequent microstructural development depends greatly upon the nature of the substrate. Upon randomly oriented sapphire, the films initially sintered to full density; further heat treatment and grain growth causes these films to break into interconnected islands and finally isolated particles. Thermodynamic calculations predict that breakup is energetically favorable when the grain-size film-thickness ratio exceeds a critical value. Upon basal-plane-oriented sapphire, grain growth and breakup prefer the (100) oriented grains, presumably because this orientation is a special interface of low energy. The isolated, oriented grains produced by film breakup act as seeds for the growth of newly deposited material. Upon (100) cubic zirconia, true epitaxial films develop. Epitaxial growth was observed for lattice mismatches up to 1.59%. Growth proceeds from a fine epitaxial layer which is produced during the initial stages of heat treatment, consuming the porous polycrystalline material and producing a dense epitaxial thin film whose misfit is accommodated by a combination of film strain and misfit dislocations

  6. Properties of Pd nanograins in C-Pd composite films obtained by PVD method

    Directory of Open Access Journals (Sweden)

    Kozłowski M.

    2015-09-01

    Full Text Available Properties of palladium nanograins obtained by sedimentation of a soluted C-Pd film prepared by PVD method are presented. These properties were studied using SEM and TEM methods. Dissolved films were prepared by PVD method and after dissolving, they were fractionated to obtain different parts classified with palladium nanograins diameters. Several classes of diameters were determined: below 20 nm, between 20 and 100 nm and above 100 nm. The defects and triple junction were observed. Multishell carbonaceous structures were found in the big and medium size Pd nanograins.

  7. Ba{sub y}Sr{sub 1−y}TiO{sub 3} buffer layers for strain tuning of infinite-layer Sr{sub 1−x}La{sub x}CuO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, Keita, E-mail: sakuma.keita@d.mbox.nagoya-u.ac.jp; Ito, Masataka; He, Yilun; Hajiri, Tetsuya; Ueda, Kenji; Asano, Hidefumi

    2016-08-01

    We report on the precise tuning of lattice strain in an infinite-layer electron-doped high temperature superconductor Sr{sub 1−x}La{sub x}CuO{sub 2} (SLCO; a{sub SLCO} = 0.3949 nm for x = 0.1), which is a perovskite-related oxide, using perovskite BaTiO{sub 3}–SrTiO{sub 3} (BSTO; Ba{sub y}Sr{sub 1−y}TiO{sub 3}) buffer layers. The BSTO buffer layers formed on (001) (La{sub 0.18}Sr{sub 0.82})(Al{sub 0.59}Ta{sub 0.41})O{sub 3} substrates by magnetron sputtering were fully relaxed with high crystalline quality due to high oxygen partial pressure deposition and post annealing at 950 °C. The lattice constants of the BSTO buffer layers could be controlled in the range of 0.3926–0.3973 nm by changing the Ba content (y = 0.2–0.7). These BSTO buffer layers allow coherent growth of SLCO thin films, and a clear dependence of the superconducting transition temperature on the lattice strain was observed. The fabrication of these BSTO/superconductor heterostructures may provide novel devices composed of functional perovskite thin films, in addition to a general approach for the precise control of lattice strain in functional perovskite thin films. - Highlights: • Ba{sub y}Sr{sub 1−y}TiO{sub 3} buffer layers were developed for the strain tuning of perovskite-related oxides. • Strain effect in Sr{sub 1−x}La{sub x}CuO{sub 2} was investigated by using Ba{sub y}Sr{sub 1−y}TiO{sub 3} buffer layers. • Ba{sub y}Sr{sub 1−y}TiO{sub 3} buffer layers can be used to tune the strain in other perovskite oxides.

  8. Deposition, structure, and properties of cermet thin films composed of Ag and Y-stabilized zirconia

    International Nuclear Information System (INIS)

    Wang, L.S.; Barnett, S.A.

    1992-01-01

    This paper reports that Ag 1-x [(Y 2 O 3 ) 0.1 (ZrO 2 ) 0.9 ] x (YSZ) cermet thin films have been deposited by reactive magnetron cosputtering from Ag and Zr/Y targets in Ar-O 2 mixtures. The deposition conditions were such that the YSZ component in the films was fully oxidized. The film densities varied from ∼75% to >85% as the total pressure was decreased from 20 to 5 mTorr. Film resistivities ρ varied with Ag volume fraction f Ag from 5 x 10 -6 Ω-cm to >10 9 Ω-cm. For f Ag Ag . For f Ag > 0.4, ρ decreased more gradually with increasing f Ag . ρ in annealed films ranged from 4 x 10 -4 Ω-cm for f Ag = 0.4 to 5 x 10 -6 Ω-cm for pure Ag. Long term (>100 h) annealing at ≥700 degrees C resulted in a gradual increase in cermet resistivity due to Ag evaporation and Ag segregation to surface islands. Both decomposition mechanisms were effectively suppressed due to Ag evaporation and Ag segregation to surface islands. Both decomposition mechanisms were effectively suppressed at up to 750 degrees C by depositing a 1 μm thick porous perovskite cap layer on the cermet. Complex impedance spectroscopy measurements in air of cermet electrodes on YSZ electrolytes gave interfacial resistances that were a factor of ∼6 lower than those of pure AG electrodes, e.g., 1.4 Ω-cm 2 at 750 degrees C. Ag-YSZ cermets thus have potential as high-conductivity, low-overpotential air electrode materials for solid-oxide electrochemical devices operating at temperatures ≤750 degrees C

  9. Solid-state synthesis, structural and magnetic properties of CoPd films

    Science.gov (United States)

    Myagkov, V. G.; Bykova, L. E.; Zhigalov, V. S.; Tambasov, I. A.; Bondarenko, G. N.; Matsynin, A. A.; Rybakova, A. N.

    2015-05-01

    The results of the investigation of the structural and magnetic properties of CoPd films with equiatomic composition have been presented. The films have been synthesized by vacuum annealing of polycrystalline Pd/Co and epitaxial Pd/α-Co(110) and Pd/β-Co(001) bilayer samples. It has been shown that, for all samples, the annealing to 400°C does not lead to the mixing of layers and the formation of compounds. A further increase in the annealing temperature results in the formation of a disordered CoPd phase at the Pd/Co interface, which is fully completed after annealing at 650°C. The epitaxial relationships between the disordered CoPd phase and the MgO(001) substrate are determined as follows: CoPd(110)<

  10. Study of working pressure on the optoelectrical properties of Al–Y codoped ZnO thin-film deposited using DC magnetron sputtering for solar cell applications

    International Nuclear Information System (INIS)

    Hsu, Feng-Hao; Wang, Na-Fu; Tsai, Yu-Zen; Chuang, Ming-Chieh; Cheng, Yu-Song; Houng, Mau-Phon

    2013-01-01

    Low cost transparent conductive Al–Y codoped ZnO (AZOY) thin-films were prepared on a glass substrate using a DC magnetron sputtering technique with various working pressures in the range of 5–13 mTorr. The relationship among the structural, electrical, and optical properties of sputtered AZOY films was studied as a function of working pressure. The XRD measurements show that the crystallinity of the films degraded as the working gas pressure increased. The AZOY thin-film deposited at a working pressure of 5 mTorr exhibited the lowest electrical resistivity of 4.3 × 10 −4 Ω cm, carrier mobility of 30 cm 2 /V s, highest carrier concentration of 4.9 × 10 20 cm −3 , and high transmittance in the visible region (400–800 nm) of approximately 90%. Compared with Al doped ZnO (AZO) thin-films deposited using DC or RF magnetron sputtering methods, a high carrier mobility was observed in our AZOY thin-films. This result can be used to effectively decrease the absorption of near infrared-rays in solar cell applications. The mechanisms are attributed to the larger transition energy between Ar atoms and sputtering particles and the size compensation of the dopants. Finally, the optimal quality AZOY thin-film was used as an emitter layer (or window layer) to form AZOY/n-Si heterojunction solar cells, which exhibited a stable conversion efficiency (η) of 9.4% under an AM1.5 illumination condition.

  11. Self-Limited Growth in Pentacene Thin Films.

    Science.gov (United States)

    Pachmajer, Stefan; Jones, Andrew O F; Truger, Magdalena; Röthel, Christian; Salzmann, Ingo; Werzer, Oliver; Resel, Roland

    2017-04-05

    Pentacene is one of the most studied organic semiconducting materials. While many aspects of the film formation have already been identified in very thin films, this study provides new insight into the transition from the metastable thin-film phase to bulk phase polymorphs. This study focuses on the growth behavior of pentacene within thin films as a function of film thickness ranging from 20 to 300 nm. By employing various X-ray diffraction methods, combined with supporting atomic force microscopy investigations, one crystalline orientation for the thin-film phase is observed, while three differently tilted bulk phase orientations are found. First, bulk phase crystallites grow with their 00L planes parallel to the substrate surface; second, however, crystallites tilted by 0.75° with respect to the substrate are found, which clearly dominate the former in ratio; third, a different bulk phase polymorph with crystallites tilted by 21° is found. The transition from the thin-film phase to the bulk phase is rationalized by the nucleation of the latter at crystal facets of the thin-film-phase crystallites. This leads to a self-limiting growth of the thin-film phase and explains the thickness-dependent phase behavior observed in pentacene thin films, showing that a large amount of material is present in the bulk phase much earlier during the film growth than previously thought.

  12. Development of CIGS2 thin film solar cells

    International Nuclear Information System (INIS)

    Dhere, Neelkanth G.; Gade, Vivek S.; Kadam, Ankur A.; Jahagirdar, Anant H.; Kulkarni, Sachin S.; Bet, Sachin M.

    2005-01-01

    Research and development of CuIn 1-x Ga x Se 2-y S y (CIGSS) thin-film solar cells on ultralightweight flexible metallic foil substrates is being carried out at FSEC PV Materials Lab for space applications. Earlier, the substrate size was limited to 3 cm x 2.5 cm. Large-area sputtering systems and scrubber for hydrogen selenide and sulfide have been designed and constructed for preparation of CIGSS thin-films on large (15 cm x 10 cm) substrates. A selenization/sulfurization furnace donated by Shell (formerly Siemens) Solar has also been refurbished and upgraded. The sputtering target assembly design was modified for proper clamping of targets and effective cooling. A new design of the magnetic assembly for large-area magnetron sputtering sources was implemented so as to achieve uniform deposition on large area. Lightweight stainless steel foil and ultralightweight titanium foil substrates were utilized to increase the specific power of solar cells. Sol-gel derived SiO 2 layers were coated on titanium foil by dip coating method. Deposition parameters for the preparation of molybdenum back contact layers were optimized so as to minimize the residual stress as well as reaction with H 2 S. Presently large (15 cm x 10 cm) CuIn 1-x Ga x S 2 (CIGS2) thin film solar cells are being prepared on Mo-coated titanium and stainless steel foil by sulfurization of CuGa/In metallic precursors in diluted Ar:H 2 S(4%). Heterojunction partner CdS layers are deposited by chemical bath deposition. The regeneration sequence of ZnO/ZnO:Al targets was optimized for obtaining consistently good-quality, transparent and conducting ZnO/ZnO:Al bilayer by RF magnetron-sputter deposition. Excellent facilities at FSEC PV Materials Lab are one of its kinds and could serve as a nucleus of a small pilot plant for CIGSS thin film solar cell fabrication

  13. Cation disorder and gas phase equilibrium in an YBa 2Cu 3O 7- x superconducting thin film

    Science.gov (United States)

    Shin, Dong Chan; Ki Park, Yong; Park, Jong-Chul; Kang, Suk-Joong L.; Yong Yoon, Duk

    1997-02-01

    YBa 2Cu 3O 7- x superconducting thin films have been grown by in situ off-axis rf sputtering with varying oxygen pressure, Ba/Y ratio in a target, and deposition temperature. With decreasing oxygen pressure, increasing Ba/Y ratio, increasing deposition temperature, the critical temperature of the thin films decreased and the c-axis length increased. The property change of films with the variation of deposition variables has been explained by a gas phase equilibrium of the oxidation reaction of Ba and Y. Applying Le Chatelier's principle to the oxidation reaction, we were able to predict the relation of deposition variables and the resultant properties of thin films; the prediction was in good agreement with the experimental results. From the relation between the three deposition variables and gas phase equilibrium, a 3-dimensional processing diagram was introduced. This diagram has shown that the optimum deposition condition of YBa 2Cu 3O 7- x thin films is not a fixed point but can be varied. The gas phase equilibrium can also be applied to the explanation of previous results that good quality films were obtained at low deposition temperature using active species, such as O, O 3, and O 2+.

  14. Structural and photocarrier radiometric characterization of Cu{sub x}(CdTe){sub y}O{sub z} thin films growth by reactive sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez-Hernandez, R., E-mail: ruvel2@yahoo.com.m [Division de Investigacion y Posgrado, Facultad de Ingenieria, Universidad Autonoma de Queretaro, Cerro de las Campanas S/N, Queretaro, Qro., Mexico, C.P. 76010 (Mexico); Rojas-Rodriguez, I. [Universidad Tecnologica de Queretaro, Av. Pie de la Cuesta S/N, Sn. Pedrito Penuelas, Queretaro, Qro. Mexico (Mexico); Carmona-Rodriguez, J.; Jimenez-Sandoval, S. [Centro de Investigacion y de Estudios Avanzados del IPN, Unidad Queretaro, Apartado Postal 1-798, Queretaro, Qro., Mexico C.P.76001 (Mexico); Rodriguez-Garcia, M.E. [Departamento de Nanotecnologia, Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Campus Juriqulla, Apartado Postal 1-1010, Queretaro, Qro. Mexico (Mexico)

    2011-01-31

    This research presents a structural and photocarrier radiometric (PCR) characterization of Cu{sub x}(CdTe){sub y}O{sub z} thin films grown using reactive radiofrequency co-sputtering. Electronic distribution induced by variations in dopant concentration as a function of the position was studied using photocarrier radiometric images. Optical and structural characterization of these thin films was carried out by using micro Raman spectroscopy and X-ray diffraction. Due to its nondestructive and noncontact characteristics, the PCR is an excellent technique that permits one to obtain details of lateral electronic distribution across the sample. It was found that Cu target power influences the electronic distribution and produces different phases such as Cu{sub 2}Te and CdO.

  15. Thin copper oxide films prepared by ion beam sputtering with subsequent thermal oxidation: Application in chemiresistors

    Energy Technology Data Exchange (ETDEWEB)

    Horak, P., E-mail: phorak@ujf.cas.cz [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 250 68 Řež (Czech Republic); Bejsovec, V.; Vacik, J.; Lavrentiev, V. [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, 250 68 Řež (Czech Republic); Vrnata, M. [Department of Physics and Measurements, The University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague 6 (Czech Republic); Kormunda, M. [Department of Physics, Jan Evangelista Purkyně University in Ústí nad Labem, České mládeže 8, 400 96 Ústí nad Labem (Czech Republic); Danis, S. [Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University in Prague, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic)

    2016-12-15

    Highlights: • A rapid oxidation process of thin copper films. • Sheet resistance up to 10{sup 9} Ω/◊. • Mixed oxide phase at 200 °C with significant hydroxide presence. • Gas sensing response to 1000 ppm of hydrogen and methanol vapours. • Increased sensitivity with Pd and Au catalyst to hydrogen and methanol, respectively. - Abstract: Copper oxide films were prepared by thermal oxidation of thin Cu films deposited on substrates by ion beam sputtering. The subsequent oxidation was achieved in the temperature range of 200 °C–600 °C with time of treatment from 1 to 7 h (with a 1-h step) in a furnace open to air. At temperatures 250 °C–600 °C, the dominant phase formed was CuO, while at 200 °C mainly the Cu{sub 2}O phase was identified. However, the oxidation at 200 °C led to a more complicated composition − in the depth Cu{sub 2}O phase was observed, though in the near-surface layer the CuO dominant phase was found with a significant presence of Cu(OH){sub 2}. A limited amount of Cu{sub 2}O was also found in samples annealed at 600 °C. The sheet resistance R{sub S} of the as-deposited Cu sample was 2.22 Ω/□, after gradual annealing R{sub S} was measured in the range 2.64 MΩ/□–2.45 GΩ/□. The highest R{sub S} values were obtained after annealing at 300 °C and 350 °C, respectively. Oxygen depth distribution was studied using the {sup 16}O(α,α) nuclear reaction with the resonance at energy 3032 keV. It was confirmed that the higher oxidation degree of copper is located in the near-surface region. Preliminary tests of the copper oxide films as an active layer of a chemiresistor were also performed. Hydrogen and methanol vapours, with a concentration of 1000 ppm, were detected by the sensor at an operating temperature of 300 °C and 350 °C, respectively. The response of the sensors, pointed at the p-type conductivity, was improved by the addition of thin Pd or Au catalytic films to the oxidic film surface. Pd-covered films showed

  16. Organic thin film transistors using a liquid crystalline palladium phthalocyanine as active layer

    Science.gov (United States)

    Jiménez Tejada, Juan A.; Lopez-Varo, Pilar; Chaure, Nandu B.; Chambrier, Isabelle; Cammidge, Andrew N.; Cook, Michael J.; Jafari-Fini, Ali; Ray, Asim K.

    2018-03-01

    70 nm thick solution-processed films of a palladium phthalocyanine (PdPc6) derivative bearing eight hexyl (-C6H13) chains at non-peripheral positions have been employed as active layers in the fabrication of bottom-gate bottom-contact organic thin film transistors (OTFTs) deposited on highly doped p-type Si (110) substrates with SiO2 gate dielectric. The dependence of the transistor electrical performance upon the mesophase behavior of the PdPc6 films has been investigated by measuring the output and transfer characteristics of the OTFT having its active layer ex situ vacuum annealed at temperatures between 500 °C and 200 °C. A clear correlation between the annealing temperature and the threshold voltage and carrier mobility of the transistors, and the transition temperatures extracted from the differential scanning calorimetric curves for bulk materials has been established. This direct relation has been obtained by means of a compact electrical model in which the contact effects are taken into account. The precise determination of the contact-voltage drain-current curves allows for obtaining such a relation.

  17. Fracture force analysis at the interface of Pd and SrTiO3

    International Nuclear Information System (INIS)

    Nazarpour, S.; Zamani, C.; Cirera, A.

    2009-01-01

    The objective of this work is to develop an experimental indentation based method to determine the fracture force at the interface of Pd thin films and SrTiO 3 perovskite substrate. This paper reports on the results obtained for indentation into Pd thin films which were deposited in various thicknesses from 20 nm to 200 nm under vacuum and 300 deg. C substrate temperature by an electron beam physical vapor deposition. Initially, the relation between grain size, elastic module and hardness was considered as a function of film thickness. Thereafter, in developing new method, oscillating indentation was performed with different applied forces and oscillating times in order to measure the critical fracture force in each thickness. The effect of oscillating time on plastically deformed regions surrounding an indentation was schematically explained in conjunction with variation of oscillating time to determine the interfacial properties of the Pd thin film. Furthermore, the accuracy of the critical fracture force was ensured by applied force versus piling up height plot. The method is validated experimentally for the soft thin films over the hard substrate. However, further study would be essential to measure the film adhesion by means of fracture force at the interface

  18. Thin films for precision optics

    International Nuclear Information System (INIS)

    Araujo, J.F.; Maurici, N.; Castro, J.C. de

    1983-01-01

    The technology of producing dielectric and/or metallic thin films for high precision optical components is discussed. Computer programs were developed in order to calculate and register, graphically, reflectance and transmittance spectra of multi-layer films. The technology of vacuum evaporation of several materials was implemented in our thin-films laboratory; various films for optics were then developed. The possibility of first calculate film characteristics and then produce the film is of great advantage since it reduces the time required to produce a new type of film and also reduces the cost of the project. (C.L.B.) [pt

  19. Analysis of Hard Thin Film Coating

    Science.gov (United States)

    Shen, Dashen

    1998-01-01

    MSFC is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using electron cyclotron resonance chemical vapor deposition (ECRCVD) to deposit hard thin film an stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  20. Thin-film solar cell

    NARCIS (Netherlands)

    Metselaar, J.W.; Kuznetsov, V.I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with

  1. Diffusion of hydrogen in Pd-(Ce, Y, B) alloys

    International Nuclear Information System (INIS)

    Sakamoto, Y.; Kaneko, H.; Tsukahara, T.; Hirata, S.

    1987-01-01

    The study has been carried out to determine the diffusivity of hydrogen in Pd alloys containing Ce, Y and B in atom fractions up to θ/sub μ/ = 0.1 by an electrochemical permeation method, and to examine the lattice dilation effect on the diffusivity in these alloys. Ce and Y have been chosen because the solid solubility of both in Pd is about 13 at% in spite of the very large atomic size-factor difference between Pd and the solutes, and thus the expansion of the Pd lattice by Ce and Y is much larger than by Ag. Furthermore, it is of interest that the partial enthalpy of the dissolved hydrogen at infinite dilution ΔH 0 /sub H/ for Ce and Y is much smaller than for Pd. On the other hand, B atom also expands the Pd lattice in a way similar to Y, and sometimes B atoms may dissolve in the octahedral interstitial sites in the same way as hydrogen atoms

  2. Modeling on the cathodoluminescence properties of the thin film phosphors for field emission flat panel displays

    Science.gov (United States)

    Cho, Kyu-Gong

    2000-12-01

    In order to investigate the effects of the film roughness with the fundamental luminance parameters of thin film phosphors, Y2 O3:Eu films with different thickness and roughness values were deposited on various substrate materials using a pulsed laser deposition technique under a controlled experimental procedure. The best luminous efficiency was observed from the Y2O3:Eu films on quartz substrates due to the smaller refractive index and low absorption characteristics of the quartz substrates which produce a larger amount of total internal reflection in the film and low loss of light intensity during the multiple internal reflections. The trapped light inside the film can escape the film more easily due to rougher film surface. The better epitaxial growth capability of the Y2O 3:Eu films with the LaAlO3 substrates resulted in higher luminous efficiency in the small surface roughness region. Higher luminous efficiency was observed in reflection mode than in transmission mode due to the contribution of diffusely scattered light at the air-film interface. A new theoretical model based on the diffraction scattering theory of light, the steady-state diffusion condition of carriers and the Kanaya-Okayama's electron- beam-solid interaction range satisfactorily explains all the experimental results mentioned above. The model also provides solid understandings on the cathodoluminescence properties of the thin film phosphors with the effects of other single or multiple luminance parameters. The parameters encountered for the model are surface roughness, electron-beam-solid interaction, surface recombination rate of carriers, charge carrier diffusion properties, multiple scattering at the interfaces (air- film, film-substrate, and substrate-air), optical properties of the material, film thickness, and substrate type. The model supplies a general solution in both qualitative and quantitative ways to estimate the luminance properties of the thin film phosphors and it can be

  3. Thin-Film Material Science and Processing | Materials Science | NREL

    Science.gov (United States)

    Thin-Film Material Science and Processing Thin-Film Material Science and Processing Photo of a , a prime example of this research is thin-film photovoltaics (PV). Thin films are important because cadmium telluride thin film, showing from top to bottom: glass, transparent conducting oxide (thin layer

  4. Nanocrystal thin film fabrication methods and apparatus

    Science.gov (United States)

    Kagan, Cherie R.; Kim, David K.; Choi, Ji-Hyuk; Lai, Yuming

    2018-01-09

    Nanocrystal thin film devices and methods for fabricating nanocrystal thin film devices are disclosed. The nanocrystal thin films are diffused with a dopant such as Indium, Potassium, Tin, etc. to reduce surface states. The thin film devices may be exposed to air during a portion of the fabrication. This enables fabrication of nanocrystal-based devices using a wider range of techniques such as photolithography and photolithographic patterning in an air environment.

  5. Electrical evaluation of crack generation in SiN{sub x} and SiO{sub x}N{sub y} thin-film encapsulation layers for OLED displays

    Energy Technology Data Exchange (ETDEWEB)

    Park, Eun Kil [Department of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Display Research Center, Samsung Display Co., Ltd., Yongin-City, Gyeonggi-Do 446-711 (Korea, Republic of); Kim, Sungmin [Department of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Heo, Jaeyeong, E-mail: jheo@jnu.ac.kr [Department of Materials Science and Engineering, and the Optoelectronics Convergence Research Center, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Kim, Hyeong Joon, E-mail: thinfilm@snu.ac.kr [Department of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of)

    2016-05-01

    Highlights: • Crack generation in encapsulation layers were detected by leakage current. • Atomic concentration of SiO{sub x}N{sub y} films affected the bending reliability. • The shapes of the crack tips were affected by the stoichiometry of the SiO{sub x}N{sub y} films. - Abstract: By measuring leakage current density, we detected crack generation in silicon nitride (SiN{sub x}) and silicon oxynitride (SiO{sub x}N{sub y}) thin-film encapsulation layers, and correlated with the films’ water vapor permeability characteristics. After repeated bending cycles, both the changes in water vapor transmission rate and leakage current density were directly proportional to the crack density. Thick SiN{sub x} films had better water vapor barrier characteristics in their pristine state, but cyclic loading led to fast failure. Varying the atomic concentration of the SiO{sub x}N{sub y} films affected their bending reliability. We attribute these differences to changes in the shape of the crack tip as the oxygen content varies.

  6. Epitaxial growth of indium oxyfluoride thin films by reactive pulsed laser deposition: Structural change induced by fluorine insertion into vacancy sites in bixbyite structure

    International Nuclear Information System (INIS)

    Okazaki, Sohei; Hirose, Yasushi; Nakao, Shoichiro; Yang, Chang; Harayama, Isao; Sekiba, Daiichiro; Hasegawa, Tetsuya

    2014-01-01

    InO x F y thin films were epitaxially grown on Y-stabilized ZrO 2 (111) substrates by reactive pulsed laser deposition. By changing the substrate temperature (T S ), we were able to control the fluorine content of the film. Phase-pure epitaxial thin films with bixbyite-like ordering in the anion-site occupancy were obtained at high T S (≥ 240 °C), where fluorine was inserted into the vacancy sites in the bixbyite lattice up to y / (x + y) ∼ 0.3. By decreasing T S , y / (x + y) increased and the bixbyite-like ordering disappeared; simultaneously, fluorine-rich and fluorine-poor subphases emerged. The films grown at T S ≤ 150 °C were amorphous and exhibited higher optical absorbance and electrical resistivity than the epitaxial films. - Highlights: • InO x F y epitaxial thin films with high fluorine concentration were grown on Y:ZrO 2 . • Anion composition and structural, optical and transport properties were studied. • Fluorine is topotactically inserted into the oxygen vacancy sites in bixbyite cell. • Bixbyite-like ordering of the anion site occupancy was conserved in y / (x + y) ≤ ∼ 0.3

  7. A systematic neutron reflectometry study on hydrogen absorption in thin Mg{sub 1-x}Al{sub x} alloy films

    Energy Technology Data Exchange (ETDEWEB)

    Fritzsche, H.; Poirier, E. [National Research Council of Canada, Chalk River, ON (Canada). Canadian Neutron Beam Centre; Haagsma, J.; Ophus, C.; Luber, E.; Harrower, C.T.; Mitlin, D. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering; National Research Council of Canada, Edmonton, AB (Canada). National Inst. for Nanotechnology

    2010-10-15

    Various methods for storing hydrogen have been examined in an effort to find ways to store hydrogen in increasingly smaller volumes with decreasing weight of the whole hydrogen storage system. Metal hydrides, in which hydrogen is chemically bound to a metal atom, are considered to be very promising candidates for hydrogen storage because they have high gravimetric and volumetric storage capacities. This study investigated the effect of different magnesium (Mg) and aluminium (Al) ratios on the absorption and desorption properties of thin films. Neutron reflectometry (NR) was used in this study to better understand the absorption and desorption properties of commercially promising hydrogen storage materials. The large negative scattering length of hydrogen atoms changes the reflectivity curve substantially, so that NR can determine the total amount of stored hydrogen as well as the hydrogen distribution along the film normal, with nanometer resolution. In order to use NR, the samples must have smooth surfaces, and the film thickness should range between 10 and 200 nm. Thin Mg{sub 1-x}Al{sub x} alloy films (x = 0.2, 0.3, 0.4, 0.67) capped with a palladium (Pd) catalyst layer were used in this study. The NR experiments revealed that Mg{sub 0.7}Al{sub 0.3} is the optimum composition for this binary alloy system, with the highest amount of stored hydrogen and the lowest desorption temperature. All the thin films expanded by approximately 20 percent due to hydrogen absorption. The hydrogen was stored only in the MgAl layer without any hydrogen in the Pd layer. It was concluded that NR can be used to effectively determine the hydrogen profile in thin MgAl films. 29 refs., 5 figs.

  8. Magneto-Optical Thin Films for On-Chip Monolithic Integration of Non-Reciprocal Photonic Devices

    Directory of Open Access Journals (Sweden)

    Mehmet Cengiz Onbasli

    2013-11-01

    Full Text Available Achieving monolithic integration of nonreciprocal photonic devices on semiconductor substrates has been long sought by the photonics research society. One way to achieve this goal is to deposit high quality magneto-optical oxide thin films on a semiconductor substrate. In this paper, we review our recent research activity on magneto-optical oxide thin films toward the goal of monolithic integration of nonreciprocal photonic devices on silicon. We demonstrate high Faraday rotation at telecommunication wavelengths in several novel magnetooptical oxide thin films including Co substituted CeO2−δ, Co- or Fe-substituted SrTiO3−δ, as well as polycrystalline garnets on silicon. Figures of merit of 3~4 deg/dB and 21 deg/dB are achieved in epitaxial Sr(Ti0.2Ga0.4Fe0.4O3−δ and polycrystalline (CeY2Fe5O12 films, respectively. We also demonstrate an optical isolator on silicon, based on a racetrack resonator using polycrystalline (CeY2Fe5O12/silicon strip-loaded waveguides. Our work demonstrates that physical vapor deposited magneto-optical oxide thin films on silicon can achieve high Faraday rotation, low optical loss and high magneto-optical figure of merit, therefore enabling novel high-performance non-reciprocal photonic devices monolithically integrated on semiconductor substrates.

  9. Hydrogen Absorption in Metal Thin Films and Heterostructures Investigated in Situ with Neutron and X-ray Scattering

    Directory of Open Access Journals (Sweden)

    Sara J. Callori

    2016-05-01

    Full Text Available Due to hydrogen possessing a relatively large neutron scattering length, hydrogen absorption and desorption behaviors in metal thin films can straightforwardly be investigated by neutron reflectometry. However, to further elucidate the chemical structure of the hydrogen absorbing materials, complementary techniques such as high resolution X-ray reflectometry and diffraction remain important too. Examples of work on such systems include Nb- and Pd-based multilayers, where Nb and Pd both have strong affinity to hydrogen. W/Nb and Fe/Nb multilayers were measured in situ with unpolarized and polarized neutron reflectometry under hydrogen gas charging conditions. The gas-pressure/hydrogen-concentration dependence, the hydrogen-induced macroscopic film swelling as well as the increase in crystal lattice plane distances of the films were determined. Ferromagnetic-Co/Pd multilayers were studied with polarized neutron reflectometry and in situ ferromagnetic resonance measurements to understand the effect of hydrogen absorption on the magnetic properties of the system. This electronic effect enables a novel approach for hydrogen sensing using a magnetic readout scheme.

  10. Polar phase transitions in heteroepitaxial stabilized La0.5Y0.5AlO3 thin films

    Science.gov (United States)

    Liu, Shenghua; Zhang, Chunfeng; Zhu, Mengya; He, Qian; Chakhalian, Jak; Liu, Xiaoran; Borisevich, Albina; Wang, Xiaoyong; Xiao, Min

    2017-10-01

    We report on the fabrication of epitaxial La0.5Y0.5AlO3 ultrathin films on (001) LaAlO3 substrates. Structural characterizations by scanning transmission electron microscopy and x-ray diffraction confirm the high quality of the film with a - b + c - AlO6 octahedral tilt pattern. Unlike either of the nonpolar parent compound, LaAlO3 and YAlO3, second harmonic generation measurements on the thin films suggest a nonpolar-polar phase transition at T c near 500 K, and a polar-polar phase transition at T a near 160 K. By fitting the angular dependence of the second harmonic intensities, we further propose that the two polar structures can be assigned to the Pmc2 1 and Pmn2 1 space group, while the high temperature nonpolar structure belongs to the Pbnm space group.

  11. Synthesis and fabrication of Y{sub 2}O{sub 3}:Tb{sup 3+} and Y{sub 2}O{sub 3}:Eu{sup 3+} thin films for electroluminescent applications: Optical and structural characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Alarcón-Flores, G., E-mail: alar_fbeto@yahoo.com [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, IPN, Legaría 694, Irrigación, C.P. 11500, México D.F. (Mexico); García-Hipólito, M. [Instituto de Investigaciones en Materiales, UNAM, Apdo. Postal 70-360, Delegación Coyoacán, C.P. 04150, México D.F. (Mexico); Aguilar-Frutis, M. [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, IPN, Legaría 694, Irrigación, C.P. 11500, México D.F. (Mexico); Carmona-Téllez, S. [Instituto de Física, UNAM, Coyoacán, C.P. 04150, México D.F. (Mexico); Martinez-Martinez, R. [Universidad Tecnológica de la Mixteca, Carretera Acatlima Km 2.5, Huajuapan de León Oaxaca, C.P. 69000, México (Mexico); Campos-Arias, M.P. [Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, IPN, Legaría 694, Irrigación, C.P. 11500, México D.F. (Mexico); Zaleta-Alejandre, E. [Universidad Autónoma del Estado de Hidalgo-Escuela Superior de Apan, Carretera Apan-Calpulalpan Km. 8, C.P. 43920, Apan, Hidalgo (Mexico); and others

    2015-01-15

    Terbium, europium and yttrium β diketonates have been synthesized from acetylacetone and inorganic metal salts and used as precursors for the deposition of Tb{sup 3+} or Eu{sup 3+} doped Y{sub 2}O{sub 3} polycrystalline films by the ultrasonic spray pyrolysis technique. The films were deposited on c-Si substrates at temperatures in the 400–550 °C range. The optical and structural characterization of these films as a function of substrate temperature and Tb{sup 3+} and Eu{sup 3+} concentration was carried out by means of photoluminescence (PL), cathodoluminescence (CL), infrared (IR), ellipsometry, and UV–visible spectroscopy and atomic force microscopy (AFM), energy dispersive spectroscopy (EDS) and X ray diffraction (XRD) measurements respectively. The PL intensity from these films was found to depend on deposition temperature. Films deposited above 450 °C exhibited the characteristic PL peaks associated with either Tb{sup 3+} or Eu{sup 3+} intra electronic energy levels transitions. The most intense PL emission was found for dopant concentration of 10 at% for Tb{sup 3+} and at 8 at% for Eu{sup 3+} ions into precursor solution. In both cases concentration quenching of the PL emission was observed for concentrations above these values. The films had a refractive index (1.81), low average surface roughness (∼62 Å) and a UV–Vis. transmission of the order of 90 %T. - Highlights: • Terbium, europium and yttrium β diketonates have been synthesized. • Luminescent thin films of Y{sub 2}O{sub 3}:Tb{sup 3+} and Y{sub 2}O{sub 3}:Eu{sup 3+} were obtained. • Optical and structural characteristics of these thin films are presented. • The films had a refractive index (1.81) and low average surface roughness (∼62 Å)

  12. Characterization of photoluminescent (Y{sub 1{minus}x}Eu{sub x}){sub 2}O{sub 3} thin-films prepared by metallorganic chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    McKittrick, J.; Bacalski, C.F.; Hirata, G.A. [Univ. of California, San Diego, La Jolla, CA (United States); Hubbard, K.M.; Pattillo, S.G.; Salazar, K.V.; Trkula, M. [Los Alamos National Lab., NM (United States). Materials Science and Technology Div.

    1998-12-01

    Europium doped yttrium oxide, (Y{sub 1{minus}x}Eu{sub x}){sub 2}O{sub 3}, thin-films were deposited on silicon and sapphire substrates by metallorganic chemical vapor deposition (MOCVD). The films were grown in a MOCVD chamber reacting yttrium and europium tris(2,2,6,6-tetramethyl-3,5,-heptanedionates) precursors in an oxygen atmosphere at low pressures (5 Torr) and low substrate temperatures (500--700 C). The films deposited at 500 C were flat and composed of nanocrystalline regions of cubic Y{sub 2}O{sub 3}, grown in a textured [100] or [110] orientation to the substrate surface. Films deposited at 600 C developed from the flat, nanocrystalline morphology into a plate-like growth morphology oriented in the [111] with increasing deposition time. Monoclinic Y{sub 2}O{sub 3}:Eu{sup 3+} was observed in x-ray diffraction for deposition temperatures {ge}600 C on both (111) Si and (001) sapphire substrates. This was also confirmed by the photoluminescent emission spectra.

  13. Study of working pressure on the optoelectrical properties of Al–Y codoped ZnO thin-film deposited using DC magnetron sputtering for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Feng-Hao [Institute of Microelectronics, Department of Electrical Engineering, National Cheng Kung University, No. 1, Dasyue Road, East District, Tainan City 701, Taiwan (China); Wang, Na-Fu; Tsai, Yu-Zen; Chuang, Ming-Chieh; Cheng, Yu-Song [Department of Electronic Engineering, Cheng Shiu University, 840 Chengcing Road, Niaosong District, Kaohsiung City 833, Taiwan (China); Houng, Mau-Phon, E-mail: mphoung@eembox.ncku.edu.tw [Institute of Microelectronics, Department of Electrical Engineering, National Cheng Kung University, No. 1, Dasyue Road, East District, Tainan City 701, Taiwan (China)

    2013-09-01

    Low cost transparent conductive Al–Y codoped ZnO (AZOY) thin-films were prepared on a glass substrate using a DC magnetron sputtering technique with various working pressures in the range of 5–13 mTorr. The relationship among the structural, electrical, and optical properties of sputtered AZOY films was studied as a function of working pressure. The XRD measurements show that the crystallinity of the films degraded as the working gas pressure increased. The AZOY thin-film deposited at a working pressure of 5 mTorr exhibited the lowest electrical resistivity of 4.3 × 10{sup −4} Ω cm, carrier mobility of 30 cm{sup 2}/V s, highest carrier concentration of 4.9 × 10{sup 20} cm{sup −3}, and high transmittance in the visible region (400–800 nm) of approximately 90%. Compared with Al doped ZnO (AZO) thin-films deposited using DC or RF magnetron sputtering methods, a high carrier mobility was observed in our AZOY thin-films. This result can be used to effectively decrease the absorption of near infrared-rays in solar cell applications. The mechanisms are attributed to the larger transition energy between Ar atoms and sputtering particles and the size compensation of the dopants. Finally, the optimal quality AZOY thin-film was used as an emitter layer (or window layer) to form AZOY/n-Si heterojunction solar cells, which exhibited a stable conversion efficiency (η) of 9.4% under an AM1.5 illumination condition.

  14. The complex ac susceptibility of superconducting Y-Ba-CuO thin film and bulk samples

    International Nuclear Information System (INIS)

    Lobotka, P.; Goemoery, F.

    1988-01-01

    Complex ac susceptibility measurements as function of temperature on Y-Ba-CuO superconductors are reported. A strong dependence of the susceptibility curves on the ac field magnitude and little influence of the superimposed dc field are observed on both, thin film and bulk samples. The susceptibilities of these materials are frequency independent in the range 30 to 7200 Hz what demonstrates the negligible role of eddy currents. A second peak in the imaginary part of susceptibility is observed in the bulk sample at higher levels of ac field. This implies the existence of another component in the sample with higher T c and lower losses. (author)

  15. Critical issues in enhancing brightness in thin film phosphors for flat-panel display applications

    International Nuclear Information System (INIS)

    Singh, R.K.; Chen, Z.; Kumar, D.; Cho, K.; Ollinger, M.

    2002-01-01

    Thin film phosphors have potential applications in field emission flat-panel displays. However, they are limited by the lower cathodoluminescent brightness in comparison to phosphor powders. In this paper, we have investigated the critical parameters that need to be optimized to increase the brightness of phosphor thin films. Specifically, we studied the role of surface roughness and optical properties of the substrate on the brightness of the phosphor films. Thin Y 2 O 3 :Eu phosphor films were deposited on various substrates (lanthanum aluminate, quartz, sapphire, and silicon) with thicknesses varying from 50 to 500 nm. A model that accounts for diffuse and specular or scattering effects has been developed to understand the effects of the microstructure on the emission characteristics of the cathodoluminescent films. The results from the model show that both the optical properties of the substrate and the surface roughness of the films play a critical role in controlling the brightness of laser deposited phosphor films

  16. Characterizations of photoconductivity of graphene oxide thin films

    Directory of Open Access Journals (Sweden)

    Shiang-Kuo Chang-Jian

    2012-06-01

    Full Text Available Characterizations of photoresponse of a graphene oxide (GO thin film to a near infrared laser light were studied. Results showed the photocurrent in the GO thin film was cathodic, always flowing in an opposite direction to the initial current generated by the preset bias voltage that shows a fundamental discrepancy from the photocurrent in the reduced graphene oxide thin film. Light illumination on the GO thin film thus results in more free electrons that offset the initial current. By examining GO thin films reduced at different temperatures, the critical temperature for reversing the photocurrent from cathodic to anodic was found around 187°C. The dynamic photoresponse for the GO thin film was further characterized through the response time constants within the laser on and off durations, denoted as τon and τoff, respectively. τon for the GO thin film was comparable to the other carbon-based thin films such as carbon nanotubes and graphenes. τoff was, however, much larger than that of the other's. This discrepancy was attributable to the retardation of exciton recombination rate thanks to the existing oxygen functional groups and defects in the GO thin films.

  17. Electrochemical fabrication of a cauliflower-like nanostructured Pd film from pure Pd and its applications in electrocatalysis and electroanalysis

    International Nuclear Information System (INIS)

    Xu, Shili; Zhang, Hefang; Huang, Fuli; Wang, Pengshu; Xia, Yue; Li, Zelin; Huang, Wei

    2013-01-01

    Highlights: • A cauliflower-like nanostructured Pd film was fabricated by just applying one double-potential step method. • The film fabrication involves the formation of K 2 PdCl 4 salt from pure Pd and its electroreduction to Pd atoms. • The film electrode exhibits high electrocatalytic activities toward the oxidation of ethanol and ascorbic acid. • Good analytical performances in the higher-concentration regions are obtained on the film electrode. -- Abstract: A cauliflower-like nanostructured Pd film (CNPF) has been fabricated by just applying one double-potential step on a pure Pd substrate in a KCl solution. The CNPF formation mainly involves the formation of K 2 PdCl 4 salt from pure Pd and its electroreduction to Pd atoms. The as-prepared CNPF electrode exhibits high electrocatalytic activities toward the oxidation of ethanol and ascorbic acid (AA). The CNPF electrode is also employed to detect AA by means of constant potential amperometry (CPA) and cyclic voltammetry (CV), and good analytical performances in the higher-concentration regions are obtained. In CPA studies performed at −0.4 V, the oxidation current is linearly dependent on AA concentration in the range of 0.1–7.5 mM with a detection limit of 80 μM (based on S/N = 3), a short response time of about 3 s and a high sensitivity of 589.80 μA mM −1 cm −2 . Meanwhile, the peak current responses in CVs are linear over the broad range of 0.1–35 mM with a sensitivity of 178.56 μA mM −1 cm −2 . Besides, the CNPF electrode can also be used to detect AA in medicine vitamin C tablet with satisfactory results

  18. Search for charged-particle d-d fusion products in an encapsulated Pd thin film

    International Nuclear Information System (INIS)

    Lopez, E.; Neuhauser, B.; Ziemba, F.; Jackson, J.; Mapoles, E.; McVittie, J.; Powell, R.

    1991-01-01

    Motivated by reports by Fleischmann and Pons and also Jones et al. of nuclear fusion occurring at room temperature, we attempted to look for charged particle reaction products from d-d fusion in a deuterated palladium thin film. A silicon nitride encapsulated palladium thin film (340 nanometers thick and one square centimeter in area) was fabricated on top of a semiconductor particle detector and implanted with an 80 keV D 2 + beam. The purpose of the nitride cap was to prevent deuterium from diffusing out or from being sputtered away during implantation. The detector temperature was maintained below 200 K in order to reduce pressure on the cap. During the first run of this experiment, after the ion implanter had been turned off, apparent charged particle pulses as well as bursts of activity in two nearby Geiger counters were observed with the film loaded to a nominal 150% deuterium-to-palladium ratio and a 1.3% does of 6 Li. No spectrum was obtained because of equipment malfunction. In a second run no apparent charged particles pulses were observed, but a record of the neutron flux due to induced fusion during implantation suggested that the nitride cap had failed. More experimental runs are expected in the near future

  19. Synthesis and biological characterization of zirconium oxynitride thin film growth by radio-frequency sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Cubillos, G.I. [Departamento de Química, Universidad Nacional de Colombia, AA 14490 Bogotá (Colombia); Olaya, J.J. [Facultad de Ingeniería, Universidad Nacional de Colombia, AA 14490 Bogotá (Colombia); Clavijo, D. [Facultad de Medicina, Universidad Nacional de Colombia, AA 14490 Bogotá (Colombia); Alfonso, J.E., E-mail: jealfonsoo@unal.edu.co [Grupo de materiales con Aplicaciones Tecnológicas, Universidad Nacional de Colombia, AA 14490 Bogotá (Colombia); Cardozo, C. [Instituto de Biotecnología, Universidad Nacional de Colombia, AA 14490 Bogotá (Colombia)

    2013-02-01

    Thin films of zirconium oxynitride were grown on common glass, silicon substrates (100) and on stainless steel 316L using the reactive RF magnetron sputtering technique. The films were analyzed through structural, morphological, and biocompatibility studies. The structural analysis was carried out using X-ray diffraction (XRD), and the morphological analysis was carried out using scanning electron microscopy (SEM) and atomic force microscopy (AFM). These studies were done as a function of growth parameters, such as power applied to the target, substrate temperature, and flow ratios. The studies of biocompatibility were carried out on zirconium oxynitride films deposited on stainless steel 316L through proliferation and cellular adhesion. The XRD analysis showed that films deposited at 623 K, with a flow ratio ΦN{sub 2}/ΦO{sub 2} of 1.25 and a total deposit time of 30 min grew preferentially oriented along the (111) plane of the zirconium oxynitride monoclinic phase. The SEM analyses showed that the films grew homogeneously, and the AFM studies indicated that the average rugosity of the film was 5.9 nm and the average particle size was 150 nm. Finally, through the analysis of the biocompatibility, we established that the films have a better surface than the substrate (stainless steel 316L) in terms of adhesion and proliferation of bone cells. - Highlights: ►ZrO{sub x}N{sub y} thin films were deposited using reactive radio-frequency magnetron sputtering. ►We studied the effect of deposition parameters on ZrO{sub x}N{sub y} thin films microstructure. ►We have been able to grow bone cells on ZrO{sub x}N{sub y} coated stainless steel 316L.

  20. Depth probing of the hydride formation process in thin Pd films by combined electrochemistry and fiber optics-based in situ UV/vis spectroscopy.

    Science.gov (United States)

    Wickman, Björn; Fredriksson, Mattias; Feng, Ligang; Lindahl, Niklas; Hagberg, Johan; Langhammer, Christoph

    2015-07-15

    We demonstrate a flexible combined electrochemistry and fiber optics-based in situ UV/vis spectroscopy setup to gain insight into the depth evolution of electrochemical hydride and oxide formation in Pd films with thicknesses of 20 and 100 nm. The thicknesses of our model systems are chosen such that the films are thinner or significantly thicker than the optical skin depth of Pd to create two distinctly different situations. Low power white light is irradiated on the sample and analyzed in three different configurations; transmittance through, and, reflectance from the front and the back side of the film. The obtained optical sensitivities correspond to fractions of a monolayer of adsorbed or absorbed hydrogen (H) and oxygen (O) on Pd. Moreover, a combined simultaneous readout obtained from the different optical measurement configurations provides mechanistic insights into the depth-evolution of the studied hydrogenation and oxidation processes.

  1. Thin film tritium dosimetry

    Science.gov (United States)

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  2. Thin films for emerging applications v.16

    CERN Document Server

    Francombe, Maurice H

    1992-01-01

    Following in the long-standing tradition of excellence established by this serial, this volume provides a focused look at contemporary applications. High Tc superconducting thin films are discussed in terms of ion beam and sputtering deposition, vacuum evaporation, laser ablation, MOCVD, and other deposition processes in addition to their ultimate applications. Detailed treatment is also given to permanent magnet thin films, lateral diffusion and electromigration in metallic thin films, and fracture and cracking phenomena in thin films adhering to high-elongation substrates.

  3. Interfaces and thin films physics

    International Nuclear Information System (INIS)

    Equer, B.

    1988-01-01

    The 1988 progress report of the Interfaces and Thin Film Physics laboratory (Polytechnic School France) is presented. The research program is focused on the thin films and on the interfaces of the amorphous semiconductor materials: silicon and silicon germanium, silicon-carbon and silicon-nitrogen alloys. In particular, the following topics are discussed: the basic processes and the kinetics of the reactive gas deposition, the amorphous materials manufacturing, the physico-chemical characterization of thin films and interfaces and the electron transport in amorphous semiconductors. The construction and optimization of experimental devices, as well as the activities concerning instrumentation, are also described [fr

  4. Buckling of Thin Films in Nano-Scale

    Directory of Open Access Journals (Sweden)

    Li L.A.

    2010-06-01

    Full Text Available Investigation of thin film buckling is important for life prediction of MEMS device which are damaged mainly by the delamination and buckling of thin films. In this paper the mechanical and thermal properties of compressed thin film titanium films with 150 nm thickness deposited on an organic glass substrate under mechanical and thermal loads were measured and characterized. In order to simulate the thin films which subjected to compound loads and the buckle modes the external uniaxial compression and thermal loading were subjected to the specimen by the symmetric loading device and the electrical film in this experiment. The temperature of the thin film deposited on substrate was measured using thermoelectric couple. The range of temperature accords with the temperature range of the MEMS. It is found that the size and number of the delamination and buckling of the film are depended upon the pre-fixed mechanical loading and thermal temperature. The thermal transient conduction and thermal stability of the film and substrate was studied with finite element method.

  5. Synthesis of single phase of CuTl-1234 thin films

    CERN Document Server

    Khan, N A; Ishida, K; Tateai, F; Kojima, T; Terada, N; Ihara, H

    1999-01-01

    Thin films of CuTl-1234 superconductor have been prepared for the first time using an amorphous phase epitaxy method (APE). In this method, an amorphous phase is sputtered from a target of stoichiometric composition CuBa/sub 2/Ca/sub 3/Cu/sub 4/O/sub x/. Thin films on the SrTiO/sub 3/ substrate after the thallium treatment are biaxially oriented. The XRD reflected a predominant single phase with c-axis 18.7 AA and pole figure measurements of (103) reflections showed a-axis oriented films with Delta phi =0.8 degrees . Resistivity measurements showed T/sub c/=113 K and preliminary J/sub c/ measurements manifested a current density of 1.0*10/sup 6/ A/cm (77 K, 0 T). The composition of films after EDX measurements is Cu /sub 0.3/Tl/sub 0.7/CuBa/sub 2/Ca/sub 3/Cu/sub 4/O/sub 12-y/. (8 refs).

  6. Linear and nonlinear optical properties of Sb-doped GeSe2 thin films

    Science.gov (United States)

    Zhang, Zhen-Ying; Chen, Fen; Lu, Shun-Bin; Wang, Yong-Hui; Shen, Xiang; Dai, Shi-Xun; Nie, Qiu-Hua

    2015-06-01

    Sb-doped GeSe2 chalcogenide thin films are prepared by the magnetron co-sputtering method. The linear optical properties of as-deposited films are derived by analyzing transmission spectra. The refractive index rises and the optical band gap decreases from 2.08 eV to 1.41 eV with increasing the Sb content. X-ray photoelectron spectra further confirm the formation of a covalent Sb-Se bond. The third-order nonlinear optical properties of thin films are investigated under femtosecond laser excitation at 800 nm. The results show that the third-order nonlinear optical properties are enhanced with increasing the concentration of Sb. The nonlinear refraction indices of these thin films are measured to be on the order of 10-18 m2/W with a positive sign and the nonlinear absorption coefficients are obtained to be on the order of 10-10 m/W. These excellent properties indicate that Sb-doped Ge-Se films have a good prospect in the applications of nonlinear optical devices. Project supported by the National Key Basic Research Program of China (Grant No. 2012CB722703), the National Natural Science Foundation of China (Grant No. 61377061), the Young Leaders of Academic Climbing Project of the Education Department of Zhejiang Province, China (Grant No. pd2013092), the Program for Innovative Research Team of Ningbo City, China (Grant No. 2009B217), and the K. C. Wong Magna Fund in Ningbo University, China.

  7. Photoelectron diffraction study of Rh nanoparticles growth on Fe3O4/Pd(111) ultrathin film

    International Nuclear Information System (INIS)

    Abreu, G. J. P.; Pancotti, A; Lima, L. H. de; Landers, R.; Siervo, A. de

    2013-01-01

    Metallic nanoparticles (NPs) supported on oxides thin films are commonly used as model catalysts for studies of heterogeneous catalysis. Several 4d and 5d metal NPs (for example, Pd, Pt and Au) grown on alumina, ceria and titania have shown strong metal support interaction (SMSI), for instance the encapsulation of the NPs by the oxide. The SMSI plays an important role in catalysis and is very dependent on the support oxide used. The present work investigates the growth mechanism and atomic structure of Rh NPs supported on epitaxial magnetite Fe 3 O 4 (111) ultrathin films prepared on Pd(111) using the Molecular Beam Epitaxy (MBE) technique. The iron oxide and the Rh NPs were characterized using X-ray photoelectron spectroscopy (XPS), low-energy electron diffraction and photoelectron diffraction (PED). The combined XPS and PED results indicate that Rh NPs are metallic, cover approximately 20 % of the iron oxide surface and show height distribution ranging 3–5 ML (monolayers) with essentially a bulk fcc structure.

  8. Operating method of amorphous thin film semiconductor element

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Koshiro; Ono, Masaharu; Hanabusa, Akira; Osawa, Michio; Arita, Takashi

    1988-05-31

    The existing technologies concerning amorphous thin film semiconductor elements are the technologies concerning the formation of either a thin film transistor or an amorphous Si solar cell on a substrate. In order to drive a thin film transistor for electronic equipment control by the output power of an amorphous Si solar cell, it has been obliged to drive the transistor weth an amorphous solar cell which was formed on a substrate different from that for the transistor. Accordingly, the space for the amorphous solar cell, which was formed on the different substrate, was additionally needed on the substrate for the thin film transistor. In order to solve the above problem, this invention proposes an operating method of an amorphous thin film semiconductor element that after forming an amorphous Si solar cell through lamination on the insulation coating film which covers the thin film transistor formed on the substrate, the thin film transistor is driven by the output power of this solar cell. The invention eliminates the above superfluous space and reduces the size of the amorphous thin film semiconductor element including the electric source. (3 figs)

  9. Epitaxial growth of indium oxyfluoride thin films by reactive pulsed laser deposition: Structural change induced by fluorine insertion into vacancy sites in bixbyite structure

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, Sohei [Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency (JST), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Hirose, Yasushi, E-mail: hirose@chem.s.u-tokyo.ac.jp [Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency (JST), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nakao, Shoichiro [Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency (JST), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Yang, Chang [Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency (JST), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Harayama, Isao; Sekiba, Daiichiro [Tandem Accelerator Complex, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577 (Japan); Hasegawa, Tetsuya [Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency (JST), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2014-05-30

    InO{sub x}F{sub y} thin films were epitaxially grown on Y-stabilized ZrO{sub 2} (111) substrates by reactive pulsed laser deposition. By changing the substrate temperature (T{sub S}), we were able to control the fluorine content of the film. Phase-pure epitaxial thin films with bixbyite-like ordering in the anion-site occupancy were obtained at high T{sub S} (≥ 240 °C), where fluorine was inserted into the vacancy sites in the bixbyite lattice up to y / (x + y) ∼ 0.3. By decreasing T{sub S}, y / (x + y) increased and the bixbyite-like ordering disappeared; simultaneously, fluorine-rich and fluorine-poor subphases emerged. The films grown at T{sub S} ≤ 150 °C were amorphous and exhibited higher optical absorbance and electrical resistivity than the epitaxial films. - Highlights: • InO{sub x}F{sub y} epitaxial thin films with high fluorine concentration were grown on Y:ZrO{sub 2}. • Anion composition and structural, optical and transport properties were studied. • Fluorine is topotactically inserted into the oxygen vacancy sites in bixbyite cell. • Bixbyite-like ordering of the anion site occupancy was conserved in y / (x + y) ≤ ∼ 0.3.

  10. Mechanical properties and microstructural characterization of amorphous SiC.sub.x./sub.N.sub.y./sub. thin films after annealing beyond 1100°C

    Czech Academy of Sciences Publication Activity Database

    Čtvrtlík, R.; Kulikovsky, V.; Vorlíček, Vladimír; Tomaštík, J.; Drahokoupil, Jan; Jastrabík, L.

    2016-01-01

    Roč. 99, č. 3 (2016), 996-1005 ISSN 0002-7820 Institutional support: RVO:68378271 Keywords : SiC x N y thin films * reactive DC magnetron sputtering * annealing * XRD and Raman spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.841, year: 2016

  11. Optical and electrical characteristics of plasma enhanced chemical vapor deposition boron carbonitride thin films derived from N-trimethylborazine precursor

    International Nuclear Information System (INIS)

    Sulyaeva, Veronica S.; Kosinova, Marina L.; Rumyantsev, Yurii M.; Kuznetsov, Fedor A.; Kesler, Valerii G.; Kirienko, Viktor V.

    2014-01-01

    Thin BC x N y films have been obtained by plasma enhanced chemical vapor deposition using N-trimethylborazine as a precursor. The films were deposited on Si(100) and fused silica substrates. The grown films were characterized by ellipsometry, Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray energy dispersive spectroscopy, X-ray photoelectron spectroscopy, spectrophotometry, capacitance–voltage and current–voltage measurements. The deposition parameters, such as substrate temperature (373–973 K) and gas phase composition were varied. Low temperature BC x N y films were found to be high optical transparent layers in the range of 300–2000 nm, the transmittance as high as 93% has been achieved. BC x N y layers are dielectrics with dielectric constant k = 2.2–8.9 depending on the synthesis conditions. - Highlights: • Thin BC x N y films have been obtained by plasma enhanced chemical vapor deposition. • N-trimethylborazine was used as a precursor. • Low temperature BC x N y films were found to be high optical transparent layers (93%). • BC x N y layers are dielectrics with dielectric constant k = 2.2–8.9

  12. Density functional study of BiSbTeSe{sub 2} topological insulator thin films

    Energy Technology Data Exchange (ETDEWEB)

    Mohammadpourrad, Zahra; Abolhassani, Mohammadreza [Department of Physics, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2017-08-15

    In this work, using density functional theory calculations, we have investigated the band topology of bulk BiSbTeSe{sub 2} and its thin film electronic properties in several thicknesses. It is one member of the quaternary compounds Bi{sub 2-x}Sb{sub x}Te{sub 3-y}Se{sub y} (BSTS) with the best intrinsic bulk insulating behavior. Based on our calculations we have found that a band inversion at Γ-point is induced when spin-orbit coupling is turned on, with an energy gap of about 0.318 eV. The film thickness has an effect on the surface states such that a gap opens at Dirac point in 6 quintuple-layers film and with decrease in thickness, the magnitude of the gap increases. The atomic contributions have been mapped out for the first few layers of thin films to demonstrate the surface states. The relative charge density has been calculated layer-wise and the penetration depth of the surface states into the bulk region is found to be about 2.5-3.5 quintuple layers, depending on the termination species of thin films. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  13. Temperature dependence of LRE-HRE-TM thin films

    Science.gov (United States)

    Li, Zuoyi; Cheng, Xiaomin; Lin, Gengqi; Li, Zhen; Huang, Zhixin; Jin, Fang; Wang, Xianran; Yang, Xiaofei

    2003-04-01

    Temperature dependence of the properties of RE-TM thin films is very important for MO recording. In this paper, we studied the temperature dependence of the magnetic and magneto-optical properties of the amorphous LRE-HRE-TM single layer thin films and LRE-HRE-TM/HRE-TM couple-bilayered thin films. For LRE-HRE-TM single layer thin films, the temperature dependence of the magnetization was investigated by using the mean field theory. The experimental and theoretical results matched very well. With the LRE substitution in HRE-TM thin film, the compensation temperature Tcomp decreased and the curie temperature Tc remained unchanged. Kerr rotation angle became larger and the saturation magnetization Ms at room temperature increased. For LRE-HRE-TM/HRE-TM couple-bilayered thin films, comparisons of the temperature dependences of the coercivities and Kerr rotation angles were made between isolated sublayers and couple-bilayered thin film.

  14. Probing the bulk ionic conductivity by thin film hetero-epitaxial engineering

    KAUST Repository

    Pergolesi, Daniele

    2015-02-01

    Highly textured thin films with small grain boundary regions can be used as model systems to directly measure the bulk conductivity of oxygen ion conducting oxides. Ionic conducting thin films and epitaxial heterostructures are also widely used to probe the effect of strain on the oxygen ion migration in oxide materials. For the purpose of these investigations a good lattice matching between the film and the substrate is required to promote the ordered film growth. Moreover, the substrate should be a good electrical insulator at high temperature to allow a reliable electrical characterization of the deposited film. Here we report the fabrication of an epitaxial heterostructure made with a double buffer layer of BaZrO3 and SrTiO3 grown on MgO substrates that fulfills both requirements. Based on such template platform, highly ordered (001) epitaxially oriented thin films of 15% Sm-doped CeO2 and 8 mol% Y2O3 stabilized ZrO2 are grown. Bulk conductivities as well as activation energies are measured for both materials, confirming the success of the approach. The reported insulating template platform promises potential application also for the electrical characterization of other novel electrolyte materials that still need a thorough understanding of their ionic conductivity.

  15. Fabrication of metallic nanoparticles by spinodal dewetting of thin films: A high-throughput approach

    Energy Technology Data Exchange (ETDEWEB)

    Michalak, William D.; Miller, James B. [U.S. Department of Energy, National Energy Technology Laboratory, Pittsburgh, PA 15262 (United States); Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Yolcu, Cem [Department of Physics, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Gellman, Andrew J., E-mail: gellman@cmu.edu [U.S. Department of Energy, National Energy Technology Laboratory, Pittsburgh, PA 15262 (United States); Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213 (United States)

    2012-11-01

    Metal nanoparticles on structured supports are used in a variety of technological applications including biosensing, energy harvesting, and electronics. In every case, the functions and properties of the metallic nanostructures depend on both their composition and structure (i.e. size, shape, and spatial distribution). Among the challenges to the development of metal nanoparticles for these applications is the characterization of relationships between their structure and their functional properties over multiple structural degrees of freedom spanning a large range of values. In this work, a method for creating a morphological gradient of metal nanoparticles on a substrate is described. The approach, suited for high-throughput fabrication and characterization, is based on spinodal dewetting of a metallic thin film from its substrate. Through control of initial film thickness, anneal temperature, and anneal time, spinodal dewetting results in supported nanoparticles with well-defined and controlled structure. The approach is demonstrated through its application to preparation of Pd nanoparticles on a silicon nitride substrate. The morphologies of the particles were characterized by scanning electron and atomic force microscopies. Free energy-based stability and topological analyses were used to confirm the dewetting mechanism. In addition, the stability theory provides a connection to the thermophysical properties of the resulting nanoparticle array. The dewetting approach is general to any metal/support system and provides an alternative, inexpensive, and robust means to rapidly create metal nanostructures with control of morphology. It shows promise for large scale production of metal nanoparticles structures, as well as understanding basic stability properties of thin metal films. - Highlights: Black-Right-Pointing-Pointer Pd dewetting from SiN occurs by a spinodal dewetting mechanism. Black-Right-Pointing-Pointer Dewetting occurs at temperatures well below the

  16. Fabrication of metallic nanoparticles by spinodal dewetting of thin films: A high-throughput approach

    International Nuclear Information System (INIS)

    Michalak, William D.; Miller, James B.; Yolcu, Cem; Gellman, Andrew J.

    2012-01-01

    Metal nanoparticles on structured supports are used in a variety of technological applications including biosensing, energy harvesting, and electronics. In every case, the functions and properties of the metallic nanostructures depend on both their composition and structure (i.e. size, shape, and spatial distribution). Among the challenges to the development of metal nanoparticles for these applications is the characterization of relationships between their structure and their functional properties over multiple structural degrees of freedom spanning a large range of values. In this work, a method for creating a morphological gradient of metal nanoparticles on a substrate is described. The approach, suited for high-throughput fabrication and characterization, is based on spinodal dewetting of a metallic thin film from its substrate. Through control of initial film thickness, anneal temperature, and anneal time, spinodal dewetting results in supported nanoparticles with well-defined and controlled structure. The approach is demonstrated through its application to preparation of Pd nanoparticles on a silicon nitride substrate. The morphologies of the particles were characterized by scanning electron and atomic force microscopies. Free energy-based stability and topological analyses were used to confirm the dewetting mechanism. In addition, the stability theory provides a connection to the thermophysical properties of the resulting nanoparticle array. The dewetting approach is general to any metal/support system and provides an alternative, inexpensive, and robust means to rapidly create metal nanostructures with control of morphology. It shows promise for large scale production of metal nanoparticles structures, as well as understanding basic stability properties of thin metal films. - Highlights: ► Pd dewetting from SiN occurs by a spinodal dewetting mechanism. ► Dewetting occurs at temperatures well below the melting point of Pd. ► Spinodal dewetting allows

  17. Effects of the addition of H2O and NH4OH in the electrical properties of thin films of Y2O3 deposited by pyrolytic spray

    International Nuclear Information System (INIS)

    Herrera S, H.J.; Alarcon F, G.; Aguilar F, M.; Falcony, C.; Garcia H, M.; Guzman M, J.; Araiza I, J.J.

    2005-01-01

    In this work we studied the electrical properties of yttrium oxide thin films obtained by spray pyrolysis from Y(acac) 3 and N,N-DMF. The films were deposited on Si(100) substrates at temperatures of 400, 450, 500 and 550 C. The electrical characteristic of the films was improved when a mist of H 2 O and/or NH 4 0H was simultaneously added to the deposition system. Current and capacitance versus voltage measurements were obtained when the Y 2 O 3 films were integrated in MOS (Metal-Oxide-Semiconductor) structures. Y 2 O 3 films with a dielectric constant up to 15 were obtained. The films can stand electric fields up to 2 MV/cm. An interface state density in the range of 10 10 -10 11 cm -2 eV -1 was measured at midgap from the high and low frequency capacitance measurements. (Author)

  18. Temperature dependence of structural and luminescence properties of Eu{sup 3+}-doped Y{sub 2}O{sub 3} red-emitting phosphor thin films by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ali, A.G.; Dejene, B.F. [University of the Free State (Qwaqwa Campus), Department of Physics, Phuthaditjhaba (South Africa); Swart, H.C. [University of the Free State, Department of Physics, Bloemfontein (South Africa)

    2016-04-15

    Pulse laser deposition was used to obtain nanocrystalline red-emitting Y{sub 2}O{sub 3}:Eu{sup 3+} thin-film phosphors. X-ray diffraction measurements show that the un-annealed thin film was amorphous, while those annealed were crystalline. At lower annealing temperature of 600-700 C, cubic bixbyite Y{sub 2}O{sub 3}:Eu{sup 3+} was formed. As the annealing temperatures were increased to 800 C, hexagonal phase emerged. The average crystallite size of the film was 64 nm. Photoluminescence measurement indicates intense red emission around 612 nm due to the {sup 5}D{sub 0} → {sup 7}F{sub 2} transition. Scanning electron microscopy indicated that agglomerates of non-crystalline particles with spherical shapes were present for the un-annealed films. After annealing at high temperature, finer morphology was revealed. Atomic force microscopy further confirmed the formation of new morphology at the higher annealing temperatures. UV-Vis measurement indicated a band gap in the range of 4.6-4.8 eV. It was concluded that the annealing temperature played an important role in the luminescence intensity and crystallinity of these films. (orig.)

  19. Structure and electrical properties of Pb(ZrxTi1-x)O3 deposited on textured Pt thin films

    International Nuclear Information System (INIS)

    Hong, Jongin; Song, Han Wook; Lee, Hee Chul; Lee, Won Jong; No, Kwangsoo

    2001-01-01

    The texturing of the bottom electrode plays a key role in the structure and electrical properties of Pb(Zr,Ti)O 3 (PZT) thin films. We fabricated Pt bottom electrodes having a different thickness on MgO single crystals at 600 o C by rf magnetron sputtering. As the thickness of platinum (Pt) thin film increased, the preferred orientation of Pt thin film changed from (200) to (111). PZT thin films were fabricated at 450 o C by electron cyclotron resonance-plasma enhanced metal organic chemical vapor deposition on the textured Pt thin films. The texturing of the bottom electrode caused drastic changes in the C--V characteristics, P--E characteristics, and fatigue characteristics of metal/ferroelectric material/metal (MFM) capacitors. The difference of the electrical properties between the PZT thin films having different texturing was discussed in terms-of the x--y alignment and the interface between electrode and PZT in MFM capacitors. copyright 2001 American Institute of Physics

  20. Application-related properties of giant magnetostrictive thin films

    International Nuclear Information System (INIS)

    Lim, S.H.; Kim, H.J.; Na, S.M.; Suh, S.J.

    2002-01-01

    In an effort to facilitate the utilization of giant magnetostrictive thin films in microdevices, application-related properties of these thin films, which include induced anisotropy, residual stress and corrosion properties, are investigated. A large induced anisotropy with an energy of 6x10 4 J/m 3 is formed in field-sputtered amorphous Sm-Fe-B thin films, resulting in a large magnetostriction anisotropy. Two components of residual stress, intrinsic compressive stress and tensile stress due to the difference of the thermal expansion coefficients between the substrate and thin film, are identified. The variation of residual stress with fabrication parameter and annealing temperature, and its influence on mechanical bending and magnetic properties are examined. Better corrosion properties are observed in Sm-Fe thin films than in Tb-Fe. Corrosion properties of Tb-Fe thin films, however, are much improved with the introduction of nitrogen to the thin films without deteriorating magnetostrictive properties

  1. Palladium sulphide (PdS) films as a new thermoelectric sulphide compound

    Energy Technology Data Exchange (ETDEWEB)

    Ares, J.R.; Diaz-Chao, P.; Clamagirand, J.; Macia, M.D.; Ferrer, I.J.; Sanchez, C. [Universidad Autonoma de Madrid (Spain). Lab. de Materiales de Interes en Energias Renovables

    2010-07-01

    Palladium sulphide (PdS) films have been prepared by direct sulphuration of 20 nm thick palladium films at different temperatures (200 C < T < 450 C). Sulphurated films exhibit an unique crystalline phase: PdS. Seebeck coefficient and electrical resistivity of these films are between -110 and -150 {mu}V/K and {proportional_to} 0.08 to 0.8 {omega}cm depending on the sulphuration temperature. Negative sign of Seebeck coefficient indicates an n type conduction in all films. Discussion is focused on the influence of atomic ratio between sulphur and palladium as well as impurities arising from the substrate on transport properties. (orig.)

  2. Epitaxial growth and properties of YBaCuO thin films

    International Nuclear Information System (INIS)

    Geerk, J.; Linker, G.; Meyer, O.

    1989-08-01

    The growth quality of YBaCuO thin films deposited by sputtering on different substrates (Al 2 O 3 , MgO, SrTiO 3 , Zr(Y)O 2 ) has been studied by X-ray diffraction and channeling experiments as a function of the deposition temperature. Besides the substrate orientation, the substrate temperature is the parameter determining whether films grow in c-, a-, (110) or mixed directions. Epitaxial growth correlates with high critical current values in the films of up to 5.5x10 6 A/cm 2 at 77 K. Ultrathin films with thicknesses down to 2 nm were grown revealing three-dimensional superconducting behaviour. Films on (100) SrTiO 3 of 9 nm thickness and below are partially strained indicating commensurate growth. From the analysis of the surface disorder 1 displaced Ba atom per Ba 2 Y row was obtained indicating that the disordered layer thickness is about 0.6 nm. Tunnel junctions fabricated on these films reveal gap-like structures near ±16 mV and ±30 mV. (orig.) [de

  3. Sensitive triplet exciton detection in polyfluorene using Pd-coordinated porphyrin

    NARCIS (Netherlands)

    Mikhnenko, O.V.; Blom, P.W.M.; Loi, M.A.

    2011-01-01

    We developed a sensitive spectroscopic method to probe triplet concentration in thin films of polyfluorene (PF) at room temperature. The energy of photoexcited triplet excitons is transferred to the guest metal-organic complex, meso-tetratolylporphyrin-Pd (PdTPP), and detected as phosphorescent

  4. Preparation of LiMn2O4 cathode thin films for thin film lithium secondary batteries by a mist CVD process

    International Nuclear Information System (INIS)

    Tadanaga, Kiyoharu; Yamaguchi, Akihiro; Sakuda, Atsushi; Hayashi, Akitoshi; Tatsumisago, Masahiro; Duran, Alicia; Aparacio, Mario

    2014-01-01

    Highlights: • LiMn 2 O 4 thin films were prepared by using the mist CVD process. • An aqueous solution of lithium and manganese acetates is used for the precursor solution. • The cell with the LiMn 2 O 4 thin films exhibited a capacity of about 80 mAh/g. • The cell showed good cycling performance during 10 cycles. - Abstract: LiMn 2 O 4 cathode thin films for thin film lithium secondary batteries were prepared by using so-called the “mist CVD process”, employing an aqueous solution of lithium acetate and manganese acetate, as the source of Li and Mn, respectively. The aqueous solution of starting materials was ultrasonically atomized to form mist particles, and mists were transferred by nitrogen gas to silica glass substrate to form thin films. FE-SEM observation revealed that thin films obtained by this process were dense and smooth, and thin films with a thickness of about 750 nm were obtained. The electrochemical cell with the thin films obtained by sintering at 700 °C exhibited a capacity of about 80 mAh/g, and the cell showed good cycling performance during 10 cycles

  5. P-type CuxS thin films: Integration in a thin film transistor structure

    International Nuclear Information System (INIS)

    Nunes de Carvalho, C.; Parreira, P.; Lavareda, G.; Brogueira, P.; Amaral, A.

    2013-01-01

    Cu x S thin films, 80 nm thick, are deposited by vacuum thermal evaporation of sulfur-rich powder mixture, Cu 2 S:S (50:50 wt.%) with no intentional heating of the substrate. The process of deposition occurs at very low deposition rates (0.1–0.3 nm/s) to avoid the formation of Cu or S-rich films. The evolution of Cu x S films surface properties (morphology/roughness) under post deposition mild annealing in air at 270 °C and their integration in a thin film transistor (TFT) are the main objectives of this study. Accordingly, Scanning Electron Microscopy studies show Cu x S films with different surface morphologies, depending on the post deposition annealing conditions. For the shortest annealing time, the Cu x S films look to be constructed of grains with large dimension at the surface (approximately 100 nm) and consequently, irregular shape. For the longest annealing time, films with a fine-grained surface are found, with some randomly distributed large particles bound to this fine-grained surface. Atomic Force Microscopy results indicate an increase of the root-mean-square roughness of Cu x S surface with annealing time, from 13.6 up to 37.4 nm, for 255 and 345 s, respectively. The preliminary integration of Cu x S films in a TFT bottom-gate type structure allowed the study of the feasibility and compatibility of this material with the remaining stages of a TFT fabrication as well as the determination of the p-type characteristic of the Cu x S material. - Highlights: • Surface properties of annealed Cu x S films. • Variation of conductivity with annealing temperatures of Cu x S films. • Application of evaporated Cu x S films in a thin film transistor (TFT) structure. • Determination of Cu x S p-type characteristic from TFT behaviour

  6. Growth and Characteristic of Amorphous Nano-Granular TeO2-V2O5-NiO Thin Films

    Science.gov (United States)

    Hosseinzadeh, Sh.; Rahmati, A.; Bidadi, H.

    2016-12-01

    TeO2-V2O5-NiO thin films were deposited using thermal evaporation from 40TeO2-(60-y)V2O5-yNiO (y=0-30mol%) target. Structural analysis of the films was identified by X-ray diffractometry (XRD) and scanning electron microscopy (SEM). The amorphous TeO2-V2O5-NiO films have nanosized clear grain structure and sharp grain boundaries. DC conductivity and current-voltage (I-V) characteristic of TeO2-V2O5-NiO thin films were measured in the temperature range of 300-423K. As nickel oxide (NiO) content increases, the DC conductivity decreases up to two orders in value (10-9-10-11Sṡcm-1). Temperature dependence of conductivity is described using the small polaron hopping (SPH) model as well. Poole-Frenkel effect is observed at high external electric field. The optical absorption spectra of the TeO2-V2O5-NiO thin films were recorded in the wavelength range of 380-1100nm. The absorption coefficient revealed bandgap shrinkage (3.01-2.3eV) and band tail widening, due to an increase in NiO content. Energy dispersive X-ray spectroscopy (EDX) was used to determine elemental composition. In TeO2-V2O5-NiO thin films, the NiO content is around fifth of the initial target.

  7. Semiconductor-nanocrystal/conjugated polymer thin films

    Science.gov (United States)

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2014-06-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  8. Thin liquid films dewetting and polymer flow

    CERN Document Server

    Blossey, Ralf

    2012-01-01

    This book is a treatise on the thermodynamic and dynamic properties of thin liquid films at solid surfaces and, in particular, their rupture instabilities. For the quantitative study of these phenomena, polymer thin films haven proven to be an invaluable experimental model system.   What is it that makes thin film instabilities special and interesting, warranting a whole book? There are several answers to this. Firstly, thin polymeric films have an important range of applications, and with the increase in the number of technologies available to produce and to study them, this range is likely to expand. An understanding of their instabilities is therefore of practical relevance for the design of such films.   Secondly, thin liquid films are an interdisciplinary research topic. Interdisciplinary research is surely not an end to itself, but in this case it leads to a fairly heterogeneous community of theoretical and experimental physicists, engineers, physical chemists, mathematicians and others working on the...

  9. Self-assembly of dodecaphenyl POSS thin films

    Science.gov (United States)

    Handke, Bartosz; Klita, Łukasz; Niemiec, Wiktor

    2017-12-01

    The self-assembly abilities of Dodecaphenyl Polyhedral Oligomeric Silsesquioxane thin films on Si(1 0 0) surfaces were studied. Due to their thermal properties - relatively low sublimation temperature and preservation of molecular structure - cage type silsesquioxanes are ideal material for the preparation of a thin films by Physical Vapor Deposition. The Ultra-High Vacuum environment and the deposition precision of the PVD method enable the study of early stages of thin film growth and its molecular organization. X-ray Reflectivity and Atomic Force Microscopy measurements allow to pursuit size-effects in the structure of thin films with thickness ranges from less than a single molecular layer up to several tens of layers. Thermal treatment of the thin films triggered phase change: from a poorly ordered polycrystalline film into a well-ordered multilayer structure. Self-assembly of the layers is the effect of the π-stacking of phenyl rings, which force molecules to arrange in a superlattice, forming stacks of alternating organic-inorganic layers.

  10. Organic thin films and surfaces directions for the nineties

    CERN Document Server

    Ulman, Abraham

    1995-01-01

    Physics of Thin Films has been one of the longest running continuing series in thin film science consisting of 20 volumes since 1963. The series contains some of the highest quality studies of the properties ofvarious thin films materials and systems.In order to be able to reflect the development of todays science and to cover all modern aspects of thin films, the series, beginning with Volume 20, will move beyond the basic physics of thin films. It will address the most important aspects of both inorganic and organic thin films, in both their theoretical as well as technological aspects. Ther

  11. Novel chemical analysis for thin films

    International Nuclear Information System (INIS)

    Usui, Toshio; Kamei, Masayuki; Aoki, Yuji; Morishita, Tadataka; Tanaka, Shoji

    1991-01-01

    Scanning electron microscopy and total-reflection-angle X-ray spectroscopy (SEM-TRAXS) was applied for fluorescence X-ray analysis of 50A- and 125A-thick Au thin films on Si(100). The intensity of the AuM line (2.15 keV) emitted from the Au thin films varied as a function of the take-off angle (θ t ) with respect to the film surface; the intensity of AuM line from the 125A-thick Au thin film was 1.5 times as large as that of SiK α line (1.74 keV) emitted from the Si substrate when θ t = 0deg-3deg, in the vicinity of a critical angle for total external reflection of the AuM line at Si (0.81deg). In addition, the intensity of the AuM line emitted from the 50A-thick Au thin film was also sufficiently strong for chemical analysis. (author)

  12. Investigation of interfacial resistance between LiCoO{sub 2} cathode and LiPON electrolyte in the thin film battery

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Eunkyung; Hong, Chan; Tak, Yongsug [Department of Chemical Engineering, Inha University, Inchon 402-751 (Korea, Republic of); Nam, Sang Cheol [Nuricell Inc., Jungrang-Ku, Seoul 131-220 (Korea, Republic of); Cho, Sungbaek [Agency for Defense Development, P.O. Box 35, Daejeon (Korea, Republic of)

    2006-09-13

    All solid-state thin film battery was prepared with conventional sputtering technologies. Low conductivity of lithium phosphorus oxynitride (LiPON) electrolyte and higher resistance at the interface of LiCoO{sub 2}/LiPON was crucial for the development of thin film battery. Presence of thermally treated Al{sub 2}O{sub 3} thin film at the interface of LiCoO{sub 2}/LiPON decreased the interfacial resistance and increased the discharge capacity with the better cycling behaviors. Surface analysis and electrochemical impedance measurement indicate the formation of solid solution LiCo{sub 1-y}Al{sub y}O{sub 2} at the interface of LiCoO{sub 2}/LiPON. (author)

  13. Nanostructured thin film coatings with different strengthening effects

    Directory of Open Access Journals (Sweden)

    Panfilov Yury

    2017-01-01

    Full Text Available A number of articles on strengthening thin film coatings were analyzed and a lot of unusual strengthening effects, such as super high hardness and plasticity simultaneously, ultra low friction coefficient, high wear-resistance, curve rigidity increasing of drills with small diameter, associated with process formation of nanostructured coatings by the different thin film deposition methods were detected. Vacuum coater with RF magnetron sputtering system and ion-beam source and arc evaporator for nanostructured thin film coating manufacture are represented. Diamond Like Carbon and MoS2 thin film coatings, Ti, Al, Nb, Cr, nitride, carbide, and carbo-nitride thin film materials are described as strengthening coatings.

  14. Superconductor-Metal-Insulator transition in two dimensional Ta thin Films

    Science.gov (United States)

    Park, Sun-Gyu; Kim, Eunseong

    2013-03-01

    Superconductor-insulator transition has been induced by tuning film thickness or magnetic field. Recent electrical transport measurements of MoGe, Bi, Ta thin films revealed an interesting intermediate metallic phase which intervened superconducting and insulating phases at certain range of magnetic field. Especially, Ta thin films show the characteristic IV behavior at each phase and the disorder tuned intermediate metallic phase [Y. Li, C. L. Vicente, and J. Yoon, Physical Review B 81, 020505 (2010)]. This unexpected metallic phase can be interpreted as a consequence of vortex motion or contribution of fermionic quasiparticles. In this presentation, we report the scaling behavior during the transitions in Ta thin film as well as the transport measurements in various phases. Critical exponents v and z are obtained in samples with wide ranges of disorder. These results reveal new universality class appears when disorder exceeds a critical value. Dynamical exponent z of Superconducting sample is found to be 1, which is consistent with theoretical prediction of unity. z in a metallic sample is suddenly increased to be approximately 2.5. This critical exponent is much larger than the value found in other system and theoretical prediction. We gratefully acknowledge the financial support by the National Research Foundation of Korea through the Creative Research Initiatives.

  15. The fictional transition of the preferential orientation of yttria-stabilized zirconia thin films

    International Nuclear Information System (INIS)

    Lamas, J.S.; Leroy, W.P.; Depla, D.

    2012-01-01

    The fundamental study of the microstructural and textural evolution of yttria-stabilized zirconia (YSZ) thin films is of great importance given that the crystallographic properties are intimately related to their extrinsic or functional properties. In order to study these properties, YSZ thin films were obtained using dual magnetron sputtering. The results of a polar plot graph, based on X-ray diffraction (XRD) data, seem to indicate a transition from [200] out-of-plane preferential orientation to [111], indicating a dependence on composition and yttrium target–substrate (Y T–S) distance at low pressure. However, no transition is identified at high pressure, showing only [111] out-of-plane orientation, independent of composition and Y T–S distance. Scanning electron microscopy (SEM) indicates a tilt in the columnar structure of the film but no other microstructural change is in evidence, possibly related to the growth transition from [200] to [111]. Pole figures were used to clarify the texture transition in the YSZ thin films. These results indicate that there is indeed no transition in the preferential orientation of the films from [200] to [111] but a tilt of the [200] orientation towards the zirconium source. Detailed study using pole figures and SEM, clearly indicated that no growth zone transition was present and the effect is caused by geometrical configuration, contradicting expectations from standard θ/2θ XRD measurements. - Highlights: ► Study of the preferential orientation of Yttria-stabilized zirconia thin films ► Comparison of the preferential orientation at two different chamber pressures ► Correlation with the energy per adparticle and the extended structure zone model ► Use of pole figures analyses to clarify the change in the preferential orientation

  16. The fictional transition of the preferential orientation of yttria-stabilized zirconia thin films

    Energy Technology Data Exchange (ETDEWEB)

    Lamas, J.S., E-mail: Jerika.Lamas@UGent.be; Leroy, W.P.; Depla, D.

    2012-12-15

    The fundamental study of the microstructural and textural evolution of yttria-stabilized zirconia (YSZ) thin films is of great importance given that the crystallographic properties are intimately related to their extrinsic or functional properties. In order to study these properties, YSZ thin films were obtained using dual magnetron sputtering. The results of a polar plot graph, based on X-ray diffraction (XRD) data, seem to indicate a transition from [200] out-of-plane preferential orientation to [111], indicating a dependence on composition and yttrium target-substrate (Y T-S) distance at low pressure. However, no transition is identified at high pressure, showing only [111] out-of-plane orientation, independent of composition and Y T-S distance. Scanning electron microscopy (SEM) indicates a tilt in the columnar structure of the film but no other microstructural change is in evidence, possibly related to the growth transition from [200] to [111]. Pole figures were used to clarify the texture transition in the YSZ thin films. These results indicate that there is indeed no transition in the preferential orientation of the films from [200] to [111] but a tilt of the [200] orientation towards the zirconium source. Detailed study using pole figures and SEM, clearly indicated that no growth zone transition was present and the effect is caused by geometrical configuration, contradicting expectations from standard {theta}/2{theta} XRD measurements. - Highlights: Black-Right-Pointing-Pointer Study of the preferential orientation of Yttria-stabilized zirconia thin films Black-Right-Pointing-Pointer Comparison of the preferential orientation at two different chamber pressures Black-Right-Pointing-Pointer Correlation with the energy per adparticle and the extended structure zone model Black-Right-Pointing-Pointer Use of pole figures analyses to clarify the change in the preferential orientation.

  17. Thin Film Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K.

    1998-11-19

    The motivation to develop thin film technologies dates back to the inception of photovoltaics. It is an idea based on achieving truly low-cost photovoltaics appropriate for mass production and energy significant markets. The key to the idea is the use of pennies worth of active materials. Since sunlight carries relatively little energy in comparison with combustion-based energy sources, photovoltaic (PV) modules must be cheap to produce energy that can be competitive. Thin films are presumed to be the answer to that low-cost requirement. But how cheap do they have to be? The following is an oversimplified analysis that allows some insight into this question.

  18. Thin films: Past, present, future

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K

    1995-04-01

    This report describes the characteristics of the thin film photovoltaic modules necessary for an acceptable rate of return for rural areas and underdeveloped countries. The topics of the paper include a development of goals of cost and performance for an acceptable PV system, a review of current technologies for meeting these goals, issues and opportunities in thin film technologies.

  19. Non-linear optics of nano-scale pentacene thin film

    Science.gov (United States)

    Yahia, I. S.; Alfaify, S.; Jilani, Asim; Abdel-wahab, M. Sh.; Al-Ghamdi, Attieh A.; Abutalib, M. M.; Al-Bassam, A.; El-Naggar, A. M.

    2016-07-01

    We have found the new ways to investigate the linear/non-linear optical properties of nanostructure pentacene thin film deposited by thermal evaporation technique. Pentacene is the key material in organic semiconductor technology. The existence of nano-structured thin film was confirmed by atomic force microscopy and X-ray diffraction. The wavelength-dependent transmittance and reflectance were calculated to observe the optical behavior of the pentacene thin film. It has been observed the anomalous dispersion at wavelength λ 800. The non-linear refractive index of the deposited films was investigated. The linear optical susceptibility of pentacene thin film was calculated, and we observed the non-linear optical susceptibility of pentacene thin film at about 6 × 10-13 esu. The advantage of this work is to use of spectroscopic method to calculate the liner and non-liner optical response of pentacene thin films rather than expensive Z-scan. The calculated optical behavior of the pentacene thin films could be used in the organic thin films base advanced optoelectronic devices such as telecommunications devices.

  20. Preparation of nanostructured PbS thin films as sensing element for NO{sub 2} gas

    Energy Technology Data Exchange (ETDEWEB)

    Kaci, S., E-mail: k_samira05@yahoo.fr [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE) Division Couches Minces et Interfaces, 02 Bd Frantz Fanon, B.P. 140, 7 Merveilles, 16038 Algiers (Algeria); Keffous, A.; Hakoum, S. [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE) Division Couches Minces et Interfaces, 02 Bd Frantz Fanon, B.P. 140, 7 Merveilles, 16038 Algiers (Algeria); Trari, M. [Université des Sciences et Technologies Houari Boumediene (USTHB), Laboratoire de Stockage et de Valorisation des Eneriges Renouvelables, Faculté de Chimie, BP 32, EL Alia, 16111 Bab Ezzouar, Algiers (Algeria); Mansri, O.; Menari, H. [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE) Division Couches Minces et Interfaces, 02 Bd Frantz Fanon, B.P. 140, 7 Merveilles, 16038 Algiers (Algeria)

    2014-06-01

    In this work, we demonstrate that semiconducting films of A{sub IV}B{sub VI} compounds, in particular, of nanostructured lead sulfide (PbS) which prepared by chemical bath deposition (CBD), can be used as a sensing element for nitrogen dioxide (NO{sub 2}) gas. The CBD method is versatile, simple in implementation and gives homogeneous semiconductor structures. We have prepared PbS nanocrystalline thin film at different reaction baths and temperatures. In the course of deposition, variable amounts of additives, such as organic substances among them, were introduced into the baths. The energy dispersive analysis (EDX) confirms the chemical composition of PbS films. A current–voltage (I–V) characterization of Pd/nc-PbS/a-SiC:H pSi(100)/Al Schottky diode structures were studied in the presence of NO{sub 2} gas. The gas sensing behavior showed that the synthesized PbS nanocrystalline thin films were influenced by NO{sub 2} gas at room temperature. The results can be used for developing an experimental sensing element based on chemically deposited nanostructured PbS films which can be applicable in gas sensors.

  1. Oxidation of ruthenium thin films using atomic oxygen

    Energy Technology Data Exchange (ETDEWEB)

    McCoy, A.P.; Bogan, J.; Brady, A.; Hughes, G.

    2015-12-31

    In this study, the use of atomic oxygen to oxidise ruthenium thin films is assessed. Atomic layer deposited (ALD) ruthenium thin films (~ 3 nm) were exposed to varying amounts of atomic oxygen and the results were compared to the impact of exposures to molecular oxygen. X-ray photoelectron spectroscopy studies reveal substantial oxidation of metallic ruthenium films to RuO{sub 2} at exposures as low as ~ 10{sup 2} L at 575 K when atomic oxygen was used. Higher exposures of molecular oxygen resulted in no metal oxidation highlighting the benefits of using atomic oxygen to form RuO{sub 2}. Additionally, the partial oxidation of these ruthenium films occurred at temperatures as low as 293 K (room temperature) in an atomic oxygen environment. - Highlights: • X-ray photoelectron spectroscopy study of the oxidation of Ru thin films • Oxidation of Ru thin films using atomic oxygen • Comparison between atomic oxygen and molecular oxygen treatments on Ru thin films • Fully oxidised RuO{sub 2} thin films formed with low exposures to atomic oxygen.

  2. Optical and electrical characteristics of plasma enhanced chemical vapor deposition boron carbonitride thin films derived from N-trimethylborazine precursor

    Energy Technology Data Exchange (ETDEWEB)

    Sulyaeva, Veronica S., E-mail: veronica@niic.nsc.ru [Department of Functional Materials Chemistry, Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Kosinova, Marina L.; Rumyantsev, Yurii M.; Kuznetsov, Fedor A. [Department of Functional Materials Chemistry, Nikolaev Institute of Inorganic Chemistry SB RAS, Novosibirsk 630090 (Russian Federation); Kesler, Valerii G. [Laboratory of Physical Principles for Integrated Microelectronics, Rzhanov Institute of Semiconductor Physics SB RAS, Novosibirsk 630090 (Russian Federation); Kirienko, Viktor V. [Laboratory of Nonequilibrium Semiconductors Systems, Rzhanov Institute of Semiconductor Physics SB RAS, Novosibirsk 630090 (Russian Federation)

    2014-05-02

    Thin BC{sub x}N{sub y} films have been obtained by plasma enhanced chemical vapor deposition using N-trimethylborazine as a precursor. The films were deposited on Si(100) and fused silica substrates. The grown films were characterized by ellipsometry, Fourier transform infrared spectroscopy, scanning electron microscopy, X-ray energy dispersive spectroscopy, X-ray photoelectron spectroscopy, spectrophotometry, capacitance–voltage and current–voltage measurements. The deposition parameters, such as substrate temperature (373–973 K) and gas phase composition were varied. Low temperature BC{sub x}N{sub y} films were found to be high optical transparent layers in the range of 300–2000 nm, the transmittance as high as 93% has been achieved. BC{sub x}N{sub y} layers are dielectrics with dielectric constant k = 2.2–8.9 depending on the synthesis conditions. - Highlights: • Thin BC{sub x}N{sub y} films have been obtained by plasma enhanced chemical vapor deposition. • N-trimethylborazine was used as a precursor. • Low temperature BC{sub x}N{sub y} films were found to be high optical transparent layers (93%). • BC{sub x}N{sub y} layers are dielectrics with dielectric constant k = 2.2–8.9.

  3. Preparation of biaxially oriented TlCu-1234 thin films

    CERN Document Server

    Khan, N A; Tateai, F; Kojima, T; Ishida, K; Terada, N; Ihara, H

    1999-01-01

    The single phase of TlCu-1234 superconductor thin films is prepared for the first time by the amorphous phase epitaxy (APE) method, which is thallium treatment of sputtered amorphous phase at 900 degrees C for 1 h. The amorphous $9 phase is prepared by sputtering from the stoichiometric target composition CuBa/sub 2/Ca/sub 3/Cu/sub 4/O/sub 12-y/. The films on the SrTiO/sub 3/ substrate are aligned biaxially after the thallium treatment. Highly reproducible $9 TlCu-1234 films are prepared by this method. The XRD reflected a predominant single phase with the c-axis lattice constant of 18.74 AA. This lattice constant value is in between that of Cu-1234 (17.99 AA) and Tl-1234 (19.11 AA) . The $9 pole figure measurements of (103) reflection of the films showed a-axis-oriented crystals with Delta phi =0.8 degrees . The composition of the films after energy dispersive X-ray (EDX) measurements is Tl/sub 0.8/Cu/sub 0.2/Ba/sub $9 2/Ca/sub 3/Cu/sub 4/O /sub 12-y/. From the resistivity measurements, the T/sub c/ is 113 K...

  4. Thin Films in the Photovoltaic Industry

    International Nuclear Information System (INIS)

    Jaeger-Waldau, A.

    2008-03-01

    In the past years, the yearly world market growth rate for Photovoltaics was an average of more than 40%, which makes it one of the fastest growing industries at present. Business analysts predict the market volume to increase to 40 billion euros in 2010 and expect rising profit margins and lower prices for consumers at the same time. Today PV is still dominated by wafer based Crystalline Silicon Technology as the 'working horse' in the global market, but thin films are gaining market shares. For 2007 around 12% are expected. The current silicon shortage and high demand has kept prices higher than anticipated from the learning curve experience and has widened the windows of opportunities for thin film solar modules. Current production capacity estimates for thin films vary between 3 and 6 GW in 2010, representing a 20% market share for these technologies. Despite the higher growth rates for thin film technologies compared with the industry average, Thin Film Photovoltaic Technologies are still facing a number of challenges to maintain this growth and increase market shares. The four main topics which were discussed during the workshop were: Potential for cost reduction; Standardization; Recycling; Performance over the lifetime.

  5. A Humidity Sensor Based on Nb-doped Nanoporous TiO2 Thin Film

    Directory of Open Access Journals (Sweden)

    Mansoor Anbia

    2011-11-01

    Full Text Available The humidity sensing properties of the sensor fabricated from Nb-doped nanoporous TiO2 by screen-printing on the alumina substrate with Ag-Pd interdigital electrodes have been investigated. The nanoporous thin film has been prepared by sol-gel technique. The product has been characterized by X-ray diffraction and scanning electron microscopy to analyze the structure and its morphology. It is found that the impedance of this sensor changes more than four orders of magnitude in the relative humidity (RH range of 11–95 % at 25 °C. The response and recovery time of the sensor are about 19 and 25 s, respectively, during the RH variation from 11 to 95 %. The sensor shows high humidity sensitivity, rapid response and recovery, prominent stability, good repeatability and narrow hysteresis loop. These results indicate that Nb-doped nanoporous TiO2 thin films have a great potential for humidity sensing applications in room temperature operations.

  6. Determination of structural, mechanical and corrosion properties of Nb{sub 2}O{sub 5} and (Nb{sub y}Cu{sub 1−y})O{sub x} thin films deposited on Ti6Al4V alloy substrates for dental implant applications

    Energy Technology Data Exchange (ETDEWEB)

    Mazur, M. [Wroclaw University of Technology, Faculty of Microsystem Electronics and Photonics, Janiszewskiego 11/17, 50-372 Wroclaw (Poland); Kalisz, M., E-mail: malgorzata.kalisz@its.waw.pl [Motor Transport Institute, Jagiellońska 80, 03-301 Warsaw (Poland); Wojcieszak, D. [Wroclaw University of Technology, Faculty of Microsystem Electronics and Photonics, Janiszewskiego 11/17, 50-372 Wroclaw (Poland); Grobelny, M. [Motor Transport Institute, Jagiellońska 80, 03-301 Warsaw (Poland); Mazur, P. [Wroclaw University, Institute of Experimental Physics, Max Born 9, 50-204 Wroclaw (Poland); Kaczmarek, D.; Domaradzki, J. [Wroclaw University of Technology, Faculty of Microsystem Electronics and Photonics, Janiszewskiego 11/17, 50-372 Wroclaw (Poland)

    2015-02-01

    In this paper comparative studies on the structural, mechanical and corrosion properties of Nb{sub 2}O{sub 5}/Ti and (Nb{sub y}Cu{sub 1−y})O{sub x}/Ti alloy systems have been investigated. Pure layers of niobia and niobia with a copper addition were deposited on a Ti6Al4V titanium alloy surface using the magnetron sputtering method. The physicochemical properties of the prepared thin films were examined with the aid of XRD, XPS SEM and AFM measurements. The mechanical properties (i.e., nanohardness, Young's modulus and abrasion resistance) were performed using nanoindentation and a steel wool test. The corrosion properties of the coatings were determined by analysis of the voltammetric curves. The deposited coatings were crack free, exhibited good adherence to the substrate, no discontinuity of the thin film was observed and the surface morphology was homogeneous. The hardness of pure niobium pentoxide was ca. 8.64 GPa. The obtained results showed that the addition of copper into pure niobia resulted in the preparation of a layer with a lower hardness of ca. 7.79 GPa (for niobia with 17 at.% Cu) and 7.75 GPa (for niobia with 25 at.% Cu). The corrosion properties of the tested thin films deposited on the surface of titanium alloy depended on the composition of the thin layer. The addition of copper (i.e. a noble metal) to Nb{sub 2}O{sub 5} film increased the corrosion resistance followed by a significant decrease in the value of corrosion currents and, in case of the highest Cu content, the shift of corrosion potential towards the noble direction. The best corrosion properties were obtained from a sample of Ti6Al4V coated with (Nb{sub 0.75}Cu{sub 0.25})O{sub x} thin film. It seems that the tested materials could be used in the future as protection coatings for Ti alloys in biomedical applications such as implants. - Highlights: • Nb{sub 2}O{sub 5} and Nb{sub 2}O{sub 5}:Cu thin films were deposited on a Ti–Al–V surface using the magnetron sputtering.

  7. Nanostructured thin films and coatings functional properties

    CERN Document Server

    Zhang, Sam

    2010-01-01

    The second volume in ""The Handbook of Nanostructured Thin Films and Coatings"" set, this book focuses on functional properties, including optical, electronic, and electrical properties, as well as related devices and applications. It explores the large-scale fabrication of functional thin films with nanoarchitecture via chemical routes, the fabrication and characterization of SiC nanostructured/nanocomposite films, and low-dimensional nanocomposite fabrication and applications. The book also presents the properties of sol-gel-derived nanostructured thin films as well as silicon nanocrystals e

  8. Dielectric properties of thin C r2O3 films grown on elemental and oxide metallic substrates

    Science.gov (United States)

    Mahmood, Ather; Street, Michael; Echtenkamp, Will; Kwan, Chun Pui; Bird, Jonathan P.; Binek, Christian

    2018-04-01

    In an attempt to optimize leakage characteristics of α-C r2O3 thin films, its dielectric properties were investigated at local and macroscopic scale. The films were grown on Pd(111), Pt(111), and V2O3 (0001), supported on A l2O3 substrate. The local conductivity was measured by conductive atomic force microscopy mapping of C r2O3 surfaces, which revealed the nature of defects that formed conducting paths with the bottom Pd or Pt layer. A strong correlation was found between these electrical defects and the grain boundaries revealed in the corresponding topographic scans. In comparison, the C r2O3 film on V2O3 exhibited no leakage paths at similar tip bias value. Electrical resistance measurements through e-beam patterned top electrodes confirmed the resistivity mismatch between the films grown on different electrodes. The x-ray analysis attributes this difference to the twin free C r2O3 growth on V2O3 seeding.

  9. Aqueous metal–organic solutions for YSZ thin film inkjet deposition

    DEFF Research Database (Denmark)

    Gadea, Christophe; Hanniet, Q.; Lesch, A.

    2017-01-01

    Inkjet printing of 8% Y2O3-stabilized ZrO2 (YSZ) thin films is achieved by designing a novel water-based reactive ink for Drop-on-Demand (DoD) inkjet printing. The ink formulation is based on a novel chemical strategy that consists of a combination of metal oxide precursors (zirconium alkoxide...

  10. YBa2Cu3O(7-x) based superconducting thin films by multitarget sputtering

    International Nuclear Information System (INIS)

    Bouteloup, E.; Mercey, B.; Poullain, G.; Brousse, T.; Murray, H.; Raveau, B.

    1990-01-01

    This paper reports a new technique to prepare superconducting YBa 2 Cu 3 O (7-x) thin films. The multitarget sputtering apparatus described below allows the simultaneous and reproducible production of numerous films with a metallic composition close to Y 17% Ba 33% Cu 50% . Superconducting films (R = 0) at 80 K have been produced on polycrystalline zirconia substrates after a high temperature annealing [fr

  11. Superconducting thin films of YBa2Cu3O7-x

    International Nuclear Information System (INIS)

    Hudner, J.

    1993-01-01

    Thin films of the high temperature superconductor YBa 2 Cu 3 O 7-x (YBCO) are of significance in fundamental studies of oxide superconductors and for prospected electronic applications based on superconductors operating at liquid nitrogen temperatures (T= 77 K). Synthesis of YBCO thin films is complex and a large part of this thesis has been devoted to the elaboration of various techniques in forming YBCO thin films. A general observation was that synthesis of YBCO films exhibiting high zero-resistivity temperatures temperatures (T c ) ≥ 88 K and elevated critical current densities (J c ) ≥ 10 6 A/cm 2 at 77 K was possible under widely different conditions of film growth. For the BaF 2 -based method, various substrate materials were investigated. Among perovskite related substrates with low losses in the high frequency regime, LaA10 3 was found to yield YBCO films exhibiting the highest quality electrical properties. A study of YBCO film interaction with sapphire substrates was performed. It was suggested that the YBCO film on sapphire consists of weakly coupled superconducting grains. Compositional effects of Y, BA and Cu for MOCVD-YBCO films were examined with respect to morphology, structure, resistivity, as susceptibility and J c (T). High T c :s and J c :s were observed for an anomalous large compositional range of Cu in off-compositional YBCO films. This was shown to be related to the formation of Cu-rich precipitates embedded within a c-Axis oriented stoichiometric YBCO film matrix. Thermal critical current behavior at zero field in thin films of YBCO fabricated by various methods has been studied by three techniques: transport measurements on patterned microbridges, dc magnetization hysteresis loops using the Bean model and non-linear ac susceptibility analysis. Absolute critical current values obtained form the two former techniques when measured on the same YBCO film were observed to differ about a factor of two. The feasibility of non-linear ac

  12. Precipitates in YBa2Cu3O7-δ thin films annealed at low oxygen partial pressure

    International Nuclear Information System (INIS)

    Hou, S.Y.; Phillips, J.M.; Werder, D.J.; Tiefel, T.H.; Fleming, R.M.; Marshall, J.H.; Siegal, M.P.

    1993-01-01

    We have studied the precipitates in YBa 2 Cu 3 O 7-δ (YBCO) thin films grown by the BaF 2 process in p O 2 =4 Torr and 700 degree C. While stoichiometric films result in BaCuO 2 surface precipitates, we have found Y 2 Cu 2 O 5 precipitates embedded in the matrix of the same film. Off stoichiometric films with Ba/Y 2 Cu 2 O 5 in the film matrix. The estimated densities of the two precipitates favor a stoichiometric YBCO film matrix. This behavior is not explainable in terms of phase equilibria and is attributed to kinetic effects. The electrical properties of the films degrade as the Ba/Y ratio deviates from 2.00

  13. Intrinsically conductive polymer thin film piezoresistors

    DEFF Research Database (Denmark)

    Lillemose, Michael; Spieser, Martin; Christiansen, N.O.

    2008-01-01

    We report on the piezoresistive effect in the intrinsically conductive polymer, polyaniline. A process recipe for indirect patterning of thin film polyaniline has been developed. Using a specially designed chip, the polyaniline thin films have been characterised with respect to resistivity...

  14. Attachment of lead wires to thin film thermocouples mounted on high temperature materials using the parallel gap welding process

    Science.gov (United States)

    Holanda, Raymond; Kim, Walter S.; Pencil, Eric; Groth, Mary; Danzey, Gerald A.

    1990-01-01

    Parallel gap resistance welding was used to attach lead wires to sputtered thin film sensors. Ranges of optimum welding parameters to produce an acceptable weld were determined. The thin film sensors were Pt13Rh/Pt thermocouples; they were mounted on substrates of MCrAlY-coated superalloys, aluminum oxide, silicon carbide and silicon nitride. The entire sensor system is designed to be used on aircraft engine parts. These sensor systems, including the thin-film-to-lead-wire connectors, were tested to 1000 C.

  15. Thermal conductivity model for nanoporous thin films

    Science.gov (United States)

    Huang, Congliang; Zhao, Xinpeng; Regner, Keith; Yang, Ronggui

    2018-03-01

    Nanoporous thin films have attracted great interest because of their extremely low thermal conductivity and potential applications in thin thermal insulators and thermoelectrics. Although there are some numerical and experimental studies about the thermal conductivity of nanoporous thin films, a simplified model is still needed to provide a straightforward prediction. In this paper, by including the phonon scattering lifetimes due to film thickness boundary scattering, nanopore scattering and the frequency-dependent intrinsic phonon-phonon scattering, a fitting-parameter-free model based on the kinetic theory of phonon transport is developed to predict both the in-plane and the cross-plane thermal conductivities of nanoporous thin films. With input parameters such as the lattice constants, thermal conductivity, and the group velocity of acoustic phonons of bulk silicon, our model shows a good agreement with available experimental and numerical results of nanoporous silicon thin films. It illustrates that the size effect of film thickness boundary scattering not only depends on the film thickness but also on the size of nanopores, and a larger nanopore leads to a stronger size effect of the film thickness. Our model also reveals that there are different optimal structures for getting the lowest in-plane and cross-plane thermal conductivities.

  16. Composition-induced structural, electrical, and magnetic phase transitions in AX-type mixed-valence cobalt oxynitride epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Jumpei; Oka, Daichi [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu, Kawasaki 213-0012 (Japan); Hirose, Yasushi, E-mail: hirose@chem.s.u-tokyo.ac.jp; Yang, Chang; Fukumura, Tomoteru; Hasegawa, Tetsuya [Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Nakao, Shoichiro [Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan); Harayama, Isao; Sekiba, Daiichiro [University of Tsukuba Tandem Accelerator Complex (UTTAC), 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8577 (Japan)

    2015-12-07

    Synthesis of mid- to late-transition metal oxynitrides is generally difficult by conventional thermal ammonolysis because of thermal instability. In this letter, we synthesized epitaxial thin films of AX-type phase-pure cobalt oxynitrides (CoO{sub x}N{sub y}) by using nitrogen-plasma-assisted pulsed laser deposition and investigated their structural, electrical, and magnetic properties. The CoO{sub x}N{sub y} thin films with 0 ≤ y/(x + y) ≤ 0.63 grown on MgO (100) substrates showed a structural phase transition from rock salt (RS) to zinc blend at the nitrogen content y/(x + y) ∼ 0.5. As the nitrogen content increased, the room-temperature electrical resistivity of the CoO{sub x}N{sub y} thin films monotonically decreased from the order of 10{sup 5} Ω cm to 10{sup −4} Ω cm. Furthermore, we observed an insulator-to-metal transition at y/(x + y) ∼ 0.34 in the RS-CoO{sub x}N{sub y} phase, which has not yet been reported in Co{sup 2+}/Co{sup 3+} mixed-valence cobalt oxides with octahedral coordination. The low resistivity in the RS-CoO{sub x}N{sub y} phase, on the 10{sup −3} Ω cm order, may have originated from the intermediate spin state of Co{sup 3+} stabilized by the lowered crystal field symmetry of the CoO{sub 6−n}N{sub n} octahedra (n = 1, 2,…5). Magnetization measurements suggested that a magnetic phase transition occurred in the RS-CoO{sub x}N{sub y} films during the insulator-to-metal transition. These results demonstrate that low-temperature epitaxial growth is a promising approach for exploring novel electronic functionalities in oxynitrides.

  17. Composition-induced structural, electrical, and magnetic phase transitions in AX-type mixed-valence cobalt oxynitride epitaxial thin films

    International Nuclear Information System (INIS)

    Takahashi, Jumpei; Oka, Daichi; Hirose, Yasushi; Yang, Chang; Fukumura, Tomoteru; Hasegawa, Tetsuya; Nakao, Shoichiro; Harayama, Isao; Sekiba, Daiichiro

    2015-01-01

    Synthesis of mid- to late-transition metal oxynitrides is generally difficult by conventional thermal ammonolysis because of thermal instability. In this letter, we synthesized epitaxial thin films of AX-type phase-pure cobalt oxynitrides (CoO x N y ) by using nitrogen-plasma-assisted pulsed laser deposition and investigated their structural, electrical, and magnetic properties. The CoO x N y thin films with 0 ≤ y/(x + y) ≤ 0.63 grown on MgO (100) substrates showed a structural phase transition from rock salt (RS) to zinc blend at the nitrogen content y/(x + y) ∼ 0.5. As the nitrogen content increased, the room-temperature electrical resistivity of the CoO x N y thin films monotonically decreased from the order of 10 5  Ω cm to 10 −4  Ω cm. Furthermore, we observed an insulator-to-metal transition at y/(x + y) ∼ 0.34 in the RS-CoO x N y phase, which has not yet been reported in Co 2+ /Co 3+ mixed-valence cobalt oxides with octahedral coordination. The low resistivity in the RS-CoO x N y phase, on the 10 −3  Ω cm order, may have originated from the intermediate spin state of Co 3+ stabilized by the lowered crystal field symmetry of the CoO 6−n N n octahedra (n = 1, 2,…5). Magnetization measurements suggested that a magnetic phase transition occurred in the RS-CoO x N y films during the insulator-to-metal transition. These results demonstrate that low-temperature epitaxial growth is a promising approach for exploring novel electronic functionalities in oxynitrides

  18. Photoinduced hydrophobic surface of graphene oxide thin films

    International Nuclear Information System (INIS)

    Zhang Xiaoyan; Song Peng; Cui Xiaoli

    2012-01-01

    Graphene oxide (GO) thin films were deposited on transparent conducting oxide substrates and glass slides by spin coating method at room temperature. The wettability of GO thin films before and after ultraviolet (UV) irradiation was characterized with water contact angles, which increased from 27.3° to 57.6° after 3 h of irradiation, indicating a photo-induced hydrophobic surface. The UV–vis absorption spectra, Raman spectroscopy, X-ray photoelectron spectroscopy, and conductivity measurements of GO films before and after UV irradiation were taken to study the mechanism of photoinduced hydrophobic surface of GO thin films. It is demonstrated that the photoinduced hydrophobic surface is ascribed to the elimination of oxygen-containing functional groups on GO molecules. This work provides a simple strategy to control the wettability properties of GO thin films by UV irradiation. - Highlights: ► Photoinduced hydrophobic surface of graphene oxide thin films has been demonstrated. ► Elimination of oxygen-containing functional groups in graphene oxide achieved by UV irradiation. ► We provide novel strategy to control surface wettability of GO thin films by UV irradiation.

  19. Optical thin film deposition

    International Nuclear Information System (INIS)

    Macleod, H.A.

    1979-01-01

    The potential usefulness in the production of optical thin-film coatings of some of the processes for thin film deposition which can be classified under the heading of ion-assisted techniques is examined. Thermal evaporation is the process which is virtually universally used for this purpose and which has been developed to a stage where performance is in almost all respects high. Areas where further improvements would be of value, and the possibility that ion-assisted deposition might lead to such improvements, are discussed. (author)

  20. Optical thin films and coatings from materials to applications

    CERN Document Server

    Flory, Francois

    2013-01-01

    Optical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. This book provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas.$bOptical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. Optical thin films and coatings provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas. Part one explores the design and manufacture of optical coatings. Part two highlights unconventional features of optical thin films including scattering properties of random structures in thin films, optical properties of thin film materials at short wavelengths, thermal properties and colour effects. Part three focusses on novel materials for optical thin films and coatings...

  1. Microstructures and precipitates in laser-ablated YBCO thin films on SrTiO[sub 3] (110). [Y-Ba-Cu-O

    Energy Technology Data Exchange (ETDEWEB)

    Catana, A. (IBM Research Div., Zurich Research Lab., Rueschlikon (Switzerland)); Rossel, C. (IBM Research Div., Zurich Research Lab., Rueschlikon (Switzerland)); Perrin, A. (Lab. de Chimie du Solide et Inorganique Moleculaire, Univ. de Rennes 1, 35 (France)); Guilloux-Viry, M. (Lab. de Chimie du Solide et Inorganique Moleculaire, Univ. de Rennes 1, 35 (France)); Thivet, C. (Lab. de Chimie du Solide et Inorganique Moleculaire, Univ. de Rennes 1, 35 (France))

    1993-05-10

    Thin YBCO films ([proportional to] 100 nm) have been deposited by laser ablation on SrTiO[sub 3] (110) substrates. Microstructural investigations have been performed by scanning tunneling and high-resolution electron microscopy. The results show that the surface corrugation is related to the growth of twisted YBCO domains that nucleate at the film/substrate interface. The twist is characterized by a 90 rotation of YBCO around the 100 and/or 010 axes, which results in [l brace]013[r brace] and/or [l brace]103[r brace] planes parallel to the substrate surface. Precipitates belonging to Y[sub 2]O[sub 3] are densely distributed on the film surface. No such second phases have been identified inside the YBCO films. The orientational relationship between precipitates and film is such that the lattice mismatch is minimized in the interface planes. A large number of precipitates grow from the film surface outwards. This phenomenon can be explained on the basis of lattice matching arguments and favorable growth kinetics. (orig.)

  2. Pulsed-laser-deposited YBCO thin films using modified MTG processed targets

    CERN Document Server

    Kim, C H; Kim, I T; Hahn, T S

    1999-01-01

    YBCO thin films were deposited by pulsed laser deposition from targets fabricated using the modified melt-textured growth (MTG) method and the solid-state sintering (SSS) method. All of the films showed c-axis orientations, but the films from the MTG targets had better crystallinity than those from the SSS targets. As the substrate temperature was increased, T sub c and J sub c of the films increased. The films from the MTG targets showed better superconducting properties than those from the SSS targets. From the composition analysis of the targets, the Y-richer vapor species arriving at the substrate from the MTG targets are thought to form a thermodynamically more stable YBCO phase with less cation disorder.

  3. Sputtering materials for VLSI and thin film devices

    CERN Document Server

    Sarkar, Jaydeep

    2010-01-01

    An important resource for students, engineers and researchers working in the area of thin film deposition using physical vapor deposition (e.g. sputtering) for semiconductor, liquid crystal displays, high density recording media and photovoltaic device (e.g. thin film solar cell) manufacturing. This book also reviews microelectronics industry topics such as history of inventions and technology trends, recent developments in sputtering technologies, manufacturing steps that require sputtering of thin films, the properties of thin films and the role of sputtering target performance on overall p

  4. Zn{sub x}Zr{sub y}O{sub z} thin films grown by DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, O. [Instituto de Ciencia de Materiales de Madrid (CSIC), Madrid (Spain); Hernandez-Velez, M. [Departamento de Fisica Aplicada, Universidad Autonoma de Madrid (Spain)

    2017-10-15

    The structural and optical properties of thin films deposited by DC reactive magnetron co-sputtering using Zn and Zr targets in argon and oxygen gas mixtures at room temperature are reported. The power applied to the Zr cathode was kept constant, while that applied to the Zn cathode was varied between 0 and 150 W to produce very different Zn{sub x}Zr{sub y}O{sub z} ternary compounds with Zn/Zr atomic ratios in the range of 0.1-10. The composition, crystalline structure, and optical properties of the samples were determined by EDX, XRD, FTIR, and UV-visible spectroscopies. The grown films are polycrystalline, and the preferred crystallographic orientation depends on the Zn atomic concentration in the film. The optical transmission in the UV-visible range is approximately 80% in all cases, and as the Zn atomic content increases, the absorption edge shifts to longer wavelengths. The optical band gap, E{sub g}, shifted from 5.5 to 3.5 eV when the Zn/Zr atomic ratio was increased. The results indicate the potential use of these materials in optoelectronic applications. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  5. Positron depth profiling of the structural and electronic structure transformations of hydrogenated Mg-based thin films

    Science.gov (United States)

    Eijt, S. W. H.; Kind, R.; Singh, S.; Schut, H.; Legerstee, W. J.; Hendrikx, R. W. A.; Svetchnikov, V. L.; Westerwaal, R. J.; Dam, B.

    2009-02-01

    We report positron depth-profiling studies on the hydrogen sorption behavior and phase evolution of Mg-based thin films. We show that the main changes in the depth profiles resulting from the hydrogenation to the respective metal hydrides are related to a clear broadening in the observed electron momentum densities in both Mg and Mg2Ni films. This shows that positron annihilation methods are capable of monitoring these metal-to-insulator transitions, which form the basis for important applications of these types of films in switchable mirror devices and hydrogen sensors in a depth-sensitive manner. Besides, some of the positrons trap at the boundaries of columnar grains in the otherwise nearly vacancy-free Mg films. The combination of positron annihilation and x-ray diffraction further shows that hydrogen loading at elevated temperatures, in the range of 480-600 K, leads to a clear Pd-Mg alloy formation of the Pd catalyst cap layer. At the highest temperatures, the hydrogenation induces a partial delamination of the ˜5 nm thin capping layer, as sensitively monitored by positron depth profiling of the fraction of ortho-positronium formed at interface with the cap layer. The delamination effectively blocks the hydrogen cycling. In Mg-Si bilayers, we investigated the reactivity upon hydrogen loading and heat treatments near 480 K, which shows that Mg2Si formation is fast relative to MgH2. The combination of positron depth profiling and transmission electron microscopy shows that hydrogenation promotes a complete conversion to Mg2Si for this destabilized metal hydride system, while a partially unreacted, Mg-rich amorphous prelayer remains on top of Mg2Si after a single heat treatment in an inert gas environment. Thin film studies indicate that the difficulty of rehydrogenation of Mg2Si is not primarily the result from slow hydrogen dissociation at surfaces, but is likely hindered by the presence of a barrier for removal of Mg from the readily formed Mg2Si.

  6. Piezoelectric MEMS: Ferroelectric thin films for MEMS applications

    Science.gov (United States)

    Kanno, Isaku

    2018-04-01

    In recent years, piezoelectric microelectromechanical systems (MEMS) have attracted attention as next-generation functional microdevices. Typical applications of piezoelectric MEMS are micropumps for inkjet heads or micro-gyrosensors, which are composed of piezoelectric Pb(Zr,Ti)O3 (PZT) thin films and have already been commercialized. In addition, piezoelectric vibration energy harvesters (PVEHs), which are regarded as one of the key devices for Internet of Things (IoT)-related technologies, are promising future applications of piezoelectric MEMS. Significant features of piezoelectric MEMS are their simple structure and high energy conversion efficiency between mechanical and electrical domains even on the microscale. The device performance strongly depends on the function of the piezoelectric thin films, especially on their transverse piezoelectric properties, indicating that the deposition of high-quality piezoelectric thin films is a crucial technology for piezoelectric MEMS. On the other hand, although the difficulty in measuring the precise piezoelectric coefficients of thin films is a serious obstacle in the research and development of piezoelectric thin films, a simple unimorph cantilever measurement method has been proposed to obtain precise values of the direct or converse transverse piezoelectric coefficient of thin films, and recently this method has become to be the standardized testing method. In this article, I will introduce fundamental technologies of piezoelectric thin films and related microdevices, especially focusing on the deposition of PZT thin films and evaluation methods for their transverse piezoelectric properties.

  7. YIG: Bi2O3 Nanocomposite Thin Films for Magnetooptic and Microwave Applications

    Directory of Open Access Journals (Sweden)

    M. Nur-E-Alam

    2015-01-01

    Full Text Available Y3Fe5O12-Bi2O3 composite thin films are deposited onto Gd3Ga5O12 (GGG substrates and their annealing crystallization regimes are optimized (in terms of both process temperatures and durations to obtain high-quality thin film layers possessing magnetic properties attractive for a range of technological applications. The amount of bismuth oxide content introduced into these nanocomposite-type films is controlled by adjusting the RF power densities applied to both Y3Fe5O12 and Bi2O3 sputtering targets during the cosputtering deposition processes. The measured material properties of oven-annealed YIG-Bi2O3 films indicate that cosputtering of YIG-Bi2O3 composites can provide the flexibility of application-specific YIG layers fabrication of interest for several existing, emerging, and also frontier technologies. Experimental results demonstrate large specific Faraday rotation (of more than 1°/µm at 532 nm, achieved simultaneously with low optical losses in the visible range and very narrow peak-to-peak ferromagnetic resonance linewidth of around ΔHpp= 6.1 Oe at 9.77 GHz.

  8. Love-type surface acoustic wave on Y-X LiTaO3 with amorphous Ta2O5 thin film

    Science.gov (United States)

    Kakio, Shoji; Fukasawa, Haruka; Hosaka, Keiko

    2015-07-01

    In this study, to obtain a substrate structure with a lower phase velocity, the propagation properties of a Love-type surface acoustic wave (Love SAW) on Y-X LiTaO3 (LT) with an amorphous tantalum pentoxide (a-Ta2O5) thin film were investigated using a simple delay line and a resonator with a wavelength λ of 8 µm. The insertion loss of a simple delay line was decreased markedly by loading with an a-Ta2O5 film owing to a transformation from a leaky SAW (LSAW) to a non-leaky Love SAW. A phase velocity of 3,340 m/s, a coupling factor of 5.8%, and a propagation loss of 0.03 dB/λ were obtained for a normalized thickness h/λ of 0.120. Moreover, the resonance properties of the Love SAW were almost equal or superior to those for an LSAW on Al/36° Y-X LT, except for the fractional bandwidth.

  9. Nanometric thin film membranes manufactured on square meter scale: ultra-thin films for CO 2 capture

    KAUST Repository

    Yave, Wilfredo

    2010-09-01

    Miniaturization and manipulation of materials at nanometer scale are key challenges in nanoscience and nanotechnology. In membrane science and technology, the fabrication of ultra-thin polymer films (defect-free) on square meter scale with uniform thickness (<100 nm) is crucial. By using a tailor-made polymer and by controlling the nanofabrication conditions, we developed and manufactured defect-free ultra-thin film membranes with unmatched carbon dioxide permeances, i.e. >5 m3 (STP) m-2 h -1 bar-1. The permeances are extremely high, because the membranes are made from a CO2 philic polymer material and they are only a few tens of nanometers thin. Thus, these thin film membranes have potential application in the treatment of large gas streams under low pressure like, e.g., carbon dioxide separation from flue gas. © 2010 IOP Publishing Ltd.

  10. Reliability assessment of ultra-thin HfO2 films deposited on silicon wafer

    International Nuclear Information System (INIS)

    Fu, Wei-En; Chang, Chia-Wei; Chang, Yong-Qing; Yao, Chih-Kai; Liao, Jiunn-Der

    2012-01-01

    Highlights: ► Nano-mechanical properties on annealed ultra-thin HfO 2 film are studied. ► By AFM analysis, hardness of the crystallized HfO 2 film significantly increases. ► By nano-indention, the film hardness increases with less contact stiffness. ► Quality assessment on the annealed ultra-thin films can thus be achieved. - Abstract: Ultra-thin hafnium dioxide (HfO 2 ) is used to replace silicon dioxide to meet the required transistor feature size in advanced semiconductor industry. The process integration compatibility and long-term reliability for the transistors depend on the mechanical performance of ultra-thin HfO 2 films. The criteria of reliability including wear resistance, thermal fatigue, and stress-driven failure rely on film adhesion significantly. The adhesion and variations in mechanical properties induced by thermal annealing of the ultra-thin HfO 2 films deposited on silicon wafers (HfO 2 /SiO 2 /Si) are not fully understood. In this work, the mechanical properties of an atomic layer deposited HfO 2 (nominal thickness ≈10 nm) on a silicon wafer were characterized by the diamond-coated tip of an atomic force microscope and compared with those of annealed samples. The results indicate that the annealing process leads to the formation of crystallized HfO 2 phases for the atomic layer deposited HfO 2 . The HfSi x O y complex formed at the interface between HfO 2 and SiO 2 /Si, where the thermal diffusion of Hf, Si, and O atoms occurred. The annealing process increases the surface hardness of crystallized HfO 2 film and therefore the resistance to nano-scratches. In addition, the annealing process significantly decreases the harmonic contact stiffness (or thereafter eliminate the stress at the interface) and increases the nano-hardness, as measured by vertically sensitive nano-indentation. Quality assessments on as-deposited and annealed HfO 2 films can be thereafter used to estimate the mechanical properties and adhesion of ultra-thin HfO 2

  11. Thin film bismuth iron oxides useful for piezoelectric devices

    Science.gov (United States)

    Zeches, Robert J.; Martin, Lane W.; Ramesh, Ramamoorthy

    2016-05-31

    The present invention provides for a composition comprising a thin film of BiFeO.sub.3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO.sub.3 thin film, and a second electrode in contact with the BiFeO.sub.3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.

  12. Substrate decoration for improvement of current-carrying capabilities of YBa{sub 2}Cu{sub 3}O{sub x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Khoryushin, Alexey V., E-mail: khoryushin@ya.ru [Department of Physics, Technical University of Denmark, DTU Building 309, Kgs. Lyngby DK-2800 (Denmark); Mozhaev, Peter B.; Mozhaeva, Julia E. [Department of Physics, Technical University of Denmark, DTU Building 309, Kgs. Lyngby DK-2800 (Denmark); Bdikin, Igor K. [Department of Mechanical Engineering, Centre for Mechanical Technology and Automation, University of Aveiro, 3810-193 Aveiro (Portugal); Zhao, Yue [Department of Energy Conversion and Storage, Technical University of Denmark, DK-4000 Roskilde (Denmark); Andersen, Niels H.; Jacobsen, Claus S.; Hansen, Jørn Bindslev [Department of Physics, Technical University of Denmark, DTU Building 309, Kgs. Lyngby DK-2800 (Denmark)

    2013-03-15

    Highlights: ► Effects of substrate decoration on properties of YBCO thin films were studied. ► Y{sub 2}O{sub 3} nanoparticles, ultra-thin Y{sub 2}O{sub 3} and Y:ZrO{sub 2} layers were used as decoration layer. ► Decoration improves j{sub C} (5 T and 50 K) up to 0.97 MA/cm{sup 2} vs. 0.76 MA/cm{sup 2} for a reference film. ► Ultra-thin layer of yttria and yttria nanoparticles have a similar effect on YBCO. ► Y{sub 2}O{sub 3} decoration results in power law coefficient α = 0.3 vs. α = 0.4 for a reference film. -- Abstract: The effects of substrate decoration with yttria and Y:ZrO{sub 2} on the structural and electrical properties of the YBa{sub 2}Cu{sub 3}O{sub x} (YBCO) thin films are studied. The films were deposited on (LaAlO{sub 3}){sub 3}–(Sr{sub 2}AlTaO{sub 8}){sub 7} substrates by pulsed laser deposition. Two different structures of decoration layer were applied, a template layer of nanoparticles and an uniform ultra-thin layer. Significant improvement of current-carrying capabilities was observed, especially at high external magnetic fields. Structural studies of these films reveal the presence of extended linear defects in the YBCO matrix. The formation of these structures is attributed to seeding of randomly oriented YBCO grains due to suppression of epitaxy in the very beginning of the deposition. The films of both kinds of decoration layers show nearly the same improvement of j{sub C} over the reference film at 77 and 50 K: j{sub C} (5T and 50 K) reaches 0.92 and 0.97 MA/cm{sup 2} for uniform and template decoration layers. At 5 and 20 K the effect of template decoration layers is more beneficial: j{sub C} (5T and 20 K) values are 3.5 and 4.1 MA/cm{sup 2}, j{sub C} (5T and 5 K) values are 6.4 and 7.9 MA/cm{sup 2}, for uniform and template decoration layers, respectively.

  13. Anisotropy of the irreversibility field for Zr-doped $(Y,Gd)Ba_2Cu_3O_{7-x}$ thin films up to 45T

    OpenAIRE

    Tarantini, C.; Jaroszynski, J.; Kametani, F.; Zuev, Y. L.; Gurevich, A.; Chen, Y.; Selvamanickam, V.; Larbalestier, D. C.; Christen, D. K.

    2012-01-01

    The anisotropic irreversibility field B$_{Irr}$ of two $YBa_2Cu_3O_{7-x}$ thin films doped with additional rare earth (RE)=(Gd,Y) and Zr and containing strong correlated pins (splayed BaZrO$_{3}$ nanorods, and $RE_2O_3$ nanoprecipitates), has been measured over a very broad range up to 45T at temperatures 56 K

  14. Tools to synthesize the learning of thin films

    International Nuclear Information System (INIS)

    Rojas, Roberto; Fuster, Gonzalo; Sluesarenko, Viktor

    2011-01-01

    After a review of textbooks written for undergraduate courses in physics, we have found that discussions on thin films are mostly incomplete. They consider the reflected and not the transmitted light for two instead of the four types of thin films. In this work, we complement the discussion in elementary textbooks, by analysing the phase differences required to match the conditions for constructive and destructive interference, in the reflected and transmitted light in four types of thin films. We consider thin films with varied sequences in the refractive index, which we identify as barriers, wells and stairs (up and down). Also, we use the conservation of energy in order to understand the complementary colour fringes observed in the reflected and transmitted light through thin films. We analyse systematically the phase changes by introducing a phase table and we synthesize the results in a circular diagram matching 16 physical situations of interference and their corresponding conditions on the film thickness. The phase table and the circular diagram are a pair of tools easily assimilated by students, and useful to organize, analyse and activate the knowledge about thin films.

  15. A mechanism of inhibition of phase transitions in nano-grained close-packed Pd thin films

    Czech Academy of Sciences Publication Activity Database

    Hüger, E.; Káňa, Tomáš; Šob, Mojmír

    2010-01-01

    Roč. 34, č. 4 (2010), s. 421-427 ISSN 0364-5916 R&D Projects: GA AV ČR IAA100100920; GA MŠk(CZ) OC10008 Institutional research plan: CEZ:AV0Z20410507 Keywords : phase transformations * thin films * nanocrystalline materials Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.429, year: 2010

  16. Chemical solution synthesis and ferromagnetic resonance of epitaxial thin films of yttrium iron garnet

    Science.gov (United States)

    Lucas, Irene; Jiménez-Cavero, Pilar; Vila-Fungueiriño, J. M.; Magén, Cesar; Sangiao, Soraya; de Teresa, José Maria; Morellón, Luis; Rivadulla, Francisco

    2017-12-01

    We report the fabrication of epitaxial Y3F e5O12 (YIG) thin films on G d3G a5O12 (111) using a chemical solution method. Cubic YIG is a ferrimagnetic material at room temperature, with excellent magneto-optical properties, high electrical resistivity, and a very narrow ferromagnetic resonance, which makes it particularly suitable for applications in filters and resonators at microwave frequencies. But these properties depend on the precise stoichiometry and distribution of F e3 + ions among the octahedral/tetrahedral sites of a complex structure, which hampered the production of high-quality YIG thin films by affordable chemical methods. Here we report the chemical solution synthesis of YIG thin films, with excellent chemical, crystalline, and magnetic homogeneity. The films show a very narrow ferromagnetic resonance (long spin relaxation time), comparable to that obtained from high-vacuum physical deposition methods. These results demonstrate that chemical methods can compete to develop nanometer-thick YIG films with the quality required for spintronic devices and other high-frequency applications.

  17. Molecular simulation of freestanding amorphous nickel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dong, T.Q. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, Cedex 2 (France); Hoang, V.V., E-mail: vvhoang2002@yahoo.com [Department of Physics, Institute of Technology, National University of Ho Chi Minh City, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City (Viet Nam); Lauriat, G. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, Cedex 2 (France)

    2013-10-31

    Size effects on glass formation in freestanding Ni thin films have been studied via molecular dynamics simulation with the n-body Gupta interatomic potential. Atomic mechanism of glass formation in the films is determined via analysis of the spatio-temporal arrangements of solid-like atoms occurred upon cooling from the melt. Solid-like atoms are detected via the Lindemann ratio. We find that solid-like atoms initiate and grow mainly in the interior of the film and grow outward. Their number increases with decreasing temperature and at a glass transition temperature they dominate in the system to form a relatively rigid glassy state of a thin film shape. We find the existence of a mobile surface layer in both liquid and glassy states which can play an important role in various surface properties of amorphous Ni thin films. We find that glass formation is size independent for models containing 4000 to 108,000 atoms. Moreover, structure of amorphous Ni thin films has been studied in details via coordination number, Honeycutt–Andersen analysis, and density profile which reveal that amorphous thin films exhibit two different parts: interior and surface layer. The former exhibits almost the same structure like that found for the bulk while the latter behaves a more porous structure containing a large amount of undercoordinated sites which are the origin of various surface behaviors of the amorphous Ni or Ni-based thin films found in practice. - Highlights: • Glass formation is analyzed via spatio-temporal arrangements of solid-like atoms. • Amorphous Ni thin film exhibits two different parts: surface and interior. • Mobile surface layer enhances various surface properties of the amorphous Ni thin films. • Undercoordinated sites play an important role in various surface activities.

  18. Resistivity of thiol-modified gold thin films

    International Nuclear Information System (INIS)

    Correa-Puerta, Jonathan; Del Campo, Valeria; Henríquez, Ricardo; Häberle, Patricio

    2014-01-01

    In this work, we study the effect of thiol self assembled monolayers on the electrical resistivity of metallic thin films. The analysis is based on the Fuchs–Sondheimer–Lucas theory and on electrical transport measurements. We determined resistivity change due to dodecanethiol adsorption on gold thin films. For this purpose, we controlled the deposition and annealing temperatures of the films to change the surface topography and to diminish the effect of electron grain boundary scattering. Results show that the electrical response to the absorption of thiols strongly depends on the initial topography of the surface. - Highlights: • We study the effect of self assembled monolayers on the resistivity of thin films. • Fuchs–Sondheimer theory reproduces the resistivity increase due to thiol deposition. • We determined resistivity change due to dodecanethiol deposition on gold thin films. • The electrical response strongly depends on the substrate surface topography

  19. Resistivity of thiol-modified gold thin films

    Energy Technology Data Exchange (ETDEWEB)

    Correa-Puerta, Jonathan [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso (Chile); Del Campo, Valeria [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaiso 2390123 (Chile); Henríquez, Ricardo, E-mail: ricardo.henriquez@usm.cl [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaiso 2390123 (Chile); Häberle, Patricio [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaiso 2390123 (Chile)

    2014-11-03

    In this work, we study the effect of thiol self assembled monolayers on the electrical resistivity of metallic thin films. The analysis is based on the Fuchs–Sondheimer–Lucas theory and on electrical transport measurements. We determined resistivity change due to dodecanethiol adsorption on gold thin films. For this purpose, we controlled the deposition and annealing temperatures of the films to change the surface topography and to diminish the effect of electron grain boundary scattering. Results show that the electrical response to the absorption of thiols strongly depends on the initial topography of the surface. - Highlights: • We study the effect of self assembled monolayers on the resistivity of thin films. • Fuchs–Sondheimer theory reproduces the resistivity increase due to thiol deposition. • We determined resistivity change due to dodecanethiol deposition on gold thin films. • The electrical response strongly depends on the substrate surface topography.

  20. Structure and magnetism of ultrathin Co and Fe films epitaxially grown on Pd/Cu(0 0 1)

    International Nuclear Information System (INIS)

    Lu, Y.F.; Przybylski, M.; Yan, L.; Barthel, J.; Meyerheim, H.L.; Kirschner, J.

    2005-01-01

    A contribution originating from the Co/Pd and Fe/Pd interfaces to the magneto-optical Kerr effect (MOKE) rotation is analyzed for Co and/or Fe films grown on a Pd-buffer-monolayer on Cu(0 0 1). A clear increase of the MOKE signal in comparison to the Co(Fe) films grown directly on Cu(0 0 1) is detected. An interpretation is supported by similar observations for Co films grown on Pd(1 1 0) and Pd(0 0 1). In particular, the sign reversal of the Kerr loops with increasing thickness of the Co(Fe) films is discussed. Magneto-optical effects are separated from the real magnetization and its dependence on the film thickness

  1. Pd- and Ca-doped iron oxide for ethanol vapor sensing

    International Nuclear Information System (INIS)

    Neri, G.; Bonavita, A.; Ipsale, S.; Rizzo, G.; Baratto, C.; Faglia, G.; Sberveglieri, G.

    2007-01-01

    Iron oxide thin films doped with Ca and Pd, prepared by a liquid-phase deposition method (LPD) from aqueous solution, have been investigated as potential ethanol gas sensors. SEM and XRD analyses were used to characterize Fe 2 O 3 LPD films. Hematite (α-Fe 2 O 3 ), having an average crystallite size in the range between 20 and 30 nm, was the only crystalline phase detected on all undoped and doped films. The electrical response towards ethanol (100-500 ppm) has been studied in the temperature range of 300-500 deg. C. Both Ca and Pd promoters have shown a positive effect on the sensitivity of Fe 2 O 3 films at the lower temperature investigated, whereas at higher temperature the undoped Fe 2 O 3 film has shown better performances. The sensing properties of undoped and doped Fe 2 O 3 thin films towards different interfering gases like NO 2 , CO and NH 3 have been also investigated, showing that the selectivity to ethanol benefits of the Ca addition

  2. Photoelectrochemical properties of palladium sulfide (PdS)

    Energy Technology Data Exchange (ETDEWEB)

    Macia, M.D.; Diaz-Chao, P.; Clamagirand, J.; Ares, J.R.; Ferrer, I.J.; Sanchez, C. [UAM, Madrid (Spain). Laboratoria de Materiales de Interes en Energias Renovables

    2010-07-01

    The electrochemical behaviour of PdS films has been studied in 1M Na{sub 2}SO{sub 3} solution. Photoelectrochemical characterization of polycrystalline PdS thin films have been carried out in the potential range -200mV

  3. High-resolution structural characterization and magnetic properties of epitaxial Ce-doped yttrium iron garnet thin films

    Science.gov (United States)

    Li, Zhong; Vikram Singh, Amit; Rastogi, Ankur; Gazquez, Jaume; Borisevich, Albina Y.; Mishra, Rohan; Gupta, Arunava

    2017-07-01

    Thin films of magnetic garnet materials, e.g. yttrium iron garnet (Y3Fe5O12, YIG), are useful for a variety of applications including microwave integrated circuits and spintronics. Substitution of rare earth ions, such as cerium, is known to enhance the magneto-optic Kerr effect (MOKE) as compared to pure YIG. Thin films of Ce0.75Y2.25Fe5O12 (Ce:YIG) have been grown using the pulsed laser deposition (PLD) technique and their crystal structure examined using high resolution scanning transmission electron microscopy. Homogeneous substitution of Ce in YIG, without oxidation to form a separate CeO2 phase, can be realized in a narrow process window with resulting enhancement of the MOKE signal. The thermally generated signal due to spin Seebeck effect for the optimally doped Ce:YIG films has also been investigated.

  4. Improvement in interfacial characteristics of low-voltage carbon nanotube thin-film transistors with solution-processed boron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jun-Young; Ha, Tae-Jun, E-mail: taejunha0604@gmail.com

    2017-08-15

    Highlights: • We demonstrate the potential of solution-processed boron nitride (BN) thin films for nanoelectronics. • Improved interfacial characteristics reduced the leakage current by three orders of magnitude. • The BN encapsulation improves all the device key metrics of low-voltage SWCNT-TFTs. • Such improvements were achieved by reduced interaction of interfacial localized states. - Abstract: In this article, we demonstrate the potential of solution-processed boron nitride (BN) thin films for high performance single-walled carbon nanotube thin-film transistors (SWCNT-TFTs) with low-voltage operation. The use of BN thin films between solution-processed high-k dielectric layers improved the interfacial characteristics of metal-insulator-metal devices, thereby reducing the current density by three orders of magnitude. We also investigated the origin of improved device performance in SWCNT-TFTs by employing solution-processed BN thin films as an encapsulation layer. The BN encapsulation layer improves the electrical characteristics of SWCNT-TFTs, which includes the device key metrics of linear field-effect mobility, sub-threshold swing, and threshold voltage as well as the long-term stability against the aging effect in air. Such improvements can be achieved by reduced interaction of interfacial localized states with charge carriers. We believe that this work can open up a promising route to demonstrate the potential of solution-processed BN thin films on nanoelectronics.

  5. Influence of layer thickness on the structure and the magnetic properties of Co/Pd epitaxial multilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Tobari, Kousuke, E-mail: tobari@futamoto.elect.chuo-u.ac.jp [Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo 112-8551 (Japan); Ohtake, Mitsuru; Nagano, Katsumasa; Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, Bunkyo-ku, Tokyo 112-8551 (Japan)

    2012-03-15

    Co/Pd epitaxial multilayer films were prepared on Pd(111){sub fcc} underlayers hetero-epitaxially grown on MgO(111){sub B1} single-crystal substrates at room temperature by ultra-high vacuum RF magnetron sputtering. In-situ reflection high energy electron diffraction shows that the in-plane lattice spacing of Co on Pd layer gradually decreases with increasing the Co layer thickness, whereas that of Pd on Co layer remains unchanged during the Pd layer formation. The CoPd alloy phase formation is observed around the Co/Pd interface. The atomic mixing is enhanced for thinner Co and Pd layers in multilayer structure. With decreasing the Co and the Pd layer thicknesses and increasing the repetition number of Co/Pd multilayer film, stronger perpendicular magnetic anisotropy is observed. The relationships between the film structure and the magnetic properties are discussed. - Highlights: Black-Right-Pointing-Pointer Epitaxial Co/Pd multilayer films are prepared on Pd(111){sub fcc} underlayers. Black-Right-Pointing-Pointer Lattice strain in Co layer and CoPd-alloy formation are noted around the interface. Black-Right-Pointing-Pointer Magnetic property dependence on layer thickness is reported.

  6. Characterization of nanocrystalline cadmium telluride thin films ...

    Indian Academy of Sciences (India)

    Unknown

    tion method, successive ionic layer adsorption and reaction (SILAR), are described. For deposition of CdTe thin films ... By conducting several trials optimization of the adsorption, reaction and rinsing time duration for CdTe thin film .... The electrical resistivity of CdTe films was studied in air. Figure 3 shows the variation of log ...

  7. Photoluminescence properties of perovskite multilayer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Macario, Leilane Roberta; Longo, Elson, E-mail: leilanemacario@gmail.com [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil); Mazzo, Tatiana Martelli [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil); Bouquet, Valerie; Deputier, Stephanie; Ollivier, Sophie; Guilloux-Viry, Maryline [Universite de Rennes (France)

    2016-07-01

    Full text: The knowledge of the optical properties of thin films is important in many scientific, technological and industrial applications of thin films such as photoconductivity, solar energy, photography, and numerous other applications [1]. In this study, perovskite type oxides were grown by pulsed laser deposition [2] in order to obtain thin films with applicable optical properties. The LaNiO{sub 3} (LN), BaTiO{sub 3} (BT) and KNbO{sub 3} (KNb) targets were prepared by solid-state reaction. The X-ray Diffraction revealed the presence of the desired phases, containing the elements of interest in the targets and in the thin films that were produced. The LN, BT and KNb thin films were polycrystalline and the corresponding diffraction peaks were indexed in the with JCPDS cards n. 00-033-0711, n. 00-005-0626, and n. 00-009-0156, respectively. The multilayers films were polycrystalline. The majority of the micrographs obtained by scanning electron microscopy presented films with a thickness from 100 to 400 nm. The photoluminescent (PL) emission spectra of thin films show different broad bands that occupies large region of the visible spectrum, ranging from about 300-350 to 600-650 nm of the electromagnetic spectrum. The PL emission is associated with the order-disorder structural, even small structural changes can modify the interactions between electronic states. The structural disorder results in formation of new energy levels in the forbidden region. The proximity or distance of these new energy levels formed in relation to valence band and to the conduction band results in PL spectra located at higher or lower energies. These interactions change the electronic states which can be influenced by defects, particularly the interface defects between the layers of the thin films. The presence of defects results in changes in the broad band matrix intensity and in displacement of the PL emission maximum. (author)

  8. Optical characteristics of the thin-film scintillator detector

    International Nuclear Information System (INIS)

    Muga, L.; Burnsed, D.

    1976-01-01

    A study of the thin-film detector (TFD) was made in which various light guide and scintillator film support configurations were tested for efficiency of light coupling. Masking of selected portions of the photomultiplier (PM) tube face revealed the extent to which emitted light was received at the exposed PM surfaces. By blocking off selected areas of the scintillator film surface from direct view of the PM tube faces, a measure of the light-guiding efficiency of the film and its support could be estimated. The picture that emerges is that, as the light which is initially trapped in the thin film spreads radially outward from the ion entrance/exit point, it is scattered out of the film by minute imperfections. Optimum signals were obtained by a configuration in which the thin scintillator film was supported on a thin rectangular Celluloid frame inserted within a highly polished metal cylindrical sleeve

  9. Y/sub 1/Ba/sub 2/Cu/sub 3/O/sub 7-//sub delta/ thin films grown by a simple spray deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A.; Koren, G.; Giess, E.A.; Moore, N.R.; O' Sullivan, E.J.M.; Cooper, E.I.

    1988-01-11

    The preparation of high T/sub c/ superconducting thin films of Y/sub 1/Ba/sub 2/Cu/sub 3/O/sub 7-//sub delta/ on (100) single crystals of MgO, ZrO/sub 2/ with 9% Y/sub 2/O/sub 3/ (yttria stabilized zirconia, or YSZ), and SrTiO/sub 3/ using a simple spray deposition technique is described. Typical film growth procedure involves (a) the spraying of a stoichiometric solution of the nitrate precursors on the heated substrate (180 /sup 0/C), (b) prebaking in air of the sprayed film (20 min at 500 /sup 0/C), and (c) oven annealing of the film under flowing O/sub 2/ (900--950 /sup 0/C followed by slow cooling to 200 /sup 0/C in about 3 h). X-ray diffraction analysis of the films after each of the growing steps mentioned above shows primarily the presence of crystalline phases of the nitrates, the oxides, and the orthorhombic superconducting phase, respectively. Resistivity versus temperature measurements show that the onset and completion of the superconductive transition occur at 92 and 87 K, respectively, in films on YSZ substrate; at 95 and 80 K, respectively, in films on SrTiO/sub 3/ substrate; and at 82 and 77 K, respectively, in films on MgO substrate.

  10. Structure dependent resistivity and dielectric characteristics of tantalum oxynitride thin films produced by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Cristea, D., E-mail: daniel.cristea@unitbv.ro [Department of Materials Science, Transilvania University, 500036 Brasov (Romania); Crisan, A. [Department of Materials Science, Transilvania University, 500036 Brasov (Romania); Cretu, N. [Electrical Engineering and Applied Physics Department, Transilvania University, 500036 Brasov (Romania); Borges, J. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710 - 057 Braga (Portugal); Instituto Pedro Nunes, Laboratório de Ensaios, Desgaste e Materiais, Rua Pedro Nunes, 3030-199 Coimbra (Portugal); SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Lopes, C.; Cunha, L. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710 - 057 Braga (Portugal); Ion, V.; Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, “Photonic Processing of Advanced Materials” Group, PO Box MG-16, RO 77125 Magurele-Bucharest (Romania); Barradas, N.P. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139,7, 2695-066 Bobadela LRS (Portugal); Alves, E. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, E.N. 10 ao km 139,7, 2695-066 Bobadela LRS (Portugal); Apreutesei, M. [MATEIS Laboratory-INSA de Lyon, 21 Avenue Jean Capelle, 69621 Villeurbanne cedex (France); Université de Lyon, Institut des Nanotechnologies de Lyon INL-UMR5270, CNRS, Ecole Centrale de Lyon, Ecully F-69134 (France); Munteanu, D. [Department of Materials Science, Transilvania University, 500036 Brasov (Romania)

    2015-11-01

    Highlights: • Tantalum oxynitride thin films have been deposited by magnetron sputtering, in various configurations. • The rising of the reactive gases mixture flow has the consequence of a gradual increase in the non-metallic content in the films, which results in a 10 orders of magnitude resistivity domain. • The higher resistivity films exhibit dielectric constants up to 41 and quality factors up to 70. - Abstract: The main purpose of this work is to present and to interpret the change of electrical properties of Ta{sub x}N{sub y}O{sub z} thin films, produced by DC reactive magnetron sputtering. Some parameters were varied during deposition: the flow of the reactive gases mixture (N{sub 2} and O{sub 2}, with a constant concentration ratio of 17:3); the substrate voltage bias (grounded, −50 V or −100 V) and the substrate (glass, (1 0 0) Si or high speed steel). The obtained films exhibit significant differences. The variation of the deposition parameters induces variations of the composition, microstructure and morphology. These differences cause variation of the electrical resistivity essentially correlated with the composition and structural changes. The gradual decrease of the Ta concentration in the films induces amorphization and causes a raise of the resistivity. The dielectric characteristics of some of the high resistance Ta{sub x}N{sub y}O{sub z} films were obtained in the samples with a capacitor-like design (deposited onto high speed steel, with gold pads deposited on the dielectric Ta{sub x}N{sub y}O{sub z} films). Some of these films exhibited dielectric constant values higher than those reported for other tantalum based dielectric films.

  11. Preparation of LiMn{sub 2}O{sub 4} cathode thin films for thin film lithium secondary batteries by a mist CVD process

    Energy Technology Data Exchange (ETDEWEB)

    Tadanaga, Kiyoharu, E-mail: tadanaga@chem.osakafu-u.ac.jp [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, 599-8531 (Japan); Yamaguchi, Akihiro; Sakuda, Atsushi; Hayashi, Akitoshi; Tatsumisago, Masahiro [Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Sakai, Osaka, 599-8531 (Japan); Duran, Alicia; Aparacio, Mario [Instituto de Cerámica y Vidrio, Consejo Superior de Investigaciones Científicas, Kelsen 5 (Campus de Cantoblanco), Madrid, 28049 (Spain)

    2014-05-01

    Highlights: • LiMn{sub 2}O{sub 4} thin films were prepared by using the mist CVD process. • An aqueous solution of lithium and manganese acetates is used for the precursor solution. • The cell with the LiMn{sub 2}O{sub 4} thin films exhibited a capacity of about 80 mAh/g. • The cell showed good cycling performance during 10 cycles. - Abstract: LiMn{sub 2}O{sub 4} cathode thin films for thin film lithium secondary batteries were prepared by using so-called the “mist CVD process”, employing an aqueous solution of lithium acetate and manganese acetate, as the source of Li and Mn, respectively. The aqueous solution of starting materials was ultrasonically atomized to form mist particles, and mists were transferred by nitrogen gas to silica glass substrate to form thin films. FE-SEM observation revealed that thin films obtained by this process were dense and smooth, and thin films with a thickness of about 750 nm were obtained. The electrochemical cell with the thin films obtained by sintering at 700 °C exhibited a capacity of about 80 mAh/g, and the cell showed good cycling performance during 10 cycles.

  12. Structural and superconducting properties of epitaxial Fe{sub 1+y}Se{sub 1-x}Te{sub x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Stefan; Yuan, Feifei; Grinenko, Vadim; Huehne, Ruben [Institute for Metallic Materials, IFW Dresden (Germany); Sala, Alberto; Putti, Marina [Dipartimento di Fisica, Universita di Genova (Italy)

    2015-07-01

    The iron based superconductor Fe(Se,Te) is in the center of much ongoing research. The reason for this is on the one hand its simple crystal structure, that consists only of stacked Fe(Se,Te) layers so that structural and superconducting properties can be connected more easily, on the other hand FeSe itself shows a high sensibility for strain and changes in stoichiometry and can have potentially very high critical temperatures under hydrostatic pressure or in monolayers. We investigate epitaxial thin films of Fe{sub 1+y}Se{sub 1-x}Te{sub x} grown by pulsed laser deposition on different single crystalline substrates. A high crystalline quality and a superconducting transition of up to about 20 K can be achieved using optimized deposition parameters. The influence of growth conditions, Te-doping, film thickness and post growth oxygen treatment on the structural and superconducting properties on these films will be presented in detail.

  13. Fractal and multifractal analysis of LiF thin film surface

    International Nuclear Information System (INIS)

    Yadav, R.P.; Dwivedi, S.; Mittal, A.K.; Kumar, M.; Pandey, A.C.

    2012-01-01

    Highlights: ► Fractal and multifractal analysis of surface morphologies of the LiF thin films. ► Complexity and roughness of the LiF thin films increases as thickness increases. ► LiF thin films are multifractal in nature. ► Strength of the multifractality increases with thickness of the film. - Abstract: Fractal and multifractal analysis is performed on the atomic force microscopy (AFM) images of the surface morphologies of the LiF thin films of thickness 10 nm, 20 nm, and 40 nm, respectively. Autocorrelation function, height–height correlation function, and two-dimensional multifractal detrended fluctuation analysis (MFDFA) are used for characterizing the surface. It is found that the interface width, average roughness, lateral correlation length, and fractal dimension of the LiF thin film increase with the thickness of the film, whereas the roughness exponent decreases with thickness. Thus, the complexity and roughness of the LiF thin films increases as thickness increases. It is also demonstrated that the LiF thin films are multifractal in nature. Strength of the multifractality increases with thickness of the film.

  14. RF plasma deposition of thin Si{sub x}Ge{sub y}C{sub z}:H films using a combination of organometallic source materials

    Energy Technology Data Exchange (ETDEWEB)

    Rapiejko, C. [Institute for Materials Science and Engineering, Technical University of LodzLz Stefanowskiego 1, 90-924 Lodz (Poland); Gazicki-Lipman, M. [Institute for Materials Science and Engineering, Technical University of LodzLz Stefanowskiego 1, 90-924 Lodz (Poland)]. E-mail: gazickim@p.lodz.pl; Klimek, L. [Institute for Materials Science and Engineering, Technical University of LodzLz Stefanowskiego 1, 90-924 Lodz (Poland); Szymanowski, H. [Institute for Materials Science and Engineering, Technical University of LodzLz Stefanowskiego 1, 90-924 Lodz (Poland); Strojek, M. [Institute for Materials Science and Engineering, Technical University of LodzLz Stefanowskiego 1, 90-924 Lodz (Poland)

    2004-12-22

    Elements of the IV group of periodic table have been strongly present in the fast development of PECVD techniques for the last two decades at least. As a result, deposition technologies of such materials as a-Si:H, a-C:H, m{mu}-C:H or DLC have been successfully established. What has followed is an ever growing interest in binary systems of the A{sub x}(IV)B{sub y}(IV):H kind. One possible way to deposit such systems is to use organosilicon compounds (to deposit Si{sub x}C{sub y}:H films) or organogermanium compounds (to deposit Ge{sub x}C{sub y}:H films), as source substances. The present paper reports on a RF plasma deposition of a Si{sub x}Ge{sub y}C{sub z}:H ternary system, using a combination of organosilicon and organogermanium compounds. Thin Si/Ge/C films have been fabricated in a small volume (ca. 2 dm{sup 3}) parallel plate RF plasma reactor using, as a source material, a combination of tetramethylsilane (TMS) and tetramethylgermanium (TMG) vapours carried by argon. SEM investigations reveal a continuous compact character of the coatings and their uniform thickness. The elemental composition of the films has been studied using EDX analysis. The results of the analysis show that the elemental composition of the films can be controlled by both the TMG/TMS ratio of the initial mixture and the RF power input. Ellipsometric measurements show good homogeneity of these materials. Chemical bonding in the films has been studied using the FTIR technique. Bandgap calculations have been carried out using ellipsometric data and by applying both the Tauc law and the Moss approach.

  15. Modification of C60/C70+Pd film structure under electric field influence during electron emission

    International Nuclear Information System (INIS)

    Czerwosz, E.; Dluzewski, P.; Kozlowski, M.

    2001-01-01

    We investigated the modification of structure of C 60 /C 70 +Pd films during cold electron emission from these films. Films were obtained by vacuum thermal deposition from two sources and were characterised before and after electron emission measurements by transmission electron microscopy and electron diffraction. Films were composed of nanocrystalline Pd objects dispersed in carbon/fullerenes matrix. I-V characteristics for electron emission were obtained in diode geometry with additionally applied voltage along the film surface. The modification of film structure occurred under applied electric field and the grouping of Pd nano crystals into bigger objects was observed

  16. Preparation and characterization of vanadium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Monfort, O.; Plesch, G. [Comenius University of Bratislava, Faculty of Natural Sciences, Department of Inorganic Chemistry, 84215 Bratislava (Slovakia); Roch, T. [Comenius University of Bratislava, Faculty of Mathematics Physics and Informatics, Department of Experimental Physics, 84248 Bratislava (Slovakia)

    2013-04-16

    The thermotropic VO{sub 2} films have many applications, since they exhibit semiconductor-conductor switching properties at temperature around 70 grad C. Vanadium oxide thin films were prepared via sol-gel method. Spin coater was used to depose these films on Si/SiO{sub 2} and lime glass substrates. Thin films of V{sub 2}O{sub 5} can be reduced to metastable VO{sub 2} thin films at the temperature of 450 grad C under the pressure of 10{sup -2} Pa. These films are then converted to thermotropic VO{sub 2} at 700 grad C in argon under normal pressure. (authors)

  17. The growth and evolution of thin oxide films on delta-plutonium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Flores, Harry G [Los Alamos National Laboratory; Pugmire, David L [Los Alamos National Laboratory

    2009-01-01

    The common oxides of plutonium are the dioxide (PuO{sub 2}) and the sesquioxide (Pu{sub 2}O{sub 3}). The structure of an oxide on plutonium metal under air at room temperature is typically described as a thick PuO{sub 2} film at the gas-oxide interface with a thinner PuO{sub 2} film near the oxide-metal substrate interface. In a reducing environment, such as ultra high vacuum, the dioxide (Pu{sup 4+}; O/Pu = 2.0) readily converts to the sesquioxide (Pu{sup 3+}; O/Pu = 1.5) with time. In this work, the growth and evolution of thin plutonium oxide films is studied with x-ray photoelectron spectroscopy (XPS) under varying conditions. The results indicate that, like the dioxide, the sesquioxide is not stable on a very clean metal substrate under reducing conditions, resulting in substoichiometric films (Pu{sub 2}O{sub 3-y}). The Pu{sub 2}O{sub 3-y} films prepared exhibit a variety of stoichiometries (y = 0.2-1) as a function of preparation conditions, highlighting the fact that caution must be exercised when studying plutonium oxide surfaces under these conditions and interpreting resulting data.

  18. Laser nanostructuring of ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nedyalkov, N., E-mail: nned@ie.bas.bg [Department of Electronics and Electrical Engineering, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama-shi, Kanagawa-ken 223-8522 (Japan); Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Koleva, M.; Nikov, R.; Atanasov, P. [Institute of Electronics, Bulgarian Academy of Sciences, Tzarigradsko shousse 72, Sofia 1784 (Bulgaria); Nakajima, Y.; Takami, A.; Shibata, A.; Terakawa, M. [Department of Electronics and Electrical Engineering, Keio University, 3-14-1 Hiyoshi Kohoku-ku, Yokohama-shi, Kanagawa-ken 223-8522 (Japan)

    2016-06-30

    Highlights: • Nanosecond laser pulse nanostructuring of ZnO thin films on metal substrate is demonstrated. • Two regimes of the thin film modification are observed depending on the applied laser fluence. • At high fluence regime the ZnO film is homogeneously decomposed into nanosized particles. • The characteristic size of the formed nanostructures corresponds to the domain size of the thin film. - Abstract: In this work, results on laser processing of thin zinc oxide films deposited on metal substrate are presented. ZnO films are obtained by classical nanosecond pulsed laser deposition method in oxygen atmosphere on tantalum substrate. The produced films are then processed by nanosecond laser pulses at wavelength of 355 nm. The laser processing parameters and the film thickness are varied and their influence on the fabricated structures is estimated. The film morphology after the laser treatment is found to depend strongly on the laser fluence as two regimes are defined. It is shown that at certain conditions (high fluence regime) the laser treatment of the film leads to formation of a discrete nanostructure, composed of spherical like nanoparticles with narrow size distribution. The dynamics of the melt film on the substrate and fast cooling are found to be the main mechanisms for fabrication of the observed structures. The demonstrated method is an alternative way for direct fabrication of ZnO nanostructures on metal which can be easy implemented in applications as resistive sensor devices, electroluminescent elements, solar cell technology.

  19. Restructuring in block copolymer thin films

    DEFF Research Database (Denmark)

    Posselt, Dorthe; Zhang, Jianqi; Smilgies, Detlef-M.

    2017-01-01

    Block copolymer (BCP) thin films have been proposed for a number of nanotechnology applications, such as nanolithography and as nanotemplates, nanoporous membranes and sensors. Solvent vapor annealing (SVA) has emerged as a powerful technique for manipulating and controlling the structure of BCP...... thin films, e.g., by healing defects, by altering the orientation of the microdomains and by changing the morphology. Due to high time resolution and compatibility with SVA environments, grazing-incidence small-angle X-ray scattering (GISAXS) is an indispensable technique for studying the SVA process......, providing information of the BCP thin film structure both laterally and along the film normal. Especially, state-of-the-art combined GISAXS/SVA setups at synchrotron sources have facilitated in situ and real-time studies of the SVA process with a time resolution of a few seconds, giving important insight...

  20. Nanocoatings and ultra-thin films technologies and applications

    CERN Document Server

    Tiginyanu, Ion

    2011-01-01

    Gives a comprehensive account of the developments of nanocoatings and ultra-thin films. This book covers the fundamentals, processes of deposition and characterisation of nanocoatings, as well as the applications. It is suitable for the glass and glazing, automotive, electronics, aerospace, construction and biomedical industries in particular.$bCoatings are used for a wide range of applications, from anti-fogging coatings for glass through to corrosion control in the aerospace and automotive industries. Nanocoatings and ultra-thin films provides an up-to-date review of the fundamentals, processes of deposition, characterisation and applications of nanocoatings. Part one covers technologies used in the creation and analysis of thin films, including chapters on current and advanced coating technologies in industry, nanostructured thin films from amphiphilic molecules, chemical and physical vapour deposition methods and methods for analysing nanocoatings and ultra-thin films. Part two focuses on the applications...

  1. Nanosphere lithography applied to magnetic thin films

    Science.gov (United States)

    Gleason, Russell

    Magnetic nanostructures have widespread applications in many areas of physics and engineering, and nanosphere lithography has recently emerged as promising tool for the fabrication of such nanostructures. The goal of this research is to explore the magnetic properties of a thin film of ferromagnetic material deposited onto a hexagonally close-packed monolayer array of polystyrene nanospheres, and how they differ from the magnetic properties of a typical flat thin film. The first portion of this research focuses on determining the optimum conditions for depositing a monolayer of nanospheres onto chemically pretreated silicon substrates (via drop-coating) and the subsequent characterization of the deposited nanosphere layer with scanning electron microscopy. Single layers of permalloy (Ni80Fe20) are then deposited on top of the nanosphere array via DC magnetron sputtering, resulting in a thin film array of magnetic nanocaps. The coercivities of the thin films are measured using a home-built magneto-optical Kerr effect (MOKE) system in longitudinal arrangement. MOKE measurements show that for a single layer of permalloy (Py), the coercivity of a thin film deposited onto an array of nanospheres increases compared to that of a flat thin film. In addition, the coercivity increases as the nanosphere size decreases for the same deposited layer. It is postulated that magnetic exchange decoupling between neighboring nanocaps suppresses the propagation of magnetic domain walls, and this pinning of the domain walls is thought to be the primary source of the increase in coercivity.

  2. Type of precursor and synthesis of silicon oxycarbide (SiOxCyH) thin films with a surfatron microwave oxygen/argon plasma

    International Nuclear Information System (INIS)

    Walkiewicz-Pietrzykowska, Agnieszka; Espinos, J. P.; Gonzalez-Elipe, Agustin R.

    2006-01-01

    Siliconelike thin films (i.e., SiO x C y H z ) were prepared in a microwave plasma enhanced chemical vapor deposition reactor from structurally different organosilicon precursors [i.e., hexamethyldisiloxane (HMDSO), dimethylsilane (DMS), and tetramethylsilane (TMS)]. The films were deposited at room temperature by using different oxygen/argon ratios in the plasma gas. By changing the type of precursor and the relative concentration of oxygen in the plasma, thin films with different compositions (i.e., O/C ratio) and properties are obtained. In general, raising the oxygen concentration in the plasma produces the progressive removal of the organic moieties from the films whose composition and structure then approach those of silicon dioxide. The deposition rate was highly dependent on the type of precursor, following the order HMDSO>>DMS>TMS. The polarizabilities, optical band gaps, and surface free energy of the films also depended on the thin film composition and structure. It is proposed that the Si-O bonds existing in HMDSO is the main factor controlling the distinct reactivity of this precursor and is also responsible for the different compositions and properties of the SiO x C y H z thin films prepared with very low or no oxygen in the plasma gas

  3. Bandtail characteristics in InN thin films

    International Nuclear Information System (INIS)

    Shen, W.Z.; Jiang, L.F.; Yang, H.F.; Meng, F.Y.; Ogawa, H.; Guo, Q.X.

    2002-01-01

    The Urbach bandtail characteristics in InN thin films grown by radio-frequency magnetron sputtering on sapphire (0001) substrates have been investigated both theoretically and experimentally. The bandtail parameter in InN thin films has been obtained by temperature-dependent transmission spectra, with the aid of a detailed calculation of the transmission profile. A bandtail model based on the calculation of density of occupied states and the carrier-phonon interaction has been employed to analyze the temperature-dependent bandtail characteristics. The bandtail parameter is in the range of 90-120 meV in the InN thin film. It is found that the carrier-phonon interaction in InN is weak and the structural disorder contribution (∼90 meV) dominates over the interactive terms. The high structural disorder in InN thin films may relate to the high nonradiative recombination centers

  4. Thin films of mixed metal compounds

    Science.gov (United States)

    Mickelsen, Reid A.; Chen, Wen S.

    1985-01-01

    A compositionally uniform thin film of a mixed metal compound is formed by simultaneously evaporating a first metal compound and a second metal compound from independent sources. The mean free path between the vapor particles is reduced by a gas and the mixed vapors are deposited uniformly. The invention finds particular utility in forming thin film heterojunction solar cells.

  5. Growth and Magnetotransport Properties of Dirac Semimetal Candidate Cu3PdN

    Science.gov (United States)

    Quintela, C. X.; Campbell, N.; Harris, D. T.; Shao, D. F.; Xie, L.; Pan, X. Q.; Tsymbal, E. Y.; Rzchowski, M. S.; Eom, C. B.

    Since the discovery of three-dimensional Dirac semimetals (DSM) Cd3As2 and Na3Bi, many efforts have been made to identify new DSM materials. Recently, nitride antiperovskite Cu3PdN has been proposed by two different groups as a new DSM candidate. However, until now, the experimental realization of bulk Cu3PdN and the study of its electronic properties has been hindered due to the difficulty of synthesizing bulk single crystals of this material. Here, we report the first growth and magnetotransport characterization of epitaxial Cu3PdN thin films on (001) SrTiO3 substrates. Magnetotransport measurements reveal p-type metallic conduction with very low temperature coefficient of the resistance and small non-linear magnetoresistance at low temperatures. The successful growth of Cu3PdN thin films opens the path to investigating the unknown electronic properties of this material, and provides a template for further research on other antiperovskite DSM candidates such as Cu3ZnN.

  6. Thermodynamic properties, hysteresis behavior and stress-strain analysis of MgH2 thin films, studied over a wide temperature range

    NARCIS (Netherlands)

    Pivak, Y.; Schreuders, H.; Dam, B.

    2012-01-01

    Using hydrogenography, we investigate the thermodynamic parameters and hysteresis behavior in Mg thin films capped by Ta/Pd, in a temperature range from 333 K to 545 K. The enthalpy and entropy of hydride decomposition, ?Hdes = ?78.3 kJ/molH2, ?Sdes = ?136.1 J/K molH2, estimated from the Van't Hoff

  7. Thin-Film Power Transformers

    Science.gov (United States)

    Katti, Romney R.

    1995-01-01

    Transformer core made of thin layers of insulating material interspersed with thin layers of ferromagnetic material. Flux-linking conductors made of thinner nonferromagnetic-conductor/insulator multilayers wrapped around core. Transformers have geometric features finer than those of transformers made in customary way by machining and mechanical pressing. In addition, some thin-film materials exhibit magnetic-flux-carrying capabilities superior to those of customary bulk transformer materials. Suitable for low-cost, high-yield mass production.

  8. Preparation and properties of antimony thin film anode materials

    Institute of Scientific and Technical Information of China (English)

    SU Shufa; CAO Gaoshao; ZHAO Xinbing

    2004-01-01

    Metallic antimony thin films were deposited by magnetron sputtering and electrodeposition. Electrochemical properties of the thin film as anode materials for lithium-ion batteries were investigated and compared with those of antimony powder. It was found that both magnetron sputtering and electrodeposition are easily controllable processes to deposit antimony films with fiat charge/discharge potential plateaus. The electrochemical performances of antimony thin films, especially those prepared with magnetron sputtering, are better than those of antimony powder. The reversible capacities of the magnetron sputtered antimony thin film are above 400 mA h g-1 in the first 15 cycles.

  9. Magnetic damping phenomena in ferromagnetic thin-films and multilayers

    Science.gov (United States)

    Azzawi, S.; Hindmarch, A. T.; Atkinson, D.

    2017-11-01

    Damped ferromagnetic precession is an important mechanism underpinning the magnetisation processes in ferromagnetic materials. In thin-film ferromagnets and ferromagnetic/non-magnetic multilayers, the role of precession and damping can be critical for spintronic device functionality and as a consequence there has been significant research activity. This paper presents a review of damping in ferromagnetic thin-films and multilayers and collates the results of many experimental studies to present a coherent synthesis of the field. The terms that are used to define damping are discussed with the aim of providing consistent definitions for damping phenomena. A description of the theoretical basis of damping is presented from early developments to the latest discussions of damping in ferromagnetic thin-films and multilayers. An overview of the time and frequency domain methods used to study precessional magnetisation behaviour and damping in thin-films and multilayers is also presented. Finally, a review of the experimental observations of magnetic damping in ferromagnetic thin-films and multilayers is presented with the most recent explanations. This brings together the results from many studies and includes the effects of ferromagnetic film thickness, the effects of composition on damping in thin-film ferromagnetic alloys, the influence of non-magnetic dopants in ferromagnetic films and the effects of combining thin-film ferromagnets with various non-magnetic layers in multilayered configurations.

  10. Titanium oxynitride thin films as high-capacity and high-rate anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Chiu, Kuo-Feng; Su, Shih-Hsuan; Leu, Hoang-Jyh; Hsia, Chen-Hsien

    2015-01-01

    Titanium oxynitride (TiO_xN_y) was synthesized by reactive magnetron sputtering in a mixed N_2/O_2/Ar gas at ambient temperature. TiO_xN_y thin films with various amounts of nitrogen contents were deposited by varying the N_2/O_2 ratios in the background gas. The synthesized TiO_xN_y films with different compositions (TiO_1_._8_3_7N_0_._0_6_0_, TiO_1_._8_9_0N_0_._0_6_8_, TiO_1_._8_6_5N_0_._0_7_3, and TiO_1_._8_8_2N_0_._1_6_3) all displayed anatase phase, except TiO_1_._8_8_2N_0_._1_6_3. The impedances and grain sizes showed obvious variations with the nitrogen contents. A wide potential window from 3.0 V to 0.05 V, high-rate charge–discharge testing, and long cycle testing were applied to investigate the performances of synthesized TiO_xN_y and pure TiO_2 as anodes for lithium-ion batteries. These TiO_xN_y anodes can be cycled under high rates of 125 μA/cm"2 (10 °C) because of the lower charge–transfer resistance compared with the TiO_2 anode. At 10 °C the discharge capacity of the optimal TiO_xN_y composition is 1.5 times higher than that of pure TiO_2. An unexpectedly large reversible capacity of ~ 300 μAh/cm"2 μm (~ 800 mAh/g) between 1.0 V and 0.05 V was recorded for the TiO_xN_y anodes. The TiO_xN_y anode was cycled (3.0 V to 0.05 V) at 10 °C over 300 times without capacity fading while delivering a capacity of ~ 150 μAh/cm"2 μm (~ 400 mAh/g). - Highlights: • Titanium oxynitride (TiO_xN_y) thin films as anode materials were studied. • TiO_xN_y thin films with various amounts of nitrogen contents were studied_. • High rate capability of TiO_xN_y was studied.

  11. Thin copper oxide films prepared by ion beam sputtering with subsequent thermal oxidation: Application in chemiresistors

    Science.gov (United States)

    Horak, P.; Bejsovec, V.; Vacik, J.; Lavrentiev, V.; Vrnata, M.; Kormunda, M.; Danis, S.

    2016-12-01

    Copper oxide films were prepared by thermal oxidation of thin Cu films deposited on substrates by ion beam sputtering. The subsequent oxidation was achieved in the temperature range of 200 °C-600 °C with time of treatment from 1 to 7 h (with a 1-h step) in a furnace open to air. At temperatures 250 °C-600 °C, the dominant phase formed was CuO, while at 200 °C mainly the Cu2O phase was identified. However, the oxidation at 200 °C led to a more complicated composition - in the depth Cu2O phase was observed, though in the near-surface layer the CuO dominant phase was found with a significant presence of Cu(OH)2. A limited amount of Cu2O was also found in samples annealed at 600 °C. The sheet resistance RS of the as-deposited Cu sample was 2.22 Ω/□, after gradual annealing RS was measured in the range 2.64 MΩ/□-2.45 GΩ/□. The highest RS values were obtained after annealing at 300 °C and 350 °C, respectively. Oxygen depth distribution was studied using the 16O(α,α) nuclear reaction with the resonance at energy 3032 keV. It was confirmed that the higher oxidation degree of copper is located in the near-surface region. Preliminary tests of the copper oxide films as an active layer of a chemiresistor were also performed. Hydrogen and methanol vapours, with a concentration of 1000 ppm, were detected by the sensor at an operating temperature of 300 °C and 350 °C, respectively. The response of the sensors, pointed at the p-type conductivity, was improved by the addition of thin Pd or Au catalytic films to the oxidic film surface. Pd-covered films showed an increased response to hydrogen at 300 °C, while Au-covered films were more sensitive to methanol vapours at 350 °C.

  12. Spin Seebeck effect in Y-type hexagonal ferrite thin films

    Czech Academy of Sciences Publication Activity Database

    Hirschner, Jan; Maryško, Miroslav; Hejtmánek, Jiří; Uhrecký, Róbert; Soroka, Miroslav; Buršík, Josef; Anadón, P.; Aguirre, M.H.; Knížek, Karel

    2017-01-01

    Roč. 96, č. 6 (2017), s. 1-8, č. článku 064428. ISSN 2469-9950 R&D Projects: GA ČR(CZ) GA14-18392S Institutional support: RVO:68378271 ; RVO:61388980 Keywords : hexagonal ferrites * spin Seebeck effect * thin films * magnetization * ferrimagnetic ferrites Subject RIV: BM - Solid Matter Physics ; Magnetism; CA - Inorganic Chemistry (UACH-T) OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Inorganic and nuclear chemistry (UACH-T) Impact factor: 3.836, year: 2016

  13. Chemical vapour deposition of thin-film dielectrics

    International Nuclear Information System (INIS)

    Vasilev, Vladislav Yu; Repinsky, Sergei M

    2005-01-01

    Data on the chemical vapour deposition of thin-film dielectrics based on silicon nitride, silicon oxynitride and silicon dioxide and on phosphorus- and boron-containing silicate glasses are generalised. The equipment and layer deposition procedures are described. Attention is focussed on the analysis and discussion of the deposition kinetics and on the kinetic models for film growth. The film growth processes are characterised and data on the key physicochemical properties of thin-film covalent dielectric materials are given.

  14. Residual stress in spin-cast polyurethane thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Hong; Zhang, Li, E-mail: lizhang@mae.cuhk.edu.hk [Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin N.T., Hong Kong (China); Chow Yuk Ho Technology Centre for Innovative Medicine, The Chinese University of Hong Kong, Shatin N.T., Hong Kong (China)

    2015-01-19

    Residual stress is inevitable during spin-casting. Herein, we report a straightforward method to evaluate the residual stress in as-cast polyurethane thin films using area shrinkage measurement of films in floating state, which shows that the residual stress is independent of radial location on the substrate and decreased with decreasing film thickness below a critical value. We demonstrate that the residual stress is developed due to the solvent evaporation after vitrification during spin-casting and the polymer chains in thin films may undergo vitrification at an increased concentration. The buildup of residual stress in spin-cast polymer films provides an insight into the size effects on the nature of polymer thin films.

  15. Surface molecular aggregation structure and surface physicochemical properties of poly(fluoroalkyl acrylate) thin films

    International Nuclear Information System (INIS)

    Honda, K; Yamaguchi, H; Takahara, A; Kobayashi, M; Morita, M

    2008-01-01

    Effect of side chain length on the molecular aggregation states and surface properties of poly(fluoroalkyl acrylate)s [PFA-C y , where y is fluoromethylene number in R f group] thin films were systematically investigated. Spin-coated PFA-C y thin films were characterized by static and dynamic contact angle measurements, X-ray photoelectron spectroscopy (XPS), and grazing- incidence X-ray diffraction (GIXD). The receding contact angles showed small values for PFA-C y with short side chain (y≤6) and increased above y≥8. GIXD revealed that fluoroalkyl side chain of PFA-C y with y≥8 was crystallized and formed ordered structures at the surface region as well as bulk one. These results suggest that water repellent mechanism of PFA-C y can be attributed to the presence of highly ordered fluoroalkyl side chains at the outermost surfaces. The results of XPS in the dry and hydrated states and contact angle measurement in water support the mechanism of lowering contact angle for water by exposure of carbonyl group to the water interface through reorientation of short fluoroalkyl chains. The surface nanotextured PFA-C 8 through imprinting of anodic aluminum oxide mold showed extremely high hydrophobicity as well as high oleophobicity

  16. Simulated Thin-Film Growth and Imaging

    Science.gov (United States)

    Schillaci, Michael

    2001-06-01

    Thin-films have become the cornerstone of the electronics, telecommunications, and broadband markets. A list of potential products includes: computer boards and chips, satellites, cell phones, fuel cells, superconductors, flat panel displays, optical waveguides, building and automotive windows, food and beverage plastic containers, metal foils, pipe plating, vision ware, manufacturing equipment and turbine engines. For all of these reasons a basic understanding of the physical processes involved in both growing and imaging thin-films can provide a wonderful research project for advanced undergraduate and first-year graduate students. After producing rudimentary two- and three-dimensional thin-film models incorporating ballsitic deposition and nearest neighbor Coulomb-type interactions, the QM tunneling equations are used to produce simulated scanning tunneling microscope (SSTM) images of the films. A discussion of computational platforms, languages, and software packages that may be used to accomplish similar results is also given.

  17. Nanostructured thin films as functional coatings

    Energy Technology Data Exchange (ETDEWEB)

    Lazar, Manoj A; Tadvani, Jalil K; Tung, Wing Sze; Lopez, Lorena; Daoud, Walid A, E-mail: Walid.Daoud@sci.monash.edu.au [School of Applied Sciences and Engineering, Monash University, Churchill, VIC 3842 (Australia)

    2010-06-15

    Nanostructured thin films is one of the highly exploiting research areas particularly in applications such as photovoltaics, photocatalysis and sensor technologies. Highly tuned thin films, in terms of thickness, crystallinity, porosity and optical properties, can be fabricated on different substrates using the sol-gel method, chemical solution deposition (CSD), electrochemical etching, along with other conventional methods such as chemical vapour deposition (CVD) and physical vapour deposition (PVD). The above mentioned properties of these films are usually characterised using surface analysis techniques such as XRD, SEM, TEM, AFM, ellipsometry, electrochemistry, SAXS, reflectance spectroscopy, STM, XPS, SIMS, ESCA, X-ray topography and DOSY-NMR. This article presents a short review of the preparation and characterisation of thin films of nanocrystalline titanium dioxide and modified silicon as well as their application in solar cells, water treatment, water splitting, self cleaning fabrics, sensors, optoelectronic devices and lab on chip systems.

  18. Thin film characterization by resonantly excited internal standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Di Fonzio, S [SINCROTRONE TRIESTE, Trieste (Italy)

    1996-09-01

    This contribution describes how a standing wave excited in a thin film can be used for the characterization of the properties of the film. By means of grazing incidence X-ray reflectometry one can deduce the total film thickness. On the other hand in making use of a strong resonance effect in the electric field intensity distribution inside a thin film on a bulk substrate one can learn more about the internal structure of the film. The profile of the internal standing wave is proven by diffraction experiments. The most appropriate non-destructive technique for the subsequent thin film characterization is angularly dependent X-ray fluorescence analysis. The existence of the resonance makes it a powerful tool for the detection of impurities and of ultra-thin maker layers, for which the position can be determined with very high precision (about 1% of the total film thickness). This latter aspect will be discussed here on samples which had a thin Ti marker layer at different positions in a carbon film. Due to the resonance enhancement it was still possible to perform these experiments with a standard laboratory x-ray tube and with standard laboratory tool for marker or impurity detection in thin films.

  19. Reactive ion assisted deposition of aluminum oxynitride thin films

    International Nuclear Information System (INIS)

    Hwangbo, C.K.; Lingg, L.J.; Lehan, J.P.; Macleod, H.A.; Suits, F.

    1989-01-01

    Optical properties, stoichiometry, chemical bonding states, and crystal structure of aluminum oxynitride (AlO/sub x/N/sub y/) thin films prepared by reactive ion assisted deposition were investigated. The results show that by controlling the amount of reactive gases the refractive index of aluminum oxynitride films at 550 nm is able to be varied from 1.65 to 1.83 with a very small extinction coefficient. Variations of optical constants and chemical bonding states of aluminum oxynitride films are related to the stoichiometry. From an x-ray photoelectron spectroscopy analysis it is observed that our aluminum oxynitride film is not simply a mixture of aluminum oxide and aluminum nitride but a continuously variable compound. The aluminum oxynitride films are amorphous from an x-ray diffraction analysis. A rugate filter using a step index profile of aluminum oxynitride films was fabricated by nitrogen ion beam bombardment of a growing Al film with backfill oxygen pressure as the sole variation. This filter shows a high resistivity to atmospheric moisture adsorption, suggesting that the packing density of aluminum oxynitride films is close to unity and the energetic ion bombardment densifies the film as well as forming the compound

  20. Thin film ceramic thermocouples

    Science.gov (United States)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  1. Photoluminescence of electron beam evaporated CaS:Bi thin films

    CERN Document Server

    Smet, P F; Poelman, D R; Meirhaeghe, R L V

    2003-01-01

    For the first time, the photoluminescence (PL) of electron beam evaporated CaS:Bi thin films is reported. Luminescent CaS:Bi powder prepared out of aqueous solutions was used as source material. The influence of substrate temperature on the PL and the morphology of thin films is discussed, and an optimum is determined. Substrate temperatures between 200 deg. C and 300 deg. C lead to good quality thin films with sufficient PL intensity. As-deposited thin films show two emission bands, peaking at 450 and 530 nm. Upon annealing the emission intensity increases, and annealing at 800 deg. C is sufficient to obtain a homogeneously blue emitting thin film (CIE colour coordinates (0.17; 0.12)), thanks to a single remaining emission band at 450 nm. The influence of ambient temperature on the PL of CaS:Bi powder and thin films was also investigated and it was found that CaS:Bi thin films show a favourable thermal quenching behaviour near room temperature.

  2. Excimer Laser Deposition of PLZT Thin Films

    National Research Council Canada - National Science Library

    Petersen, GAry

    1991-01-01

    .... In order to integrate these devices into optical systems, the production of high quality thin films with high transparency and perovskite crystal structure is desired. This requires development of deposition technologies to overcome the challenges of depositing and processing PLZT thin films.

  3. Future Power Production by LENR with Thin-Film Electrodes

    Science.gov (United States)

    Miley, George H.; Hora, Heinz; Lipson, Andrei; Luo, Nie; Shrestha, P. Joshi

    2007-03-01

    PdD cluster reaction theory was recently proposed to explain a wide range of Low energy Nuclear Reaction (LENR) experiments. If understood and optimized, cluster reactions could lead to a revolutionary new power source of nuclear energy. The route is two-fold. First, the excess heat must be obtained reproducibly and over extended run times. Second, the percentage of excess must be significantly (order of magnitude or more) higher than the 20-50% typically today. The thin film methods described here have proven to be quite reproducible, e.g. providing excess heat of 20-30% in nine consecutive runs of several weeks each. However, mechanical separation of the films occurs over long runs due to the severe mechanical stresses created.. Techniques to overcome these problems are possible using graded bonding techniques similar to that used in high temperature solid oxide fuel cells. Thus the remaining key issue is to increase the excess heat. The cluster model provides import insight into this. G. H. Miley, H. Hora, et al., 233rd Amer Chem Soc Meeting, Chicago, IL, March 25-29, 2007.

  4. Y1Ba2Cu3O(7-delta) thin film dc SQUIDs (superconducting quantum interference device)

    Science.gov (United States)

    Racah, Daniel

    1991-03-01

    Direct current superconducting quantum interferometers (SQUIDs) based on HTSC thin films have been measured and characterized. The thin films used were of different quality: (1) Granular films on Sapphire substrates, prepared either by e-gun evaporation, by laser ablation or by MOCVD (metal oxide chemical vapor deposition), (2) Epitaxial films on MgO substrates. Modulations of the voltage on the SQUIDs as a function of the applied flux have been observed in a wide range of temperatures. The nature of the modulation was found to be strongly dependent on the morphology of the film and on its critical current. The SQUIDs based on granular films were relatively noisy, hysteretic and with a complicated V-phi shape. Those devices based on low quality (lowIc) granular films could be measured only at low temperatures (much lower than 77 K). While those of higher quality (granular films with high Ic) could be measured near to the superconductive transition. The SQUID based on high quality epitaxial film was measured near Tc and showed an anomalous, time dependent behavior.

  5. Physics of thin films advances in research and development

    CERN Document Server

    Hass, Georg; Vossen, John L

    2013-01-01

    Physics of Thin Films: Advances in Research and Development, Volume 12 reviews advances that have been made in research and development concerning the physics of thin films. This volume covers a wide range of preparative approaches, physics phenomena, and applications related to thin films. This book is comprised of four chapters and begins with a discussion on metal coatings and protective layers for front surface mirrors used at various angles of incidence from the ultraviolet to the far infrared. Thin-film materials and deposition conditions suitable for minimizing reflectance changes with

  6. In situ X-ray diffraction study of crystallization process of GeSbTe thin films during heat treatment

    International Nuclear Information System (INIS)

    Kato, Naohiko; Konomi, Ichiro; Seno, Yoshiki; Motohiro, Tomoyoshi

    2005-01-01

    The crystallization processes of the Ge 2 Sb 2 Te 5 thin film used for PD and DVD-RAM were studied in its realistic optical disk film configurations for the first time by X-ray diffraction using an intense X-ray beam of a synchrotron orbital radiation facility (SPring-8) and in situ quick detection with a Position-Sensitive-Proportional-Counter. The dependence of the amorphous-to-fcc phase-change temperature T 1 on the rate of temperature elevation R et gave an activation energy E a : 0.93 eV much less than previously reported 2.2 eV obtained from a model sample 25-45 times thicker than in the real optical disks. The similar measurement on the Ge 4 Sb 1 Te 5 film whose large reflectance change attains the readability by CD-ROM drives gave E a : 1.13 eV with larger T 1 than Ge 2 Sb 2 Te 5 thin films at any R et implying a lower sensitivity in erasing as well as a better data stability of the phase-change disk

  7. Characterization of ultrasonic spray pyrolysed ruthenium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Patil, P.S.; Ennaoui, E.A.; Lokhande, C.D.; Mueller, M.; Giersig, M.; Diesner, K.; Tributsch, H. [Hahn-Meitner-Institut Berlin GmbH (Germany). Bereich Physikalische Chemie

    1997-11-21

    The ultrasonic spray pyrolysis (USP) technique was employed to deposit ruthenium oxide thin films. The films were prepared at 190 C substrate temperature and further annealed at 350 C for 30 min in air. The films were 0.22 {mu} thick and black grey in color. The structural, compositional and optical properties of ruthenium oxide thin films are reported. Contactless transient photoconductivity measurement was carried out to calculate the decay time of excess charge carriers in ruthenium oxide thin films. (orig.) 28 refs.

  8. Field ion microscope studies on thin films

    International Nuclear Information System (INIS)

    Cavaleru, A.; Scortaru, A.

    1976-01-01

    A review of the progress made in the last years in FIM application to thin film structure studies and adatom properties important in the nucleation stage of thin film growth: substrate binding and mobility of individual adatoms, behaviour of adatoms clusters is presented. (author)

  9. The Structure and Stability of Molybdenum Ditelluride Thin Films

    Directory of Open Access Journals (Sweden)

    Zhouling Wang

    2014-01-01

    Full Text Available Molybdenum-tellurium alloy thin films were fabricated by electron beam evaporation and the films were annealed in different conditions in N2 ambient. The hexagonal molybdenum ditelluride thin films with well crystallization annealed at 470°C or higher were obtained by solid state reactions. Thermal stability measurements indicate the formation of MoTe2 took place at about 350°C, and a subtle weight-loss was in the range between 30°C and 500°C. The evolution of the chemistry for Mo-Te thin films was performed to investigate the growth of the MoTe2 thin films free of any secondary phase. And the effect of other postdeposition treatments on the film characteristics was also investigated.

  10. Magnetic surfaces, thin films, and multilayers

    International Nuclear Information System (INIS)

    Parkin, S.S.P.; Renard, J.P.; Shinjo, T.; Zinn, W.

    1992-01-01

    This paper details recent developments in the magnetism of surfaces, thin films and multilayers. More than 20 invited contributions and more than 60 contributed papers attest to the great interest and vitality of this subject. In recent years the study of magnetic surfaces, thin films and multilayers has undergone a renaissance, partly motivated by the development of new growth and characterization techniques, but perhaps more so by the discovery of many exciting new properties, some quite unanticipated. These include, most recently, the discovery of enormous values of magnetoresistance in magnetic multilayers far exceeding those found in magnetic single layer films and the discovery of oscillatory interlayer coupling in transition metal multilayers. These experimental studies have motivated much theoretical work. However these developments are to a large extent powered by materials engineering and our ability to control and understand the growth of thin layers just a few atoms thick. The preparation of single crystal thin film layers and multilayers remains important for many studies, in particular, for properties dependent. These studies obviously require engineering not just a layer thicknesses but of lateral dimensions as well. The properties of such structures are already proving to be a great interest

  11. Thin films prepared from tungstate glass matrix

    Energy Technology Data Exchange (ETDEWEB)

    Montanari, B.; Ribeiro, S.J.L.; Messaddeq, Y. [Departamento de Quimica Geral e Inorganica, Instituto de Quimica, Sao Paulo State University-UNESP, CP 355, CEP 14800-900, Araraquara, SP (Brazil); Li, M.S. [Instituto de Fisica, USP, CP 369, CEP 13560-970, Sao Carlos, SP (Brazil); Poirier, G. [Departamento de Ciencias Exatas, UNIFAL-MG, CEP 37130-000, Alfenas-MG (Brazil)], E-mail: gael@unifal-mg.edu.br

    2008-01-30

    Vitreous samples containing high concentrations of WO{sub 3} (above 40% M) have been used as a target to prepare thin films. Such films were deposited using the electron beam evaporation method onto soda-lime glass substrates. These films were characterized by X-ray diffraction (XRD), perfilometry, X-ray energy dispersion spectroscopy (EDS), M-Lines and UV-vis absorption spectroscopy. In this work, experimental parameters were established to obtain stable thin films showing a chemical composition close to the glass precursor composition and with a high concentration of WO{sub 3}. These amorphous thin films of about 4 {mu}m in thickness exhibit a deep blue coloration but they can be bleached by thermal treatment near the glass transition temperature. Such bleached films show several guided modes in the visible region and have a high refractive index. Controlled crystallization was realized and thus it was possible to obtain WO{sub 3} microcrystals in the amorphous phase.

  12. Characterization of Sucrose Thin Films for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    S. L. Iconaru

    2011-01-01

    Full Text Available Sucrose is a natural osmolyte accumulated in the cells of organisms as they adapt to environmental stress. In vitro sucrose increases protein stability and forces partially unfolded structures to refold. Thin films of sucrose (C12H22O11 were deposited on thin cut glass substrates by the thermal evaporation technique (P∼10−5 torr. Characteristics of thin films were put into evidence by Fourier Transform Infrared Spectroscopy (FTIR, X-ray Photoelectron Spectroscopy (XPS, scanning electron microscopy (SEM, and differential thermal analysis and thermal gravimetric analysis (TG/DTA. The experimental results confirm a uniform deposition of an adherent layer. In this paper we present a part of the characteristics of sucrose thin films deposited on glass in medium vacuum conditions, as a part of a culture medium for osteoblast cells. Osteoblast cells were used to determine proliferation, viability, and cytotoxicity interactions with sucrose powder and sucrose thin films. The osteoblast cells have been provided from the American Type Culture Collection (ATCC Centre. The outcome of this study demonstrated the effectiveness of sucrose thin films as a possible nontoxic agent for biomedical applications.

  13. Significant questions in thin liquid film heat transfer

    International Nuclear Information System (INIS)

    Bankoff, S.G.

    1994-01-01

    Thin liquid films appear in many contexts, such as the cooling of gas turbine blade tips, rocket engines, microelectronics arrays, and hot fuel element surfaces in hypothetical nuclear reactor accidents. Apart from these direct cooling applications of thin liquid layers, thin films form a crucial element in determining the allowable heat flux limits in boiling. This is because the last stages of dryout almost invariably involve the rupture of a residual liquid film, either as a microlayer underneath the bubbles, or a thin annular layer in a high-quality burnout scenario. The destabilization of these thin films under the combined actions of shear stress, evaporation, and thermocapillary effects is quite complex. The later stages of actual rupture to form dry regions, which then expand, resulting in possible overheating, are even more complex and less well understood. However, significant progress has been made in understanding the behavior of these thin films, which are subject to competing instabilities prior to actual rupture. This will be reviewed briefly. Recent work on the advance, or recession, of contact lines will also be described briefly, and significant questions that still remain to be answered will be discussed. 68 refs., 7 figs

  14. Novel photon management for thin-film photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Rajesh [Univ. of Utah, Salt Lake City, UT (United States)

    2016-11-11

    The objective of this project is to enable commercially viable thin-film photovoltaics whose efficiencies are increased by over 10% using a novel optical spectral-separation technique. A thin planar diffractive optic is proposed that efficiently separates the solar spectrum and assigns these bands to optimal thin-film sub-cells. An integrated device that is comprised of the optical element, an array of sub-cells and associated packaging is proposed.

  15. Thin films as an emerging platform for drug delivery

    Directory of Open Access Journals (Sweden)

    Sandeep Karki

    2016-10-01

    Full Text Available Pharmaceutical scientists throughout the world are trying to explore thin films as a novel drug delivery tool. Thin films have been identified as an alternative approach to conventional dosage forms. The thin films are considered to be convenient to swallow, self-administrable, and fast dissolving dosage form, all of which make it as a versatile platform for drug delivery. This delivery system has been used for both systemic and local action via several routes such as oral, buccal, sublingual, ocular, and transdermal routes. The design of efficient thin films requires a comprehensive knowledge of the pharmacological and pharmaceutical properties of drugs and polymers along with an appropriate selection of manufacturing processes. Therefore, the aim of this review is to provide an overview of the critical factors affecting the formulation of thin films, including the physico-chemical properties of polymers and drugs, anatomical and physiological constraints, as well as the characterization methods and quality specifications to circumvent the difficulties associated with formulation design. It also highlights the recent trends and perspectives to develop thin film products by various companies.

  16. Perpendicular magnetic tunnel junction with thin CoFeB/Ta/Co/Pd/Co reference layer

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Huadong, E-mail: huadong@avalanche-technology.com; Malmhall, Roger; Wang, Zihui; Yen, Bing K; Zhang, Jing; Wang, Xiaobin; Zhou, Yuchen; Hao, Xiaojie; Jung, Dongha; Satoh, Kimihiro; Huai, Yiming [Avalanche Technology, 46600 Landing Parkway, Fremont, California 94538 (United States)

    2014-11-10

    Integration of high density spin transfer torque magnetoresistance random access memory requires a thin stack (less than 15 nm) of perpendicular magnetic tunnel junction (p-MTJ). We propose an innovative approach to solve this challenging problem by reducing the thickness and/or moment of the reference layer. A thin reference layer structure of CoFeB/Ta/Co/Pd/Co has 60% magnetic moment of the conventional thick structure including [Co/Pd] multilayers. We demonstrate that the perpendicular magnetization of the CoFeB/Ta/Co/Pd/Co structure can be realized by anti-ferromagnetically coupling to a pinned layer with strong perpendicular anisotropy via Ruderman-Kittel-Kasuya-Yosida exchange interaction. The pMTJ with thin CoFeB/Ta/Co/Pd/Co reference layer has a comparable TMR ratio (near 80%) as that with thick reference layer after annealing at 280 °C. The pMTJ with thin reference layer has a total thickness less than 15 nm, thereby significantly increasing the etching margin required for integration of high density pMTJ array on wafers with form factor of 300 mm and beyond.

  17. Investigations of Si Thin Films as Anode of Lithium-Ion Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qingliu [Department of Chemical; Shi, Bing; Bareño, Javier; Liu, Yuzi; Maroni, Victor A.; Zhai, Dengyun; Dees, Dennis W.; Lu, Wenquan

    2018-01-22

    Amorphous silicon thin films having various thicknesses were investigated as a negative electrode material for lithium-ion batteries. Electrochemical characterization of the 20 nm thick thin silicon film revealed a very low first cycle Coulombic efficiency, which can be attributed to the silicon oxide layer formed on both the surface of the as-deposited Si thin film and the interface between the Si and the substrate. Among the investigated films, the 100 nm Si thin film demonstrated the best performance in terms of first cycle efficiency and cycle life. Observations from scanning electron microscopy demonstrated that the generation of cracks was inevitable in the cycled Si thin films, even as the thickness of the film was as little as 20 nm, which was not predicted by previous modeling work. However, the cycling performance of the 20 and 100 nm silicon thin films was not detrimentally affected by these cracks. The poor capacity retention of the 1 mu m silicon thin film was attributed to the delamination.

  18. Surface characterization of superconductive Nd1Ba2Cu3Oy thin films using scanning probe microscopes

    International Nuclear Information System (INIS)

    Ting, W.; Badaye, M.; Itti, R.; Morishita, T.; Koshizuka, N.; Tanaka, S.

    1996-01-01

    Recently, superconductive Nd 1 Ba 2 Cu 3 O y (Nd123) thin films with high superconducting transition temperature (T c ) have been successfully fabricated at the authors institute employing the standard laser ablation method. In this paper, they report parts of the results of surface characterization of the Nd123 thin films using an ultrahigh vacuum scanning tunneling microscope/spectroscopy (UHV-STM/STS) and an atomic force microscope (AFM) system operated in air. Clear spiral pattern is observed on the surfaces of Nd123 thin films by STM and AFM, suggesting that films are formed by two-dimensional island growth mode at the final growing stage. Contour plots of the spirals show that the step heights of the spirals are not always the integer or half integer numbers of the c-axis parameter of the structure. This implies that the surface natural termination layer of the films may not be unique. Surface atomic images of the as-prepared Nd123 thin films are obtained employing both STM and AFM. STS measurements show that most of the surfaces are semiconductive, or sometimes even metallic. The results of STS measurements together with the fact that they are able to see the surface atomic images using scanning probe microscopes suggest that exposure to air does not cause serious degradation to the as-prepared surfaces of Nd123 thin films

  19. Removable Thin Films used for the Abatement and Mitigation of Beryllium

    International Nuclear Information System (INIS)

    Lumia, M.; Gentile, C.; Creek, K.; Sandoval, R.

    2003-01-01

    The use of removable thin films for the abatement of hazardous particulates has many advantages. Removable thin films are designed to trap and fix particulates in the film's matrix by adhesion. Thin films can be applied to an existing contaminated area to fix and capture the particulates for removal. The nature of the removable thin films, after sufficient cure time, is such that it can typically be removed as one continuous entity. The removable thin films can be applied to almost any surface type with a high success rate of removal

  20. Thermochemical hydrogen generation of indium oxide thin films

    Directory of Open Access Journals (Sweden)

    Taekyung Lim

    2017-03-01

    Full Text Available Development of alternative energy resources is an urgent requirement to alleviate current energy constraints. As such, hydrogen gas is gaining attention as a future alternative energy source to address existing issues related to limited energy resources and air pollution. In this study, hydrogen generation by a thermochemical water-splitting process using two types of In2O3 thin films was investigated. The two In2O3 thin films prepared by chemical vapor deposition (CVD and sputtering deposition systems contained different numbers of oxygen vacancies, which were directly related to hydrogen generation. The as-grown In2O3 thin film prepared by CVD generated a large amount of hydrogen because of its abundant oxygen vacancies, while that prepared by sputtering had few oxygen vacancies, resulting in low hydrogen generation. Increasing the temperature of the In2O3 thin film in the reaction chamber caused an increase in hydrogen generation. The oxygen-vacancy-rich In2O3 thin film is expected to provide a highly effective production of hydrogen as a sustainable and efficient energy source.

  1. Thin Film Photovoltaic/Thermal Solar Panels

    Institute of Scientific and Technical Information of China (English)

    David JOHNSTON

    2008-01-01

    A solar panel is described.in which thin films of semiconductor are deposited onto a metal substrate.The semiconductor-metal combination forms a thin film photovoltaic cell,and also acts as a reflector,absorber tandem, which acts as a solar selective surface,thus enhancing the solar thermal performance of the collector plate.The use of thin films reduces the distance heat is required to flow from the absorbing surface to the metal plate and heat exchange conduits.Computer modelling demonstrated that,by suitable choice of materials,photovohaic efficiency call be maintained,with thermal performance slishtly reduced,compared to that for thermal-only panels.By grading the absorber layer-to reduce the band gap in the lower region-the thermal performance can be improved,approaching that for a thermal-only solar panel.

  2. Enhanced Light Stability of InGaZnO Thin-Film Transistors by Atomic-Layer-Deposited Y2O3 with Ozone.

    Science.gov (United States)

    Jung, Hanearl; Kim, Woo-Hee; Park, Bo-Eun; Woo, Whang Je; Oh, Il-Kwon; Lee, Su Jeong; Kim, Yun Cheol; Myoung, Jae-Min; Gatineau, Satoko; Dussarrat, Christian; Kim, Hyungjun

    2018-01-17

    We report the effect of Y 2 O 3 passivation by atomic layer deposition (ALD) using various oxidants, such as H 2 O, O 2 plasma, and O 3 , on In-Ga-Zn-O thin-film transistors (IGZO TFTs). A large negative shift in the threshold voltage (V th ) was observed in the case of the TFT subjected to the H 2 O-ALD Y 2 O 3 process; this shift was caused by a donor effect of negatively charged chemisorbed H 2 O molecules. In addition, degradation of the IGZO TFT device performance after the O 2 plasma-ALD Y 2 O 3 process (field-effect mobility (μ) = 8.7 cm 2 /(V·s), subthreshold swing (SS) = 0.77 V/dec, and V th = 3.7 V) was observed, which was attributed to plasma damage on the IGZO surface adversely affecting the stability of the TFT under light illumination. In contrast, the O 3 -ALD Y 2 O 3 process led to enhanced device stability under light illumination (ΔV th = -1 V after 3 h of illumination) by passivating the subgap defect states in the IGZO surface region. In addition, TFTs with a thicker IGZO film (55 nm, which was the optimum thickness under the current investigation) showed more stable device performance than TFTs with a thinner IGZO film (30 nm) (ΔV th = -0.4 V after 3 h of light illumination) by triggering the recombination of holes diffusing from the IGZO surface to the insulator-channel interface. Therefore, we envisioned that the O 3 -ALD Y 2 O 3 passivation layer suggested in this paper can improve the photostability of TFTs under light illumination.

  3. The preparation of ZnO based gas-sensing thin films by ink-jet printing method

    International Nuclear Information System (INIS)

    Shen Wenfeng; Zhao Yan; Zhang Caibei

    2005-01-01

    An ink-jet printing technique was applied to prepare ZnO based gas-sensing thin films. ZnO inks with appropriate viscosity and surface tension were prepared by sol-gel techniques, and printed onto substrates using a commercial printer. After the drying and heating treatment processes, continuous ZnO films were formed and studied by scanning electron microscopy, X-ray diffraction and by a home-made gas sensitivity measuring system. It was found that the morphology and electrical properties of the films changed significantly with the thickness of the films, which can be adjusted simply by printing on the film with increasing frequency. Highest resistance and sensitivity to acetone vapor were obtained when the film was prepared by printing only once on it. Different dopants with certain concentrations could be added into the films by printing with different dopant inks and printing frequency. All Pd, Ag, and ZrO 2 dopants increased both the resistivity and the sensitivity of the films (180 ppm acetone). This work showed that the ink-jet printing technique was a convenient and low cost method to prepare films with controlled film thickness and dopant concentration

  4. Phonon transport across nano-scale curved thin films

    Energy Technology Data Exchange (ETDEWEB)

    Mansoor, Saad B.; Yilbas, Bekir S., E-mail: bsyilbas@kfupm.edu.sa

    2016-12-15

    Phonon transport across the curve thin silicon film due to temperature disturbance at film edges is examined. The equation for radiative transport is considered via incorporating Boltzmann transport equation for the energy transfer. The effect of the thin film curvature on phonon transport characteristics is assessed. In the analysis, the film arc length along the film centerline is considered to be constant and the film arc angle is varied to obtain various film curvatures. Equivalent equilibrium temperature is introduced to assess the phonon intensity distribution inside the curved thin film. It is found that equivalent equilibrium temperature decay along the arc length is sharper than that of in the radial direction, which is more pronounced in the region close to the film inner radius. Reducing film arc angle increases the film curvature; in which case, phonon intensity decay becomes sharp in the close region of the high temperature edge. Equivalent equilibrium temperature demonstrates non-symmetric distribution along the radial direction, which is more pronounced in the near region of the high temperature edge.

  5. Phonon transport across nano-scale curved thin films

    International Nuclear Information System (INIS)

    Mansoor, Saad B.; Yilbas, Bekir S.

    2016-01-01

    Phonon transport across the curve thin silicon film due to temperature disturbance at film edges is examined. The equation for radiative transport is considered via incorporating Boltzmann transport equation for the energy transfer. The effect of the thin film curvature on phonon transport characteristics is assessed. In the analysis, the film arc length along the film centerline is considered to be constant and the film arc angle is varied to obtain various film curvatures. Equivalent equilibrium temperature is introduced to assess the phonon intensity distribution inside the curved thin film. It is found that equivalent equilibrium temperature decay along the arc length is sharper than that of in the radial direction, which is more pronounced in the region close to the film inner radius. Reducing film arc angle increases the film curvature; in which case, phonon intensity decay becomes sharp in the close region of the high temperature edge. Equivalent equilibrium temperature demonstrates non-symmetric distribution along the radial direction, which is more pronounced in the near region of the high temperature edge.

  6. Emergent Topological Phenomena in Thin Films of Pyrochlore Iridates

    Science.gov (United States)

    Yang, Bohm-Jung; Nagaosa, Naoto

    2014-06-01

    Because of the recent development of thin film and artificial superstructure growth techniques, it is possible to control the dimensionality of the system, smoothly between two and three dimensions. In this Letter we unveil the dimensional crossover of emergent topological phenomena in correlated topological materials. In particular, by focusing on the thin film of pyrochlore iridate antiferromagnets grown along the [111] direction, we demonstrate that the thin film can have a giant anomalous Hall conductance, proportional to the thickness of the film, even though there is no Hall effect in 3D bulk material. Moreover, in the case of ultrathin films, a quantized anomalous Hall conductance can be observed, despite the fact that the system is an antiferromagnet. In addition, we uncover the emergence of a new topological phase, the nontrivial topological properties of which are hidden in the bulk insulator and manifest only in thin films. This shows that the thin film of correlated topological materials is a new platform to search for unexplored novel topological phenomena.

  7. Micropatterned Silica Films with Nanohydroxyapatite for Y-TZP Implants.

    Science.gov (United States)

    Miranda, R B P; Grenho, L; Carvalho, A; Fernandes, M H; Monteiro, F J; Cesar, P F

    2018-03-01

    This investigation aimed at developing micropatterned silica thin films (MSTFs) containing nanohydroxyapatite (nano-HA) microaggregates that were not completely covered by silica so that they could directly interact with the surrounding cells. The objectives were 1) to evaluate the effect of the presence of 2 films (MSTF with or without nano-HA addition) on the characteristic strength (σ 0 ) and Weibull modulus ( m) of a yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) and 2) to evaluate the effect of these 2 films, as applied onto the Y-TZP surface, on the morphology, orientation, and proliferation of MG63 cells. Sol-gel process and soft lithography were used to apply the MSTF onto the Y-TZP specimens. Three experimental groups were produced: Y-TZP, Y-TZP + MSTF, and Y-TZP + MSTF + sprayed nano-HA. All surfaces were characterized by scanning electron microscopy and energy-dispersive X-ray spectroscopy and tested for 4-point flexural strength ( n = 30) in water at 37 °C. Weibull analysis was used to determine m and σ 0 (maximum likelihood method). In vitro biological behavior was performed with human osteoblast-like cells (MG63). Y-TZP was successfully coated with MSFT and MSFT + nano-HA. Scanning electron microscopy micrographs indicated that the microaggregates of nano-HA were not entirely covered by the silica. There was no statistically significant difference among the experimental groups for σ 0 and m. In the groups containing the films, the cells were elongated and aligned along the lines. The MSFT + nano-HA group showed significantly higher cell metabolic activity than that obtained for the Y-TZP group at day 7. This investigation was successful in producing an MSTF containing nano-HA microaggregates that remained exposed to the environment. The developed films did not jeopardize the structural reliability of a commercial Y-TZP, as confirmed by the Weibull statistics. The MG63 cells seeded over the films became elongated and aligned along the

  8. Ridge Minimization of Ablated Morphologies on ITO Thin Films Using Squared Quasi-Flat Top Beam

    Directory of Open Access Journals (Sweden)

    Hoon-Young Kim

    2018-03-01

    Full Text Available In this study, we explore the improvements in pattern quality that was obtained with a femtosecond laser with quasi-flat top beam profiles at the ablated edge of indium tin oxide (ITO thin films for the patterning of optoelectronic devices. To ablate the ITO thin films, a femtosecond laser is used that has a wavelength and pulse duration of 1030 nm and 190 fs, respectively. The squared quasi-flat top beam is obtained from a circular Gaussian beam using slits with varying x-y axes. Then, the patterned ITO thin films are measured using both scanning electron and atomic force microscopes. In the case of the Gaussian beam, the ridge height and width are approximately 39 nm and 1.1 μm, respectively, whereas, when the quasi-flat top beam is used, the ridge height and width are approximately 7 nm and 0.25 μm, respectively.

  9. Depth profile analysis of thin TiOxNy films using standard ion beam analysis techniques and HERDA

    International Nuclear Information System (INIS)

    Markwitz, A.; Dytlewski, N.; Cohen, D.

    1999-01-01

    Ion beam assisted deposition is used to fabricate thin titanium oxynitride films (TiO x N y ) at Industrial Research (typical film thickness 100nm). At the Institute of Geological and Nuclear Sciences, the thin films are analysed using non-destructive standard ion beam analysis (IBA) techniques. High-resolution titanium depth profiles are measured with RBS using 1.5MeV 4 He + ions. Non-resonant nuclear reaction analysis (NRA) is performed for investigating the amounts of O and N in the deposited films using the reactions 16 O(d,p) 17 O at 920 keV and 14 N(d,α) 12 C at 1.4 MeV. Using a combination of these nuclear techniques, the stoichiometry as well as the thickness of the layers is revealed. However, when oxygen and nitrogen depth profiles are required for investigating stoichiometric changes in the films, additional nuclear analysis techniques such as heavy ion elastic recoil detection (HERDA) have to be applied. With HERDA, depth profiles of N, O, and Ti are measured simultaneously. In this paper comparative IBA measurement s of TiO x N y films with different compositions are presented and discussed

  10. Synthesis, structuring and characterization of rare earth oxide thin films: Modeling of the effects of stress and defects on the phase stability

    International Nuclear Information System (INIS)

    Gaboriaud, R.J.; Paumier, F.; Lacroix, B.

    2014-01-01

    This work studies the effects of the deposition parameters on the microstructure and the related residual stress in a rare earth oxide thin film. This study is focused on the yttrium sesquioxide (Y 2 O 3 ) thin films deposited on Si (100) substrates using the ion beam sputtering technique. This technique allows the control of the microstructure and the related residual stress in the thin films by monitoring the energy of the argon beam used in the deposition process. Measurements of the stresses within the oxide layer were performed by the X-ray diffraction-sin 2 Ψ method. The results show that the classic model of a pure biaxial in-plane model of stress, generally proposed in thin films, is not satisfying. A model that includes a hydrostatic stress due to the crystalline defects generated during the deposition process and a biaxial stress called a fixation stress, gives a good agreement with the experimental results. This modeling of the residual stress, based on nanometer-scale inclusions (point, extended defects) inducing a hydrostatic stress field, leads to a quantitative analysis of the nature and the concentration of the defects. This work shows results that establish a relationship between residual stress, defects and non-equilibrium phase stabilization during growth. - Highlights: • Microstructure of Y 2 O 3 thin films • Measurements of residual stresses in the thin films • Modeling of a triaxial residual stress state • Stress-induced stabilization of non-equilibrium phase

  11. Study of Interfacial Interactions Using Thin Film Surface Modification: Radiation and Oxidation Effects in Materials

    International Nuclear Information System (INIS)

    2014-01-01

    Interfaces play a key role in dictating the long-term stability of materials under the influence of radiation and high temperatures. For example, grain boundaries affect corrosion by way of providing kinetically favorable paths for elemental diffusion, but they can also act as sinks for defects and helium generated during irradiation. Likewise, the retention of high-temperature strength in nanostructured, oxide-dispersion strengthened steels depends strongly on the stoichiometric and physical stability of the (Y, Ti)-oxide particles/matrix interface under radiation and high temperatures. An understanding of these interfacial effects at a fundamental level is important for the development of materials for extreme environments of nuclear reactors. The goal of this project is to develop an understanding stability of interfaces by depositing thin films of materials on substrates followed by ion irradiation of the film-substrate system at elevated temperatures followed by post-irradiation oxidation treatments. Specifically, the research will be performed by depositing thin films of yttrium and titanium (~500 nm) on Fe-12%Cr binary alloy substrate. Y and Ti have been selected as thin-film materials because they form highly stable protective oxides layers. The Fe-12%Cr binary alloy has been selected because it is representative of ferritic steels that are widely used in nuclear systems. The absence of other alloying elements in this binary alloy would allow for a clearer examination of structures and compositions that evolve during high-temperature irradiations and oxidation treatments. The research is divided into four specific tasks: (1) sputter deposition of 500 nm thick films of Y and Ti on Fe-12%Cr alloy substrates, (2) ion irradiation of the film-substrate system with 2MeV protons to a dose of 2 dpa at temperatures of 300°C, 500°C, and 700°C, (3) oxidation of as-deposited and ion-irradiated samples in a controlled oxygen environment at 500°C and 700°C, (4

  12. DC Magnetron sputtering of Y-Ba-Cu-O thin films

    International Nuclear Information System (INIS)

    Larsson, Gunnar.

    1990-01-01

    I have been studying dc magnetron sputtering of thin film YBa 2 Cu 3 O 6+x , one of the recently discovered high- temperatures superconductors. In the introduction a brief review of the subjects sputtering and superconductivity is given. Since partial pressure measurements, especially for oxygen, have been important in the work I include a short description of the operating principles of mass spectroscopy. Experimental results in addition to what is given in the papers concerning plasma are presented in an appendix at the end of the introduction. (au)

  13. Thermoelectric effects of amorphous Ga-Sn-O thin film

    Science.gov (United States)

    Matsuda, Tokiyoshi; Uenuma, Mutsunori; Kimura, Mutsumi

    2017-07-01

    The thermoelectric effects of an amorphous Ga-Sn-O (a-GTO) thin film have been evaluated as a physical parameter of a novel oxide semiconductor. Currently, a-GTO thin films are greatly desired not only because they do not contain rare metals and are therefore free from problems on the exhaustion of resources and the increase in cost but also because their initial characteristics and performance stabilities are excellent when they are used in thin-film transistors. In this study, an a-GTO thin film was deposited on a quartz substrate by RF magnetron sputtering and postannealing was performed in air at 350 °C for 1 h using an annealing furnace. The Seebeck coefficient and electrical conductivity of the a-GTO thin film were -137 µV/K and 31.8 S/cm at room temperature, and -183 µV/K and 43.8 S/cm at 397 K, respectively, and as a result, the power factor was 1.47 µW/(cm·K2) at 397 K; these values were roughly as high as those of amorphous In-Ga-Zn-O (a-IGZO) thin films. Therefore, a-GTO thin films will be a candidate material for thermoelectric devices fabricated in a large area at a low cost by controlling the carrier mobility, carrier density, device structures, and so forth.

  14. Performance of the PdNi and PdNiSe as cathodes in PEM fuel cells; Desempeno de PdNi y PdNiSe como catodos en celdas de combustible tipo PEM

    Energy Technology Data Exchange (ETDEWEB)

    Santana, A.; Ramos-Sanchez, G.; Vazquez, G.; Solorza-Feria, O. [Centro de Investigaciones y de Estudios Avanzados del IPN, Mexico D.F. (Mexico)]. E-mail: gramos@cinvestav.mx

    2009-09-15

    The search for new materials capable of catalyzing oxygen reactions in low temperature fuel cells continues to be one of the key issues in the development of a hydrogen economy. Electrochemical and physical characterization studies have demonstrated that the PdNi and PdNiSe catalysts have adequate properties for use as cathodes in fuel cells. Nevertheless, the performance of the materials in proton exchange membrane (PEM) fuel cells depends not only on the catalytic properties but also on the adequate preparation of the electrocatalyst membrane interface (EMI). This work presents the results of the search for optimal conditions to prepare the EMIs with PdNi and PdNiSe cathodes. There are many variables for handling the preparation of the interfaces, nevertheless our search focuses on two: catalyst ratio/Vulcan Carbon® and the catalyst amount. Interfaces were prepared with an active area of 5 cm{sup 2} with PdNi and PdNiSe cathodes and carbon fabric anode with Pt E-tek®. These interfaces were tested with an ElectroChem model under different gas pressure and temperature conditions. The optimization method was carried out using a simplex method with the variables mentioned above and power density per unit mass and catalyst area as response variables. [Spanish] La busqueda de nuevos materiales capaces de catalizar la Reaccion de Oxigeno (RRO) en celdas de combustible de baja temperatura, sigue siendo uno de los temas clave para el desarrollo de una Economia del Hidrogeno. Estudios electroquimicos y de caracterizacion fisica han demostrado que los catalizadores PdNi y PdNiSe, tienen las propiedades adecuadas para poder ser utilizados como catodos en celdas de combustible; sin embargo el desempeno de los materiales en celdas de combustible de membrana de intercambio protonico (PEM), no solo depende de las propiedades del catalizador, sino tambien de la preparacion adecuada del Ensamble Membrana Electrocatalizador (EME). En este trabajo se presentan los resultados de la

  15. Beryllium thin films for resistor applications

    Science.gov (United States)

    Fiet, O.

    1972-01-01

    Beryllium thin films have a protective oxidation resistant property at high temperature and high recrystallization temperature. However, the experimental film has very low temperature coefficient of resistance.

  16. Thermoelectric Properties of Nanograined Si-Ge-Au Thin Films Grown by Molecular Beam Deposition

    Science.gov (United States)

    Nishino, Shunsuke; Ekino, Satoshi; Inukai, Manabu; Omprakash, Muthusamy; Adachi, Masahiro; Kiyama, Makoto; Yamamoto, Yoshiyuki; Takeuchi, Tsunehiro

    2018-06-01

    Conditions to achieve extremely large Seebeck coefficient and extremely small thermal conductivity in Si-Ge-Au thin films formed of nanosized grains precipitated in amorphous matrix have been investigated. We employed molecular beam deposition to prepare Si1- x Ge x Au y thin films on sapphire substrate. The deposited films were annealed under nitrogen gas atmosphere at 300°C to 500°C for 15 min to 30 min. Nanocrystals dispersed in amorphous matrix were clearly observed by transmission electron microscopy. We did not observe anomalously large Seebeck coefficient, but very low thermal conductivity of nearly 1.0 W K-1 m-1 was found at around 0.2 Si-Ge bulk material for which dimensionless figure of merit of ZT ≈ 1 was reported at high temperature.

  17. XRay Study of Transfer Printed Pentacene Thin Films

    International Nuclear Information System (INIS)

    Shao, Y.; Solin, S. A.; Hines, D. R.; Williams, E. D.

    2007-01-01

    We investigated the structural properties and transfer properties of pentacene thin films fabricated by thermal deposition and transfer printing onto SiO2 and plastic substrates, respectively. The dependence of the crystallite size on the printing time, temperature and pressure were measured. The increases of crystalline size were observed when pentacene thin films were printed under specific conditions, e.g. 120 deg. C and 600 psi and can be correlated with the improvement of the field effect mobility of pentacene thin-film transistors

  18. Macro stress mapping on thin film buckling

    Energy Technology Data Exchange (ETDEWEB)

    Goudeau, P.; Villain, P.; Renault, P.-O.; Tamura, N.; Celestre, R.S.; Padmore, H.A.

    2002-11-06

    Thin films deposited by Physical Vapour Deposition techniques on substrates generally exhibit large residual stresses which may be responsible of thin film buckling in the case of compressive stresses. Since the 80's, a lot of theoretical work has been done to develop mechanical models but only a few experimental work has been done on this subject to support these theoretical approaches and nothing concerning local stress measurement mainly because of the small dimension of the buckling (few 10th mm). This paper deals with the application of micro beam X-ray diffraction available on synchrotron radiation sources for stress mapping analysis of gold thin film buckling.

  19. Si-based thin film coating on Y-TZP: Influence of deposition parameters on adhesion of resin cement

    Energy Technology Data Exchange (ETDEWEB)

    Queiroz, José Renato Cavalcanti, E-mail: joserenatocq@hotmail.com [Potiguar University, Department of Biotechnology, Natal (Brazil); Nogueira Junior, Lafayette [São Paulo State University, Department of Prosthodontics and Dental Materials, São José dos Campos (Brazil); Massi, Marcos [Federal University of São Paulo, Institute of Science and Technology, São José dos Campos (Brazil); Silva, Alecssandro de Moura; Bottino, Marco Antonio [São Paulo State University, Department of Prosthodontics and Dental Materials, São José dos Campos (Brazil); Sobrinho, Argemiro Soares da Silva [Technological Institute of Aeronautics, Department of Physics, São José dos Campos (Brazil); Özcan, Mutlu [University of Zurich, Dental Materials Unit, Center for Dental and Oral Medicine, Clinic for Fixed and Removable Prosthodontics and Dental Materials Science, Zurich (Switzerland)

    2013-10-01

    This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0–14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia.

  20. Si-based thin film coating on Y-TZP: Influence of deposition parameters on adhesion of resin cement

    International Nuclear Information System (INIS)

    Queiroz, José Renato Cavalcanti; Nogueira Junior, Lafayette; Massi, Marcos; Silva, Alecssandro de Moura; Bottino, Marco Antonio; Sobrinho, Argemiro Soares da Silva; Özcan, Mutlu

    2013-01-01

    This study evaluated the influence of deposition parameters for Si-based thin films using magnetron sputtering for coating zirconia and subsequent adhesion of resin cement. Zirconia ceramic blocks were randomly divided into 8 groups and specimens were either ground finished and polished or conditioned using air-abrasion with alumina particles coated with silica. In the remaining groups, the polished specimens were coated with Si-based film coating with argon/oxygen magnetron discharge at 8:1 or 20:1 flux. In one group, Si-based film coating was performed on air-abraded surfaces. After application of bonding agent, resin cement was bonded. Profilometry, goniometry, Energy Dispersive X-ray Spectroscopy and Rutherford Backscattering Spectroscopy analysis were performed on the conditioned zirconia surfaces. Adhesion of resin cement to zirconia was tested using shear bond test and debonded surfaces were examined using Scanning Electron Microscopy. Si-based film coating applied on air-abraded rough zirconia surfaces increased the adhesion of the resin cement (22.78 ± 5.2 MPa) compared to those of other methods (0–14.62 MPa) (p = 0.05). Mixed type of failures were more frequent in Si film coated groups on either polished or air-abraded groups. Si-based thin films increased wettability compared to the control group but did not change the roughness, considering the parameters evaluated. Deposition parameters of Si-based thin film and after application of air-abrasion influenced the initial adhesion of resin cement to zirconia.

  1. Mechanical properties of ultra-thin HfO2 films studied by nano scratches tests

    International Nuclear Information System (INIS)

    Fu, Wei-En; Chang, Yong-Qing; Chang, Chia-Wei; Yao, Chih-Kai; Liao, Jiunn-Der

    2013-01-01

    10-nm-thick atomic layer deposited HfO 2 films were characterized in terms of wear resistance and indentation hardness to investigate the thermal annealing induced impacts on mechanical properties. The wear resistance of ultra-thin films at low loads was characterized using nano-scratch tests with an atomic force microscope. The depth of the nano-scratches decreases with increasing annealing temperature, indicating that the hardness of the annealed films increases with the annealing temperatures. Surface nanoindentation was also performed to confirm the nanoscratch test results. The hardness variation of the annealed films is due to the generation of HfSi x O y induced by the thermal annealing. X-ray photoelectron spectroscopy measurements proved that the hardness of formed HfSi x O y with increasing annealing temperatures. The existence of HfSi x O y broadens the interface, and causes the increase of the interfacial layer thickness. As a result, the surface hardness increases with the increasing HfSi x O y induced by the thermal annealing. - Highlights: ► Mechanical properties of HfO 2 films were assessed by nano-scratch and indentation. ► Scratch depth of HfO 2 films decreased with the increase of annealing temperatures. ► Nano-hardness of HfO 2 films increased with the increase of annealing temperatures

  2. Theoretical investigation of the thermodynamic properties of metallic thin films

    International Nuclear Information System (INIS)

    Hung, Vu Van; Phuong, Duong Dai; Hoa, Nguyen Thi; Hieu, Ho Khac

    2015-01-01

    The thermodynamic properties of metallic thin films with face-centered cubic structure at ambient conditions were investigated using the statistical moment method including the anharmonicity effects of thermal lattice vibrations. The analytical expressions of Helmholtz free energy, lattice parameter, linear thermal expansion coefficient, specific heats at the constant volume and constant pressure were derived in terms of the power moments of the atomic displacements. Numerical calculations of thermodynamic properties have been performed for Au and Al thin films and compared with those of bulk metals. This research proposes that thermodynamic quantities of thin films approach the values of bulk when the thickness of thin film is about 70 nm. - Highlights: • Thermodynamic properties of thin films were investigated using the moment method. • Expressions of Helmholtz energy, expansion coefficient, specific heats were derived. • Calculations for Au, Al thin films were performed and compared with those of bulks

  3. Theoretical investigation of the thermodynamic properties of metallic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Vu Van [Vietnam Education Publishing House, 81 Tran Hung Dao, Hanoi (Viet Nam); Phuong, Duong Dai [Hanoi National University of Education, 136 Xuan Thuy, Hanoi (Viet Nam); Hoa, Nguyen Thi [University of Transport and Communications, Lang Thuong, Dong Da, Hanoi (Viet Nam); Hieu, Ho Khac, E-mail: hieuhk@duytan.edu.vn [Institute of Research and Development, Duy Tan University, K7/25 Quang Trung, Danang (Viet Nam)

    2015-05-29

    The thermodynamic properties of metallic thin films with face-centered cubic structure at ambient conditions were investigated using the statistical moment method including the anharmonicity effects of thermal lattice vibrations. The analytical expressions of Helmholtz free energy, lattice parameter, linear thermal expansion coefficient, specific heats at the constant volume and constant pressure were derived in terms of the power moments of the atomic displacements. Numerical calculations of thermodynamic properties have been performed for Au and Al thin films and compared with those of bulk metals. This research proposes that thermodynamic quantities of thin films approach the values of bulk when the thickness of thin film is about 70 nm. - Highlights: • Thermodynamic properties of thin films were investigated using the moment method. • Expressions of Helmholtz energy, expansion coefficient, specific heats were derived. • Calculations for Au, Al thin films were performed and compared with those of bulks.

  4. Effect of solution concentration on MEH-PPV thin films

    Science.gov (United States)

    Affendi, I. H. H.; Sarah, M. S. P.; Alrokayan, Salman A. H.; Khan, Haseeb A.; Rusop, M.

    2018-05-01

    MEH-PPV thin films were prepared with a mixture of THF (tetrahydrofuran) solution deposited by spin coating method. The surface topology of MEH-PPV thin film were characterize by atomic force microscopy (AFM) and optical properties of absorption spectra were characterized by using Ultraviolet-visible-near-infrared (UV-Vis-NIR). The MEH-PPV concentration variation affects the surface and optical properties of the thin film where 0.5 mg/ml MEH-PPV concentration have a good surface topology provided the same film also gives the highest absorption coefficient were then deposited to a TiO2 thin film forming composite layer. The composite layer then shows low current flow of short circuit current of Isc = -5.313E-7 A.

  5. Effects of ion irradiation on the mechanical properties of SiNawOxCyHz sol-gel derived thin films

    International Nuclear Information System (INIS)

    Lucca, D.A.; Qi, Y.; Harriman, T.A.; Prenzel, T.; Wang, Y.Q.; Nastasi, M.; Dong, J.; Mehner, A.

    2010-01-01

    A study of the effects of ion irradiation of hybrid organic/inorganic modified silicate thin films on their mechanical properties is presented. NaOH catalyzed SiNa w O x C y H z thin films were synthesized by sol-gel processing from tetraethylorthosilicate (TEOS) and methyltriethoxysilane (MTES) precursors and spin-coated onto Si substrates. After drying at 300 o C, the films were irradiated with 125 keV H + or 250 keV N 2+ at fluences ranging from 1 x 10 14 to 2.5 x 10 16 ions/cm 2 . Nanoindentation was used to characterize the films. Changes in hardness and reduced elastic modulus were examined as a function of ion fluence and irradiating species. The resulting increases in hardness and reduced elastic modulus are compared to similarly processed acid catalyzed silicate thin films.

  6. Thermionic vacuum arc (TVA) technique for magnesium thin film deposition

    Energy Technology Data Exchange (ETDEWEB)

    Balbag, M.Z., E-mail: zbalbag@ogu.edu.t [Eskisehir Osmangazi University, Education Faculty, Primary Education, Meselik Campus, Eskisehir 26480 (Turkey); Pat, S.; Ozkan, M.; Ekem, N. [Eskisehir Osmangazi University, Art and Science Faculty, Physics Department, Eskisehir 26480 (Turkey); Musa, G. [Ovidius University, Physics Department, Constanta (Romania)

    2010-08-15

    In this study, magnesium thin films were deposited on glass substrate by the Thermionic Vacuum Arc (TVA) technique for the first time. We present a different technique for deposition of high-quality magnesium thin films. By means of this technique, the production of films is achieved by condensing the plasma of anode material generated using Thermionic Vacuum Arc (TVA) under high vacuum conditions onto the surface to be coated. The crystal orientation and morphology of the deposited films were investigated by using XRD, EDX, SEM and AFM. The aim of this study is to search the use of TVA technique to coat magnesium thin films and to determine some of the physical properties of the films generated. Furthermore, this study will contribute to the scientific studies which search the thin films of magnesium or the compounds containing magnesium. In future, this study will be preliminary work to entirely produce magnesium diboride (MgB{sub 2}) superconductor thin film with the TVA technique.

  7. Properties of RF-Sputtered PZT Thin Films with Ti/Pt Electrodes

    Directory of Open Access Journals (Sweden)

    Cui Yan

    2014-01-01

    Full Text Available Effect of annealing temperature and thin film thickness on properties of Pb(Zr0.53Ti0.47O3 (PZT thin film deposited via radiofrequency magnetron sputtering technique onto Pt/Ti/SiO2/Si substrate was investigated. Average grain sizes of the PZT thin film were measured by atomic force microscope; their preferred orientation was studied through X-ray diffraction analysis. Average residual stress in the thin film was estimated according to the optimized Stoney formula, and impedance spectroscopy characterization was performed via an intelligent LCR measuring instrument. Average grain sizes of PZT thin films were 60 nm~90 nm and their average roughness was less than 2 nm. According to X-ray diffraction analysis, 600°C is the optimal annealing temperature to obtain the PZT thin film with better crystallization. Average residual stress showed that thermal mismatch was the decisive factor of residual stress in Pt/Ti/SiO2/Si substrate; the residual stress in PZT thin film decreased as their thickness increased and increased with annealing temperature. The dielectric constant and loss angle tangent were extremely increased with the thickness of PZT thin films. The capacitance of the device can be adjusted according to the thickness of PZT thin films.

  8. Er:YAB nanoparticles and vitreous thin films by the polymeric precursor method

    Energy Technology Data Exchange (ETDEWEB)

    Maia, Lauro J. Q., E-mail: lauro@if.sc.usp.b [Universidade de Sao Paulo, Grupo Crescimento de Cristais e Materiais Ceramicos, Departamento de Fisica e Ciencia dos Materiais, Instituto de Fisica de Sao Carlos (Brazil); Ibanez, Alain; Ortega, Luc [Laboratoire de Cristallographie CNRS associe a l' Universite Joseph Fourier et a l' INPG (France); Mastelaro, Valmor R.; Hernandes, Antonio C. [Universidade de Sao Paulo, Grupo Crescimento de Cristais e Materiais Ceramicos, Departamento de Fisica e Ciencia dos Materiais, Instituto de Fisica de Sao Carlos (Brazil)

    2008-12-15

    The synthesis of Y{sub 0.9}Er{sub 0.1}Al{sub 3}(BO{sub 3}){sub 4} crystalline powders and vitreous thin films were studied. Precursor solutions were obtained using a modified polymeric precursor method using d-sorbitol as complexant agent. The chemical reactions were described. Y{sub 0.9}Er{sub 0.1}Al{sub 3}(BO{sub 3}){sub 4} composition presents good thermal stability with regard to crystallization. The Y{sub 0.9}Er{sub 0.1}Al{sub 3}(BO{sub 3}){sub 4} crystallized phase can be obtained at 1,150 {sup o}C, in agreement with other authors. Crack- and porosity-free films were obtained with very small grain size and low RMS roughness. The films thickness revealed to be linearly dependent on precursor solution viscosity, being the value of 25 mPa s useful to prepare high-quality amorphous multi-layers (up to {approx} 800 nm) at 740 {sup o}C during 2 h onto silica substrates by spin coating with a gyrset technology.

  9. Substrate-HTcS thin film interaction studies by (S)TEM

    NARCIS (Netherlands)

    Ramaekers, P.P.J.; Klepper, D.; Kitazawa, K.; Ishiguro, T.

    1989-01-01

    This paper concerns with compatibility aspects beween HTcS thin film either their substrates. The influence of substrate-thin film interaction and thin film microstructure on the superconducting properties is discussed. In this respect, data based on (S)TEM observations are presented. It is

  10. Structural and optical analysis of ZnBeMgO powder and thin films

    International Nuclear Information System (INIS)

    Panwar, Neeraj; Liriano, J.; Katiyar, Ram S.

    2011-01-01

    Research highlights: → Structural and optical studies of Zn 1-x-y Be x Mg y O (0 ≤ x ≤0.10; 0 ≤ y ≤ 0.20) powders and thin films. → Raman studies of the pure ZnO powder showed all the characteristic peaks of the wurtzite hexagonal structure and with (Be, Mg) co-doping new modes appeared which can be attributed to arise as a result of doping effect. → The XRD of the films prepared from the powders using pulsed laser deposition (PLD) technique exhibited the preferential orientation and with doping the (0 0 0 2) peak also shifts to higher 2θ values suggesting the incorporation of Be/Mg at the Zn-site. → From the UV-visible optical band gap measurement it was noticed that the band gap of the pristine ZnO film is 3.3 eV which enhanced up to 4.51 eV for Zn 0.7 Be 0.1 Mg 0.2 O film which lies in the solar blind region and is very useful for the deep UV detection. - Abstract: We here report the structural and optical studies of Zn 1-x-y Be x Mg y O (0 ≤ x ≤ 0.15; 0 ≤ y ≤ 0.20) powders and thin films. From the Rietveld refinement of the powder X-ray diffraction (XRD) patterns it was revealed that the value of 'a' lattice parameter remains almost unchanged whereas 'c' parameter reduces with Be and Mg co-doping in ZnO. The Zn-O bond length also decreases in co-doped samples. Raman studies of the pure ZnO powder showed all the characteristic peaks of the wurtzite hexagonal structure and with (Be, Mg) co-doping new modes appeared which can be attributed to arise as a result of substitution. The XRD of the films prepared from the powders using pulsed laser deposition (PLD) technique exhibited the preferential orientation and with increase in co-doping the (0 0 0 2) peak also shifts to higher 2θ values suggesting the incorporation of Be/Mg at the Zn-site. From the UV-visible optical transmittance measurement it was noticed that the band gap of the pristine ZnO film is 3.3 eV which enhanced up to 4.51 eV for Zn 0.7 Be 0.1 Mg 0.2 O film which lies in the

  11. Growth of Pd-Filled Carbon Nanotubes on the Tip of Scanning Probe Microscopy

    Directory of Open Access Journals (Sweden)

    Tomokazu Sakamoto

    2009-01-01

    Full Text Available We have synthesized Pd-filled carbon nanotubes (CNTs oriented perpendicular to Si substrates using a microwave plasma-enhanced chemical vapor deposition (MPECVD for the application of scanning probe microscopy (SPM tip. Prior to the CVD growth, Al thin film (10 nm was coated on the substrate as a buffer layer followed by depositing a 5∼40 nm-thick Pd film as a catalyst. The diameter and areal density of CNTs grown depend largely on the initial Pd thickness. Scanning electron microscopy (SEM and transmission electron microscopy (TEM images clearly show that Pd is successfully encapsulated into the CNTs, probably leading to higher conductivity. Using optimum growth conditions, Pd-filled CNTs are successfully grown on the apex of the conventional SPM cantilever.

  12. Atomic Structure Control of Silica Thin Films on Pt(111)

    KAUST Repository

    Crampton, Andrew S

    2015-05-27

    Metal oxide thin films grown on metal single crystals are commonly used to model heterogeneous catalyst supports. The structure and properties of thin silicon dioxide films grown on metal single crystals have only recently been thoroughly characterized and their spectral properties well established. We report the successful growth of a three- dimensional, vitreous silicon dioxide thin film on the Pt(111) surface and reproduce the closed bilayer structure previously reported. The confirmation of the three dimensional nature of the film is unequivocally shown by the infrared absorption band at 1252 cm−1. Temperature programmed desorption was used to show that this three-dimensional thin film covers the Pt(111) surface to such an extent that its application as a catalyst support for clusters/nanoparticles is possible. The growth of a three-dimensional film was seen to be directly correlated with the amount of oxygen present on the surface after the silicon evaporation process. This excess of oxygen is tentatively attributed to atomic oxygen being generated in the evaporator. The identification of atomic oxygen as a necessary building block for the formation of a three-dimensional thin film opens up new possibilities for thin film growth on metal supports, whereby simply changing the type of oxygen enables thin films with different atomic structures to be synthesized. This is a novel approach to tune the synthesis parameters of thin films to grow a specific structure and expands the options for modeling common amorphous silica supports under ultra high vacuum conditions.

  13. A novel application of the CuI thin film for preparing thin copper nanowires

    International Nuclear Information System (INIS)

    Shi Shuo; Sun Jialin; Zhang Jianhong; Cao Yang

    2005-01-01

    We present a novel application of the CuI thin film for preparing thin copper nanowires under a direct current electric field (DCEF). The CuI thin film was used as a medium for transmitting cuprous ions during the growing process of copper nanowires. As electrodes are the source of cuprous ions, high-purity copper films were deposited on both ends of the CuI thin film. At 353 K, under whole solid condition, without any templates, and having applied a DCEF of 1.5x10 4 V/m, cuprous ions were generated at the anode and migrated towards the cathode through the CuI film. At the edge of the cathode, cuprous ions obtained electrons and congregated to form a disordered thin copper nanowires bundle. The SEM images showed that these copper nanowires were from 10 to 20 nm in diameter and several hundred nanometers in length. The effect of the electric field intensity and the growth temperature on the diameter of the nanowires was also studied

  14. In vitro corrosion and biocompatibility screening of sputtered Ti{sub 40}Cu{sub 36}Pd{sub 14}Zr{sub 10} thin film metallic glasses on steels

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, B., E-mail: subramanianb3@gmail.com

    2015-02-01

    The growth of multi-component thin film metallic glasses (TFMGs) of Ti{sub 40}Cu{sub 36}Pd{sub 14}Zr{sub 10} (at.%) alloys fabricated using magnetron sputtering on bioimplantable 316L stainless steel substrates has been investigated. The vapor–solid quenching during sputtering enables the amorphous phases to be formed. The amorphous films consist of a single glassy phase, as evidenced by a broad hump and no detectable crystalline peaks as observed from XRD and selective area electron diffraction (SAED) patterns. The average surface roughness (Ra) of the coated film as observed from AFM was 0.3 nm. Nanohardness of about 7.7 GPa and Young's modulus of 110 GPa were measured from nanoindentation analysis. The potentiodynamic polarization and impedance measurements showed that coated stainless steel substrates have higher corrosion resistance compared to uncoated SS substrate in simulated body fluid (SBF) solution. The cytotoxicity studies using L929 fibroblast cells showed that these coatings were non-cytotoxic in nature. The interactions between the coated surface and bacteria were investigated by agar diffusion method, solution suspension and wet interfacial contact methods. - Highlights: • Ti-based TFMG coated specimen showed superior corrosion resistance. • Ti-based TFMG coated SS 316L specimen was non-cytotoxic in nature. • Antimicrobial activity of Ti-based TFMG was noticed.

  15. Silicon-integrated thin-film structure for electro-optic applications

    Science.gov (United States)

    McKee, Rodney A.; Walker, Frederick Joseph

    2000-01-01

    A crystalline thin-film structure suited for use in any of an number of electro-optic applications, such as a phase modulator or a component of an interferometer, includes a semiconductor substrate of silicon and a ferroelectric, optically-clear thin film of the perovskite BaTiO.sub.3 overlying the surface of the silicon substrate. The BaTiO.sub.3 thin film is characterized in that substantially all of the dipole moments associated with the ferroelectric film are arranged substantially parallel to the surface of the substrate to enhance the electro-optic qualities of the film.

  16. Nitrogen incorporation in sputter deposited molybdenum nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stöber, Laura, E-mail: laura.stoeber@tuwien.ac.at; Patocka, Florian, E-mail: florian.patocka@tuwien.ac.at; Schneider, Michael, E-mail: michael.schneider@tuwien.ac.at; Schmid, Ulrich, E-mail: ulrich.e366.schmid@tuwien.ac.at [Institute of Sensor and Actuator Systems, TU Wien, Gußhausstraße 27-29, A-1040 Vienna (Austria); Konrath, Jens Peter, E-mail: jenspeter.konrath@infineon.com; Haberl, Verena, E-mail: verena.haberl@infineon.com [Infineon Technologies Austria AG, Siemensstraße 2, 9500 Villach (Austria)

    2016-03-15

    In this paper, the authors report on the high temperature performance of sputter deposited molybdenum (Mo) and molybdenum nitride (Mo{sub 2}N) thin films. Various argon and nitrogen gas compositions are applied for thin film synthetization, and the amount of nitrogen incorporation is determined by Auger measurements. Furthermore, effusion measurements identifying the binding conditions of the nitrogen in the thin film are performed up to 1000 °C. These results are in excellent agreement with film stress and scanning electron microscope analyses, both indicating stable film properties up to annealing temperatures of 500 °C.

  17. Thin Cu film resistivity using four probe techniques: Effect of film thickness and geometrical shapes

    Science.gov (United States)

    Choudhary, Sumita; Narula, Rahul; Gangopadhyay, Subhashis

    2018-05-01

    Precise measurement of electrical sheet resistance and resistivity of metallic thin Cu films may play a significant role in temperature sensing by means of resistivity changes which can further act as a safety measure of various electronic devices during their operation. Four point probes resistivity measurement is a useful approach as it successfully excludes the contact resistance between the probes and film surface of the sample. Although, the resistivity of bulk samples at a particular temperature mostly depends on its materialistic property, however, it may significantly differ in the case of thin films, where the shape and thickness of the sample can significantly influence on it. Depending on the ratio of the film thickness to probe spacing, samples are usually classified in two segments such as (i) thick films or (ii) thin films. Accordingly, the geometric correction factors G can be related to the sample resistivity r, which has been calculated here for thin Cu films of thickness up to few 100 nm. In this study, various rectangular shapes of thin Cu films have been used to determine the shape induced geometric correction factors G. An expressions for G have been obtained as a function of film thickness t versus the probe spacing s. Using these expressions, the correction factors have been plotted separately for each cases as a function of (a) film thickness for fixed linear probe spacing and (b) probe distance from the edge of the film surface for particular thickness. Finally, we compare the experimental results of thin Cu films of various rectangular geometries with the theoretical reported results.

  18. Optical constant of thin gold films

    DEFF Research Database (Denmark)

    Yakubovsky, D. I.; Fedyanin, D. Yu; Arsenin, A. V.

    2017-01-01

    The performance of metal-based devices is limited by ohmic losses in the metal, which are determined by electron scattering. The structural properties of gold thin films also play an important role in the film quality, which may affect its' optical properties and the overall capability...... and spectroscopic ellipsometry, the structural morphology and optical properties of polycrystalline gold thin films (fabricated by e-beam deposition at a low sputtering rate smooth gold) in the thickness range of 20 - 200 nm. By extracting the real and imaginary dielectric function and the Drude parameter...... of the device. At the same time, metal films of different thicknesses are needed for different applications and, since these films are polycrystalline, their internal properties and surface roughness can greatly vary from one thickness to another. In this work, we study, using atomic force microscopy...

  19. Preparation and properties of thin films treatise on materials science and technology

    CERN Document Server

    Tu, K N

    1982-01-01

    Treatise on Materials Science and Technology, Volume 24: Preparation and Properties of Thin Films covers the progress made in the preparation of thin films and the corresponding study of their properties. The book discusses the preparation and property correlations in thin film; the variation of microstructure of thin films; and the molecular beam epitaxy of superlattices in thin film. The text also describes the epitaxial growth of silicon structures (thermal-, laser-, and electron-beam-induced); the characterization of grain boundaries in bicrystalline thin films; and the mechanical properti

  20. Strain-dependence of the structure and ferroic properties of epitaxial Ni1−xTi1−yO3 thin films grown on sapphire substrates

    International Nuclear Information System (INIS)

    Varga, Tamas; Droubay, Timothy C.; Bowden, Mark E.; Stephens, Sean A.; Manandhar, Sandeep; Shutthanandan, Vaithiyalingam; Colby, Robert J.; Hu, Dehong; Shelton, William A.; Chambers, Scott A.

    2015-01-01

    Polarization-induced weak ferromagnetism has been predicted a few years back in compounds MTiO 3 (M = Fe, Mn, Ni) (Fennie, 2008). We set out to stabilize this metastable, distorted perovskite structure by growing NiTiO 3 epitaxially on sapphire Al 2 O 3 (001) substrate, and to control the polar and magnetic properties via strain. Epitaxial Ni 1−x Ti 1−y O 3 films of different Ni/Ti ratios and thicknesses were deposited on Al 2 O 3 substrates by pulsed laser deposition at different temperatures, and characterized using several techniques. The effect of film thickness, deposition temperature, and film stoichiometry on lattice strain, film structure, and physical properties was investigated. Our structural data from x-ray diffraction, electron microscopy, and x-ray absorption spectroscopy shows that substrate-induced strain has a marked effect on the structure and crystalline quality of the films. Physical property measurements reveal a dependence of the Néel transition and lattice polarization on strain, and highlight our ability to control the ferroic properties in NiTiO 3 thin films by film stoichiometry and thickness. - Highlights: • NiTiO 3 epitaxial thin films with LiNbO 3 -type structure by pulsed laser deposition. • Strain varied by film thickness, stoichiometry, and synthesis temperature. • Systematic study of the effect of strain on film structure and physical properties. • Manipulation of ferroic properties by strain confirmed

  1. MOFs for the Sensitive Detection of Ammonia: Deployment of fcu-MOF Thin Films as Effective Chemical Capacitive Sensors.

    Science.gov (United States)

    Assen, Ayalew H; Yassine, Omar; Shekhah, Osama; Eddaoudi, Mohamed; Salama, Khaled N

    2017-09-22

    This work reports on the fabrication and deployment of a select metal-organic framework (MOF) thin film as an advanced chemical capacitive sensor for the sensing/detection of ammonia (NH 3 ) at room temperature. Namely, the MOF thin film sensing layer consists of a rare-earth (RE) MOF (RE-fcu-MOF) deposited on a capacitive interdigitated electrode (IDE). Purposely, the chemically stable naphthalene-based RE-fcu-MOF (NDC-Y-fcu-MOF) was elected and prepared/arranged as a thin film on a prefunctionalized capacitive IDE via the solvothermal growth method. Unlike earlier realizations, the fabricated MOF-based sensor showed a notable detection sensitivity for NH 3 at concentrations down to 1 ppm, with a detection limit appraised to be around 100 ppb (at room temperature) even in the presence of humidity and/or CO 2 . Distinctly, the NDC-Y-fcu-MOF based sensor exhibited the required stability to NH 3 , in contrast to other reported MOFs, and a remarkable detection selectivity toward NH 3 vs CH 4 , NO 2 , H 2 , and C 7 H 8 . The NDC-Y-fcu-MOF based sensor exhibited excellent performance for sensing ammonia for simulated breathing system in the presence of the mixture of carbon dioxide and/or humidity (water vapor), with no major alteration in the detection signal.

  2. Titanium oxynitride thin films as high-capacity and high-rate anode materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, Kuo-Feng [Department of Materials Science and Engineering, Feng Chia University, 100 Wenhwa Rd., Taichung 40724, Taiwan (China); Su, Shih-Hsuan, E-mail: minimono42@gmail.com [Department of Materials Science and Engineering, Feng Chia University, 100 Wenhwa Rd., Taichung 40724, Taiwan (China); Leu, Hoang-Jyh [Master' s Program of Green Energy Science and Technology, Feng Chia University, 100 Wenhwa Rd., Taichung 40724, Taiwan (China); Hsia, Chen-Hsien [Department of Materials Science and Engineering, Feng Chia University, 100 Wenhwa Rd., Taichung 40724, Taiwan (China)

    2015-12-01

    Titanium oxynitride (TiO{sub x}N{sub y}) was synthesized by reactive magnetron sputtering in a mixed N{sub 2}/O{sub 2}/Ar gas at ambient temperature. TiO{sub x}N{sub y} thin films with various amounts of nitrogen contents were deposited by varying the N{sub 2}/O{sub 2} ratios in the background gas. The synthesized TiO{sub x}N{sub y} films with different compositions (TiO{sub 1.837}N{sub 0.060,} TiO{sub 1.890}N{sub 0.068,} TiO{sub 1.865}N{sub 0.073}, and TiO{sub 1.882}N{sub 0.163}) all displayed anatase phase, except TiO{sub 1.882}N{sub 0.163}. The impedances and grain sizes showed obvious variations with the nitrogen contents. A wide potential window from 3.0 V to 0.05 V, high-rate charge–discharge testing, and long cycle testing were applied to investigate the performances of synthesized TiO{sub x}N{sub y} and pure TiO{sub 2} as anodes for lithium-ion batteries. These TiO{sub x}N{sub y} anodes can be cycled under high rates of 125 μA/cm{sup 2} (10 °C) because of the lower charge–transfer resistance compared with the TiO{sub 2} anode. At 10 °C the discharge capacity of the optimal TiO{sub x}N{sub y} composition is 1.5 times higher than that of pure TiO{sub 2}. An unexpectedly large reversible capacity of ~ 300 μAh/cm{sup 2} μm (~ 800 mAh/g) between 1.0 V and 0.05 V was recorded for the TiO{sub x}N{sub y} anodes. The TiO{sub x}N{sub y} anode was cycled (3.0 V to 0.05 V) at 10 °C over 300 times without capacity fading while delivering a capacity of ~ 150 μAh/cm{sup 2} μm (~ 400 mAh/g). - Highlights: • Titanium oxynitride (TiO{sub x}N{sub y}) thin films as anode materials were studied. • TiO{sub x}N{sub y} thin films with various amounts of nitrogen contents were studied{sub .} • High rate capability of TiO{sub x}N{sub y} was studied.

  3. 2D ultrathin core-shell Pd@Ptmonolayer nanosheets: defect-mediated thin film growth and enhanced oxygen reduction performance

    Science.gov (United States)

    Wang, Wenxin; Zhao, Yunfeng; Ding, Yi

    2015-07-01

    An operational strategy for the synthesis of atomically smooth Pt skin by a defect-mediated thin film growth method is reported. Extended ultrathin core-shell structured d@Ptmonolayer nanosheets (thickness below 5 nm) exhibit nearly seven-fold enhancement in mass-activity and surprisingly good durability toward oxygen reduction reaction as compared with the commercial Pt/C catalyst.An operational strategy for the synthesis of atomically smooth Pt skin by a defect-mediated thin film growth method is reported. Extended ultrathin core-shell structured d@Ptmonolayer nanosheets (thickness below 5 nm) exhibit nearly seven-fold enhancement in mass-activity and surprisingly good durability toward oxygen reduction reaction as compared with the commercial Pt/C catalyst. Electronic supplementary information (ESI) available: Sample preparation, physical and electrochemical characterization, Fig. S1 to S11. See DOI: 10.1039/c5nr02748a

  4. Hall effect of K-doped superconducting thin films

    Energy Technology Data Exchange (ETDEWEB)

    Son, Eunseon; Lee, Nam Hoon; Kang, Won Nam [Dept. of physics, Sungkyunkwan University, Suwon (Korea, Republic of); Hwang, Tae Jong; Kim, Dong Ho [Dept. of physics, Yeungnam University, Gyeongsan(Korea, Republic of)

    2013-09-15

    We have studied Hall effect for potassium (K)-doped BaFe{sub 2}As{sub 2}superconducting thin films by analyzing the relation between the longitudinal resistivity (ρ{sub xy}) and the Hall resistivity (ρ{sub xy}). The thin films used in this study were fabricated on Al{sub O3} (000l) substrates by using an ex-situ pulsed laser deposition (PLD) technique under a high-vacuum condition of ∼10{sup -6} Torr. The samples showed the high superconducting transition temperatures (T{sub C}) of ∼40 K. The ρ{sub xx} and ρ{sub xy}the for K-doped BaFeAs{sub 2} thin films were measured by using a physical property measurement system (PPMS) with a temperature sweep (T-sweep) mode at an applied current density of 100 A/cm{sup 2} and at magnetic fields from 0 up to 9 T. We report the T-sweep results of the ρ{sub xx} and the ρ{sub xy} to investigate Hall scaling behavior on the basis of the relation of ρ{sub xy} = A(ρ{sub xy}){sup β}. The ρ{sub xx} values are 3.0 ± 0.2 in the c-axis-oriented K-doped BaFeAs{sub 2} thin films, whereas the thin films with various oriented-directions like a polycrystal showed slightly lower β than that of c-axis-oriented thin films. Interestingly, the β value is decreased with increasing magnetic fields.

  5. Properties of Spray Pyrolysied Copper Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    S. S. Roy

    2017-02-01

    Full Text Available Copper oxide (CuO thin films were deposited on well cleaned glass substrates by spray pyrolysis technique (SPT from cupric acetate (Cu(CH3COO2.H2O precursor solutions of 0.05 – 0.15 M molar concentrations (MC at a substrate temperature of 350 °C and at an air pressure of 1 bar. Effect of varying MC on the surface morphology, structural optical and electrical properties of CuO thin films were investigated. XRD patterns of the prepared films revealed the formation of CuO thin films having monoclinic structure with the main CuO (111 orientation and crystalline size ranging from 8.02 to 9.05 nm was observed. The optical transmission of the film was found to decrease with the increase of MC. The optical band gap of the thin films for 0.10 M was fond to be 1.60 eV. The room temperature electrical resistivity varies from 31 and 24 ohm.cm for the films grown with MC of 0.05 and 0.10 M respectively. The change in resistivity of the films was studied with respect to the change in temperature was shown that semiconductor nature is present. This information is expected to underlie the successful development of CuO films for solar windows and other semi-conductor applications including gas sensors.

  6. Laser-induced damage to thin film dielectric coatings

    International Nuclear Information System (INIS)

    Walker, T.W.

    1980-01-01

    The laser-induced damage thresholds of dielectric thin film coatings have been found to be more than an order of magnitude lower than the bulk material damage thresholds. Prior damage studies have been inconclusive in determining the damage mechanism which is operative in thin films. A program was conducted in which thin film damage thresholds were measured as a function of laser wavelength (1.06 μm, 0.53 μm, 0.35 μm and 0.26 μm), laser pulse length (5 and 15 nanoseconds), film materials and film thickness. The large matrix of data was compared to predictions given by avalanche ionization, multiphoton ionization and impurity theories of laser damage. When Mie absorption cross-sections and the exact thermal equations were included into the impurity theory excellent agreement with the data was found. The avalanche and multiphoton damage theories could not account for most parametric variations in the data. For example, the damage thresholds for most films increased as the film thickness decreased and only the impurity theory could account for this behavior. Other observed changes in damage threshold with changes in laser wavelength, pulse length and film material could only be adequately explained by the impurity theory. The conclusion which results from this study is that laser damage in thin film coatings results from absorbing impurities included during the deposition process

  7. Reliability assessment of ultra-thin HfO{sub 2} films deposited on silicon wafer

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Wei-En [Center for Measurement Standards, Industrial Technology Research Institute, Room 216, Building 8, 321 Kuang Fu Road Sec. 2, Hsinchu, Taiwan (China); Chang, Chia-Wei [Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Chang, Yong-Qing [Center for Measurement Standards, Industrial Technology Research Institute, Room 216, Building 8, 321 Kuang Fu Road Sec. 2, Hsinchu, Taiwan (China); Yao, Chih-Kai [Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Liao, Jiunn-Der, E-mail: jdliao@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)

    2012-09-01

    Highlights: Black-Right-Pointing-Pointer Nano-mechanical properties on annealed ultra-thin HfO{sub 2} film are studied. Black-Right-Pointing-Pointer By AFM analysis, hardness of the crystallized HfO{sub 2} film significantly increases. Black-Right-Pointing-Pointer By nano-indention, the film hardness increases with less contact stiffness. Black-Right-Pointing-Pointer Quality assessment on the annealed ultra-thin films can thus be achieved. - Abstract: Ultra-thin hafnium dioxide (HfO{sub 2}) is used to replace silicon dioxide to meet the required transistor feature size in advanced semiconductor industry. The process integration compatibility and long-term reliability for the transistors depend on the mechanical performance of ultra-thin HfO{sub 2} films. The criteria of reliability including wear resistance, thermal fatigue, and stress-driven failure rely on film adhesion significantly. The adhesion and variations in mechanical properties induced by thermal annealing of the ultra-thin HfO{sub 2} films deposited on silicon wafers (HfO{sub 2}/SiO{sub 2}/Si) are not fully understood. In this work, the mechanical properties of an atomic layer deposited HfO{sub 2} (nominal thickness Almost-Equal-To 10 nm) on a silicon wafer were characterized by the diamond-coated tip of an atomic force microscope and compared with those of annealed samples. The results indicate that the annealing process leads to the formation of crystallized HfO{sub 2} phases for the atomic layer deposited HfO{sub 2}. The HfSi{sub x}O{sub y} complex formed at the interface between HfO{sub 2} and SiO{sub 2}/Si, where the thermal diffusion of Hf, Si, and O atoms occurred. The annealing process increases the surface hardness of crystallized HfO{sub 2} film and therefore the resistance to nano-scratches. In addition, the annealing process significantly decreases the harmonic contact stiffness (or thereafter eliminate the stress at the interface) and increases the nano-hardness, as measured by vertically

  8. Physical Vapor Deposition of Thin Films

    Science.gov (United States)

    Mahan, John E.

    2000-01-01

    A unified treatment of the theories, data, and technologies underlying physical vapor deposition methods With electronic, optical, and magnetic coating technologies increasingly dominating manufacturing in the high-tech industries, there is a growing need for expertise in physical vapor deposition of thin films. This important new work provides researchers and engineers in this field with the information they need to tackle thin film processes in the real world. Presenting a cohesive, thoroughly developed treatment of both fundamental and applied topics, Physical Vapor Deposition of Thin Films incorporates many critical results from across the literature as it imparts a working knowledge of a variety of present-day techniques. Numerous worked examples, extensive references, and more than 100 illustrations and photographs accompany coverage of: * Thermal evaporation, sputtering, and pulsed laser deposition techniques * Key theories and phenomena, including the kinetic theory of gases, adsorption and condensation, high-vacuum pumping dynamics, and sputtering discharges * Trends in sputter yield data and a new simplified collisional model of sputter yield for pure element targets * Quantitative models for film deposition rate, thickness profiles, and thermalization of the sputtered beam

  9. Indium Sulfide and Indium Oxide Thin Films Spin-Coated from Triethylammonium Indium Thioacetate Precursor for n-Channel Thin Film Transistor

    Energy Technology Data Exchange (ETDEWEB)

    Tung, Duy Dao; Jeong, Hyun Dam [Chonnam Natioal University, Gwangju (Korea, Republic of)

    2014-09-15

    The In{sub 2}S{sub 3} thin films of tetragonal structure and In{sub 2}O{sub 3} films of cubic structure were synthesized by a spin coating method from the organometallic compound precursor triethylammonium indium thioacetate ([(Et){sub 3}NH]+ [In(SCOCH{sub 3}){sub 4}]''-; TEA-InTAA). In order to determine the electron mobility of the spin-coated TEA-InTAA films, thin film transistors (TFTs) with an inverted structure using a gate dielectric of thermal oxide (SiO{sub 2}) was fabricated. These devices exhibited n-channel TFT characteristics with a field-effect electron mobility of 10.1 cm''2 V''-1s''-1 at a curing temperature of 500 o C, indicating that the semiconducting thin film material is applicable for use in low-cost, solution-processed printable electronics.

  10. Characterization of photoluminescent europium doped yttrium oxide thin-films prepared by metallorganic chemical vapor deposition

    International Nuclear Information System (INIS)

    McKittrick, J.; Bacalski, C.F.; Hirata, G.A.; Hubbard, K.M.; Pattillo, S.G.; Salazar, K.V.; Trkula, M.

    1998-01-01

    Europium doped yttrium oxide, (Y 1-x Eu x ) 2 O 3 , thin-films were deposited on silicon and sapphire substrates by metallorganic chemical vapor deposition (MOCVD). The films were grown in a MOCVD chamber reacting yttrium and europium tris(2,2,6,6-tetramethyl-3,5,-heptanedionates) precursors in an oxygen atmosphere at low pressures (5 Torr) and low substrate temperatures (500--700 C). The films deposited at 500 C were flat and composed of nanocrystalline regions of cubic Y 2 O 3 , grown in a textured [100] or [110] orientation to the substrate surface. Films deposited at 600 C developed from the flat, nanocrystalline morphology into a plate-like growth morphology oriented in the [111] with increasing deposition time. Monoclinic Y 2 O 3 :Eu 3+ was observed in x-ray diffraction for deposition temperatures ≥600 C on both (111) Si and (001) sapphire substrates. This was also confirmed by the photoluminescent emission spectra

  11. Nanostructured thin films and coatings mechanical properties

    CERN Document Server

    2010-01-01

    The first volume in "The Handbook of Nanostructured Thin Films and Coatings" set, this book concentrates on the mechanical properties, such as hardness, toughness, and adhesion, of thin films and coatings. It discusses processing, properties, and performance and provides a detailed analysis of theories and size effects. The book presents the fundamentals of hard and superhard nanocomposites and heterostructures, assesses fracture toughness and interfacial adhesion strength of thin films and hard nanocomposite coatings, and covers the processing and mechanical properties of hybrid sol-gel-derived nanocomposite coatings. It also uses nanomechanics to optimize coatings for cutting tools and explores various other coatings, such as diamond, metal-containing amorphous carbon nanostructured, and transition metal nitride-based nanolayered multilayer coatings.

  12. Fabrication of ATO/Graphene Multi-layered Transparent Conducting Thin Films

    Science.gov (United States)

    Li, Na; Chen, Fei; Shen, Qiang; Wang, Chuanbin; Zhang, Lianmeng

    2013-03-01

    A novel transparent conducting oxide based on the ATO/graphene multi-layered thin films has been developed to satisfy the application of transparent conductive electrode in solar cells. The ATO thin films are prepared by pulsed laser deposition method with high quality, namely the sheet resistance of 49.5 Ω/sq and average transmittance of 81.9 %. The prepared graphene sheet is well reduced and shows atomically thin, spotty distributed appearance on the top of the ATO thin films. The XRD and optical micrographs are used to confirm the successfully preparation of the ATO/graphene multi-layered thin films. The Hall measurements and UV-Vis spectrophotometer are conducted to evaluate the sheet resistance and optical transmittance of the innovative structure. It is found that graphene can improve the electrical properties of the ATO thin films with little influence on the optical transmittance.

  13. Fabrication of ATO/Graphene Multi-layered Transparent Conducting Thin Films

    International Nuclear Information System (INIS)

    Li Na; Chen Fei; Shen Qiang; Wang Chuanbin; Zhang Lianmeng

    2013-01-01

    A novel transparent conducting oxide based on the ATO/graphene multi-layered thin films has been developed to satisfy the application of transparent conductive electrode in solar cells. The ATO thin films are prepared by pulsed laser deposition method with high quality, namely the sheet resistance of 49.5 Ω/sq and average transmittance of 81.9 %. The prepared graphene sheet is well reduced and shows atomically thin, spotty distributed appearance on the top of the ATO thin films. The XRD and optical micrographs are used to confirm the successfully preparation of the ATO/graphene multi-layered thin films. The Hall measurements and UV-Vis spectrophotometer are conducted to evaluate the sheet resistance and optical transmittance of the innovative structure. It is found that graphene can improve the electrical properties of the ATO thin films with little influence on the optical transmittance.

  14. Bi-axially crumpled silver thin-film electrodes for dielectric elastomer actuators

    International Nuclear Information System (INIS)

    Low, Sze-Hsien; Lau, Gih-Keong

    2014-01-01

    Metal thin films, which have high conductivity, are much stiffer and may fracture at a much lower strain than dielectric elastomers. In order to fabricate compliant electrodes for use in dielectric elastomer actuators (DEAs), metal thin films have been formed into either zigzag patterns or corrugations, which favour bending and only allow uniaxial DEA deformations. However, biaxially compliant electrodes are desired in order to maximize generated forces of DEA. In this paper, we present crumpled metal thin-film electrodes that are biaxially compliant and have full area coverage over the dielectric elastomer. These crumpled metal thin-film electrodes are more stretchable than flat metal thin films; they remain conductive beyond 110% radial strain. Also, crumpling reduced the stiffening effect of metal thin films on the soft elastomer. As such, DEAs using crumpled metal thin-film electrodes managed to attain relatively high actuated area strains of up to 128% at 1.8 kV (102 Vμm −1 ). (paper)

  15. Subtle Raman signals from nano-diamond and β-SiC thin films

    International Nuclear Information System (INIS)

    Kuntumalla, Mohan Kumar; Ojha, Harish; Srikanth, Vadali Venkata Satya Siva

    2013-01-01

    Micro Raman scattering experiments are carried out in pursuit of subtle but discernable signals from nano-diamond and β-SiC thin films. The thin films are synthesized using microwave plasma assisted chemical vapor deposition technique. Raman scattering experiments in conjunction with scanning electron microscopy and x-ray diffraction were carried out to extract microstructure and phase information of the above mentioned thin films. Certain subtle Raman signals have been identified in this work. In the case of nanodiamond thin films, Raman bands at ∼ 485 and ∼ 1220 cm −1 are identified. These bands have been assigned to the nanodiamond present in nanodiamond thin films. In the case of nano β-SiC thin films, optical phonons are identified using surface enhanced Raman scattering. - Highlights: ► Subtle Raman signals from nano-diamond and β-silicon carbide related thin films. ► Raman bands at ∼ 485 and ∼ 1220 cm −1 from nanodiamond thin films are identified. ► Longitudinal optical phonon from nano β-silicon carbide thin films is identified

  16. In vitro behaviour of nanocrystalline silver-sputtered thin films

    International Nuclear Information System (INIS)

    Piedade, A P; Vieira, M T; Martins, A; Silva, F

    2007-01-01

    Silver thin films were deposited with different preferential orientations and special attention was paid to the bioreactivity of the surfaces. The study was essentially focused on the evaluation of the films by x-ray diffraction (XRD), atomic force microscopy (AFM), high-resolution transmission electron microscopy (HRTEM), electron probe microanalysis (EPMA) and contact angle measurements. The deposited thin films were characterized before and after immersion in S-enriched simulated human plasma in order to estimate the influence of the preferential crystallographic orientation on the in vitro behaviour. Silver thin films with and without (111) preferential crystallographic orientation were deposited by r.f. magnetron sputtering to yield nanocrystalline coatings, high compact structures, very hydrophobic surfaces and low roughness. These properties reduce the chemisorption of reactive species onto the film surface. The in vitro tests indicate that silver thin films can be used as coatings for biomaterials applications

  17. Ion Beam Assisted Deposition of Thin Epitaxial GaN Films.

    Science.gov (United States)

    Rauschenbach, Bernd; Lotnyk, Andriy; Neumann, Lena; Poppitz, David; Gerlach, Jürgen W

    2017-06-23

    The assistance of thin film deposition with low-energy ion bombardment influences their final properties significantly. Especially, the application of so-called hyperthermal ions (energy GaN thin films on (0001)-oriented 6H-SiC substrates at 700 °C. The films are studied in situ by reflection high energy electron diffraction, ex situ by X-ray diffraction, scanning tunnelling microscopy, and high-resolution transmission electron microscopy. It is demonstrated that the film growth mode can be controlled by varying the ion to atom ratio, where 2D films are characterized by a smooth topography, a high crystalline quality, low biaxial stress, and low defect density. Typical structural defects in the GaN thin films were identified as basal plane stacking faults, low-angle grain boundaries forming between w-GaN and z-GaN and twin boundaries. The misfit strain between the GaN thin films and substrates is relieved by the generation of edge dislocations in the first and second monolayers of GaN thin films and of misfit interfacial dislocations. It can be demonstrated that the low-energy nitrogen ion assisted molecular beam epitaxy is a technique to produce thin GaN films of high crystalline quality.

  18. Catalytic EC′ reaction at a thin film modified electrode

    International Nuclear Information System (INIS)

    Gerbino, Leandro; Baruzzi, Ana M.; Iglesias, Rodrigo A.

    2013-01-01

    Numerical simulations of cyclic voltammograms corresponding to a catalytic EC′ reaction taking place at a thin film modified electrode are performed by way of finite difference method. Besides considering the chemical kinetic occurring inside the thin film, the model takes into account the different diffusion coefficients for each species at each of the involved phases, i.e. the thin film layer and bulk solution. The theoretical formulation is given in terms of dimensionless model parameters but a brief discussion of each of these parameters and their relationship to experimental variables is presented. Special emphasis is given to the use of working curve characteristics to quantify diffusion coefficient, homogeneous kinetic constant and thickness of the thin layer in a real system. Validation of the model is made by comparison of experimental results corresponding to the electron charge transfer of Ru(NH 3 ) 6 3+ /Ru(NH 3 ) 6 2+ hemi-couple at a thin film of a cross-linked chitosan film containing an immobilized redox dye

  19. Room temperature ferroelectricity in continuous croconic acid thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xuanyuan; Lu, Haidong; Yin, Yuewei; Ahmadi, Zahra; Costa, Paulo S. [Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588 (United States); Zhang, Xiaozhe [Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588 (United States); Department of Physics, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, Xiao; Yu, Le; Cheng, Xuemei [Department of Physics, Bryn Mawr College, Bryn Mawr, Pennsylvania 19010 (United States); DiChiara, Anthony D. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Gruverman, Alexei, E-mail: alexei-gruverman@unl.edu, E-mail: a.enders@me.com, E-mail: xiaoshan.xu@unl.edu; Enders, Axel, E-mail: alexei-gruverman@unl.edu, E-mail: a.enders@me.com, E-mail: xiaoshan.xu@unl.edu; Xu, Xiaoshan, E-mail: alexei-gruverman@unl.edu, E-mail: a.enders@me.com, E-mail: xiaoshan.xu@unl.edu [Department of Physics and Astronomy, University of Nebraska, Lincoln, Nebraska 68588 (United States); Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, Nebraska 68588 (United States)

    2016-09-05

    Ferroelectricity at room temperature has been demonstrated in nanometer-thin quasi 2D croconic acid thin films, by the polarization hysteresis loop measurements in macroscopic capacitor geometry, along with observation and manipulation of the nanoscale domain structure by piezoresponse force microscopy. The fabrication of continuous thin films of the hydrogen-bonded croconic acid was achieved by the suppression of the thermal decomposition using low evaporation temperatures in high vacuum, combined with growth conditions far from thermal equilibrium. For nominal coverages ≥20 nm, quasi 2D and polycrystalline films, with an average grain size of 50–100 nm and 3.5 nm roughness, can be obtained. Spontaneous ferroelectric domain structures of the thin films have been observed and appear to correlate with the grain patterns. The application of this solvent-free growth protocol may be a key to the development of flexible organic ferroelectric thin films for electronic applications.

  20. Depth profiling of superconducting thin films using rare gas ion sputtering with laser postionization

    International Nuclear Information System (INIS)

    Pallix, J.B.; Becker, C.H.; Missert, N.; Char, K.; Hammond, R.H.

    1988-01-01

    Surface analysis by laser ionization (SALI) has been used to examine a high-T/sub c/ superconducting thin film of nominal composition YBa 2 Cu 3 O 7 deposited on SrTiO 3 (100) by reactive magnetron sputtering. The main focus of this work was to probe the compositional uniformity and the impurity content throughout the 1800 A thick film having critical current densities of 1 to 2 x 10 6 A/cm 2 . SALI depth profiles show this film to be more uniform than thicker films (∼1 μm, prepared by electron beam codeposition) which were studied previously, yet the data show that some additional (non-superconducting) phases derived from Y, Ba, Cu, and O are still present. These additional phases are studied by monitoring the atomic and diatomic-oxide photoion profiles and also the depth profiles of various clusters (e.g. Y 2 O 2 + , Y 2 O 3 + , Y 3 O 4 + , Ba 2 O + , Ba 2 O 2 + , BaCu + , BaCuO + , YBaO 2 + , YSrO 2 + , etc.). A variety of impurities are observed to occur throughout the film including rather large concentrations of Sr. Hydroxides, F, Cl, and CO/sub x/ are evident particularly in the sample's near surface region (the top ∼100 A)

  1. Depth profiling of superconducting thin films using rare gas ion sputtering with laser postionization

    Science.gov (United States)

    Pallix, J. B.; Becker, C. H.; Missert, N.; Char, K.; Hammond, R. H.

    1988-02-01

    Surface analysis by laser ionization (SALI) has been used to examine a high-Tc superconducting thin film of nominal composition YBa2Cu3O7 deposited on SrTiO3 (100) by reactive magnetron sputtering. The main focus of this work was to probe the compositional uniformity and the impurity content throughout the 1800 Å thick film having critical current densities of 1 to 2×106 A/cm2. SALI depth profiles show this film to be more uniform than thicker films (˜1 μm, prepared by electron beam codeposition) which were studied previously, yet the data show that some additional (non-superconducting) phases derived from Y, Ba, Cu, and O are still present. These additional phases are studied by monitoring the atomic and diatomic-oxide photoion profiles and also the depth profiles of various clusters (e.g. Y2O2+, Y2O3+, Y3O4+, Ba2O+, Ba2O2+, BaCu+, BaCuO+, YBaO2+, YSrO2+, etc.). A variety of impurities are observed to occur throughout the film including rather large concentrations of Sr. Hydroxides, F, Cl, and COx are evident particularly in the sample's near surface region (the top ˜100 Å).

  2. Optical and electrical properties of hydrided palladium thin films studied by an inversion approach from transmittance measurements

    International Nuclear Information System (INIS)

    Vargas, W.E.; Rojas, I.; Azofeifa, D.E.; Clark, N.

    2006-01-01

    Palladium (Pd) thin films have been deposited by electron beam evaporation, and exposed to increasing hydrogen pressures. Transmittance spectra in the range of visible light have been measured to obtain from them, by means of a spectral projected gradient method, the wavelength dependence of the dielectric function. The decreasing metallic character of Pd with hydrogen absorption is displayed. This effect is more pronounced when Pd is deposited on metallic substrates, and there is a correlation with an increase in the effective polarization of the core electrons determining the optical dielectric constant value. Another optimization approach is devised to separate the contribution of the free carriers and of the interband transitions to the optical conductivity and to the dielectric function. Very good agreement is found between the optimized parameters characterizing the free carrier contribution and the corresponding values reported in the literature and obtained by independent experimental methods

  3. Subtractive fabrication of ferroelectric thin films with precisely controlled thickness

    Science.gov (United States)

    Ievlev, Anton V.; Chyasnavichyus, Marius; Leonard, Donovan N.; Agar, Joshua C.; Velarde, Gabriel A.; Martin, Lane W.; Kalinin, Sergei V.; Maksymovych, Petro; Ovchinnikova, Olga S.

    2018-04-01

    The ability to control thin-film growth has led to advances in our understanding of fundamental physics as well as to the emergence of novel technologies. However, common thin-film growth techniques introduce a number of limitations related to the concentration of defects on film interfaces and surfaces that limit the scope of systems that can be produced and studied experimentally. Here, we developed an ion-beam based subtractive fabrication process that enables creation and modification of thin films with pre-defined thicknesses. To accomplish this we transformed a multimodal imaging platform that combines time-of-flight secondary ion mass spectrometry with atomic force microscopy to a unique fabrication tool that allows for precise sputtering of the nanometer-thin layers of material. To demonstrate fabrication of thin-films with in situ feedback and control on film thickness and functionality we systematically studied thickness dependence of ferroelectric switching of lead-zirconate-titanate, within a single epitaxial film. Our results demonstrate that through a subtractive film fabrication process we can control the piezoelectric response as a function of film thickness as well as improve on the overall piezoelectric response versus an untreated film.

  4. Solution processed pentacene thin films and their structural properties

    International Nuclear Information System (INIS)

    Tao Chunlan; Zhang Xuhui; Zhang Fujia; Liu Yiyang; Zhang Haoli

    2007-01-01

    The paper reported the solution process of pentacene thin films from organic solvent O-dichlorobenzene. The pentacene thin films obtained from different conditions were characterized by X-ray diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), and UV-vis spectroscopy. The result shows that the pentacene solution was successfully obtained at a minimum temperature of 40 deg. C. The optimum temperature of forming pentacene thin films was 100 deg. C

  5. Stability of tetraphenyl butadiene thin films in liquid xenon

    International Nuclear Information System (INIS)

    Sanguino, P.; Balau, F.; Botelho do Rego, A.M.; Pereira, A.; Chepel, V.

    2016-01-01

    Tetraphenyl butadiene (TPB) is widely used in particle detectors as a wavelength shifter. In this work we studied the stability of TPB thin films when immersed in liquid xenon (LXe). The thin films were deposited on glass and quartz substrates by thermal evaporation. Morphological and chemical surface properties were monitored before and after immersion into LXe by scanning electron microscopy and X-ray photoelectron spectroscopy. No appreciable changes have been detected with these two methods. Grain size and surface chemical composition were found to be identical before and after submersion into LXe. However, the film thickness, measured via optical transmission in the ultraviolet–visible wavelength regions, decreased by 1.6 μg/cm 2 (24%) after immersion in LXe during 20 h. These results suggest the necessity of using a protective thin film over the Tetraphenyl butadiene when used as a wavelength shifter in LXe particle detectors. - Highlights: • Stability of tetraphenyl butadiene (TPB) thin films immersed in liquid xenon (LXe). • Thermally evaporated TPB thin films were immersed in LXe for 20 h. • Film morphology and chemical surface properties remained unchanged. • Surface density of the films decreased by 1.6 μg/cm 2 (24%) after immersion in LXe. • For using in LXe particle detectors, TPB films should be protected with a coating.

  6. Preparation of Cu{sub 2}ZnSnS{sub 4} thin films by sulfurizing stacked precursor thin films via successive ionic layer adsorption and reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Su Zhenghua; Yan Chang; Sun Kaiwen; Han Zili [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Liu Fangyang, E-mail: liufangyang@csu.edu.cn [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Liu Jin [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Lai Yanqing, E-mail: laiyanqingcsu@163.com [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Li Jie; Liu Yexiang [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China)

    2012-07-15

    Earth-abundant Cu{sub 2}ZnSnS{sub 4} is a promising alternative photovoltaic material which has been examined as absorber layer of thin film solar cells. In this study, Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films have been successfully fabricated by sulfurizing stacked precursor thin films via successive ionic layer adsorption and reaction (SILAR) method. The prepared CZTS thin films have been characterized by X-ray diffraction, energy dispersive spectrometer, Raman spectroscopy, UV-vis spectroscopy, Hall effect measurements and photoelectrochemical tests. Results reveal that the thin films have kesterite structured Cu{sub 2}ZnSnS{sub 4} and the p-type conductivity with a carrier concentration in the order of 10{sup 18} cm{sup -3} and an optical band gap of 1.5 eV, which are suitable for applications in thin film solar cells.

  7. Molecular dynamics simulation of Cu/Au thin films under temperature gradient

    International Nuclear Information System (INIS)

    Li, Qibin; Peng, Xianghe; Peng, Tiefeng; Tang, Qizhong; Zhang, Xiaomin; Huang, Cheng

    2015-01-01

    Graphical abstract: Heat transportation in the thin films. - Highlights: • The coherent lattice interface is found at thin films after annealing. • The vacancies are observed clearly in the deposit thin films. • The defect and component will influence the energy transportation in the coatings. • The vacancies and lattice mismatch can enlarge the mobility of atoms. • The phonon transportation in thin films has no apparent rule. - Abstract: Three modulation period thin films, 1.8 nm Cu/3.6 nm Au, 2.7 nm Cu/2.7 nm Au and 3.6 nm Cu/1.8 nm Au, are obtained from deposition method and ideal modeling based on lattice constant, to examine their structures and thermophysical characteristics under temperature gradient. The coherent lattice interface is found both at deposit and ideal thin films after annealing. Also, the vacancies are observed clearly in the deposit thin films. The defect and component of thin films will influence the energy transportation in the coatings. The vacancies and lattice mismatch can enlarge the mobility of atoms and result in the failure of coating under the thermal stress. The power spectrum of atoms’ movement has no apparent rule for phonon transportation in thin films. The results are helpful to reveal the micro-mechanism and provide reasonable basis for the failure of metallic coatings.

  8. Molecular dynamics simulation of Cu/Au thin films under temperature gradient

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qibin, E-mail: qibinli@cqu.edu.cn [College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030 (China); Chongqing Key Laboratory of Heterogeneous Material Mechanics, Chongqing University, Chongqing 400030 (China); Peng, Xianghe [College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030 (China); Peng, Tiefeng, E-mail: pengtiefeng@cqu.edu.cn [State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030 (China); Tang, Qizhong [College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); Zhang, Xiaomin [College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China); Chongqing Key Laboratory of Heterogeneous Material Mechanics, Chongqing University, Chongqing 400030 (China); Huang, Cheng [College of Aerospace Engineering, Chongqing University, Chongqing 400030 (China)

    2015-12-01

    Graphical abstract: Heat transportation in the thin films. - Highlights: • The coherent lattice interface is found at thin films after annealing. • The vacancies are observed clearly in the deposit thin films. • The defect and component will influence the energy transportation in the coatings. • The vacancies and lattice mismatch can enlarge the mobility of atoms. • The phonon transportation in thin films has no apparent rule. - Abstract: Three modulation period thin films, 1.8 nm Cu/3.6 nm Au, 2.7 nm Cu/2.7 nm Au and 3.6 nm Cu/1.8 nm Au, are obtained from deposition method and ideal modeling based on lattice constant, to examine their structures and thermophysical characteristics under temperature gradient. The coherent lattice interface is found both at deposit and ideal thin films after annealing. Also, the vacancies are observed clearly in the deposit thin films. The defect and component of thin films will influence the energy transportation in the coatings. The vacancies and lattice mismatch can enlarge the mobility of atoms and result in the failure of coating under the thermal stress. The power spectrum of atoms’ movement has no apparent rule for phonon transportation in thin films. The results are helpful to reveal the micro-mechanism and provide reasonable basis for the failure of metallic coatings.

  9. Scanning tuneeling microscopy studies of fivefold surfaces of icosahedral Al-Pd-Mn quasicrystals and of thin silver films on those surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Unal, Baris [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    The present work in this dissertation mainly focuses on the clean fivefold surfaces of i-Al-Pd-Mn quasicrystals as well as the nucleation and growth of Ag films on these surfaces. In addition, Ag film growth on NiAl(110) has been explored in the frame of this dissertation. First, we have investigated the equilibration of a fivefold surface of icosahedral Al-Pd-Mn quasicrystal at 900-915 K and 925-950 K, using Omicron variable temperature scanning tunneling microscope (STM). Annealing at low temperatures resulted in many voids on some terraces while the others were almost void-free. After annealing at 925-950K, void-rich terraces became much rarer. Our STM images suggest that through growth and coalescence of the voids, a different termination becomes exposed on host terraces. All of these observations in our study indicate that even after the quasicrystalline terrace-step structure appears, it evolves with time and temperature. More specifically, based on the STM observations, we conclude that during the annealing a wide range of energetically similar layers nucleate as surface terminations, however, with increasing temperature (and time) this distribution gets narrower via elimination of the metastable void-rich terraces. Next, we have examined the bulk structural models of icosahedral Al-Pd-Mn quasicrystal in terms of the densities, compositions and interplanar spacings for the fivefold planes that might represent physical surface terminations. In our analyses, we mainly have focused on four deterministic models which have no partial or mixed occupancy but we have made some comparisons with an undeterministic model. We have compared the models with each other and also with the available experimental data including STM, LEED-IV, XPD and LEIS. In all deterministic models, there are two different families of layers (a pair of planes), and the nondeterministic model contains similar group of planes. These two families differ in terms of the chemical decoration of

  10. CdS thin films prepared by laser assisted chemical bath deposition

    International Nuclear Information System (INIS)

    Garcia, L.V.; Mendivil, M.I.; Garcia Guillen, G.; Aguilar Martinez, J.A.; Krishnan, B.; Avellaneda, D.; Castillo, G.A.; Das Roy, T.K.; Shaji, S.

    2015-01-01

    Highlights: • CdS thin films by conventional CBD and laser assisted CBD. • Characterized these films using XRD, XPS, AFM, optical and electrical measurements. • Accelerated growth was observed in the laser assisted CBD process. • Improved dark conductivity and good photocurrent response for the LACBD CdS. - Abstract: In this work, we report the preparation and characterization of CdS thin films by laser assisted chemical bath deposition (LACBD). CdS thin films were prepared from a chemical bath containing cadmium chloride, triethanolamine, ammonium hydroxide and thiourea under various deposition conditions. The thin films were deposited by in situ irradiation of the bath using a continuous laser of wavelength 532 nm, varying the power density. The thin films obtained during deposition of 10, 20 and 30 min were analyzed. The changes in morphology, structure, composition, optical and electrical properties of the CdS thin films due to in situ irradiation of the bath were analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV–vis spectroscopy. The thin films obtained by LACBD were nanocrystalline, photoconductive and presented interesting morphologies. The results showed that LACBD is an effective synthesis technique to obtain nanocrystalline CdS thin films having good optoelectronic properties

  11. CdS thin films prepared by laser assisted chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, L.V.; Mendivil, M.I.; Garcia Guillen, G.; Aguilar Martinez, J.A. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Krishnan, B. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); CIIDIT – Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico); Avellaneda, D.; Castillo, G.A.; Das Roy, T.K. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); CIIDIT – Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2015-05-01

    Highlights: • CdS thin films by conventional CBD and laser assisted CBD. • Characterized these films using XRD, XPS, AFM, optical and electrical measurements. • Accelerated growth was observed in the laser assisted CBD process. • Improved dark conductivity and good photocurrent response for the LACBD CdS. - Abstract: In this work, we report the preparation and characterization of CdS thin films by laser assisted chemical bath deposition (LACBD). CdS thin films were prepared from a chemical bath containing cadmium chloride, triethanolamine, ammonium hydroxide and thiourea under various deposition conditions. The thin films were deposited by in situ irradiation of the bath using a continuous laser of wavelength 532 nm, varying the power density. The thin films obtained during deposition of 10, 20 and 30 min were analyzed. The changes in morphology, structure, composition, optical and electrical properties of the CdS thin films due to in situ irradiation of the bath were analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV–vis spectroscopy. The thin films obtained by LACBD were nanocrystalline, photoconductive and presented interesting morphologies. The results showed that LACBD is an effective synthesis technique to obtain nanocrystalline CdS thin films having good optoelectronic properties.

  12. Sputtered molybdenum thin films and the application in CIGS solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, D.; Zhu, H., E-mail: hongbing1982@hotmail.com; Liang, X.; Zhang, C.; Li, Z.; Xu, Y.; Chen, J.; Zhang, L.; Mai, Y., E-mail: yaohuamai@hbu.edu.cn

    2016-01-30

    Graphical abstract: - Highlights: • Mo thin films are prepared by magnetron sputtering. • The dynamic deposition rate increases with the increasing discharge power. • The surface structure of Mo films varies with discharge power and working pressure. • High efficiency CIGS thin film solar cell of 15.2% has been obtained. - Abstract: Molybdenum (Mo) thin films are prepared by magnetron sputtering with different discharge powers and working pressures for the application in Cu(In, Ga)Se{sub 2} (CIGS) thin film solar cells as back electrodes. Properties of these Mo thin films are systematically investigated. It is found that the dynamic deposition rate increases with the increasing discharge power while decreases with the increasing working pressure. The highest dynamic deposition rate of 15.1 nm m/min is achieved for the Mo thin film deposited at the discharge power of 1200 W and at the working pressure of 0.15 Pa. The achieved lowest resistivity of 3.7 × 10{sup −5} Ω cm is attributed to the large grains in the compact thin film. The discharge power and working pressure have great influence on the sputtered Mo thin films. High efficiency of 12.5% was achieved for the Cu(In, Ga)Se{sub 2} (CIGS) thin film solar cells with Mo electrodes prepared at 1200 W and low working pressures. By further optimizing material and device properties, the conversion efficiency has reached to 15.2%.

  13. Thin Film Approaches to the SRF Cavity Problem Fabrication and Characterization of Superconducting Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Beringer, Douglas [College of William and Mary, Williamsburg, VA (United States)

    2017-08-01

    Superconducting Radio Frequency (SRF) cavities are responsible for the acceleration of charged particles to relativistic velocities in most modern linear accelerators, such as those employed at high-energy research facilities like Thomas Jefferson National Laboratory’s CEBAF and the LHC at CERN. Recognizing SRF as primarily a surface phenomenon enables the possibility of applying thin films to the interior surface of SRF cavities, opening a formidable tool chest of opportunities by combining and designing materials that offer greater performance benefit. Thus, while improvements in radio frequency cavity design and refinements in cavity processing techniques have improved accelerator performance and efficiency – 1.5 GHz bulk niobium SRF cavities have achieved accelerating gradients in excess of 35 MV/m – there exist fundamental material bounds in bulk superconductors limiting the maximally sustained accelerating field gradient (≈ 45 MV/m for Nb) where inevitable thermodynamic breakdown occurs. With state of the art Nb based cavity design fast approaching these theoretical limits, novel material innovations must be sought in order to realize next generation SRF cavities. One proposed method to improve SRF performance is to utilize thin film superconducting-insulating-superconducting (SIS) multilayer structures to effectively magnetically screen a bulk superconducting layer such that it can operate at higher field gradients before suffering critically detrimental SRF losses. This dissertation focuses on the production and characterization of thin film superconductors for such SIS layers for radio frequency applications. Correlated studies on structure, surface morphology and superconducting properties of epitaxial Nb and MgB2 thin films are presented.

  14. Deposition of high Tc superconductor thin films by pulsed excimer laser ablation and their post-synthesis processing

    International Nuclear Information System (INIS)

    Ogale, S.B.

    1992-01-01

    This paper describes the use of pulsed excimer laser ablation technique for deposition of high quality superconductor thin films on different substrate materials such as Y stabilized ZrO 2 , SrTiO 3 , LiNbO 3 , Silicon and Stainless Steels, and dopant incorporation during the film depositions. Processing of deposited films using ion and laser beams for realisation of device features are presented. 28 refs., 16 figs

  15. The optical properties of plasma polymerized polyaniline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Goktas, Hilal, E-mail: hilal_goktas@yahoo.com [Canakkale Onsekiz Mart University, Physics Department, 17020 Canakkale (Turkey); Demircioglu, Zahide; Sel, Kivanc [Canakkale Onsekiz Mart University, Physics Department, 17020 Canakkale (Turkey); Gunes, Taylan [Yalova University, Energy Systems Engineering Department, 77100 Yalova (Turkey); Kaya, Ismet [Canakkale Onsekiz Mart University, Chemistry Department, 17020 Canakkale (Turkey)

    2013-12-02

    We report herein the characterizations of polyaniline thin films synthesized using double discharge plasma system. Quartz glass substrates were coated at a pressure of 80 Pa, 19.0 kV pulsed and 1.5 kV dc potential. The substrates were located at different regions in the reactor to evaluate the influence of the position on the morphological and molecular structure of the obtained thin films. The molecular structure of the thin films was investigated by Fourier transform infrared (FTIR) and UV–visible photospectrometers (UV–vis), and the morphological studies were carried out by scanning electron microscope. The FTIR and UV–vis data revealed that the molecular structures of the synthesized thin films were in the form of leuocoemeraldine and exhibited similar structures with the films produced via chemical or electrochemical methods. The optical energy band gap values of the as-grown samples ranged from 2.5 to 3.1 eV, which indicated that these materials have potential applications in semiconductor devices. The refractive index in the transparent region (from 650 to 1000 nm) steadily decreased from 1.9 to 1.4 and the extinction coefficient was found to be on order of 10{sup −4}. The synthesized thin films showed various degrees of granular morphologies depending on the location of the substrate in the reactor. - Highlights: • Polyaniline thin films were synthesized for the first time via double discharge plasma system. • The films have similar structure to that of the chemically synthesized films. • The morphology of the films could be tuned by this technique. • These materials would have potential applications at semiconductor devices.

  16. Polymer surfaces, interfaces and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stamm, M [Max-Planck-Institut fuer Polymerforschung, Mainz (Germany)

    1996-11-01

    Neutron reflectometry can be used in various ways to investigate surfaces, interfaces and thin films of polymers. Its potential comes mostly from the possibilities offered by selective deuteration, where a particular component can be made visible with respect to its activity at the interface. In addition the depth resolution is much better than with most other direct techniques, and details of the profiles may be resolved. Several examples will be discussed including the segment diffusion at the interface between two polymer films, the determination of the narrow interfaces between incompatible polymer blends and the development of order in thin diblock copolymer films. (author) 10 figs., 2 tabs., 38 refs.

  17. Polymer surfaces, interfaces and thin films

    International Nuclear Information System (INIS)

    Stamm, M.

    1996-01-01

    Neutron reflectometry can be used in various ways to investigate surfaces, interfaces and thin films of polymers. Its potential comes mostly from the possibilities offered by selective deuteration, where a particular component can be made visible with respect to its activity at the interface. In addition the depth resolution is much better than with most other direct techniques, and details of the profiles may be resolved. Several examples will be discussed including the segment diffusion at the interface between two polymer films, the determination of the narrow interfaces between incompatible polymer blends and the development of order in thin diblock copolymer films. (author) 10 figs., 2 tabs., 38 refs

  18. Flush Mounting Of Thin-Film Sensors

    Science.gov (United States)

    Moore, Thomas C., Sr.

    1992-01-01

    Technique developed for mounting thin-film sensors flush with surfaces like aerodynamic surfaces of aircraft, which often have compound curvatures. Sensor mounted in recess by use of vacuum pad and materials selected for specific application. Technique involves use of materials tailored to thermal properties of substrate in which sensor mounted. Together with customized materials, enables flush mounting of thin-film sensors in most situations in which recesses for sensors provided. Useful in both aircraft and automotive industries.

  19. Solid surfaces, interfaces and thin films

    CERN Document Server

    Lüth, Hans

    2015-01-01

    This book emphasises both experimental and theoretical aspects of surface, interface and thin-film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological structure, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure research, particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures. A special chapter of the book is devoted to collective phenomena at interfaces and in thin films such as superconductivity and magnetism. The latter topic includes the meanwhile important issues giant magnetoresistance and spin-transfer torque mechanism, both effects being of high interest in information technology. In this new edition, for the first time, the effect of spin-orbit coupling on surface states is treated. In this context the class of the recently detected topological insulators,...

  20. Solid Surfaces, Interfaces and Thin Films

    CERN Document Server

    Lüth, Hans

    2010-01-01

    This book emphasises both experimental and theoretical aspects of surface, interface and thin film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure physics particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures as well as to superconductor/semiconductor interfaces and magnetic thin films. The latter topic was significantly extended in this new edition by more details about the giant magnetoresistance and a section about the spin-transfer torque mechanism including one new problem as exercise. Two new panels about Kerr-effect and spin-polarized scanning tunnelling microscopy were added, too. Furthermore, the meanwhile important group III-nitride surfaces and high-k oxide/semiconductor interfaces are shortly discu...

  1. 12. International conference on thin films (ICTF 12). Book of Abstract

    International Nuclear Information System (INIS)

    Majkova, E.

    2002-09-01

    The publication has been set up as a proceedings of the conference dealing with thin films production and study of their properties. The conference was focused on the following topics: (1) Advanced deposition techniques; (2) Thin Film Growth; (3) Diagnostics, Structure - Properties Relationship; (4) Mechanical Properties and Stress; (5) Protective and Functional Coatings; (6) Micropatterning and Nanostructures; (7) EUV and Soft X-Ray Multilayers; (8) Magnetic Thin Films and Multilayers; (9) Organic Thin Films; (10) Thin Films for Electronics and Optics. In this proceedings totally 157 abstracts are published of which 126 are interest for INIS

  2. In-situ Long-range Alpha Particles and X-ray Detection for Thin-film Pd Cathodes During Electrolysis in Li_2SO_4/H_2O

    Science.gov (United States)

    Lipson, A. G.; Roussetski, A. S.; Castano, C. H.; S-O, Kim; Miley, G. H.

    2002-03-01

    Measurements of long-range alpha and soft X-ray emissions have been performed using cyclotron calibrated CR-39 plastic track and LiF/Al_2O_3:C-Thermo-Luminescent (TLD) detectors. Application of CR-39 and TLD detectors to the surface of the thin Pd film-cathodes sputtered on the insulator substrate (glass, Al_2O_3, PMMA) allows detection of both alpha and soft X-ray emissions simultaneously with excess heat measurements during electrolysis using 1 Molar Li_2SO_4/H_20 electrolyte. The alpha particles in the range of 8.0 d> 6.0 μm) were detected upon the electrolysis. Those alpha-tracks are quite unique, never having been observed during CR-39 exposure with trans-uranium alpha -sources (Am^241, Pu^239). The TLD measurement shows generation of the low intensity 5.0-10.0 keV X-ray quanta (Φx < 5.0 s -1*cm-2) accompanying the alpha emission.

  3. Enhancement of flux pinning of TFA-MOD YBCO thin films by embedded nanoscale Y2O3

    International Nuclear Information System (INIS)

    Cui, X M; Tao, B W; Tian, Z; Xiong, J; Zhang, X F; Li, Y R

    2006-01-01

    YBCO films with different levels of excess yttrium were prepared on single-crystal LaAlO 3 with metal-organic deposition using trifluoroacetates (TFA-MOD). X-ray diffraction and transmission electron microscope measurements revealed excess yttrium in YBCO in the form of nanoscale Y 2 O 3 with (400) preferred orientation. The field dependence of J c demonstrated that YBCO films with Y 2 O 3 doping had enhanced J c in comparison with stoichiometric YBCO films in the magnetic fields. We think the reason for this is that the Y 2 O 3 nanoparticles act as pinning centres. YBCO films with 60% yttrium excess display 43% increased J c compared to stoichiometric YBCO films at a magnetic field of 1 T

  4. P-type thin films transistors with solution-deposited lead sulfide films as semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Carrillo-Castillo, A.; Salas-Villasenor, A.; Mejia, I. [Department of Materials Science and Engineering, The University of Texas at Dallas. 800 West Campbell Rd, Richardson, TX 75083 (United States); Aguirre-Tostado, S. [Centro de Investigacion en Materiales Avanzados, S. C. Alianza Norte 202, Parque de Investigacion e Innovacion Tecnologica, Apodaca, Nuevo Leon, C.P. 666000 (Mexico); Gnade, B.E. [Department of Materials Science and Engineering, University of Texas at Dallas. 800 West Campbell Rd, Richardson, TX 75083 (United States); Quevedo-Lopez, M.A., E-mail: mxq071000@utdallas.edu [Department of Materials Science and Engineering, University of Texas at Dallas. 800 West Campbell Rd, Richardson, TX 75083 (United States)

    2012-01-31

    In this paper we demonstrate p-type thin film transistors fabricated with lead sulfide (PbS) as semiconductor deposited by chemical bath deposition methods. Crystallinity and morphology of the resulting PbS films were characterized using X-ray diffraction, atomic force microscopy and scanning electron microscopy. Devices were fabricated using photolithographic processes in a bottom gate configuration with Au as source and drain top contacts. Field effect mobility for as-fabricated devices was {approx} 0.09 cm{sup 2} V{sup -1} s{sup -1} whereas the mobility for devices annealed at 150 Degree-Sign C/h in forming gas increased up to {approx} 0.14 cm{sup 2} V{sup -1} s{sup -1}. Besides the thermal annealing, the entire fabrications process was maintained below 100 Degree-Sign C. The electrical performance of the PbS-thin film transistors was studied before and after the 150 Degree-Sign C anneal as well as a function of the PbS active layer thicknesses. - Highlights: Black-Right-Pointing-Pointer Thin film transistors with PbS as semiconductor deposited by chemical bath deposition. Black-Right-Pointing-Pointer Photolithography-based thin film transistors with PbS films at low temperatures. Black-Right-Pointing-Pointer Electron mobility for anneal-PbS devices of {approx} 0.14 cm{sup 2} V{sup -1} s{sup -1}. Black-Right-Pointing-Pointer Highest mobility reported in thin film transistors with PbS as the semiconductor.

  5. NbN thin films for superconducting radio frequency cavities

    Science.gov (United States)

    Roach, W. M.; Skuza, J. R.; Beringer, D. B.; Li, Z.; Clavero, C.; Lukaszew, R. A.

    2012-12-01

    NbN thin films have the potential to be incorporated into radio frequency cavities in a multilayer coating to overcome the fundamental field gradient limit of 50 MV m-1 for the bulk niobium based technology that is currently implemented in particle accelerators. In addition to having a larger critical field value than bulk niobium, NbN films develop smoother surfaces which are optimal for cavity performance and lead to fewer losses. Here, we present a study on the correlation of film deposition parameters, surface morphology, microstructure, transport properties and superconducting properties of NbN thin films. We have achieved films with bulk-like lattice parameters and superconducting transition temperatures. These NbN films have a lower surface roughness than similarly grown niobium films of comparable thickness. The potential application of NbN thin films in accelerator cavities is discussed.

  6. NbN thin films for superconducting radio frequency cavities

    International Nuclear Information System (INIS)

    Roach, W M; Clavero, C; Lukaszew, R A; Skuza, J R; Beringer, D B; Li, Z

    2012-01-01

    NbN thin films have the potential to be incorporated into radio frequency cavities in a multilayer coating to overcome the fundamental field gradient limit of 50 MV m −1 for the bulk niobium based technology that is currently implemented in particle accelerators. In addition to having a larger critical field value than bulk niobium, NbN films develop smoother surfaces which are optimal for cavity performance and lead to fewer losses. Here, we present a study on the correlation of film deposition parameters, surface morphology, microstructure, transport properties and superconducting properties of NbN thin films. We have achieved films with bulk-like lattice parameters and superconducting transition temperatures. These NbN films have a lower surface roughness than similarly grown niobium films of comparable thickness. The potential application of NbN thin films in accelerator cavities is discussed. (paper)

  7. Research Progress on Measurement Methods and Influence Factors of Thin-film Stress

    Directory of Open Access Journals (Sweden)

    MA Yibo

    2018-02-01

    Full Text Available With the size of thin-film electronic devices decreasing, the film stress became an important reason for the failure of thin film devices. Film stress not only affected the membrane structure, but also associated with film optics, electricity, mechanics and other properties, therefore film stress turned into one hot spot in the research field of thin-film materials. This paper reviewed the latest research progress of film stress, substrate curvature method, X-ray diffraction technique and Raman spectroscopy, several frequently used stress measuring techniques were compared and analyzed, and composition ratios of thin film, substrate types, magnetron sputtering process parameters (sputtering power, work pressure, substrate temperature and annealing etc. factors influencing thin film stress were summarized. It was found that substrate curvature method was suitable for measuring almost all kinds of thin film materials. X-ray diffraction and Raman spectroscopy were just fit for measuring materials with characteristic peaks. Nanoindentation method required extra stress-free samples as comparison experiments. During film fabrication and annealing process, film stress usually transited from compressive to tensile status, and several factors combined together could affect stress, so film stress could be reached the minimum value or even stress-free status through setting appropriate parameters. Finally, combined with film stress research status, accurate stress measurement methods for different materials as a thin-film stress research direction were introduced, and challenges in thin film detection range were pointed out.

  8. Magnetite thin films: A simulational approach

    International Nuclear Information System (INIS)

    Mazo-Zuluaga, J.; Restrepo, J.

    2006-01-01

    In the present work the study of the magnetic properties of magnetite thin films is addressed by means of the Monte Carlo method and the Ising model. We simulate LxLxd magnetite thin films (d being the film thickness and L the transversal linear dimension) with periodic boundary conditions along transversal directions and free boundary conditions along d direction. In our model, both the three-dimensional inverse spinel structure and the interactions scheme involving tetrahedral and octahedral sites have been considered in a realistic way. Results reveal a power-law dependence of the critical temperature with the film thickness accordingly by an exponent ν=0.81 and ruled out by finite-size scaling theory. Estimates for the critical exponents of the magnetization and the specific heat are finally presented and discussed

  9. TI--CR--AL--O thin film resistors

    Science.gov (United States)

    Jankowski, Alan F.; Schmid, Anthony P.

    2000-01-01

    Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  10. Voltage transients in thin-film InSb Hall sensor

    Directory of Open Access Journals (Sweden)

    Alexey Bardin

    Full Text Available The work is reached to study temperature transients in thin-film Hall sensors. We experimentally study InSb thin-film Hall sensor. We find transients of voltage with amplitude about 10 μV on the sensor ports after current switching. We demonstrate by direct measurements that the transients is caused by thermo-e.m.f., and both non-stationarity and heterogeneity of temperature in the film. We find significant asymmetry of temperature field for different direction of the current, which is probably related to Peltier effect. The result can be useful for wide range of scientist who works with switching of high density currents in any thin semiconductor films. 2000 MSC: 41A05, 41A10, 65D05, 65D17, Keywords: Thin-films, Semiconductors, Hall sensor, InSb, thermo-e.m.f.

  11. In situ X-ray diffraction study of crystallization process of GeSbTe thin films during heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Naohiko [Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan)]. E-mail: e0957@mosk.tytlabs.co.jp; Konomi, Ichiro [Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan); Seno, Yoshiki [Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan); Motohiro, Tomoyoshi [Toyota Central R and D Labs., Inc., Nagakute, Aichi 480-1192 (Japan)

    2005-05-15

    The crystallization processes of the Ge{sub 2}Sb{sub 2}Te{sub 5} thin film used for PD and DVD-RAM were studied in its realistic optical disk film configurations for the first time by X-ray diffraction using an intense X-ray beam of a synchrotron orbital radiation facility (SPring-8) and in situ quick detection with a Position-Sensitive-Proportional-Counter. The dependence of the amorphous-to-fcc phase-change temperature T{sub 1} on the rate of temperature elevation R{sub et} gave an activation energy E{sub a}: 0.93 eV much less than previously reported 2.2 eV obtained from a model sample 25-45 times thicker than in the real optical disks. The similar measurement on the Ge{sub 4}Sb{sub 1}Te{sub 5} film whose large reflectance change attains the readability by CD-ROM drives gave E{sub a}: 1.13 eV with larger T{sub 1} than Ge{sub 2}Sb{sub 2}Te{sub 5} thin films at any R{sub et} implying a lower sensitivity in erasing as well as a better data stability of the phase-change disk.

  12. Nanomechanical investigation of thin-film electroceramic/metal-organic framework multilayers

    Science.gov (United States)

    Best, James P.; Michler, Johann; Liu, Jianxi; Wang, Zhengbang; Tsotsalas, Manuel; Maeder, Xavier; Röse, Silvana; Oberst, Vanessa; Liu, Jinxuan; Walheim, Stefan; Gliemann, Hartmut; Weidler, Peter G.; Redel, Engelbert; Wöll, Christof

    2015-09-01

    Thin-film multilayer stacks of mechanically hard magnetron sputtered indium tin oxide (ITO) and mechanically soft highly porous surface anchored metal-organic framework (SURMOF) HKUST-1 were studied using nanoindentation. Crystalline, continuous, and monolithic surface anchored MOF thin films were fabricated using a liquid-phase epitaxial growth method. Control over respective fabrication processes allowed for tuning of the thickness of the thin film systems with a high degree of precision. It was found that the mechanical indentation of such thin films is significantly affected by the substrate properties; however, elastic parameters were able to be decoupled for constituent thin-film materials (EITO ≈ 96.7 GPa, EHKUST-1 ≈ 22.0 GPa). For indentation of multilayer stacks, it was found that as the layer thicknesses were increased, while holding the relative thickness of ITO and HKUST-1 constant, the resistance to deformation was significantly altered. Such an observation is likely due to small, albeit significant, changes in film texture, interfacial roughness, size effects, and controlling deformation mechanism as a result of increasing material deposition during processing. Such effects may have consequences regarding the rational mechanical design and utilization of MOF-based hybrid thin-film devices.

  13. Dynamic studies of nano-confined polymer thin films

    Science.gov (United States)

    Geng, Kun

    Polymer thin films with the film thickness (h0 ) below 100 nm often exhibit physical properties different from the bulk counterparts. In order to make the best use of polymer thin films in applications, it is important to understand the physical origins of these deviations. In this dissertation, I will investigate how different factors influence dynamic properties of polymer thin films upon nano-confinement, including glass transition temperature (Tg), effective viscosity (etaeff) and self-diffusion coefficient (D ). The first part of this dissertation concerns the impacts of the molecular weight (MW) and tacticity on the Tg's of nano-confined polymer films. Previous experiments showed that the Tg of polymer films could be depressed or increased as h0 decreases. While these observations are usually attributed to the effects of the interfaces, some experiments suggested that MW's and tacticities might also play a role. To understand the effects of these factors, the Tg's of silica-based poly(alpha-methyl styrene) (PalphaMS/SiOx) and poly(methyl methacrylate) (PMMA/SiOx) thin films were studied, and the results suggested that MW's and tacticities influence Tg in nontrivial ways. The second part concerns an effort to resolve the long-standing controversy about the correlation between different dynamics of polymer thin films upon nano-confinement. Firstly, I discuss the experimental results of Tg, D and etaeff of poly(isobutyl methacrylate) films supported by silica (PiBMA/SiOx). Both T g and D were found to be independent of h 0, but etaeff decreased with decreasing h 0. Since both D and etaeff describe transport phenomena known to depend on the local friction coefficient or equivalently the local viscosity, it is questionable why D and etaeff displayed seemingly inconsistent h 0 dependencies. We envisage the different h0 dependencies to be caused by Tg, D and etaeff being different functions of the local T g's (Tg,i) or viscosities (eta i). By assuming a three

  14. Mesoscale simulations of confined Nafion thin films

    Science.gov (United States)

    Vanya, P.; Sharman, J.; Elliott, J. A.

    2017-12-01

    The morphology and transport properties of thin films of the ionomer Nafion, with thicknesses on the order of the bulk cluster size, have been investigated as a model system to explain the anomalous behaviour of catalyst/electrode-polymer interfaces in membrane electrode assemblies. We have employed dissipative particle dynamics (DPD) to investigate the interaction of water and fluorocarbon chains, with carbon and quartz as confining materials, for a wide range of operational water contents and film thicknesses. We found confinement-induced clustering of water perpendicular to the thin film. Hydrophobic carbon forms a water depletion zone near the film interface, whereas hydrophilic quartz results in a zone with excess water. There are, on average, oscillating water-rich and fluorocarbon-rich regions, in agreement with experimental results from neutron reflectometry. Water diffusivity shows increasing directional anisotropy of up to 30% with decreasing film thickness, depending on the hydrophilicity of the confining material. A percolation analysis revealed significant differences in water clustering and connectivity with the confining material. These findings indicate the fundamentally different nature of ionomer thin films, compared to membranes, and suggest explanations for increased ionic resistances observed in the catalyst layer.

  15. Compositional ratio effect on the surface characteristics of CuZn thin films

    Science.gov (United States)

    Choi, Ahrom; Park, Juyun; Kang, Yujin; Lee, Seokhee; Kang, Yong-Cheol

    2018-05-01

    CuZn thin films were fabricated by RF co-sputtering method on p-type Si(100) wafer with various RF powers applied on metallic Cu and Zn targets. This paper aimed to determine the morphological, chemical, and electrical properties of the deposited CuZn thin films by utilizing a surface profiler, atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), UV photoelectron spectroscopy (UPS), and a 4-point probe. The thickness of the thin films was fixed at 200 ± 8 nm and the roughness of the thin films containing Cu was smaller than pure Zn thin films. XRD studies confirmed that the preferred phase changed, and this tendency is dependent on the ratio of Cu to Zn. AES spectra indicate that the obtained thin films consisted of Cu and Zn. The high resolution XPS spectra indicate that as the content of Cu increased, the intensities of Zn2+ decreased. The work function of CuZn thin films increased from 4.87 to 5.36 eV. The conductivity of CuZn alloy thin films was higher than pure metallic thin films.

  16. The influence of nitrogen and oxygen additions on the thermal characteristics of aluminium-based thin films

    Energy Technology Data Exchange (ETDEWEB)

    Borges, J., E-mail: joelborges@fisica.uminho.pt [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, Prague 6 (Czech Republic); Macedo, F. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Couto, F.M. [Physics Sciences Laboratory, Norte Fluminense State University, 28013-602 Campos–RJ (Brazil); Rodrigues, M.S.; Lopes, C. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); Instituto Pedro Nunes, Laboratório de Ensaios, Desgaste e Materiais, Rua Pedro Nunes, 3030-199 Coimbra (Portugal); Pedrosa, P. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal); SEG-CEMUC, Mechanical Engineering Department, University of Coimbra, 3030-788 Coimbra (Portugal); Universidade do Porto, Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Rua Dr. Roberto Frias, s/n, 4200-465 Porto (Portugal); Polcar, T. [Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, Prague 6 (Czech Republic); Engineering Materials & nCATS, FEE, University of Southampton, Highfield Campus, SO17 1BJ, Southampton (United Kingdom); Marques, L.; Vaz, F. [Centro de Física, Universidade do Minho, Campus de Gualtar, 4710-057 Braga (Portugal)

    2015-08-01

    The ternary aluminium oxynitride (AlN{sub x}O{sub y}) system offers the possibility to obtain a wide range of properties by tailoring the ratio between pure Al, AlN{sub x} and AlO{sub y} and therefore opening a significant number of possible applications. In this work the thermal behaviour of AlN{sub x}O{sub y} thin films was analysed by modulated infrared radiometry (MIRR), taking as reference the binary AlO{sub y} and AlN{sub x} systems. MIRR is a non-contact and non-destructive thermal wave measurement technique based on the excitation, propagation and detection of temperature oscillations of very small amplitudes. The intended change of the partial pressure of the reactive gas (N{sub 2} and/or O{sub 2}) influenced the target condition and hence the deposition characteristics which, altogether, affected the composition and microstructure of the films. Based on the MIRR measurements and their qualitative and quantitative interpretation, some correlations between the thermal transport properties of the films and their chemical/physical properties have been found. Furthermore, the potential of such technique applied in this oxynitride system, which present a wide range of different physical responses, is also discussed. The experimental results obtained are consistent with those reported in previous works and show a high potential to fulfil the demands needed for the possible applications of the systems studied. They are clearly indicative of an adequate thermal response if this particular thin film system is aimed to be applied in small sensor devices or in electrodes for biosignal acquisition, such as those for electroencephalography or electromyography as it is the case of the main research area that is being developed in the group. - Highlights: • AlN{sub x}, AlO{sub y} and AlN{sub x}O{sub y} films were deposited by magnetron sputtering. • Discharge characteristics were compared between systems. • Different x and y coefficients were obtained.

  17. Fabrication and Film Qualification of Sr Modified Pb(Ca) TiO3 Thin Films

    International Nuclear Information System (INIS)

    Naw Hla Myat San; Khin Aye Thwe; Than Than Win; Yin Maung Maung; Ko Ko Kyaw Soe

    2011-12-01

    Strontium and calcium - modified lead titanate (Pb0.7 Ca0.15 Sr0.15 ) TiO3 (PCST)thin films were prepared by using spin coating technique. Phase transition of PCST was interpreted by means of Er-T characteristics. Process temperature dependence on micro-structure of PCST film was studied. Charge conduction mechanism of PCST thin film was also investigated for film qualification.

  18. Hysteresis loop behaviors of ferroelectric thin films: A Monte Carlo simulation study

    Science.gov (United States)

    M. Bedoya-Hincapié, C.; H. Ortiz-Álvarez, H.; Restrepo-Parra, E.; J. Olaya-Flórez, J.; E. Alfonso, J.

    2015-11-01

    The ferroelectric response of bismuth titanate Bi4Ti3O12 (BIT) thin film is studied through a Monte Carlo simulation of hysteresis loops. The ferroelectric system is described by using a Diffour Hamiltonian with three terms: the electric field applied in the z direction, the nearest dipole-dipole interaction in the transversal (x-y) direction, and the nearest dipole-dipole interaction in the direction perpendicular to the thin film (the z axis). In the sample construction, we take into consideration the dipole orientations of the monoclinic and orthorhombic structures that can appear in BIT at low temperature in the ferroelectric state. The effects of temperature, stress, and the concentration of pinned dipole defects are assessed by using the hysteresis loops. The results indicate the changes in the hysteresis area with temperature and stress, and the asymmetric hysteresis loops exhibit evidence of the imprint failure mechanism with the emergence of pinned dipolar defects. The simulated shift in the hysteresis loops conforms to the experimental ferroelectric response. Project sponsored by the research departments of the Universidad Nacional de Colombia DIMA and DIB under Project 201010018227-“Crecimiento y caracterización eléctrica y estructural de películas delgadas de BixTiyOz producidas mediante Magnetrón Sputtering” and Project 12920-“Desarrollo teóricoexperimental de nanoestructuras basadas en Bismuto y materiales similares” and “Bisnano Project.”

  19. Oxygen vacancies dependent phase transition of Y{sub 2}O{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Pengfei; Zhang, Kan [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun 130012 (China); Huang, Hao [Titanium Alloys Lab. Beijing Institute of Aeronautical Materials, Beijing 81-15 100095 (China); Wen, Mao, E-mail: Wenmao225@jlu.edu.cn [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun 130012 (China); Li, Quan; Zhang, Wei; Hu, Chaoquan [Department of Materials Science, State Key Laboratory of Superhard Materials, and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun 130012 (China); Zheng, Weitao, E-mail: WTZheng@jlu.edu.cn [Department of Materials Science, State Key Laboratory of Automotive Simulation and Control and Key Laboratory of Automobile Materials, MOE, Jilin University, Changchun 130012 (China)

    2017-07-15

    Highlights: • Oxygen vacancies for Y{sub 2}O{sub 3} films increase monotonously with increasing T{sub s}. • Oxygen vacancies can promote the nucleation of monoclinic phase. • That monoclinic phase with oxygen deficiency is not thermodynamic stable at high temperature. • Phase transition from monoclinic to oxygen defective occurs at high concentrations of oxygen vacancies. • High hardness just appears in Y{sub 2}O{sub 3} films with mixed phase configurations. - Abstract: Y{sub 2}O{sub 3} films have great application potential in high-temperature metal matrix composite and nuclear engineering, used as interface diffusion and reaction barrier coating owing to their excellent thermal and chemical stability, high melting point and extremely negative Gibbs formation energy, and thus their structural and mechanical properties at elevated temperature are especially important. Oxygen vacancies exist commonly in yttrium oxide (Y{sub 2}O{sub 3}) thin films and act strongly on the phase structure and properties, but oxygen vacancies dependent phase transition at elevated temperature has not been well explored yet. Y{sub 2}O{sub 3} thin films with different oxygen vacancy concentrations have been achieved by reactive sputtering through varying substrate temperature (T{sub s}), in which oxygen vacancies increase monotonously with increasing T{sub s}. For as-deposited Y{sub 2}O{sub 3} films, oxygen vacancies present at high T{sub s} can promote the nucleation of monoclinic phase, meanwhile, high T{sub s} can induce the instability of monoclinic phase. Thus their competition results in forming mixed phases of cubic and monoclinic at high T{sub s}. During vacuum annealing at 1000 °C, a critical oxygen vacancy concentration is observed, below which phase transition from monoclinic to cubic takes place, and above which phase transfer from monoclinic to the oxygen defective phase (ICDD file no. 39-1063), accompanying by stress reversal from compressive to tensile and

  20. Thermal properties and stabilities of polymer thin films

    International Nuclear Information System (INIS)

    Kanaya, Toshiji; Kawashima, Kazuko; Inoue, Rintaro; Miyazaki, Tsukasa

    2009-01-01

    Recent extensive studies have revealed that polymer thin films showed very interesting but unusual thermal properties and stabilities. In the article we show that X-ray reflectivity and neutron reflectivity are very powerful tools to study the anomalous properties of polymer thin films. (author)

  1. Liquid crystals for organic thin-film transistors

    Science.gov (United States)

    Iino, Hiroaki; Usui, Takayuki; Hanna, Jun-Ichi

    2015-04-01

    Crystalline thin films of organic semiconductors are a good candidate for field effect transistor (FET) materials in printed electronics. However, there are currently two main problems, which are associated with inhomogeneity and poor thermal durability of these films. Here we report that liquid crystalline materials exhibiting a highly ordered liquid crystal phase of smectic E (SmE) can solve both these problems. We design a SmE liquid crystalline material, 2-decyl-7-phenyl-[1]benzothieno[3,2-b][1]benzothiophene (Ph-BTBT-10), for FETs and synthesize it. This material provides uniform and molecularly flat polycrystalline thin films reproducibly when SmE precursor thin films are crystallized, and also exhibits high durability of films up to 200 °C. In addition, the mobility of FETs is dramatically enhanced by about one order of magnitude (over 10 cm2 V-1 s-1) after thermal annealing at 120 °C in bottom-gate-bottom-contact FETs. We anticipate the use of SmE liquid crystals in solution-processed FETs may help overcome upcoming difficulties with novel technologies for printed electronics.

  2. Aluminosilicate glass thin films elaborated by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, Thibault [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Saitzek, Sébastien [Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens (France); Méar, François O., E-mail: francois.mear@univ-lille1.fr [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Blach, Jean-François; Ferri, Anthony [Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens (France); Huvé, Marielle; Montagne, Lionel [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France)

    2017-03-01

    Highlights: • Successfully deposition of a glassy thin film by PLD. • A good homogeneity and stoichiometry of the coating. • Influence of the deposition temperature on the glassy thin-film structure. - Abstract: In the present work, we report the elaboration of aluminosilicate glass thin films by Pulsed Laser Deposition at various temperatures deposition. The amorphous nature of glass thin films was highlighted by Grazing Incidence X-Ray Diffraction and no nanocristallites were observed in the glassy matrix. Chemical analysis, obtained with X-ray Photoelectron Spectroscopy and Time of Flight Secondary Ion Mass Spectroscopy, showed a good transfer and homogeneous elementary distribution with of chemical species from the target to the film a. Structural studies performed by Infrared Spectroscopy showed that the substrate temperature plays an important role on the bonding configuration of the layers. A slight shift of Si-O modes to larger wavenumber was observed with the synthesis temperature, assigned to a more strained sub-oxide network. Finally, optical properties of thins film measured by Spectroscopic Ellipsometry are similar to those of the bulk aluminosilicate glass, which indicate a good deposition of aluminosilicate bulk glass.

  3. Mechanical properties of ultra-thin HfO{sub 2} films studied by nano scratches tests

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Wei-En; Chang, Yong-Qing [Center for Measurement Standards, Industrial Technology Research Institute, Room 216, Building 8, 321, Kuang Fu Road Sec. 2, Hsinchu, Taiwan (China); Chang, Chia-Wei; Yao, Chih-Kai [Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Liao, Jiunn-Der, E-mail: jdliao@mail.ncku.edu.tw [Department of Materials Science and Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China); Center for Micro/Nano Science and Technology, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan (China)

    2013-02-01

    10-nm-thick atomic layer deposited HfO{sub 2} films were characterized in terms of wear resistance and indentation hardness to investigate the thermal annealing induced impacts on mechanical properties. The wear resistance of ultra-thin films at low loads was characterized using nano-scratch tests with an atomic force microscope. The depth of the nano-scratches decreases with increasing annealing temperature, indicating that the hardness of the annealed films increases with the annealing temperatures. Surface nanoindentation was also performed to confirm the nanoscratch test results. The hardness variation of the annealed films is due to the generation of HfSi{sub x}O{sub y} induced by the thermal annealing. X-ray photoelectron spectroscopy measurements proved that the hardness of formed HfSi{sub x}O{sub y} with increasing annealing temperatures. The existence of HfSi{sub x}O{sub y} broadens the interface, and causes the increase of the interfacial layer thickness. As a result, the surface hardness increases with the increasing HfSi{sub x}O{sub y} induced by the thermal annealing. - Highlights: ► Mechanical properties of HfO{sub 2} films were assessed by nano-scratch and indentation. ► Scratch depth of HfO{sub 2} films decreased with the increase of annealing temperatures. ► Nano-hardness of HfO{sub 2} films increased with the increase of annealing temperatures.

  4. Research progress of VO2 thin film as laser protecting material

    Science.gov (United States)

    Liu, Zhiwei; Lu, Yuan; Hou, Dianxin

    2018-03-01

    With the development of laser technology, the battlefield threat of directional laser weapons is becoming more and more serious. The blinding and destruction caused by laser weapons on the photoelectric equipment is an important part of the current photo-electronic warfare. The research on the defense technology of directional laser weapons based on the phase transition characteristics of VO2 thin films is an important subject. The researches of VO2 thin films are summarized based on review these points: the preparation methods of VO2 thin films, phase transition mechanism, phase transition temperature regulating, interaction between VO2 thin films and laser, and the application prospect of vo2 thin film as laser protecting material. This paper has some guiding significance for further research on the VO2 thin films in the field of defense directional laser weapons.

  5. Cellulose triacetate, thin film dielectric capacitor

    Science.gov (United States)

    Yen, Shiao-Ping S. (Inventor); Jow, T. Richard (Inventor)

    1995-01-01

    Very thin films of cellulose triacetate are cast from a solution containing a small amount of high boiling temperature, non-solvent which evaporates last and lifts the film from the casting surface. Stretched, oriented, crystallized films have high electrical breakdown properties. Metallized films less than about 2 microns in thickness form self-healing electrodes for high energy density, pulsed power capacitors. Thicker films can be utilized as a dielectric for a capacitor.

  6. Effect of yttrium doping on the dielectric properties of CaCu{sub 3}Ti{sub 4}O{sub 12} thin film produced by chemical solution deposition

    Energy Technology Data Exchange (ETDEWEB)

    Saji, Viswanathan S., E-mail: vssaji@chosun.ac.k [Chosun University, College of Dentistry and 2nd Stage of Brain Korea 21 for College of Dentistry, Gwangju-501-759 (Korea, Republic of); Choe, Han Cheol [Chosun University, College of Dentistry and 2nd Stage of Brain Korea 21 for College of Dentistry, Gwangju-501-759 (Korea, Republic of)

    2009-05-29

    Pure and yttrium substituted CaCu{sub 3}Ti{sub 4-x}Y{sub x}O{sub 12-x/} {sub 2} (x = 0, 0.02, 0.1) thin films were prepared on boron doped silica substrate employing chemical solution deposition, spin coating and rapid thermal annealing. The phase and microstructure of the sintered films were examined using X-ray diffraction and scanning electron microscopy. Dielectric properties of the films were measured at room temperature using electrochemical impedance spectroscopy. Highly ordered polycrystalline CCTO thin film with bimodal grain size distribution was achieved at a sintering temperature of 800 {sup o}C. Yttrium doping was found to have beneficial effects on the dielectric properties of CCTO thin film. Dielectric parameters obtained for a CaCu{sub 3}Ti{sub 4-x}Y{sub x}O{sub 12-x} {sub /2} (x = 0.02) film at 1 KHz were k {approx} 2700 and tan {delta} {approx} 0.07.

  7. Size effects in thin films

    CERN Document Server

    Tellier, CR; Siddall, G

    1982-01-01

    A complete and comprehensive study of transport phenomena in thin continuous metal films, this book reviews work carried out on external-surface and grain-boundary electron scattering and proposes new theoretical equations for transport properties of these films. It presents a complete theoretical view of the field, and considers imperfection and impurity effects.

  8. Magnetostrictive thin films prepared by RF sputtering

    International Nuclear Information System (INIS)

    Carabias, I.; Martinez, A.; Garcia, M.A.; Pina, E.; Gonzalez, J.M.; Hernando, A.; Crespo, P.

    2005-01-01

    Fe 80 B 20 thin films have been prepared by ion beam sputtering magnetron on room temperature. The films were fabricated on different substrates to compare the different magnetic and structural properties. In particular the growth of films on flexible substrates (PDMS, Kapton) has been studied to allow a simple integration of the system in miniaturized magnetostrictive devices. X-ray diffraction patterns indicate that films are mainly amorphous although the presence of some Fe nanoparticles cannot be ruled out. The coercive field of thin films ranges between 15 and 35 Oe, depending on substrate. Magnetostriction measurements indicate the strong dependence of the saturation magnetostriction with the substrate. Samples on flexible substrates exhibit a better performance than samples deposited onto glass substrates

  9. Electrical Properties of a Thin Anodized Capacitor Made of Y-Doped Al Alloy Film

    Science.gov (United States)

    Onozuka, Tomotake; Sasaki, Hayato; Mikuni, Naohiro; Shinkai, Satoko; Sasaki, Katsutaka; Yamane, Misao; Abe, Yoshio

    2005-09-01

    We have prepared an Al-Y anodized capacitor using sputter-deposited Al-Y alloy film with 5 at. % Y atoms, and evaluated the capacitor properties and the leakage current properties before and after heat treatment. In addition, the characterization of Al-Y anodized films was examined by X-ray diffraction, Auger electron spectroscopy (AES), and X-ray photoelectron spectroscopy analyses. As a result, it is revealed that the thermal stability of an Al-Y anodized capacitor is superior to that of a pure Al anodized capacitor because of its excellent passive nature, and the loss properties can be improved by increasing the heat treatment temperature in air because of the reduction of the equivalent series resistance. Furthermore, it is clarified that the cause of the short-circuited state observed at 550°C is the formation of a narrow capillary-like conduction path of metallic Al atoms as a result of the interdiffusion of Al.

  10. Film-thickness dependence of structure formation in ultra-thin polymer blend films

    CERN Document Server

    Gutmann, J S; Stamm, M

    2002-01-01

    We investigated the film-thickness dependence of structure formation in ultra-thin polymer blend films prepared from solution. As a model system we used binary blends of statistical poly(styrene-co-p-bromostyrene) copolymers of different degrees of bromination. Ultra-thin-film samples differing in miscibility and film thickness were prepared via spin coating of common toluene solutions onto silicon (100) substrates. The resulting morphologies were investigated with scanning force microscopy, reflectometry and grazing-incidence scattering techniques using both X-rays and neutrons in order to obtain a picture of the sample structure at and below the sample surface. (orig.)

  11. Visualizing Nanoscopic Topography and Patterns in Freely Standing Thin Films

    Science.gov (United States)

    Yilixiati, Subinuer; Zhang, Yiran; Pearsall, Collin; Sharma, Vivek

    Thin liquid films containing micelles, nanoparticles, polyelectrolyte-surfactant complexes and smectic liquid crystals undergo thinning in a discontinuous, step-wise fashion. The discontinuous jumps in thickness are often characterized by quantifying changes in the intensity of reflected monochromatic light, modulated by thin film interference from a region of interest. Stratifying thin films exhibit a mosaic pattern in reflected white light microscopy, attributed to the coexistence of domains with various thicknesses, separated by steps. Using Interferometry Digital Imaging Optical Microscopy (IDIOM) protocols developed in the course of this study, we spatially resolve for the first time, the landscape of stratifying freestanding thin films. In particular, for thin films containing micelles of sodium dodecyl sulfate (SDS), discontinuous, thickness transitions with concentration-dependent steps of 5-25 nm are visualized and analyzed using IDIOM protocols. We distinguish nanoscopic rims, mesas and craters and show that the non-flat features are sculpted by oscillatory, periodic, supramolecular structural forces that arise in confined fluids

  12. Polarized Neutron Reflectivity Simulation of Ferromagnet/ Antiferromagnet Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Yeon; Lee, Jeong Soo

    2008-02-15

    This report investigates the current simulating and fitting programs capable of calculating the polarized neutron reflectivity of the exchange-biased ferromagnet/antiferromagnet magnetic thin films. The adequate programs are selected depending on whether nonspin flip and spin flip reflectivities of magnetic thin films and good user interface are available or not. The exchange-biased systems such as Fe/Cr, Co/CoO, CoFe/IrMn/Py thin films have been simulated successfully with selected programs.

  13. High-throughput characterization of film thickness in thin film materials libraries by digital holographic microscopy

    International Nuclear Information System (INIS)

    Lai Yiuwai; Hofmann, Martin R; Ludwig, Alfred; Krause, Michael; Savan, Alan; Thienhaus, Sigurd; Koukourakis, Nektarios

    2011-01-01

    A high-throughput characterization technique based on digital holography for mapping film thickness in thin-film materials libraries was developed. Digital holographic microscopy is used for fully automatic measurements of the thickness of patterned films with nanometer resolution. The method has several significant advantages over conventional stylus profilometry: it is contactless and fast, substrate bending is compensated, and the experimental setup is simple. Patterned films prepared by different combinatorial thin-film approaches were characterized to investigate and demonstrate this method. The results show that this technique is valuable for the quick, reliable and high-throughput determination of the film thickness distribution in combinatorial materials research. Importantly, it can also be applied to thin films that have been structured by shadow masking.

  14. High-throughput characterization of film thickness in thin film materials libraries by digital holographic microscopy.

    Science.gov (United States)

    Lai, Yiu Wai; Krause, Michael; Savan, Alan; Thienhaus, Sigurd; Koukourakis, Nektarios; Hofmann, Martin R; Ludwig, Alfred

    2011-10-01

    A high-throughput characterization technique based on digital holography for mapping film thickness in thin-film materials libraries was developed. Digital holographic microscopy is used for fully automatic measurements of the thickness of patterned films with nanometer resolution. The method has several significant advantages over conventional stylus profilometry: it is contactless and fast, substrate bending is compensated, and the experimental setup is simple. Patterned films prepared by different combinatorial thin-film approaches were characterized to investigate and demonstrate this method. The results show that this technique is valuable for the quick, reliable and high-throughput determination of the film thickness distribution in combinatorial materials research. Importantly, it can also be applied to thin films that have been structured by shadow masking.

  15. Highly coercive thin-film nanostructures

    International Nuclear Information System (INIS)

    Zhou, J.; Skomski, R.; Kashyap, A.; Sorge, K.D.; Sui, Y.; Daniil, M.; Gao, L.; Yan, M.L.; Liou, S.-H.; Kirby, R.D.; Sellmyer, D.J.

    2005-01-01

    The processing, structure, and magnetism of highly coercive Sm-Co and FePt thin-film nanostructures are investigated. The structures include 1:5 based Sm-Co-Cu-Ti magnets, particulate FePt:C thin films, and FePt nanotubes. As in other systems, the coercivity depends on texture and imperfections, but there are some additional features. A specific coercivity mechanism in particulate media is a discrete pinning mode intermediate between Stoner-Wohlfarth rotation and ordinary domain-wall pinning. This mechanism yields a coercivity maximum for intermediate intergranular exchange and explains the occurrence of coercivities of 5 T in particulate Sm-Co-Cu-Ti magnets

  16. Structural characterization of vacuum evaporated ZnSe thin films

    Indian Academy of Sciences (India)

    The lattice parameter, grain size, average internal stress, microstrain, dislocation density and degree of pre- ferred orientation in the film are calculated and correlated with Ts. Keywords. ZnSe thin films; X-ray diffraction; average internal stress; microstrain; dislocation density. 1. Introduction. Thin films of ZnSe has attracted ...

  17. Investigation of ferromagnetism in oxygen deficient hafnium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Erwin; Kurian, Jose; Krockenberger, Yoshiharu; Alff, Lambert [Institut fuer Materialwissenschaft, TU Darmstadt (Germany); Suter, Andreas [PSI, Villingen (Switzerland); Wilhelm, Fabrice; Rogalev, Andrei [ESRF, Grenoble (France)

    2008-07-01

    Oxygen deficient thin films of hafnium oxide were grown on single crystal r-cut and c-cut sapphire by reactive molecular beam epitaxy. RF-activated oxygen was used for the in situ oxidation of hafnium oxide thin films. Oxidation conditions were varied substantially in order to create oxygen deficiency in hafnium oxide films intentionally. The films were characterized by X-ray and magnetic measurements. X-ray diffraction studies show an increase in lattice parameter with increasing oxygen deficiency. Oxygen deficient hafnium oxide thin films also showed a decreasing bandgap with increase in oxygen deficiency. The magnetisation studies carried out with SQUID did not show any sign of ferromagnetism in the whole oxygen deficiency range. X-ray magnetic circular dichroism measurements also confirmed the absence of ferromagnetism in oxygen deficient hafnium oxide thin films.

  18. Porous Zinc Oxide Thin Films: Synthesis Approaches and Applications

    Directory of Open Access Journals (Sweden)

    Marco Laurenti

    2018-02-01

    Full Text Available Zinc oxide (ZnO thin films have been widely investigated due to their multifunctional properties, i.e., catalytic, semiconducting and optical. They have found practical use in a wide number of application fields. However, the presence of a compact micro/nanostructure has often limited the resulting material properties. Moreover, with the advent of low-dimensional ZnO nanostructures featuring unique physical and chemical properties, the interest in studying ZnO thin films diminished more and more. Therefore, the possibility to combine at the same time the advantages of thin-film based synthesis technologies together with a high surface area and a porous structure might represent a powerful solution to prepare ZnO thin films with unprecedented physical and chemical characteristics that may find use in novel application fields. Within this scope, this review offers an overview on the most successful synthesis methods that are able to produce ZnO thin films with both framework and textural porosities. Moreover, we discuss the related applications, mainly focused on photocatalytic degradation of dyes, gas sensor fabrication and photoanodes for dye-sensitized solar cells.

  19. The Characterization of Thin Film Nickel Titanium Shape Memory Alloys

    Science.gov (United States)

    Harris Odum, Nicole Latrice

    Shape memory alloys (SMA) are able to recover their original shape through the appropriate heat or stress exposure after enduring mechanical deformation at a low temperature. Numerous alloy systems have been discovered which produce this unique feature like TiNb, AgCd, NiAl, NiTi, and CuZnAl. Since their discovery, bulk scale SMAs have undergone extensive material property investigations and are employed in real world applications. However, its thin film counterparts have been modestly investigated and applied. Researchers have introduced numerous theoretical microelectromechanical system (MEMS) devices; yet, the research community's overall unfamiliarity with the thin film properties has delayed growth in this area. In addition, it has been difficult to outline efficient thin film processing techniques. In this dissertation, NiTi thin film processing and characterization techniques will be outlined and discussed. NiTi thin films---1 mum thick---were produced using sputter deposition techniques. Substrate bound thin films were deposited to analysis the surface using Scanning Electron Microscopy; the film composition was obtained using Energy Dispersive Spectroscopy; the phases were identified using X-ray diffraction; and the transformation temperatures acquired using resistivity testing. Microfabrication processing and sputter deposition were employed to develop tensile membranes for membrane deflection experimentation to gain insight on the mechanical properties of the thin films. The incorporation of these findings will aid in the movement of SMA microactuation devices from theory to fruition and greatly benefit industries such as medicinal and aeronautical.

  20. Stress release during cyclic loading of 20 nm palladium films

    International Nuclear Information System (INIS)

    Lukáč, František; Vlček, Marián; Vlach, Martin; Wagner, Stefan; Uchida, Helmut; Pundt, Astrid; Bell, Anthony; Čížek, Jakub

    2015-01-01

    Highlights: • Repeated hydrogenation of 20 nm Pd films was investigated by in situ X-ray diffraction. • Hydride precipitates form coherent interfaces with matrix in nanocrystalline and epitaxial thin films. • Grain boundaries affect precipitation of the hydride phase in the nanocrystalline film. • Stress in epitaxial film is tensile due to different thermal expansion of Pd and sapphire. • After hydrogen absorption/desorption cycle the stress in both films becomes tensile. - Abstract: Gas phase loading of nanocrystalline and epitaxial 20 nm Pd films deposited on single crystalline sapphire substrates was studied in this work. The nanocrystalline film was deposited at room temperature and the epitaxial film deposited at 800 °C. The nanocrystalline film suffers from in-plane compressive stress imposed by atomic peening processes. The epitaxial film exhibits tensile stress caused by the different thermal expansion coefficients of Pd and sapphire substrate. Coherent phase transition into the hydride phase was observed both for the nanocrystalline and for the epitaxial film. For both films, the lattice parameters continuously increase during the phase transition to the hydride phase. Both films exhibit enhanced hydride formation pressure compared to bulk Pd. Misfit dislocations are formed at interface between Pd film and substrate during hydrogenation. This leads to irreversible change of stress state of the films subjected to sorption and desorption cycle with hydrogen